
HP Reliable Transaction Router
C++ Foundation Classes

Order Number: AA-RLE0C-TE

June 2005

This manual provides detailed information on the C++ object-oriented
application programming interface for HP Reliable Transaction Router.

Revision/Update Information: This manual supersedes the Reliable
Transaction Router C++ Foundation
Classes manual, Version 4.2.

Software Version: HP Reliable Transaction Router Version
5.0

Hewlett-Packard Company
Palo Alto, California



© Copyright 2003, 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group. Java is a US trademark of Sun
Microsystems, Inc.

This document was prepared using DECdocument, Version 3.3-1B.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 C++ API Concepts

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1.2 Application Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.2.1 Transaction Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.2.2 Data Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4
1.2.3 Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–6
1.2.4 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
1.2.5 Client and Server Interaction . . . . . . . . . . . . . . . . . . . . . . . . 1–7
1.2.6 The Class Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–10
1.2.7 Stream Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–13
1.2.8 Application Classes Summary . . . . . . . . . . . . . . . . . . . . . . . . 1–13
1.3 Management Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–19
1.3.1 Management Classes Descriptions . . . . . . . . . . . . . . . . . . . . . 1–21
1.4 Message Reception Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–24
1.4.1 Event-Driven Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–25
1.4.2 Polling Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29
1.5 Base Classes Message and Event Mapping . . . . . . . . . . . . . . . . . 1–30
1.5.1 Client Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–32
1.5.2 Client Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–33
1.5.3 Server Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–33
1.5.4 Server Events for RTREvent . . . . . . . . . . . . . . . . . . . . . . . . . 1–34
1.6 Using the C++ API with Existing Applications . . . . . . . . . . . . . . 1–35
1.6.1 Classes that Legacy Applications Can Use . . . . . . . . . . . . . . . 1–36
1.6.2 Encapsulating Application Protocols . . . . . . . . . . . . . . . . . . . 1–37
1.6.3 Implementation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–39
1.7 Compiling and Linking your Application . . . . . . . . . . . . . . . . . . . 1–40

iii



2 Design and Implementation

2.1 Design Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.2 Implementation Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.2.1 Implementing a Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2.2.2 Implementing a Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.2.3 Implementation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.3 Sample Application Walkthrough . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.3.1 Deriving from Base Classes in the Sample Application . . . . . 2–12
2.3.2 Adding Functionality to Data Objects . . . . . . . . . . . . . . . . . . 2–13
2.3.3 Encapsulating Data with RTRData . . . . . . . . . . . . . . . . . . . . 2–14
2.3.4 Examining RTRData Objects . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.3.5 Sample Server Application . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
2.3.6 Sample Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–20
2.4 RTR Applications in a Multiplatform Environment . . . . . . . . . . . 2–22
2.4.1 Defining a Message Format . . . . . . . . . . . . . . . . . . . . . . . . . . 2–22

3 Application Classes

3.1 Server Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2
3.2 RTRServerEventHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–2

RTRServerEventHandler Class Members . . . . . . . . . . . . . . . . . . 3–3
OnApplicationEvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–5
OnBackendGainedLinkToRouter( ) . . . . . . . . . . . . . . . . . . . . . . . . 3–6
OnBackendLostLinkToRouter( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
OnFacilityDead( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
OnFacilityReady( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
OnRouterGainedLinkToFrontend( ) . . . . . . . . . . . . . . . . . . . . . . . 3–10
OnRouterLostLinkToFrontend( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11
OnServerGainedShadow( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–12
OnServerIsPrimary( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13
OnServerIsSecondary( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14
OnServerIsStandby( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15
OnServerLostShadow( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–16
OnServerRecoveryComplete( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–17
RTRServerEventHandler( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18

iv



3.3 RTRServerMessageHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
RTRServerMessageHandler Class Members . . . . . . . . . . . . . . . . 3–20
OnAccepted( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–21
OnApplicationMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–23
OnInitialize( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–24
OnPrepareTransaction( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–25
OnRejected( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–27
OnUncertainTransaction( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–29
RTRServerMessageHandler( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–31

3.4 RTRServerTransactionController . . . . . . . . . . . . . . . . . . . . . . . . . 3–32
RTRServerTransactionController Class Members . . . . . . . . . . . . 3–33
AcceptTransaction( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–35
AcknowledgeTransactionOutcome( ) . . . . . . . . . . . . . . . . . . . . . . . 3–37
ForceTransactionRetry( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–38
GetFacilityName( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–39
GetPartitionName( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–41
GetProperties( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–43
Receive( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–44
RegisterClassFactory( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–47
RegisterFacility( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–48
RegisterHandlers( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–49
RegisterPartition( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–51
RejectTransaction( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–53
RTRServerTransactionController( ) . . . . . . . . . . . . . . . . . . . . . . . 3–54
SendApplicationEvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–55
SendApplicationMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–57
UnRegisterPartition( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–59

3.5 RTRServerTransactionProperties . . . . . . . . . . . . . . . . . . . . . . . . . 3–60
RTRServerTransactionProperties Class Members . . . . . . . . . . . . 3–61
GetFacilityName( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–63
GetPartitionName( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–65
GetTID( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–67
GetTransactionState( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–68
RTRServerTransactionProperties( ) . . . . . . . . . . . . . . . . . . . . . . . 3–69
SetStateToAbort( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–70
SetStateToCommit( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–71
SetStateToDone( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–72

v



SetStateToException( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–73
TransactionIsOriginal( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–74
TransactionIsRecovery( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–75
TransactionIsReplay( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–76

3.6 Client Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–77
3.7 RTRClientEventHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–78

RTRClientEventHandler Class Members . . . . . . . . . . . . . . . . . . . 3–79
OnApplicationEvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–80
OnFacilityDead( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–81
OnFacilityReady( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–82
OnFrontendGainedLinkToRouter( ) . . . . . . . . . . . . . . . . . . . . . . . 3–83
OnFrontendLostLinkToRouter( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 3–84
OnKeyRangeNoLongerAvailable( ) . . . . . . . . . . . . . . . . . . . . . . . . 3–85
OnNewKeyRangeAvailable( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–86
OnRouterGainedLinkToBackend( ) . . . . . . . . . . . . . . . . . . . . . . . . 3–87
OnRouterLostLinkToBackend( ) . . . . . . . . . . . . . . . . . . . . . . . . . . 3–88
RTRClientEventHandler( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–89

3.8 RTRClientMessageHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–90
RTRClientMessageHandler Class Members . . . . . . . . . . . . . . . . . 3–91
OnAccepted( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–92
OnAllPreparedTransaction( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–93
OnApplicationMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–94
OnInitialize( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–95
OnRejected( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–96
OnReturnToSender( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–97
RTRClientMessageHandler( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–98

3.9 RTRClientTransactionController . . . . . . . . . . . . . . . . . . . . . . . . . 3–99
RTRClientTransactionController Class Members . . . . . . . . . . . . . 3–100
AcceptTransaction( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–101
Receive( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–102
RegisterClassFactory( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–104
RegisterFacility( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–105
RegisterHandlers( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–107
RejectTransaction( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–109
RTRClientTransactionController( ) . . . . . . . . . . . . . . . . . . . . . . . . 3–111
SendApplicationEvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–112
SendApplicationMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–114

vi



StartTransaction( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–116
3.10 RTRClientTransactionProperties . . . . . . . . . . . . . . . . . . . . . . . . . 3–118

RTRClientTransactionProperties Class Members . . . . . . . . . . . . . 3–119
RTRClientTransactionProperties( ) . . . . . . . . . . . . . . . . . . . . . . . . 3–120

3.11 Data Classes and the Class Factory . . . . . . . . . . . . . . . . . . . . . . . 3–121
3.12 RTRApplicationEvent Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–122

RTRApplicationEvent Class Members . . . . . . . . . . . . . . . . . . . . . 3–123
Dispatch( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–124
GetEventData( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–126
GetEventDataLength( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–127
GetEventNumber( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–128
SetEventData( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–129
SetEventNumber( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–130

3.13 RTRApplicationMessage Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–131
RTRApplicationMessage Class Members . . . . . . . . . . . . . . . . . . . 3–132
Dispatch( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–133
GetMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–135
GetMessageLength( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–136

3.14 RTRClassFactory Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–137
RTRClassFactory Class Members . . . . . . . . . . . . . . . . . . . . . . . . 3–138
CreateRTRApplicationEvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–139
CreateRTRApplicationMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . 3–141
CreateRTREvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–143
CreateRTRMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–144

3.15 RTRData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–145
RTRData Class Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–146
Dispatch( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–147
GetActualBufferLength( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–148
GetLogicalBufferLength( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–149
IsApplicationEvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–150
IsApplicationMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–151
IsEvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–152
IsMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–153
IsRTREvent( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–154
IsRTRMessage( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–155
RTRData( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–156

vii



3.16 RTREvent Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–157
RTREvent Class Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–158
Dispatch( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–159
GetEventData( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–161
GetEventDataLength( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–162
GetEventNumber( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–163

3.17 RTRMessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–164
RTRMessage Class Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–165
Dispatch( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–166
GetMessageType( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–167
GetReason( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–168
GetSecondaryStatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–169

3.18 RTRStream Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–170
RTRStream Class Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–171
operator>> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–173
operator<< . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–175
ReadFromStream( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–177
RTRStream( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–179
WriteToStream( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–180

4 Management Classes

4.1 RTR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
RTR Class Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
CreateJournal( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
DeleteJournal( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
GetErrorText( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6
IsRunning( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
RTR( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–9
Start( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–10
StartWebServer( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–11
Stop( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–13
StopWebServer( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–14

viii



4.2 RTRBackendPartitionProperties . . . . . . . . . . . . . . . . . . . . . . . . . 4–15
RTRBackendPartitionProperties Class Members . . . . . . . . . . . . . 4–16
GetFacilityName( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–17
GetNumberOfRecoveredTransactions( ) . . . . . . . . . . . . . . . . . . . . 4–19
GetPartitionName( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–20
GetRetryCount( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–22
RTRBackendPartitionProperties( ) . . . . . . . . . . . . . . . . . . . . . . . . 4–23
SetFailoverPolicy( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–24
SetPriorityList( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–26
SetRecoveryRetryCount( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–28

4.3 RTRFacilityManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–29
RTRFacilityManager Class Members . . . . . . . . . . . . . . . . . . . . . . 4–30
AddBackend( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–31
AddFrontend( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–33
AddRouter( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–35
CreateFacility( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–37
DeleteFacility( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–42
GetFacilityProperties( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–44
RemoveBackend( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–46
RemoveFrontend( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–48
RemoveRouter( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–50
RTRFacilityManager( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–52

4.4 RTRFacilityMember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–53
RTRFacilityMember Class Members . . . . . . . . . . . . . . . . . . . . . . 4–54
GetName( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–55
HasBackendRole( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–56
HasFrontendRole( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–57
HasRouterRole( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–58
IsConnectedToLocalNode( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–59
IsLocalNode( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–60
RTRFacilityMember( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–61

4.5 RTRFacilityMemberArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–62
RTRFacilityMemberArray Class Members . . . . . . . . . . . . . . . . . . 4–63
Add( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–64
Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–65
Insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–66
operator[ ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–67

ix



Remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–68
RTRFacilityMemberArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–69
Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–70

4.6 RTRFacilityProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–71
RTRFacilityProperties Class Members . . . . . . . . . . . . . . . . . . . . . 4–72
GetMemberList( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–73
RTRFacilityProperties( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–75
SetBalance( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–76

4.7 RTRKeySegment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–77
RTRKeySegment Class Members . . . . . . . . . . . . . . . . . . . . . . . . . 4–78
GetKeySegmentHighValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–79
GetKeySegmentLength( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–80
GetKeySegmentLowValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–81
GetKeySegmentOffset( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–82
GetKeySegmentType( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–83
RTRKeySegment( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–84
SetKeySegmentHighValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–86
SetKeySegmentLength( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–87
SetKeySegmentLowValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–88
SetKeySegmentOffset( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–89
SetKeySegmentType( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–90

4.8 RTRKeySegmentArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–92
RTRKeySegment Class Members . . . . . . . . . . . . . . . . . . . . . . . . . 4–93
Add( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–94
Clear( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–95
Insert( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–98
Remove( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–100
RTRKeySegmentArray( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–102
Operator( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–103
Size( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–105

4.9 RTRPartitionManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–107
RTRPartitionManager Class Members . . . . . . . . . . . . . . . . . . . . . 4–108
CreateBackendPartition( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–109
DeletePartition( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–112
GetBackendPartitionProperties( ) . . . . . . . . . . . . . . . . . . . . . . . . . 4–113
RTRPartitionManager( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–114

x



4.10 RTRSignedCounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–115
RTRSignedCounter Class Members . . . . . . . . . . . . . . . . . . . . . . . 4–116
Decrement( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–117
GetValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–119
Increment( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–121
SetValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–123
RTRSignedCounter( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–124

4.11 RTRStringCounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–125
RTRStringCounter Class Members . . . . . . . . . . . . . . . . . . . . . . . 4–126
GetValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–127
SetValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–129
RTRStringCounter( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–130

4.12 RTRUnsignedCounter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–131
RTRUnsignedCounter Class Members . . . . . . . . . . . . . . . . . . . . . 4–132
Decrement( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–133
GetValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–135
Increment( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–137
SetValue( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–139
RTRUnsignedCounter( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–140

5 Sample Application Tutorial

5.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1

6 Sample Application Code

6.1 Sample Main Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
6.2 Client Application ABCOrderTaker . . . . . . . . . . . . . . . . . . . . . . . 6–4
6.3 Server Application ABCOrderProcessor . . . . . . . . . . . . . . . . . . . . 6–6
6.4 Data Class ABCOrder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–9
6.5 Data Class ABCBook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–10

xi



A C++ Foundation Class Design Diagrams

B Sample Application Diagrams

Index

Examples

1–1 Receive Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–28
1–2 Polling Model Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–31

Figures

1 RTR Reading Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
1–1 C++ Foundation Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1–2 C++ API Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1–3 Data Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–5
1–4 RTRData Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–8
1–5 Client/Server Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–9
1–6 Receiving an Application Message . . . . . . . . . . . . . . . . . . . . . 1–11
1–7 Receiving a User-Defined Application Message . . . . . . . . . . . 1–12
1–8 Application Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–14
1–9 Partition Objects and RTR . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21
1–10 Management Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
1–11 Event-Driven Server Processing . . . . . . . . . . . . . . . . . . . . . . . 1–25
1–12 Event-Driven Processing Example . . . . . . . . . . . . . . . . . . . . . 1–27
1–13 Polling Processing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–29
1–14 RTR Messaging Between Client and Server Applications . . . 1–32
1–15 C++ API into Existing Applications . . . . . . . . . . . . . . . . . . . . 1–38
1–16 The Protocol Manager Object . . . . . . . . . . . . . . . . . . . . . . . . . 1–38
1–17 Legacy Application Example . . . . . . . . . . . . . . . . . . . . . . . . . 1–39
1–18 RTR Compile Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–41
2–1 Sample Application Messaging . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2–2 Adding Functionality to RTRData . . . . . . . . . . . . . . . . . . . . . 2–13
2–3 Encapsulating Data with RTRData . . . . . . . . . . . . . . . . . . . . 2–15
2–4 Sample Server Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
2–5 Sample Server-Handler-Derived Class . . . . . . . . . . . . . . . . . . 2–20

xii



2–6 Sample Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–21
A–1 Application Data Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–2
A–2 Application Client and Server Classes . . . . . . . . . . . . . . . . . . A–3
A–3 Management Facility and Partition Classes . . . . . . . . . . . . . . A–4
A–4 Management Setup and Diagnostic Classes . . . . . . . . . . . . . . A–5
B–1 Application Object Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . B–2
B–2 Application Server Transaction Object Classes . . . . . . . . . . . B–3
B–3 Application Client Transaction Object Classes . . . . . . . . . . . . B–4

Tables

1 RTR Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1–1 Application Class Category Descriptions . . . . . . . . . . . . . . . . 1–14
1–2 Data Class Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–16
1–3 Management Class Descriptions . . . . . . . . . . . . . . . . . . . . . . 1–23
1–4 Transaction Processing Models Compared . . . . . . . . . . . . . . . 1–25
1–5 Message and Event Handling Examples . . . . . . . . . . . . . . . . 1–28
1–6 Client Handlers by Message Type . . . . . . . . . . . . . . . . . . . . . 1–32
1–7 Client Handlers by Event for RTREvent . . . . . . . . . . . . . . . . 1–33
1–8 Server Handlers by Message Type . . . . . . . . . . . . . . . . . . . . . 1–33
1–9 Server Handlers by Event . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–34
1–10 Foundation Classes for Legacy Applications . . . . . . . . . . . . . 1–36

xiii





Preface

Purpose of this Manual
This document describes the C++ interface for Reliable Transaction Router
(RTR) in which RTR concepts are represented as individual classes. The
flexibility and extensibility of these classes enable existing as well as new
applications to use features that were otherwise unavailable. This application
programming interface (API) is backward-compatible with existing RTR
applications.

Programming Requirements
Programs using the C++ API require the following files:

Windows platform:

File Description

rtrapi.h Header file defining RTR classes

rtrapicpp.lib Library file that applications link against to make use of the
RTRAPI

rtrapicpp.dll Library used by all RTR applications using RTR V4.0 or
later

UNIX platforms:

File Description

rtrapi.h Header file defining RTR classes

rtrapicpp.so File used by all RTR applications using RTR V3.2 or later

xv



OpenVMS platforms:

File Description

rtrapi.h Header file defining RTR classes

rtrapicpp_shr.exe File used by all RTR applications using RTR V3.2 or later

Document Structure
• Chapter 1, C++ API Concepts

Overview of the C++ Foundation classes and introduction to RTR
application concepts. Includes C++ Foundation Class concepts and
terminology and introduces RTR transactional messaging concepts for C++
API client and server applications.

This chapter also includes a section on how to use C++ foundation classes
with legacy or existing applications.

• Chapter 2, Design and Implementation

Covers client and server application design and implementation. Provides
foundation class overloading examples and design concepts.

• Chapter 3, Application Classes

Lists all foundation class application classes and their inherited methods.
Includes separate sections for server, client, and common data classes.

• Chapter 4, Management Classes

Lists all C++ API management classes and their inherited methods.

• Chapter 5, Sample Application Tutorial

Provides a walkthrough of the basics of RTR with the C++ API book-
processing sample application that is included in the examples directory of
the RTR kit.

• Chapter 6, Sample Application Code

Provides a sample application with a brief description of its components.

• Appendices

Two appendices offer class and application design diagrams.

xvi



Related Documentation
Table 1 describes RTR documents and groups them by audience.

Table 1 RTR Documents

Document Content

For all users:

HP Reliable Transaction Router
Release Notes1

Describes new features, corrections,
restrictions, and known problems for RTR.

HP Reliable Transaction Router
Getting Started

Provides an overview of RTR technology and
solutions, and includes the glossary that
defines all RTR terms.

HP Reliable Transaction Router
Software Product Description

Describes product features.

For the system manager:

HP Reliable Transaction Router
Installation Guide

Describes how to install RTR on all supported
platforms.

HP Reliable Transaction Router
System Manager’s Manual

Describes how to configure, manage, and
monitor RTR.

For the application programmer:

HP Reliable Transaction Router
Application Design Guide

Describes how to design application programs
for use with RTR, with both C++ and C
interfaces.

HP Reliable Transaction Router JRTR
Getting Started 2

Provides an overview of the object-oriented
JRTR Toolkit including installation,
configuration and Java programming concepts,
with links to additional online documentation.

HP Reliable Transaction Router C++
Foundation Classes

Describes the object-oriented C++ interface
that can be used to implement RTR object-
oriented applications.

HP Reliable Transaction Router C
Application Programmer’s Reference
Manual

Explains how to design and code RTR
applications using the C programming
language and the RTR C API. Contains full
descriptions of the basic RTR API calls.

1Distributed on software kit.
2In downloadable kit.

You can find additional information about RTR, including the Software Product
Descriptions, on the RTR website found through http://www.hp.com links to
middleware products or at http://www.hp.com/go/rtr .

xvii



Conventions
The following conventions have been adopted in this manual:

• Each class section includes member tables listing all inherited methods.
The methods are in alphabetical order and provide argument types in
the method column. For the argument names, see the individual method
sections, which follow each class member table in alphabetical order.

• The name of each method shows the class from which the method derives.
For example, RTRServerTransactionController::Receive shows that the
Receive method derives from the RTRServerTransactionController class.

• The Prototype sections list each method with its arguments, argument
types, and return types. The Return Value sections that follow contain
return value information.

• For each class, destructors are listed without comment along with the
respective constructor. Only when there is associated behavior (an effect on
another object) is there a note on a destructor.

The typographic conventions used in this manual are the following:

Convention Description

Code Example Programming examples and user input are shown in a
monospaced font.

Parameter Parameters you can change are shown in italics. Italics are
also used for titles of manuals.

FE RTR Frontend

TR RTR Router

BE RTR Backend

Reading Path
The reading path to follow when using the Reliable Transaction Router
information set is shown in Figure 1.

xviii



Figure 1 RTR Reading Path

VM-0818A-AI

System Manager Application Programmer

= Tutorial
(Online Only)

If C++

If Java

If C

Getting
Started

C Application
Programmer’s
Reference
Manual

Application
Design
Guide

JRTR
Getting
Started

System
Manager’s
Manual

Installation
Guide

RTR Help

(Online Only)

C++
Foundation
Classes

= Glossary

Release
Notes

SPD

xix





1
C++ API Concepts

This chapter provides an overview of the RTR C++ foundation classes and
describes concepts that apply to application development using this application
programming interface (API). It includes conceptual descriptions of client
and server interaction and application processing. Detailed information is
provided on each class and its associated methods in later chapters of this
manual. For code examples and implementation information, see the Design
and Implementation chapter of this manual.

1.1 Overview
The C++ foundation classes enable you to implement new RTR client and
server applications, or to integrate specific classes into existing applications to
add additional functionality.

RTR concepts have been mapped to and implemented by the set of foundation
classes for handling system management and the needs of business
applications.

Figure 1–1 shows the C++ foundation classes. Management classes represent
RTR, facilities, partitions, and key segments (part of the partitioning classes in
Figure 1–1 whereas application classes represent transactions, data, messages
and events.

The primary application classes include client classes, server classes, and data
classes that are common to both client and server classes. There are also
server and client transaction property classes.

You use management classes to implement applications that can help manage
RTR. You use application classes to implement client and server applications.
However, client and server applications can also use the management classes
to dynamically set up RTR facilities and partitions.

C++ API Concepts 1–1



C++ API Concepts
1.1 Overview

Figure 1–1 C++ Foundation Classes

VM-1029A-AI

Application Classes

Client Classes

Transaction Properties

Data Classes

Server Classes

Management Classes

Setup Class

Partition Properties

Counter Classes

Partitioning Classes

Facility Classes

Facility Properties

Facility, partition, and transaction property classes include methods that
provide access to facilities, partitions, and transactions. These classes enable
a program to obtain additional information on a facility, partition, or a
transaction. Transaction property classes are useful for transaction recovery
and for obtaining and setting transaction states.

Property classes work with other foundation classes in new applications; they
can also be used independently in legacy RTR applications. They do this by
using information that existing RTR applications already have, including
transaction IDs (tids), facility names, and partition names.

1.2 Application Classes
RTR C++ foundation application classes include:

• Client application classes

• Server application classes

• Data classes

Data classes are common classes for passing data between client and server
applications.

1–2 C++ API Concepts



C++ API Concepts
1.2 Application Classes

(Client and server transaction property classes are included within the client
application classes and server application classes, respectively.)

To use RTR application classes, it is useful to understand RTR concepts
necessary for implementing application solutions with the C++ API, C++ API-
specific information, and object-oriented concepts.

Figure 1-2 illustrates the client and server classes and the paths through which
they typically communicate. (There are design alternatives to the illustrated
path.) TransactionController objects control transactions. Communication
between client and server applications is through messages and events sent
and received by the RTR application. Data objects (instances of data classes)
carry these messages and events between RTR clients and servers.

Figure 1–2 C++ API Classes

RTRRTRData RTRData

Message
Handler

Event
Handler

Message
Handler

Event
Handler

Client Application Server Application

VM-1030A-AI

Client
TransactionController

Server
TransactionController

The principal application classes are the transaction controller classes and
data classes. A transaction controller object manages a transaction. The
RTRData-derived data object is the common means through which client and
server applications interact. A message handler encapsulates the data. Most
events are not related to transactions. A message is sent from a client to a
server or a server to a client (1-to-1). An event can go from one client or server
to many clients and servers.

1.2.1 Transaction Classes
In RTR, a transaction is a logical grouping of messages.

A transaction is controlled by a TransactionController object. The client
transaction controller class (RTRClientTransactionController) creates
single instances of a transaction. The server transaction controller class
(RTRServerTransactionController) manages single instances of a transaction.

C++ API Concepts 1–3



C++ API Concepts
1.2 Application Classes

A transaction controller object:

• Handles the sending and receiving of a specific data object.

• Votes to accept or reject a transaction.

Typically, a transaction controller object processes multiple consecutive
transactions, but there is at most one active transaction in a transaction
controller object at any one time.

A transaction controller:

• Contains at most one transaction at a time (0 or 1).

• Is typically constructed once and reused for each transaction.

• Controls the transaction.

• Processes one transaction at a time. For example, if you need 50 concurrent
transactions (at the same time), you need 50 transaction controllers.

• Comes in a client and a server version.

1.2.2 Data Classes
Applications use data objects to carry data between RTR clients and servers.
Thus, the data classes are common to both client and server applications.
RTRData is the base class from which four kinds of data are derived:

• RTRMessage

• RTREvent

• RTRApplicationMessage

• RTRApplicationEvent

The class factory, RTRClassFactory, creates instances of data classes based on
the content of a transaction controller Receive call for a message or event.

Communication between client and server applications is through messages
and events. Data objects contain these messages and events sent and received
by RTR clients and servers.

Figure 1-3 illustrates the data classes and their relationships to the RTRData
base class and a memory buffer. For example, the base class of RTRStream is
RTRData and the base class of RTRApplicationMessage is RTRStream.

1–4 C++ API Concepts



C++ API Concepts
1.2 Application Classes

Figure 1–3 Data Classes

VM-1031A-AI

RTRApplicationMessage

RTRApplicationEvent

RTRStream

Memory BufferRTRData

RTREvent

RTRMessage

An application wanting to send or receive data specifies an RTRData object.
The mechanism for sending and receiving is different as follows:

• Sending

When calling SendApplicationMessage on a transaction controller, the
caller specifies an RTRApplicationMessage.

• Receiving

When calling the Receive method, the application supplies an RTRData
pointer to NULL. When the transaction controller determines the type
of data which is about to be obtained it calls a class factory to create an
instance of the appropriate object.

After a successful call to the Receive method, the RTRData pointer contains
one of the following kinds of objects:

• RTRMessage, containing an RTR-generated message

• RTREvent, containing an RTR-generated event

• RTRApplicationMessage, containing an application-generated message

• RTRApplicationEvent, containing an application-generated event

The RTRClassFactory class creates the above data objects. Based on the
type of message contained on the transaction controller Receive call the class
factory creates an instance of the appropriate data class. The class factory also
enables you to customize the behavior of data object creation. An application
may derive its own RTRClassFactory class and register it with the transaction

C++ API Concepts 1–5



C++ API Concepts
1.2 Application Classes

controller. In this case, the transaction controller calls the application’s class
factory to create the data object.

Dispatch Methods and Handlers
Since all Data classes are derived from RTRData, an application can treat the
data polymorphically, especially when receiving data on the server.

For example:

ServerTransactionController ServerTransactionController;
RTRData *pDataBeingReceived = NULL;
while (true)
{
// Receive some data
ServerTransactionController.Receive(&pDataBeingReceived);
// No need to determine what we received.
// Just call Dispatch()
pDataBeingReceived->Dispatch();
}

The RTRData class has a pure virtual method named Dispatch( ). This
means that all classes derived from RTRData provide an implementation
of Dispatch( ). This implementation of Dispatch, which is provided by the
derived class, determines the exact message or event number that it contains
and calls the appropriate method in the handler.

The message and event handler classes are:

• RTRServerMessageHandler

• RTRServerEventHandler

• RTRClientMessageHandler

• RTRClientEventHandler

An application may derive its own class from any or all of these handlers to
provide its own custom handling of the specific messages and events.

1.2.3 Messages
Data objects carry messages between clients and servers. These messages are
of two types:

• RTR-generated messages such as rtr_mt_rejected (the transaction has
been rejected).

• Application-generated messages (the protocol that drives application
business logic).

1–6 C++ API Concepts



C++ API Concepts
1.2 Application Classes

1.2.4 Events
Data objects carry events between clients and servers. These events are of two
types:

• RTR-generated events such as RTR_EVTNUM_SRPRIMARY (server is in
primary state for a registered partition).

• Application-generated events (the protocol that drives application business
logic).

Application events can be transmitted only within the RTR facility in which
they are defined. Application events cannot be sent between facilities or
outside RTR.

1.2.5 Client and Server Interaction
For client and server applications to work together, you create a
ClientTransactionController in the client application and a
ServerTransactionController in the server application. These transaction
objects communicate by using objects derived from the RTRData class.

RTR applications need to define an application-level protocol to pass data
between client and server. From the point of view of a client or server
application, the application protocol is just data. The data object encapsulates
the application protocol as shown in Figure 1-4. In this example, a protocol is
defined for sending data between a client and server application that processes
book orders, as in the book ordering sample application. This data protocol
includes fields for ISBN number, book-price, book-name, and author. These
fields are contained in a buffer in an RTRData object.

The data protocol is encapsulated in a user-defined ApplicationProtocol class.
The ApplicationProtocol class is an (derives from) RTRApplicationMessage,
which is an (derives from) RTRStream, which is an (derives from) RTRData
object that contains the application protocol in its buffer.

C++ API Concepts 1–7



C++ API Concepts
1.2 Application Classes

Figure 1–4 RTRData Encapsulation

Application Protocol

RTRApplicationMessage

RTRStream
RTRData

ISBN Price Name Author

VM-1032A-AI

The data classes are used by both client and server RTR applications. When
applications want to send or receive data, they specify an RTRData-derived
object.

Figure 1-5 illustrates client/server deployment and interaction. The numbered
steps represent client logic within the client application and server logic
within the server application. For a more detailed description of transactional
messaging, see the RTR Application Design Guide.

1–8 C++ API Concepts



C++ API Concepts
1.2 Application Classes

Figure 1–5 Client/Server Interaction

3

4

Client Server

Business
Logic

RTRData

ClientTC

RTR
RTRData

ServerTC

Business
Logic

1

56

VM-1033A-AI

2

An RTR transaction processing system consists of separate client applications
and server applications. This example demonstrates a client sending a message
to the server and the server responding, but the server calls the first Receive.
The logical interaction between client and server is as follows:

1. Call Receive from an RTRServerTransactionController object to obtain an
RTRApplicationMessage object from the client. (The server first creates an
RTRServerTransactionController object and then calls Receive.)

2. Create a transaction in the RTRClientTransactionController object by
calling StartTransaction.

3. Create an RTRApplicationMessage object (or one derived from
RTRApplicationMessage).

4. Send the RTRApplicationMessage object to the server and wait for a
message from the server by calling SendApplicationMessage.

5. Process the data in the server application.

6. Send an RTRApplicationMessage object from the server back to the client
by calling SendApplicationMessage.

For more information on client and server messaging, see the RTR Application
Design Guide.

C++ API Concepts 1–9



C++ API Concepts
1.2 Application Classes

1.2.6 The Class Factory
An instance of the class RTRClassFactory is an object that creates other data
objects. The class RTRClassFactory has four methods:

• RTRMessage * CreateRTRMessage( )

• RTREvent * CreateRTREvent( )

• RTRApplicationMessage * CreateRTRApplicationMessage( )

• RTRApplicationEvent * CreateRTRApplicationEvent( )

Client and server transaction controllers use the class factory when receiving
a message or event. Every transaction controller has a class factory. If the
application does not register its own, a default is provided.

When the application calls Receive, the transaction controller determines what
kind of message or event is about to be received, and then calls the appropriate
method in the application-derived and registered class factory object (for
example, CreateRTRMessage). This method creates the appropriate data
object (for example, an RTRMessage object) and returns it to the transaction
controller. The transaction controller copies the incoming data into the data
object returned from the class factory and returns back to the application’s call
to Receive( ).

Applications can override the methods of the RTRClassFactory and return
their own customized versions of the data classes.

Receiving an Application Message
Typical client requests processed by a server application are sent and
received as RTRApplicationMessage objects. The most common method
for implementing business logic data protocols is deriving from the
RTRApplicationMessage class. In Figure 1-6, AM represents an incoming
application message.

1–10 C++ API Concepts



C++ API Concepts
1.2 Application Classes

Figure 1–6 Receiving an Application Message

2

RTR

Transaction Controller
4

VM-1034A-AI

Receive( )

Application Code

RTRApplicationMessage

RTRClassFactory

3
CreateRTRApplicationMessage( )

RTRApplicationMessage

RTRData

AM

AM

1

In Figure 1-6:

1. An application calls a transaction controller Receive (for example,
RTRServerTransactionController::Receive) to receive a message or event
(AM, in the above figure).

2. The transaction controller determines what kind of message or event
is to be received (in this case, an application message) and calls the
appropriate method in the registered RTRClassFactory object (for example,
CreateRTRApplicationMessage).

3. The RTRClassFactory object CreateRTRApplicationMessage method cre-
ates the appropriate data object (in this case, an RTRApplicationMessage
object) and returns it to the transaction controller.

4. The application processes the message according to the application
implementation.

Receiving a User-Defined Application Message
User-defined application messages are sent and received as
RTRApplicationMessage objects. In Figure 1-7: Receiving a User-Defined
Application Message, AM represents an incoming application message.

C++ API Concepts 1–11



C++ API Concepts
1.2 Application Classes

Figure 1–7 Receiving a User-Defined Application Message

2

RTR

Transaction Controller
4

VM-1035A-AI

Receive( )

Application Code

ABC Order

ABCClassFactory

RTRClassFactory 3
CreateRTRApplicationMessage( )

ABC Order

RTRData

AM

AM

1

CreateApplicationMessage( ) RTRApplicationMessage

In Figure 1-7:

1. An application calls a transaction controller Receive (for example,
RTRServerTransactionController::Receive) to receive a message or event
(AM, in the above figure).

2. The transaction controller determines what kind of message or event is to
be received (in this case, an application message) and calls the appropriate
method in the application-derived and registered ABCClassFactory object
(for example, CreateApplicationMessage).

3. The ABCClassFactory object CreateApplicationMessage method creates the
appropriate data object (in this case, an ABCOrder object) and returns it to
the transaction controller.

4. The application processes the message according to the application
implementation.

Note that the derived class factory does not have to handle the all messages.
It is only handling the application message (AM) and taking all of the other
default methods (for example, CreateRTRMessage).

1–12 C++ API Concepts



C++ API Concepts
1.2 Application Classes

1.2.7 Stream Classes
For an added level of functionality, the RTRStream data class allows for easier
access to the data passed between the client and server applications. This class
provides methods with which you can read from and write to the data buffer
contained in RTRData. With these methods, maintaining offset into the buffer
is automatic.

The RTRStream class allows the serialization and deserialization of objects.
For example, if a client application called,

RTRStream::WriteToStream("WarandPeace");
RTRStream::WriteToStream("Tolstoy");

and a server then called,

RTRStream::ReadFromStream(pString1);
RTRStream::ReadFromStream(pString2);

pString1 would point to "WarandPeace" and after the second read, pString2
would point to "Tolstoy."

For large amounts of data to be sent and received, a WriteToStream method
takes a void pointer to the length of the buffer.

1.2.8 Application Classes Summary
Figure 1-8 illustrates the client, data, and server classes in the application
classes and shows their parallelism. Data classes are common to both client
and server applications.

C++ API Concepts 1–13



C++ API Concepts
1.2 Application Classes

Figure 1–8 Application Classes

Client Classes Data Classes Server Classes

RTRClientTransactionController RTRServerTransactionController

RTRClientMessageHandler

RTRClientEventHandler

RTRServerTransactionProperties

RTRServerMessageHandler

RTRServerEventHandler

RTRClientTransactionProperties

RTRClassFactory

RTRStream

RTRApplicationMessage

RTRApplicationEvent

RTREvent

RTRMessage

VM-1036A-AI

RTRData

Table 1–1 shows application class categories and their descriptions. Table 1–2
lists the application data classes that are common to both client and server
applications. Except for data classes, the class categories describe the
characteristics of the associated client and server classes (for example,
the Transaction Controller class category in Table 1–1 describes the
RTRServerTransactionController and RTRClientTransactionController classes).
For detailed descriptions of individual foundation classes and their associated
methods, see the Application Classes chapter of this manual.

Table 1–1 Application Class Category Descriptions

Class Category Description

Transaction Controller The transaction controller manages each transaction and also
manages the channels, messages, and events associated with
that transaction.

• Has client and server versions.

• Manages each RTR transaction (1 transaction controller
for each transaction.).

• Controls at most one active transaction at a time.

• Can process many sequential transactions.

(continued on next page)

1–14 C++ API Concepts



C++ API Concepts
1.2 Application Classes

Table 1–1 (Cont.) Application Class Category Descriptions

Class Category Description

Transaction Properties The RTRTransactionProperties class:

• Has client and server versions.

• Can be used by new or existing applications.

• Includes:

GetTransactionState.

SetTransactionState.

GetInvocationType.

Event Handlers Use RTREventHandler classes to obtain information about a
transaction such as whether a server is primary, standby or
shadow.

The RTREventHandler class:

• Has client and server versions.

• Provides default implementation for every event.

• Enables the application to override only the events it
wants to process.

• Can be extended to have application-specific handlers
such as OnProcessOrder.

You must register an event handler with the RegisterHandlers
method in the TransactionController class.

(continued on next page)

C++ API Concepts 1–15



C++ API Concepts
1.2 Application Classes

Table 1–1 (Cont.) Application Class Category Descriptions

Class Category Description

Message Handlers Message handlers can be used for all transactions and all
application data.

The RTRMessageHandler class:

• Has client and server versions.

• Provides default implementation for every message.

• Enables an application to override only the messages it
wants to process.

• Can be extended to have application-specific handlers.

RTRMessageHandler lets you override only messages you
want to use. For example, OnApplicationMessage can be
implemented with business-logic-specific objects such as
OnStockBuy or OnStockSell.

Table 1–2 Data Class Descriptions

Class Category Description

RTRMessage The RTRMessage class:

• Holds an RTR Message.

• Derives from the RTRData class.

• Is generated internally by RTR.

If an application has not registered a class factory, the application
calls the default class factory to allocate this object. The application:

• Calls the Dispatch method to send this message to the
appropriate handler.

• Can optionally derive from RTRMessage to create a more
business-specific class.

(continued on next page)

1–16 C++ API Concepts



C++ API Concepts
1.2 Application Classes

Table 1–2 (Cont.) Data Class Descriptions

Class Category Description

RTREvent The RTREvent class:

• Holds an RTR Event.

• Derives from the class RTRData.

• Is generated internally by RTR.

If an application has not registered a class factory, the application
calls the default class factory to allocate this object. The application:

• Calls the Dispatch method to send this message to the
appropriate handler.

• Can optionally derive from RTREvent to create a more business-
specific class.

RTRData The RTRData class is used to send and receive messages and events.
It is the abstract base class for the following four data classes:

• RTREvent

• RTRMessage

• RTRApplicationEvent

• RTRApplicationMessage

(continued on next page)

C++ API Concepts 1–17



C++ API Concepts
1.2 Application Classes

Table 1–2 (Cont.) Data Class Descriptions

Class Category Description

RTRApplicationMessage The RTRApplicationMessage class:

• Holds an Application Message.

• Derives from class RTRStream.

• Is generated by a C++ API application.

• Can be treated as a stream to write and read the state of a higher
level object.

The application:

• Calls the Dispatch method to send this message to the
appropriate handler.

• Can optionally derive from RTRApplicationMessage to create a
more business-specific class.

RTRApplicationEvent The RTRApplicationEvent class:

• Holds an application Event.

• Derives from the class RTRStream.

• Is generated by a C++ API application.

• Can be treated as a stream to write and read the state of a higher
level object.

The application:

• Calls the Dispatch method to send this message to the
appropriate handler.

• Can optionally derive from RTRApplicationMessage to create a
more business-specific class.

(continued on next page)

1–18 C++ API Concepts



C++ API Concepts
1.2 Application Classes

Table 1–2 (Cont.) Data Class Descriptions

Class Category Description

RTRStream The RTRStream class:

• Derives from and extends the RTRData class

• Allows RTR applications to issue multiple read and write requests
to the memory buffer (managed by RTR).

• Automatically handles buffer pointer management

• Can be used to serialize and deserialize objects through RTR.

RTRClassFactory The RTRClassFactory class creates instances of the data classes:

• RTRMessage

• RTREvent

• RTRApplicationMessage

• RTRApplicationEvent

An application registers its own class that is derived from the
RTRClassFactory and returns its own business level objects. If an
application does not register a customized version, by default, a class
factory object is internally created.

1.3 Management Classes
Management classes manage the environment in which an RTR application
executes, not the business-logic infrastructure of the application. This
allows you to do in a program what formerly had to be done at the system
management command level.

Facility Management
Managing facilities is based on three concepts provided as separate foundation
classes:

• Facility manager (RTRFacilityManager class)

A facility manager creates and deletes facilities, and adds and removes
facility members based on facility name.

• Facility properties (RTRFacilityProperties class)

Facility properties represent the information and properties of a single
facility.

C++ API Concepts 1–19



C++ API Concepts
1.3 Management Classes

• Facility member (RTRFacilityMember class)

Facility members represent the individual members of a particular facility.
A facility member is both a role and a node combined, because a node
can have more than one role. For example, a nodename can represent
three members by being defined three times with the same node but with
different roles (backend, frontend, router).

For general information on RTR facilities, see RTR Getting Started and the
RTR System Manager’s Manual.

Partitions and Key Segments
One of the benefits of the routing capability in RTR is that it enables you
to partition your data across multiple servers and nodes for increased
performance. Within an application, the partition determines how messages
are routed from clients to servers. RTR routes messages to the correct partition
on the basis of an application-defined key.

The contents of a message determine its destination. The router tracks the
location of data partitions and sends client messages to the appropriate server
for processing. The routing key, or key segment, is embedded within the RTR
message.

The foundation classes provide the object-oriented framework to implement
data partitioning with the following classes:

• Partition manager (RTRPartitionManager class)

A partition manager creates and deletes partitions, and returns properties
for individual partitions based on partition name.

• Partition properties (RTRBackendPartitionProperties class)

Partition properties represent individual partitions within RTR and provide
statistics for a partition.

• Key segment (RTRKeySegment class)

A key segment object defines the range of a partition.

An RTRKeySegment object specifies a data key range and is associated
with a partition when a Partition Manager creates a partition.

Figure 1–9 illustrates the relationship between RTR entities and partition
classes. Partition classes refer to an RTR partition. As the figure illustrates,
the actual partition resides in RTR, not in the foundation class objects.
Methods within the partition classes can create and delete partitions, and
get partition properties for the RTR partitions.

1–20 C++ API Concepts



C++ API Concepts
1.3 Management Classes

Figure 1–9 Partition Objects and RTR

VM-1037A-AI

C++ API

RTR

RTRBackEndPartitionProperties

Partition

RTRPartitionManager

1.3.1 Management Classes Descriptions
Figure 1-10 shows the management class categories and their classes. These
classes can be used in new applications or integrated into existing legacy
applications.

C++ API Concepts 1–21



C++ API Concepts
1.3 Management Classes

Figure 1–10 Management Classes

RTRPartitionManager

RTRBackEndPartitionProperties

RTRKeySegment

Facility Classes Partitioning Classes

Setup Class Diagnostic Class

RTRFacilityManager

RTR RTRCounter

RTRFacilityProperties

RTRFacilityMember

VM-1038A-AI

With the management classes, you can create a facility or a partition
programmatically instead of using the command language interface (CLI).
For legacy applications, you can write management routines to create your
application environment in an existing RTR C-language application.

Facility, management, and partition information exists in RTR. The
management classes access the information from RTR.

Table 1–3 describes the management classes. For detailed descriptions of
individual classes and their associated methods, see the Management Classes
chapter of this manual.

1–22 C++ API Concepts



C++ API Concepts
1.3 Management Classes

Table 1–3 Management Class Descriptions

Class Description

RTRFacilityManager Is used to manage the creation, deletion, and viewing of
facilities based on facility name (existing RTR programs use
facility names).

RTRFacilityMember Represents a member of a particular facility. The member
can be anynode in the facility, including the local node.

Knows the relationship to the local node.

Provides member functions to evaluate connectivity. For
example, IsConnectedToLocalNode returns a boolean return
to a query such as: "Is node A connected to me?"

RTRFacilityProperties Represents a single facility that exists within RTR.

Knows other members in the facility.

RTRPartitionManager Manages the creation and deletion of partitions based on
partition name.

RTRKeySegment Defines and represents the key range of a partition associated
with an RTR server.

RTR The RTR class represents RTR on the local node and performs
actions that apply to RTR as a whole including:

• Starting RTR.

• Stopping RTR.

• Creating a journal.

• Deleting a journal.

• Starting a web server.

• Stopping a web server.

RTRCounter Enables an application to define and manipulate a counter
within RTR. They can be used within monitor screens to mix
RTR and application diagnostic information. RTRCounter is
the base class for:

• RTRStringCounter

• RTRSignedCounter

• RTRUnsignedCounter

(continued on next page)

C++ API Concepts 1–23



C++ API Concepts
1.3 Management Classes

Table 1–3 (Cont.) Management Class Descriptions

Class Description

RTRBackendPartitionProperties Supplies information about a partition, once it has been
created.

Can be used by new or existing applications.

Can be used to obtain information on partitions created at the
command line or by the RTRPartitionManager.

Represents a single partition that exists within RTR. Since
a partition property object is not an actual partition but an
object that knows the properties of an RTR partition, if the
partition is deleted, the partition class points to nothing and
returns an error.

Provides statistics for a partition.

1.4 Message Reception Styles
You can use either of two message reception styles or processing models to
implement client and server applications. Depending on which processing
model you use, you implement the classes differently. The two processing
styles or models are:

• Event-driven

• Polling

Processing mechanisms are different for the polling and event-driven models.
With the polling model, when receiving the data object, obtaining the RTR
message value requires a GetMessageType call. With event-driven processing,
if you are using the handlers, a Receive returns your states. Event-driven is
an addition to the primitive polling mechanism. By adding a call to Dispatch
in the polling mechanism in the application, you can enable default processing
for all messages and events.

Table 1–4 compares the two processing models. These comparisons apply to
both client and server. The sample application and code examples in this
book use event-driven processing in server applications, and polling in client
applications.

1–24 C++ API Concepts



C++ API Concepts
1.4 Message Reception Styles

Table 1–4 Transaction Processing Models Compared

Processing
Method What You Get Programming Logic Message and Event Handling

Event-
Driven

Default handling of
all RTR messages and
events.

Create a loop con-
taining Receive( ) and
Dispatch( ) calls.

Messages and Events are han-
dled by the MessageHandler
and EventHandler objects.

Polling RTRData methods
that allow for user-
implemented detection
of incoming data and
development of message
and event handling.

Use RTRData methods
to detect incoming data
types. Develop logic
to handle all possible
messages and events.

User-implemented logic in
place of MessageHandler and
EventHandler classes.

1.4.1 Event-Driven Model
Figure 1-11 shows the steps in the event-driven model of transaction processing
as used in a server application.

Figure 1–11 Event-Driven Server Processing

Server Application

Transaction Controller

4

7

5

VM-1039A-AI

Receive( )

Loop
RTRMessageHandler

RTREventHandler
Register( )

Data Object

6 Dispatch( )

Partition

KeySegment

3

3

2

1

In the event-driven model, the application is informed when there is something
for it. RTR automatically sends messages to the server and the server runs
a transaction, using the Receive and Dispatch methods within a while loop.

C++ API Concepts 1–25



C++ API Concepts
1.4 Message Reception Styles

Business logic resides in the message and event handlers. The event-driven
model is the recommended method for implementing server applications.

As shown in Figure 1–11, the sequence of operations is as follows:

1. Create an environment that has one or more partitions that are defined in
key segments.

2. Create a TransactionController object.

3. Create the handler classes derived from base classes. Business logic resides
in the message and event handlers.

4. Call Register methods to register facility, class factory, partition, and
handlers. This internal hookup creates a mapping to the message and
event handlers.

5. Start to receive information (messages or events) for the partition
registered to the ServerTransactionController by calling Receive, a method
on the ServerTransactionController. The class factory creates a data object
on the Receive call. The Transaction Controller receives the data object.

6. Call Dispatch. Dispatch knows which handler to go to.

User-implemented logic and methods are stored in the data object.
Checking for RTR-generated data, retrieving messages, and retrieving
events are all done for you automatically, if you call Dispatch. For example,
on a Receive call, if the message is rtr_mt_msgn , then calling Dispatch
calls OnApplicationMessage by default. OnApplicationMessage is a method
in the RTRServerMessageHandler and RTRClientMessageHandler classes.

Business logic is typically implemented in the server message handler.
However, you can implement business logic in other ways as well.

7. Loop for next event.

Event-Driven Processing
Using the event-driven model implements the following mechanism:

1. Receive within a loop to receive a message or event.

2. Call Dispatch.

The Data Object is passed on this call. All handler methods have two
parameters: a message type, and a pointer to the TransactionController
from which the message came. Data Objects, which are stateless, are
not tied to a TransactionController; they can be handled by different
TransactionControllers. Thus, using a TransactionController does not
restrict client applications.

1–26 C++ API Concepts



C++ API Concepts
1.4 Message Reception Styles

3. By default, the RTRData object automatically accesses the appro-
priate Handler by the appropriate method, depending on the mes-
sage or event with the RTRClassFactory class. For example, if
RTRData contains RTR message type rtr_mt_msgn , then Dispatch calls
OnApplicationMessage(RTRApplicationMessage).

4. The Data Object is processed within the appropriate Handler. For
example, the RTRData object containing rtr_mt_msgn is processed by
OnApplicationMessage. This is where the business logic is typically
implemented.

This sequence is shown in Figure 1-12.

Figure 1–12 Event-Driven Processing Example

MessageHandler

Server Application

Transaction Controller

VM-1040A-AI

Receive( )
RTRMessageHandler

EventHandler

RTREventHandler

RTRData

Dispatch( )

Partition

KeySegment

4

1

2

3

Message and Event Handling
This section provides event and message handling examples that are processed
based on what RTR message or event is received on a Receive call. Depending
on the message received, the subsequent process is different, as shown in
Table 1–5.

C++ API Concepts 1–27



C++ API Concepts
1.4 Message Reception Styles

Table 1–5 Message and Event Handling Examples

If the message received
is: Then:

rtr_mt_msgn The Data Object goes to the Message Handler by the
OnApplicationMessage(Data Object) method. Then, in
the Message Handler, the Data Object is processed by
OnApplicationMessage.

rtr_mt_rejected The Data Object goes to the Message Handler using the
OnRejected(Data Object) method. Then, in the Message
Handler, the Data Object is processed by OnRejected.

rtr_mt_prepare The Data Object is dispatched to be handled internally.
Application business logic does not need to know about RTR
Prepares. In the C++ API, Prepares are transparent.

EVTNUM_SRPRIMARY The Data Object goes to the Event Handler using the
OnServerIsPrimary(Data Object) method. Then, in
the Event Handler, the Data Object is processed by
OnServerIsPrimary.

RTRMessageHandler and RTREventHandler are the default handlers.
Processing is done by an application’s derived business logic. Default handlers
do not keep state, so the application must return to BackendPartitionProperties
to get state.

Event-Driven Example
Example 1-1 illustrates the looping implementation for event-driven
processing.

Example 1–1 Receive Loop

ServerTransactionController ServerTransactionController;
RTRData *pDataBeingReceived = NULL;
while (true)
{
// Receive some data
ServerTransactionController.Receive(&pDataBeingReceived);
// No need to determine what we received.
// Just call Dispatch();
pDataBeingReceived->Dispatch();
}

1–28 C++ API Concepts



C++ API Concepts
1.4 Message Reception Styles

1.4.2 Polling Model
Figure 1-13 shows the steps in the polling model of transaction processing as
used in a client application.

Figure 1–13 Polling Processing Model

Client Application

Transaction Controller

3

4

VM-1041A-AI

Receive( )

C++ API Polling Code Tasks
(User-Implemented Logic)

Register( )

Data Object

Partition

KeySegment

5

2

1

✷ Polling loop logic
✷ No RTRData Dispatch( )
✷ No Handler Classes

The polling model processing steps are:

1. Create an environment that has one or more partitions defined in key
segments.

2. Create a transaction controller object.

3. Call Register methods to register facility (for client) and partitions (for
server) and class factory.

4. Call Receive to check the data object.

5. In place of Dispatch, start gathering information for the partition on RTR
by calling RTRData methods such as IsApplicationMessage, IsMessage, and
IsEvent (for a full listing of boolean RTRData methods, see the Application
Classes chapter of this manual) to determine what type of data is being
received in order to process it.

User-implemented logic handles all possible messages, events, and
serialized objects using RTRData methods.

C++ API Concepts 1–29



C++ API Concepts
1.4 Message Reception Styles

6. Call Receive again.

In the polling model, you create a receive loop to poll for incoming data.
Messages or events are received one at a time, and Register does not connect
message and event handlers. The server asks RTR for a request.

You can still check the data object and code tasks as follows:

• Create the polling loop logic.

• In place of Dispatch, detect the incoming data type using the RTRData
methods IsApplicationData, IsMessage, and IsEvent. If you call Dispatch,
RTR responds that there are no handlers.

• In place of the Handler classes, you must develop logic to handle all
possible RTR and application messages, events, and serialized objects
using RTRData methods such as GetBuffer, GetMessageType, and
GetEventNumber. These methods are used in the Dispatch call.

As Figure 1–13 illustrates, in common with the event driven model, you use
a subset of the same objects, but Register does not connect the message and
event handlers.

Polling Model Example
Example 1–2 illustrates an implementation for the polling model of processing.
As this example illustrates, the flow is controlled by the object that is polling
for a message or event from RTR with Receive.

1.5 Base Classes Message and Event Mapping
The foundation class message and event handler methods are provided in
base classes. You derive from them and choose which ones to use in your
implementation. Base handlers are used by default, if you do not derive from
them.

Figure 1–14 illustrates RTR messaging between client and server. RTR
messages are contained in the data object passing between the client and
server. With event-driven processing, the class factory creates the appropriate
data object.

1–30 C++ API Concepts



C++ API Concepts
1.5 Base Classes Message and Event Mapping

Example 1–2 Polling Model Example

ServerTransactionController ServerTransactionController;
RTRData *pDataBeingReceived = NULL;
while (true){
// Receive some data
ServerTransactionController.Receive(&pDataBeingReceived);
// Since handlers are not being used, determine what is
// received. Application-generated message or event.
// RTR-generated message or event.

if (true = pDataBeingReceived->IsApplicationMessage())
{
// Process accordingly

}
else
if (true = pDataBeingReceived->IsApplicationEvent())
{
// Process accordingly

}
else
if (true = pDataBeingReceived->IsRTRMessage())
{
// Process accordingly

}
else
if (true = pDataBeingReceived->IsRTREvent())
{
// Process accordingly

}
}

C++ API Concepts 1–31



C++ API Concepts
1.5 Base Classes Message and Event Mapping

Figure 1–14 RTR Messaging Between Client and Server Applications

Client Application RTR Server Application

VM-1042A-AI

Receive
Receive
Send
Receive
AcceptTransaction

Receive

Send
Send
Receive
Accept

Receive

rtr_mt_msg1
rtr_mt_msgn

rtr_mt_prepare
rtr_mt_accept

rtr_mt_accepted

rtr_mt_reply

rtr_mt_accepted

To connect, the client registers a facility and the server registers a
facility and a partition. The client transaction ends with rtr_mt_
accepted or rtr_mt_rejected. The server transaction ends with the
AcknowledgeTransactionOutcome method.

When Dispatch is called, certain handlers are called for transactions on the
client and server, as shown in the following tables.

1.5.1 Client Messages
When Dispatch is called, certain handlers are called for transactions on the
client, as shown in Table 1–6.

Table 1–6 Client Handlers by Message Type

When the RTR Message
Type is: Contained in:

The RTRClientMessageHandler
Call is:

rtr_mt_accepted RTRMessage OnAccepted

rtr_mt_reply RTRApplicationMessage OnApplicationMessage

rtr_mt_rttosend RTRMessage OnReturnToSender

rtr_mt_prepared RTRMessage OnAllPreparedTransaction

rtr_mt_rejected RTRMessage OnRejected

For example, using the event-driven processing model, when RTRData contains
rtr_mt_reply, by default, the RTRApplicationMessage Dispatch method calls
OnApplicationMessage.

1–32 C++ API Concepts



C++ API Concepts
1.5 Base Classes Message and Event Mapping

1.5.2 Client Events
When Dispatch is called, certain handlers are called for transactions on the
client, as listed in Table 1–7.

Table 1–7 Client Handlers by Event for RTREvent

When the RTR Event Number is: The RTRClientEventHandler Call is:

RTR_EVTNUM_FACDEAD OnFacilityDead

RTR_EVTNUM_FACREADY OnFacilityReady

RTR_EVTNUM_FERTRGAIN OnFrontendGainedLinkToRouter

RTR_EVTNUM_FERTRLOSS OnFrontendLostLinkToRouter

RTR_EVTNUM_RTRBEGAIN OnRouterGainedLinkToBackend

RTR_EVTNUM_RTRBELOSS OnRouterLostLinkToBackend

RTR_EVTNUM_KEYRANGEGAIN OnNewKeyRangeAvailable

RTR_EVTNUM_KEYRANGELOSS OnKeyRangeNoLongerAvailable

For example, with the event-driven processing model, when RTRData contains
RTR_EVTNUM_FACREADY, by default, the RTREvent Dispatch method calls
OnFacilityReady.

1.5.3 Server Messages
When Dispatch is called, certain handlers are called for transactions on the
server side, as listed in Table 1–8.

Table 1–8 Server Handlers by Message Type

When the RTR Message
Type is: Contained in:

The RTRServerMessageHandler
Call is:

rtr_mt_accepted RTRMessage OnAccepted

rtr_mt_msg1 RTRApplicationMessage OnInitialize

OnApplicationMessage

rtr_mt_msg1_uncertain RTRApplicationMessage OnUncertainTransaction

rtr_mt_msgn RTRApplicationMessage OnApplicationMessage

rtr_mt_prepare RTRMessage OnPrepareTransaction

(continued on next page)

C++ API Concepts 1–33



C++ API Concepts
1.5 Base Classes Message and Event Mapping

Table 1–8 (Cont.) Server Handlers by Message Type

When the RTR Message
Type is: Contained in:

The RTRServerMessageHandler
Call is:

rtr_mt_rejected RTRMessage OnRejected

For example, with the event-driven processing model, by default when
RTRData contains rtr_mt_msg1, the RTRServerMessageHandler first calls
OnInitialize and then calls OnApplicationMessage. With the polling model, use
IsMessage in place of Dispatch and implement GetMessageType to handle the
message.

A typical series of Server messages processed for a Transaction in an
RTRTransactionController object would be as follows:

• Start the loop and execute the following receives:

OnInitialize
OnApplicationMessage
OnPrepareTransaction
OnAccepted

• Loop again and get another transaction.

1.5.4 Server Events for RTREvent
When Dispatch is called, certain handlers are called for transactions on the
server side, as listed in Table 1–9.

Table 1–9 Server Handlers by Event

When the RTR Event Number is: The RTRServerEventHandler Call is:

RTR_EVTNUM_BERTRLOSS OnBackendGainedLinkToRouter

RTR_EVTNUM_BERTRGAIN OnBackendGainedLinkToRouter

RTR_EVTNUM_FACDEAD OnFacilityDead

RTR_EVTNUM_FACREADY OnFacilityReady

RTR_EVTNUM_RTRFEGAIN OnFrontendGainedLinkToRouter

RTR_EVTNUM_RTRFELOSS OnFrontendLostLinkToRouter

RTR_EVTNUM_SRSHADOWGAIN OnServerGainedShadow

RTR_EVTNUM_SRSHADOWLOST OnServerLostShadow

(continued on next page)

1–34 C++ API Concepts



C++ API Concepts
1.5 Base Classes Message and Event Mapping

Table 1–9 (Cont.) Server Handlers by Event

When the RTR Event Number is: The RTRServerEventHandler Call is:

RTR_EVTNUM_SRRECOVERCMPL OnServerRecoveryComplete

RTR_EVTNUM_SRPRIMARY OnServerIsPrimary

RTR_EVTNUM_SRSECONDARY OnServerIsSecondary

RTR_EVTNUM_SRSTANDBY OnServerIsStandby

For example, with the event-driven processing model, by default, when
RTRData contains RTR_EVTNUM_FACREADY, the RTRServerEventHandler
calls OnFacilityReady. With the polling model, use IsEvent in place of
Dispatch, and implement GetEventNumber to handle the event.

For more information, see the state diagrams in Appendix C of the RTR
Application Design Guide.

1.6 Using the C++ API with Existing Applications
When working with existing RTR applications, you can integrate individual
C++ foundation classes into existing client or server applications and also write
new management routines that work with existing applications. With the C++
foundation classes, there are no migration issues. There is no need to rewrite
existing code to integrate C++ foundation classes. Existing client and server
applications are linked transparently by RTR .

In existing applications, objects defined in the application can point to
instances of foundation classes.

These classes are designed to be used:

• With other foundation classes

• Independently in legacy RTR applications (property classes are
constructable from legacy applications)

Objects defined in your application can point to instances of the foundation
classes, and inherit the rich functionality within these base classes.

The C++ foundation classes provide a method for implementing RTR solutions
that is easier to use than the C API. The C++ foundation classes:

• Replaces RTR structures with easily manageable classes. You no
longer need to master complex structures and flags, a common cause
of programming errors. These structures and flags are not part of the
foundation classes.

C++ API Concepts 1–35



C++ API Concepts
1.6 Using the C++ API with Existing Applications

• Replaces all flags with Get/Set methods. This completely eliminates the
use of channels in new implementations.

• Provides for transparent creation and use of channels using the
transaction controller classes, RTRServerTransactionController and
RTRClientTransactionController.

• Provides default handling code for all messages and events where
appropriate. Formerly, an application had to provide handling for all
messages and events and could not write common processing code.

• Abstracts the sending and receiving of data to a higher level. Sending and
receiving data is no longer handled at a low level. The foundation classes
eliminate coding for buffers and links.

• Transforms the features of rtr_request_info( ) and rtr_set_info( ) into
simple methods of RTR classes. rtr_request_info( ) and rtr_set_info( )
calls require internal knowledge of RTR data structures. The C++ API
obtains this information without the application needing to know the
internals of RTR.

• Represents each major RTR concept in its own individual class.

1.6.1 Classes that Legacy Applications Can Use
Table 1–10 lists the classes that legacy RTR server applications can use to
create and manage the environment in which RTR applications run. The
second column of Table 1–10 lists the information required to implement
instances of these classes.

Table 1–10 Foundation Classes for Legacy Applications

Class Requires:

Setup class:

RTR Nothing

Facility classes:

RTRFacilityManager Facility Name

RTRFacilityMember Facility Name

Partition classes:

RTRPartitionManager Nothing

(continued on next page)

1–36 C++ API Concepts



C++ API Concepts
1.6 Using the C++ API with Existing Applications

Table 1–10 (Cont.) Foundation Classes for Legacy Applications

Class Requires:

RTRKeySegment Nothing

Property classes:

RTRClientTransactionProperties TID (Transaction ID)

RTRServerTransactionProperties TID

RTRBackendPartitionProperties Partition Name

RTRFacilityProperties Facility Name

Diagnostic class: Nothing (for new applications)

RTRCounter Group Name

Facility, management, and partition information exists in RTR. The methods
within the management and property classes rely on attributes that RTR
applications have.

For example, the diagnostic class RTRCounter relies on the following attributes
for getting information:

• Group name

• Counter name

• Data type

These are all attributes found in RTR.

The RTRBackendPartitionProperties class relies on partition name and facility
name; existing applications already know the partition name. This enables you
to call methods, such as GetRetryCount, in this class by passing in a partition.
For example:

RTRBackendPartitionProperties MyPartition("MyPartitionName");
MyPartition.GetRetryCount();

1.6.2 Encapsulating Application Protocols
Since foundation classes work with existing applications, the protocol for
passing data has not changed. As Figure 1-15 illustrates, legacy applications
and new applications both use the same protocol for passing data. Thus, all
combinations of old and new clients and servers can communicate with each
other.

C++ API Concepts 1–37



C++ API Concepts
1.6 Using the C++ API with Existing Applications

Figure 1–15 C++ API into Existing Applications

VM-1043A-AI

C++ API Client

Application Protocol Manager

C++ API Server

Application Protocol Manager

Order# Stock Quantity BuyOrSellLegacy
RTR Client

Legacy
RTR Server

The protocol manager represents an object that knows how to send and
receive a protocol defined by the application. The protocol is your data.
This is achieved by deriving a class from RTRData that knows how to store
information (data) in it. RTRData does this by pointing to a buffer.

Figure 1–16 illustrates an example of data encapsulation in the protocol
manager objects that are shown in Figure 1–15.

Figure 1–16 The Protocol Manager Object

RTRData

VM-1044A-AI

Order# Stock Quantity BuyOrSell

For more information on defining a class that encapsulates an application
protocol, see the Design and Implementation chapter of this manual.

1–38 C++ API Concepts



C++ API Concepts
1.6 Using the C++ API with Existing Applications

1.6.3 Implementation Example
In the example shown in Figure 1–17, there is an existing server application
and a new client application. To have your existing RTR legacy server
application communicate with and obtain information from a new C++ client
application, you do not need to integrate C++ foundation classes into your
server application.

Figure 1–17 Legacy Application Example

RTR

VM-1045A-AI

C++ API Client

ClientTransactionController

Get State methods

RTRClientTransactionProperties

Legacy Server Application

rtr_get_tid( );

RTRServerTransactionProperties(TID)

GetTransactionState( );

Legacy applications do not have a TransactionController but with the
RTRServerTransactionProperties and RTRClientTransactionProperties
classes, you need only a TID (transaction identifier) to get state information.
You obtain the TID with the existing RTR C API using the rtr_get_tid
method. You can pass this TID into the RTRServerTransactionProperties
and RTRClientTransactionProperties classes.

By using the rtr_get_tid method of the RTR C API to get the TID, you can
pass this value to the new C++ API to construct a ServerTransactionProperties
object, with this TID as the parameter (ServerTransactionProperties(TID)).
Creating an application with this ServerTransactionProperties object enables
you to call any member functions within the ServerTransactionProperties class,
such as GetTransactionState and GetFacility.

C++ API Concepts 1–39



C++ API Concepts
1.7 Compiling and Linking your Application

1.7 Compiling and Linking your Application
All client and application programs must be written using C, C++, or a
language that can use RTR C++ API calls. Include the RTR data types and
error messages file rtrapi.h in your compilation so that it will be appropriately
referenced by your application. For each client and server application, your
compilation/link process is as follows:

1. Write your application code using RTR calls.

2. Use RTR data and status types for cross-platform interoperability.

3. Compile your application code calling in rtrapi.h using ANSI C include
rules. For example, if rtrapi.h is in the same directory as your C++ code,
use with the following statement: #include "rtrapi.h".

4. Link your object code with the RTR library to produce your application
executable.

This process is illustrated in Figure 1–18. In this figure, Library represents
the RTR C++ API shareable images (OpenVMS), DLLs (Win32), and shared
libraries (UNIX).

1–40 C++ API Concepts



C++ API Concepts
1.7 Compiling and Linking your Application

Figure 1–18 RTR Compile Sequence

VM-1046A-AI

Application
Source

RTRAPI.H

COMPILE

Application
Object

Library

LINK

Application
Executable

The following command lines illustrate how to compile and link a C++ RTR
application that uses the C++ foundation classes, with and without threads.
Examples are given for both single and multithreaded applications. You
may need to specify library directories explicitly if the RTR header files and
libraries are not installed in the same directory or in system directories.

Note that the exact name of the RTR foundation classes shared library,
DLL or shareable image file, and how it is referenced in a command line,
varies slightly according to the conventions for the particular platform. Many
compilers recognize the extensions .cc, .cpp and .cxx for C++ source files.

• Compaq C++ for OpenVMS Alpha, single threaded application:

$ cxx yourapp.cxx
$ cxxlink yourapp,sys$input/opt
librtrapicpp/share
$

C++ API Concepts 1–41



C++ API Concepts
1.7 Compiling and Linking your Application

• Compaq C++ for OpenVMS Alpha, multithreaded application:

$ cxx yourapp.cxx
$ cxxlink yourapp,sys$input/opt
librtrapicpp_r/share
$

• HP C++ for OpenVMS I64, single threaded application:

$ cxx yourapp.cxx
$ cxxlink yourapp,sys$input/opt
librtrapicpp/share
$

• HP C++ for OpenVMS I64, multithreaded application:

$ cxx yourapp.cxx
$ cxxlink yourapp,sys$input/opt
librtrapicpp_r/share
$

• Windows MSVC (always multithreaded):

> cl /c -D_MT yourapp.cpp
> link yourapp.obj /out:yourapp.exe rtrapicpp.lib

• GNU C++ for Linux, single threaded:

% g++ yourapp.cc -o yourapp -lrtrapicpp

• GNU C++ for Linux, multithreaded:

% g++ -pthread yourapp.cc -o yourapp -lrtrapicpp_r

Compilers commonly used in developing RTR applications include those in the
following table. For additional information, see the appropriate HP Reliable
Transaction Router Software Product Description.

Operating System Compiler

Microsoft Windows Microsoft Visual C++

OpenVMS Alpha Compaq C++

OpenVMS I64 HP C++

Linux GNU C++

1–42 C++ API Concepts



2
Design and Implementation

This chapter contains suggestions for designing and implementing a new client
or server application using the C++ foundation classes. It also includes code
examples from the C++ bookorder and processing sample application included
in the examples directory of the RTR kit. This sample application shows how
to implement a derived-receive model. Topics include:

• Design steps

• Implementation steps

• Implementation example

• Derived receive models

• Sample application walkthrough

2.1 Design Steps
When creating a new client or server application:

1. Analyze your application requirements.

Consider your business functions and map them to C++ classes. In the
sample application, the client application accepts orders to purchase
books, and the server application processes these orders from the client
application.

2. Define your data protocol.

The data protocol defines the data that is passed between client and server
applications. In the sample application, orders are passed between client
and server. These orders can be books or magazines. Book is a type of
Order.

3. Determine if your application should use the default Message and Event
handlers.

Design and Implementation 2–1



Design and Implementation
2.1 Design Steps

A properly designed RTR application must handle all the possible messages
and events that it may receive. To make this task easier Handler classes
are provided, RTRServerMessageHandler and RTRServerEventHandler.
These two classes provide a separate method for each potential message
and event that an application may receive. The methods provide a default
implementation for the application.

Most applications will benefit from using the default handlers. Using
these handlers simplifies your design by allowing you to derive your own
handlers from the default handlers and override only the messages and
events which are of interest to your application. The messages and events,
which are not overridden, are processed using the default implementation
supplied in the base class.

Review: The Receive( ) method on a Transaction Controller returns an
object derived from RTRData. This may be a Message or Event sent by the
application or RTR itself. To process this unknown message or event the
application simply needs to call the Dispatch( ) method on the RTRData
derived object.

In rare situations an application may decide that it does not wish to use
handlers. Unless a handler is registered with the Transaction controller it
will not be used. In this case calling Dispatch would return an error.

4. Determine if your application should derive from RTRClassFactory.

When the Receive( ) method of a Transaction Controller is called RTR needs
to create an object derived from RTRData to hold the data being received.
More specifically, it creates one of the following objects:

• RTRApplicationMessage

• RTRApplicationEvent

• RTRMessage

• RTREvent

An application may wish to have its own object returned when Receive is
called. This is easily achieved by registering its own class factory object,
which is derived from RTRClassFactory. RTR will call the appropriate
method in the class factory and the application may return its own class,
which is derived from the base class being created. This allows the
application great flexibility when processing incoming data.

Many applications will find it very valuable to derive their own class(es)
from RTRApplicationMessage and return instances of this class from their
custom class factory.

2–2 Design and Implementation



Design and Implementation
2.1 Design Steps

RTR calls the CreateRTRApplicationMessage( ) method of the class factory
with the data being received. This allows the application to parse the data
before it is received and return the correct object for the application. For
example, the sample application looks at the application message being
received, determines if it is receiving a book or magazine and returns an
instance of the correct object.

In some circumstances an application may always pass only one type of
data, in this case it may chose not to register a class factory.

2.2 Implementation Steps
The steps described in this section for client and server applications implement
a polling client application and an event-driven server application. These steps
include code examples that are part of the book processing sample application
for ordering books and magazines.

While the steps in this section are representative of client and server
applications, there are design alternatives. A sampling of these design
alternatives is provided in later sections of this chapter.

2.2.1 Implementing a Server
To implement a server application, you:

• Create an environment for the application to run. This includes starting
RTR, creating a facility, defining one or more key segments and creating
one or more partitions.

• Create an RTRServerTransactionController within your server code.

• Register a facility by name.

• Register a partition by name.

• Register a class derived from RTRClassFactory [optional].

• Register a class derived from RTRServerMessageHandler [optional].

• Register a class derived from RTRServerEventHandler [optional].

• Create the control loop that includes receive and dispatch methods.

• Accept the transaction when your business logic succeeds.

• Acknowledge the outcome of the transaction.

Design and Implementation 2–3



Design and Implementation
2.2 Implementation Steps

For example, the typical steps for implementing a server are the following:

1. Create an environment for the application to run by registering a partition
for the server.

• Create an RTRKeySegment class. For example, the following sample
creates an RTRKeySegment for all ASCII values between "A" and "z":

// Create a partition that processes ISBN numbers in the
// range 0-99

unsigned int low = 0;
unsigned int max = 99;
RTRKeySegment KeyZeroTo99( rtr_keyseg_unsigned,

sizeof(int),
0,
&low,
&max );

• Create an RTR partition with the above KeySegment. The following
example includes constants for the names of the partition and facility.

RTRPartitionManager PartitionManager;
sStatus = PartitionManager.CreateBackendPartition( ABCPartition1,
ABCFacility,
KeyZeroTo99,false,true,false);
print_status_on_failure(sStatus);

While the above example shows only the RTR_STS_OK return value,
typical applications must check for other status returns.

2. Instantiate the RTRServerEventHandler and RTRServerMessageHandler
classes.

SimpleServerEventHandler *pEventHandler = new
SimpleServerEventHandler();

SimpleServerMessageHandler *pMessageHandler = new
SimpleServerMessageHandler();

3. Create an RTRServerTransactionController to receive incoming messages
and events from a client.

RTRServerTransactionController *pTransaction = new
RTRServerTransactionController();

4. Register the facility, partition and both handlers with the transaction
controller.

2–4 Design and Implementation



Design and Implementation
2.2 Implementation Steps

....sStatus = pTransaction->RegisterFacility( pFacilityName );
assert(RTR_STS_OK == sStatus);
....sStatus = pTransaction->RegisterPartition( pPartitionName );
assert(RTR_STS_OK == sStatus);

sStatus = pTransaction->RegisterHandlers( pMessageHandler,
pEventHandler );

assert(RTR_STS_OK == sStatus);

5. Create a RTRData pointer. This pointer is assigned a pointer to a message
or event when RTRSoerverTransactionController::Receive is called.

RTRData *pDataReceived = NULL;

6. Create a control loop to continually receive messages and dispatch them to
the message and event handlers.

while (true)
{
sStatus = pTransaction->Receive(pDataReceived);
print_status_on_failure(sStatus);
sStatus = pDataReceived->Dispatch();
print_status_on_failure(sStatus);
}

7. Accept the Transaction when your business logic succeeds. When the
server has successfully finished its work, tell RTR that it is willing to
accept the transaction.

RTRServerTransactionController * pController;
pController->AcceptTransaction();

Note the default behavior supplied by the OnPrepareTransaction method
of the RTRServerMessage handler is to call AcceptTransaction on behalf of
the application.

The sample application overrides this default behavior to reject the
transaction if the order could not be processed.

void ABCSHandlers::OnPrepareTransaction( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
// Check to see if anything has gone wrong. If so, reject the
// transaction, otherwise accept it.

if (true == m_bVoteToAccept)
{

pController->AcceptTransaction();
}
else
{

pController->RejectTransaction();
}

Design and Implementation 2–5



Design and Implementation
2.2 Implementation Steps

8. Acknowledge the outcome of the transaction. A server must tell RTR that
it has received the outcome of the transaction. This explicitly tells RTR
that it is ok for this Transaction Controller to process the next transaction.

The default behavior in RTRServerMessageHandler::OnAccepted is to
acknowledge the outcome of the transaction.

void ABCSHandlers::OnAccepted( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
{ pController->AcknowledgeTransactionOutcome();

return;
}

2.2.2 Implementing a Client
To implement a client application, you:

• Create an RTRClientTransactionController.

• Register a facility

• Send a message

• Accept the transaction

In more detail:

1. Create a ClientTransactionController to receive the incoming messages and
events from a server.

RTRClientTransactionController *pTransaction = new
RTRClientTransactionController();

2. Register the facility with the TransactionController object.

sStatus = RegisterFacility(ABCFacility);
print_status_on_failure(sStatus);

if(RTR_STS_OK == sStatus)
{

m_bRegistered = true;
}

3. Create an RTRApplicationMessage derived class that adds to the Data
object the information that is to be sent to the server. Usually the data is
added within the derived class by calling RTRStream::WriteToStream.

class MyApplicationMessage : public RTRApplicationMessage
MyApplicationMessage *pMessage1 = new MyApplicationMessage()

4. Send a message to the server.

sStatus = pTransaction->SendApplicationMessage(pMessage1);
print_status_on_failure(sStatus);

2–6 Design and Implementation



Design and Implementation
2.2 Implementation Steps

5. Accept the transaction. When the application has successfully finished the
transaction, the client tells RTR that it votes to accept the transaction.

pTransaction->AcceptTransaction();

The client application’s business logic operates between sending a first
message to the server and accepting the transaction (Step 5).

2.2.3 Implementation Example
The following server application example shows the steps in setting up the
infrastructure for running an application to process transactional requests.
There is a server.h and a server.cpp file.

In the server.h file, after including the necessary header files and defining
pointers to RTR facility and partition names, the business class, deriving from
the RTRServerTransactionController class is defined. This includes declaring a
transaction controller constructor and destructor.

#include <iostream.h>
#include <rtrapi.h>
#include <assert.h>

const char *ABCFacility = "MyFacility";
const char *ABCPartition = "MyPartition";

class SRVTransactionController: public
RTRServerTransactionController
{
public:

SRVTransactionController();
~SRVTransactionController();

private:
};
SRVTransactionController::SRVTransactionController()
{
cout << "In Server Transaction Controller constructor " << endl;
}
SRVTransactionController::~SRVTransactionController()
{
cout << "In Server Transaction Controller destructor " << endl;
}

The server message and event handlers are then declared and defined.
MySRVMessageHandler derives from RTRServerMessageHandler and
MySRVEventHandler derives from RTRServerEventHandler. In this example,
the RTRServerMessageHandler methods OnAccepted, OnPrepareTransaction
and the RTRServerEventHandler method OnServerIsPrimary are overridden.
Both handler classes also define constructors and destructors.

Design and Implementation 2–7



Design and Implementation
2.2 Implementation Steps

class MySRVMessageHandler: public RTRServerMessageHandler
{
public:

MySRVMessageHandler();
~MySRVMessageHandler();
rtr_status_t OnPrepareTransaction( RTRMessage *pmyMsg,

RTRServerTransactionController *pTC);
rtr_status_t OnAccepted( RTRMessage *pmyMsg,

RTRServerTransactionController *pTC);
private:
};
MySRVMessageHandler::MySRVMessageHandler()
{
}
MySRVMessageHandler::~MySRVMessageHandler()
{
}
rtr_status_t MySRVMessageHandler::OnPrepareTransaction(

RTRMessage *pmyMsg,
RTRServerTransactionController *pTC)

{
cout << "prepare txn " << endl;
pTC->AcceptTransaction();
return RTR_STS_OK;

}
rtr_status_t MySRVMessageHandler::OnAccepted(

RTRMessage *pmyMsg,
RTRServerTransactionController *pTC)

{
cout << "accepted txn " << endl;
pTC->AcknowledgeTransactionOutcome();
return RTR_STS_OK;

}
class MySRVEventHandler: public RTRServerEventHandler
{
public:

MySRVEventHandler();
~MySRVEventHandler();
rtr_status_t OnServerIsPrimary( RTREvent *pRTREvent,

RTRServerTransactionController *pTC );
};
MySRVEventHandler::MySRVEventHandler()
{
}
MySRVEventHandler::~MySRVEventHandler()
{
}
MySRVEventHandler::OnServerIsPrimary( RTREvent *pRTREvent,

RTRServerTransactionController *pTC )
{

cout << "This server is primary " <<endl;
return RTR_STS_OK;

2–8 Design and Implementation



Design and Implementation
2.2 Implementation Steps

}

In the server.cpp file, after including the server.h file and instantiating the
SRVTransactionController class (myTC), the management class steps for
setting up the RTR infrastructure take place. These steps create the RTR
environment for client and server transactional messaging. This includes:

• Starting RTR (myRTR.Start)

• Creating a journal (myRTR.CreateJournal(true))

• Creating a facility (myFac)

• Defining a partition (myPartition)

• Defining a key segment (mySegment)

• Creating a server partition (myPartition.CreateBackendPartition)

#include "srv.h"
int main(void)
{

rtr_status_t sStatus;
SRVTransactionController myTC;

// start rtr
RTR myRTR;
sStatus = myRTR.Start();
cout << myRTR.GetErrorText(sStatus) << endl;

// create journal
sStatus = myRTR.CreateJournal(true);
cout << myRTR.GetErrorText(sStatus) << endl;

// create facility
RTRFacilityManager myFac;

// get nodes names for facility
char *pszBackendNodes = "dejavu";
char *pszRouterNodes = "dejavu";
char *pszFrontendNodes = "dejavu";
char *nodename = "dejavu";
sStatus = myFac.CreateFacility(ABCFacility,pszRouterNodes,

pszFrontendNodes,pszBackendNodes,false,false);
cout << myRTR.GetErrorText(sStatus) << endl;
RTRPartitionManager myPartition;
char *low="A";
char *high="Z";
RTRKeySegment mySegment(rtr_keyseg_string,1,

0,low,high);
sStatus = myPartition.CreateBackendPartition(ABCPartition,

ABCFacility,mySegment,false,true,true);
cout << myRTR.GetErrorText(sStatus) << endl;

Design and Implementation 2–9



Design and Implementation
2.2 Implementation Steps

Then register the facility, partition and handler classes and instantiate a
pointer to a data object (*myData).

sStatus = myTC.RegisterFacility(ABCFacility);
cout << myRTR.GetErrorText(sStatus) << endl;
sStatus = myTC.RegisterPartition(ABCPartition);
cout << myRTR.GetErrorText(sStatus) << endl;
MySRVMessageHandler myHandler;
MySRVEventHandler myEventHandler;
myTC.RegisterHandlers(&myHandler,&myEventHandler);
RTRData *myData;

Finally, create control loop logic with the Receive and Dispatch methods.

while(true)
{
sStatus = myTC.Receive(&myData);
cout << "message received " << myRTR.GetErrorText(sStatus) <<
endl;
if ( sStatus != RTR_STS_OK)
{

assert(false);
}
sStatus = myData->Dispatch();
cout << myRTR.GetErrorText(sStatus) << endl;
delete myData;
}
cout << "hey I am done" <<endl;
return 0;

}

2.3 Sample Application Walkthrough
This section uses the sample application included in the RTR kit as an
example of implementing both a client and a server application using the C++
foundation classes.

The sample application is a simple client and server for ordering books and
magazines.

The client takes orders and creates the corresponding Book or Magazine object.
This object is told to serialize itself (write its state to a stream) and the client
then sends the serialized object to a server.

The server application creates and registers two partitions. These partitions
represent orders with ISBN numbers from 1-99 and 100-199. The server will
register a custom class factory to peek at the object, which it is about to receive
and determine its type, book or magazine. When the object has been created
by the class factory and returned to the application the server will tell the

2–10 Design and Implementation



Design and Implementation
2.3 Sample Application Walkthrough

object to deserialize itself and then to process itself. Processing means to carry
out the business logic of buying the book or magazine.

The sample application demonstrates the following features:

• Serializing and Deserializing an application-defined object with RTR.

• Creating multiple partitions, each with a different key segment, including
ABCPartition1 and ABCPartition2.

• Using default handlers for RTR messages, for example, default calls to
methods such as OnAccepted and OnRejected.

• Using default handlers for RTR events, for example, default calls to
methods such as OnServerIsPrimary.

• Dispatching RTRData-derived objects, for example, pOrder->Dispatch( ).

In this sample there are three server classes and one client class. Each class is
declared in its own .h file and implemented in a .cpp file.

The server classes are:

• ABCOrderProcessor: this class derives from
RTRServerTransactionController.

• ABCSClassFactory: this class derives from RTRClassFactory.

• ABCSHandlers: this class derives from RTRServerEventHandler and
RTRServerMessageHandler.

The client classes are:

• ABCOrderTaker: this class derives from RTRClientTransactionController.

• ABCCHandlers this class derives from RTRClientEventHandler and
RTRClientMessageHandler.

There are three common data classes:

• ABCOrder: this class derives from RTRApplicationMessage.

• ABCBook: this class derives from ABCOrder.

• ABCMagazine: this class derives from ABCOrder.

Figure 2–1 illustrates the messaging between the sample client and server
applications.

Design and Implementation 2–11



Design and Implementation
2.3 Sample Application Walkthrough

Figure 2–1 Sample Application Messaging

Client RTR

Server

VM-1047A-AI

rtr_mt_msg1

rtr_mt_prepare

rtr_mt_accepted or

rtr_mt_rejected

rtr_mt_reply

RegisterFacility

SendApplicationMessage

AcceptTransaction

DetermineOutcome

Receive

CreateBackEndPartition

CreateBackEndPartition

RegisterPartition(ABCPartition1)

RegisterPartition(ABCPartition2)

RegisterClassFactory

RegisterHandlers

Receive

OnInitialize

OnApplicationMessage

CheckOrderStatus

OnPrepareTransaction

AcceptTransaction or

RejectTransaction

OnAccepted or Rejected

AcknowledgeTransactionOutcome

2.3.1 Deriving from Base Classes in the Sample Application
This section provides examples of creating derived classes in the book- ordering
sample application for implementing additional functionality in client and
server application code by:

• Adding functionality to RTRData-derived data objects

• Encapsulating data

• Examining RTRData objects

2–12 Design and Implementation



Design and Implementation
2.3 Sample Application Walkthrough

2.3.2 Adding Functionality to Data Objects
You can add functionality to an RTRData object without changing any code in
the Message or Event handlers or the Receive loop, by deriving a class from
RTRData.

Figure 2–2 illustrates the base class relationships to the ABCOrder data class.
This class adds functionality to the RTRApplicationMessage class by defining
three additional methods.

Figure 2–2 Adding Functionality to RTRData

VM-1048A-AI

ABCBook::

WriteObject( )

ReadObject( )

Process( )

ABCOrder::

WriteObject( )=0

ReadObject( )=0

Process( )=0

Dispatch

ABCMagazine::

WriteObject( )

ReadObject( )

Process( )

RTRApplicationMessage

RTRStream

RTRData

For example, a book is represented as an ABCBook object with its inherited
Dispatch method from ABCOrder. This class overrides the WriteObject,
ReadObject, and Process methods. A magazine is represented as an
ABCMagazine object with overridden WriteObject ReadObject, and Process
methods, and the Dispatch method inherited from ABCOrder.

Design and Implementation 2–13



Design and Implementation
2.3 Sample Application Walkthrough

2.3.3 Encapsulating Data with RTRData
The following example illustrates the protocol class that encapsulates
application-level data with an RTRData-derived class. In this sample
application, two kinds of orders are processed by the server application,
book orders and magazine orders. An order is defined as an ABCOrder object
which derives from RTRApplicationMessage. All data sent between the client
and server applications represents either a magazine order or a book order. As
Figure 2–3 shows, there are two kinds or orders, book orders and magazine
orders. This information is represented in a buffer organized for sending to the
server from the client.

These two classes have been derived from the application’s base class,
ABCOrder. Book and Magazines are kinds of Orders. The order class tells
its derived classes when to serialize their data. When this happens, the data
in stored in the RTRData class via the methods of the RTRStream class.

When the client application is to make a request, the user enters the data for
the fields illustrated above. The client application then stores this information
in the corresponding book or magazine object and sends it to the server using
SendOrder. The server then calls Receive to obtain the Book or Magazine
order. Note that a Book (or magazine) is an RTRApplicationMessage.

In addition to RTRApplicationMessage data objects, three other kinds of RTR
data can exist in the RTR application:

• RTRApplicationEvent

• RTRMessage

• RTREvent

The application must be set up to handle these data classes, even if an
application chooses to ignore them. In the sample application, if an order is
an RTRApplicationMessage, then the object (an order) is processed by the
Dispatch method. If the data is an RTRMessage or an RTREvent, then default
handling occurs, and the event and message handler methods are called. The
default Dispatch methods then execute, as each RTRData-derived data class
has its own Dispatch method.

When ABCOrderProcessor calls its derived Receive method, one of the four
types of data objects is assigned. The server can receive RTRMessage and
RTREvent or can overwrite code in the class factory class to receive book or
magazine orders. The class factory returns a pointer to incoming data (as an
RTRData pointer) and knows what kind of object to return.

2–14 Design and Implementation



Design and Implementation
2.3 Sample Application Walkthrough

Figure 2–3 Encapsulating Data with RTRData

VM-1049A-AI

ABCOrder

RTRApplicationMessage

RTRStream

RTRData

ABCBook

uiClassType uiPrice uiISBN pszName pszAuthor

ABCOrder

RTRApplicationMessage

RTRStream

RTRData

ABCMagazine

uiClassType uiPrice pszName pszAuthor pszExpirationDate

2.3.4 Examining RTRData Objects
You can check the contents of an RTRData object by calling any RTRData
method such as IsMessage. The following example from the client application
ABCOrderTaker illustrates how an application can retrieve and use the
message from an RTRData derived object.

Design and Implementation 2–15



Design and Implementation
2.3 Sample Application Walkthrough

while (OrderBeingProcessed == eTxnResult)
{
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if ( true == pResult->IsRTRMessage())
{
// Check to see if we have a status for the transaction.
// rtr_mt_accepted = Server successfully processed our request.
// rtr_mt_rejected = Server could not process our request.
sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
print_status_on_failure(sStatus);
if (rtr_mt_accepted == mtMessageType) return eTxnResult =
OrderSucceeded;
if (rtr_mt_rejected == mtMessageType) return eTxnResult =
OrderFailed;

}
}
return eTxnResult;

2.3.5 Sample Server Application
The following figure illustrates the objects within the ABCOrderProcessor
server application. Each of the four server classes derives from the associated
base classes.

The implementation of ABCOrderProcessor uses default construction and
destruction and then follows the steps described earlier in this chapter to
create a server application.

Processing Method
The sample server application implements the event-driven processing model in
ProcessIncomingTransactions. Implementation of ProcessIncomingTransactions
is as follows:

1. Create a transaction controller to receive incoming messages and events
from a client.

2. Create an environment where the server can run, then Register with
RTR the partitions, handler classes, class factory and objects using the
transaction controller:

2–16 Design and Implementation



Design and Implementation
2.3 Sample Application Walkthrough

Figure 2–4 Sample Server Application

VM-1050A-AI

RTRServerMessageHandler

RTRServerEventHandler

Server Application

ABCSHandler

Data object definitions

ABCSClassFactory

RTRServerTransactionController

ABCOrderProcessor

ProcessIncomingTransactions( )

CreateEnvironmentForServer( )

RTRPartitionManager

CreateBackEndPartition( )

sStatus = RegisterFacility(ABCFacility);
print_status_on_failure(sStatus);
// ABC Partition
sStatus = RegisterPartition(ABCPartition1);
print_status_on_failure(sStatus);
sStatus = RegisterPartition(ABCPartition2);
print_status_on_failure(sStatus);
// ABC Class Factory
sStatus = RegisterClassFactory(&m_ClassFactory);
print_status_on_failure(sStatus);
// ABC Handlers
sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
print_status_on_failure(sStatus);
return;

// Create the environment :
void ABCOrderProcessor::CreateRTREnvironment()
{

rtr_status_t sStatus;
// If RTR is not already started then start it now.

StartRTR();
// Create a Facility if not already created.

CreateFacility();
// Create a partition that processes ISBN numbers in the range 0 -
// 99

Design and Implementation 2–17



Design and Implementation
2.3 Sample Application Walkthrough

unsigned int low = 0;
unsigned int max = 99;

RTRKeySegment KeyZeroTo99( rtr_keyseg_unsigned,
sizeof(int),
0,
&low,
&max );

RTRPartitionManager PartitionManager;
sStatus = PartitionManager.CreateBackendPartition( ABCPartition1,

ABCFacility,
KeyZeroTo99,
false,
true,
false);

print_status_on_failure(sStatus);
// Create a partition that processes ISBN numbers in the range 100 -
// 199

low = 100;
max = 199;

RTRKeySegment Key100To199( rtr_keyseg_unsigned,
sizeof(int),
0,
&low,
&max );

sStatus = PartitionManager.CreateBackendPartition( ABCPartition2,
ABCFacility,
Key100To199,
false,
true,
false);

print_status_on_failure(sStatus);
}

3. Instantiate the handler class ABCSHandlers.

4. Create an RTRData object to hold each incoming message or event. This
object will be reused.

// Start processing orders.
abc_status sStatus;
RTRData *pOrder = NULL;

5. Continually loop, receiving messages and dispatching them to the handlers:

2–18 Design and Implementation



Design and Implementation
2.3 Sample Application Walkthrough

while (true)
{

// Receive an Order
sStatus = Receive(&pOrder);

print_status_on_failure(sStatus);
if(ABC_STS_SUCCESS != sStatus) break;

// if we can’t get an Order then stop processing.
// Dispatch the Order to be processed

sStatus = pOrder->Dispatch;
print_status_on_failure(sStatus);

// Exception handling:
// Check to see if there were any problems processing the order.
// If so, let the handler know to reject this transaction when
// asked to vote.

CheckOrderStatus(sStatus);
...
}

6. Check to see if there were any problems processing the order. If so, let the
handler know that this transaction is to be rejected when asked to vote.

void ABCOrderProcessor::CheckOrderStatus (abc_status sStatus)
if (sStatus == ABC_STS_ORDERNOTPROCESSED)

{
// Let the handler know that the current txn should be rejected

GetHandler()->OnABCOrderNotProcessed();
};

7. Cleanup. Delete this order that was allocated by the class factory. In the
sample application, the class factory returns a separate instance of an
order each time it is called.

delete pOrder;

Server Message and Event Handler
The ABCOrderProcessor server application includes the derived class
ABCSHandler for event-driven message and event handling. As Figure 2–5
illustrates, it combines both handlers into one handler class by deriving from
both RTRServerEventHandler and RTRServerMessageHandler classes.

The ABCSHandler class overrides the following four handler methods:

• OnApplicationMessage

• OnPrepareTransaction

• OnAccepted

Design and Implementation 2–19



Design and Implementation
2.3 Sample Application Walkthrough

Figure 2–5 Sample Server-Handler-Derived Class

VM-1051A-AI

RTRServerMessageHandler

RTRServerEventHandler

ABCSHandler

OnApplicationMessage( )

OnPrepareTransaction( )

OnAccepted( )

OnRejected( )

OnABCOrderNotProcessed( )

• OnRejected

It uses the default handler methods for:

• OnInitialize

• OnUncertainTransaction

In addition to the above over-ridden methods, it also contains an application-
defined method to handle exceptions, OnABCOrderNotProcessed( ).

2.3.6 Sample Client Application
Figure 2–6 illustrates the ABCOrderTaker sample application. This example
uses the polling receive processing model, not message or event handlers.

The client application header file ABCOrderTaker.h declares the interface
for the ABCOrderTaker class. The file ABCOrderTaker.cpp provides the
implementation.

In addition to the default constructor and destructor, there are two methods
within class ABCOrderTaker:

• SendOrder

• Register

• DetermineOutcome

2–20 Design and Implementation



Design and Implementation
2.3 Sample Application Walkthrough

Figure 2–6 Sample Client Application

VM-1052A-AI

Client Application

Data class definitions

RTRClientTransactionController

RegisterFacility( )

ABCOrderTaker

SendTransaction( )

CreateEnvironmentForClient( )

DetermineOutcome( )

SendOrder

1. Create the environment where ABCOrderTaker is to run by registering a
facility:

sStatus = RegisterFacility(ABCFacility);
print_status_on_failure(sStatus);
if(RTR_STS_OK == sStatus)
{

m_bRegistered = true;
}

2. Create a Transaction Controller to receive incoming messages and events
from a client.

ABCOrderTaker OrderTaker;

3. Send the server a message:

sStatus = SendApplicationMessage(pOrder);
print_status_on_failure(sStatus);

4. Since we have successfully finished our work, tell RTR that we are willing
to accept the transaction. Let RTR know that this is the object being sent
and that we are done with our work:

sStatus = AcceptTransaction();
print_status_on_failure(sStatus);

Design and Implementation 2–21



Design and Implementation
2.3 Sample Application Walkthrough

5. Determine if the server successfully processed the request

eTxnResult = DetermineOutcome();
return true;

2.4 RTR Applications in a Multiplatform Environment
Applications using RTR in a multiplatform (mixed endian) environment with
non-string application data must tell RTR how to marshall the data both for
the destination of the application data being sent and the application data
itself. This description is supplied as the rtr_const_msgfmt_t argument to:

• RTRClientTransactionController::SendApplicationMessage

• RTRServerTransactionController::SendApplicationMessage

• RTRClientTransactionConrtroller::SendApplicationEvent

• RTRServerTransactionController::SendApplicationEvent

The default (that is, when rtr_const_msgfmt_t is supplied) is to assume the
application message is string data.

2.4.1 Defining a Message Format
The rtr_const_msgfmt_t string is a null-terminated ASCII string consisting of
a number of field-format specifiers:

[field-format-specifier ...]

The field-format specifier is defined as:

%[dimension]field-type

where:

Field Description Meaning

% Indicates a new field description
is starting.

dimension Is an optional integer denoting
array cardinality (default 1).

field-type Is one of the following codes:

UB 8 bit unsigned byte

SB 8 bit signed byte

2–22 Design and Implementation



Design and Implementation
2.4 RTR Applications in a Multiplatform Environment

Field Description Meaning

UW 16 bit unsigned

SW 16 bit signed

UL 32 bit unsigned

SL 32 bit signed

C 8 bit signed char

UC 8 bit unsigned char

B boolean

For example, consider a data object containing the following:

unsigned int m_uiISBN;
unsigned int m_uiPrice;
char m_szTitle[ABCMAX_STRING_LEN];
char m_szAuthor[ABCMAX_STRING_LEN];

The rtr_const_msgfmt_t for this object could be ("%UL%SL%12C%12C").

The transparent data-type conversion of RTR does not support certain
conversions (for example, floating point). These should be converted to another
format, such as character string.

Design and Implementation 2–23





3
Application Classes

The RTR C++ API major application classes are:

• Server classes

• Client classes

• Data classes

This chapter describes these major classes in the above order. Within each
major class, each class is described in alphabetical order. Within each class, all
of its inherited methods are described in alphabetical order.

RTRData-derived classes are used for passing data between client and server
applications.

An application can send two data categories:

• Application-defined messages

• Application-defined events.

An application can receive four data categories:

• Application-defined messages

• Application-defined events

• RTR-defined messages

• RTR-defined events

The four RTRData-derived classes are:

• RTRApplicationMessage

• RTRApplicationEvent

• RTRMessage

• RTREvent

Application Classes 3–1



Application Classes

An RTRClassFactory object creates these four classes. The RTR application
does not need to register a class factory with a transaction controller, but if it
does, it can customize how the objects are allocated including allocating a class
that is derived from any of the four data classes above.

3.1 Server Classes
The server application classes are:

• RTRServerEventHandler

• RTRServerMessageHandler

• RTRServerTransactionController

• RTRServerTransactionProperties

3.2 RTRServerEventHandler
This class defines event handlers for all potential events that an RTR server
application can receive. Each handler has a default behavior. Applications
should override those member functions for which they want to perform
application-specific processing.

Note

Applications can extend this class by deriving from it and adding their
own application-level event handlers.

For further information see RTRData::Dispatch( ).

3–2 Application Classes



RTRServerEventHandler Class Members

RTRServerEventHandler Class Members
Construction

Method Description

RTRServerEventHandler( ) Constructor.
~RTRServerEventHandler( ) Destructor.

Operations
Method Description

OnApplicationEvent(RTRApplicationEvent,
RTRServerTransactionController)

The application has generated an event
for the server.

OnBackendGainedLinkToRouter(RTREvent,
RTRServerTransactionController)

Default handler for the event where a
backend link to the current router has
been established.

OnBackendLostLinkToRouter(RTREvent,
RTRServerTransactionController)

Default handler for the event where the
backend link to the current router has
been lost.

OnFacilityDead(RTREvent,
RTRServerTransactionController)

Default handler for the event where the
facility is no longer operational.

OnFacilityReady(RTREvent,
RTRServerTransactionController)

Default handler for the event where the
facility has become operational.

OnRouterGainedLinkToFrontend(RTREvent,
RTRServerTransactionController)

Default handler for the event where a
frontend link to the current router has
been established.

OnRouterLostLinkToFrontend(RTREvent,
RTRServerTransactionController)

Default handler for the event where a
frontend link to the current router has
been lost.

OnServerGainedShadow(RTREvent,
RTRServerTransactionController,
(rtr_const_parnam_t))

The server gained its shadow partner.

OnServerIsPrimary(RTREvent,
RTRServerTransactionController)

Default handler for the event where the
server is in primary mode.

OnServerIsSecondary(RTREvent,
RTRServerTransactionController)

Default handler for the event where the
server is in secondary mode.

Application Classes 3–3



RTRServerEventHandler Class Members

Method Description

OnServerIsStandby(RTREvent,
RTRServerTransactionController)

Default handler for the event where the
server is in standby mode.

OnServerLostShadow(RTREvent,
RTRServerTransactionController,
(rtr_const_parnam_t))

The server lost its shadow partner.

OnServerRecoveryComplete(RTREvent,
RTRServerTransactionController)

Default handler for the event where the
server has completed recovery.

3–4 Application Classes



OnApplicationEvent( )

OnApplicationEvent( )

RTRServerMessageHandler::OnApplicationEvent( );

Prototype
virtual rtr_status_t OnApplicationEvent (RTRApplicationEvent

*pRTRApplicationEvent,
RTRServerTransactionController
*pController)

{
return RTR_STS_OK;

}

Parameters

pRTRApplicationEvent
Pointer to an RTRApplicationEvent object that describes the message which is
being processed.

pController
Pointer to the transaction controller within which this event was received.

Description

The pRTRApplicationEvent parameter contains an application event sent to it
by the client application.

Override this method if your application is to receive an indication that this
event has occurred.

The default behavior is that the handler dismisses the notification.

Example
void CombinationOrderProcessor::OnApplicationEvent ( RTRApplicationEvent
*pApplicationEvent, RTRServerTransactionController *pController)
{
// This handler is called by RTR when the client has sent an event.
}

Application Classes 3–5



OnBackendGainedLinkToRouter( )

OnBackendGainedLinkToRouter( )

RTRServerEventHandler::OnBackendGainedLinkToRouter( );

Prototype
virtual rtr_status_t OnBackendGainedLinkToRouter(RTREvent * pRTREvent,

RTRServerTransactionController
*pController)

{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where a backend link
to the current router has been established.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_BERTRGAIN (104)
and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnBackendGainedLinkToRouter( RTREvent

*pEvent, RTRServerTransactionController *pController )
{
}

3–6 Application Classes



OnBackendLostLinkToRouter( )

OnBackendLostLinkToRouter( )

RTRServerEventHandler::OnBackendLostLinkToRouter( );

Prototype
virtual rtr_status_t OnBackendLostLinktToRouter(RTREvent * pRTREvent,

RTRServerTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the backend link
to the current router has been lost.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_BERTRLOSS (105)
and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnBackendLostLinkToRouter( RTREvent

*pEvent, RTRServerTransactionController *pController )
{
}

Application Classes 3–7



OnFacilityDead( )

OnFacilityDead()

RTRServerEventHandler::OnFacilityDead( );

Prototype
virtual rtr_status_t OnFacilityDead(RTREvent * pRTREvent,

RTRServerTransactionController *pController)
{
return RTR_ST_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the facility is no
longer operational.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_FACDEAD (97) and
any associated data.

Override this method if your application wants to receive an indication that
this event has occurred.

Example
void RTRServerEventHandler::OnFacilityDead( RTREvent *pEvent,
RTRServerTransactionController *pController )
{
}

3–8 Application Classes



OnFacilityReady( )

OnFacilityReady( )

RTRServerEventHandler::OnFacilityReady( );

Prototype
virtual rtr_status_t OnFacilityReady(RTREvent * pRTREvent,

RTRServerTransactionController *pController)
{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the facility has
become operational.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_FACREADY (96) and
any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnFacilityReady( RTREvent *pEvent,
RTRServerTransactionController *pController )
{
}

Application Classes 3–9



OnRouterGainedLinkToFrontend( )

OnRouterGainedLinkToFrontend( )

RTRServerEventHandler::OnRouterGainedLinkToFrontend( );

Prototype
virtual rtr_status_t OnRouterGainedLinkToFrontend(RTREvent * pRTREvent,

RTRServerTransactionController *pController)
{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the router gained
link to a frontend.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_RTRFEGAIN (106)
and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnRouterGainedLinkToFrontend( RTREvent *pEvent,
RTRServerTransactionController *pController )
{
}

3–10 Application Classes



OnRouterLostLinkToFrontend( )

OnRouterLostLinkToFrontend( )

RTRServerEventHandler::OnRouterLostLinkToFrontend( );

Prototype
virtual rtr_status_t OnRouterLostLinkToFrontend(RTREvent * pRTREvent,

RTRServerTransactionController *pController)
{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the router lost
link to the current frontend.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_BERTRLOSS (105)
and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnRouterLostLinkToFrontend(

RTREvent *pEvent,
RTRServerTransactionController *pController )

{
}

Application Classes 3–11



OnServerGainedShadow( )

OnServerGainedShadow()

RTRServerEventHandler::OnServerGainedShadow( );

Prototype
virtual rtr_status_t OnServerGainedShadow(RTREvent * pRTREvent,

RTRServerTransactionController *pController
rtr_const_parnam_t pszPartitionName)

{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to the partition name on which the message or event was received.

Description

This method provides the default handler for the event where the server gained
its shadow partner.

The server application is receiving an RTR generated event. RTREvent
contains the RTR defined event number RTR_EVTNUM_SRSHADOWGAIN
(112) and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnServerGainedShadow (*pEvent, *pController,
pszPartitionName)
{
}

3–12 Application Classes



OnServerIsPrimary( )

OnServerIsPrimary( )

RTRServerEventHandler::OnServerIsPrimary( );

Prototype
virtual rtr_status_t OnServerIsPrimary(RTREvent * pRTREvent,

RTRServerTransactionController *pController
rtr_const_parnam_t pszPartitionName)

{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to the partition name on which the message or event was received.

Description

This method provides the default handler for the event where the server is in
primary mode.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_SRPRIMARY (108)
and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnServerIsPrimary(*pEvent, *pController,
pszPartitionName )
{ }

Application Classes 3–13



OnServerIsSecondary( )

OnServerIsSecondary( )

RTRServerEventHandler::OnServerIsSecondary( );

Prototype
virtual rtr_status_t OnServerIsSecondary(RTREvent * pRTREvent,

RTRServerTransactionController *pController
rtr_const_parnam_t pszPartitionName)

{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction
controller.

Description

This method provides the default handler for the event where the server is in
secondary mode.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_SRSECONDARY
(110) and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnServerIsSecondary(*pEvent,
*pController, pszPartitionName )
{ }

3–14 Application Classes



OnServerIsStandby( )

OnServerIsStandby( )

RTRServerEventHandler::OnServerIsStandby( );

Prototype
virtual rtr_status_t OnServerIsStandby(RTREvent * pRTREvent,

RTRServerTransactionController *pController
rtr_const_parnam_t pszPartitionName)

{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction
controller.

Description

This method provides the default handler for the event where the server is in
standby mode.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_SRSTANDBY (109)
and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnServerIsStandby(*pEvent,
*pController, pszPartitionName )
{
}

Application Classes 3–15



OnServerLostShadow( )

OnServerLostShadow()

RTRServerEventHandler::OnServerLostShadow( );

Prototype
virtual rtr_status_t OnServerLostShadow(RTREvent * pRTREvent,

RTRServerTransactionController *pController
rtr_const_parnam_t pszPartitionName)

{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction
controller.

Description

This method provides the default handler for the event where the server lost
its shadow partner

The server application is receiving an RTR-generated event. RTREvent
contains the RTR defined event number RTR_EVTNUM_SRSHADOWLOST
(111) and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnServerShadowLost(*pEvent,

*pController, pszPartitionName )
{
}

3–16 Application Classes



OnServerRecoveryComplete( )

OnServerRecoveryComplete( )

RTRServerEventHandler::OnServerRecoveryComplete( );

Prototype
virtual rtr_status_t OnServerRecoveryComplete(RTREvent * pRTREvent,

RTRServerTransactionController *pController
rtr_const_parnam_t pszPartitionName)

{
return RTR_STS_OK;

}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction
controller.

Description

This method provides the default handler for the event where the server has
completed recovery.

The server application is receiving an RTR-generated event. RTREvent
contains the RTR-defined event number RTR_EVTNUM_SRRECOVERCMPL
(113) and any associated data.

Override this method if your application is to receive an indication that this
event has occurred.

Example
void RTRServerEventHandler::OnServerRecoveryComplete(*pEvent, *pController,
pszPartitionName )
{ }

Application Classes 3–17



RTRServerEventHandler( )

RTRServerEventHandler( )

RTRServerEventHandler::RTRServerEventHandler( );

Prototype
RTRServerEventHandler();
virtual ~RTRServerEventHandler();

Return Value
None

Parameters
None

Description

Call this constructor to create and RTRServerEventHandler object.

Example
class MySRVEventHandler: public RTRServerEventHandler
{
public:

MySRVEventHandler();
~MySRVEventHandler();

rtr_status_t OnServerIsPrimary( RTREvent *pRTREvent,
RTRServerTransactionController *pTC );

private:
};

MySRVEventHandler::MySRVEventHandler()
{
}
MySRVEventHandler::~MySRVEventHandler()
{
}

MySRVEventHandler::OnServerIsPrimary( RTREvent *pRTREvent,
RTRServerTransactionController *pTC )

{
cout << "This server is primary " <<endl;
return RTR_STS_OK;
}

3–18 Application Classes



3.3 RTRServerMessageHandler

3.3 RTRServerMessageHandler

This class defines message handlers for all potential messages that an
RTR server application can receive. Each handler has a default behavior.
Applications should override those member functions for which they want to
perform application-specific processing.

Note

Applications can extend this class by deriving from it and adding their
own application-level message handlers.

For further information see RTRData::Dispatch( ).

Application Classes 3–19



RTRServerMessageHandler Class Members

RTRServerMessageHandler Class Members
Construction

Method Description

RTRServerMessageHandler( ) Constructor
~RTRServerMessageHandler( ) Destructor

Method Description

OnAccepted(RTRMessage,
RTRServerTransactionController)

The specified transaction has been
accepted by all participants.

OnApplicationMessage
RTRApplicationMessage,
RTRServerTransactionController

The client has sent the server this
message.

OnInitialize(RTRApplicationMessage,
RTRServerTransactionController)

A new transaction is being processed.

OnPrepareTransaction(RTRMessage,
RTRServerTransactionController)

The specified transaction is complete
(that is, all messages from the client
have been received).

OnRejected(RTRMessage,
RTRServerTransactionController)

The specified transaction has been
rejected by a participant.

OnUncertainTransaction
(RTRApplicationMessage,
RTRServerTransactionController)

RTR is replaying a transaction which
may or may not have been completed.

3–20 Application Classes



OnAccepted( )

OnAccepted( )

RTRServerMessageHandler::OnAccepted( );

Prototype
virtual rtr_status_t OnAccepted(RTRMessage *pRTRMessage,

RTRServerTransactionController *pController)
{

pController->AcknowledgeTransactionOutcome();
};

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_NOMESSAGE The data object does not contain a message.

RTR_STS_OK Normal successful completion.

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being
processed.

pController
Pointer to the transaction controller within which this message was received.

Description

The specified transaction has been accepted by all participants.

RTR is informing the application that the current transaction has been
accepted by all parties of the transaction and successfully completed.
RTRMessage will contain rtr_mt_accepted.

The default behavior is the handler dismisses the notification.

Application Classes 3–21



OnAccepted( )

Example
rtr_status_t MySRVMessageHandler::OnAccepted(RTRMessage *pmyMsg,

RTRServerTransactionController *pTC)
{
cout << "accepted txn " << endl;
pTC->AcknowledgeTransactionOutcome();
return RTR_STS_OK;
}

3–22 Application Classes



OnApplicationMessage( )

OnApplicationMessage( )

RTRServerMessageHandler::OnApplicationMessage( );

Prototype
virtual rtr_status_t OnApplicationMessage(RTRApplicationMessage

*pRTRApplicationMessage,
RTRServerTransactionController *pController
rtr_const_parnam_t pszPartitionName)

{
return RTR_STS_OK;

}

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object that describes the message which
is being processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction
controller.

Description

The RTRApplicationMessage parameter contains application data sent to
it by an RTR client. RTRApplicationMessage will contain rtr_mt_msg1 or
rtr_mt_msgn and associated data.

The default behavior is the handler dismisses the notification.

Example
void ClassDerivedFromHandler::OnApplicationMessage(*pApplicationMessage,
*pController, pszPartitionName )
{
// This handler is called by RTR when the client has sent a message.
// This is where you process the application’s business logic
return RTR_STS_OK;
}

Application Classes 3–23



OnInitialize( )

OnInitialize( )

RTRServerMessageHandler::OnInitialize(RTRApplicationMessage);

Prototype
virtual rtr_status_t OnInitialize(RTRApplicationMessage

*pRTRApplicationMessage,
RTRServerTransactionController
*pController)

{
return RTR_STS_OK;

}

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object that describes the message which
is being processed.

pController
Pointer to the transaction controller within which this event was received.

Description

The OnInitialize member function is called by the RTR framework at the
beginning of every new transaction this object processes. Your application
should override this member function to perform any special logic for each
transaction processed.

Example
rtr_status_t ABCSHandlers::OnInitialize( RTRApplicationMessage
*pRTRApplicationMessage, RTRServerTransactionController *pController )
{
// This message notifies the RTR application that a new transaction
// is about to begin. Do any per-transaction state handling here.
cout << endl << endl << endl << "New Transaction being received..."
<< endl;

m_bVoteToAccept = true;
return RTR_STS_OK;

}

3–24 Application Classes



OnPrepareTransaction( )

OnPrepareTransaction( )

RTRServerMessageHandler::OnPrepareTransaction( );

Prototype
virtual rtr_status_t OnPrepareTransaction(RTRMessage *pRTRMessage,

RTRServerTransactionController *pController)
{
return RTR_STS_OK;

}

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

The current transaction is complete (that is, all messages from the client have
been received). RTRMessage will contain rtr_mt_prepare .

The default behavior is that the handler dismisses the notification. Note that
if you must override the defaults with a vote to accept or reject the transaction
being processed so the transaction is successfully completed.

Application Classes 3–25



OnPrepareTransaction( )

Example
rtr_status_t ABCSHandlers::OnPrepareTransaction( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
{
// This handler is called by RTR when the client has accepted the
// transaction. This is our notification that we have all orders
// for this transaction.
// We must now give RTR a vote for this transaction. A vote means
// either calling Accept or Reject.
// We simply check to see if anything has gone wrong. If so, reject
// the transaction, otherwise accept it.

rtr_status_t sStatus;
if (true == m_bVoteToAccept)
{

cout << "Voting to Accept..." << endl;
sStatus = pController->AcceptTransaction();

}
else
{

cout << "Voting to Reject..." << endl;
sStatus = pController->RejectTransaction();

}
return sStatus;

}

3–26 Application Classes



OnRejected( )

OnRejected( )

RTRServerMessageHandler::OnRejected( );

Prototype
virtual rtr_status_t OnRejected(RTRMessage * pRTRMessage,

RTRServerTransactionController *pController)
{

pController->AcknowledgeTransactionOutcome();
};

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_NOMESSAGE The data object does not contain a message.

RTR_STS_OK Normal successful completion.

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

The specified transaction has been rejected by a participant. RTRMessage will
contain rtr_mt_rejected .

The default behavior is the handler dismisses the notification.

Application Classes 3–27



OnRejected( )

Example
rtr_status_t ABCSHandlers::OnRejected( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController)
{

cout << "Entire Transaction Rejected..." << endl;
return

RTRServerMessageHandler::OnRejected(pRTRMessage,pController);
}

3–28 Application Classes



OnUncertainTransaction( )

OnUncertainTransaction( )

RTRServerMessageHandler::OnUncertainTransaction( );

Prototype
virtual rtr_status_t OnUncertainTransaction(RTRMessage

*pRTRApplicationMessage,
RTRServerTransactionController *pController
rtr_const_parnam_t pszPartitionName)

{
return RTR_STS_OK;

}

Parameters

pRTRApplicationMessage
Pointer to an RTRMessage object that describes the message which is being
processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction
controller.

Description

The OnUncertainTransaction( ) member function is called by the RTR
framework when RTR is replaying or recovering a transaction. The user’s
application should override this member function to perform any special logic
for each transaction processed. OnInitialize is also called when the server
receives an rtr_mt_msg1_uncertain message.

This member function is only called for transactions whose
RTRServerEnvironment object has set bXAManaged = FALSE.

The default behavior is the handler dismisses the notification.

Application Classes 3–29



OnUncertainTransaction( )

Example
ABCSHandlers::OnUncertainTransaction( RTRApplicationMessage
*pRTRApplicationMessage, RTRServerTransactionController
*pController, rtr_const_parnam_t pszPartitionName )
{

return RTR_STS_OK;
}

3–30 Application Classes



RTRServerMessageHandler( )

RTRServerMessageHandler( )

RTRServerMessageHandler::RTRServerMessageHandler( );

Prototype
RTRServerMessageHandler();
virtual ~RTRServerMessageHandler();

Return Value
None

Parameters
None

Description

Call this constructor to create an RTRServerMessageHandler object.

Example
class MySRVMessageHandler: public RTRServerMessageHandler
{
public:

MySRVMessageHandler();
~MySRVMessageHandler();
rtr_status_t OnPrepareTransaction( RTRMessage *pmyMsg,

RTRServerTransactionController *pTC);
rtr_status_t OnAccepted( RTRMessage *pmyMsg,

RTRServerTransactionController *pTC);
private:
};
MySRVMessageHandler::MySRVMessageHandler()
{
}
MySRVMessageHandler::~MySRVMessageHandler()
{
}

Application Classes 3–31



3.4 RTRServerTransactionController

3.4 RTRServerTransactionController

RTRServerTransactionController is the class most commonly used to create an
RTR server application. Typically, one instance of this class is used to process
multiple consecutive transactions. A transaction controller object is used to
send and receive all data between RTR clients and servers.

3–32 Application Classes



RTRServerTransactionController Class Members

RTRServerTransactionController Class Members

Construction
Method Description

RTRServerTransactionController Constructor
~RTRServerTransactionController Destructor

Operations
Method Description

RegisterClassFactory
(RTRClassFactory)

Register a class factory for RTR to call when
creating RTRData-derived objects.

RegisterHandlers
(RTRServerMessageHandler,
RTRServerEventHandler)

Register your handlers with this transaction.

RegisterPartition(rtr_const_parnam_
t rtr_const_rcpnam_t, rtr_const_
access_t)

Add a partition to the list of partitions for which
this transaction controller processes requests.

Basic Methods
Method Description

AcknowledgeTransactionOutcome( ) Allow RTR to remove the current transaction
from the journal and proceed with the next
request from a client.

AcceptTransaction(rtr_reason_t, bool) Accept the current transaction.
UnRegisterPartition(rtr_const_
parnam_t)

Remove a partition from the list of partitions
for which this transaction controller processes
requests.

ForceTransactionRetry( ) Tell RTR to cancel the current transaction and
re-present it.

Receive(RTRData, rtr_timout_t) Receive an RTR or application- generated
message or an RTR event.

RejectTransaction(rtr_reason_t) Vote to reject the current transaction.
SendApplicationEvent
(RTRApplicationEvent, rtr_const_
rcpspc_t, rtr_const_msgfmt_t)

Send an application-defined event within the
current facility to the client.

Application Classes 3–33



RTRServerTransactionController Class Members

Method Description

SendApplicationMessage
(RTRApplicationMessage, rtr_const_
msgfmt_t)

Send an application-defined message to the
client whose transaction this controller call is
currently processing.

Get State Methods
Method Description

GetFacilityName(rtr_facnam_t,
const size_t)

Get facility name for the current transaction, if
one exists.

GetPartitionName
(rtr_parnam_t, const size_t)

Get partition name for the current transaction,
if one exists.

GetProperties( ) Get properties of the current transaction.

3–34 Application Classes



AcceptTransaction( )

AcceptTransaction( )

RTRServerTransactionController::AcceptTransaction( );

Prototype
virtual rtr_status_t AcceptTransaction(rtr_reason_t

rtrReasonCode = RTR_NO_REASON,
bool bIndependent = false);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_NOACCEPT Client or Server has already voted or there is no active
transaction.

RTR_STS_NOMESSAGE The data object does not contain a message.

RTR_STS_OK Normal successful completion.

RTR_STS_TXNOTACT No transaction currently active on this channel.

Parameters

rtrReasonCode
Optional reason for accepting the transaction. This reason is ORed together
with the reasons of the other participants in the transaction and returned to
all participants of the transaction. The participants can retrieve this reason by
calling RTRMessage::GetReason( ).

bIndependent
If set to true, the transaction is considered independent of other transactions
that RTR is processing. Independent transactions can improve performance in
certain shadowing conditions because RTR will not need to maintain the order
in which this transaction is processed on the shadow node.

Description

Call this member function to accept the transaction currently being processed.

Application Classes 3–35



AcceptTransaction( )

Example
ABCSHandlers::OnPrepareTransaction( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
{
// We simply check to see if anything has gone wrong. If so,
// reject the transaction, otherwise accept it.

if (true == m_bVoteToAccept)
{

pController->AcceptTransaction();
}
else
{

pController->RejectTransaction();
}

return;
}

3–36 Application Classes



AcknowledgeTransactionOutcome( )

AcknowledgeTransactionOutcome()

RTRServerTransactionController::AcknowledgeTransactionOutcome( );

Prototype
virtual rtr_status_t AcknowledgeTransactionOutcome();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_ACKTXN AcknowledgeTransactionOutcome may only be called
after receiving the transaction outcome.

RTR_STS_NOMESSAGE The data object does not contain a message.

RTR_STS_OK Normal successful completion.

Parameters
None

Description

Call this member function after the application receives an indication of the
outcome of the transaction, that is, the transaction has been either accepted or
rejected.

Calling this method is mandatory. RTR will not process the next transaction
until the application acknowledged that it has received the outcome of the
transaction.

Example
ABCSHandlers::OnAccepted( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
{ pController->AcknowledgeTransactionOutcome();

return;
}

Application Classes 3–37



ForceTransactionRetry( )

ForceTransactionRetry( )

RTRServerTransactionController::ForceTransactionRetry( );

Prototype
virtual rtr_status_t ForceTransactionRetry ();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_NORETRYTXN ForceRetryTransaction may only be called while
processing a transaction.

RTR_STS_OK Normal successful completion.

Parameters
None

Description

Call this function when your application wants the current transaction to be
represented to your application without being rejected. If this call is made
before the application votes to accept or reject the transaction, the maximum
number of attempts will be 3. If this function is called after the application
has voted, the maximum number of attempts will be determined by the current
value of the Recovery Retry Count attribute of the partition. Note that this
attribute can be changed by using the RTRPartitionProperties class or by
issuing command to the RTR command line interface.

Example
pController-> ForceTransactionRetry();

3–38 Application Classes



GetFacilityName( )

GetFacilityName()

RTRServerTransactionController::GetFacilityName( );

Prototype
virtual rtr_status_t GetFacilityName (rtr_facnam_t pszFacilityName,

size_t uiFacilityNameSize);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_APPBUFFTOOSMALL The application buffer is too small.

RTR_STS_INVARGPTR Invalid argument pointer.

RTR_STS_OK Normal successful completion.

Parameters

pszFacilityName
A null-terminated pointer to a facility name. Memory is allocated by the
function call.

uiFacilityNameSize
Specifies size of buffer passed by the facility name. If the size of the facility
name intended for the pszFacilityName character string is greater than the
size in uiFacilityNameSize, the error code RTR_STS_APPBUFFTOOSMALL
is returned and the facility name is not copied into the character string.

Description

Obtain the name of the facility in which the current transaction is executing.

Memory is allocated by the caller and if uiFacilityNameSize is not big enough,
an error message is returned.

Application Classes 3–39



GetFacilityName( )

Example
pController->GetFacilityName(pszFacilityName, uiFacilityNameSize);

3–40 Application Classes



GetPartitionName( )

GetPartitionName()

RTRServerTransactionController::GetPartitionName( );

Prototype
virtual rtr_status_t GetPartitionName(rtr_parnam_t pszPartitionName,

const size_t uiPartitionNameSize
RTRData *pRTRData);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_APPBUFFTOOSMALL The application buffer is too small.

RTR_STS_DATANOTAVAILABL A required property was not available.

RTR_STS_INVARGPTR Invalid argument pointer.

RTR_STS_OK Normal successful completion

RTR_STS_TXNOTACT Transaction not active.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

uiPartitionNameSize
An unsigned integer for the size of the named partition.

pRTRData
The name of the partition on which the data object (message or event) was
received.

Description

Obtain the partition name, which the current transaction is using.

Application Classes 3–41



GetPartitionName( )

Example
char szPartitionName[RTR_MAX_PARNAM_LEN+1];
sStatus = pController-> GetPartitionName(&szPartitionName[0],

RTR_MAX_PARNAM_LEN+1,
pRTRData);

// This call will either succeed or return RTR_STS_NOPARTITION.
// This means that the dat object has no partition associated with
// it. Only application messages and certain RTR events have a
// partition associated with them.

3–42 Application Classes



GetProperties( )

GetProperties( )

RTRServerTransactionController::GetProperties( );

Prototype
virtual RTRServerTransactionProperties* GetProperties();

Parameters
None

Description

This method gets a pointer to the RTRServerTransacitonProperties object
describing the server transaction. If a transaction does not exist NULL is
returned.

Example
RTRServerTransactionProperties *pTxnProp =

pController->GetProperties();
if (PTxnProp->TransactionIsOriginal())
{
.
}

Application Classes 3–43



Receive( )

Receive( )

RTRServerTransactionController::Receive( );

Prototype
virtual rtr_status_t Receive(RTRData **pRTRData,

rtr_timout_t tTimeout = RTR_NO_TIMOUTMS);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_ACPNOTVIA RTR ACP not a viable entity.

RTR_STS_INVCHANNEL Invalid channel argument.

RTR_STS_INVDATPTRPTARG Invalid pointer-to-data-pointer pointer argument

RTR_STS_INVFLAGS Invalid flags argument.

RTR_STS_INVMSG Invalid pmsg argument.

RTR_STS_INVRMNAME Invalid resource manager name.

RTR_STS_NOACP No RTRACP process available.

RTR_STS_NOMESSAGE The data object does not contain a message.

RTR_STS_NORECEIVE Attempting to receive at this point is not allowed.

RTR_STS_OK Normal successful completion.

RTR_STS_TIMOUT Call to Receive timed out.

RTR_STS_TRUNCATED Buffer too short for message. Message has been
truncated.

Parameters

pRTRData
A pointer passed by reference, which will receive an object, derived from
RTRData. This object can be any of the following:

• RTRMessage

• RTREvent

• RTRApplicationMessage

3–44 Application Classes



Receive( )

• RTRApplicationEvent

If a class factory is registered with the transaction controller, the application
has the ability to have this object be any application class derived from
RTRData. By calling the Dispatch( ) method, the most over-ridden
implementation of dispatch will be called.

For more information see the description of the RTR message reception
styles in Section 1.4. Addtional information can be found in the HP Reliable
Transaction Router Application Design Guide.

tTimeout
The maximum amount of time that the application is willing to wait for this
receive to complete. The timeout value is in milliseconds.

Description

This member function should be called when the application is ready to receive
messages and events from the RTR framework. Typically this function is called
in a loop. The RTRData object returned contains the message or event type, as
well as other information useful to the application.

For more information see:

RTRData

Example
// Continually loop receiving messages and dispatching them to the handlers.

void ABCOrderProcessor::ProcessIncomingOrders()

{
// Start processing orders

abc_status sStatus = RTR_STS_OK;

RTRData *pOrder = NULL;

while (1)

{

// Receive an Order

sStatus = Receive(&pOrder);

print_status_on_failure(sStatus);

if(ABCSuccess != sStatus) break;

// If we can’t get an Order then stop processing.

delete pOrder;

Application Classes 3–45



Receive( )

}

return;

}

3–46 Application Classes



RegisterClassFactory( )

RegisterClassFactory( )

RTRServerTransactionController::RegisterClassFactory( );

Prototype
virtual rtr_status_t RegisterClassFactory( RTRClassFactory *pFactory);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVFACTORYPTARG The factory argument pointer is invalid.

RTR_STS_OK Normal successful completion

Parameters

pFactory
Pointer to an RTRClassFactory object that is called, if registered, from the
RTR framework when processing all Receive calls in your application.

Description

A class factory returns an object for RTR to use (write data to) when the
method RTRServerTransactionController::Receive is called. The application
can register their own class factory and override the functions to return their
own objects derived from the RTR data classes. The four RTR data classes are
RTRApplicationMessage, RTRApplicationEvent, RTRMessage, and RTREvent.

Registering a class factory is not a requirement. An application would register
a class factory only when they wish to customize the object that is being
allocated.

Example
sStatus = RegisterClassFactory(&m_ClassFactory);
print_status_on_failure(sStatus);

Application Classes 3–47



RegisterFacility( )

RegisterFacility( )

RTRServerTransactionController::RegisterFacility( );

Prototype
virtual rtr_status_t RegisterFacility (rtr_const_facnam_t pszFacilityName);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVALIDFACILITY The specified facility does not exist.

RTR_STS_INVFACNAMEARG The facility name argument is invalid.

RTR_STS_OK Normal successful completion

RTR_STS_RTRNOTRUNNING RTR is not running.

Parameters

pszFacilityName
A null-terminated pointer to a facility name. Memory is allocated by the
function call. If the size of the parameter is not big enough, the return error
message RTR_STS_APPBUFFTOOSMALL is returned.

Description

Call the RegisterFacility( ) member function to register an existing RTR facility
for your application. By registering a facility, your application informs RTR of
the facility for which your application can process transactions.

Example
// Register the facility with the transaction controller.

sStatus = RegisterFacility(ABCFacility);
print_status_on_failure(sStatus);

3–48 Application Classes



RegisterHandlers( )

RegisterHandlers( )

RTRServerTransactionController::RegisterHandlers( );

Prototype
virtual rtr_status_t RegisterHandlers (

RTRServerMessageHandler *pMessageHandler,
RTRServerEventHandler *pEventHandler);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVEVNTHNDPTARG The event handler pointer argument is invalid.

RTR_STS_INVMSGHNDLPTARG The message handler pointer argument is
invalid.

RTR_STS_OK Normal successful completion

Parameters

pMessageHandler
Pointer to an RTRServerMessageHandler object that will process all server
messages in your application.

pEventHandler
Pointer to an RTRServerMessageHandler object that will process all server
events in your application.

Description

Call the RegisterHandlers member function to register RTR message and event
handlers for your application. By registering the handlers, your application
informs RTR of the different configurations for which your application can
process transactions. Your application can only use one partition at a time.
The message and event handlers are called by the RTRData::Dispatch method.

Specify pMessageHandler and/or pEventHandler if your application wishes to
make use of the RTR frameworks predefined handlers.

Application Classes 3–49



RegisterHandlers( )

For more information on handlers see:

• RTRApplicationMessage::Dispatch

• RTRApplicationEvent::Dispatch

• RTRMessage::Dispatch

• RTREvent::Dispatch

• RTRServerMessageHandler

• RTRServerEventHandler

Example
// Register the message and event handlers with the transaction controller.

sStatus = pTransaction->RegisterHandlers(
pAppClassDerivedFromRTRMessageHandler,
pAppClassDerivedFromRTREventHandler
);
assert(RTR_STS_OK == sStatus);

3–50 Application Classes



RegisterPartition( )

RegisterPartition( )

RTRServerTransactionController::RegisterPartition( );

Prototype
virtual rtr_status_t RegisterPartition(rtr_const_parnam_t pszPartitionName,

rtr_const_rcpnam_t szRecipientName = RTR_NO_RCPNAM,
rtr_const_access_t pszAccess = RTR_NO_ACCESS);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_DUPLPARTITION Attempting to insert a duplicate partition.

RTR_STS_FACNOTREG Facility is not registered.

RTR_STS_INVACCSTRPTRARG The access string argument is invalid.

RTR_STS_INVPARTNAMEARG The partition name argument is invalid

RTR_STS_INVRECPNAMPTARG The recipient name argument is invalid.

RTR_STS_OK Normal successful completion

RTR_STS_RTRNOTRUNNING RTR is not running.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

szRecipientName
Name of the recipient. This null-terminated string contains the name of the
recipient. This is an optional parameter.

Wildcards ("*" for any sequence of characters, and "%" for any one character)
can be used in this string to address more than one recipient.

Note that szRecipientName is case sensitive.

pszAccess
Pointer to a null-terminated string containing the access parameter. The
default value is RTR_NO_ACCESS.

Application Classes 3–51



RegisterPartition( )

Description

Call the RegisterPartition member function to register an RTR partition for
your application. By registering a partition, your application informs RTR of
the different configurations for which your application can process transactions.
Your application can only use one partition at a time.

Note

It is mandatory to register a partition that already exists in a
registered facility. RegisterPartition may be called multiple times
to register multiple partitions.

Example
// Register the partition with the transaction controller.
sStatus = pTransaction->RegisterPartition( "MyPartition);
assert(RTR_STS_OK == sStatus);

3–52 Application Classes



RejectTransaction( )

RejectTransaction( )

RTRServerTransactionController::RejectTransaction( );

Prototype
virtual rtr_status_t RejectTransaction(rtr_reason_t rtrReasonCode =

RTR_NO_REASON);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_NOMESSAGE The data object does not contain a
message.

RTR_STS_NOREJECT Client or Server has already voted or
there is no active transaction.

RTR_STS_OK Normal successful completion.
RTR_STS_TXNOTACT No transaction is currently active on

this channel.

Parameters

rtrReasonCode
Optional reason for rejecting the transaction. This reason is returned to the
other participants in the transaction. The participants can retrieve this reason
by calling RTRMessage::GetReason.

Description

Call this member function to reject the transaction currently being processed
by this object.

Example
sStatus = pController->RejectTransaction();

Application Classes 3–53



RTRServerTransactionController( )

RTRServerTransactionController( )

RTRServerTransactionController::RTRServerTransactionController( );

Prototype
RTRServerTransactionController();
virtual ~RTRServerTransactionController();

Return Value
None

Parameters
None

Description

Call this constructor to create an RTRServerTransactionController object.

Example
ABCOrderProcessor::ABCOrderProcessor()
{
}

3–54 Application Classes



SendApplicationEvent( )

SendApplicationEvent( )

RTRServerTransactionController::SendApplicationEvent( );

Prototype
virtual rtr_status_t SendApplicationEvent( RTRApplicationEvent

* pRTRApplicationEvent,
rtr_const_rcpspc_t szRecipientName = "*",

rtr_const_msgfmt_t mfMessageFormat = RTR_NO_MSGFMT);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INSVIRMEM Insufficient virtual memory.
RTR_STS_INVAPPEVNTPTARG Invalid application event pointer

argument.
RTR_STS_INVMSGFMTPTRARG The message format string argument is

invalid.
RTR_STS_INVRECPNAMPTARG The recipient name argument is

invalid.
RTR_STS_NOEVENTDATA There is no event data associated with

the event.
RTR_STS_NOMESSAGE The data object does not contain a

message.
RTR_STS_OK Normal successful completion.

Parameters

pRTRApplicationEvent
Pointer to an RTRApplicationEvent object which contains application data to
be sent to the client.

szRecipientName
Name of the recipient. This null-terminated character string contains the
name of the recipient specified with the szRecipientName parameter on the
RTRServerTransactionController::RegisterPartition method.

Application Classes 3–55



SendApplicationEvent( )

Wildcards ("*" for any sequence of characters, and "%" for any one character)
can be used in this string to address more than one recipient. szRecipientName
is an optional parameter.

Note that szRecipientName is case sensitive.

mfMessageFormat
Message format description. mfMessageFormat is a null-terminated character
string containing the format description of the message. RTR uses this
description to convert the contents of the message appropriately when
processing the message on different hardware platforms. If no parameter
is specified, the default is no special formatting.

Description

This member function should be called when the application wants to send
an application-defined (broadcast) event to the client. Formerly, application-
defined events are only delivered to the clients that have subscribed for them
and these are not related to any transaction. Only reply messages go to the
client that started the transaction. Simply calling this function will not deliver
the event to the client, unless it has subscribed for it. With the C++ API, you
"subscribe" by overriding the event handler methods. The events are only
received if they are overridden.

Example
sStatus = pTransaction->SendApplicationEvent(pEventA);
assert(RTR_STS_OK == sStatus);

3–56 Application Classes



SendApplicationMessage( )

SendApplicationMessage( )

RTRServerTransactionController::SendApplicationMessage( );

Prototype
virtual rtr_status_t SendApplicationMessage(RTRApplicationMessage

*pRTRApplicationMessage,
rtr_const_msgfmt_t mfMessageFormat = RTR_NO_MSGFMT);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INSVIRMEM Insufficient virtual memory.
RTR_STS_INVAPPMSGPTARG Invalid application message pointer

argument.
RTR_STS_INVMSGFMTPTRARG The message format string argument is

invalid.
RTR_STS_NOMESSAGE The data object does not contain a

message.
RTR_STS_NOSEND Attempting to send an application

message at this point is not allowed.
RTR_STS_OK Normal successful completion.

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object which contains application data
to be sent to the client.

mfMessageFormat
Message format description. mfMessageFormat is a null-terminated character
string containing the format description of the message. RTR uses this
description to convert the contents of the message appropriately when
processing the message on different hardware platforms. If no parameter
is specified, the default is no special formatting.

Application Classes 3–57



SendApplicationMessage( )

Description

This member function should be called when the application wants to send
application data to the client which originally established the transaction. The
RTRData object contains the data to be sent.

For more information see:

RTRData

Example
// Send the Server a message
sStatus = pTransaction->SendApplicationMessage(pMessage1);
assert(RTR_STS_OK == sStatus);

3–58 Application Classes



UnRegisterPartition( )

UnRegisterPartition( )

RTRServerTransactionController::UnRegisterPartition( );

Prototype
virtual rtr_status_t UnRegisterPartition(rtr_const_parnam_t
pszPartitionName);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVPARTNAMEARG The partition name argument is invalid

RTR_STS_NOPARTITION The partition name has not been previously
registered.

RTR_STS_OK Normal successful completion

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

Description

Remove a partition from the list of partitions for which this transaction
controller processes requests.

Example
pController-> UnRegisterPartition();

Application Classes 3–59



3.5 RTRServerTransactionProperties

3.5 RTRServerTransactionProperties

This class holds, makes available, and allows modification of the properties of
its associated RTRServerTransactionController object. It provides attributes
for a given transaction.

Typically, RTR C++ API applications obtain this object by calling GetProperties
on the transaction controller. Other applications, including legacy applications,
may create an instance of this object by calling the constructor with the TID of
the transaction.

3–60 Application Classes



RTRServerTransactionProperties Class Members

RTRServerTransactionProperties Class Members

Construction
Method Description

RTRServerTransactionProperties
(const rtr_tid_t, rtr_parnam_t
pszPartitionName)

Constructor

~RTRServerTransactionProperties( ) Destructor

Get the Type of Transaction
Method Description

TransactionIsOriginal( ) Tests whether the transaction is an
original transaction.

TransactionIsRecovery( ) Tests whether the transaction is a
recovered transaction.

TransactionIsReplay( ) Tests whether the transaction is a
replayed transaction.

Get Functions
Method Description

GetFacilityName(rtr_facnam_t,
const size_t)

Get the facility.

GetPartitionName(rtr_parnam_t,
const size_t)

Get the partition name for the current
transaction, if one exists.

GetTID(rtr_tid_t) Get the TID (transaction ID).
GetTransactionState
(rtr_tx_jnl_state_t)

Get the transaction state.

When setting the state of a transaction, the state transaction must be valid,
or else the call will return an error. For each of the set state methods, there
are two versions. The versions with no parameters attempt to transition the
transaction to the requested state. The second version for each method will
only transition to the requested state if the current trnasaction state matches
the state passed in the stCurrentTxnState argument.

Application Classes 3–61



RTRServerTransactionProperties Class Members

Set the State of Transaction
Method Description

SetStateToAbort( ) Sets the transaction state to abort.
SetStateToAbort(rtr_tx_jnl_state_t) Sets the transaction state to abort.
SetStateToCommit( ) Sets the transaction state to commit.
SetStateToCommit
(rtr_tx_jnl_state_t)

Sets the transaction state to commit.

SetStateToDone( ) Sets the transaction state to done.
SetStateToDone(rtr_tx_jnl_state_t) Sets the transaction state to done.
SetStateToException( ) Sets the transaction state to exception.
SetStateToException
(rtr_tx_jnl_state_t)

Sets the transaction state to exception.

3–62 Application Classes



GetFacilityName( )

GetFacilityName()

RTRServerTransactionProperties::GetFacilityName( );

Prototype
rtr_status_t GetFacilityName(rtr_facnam_t pszFacilityName,

size_t uiFacilityNameSize );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_APPBUFFTOOSMALL The application buffer is too small.

RTR_STS_DATANOTAVAILABL A required property was not available.

RTR_STS_INVARGPTR Invalid argument pointer.

RTR_STS_OK Normal successful completion.

Parameters

pszFacilityName
A null-terminated pointer to a facility name. Memory is allocated by the
function call.

uiFacilityNameSize
Specifies size of buffer passed by the facility name. If the size of the facility
name intended for the pszFacilityName character string is greater than the
size in uiFacilityNameSize, the error code RTR_STS_APPBUFFTOOSMALL
is returned and the facility name is not copied into the character string.

Description

This method gets the facility name associated with the transaction and
described by the RTRServerTransactionProperties object.

Application Classes 3–63



GetFacilityName( )

Example
pTransaction->GetFacility(pszFacilityName);

3–64 Application Classes



GetPartitionName( )

GetPartitionName()

RTRServerTransactionController::GetPartitionName( );

Prototype
virtual rtr_status_t GetPartitionName(rtr_parnam_t pszPartitionName,

const size_t uiPartitionNameSize
RTRData *pRTRData);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_APPBUFFTOOSMALL The application buffer is too small.

RTR_STS_DATANOTAVAILABL A required property was not available.

RTR_STS_INVARGPTR Invalid argument pointer.

RTR_STS_OK Normal successful completion

RTR_STS_TXNOTACT Transaction not active.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

uiPartitionNameSize
An unsigned integer for the size of the named partition.

pRTRData
The name of the partition on which the data object (message or event) was
received.

Description

Obtain the partition name, which the current transaction is using.

Application Classes 3–65



GetPartitionName( )

Example
char szPartitionName[RTR_MAX_PARNAM_LEN+1];
sStatus = pController-> GetPartitionName(&szPartitionName[0],

RTR_MAX_PARNAM_LEN+1,
pRTRData);

// This call will either succeed or return RTR_STS_NOPARTITION.
// This means that the dat object has no partition associated with
// it. Only application messages and certain RTR events have a
// partition associated with them.

3–66 Application Classes



GetTID( )

GetTID( )

RTRServerTransactionProperties::GetTID( );

Prototype
rtr_status_t GetTID(rtr_tid_t &rtrTID);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion. Returns RTR_STS_NOTID on failure.

Parameters

rtrTID
An RTR transaction identifier.

Description

This method copies the transaction identifier (TID) of the transaction described
by the RTRServerTransactionProperties object for the current transaction.

Example
rtr_tid_t tid = pController->GetTID(&rtrTID);

Application Classes 3–67



GetTransactionState( )

GetTransactionState( )

RTRServerTransactionProperties:: GetTransactionState ( );

Prototype
rtr_status_t GetTransactionState (rtr_tx_jnl_state_t &pstCurrentTxnState);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVTXNSTATPTARG Invalid transaction state pointer argument.

RTR_STS_DATANOTAVAILABL A required property was not available.

RTR_STS_OK Normal successful completion

Parameters

pstCurrentTxnState
Pointer to the transaction state of type rtr_tx_jnl_state_t.

Description

Get the transaction state for the current transaction.

Example
rtr_tx_jnl_state_t txnState;
rtr_status_t sStatus = GetTransactionState(txnState);
if ( rtr_tx_jnl_voted == txnState)
{

}

3–68 Application Classes



RTRServerTransactionProperties( )

RTRServerTransactionProperties( )

RTRServerTransactionProperties::RTRServerTransactionProperties( );

Prototype
RTRServerTransactionProperties(const rtr_tid_t &tid);
virtual ~RTRServerTransactionProperties();

Return Value
None

Parameters

tid
A transaction identifier value of type rtr_tid_t.

Description

Call this constructor to create an RTRServerTransactionProperties object
associated with the specified tid.

Example
RTRServerTransactionProperties::RTRServerTransactionProperties
{
}

Application Classes 3–69



SetStateToAbort( )

SetStateToAbort( )

RTRServerTransactionProperties::SetStateToAbort( );

Prototype
rtr_status_t SetStateToAbort();

rtr_status_t SetStateToAbort(rtr_tx_jnl_state_t stCurrentTxnState);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

stCurrentTxnState
A transaction state of type rtr_tx_jnl_state_t.

Description

This method is used to set the current server transaction state to abort.There
are two forms:

• For the form with no parameter, the current transaction state is internally
tested. If it is currently valid to transition from that state to the abort
state, the call succeeds.

• For the form with the transaction state parameter, if it is valid to transition
from that state to the abort state, the call succeeds.

Example
rtr_status_t sStatus = SetStateToAbort(txnState);

3–70 Application Classes



SetStateToCommit( )

SetStateToCommit( )

RTRServerTransactionProperties::SetStateToCommit( );

Prototype
rtr_status_t SetStateToCommit();

rtr_status_t SetStateToCommit(rtr_tx_jnl_state_t stCurrentTxnState);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

stCurrentTxnState
A transaction state of type rtr_tx_jnl_state_t.

Description

This method is used to set the current server transaction state to commit.There
are two forms:

• For the form with no parameter, the current transaction state is internally
tested. If it is currently valid to transition from that state to the commit
state, the call succeeds.

• For the form with the transaction state parameter, if it is valid to transition
from that state to the commit state, the call succeeds.

Example
rtr_status_t sStatus = SetStateToCommit(txnState);

Application Classes 3–71



SetStateToDone( )

SetStateToDone()

RTRServerTransactionProperties::SetStateToDone( );

Prototype
rtr_status_t SetStateToDone();

rtr_status_t SetStateToDone(rtr_tx_jnl_state_t stCurrentTxnState);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

stCurrentTxnState

A transaction state of type rtr_tx_jnl_state_t.

Description

This method is used to set the current server transaction state to done.There
are two forms:

• For the form with no parameter, the current transaction state is internally
tested. If it is currently valid to transition from that state to the done
state, the call succeeds.

• For the form with the transaction state parameter, if it is valid to transition
from that state to the done state, the call succeeds.

Example
rtr_status_t sStatus = SetStateToDone(txnState);

3–72 Application Classes



SetStateToException( )

SetStateToException( )

RTRServerTransactionProperties::SetStateToException( );

Prototype
rtr_status_t SetStateToException();

rtr_status_t SetStateToException(rtr_tx_jnl_state_t stCurrentTxnState);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

stCurrentTxnState
A transaction state of type rtr_tx_jnl_state_t.

Description

This method is used to set the current server transaction state to
exception.There are two forms:

• For the form with no parameter, the current transaction state is internally
tested. If it is currently valid to transition from that state to the exception
state, the call succeeds.

• For the form with the transaction state parameter, if it is valid to transition
from that state to the exception state, the call succeeds.

Example
rtr_status_t sStatus = SetStateToException(txnState);

Application Classes 3–73



TransactionIsOriginal( )

TransactionIsOriginal( )

RTRServerTransactionProperties::TransactionIsOriginal( );

Prototype
bool TransactionIsOriginal();

Return Value
bool

A true or false return value.

Parameters
None

Description

This method tests if the transaction is an original transaction. Note that
this does not necessarily mean that the transaction has never been presented
before.

Example
RTRServerTransactionProperties *pstProperties =

pController->GetProperties();
bool bOriginal = pTransactionController ->TransactionIsOriginal();

3–74 Application Classes



TransactionIsRecovery( )

TransactionIsRecovery( )

RTRServerTransactionProperties::TransactionIsRecovery( );

Prototype
bool TransactionIsRecovery();

Return Value
bool

A true or false return value.

Parameters
None

Description

This method tests if the transaction is a recovered transaction. A recovered
transaction is one where the transaction was held in the RTR journal during a
crash of a node, and has been restored and can be committed in the database.

Example
rtr_status_t sStatus = TransactionIsRecovery();

Application Classes 3–75



TransactionIsReplay( )

TransactionIsReplay( )

RTRServerTransactionProperties::TransactionIsReplay( );

Prototype
bool TransactionIsReplay();

Return Value
bool

A true or false return value.

Parameters
None

Description

This method tests if the transaction is a replayed transaction.

Example
rtr_status_t sStatus = TransactionIsReplay();

3–76 Application Classes



3.6 Client Classes

3.6 Client Classes

The client classes of the RTR API are:

• RTRClientEventHandler

• RTRClientMessageHandler

• RTRClientTransactionController

• RTRClientTransactionProperties

These classes are described in this section in alphabetical order.

Application Classes 3–77



3.7 RTRClientEventHandler

3.7 RTRClientEventHandler

This class defines event handlers for all potential events that an RTR client
application can receive. Each handler has a default behavior. Applications
should override those member functions for which they intend to perform
application-specific processing.

Applications can extend this class by deriving from it and adding their own
application-level event handlers.

For further information see RTRData::Dispatch( ).

3–78 Application Classes



RTRClientEventHandler Class Members

RTRClientEventHandler Class Members

Construction
Method Description

RTRClientEventHandler( ) Constructor
~RTRClientEventHandler( ) Destructor

Operations
Method Description

OnApplicationEvent(RTRApplicationEvent,
RTRClientTransactionController)

There is an event generated by the
application, for the client.

OnFacilityDead(RTREvent,
RTRClientTransactionController)

Default handler for the event where the
facility is no longer operational.

OnFacilityReady(RTREvent,
RTRClientTransactionController)

Default handler for the event where the
facility has become operational.

OnFrontendGainedLinkToRouter
(RTREvent, RTRClientTransactionController)

Default handler for the event where a
frontend link to the current router has
been established.

OnFrontendLostLinkToRouter
(RTREvent, RTRClientTransactionController)

Default handler for the event where the
frontend link to the current router has
been lost.

OnKeyRangeNoLongerAvailable
(RTREvent, RTRClientTransactionController)

Default handler for the event where no
more servers remain for a particular
routing key range.

OnNewKeyRangeAvailable(RTREvent,
RTRClientTransactionController)

Default handler for the event where one
or more servers for a new key range
have become available.

OnRouterGainedLinkToBackend
(RTREvent, RTRClientTransactionController)

Default handler for the event where a
current router established a link to a
backend.

OnRouterLostLinkToBackend
(RTREvent, RTRClientTransactionController)

Default handler for the event where the
current router lost a link to a backend.

Application Classes 3–79



OnApplicationEvent( )

OnApplicationEvent( )

RTRClientEventHandler::OnApplicationEvent( );

Prototype
virtual rtr_status_t OnApplicationEvent(RTRApplicationEvent

*pRTRApplicationEvent,
RTRClientTransactionController *pController)

{
return RTR_STS_OK;
}

Parameters

pRTRApplicationEvent
Pointer to an RTRApplicationEvent object that describes the message which is
being processed.

pController
Pointer to the transaction controller within which this event was received.

Description

The RTRData parameter contains an application event sent to it by an RTR
server.

The default behavior is the handler dismisses the notification.

Example
MyCLIEventHandler::OnApplicationEvent( RTRApplicationEvent

*pRTRApplicationEvent,
RTRClientTransactionController

*pCTC )
{

cout << "An application event... " <<endl;
return RTR_STS_OK;

}

3–80 Application Classes



OnFacilityDead( )

OnFacilityDead( )

RTRClientEventHandler::OnFacilityDead( );

Prototype
virtual rtr_status_t OnFacilityDead(RTREvent *pRTREvent,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the facility is no
longer operational.

The client application is receiving an RTR-generated event. RTREvent
contains the application-defined number RTR_EVTNUM_FACDEAD (97) and
any associated data.

Example
MyCLIEventHandler::OnFacilityDead( RTREvent *pRTREvent,
RTRClientTransactionController *pCTC )
{
return RTR_STS_OK;

}

Application Classes 3–81



OnFacilityReady( )

OnFacilityReady( )

RTRClientEventHandler::OnFacilityReady( );

Prototype
virtual rtr_status_t OnFacilityReady(RTREvent *pRTREvent,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the facility has
become operational.

The client application is receiving an RTR-generated event. RTREvent
contains the application-defined number RTR_EVTNUM_FACREADY (96) and
any associated data.

Example
MyCLIEventHandler::OnFacilityReady( RTREvent *pRTREvent,
RTRClientTransactionController *pCTC )
{

return RTR_STS_OK;
}

3–82 Application Classes



OnFrontendGainedLinkToRouter( )

OnFrontendGainedLinkToRouter( )

RTRClientEventHandler::OnFrontendGainedLinkToRouter( );

Prototype
virtual rtr_status_t OnFrontendGainedLinktToRouter(RTREvent *pRTREvent,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where a frontend link
to the current router has been established.

The client application is receiving an RTR-generated event. RTREvent
contains the application-defined event number RTR_EVTNUM_FERTRGAIN
(98) and any associated data.

Example
MyCLIEventHandler::OnFrontendGainedLinkToRouter( RTREvent

*pRTREvent,
RTRClientTransactionController

*pCTC )
{
return RTR_STS_OK;

}

Application Classes 3–83



OnFrontendLostLinkToRouter( )

OnFrontendLostLinkToRouter( )

RTRClientEventHandler::OnFrontendLostLinkToRouter( );

Prototype
virtual rtr_status_t OnFrontendLostLinkToRouter(RTREvent *pRTREvent,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the frontend link
to the current router has been lost.

The client application is receiving an RTR-generated event. RTREvent
contains the application-defined number RTR_EVTNUM_FERTRLOSS (99)
and any associated data.

Example
MyCLIEventHandler:: OnFrontendLostLinkToRouter (

RTREvent *pRTREvent,
RTRClientTransactionController *pCTC )

{
return RTR_STS_OK;

}

3–84 Application Classes



OnKeyRangeNoLongerAvailable( )

OnKeyRangeNoLongerAvailable( )

RTRClientEventHandler::OnKeyRangeNoLongerAvailable( );

Prototype
virtual rtr_status_t OnKeyRangeNoLongerAvailable(

RTREvent * pRTREvent,
RTRClientTransactionController *pController)

{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where no more servers
remain for a particular routing key range.

The client application is receiving an RTR-generated event. RTREvent
contains the application-defined number RTR_EVTNUM_KEYRANGELOSS
(103) and any associated data.

Example
MyCLIEventHandler:: OnKeyRangeNoLongerAvailable(

RTREvent *pRTREvent,
RTRClientTransactionController *pCTC )

{
return RTR_STS_OK;
}

Application Classes 3–85



OnNewKeyRangeAvailable( )

OnNewKeyRangeAvailable( )

RTRClientEventHandler::OnNewKeyRangeAvailable( );

Prototype
virtual rtr_status_t OnNewKeyRangeAvailable(RTREvent * pRTREvent,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where one or more
servers for a new routing key range have become available.

The client application is receiving an RTR-generated event. RTREvent
contains the application-defined number RTR_EVTNUM_KEYRANGEGAIN
(102) and any associated data.

Example
MyCLIEventHandler:: OnNewKeyRangeAvailable (

RTREvent *pRTREvent,
RTRClientTransactionController *pCTC )

{
return RTR_STS_OK;

}

3–86 Application Classes



OnRouterGainedLinkToBackend( )

OnRouterGainedLinkToBackend()

RTRClientEventHandler::OnRouterGainedLinkToBackend( );

Prototype
virtual rtr_status_t OnRouterGainedLinkToBackend(RTREvent * pRTREvent,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the current
router established a link to the backend.

The client application is receiving an RTR-generated event. RTREvent
contains the application-defined event number RTR_EVTNUM_RTRBEGAIN
(100) and any associated data.

Example
MyCLIEventHandler::OnRouterGainedLinkToBackend(

RTREvent *pRTREvent,
RTRClientTransactionController *pCTC )

{
return RTR_STS_OK;
}

Application Classes 3–87



OnRouterLostLinkToBackend( )

OnRouterLostLinkToBackend( )

RTRClientEventHandler::OnRouterLostLinkToBackend( );

Prototype
virtual rtr_status_t OnRouterLostLinkToBackend(RTREvent * pRTREvent,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being
processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the current
router lost a link to a backend.

The client application is receiving an RTR-generated event. RTREvent
contains the application-defined number RTR_EVTNUM_RTRBELOSS (101)
and any associated data.

Example
MyCLIEventHandler::OnRouterLostLinkToBackend(

RTREvent *pRTREvent,
RTRClientTransactionController *pCTC )

{
return RTR_STS_OK;

}

3–88 Application Classes



RTRClientEventHandler( )

RTRClientEventHandler( )

RTRClientEventHandler::RTRClientEventHandler( );

Prototype
RTRClientEventHandler();

Return Value
None

Parameters
None

Description

Construct a client event handler object.

Example
RTRClientEventHandler::RTRClientEventhandler()
{
}

Application Classes 3–89



3.8 RTRClientMessageHandler

3.8 RTRClientMessageHandler

This class defines message handlers for all potential messages that an
RTR client application can receive. Each handler has a default behavior.
Applications should override those member functions for which they intend to
perform application specific processing.

Note

Applications can extend this class by deriving from it and adding their
own application-level message handlers.

For further information see RTRData::Dispatch( ).

3–90 Application Classes



RTRClientMessageHandler Class Members

RTRClientMessageHandler Class Members

Construction
Method Description

RTRClientMessageHandler( ) Constructor
~RTRClientMessageHandler( ) Destructor

Operations
Method Description

OnAccepted(RTRMessage,
RTRClientTransactionController)

The specified transaction has been
accepted by all participants.

OnAllPreparedTransaction
(RTRMessage,
RTRClientTransactionController)

The specified transaction has been
prepared by all participants.

OnApplicationMessage
(RTRApplicationMessage,
RTRClientTransactionController)

The server has sent the client a
message.

OnInitialize( ) A new transaction is being processed.
OnRejected(RTRMessage,
RTRClientTransactionController)

The specified transaction has been
rejected by a participant.

OnReturnToSender(RTRMessage,
RTRClientTransactionController)

The message could not be delivered
and has been returned to the sender.

Application Classes 3–91



OnAccepted( )

OnAccepted( )

RTRClientMessageHandler::OnAccepted( );

Prototype
virtual rtr_status_t OnAccepted(RTRMessage *pRTRMessage,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;

}

Return Value
None

Parameters

pRTRMessage
Pointer to an RTRApplicationMessage object that describes the message which
is being processed.

pController
Pointer to the transaction controller within which this message was received.

Description

The specified transaction has been accepted by all participants.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t ABCCHandlers::OnAccepted( RTRMessage *pRTRMessage,
RTRClientTransactionController *pController )
{

return ABCOrderSucceeded;
}

3–92 Application Classes



OnAllPreparedTransaction( )

OnAllPreparedTransaction( )

RTRClientMessageHandler::OnAllPreparedTransaction( );

Prototype
virtual rtr_status_t OnAllPreparedTransaction (RTRMessage * pRTRMessage,

RTRClientTransactionController *pController)
{
RTR_STS_OK;
}

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being
processed.

pController
Pointer to the transaction controller within which this message was received.

Description

The specified transaction has been prepared by all participants.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t MyCLIMessageHandler::OnAllPreparedTransaction(

RTRMessage *pmyMsg,
RTRClientTransactionController *pTC)

{
cout << "prepare txn " << endl;
rtr_return RTR_STS_OK;

}

Application Classes 3–93



OnApplicationMessage( )

OnApplicationMessage( )

RTRClientMessageHandler::OnApplicationMessage( );

Prototype
virtual rtr_status_t OnApplicationMessage(RTRApplicationMessage

*pRTRApplicationMessage,
RTRClientTransactionController *pController)

{
RTR_STS_OK;
}

Return Value
None

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object that describes the message which
is being processed.

pController
Pointer to the transaction controller within which this message was received.

Description

The RTRApplicationMessage parameter contains application data sent to it by
an RTR server.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t MyCLIMessageHandler::OnApplicationMessage(

RTRApplicationMessage *pmyMsg,
RTRClientTransactionController *pTC)

{
return RTR_STS_OK;

}

3–94 Application Classes



OnInitialize( )

OnInitialize( )

RTRClientMessageHandler::OnInitialize( );

prototype
virtual rtr_status_t OnInitalize()’
{
RTR_STS_OK;
}

Parameters
None

Description

This method is called at the beginning of each transaction to prepare the server
for a transaction. Allowing the application to perform any application-specific
initialization necessary to process the transaction.

Example
rtr_status_t MyCLIMessageHandler::OnInitialize()
{

return RTR_STS_OK;

}

Application Classes 3–95



OnRejected( )

OnRejected( )

RTRClientMessageHandler::OnRejected( );

prototype
virtual rtr_status_t OnRejected(RTRMessage * pRTRMessage,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being
processed.

pController
Pointer to the transaction controller within which this message was received.

Description

The specified transaction has been rejected by a participant.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t ABCCHandlers::OnRejected( RTRMessage *pRTRMessage,
RTRClientTransactionController *pController )
{

return ABCOrderFailed;
}

3–96 Application Classes



OnReturnToSender( )

OnReturnToSender( )

RTRClientMessageHandler::OnReturnToSender( );

prototype
virtual rtr_status_t OnReturnToSender(RTRMessage * pRTRMessage,

RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being
processed.

pController
Pointer to the transaction controller within which this message was received.

Description

The message could not be delivered and has been returned to sender.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t MyCLIMessageHandler::OnReturnToSender(

RTRMessage *pmyMsg,
RTRClientTransactionController *pTC)

{
return RTR_STS_OK;

}

Application Classes 3–97



RTRClientMessageHandler( )

RTRClientMessageHandler( )

RTRClientMessageHandler::RTRClientMessageHandler( );

Prototype
RTRClientMessageHandler();
virtual ~RTRClientMessageHandler();

Return Value
None

Parameters
None

Description

Call this constructor to create an RTRClientMessageHandler object.

Example
MyCLIMessageHandler::MyCLIMessageHandler()

{

}

MyCLIMessageHandler::~MyCLIMessageHandler()

{

}

3–98 Application Classes



3.9 RTRClientTransactionController

3.9 RTRClientTransactionController

RTRClientTransactionController is the main class used to create an RTR client
application. The transaction controller object is used to send and receive all
data between RTR clients and servers. Typically one instance of this class is
used to process multiple consecutive transactions.

Application Classes 3–99



RTRClientTransactionController Class Members

RTRClientTransactionController Class Members

Construction
Method Description

RTRClientTransactionController( ) Constructor
~RTRClientTransactionController( ) Destructor

Basic Methods
Method Description

AcceptTransaction(rtr_reason_t) Accept the current transaction.
Receive(RTRData, rtr_timout_t) Receive an RTR or application-

generated message or an RTR event.
RegsiterClassFactory
(RTRClassFactory)

Register a class factory for RTR to
call when creating RTR Data derived
objects.

RegisterFacility(rtr_const_facnam_t,
rtr_const_rcpspc_t, rtr_const_access_
t)

Inform the controller that it should
operate within the given facility.

RegisterHandlers
(RTRClientMessageHandler,
RTRClientEventHandler)

Register handlers for messages and
events.

RejectTransaction(const rtr_reason_t) Reject the current transaction.
SendApplicationEvent
(RTRApplicationEvent, rtr_const_
rcpspc_t, rtr_const_msgfmt_t)

Send an application-defined event to
the server.

SendApplicationMessage
(RTRApplicationMessage, bool, bool,
rtr_const_msgfmt_t)

Send an application-defined message to
the server.

StartTransaction(rtr_timout_t) Start a new transaction.

3–100 Application Classes



AcceptTransaction( )

AcceptTransaction( )

RTRClientTransactionController::AcceptTransaction( );

Prototype
virtual rtr_status_t AcceptTransaction(rtr_reason_t rtrReasonCode =

RTR_NO_REASON);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_NOACCEPT Client or Server has already voted or there is
no active transaction.

RTR_STS_NOMESSAGE The data object does not contain a message.

RTR_STS_OK Normal successful completion.

RTR_STS_TXNOTACT No transaction currently active on this
channel.

Parameters

rtrReasonCode
Optional reason for accepting the transaction. This reason is OR ed together
with the reasons of the other participants in the transaction and returned to
all participants of the transaction. The participants can retrieve this reason by
calling RTRMessage::GetReason( ).

Description

Call this member function to accept the transaction currently being processed
by this object.

Example
// Let RTR know that this is the only object being sent and that
// we are done with our work.

cout << "AcceptTransaction..." << endl;
sStatus = AcceptTransaction();
print_status_on_failure(sStatus);

Application Classes 3–101



Receive( )

Receive( )

RTRClientTransactionController::Receive( );

Prototype
virtual rtr_status_t Receive (RTRData **pRTRData,

rtr_timout_t tTimeout = RTR_NO_TIMOUTMS);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVDATPTRPTARG Invalid pointer-to-data-pointer pointer
argument

RTR_STS_NORECEIVE Attempting to receive at this point is
not allowed.

RTR_STS_NOMESSAGE The data object does not contain a
message.

RTR_STS_OK Normal successful completion.
RTR_STS_TIMOUT Call to Receive timed out.
RTR_STS_TRUNCATED Buffer too short for message. Message

has been truncated.

Parameters

pRTRData
A pointer passed by reference, which will receive an object, derived from
RTRData. This object can be any of the following:

• RTRMessage

• RTREvent

• RTRApplictionMessage

• RTRApplicationEvent

3–102 Application Classes



Receive( )

If a class factory is registered with the transaction controller, the application
has the ability to have this object be any application class derived from
RTRData. By calling the Dispatch( ) method, the most over ridden
implementation of dispatch will be called.

For more information, see the description of the RTR processing models in
the Processing Models section of this manual and the HP Reliable Transaction
Router Application Design Guide section on Message Reception Styles.

tTimeout
An optional receive timeout value in milliseconds. If the timeout expires, the
call completes with status RTR_STS_TIMOUT.

Description

This member function should be called when the application is ready to receive
messages and events from the RTR framework. Typically this function is called
in a loop. The RTRData object returned contains the message or event type as
well as other information useful to the application.

For more information see:

RTRData

Example
abc_status ABCOrderTaker::DetermineOutcome()
{

RTRData *pResult = NULL;
abc_status sStatus = ABCSuccess;
bool bDone = false;
while (!bDone)
{

sStatus = Receive(&pResult);
print_status_on_failure(sStatus);

}
delete pResult;

return sStatus;
}

Application Classes 3–103



RegisterClassFactory( )

RegisterClassFactory( )

RTRClientTransactionController::RegisterClassFactory( );

Prototype
virtual rtr_status_t RegisterClassFactory ( RTRClassFactory *pFactory);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVFACTORYPTARG The factory argument pointer is
invalid.

RTR_STS_OK Normal successful completion

Parameters

pFactory
Pointer to an RTRClassFactory object that is called, if registered, from the
RTR framework when processing all Receive methods in your application.

Description

Registering a class factory is not a requirement. An application would register
a class factory only when they wish to customize the object that is being
allocated.

Example
sStatus = RegisterClassFactory(*pFactory);
print_status_on_failure(sStatus);

3–104 Application Classes



RegisterFacility( )

RegisterFacility( )

RTRClientTransactionController::RegisterFacility( );

Prototype
virtual rtr_status_t RegisterFacility (rtr_const_facnam_t pszFacilityName,

rtr_const_rcpspc_t szRecipientName = "*",
rtr_const_access_t pszAccess = RTR_NO_ACCESS);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVACCSTRPTRARG The access string argument is invalid.
RTR_STS_INVALIDFACILITY The specified facility does not exist.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVRECPNAMPTARG The recipient name argument is

invalid.
RTR_STS_OK Normal successful completion
RTR_STS_RTRNOTRUNNING RTR is not running.

Parameters

pszFacilityName
Pointer to a null-terminated facility name.

szRecipientName
Name of the recipient. This null-terminated string contains the name of the
recipient. This is an optional parameter.

Wildcards ("*" for any sequence of characters, and "%" for any one character)
can be used in this string to address more than one recipient.

Note that szRecipientName is case sensitive.

pszAccess
Pointer to a null-terminated string containing the access parameter. The
default is RTR_NO_ACCESS.

Application Classes 3–105



RegisterFacility( )

Description

Call the RegisterFacility( ) member function to register an RTR facility for
your application. By registering a facility, your application informs RTR of the
facility for which your application can process transactions.

Example
// Register the facility with RTR.

sStatus = RegisterFacility(ABCFacility);
print_status_on_failure(sStatus);

if(RTR_STS_OK == sStatus)
{
m_bRegistered = true;

}

3–106 Application Classes



RegisterHandlers( )

RegisterHandlers( )

RTRClientTransactionController::RegisterHandlers( );

Prototype
virtual rtr_status_t RegisterHandlers (RTRClientMessageHandler

*pMessageHandler,
RTRClientEventHandler
*pEventHandler);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVEVNTHNDPTARG The event handler pointer argument is
invalid.

RTR_STS_INVMSGHNDLPTARG The message handler pointer argument
is invalid.

RTR_STS_OK Normal successful completion

Parameters

pMessageHandler
Pointer to an RTRClientMessageHandler object that processes messages
received.

pEventHandler
Pointer to an RTRClientEventHandler object that processes events received.

Description

Call the RegisterHandlers member function to register message and event
handlers for your application. By registering an environment (a facility and
a partition), your application informs RTR of the different configurations for
which your application can process transactions. Your application will only
use one environment at a time. The RTR framework picks the most efficient
environment for your application depending on the number of client requests
being received. If no environment is specified, RTR uses any of the previously
defined environments in your applications process.

Application Classes 3–107



RegisterHandlers( )

Specify pMessageHandler and/or pEventHandler in order for your application
to make use of the RTR frameworks predefined handlers.

For more information on handlers see:

• RTRData::Dispatch

• RTRClientMessageHandler

Example
// ABC Handlers
// Register the both handlers with RTR
sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
print_status_on_failure(sStatus);

3–108 Application Classes



RejectTransaction( )

RejectTransaction( )

RTRClientTransactionController::RejectTransaction( );

Prototype
virtual rtr_status_t RejectTransaction(const rtr_reason_t rtrReasonCode =

RTR_NO_REASON);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_FACNOTREG Facility is not registered.
RTR_STS_NOMESSAGE The data object does not contain a

message.
RTR_STS_NOREJECT Client or Server has already voted or

there is no active transaction.
RTR_STS_OK Normal successful completion.
RTR_STS_TXNOTACT No transaction is currently active on

this channel.

Parameters

rtrReasonCode
Optional reason for rejecting the transaction. This reason is returned to the
other participants in the transaction. The participants can retrieve this reason
by calling RTRMessage::GetReason( ).

Description

Call this member function to reject the transaction currently being processed
by this object.

Application Classes 3–109



RejectTransaction( )

Example
pController->RejectTransaction();

3–110 Application Classes



RTRClientTransactionController( )

RTRClientTransactionController( )

RTRClientTransactionController::RTRClientTransactionController( );

Prototype
RTRClientTransactionController();
virtual ~RTRClientTransactionController();

Return Value
None

Parameters
None

Description

Call this constructor to create an RTRClientTransactionController object.

Example
ABCOrderTaker::ABCOrderTaker():m_bRegistered(false)
{

}

Application Classes 3–111



SendApplicationEvent( )

SendApplicationEvent( )

RTRClientTransactionController::SendApplicationEvent( );

Prototype
virtual rtr_status_t SendApplicationEvent(RTRApplicationEvent

* pRTRApplicationEvent,
rtr_const_rcpspc_t szRecipientName = "*",
rtr_const_msgfmt_t mfMessageFormat =
RTR_NO_MSGFMT);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INSVIRMEM Insufficient virtual memory.
RTR_STS_INVAPPEVNTPTARG Invalid application event pointer

argument.
RTR_STS_INVMSGFMTPTRARG The message format string argument is

invalid.
RTR_STS_INVRECPNAMPTARG The recipient name argument is

invalid.
RTR_STS_NOEVENT The data object does not contain an

event.
RTR_STS_NOMESSAGE The data object does not contain a

message.
RTR_STS_OK Normal successful completion.

Parameters

RTRApplicationEvent
Pointer to an RTRApplicationEvent object which contains application data to
be sent to the server.

szRecipientName
Name of the recipient. This null-terminated character string contains the
name of the recipient. This is an optional parameter.

3–112 Application Classes



SendApplicationEvent( )

Wildcards ( "*" for any sequence of characters, and "%" for any one character)
can be used in this string to address more than one recipient

Note that szRecipientName is case sensitive.

mfMessageFormat
Message format description. mfMessageFormat is a null-terminated character
string containing the format description of the message. RTR uses this
description to convert the contents of the message appropriately when
processing the message on different hardware platforms. If no parameter
is specified, the default is no special formatting.

Description

This member function should be called when the application wants to send an
application-defined event to the server. Formerly, application-defined events
are only delivered to the clients or servers that have subscribed for them and
these are not related to any transaction. Only reply messages go to the client
that started the transaction. Simply calling this function does not deliver the
event to the client, unless it has subscribed for it. With the C++ API, you
"subscribe" by overriding the event handler methods. The events are only
received if they are overridden.

Example
sStatus = SendApplicationEvent(pOrder);
print_status_on_failure(sStatus);

Application Classes 3–113



SendApplicationMessage( )

SendApplicationMessage( )

RTRClientTransactionController::SendApplicationMessage( );

Prototype
virtual rtr_status_t SendApplicationMessage(RTRApplicationMessage

*pRTRApplicationMessage,
bool bReadonly = false,
bool bReturnToSender = false,
rtr_const_msgfmt_t
mfMessageFormat = RTR_NO_MSGFMT);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INSVIRMEM Insufficient virtual memory.
RTR_STS_INVAPPMSGPTARG Invalid application message pointer

argument.
RTR_STS_INVMSGFMTPTRARG The message format string argument is

invalid.
RTR_STS_INVRECPNAMPTARG The recipient name argument is

invalid.
RTR_STS_NOMESSAGE The data object does not contain a

message.
RTR_STS_NOSEND Attempting to send an application

message at this point is not allowed.
RTR_STS_OK Normal successful completion.

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object which contains application data
to be sent to the server.

3–114 Application Classes



SendApplicationMessage( )

mfMessageFormat
Message format description. mfMessageFormat is a null-terminated character
string containing the format description of the message. RTR uses this
description to convert the contents of the message appropriately when
processing the message on different hardware platforms. If no parameter
is specified the default is no special formatting.

bReadonly
Set this Boolean to true to indicate to RTR that this message does not perform
and writes that would need to be shadowed.

bReturnToSender
Set this Boolean to true to indicate to RTR that, if the message is not delivered
to the server, it should return to this transaction controller a message
indicating that.

Description

This member function should be called when the application wants to send
application data to the server. The RTRData object contains the data to be
sent.

For more information see:

RTRData

Example
// Send this Book Order object to a server capable of processing it.

cout << "SendApplicationMessage..." << endl;
sStatus = SendApplicationMessage(pOrder);
print_status_on_failure(sStatus);

Application Classes 3–115



StartTransaction( )

StartTransaction( )

RTRClientTransactionController::StartTransaction( );

Prototype
virtual rtr_status_t StartTransaction(rtr_timout_t

timeout = RTR_NO_TIMOUTMS);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_CONNECTIONLOST An RTR connection has been lost.
RTR_STS_FACNOTREG Facility is not registered.
RTR_STS_INVTIMOUTMS Invalid timeout argument
RTR_STS_NOMESSAGE The data object does not contain a

message.
RTR_STS_NOSTARTTXN A client transaction is already active.
RTR_STS_OK Normal successful completion.
RTR_STS_TIMOUT Timeout time expired.

Parameters

timeout
Transaction timeout. This value is specified in milliseconds. If the timeout
time expires, RTR aborts the transaction and returns status RTR_STS_
TIMOUT. If no timeout is required, specify RTR_NO_TIMOUTMS.

Description

Explicitly start a transaction from a client transaction controller. This method
is mandatory.

The StartTransaction method is used to start a transaction explicitly. An
explicit transaction start is only necessary if:

• either a join to an existing transaction is to be done

3–116 Application Classes



StartTransaction( )

• or a transaction timeout is to be specified

Transactions are implicitly started when a message is sent on a currently
inactive transaction controller. Implicitly started transactions have no timeout
and are not joined to other RTR transactions.

Example
abc_status sStatus;

cout << "StartTransaction..." << endl;
sStatus = StartTransaction();
print_status_on_failure(sStatus);

Application Classes 3–117



3.10 RTRClientTransactionProperties

3.10 RTRClientTransactionProperties

This class holds the properties of its associated RTRServerTransaction object.

3–118 Application Classes



RTRClientTransactionProperties Class Members

RTRClientTransactionProperties Class Members

Construction
Method Description

RTRClientTransactionProperties( ) Constructor
~RTRClientTransactionProperties( ) Destructor

Application Classes 3–119



RTRClientTransactionProperties( )

RTRClientTransactionProperties( )

RTRClientTransactionProperties::RTRClientTransactionProperties( );

Prototype
RTRClientTransactionProperties();
virtual ~RTRClientTransactionProperties();

Return Value
None

Parameters
None

Description

This class holds the properties of its associated RTRClientTransaction object.

Example
RTRClientTransactionProperties::RTRClientTransactionProperties();
{
}

3–120 Application Classes



3.11 Data Classes and the Class Factory

3.11 Data Classes and the Class Factory

The data classes of the C++ API are common to both server and client
applications. There classes include:

• RTRData

• RTRApplicationMessage

• RTRApplicationEvent

• RTRMessage

• RTREvent

• RTRClassFactory

• RTRStream

The RTRData class is the base class of all the C++ foundation class data
classes. When applications want to receive data they specify Pointer to an
RTRData object. After a successful call to the Receive method in either the
client or server RTRtransactionController class, RTRData contains one of the
following:

• RTRMessage

• RTREvent

• RTRApplicationMessage

• RTRApplicationEvent

The data classes are common to both client and server applications.

The RTRStream class is an RTRData-derived class designed for
RTRApplicationMessage and RTRApplicationEvent data objects to read from
and write to a buffer.

The RTRClassFactory class creates instances of data classes based on the
contents of a Receive call for a message or event. For more information on
RTR message and event processing, see the RTR Application Design Guide.

Application Classes 3–121



3.12 RTRApplicationEvent Class

3.12 RTRApplicationEvent Class

The RTRApplicationEvent Class contains members that retrieve application
data and application events associated with an RTRApplicationEvent object.

3–122 Application Classes



RTRApplicationEvent Class Members

RTRApplicationEvent Class Members

Construction
Method Description

RTRApplicationEvent ( ) Default constructor
RTRApplicationEvent
(RTRApplicationEvent &)

Copy constructor

Operations
Method Description

Dispatch( ) Basic method.
GetEventData( rtr_msgbuf_t ) Retrieve the application

data associated with this
RTRApplicationEvent object.

GetEventDataLength( ); Retrieve the actual length of
the buffer allocated for this
RTRApplicationEvent object.

GetEventNumber( rtr_evtnum_t ) Retrieve the application event
associated with the data in this
RTRApplicationEvent object.

SetEventData( rtr_msgbuf_t,
rtr_msglen_t)

Set the actual data length of
the buffer allocated for this
RTRApplicationEvent object.

SetEventNumber( const rtr_evtnum_t) Set the application event number
associated with the data in this
RTRApplicationEvent object.

Application Classes 3–123



Dispatch( )

Dispatch( )

RTRApplicationEvent::Dispatch( );

Prototype
rtr_status_t Dispatch();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_HANDLERDELETED The application has deleted the
handler.

RTR_STS_NOEVENT The data object does not contain an
event.

RTR_STS_NOEVENTDATA There is no event data associated with
the event.

RTR_STS_NOHANDLRREGSTRD The application has not registered a
handler

RTR_STS_NOMESSAGE The data object does not contain a
message.

RTR_STS_OK Normal successful completion.
RTR_STS_TCDELETED The application has deleted the

transaction controller.

Parameters
None

Description

This member function must be overridden by the RTR application. When
called, the data contained within the object is processed. Processing the data
may include performing some application specific logic and/or dispatching to a
handler.

3–124 Application Classes



Dispatch( )

Example
sStatus = pApplicationEvent->Dispatch();
{
}

Application Classes 3–125



GetEventData( )

GetEventData( )

RTRApplicationEvent::GetEventData( );

Prototype
rtr_status_t GetEventData( rtr_msgbuf_t &evEventData );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVARGPTR Invalid argument pointer.
RTR_STS_NOEVENT The data object does not contain an

event.
RTR_STS_NOEVENTDATA There is no event data associated with

the event.
RTR_STS_OK Normal successful completion

Parameters

evEventData
Pointer to event data.

Description

Retrieve the application data associated with this RTRApplicationEvent object.

Example
GetEventData(&evEventData );

3–126 Application Classes



GetEventDataLength( )

GetEventDataLength( )

RTRApplicationEvent::GetEventDataLength( );

Prototype
rtr_msglen_t GetEventDataLength();

Return Value
rtr_msglen_t:

Returns the size of the event data length.

Parameters
None

Description

Call this member function to receive the size of the application event data
length.

Example
rtr_msglen_t LengthOfData =

pRTRApplicationEvent->GetEventDataLength();

Application Classes 3–127



GetEventNumber( )

GetEventNumber( )

RTRApplicationEvent::GetEventNumber( );

Prototype
rtr_status_t GetEventNumber (rtr_evtnum_t &evEventNumber );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_NOEVENT The data object does not contain an
event.

RTR_STS_NOMESSAGE The data object does not contain a
message

RTR_STS_OK Normal successful completion.

Parameters

evEventNumber
An event number.

Description

Get the event number associated with the received application event.

Example
GetEventNumber (&evEventNumber );

3–128 Application Classes



SetEventData( )

SetEventData( )

RTRApplicationEvent::SetEventData( );

Prototype
rtr_status_t SetEventData (rtr_msgbuf_t &evEventData, rtr_msglen_t
dlDataLength);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_INVARGPTR The data object does not contain an

event.

Parameters

evEventData
Pointer to event data.

dlDataLength
The length of the data.

Description

Set the application data associated with this RTRApplicationEvent object.

Example
SetEventData (&evEventData, dlDataLength);

Application Classes 3–129



SetEventNumber( )

SetEventNumber( )

RTRApplicationEvent::SetEventNumber( );

Prototype
rtr_status_t SetEventNumber (const rtr_evtnum_t &evEventNumber );

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

evEventNumber
An event number.

Description

Set the application event number associated with the data in this
RTRApplicationEvent object.

Example
SetEventNumber (&evEventNumber );

3–130 Application Classes



3.13 RTRApplicationMessage Class

3.13 RTRApplicationMessage Class

The RTRApplicationMessage class contains members that retrieve the message
and its length associated with the data in the object. Processing the data may
include executing application logic or dispatch to a handler.

Application Classes 3–131



RTRApplicationMessage Class Members

RTRApplicationMessage Class Members

Construction
Method Description

RTRApplicationMessage( ) Default constructor
~RTRApplicationMessage ( ) Default destructor

Operations
Method Description

Dispatch( ) Basic method.
GetMessage( ) Retrieve the message associated with

the data in this object.
GetMessageLength( ) Retrieve the actual length of the

message associated with the data
in this object.

3–132 Application Classes



Dispatch( )

Dispatch( )

RTRApplicationMessage::Dispatch( );

Prototype
rtr_status_t Dispatch();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_HANDLERDELETED The application has deleted the
handler.

RTR_STS_NOHANDLRREGSTRD The application has not registered a
handler

RTR_STS_NOMESSAGE The data object does not contain a
message

RTR_STS_OK Normal successful completion
RTR_STS_TCDELETED The application has deleted the

transaction controller.

Parameters
None

Description

This member function must be overridden by the RTR application. When
called, the data contained within the object is processed. Processing the data
may include performing some application specific logic and/or dispatching to a
handler.

Application Classes 3–133



Dispatch( )

Example
void ABCOrderProcessor::ProcessIncomingOrders()
{

abc_status sStatus = RTR_STS_OK;
RTRData *pOrder = NULL;
while (1)
{
sStatus = pOrder->Dispatch();
print_status_on_failure(sStatus);
delete pOrder;
}

return;
}

3–134 Application Classes



GetMessage( )

GetMessage()

RTRApplicationMessage::GetMessage( );

Prototype
rtr_msgbuf_t GetMessage();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_NOMESSAGE The data object does not contain a

message

Parameters
None

Description

Retrieve the message associated with the data in this object.

Example
RTRApplicationMessage.GetMessage();

Application Classes 3–135



GetMessageLength( )

GetMessageLength( )

RTRApplicationMessage::GetMessageLength( );

Prototype
rtr_msgbuf_t GetMessageLength();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_NOMESSAGE The data object does not contain a

message

Parameters
None

Description

Retrieve the actual length of the message associated with the data in this
object.

Example
RTRApplicationMessage.GetMessageLength();

3–136 Application Classes



3.14 RTRClassFactory Class

3.14 RTRClassFactory Class

The RTRClassFactory class constructs an RTR application event or message
directly from an RTR message data buffer.

Application Classes 3–137



RTRClassFactory Class Members

RTRClassFactory Class Members

Construction
Method Description

RTRClassFactory( ) Default constructor
~RTRClassFactory( ) Default destructor

Operations
Method Description

CreateRTRApplicationEvent
(rtr_const_msgbuf_t, rtr_msglen_t,
RTRApplicationEvent)

Create an RTRApplicationEvent data
object.

CreateRTRApplicationMessage
(rtr_const_msgbuf_t, rtr_msglen_t,
RTRApplicationMessage)

Create an RTRApplicationMessage
data object.

CreateRTREvent(RTREvent) Create an RTREvent data object.
CreateRTRMessage(RTRMessage) Create an RTRMessage data object.

3–138 Application Classes



CreateRTRApplicationEvent( )

CreateRTRApplicationEvent( )

RTRClassFactory::CreateRTRApplicationEvent( );

Prototype
virtual rtr_status_t CreateRTRApplicationEvent(rtr_const_msgbuf_t

pmsgCallersData,
rtr_msglen_t msglCallersDataLength
RTRApplicationEvent *&pApplicationEvent)

{
rtr_status_t sStatus = RTR_STS_OK;
pApplicationEvent = new RTRApplicationEvent();
if (NULL == pApplicationEvent);
{
sStatus = RTR_STS_INSVIRMEM;

}
return sStatus;

};

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_INSVIREM Insufficient virtual memory.

Parameters

pmsgCallersData
Pointer to the caller’s data.

msglCallersDataLength
The length of the caller’s data.

pApplicationEvent
Pointer to the application event.

Application Classes 3–139



CreateRTRApplicationEvent( )

Description

Create an RTRApplicationEvent data object if the transaction controller
determines that Receive call points to a message of type RTRApplicationEvent.

Example
pApplicationEvent = new ApplicationEvent();

3–140 Application Classes



CreateRTRApplicationMessage( )

CreateRTRApplicationMessage()

RTRClassFactory::CreateRTRApplicationMessage( );

Prototype
virtual rtr_status_t CreateRTRApplicationMessage(rtr_const_msgbuf_t

pmsgCallersData,
rtr_msglen_t msglCallersDataLength,

RTRApplicationMessage *&pApplicationMessage)
{

rtr_status_t sStatus = RTR_STS_OK;
pApplicationMessage = new RTRApplicationMessage();
if (NULL == pApplicationMessage)
{
sStatus = RTR_STS_INSVIRMEM;
}
return sStatus;

};

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_INSVIREM

Parameters

pmsgCallersData
Pointer to the caller’s data.

msglCallersDataLength
The length of the caller’s data.

pApplicationMessage
Pointer to the application message.

Application Classes 3–141



CreateRTRApplicationMessage( )

Description

Create an RTRApplicationMessage data object if the transaction controller de-
termines that Receive call points to a message of type RTRApplicationMessage.

Example
rtr_status_t ABCSClassFactory::CreateRTRApplicationMessage(
rtr_const_msgbuf_t pmsgCallersData,
rtr_msglen_t msglCallersDataLength,
RTRApplicationMessage *&pApplicationMessage )
{ // Determine what kind of serialized object we are receiving.
// The ABC company protocol defines the first integer of the
// message to represent the type of the object we are receiving.
// Book = ABC_BOOK. Magazine = ABC_MAGAZINE unsigned int
// uiClassType = *(unsigned int*)pmsgCallersData;

switch (uiClassType)
{

case ABC_BOOK : pApplicationMessage = new ABCBook(); break;
case ABC_MAGAZINE : pApplicationMessage = new ABCMagazine(); break;
default:
// If we ever get here then the client is sending us data that we
// can’t recognize. For some applictations this may not be an
// issue. For the ABC company this should be impossible.
assert(false);
}

// Make sure we are passing back a valid address
if (NULL == pApplicationMessage)
return RTR_STS_INSVIRMEM;
return ABC_STS_SUCCESS;}

3–142 Application Classes



CreateRTREvent( )

CreateRTREvent( )

RTRClassFactory::CreateRTREvent( );

Prototype
virtual rtr_status_t CreateRTREvent( RTREvent *&pRTREvent)
{
rtr_status_t sStatus = RTR_STS_OK;
pRTREvent = new RTREvent();
if (NULL == pRTREvent)
{
sStatus = RTR_STS_INSVIRMEM;

}
return sStatus;

};

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_INSVIREM Insufficient virtual memory.

Parameters

pRTREvent
Pointer to an RTREvent object that describes the message which is being
processed.

Description

Create an RTREvent data object if the transaction controller determines that
Receive call points to a message of type RTREvent.

Example
pRTREvent = newRTREvent();

Application Classes 3–143



CreateRTRMessage( )

CreateRTRMessage()

RTRClassFactory::CreateRTRMessage ( );

Prototype
virtual rtr_status_t CreateRTRMessage( RTRMessage *&pRTRMessage)
{
rtr_status_t sStatus = RTR_STS_OK;
pRTRMessage = new RTRMessage();
if (NULL == pRTRMessage)
{
sStatus = RTR_STS_INSVIRMEM;

}
return sStatus;

};

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_INSVIREM

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being
processed.

Description

Create an RTRMessage data object if the transaction controller determines
that Receive call points to a message of type RTRMessage.

Example
pApplicationMessage = new ApplicationMessage();

3–144 Application Classes



3.15 RTRData

3.15 RTRData

RTRData is the abstract base class for all data classes.

Application Classes 3–145



RTRData Class Members

RTRData Class Members

Construction
Method Description

RTRData( ) Default constructor
RTRData( ) Default destructor

Operations
Method Description

Dispatch( ) Basic method.
GetActualBufferLength( ) Return the message buffer length.
GetLogicalBufferLength( ) Return the logical buffer length.
IsApplicationEvent( ) Determine if this object contains

application-generated data.
IsApplicationMessage( ) Determine if this object contains

application-generated message.
IsEvent( ) Determine if this object contains an

RTR or application-generated event.
IsMessage( ) Determine if this object contains an

RTR or application-generated message.
IsRTREvent( ) Determine if this object contains RTR-

generated data.
IsRTRMessage( ) Determine if this object contains RTR-

generated message.

3–146 Application Classes



Dispatch( )

Dispatch( )

RTRData::Dispatch( );

Prototype
virtual rtr_status_t Dispatch() = 0;

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters
None

Description

This is a pure virtual member function. RTRData does not supply an
implementation for Dispatch and therefore cannot be instantiated. All classes
that derive from RTRData must implement their own version of Dispatch, with
the functionality based on their needs.

Application Classes 3–147



GetActualBufferLength( )

GetActualBufferLength( )

RTRData::GetActualBufferLength( );

Prototype
rtr_msglen_t GetActualBufferLength ();

Return Value
rtr_msglen_t

The message buffer length.

Parameters
None

Description

The method returns the message buffer length.

Example
GetActualBufferLength ();

3–148 Application Classes



GetLogicalBufferLength( )

GetLogicalBufferLength( )

RTRData::GetLogicalBufferLength( );

Prototype
rtr_msglen_t GetLogicalBufferLength();

Return Value
rtr_msglen_t

Return the logical buffer length.

Parameters
None

Description

Call this method for the logical buffer length.

Example
GetLogicalBufferLength();

Application Classes 3–149



IsApplicationEvent( )

IsApplicationEvent( )

RTRData::IsApplicationEvent( );

Prototype
bool IsApplicationEvent ();

Return Value
bool

A true or false return value.

Parameters
None

Description

If the RTRData object contains an event sent by the application, this function
returns TRUE. Otherwise it returns FALSE.

Example
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if ( true == pResult->IsApplicationEvent();)

3–150 Application Classes



IsApplicationMessage( )

IsApplicationMessage( )

RTRData::IsApplicationMessage( );

Prototype
bool IsApplicationMessage();

Return Value
bool

A true or false return value.

Parameters
None

Description

If the RTRData object contains a message sent by the application, this function
returns TRUE. Otherwise it returns FALSE.

Example
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if ( true == pResult->IsApplicationMessage();)

Application Classes 3–151



IsEvent( )

IsEvent( )

RTRData::IsEvent( );

Prototype
bool IsEvent();

Return Value
bool

A true or false return value.

Parameters
None

Description

If the RTRData object contains an event generated by either RTR or an
application, this function returns TRUE. Otherwise it returns FALSE.

Example
if (IsEvent();)
{

rtr_evtnum_t enEvent;
sStatus = GetEventNumber(enEvent);

}

3–152 Application Classes



IsMessage( )

IsMessage()

RTRData::IsMessage( );

Prototype
bool IsMessage();

Return Value
bool

A true or false return value.

Parameters
None

Description

If the RTRData object contains a message, generated by either RTR or an
application, this function returns TRUE. Otherwise it returns FALSE.

Example
// Look for a status for this transaction.
RTRData *pTransactionData = new RTRData();
sStatus = GetTransaction()->Receive(pTransactionData);
// Determine if we have a message or an event
if (false == pTransactionData->IsMessage();)

{
pTransactionData->Dispatch();
}

Application Classes 3–153



IsRTREvent( )

IsRTREvent( )

RTRData::IsRTREvent( );

Prototype
bool IsRTREvent();

Return Value
bool

A true or false return value.

Parameters
None

Description

If the RTRData object contains an event sent by RTR, this function returns
TRUE. Otherwise it returns FALSE.

Example
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if ( true == pResult->IsRTREvent();)

3–154 Application Classes



IsRTRMessage( )

IsRTRMessage( )

RTRData::IsRTRMessage( );

Prototype
bool IsRTRMessage();

Return Value
bool

A true or false return value.

Parameters
None

Description

If the RTRData object contains a message sent by RTR, this function returns
TRUE. Otherwise it returns FALSE.

Example
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if ( true == pResult->IsRTRMessage();)

Application Classes 3–155



RTRData( )

RTRData( )

RTRData::RTRData( );

Prototype
RTRData();
virtual ~RTRData();

Parameters
None

Description

This constructor is a pure virtual function and requires an associated
higher-level data object (for example, RTRApplicationMessage). The default
constructor should be used by applications when receiving data from a call to
Receive that does not intend to handle allocation and de-allocation of memory
for the call. By using this form of the constructor, the application requests that
RTR allocate enough memory to receive the data.

3–156 Application Classes



3.16 RTREvent Class

3.16 RTREvent Class

The RTREvent class contains members that retrieve the RTR data and RTR
event associated with an RTREvent object.

Application Classes 3–157



RTREvent Class Members

RTREvent Class Members

Construction
Method Description

RTREvent( ) Default constructor
~RTREvent( ) Default destructor

Operations
Method Description

Dispatch( ) Basic method.
GetEventData( rtr_msgbuf_t ) Retrieve the RTR data associated with

this RTREvent object.
GetEventDataLength( ); Retrieve the actual length of the data

associated for this RTREvent object.
GetEventNumber( rtr_evtnum_t ) Retreive the RTR event associated with

the data in this RTREvent object.

3–158 Application Classes



Dispatch( )

Dispatch( )

RTREvent::Dispatch( );

Prototype
rtr_status_t Dispatch();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_TCDELETED The application has deleted the

transaction controller.
RTR_STS_EVENT The data object does not contain an

event.
RTR_STS_NOEVENTDATA There is no event data associated with

the event.
RTR_STS_MESSAGE The data object does not contain a

message.
RTR_STS_HANDLERDELETED The application has deleted the

handler.
RTR_STS_NOHANDLRREGSTRD The application has not registered a

handler

Parameters
None

Description

This member function must be overridden by the RTR application. When
called the data contained within the object is processed. Processing the data
may include performing some application specific logic and/or dispatching to a
handler.

Application Classes 3–159



Dispatch( )

Example

sStatus = pOrderEvent->Dispatch( );

3–160 Application Classes



GetEventData( )

GetEventData( )

RTREvent::GetEventData( );

Prototype
rtr_status_t GetEventData( rtr_msgbuf_t &evEventData );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_INVARGPTR
RTR_STS_NOEVENTDATA There is no event data associated with

the event.

Parameters

evEventData
Pointer to event data.

Description

Retrieve the RTR data associated with this RTREvent object.

Example
RTREvent.GetEventData(&evEventData);

Application Classes 3–161



GetEventDataLength( )

GetEventDataLength( )

RTREvent::GetEventDataLength( );

Prototype
rtr_msglen_t GetEventDataLength();

Return Value
rtr_msglen_t:

Returns the size of the event data length.

Parameters
None

Description

Retrieve the actual length of the data associated for this RTREvent object.

Example
RTREvent.GetEventDataLength();

3–162 Application Classes



GetEventNumber( )

GetEventNumber( )

RTREvent::GetEventNumber( );

Prototype
rtr_status_t GetEventNumber( rtr_evtnum_t &evEventNumber);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_NOEVENT The data object does not contain an

event.

Parameters

evEventNumber
An event number.

Description

Call this member function to retrieve the RTR event associated with the
data in this RTREvent object. This function is typically used by only those
applications that do not register an event.

Example
RTREvent.GetEventNumber(&evEventNumber);

Application Classes 3–163



3.17 RTRMessage

3.17 RTRMessage

RTRMessage contains members that retrieve the RTR message associated with
the data in the RTRMessage object, the reason for its acceptance or rejection of
a transaction, and a secondary status if needed.

3–164 Application Classes



RTRMessage Class Members

RTRMessage Class Members

Construction
Method Description

RTRMessage( ) Default constructor
~RTRMessage( ) Default destructor

Operations
Method Description

Dispatch( ) Basic method.
GetMessageType(rtr_msg_type_t) Retrieve the RTR message associated

with the data in this RTRMessage
object.

GetReason( ) Retrieve the reason associated with
the accepting or rejection of the
transaction.

GetSecondaryStatus( ) Retrieve the secondary status
associated with the accepting or
rejection of the transaction.

Application Classes 3–165



Dispatch( )

Dispatch( )

RTRMessage::Dispatch( );

Prototype
rtr_status_t Dispatch();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_TCDELETED The application has deleted the

transaction controller.
RTR_STS_NOMESSAGE The data object does not contain a

message.
RTR_STS_HANDLERDELETED The application has deleted the

handler.
RTR_STS_NOHANDLRREGSTRD The application has not registered a

handler.

Parameters
None

Description

This member function must be overridden by the RTR application. When
called, the data contained within the object is processed. Processing the data
may include performing some application specific logic and/or dispatching to a
handler.

Example
sStatus = pOrderMessage->Dispatch();

3–166 Application Classes



GetMessageType( )

GetMessageType( )

RTRMessage::GetMessageType( );

Prototype
rtr_status_t GetMessageType(rtr_msg_type_t& mtMessageType);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_NOMESSAGE The data object does not contain a

message

Parameters

mtMessageType
An RTR message.

Description

Retrieve the RTR message associated with the data in this RTRMessage object.

Example
sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
print_status_on_failure(sStatus);

Application Classes 3–167



GetReason( )

GetReason()

RTRMessage::GetReason( );

Prototype
rtr_reason_t GetReason();

Return Value
rtr_status_t

This function either returns RTR_NO_REASON or the value specified by the
participants in the transaction. If different participants provide different
reason codes, RTR ORs them.

Parameters
None

Description

Retrieve the reason associated with the accepting or rejection of the
transaction.

Example
void OnAccepted(RTRMessage* pRTRData,

RTRClientTransactionController* pController)
{

rtr_status_t sStatus =
pRTRData->GetSecondaryStatus();

rtr_reason_t rcReasonCode = pRTRData->GetReason();
m_bAcceptReceived = true;

};

3–168 Application Classes



GetSecondaryStatus

GetSecondaryStatus

RTRMessage::GetSecondaryStatus( );

Prototype
rtr_status_t GetSecondaryStatus();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_NOMESSAGE The data object does not contain a

message.

Parameters
None

Description

Retrieve the secondary status associated with the accepting or rejection of the
transaction.

Example
void OnAccepted(RTRMessage* pRTRData,

RTRClientTransactionController* pController)
{

rtr_status_t sStatus =
pRTRData->GetSecondaryStatus();

rtr_reason_t rcReasonCode = pRTRData->GetReason();
m_bAcceptReceived = true;

};

Application Classes 3–169



3.18 RTRStream Class

3.18 RTRStream Class

The RTRStream class derives from RTRData and extends the RTRData class
by allowing RTR applications to issue multiple read and write requests to the
buffer (managed by RTRData) without needing to maintain Pointer to the end
of the buffer.

An RTRStream object automatically handles the details of maintaining the
offset within the buffer when the application wants to read and write multiple
times to a buffer.

When reading from and writing to a stream, a copy of the data is performed.

3–170 Application Classes



RTRStream Class Members

RTRStream Class Members

Construction
Method Description

RTRStream( ) Default constructor
~RTRStream Default destructor

Operations
Method Description

ReadFromStream(rtr _msgbuf_t,
rtr_msglen_t, rtr_msglen_t);

Copy the data from the buffer managed
by RTRData to the buffer specified.

ReadFromStream(rtr_sgn_32_t); Copy the signed integer from the buffer
managed by RTRData to uiNumber.

ReadFromStream(char, size_t); Copy the data from the buffer managed
by RTRData to pString.

ReadFromStream(rtr_uns_32_t); Copy the unsigned integer from
the buffer managed by RTRData to
uiNumber.

WriteToStream(rtr _msgbuf_t,
rtr_msglen_t);

Copy data to the end of the buffer
managed by RTRData.

WriteToStream(const char); Copy string to the end of the buffer
managed by RTRData.

WriteToStream(rtr_sgn_32_t); Copy the signed integer to the end of
the buffer managed by RTRData.

WriteToStream(rtr_uns_32_t); Copy the unsigned integer to the end
of the buffer managed by RTRData.

Operators
Operator Description

RTRStream& operator>> (char) ReadFromStream operator
RTRStream& operator>>
(rtr_sgn_32_t)

ReadFromStream operator

RTRStream& operator>>
(rtr_uns_32_t)

ReadFromStream operator

Application Classes 3–171



RTRStream Class Members

Operator Description

RTRStream& operator<<
(const char)

WriteToStream operator

RTRStream& operator<<
(rtr_sgn_32_t)

WriteToStream operator

RTRStream& operator<<
(rtr_uns_32_t)

WriteToStream operator

3–172 Application Classes



operator>>

operator>>

RTRStream::operator>>

Prototype
RTRStream& operator>> (char *pString)
{

ReadFromStream(pString);
return *this;

}
RTRStream& operator>> (rtr_sgn_32_t &iNumber)
{

ReadFromStream(iNumber);
return *this;

}
RTRStream& operator>> (rtr_uns_32_t &uiNumber)
{

ReadFromStream(uiNumber);
return *this;

}

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_INVARGPTR

Parameters

pString
Pointer to a character string.

iNumber
A signed integer.

uiNumber
An unsigned integer.

Application Classes 3–173



operator>>

Description

>> denotes the ReadFromStream operators. These member functions extract
data from a buffer by calling ReadFromStream to read the data and return
*this. The three types of stream data are string, signed, and unsigned.

Example
// Populate this object with the data

*this >> m_uiPrice >> m_uiISBN >> m_szTitle >> m_szAuthor;

// The 1 line call above is equivilant to the 4 lines below.
// ReadFromStream(m_uiISBN);
// ReadFromStream(m_uiPrice);
// ReadFromStream(m_szTitle);
// ReadFromStream(m_szAuthor);

3–174 Application Classes



operator<<

operator<<

RTRStream::operator<<

Prototype
RTRStream& operator<< (char *pString)
{

WriteToStream(pString);
return *this;

}
RTRStream& operator<< (rtr_sgn_32_t &iNumber)
{

WriteToStream(iNumber);
return *this;

}
RTRStream& operator<< (rtr_uns_32_t &uiNumber)
{

WriteToStream(uiNumber);
return *this;

}

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_INVSTRINGPTRARG The string pointer argument is invalid

- string too long.

Parameters

pString
Pointer to a character string.

iNumber
A signed integer.

uiNumber
An unsigned integer.

Application Classes 3–175



operator<<

Description

<< denotes the WriteToStream operators. These member functions write data
to a buffer by calling WriteToStream to write the data and return *this. The
three types of stream data are string, signed, and unsigned.

Example
// Save the type of object we are. This is used by the class factory
// on the server side to determine which type of class to allocate.

*this << ABC_BOOK;
*this << m_uiPrice << m_uiISBN << m_szTitle << m_szAuthor;

// The 1 line call above is equivalent to the 4 lines below. We
// can use the << and >> operators because we know that the data
// which we store is not > the current RTR maximum = 65535 bytes.
// WriteToStream(m_uiISBN);
// WriteToStream(m_uiPrice);
// WriteToStream(m_szTitle);
// WriteToStream(m_szAuthor);

3–176 Application Classes



ReadFromStream( )

ReadFromStream()

RTRStream::ReadFromStream( );

Prototype
rtr_status_t ReadFromStream(rtr_msgbuf_t pvBuffer,

rtr_msglen_t &uiBufferSize
rtr_msglen_t &uiSizeCopied);

rtr_status_t ReadFromStream(char *pString, size_t uiStringSize);

rtr_status_t ReadFromStream(rtr_sgn_32_t &iNumber);

rtr_status_t ReadFromStream(rtr_uns_32_t &uiNumber);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_ENDOFSTREAM The end-of-stream has been reached.

Parameters

uiBufferSize
An unsigned integer for length of the buffer.

pvBuffer
A void pointer to a buffer.

uiNumber
An unsigned integer.

pString
Pointer to a character string.

iNumber
A signed integer

Application Classes 3–177



ReadFromStream( )

Description

Reads the first instance of a data type from a buffer as specified in the
ReadFromStream methods. Note that the string buffer is assumed to be large
enough (RTR_MAX_MSGLEN).

Example
RTRStream::ReadFromStream(pString);

3–178 Application Classes



RTRStream( )

RTRStream()

RTRStream::RTRStream( );

Prototype
RTRStream();

Return Value
None

Parameters
None

Description

Constructor method for the RTRStream class.

Example
RTRStream::RTRStream();

Application Classes 3–179



WriteToStream( )

WriteToStream()

RTRStream::WriteToStream( );

Prototype
rtr_status_t WriteToStream(rtr_const_msgbuf_t pvBuffer, rtr_msglen_t

uiBufferLength);

rtr_status_t WriteToStream(const char *pString);

rtr_status_t WriteToStream(rtr_sgn_32_t iNumber);

rtr_status_t WriteToStream(rtr_uns_32_t uiNumber);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_ENDOFSTREAM The end-of-stream has been reached.

Parameters

uiBufferLength
An unsigned integer for length of the buffer.

pvBuffer
A void pointer to a buffer.

uiNumber
An unsigned integer.

iNumber
A signed integer.

pString
Pointer to a character string.

3–180 Application Classes



WriteToStream( )

Description

Write to a data buffer, specifying the data with either buffer and buffer length,
as unsigned integer, or string.

Example
RTRStream::WriteToStream(uiNumber);

Application Classes 3–181





4
Management Classes

Management classes are offered for both new and existing RTR applications.
The types of management classes include:

• Setup class:

RTR class

• Facility classes:

RTRFacilityMember class

RTRFacilityMemberArray class

RTRFacilityProperties class

RTRFacilityManager class

• Partition classes:

RTRBackendPartitonProperties class

RTRKeySegment class

RTRKeySegmentArray

RTRPartitionManager class

• Counter classes:

RTRCounter class

RTRSignedCounter class

RTRStringCounter class

RTRUnsignedCounter class

Management Classes 4–1



Management Classes
4.1 RTR

4.1 RTR
The RTR class is a setup class, for RTR system management operations,
designed for starting and stopping RTR, and creating and deleting RTR
journals.

4–2 Management Classes



RTR Class Members

RTR Class Members

Construction
Method Description

RTR( ) Constructor
~RTR( ) Destructor

Operations
Method Description

CreateJournal(bool) Create a journal for RTR.
DeleteJournal( ) Delete the journal for RTR.
GetErrorText(rtr_status_t) Get the error text associated with the rtr_

status_t return value.
IsRunning( ) Determine if RTR is running.
Start( ) Start RTR.
StartWebServer(bool, bool) Start RTR on a web server.
Stop( ) Stop RTR.
StopWebServer( ) Stop RTR on a web server.

Management Classes 4–3



CreateJournal( )

CreateJournal( )

RTR::CreateJournal( );

Prototype
rtr_status_t CreateJournal( bool bSupersede = false);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion

RTR_STS_ ILLDEVTYP RTR can only create its journal files on directory
structured devices.

Parameters

bSupersede
A boolean attribute that specifies how to handle cases where a journal already
exists. Set bSupersede to true to overwrite an existing journal. If set to false,
a journal is created only if no journal previously existed.

Description

Call this method to create an RTR journal file. A journal is required for all
facility members with a backend role, and any frontends that participate in
nested transactions.

For more information on RTR journals, see the RTR Application Design Guide
and the RTR System Manager’s Manual .

Example
// Declare an RTR object.
RTR *myRTR = new RTR();
rtr_status_t sStatus;
bool bSupersede = false; // false -> no supersede
sStatus = myRTR->CreateJournal(bSupersede);

4–4 Management Classes



DeleteJournal( )

DeleteJournal( )

RTR::DeleteJournal( );

Prototype
rtr_status_t DeleteJournal();

Return Value
rtr_status_t

The RTR status message return value. RTR_STS_OK is the normal successful
completion.

Parameters
None

Description

Call this method for deleting a journal.

For more information on RTR journals, see the RTR System Manager’s Manual
.

Example
// declare an RTR object
RTR *myRTR = new RTR();
rtr_status_t sStatus;
sStatus = myRTR->DeleteJournal();

Management Classes 4–5



GetErrorText( )

GetErrorText( )

RTR::GetErrorText( );

Prototype
static const char *GetErrorText(rtr_status_t sStatus);

Return Value
Returns a pointer to the error message text associated with a known RTR
message.

Parameters

rtr_status_t
The RTR status message return value. RTR_STS_OK is the normal successful
completion.

Description

Call this method to retrieve the error message text associated with an RTR
status.

Example
// start rtr
RTRmyRTR;
sStatus = myRTR.Start();
cout << myRTR.GetErrorText(sStatus) << endl;
// create journal
sStatus = myRTR.CreateJournal(true);
cout << myRTR.GetErrorText(sStatus) << endl;

4–6 Management Classes



GetErrorText( )

//An example from the Sample application in the Examples directory
inline void print_status_on_failure(rtr_status_t sStatus)
{

switch (sStatus)
{

case ABCSuccess :
case ABCOrderSucceeded :
case ABCOrderFailed :{
break;
}
default: {

cout << RTR::GetErrorText(sStatus);
break;

};
}

return;
}

Management Classes 4–7



IsRunning( )

IsRunning()

RTR::IsRunning( );

Prototype
bool IsRunning();

Return Value

Status Message

TRUE RTR is running.
FALSE RTR is not running.

Parameters
None

Description

Call this method to find out if RTR is running on this node. If RTR is running,
it will return a true, otherwise an error code.

Example
RTR *myRTR = new RTR();
rtr_status_t sStatus;
sStatus = myRTR->IsRunning();

4–8 Management Classes



RTR( )

RTR()

RTR::RTR( );

Prototype
RTR();

Return Value
None

Parameters
None

Description

Call this method to declare an RTR object.

Example
RTR *myRTR = new RTR();

Management Classes 4–9



Start( )

Start( )

RTR::Start( );

Prototype
rtr_status_t Start();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_ ACPDIED The RTR ACP is no longer running, restart
RTR.

RTR_STS_ ACPNOTVIA ACP is no longer a viable entity.
RTR_STS_ BYTLMNSUFF Insufficient process quota bytlm, required

100000.
RTR_STS_ ERRSTAACP Unable to start ACP.
RTR_STS_ EXWSMAX Requested memory quotas exceed the system

limit WSMAX.
RTR_STS_OK Normal successful completion.

Parameters
None

Description

Call this method to start RTR on a node.

Example
// declare RTR object.
RTR *myRTR = new RTR();
rtr_status_t sStatus;
sStatus = myRTR->Start();

4–10 Management Classes



StartWebServer( )

StartWebServer( )

RTR::StartWebServer( );

Prototype
rtr_status_t StartWebServer(bool bAuthentication = true,

bool bReadOnlyAccess = false);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

bAuthentication
A boolean attribute for specifying and controlling the web server user
authentication. The default setting is for the server to perform user
authentication using the username and password. This may be disabled,
allowing anyone with a browser to access the management component.

bReadOnlyAccess
A boolean attribute for specifying read-only access to the web browser RTR
management component. A server started with the StartWebServer method
servers status and monitor pages but does not permit any changes to be made
to the configuration. By specifying read-only access for server operation, no
shadowing or journaling is required. The message is still written to the journal
but is not played to a shadow and is purged after the transaction is completed
on the primary server. The message is still needed in the journal to allow
recovery of in-flight transactions.

Description

Call this method to start RTR on a web server. This starts a user’s HTTP
server component, thus enabling usage of the web browser RTR management
component for the calling user.

Management Classes 4–11



StartWebServer( )

Example
bool RTR::StartWebServer()
{

bool bOverallResult = true;
RTR MyRTR;

rtr_status_t stsStartWebServer;
stsStartWebServer = MyRTR.StartWebServer();
if (IsFailure(stsStartWebServer == RTR_STS_OK))
{

bOverallResult = false;
OutputStatus(stsStartWebServer);

}

4–12 Management Classes



Stop( )

Stop( )

RTR::Stop( );

Prototype
rtr_status_t Stop();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Description

RTR_STS_ ACPDIED The RTR ACP is no longer running, restart
RTR.

RTR_STS_OK Normal successful completion.
RTR_STS_ RTRNOTRUN RTR not running.

Parameters
None

Description

Call this method to stop RTR on a node. Calling this method stops all RTR
activity on the computer where it is called. Any running applications receive
the error indication RTR_STS_NOACP. All facilities, links, and partitions are
destroyed.

Example
// declare RTR object
RTR *myRTR = new RTR();
rtr_status_t sStatus;
sStatus = myRTR->Stop();

Management Classes 4–13



StopWebServer( )

StopWebServer( )

RTR::StopWebServer( );

Prototype
rtr_status_t StopWebServer();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_ NFW Operation requires SETPRV privilege.
RTR_STS_OK Normal successful completion.
RTR_STS_SRVDISCON Server disconnected on node ’nodename.’

Parameters
None

Description

Call this method to stop RTR on a web server.

Example
rtr_status_t stsStopWebServer;
stsStopWebServer = MyRTR.StopWebServer();
if (IsFailure(stsStopWebServer == RTR_STS_OK || stsStopWebServer ==
RTR_STS_SRVDISCON))
{ bOverallResult = false;

OutputStatus(stsStopWebServer);
}

4–14 Management Classes



4.2 RTRBackendPartitionProperties

4.2 RTRBackendPartitionProperties

This class holds and makes available the properties of its associated
RTRBackendPartition object. This allows the RTR application to Get and
Set various attributes of an RTR partition. This class may be called by both
new C++ API and legacy applications.

Management Classes 4–15



RTRBackendPartitionProperties Class Members

RTRBackendPartitionProperties Class Members

Construction
Method Description

RTRBackendPartitionProperties(const
char)

Constructor

~RTRBackendPartitionProperties(const
char)

Destructor

Operations( )
Method Description

GetFacilityName(rtr_facnam_t,
const size_t)

Gets the facility name associated with the
RTRPartition object this RTRPartitionProperties
object describes.

GetNumberOfRecoveredTransactions
(rtr_uns_32_t)

Gets the number of recovered transactions
associated with the RTRPartition object this
RTRPartitionProperties object describes.

GetPartitionName(rtr_parnam_t,
const size_t)

Gets the partition name associated with the
RTRPartition object this RTRPartitionProperties
object describes.

GetRetryCount(rtr_uns_32_t) Gets the number of retrys associated with the
RTRPartition object this RTRPartitionProperties
object describes.

SetFailoverPolicy(const eRTR-
FailoverPolicy)

Defines the policy that RTR should take when a
primary partition fails.

SetPriorityList(const char) Sets a relative priority used by RTR when
selecting a backend member to make active.

SetRecoveryRetryCount
(rtr_uns_32_t)

Indicates the maximum number of times that a
transaction should be presented for recovery
before being written to the journal as an
exception.

4–16 Management Classes



GetFacilityName( )

GetFacilityName()

RTRBackendPartitionProperties::GetFacilityName( );

Prototype
rtr_status_t GetFacilityName(rtr_facnam_t pszFacilityName,

const size_t uiFacilityNameSize);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_ APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_INVARGPTR Invalid parameter address specified on

last call.
RTR_STS_OK Normal successful completion.

Parameters

pszFacilityName
Pointer to a zero-terminated string receiving the facility name for the
RTRPartition this RTRPartitionProperties object describes.

uiFacilityNameSize
An unsigned integer for the size of the specified facility name. The maximum
string length is RTR_MAX_FACNAM_LEN.

Description

Gets the facility name associated with the RTRPartition object this
RTRPartitionProperties object describes.

Management Classes 4–17



GetFacilityName( )

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =

PartitionManager.GetBackendPartitionProperties("MyPartition");
char *pszFacilityName = new char[RTR_MAX_FACNAM_LEN+1];
sStatus = pPartProperties->GetFacilityName(pszFacilityName,

RTR_MAX_FACNAM_LEN+1);

4–18 Management Classes



GetNumberOfRecoveredTransactions( )

GetNumberOfRecoveredTransactions( )

RTRBackendPartitionProperties::GetNumberOfRecoveredTransactions( )

Prototype
rtr_status_t GetNumberOfRecoveredTransactions(rtr_uns_32_t

&uiNumberRecoveredTxns);

Return Value
Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

uiNumberRecoveredTxns
A referenced value of type rtr_uns_32_t which receives the number of recovered
transactions.

Description

Gets the number of recovered transactions associated with the RTRPartition
object this RTRPartitionProperties object describes.

For more information, see the RTR System Manager’s Manual.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =

PartitionManager.GetBackendPartitionProperties()"MyPartition");
rtr_uns_32_t iNumberRecoveredTxns
sStatus = pPartProperties->

GetNumberOfRecoveredTransactions(iNumberRecoveredTxns);

Management Classes 4–19



GetPartitionName( )

GetPartitionName()

RTRBackendPartitionProperties::GetPartitionName( );

Prototype
rtr_status_t GetPartitionName(rtr_parnam_t pszPartitionName

const size_t uiPartitionNameSize);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_INVARGPTR Invalid parameter address specified on

last call.
RTR_STS_OK Normal successful completion.

Parameters

pszPartitionName
Pointer to a null-terminated string receiving the partition name for the
RTRPartition this RTRPartitionProperties object describes.

uiPartitionNameSize
An unsigned integer for the size of the specified partition name.

Description

Gets the partition name associated with the RTRPartition object this
RTRPartitionProperties object describes.

4–20 Management Classes



GetPartitionName( )

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =

PartitionManager.GetBackendPartitionProperties("MyPartition");
char *pszPartitionName = new char[RTR_MAX_PARNAM_LEN+1];
sStatus = pPartProperties->GetPartitionName(pszPartitionName,

RTR_MAX_PARNAM_LEN+1);

Management Classes 4–21



GetRetryCount( )

GetRetryCount( )

RTRBackendPartitionProperties::GetRetryCount( );

Prototype
rtr_status_t GetRetryCount(rtr_uns_32_t &uiRetryCount);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

uiRetryCount
A referenced value of type rtr_uns_32_t which receives the number of retries.

Description

Gets the number of times a transaction has been retried after a failure.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =
PartitionManager.GetBackendPartitionProperties("MyPartition");
rtr_uns_32_t iRetryCount;
sStatus = pPartProperties->GetRetryCount(iRetryCount);

4–22 Management Classes



RTRBackendPartitionProperties( )

RTRBackendPartitionProperties( )

RTRBackendPartitionProperties::RTRBackendPartitionProperties( );

Prototype
RTRBackendPartitionProperties( rtr_const_parnam_t pszPartitionName );
virtual ~RTRBackendPartitionProperties();

Return Value
None

Parameters

pszPartitionName
Pointer to a zero-terminated string containing the partition name for which
this RTRPartitionProperties object is being created.

Description

Call this constructor to create an RTRPartitionProperties object for the
partition named.

Example
// Create BackendPartitionProperties object
RTRBackendPartitionProperties *pBEPartitionProperties;
pBEPartitionProperties = pPartitionManager->

GetBackendPartitionProperties(GetDefaultPartitionName());
if (IsFailure(pBEPartitionProperties != NULL))
{
bOverallResult = false;
cout << endl << " In Test_GetFacilityName(),

pPartitionManager->GetBackendPartitionProperties()
call failed." << endl;

delete pPartitionManager;
return bOverallResult; }

Management Classes 4–23



SetFailoverPolicy( )

SetFailoverPolicy( )

RTRBackendPartitionProperties::SetFailoverPolicy( );

Prototype
rtr_status_t SetFailoverPolicy(const eRTRFailoverPolicy eFailoverPolicy);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_PRTBADCMD Partition command invalid or not implemented

in this version of RTR.

Parameters

eRTRFailoverPolicy
An attribute for specifying an RTR failover policy:

1 = RTRFailOverToShadow

2 = RTRFailOverToStandBy

Description

Determines the action to take when the primary partition fails. The default
action is to allow a standby of the primary to become the new primary.
Optionally, RTR can be set to change state so that the secondary becomes
primary, and a standby of the old primary (if any) becomes the new secondary.

4–24 Management Classes



SetFailoverPolicy( )

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =

PartitionManager.GetBackendPartitionProperties("MyPartition");
const RTRFailoverPolicy eFailoverPolicy = RTRFailOverToShadow;
sStatus = pPartProperties->SetFailoverPolicy(eFailoverPolicy);

Management Classes 4–25



SetPriorityList( )

SetPriorityList( )

RTRBackendPartitionProperties::SetPriorityList( );

Prototype
rtr_status_t SetPriorityList(const char *pszPriorityList);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_PRTBADCMD Partition command invalid or not implemented

in this version of RTR.

Parameters

pszPriorityList
A null-terminated string pointer to a priority list.

Description

Sets a relative priority used by RTR when selecting a backend member to
make active. List the backends in your configuration in decreasing order of
priority; the order of the list is taken into consideration when RTR is decides
where to make a partition active.

Suspend partitions before changing the priority list. It is not an error to
enter different versions of the priority list at different backends, but this
is not recommended. If calling SetPriorityList, it is recommended to call
SetPriorityList programmatically before you register the partition with the
server transaction controller.

4–26 Management Classes



SetPriorityList( )

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =

PartitionManager.GetBackendPartitionProperties("MyPartition");
char *pszPriorityList = "depth,length"; // list of BE for prioirty
sStatus = pPartProperties->SetPriorityList(pszPriorityList);

Management Classes 4–27



SetRecoveryRetryCount( )

SetRecoveryRetryCount( )

RTRBackendPartitionProperties::SetRecoveryRetryCount( );

Prototype
rtr_status_t SetRecoveryRetryCount(rtr_uns_32_t & uiRetryCount);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.

Parameters

uiRetryCount
A referenced value of type rtr_uns_32_t that receives the number of retries.

Description

Call this method to set the recovery retry count. The recovery retry count
indicates the maximum number of times that a transaction should be
presented for recovery before being written to the journal as an exception.
Once a transaction has been recorded as an exception, it is no longer
considered eligible for recovery and will require manual processing by a
qualified individual.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =

PartitionManager.GetBackendPartitionProperties("MyPartition");
rtr_uns_32_t iRetryCount=10; // #of times to retry before giveup.
sStatus = pPartProperties->SetRecoveryRetryCount(iRetryCount);

4–28 Management Classes



4.3 RTRFacilityManager

4.3 RTRFacilityManager

The RTRFacilityManager classes enable the creation of facilities specifying
roles for frontend, router, and backend. Facilities can be extended by adding
roles, trimmed by removing roles, deleted or interrogated for their properties.

Management Classes 4–29



RTRFacilityManager Class Members

RTRFacilityManager Class Members

Construction
Method Description

RTRFacilityManager Constructor
~RTRFacilityManager( ) Destructor

Operations
Method Description

AddBackend(rtr_const_facnam_t, rtr_const_
nodnam_t)

Add a backend role to an
existing facility.

AddFrontend(rtr_const_facnam_t, rtr_const_
nodnam_t)

Add a frontend role to an
existing facility.

AddRouter(rtr_const_facnam_t, rtr_const_
nodnam_t)

Add a router role to an existing
facility.

CreateFacility(rtr_const_facnam_t, rtr_
const_nodnam_t, rtr_const_nodnam_t, bool)

Create a facility, designating
router and frontend.

CreateFacility(rtr_const_facnam_t, rtr_
const_nodnam_t, rtr_const_nodnam_t, bool,
bool)

Create a facility, designating
router and backend.

CreateFacility(rtr_const_facnam_t, rtr_
const_nodnam_t, rtr_const_nodnam_t, rtr_
const_nodnam_t, bool, bool)

Create a facility, designating
router, frontend, and backend.

DeleteFacility(rtr_const_facnam_t) Delete a facility.
GetFacilityProperties(rtr_const_facnam_t,
RTRFacilityProperties)

Retrieve properties for an
existing facility.

RemoveBackend(rtr_const_facnam_t, rtr_
const_nodnam_t)

Remove a backend role from an
existing facility.

RemoveFrontend(rtr_const_facnam_t, rtr_
const_nodnam_t)

Remove a frontend role from an
existing facility.

RemoveRouter(rtr_const_facnam_t, rtr_
const_nodnam_t)

Remove a router role from an
existing facility.

4–30 Management Classes



AddBackend( )

AddBackend()

RTRFacilityManager::AddBackend( );

Prototype
rtr_status_t AddBackend( rtr_const_facnam_t pszFacilityName,

rtr_const_nodnam_t pszBackend );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_ENOIPNAM Entered node name does not exist.
RTR_STS_INVBCKENDNAMARG The backend name argument is

invalid.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_NOSUCHFAC No such facility.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszBackend
A pointer to a null-terminated string containing the nodename to add as a
backend (BE).

Management Classes 4–31



AddBackend( )

Description

Call this method to extend a backend to a facility. Facility name and backend
node names should not be null values. A node does not have to be reachable
but must be valid or RTR returns RTR_STS_ENOIPNAM.

The Backend parameter can be a comma-separated list of nodenames.

Example
// Add a Backend
rtr_status_t stsAddBackend;

stsAddBackend = pFacilityManager->AddBackend("AddBackend",
m_psTest_ExtraNodeName);

if ( IsFailure( stsAddBackend == RTR_STS_OK ) )
{
bOverallResult = false;
OutputStatus( stsAddBackend );
}

4–32 Management Classes



AddFrontend( )

AddFrontend( )

RTRFacilityManager::AddFrontend( );

Prototype
rtr_status_t AddFrontend( rtr_const_facnam_t pszFacilityName,

rtr_const_nodnam_t pszFrontend );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_ENOIPNAM Entered node name does not exist.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFRNTENDNMARG The frontend name argument is

invalid.
RTR_STS_NOROUTERS No routers.
RTR_STS_NOSUCHFAC No such facility.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszFrontend
A pointer to a null-terminated string containing the nodename to add as a
frontend (FE).

Management Classes 4–33



AddFrontend( )

Description

Call this method to extend a frontend node for a facility. Facility names and
node names should not be null values.

The Frontend parameter can be a comma-separated list of nodenames.

Example
char *pszFacilityName = "Myfacility";
char *pszNodeName = "FENodeNamesSeparatedbyComma";
sStatus = myFac-> AddFrontend (pszFacilityName,l_ pszNodeName);

4–34 Management Classes



AddRouter( )

AddRouter( )

RTRFacilityManager::AddRouter( );

Prototype
rtr_status_t AddRouter( rtr_const_facnam_t pszFacilityName,

rtr_const_nodnam_t pszRouter );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_FACEXTENDED Router added successfully.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVROUTRNAMEARG The router name argument is invalid.
RTR_STS_NOFRONTEN No frontends specified.
RTR_STS_NOSUCHFAC No such facility.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszRouter
A null-terminated pointer to a facility member with a router (TR) role.

Description

Call this method to extend a router for a facility. Facility name and node
names should not be null values.

Management Classes 4–35



AddRouter( )

Example
char *pszFacilityName = "Myfacility";
char *pszNodeName = "FENodeNamesSeparatedbyComma";
sStatus = myFac-> AddRouter (pszFacilityName,l_ pszNodeName);

4–36 Management Classes



CreateFacility( )

CreateFacility( )

RTRFacilityManager::CreateFacility( );

Prototype
rtr_status_t CreateFacility( rtr_const_facnam_t pszFacilityName,

rtr_const_nodnam_t pszRouter,
rtr_const_nodnam_t pszFrontend,
bool bEnableRouterCallout);

rtr_status_t CreateFacility( rtr_const_facnam_t pszFacilityName,
rtr_const_nodnam_t pszRouter,
rtr_const_nodnam_t pszBackend,
bool bEnableRouterCallout,
bool bEnableBackendCallout );

rtr_status_t CreateFacility( rtr_const_facnam_t pszFacilityName,
rtr_const_nodnam_t pszRouter,
rtr_const_nodnam_t pszFrontend,
rtr_const_nodnam_t pszBackend,
bool bEnableRouterCallout,
bool bEnableBackendCallout);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_DUPNODNAM Duplicate node names in list.
RTR_STS_INVBCKENDNAMARG The backend name argument is

invalid.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFRNTENDNMARG The frontend name argument is

invalid.
RTR_STS_INVROUTRNAMEARG The router name argument is invalid.
RTR_STS_OWNNODMIS Executing node is not specified as

frontend, router, or backend.
RTR_STS_NOBACKEND No backend specified in facility.

Management Classes 4–37



CreateFacility( )

Status Message

RTR_STS_NOFRONTEN No frontend specified in facility.
RTR_STS_NOROUTERS No routers specified in facility.
RTR_STS_OK Normal successful completion.
RTR_STS_OWNNODMIS Executing node is not specified as

Frontend ,router or backend.
RTR_STS_JOUNOTFOU Journal file not found.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszRouter
A null-terminated pointer to a facility member with a router (TR) role.

pszFrontend
A null-terminated pointer to a facility member with a frontend (FE) role.

pszBackend
A null-terminated pointer to a facility member with a backend (BE) role.

bEnableRouterCallout
A boolean attribute for specifying a callout router.

bEnableBackendCallout
A boolean attribute for specifying a callout backend.

Description

Call this method to create a facility. There are three versions of the
CreateFacility method. One version designates router, frontend, and backend
nodes. One version designates router and frontend nodes. One version
designates router and backend nodes. For these last two versions, the
CreateFacility method requires the router name to be non-local.

For example, the following two calls would succeed:

4–38 Management Classes



CreateFacility( )

stsCreateFacility
pFacilityManager->CreateFacility("FacilityWithoutBackend",

"router_nonlocal_nodename",
"frontend_local_nodename",
true);

stsCreateFacility
pFacilityManager->CreateFacility("FacilityWithoutFrontend",

"router_nonlocal_nodename",
"backend_local_nodename",
true);

These two calls would return the RTR_STS_xxx errors indicated:

stsCreateFacility
pFacilityManager->CreateFacility("FacilityWithoutBackend",

"router_local_nodename",
"frontend_local_nodename",
true);

NOBACKEND
No backends specified

Explanation: No backends were specified on a CREATE FACILITY command
and the node where the command was executed was specified as being a router.
This error message is displayed by the RTR utility.

stsCreateFacility
pFacilityManager->CreateFacility("FacilityWithoutFrontend",

"router_local_nodename",
"backend_local_nodename",
true);

NOFRONTEN
No frontends specified

Explanation: No frontends were specified on a CREATE FACILITY command
and the node where the command was executed was specified as being a router.
This error message is displayed by the RTR utility.

Management Classes 4–39



CreateFacility( )

Example
RTRFacilityManager::CreateFacilityWithAllRoles_3()
{
bool bOverallResult = true;
//Create facility manager, abort if fails

RTRFacilityManager * pFacilityManager;
pFacilityManager = new RTRFacilityManager;

if ( IsFailure(pFacilityManager != NULL) )
{

return false;
}

// Create the facility
rtr_status_t stsCreateFacility;

stsCreateFacility =
pFacilityManager->CreateFacility("FacilityWithAllRoles_3",

GetDefaultRouterName(),
GetDefaultFrontendName(),
GetDefaultBackendName(),
true,
false);

// If facility creation is not successful, report it
if ( IsFailure( stsCreateFacility == RTR_STS_OK ) )

{
bOverallResult = false;
OutputStatus( stsCreateFacility );
}

else // Delete a successfully created facility
{
rtr_status_t stsDeleteFacility;

stsDeleteFacility =
pFacilityManager->DeleteFacility("FacilityWithAllRoles_3");

if ( IsFailure( stsDeleteFacility == RTR_STS_OK ) )
{
bOverallResult = false;
OutputStatus( stsDeleteFacility );
}
}

// Cleanup and return
delete pFacilityManager;

return bOverallResult;
}

An example from the Sample application in the Examples directory:

4–40 Management Classes



CreateFacility( )

inline rtr_status_t CreateFacility()
{
// Create a Facility

rtr_status_t sStatus;
RTRFacilityManager FacilityManager;

// Get the local node name to create the facility.
char nodename[ABCMAX_STRING_LEN];
gethostname(&nodename[0],ABCMAX_STRING_LEN);

// Create the facility specifying that the local node has all roles.
sStatus =

FacilityManager.CreateFacility(ABCFacility,nodename,nodename,
nodename,true,false);

print_status_on_failure(sStatus);
return sStatus;
}

For more information on creating a facility, see the RTR System Manager’s
Manual .

Management Classes 4–41



DeleteFacility( )

DeleteFacility( )

RTRFacilityManager::DeleteFacility( );

Prototype
rtr_status_t DeleteFacility( rtr_const_facnam_t pszFacilityName );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_FACDELETE Facility deleted successfully
RTR_STS_INVFACNAMEARG The facility name argument is invalid.

RTR_STS_NOSUCHFAC No such facility available
RTR_STS_OK Normal successful completion
RTR_STS_RTRNOTSTA RTR not started

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

Description

Call this method to delete a facility. This does not clean out the journal;
transactions that are to be processed stay in the journal. However, the facility
must be recreated before you can process the transactions stored in the journal.

For more information on creating a facility, see the RTR System Manager’s
Manual .

4–42 Management Classes



DeleteFacility( )

Example
rtr_status_t sStatus;
char *pszFacilityName = "Myfacility";
sStatus = myFac->DeleteFacility(pszFacilityName);

Management Classes 4–43



GetFacilityProperties( )

GetFacilityProperties( )

RTRFacilityManager::GetFacilityProperties( );

Prototype
rtr_status_t GetFacilityProperties( rtr_const_facnam_t pszFacilityName,

RTRFacilityProperties *&pFacProp);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFACPROPPTARG Invalid facility properties object pointer

argument.
RTR_STS_INVSTRINGPTRARG The string pointer argument is invalid

- string too long.
RTR_STS_OK Normal successful completion

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pFacProp
Pointer to properties for a given facility.

Description

Retrieve properties for an existing facility. Caller must delete pFacProp later.

4–44 Management Classes



GetFacilityProperties( )

Example
// Create a FacilityProperties object to get the properties from.
RTRFacilityProperties *pFacilityProperties =

new RTRFacilityProperties("GetFacilityProperties");
if ( IsFailure(pFacilityProperties != NULL) )
{
//Can’t continue, so cleanup and return
delete pFacilityManager;
return false;

}
rtr_status_t stsGetFacilityProperties;
stsGetFacilityProperties =

pFacilityManager->GetFacilityProperties("GetFacilityProperties",
pFacilityProperties);

if ( IsFailure( stsGetFacilityProperties == RTR_STS_OK ) )
{
bOverallResult = false;
OutputStatus( stsGetFacilityProperties );

}

Management Classes 4–45



RemoveBackend( )

RemoveBackend()

RTRFacilityManager::RemoveBackend( );

Prototype
rtr_status_t RemoveBackend( rtr_const_facnam_t pszFacilityName,

rtr_const_nodnam_t pszBackend );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVBCKENDNAMARG The backend name argument is
invalid.

RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFACPROPPTARG Invalid facility properties object pointer

argument.
RTR_STS_NOBACKEND No more backends are available in this

facility.
RTR_STS_ NOSUCHFAC No such facility available.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR is not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszBackend
A null-terminated pointer to a facility member with a backend (BE) role.

4–46 Management Classes



RemoveBackend( )

Description

Call this method to remove backend node from a facility.

Example
rtr_status_t sStatus;
char *pszFacilityName = "MyFacilityName";
char *pszNodeName = "BENodeNamesSeparatedbyComma";
sStatus = myFac->RemoveBackend(pszFacilityName,pszNodeName);

Management Classes 4–47



RemoveFrontend( )

RemoveFrontend()

RTRFacilityManager::RemoveFrontend( );

Prototype
rtr_status_t RemoveFrontend( rtr_const_facnam_t pszFacilityName,

rtr_const_nodnam_t
pszFrontend );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFRNTENDNMARG The frontend name argument is

invalid.
RTR_STS_ NOSUCHFAC No such facility available.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR is not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszFrontend
A null-terminated pointer to a facility member with a frontend (FE) role.

Description

Call this method to remove frontend nodes from a facility.

4–48 Management Classes



RemoveFrontend( )

Example
rtr_status_t sStatus;
char *pszFacilityName = "MyFacilityName";
char *pszNodeName = "FENodeNamesSeparatedbyComma";
sStatus = myFac-> RemoveFrontend (pszFacilityName,pszNodeName);

Management Classes 4–49



RemoveRouter( )

RemoveRouter( )

RTRFacilityManager::RemoveRouter( );

Prototype
rtr_status_t RemoveRouter( rtr_const_facnam_t pszFacilityName,

rtr_const_nodnam_t pszRouter );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVROUTRNAMEARG The router name argument is invalid.
RTR_STS_NOROUTERS No more routers are available in this

facility.
RTR_STS_ NOSUCHFAC No such facility available.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR is not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszRouter
A null-terminated pointer to a facility member with a router (TR) role.

Description

Call this method to remove router nodes from a facility.

4–50 Management Classes



RemoveRouter( )

Example
rtr_status_t sStatus;
char *pszFacilityName = "MyFacilityName";
char *pszNodeName = "TRNodeNamesSeparatedbyComma";
sStatus = myFac-> RemoveRouter (pszFacilityName,pszNodeName);

Management Classes 4–51



RTRFacilityManager( )

RTRFacilityManager( )

RTRFacilityManager::RTRFacilityManager( );

Prototype
RTRFacilityManager();
virtual ~RTRFacilityManager();

Return Value
None

Parameters
None

Description

Use this method to declare a facility manager object. Facility manager object
should be declared for accessing any properties of a facility.

Example
RTRFacilityManager *myFac = new RTRFacilityManager();

4–52 Management Classes



4.4 RTRFacilityMember

4.4 RTRFacilityMember

RTRFacilityMember provides members that can retrieve information about
facilities including member name, role of the member, connectivity to or
property of being the local node.

Management Classes 4–53



RTRFacilityMember Class Members

RTRFacilityMember Class Members

Construction
Method Description

RTRFacilityMember(rtr_const_facnam_t,
rtr_const_nodnam_t, const eRTRMemberRo-
leType)

Constructor

~RTRFacilityMember( ) Destructor

Operations
Method Description

GetName(rtr_facnam_t, const size_t) Retrieve the name of the
facility member.

HasBackendRole(bool) Determine if this facility
member has a backend role.

HasFrontendRole(bool) Determine if this facility
member has a frontend role.

HasRouterRole(bool) Determine if this facility
member has a router role.

IsConnectedToLocalNode(bool) Determine if this facility
member has connectivity to
the local node.

IsLocalNode(bool) Determine if this facility is the
local node.

4–54 Management Classes



GetName( )

GetName()

RTRFacilityMember::GetName( );

Prototype
rtr_status_t GetName( rtr_facnam_t pszNodeName, const size_t

uiNodeNameSize);

Return Value
rtr_status_t

Parameters

pszNodeName
A pointer to a nodename.

uiNodeNameSize
An unsigned integer for the member name (nodename) size.

Description

Retrieve the name of the nodename, the facility member.

Example
#define MAX_NODNAME 256
char szNodName[MAX_NODNAME];
rtr_status_t stsGetName = FacMember.GetName(szNodName, MAX_NODNAME);
if (IsFailure(stsGetName == RTR_STS_OK))
{
cout << " RTRFacilityMember::GetName failed\n";

OutputStatus(stsGetName);
}
else
{...

Management Classes 4–55



HasBackendRole( )

HasBackendRole( )

RTRFacilityMember::HasBackendRole( );

Prototype
rtr_status_t HasBackendRole(bool &bHasRole);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

bHasRole
A boolean that is true or false for HasBackendRole.

Description

Call this method to find out a node is configured as backend.

Example
rtr_status_t stsHasRole;
bool bHasRole;
stsHasRole = FacMember.HasBackendRole(bHasRole);
if ( IsFailure( stsHasRole == RTR_STS_OK ) )
{

bOverallResult = false;
OutputStatus( stsHasRole );

}
bOverallResult = (bHasRole == true);

4–56 Management Classes



HasFrontendRole( )

HasFrontendRole( )

RTRFacilityMember::HasFrontendRole( );

Prototype
rtr_status_t HasFrontendRole(bool &bHasRole);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

bHasRole
A boolean that is true or false for HasFrontendRole.

Description

Call this method to find out if a node is configured as frontend.

Example
rtr_status_t stsHasRole;
bool bHasRole;
stsHasRole = FacMember.HasFrontendRole(bHasRole);
if ( IsFailure( stsHasRole == RTR_STS_OK ) )
{

bOverallResult = false;
OutputStatus( stsHasRole );

}
bOverallResult = (bHasRole == true);

Management Classes 4–57



HasRouterRole( )

HasRouterRole( )

RTRFacilityMember::HasRouterRole( );

Prototype
rtr_status_t HasRouterRole(bool &bHasRole);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

bHasRole
A boolean that is true or false for HasRouterRole.

Description

Call this method to find out if a node is configured as router.

Example
rtr_status_t stsHasRole;
bool bHasRole;
stsHasRole = FacMember.HasRouterRole(bHasRole);
if ( IsFailure( stsHasRole == RTR_STS_OK ) )
{

bOverallResult = false;
OutputStatus( stsHasRole );

}
bOverallResult = (bHasRole == true);

4–58 Management Classes



IsConnectedToLocalNode( )

IsConnectedToLocalNode()

RTRFacilityMember::IsConnectedToLocalNode( );

Prototype
rtr_status_t IsConnectedToLocalNode(bool &bIsConnected);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

bIsConnected
A boolean that is true if the node is connected to the local node.

Description

Call this method to find out if this node is connected to the local node.

Example
bool bIsConnected;
rtr_status_t stsIsConnected;
stsIsConnected = FacMember.IsConnectedToLocalNode(bIsConnected);
if (IsFailure(stsIsConnected == RTR_STS_OK))
{

OutputStatus(stsIsConnected);
bOverallResult = false;

}
if (IsFailure(bIsConnected == true))
{
cout << " RTRFacilityMember::IsConnectedToLocalNode failed\n";
bOverallResult = false;
}

Management Classes 4–59



IsLocalNode( )

IsLocalNode( )

RTRFacilityMember::IsLocalNode( );

Prototype
rtr_status_t IsLocalNode(bool &bIsLocal);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

bIsLocal
A boolean that is true if the node is a local node.

Description

Call this method to find out if the node is a local node.

Example
rtr_status_t stsIsLocal;
bool bIsLocalNode;
stsIsLocal = FacMember.IsLocalNode(bIsLocalNode);
if (IsFailure(stsIsLocal == RTR_STS_OK))
{

OutputStatus(stsIsLocal);
bOverallResult = false;

}
if (IsFailure(bIsLocalNode == true))
{

cout << " RTRFacilityMember::IsLocalNode failed\n";
bOverallResult = false;

}

4–60 Management Classes



RTRFacilityMember( )

RTRFacilityMember( )

RTRFacilityMember::RTRFacilityMember( );

Prototype
RTRFacilityMember( rtr_const_facnam_t pszFacilityName,

rtr_const_nodnam_t pszMemberName);
virtual ~RTRFacilityMember();

Return Value
None

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszMemberName
A null-terminated string pointer to the name of a facility member.

Description

Call this method to declare a facility member object. The member role type can
be:

• 1 (RTRFacilityBackend)

• 2 (RTRFacilityRouter)

• 3 (RTRFacilityFrontend)

Example
Char *pszFac = "Myfacility";
Char *pszNode ="NodeName";
RTRFacilityMember *FacilityMember =

new RTRFacilityMember(pszFac,pszNode);

Management Classes 4–61



4.5 RTRFacilityMemberArray

4.5 RTRFacilityMemberArray

An RTRFacilityMemberArray object contains pointers to array elements.

Note

The RTRFacilityMemberArray class requires the holder of the array to
clean up the objects pointed to by the elements of the array. The array
does not clean up these objects.

4–62 Management Classes



RTRFacilityMemberArray Class Members

RTRFacilityMemberArray Class Members

Construction
Method Description

RTRFacilityMemberArray( ) Constructor
~RTRFacilityMemberArray( ) Destructor

Operations
Method Description

Add(RTRFacilityMember) Adds a pointer to an RTRFacility
member to the array.

Clear( ) Clears elements of the array.
Insert(size_t, RTRFacilityMember) Inserts a pointer to an RTRFacility

member.
operator[ ] (size_t) Returns an element of the array which

is a pointer to an RTRFacility member.
Remove(const size_t) Removes an element of the array.
Size(const) Returns the number of elements in the

array.

Management Classes 4–63



Add( )

Add()

RTRFacilityMemberArray::Add( );

Prototype
bool Add(RTRFacilityMember* pFacMember);

Return Value
True or False

Parameters

pFacMember
A pointer to a facility member.

Description

Add a member to a facility member array by adding a pointer to an
RTRFacility member. The caller is responsible for creating and destroying
the actual object. The array destructor does not destroy the objects pointed to.

Example
bool RTRFacilityMemberArray::Add()
{
bool bArrayAddStatus;
RTRFacilityMemberArray ar;
RTRFacilityMember* pFacMember;

pFacMember = new RTRFacilityMember(GetDefaultFacilityName(),
GetDefaultRouterName());

if (IsFailure(pFacMember != NULL))
{
cout << " new RTRFacilityMember failed.\n";
return false;
}
bArrayAddStatus = ar.Add(pFacMember);
if (IsFailure(bArrayAddStatus))
{
cout << " RTRFacilityMemberArray::Add failed\n";
}
return bArrayAddStatus;
}

4–64 Management Classes



Clear

Clear

RTRFacilityMemberArray::Clear( );

Prototype

bool Clear( );

Return Value
True or False

Parameters
None

Description

This method clears the elements of the array, resulting in the array having
a size of zero. This method does not destroy the objects pointed to; the caller
must delete the contents.

Example
bool bArrayClearStatus = ar.Clear();
if (IsFailure(bArrayClearStatus))
{
cout << " RTRFacilityMemberArray::Clear failed\n";

}
return bArrayClearStatus;

Management Classes 4–65



Insert

Insert

RTRFacilityMemberArray::Insert( );

Prototype

bool Insert(size_t n, RTRFacilityMember* pFacMember);

Return Value
True or False

Parameters

n
The element in the array ( ar[0] is the first element). The element is a pointer
to an object.

pFacMember
A pointer to a facility member.

Description

This method inserts a pointer to an RTRFacility member into the nth position,
moving the remainder of the array to make room.

Example
bool bArrayInsertStatus;
bArrayInsertStatus = ar.Insert(1, pFacMember);
if (IsFailure(bArrayInsertStatus))
{
cout << " RTRFacilityMemberArray::Insert failed\n";
}
return bArrayInsertStatus;

4–66 Management Classes



operator[ ]

operator[ ]

RTRFacilityMemberArray::operator[ ]

Prototype

RTRFacilityMember*& operator[ ] (size_t n);

Return Value
Pointer to the nth element of the array.

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer
to an object.

Description

This operator returns the nth element of the array which is a pointer to an
RTRFacility member. You can also use this operator to set the nth element of
the array.

The existing element pointed to is not destroyed; the caller must delete the
contents.

Example
RTRFacilityMemberArray array;
RTRFacilityMember* pFacMember;
pFacMember = array;
if (IsFailure(pFacMember != NULL))
{
cout << " RTRFacilityMemberArray operator[] failed\n";
}
return pFacMember != NULL;

Management Classes 4–67



Remove

Remove

RTRFacilityMemberArray::Remove( );

Prototype
bool Remove (const size_t n);

Return Value
True or False

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer
to an object.

Description

This method removes the nth element of the array. This does not destroy the
object pointed to; the caller must delete the contents.

Example
bool bArrayRemoveStatus;
bArrayRemoveStatus = ar.Remove(1);
if (IsFailure(bArrayRemoveStatus))
{
cout << " RTRFacilityMemberArray::Remove failed\n";
}
return bArrayRemoveStatus;

4–68 Management Classes



RTRFacilityMemberArray

RTRFacilityMemberArray

RTRFacilityMemberArray:: RTRFacilityMemberArray( );

Prototype
RTRFacilityMemberArray();
virtual ~RTRFacilityMemberArray;

Return Value
None

Parameters
None

Description

Construct an RTRFacilityMemberArray object.

Example
RTRFacilityMemberArray::RTRFacilityMemberArray()
{
}

Management Classes 4–69



Size

Size

RTRFacilityMemberArray::Size( );

Prototype
size_t Size() const;

Return Value
size_t

Parameters
None

Description

The method returns the number of elements in the array.

Example
size_t nArraySize = ar.Size();
if (IsFailure(nArraySize == 1))
{
cout << " RTRFacilityMemberArray::Size failed\n";
}
return nArraySize == 1;

4–70 Management Classes



4.6 RTRFacilityProperties

4.6 RTRFacilityProperties

RTRFacilityProperties provides members that can retrieve a list of nodes and
their roles in a facility and enable reconnection of frontends and routers based
on the number of connections on each active router.

Management Classes 4–71



RTRFacilityProperties Class Members

RTRFacilityProperties Class Members

Construction
Method Description

RTRFacilityProperties(rtr_const_facnam_t) Constructor
~RTRFacilityProperties Destructor

Operations
Method Description

GetMemberList(RTRFacilityMemberArray) Retrieves a list of nodes and
their roles for an existing
facility.

SetBalance(bool) Allows intelligent reconnection
of frontend to routers according
to the number of connections on
each active router.

4–72 Management Classes



GetMemberList( )

GetMemberList( )

RTRFacilityProperties::GetMemberList( );

Prototype
rtr_status_t GetMemberList(RTRFacilityMemberArray &aFacilityMembers);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_DATANOTAVAILABL Member list data not available.

Parameters

aFacilityMembers
An array listing a facility’s members.

Description

Retrieve a list of nodes and their roles for an existing facility.

Management Classes 4–73



GetMemberList( )

Example
rtr_status_t stsGetMemberList;
RTRFacilityMemberArray arFacMembers;
stsGetMemberList = FacProps.GetMemberList(arFacMembers);
if (IsFailure(stsGetMemberList == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsGetMemberList);
}
int nNbrFacMembers = arFacMembers.Size();
for (int i=0; i<nNbrFacMembers; i++)
{
delete arFacMembers[i];
}
CleanupRTR();
return bOverallResult;

4–74 Management Classes



RTRFacilityProperties( )

RTRFacilityProperties( )

RTRFacilityProperties::RTRFacilityProperties( );

Prototype
RTRFacilityProperties( rtr_const_facnam_t pszFacilityName);
virtual ~RTRFacilityProperties();

Return Value
None

Parameters

pszFacility
A null-terminated pointer to a facility name.

Description

This method retrieves the properties associated with the facility object.

Example
char *pszFacility = "Myfacilityname";
RTRFacilityProperties *FacilityPropterties = new

RTRFacilityProperties(pszFacility);

Management Classes 4–75



SetBalance( )

SetBalance( )

RTRFacilityProperties::SetBalance( );

Prototype
rtr_status_t SetBalance( bool bBalancingOn );

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

bBalancingOn
A boolean attribute for specifying RTR balancing of client requests for server
processing.

Description

Specifies whether router balancing is to be performed.

Example
rtr_status_t sStatus;
char *pszFacilityName= "MyfacilityName";
bool bBalanceON = true;
sStatus = MyFacilityProperties->SetBalance(bBalanceOn);

4–76 Management Classes



4.7 RTRKeySegment

4.7 RTRKeySegment

A key segment describes the data that the RTR application is sending. RTR
uses this description for routing the data to an appropriate server. Key
segments are of no value unless they are associated with a partition. When
creating a partition, the caller is allowed to specify one or more key segments.

The RTRKeySegment class defines key segments (ranges) used in defining
RTRPartition objects. RTRPartition objects are used to enable the partitioning
of data across multiple servers.

Management Classes 4–77



RTRKeySegment Class Members

RTRKeySegment Class Members

Construction
Method Description

RTRKeySegment(rtr_keyseg_type_t,
rtr_keylen_t, rtr_keylen_t, rtr_const_
pointer_t, rtr_const_pointer_t)

Constructor

~ RTRKeySegment( ) Destructor

Operations
Method Description

GetKeySegmentHighValue( ) Gets the upper bound of the key range for the
key segment.

GetKeySegmentLength( ) Gets the length of the key segment key.
GetKeySegmentLowValue( ) Gets the lower bound of the key range for the

key segment.
GetKeySegmentOffset( ) Gets the offset of the key segment key.
GetKeySegmentType( ) Gets the type of the key segment.
SetKeySegmentHighValue(rtr_const_
pointer_t)

Sets the upper bound of the key range for the
key segment.

SetKeySegmentLength(const rtr_
keylen_t)

Sets the length of the key segment key.

SetKeySegmentLowValue(rtr_const_
pointer_t)

Sets the lower bound of the key range for the
key segment.

SetKeySegmentOffset(const rtr_
keylen_t)

Sets the offset of the key segment key.

SetKeySegmentType(const rtr_
keyseg_type_t)

Sets the type of the key segment.

4–78 Management Classes



GetKeySegmentHighValue( )

GetKeySegmentHighValue( )

RTRKeySegment::GetKeySegmentHighValue( );

Prototype
rtr_pointer_t GetKeySegmentHighValue();

Return Value
rtr_pointer_t

Pointer to the returned upper-bound key value.

Parameters
None

Description

This method returns the upper-bound key value of the key segment.

Example
RTRKeySegment CharacterStringSegment.GetKeySegmentHighValue();

Management Classes 4–79



GetKeySegmentLength( )

GetKeySegmentLength( )

RTRKeySegment::GetKeySegmentLength( );

Prototype
rtr_keylen_t GetKeySegmentLength();

Return Value
rtr_keylen_t

The returned value is the length of the key segment.

Parameters
None

Description

This method gets the length of the key segment key.

Example
rtr_keylen_t keylength =

CharacterStringSegment.GetKeySegmentLength();

4–80 Management Classes



GetKeySegmentLowValue( )

GetKeySegmentLowValue( )

RTRKeySegment::GetKeySegmentLowValue( );

Prototype
rtr_pointer_t GetKeySegmentLowValue();

Return Value
rtr_pointer_t

Pointer to the returned lower-bound key value.

Parameters
None

Description

This method returns the lower-bound key value of the key segment.

Example
rtr_keylen_t keylength =

CharacterStringSegment.GetKeySegmentLowValue();

Management Classes 4–81



GetKeySegmentOffset( )

GetKeySegmentOffset( )

RTRKeySegment::GetKeySegmentOffset( );

Prototype
rtr_keylen_t GetKeySegmentOffset();

Return Value
rtr_keylen_t

The returned value is the offset of the key value.

Parameters
None

Description

This method gets the offset of the key segment key within the message stream.

Example
rtr_keylen_t keylength =

CharacterStringSegment.GetKeySegmentOffset();

4–82 Management Classes



GetKeySegmentType( )

GetKeySegmentType( )

RTRKeySegment::GetKeySegmentType( );

Prototype
rtr_keyseg_type_t GetKeySegmentType();

Return Value
rtr_keyseg_type_t

One of the values of type rtr_keyseg_type_t, that can be:

• rtr_keyseg_signed

• rtr_keyseg_unsigned

• rtr_keyseg_string

Parameters
None

Description

This method gets the data type of the key segment.

Example
rtr_keylen_t keylength = CharacterStringSegment.GetKeySegmentType();

Management Classes 4–83



RTRKeySegment( )

RTRKeySegment( )

RTRKeySegment::RTRKeySegment( );

Prototype
RTRKeySegment(rtr_keyseg_type_t keySegmentType,

rtr_keylen_t keySegmentLength,
rtr_keylen_t keySegmentOffset,
rtr_const_pointer_t pKeySegmentLowValue,
rtr_const_pointer_t pKeySegmentHighValue );

virtual ~RTRKeySegment();

Return Value
None

Parameters

keySegmentType
One of the values of type rtr_keyseg_type_t, that can be one of the following:

• rtr_keyseg_signed

• rtr_keyseg_unsigned

• rtr_keyseg_string

keySegmentLength
A numerical length value in bytes of type rtr_keylen_t.

Default = 4

keySegmentOffset
A numerical offset value in bytes of type rtr_keylen_t.

Default = 0.

pKeySegmentLowValue
A pointer of type rtr_pointer_t to a lower-bound key value of type rtr_keyseg_
type_t.

Default = NULL.

4–84 Management Classes



RTRKeySegment( )

PKeySegmentHighValue
A pointer of type rtr_pointer_t to an upper-bound key value of type rtr_keyseg_
type_t.

Default = NULL.

Description

Call this constructor to create an RTRKeySegment object.

Example
void ClassDerivedFromHandler::StartProcessingOrdersAtoL( )
{
// This function defines a key segment and calls
StartProcessingOrders to process all orders that have a ticker
symbol beginning with the letters A-L.
// Create a KeyRange
m_pkeyRange = new RTRKeySegment( rtr_keyseg_string,

1,
OffsetIntoApplicationProtocol,

"A",
"L" );

StartProcessingOrders(PARTITION_NAMEAToL,m_pkeyRange);
}

Management Classes 4–85



SetKeySegmentHighValue( )

SetKeySegmentHighValue( )

RTRKeySegment::SetKeySegmentHighValue( );

Prototype
rtr_status_t SetKeySegmentHighValue(rtr_const_pointer_t

pKeySegmentHighValue );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_INVKYSGVLPTARG Invalid key segment value pointer argument.

Parameters

pKeySegmentHighValue
Pointer to the upper-bound key value to be set.

Description

This method sets the upper bound of the key range for the key segment.

Example
rtr_keyseg_type_t PKeySegmentHighValue = L;
CharacterStringSegment.SetKeySegmentHighValue(KeySegmentHighValue);

4–86 Management Classes



SetKeySegmentLength( )

SetKeySegmentLength( )

RTRKeySegment::SetKeySegmentLength( );

Prototype
rtr_status_t SetKeySegmentLength(const rtr_keylen_t keySegmentLength );

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

keySegmentLength
This parameter holds the key length value of type rtr_keylen_t to be set.

Description

This method sets the length of the key segment key.

Example
rtr_keylen_t keylength = 1;
CharacterStringSegment.SetLength(keylength);

Management Classes 4–87



SetKeySegmentLowValue( )

SetKeySegmentLowValue( )

RTRKeySegment::SetKeySegmentLowValue( );

Prototype
rtr_status_t SetKeySegmentLowValue(rtr_const_pointer_t pKeySegmentLowValue);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_INVKYSGVLPTARG Invalid key segment value pointer argument.

Parameters

pKeySegmentLowValue
Pointer to the lower-bound key value to be set.

Description

This method sets lower bound of the key range for the key segment.

Example
rtr_keyseg_type_t PKeySegmentLowValue = A;
CharacterStringSegment.SetKeySegmentLowValue(KeySegmentLowValue);

4–88 Management Classes



SetKeySegmentOffset( )

SetKeySegmentOffset( )

RTRKeySegment::SetKeySegmentOffset( );

Prototype
rtr_status_t SetKeySegmentOffset( const rtr_keylen_t keySegmentOffset );

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

keySegmentOffset
This parameter holds the key segment key offset of type rtr_keylen_t.

Description

This method sets the offset of the key segment key within the message stream.

Example
rtr_keylen_type_t PKeySegmentOffset = ;
CharacterStringSegment.SetKeySegmentOffset(KeySegmentOffset);

Management Classes 4–89



SetKeySegmentType( )

SetKeySegmentType( )

RTRKeySegment::SetKeySegmentType( );

Prototype
rtr_status_t SetKeySegmentType( const rtr_keyseg_type_t keySegmentType);

Return Value
rtr_status_t

Interpret value for the success or failure of this call. RTR_STS_OK is the
normal successful completion.

Parameters

keySegmentType
One of the values of type rtr_keyseg_type_t, that can be one of the following:

• rtr_keyseg_signed

• rtr_keyseg_unsigned

• rtr_keyseg_string

Description

This method sets the data type of the key segment.

4–90 Management Classes



SetKeySegmentType( )

Example
rtr_status_t stsSetKeySegmentType;
rtr_keyseg_type_t NewType = rtr_keyseg_string;
stsSetKeySegmentType = KeySeg.SetKeySegmentType(NewType);
if (IsFailure(stsSetKeySegmentType == RTR_STS_OK))
{
bOverallResult = false;
}
rtr_keyseg_type_t CurrType;
CurrType = KeySeg.GetKeySegmentType();
if (IsFailure(CurrType == NewType))
{
bOverallResult = false;
cout << ) RTRKeySegment::Set/GetKeySegmentType failed.\n);
}
return bOverallResult;

Management Classes 4–91



4.8 RTRKeySegmentArray

4.8 RTRKeySegmentArray

An RTRKeySegmentArray object contains pointers to array elements.

Note

The RTRKeySegmentArray class requires the holder of the array to
clean up (delete) the objects pointed to by the elements of the array;
the array does not clean up these objects (does not delete the contents
of the array).

4–92 Management Classes



RTRKeySegment Class Members

RTRKeySegment Class Members

Construction
Method Description

RTRKeySegmentArray( ) Constructor
~ RTRKeySegment( ) Destructor

Operations( )
Method Description

Add(RTRKeySegment) Add a pointer to the array.
Clear( ) Clear the elements of the array.
Insert(size_t, RTRKeySegment) Insert a pointer to an RTRKeySegment

member.
Remove( ) Remove an element of the array.
RTRKeySegment operator( size_t) Return an element of the array

which will be a pointer to an
RTRKeySegment member.

Size( ) Return the number of elements in the
array.

Management Classes 4–93



Add( )

Add()

RTRKeySegmentArray::Add( );

Prototype
bool Add(RTRKeySegment* pFacMember);

Return Value
True or False

Parameters

pFacMember
Pointer to a facility member.

Description

Add a pointer to an RTRKeySegment member to the array. The caller is
responsible for creating and destroying the actual object. The array destructor
does not destruct the objects pointed to.

Example
bool RTRKeySegmentArray::Add ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg;
unsigned low=0;
unsigned high=10000;
pKeySeg = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),

0, &low, &high);
if (IsFailure(pKeySeg != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg);
if (IsFailure(bAddOk == true))
{
delete pKeySeg;
return false;
}
delete pKeySeg;
return true;
}

4–94 Management Classes



Clear( )

Clear( )

RTRKeySegmentArray::Clear( );

Prototype
bool Clear();

Return Value
True or False

Parameters
None

Description

This method clears the elements of the array, resulting in the array having a
size of zero. The Clear method does not destroy the objects pointed to.

Management Classes 4–95



Clear( )

Example
bool RTRKeySegmentArray::Clear ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg0 = NULL;
RTRKeySegment* pKeySeg1 = NULL;
unsigned low0=0;
unsigned high0=10000;
unsigned low1=10001;
unsigned high1=20000;
pKeySeg0 = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),

0, &low0, &high0);
if (IsFailure(pKeySeg0 != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg0);
if (IsFailure(bAddOk == true))
{
delete pKeySeg0;
return false;
}
if (ar.Size() != 1)
{
delete pKeySeg0;
return false;
}
pKeySeg1 = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),

0, &low1, &high1);
if (IsFailure(pKeySeg1 != NULL))
{
delete pKeySeg0;
return false;
}
bool bInsertOk = ar.Insert(0, pKeySeg1);
if (IsFailure(bInsertOk == true))
{
delete pKeySeg0;
delete pKeySeg1;
return false;
}
bool bClearOk = ar.Clear();
if (IsFailure(bClearOk == true))
{
delete pKeySeg0;
delete pKeySeg1;
return false;
}
if (IsFailure(ar.Size() == 0))
{
delete pKeySeg0;
delete pKeySeg1;

4–96 Management Classes



Clear( )

return false;
}
delete pKeySeg0;
delete pKeySeg1;
return true;
}

Management Classes 4–97



Insert( )

Insert( )

RTRKeySegmentArray::Insert( );

Prototype
bool Insert(size_t n, RTRKeySegment* pFacMember);

Return Value
True or False

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer
to an object.

pFacMember
Pointer to a facility member.

Description

Insert a pointer to an RTRKeySegment member into the nth position, moving
the remainder of the array to make room.

4–98 Management Classes



Insert( )

Example
bool RTRKeySegmentArray::Insert ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg0;
RTRKeySegment* pKeySeg1;
unsigned low0=0;
unsigned low1=10001;
unsigned high0=10000;
unsigned high1=20000;
pKeySeg0 = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),

0, &low0, &high0);
if (IsFailure(pKeySeg0 != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg0);
if (IsFailure(bAddOk == true))
{
delete pKeySeg0;
return false;
}
if (ar.Size() != 1)
{
delete pKeySeg0;
return false;
}
pKeySeg1 = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),

0, &low1, &high1);
if (IsFailure(pKeySeg1 != NULL))
{
delete pKeySeg0;
return false;
}
bool bInsertOk = ar.Insert(0, pKeySeg1);
if (IsFailure(bInsertOk == true))
{
delete pKeySeg0;
delete pKeySeg1;
return false;
}
delete pKeySeg0;
delete pKeySeg1;
return true;
}

Management Classes 4–99



Remove( )

Remove()

RTRKeySegmentArray::Remove(const size_t n);

Prototype
size_t Remove(const size_t n);

Return Value
size_t

The amount of allocated space.

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer
to an object.

Description

This method removes the nth element of the array. Calling this method does
not destroy the object pointed to; the caller needs to delete the contents.

4–100 Management Classes



Remove( )

Example
bool RTRKeySegmentArray::Remove ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg;
unsigned low=0;
unsigned high=10000;
pKeySeg = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),

0, &low, &high);
if (IsFailure(pKeySeg != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg);
if (IsFailure(bAddOk == true))
{
delete pKeySeg;
return false;
}
bool bRemoveOk = ar.Remove(0);
if (IsFailure(bRemoveOk == true))
{
delete pKeySeg;
return false;
}
delete pKeySeg;
return true;
}

Management Classes 4–101



RTRKeySegmentArray( )

RTRKeySegmentArray( )

RTRKeySegmentArray::RTRKeySegmentArray( );

Prototype
RTRKeySegmentArray();
virtual ~RTRKeySegmentArray();

Return Value
None

Parameters
None

Description

Call this method to construct new RTRKeySegmentArray object.

Example
Test_RTRKeySegmentArray::Test_RTRKeySegmentArray ()
{
}

4–102 Management Classes



Operator( )

Operator( )

RTRKeySegmentArray::operator( );

Prototype
RTRKeySegment*& operator[ ] (size_t n);

Return Value
Returns the nth element of the array.

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer
to an object.

Description

This operator returns the nth element of the array which will be a pointer to
an RTRKeySegment member. This operator can also be used to set the nth
element of the array. The existing element pointed to is not destroyed; the
caller must delete this.

Management Classes 4–103



Operator( )

Example
bool Test_RTRKeySegmentArray::arrayoper()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg;
unsigned low=0;
unsigned high=10000;
pKeySeg = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),

0, &low, &high);
if (IsFailure(pKeySeg != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg);
if (IsFailure(bAddOk == true))
{
delete pKeySeg;
return false;
}
if (ar.Size() != 1)
{
delete pKeySeg;
return false;
}
RTRKeySegment* pSeg0 = ar[0];
if (IsFailure(pSeg0 != NULL))
{
delete pKeySeg;
return false;
}
delete pKeySeg;
return true;
}

4–104 Management Classes



Size( )

Size( )

RTRKeySegmentArray::Size( );

Prototype
size_t Size() const;

Return Value
size_t

The amount of space to be allocated.

Parameters
None

Description

The method returns the number of elements in the array.

Management Classes 4–105



Size( )

Example
bool RTRKeySegmentArray::Size ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg;
unsigned low=0;
unsigned high=10000;
pKeySeg = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),

0, &low, &high);
if (IsFailure(pKeySeg != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg);
if (IsFailure(bAddOk == true))
{
delete pKeySeg;
return false;
}
if (ar.Size() != 1)
{
delete pKeySeg;
return false;
}
delete pKeySeg;
return true;
}

4–106 Management Classes



4.9 RTRPartitionManager

4.9 RTRPartitionManager

The RTRPartitionManager allows the RTR applictaion to create, delete and
obtain properties for a partition.

A partition is composed of one or more key segments. These key segments
define the location of data within the applications message, the type of the
data and a range of values for the data. RTR uses this information to perform
its data routing. One or more partitions can be registered with a server
transaction controller.

The key segments are associated with a partition when the partition is created.
A partition exists within one facility. A facility can have many partitions.

Management Classes 4–107



RTRPartitionManager Class Members

RTRPartitionManager Class Members

Construction
Method Description

RTRPartitionManager( ) Constructor
~RTRPartitionManager( ) Destructor

Operations
Method Description

CreateBackendPartition(rtr_const_
parnam_t, rtr_const_facnam_t,
RTRKeySegment, const bool, const
bool, const bool)

Creates a partition on a backend within an
existing facility.

CreateBackendPartition(rtr_const_
parnam_t, rtr_const_facnam_t,
RTRKeySegmentArray, const bool,
const bool, const bool)

Creates a partition on a backend within an
existing facility.using an RTRKeySegmentArray.

DeletePartition(rtr_const_parnam_t,
rtr_const_facnam_t)

Deletes a partition.

GetBackendPartitionProperties(rtr_
const_parnam_t)

Retrieves properties for a partition on a
backend.

4–108 Management Classes



CreateBackendPartition( )

CreateBackendPartition( )

RTRPartitionManager::CreateBackendPartition( );

Prototype
virtual rtr_status_t CreateBackendPartition(

rtr_const_parnam_t pszPartitionName,
rtr_const_facnam_t pszFacilityName,
RTRKeySegment &KeySegment,
const bool bShadow = false,
const bool bConcurrent = true,
const bool bStandby = true);

virtual rtr_status_t CreateBackendPartition(
rtr_const_parnam_t pszPartitionName,
rtr_const_facnam_t pszFacilityName,
RTRKeySegment &KeySegmentArray,
const bool bShadow = false,
const bool bConcurrent = true,
const bool bStandby = true);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVKEYSEGPTARG Invalid key segment object pointer

argument.
RTR_STS_INVPARTNAMEARG The partition name argument is

invalid.
RTR_STS_MAXPARTREG Maximum partition limit.
RTR_STS_OK Normal successful completion.

Management Classes 4–109



CreateBackendPartition( )

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

pszFacilityName
A null-terminated pointer to a facility name.

KeySegment
A key segment for the specified partition name.

KeySegmentArray
An array of key segments for the specified partition name.

bShadow
A boolean attribute for specifying a shadow server.

bConcurrent
A boolean attribute for specifying a concurrent server.

bStandby
A boolean attribute for specifying a standby server.

Description

CreateBackendPartition method creates an RTR backend partition. The
partition characteristics that may be defined include key range or ranges and
whether attached server process can be shadows or standbys. The command
must be issued before any server application programs using the partition are
started.

Example
RTRKeySegment *pCharacterStringSegment = new RTRKeySegment(

rtr_keyseg_string, 1,0,"y","z");

RTRPartitionManager PartitionManager;

sStatus = PartitionManager.CreateBackendPartition(

"MyPartition",
"myfac",
&pCharacterStringSegment,
false,true,true);

// boolean parameters are for specifying shadow, concurrent, standby

4–110 Management Classes



CreateBackendPartition( )

From the Sample application in the Examples directory:

RTRPartitionManager PartitionManager;
sStatus = PartitionManager.CreateBackEndPartition( ABCPartition1,

ABCFacility,
KeyZeroTo99,false,true,false);

Management Classes 4–111



DeletePartition( )

DeletePartition( )

RTRPartitionManager::DeletePartition( );

Prototype
virtual rtr_status_t DeletePartition( rtr_const_parnam_t pszPartitionName,

rtr_const_facnam_t pszFacility );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVPARTNAMEARG The partition name argument is

invalid.
RTR_STS_OK Normal successful completion.
RTR_STS_PRTNDELETED Deletion of partition failed with error.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

pszFacility
A null-terminated pointer to a facility name.

Description

Call this method to delete a partition from a facility.

Example
Char *pszFac = "MyFacility";
Char *pszPartition = "MyPartitionName";
sStatus = PartitionManager.DeletePartition(pszFac,pszPartition);

4–112 Management Classes



GetBackendPartitionProperties( )

GetBackendPartitionProperties( )

RTRPartitionManager::GetBackendPartitionProperties( );

Prototype
virtual RTRBackendPartitionProperties*

GetBackendPartitionProperties(rtr_const_parnam_t pszPartitionName);

Return Value
RTRBackendPartitionProperties*

Pointer to the RTRBackendPartitionProperties object associated with this
RTRPartitionManager object.

Status Message

RTR_STS_OK Normal successful completion.
RTR_STS_INVPARTNAMEARG The partition name argument is

invalid.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

Description

This method retrieves the properties associated with the RTRPartitionManager
object. These properties are contained within an associated
RTRBackendPartitionProperties object.

Example
RTRBackendPartitionProperties *pPartProperties =
PartitionManager.GetBackendPartitionProperties("MyPartition");

Management Classes 4–113



RTRPartitionManager( )

RTRPartitionManager( )

RTRPartitionManager::RTRPartitionManager( );

Prototype
RTRPartitionManager();
virtual ~RTRPartitionManager();

Return Value
None

Parameters
None

Description

This method defines an RTRPartitionManager object.

Example
RTRPartitionManager PartitionManager;

4–114 Management Classes



4.10 RTRSignedCounter

4.10 RTRSignedCounter

To use a counter, perform the following steps:

• Declare the names for counter name and group name.

• Instantiate the counter using the counter name and group.

• Set the counter value and test for success.

• Increment the counter.

• Get the incremented value.

Management Classes 4–115



RTRSignedCounter Class Members

RTRSignedCounter Class Members

Construction
Method Description

RTRSignedCounter( rtr_const_countername_
t, rtr_const_countergroupname_t)

Constructor

~RTRSignedCounter( ) Destructor

Operations
Method Description

Decrement( ) Decrement the value managed
by the counter class.

GetValue(rtr_sgn_32_t) Retrieve the value managed by
the counter class.

Increment( ) Increment the value managed
by the counter class.

SetValue(rtr_sgn_32_t) Set the value managed by the
counter class.

4–116 Management Classes



Decrement( )

Decrement( )

RTRSignedCounter::Decrement( );

Prototype
rtr_status_t Decrement();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_CTRBADOPER The supplied argument
specifies an illegal counter
operation.

RTR_STS_CTRBADREF The supplied argument does
not reference a valid counter.

RTR_STS_INVOBJFAILCNSTR Invalid object due to failure
during object construction.

RTR_STS_OK Normal successful completion.
RTR_STS_PRTBADCMD Partition command invalid or

not implemented in this version
of RTR.

The more specific counter class error status descriptions for
RTR_STSCTRBADREF and RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be
given a default value by calling SetValue( ) after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were
invalid.

Management Classes 4–117



Decrement( )

Parameters
None

Description

Call this method to decrement a numeric counter. Decrement method can be
called only after setting value (RTRSignedCounter::SetValue(CounterVal)).

Example
rtr_const_countername_t kCounter = "test-counter-signed-decrement";
rtr_const_countergroupname_t kGroup = "test-counter-group";
RTRSignedCounter c(kCounter, kGroup);
rtr_sgn_32_t v = 0;
const rtr_sgn_32_t kValue = 669;
bool bOverallResult = true;

rtr_status_t stsSetValue;
stsSetValue = c.SetValue(kValue);
if (IsFailure(stsSetValue == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsSetValue);
}

rtr_status_t stsDecrement;
stsDecrement = c.Decrement();
if (IsFailure(stsDecrement == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsDecrement);
}

4–118 Management Classes



GetValue( )

GetValue( )

RTRSignedCounter::GetValue( );

Prototype
rtr_status_t GetValue(rtr_sgn_32_t &CounterVal);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_CTRBADREF The supplied argument does not
reference a valid counter.

RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during
object construction.

RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for
RTR_STSCTRBADREF and RTR_STS_INVOBJFAILCNSTR are:

RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be
given a default value by calling SetValue( ) after object construction.

RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

Parameters

CounterVal
A counter value for a specified RTR counter.

Management Classes 4–119



GetValue( )

Description

Call this method to get a counter value. GetValue can be called only after
setting value (SetValue).

Example
rtr_status_t stsGetValue;
stsGetValue = c.GetValue(v);
if (IsFailure(stsGetValue == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsGetValue);
}

4–120 Management Classes



Increment( )

Increment( )

RTRSignedCounter::Increment( );

Prototype
rtr_status_t Increment();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_CTRBADOPER The supplied argument specifies an
illegal counter operation.

RTR_STS_CTRBADREF The supplied argument does not
reference a valid counter.

RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during
object construction.

RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for
RTR_STSCTRBADREF and RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be
given a default value by calling SetValue( ) after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were
invalid.

Parameters
None

Management Classes 4–121



Increment( )

Description

Call this method to increment a numeric counter. This method can be called
only after setting value.

Example
rtr_const_countername_t kCounter = "test-counter-signed-increment";
rtr_const_countergroupname_t kGroup = "test-counter-group";

RTRSignedCounter c(kCounter, kGroup);
rtr_sgn_32_t v = 0;
const rtr_sgn_32_t kValue = 668;
bool bOverallResult = true;

rtr_status_t stsSetValue;
stsSetValue = c.SetValue(kValue);
if (IsFailure(stsSetValue == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsSetValue);
}

rtr_status_t stsIncrement;
stsIncrement = c.Increment();
if (IsFailure(stsIncrement == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsIncrement);
}

4–122 Management Classes



SetValue( )

SetValue( )

RTRSignedCounter::SetValue( );

Prototype
rtr_status_t SetValue( rtr_sgn_32_t CounterVal );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.

The more specific counter class error status description for
RTR_STS_INVOBJFAILCNSTR is:

The object is invalid because the values passed in the constructor were invalid.

Parameters

CounterVal
A counter value for a specified RTR counter.

Description

Call this method to set value for a counter. Object should be declared before
setting value.

Example
rtr_status_t sStatus;
int iSetValue = 100;
sStatus = IIntCounter->SetValue(iSetValue);

Management Classes 4–123



RTRSignedCounter( )

RTRSignedCounter( )

RTRSignedCounter::RTRSignedCounter( );

Prototype
RTRSignedCounter( rtr_const_countername_t pszCounterName ,

rtr_const_countergroupname_t pszCounterGroupName);

Return Value
None

Parameters

pszCounterName
A null-terminated string pointer to the name of an RTR counter.

pszCounterGroupName
A null-terminated string pointer to the name of an RTR counter group.

Description

This method used to declare an RTRSignedCounter object. The constructor
creates an instance of the RTRSignedCounter class. The application must call
SetValue( ) to initialize the counter.

All counters are process-specific. All counter names must be unique within
the entire process without regard to the group name. For example, it is
invalid to have an RTRSignedCounter name "MyCounter" and another
RTRStringCounter name "MyCounter."

Example
rtr_counter_data_type eCtrtype = rtr_counter_int;
RTRSignedCounter *iIntCounter = new

RTRSignedCounter("MyCounter3","GroupName",eCtrtype);

4–124 Management Classes



4.11 RTRStringCounter

4.11 RTRStringCounter

To use a counter, perform the following steps:

• Declare the names for counter name and group name.

• Instantiate the counter using the counter name and group.

• Set the counter value and test for success.

• Increment the counter.

• Get the incremented value.

Management Classes 4–125



RTRStringCounter Class Members

RTRStringCounter Class Members

Construction
Method Description

RTRStringCounter( const char, const char,
rtr_counter_data_type)

Constructor

~RTRStringCounter( ) Destructor

Operations
Method Description

GetValue(char) Retrieve the value managed by
the counter class.

SetValue(const char) Set the value managed by the
counter class.

4–126 Management Classes



GetValue( )

GetValue( )

RTRStringCounter::GetValue( );

Prototype
rtr_status_t GetValue(char * pszCounterVal);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_CTRBADREF The supplied argument does not
reference a valid counter.

RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during
object construction.

RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for
RTR_STSCTRBADREF and RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be
given a default value by calling SetValue( ) after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were
invalid.

Parameters

pszCounterVal
A null-terminated string pointer to the name of an RTR counter.

Management Classes 4–127



GetValue( )

Description

Call this method to get a counter value. GetValue can be called only after
setting a value (SetValue).

Example
int IIntCounter;
rtr_status_t sStatus;
sStatus = cMyCounter.GetValue(IIntCounter);
if (sStatus!= RTR_STS_OK) cerr<<"Error while getting counter value";

4–128 Management Classes



SetValue( )

SetValue( )

RTRStringCounter::SetValue( );

Prototype
rtr_status_t SetValue(const char * pszCounterVal);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during

object construction.

The more specific counter class error status description for
RTR_STS_INVOBJFAILCNSTR is:

The object is invalid because the values passed in the constructor were invalid.

Parameters

pszCounterVal
A null-terminated string pointer to the value of an RTR counter.

Description

Call this method to set a counter value.

Example
rtr_status_t sStatus;
int iSetValue = 100;
sStatus = IIntCounter->SetValue(iSetValue);

Management Classes 4–129



RTRStringCounter( )

RTRStringCounter( )

RTRStringCounter::RTRStringCounter( );

Prototype
RTRStringCounter(const char *pszCounterName ,

const char *pszCounterGroupName);

Return Value
None

Parameters

pszCounterName
A null-terminated string pointer to the name of an RTR counter.

pszCounterGroupName
A null-terminated string pointer to the name of an RTR counter group.

Description

This method used to declare an RTRStringCounter object. The constructor
creates an instance of the RTRStringCounter class. The application must call
SetValue( ) to initialize the counter.

All counters are process-specific. All counter names must be unique within
the entire process without regard to the group name. For example, it is
invalid to have an RTRStringCounter name "MyCounter" and another
RTRSignedCounter name "MyCounter."

Example
rtr_counter_data_type eCtrtype = rtr_counter_int;

RTRStringCounter *iIntCounter = new
RTRStringCounter("MyCounter2","GroupName",eCtrtype);

4–130 Management Classes



4.12 RTRUnsignedCounter

4.12 RTRUnsignedCounter

To use a counter, perform the following steps:

• Declare the names for counter name and group name.

• Instantiate the counter using the counter name and group.

• Set the counter value and test for success.

• Increment the counter.

• Get the incremented value.

Management Classes 4–131



RTRUnsignedCounter Class Members

RTRUnsignedCounter Class Members

Construction
Method Description

RTRUnsignedCounter( rtr_const_countername_
t, rtr_const_countergroupname_t)

Constructor

~RTRUnsignedCounter( ) Destructor

Operations
Method Description

Decrement( ) Decrement the value managed
by the counter class.

GetValue(rtr_uns_32_t) Retrieve the value managed by
the counter class.

Increment( ) Increment the value managed
by the counter class.

SetValue(rtr_uns_32_t) Set the value managed by the
counter class.

4–132 Management Classes



Decrement( )

Decrement( )

RTRUnsignedCounter::Decrement( );

Prototype
rtr_status_t Decrement();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_CTRBADOPER The supplied argument specifies an
illegal counter operation.

RTR_STS_CTRBADREF The supplied argument does not
reference a valid counter.

RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during
object construction.

RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for
RTR_STSCTRBADREF and RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be
given a default value by calling SetValue( ) after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were
invalid.

Parameters
None

Management Classes 4–133



Decrement( )

Description

Call this method to decrement a numeric counter. Decrement method can be
called only after setting value.

Example
RTRUnsignedCounter c(kCounter, kGroup);
rtr_uns_32_t v = 0;
const rtr_uns_32_t kValue = 669;
bool bOverallResult = true;

rtr_status_t stsSetValue;
stsSetValue = c.SetValue(kValue);
if (IsFailure(stsSetValue == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsSetValue);
}

rtr_status_t stsDecrement;
stsDecrement = c.Decrement();
if (IsFailure(stsDecrement == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsDecrement);
}

4–134 Management Classes



GetValue( )

GetValue( )

RTRUnsignedCounter::GetValue( );

Prototype
rtr_status_t GetValue(rtr_uns_32_t &CounterVal);

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_CTRBADREF The supplied argument does not
reference a valid counter.

RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during
object construction.

RTR_STS_OK Normal successful completion.

The more specific counter class error status descriptions for
RTR_STSCTRBADREF and RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be
given a default value by calling SetValue( ) after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were
invalid.

Parameters

CounterVal
A counter value for a specified RTR counter.

Management Classes 4–135



GetValue( )

Description

Call this method to get a counter value. GetValue can be called only after
setting value (SetValue).

Example
rtr_status_t sStatus;
sStatus = IIntCounter->GetValue(iReturnValue);

4–136 Management Classes



Increment( )

Increment( )

RTRUnsignedCounter::Increment( );

Prototype
rtr_status_t Increment();

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_CTRBADOPER The supplied argument specifies
an illegal counter operation for the
counter type.

RTR_STS_CTRBADREF The supplied argument does not
reference a valid counter.

RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during
object construction.

RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for
RTR_STSCTRBADREF and RTR_STS_INVOBJFAILCNSTR are:

RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be
given a default value by calling SetValue( ) after object construction.

RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

Parameters
None

Management Classes 4–137



Increment( )

Description

Call this method to increment a numeric counter. This method can be called
only after setting value.

Example
rtr_status_t stsIncrement;
stsIncrement = c.Increment();
if (IsFailure(stsIncrement == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsIncrement);
}

4–138 Management Classes



SetValue( )

SetValue( )

RTRUnsignedCounter::SetValue( );

Prototype
rtr_status_t SetValue( rtr_uns_32_t CounterVal );

Return Value
rtr_status_t

Interpret value for the success or failure of this call.

Status Message

RTR_STS_OK Normal successful completion
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during

object construction.

The more specific counter class error status description for RTR_STS_
INVOBJFAILCNSTR is:

The object is invalid because the values passed in the constructor were invalid.

Parameters

CounterVal
A counter value for a specified RTR counter.

Description

Call this method to set value for a counter. Object should be declared before
setting value.

Example
rtr_status_t sStatus;
int iSetValue = 100;
sStatus = IIntCounter->SetValue(iSetValue);

Management Classes 4–139



RTRUnsignedCounter( )

RTRUnsignedCounter( )

RTRUnsignedCounter::RTRUnsignedCounter( );

Prototype
RTRUnsignedCounter( rtr_const_countername_t pszCounterName ,

rtr_const_countergroupname_t pszCounterGroupName);

Return Value
None

Parameters

pszCounterName
A null-terminated string pointer to the name of an RTR counter.

pszCounterGroupName
A null-terminated string pointer to the name of an RTR counter group.

Description

This method used to declare an RTRUnsignedCounter object. The constructor
creates an instance of the RTRUnsignedCounter class. The application must
call SetValue( ) to initialize the counter.

All counters are process-specific. All counter names must be unique within
the entire process without regard to the group name. For example, it is
invalid to have an RTRUnsignedCounter name "MyCounter" and another
RTRStringCounter name "MyCounter."

Example
rtr_counter_data_type eCtrtype = rtr_counter_int;
RTRUnsignedCounter *iIntCounter = new

RTRUnsignedCounter("MyCounter1","GroupName",eCtrtype)

4–140 Management Classes



5
Sample Application Tutorial

5.1 Purpose
This tutorial goes through all of the steps needed to set up a simple RTR C++
API-based application for a new developer. The intent is to provide a starting
point for learning about RTR, and to simplify the main concepts of RTR; you
will be able to cruise through this at a more rapid pace than you normally
would with the RTR reference information. At the end of this tutorial, you’ll
find brief descriptions of some of the more complex features RTR provides, and
pointers to the documentation where you can study them in detail.

5.2 Summary
This tutorial walks you through designing, coding and setting up a basic RTR-
based client-server application. To do this, you’ll use RTR to perform two
important services for you:

• To act as the communication mechanism between the client and the server
applications

• To insure that the server application is always available to its clients

In the system that you are about to develop, the client application interacts
with the user to read and display data. The server application handles
requests from the client, and sends replies back to it. When we refer to ‘client’
and ‘server’, we will be referring to the applications. When we refer to the
computer nodes on which the client or server is executing, we will call them
‘frontend’ and ‘backend’ nodes, respectively.

In most applications, the server would probably talk to a database in order
to retrieve or save data according to what a user had entered in the user-
interface. In the interest of simplifying this tutorial, however, this server is
only going to tell you whether it received your client’s request.

Sample Application Tutorial 5–1



Sample Application Tutorial
5.2 Summary

What is different in this system from a non-RTR system is that there will be
two servers: one of the servers, also known as the ‘primary server’, almost
always talks with the client. In a perfect world, nothing would ever happen to
this server; clients would always get the information they asked for, and all
changes would be made to the database when the user updated information.
Every time anyone attempted to access this server, it would always be there,
ready and waiting to ‘serve’, and users could feel secure in the knowledge that
the data in the database was changed exactly as they had requested.

But we’re all well aware that this is not always the case, and when servers do
go down, it’s usually at the most inopportune time. So you are going to use
RTR to designate a second server as a "standby" server. In this way, if a user
is attempting to get some real work done, and the primary server is down, the
user will never notice. The standby server will spring into action, and replace
the original server by handling the user’s requests in just the same way as the
primary server had been doing. And, this will be done from the same point at
which the primary server had crashed!

Materials List
In order to fully develop this system, you need a client application and frontend
node, a server application and two backend nodes, and a router.

Frontend
The frontend node is the system on which your client application is executing.
As in any client-server system, the client application interacts with the user,
then conveys the user’s requests to the server. When developing an RTR-based
client-server system, your client will have the following characteristics:

• Display an interface to the user, allow the user make a request, then
communicate with the server to get or set data according to what actions
the user has taken

• Execute on a Solaris, Linux, Tru64 UNIX, Windows (2000 or XP) or
OpenVMS system node, which has RTR installed on it

• Be attached to a TCP/IP or DECnet network and able to "see" the server
machines; this means that if you use the ‘ping’ utility to find a computer
node by name, the computer responds back to the node you are on

Example code for the client application and the server application can be found
in the ‘examples’ subdirectory of your RTR installation directory.

Backend1
Your first backend node will be running the primary server application. It can
be on any of the above operating systems, except Linux system.

5–2 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

Backend2
This machine will run the standby server application. It will probably also
be doing any one of a number of other things that have nothing to do with
this tutorial, or even with RTR. It most probably will be sitting on one of your
co-workers’ desks, helping him or her to earn their weekly salary and support
their family. Hopefully, you get along with this coworker well enough that they
will install RTR on their machine, so that you may complete this tutorial.

Router
Your router is simply RTR software which keeps track of everything that is
going on for you when your application is running. The router can execute on
a separate machine, on a frontend machine, or on a backend machine. In this
tutorial, the router is kept on the same machine as the client.

Install RTR
Your first step, once you have determined the three computers you are going
to use for this tutorial, is to be sure RTR is installed and configured on each
machine. The RTR installation is well documented and straightforward,
although slightly different for each operating system on which the installation
is being run. Refer to the section in the RTR Installation Guide for the system
on which you are installing RTR. For the purpose of documenting examples,
the machine you have decided to use for the:

• Client application is referred to as FE (frontend),

• Primary server is referred to as as BE1 (backend 1),

• Secondary server is referred to as BE2 (backend 2).

Remember that the router is on the FE machine. The journal must be
accessible to both backend servers. (This requires clusters, NFS or Windows
share are not supported)

Start RTR
You need to start RTR on each of the machines on which you have installed
it. You may do this from one machine. In order to be able to issue commands
to RTR on a remote node, however, you must have an account on that node
with the necessary access privileges. The operating system’s documentation,
or your system manager, will have information on how to set up privileges to
enable users to run applications over the network. Use the command interface
on your system to interact with RTR. At the command prompt, type in RTR,
and press the Return or Enter key. You are then at the RTR> prompt, and can
start RTR on all of the nodes. (Start RTR and create facilities independently
on separate nodes.) For example, on a UNIX system, it looks like this:

Sample Application Tutorial 5–3



Sample Application Tutorial
5.2 Summary

% rtr
RTR> start rtr/node=(FE,BE1,BE2)
RTR> exit

This command starts ‘services’ or ‘daemons’ on each of the nodes in the list.
These are processes that listen for messages being sent by other RTR services
or daemons over the network. After executing the command, a ‘ps’, ‘show
process’ or Task Manager review of processes executing on your system should
now show at least one process named ‘rtr’ or ‘rtr.exe’ on each of the machines.
This process is the one that manages the communications between the nodes
in the RTR-based application, and handles all transactions and recoveries.

Starting RTR can also be done programmatically.

Create a Recovery Journal
This step holds the key to letting the second server pick up on the work at
exactly the right time through a recovery journal. In the case of a failure, the
secondary server ensures that no work is lost, and the hot swap to the standby
server is automatic. RTR keeps track of the work being done by writing data to
the recovery journal. If a failure occurs, all incomplete transactions are being
kept track of here, and can be replayed by the standby server when it comes
to the rescue. When transactions have been completed, they are removed
from this journal. For this example, only your backend nodes need a recovery
journal, and you must create the journal before creating your facility; you’ll
learn more about facilities in the next section. You’ll now need to go to each
of the backend nodes that you’ll be using and create a journal there. Log into
each machine and, using the command prompt interface, run RTR and create
the journal. When you specify the location of the journal, it should be the disk
name or share name where the journal will be located. The journal must be
accessible by both of the backend servers.

This is an example of what the command would look like on an OpenVMS
system.

$ RTR
RTR> create journal user2
RTR> exit

To allow both servers to access the journal, you have a number of options:

• Use a disk in the disk farm on your cluster if you use clusters. This is
supported on OpenVMS, Windows, and Tru64.

• Use a disk served via NFS with UNIX systems.

• Use a share when using Windows systems.

NFS and Windows shares are not supported for journal disks.

5–4 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

In any case, you should be sure the disk is not on your primary server, since
this is the machine that we are protecting, in case of a crash. If the machine
goes down, the standby server would not be able to access the disk.

The Database
While we are having this discussion on sharing resources, we should also
mention how a database fits into this system, as well. This tutorial and the
example code provided with it does not do database transactions. However,
there are likely places in the code where you would probably want to access
the database in most applications. Because the standby server steps into place
when the primary server crashes, each must have access to your database.

This configuration can be supplied using a number of options:

• Use a database server, such as SQL Server or Oracle’s database server

• Use machines in a cluster to run the database as well as the servers

• Use a database API that implements RPC stubs to move data across the
network

Create a Facility
There can be numerous RTR applications running on any of your computers
in your network. The systems or nodes that service one RTR application and
the role of each must be clearly defined. This makes the RTR daemons and
processes aware of who is talking with whom, and why. The description of
a configuration of a group of nodes into frontends, backends and routers is
called a facility. To create a facility, use your command prompt utility again
and type ‘RTR’; at the RTR> prompt, create the facility for this example with
the following command on a Windows system in the DOS command prompt
window:

C:\> rtr
RTR> create facility RTRTutor/node=(FE,BE1,BE2) -
_RTR> /frontend=FE/router=FE/backend=(BE1,BE2)
RTR> exit

(You can also repeat this command separately on all three nodes rather than
using remote commands.)

With this command, you have now:

• Created a Facility named ‘RTRTutor’ on all three nodes, and

• Defined the role of each node in that facility to show who participates as
the client, the primary server, the secondary server and the router.

Sample Application Tutorial 5–5



Sample Application Tutorial
5.2 Summary

You can create a facility programmatically as follows:

rtr_sStatus_t sStatus;
RTRFacilityManager FacilityManager;
char nodename[ABCMAX_STRING_LEN] = "kenmare";
// gethostname(&nodename[0],ABCMAX_STRING_LEN);
sStatus = FacilityManager.CreateFacility(ABCFacility,

nodename,
nodename,
nodename,
true,
false);

print_sStatus_on_failure(sStatus);
return sStatus;

Take a Break
At this point you have accomplished a lot; you’ve configured RTR to protect
a multi-tiered application by providing failover capability, and to handle
communications between your client and your server. Next, you write the
application for your client to talk to RTR, and your server to talk to RTR. RTR
delivers the messages between the client and server and, if the server crashes,
brings in the standby server to handle your client’s requests. The client never
knows that the server has been switched, and no data or requests to retrieve
or modify data is lost.

Sample Application Code
The C++ modules and header files for this sample application are located in
the ‘examples’ subdirectory of the directory into which you installed RTR. They
consist of the following files:

• ABC_clientfilenames.h and cpp: The client application

These files include:

ABCOrderTaker

• ABC_serverfilenames .h and cpp: The server application

These files include:

ABCOrderProcessor

ABCSClassFactory

ABCSHandlers

• ABC_sharedfilenames.h and cpp: Data object implementation that is
common to both the client and server applications

These files include:

ABCBook

5–6 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

ABCMagazine

ABCOrder

• ABCCommon.h: Header file containing definitions specific to both sample
applications

Although you won’t have much typing to do, this tutorial explains what the
code in each file is doing. Copy all of these files into a working directory of
your own. For convenience, you may also wish to copy rtrapi.h from the RTR
installation directory into your working directory as well.

The example code you’ll run must reference the facility you created earlier,
so edit the example file headerfilename.h and change the FACILITY value to
"RTRTutor".

The sample application code supplied with RTR has a lot going on inside of it,
but can be broken down into a few general and very simple concepts that will
give you an idea of the power of RTR, and how to make it work for you. As you
see, you have code for the client application and the server application. Each
application talks only to RTR. RTR moves the messages and data between the
client and sample applications. This frees you from the worrying about:

• RPC Stubs

• Time zones

• Endianism

• Network protocols and packets

Aren’t you relieved? Maybe you should take another break to celebrate!

Client Application
The files shipped with the RTR kit used in the client application for this
tutorial are ABCOrderTaker.h and ABCOrderTaker.cpp. and all of the common
files. All applications that wish to talk to RTR through its C++ API need to
include ‘rtrapi.h’ as a header file. This file lives in the directory into which
RTR was installed, and contains the definitions for RTR classes and values
that you’ll need to reference in your application. Please do not modify this
file. Always create your own application header file to include, as we did in
the sample (ABCCommon.h) whenever you need additional definitions for your
application.

#include "ABCCommon.h"
#include "rtrapi.h"

The client application design follows this outline:

1. Initialize RTR

Sample Application Tutorial 5–7



Sample Application Tutorial
5.2 Summary

2. Send a message to the server

3. Send a second message to the server

4. Get a response from the server

5. Decide what to do with the response

The messages the client sends are for book orders and magazine orders. These
orders are implemented as ABCBookOrder and ABCMagazineOrder data
objects.

Initialize RTR Client Application
This is the first thing that every RTR client application needs to do: tell
RTR that it wants to get a facility up and running, and to talk with the
server. You find this happening in the (RegisterFacility method in the
RTRClientTransactionController class. In the sample application, the
implementation for this is in private methods, Initialize and Register, of the
ABCOrderTaker class, which derives from RTRClientTransactionController.
You remember from the ‘Start RTR’ step in this tutorial that there are
RTR daemons or processes executing on the nodes in a facility, listening for
communications from other RTR components and applications. Your client
application is going to request that all processes associated with the RTRTutor
facility "listen up." To do this, you create a client transaction controller and
then register a facility in order to enable communication between the client
transaction controller and the RTR router. Remember that the RTR router
has been described as "keeping track of everything" that goes on in an RTR
application.

Create an RTRClientTransactionController object:

ABCOrderTaker::ABCOrderTaker():m_bRegistered(false)
{
}

First, register with RTR if the client hasn’t already done so:

rtr_sStatus_t ABCOrderTaker::Register()
{
rtr_sStatus_t sStatus = RTR_STS_OK;
if(false == m_bRegistered)
{
// If RTR is not already started then start it now.

sStatus = StartRTR();
// Create a Facility if not already created.

sStatus = CreateFacility();

5–8 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

Register the facility with RTR:

sStatus = RegisterFacility(ABCFacility);
print_sStatus_on_failure(sStatus);
if (RTR_STS_OK == sStatus)
{
m_bRegistered = true;

The transaction controller represents the means of communication from the
client to the rest of the components in this system. There is a lot going on
here to make the communication work, but it’s all being done by RTR so you
won’t have to worry about all of the problems inherent in communicating over
a network.

Let’s examine what the RegisterFacility method does. First, the RTRFacilityName
parameter we sent to it is ABCFacility. This tells RTR the name of the facility
we created earlier. Suddenly, RTR has a whole lot more information about your
application: where to find the server, the standby server, and the router. You
will see later in this tutorial that the server also declares itself and supplies
the same facility name.

The RegisterFacility method tells RTR that this application is acting as a
client. So now RTR knows that if the server goes down, it certainly doesn’t
want to force this application to come to the rescue as the standby server! And
there will be other things that RTR will be handling that are appropriate only
to clients or only to servers. This information helps it to keep track of all the
players.

The second parameter, szRecipientName, designates the facility member that
has the backend role. The default value is the wildcard "*", meaning that there
is no specific recipient name specified.

The third parameter, *pszAccess, is a pointer to the null-terminated string
containing the access parameter. This is a security key for authorizing access
to a facility by clients and servers. The default value is RTR_NO_ACCESS,
when there is no specified access parameter.

At this point, RTR has all of the information it needs to put the pieces together
into one system; you’re ready to start sending messages to the server, and to
get messages back from it.

Sample Application Tutorial 5–9



Sample Application Tutorial
5.2 Summary

RTR Return Status
Your facility may have more than just one client talking to your server. In fact,
your neighbor who so generously allowed you to run your standby server on his
or her machine might want to get in on this RTR thing, too. That’s all right:
just add a machine to the RTRTutor facility definition that will also run a copy
of the client. But not yet; we’re only telling you this to illustrate the point that
there can be more than one client in an RTR-based application. Because of
this, after the RTR router hands off your client’s request to your server, it must
then be able to do the same for other clients.

Servers can also decide they want to talk to your client, and the RTR router
may need to handle their requests at any time, as well. If RTR were to wait
for the server to do its processing and then return the answer each time, there
would be an awful bottleneck.

But RTR doesn’t wait. This means that the sStatus that you get back from
each call means only, "I passed your message on to the server", not that the
server successfully handled it and here is the result. So how does your client
actually get the result of the request it made on the server? It will need to
explicitly "receive" a message, as you’ll see later in this tutorial.

Checking RTR Status
Throughout this code example, you’ll see a line of code that looks like:

assert(RTR_STS_OK == sStatus );

or

if(RTR_STS_OK == sStatus)

This is good because, as you know from your Programming 101 course, you
should always check your return sStatus. But it’s also good that your program
knows when something has gone wrong and can tell the user, or behave
accordingly. The assert function is not part of RTR, but is something you will
probably want to do in your application.

To check RTR’s return sStatus, compare it to RTR_STS_OK. If it’s the same,
everything is fine, and you can go on to the next call. But if it is something
else, you’ll probably to print a message to the user. To get the text string that
goes with this sStatus, call ‘rtr_error_text’ which returns a null terminated
ASCII string containing the message in human readable format.

5–10 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

Receiving Messages
As explained earlier, RTR does not hold your client up while it processes
your request, or even a request from another client. You must first wait for
the client transaction controller RegisterFacility call to let you know that
everything is ready to go for the client to start sending messages to a server
application.

With the C++ API, your client application receives messages through data
class objects on the Receive method of the transaction controller class. The
RTRClassFactory class creates the appropriate data object based on the type
of data that the transaction controller is about to receive. All C++ API data
objects derive from the RTRData class.

The Receive call waits to receive a message or event from RTR:

sStatus = Receive(*pRTRData);

The *pRTRData is a pointer to a data object and RTR_NO_TIMEOUTMS is
the default for the tTimeout parameter.

Remember Programming 101 - check your sStatus every time!

assert(RTR_STS_OK == sStatus);

In the client sample application ABCOrderTaker, the client derived receive
method is DetermineOutcome. This method receives a message from RTR to
determine whether the book or magazine order was processed successfully or
not.

eOrderStatus ABCOrderTaker::DetermineOutcome()
{

RTRData *pResult = NULL;
rtr_sStatus_t sStatus;
eOrderStatus eTxnResult = OrderBeingProcessed;
rtr_msg_type_t mtMessageType;

This code illustrates how an application can retrieve and use the message from
an RTRData derived object.

while (OrderBeingProcessed == eTxnResult)
{
sStatus = Receive(&pResult);
print_sStatus_on_failure(sStatus);
if ( true == pResult->IsRTRMessage())

{

Check to see if we have a sStatus for the transaction. If the transaction
sStatus is:

• rtr_mt_accepted, then the server successfully processed the request.

Sample Application Tutorial 5–11



Sample Application Tutorial
5.2 Summary

• rtr_mt_rejected, then the server could not process the request.

sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
print_sStatus_on_failure(sStatus);
if (rtr_mt_accepted == mtMessageType) return eTxnResult = OrderSucceeded;
if (rtr_mt_rejected == mtMessageType) return eTxnResult = OrderFailed;
}
}
return eTxnResult;
}

Information about whether RTR or your server has successfully handled your
client’s request is returned in the data object. It is received by the transaction
controller from RTR in the RTRData object on the Receive call.

The implementation for the handler methods OnAccepted and OnRejected in
ABCSHandlers.cpp is:

void ABCSHandlers::OnAccepted( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
{

pController->AcknowledgeTransactionOutcome();
return;

}
void ABCSHandlers::OnRejected( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
{

pController->AcknowledgeTransactionOutcome();
return;

}

Send Messages
With the C++ API, the start of a transaction is implicit, with the sending of
the first message to a server application. Once the client transaction controller
has registered a facility and its message and event handlers, the rest of
the client application is simply a ‘send/receive’ message loop. It continues
to send messages to the server, then listen for the server’s response. It is
important to remember that, although the client is sending these messages to
the server, it is doing so through RTR. Because of this, the client can receive,
asynchronously, different types of messages and events, including:

• A notice from the server of failure to process the sent message

• An answer to the sent message from the server

• An "out of band" message from the server regarding server sStatus

5–12 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

With the C++ API, there are four types of data you can receive:

• RTREvent

• RTRMessage

• RTRApplicationEvent

• RTRApplicationMessage

The RTRClassFactory creates these data objects when a Receive method
is called for a transaction controller. The class factory takes the incoming
RTRData object and creates the appropriate data object based on the type of
incoming data.

In addition to clients and servers sending and receiving messages, RTR may
send the client messages under certain conditions. So the client application
must be prepared to accept any of these messages, and not necessarily in a
particular sequence.

That’s certainly a tall order! How should you handle this? Well, there are
a number of ways, but you typically implement these possibilities in the
client message and event handlers. (The implementation details of handling
messages and events on a Receive are implemented in the sample server
application ABCOrderProcessor.) In this tutorial we will explain how to run a
"message loop" that both sends and receives messages.

The client sample application ABCOrderTaker has a derived SendOrder
method for sending RTRApplicationMessage objects to the server application.
These objects can be either book orders or magazine orders. (ABCOrderTaker
derives from RTRClientTransactionController and thus inherits the Register
and SendApplicationMessage methods.)

Sample Application Tutorial 5–13



Sample Application Tutorial
5.2 Summary

bool ABCOrderTaker::SendOrder(ABCOrder *pOrder)
{

rtr_sStatus_t sStatus;
eOrderStatus eTxnResult = OrderBeingProcessed;

// Register with RTR if we havn’t already done so.
// This will make sure we are ready to start sending data.

sStatus = Register();
if (RTR_STS_OK != sStatus) return false;

// If we can’t register with RTR then exit
// Send this Book Order object to a server capable
// of processing it.

sStatus = SendApplicationMessage(pOrder);
print_sStatus_on_failure(sStatus);

// Let RTR know that this is the object being sent and
// that we are done with our work.

sStatus = AcceptTransaction();
print_sStatus_on_failure(sStatus);

// Determine if the server successfully processed the request
eTxnResult = DetermineOutcome();
return true;

}

A Word about RTR Data types
You may have noticed that your client, server and router can be on any one
of many different operating systems. And you’ve probably written code for
more than one operating system and noticed that each has a number of data
types that the other doesn’t have. If you send data between a Solaris UNIX
machine and an OpenVMS or Windows machine, you’ll also have to worry
about the order different operating system stores bytes in their data types
(called "endian" order). And what happens to the data when you send it from a
16 bit Intel 486 Windows machine to a 64 bit Alpha UNIX machine?

Thanks to RTR, you don’t need to worry about it. RTR will handle everything
for you. Just write standard C++ code that will compile on the machines you
choose, and the run-time problems won’t complicate your design. When you do
this, you need to use RTR data types to describe your data. RTR translates
everything necessary when your data gets to a new machine by converting the
data to the native data types on the operating system with which it happens to
be communicating at the time.

To illustrate this, the example code evaluates your input parameters and places
them into an RTRData-derived RTRApplicationMessage object, ABCOrder.
One sample application data class is ABCBook, which derives from ABCOrder.
This subclass defines the data that is passed from client to server for a
book order. This data class is defined in ABCBook.h and implemented in
ABCBook.cpp

5–14 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

You’ll notice that the data types which make up this object aren’t your standard
data types - they are RTR data types. And they are generic enough to be able
to be used on any operating system: 8 bit unsigned, 32 bit unsigned, and a
string.

UINT m_uiPrice;
UINT m_uiISBN;
CString m_csTitle;
CString m_csAuthor;)
unsigned int m_uiISBN;
unsigned int m_uiPrice;
char m_szTitle[ABCMAX_STRING_LEN];
char m_szAuthor[ABCMAX_STRING_LEN];

Send/Receive Message Loop
As mentioned earlier, an RTR client application typically contains a message
loop that sends messages to the server via the RTR router, and handles
messages that come from the server via the router, or from RTR itself.

This code illustrates how an application can retrieve and use the message from
an RTRData derived object.

while (OrderBeingProcessed == eTxnResult)
{
sStatus = Receive(&pResult);
print_sStatus_on_failure(sStatus);
if ( true == pResult->IsRTRMessage())
{
// Check to see if we have a sStatus for the txn.
// rtr_mt_accepted = Server successfully processed our request.
// rtr_mt_rejected = Server could not process our request.
sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
print_sStatus_on_failure(sStatus);
if (rtr_mt_accepted == mtMessageType)

return eTxnResult = OrderSucceeded;
if (rtr_mt_rejected == mtMessageType)
return eTxnResult = OrderFailed;
}
sStatus = SendApplicationMessage( *pRTRApplicationMessage,

bReadonly = false,
bReturnToSender = false,
mfMessageFormat=RTR_NO_MSGFMT);

}
assert(RTR_STS_OK == sStatus);

The first message is sent to the server in the first parameter of the
SendApplicationMessage call. As you will see, this is part of the flexibility
and power of RTR. The parameter pRTRApplicationMessage is a pointer to a
block of memory containing your data. RTR doesn’t know what it’s a pointer
to, but it doesn’t need to know this. You, as the programmer, are the only one

Sample Application Tutorial 5–15



Sample Application Tutorial
5.2 Summary

who cares what it is. It’s your own data object that carries any and all of the
information your server will need in order to do your bidding. We’ll see this in
detail when we look at the server code.

You do not need to tell RTR how big the piece of memory being pointed to
pRTRApplicationMessage is. The data object automatically lets RTR know how
many bytes to move from your client machine to your server machine, so that
your server application has access to the data being sent by the client.

And now, the client waits for a response from the server.

The client receives the server’s reply or an rtr_mt_rejected and calls the client
message handler method, OnRejected

sStatus = Receive( *pRTRData);
assert(RTR_STS_OK == sStatus);

Again you see the pRTRData parameter is a pointer to a data object created by
you as the programmer, and can carry any information you need your server to
be able to communicate back to the your client.

The RTRData object contains a code that tells you what kind of a message
you are now receiving on your transaction controller. If the RTR message type
contains the value rtr_mt_reply, then you are receiving a reply to a message
you already sent, and your receive message object has been written to with
information from your server.

sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
print_sStatus_on_failure(sStatus);
if (rtr_mt_accepted == mtMessageType)

return eTxnResult = OrderSucceeded;
if (rtr_mt_rejected == mtMessageType)

return eTxnResult = OrderFailed;

If GetMessageType contains the value rtr_mt_rejected, then something has
happened that caused your transaction to fail after you sent it to the router.
You can find out what that ‘something’ is by looking at the sStatus returned by
the Receive call. You will recall that making the rtr_error_text call and passing
the sStatus value will return a human readable null terminated ASCII string
containing the error message.

This is where you’ll need to make a decision about what to do with this
transaction. You can abort and exit the application, issue an error message
and go onto the next message, or resend the message to the server. This code
re-sends a rejected transaction to the server.

5–16 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

When your client application receives an rtr_mt_reply message, your message
has come full circle. The client has made a request of the server on behalf of
the user; the server has responded to this request. If you’re satisfied that the
transaction has completed successfully, you must notify RTR so that it can do
its own housekeeping. To this point, this transaction has been considered "in
progress", and its sStatus kept track of at all times. If all parties interested in
this transaction (this includes the client AND the server) notify RTR that the
transaction has been completed, RTR will stop tracking it, and confirm to all
parties that it has been completed. This is called ‘voting’.

if (msgsb.msgtype == rtr_mt_reply)
{
sStatus = AcceptTransaction(RTR_NO_REASON)
assert (RTR_STS_OK == sStatus);

And now the client waits to find out what the result of the voting is.

sStatus = Receive( *pRTRData, RTR_NO_TIMOUTMS);
assert(RTR_STS_OK == sStatus);

If everyone voted to accept the transaction, the client can move on to the next
one. But if one of the voters rejected the transaction, then another decision
must be made regarding what to do about this transaction. This code attempts
to send the transaction to the server again.

sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
print_status_on_failure(sStatus);
if (rtr_mt_accepted == mtMessageType) return eTxnResult =

OrderSucceeded;
if (rtr_mt_rejected == mtMessageType) return eTxnResult =

OrderFailed;

All of the requested messages, or transactions, have been sent to the server,
and responded to. The only RTR cleanup we need to do before we exit the
client is to close the transaction controller. This is similar to signing off, and
RTR releases all of the resources it was holding for the client application.

Now, that wasn’t so bad, was it? Of course not. And what has happened so
far? The client application has sent a message to the server application. The
server has responded. RTR has acted as the messenger by carrying the client’s
message and the server’s response between them.

Next, let’s see how the server gets these messages, and sends a response back
to the client.

Sample Application Tutorial 5–17



Sample Application Tutorial
5.2 Summary

Server Application
The files shipped with the RTR kit used in the server application for this
tutorial are the ABCOrderProcessor, ABCSHandlers and ABCSClassFactory
files , in addition to the common files . These common files, including
ABCCommon, ABCBook, and ABCMagazine are used in both client and the
server applications. This is for a number of reasons, but most importantly that
both the client and the server use the same definitions for the data objects
they pass back and forth as messages. With the exception of only two items,
there will be nothing in this server that you haven’t already seen in the client.
It’s doing much the same things as the client application is doing. It creates
a server transaction controller object for connecting to the router, telling the
router that it is a server application; and then registers a partition. It waits
to hear that the RegisterPartition request has been successfully executed; runs
a loop that receives messages from the client; carries out the client’s orders;
sends the response back to the client. And the server gets to vote, too, on
whether each message/response loop is completed.

One of the differences between the client andserver is the types of messages a
server can receive from RTR; we’ll go through some of them in this section of
the tutorial about the server application.

The other difference is the RegisterPartition call which is sent to RTR. We
mentioned partitions while discussing the client application, but said we’d
discuss them later. Well, it’s later...

Initialize RTR
The server creates a transaction controller and registers a partition. In
addition, the server registers message and event handlers and a class factory,
causing RTR to initialize a number of resources for use by the server, as well as
to gather information about the server. In the Register methods in the server
application, ABCOrderProcessor.cpp, you’ll find the example server calling
RegisterPartition. You see that the RegisterPartition method creates a single
RTR data partition for each time it is called. In the server code, there are two
partitions, ABCPartition1 and ABCPartition2.

sStatus = RegisterPartition(ABCPartition1);
print_sStatus_on_failure(sStatus);

sStatus = RegisterPartition(ABCPartition2);
print_sStatus_on_failure(sStatus);

In order to call RegisterPartition, the sample application includes a
CreateRTREnvironment method that is first called in the
ABCOrderProcessor::Register method.

5–18 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

Data Partitions
What is data partitioning, and why would you wish to take advantage of it? It
is possible to run a server application on each of multiple backend machines,
and to run multiple server applications on any backend machine. When a
server registers a partition to begin communicating with the RTR router, it
uses the KeySegment information to tell RTR that it is available to handle
certain key segments. A key segment can be "all last names that start with
A to K" and "all last names that start with L to Z", or "all user identification
numbers from zero to 1000" and "all user identification numbers from 1001 to
2000".

In the sample application, the implementation is as follows:

void ABCOrderProcessor::CreateRTREnvironment()
{
rtr_sStatus_t sStatus;
// If RTR is not already started then start it now.
StartRTR();
// Create a Facility if not already created.
CreateFacility();
// Create a partition that processes ISBN numbers in
// the range 0 - 99
unsigned int low = 0;
unsigned int max = 99;
RTRKeySegment KeyZeroTo99(rtr_keyseg_unsigned,

sizeof(int),
0,
&low,
&max );

RTRPartitionManager PartitionManager;
sStatus = PartitionManager.CreateBackendPartition(ABCPartition1,

ABCFacility,
KeyZeroTo99,
false,
true,
false);

print_sStatus_on_failure(sStatus);
// Create a partition that processes ISBN numbers in
// the range 100 - 199
low = 100;
max = 199;
RTRKeySegment Key100To199( rtr_keyseg_unsigned,

sizeof(int),
0,
&low,
&max );

sStatus = PartitionManager.CreateBackendPartition(ABCPartition2,
ABCFacility,

Key100To199,
false,

Sample Application Tutorial 5–19



Sample Application Tutorial
5.2 Summary

true,
false);

print_sStatus_on_failure(sStatus);
}

Each key segment describes a data partition. Data partitions allow you
to use multiple servers to handle the transactions all of your clients are
attempting to perform; in this way, they don’t all have to wait in line to use
the same server. They can get more done in less time. Data partitions can be
specified through a command line interface or programmatically through the
RTRPartitionManager class.

The RTR Application Design Guide and goes into more detail about data
partitioning.

Again, we use the RTR data object that RTR will place information in, and the
user-defined data object, ABCOrder, that the client’s data will be copied into.
But at this point, the server is talking with RTR only, not the client, so it is
expecting an answer from RTR; all the server really wants to know is that the
transaction controller is ready to receive a client request. If it isn’t, the server
application will write out an error message and exit with a failure sStatus.
The implementation of the sample server application’s Register function:

• Creates the environment for the server to run in

• Registers a facility

• Registers two partitions

• Registers a class factory

• Registers message and event handlers

The sStatus is checked after each of these calls and if they are all successful,
the server is ready to receive incoming requests from the client application.

5–20 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

void ABCOrderProcessor::Register()
{

rtr_sStatus_t sStatus;
// Create an environment that our server can run in.

CreateRTREnvironment();
// Register with RTR the following objects

sStatus = RegisterFacility(ABCFacility);
print_sStatus_on_failure(sStatus);

// ABC Partition
sStatus = RegisterPartition(ABCPartition1);
print_sStatus_on_failure(sStatus);
sStatus = RegisterPartition(ABCPartition2);
print_sStatus_on_failure(sStatus);

// ABC Class Factory
sStatus = RegisterClassFactory(&m_ClassFactory);
print_sStatus_on_failure(sStatus);

// ABC Handlers
sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
print_sStatus_on_failure(sStatus);
return;

The RegisterHandlers method takes two parameters; the first parameter is a
pointer to an RTRServerMessageHandler object and the second parameter is
a pointer to an RTRSeverEventHandler object. ABCHandlers multiply derives
from both of these foundation classes.

The server message handler specifies all messages generated by RTR or the
RTR application that a server application may receive. The server event
handler specifies all events generated by RTR or the RTR application that a
server application may receive.

And now that the transaction controller has been established, the server waits
to receive messages from the client application and the RTR router.

Receive/Reply Message Loop
The server sits in a message loop receiving messages from the router, or from
the client application via the router. Like the client, it must be prepared to
receive various types of messages in any order and then handle and reply to
each appropriately. But the list of possible messages the server can receive is
different than that of the client. This example includes some of those. First,
the server waits to receive a message from RTR.

The implementation in the ProcessIncomingOrders method of the
ABCOrderProcessor class:

Sample Application Tutorial 5–21



Sample Application Tutorial
5.2 Summary

// Start processing orders
abc_sStatus sStatus;
RTRData *pOrder = NULL;
while (true)
{
// Receive an Order
sStatus = Receive(&pOrder);
print_sStatus_on_failure(sStatus);
// If we can’t get an Order then stop processing.
if(ABC_STS_SUCCESS != sStatus) break;
// Dispatch the Order to be processed
sStatus = pOrder->Dispatch();
print_sStatus_on_failure(sStatus);
// Check to see if there were any problems processing the order.
// If so, let the handler know to reject this txn when asked to
// vote.
CheckOrderStatus(sStatus);

Upon receiving the message the server checks the RTRData object’s message
type field to see what kind of message it is. Some are messages directly from
RTR and others are from the client. In any event, the class factory creates the
appropriate data object for the server application to handle the incoming data.
When the message is from the client, your application will read the data object
you constructed to pass between your client and server and, based on what it
contains, do the work it was written to do. In many cases, this will involve
storing and retrieving information using your database.

But when the message is from RTR, how should you respond? Let’s look at
some of the types of messages a server gets from RTR, and what should be
done about them.

The following implementation from the ABCSHandlers.cpp file is for an rtr_
mt_msg1_uncertain RTR message:

void ABCSHandlers::OnUncertainTransaction( RTRApplicationMessage
*pRTRData, RTRServerTransactionController *pController )
{

return;
}

The rtr_mt_msg1 and rtr_mt_msg1_uncertain messages identify the beginning
of a new transaction. The rtr_mt_msg1 message says that this is a message
from the client, and it’s the first in a transaction. When you receive this
message type, you will find the client data in the object pointed to by
pRTRData parameter of this call. The client and server have agreed on a
common data object that the client will send to the server whenever it makes
a request: this is the ABCOrder object we looked at in the client section of
this tutorial. RTR has copied the data from the client’s data object into the
one whose memory has been supplied by the server. The server’s responsibility

5–22 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

when receiving this message is to process it. On receiving an rtr_mt_msg1,
the server application calls the OnInitialize and OnApplicationMessage server
message handler methods.

On receiving an RTR message rtr_mt_msg1, the server application calls the
handler methods OnInitialize and OnApplicationMessage by default. Business
logic processing can be done within the OnApplicationData method.

The sample server application implements the OnInitialize method and
overloads the Dispatch method with an implementation in ABCOrder that
deserializes the ABCOrder data object, rather than having the default Dispatch
method invoking OnApplicationMessage.

From the ABCSHandlers class:

void ABCSHandlers::OnInitialize( RTRApplicationMessage *pRTRData,
RTRServerTransactionController *pController )
{

m_bVoteToAccept = true;
return;

}

The overloaded Dispatch method in the ABCOrder data object:

rtr_sStatus_t ABCOrder::Dispatch()
{
// Populate the derived object

ReadObject();
// Process the purchase that the derived object represents

bool bStatus = Process();
if (true == bStatus)
{

return ABC_STS_SUCCESS;
}
else
{

return ABC_STS_ORDERNOTPROCESSED;
}

}

Recovered Transactions:
The rtr_mt_msg1_uncertain message type tells the server that this is the first
message in a recovered transaction. In this instance, the original server the
application was communicating with failed, possibly leaving some of its work
incomplete, and now the client is talking to the standby server. What happens
to that incomplete work left by the original server? Looking back at the client
you will recall that everyone got to vote as to whether the transaction was
accepted or rejected, and then the client waited to see what the outcome of the
vote was. While the client was waiting for the results of this vote, the original

Sample Application Tutorial 5–23



Sample Application Tutorial
5.2 Summary

server failed, and the standby server took over. RTR uses the information it
kept storing to the recovery journal, which you also created earlier, to replay
to the standby server so that it can recover the incomplete work of the original
server.

When a server receives the ‘uncertain’ message, it knows that it is stepping
in for a defunct server that had, to this point, been processing client requests.
But it doesn’t know how much of the current transaction has been processed
by that server, and how much has not, even though it receives the replayed
transactions from RTR. The standby server will need to check in the database
or files to see if the work represented by this transaction is there and, if not,
then process it. If it has already been done, the server can forget about it .

If the received message contains rtr_mt_msg1_uncertain:

replay = RTR_TRUE;
else
replay = RTR_FALSE;
if ( replay == TRUE )
// The server should use this opportunity to
// clean up the original attempt, and prepare
// to process this request again.
else
// Process the request.

The server then replies to the client indicating that it has received this
message and handled it.

The server typically uses the SendApplicationMessage call to answer the
request the client has made. In some cases, this may mean that data needs to
be returned. This will be done in the data object that has been agreed upon by
both the client and the server.

Prepare Transaction
The rtr_mt_prepare message tells the server to prepare to commit the
transaction. All messages from the client that make up this transaction
have been received, and it is now almost time to commit the transaction in
the database. This message type will never be sent to a server that has not
requested an explicit prepare.

After determining whether it is possible to complete the transaction based on
what has occurred to this point, the server can either call RejectTransaction to
reject the transaction, or set all of the required locks on the database before
calling AcceptTransaction to accept the transaction.

5–24 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

void ABCSHandlers::OnPrepareTransaction( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
{
// Check to see if anything has gone wrong. If so, reject
// the transaction, otherwise accept it.

if (true == m_bVoteToAccept)
{

pController->AcceptTransaction();
}
else
{

pController->RejectTransaction();
}
return;

}

Because this example code is not dealing with a database, nor is it bundling
multiple messages into a transaction, the code here immediately votes to accept
the transaction.

Transaction Rejected
The rtr_mt_rejected message is from RTR, telling the server application that
a participant in the transaction voted to reject it. If one participant rejects
the transaction, it fails for all. The transaction will only be successful if
all participants vote to accept it. When it receives this message, the server
application should take this opportunity to roll back the current transaction if
it is processing database transactions.

The sample server application includes the following code to check the order if
it was not processed. If the order was not processed properly, then the handler
method OnABCOrderNotProcessed is called and m_bVoteToAccept is set to
false. This causes OnPrepareTransaction to reject the transaction.

void ABCOrderProcessor::CheckOrderStatus (abc_sStatus sStatus)
{
// Check to see if there were any problems
// processing the order. If so, let the handler know
// to reject this txn when asked to vote.

if (sStatus == ABC_STS_ORDERNOTPROCESSED)
{

// Let the handler know that the current txn should be rejected
GetHandler()->OnABCOrderNotProcessed();
};

};
void ABCSHandlers::OnABCOrderNotProcessed()
{

m_bVoteToAccept = false;
return;

}

Sample Application Tutorial 5–25



Sample Application Tutorial
5.2 Summary

Finally, explicitly end the transaction on a reject, the handler method
OnRejected is called:

void ABCSHandlers::OnRejected( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )
{

pController->AcknowledgeTransactionOutcome();
return;

}

Transaction Accepted
RTR is telling the server that all participants in this transaction have voted
to accept it. If database transactions are being done by the server, this is the
place at which the server will want to commit the transaction to the database,
and release any locks it may have taken on the database.

void ABCSHandlers::OnAccepted( RTRMessage *pRTRMessage,
RTRServerTransactionController *pController )

{
pController->AcknowledgeTransactionOutcome();
return;

}

Note the AcknowledgeTransactionOutcome call in the server. This is an explicit
method for completing a transaction.

That’s it. You now know how to write a client and server application using RTR
as your network communications, availability and reliability infrastructure.
Congratulations!

Build and Run the Servers
Compile the ABC server and ABC shared files on the operating system that
will run your server applications. If you are using two different operating
systems, then compile it on each of them. To build on UNIX, issue the
command:

cxx -o server server.c shared.c /usr/shlib/librtr.so -DUNIX

You should start the servers before you start your clients. They will register
with the RTR router so that the router will know where to send client requests.
Start your primary server with the appropriate ‘run’ command for its operating
system along with the two parameters ‘1’ and ‘h’. To run on UNIX:

% ./server 1 h

Start your standby server with the parameters ‘2’ and ‘h’.

% ./server 2 h

5–26 Sample Application Tutorial



Sample Application Tutorial
5.2 Summary

Build and Run the Client: Compile the ABC CLIENT and ABC SHARED
modules on the operating system which will run your client application. To
build on UNIX:

% cxx -o client client.c shared.c /usr/shlib/librtr.so -DUNIX

Run the client with the following command:

% ./client 1 h 10

or

C:\RtrTutor\> client.exe 1 h 10

In many ways, this tutorial has only scratched the surface of RTR. There is
a great deal more that RTR gives you to make your distributed application
reliable, available, and perform better. The following sections of this document
highlight some of the capabilities you have at your service. For more details
on each item, and information on what additional features will help you to
enhance your application, look first through the RTR Application Design
Guide. Then, earlier sections of this C++ Foundation Classes manual will tell
you in detail how to implement each capability.

HP also offers training classes for RTR, and if you’d like to attend any of them,
contact your HP representative.

Callout Server
RTR supports the concept of a "callout server" for authentication. You may
designate an additional application on your server machines or your router
machine as a callout server with the RTRFacilityManager class methods.
Callout servers will be asked to check all requests in a facility, and are asked
to vote on every transaction.

The CreateFacility method in the RTRFacilityManager class includes a boolean
parameter bEnableBackendCallout for specifying a callout server.

Events
In addition to messages, RTR can be used to dispatch asynchronous events
on servers and clients. A callback function in the user’s server and client
applications can be designated which RTR will call asynchronously to dispatch
events to your application.

Sample Application Tutorial 5–27



Sample Application Tutorial
5.2 Summary

Shadowing
This tutorial only discussed failover to a standby server. But RTR also supports
shadowing: while your server is making changes to your database, another
"shadow" server can be making changes to an exact copy of your database
in real time. If your primary server fails, your shadow server will take over,
and record all of the transactions occurring while your primary server is
down. Your primary server will be given the opportunity to update the original
database and catch up to the correct state when it comes back up. So as
you can see, if your database and transactions are important enough to you,
you have the opportunity to double protect them with an RTR configuration
including any of

• Multiple standby software servers on a primary hardware backend system

• Shadow backend system replicating all transactions on a duplicate
database

• Failover backend systems for each of your primary and shadow backends

• Failover routers

Transactions
One of RTR’s greatest strengths is in supporting transactions. The RTR
Application Design Guide goes into more detail regarding transactions and
processing of transactions.

RTR Utility
You’ve seen how to use the RTR utility (or the command line interface) to start
RTR and to create a facility. But the RTR utility contains many more features
than this, and in fact can be used to prototype an application. Refer to the
RTR System Manager’s Manual for details.

5–28 Sample Application Tutorial



6
Sample Application Code

The RTR book ordering sample application shows how the C++ Foundation
classes can be used to simulate purchasing merchandise for a fictitious
company named ABC.

The client, ABCOrderTaker, has a hard-coded book request which is
represented by the ABCBook class. This book request has an ISBN number
used for data routing. The server will display a dialog box containing the
contents of the newly reconstituted ABCBook object.

The following sample application code comes from the Examples directory and
includes:

• Sample1

This file contains int main and provides a sample for which the
sample application takes book and magazine orders from the client
application (ABCOrderTaker) and processes them in the server application
(ABCOrderProcessor).

• ABCOrderTaker

Located in ABCOrderTaker.h and ABCOrderTaker.cpp, this client-side
class supplies ability to pass an object derived from ABCOrder to a server.
This class is derived from RTRClientTransactionController and derives
from RTRClientMessageHandler and RTRClientEventHandler

• ABCOrderProcessor

Located in ABCOrderProcessor.h, ABCOrderProcessor.cpp, this server-side
class processes the request sent to it by the client. This class is derived
from RTRServerTransactionController.

• ABCOrder

Located in ABCOrder.h, ABCOrder.cpp, this is an abstract base class
(for ABCBook and ABCMagazine) which requires all derived classes to
implement three member functions.

Sample Application Code 6–1



Sample Application Code

ReadObject( )
WriteObject( )
Process( )

This class is derived from RTRApplicationMessage.

• ABCBook

Located in ABCBook.h, ABCBook.cpp, this class represents a book order.
This class is able to write and read its state to the memory managed by its
base class RTRData. This class derives from ABCOrder.

There are also class factory, client and server handlers, ABCMagazine, and
ABCCommon classes in the Examples directory.

6.1 Sample Main Program
#include "ABCCommon.h"
#include "ABCOrderTaker.h"
#include "ABCOrderProcessor.h"
#include "ABCBook.h"
#include "ABCMagazine.h"
void GenerateOrders();

int main(int argc, char* argv[])
{
bool bValidInput = false;
while (false == bValidInput)
{
cout << endl;
cout << "**********************************************" << endl;
cout << endl;
cout << "1 - Start Server to process incoming orders" << endl;
cout << "2 - Start Client to generate predefined orders" << endl;
cout << "0 - Quit" << endl;
cout << endl;
cout << "**********************************************" << endl;
cout << endl << "Which Test should be run? : ";
unsigned int uiAnswer;
cin >> uiAnswer;
switch (uiAnswer)

{
case 1 : { ABCOrderProcessor OrderProcessor;

// Call ProcessIncomingOrders which will loop
//forever processing orders from clients.
OrderProcessor.ProcessIncomingOrders();
break;

}
case 2 : {

// Send some orders
GenerateOrders();
break;

6–2 Sample Application Code



Sample Application Code
6.1 Sample Main Program

}
case 0 : {

return 0;
}
} // switch
} //while

return 0;
}

void GenerateOrders()
{

abc_status sStatus;
// Create an Order Taker.
ABCOrderTaker OrderTaker;

// Create a sample book order and populate it with the
// ISBN 49, Price and Title
ABCBook Book;
Book.AddOrder( 49, 12345, "Everything to the Internet",

"Michael Capellas");
// Send this book order to the server for processing.
// note: This will be txn #1

cout << endl << "Transaction # 1" <<endl;
sStatus = OrderTaker.SendOrder(&Book);
cout << endl;

// Reset the stream. This way we will reuse the beginning of
// the buffer that the stream manages.
Book.ResetStream();

// Send another order to a server which handles ISBN 99
Book.AddOrder( 99, 56789, "Java How To Program",

"Deitel & Deitel");
// Send this book order to the server for processing.

// note: This will be txn #2
cout << endl << "Transaction # 2" <<endl;
sStatus = OrderTaker.SendOrder(&Book);
cout << endl;

ABCMagazine Magazine;

Magazine.AddOrder(29,"PC Week","ZIFF-DAVIS", "February 2000");

// Send this book order to the server for processing.
// note: This will be txn #3
cout << endl << "Transaction # 3" <<endl;
sStatus = OrderTaker.SendOrder(&Magazine);
cout << endl;

}

Sample Application Code 6–3



Sample Application Code
6.2 Client Application ABCOrderTaker

6.2 Client Application ABCOrderTaker
// ABCOrderTaker.cpp: implementation of the ABCOrderTaker class.
//
//////////////////////////////////////////////////////////////////////

#include "ABCCommon.h"
#include "ABCOrderTaker.h"

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

ABCOrderTaker::ABCOrderTaker() : m_bRegistered(false)
{

}

ABCOrderTaker::~ABCOrderTaker()
{

}

abc_status ABCOrderTaker::SendOrder(ABCOrder *pOrder)
{

abc_status sStatus;
// Register with RTR if we havn’t already done so.
// This will make sure we are ready to start sending data.

sStatus = Register();
if (ABCSuccess != sStatus) return false;

// If we can’t register with RTR then exit
// Start the Transaction

cout << "StartTransaction..." << endl;
sStatus = StartTransaction();
print_status_on_failure(sStatus);

// Send this Book Order object to a server capable
// of processing it.

cout << "SendApplicationMessage..." << endl;
sStatus = SendApplicationMessage(pOrder);
print_status_on_failure(sStatus);

6–4 Sample Application Code



Sample Application Code
6.2 Client Application ABCOrderTaker

// Let RTR know that this is the only object being sent
// and that we are done with our work.

cout << "AcceptTransaction..." << endl;
sStatus = AcceptTransaction();
print_status_on_failure(sStatus);

// Determine if the server successfully processed the request
return DetermineOutcome();

}
rtr_status_t ABCOrderTaker::Register()
{

rtr_status_t sStatus = RTR_STS_OK;
if(false == m_bRegistered)

{
// If RTR is not already started then start it now.

sStatus = StartRTR();
// Create a Facility if not already created.

sStatus = CreateFacility();

// Register our facility with RTR.
sStatus = RegisterFacility(ABCFacility);
print_status_on_failure(sStatus);

if(RTR_STS_OK == sStatus)
{

m_bRegistered = true;
}

// ABC Handlers
sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
print_status_on_failure(sStatus);
}
return sStatus;

}
abc_status ABCOrderTaker::DetermineOutcome()
{

RTRData *pResult = NULL;
abc_status sStatus = ABCSuccess;

// Simply wait for RTR to send us an accepted or rejected.

// We can dispatch everything we get and let the default
// handlers process what we don’t care about.

Sample Application Code 6–5



Sample Application Code
6.2 Client Application ABCOrderTaker

bool bDone = false;
while (!bDone)
{
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
sStatus = pResult->Dispatch();
if (ABCOrderSucceeded == sStatus)
{
cout << "Transaction succeeded..." << endl;
bDone = true;
}
else

if (ABCOrderFailed == sStatus)
{
cout << "Transaction failed..." << endl;
bDone = true;
}

}
delete pResult;

return sStatus;
}

6.3 Server Application ABCOrderProcessor
// ABCOrderProcessor.cpp: implementation of the ABCOrderProcessor class.
//
//////////////////////////////////////////////////////////////////////

#include "ABCCommon.h"
#include "ABCOrderProcessor.h"
#include <stdio.h>

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

ABCOrderProcessor::ABCOrderProcessor()
{

}

ABCOrderProcessor::~ABCOrderProcessor()
{

}

void ABCOrderProcessor::ProcessIncomingOrders()
{
// Register with RTR. This will make sure we are ready to
// start receiving data.

Register();
// Start processing orders

abc_status sStatus = RTR_STS_OK;
RTRData *pOrder = NULL;

6–6 Sample Application Code



Sample Application Code
6.3 Server Application ABCOrderProcessor

while (1)
{

// Receive an Order
sStatus = Receive(&pOrder);
print_status_on_failure(sStatus);
if(ABCSuccess != sStatus) break;
// if we can’t get an Order then stop processing.

// Dispatch the Order to be processed
// note: This could be any kind of data. ie. RTRMessage RTREvent,
// RTRApplicationMessage or RTRApplicationEvent.
// The class ABCOrder(derived from RTRApplicationMessage) has
// redefined the Dispatch() method to call the Process() method
// of its derived class (ABCBook or ABCMagazine). All other
// data classes use the default implemenation of Dispatch()
// which will call the appropriate handler.

sStatus = pOrder->Dispatch();
print_status_on_failure(sStatus);

// Check to see if there were any problems processing the order.
// If so, let the handler know to reject this txn when asked to
// vote.
// note : For the ABC company, orders are processed in the
// Process() method of all ABCOrder derived classed.

CheckOrderStatus(sStatus);

// Delete this order that was allocated by the class factory.
// note: In this sample the class factory returns a separate
// instance of an order each time it is called.

delete pOrder;
}

return;
}
void ABCOrderProcessor::Register()

{
rtr_status_t sStatus;

// Create an environment that our server can run in.
CreateRTREnvironment();

// Register with RTR the following objects
sStatus = RegisterFacility(ABCFacility);
print_status_on_failure(sStatus);

// ABC Partition
sStatus = RegisterPartition(ABCPartition1);
print_status_on_failure(sStatus);

sStatus = RegisterPartition(ABCPartition2);
print_status_on_failure(sStatus);

// ABC Class Factory
sStatus = RegisterClassFactory(&m_ClassFactory);
print_status_on_failure(sStatus);

Sample Application Code 6–7



Sample Application Code
6.3 Server Application ABCOrderProcessor

// ABC Server Handlers
sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
print_status_on_failure(sStatus);

return;
}

void ABCOrderProcessor::CreateRTREnvironment()
{

rtr_status_t sStatus;
// If RTR is not already started then start it now.
StartRTR();
// Create a Facility if not already created.
CreateFacility();
// Create a partition that processes ISBN numbers in the
// range 0 - 99
unsigned int low = 0;
unsigned int max = 99;
RTRKeySegment KeyZeroTo99( rtr_keyseg_unsigned,

sizeof(int),
0,
&low,
&max );

RTRPartitionManager PartitionManager;
sStatus = PartitionManager.CreateBackendPartition(

ABCPartition1,
ABCFacility,
KeyZeroTo99,
false,
true,
false);

print_status_on_failure(sStatus);

// Create a partition that processes ISBN numbers in the
// range 100 - 199
low = 100;
max = 199;
RTRKeySegment Key100To199( rtr_keyseg_unsigned,

sizeof(int),
0,
&low,
&max );

sStatus = PartitionManager.CreateBackendPartition(
ABCPartition2,
ABCFacility,
Key100To199,
false,
true,
false);

print_status_on_failure(sStatus);
}

6–8 Sample Application Code



Sample Application Code
6.3 Server Application ABCOrderProcessor

void ABCOrderProcessor::CheckOrderStatus (abc_status sStatus)
{
// Check to see if there were any problems processing the order.
// If so, let the handler know to reject this transaction when
// asked to vote.

if (sStatus == ABCOrderFailed)
{

// Let the handler know that the current txn should be rejected
GetHandler()->OnABCOrderNotProcessed();

};

}

6.4 Data Class ABCOrder
// ABCOrder.cpp: implementation of the ABCOrder class.
//
//////////////////////////////////////////////////////////////////////

#include "ABCCommon.h"
#include "ABCOrder.h"

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

ABCOrder::ABCOrder() : m_uiPrice(0)
{

m_szTitle[0] = ’\0’;
m_szAuthor[0] = ’\0’;

}

ABCOrder::~ABCOrder()
{

}

Sample Application Code 6–9



Sample Application Code
6.4 Data Class ABCOrder

rtr_status_t ABCOrder::Dispatch()
{

// Populate the derived object
ReadObject();

// Since we have overridden Dispatch() in our base class
// (RTRApplictaionMessage), the handler will not be called
// unless we do it ourselves. If we call our base class Dispatch
// method the handler methods OnInitialize() and
// OnApplictionMessage() will be called. This sample uses
// OnInitialize() to print out notification that a new
// transaction
// is starting.

RTRApplicationMessage::Dispatch();
// Process the purchase which the derived object represents

abc_status status = ProcessOrder();
return status;
}

6.5 Data Class ABCBook
// ABCBook.cpp: implementation of the ABCBook class.
//
//////////////////////////////////////////////////////////////////////

#include "ABCCommon.h"
#include "ABCBook.h"

//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////

ABCBook::ABCBook() : m_uiISBN(0)
{

}

ABCBook::~ABCBook()
{

}

6–10 Sample Application Code



Sample Application Code
6.5 Data Class ABCBook

bool ABCBook::AddOrder( unsigned int uiPrice,
unsigned int uiISBN,
char *pszName,
char *pszAuthor)

{
// Copy the Book purchase to our Book object.

m_uiISBN = uiISBN;
m_uiPrice = uiPrice;
strcpy(&m_szTitle[0],pszName);
strcpy(&m_szAuthor[0],pszAuthor);
WriteObject();
return true;

}
void ABCBook::WriteObject()
{
// Save the type of object we are. This is used by the
// class factory on the server side to determine which type
// of class to allocate.
*this << ABC_BOOK;
*this << m_uiPrice << m_uiISBN << m_szTitle << m_szAuthor;
// The 1 line call above is equivalent to the 4 lines below. We
// can use the << and >> operators because we know that the data

// which we store is not > the current RTR maximum = 65535 byes.
// WriteToStream(m_uiISBN);
// WriteToStream(m_uiPrice);
// WriteToStream(m_szTitle);
// WriteToStream(m_szAuthor);

char mystring[] = "ABCDEFGHIJKLMNOPQRSTUVWZYZ";
rtr_msgbuf_t p = &mystring[0];
rtr_msglen_t length = strlen(mystring)+1;
WriteToStream(p,length);

}
void ABCBook::ReadObject()
{
// The first data is the type of class we should be.
// Validate that everything is fine.

unsigned int uiClassType = 0;
*this >> uiClassType;
assert(uiClassType == ABC_BOOK);

// Populate this object with the data
*this >> m_uiPrice >> m_uiISBN >> m_szTitle >> m_szAuthor;

// The 1 line call above is equivilant to the 4 lines below.
// ReadFromStream(m_uiISBN);
// ReadFromStream(m_uiPrice);
// ReadFromStream(m_szTitle,GetLogicalBufferLength());
// ReadFromStream(m_szAuthor,GetLogicalBufferLength());
}
abc_status ABCBook::ProcessOrder()
{

// It is here that we would process the request for this book.
// For this sample simply print out the Book order.

cout <<"ABCBook::ProcessOrder()" << endl;

Sample Application Code 6–11



Sample Application Code
6.5 Data Class ABCBook

cout << " " << "ISBN = " << m_uiISBN << endl;
cout << " " << "Price = " << m_uiPrice << endl;
cout << " " << "Title = " << m_szTitle << endl;
cout << " " << "Author = " << m_szAuthor << endl;

return ABCOrderSucceeded;
}

}

6–12 Sample Application Code



A
C++ Foundation Class Design Diagrams

The class diagrams in this section include:

• Figure 1 - Application Data Classes

• Figure 2 - Application Client and Server Classes

• Figure 3 - Management Facility and Partition Classes

• Figure 4 - Management Setup and Diagnostic Classes

C++ Foundation Class Design Diagrams A–1



C++ Foundation Class Design Diagrams

Figure A–1 Application Data Classes

A–2 C++ Foundation Class Design Diagrams



C++ Foundation Class Design Diagrams

Figure A–2 Application Client and Server Classes

C++ Foundation Class Design Diagrams A–3



C++ Foundation Class Design Diagrams

Figure A–3 Management Facility and Partition Classes

A–4 C++ Foundation Class Design Diagrams



C++ Foundation Class Design Diagrams

Figure A–4 Management Setup and Diagnostic Classes

C++ Foundation Class Design Diagrams A–5





B
Sample Application Diagrams

The class diagrams in this section include:

• Figure 1 - Application Object classes

• Figure 2 - Application Server Transaction Object classes

• Figure 3 - Application Client Transaction Object classes

Sample Application Diagrams B–1



Sample Application Diagrams

Figure B–1 Application Object Classes

B–2 Sample Application Diagrams



Sample Application Diagrams

Figure B–2 Application Server Transaction Object Classes

Sample Application Diagrams B–3



Sample Application Diagrams

Figure B–3 Application Client Transaction Object Classes

B–4 Sample Application Diagrams



Index

A
Abort

state, 3–70
Accepted

client message, 3–92
message, 3–21

Accept transaction, 3–35
client, 3–101

Acknowledge transaction outcome, 3–37
Add

facility member array, 4–64
key segment array, 4–94

Adding
backend, 4–31
frontend, 4–33
router, 4–35

Application
build, 1–40
compile, 1–40
event, 3–5
link, 1–40
message, 3–23
send event, 3–55

Application classes, 3–1
client classes, 3–77
server classes, 3–2

Application event
client, 3–80, 3–112
data, 3–150
data class, 3–122
dispatching, 3–124

Application message
client, 3–94
data, 3–151
data class, 3–131
receiving, 1–10, 1–11

Array
facilitymember, 4–62

Attributes
mixed endian, 2–22

B
Backend

adding a, 4–31
create partition, 4–109
partition properties, 4–23, 4–113
remove, 4–46
role, 4–56

Balancing, 4–76
Base class

data, 3–145
Buffer length

GetActualBufferLength, 3–148
GetLogicalBufferLength, 3–149

Build application, 1–40
Business logic

application message, 3–23
Business logic:client, 3–94

Index–1



C
C++ API

classes, 1–1
with existing applications, 1–35

C++ compilers, 1–42
Classes

management, 1–19
Class factory, 1–10, 3–137

client, 3–104
Clear

facility member array, 4–65
key segment array, 4–95

Client
accept transaction, 3–101
application programming, 2–6
classes, 3–77
event, 1–33
event handler, 3–78
message handler, 3–90
messages, 1–32
receive message or event, 3–102
register facility, 3–105
register handlers, 3–107
reject transaction, 3–109
send application event, 3–112
send application message, 3–114
start transaction, 3–116
transaction controller, 3–99
transaction properties, 3–118

Client/Server
interaction, 1–7

Client message handler
OnApplicationMessage, 3–94
OnInitialize, 3–95
OnRejected, 3–96
OnReturnToSender, 3–97

Commit
state, 3–71

Communication
client/server, 1–7

Compile application, 1–40

Compilers, 1–42
Concurrent server, 4–109
Connection

balanced, 4–71
Control loop, 2–5
Counter

signed counter, 4–115
string counter, 4–125
unsigned counter, 4–131

Create
facility, 4–37

Create:journal, 4–4

D
Data

application event, 3–122
base class, 3–145
class factory, 1–10, 3–137
Encapsulating, 1–37
encapsulation, 1–7
RTR event, 3–157
RTR message, 3–164
stream, 3–170
stream classes, 1–13

Data classes, 1–7, 3–121
application message, 3–131

Decrement
signed counter, 4–117
unsigned counter, 4–133

Delete
partition, 4–112

DeleteJournal, 4–5
Deregistering a partition, 3–59
Dispatch, 1–6

application event, 3–124
application message, 3–133
RTR event, 3–159
RTR message, 3–166
virtual base method, 3–147

Index–2



E
Encapsulation, 1–7

data, 1–37, 2–14
Ending a transaction, 3–37
Event, 1–7

application event, 3–5
client, 1–33
data, 3–129
data length, 3–162
handling, 1–27
mapping, 1–30
number, 3–128, 3–130
receive, 3–44
send application event, 3–55
server, 1–34

Event-driven
processing, 1–25

Event handler
client, 3–78
register, 3–49
server, 3–18

Event number, 3–163
Exception

set state, 3–73
Existing applications, 1–35

F
Facility

creating, 4–37
dead, 3–81
deleting, 4–42
get member list, 4–73
management, 1–19
properties, 4–44, 4–71
ready, 3–82

Facility manager, 4–29
Facility member, 4–55
FacilityMemberArray, 4–62
Facility member class, 4–53
Facility name, 3–39, 3–63, 4–17

GetFacilityName, 4–17

Factory, 3–137
Failover

set policy, 4–24
ForceTransactionRetry

server, 3–38
Foundation classes

using with existing applications, 1–35
Frontend

adding a, 4–33
removing, 4–48

G
GetErrorText, 4–6
GetFacilityName, 4–17
GetKeySegmentHighValue, 4–79
GetKeySegmentLength, 4–80
GetKeySegmentLowValue, 4–81
GetKeySegmentOffset, 4–82
GetKeySegmentType, 4–83
GetPartitionName, 4–20
GetValue

signed counter, 4–119
string counter, 4–127
unsigned counter, 4–135

H
Handlers

instantiating, 2–4
Handling messages

server, 3–5

I
Increment

signed counter, 4–121
unsigned counter, 4–137

Initialize
client, 3–95
server, 3–24

Insert
facility member array, 4–66
key segment array, 4–98

Index–3



IsRunning, 4–8

J
Journal

GetErrorText, 4–6
Journal:CreateJournal, 4–4
Journal:DeleteJournal, 4–5

K
Key segment, 1–20, 4–77

array, 4–92
constructor, 4–84

L
Legacy applications, 1–35
Link application, 1–40
Local node, 4–59, 4–60

M
Management

classes, 1–19
partitions, 4–107

Member list, 4–73
Message, 1–6

application message, 3–23
client, 1–32
handling, 1–27
initialize server, 3–24
mapping, 1–30
prepare, 3–25
receive, 3–44
secondary status, 3–169
server, 1–33
transaction accepted, 3–21
transaction rejected, 3–27
uncertain transaction, 3–29

Message handler
client, 3–90
register, 3–49
server, 3–5

Message reception styles, 1–24
Message type, 3–167

N
Nodename, 4–55

O
OnServerGainedShadow, 3–12
OnServerLostShadow, 3–16
Operator>>, 3–173
Opertor<<, 3–175
Outcome of a transaction, 3–37

P
Partition, 1–20

deleting, 4–112
key segment, 4–77
key segment array, 4–92
register, 3–51
unregistering, 3–59

Partition manager, 4–107
Partition name, 4–20
Polling, 1–29
Prepare

client, 3–93
Prepare transaction

message, 3–25
Primary server, 3–13
Priority list

set, 4–26
Processing

event-driven, 1–25
polling, 1–29

Properties
backend, 4–113
facility, 4–71
server transaction, 3–60
server transaction controller, 3–43

Protocol, 3–121
Protocols

application, 1–37

Index–4



R
ReadFromStream, 3–177
Receive, 3–44

client, 3–102
Receiving

application message, 1–10, 1–11
Reception styles

message, 1–24
Reconnection

balanced, 4–71
Recovery, 4–19

server, 3–17
set retry count, 4–28
transaction, 3–75

Register class factory
client, 3–104
server, 3–47

Register facility
client, 3–105
server, 3–48

Register handlers
client, 3–107
server, 3–49

Register partition, 3–51
Rejected, 3–27

server, 3–53
Rejected transaction

client, 3–96
Reject transaction

client, 3–109
Remove

backend, 4–46
facility member array, 4–68
frontend, 4–48
key segment array, 4–100
router, 4–50

Replay
transaction, 3–76

Retry
GetRetryCount, 4–22

Retry count
get, 4–22

Return to sender, 3–97
Role

backend, 4–56
frontend, 4–57
router, 4–58

Router
adding a, 4–35
balancing, 4–76
removing, 4–50

RTR
applications, 1–35
get error text, 4–6
GetErrorText, 4–6
IsRunning, 4–8
start, 4–10
StartWebServer, 4–11
Stop, 4–13
StopWebServer, 4–14

RTR:CreateJournal, 4–4
RTR:DeleteJournal, 4–5
rtrapi.h, 1–40
RTRData, 1–7, 3–145

encapsulating data, 2–14
RTR event

data, 3–154, 3–157
event data, 3–161

RTR message
data, 3–155, 3–164
get message type, 3–167

rtr_const_msgfmt_t, 2–22
RTR_STS_ACKTXN, 3–37
RTR_STS_ ACPDIED, 4–10, 4–13
RTR_STS_ACPNOTVIA, 3–44
RTR_STS_ ACPNOTVIA, 4–10
RTR_STS_APPBUFFTOOSMALL, 3–39,

3–41, 3–63, 3–65, 4–20, 4–28
RTR_STS_ APPBUFFTOOSMALL, 4–17
RTR_STS_ BYTLMNSUFF, 4–10
RTR_STS_CONNECTIONLOST, 3–116
RTR_STS_CTRBADOPER, 4–117, 4–121,

4–133, 4–137
RTR_STS_CTRBADREF, 4–117, 4–119,

4–121, 4–127, 4–133, 4–135, 4–137

Index–5



RTR_STS_DATANOTAVAILABL, 3–41,
3–63, 3–65, 3–68, 4–73

RTR_STS_DUPLPARTITION, 3–51
RTR_STS_DUPNODNAM, 4–37
RTR_STS_ENOIPNAM, 4–31, 4–33
RTR_STS_ ERRSTAACP, 4–10
RTR_STS_ EXWSMAX, 4–10
RTR_STS_FACDELETE, 4–42
RTR_STS_FACEXTENDED, 4–35
RTR_STS_FACNOTREG, 3–51, 3–109,

3–116
RTR_STS_HANDLERDELETED, 3–124,

3–133
RTR_STS_ ILLDEVTYP, 4–4
RTR_STS_INSVIREM, 3–139
RTR_STS_INSVIRMEM, 3–55, 3–57, 3–112,

3–114
RTR_STS_INVACCSTRPTRARG, 3–51,

3–105
RTR_STS_INVALIDFACILITY, 3–48, 3–105
RTR_STS_INVAPPEVNTPTARG, 3–55,

3–112
RTR_STS_INVAPPMSGPTARG, 3–57,

3–114
RTR_STS_INVARGPTR, 3–39, 3–41, 3–63,

3–65, 3–126, 3–129, 4–17, 4–20
RTR_STS_INVBCKENDNAMARG, 4–31,

4–37, 4–46
RTR_STS_INVCHANNEL, 3–44
RTR_STS_INVDATPTRPTARG, 3–44, 3–102
RTR_STS_INVEVNTHNDPTARG, 3–49,

3–107
RTR_STS_INVFACNAMEARG, 3–48,

3–105, 4–31, 4–33, 4–35, 4–37, 4–42,
4–44, 4–46, 4–48, 4–50, 4–109, 4–112

RTR_STS_INVFACPROPPTARG, 4–44,
4–46

RTR_STS_INVFACTORYPTARG, 3–47,
3–104

RTR_STS_INVFLAGS, 3–44
RTR_STS_INVFRNTENDNMARG, 4–33,

4–37, 4–48
RTR_STS_INVKEYSEGPTARG, 4–109

RTR_STS_INVKYSGVLPTARG, 4–86, 4–88
RTR_STS_INVMSG, 3–44
RTR_STS_INVMSGFMTPTRARG, 3–55,

3–57, 3–112, 3–114
RTR_STS_INVMSGHNDLPTARG, 3–49,

3–107
RTR_STS_INVOBJFAILCNSTR, 4–117,

4–119, 4–121, 4–123, 4–127, 4–129,
4–133, 4–135, 4–137, 4–139

RTR_STS_INVPARTNAMEARG, 3–51,
3–59, 4–109, 4–112, 4–113

RTR_STS_INVRECPNAMPTARG, 3–51,
3–55, 3–105, 3–112, 3–114

RTR_STS_INVRMNAME, 3–44
RTR_STS_INVROUTRNAMEARG, 4–35,

4–37, 4–50
RTR_STS_INVSTRINGPTRARG, 4–44
RTR_STS_INVTIMOUTMS, 3–116
RTR_STS_INVTXNSTATPTARG, 3–68
RTR_STS_JOUNOTFOU, 4–38
RTR_STS_MAXPARTREG, 4–109
RTR_STS_ NFW, 4–14
RTR_STS_NOACCEPT, 3–35, 3–101
RTR_STS_NOACP, 3–44
RTR_STS_NOBACKEND, 4–37, 4–46
RTR_STS_NOEVENT, 3–112, 3–124, 3–126,

3–128
RTR_STS_NOEVENTDATA, 3–55, 3–124,

3–126
RTR_STS_NOFRONTEN, 4–35, 4–38
RTR_STS_NOHANDLRREGSTRD, 3–124,

3–133
RTR_STS_NOMESSAGE, 3–21, 3–27, 3–35,

3–37, 3–44, 3–53, 3–55, 3–57, 3–101,
3–102, 3–109, 3–112, 3–114, 3–116,
3–124, 3–128, 3–133, 3–135, 3–136

RTR_STS_NOPARTITION, 3–59
RTR_STS_NORECEIVE, 3–44, 3–102
RTR_STS_NOREJECT, 3–53, 3–109
RTR_STS_NORETRYTXN, 3–38
RTR_STS_NOROUTERS, 4–33, 4–38, 4–50
RTR_STS_NOSEND, 3–57, 3–114
RTR_STS_NOSTARTTXN, 3–116

Index–6



RTR_STS_NOSUCHFAC, 4–31, 4–33, 4–35,
4–42

RTR_STS_ NOSUCHFAC, 4–46, 4–48, 4–50
RTR_STS_OWNNODMIS, 4–37, 4–38
RTR_STS_PRTBADCMD, 4–24, 4–26, 4–117
RTR_STS_PRTNDELETED, 4–112
RTR_STS_ RTRNOTRUN, 4–13
RTR_STS_RTRNOTRUNNING, 3–48, 3–51,

3–105
RTR_STS_RTRNOTSTA, 4–31, 4–33, 4–35,

4–42, 4–46, 4–48, 4–50
RTR_STS_SRVDISCON, 4–14
RTR_STS_TCDELETED, 3–124, 3–133
RTR_STS_TIMOUT, 3–44, 3–102, 3–116
RTR_STS_TRUNCATED, 3–44, 3–102
RTR_STS_TXNOTACT, 3–41, 3–53, 3–65,

3–101, 3–109

S
Secondary

status, 3–169
Secondary server, 3–14
Send

application event, 3–55
application message, 3–57

Send application message
client, 3–114
server, 3–57

Server
application programming, 2–3
event, 1–34
get state, 3–68
initialize, 3–24
is primary, 3–13
messages, 1–33
rceive, 3–102
recovery, 3–17
register class factory, 3–104
register facility, 3–48
register handlers, 3–49
register partition, 3–51
reject transaction, 3–53
secondary, 3–14
send application event, 3–55

Server (cont’d)
specifiying server type, 4–109
standby, 3–15
transaction controller, 3–33
transaction properties, 3–60
type, 4–113
web server, 4–11, 4–14

Server classes, 3–2
Server message handler, 3–19
SetKeySegmentHighValue, 4–86
SetKeySegmentLength, 4–87
SetKeySegmentLowValue, 4–88
SetKeySegmentOffset, 4–89
SetKeySegmentType, 4–90
SetValue

signed counter, 4–123
string counter, 4–129
unsigned counter, 4–139

Shadow server, 4–109
Signed counter, 4–115

constructor, 4–124
decrement, 4–117
get value, 4–119
increment, 4–121
set value, 4–123

Standby server, 3–15, 4–109
Start

RTR, 4–10
Start transaction

client, 3–116
State

abort, 3–70
commit, 3–71
done, 3–72
exception, 3–73
transaction state, 3–68

Stop
RTR, 4–13

Stream class, 3–170
Stream classes, 1–13
String counter, 4–125

constructor, 4–130
get value, 4–127
set value, 4–129

Index–7



T
TID, 3–67
Transaction

accept, 3–35
accepted, 3–21
application message, 3–94
classes, 1–3
IsOriginal, 3–74
IsRecovery, 3–75
IsReplay, 3–76
outcome, 3–37
prepare, 3–25
reject, 3–53
rejected, 3–27
send application event, 3–55
state, 3–68
uncertain, 3–29

Transaction controller
client, 3–99

server, 3–33
server properties, 3–43

Transaction ID. See TID, 3–67
Transaction properties

client, 3–118

U
Uncertain transaction, 3–29
Undelivered message, 3–97
Unregistering a partition, 3–59
Unsigned counter, 4–131

constructor, 4–140
decrement, 4–133, 4–135
increment, 4–137
set value, 4–139

W
Web server, 4–11, 4–14
WriteToStream, 3–180

Index–8


