
HP DECforms
Style Guide for Character-Cell Devices
Order Number: AA–Q505C–TE

January 2006

HP DECforms is a software product for applications, services, and tools that
require a structured, forms-based, or menu-based user interface. DECforms
is the first commercial implementation of a proposed ANSI/ISO standard for
forms-based interfaces, the CODASYL Form Interface Management System
(FIMS).

Revision/Update Information: This is a revised manual.

Operating System: OpenVMS Alpha Version 7.3-2 or later
OpenVMS I64 Version 8.2 or later

Software Version: HP DECforms Version 4.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendors standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Oracle CDD, Oracle/Administrator, Oracle CDD/Repository, Oracle Rdb, and Oracle TRACE are
trademarks of Oracle Corporation.

Motif is a registered trademark of the Open Software Foundation, Inc.

ISO is a trademark of the International Organization for Standardization.

PostScript is a registered trademark of Adobe Systems, Incorporated.

Printed in the US

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . ix

Part I Elements of DECforms Style

1 User Interface Design Principles

1.1 Benefits of Using a Style Guide . 1–1
1.2 Benefits of Using the DECforms Style Guide 1–2
1.3 Why This Style Guide Was Developed . 1–2
1.4 Modifying and Extending the DECforms Style Guide 1–2
1.5 Elements of Good User-Interface Design 1–3
1.5.1 Keep the User in Mind . 1–3
1.5.2 Let the User Be in Control . 1–3
1.5.3 Provide Direct Manipulation . 1–4
1.5.4 Keep Your Interface Natural . 1–5
1.5.5 Provide Consistency . 1–5
1.5.6 Communicate Application Actions to the User 1–6
1.5.7 Avoid Common Design Pitfalls . 1–7

2 Overview of Screen Design

2.1 Main Screen . 2–1
2.2 Menus . 2–4
2.3 Dialog Boxes . 2–5
2.3.1 When to Use Dialog Boxes . 2–5
2.4 Choosing Controls or Menus for Application Tasks 2–6
2.4.1 Choosing a Single-Choice Control . 2–6
2.4.2 Choosing a Multiple-Choice Control . 2–6
2.4.3 Guidelines for Using a Pop-Up Menu, a Control Panel, or a

Pull-Down Menu . 2–7
2.5 Labeling Screen Objects . 2–7
2.5.1 General Guidelines . 2–7

iii

2.5.2 Menus . 2–8
2.5.3 Dialog Boxes . 2–8
2.5.4 Screen Objects in Dialog Boxes . 2–9
2.5.5 Push Buttons . 2–9
2.6 Designing Screen Navigation . 2–9

3 Controls

3.1 Push Buttons . 3–1
3.1.1 Appearance . 3–1
3.1.2 Label . 3–3
3.1.3 Selection . 3–3
3.2 Radio Fields . 3–3
3.2.1 Appearance . 3–4
3.2.2 Label . 3–4
3.2.3 Selection . 3–4
3.3 Check Fields . 3–5
3.3.1 Appearance . 3–5
3.3.2 Label . 3–5
3.3.3 Selection . 3–5
3.4 Text Entry Fields . 3–6
3.4.1 Appearance . 3–6
3.4.2 Label . 3–6
3.4.3 Entering Text . 3–6
3.4.4 Linking a Text Entry Field to a Dialog Box 3–7
3.5 List Groups . 3–8
3.5.1 Appearance . 3–8
3.5.2 Selection . 3–9
3.5.3 Navigation Within a List Group . 3–10
3.6 Option Fields . 3–12
3.6.1 Appearance . 3–12
3.6.2 Label . 3–12
3.6.3 Selection . 3–13

4 Menus

4.1 Appearance . 4–1
4.2 Components . 4–3
4.2.1 Menu Items . 4–3
4.2.2 Keyboard Accelerators . 4–3
4.2.3 Mnemonics . 4–4
4.2.4 Separators . 4–4
4.3 Choosing a Menu Item . 4–4

iv

4.4 Showing Unavailable Menu Items . 4–5
4.5 Dismissing Menus . 4–6
4.6 Menu Types . 4–6
4.6.1 Bar Menus . 4–6
4.6.1.1 Standard Bar Menu Items . 4–7
4.6.2 Pull-Down Menus . 4–8
4.6.3 Pop-Up Menus . 4–10
4.7 Designing Menus . 4–11
4.7.1 Naming Menu Items . 4–11
4.7.2 Grouping Menu Items . 4–12

5 Dialog Boxes

5.1 Purpose . 5–1
5.2 Appearance . 5–1
5.3 Size and Placement . 5–2
5.4 Ending a Dialog . 5–3
5.5 Chaining Dialog Boxes . 5–3
5.6 Grouping Controls . 5–3
5.6.1 Arranging Push Buttons . 5–3
5.6.2 Default Push Buttons . 5–4
5.6.3 Using Radio Boxes . 5–5
5.6.4 Arranging Text Entry Fields . 5–5
5.7 Specialized Dialog Boxes . 5–6
5.7.1 Work in Progress Dialog Box . 5–6
5.7.2 Informational Dialog Box . 5–7
5.7.3 Question Dialog Box . 5–8
5.7.4 File Selection Dialog Box . 5–9

Part II Implementing DECforms Style

6 Implementing Controls

6.1 Push Buttons . 6–1
6.2 Radio Fields . 6–3
6.3 Check Fields . 6–8
6.4 Text Entry Fields . 6–11
6.5 List Groups . 6–13
6.6 Option Fields . 6–13

v

7 Implementing Menus

7.1 Bar Menus . 7–1
7.2 Pull-Down Menus . 7–5
7.3 Pop-Up Menus . 7–12

8 Implementing Dialog Boxes

8.1 Work in Progress Dialog Box . 8–1
8.2 Informational Dialog Box . 8–2
8.3 File Selection Dialog Box . 8–7

A Track and Field Registration Form

B Track and Field Registration Application

Glossary

Index

Examples

6–1 OK and Cancel Push Buttons IFDL Code Example 6–2
6–2 Radio Fields IFDL Code Example . 6–4
6–3 Check Fields IFDL Code Example . 6–8
6–4 Text Entry Field IFDL Code Example 6–11
6–5 Option Fields IFDL Code Example . 6–13
7–1 TAFR Bar Menu IFDL Code Example 7–2
7–2 List Registrants Pull-Down Menu IFDL Code 7–6
7–3 TAFR Country Pop-Up Menu IFDL Code Example 7–13
8–1 Work in Progress Dialog Box IFDL Code Example 8–1
8–2 Quit Caution Dialog Box IFDL Code Example 8–3
8–3 File Selection Dialog Box IFDL Code Example 8–7

vi

Figures

2–1 Sample Main Screen Showing the Different Screen Areas
. 2–2

2–2 Bar Menu . 2–3
2–3 Bar Menu with Pull-Down Menu . 2–4
2–4 Sample Dialog Box . 2–5
3–1 Recommended Appearance of Push Buttons 3–2
3–2 Default Push Button . 3–2
3–3 Alternate Appearance for Push Buttons 3–3
3–4 Set of Radio Fields . 3–4
3–5 Highlighted Radio Field Within a Set of Radio Fields 3–4
3–6 Set of Check Fields . 3–5
3–7 Text Entry Field . 3–6
3–8 Text Entry Field Linked to a Dialog Box 3–8
3–9 List Group . 3–8
3–10 Two-Column List Group . 3–9
3–11 Option Field . 3–12
3–12 Highlighted Option Field . 3–12
3–13 Option Field with an Undefined Initial Value 3–12
3–14 Pop-Up Menu Used with an Option Field 3–13
4–1 Sample Menu . 4–2
4–2 Sample Menu with All Three Types of Menu Items 4–2
4–3 Sample Menu Showing Accelerator . 4–4
4–4 Sample Menu Showing a Highlighted Toggle Item 4–5
4–5 Sample Menu Showing an Unavailable Item 4–6
4–6 Bar Menu with Pull-Down Menus . 4–7
4–7 Two-Line Bar Menu . 4–7
4–8 Location of Pull-Down Menus . 4–9
4–9 Sample of a Submenu Cascaded Downward 4–10
5–1 Sample Dialog Box . 5–2
5–2 Push Buttons Arranged Horizontally 5–4
5–3 Push Buttons Arranged Vertically . 5–4
5–4 Vertically Stacked Radio Box . 5–5
5–5 Horizontally Arranged Radio Box . 5–5
5–6 First Method of Stacking Text Entry Fields 5–6
5–7 Second Method of Stacking Text Entry Fields 5–6

vii

5–8 Typical Work in Progress Dialog Box 5–7
5–9 Typical Informational Dialog Box . 5–8
5–10 Typical Question Dialog Box . 5–9
5–11 Typical File Selection Dialog Box . 5–10

Tables

1 Conventions Used in This Manual . xi
2–1 Keys Used to Navigate a DECforms Screen 2–10
3–1 Keys Used to Edit Text . 3–7
3–2 Keys Used Within a List Group . 3–10
5–1 Additional Keys Used Within a File Selection Dialog Box . . . 5–11

viii

Preface

Who Should Use This Guide
This manual is intended for programmers who develop DECforms applications
and who seek to present a uniform, usable software interface that is consistent
with other DECforms applications.

It is expected that readers are familiar with DECforms software.

Structure of This Guide
The DECforms Style Guide is organized as follows:

Part I Describes a user interface style developed for DECforms.

Chapter 1 Describes the principles involved in the design of any good
user interface.

Chapter 2 Describes the basic screen components and indicates when
it is appropriate to use each of these.

Chapter 3 Describes the basic controls used in this interface.

Chapter 4 Describes the structure and contents of menus.

Chapter 5 Describes the use of controls in dialog boxes.

Part II Describes how to use DECforms to implement the style
described in Part I. This description mostly takes the form
of examples.

Chapter 6 Shows DECforms examples of different types of controls.

Chapter 7 Shows DECforms examples of different types of menus.

Chapter 8 Shows DECforms examples of dialog boxes.

Appendix A Contains the IFDL that creates the Track and Field
Registration form.

Appendix B Contains the DECforms Track and Field Registration
program.

ix

For More Information
See the online help, the online release notes, or the following documents for
more information about DECforms:

• HP DECforms Installation Guide for OpenVMS Systems—Describes how to
install DECforms software on Alpha and I64 systems that are running the
OpenVMS operating system.

• HP DECforms Guide to Commands and Utilities—Describes the DECforms
FORMS commands and utilities.

• HP DECforms IFDL Reference Manual—Describes the DECforms syntax
information of the Independent Form Description Language (IFDL).

• HP DECforms Programmer’s Reference Manual—Describes how DECforms
software operates at run time and how to call the DECforms requests from
an application program.

• HP DECforms Guide to Developing an Application—Part I explains for the
beginning DECforms programmer how to create a DECforms application,
including both the form and the program. Part II contains additional
guidelines and examples for more experienced DECforms programmers.

• HP DECforms Guide to Demonstration Forms and Applications—
Describes how to use various demonstration forms and applications.
This guide is contained in online files named forms$demo_guide.txt and
forms$demo_guide.ps in the FORMS$EXAMPLES directory.

If you cannot find this document, ask your system manager to install it in
the appropriate directory.

For information about displaying these forms, see the appendix section of
the HP DECforms Guide to Developing an Application.

• HP DECforms Guide to Converting FMS Applications—Describes how to
convert a VAX FMS or DEC FMS application to a DECforms application.

Also of interest to users of DECforms software is the CODASYL Form Interface
Management System Journal of Development (see the Acknowledgment
section).

x

Reader’s Comments
HP welcomes your comments on this manual or any of the DECforms. Please
send comments to either of the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation and for online
versions of most DECforms, visit the following World Wide Web address:

http://www.hp.com/go/openvms/doc/

Conventions
Table 1 shows the conventions used in this manual:

Table 1 Conventions Used in This Manual

Symbol or Term Meaning

Ctrl/X In procedures, a sequence such as Ctrl/X indicates that
you must hold down the key labeled Ctrl while you press
another key.

KPn Key names that begin with KP indicate keys on the numeric
keyboard on the right side of your keyboard. For example,
KP4 and KP. are keys on the numeric keypad.

PF1-X A sequence such as PF1-X indicates that you must first
press and release the key labeled PF1, then press and
release another key.

(continued on next page)

xi

Table 1 (Cont.) Conventions Used in This Manual

Symbol or Term Meaning

. . . In examples, a horizontal ellipsis indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information can
be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

() In format descriptions, parentheses indicate that, if you
choose more than one option, you must enclose the choices
in parentheses.

$ user input Bold in examples shows user input.

Bold Boldface text indicates a new term in text that is also
defined in the Glossary.

$ The default user prompt is your system name followed by a
right angle bracket (>).The dollar sign is used to indicate
the DCL prompt on VMS systems. This prompt might be
different on your system.

DECforms References to DECforms throughout this manual refer to
HP DECforms software.

Acknowledgment
DECforms is the HP implementation of a Form Interface Management System
(FIMS) ANSI/ISO standard prepared by the CODASYL Form Interface
Management System Committee and ISO/IEC JTC1/SC22 Working Group 18.
The FIMS standard is documented in ISO IS 11730:1994 and can be purchased
from the International Organization for Standardization or the American
National Standards Institute.

xii

Part I
Elements of DECforms Style

This part contains a basic overview of good user interface design, and a style
guide for DECforms software.

1
User Interface Design Principles

DECforms software is a powerful and flexible tool used to create and control
the user interface of an application. DECforms currently supports only
character-cell terminals. This guide is intended to assist users of character-cell
terminals in creating screens.

The great flexibility of DECforms lets you create user interfaces that look and
act differently, depending on the needs of your applications. For example, you
would design the user interface of an accounts payable application differently
from an application that teaches children simple arithmetic.

Although there are instances in which you want an application to have a
totally unique user interface, you probably are designing applications that are
part of a group of related applications or are used by people who use other
applications. In this instance, there should be a consistent look and feel among
all the applications. The screens in all the applications should look similar,
and the way the user moves through the applications should feel similar.
This consistency across applications makes it easier for a user to learn a new
application. The knowledge learned from one application can be applied to
another application, reducing the amount of learning and subsequent recall.
When an application works with the same look and feel as other applications,
the new function seems familiar, comfortable, and appropriate to users.

1.1 Benefits of Using a Style Guide
A style guide is a set of rules and guidelines that helps you make design
decisions during your application development.

The advantages of following an established style during development include
the following:

• Consistency within each application

• Consistency among all applications that you develop

User Interface Design Principles 1–1

• Consistency among all applications designed by different application
developers

• Faster application development, because many of the design decisions have
already been made

1.2 Benefits of Using the DECforms Style Guide
Although following any style guide provides consistency, it is important that
the style you choose provides a well-designed user interface that is easy to use.
The style presented in this guide provides this ease of use.

This style guide is:

• Based on good design principles

• A collaborative design effort involving DECforms engineers, forms
developers, users, and user-interface designers

• Designed with maximum use of DECforms features and attention to
performance issues

1.3 Why This Style Guide Was Developed
Many DECforms customers have asked for guidelines to create usable and
consistent user interfaces for DECforms applications. This style guide was
developed in response to those requests.

This style was chosen as many people use DECforms applications on character-
cell terminals.

1.4 Modifying and Extending the DECforms Style Guide
Although many DECforms developers will find the style documented in this
guide applicable to the applications they are developing, you may determine
that it is not totally appropriate for your application or is not detailed enough
for your application. In this case, you should use this guide as a starting point
and modify or extend it to fit your requirements.

Consider the following guidelines in designing the modifications and extensions
to your style guide:

• Start by talking to your users. Ask them questions that will help you
understand their requirements for a user interface.

1–2 User Interface Design Principles

• Organize a small group of people who can help you develop a style
guide. The contributors to this group will depend on your company. At
a minimum, you should include some developers and some users. If
possible, include others who might have valuable input (for example, from
documentation, customer service, quality control, and so on).

• Consider using the services of a user-interface designer.

• Meet with your group to discuss major topics of style (for example, menus,
controls, help, navigation, and so on).

• Become aware of any existing standards that your style must follow.

• Create samples or prototypes of your proposed style. Show these prototypes
to users and gather their feedback.

• Document your style clearly. Use pictures and samples of your style
whenever possible.

• Create a mechanism by which suggestions and comments on the
documented style can be collected, discussed, and implemented (or
rejected).

• Read and keep in mind the elements of good interface design described in
Section 1.5.

1.5 Elements of Good User-Interface Design
A good user interface is one that is consistent and easy to use. This section
includes guidelines for designing a usable interface that are applicable to any
style.

1.5.1 Keep the User in Mind
Good interface design involves adopting the user’s point of view. Your users are
your audience. For your interface to communicate well with users, you must
understand their vocabulary, the work they need to perform, and how they
do their work. The best way to learn this is to talk with your users, observe
them, involve them in the design, and become a user yourself. The user’s tasks
should drive the interface design.

1.5.2 Let the User Be in Control
Users want to be in control of their tools.

You can provide them with this control as follows:

User Interface Design Principles 1–3

Give the
user a
choice

• Provide flexibility by providing multiple ways of accessing an application’s
functions. This increases the user’s sense of control. Allow your users to
choose the way they want to accomplish a task. For example, a user can
access a function through a pull-down menu, a mnemonic key sequence, or
an accelerator.

You can also provide flexibility by allowing users to change default settings
and customize options. To be effective, the interface between the user and
the customization feature must be easily accessible.

Put first
things
first

• Design your application using progressive disclosure. This means that
the necessary and common functions are presented first and in a logical
order. The more sophisticated and less frequently used functions should be
hidden from view, but easily available. For example, use a dialog box to
hide settings that are used infrequently.

Decisions about the placement of functions are not easy to make. From the
implementation standpoint, all functions are important. Often, however, a
relatively small number of functions account for the majority of use. These
important functions need to be prominently featured in the presentation of
the interface, but they can be prominent only if other functions are hidden.

1.5.3 Provide Direct Manipulation
Direct manipulation describes the relationship between the user and the user’s
tools. Direct manipulation connects the user’s actions with the response of
physical objects. In direct manipulation interfaces, users should experience
immediate and visible results of their actions.

You can provide direct manipulation as follows:

Make it
fast

• Make your application respond to input as rapidly as possible. When
using controls, the user should experience the application’s response as
immediate and in proportion to the user’s action. The response speed
of the application must also be consistent. Delays, disproportionate
responses, or inconsistent responses can make an otherwise well-designed
application unusable. Performance problems make it difficult for the user
to concentrate on the task at hand.

Make it
selectable

• Make the output of your application available as input. For example, if one
action produces a list of names, another action can select from this list of
names. The user manipulates objects by highlighting them and selecting
them rather than typing in their names. The only time the user should
need to type a name is when objects are created. An application should
reduce the amount of information the user must memorize to perform
work.

1–4 User Interface Design Principles

1.5.4 Keep Your Interface Natural
Design your application so that tasks flow naturally. Users need to be able to
anticipate the natural progression of each task.

Each screen object needs to have a distinct appearance that your user can
easily recognize and quickly understand. At the same time, the style of the
interface needs to unify these elements graphically and ensure a consistent
and attractive appearance.

You can ensure task flow as follows:

Make
navigation
easy

• Make navigation easy by providing an easy mechanism for moving through
the work area of your application. Moving easily and quickly within the
work area gives users a sense of mastery over the application and their
work. For example, pressing the down arrow key is an easy and intuitive
way to move downward from one object to the next.

Arrange elements on the screen according to their use; optimal
arrangement assists the user’s decision-making process and reduces
the possibility of errors. Present screen objects in an orderly, simple, and
uncluttered manner.

Use
color
carefully

• Use color carefully. Color is a powerful cue for differentiating screen
objects; however, you should use it conservatively. If there are many
objects with strong contrast or bright colors on the screen, the user will
have difficulty knowing where to look first because all these objects compete
equally for attention. Be sure that any use of color coding supports the
user’s task.

Use color only as a secondary cue; that is, to provide additional
differentiation among screen objects. The usability of an application
should not rely on the user’s ability to distinguish colors.

Be aware of any cultural expectations of certain colors. For example, in
Western cultures the color red is often associated with a warning, error, or
emergency situation.

1.5.5 Provide Consistency
The main purpose of any style guide is to ensure ease of use. Consistency is
an excellent tool to help provide this. Consistency is important both across
applications and within a single application. Consistency helps the user
transfer familiar skills to new situations. When components work in a manner
that is consistent with other components, the user will be less afraid to try new
functions.

Consistency means the following:

User Interface Design Principles 1–5

Group by
similarity

• Similar components operate similarly and have similar uses. For example,
because pull-down and pop-up menus are similar components, their
operation and use should be similar.

Same
action
and result

• The same action should always have the same result. For example,
pressing the down arrow key in a list group should always move the
highlight to the next item in the list.

Keep
the same
function

• The function of components should not change based on context. For
example, pressing the Select key at a push button should always perform
the same action. Even though the action is the same (initiate the
command), the result of the action can depend on context (the particular
command).

Keep
the same
position

• The position of components should not change based on context. Adding
and removing components as needed makes it difficult to find the desired
component quickly. Make unneeded components unavailable and indicate
this by differentiating their labels. For example, help is usually the last
selection on a menu. Do not move help to a higher level because you feel
that your user might select it more often. The user looks for components to
remain in similar positions in different contexts.

1.5.6 Communicate Application Actions to the User
Well-designed applications let the users know what is happening. This
feedback increases user satisfaction.

You can communicate with users as follows:

Give
feedback

• Give users feedback whenever they have initiated an action. Feedback
lets users know that the computer has received their input. If certain
operations take more than a few seconds, provide a message to let the user
know that the computer is working on that operation.

Give
help

• Anticipate likely errors. By anticipating errors, you can avoid them in your
design, enable the support of recovery attempts, and provide messages
informing the user of the proper corrective action.

Use context-sensitive help to aid understanding, reduce errors, and ease
recovery efforts. Help information text needs to be clear, concise, and
written in everyday language. Help information needs to be readily
accessible and just as readily removable.

1–6 User Interface Design Principles

Give
warnings

• Use explicit destruction. Explicit destruction means that when an action
has irreversible negative consequences, it should require the user to take
an explicit action to perform it. For example, whereas a file can be saved
simply by selecting a Save push button, deleting the file should require
selecting a Delete push button and answering a warning question, such as
‘‘Are you sure you want to delete this file?’’ by choosing a selection in the
warning dialog box.

Warnings protect the user from inadvertent destructive operations, yet
allow them to remain in control of the application. Warnings also
encourage the user to experiment without fear of loss. Operations that
can cause a serious loss of data should warn the user of the consequences
and request explicit confirmation.

1.5.7 Avoid Common Design Pitfalls
The process of achieving good design presents many challenges and potential
pitfalls.

The following guidelines can help you avoid common pitfalls:

Watch
the
details

• Pay attention to details.

The details of an application express the sense of craft that you apply to
your application. The details of an elegantly designed interface should
both please users and make their work easier. For example, consistent
capitalization of menu items and dialog box labels is a design detail that
reduces textural distraction for users.

Refine
the
design

• Redesign as long as possible.

A common design pitfall is assuming too early that a design is complete.
This tendency is aggravated by schedule pressures and difficulty in
pinpointing the inadequacies of a design. Although it is important to begin
designing early, it is also important to allow for redesigning for as long as
possible. The first design of an application is not a solution but a fresh
perspective from which to view interface design problems.

Refine
the
design
again

• Design iteratively.

The development cycle of implementation, feedback, evaluation, and
change avoids costly errors by allowing for early recognition and correction
of unproductive designs.

User Interface Design Principles 1–7

Start
fresh

• Start with a fresh perspective.

Avoid the temptation to convert existing software by simply translating it
to a new style of interface. Because direct manipulation changes the way
users work, a simple one-to-one translation is unlikely to be successful.
Command-line applications that are converted to direct manipulation
should be extensively reconsidered and revised. The functions, structure of
the function hierarchy, and presentation need to be completely redesigned.

Make it
simple

• Hide implementation details.

User interfaces should hide the underlying software and present a
consistent interface to the user. A good user interface does not allow
implementation details of the application to show through. It frees the
user from focusing on the mechanics of an application. An excellent
example of this is using a bank machine to get money. You do not see the
underlying software that finds your account, validates the transaction,
subtracts the amount requested from your balance, and then returns that
information to the bank. All you do is press a few keys to get cash. In
other words, the interface design should be driven by the user’s task, not
by the underlying system.

Do
what’s
best for
the user

• Recognize conflicting guidelines.

There may be times when two or more design guidelines conflict. Recognize
these occurrences and carefully weigh all the factors in designing a
solution. For example, assume direct manipulation is an important
guideline being followed, but in one area of the application it goes against
the user’s point of view. Recognize this conflict and examine tradeoffs for
various solutions. One of the real challenges in designing a good user
interface is to determine what is best for the user when conflicts arise.

1–8 User Interface Design Principles

2
Overview of Screen Design

One of the main challenges of designing an application interface is to decide
how to best present the different pieces of information to users. The DECforms
interface described in this style guide has three major methods for presenting
information: the main screen, menus, and dialog boxes.

This chapter describes:

• The main screen, menus, and dialog boxes, including the controls used to
design menus and dialog boxes. (Menus and dialog boxes are described in
more detail in Chapters 4 and 5, respectively.)

• Guidelines for choosing controls or menus for application tasks.

• Guidelines for labeling screen objects.

• Guidelines for designing screen navigation.

2.1 Main Screen
The design of the application’s main screen depends very much on the
application itself. The work area might contain controls for the primary
application actions. It also might contain important information that is
constantly being updated, or a control panel for components that are used
frequently throughout the application. Many applications use only the bar
menu on the main screen and leave the work area open, ready to display
menus and dialog boxes.

One of the first tasks of your application is to present the main screen of the
application to your users. Effective screen design uses different areas of the
main screen to deliver different kinds of information. This consistent method
of delivery helps users easily find the information they need.

Overview of Screen Design 2–1

The main screen of your DECforms application should display the following
areas on the screen:

• Application title bar

• Bar menu

• Work area

• Message panel

Figure 2–1 shows a main screen with a title bar, a bar menu, a work area, and
a message panel.

Figure 2–1 Sample Main Screen Showing the Different Screen Areas

Title Bar
Bar Menu

Work Area

Message Panel

ZK−9810−GE

4

3

2

1

1 Application Title Bar

The application title bar is the line that identifies your application. It
occupies line 1 on the screen. The title is left-justified and the whole line is
underlined.

2–2 Overview of Screen Design

2 Bar Menu

The bar menu is a horizontal bar that contains the names of the menus
for each major function of the application. The bar menu is located
immediately below the title bar (on line 2) and extends the full width of the
screen. If the space required for the menu names exceeds the screen width,
the bar menu can occupy two lines (lines 2 and 3). For more detailed
information about menus, see Chapter 4.

Figure 2–2 shows a bar menu in detail.

If your application provides interactive help, you should include a Help
menu, as shown in Figure 2–2. The Help menu should be located on the
right side of the bar menu.

Figure 2–2 Bar Menu

3 Work Area

The work area is the portion of the screen in which users perform most
application tasks. It is located directly below the bar menu. The work
area of the application main screen can contain permanently displayed
application information, such as a control panel. It is also the area in
which pull-down menus, pop-up menus, and dialog boxes are displayed.

4 Message Panel

You use the message panel to display short application messages. The
recommended size and position is a two-line message panel located at the
bottom of the screen (lines 23 and 24). There is only one message panel.

Note

Design your application so that other panels do not overlay the message
panel. If you do not, the message panel comes to the surface when a
new message is displayed, obscuring the currently active panel. This
removes control from users and leads to frustration.

Overview of Screen Design 2–3

2.2 Menus
Menus are readily available, quick to be displayed and dismissed, and easy
to browse through. However, menus are suitable only for simple actions and
cannot be used for text entry or for complicated functions.

Menus should be used in the following cases:

• For application functions that are used frequently

• For application functions that are accessed by most users

• For simple actions

Menus consist of lists of items from which to choose, and the controls used
to choose them. The bar menu is one type of menu used by DECforms
applications. Other types of menus include pull-down menus and pop-up
menus. A pull-down menu appears when users select a menu name from
another menu. For example, Figure 2–3 shows a pull-down menu that appears
when users select Registration from the bar menu. Pop-up menus look similar
to pull-down menus and are displayed as a result of a special key sequence.
Chapter 4 describes both pull-down and pop-up menus in detail.

Figure 2–3 Bar Menu with Pull-Down Menu

2–4 Overview of Screen Design

2.3 Dialog Boxes
Dialog boxes are pop-up panels that are used to gather or display information.
They can contain controls that help users enter information and control
application tasks. Dialog boxes remain visible only until their purpose has
been completed. Chapter 5 describes dialog boxes in more detail.

Figure 2–4 shows a sample dialog box displayed in the work area of the main
screen.

Figure 2–4 Sample Dialog Box

2.3.1 When to Use Dialog Boxes
Dialog boxes are primarily used to present information to users and to take
input from users. Dialog boxes are displayed only when needed, thus leaving
the main work area less cluttered. Dialog boxes can be used to perform more
than one action at a time, and for more complex interactions than are available
in a menu, such as file selection.

Dialog boxes should be used in the following cases:

• For ancillary application actions

• For seldomly used actions

• For application functions that are not accessed by most users

Overview of Screen Design 2–5

• For complex actions

• For transient information

• For messages that require some action

2.4 Choosing Controls or Menus for Application Tasks
Once you have determined which presentation methods to use for the major
components of your application, you need to determine how best to present
the tasks within each of the major components. Chapter 3 describes in detail
the different types of controls that can be used to accomplish tasks. This
section presents guidelines for which controls or menus should be selected to
accomplish different kinds of tasks.

2.4.1 Choosing a Single-Choice Control
Use a single-choice control when you want users to choose a single item from a
group of items. For example, you might want users to choose an address label
format in a customer database program.

The single-choice controls are as follows:

• Radio field

• List group

• Option field

The choice of which single-choice control to use depends on the number of
items in the list and the space available to display the control. A radio box
typically contains from 2 to 10 radio fields. A list of items more than 10
is better displayed in a list group. If there is little space available in your
application, use an option field, as it takes up the least room. When selected,
the option field should display a pop-up menu (if there is room to display the
whole list of items) or a list group (if there is only room for part of the list to
be displayed at one time).

2.4.2 Choosing a Multiple-Choice Control
Use a multiple-choice control when you want users to be able to choose more
than one item from a group of items. For example, you might want users to
select any number of athletic events from a list of athletic competitions.

The multiple-choice controls are as follows:

• Check field

• List group

2–6 Overview of Screen Design

The major factor in determining which control to use depends on the number of
items in the list. For small groups of 10 or fewer items, use a group of check
fields. For larger numbers of items, use a list group. Depending on how it is
set up, a list group can be a single- or multiple-choice control.

2.4.3 Guidelines for Using a Pop-Up Menu, a Control Panel, or a
Pull-Down Menu

Users select both pop-up menus and control panels as shortcuts to access
frequently used controls. Pop-up menus are visible only when requested by
users. Whereas pop-up menus are hidden, they can be difficult for novice users
to find. However, they do not take up any permanent space in the work area.

A control panel is always visible and is thus easier than a pop-up menu for
novice users. However, a control panel takes up permanent space in the work
area.

An application should use a control panel when users make frequent or
multiple selections, and when there is adequate space in the work area. An
application should use a pop-up menu only when there is not enough space in
the work area to provide a permanent control panel. Pull-down menus provide
a good compromise between the availability of a control panel and the space
savings of a pop-up menu.

2.5 Labeling Screen Objects
To ensure the consistency of your application with other DECforms
applications, use the following guidelines for labeling controls, menus,
and dialog boxes.

2.5.1 General Guidelines
The following guidelines apply equally well to controls, menus, and dialog
boxes. You should use them as frequently as possible to ensure consistency.

• Avoid using all uppercase text. Mixed case improves readability and style.

Use: Add Registration

Avoid: ADD REGISTRATION

Overview of Screen Design 2–7

• Use initial caps for menu names, menu items, and labels. If you use a
compound word, capitalize the first word and all other words that are
nouns or proper adjectives or that have equal force with the first word. Use
all lowercase letters for any article, coordinating conjunction, or preposition
that falls between two major words.

Side-by-Side
Cross-References

• Follow the capitalization rules of the foreign language when you use foreign
words.

• Avoid abbreviations. Pop-up and pull-down menus take up space on the
screen only temporarily, so spelling out a word costs little. Abbreviations
can be ambiguous and can cause translation problems.

Follow international standards for abbreviations of units of measurement.

• Use an acronym only if the term has previously been spelled out on the
screen with the acronym following in parentheses.

2.5.2 Menus
Use the following guidelines to label menus:

• Capitalize each word in a menu name or menu item with three or fewer
words, except for articles and prepositions fewer than five characters in
length that fall between two other words.

Print List
Print to File...

• If a menu name or menu item contains four or more words, capitalize only
the first word.

Use row and column numbers
Print only right-hand pages
Place page number at bottom

2.5.3 Dialog Boxes
Use the following guidelines to label dialog boxes:

• Where possible, use sentences or sentence-like wording for informational,
question, or work in progress boxes. Capitalize the first word of each
sentence. Use punctuation unless a file specification occurs at the end of a
sentence.

2–8 Overview of Screen Design

Loading file [TRACK.REGISTRANTS]AUSTRALIA_REGISTRANTS.TXT

The file [USER.REPORTS]MY_REPORT.TXT cannot be found.
Check the file name and directory for errors and try again.

• The title of the dialog box should reflect the command that created it. Left-
justify the title and capitalize all words except for articles and prepositions
fewer than five characters in length that fall between two other words.

List Registrants by Country

2.5.4 Screen Objects in Dialog Boxes
Use the following guidelines to label objects in dialog boxes:

• Capitalize each word of a screen object within a dialog box (such as labels
for a check field, radio field, option field, or text-entry field), except for
articles and prepositions fewer than five characters in length that fall
between two other words.

Display on Screen
Print List
Print to File

• If the text for a screen object within a dialog box contains four or more
words, capitalize only the first word.

Delete file when printed

2.5.5 Push Buttons
Use the following guidelines to label push buttons:

• Capitalize the first letter of each word.

Cancel
Delete File

• The only exception to this rule is the OK push button, in which case both
letters of the word are capitalized.

2.6 Designing Screen Navigation
Part of designing a screen is designing how users will move the cursor from
object to object. Consistency in navigation is very important for a well-designed
screen.

Help users by providing other feedback when the cursor does not move or when
they press a function key with no defined action. If users press a navigational
key when no movement can occur, an informational message should appear in
the message panel. For example, if the cursor is located on the topmost object

Overview of Screen Design 2–9

and users press the up arrow key, you could display the message ‘‘Press F10 to
complete, or down arrow to go to next item.’’

Table 2–1 shows the keystrokes used to navigate a DECforms screen.

Table 2–1 Keys Used to Navigate a DECforms Screen

Action
LK-Series
Keyboard Keys1

VT100-Series
Keyboard Keys

Moves the cursor to the object to
the right

� �

Moves the cursor to the object to
the left

� �

Moves the cursor to the object
above

� �

Moves the cursor to the object
below

� �

Moves to the next object2 Return Return

Moves to the previous object2 F12 Backspace or Ctrl+ H

Accelerator for the default
operation (typically, the OK
operation)

F10 Ctrl+ Z

Accelerator for the CANCEL
operation

F8 PF1 Q

1LK-series keyboards can also use the VT100-series keys, except for the Linefeed and Backspace
keys, which are not on an LK-series keyboard.
2The activation order defines the next and previous object. You should design the form so that the
next object in the activation order corresponds to the object that the user logically expects to be the
next object.

2–10 Overview of Screen Design

3
Controls

Users use different types of controls to manipulate applications. These controls
include:

• Push buttons

• Radio fields

• Check fields

• Text entry fields

• List groups

• Option fields

This chapter describes each of these individual types of controls. Chapter 5
describes how to combine and use these controls within dialog boxes.

3.1 Push Buttons
A push button allows a user to initiate an action. The push button appears
as a label within a rectangular area. When the user positions the cursor to the
push button and selects it, the action represented by the label occurs. Push
buttons are used in a variety of ways in menus and dialog boxes. This section
discusses the push button as an individual component. Chapter 5 discusses the
use and grouping of push buttons in menus and dialog boxes.

3.1.1 Appearance
A push button can appear one of two ways, depending on the space
requirements of your application. The recommended appearance uses a
rectangular box around a label, occupying three vertical lines on the screen.
If you do not currently have enough space for this on your screen, consider
splitting the information into more than one screen, or using additional dialog
boxes. Remember, a tight, cramped screen that is full of information is often
difficult to use. However, if your users’ requirements necessitate a full screen,
then you can use the alternate appearance for a push button.

Controls 3–1

Whichever style of push button box you choose, use it consistently within your
application. Do not mix the two different box styles within an application.

Recommended Appearance—The preferred way to create a push button is
to surround the label with a rectangular box, as shown by the Cancel push
button in Figure 3–1. Leave one space character before the label and one
space character after. (The exception to this rule occurs when push buttons of
different label lengths are stacked vertically. In this case, all boxes are made
the same size and each label is centered within its box. For more information
on stacked push buttons, see Section 5.6.1.)

When the user positions the cursor to the push button, the blinking block
cursor appears in the space to the left of the label, and the characters of
the label appear in reverse video, as illustrated by the OK push button in
Figure 3–1.

Figure 3–1 Recommended Appearance of Push Buttons

To distinguish a default push button (described in Section 5.6.2) visually from
other push buttons, bold the surrounding box and the label, as shown by the
OK push button in Figure 3–2.

Figure 3–2 Default Push Button

Alternate Appearance—If available space on the screen is limited and you
do not have enough room to surround the push button label with a box, you
can use reverse video for the label to give a box-like effect. Although using
reverse video to create a box requires less space on the screen, a lot of reverse
video can distract the user.

Leave one space character before the label and, if space allows, one space
character after the label. When the user positions the cursor to the push
button, the blinking cursor should appear in the space before the label. To
distinguish a default push button visually, underline the label.

3–2 Controls

Figure 3–3 shows push buttons using this alternate appearance.

Figure 3–3 Alternate Appearance for Push Buttons

3.1.2 Label
Use a short label in a push button. Action verbs such as Apply, Cancel, Reset,
and Print are best. Labels such as Yes, No, or OK are commonly used as
replies to questions. Do not use abbreviations in your push button label,
because this often confuses the user.

If the push button is used to display another menu or dialog box, the label is
followed by an ellipsis (. . .). For example, the label Options . . . is used in a
push button whose action is to display another dialog box with options.

3.1.3 Selection
After positioning the cursor to a push button, the user presses the Select key
or the keypad period key to select the push button. The action described by the
label then occurs. If the user must wait for the action and if there are no other
visible clues to what is happening, you should either display a message in the
message panel or display a ‘‘Work In Progress’’ dialog box to indicate that the
action is taking place.

3.2 Radio Fields
A radio field allows users to select one item from a group of items that are
mutually exclusive. For example, when you select one button on a car radio,
the previously selected button is no longer selected.

Controls 3–3

Figure 3–4 illustrates a typical set of radio fields.

Figure 3–4 Set of Radio Fields

3.2.1 Appearance
When the radio field is on, the radio indicator is a set of angle brackets
surrounding a diamond character. When the field is off, a space character
replaces the diamond. The indicator is positioned to the left of the label,
separated by one space. When the user positions the cursor to the radio field,
the blinking cursor appears in this space and the label appears in reverse
video, as shown in Figure 3–5.

Figure 3–5 Highlighted Radio Field Within a Set of Radio Fields

3.2.2 Label
Use a short, descriptive phrase as the label in a radio field. The label of a radio
field should clearly indicate the action caused by choosing the field. Capitalize
the first and last words of the label, and all nouns, pronouns, adjectives, verbs,
and adverbs. Do not capitalize conjunctions, articles, and prepositions.

Do not try to make the label short at the expense of clarity.

3.2.3 Selection
After positioning the cursor to a radio field, the user presses the Select key or
the keypad period key to select the radio field. A filled-in diamond appears
within the angle brackets of the currently selected field and disappears from
the previously selected radio field. If the user selects a radio field that is
already on, the radio field remains on.

3–4 Controls

3.3 Check Fields
A check field allows users to select items from a group of choices that are not
mutually exclusive. A user can toggle a check field on or off independently from
the other check fields in its group.

Figure 3–6 illustrates a typical set of check fields.

Figure 3–6 Set of Check Fields

3.3.1 Appearance
When the check field is on, the check indicator is a set of square brackets
surrounding a diamond character. When the field is off, a space character
replaces the diamond. The indicator is positioned to the left of the label,
separated by one space. When the user positions the cursor to the check field,
the blinking cursor appears in this space and the label appears in reverse
video.

3.3.2 Label
Use a short, descriptive phrase as the label in a check field. The label of a
check field should clearly indicate the choice caused by selecting the field.
Capitalize the first and last words of the label, and all nouns, pronouns,
adjectives, verbs, and adverbs. Do not capitalize conjunctions, articles, and
prepositions.

Do not try to make the label short at the expense of clarity.

3.3.3 Selection
After positioning the cursor to a check field, the user presses the Select key
or the keypad period key to select the check field. If the indicator was off, the
diamond appears within the square brackets, indicating that it is now on. If
the indicator was on, the diamond disappears, leaving empty brackets to show
that the indicator is now off.

Controls 3–5

3.4 Text Entry Fields
A text entry field allows the user to enter and manipulate character strings.
A text entry field consists of a label and a field for text.

3.4.1 Appearance
The text entry field label appears to the left of the entry field. The label
and field are separated by a colon and a blank space. The text entry field is
underlined to show the size of the field. The underlining also helps the user
visually distinguish between a field in which text can be entered and a field
that is display-only.

Figure 3–7 is an example of a text entry field in which data has been entered.

Figure 3–7 Text Entry Field

3.4.2 Label
The label of a text entry field should clearly identify what is to be entered in
the field. Use initial caps to make the text readable, and avoid ambiguous or
unknown abbreviations.

3.4.3 Entering Text
When the user positions the cursor to the text entry field, the blinking
cursor appears as the first character of the field. As the user enters text, the
characters appear underlined.

3–6 Controls

Table 3–1 shows the keys used to edit text.

Table 3–1 Keys Used to Edit Text

Action
LK-Series
Keyboard Keys1

VT100-Series
Keyboard Keys

Moves the cursor one character to the
right. (The cursor does not move further
to the right when positioned at the end
of the text entry field.)2

� �

Moves the cursor one character to the
left. (The cursor does not move further to
the left when positioned at the beginning
of the line.)2

� �

Deletes the character before the cursor,
and moves all text to the right of the
deleted character one space to the left.

Delete Delete

Deletes all text in the field and places
the cursor at the beginning of the line.

F13 Ctrl+ J

or Linefeed

1LK-series keyboards also can use the VT100-series keys, except for the Linefeed and Backspace
keys, which are not on an LK-series keyboard.
2 This overrides the higher-level action of the arrow keys in navigating DECforms screens.

3.4.4 Linking a Text Entry Field to a Dialog Box
To provide a separate dialog box to help users fill in a field, put an ellipsis
(. . .) to the right of the label. This clues users visually that they can either
type in data or press the Select key or the keypad period key to get additional
help in filling in the field. For example, the dialog box might include a list of
possible responses from which users can select one. The user’s response fills in
the text entry field automatically.

Controls 3–7

Figure 3–8 shows a text entry field linked to a dialog box.

Figure 3–8 Text Entry Field Linked to a Dialog Box

Customer Code . . . :

3.5 List Groups
A list group is used to display a group of items when there is not enough
room on the screen to display the whole list at one time. The scroll area is a
window behind which the list can be scrolled. At any one time, the scroll area
shows a window-sized sublist of the items in the list.

List groups can be used for display only, for selection purposes, and for text
entry.

3.5.1 Appearance
A list group contains a stacked list of items, a list indicator, and a surrounding
box. Figure 3–9 shows a sample list group.

Figure 3–9 List Group

Brazil
France
Germany
India
Japan :

Australia

ZK−9062A−GE

The list of items is stacked vertically and left-justified. Because the list
indicator requires at least three lines, the minimum number of item lines is
three. The optimum number of item lines depends on your application.

When the cursor is positioned to an item in the list, the item is displayed in
reverse video, with the blinking cursor appearing in the space to the left of the
item name.

With DECforms software, you can display more than one field on each item
line. You can also display text entry fields in a list group. The text entry fields
are underlined to indicate their length.

3–8 Controls

Figure 3–10 shows a list group with two fields per item line, one of which is a
text entry field. In this case, it helps the user to have column headings on the
line above the list group box.

Figure 3–10 Two-Column List Group

The list indicator is a vertical line joining the top and bottom indicator
characters. It shows whether there are more items in the underlying list
in either direction. The top indicator character is ‘‘�’’ when the first item
displayed in the list is at the top of the list. The character ‘‘:’’ appears when
there are other items above the first item displayed. The bottom indicator
character is ‘‘�’’ if the last item displayed is at the bottom of the item list and
is ‘‘:’’ when there are other items below. The list indicator in Figure 3–10 shows
that there are more items on the menu than are currently shown.

The box surrounding the list leaves one blank space to the left of the item list
and one blank space to the right of the list indicator.

Any column headings or descriptive text appears on the line directly above the
surrounding box.

3.5.2 Selection
After positioning the cursor to an item in the list, the user presses the Select
key or the keypad period key to select the item. The action initiated by the
selection then occurs.

Controls 3–9

3.5.3 Navigation Within a List Group
Table 3–2 shows the keys used to navigate within a list group.

Table 3–2 Keys Used Within a List Group

Action
LK-Series
Keyboard Keys1

VT100-Series
Keyboard Keys

Moves the highlight up one item.2

If necessary, the window moves up
through the underlying list by one line.
If the highlight is at the top line, the
highlight does not move and a message
is displayed: ‘‘No more items in that
direction.’’

� �

Moves the highlight down one item.2

If necessary, the window moves down
through the underlying list by one line.
If the highlight is at the last line, the
highlight does not move and a message
is displayed: ‘‘No more items in that
direction.’’

� �

Moves the highlight to the next field to
the right (within the scroll box).2 If the
highlight is at the right-most item, the
highlight moves to the left-most item on
the next line.

� �

Moves the highlight to the next field to
the left (within the list group box)2. If
the highlight is at the left-most item, the
highlight moves to the right-most item
on the previous line.

� �

Moves the window down through the
underlying file by one window length
minus one line for overlap. The item
second from the top is highlighted. If the
next screen’s worth of items includes the
last item in the list, the window moves
down only enough to display the last
item on the bottom line of the window.

Next Screen PF1 KP4

1LK-series keyboards can also use the VT100-series keys, except for the Linefeed and Backspace
keys, which are not on an LK-series keyboard.
2 This overrides the higher-level action of the arrow keys in navigating DECforms screens.

(continued on next page)

3–10 Controls

Table 3–2 (Cont.) Keys Used Within a List Group

Action
LK-Series
Keyboard Keys1

VT100-Series
Keyboard Keys

Moves the window up through the
underlying file by one window length
minus one line for overlap. The top item
is highlighted.

Prev Screen PF1 KP5

Moves the window to display the last
item in the list as the bottom line
of the window. The bottom item is
highlighted.

PF1 Next Screen PF1 B

Moves the window to display the first
item in the list as the top line of the
window. The top item is highlighted.

PF1 Prev Screen PF1 T

Moves the highlight to the next field.
(This typically moves the highlight down
to the next line. However, if there is
more than one field in the line, the
highlight moves to the next item to the
right.)

Return Return

Selects the highlighted item for action. Select KP.

Moves the cursor out of the list group to
the object above.

PF1 � PF1 �

Moves the cursor out of the list group to
the object below.

PF1 � PF1 �

Moves the cursor out of the list group to
an object to the right. If there is more
than one object to the right of the list
group, the cursor should go to the most
frequently used object (for example, an
OK push button).

PF1 � PF1 �

Moves the cursor out of the list group
to an object to the left. If there is more
than one object to the left of the list
group, the cursor should go to the most
frequently used object (for example, an
OK push button).

PF1 � PF1 �

1LK-series keyboards can also use the VT100-series keys, except for the Linefeed and Backspace
keys, which are not on an LK-series keyboard.

Controls 3–11

3.6 Option Fields
An option field can have any value selected from an associated list. To save
space, only the current value appears in this field, as shown in Figure 3–11.
When the user selects the option field, the list of possible values is displayed
and the user can select a new value from the list.

Figure 3–11 Option Field

3.6.1 Appearance
An option field contains a label and a value. The value is surrounded by a
box. When the user positions the cursor to an option field, the blinking cursor
appears in the space to the left of the value, and the characters of the value
appear in reverse video, as shown in Figure 3–12.

Figure 3–12 Highlighted Option Field

If the initial value of the option field is undefined, an ellipsis (. . .) is centered
in the field, as shown in Figure 3–13.

Figure 3–13 Option Field with an Undefined Initial Value

3.6.2 Label
The label of an option field should clearly identify what is to be entered in
the field. Use initial caps to make the text readable and avoid ambiguous or
unknown abbreviations.

3–12 Controls

3.6.3 Selection
After positioning the cursor to an option field, the user presses the Select key
or the keypad perid key to select the option field. The list of possible values
appears in a pop-up menu or in a list group within a dialog box.

A pop-up menu is used when there is enough room in the menu to display
all the possible values, as shown in Figure 3–14. This pop-up menu should
contain only action items and cascade items. Toggle fields should not be
used.

Figure 3–14 Pop-Up Menu Used with an Option Field

ZK−9812−GE

A list group can be used when the list of possible values is too large to be
displayed all at once. The list group appears in a dialog box. The dialog box
should not contain any other controls.

The box containing either the pop-up menu or the list group should be centered
vertically over the option field and positioned horizontally so that the first two
characters of the current value are visible. This helps to remind the user of the
current value.

Once the user has selected an item from the pop-up menu or the list group,
the pop-up menu or list group disappears and the selected item appears as the
value of the option field.

Controls 3–13

4
Menus

Menus provide quick access to the functions of your application. A menu
consists of a list of items from which to choose.

This chapter discusses menu components, what menus look like, using menus,
and the following three types of menus:

• A bar menu appears on the application’s main panel. It is a horizontal
bar that shows the major functional groups of the application. Each item
on a bar menu is the title of an associated pull-down menu. The bar menu
is the only permanent menu, as it is always visible from the main panel.
An application has only one bar menu. Section 4.6.1 describes bar menus
in more detail.

• A pull-down menu appears when the user selects a menu name from
the bar menu or a cascade item from another menu. (A cascade item
is a menu item that displays a cascade menu.) Section 4.6.2 describes
pull-down menus in more detail.

• A pop-up menu looks like a pull-down menu, and is displayed as a result
of a special key sequence. They are context-sensitive, and are directly
associated with an object on the screen, such as a panel, a field, or a dialog
box. Section 4.6.3 describes pop-up menus in more detail.

4.1 Appearance
With the exception of the bar menu, all menus contain a vertical list of the
menu items within a surrounding box, as shown in Figure 4–1. The menu
item labels are left-justified with the first letter of each entry being vertically
stacked. If keyboard accelerators or cascade indicators (right arrows,�)
are displayed, they are right-justified and positioned far enough to the right
so that they do not interfere with the item names, as shown in Figure 4–3.
Leave at least two spaces between the end of the longest item name and the
first character of the accelerator. Indicate mnemonics by underscoring the
corresponding letter.

Menus 4–1

The surrounding box is a rectangle created by drawing lines directly above and
below the text and leaving one blank column between the left and right text
margins and the sides of the box.

Figure 4–1 Sample Menu

Figure 4–2 shows a menu that includes toggle items. The left margin
is extended by four characters for the toggle indicators. Only the toggle
indicators should appear in this extended left margin.

Figure 4–2 Sample Menu with All Three Types of Menu Items

Cascade Indicator

ZK−9811−GE

Command Item

Cascade Item

Command Item

Toggle Item
(radio field)

Toggle Item
(check field)

4–2 Menus

4.2 Components
This section describes each component of a menu. All menus have the following
components described in the following sections:

• Menu items

• Keyboard accelerators

• Mnemonics

• Separators

4.2.1 Menu Items
There are three different types of menu items:

• Command items perform some action or command when selected,
similar to the use of a push button in a dialog box. Once the user
selects a command item, the menu disappears and the command is
performed. Sometimes the command is deferred until the user supplies
more information. In this case, a dialog box is displayed first. Once the
user supplies the necessary information and exits the dialog box, the
command is performed. An ellipsis (. . .) is used after the menu item label
as a visual clue that a dialog box will be displayed.

• Toggle items set a particular state in the application through the use of
toggle fields (check fields or radio fields). The filled-in button indicates that
the setting is on. Once a toggle item is selected, the menu disappears and
the toggle condition is in effect.

• Cascade items display a submenu when selected. A cascade indicator
(�) at the right of the entry label is used to show that a submenu will be
displayed.

The three types of menu items appear in the sample menu in Figure 4–2.

4.2.2 Keyboard Accelerators
Your application can associate a frequently chosen menu item with a key
or key sequence. Keys associated with menu items are called keyboard
accelerators. An accelerator usually consists of a function key or a modifier
key combined with a letter (for example, F20 or Ctrl/A). Accelerators are
displayed at the right side of the menu item label. For example, as shown
by the menu in Figure 4–3, a user could select the Add Registration . . .
menu item by pressing Ctrl/A. An accelerator is active from anywhere in the
application.

Menus 4–3

Figure 4–3 Sample Menu Showing Accelerator

4.2.3 Mnemonics
A mnemonic is a single character in a menu item (indicated by an underscore)
that is used with a mnemonic introducer key (the PF4 key) as a shortcut for
choosing that menu item. For example, at the menu shown in Figure 4–3, a
user could select the Delete Registration . . . menu item by pressing PF4-D,
instead of using the navigational keys. A mnemonic is only available for the
current panel.

Mnemonics are optional; however, in designing your application, you should
consider using them for frequently chosen menu items. Use a letter that your
users will easily associate with the corresponding function. If a menu item
appears on more than one menu, its mnemonic letter should be consistent
throughout the application. A mnemonic must be case insensitive.

4.2.4 Separators
Horizontal separators create logical groupings of menu items. The separator, a
single line of dots, extends the full width of the menu, as shown in Figure 4–3.

4.3 Choosing a Menu Item
A user chooses a menu item by highlighting it and pressing the Select key
or the keypad period key. The user moves the highlight on the menu by
pressing the up arrow and the down arrow keys. (The right arrow and the
left arrow keys move the highlight across the bar menu.) When an item is
highlighted, the label appears in reverse video with the blinking cursor in the
space character to the left of the label (see Figure 4–1).

If there is a toggle indicator in the extended left margin, it is not displayed in
reverse video, as shown in Figure 4–4. The reverse video does, however, extend
into the extended right margin to include the cascade indicator.

4–4 Menus

Figure 4–4 Sample Menu Showing a Highlighted Toggle Item

4.4 Showing Unavailable Menu Items
A particular menu item might become inappropriate as the state of your
application changes. When this occurs, do not remove the menu item from
the menu. Leave the item on the menu to ensure consistency and to remind
the user of its existence. However, your application can make the menu item
unavailable to the user; that is, disable the menu item. Menu items that are
currently unavailable cannot be highlighted, and thus cannot be selected. To
de-emphasize an unavailable menu item visually, place it within braces, as
shown in Figure 4–5. Enclose any accelerators and cascade indicators within
braces, but do not enclose the toggle indicators.

Note

Dimmed text is not available on character-cell terminals, braces were
chosen as an alternative.

Menus 4–5

Figure 4–5 Sample Menu Showing an Unavailable Item

Unavailable
menu item

ZK−9809−GE

4.5 Dismissing Menus
A user can dismiss a menu without selecting a menu item by pressing the
F8 key or the PF1-Q key sequence. The current menu disappears and the
highlight returns to the previous menu location.

4.6 Menu Types
There are three basic types of menus: bar menus, pull-down menus, and
pop-up menus. The following sections discuss each type of menu.

4.6.1 Bar Menus
The bar menu is a permanent menu that is always visible near the top of
the application’s main panel. This menu is a horizontal bar that shows the
major functional groups of the application. Each item on a bar menu is a
cascade item that, when selected, displays an associated pull-down submenu.
Bar menus do not contain command items because they would inhibit menu
browsing.

Figure 4–6 shows a bar menu.

4–6 Menus

Figure 4–6 Bar Menu with Pull-Down Menus

Each entry on a bar menu is separated by at least three spaces. If you
cannot fit all entries on one line, create a two-line bar menu, as shown in
Figure 4–7. If necessary, add an additional space between entries so that the
first characters of two menu items are not vertically stacked, because this is
visually confusing. Do not use more than two lines for your bar menu.

Figure 4–7 Two-Line Bar Menu

4.6.1.1 Standard Bar Menu Items
Your choice of bar menu items depends on the nature of your application. The
following list of standard bar menu items includes functions that are common
to many applications. If your application uses any of these functions, Hewlett-
Packard Company recommends that you use the standard terminology and
positions specified here.

Menus 4–7

File All applications that perform actions on files, such as
opening, saving, closing, and printing, should have a
pull-down File menu. The File menu provides items
to perform these actions as well as any actions on the
application as a whole, such as quitting. Standard File
menu items include New, Open . . . , Save, Save As . . . ,
Print, Print . . . , Close, Exit, and Quit. If your application
uses a File menu, position it as the first item on the bar
menu. If your application uses mnemonics, the File menu
mnemonic should be F.

Edit The Edit menu contains items that allow users to
manipulate text within the file or between files. Standard
Edit menu items include Undo, Cut, Copy, Paste, Clear,
Delete, and Select. If your application uses an Edit
menu, position it to the right of the File menu. If your
application uses mnemonics, the File menu mnemonic
should be E.

View The View menu contains items that allow users to change
the way they view the data. This might include items
that change the appearance of the data, the amount of
data that is displayed, or the order in which the data is
displayed. The contents of this menu is specific to your
application. If your application uses a View menu, position
it to the right of the Edit menu. If your application uses
mnemonics, the View menu mnemonic should be V.

Options The Options menu contains items that allow users to
customize the application. The contents of this menu is
specific to your application. If your application uses an
Options menu, position it to the right of the View menu.
If your application uses mnemonics, the Options menu
mnemonic should be O.

Help The Help menu contains items that allow users to access
help information. If your application uses a Help menu,
position it as the last item on the bar menu, flush right.
If your application uses mnemonics, the Help menu
mnemonic should be H.

4.6.2 Pull-Down Menus
A pull-down menu appears when the user selects an item from a bar menu or
a cascade item from another menu. Pull-down menus are contained within a
box. When a pull-down menu is displayed from a bar menu, the top-left corner
of the pull-down menu box appears one line below and one character to the left
of the first letter of a bar menu item. When a pull-down menu is displayed as a
result of selecting a cascade item from another menu, the top-left corner of the
menu box appears one line above and one column to the right of the cascade
indicator (�), as shown in Figure 4–8.

4–8 Menus

Figure 4–8 Location of Pull-Down Menus

When a pull-down menu is displayed, the menu item from which it came
remains highlighted in reverse video to indicate clearly the path used to
display the current menu.

There are some conditions under which the recommended menu positions
are not possible or do not make sense to the application. For example, in
Figure 4–9 there is not enough room on the right for the submenu to be
completely displayed, so it is shifted to the left until it can be displayed and
dropped down a line so that the name of the menu entry that evoked it can be
seen.

Menus 4–9

Figure 4–9 Sample of a Submenu Cascaded Downward

If you do not have room for a submenu because you run out of space at the
right side of the screen, use one of the following methods:

• If you need only a couple more columns to fit a submenu on the screen,
shift the submenu to the left to increase the overlap with the menu entry
from which it came. Avoid obscuring important menu labels.

• Cascade the submenu downward. The right side of the menu will be flush
right. The top of the cascaded menu should appear on the line beneath the
selected submenu entry, as shown in Figure 4–9.

• If there is not enough vertical room to cascade a submenu downward,
position the bottom-right corner of the submenu in the bottom-right corner
of the work area.

4.6.3 Pop-Up Menus
Pop-up menus look similar to pull-down menus and are displayed when the
user presses the PF3 key. Pop-up menus can be context sensitive; that is,
you can condition the menu contents based on field values. Pop-up menus
are available quickly and at any time. They serve as a shortcut by reducing
the number of keystrokes needed to perform a task. However, nothing on the
application screen indicates the availability of pop-up menus.

4–10 Menus

Because pop-up menus provide shortcuts, each item in a pop-up menu must be
available through another mechanism, such as a pull-down menu or a dialog
box.

You can implement pop-up menus in one of two ways:

• Create one generic pop-up menu that includes all the pop-up menu items
appropriate for your application. Then, depending on the context when
users select the pop-up menu, deactivate the inappropriate menu items.

• Create a number of pop-up menus for different contexts.

Pop-up menus generally appear in the center of what the user is doing.
However, the needs of the application determine the best position for a pop-up
menu. For example, if the user needs to see certain data on the screen when
using the pop-up, you should place the pop-up where it does not obscure that
data. If a pop-up menu can generate three levels of cascade menus, you might
need to place the pop-up toward the left side of the display to make room for
the cascade menus.

4.7 Designing Menus
When you are designing menus, there are two major questions you have to
answer: how to name the menu items, and how to group the menu items.
Section 4.7.1 and Section 4.7.2 provide guidelines for naming and grouping
menu items.

4.7.1 Naming Menu Items
Consider the following guidelines when naming menu items:

• Use the standard terms for common menus, such as File, Edit, Options,
and Help.

• Use distinct names for each menu and its menu items.

• Use verbs or adjectives for your menus and menu items. Verbs and
adjectives give users a better idea than nouns do of what action a command
performs.

• Use terminology that is familiar to your users.

• Provide keyboard accelerators or mnemonics for frequently chosen menu
items. This allows users familiar with the application to take short cuts,
increasing their efficiency.

• Ask users to review your choices of menus and menu items.

Menus 4–11

4.7.2 Grouping Menu Items
Consider the following guidelines when grouping and ordering menu items:

• Organize the items in your menu into logical groups.

• Sets of related items, such as radio items or toggle items, should be located
together and separated from other menu items by a horizontal separator.

• Order menu items according to the frequency of use. Place items that
are more frequently used at the top of the menu. The fewer keystrokes
required to perform the most common tasks, the better.

• Separate destructive commands (such as Delete or Quit) from other
frequently chosen items. One of the most common problems with menus is
the off by one error, in which the user mistakenly chooses the item next to
the one intended.

• Keep your menu structure simple. Use as few submenu levels as possible,
with three levels as a recommended maximum. If your application seems
to need more levels than this, consider using dialog boxes or more menu
items on your bar menu.

4–12 Menus

5
Dialog Boxes

5.1 Purpose
A dialog box is a pop-up panel that is used to gather or display information.
An application can display a dialog box to notify the user of some event, such
as caution or work in progress information. An application can also display
a dialog box in response to a user command to obtain more information. For
example, an ellipsis (...) following a menu item or text entry field label clues
the user visually that selecting that item will display a dialog box. The user
uses controls in the dialog box to respond to the input requests or messages.

As you design your application, use dialog boxes to organize data and objects to
help your users. If you use dialog boxes to solicit detailed or additional input,
to control subtasks, or to gather information on infrequently used choices, you
can keep your main screens simple and uncluttered.

5.2 Appearance
A dialog box is a pop-up panel that contains a combination of text and controls
(push buttons, radio buttons, check buttons, list groups, text entry fields, and
so forth). Most dialog boxes have a title. This title should reflect the command
that created it. For example, the Add Registration... menu item generates
a dialog box with the title Add Registration. The title of a dialog box is left
justified in the banner at the top of the dialog box. This banner is created by a
horizontal line of reverse video characters that are indented by one character
from either side of the box, as shown in Figure 5–1.

Dialog Boxes 5–1

Figure 5–1 Sample Dialog Box

5.3 Size and Placement
A dialog box should be large enough to present the dialog information and
controls without looking crowded.

The placement of the dialog box depends on its purpose and contents. When a
dialog box is evoked, it overlays whatever is on that portion of the screen and
it cannot be moved on the screen. Make sure the dialog box does not obscure
information in the underlying panel that the user might need when responding
to the dialog box.

5–2 Dialog Boxes

5.4 Ending a Dialog
Each dialog box needs a mechanism to make the dialog box disappear once the
user is finished with it. Also, any dialog box that solicits additional information
should give the user the option of canceling the request. When a dialog box is
cancelled, the application returns to the state that existed before the dialog box
was evoked. The typical way of providing these controls is to have the dialog
box include an OK push button and a Cancel push button (when appropriate).
Keyboard accelerators should always be available (the F10 key and the Ctrl/Z
keys for OK and the F8 key and the PF1-Q key sequence for Cancel).

5.5 Chaining Dialog Boxes
You might need more than one dialog box to complete an informational
exchange with a user. To chain dialog boxes, use a Continue... push button or
a More... push button.

5.6 Grouping Controls
The overall design of your dialog box depends on the content and complexity
of your application. Group controls and labels into logical sections to make the
user interface as easy as possible. Arrange these sections within the dialog box
based on the order in which the user needs them and on the order in which
the user scans them (in most cases this will be from top to bottom and left
to right). This arrangement helps to limit the amount of navigation that is
necessary for the user to complete the dialog. Separate these sections with
blank spaces rather than horizontal or vertical lines.

5.6.1 Arranging Push Buttons
Arrange push buttons in a dialog box in an order that corresponds to the
progression in which the user needs them. Because push button controls are
often used to end a dialog, they are placed typically either in a row at the
bottom (preferable) or in a column at the right side of the dialog box. When the
push buttons are placed in a horizontal row, make each push button box the
size of the label, as shown in Figure 5–2. When the push buttons are stacked
vertically, make the boxes the same size and center the label, as shown in
Figure 5–3.

Dialog Boxes 5–3

Figure 5–2 Push Buttons Arranged Horizontally

Figure 5–3 Push Buttons Arranged Vertically

Push buttons commonly found in grouped sets are:

• OK, Cancel, Help

• OK, Reset, Cancel, Help

• OK, Apply, Reset, Cancel, Help

• Yes, No, Help

When grouping push buttons, place the positive (active) choices before the
negative (passive) choices, and make the Help selection the last choice.

5.6.2 Default Push Buttons
If a dialog box has more than one push button, you might want to make one
of them the default push button. This is the most likely response to the dialog
box query. Generally, the OK push button is the default push button. The user
can press the F10 key or Ctrl/Z, the accelerator for the default operation, to
quickly select the default push button.

5–4 Dialog Boxes

If the action evoked by a push button is potentially destructive (for example,
if loss of data could occur), that button should not be the default push button.
Section 3.1.1. describes the appearance of a default push button.

5.6.3 Using Radio Boxes
The radio box is a set of related radio fields and a corresponding title. When
the user selects from a small number of options (typically from 2 to 10), a radio
box is the most direct method.

There are two cases in which a radio box does not need a title:

• When the radio box is the only control in the dialog box, in which case the
title in the dialog box banner acts as the title of the radio box

• When the information in the radio box is so clear that there can be no
confusion over what is being chosen

The title of the radio box is left-justified over the left angle bracket of the radio
fields. The title uses initial caps. Whenever possible, radio buttons should be
stacked vertically, as shown in Figure 5–4.

Figure 5–4 Vertically Stacked Radio Box

If you must arrange radio fields horizontally, left-justify the title and use a
colon (:) to separate it from the radio buttons, as shown in Figure 5–5.

Figure 5–5 Horizontally Arranged Radio Box

5.6.4 Arranging Text Entry Fields
When multiple text entry fields appear near each other on the same screen,
there are two methods to stack the fields:

• When the text entry fields are related logically and the labels are all about
the same length, stack the colons vertically, right-justify the labels, and
left-justify the data fields. Figure 5–6 shows this first method.

Dialog Boxes 5–5

• When the text entry fields are not related logically or if the label lengths
are very different, left-justify the labels. The colon appears directly to
the right of each label. Left-justify the data fields with the data field
corresponding to the longest label. Figure 5–7 shows this second method.

Figure 5–6 First Method of Stacking Text Entry Fields

Figure 5–7 Second Method of Stacking Text Entry Fields

5.7 Specialized Dialog Boxes
Your DECforms applications can use the following standard dialog boxes for
common operations:

• Work in Progress dialog box

• Informational dialog box

• Question dialog box

• File Selection dialog box

5.7.1 Work in Progress Dialog Box
Your application should display a Work in Progress dialog box whenever
it determines that an operation will take longer than 5 seconds. Use a
short simple message in the dialog box to tell your user what is happening.
Display this message as blinking text. This gives the user confidence that the
application is processing normally. This type of dialog box is for display only
and does not allow user input. (If the operation will take 5 seconds or less, a
message displayed in the message panel is sufficient.)

5–6 Dialog Boxes

If your application can determine the amount of progress that has been
made, you also can display the progress in the dialog box. The type of progress
indicator depends on your application. For example, you might use a horizontal
bar as a percentage indicator.

Make the dialog box a pleasing size with at least two blank lines above and
below the message and two spaces on either side of the centered message.
Center the Work in Progress dialog box on the screen, unless there is some
reason not to obscure that part of your screen. The title in the dialog box
banner should be Work in Progress

When the operation is complete, your application should display a completed
message (for example, ‘‘File conversion completed.’’) in the message panel and
dismiss the dialog box.

Figure 5–8 shows a typical Work in Progress dialog box.

Figure 5–8 Typical Work in Progress Dialog Box

5.7.2 Informational Dialog Box
You should display routine informational messages in the message panel.
However, an informational dialog box can be used when a message is important
enough to interrupt the user and require acknowledgement (for example, if
your application is unable to open a data file). This type of dialog box can be
used for important messages, warnings, and error messages.

Center the informational dialog box on the screen, unless there is some reason
not to obscure that part of your screen. Although the title in the dialog box
banner depends on the purpose of the message, try to use a simple title such
as Warning, Error, or Information.

The dialog box must contain an OK push button that the user selects to
dismiss the box. The dialog box also might contain a Help push button, used to
display additional information.

Dialog Boxes 5–7

Figure 5–9 shows a typical informational dialog box.

Figure 5–9 Typical Informational Dialog Box

5.7.3 Question Dialog Box
A question dialog box asks the user a brief question and provides a choice of
mutually exclusive alternatives as push buttons. The push buttons use easy
label pairs such as Yes and No or OK and Cancel. You can also provide a Help
push button.

Question dialog boxes are used typically to caution the user and to confirm an
action.

Center the question dialog box on the screen, unless there is some reason
not to obscure that part of your screen. Although the title in the dialog box
banner depends on the purpose of the question, try to use a simple title, such
as Question, Caution, or Confirmation.

5–8 Dialog Boxes

Figure 5–10 shows a typical Question dialog box.

Figure 5–10 Typical Question Dialog Box

5.7.4 File Selection Dialog Box
A file selection dialog box allows the user to specify a file name within your
application. A file selection box contains the following controls:

• File Filter text entry field

• Selection text entry field

• List box and list box label Files in xxx where xxx is the current directory
name

• Filter, OK, and Cancel push buttons

Figure 5–11 shows a file selection dialog box.

Dialog Boxes 5–9

Figure 5–11 Typical File Selection Dialog Box

To choose a file, the user selects a file name from the list box; the file name
then appears in the Selection text entry field. The user then selects the OK
push button.

The user can also enter a file name in the Selection text entry field and then
select the OK push button. If an error occurs (for instance, if the file does not
exist), your application should display an appropriate Caution dialog box.

To display a specific type of file in the list box, the user enters a file filter in
the File Filter text entry field, using a directory name or wildcards. The user
then selects the Filter push button or presses the Return key in the Filter field
to display a new list of specified files. The application can provide a default
File Filter string when the file selection box first is displayed, thereby limiting
the user’s choices to the appropriate files.

Table 3–2 shows the keys used to navigate within the scrolled list. Table 5–1
shows the additional keys used to navigate within a file selection box.

5–10 Dialog Boxes

Table 5–1 Additional Keys Used Within a File Selection Dialog Box

LK-Series
Keyboard Keys1

VT100-Series
Keyboard Keys Action

F10 Ctrl + Z Pressing this is like selecting the OK
push button. The file in the Selection
field is chosen and the file selection box
disappears. If the Selection field is empty,
the highlighted file is selected.

Return Return Moves the highlight to the next field. If
the cursor is in the Filter field when this
is pressed, the scrolled list is updated to
match the filter specifications, and the
highlight moves to the top line of the
scrolled list.

F8 PF1 Q Pressing this is like selecting the Cancel
push button. The file selection box is
dismissed with no other effects.

1LK-series keyboards also can use the VT100-series keys, except for the Linefeed and Backspace
keys, which are not on an LK-series keyboard.

Dialog Boxes 5–11

Part II
Implementing DECforms Style

This part contains information about how to use DECforms to implement the
user interface described in Part I.

Each chapter discusses specific style elements and the code used to create
them. Appendix A contains the IFDL code used to create the Track and Field
Registration application (TAFR). Appendix B contains the C program, as well
as instructions on how to run TAFR.

6
Implementing Controls

DECforms software has provided a sample program, the Track and Field
Registration program (TAFR), that shows how to implement DECforms style.
TAFR is written using the DECforms portable API.

TAFR was written by DECforms engineers who made decisions on how to
implement each element, taking processing speed, good coding practice, and
integral DECforms elements into account.

Although the TAFR application is not entirely complete, it should be useful in
assisting you in developing DECforms style. This chapter describes how TAFR
implements controls.

6.1 Push Buttons
Push buttons are implemented as icons. Icons are IFDL elements used to
display information that does not change. Icons accept function key input only
(no data input), so they work well as push buttons.

Example 6–1 shows the IFDL code used to create the OK and Cancel push
buttons on the Add Registration dialog box, shown in Figure 5–1.

Implementing Controls 6–1

Example 6–1 OK and Cancel Push Buttons IFDL Code Example

Form TAFR_FORM
.
.
.

Panel ADD_REGISTRATION_DIALOG
.
.
.

Icon ADD_REG_OK_BUTTON 1

Apply Field Default BUTTON_DEFAULTS 2

Function Response SELECT 3
Message

"Recording registrant data."
Deactivate

Panel ADD_REGISTRATION_DIALOG
Remove

ADD_REGISTRATION_VIEWPORT
Position To Previous Item

End Response

Literal Text 4
Line 17
Column 20
Value " OK "
Display

Bold
End Literal

End Icon

Icon ADD_REG_CANCEL_BUTTON 5

Apply Field Default BUTTON_DEFAULTS 6

Function Response SELECT 7
Deactivate

Panel ADD_REGISTRATION_DIALOG
Remove

ADD_REGISTRATION_VIEWPORT
Position To Previous Item

End Response

Literal Text 8
Line 17
Column 27
Value " Cancel "

End Literal

End Icon

1 The icon is declared and named ADD_REG_OK_BUTTON.

6–2 Implementing Controls

2 The field default application specifies that a set of defaults,
BUTTON_DEFAULTS, be applied to the icon. BUTTON_DEFAULTS was
declared earlier in the form, as follows:

Field Default BUTTON_DEFAULTS
Active Highlight

Reverse
End Default

This means that the OK push button is highlighted in reverse video when
the cursor is positioned on it. The push button is bolded to show that it is
the default.

3 This statement declares a function response, SELECT, for the OK push
button. When OK is selected (by pressing the Select key while the cursor is
positioned on OK), the message ‘‘Recording registrant data’’ is displayed in
the default message panel, and the Add Registration dialog box is removed
from the display. The cursor is then positioned to the previous item, which
is the File selection on the TAFR bar menu.

4 This literal declaration specifies that the push button is displayed at line
17, column 20, and that its label is displayed in bolded text.

5 The icon that specifies the Cancel push button,
ADD_REG_CANCEL_BUTTON, is declared.

6 The same set of field defaults that were applied to the OK push button are
specified for the icon that creates the Cancel button.

7 The SELECT function response is declared for the Cancel push button.
If the Select key is pressed while the cursor is positioned on Cancel, the
Add Registration panel is deactivated and the Add Registration dialog box
is removed from the display. The cursor is once again positioned on the
previous item, the File selection on the bar menu.

8 This literal declaration specifies that Cancel is displayed at line 17,
column 27.

6.2 Radio Fields
Radio fields are implemented as panel fields. Fields are IFDL elements used
to request and display information on panels. Icons are not used to implement
radio fields because icons do not allow dynamic changes to labels or field
values. In radio fields, you may want to change field values. The field value
"Hebrew" changes to "{ Hebrew }" in Example 6–2, when it becomes an invalid
choice.

Implementing Controls 6–3

Example 6–2 shows the IFDL code used to create the radio fields on the Print
Options dialog box, shown in Figure 4–2.

Example 6–2 Radio Fields IFDL Code Example

Form TAFR_FORM
.
.
.
Group LANGUAGE_RADIOBOX 1

Occurs 3
Current N3 2
TOGGLE Unsigned Byte 3
TAG Character(21) 4
PROTECT Unsigned Byte 5

End Group
.
.
.
Let LANGUAGE_RADIOBOX(1).TAG = " English" 6

Let LANGUAGE_RADIOBOX(2).TAG = " French" 7

Let LANGUAGE_RADIOBOX(3).TAG = " Hebrew" 8
.
.
.

Panel OPTIONS_PULLDOWN_PANEL 9

Viewport OPTIONS_PULLDOWN_VIEWPORT 1 0

Function Response MAGIC 1 1

If (LANGUAGE_RADIOBOX(3).PROTECT = 0) Then
Let LANGUAGE_RADIOBOX(3).PROTECT = 1
Let LANGUAGE_RADIOBOX(3).TAG = "{Hebrew}"

Else
Let LANGUAGE_RADIOBOX(3).PROTECT = 0
Let LANGUAGE_RADIOBOX(3).TAG = " Hebrew"

End If
End Response

.

.

.
Group LANGUAGE_RADIOBOX 1 2

Vertical
Literal Text

Line 7
Column 3
Value "< >"

End Literal

(continued on next page)

6–4 Implementing Controls

Example 6–2 (Cont.) Radio Fields IFDL Code Example

Field TOGGLE 1 3

Line 7
Column 4
Display 1 4

Character Set Private_Rule
Output Picture X
Output " " 1 5

When (LANGUAGE_RADIOBOX(**).TOGGLE = 0)
Output "‘" 1 6

When (LANGUAGE_RADIOBOX(**).TOGGLE = 1)
Protected 1 7

End Field

Field TAG 1 8

Line 7
Column 6
Function Response SELECT 1 9

Reset
LANGUAGE_RADIOBOX(*).TOGGLE

Let LANGUAGE_RADIOBOX(N3).TOGGLE = 1
End Response

Active Highlight 2 0

Reverse
Output Picture X(22)
No Data Input
Protected 2 1

When (LANGUAGE_RADIOBOX(**).PROTECT = 1)
End Field

End Group

Literal Text 2 2

Line 10
Column 2
Value "···························"

End Literal

1 A form data group, LANGUAGE_RADIOBOX, is declared. The
LANGUAGE_RADIOBOX group is a one-dimensional array of three
elements, LANGUAGE_RADIOBOX(1), LANGUAGE_RADIOBOX(2), and
LANGUAGE_RADIOBOX(3). TAG, TOGGLE, and PROTECT are the three
fields.

2 The CURRENT clause specifies that the data item N3 holds the index of
the current field in LANGUAGE_RADIOBOX. For example, if the cursor is
positioned on "French", then N3 equals 2.

Implementing Controls 6–5

3 This statement specifies that the first form data item in the
LANGUAGE_RADIOBOX group has an UNSIGNED BYTE data type and
is specified as
LANGUAGE_RADIOBOX(n).TOGGLE.

4 This statement specifies that the value of the second form data item in
the LANGUAGE_RADIOBOX group has a CHARACTER data type and is
specified as LANGUAGE_RADIOBOX(n).TAG.

5 This statement specifies that the value of the third form data item in the
LANGUAGE_RADIOBOX group has an UNSIGNED BYTE data type and
is specified as LANGUAGE_RADIOBOX(n).PROTECT.

6 This LET response assigns ’English’ as the value of the
LANGUAGE_RADIOBOX(1).TAG form data item.
LANGUAGE_RADIOBOX(1).TAG appears as the first choice of the radio
fields in the Print Options dialog box—English.

7 This LET response assigns ’French’ as the value of the
LANGUAGE_RADIOBOX(2).TAG form data item, making French the
second choice of the radio fields.

8 This LET response assigns ’Hebrew’ to the LANGUAGE_RADIOBOX(3).TAG
form data item, making Hebrew the third choice of the radio fields.

9 This PANEL declaration begins the OPTIONS_PULLDOWN_PANEL panel.

1 0 This VIEWPORT declaration specifies where OPTIONS_PULLDOWN_PANEL
should be displayed. The viewport was specified earlier in the form in the
following code:

Viewport OPTIONS_PULLDOWN_VIEWPORT
Lines 3 Through 16
Columns 11 Through 67

End Viewport

1 1 The MAGIC function response is declared. (Earlier in the form, MAGIC
was associated with the F20 key.) If the F20 key is pressed within the
OPTIONS_PULLDOWN_PANEL, the value of
LANGUAGE_RADIOBOX(3).PROTECT is examined. Depending on its
value, LANGUAGE_RADIOBOX(3).PROTECT and
LANGUAGE_RADIOBOX(3).TAG are modified. The new values are used
in the TAG panel field description in 1 8.

This switches the Hebrew choice from available to unavailable, or from
unavailable to available. Pressing the F20 key demonstrates how to make
a choice unavailable.

6–6 Implementing Controls

1 2 This GROUP declaration specifies a panel group, LANGUAGE_RADIOBOX,
associated with the form data group of the same name.
LANGUAGE_RADIOBOX is specified as a vertical group, appearing at
line 7, column 3. The panel group is composed of angle brackets, and the
TOGGLE and TAG fields.

1 3 The TOGGLE field associates a field on the panel with the items in
LANGUAGE_RADIOBOX(n).TOGGLE. This field is displayed at line 7,
column 4, between the angle brackets specified in 1 2.

1 4 This DISPLAY response step specifies that the values in
LANGUAGE_RADIOBOX(n).TOGGLE are displayed in the Rule character
set.

1 5 This OUTPUT WHEN clause tells the form to output nothing when the
value in LANGUAGE_RADIOBOX.TOGGLE is set to 0.

1 6 This OUTPUT WHEN clause tells the form to output a filled-in
diamond (an apostrophe (’) in the Rule character set) when the value
in LANGUAGE_RADIOBOX.TOGGLE is set to 1.

1 7 The PROTECTED clause specifies that the field is a display-only field.

1 8 This FIELD declaration specifies that a field named TAG be displayed at
line 7, column 6—three columns over from the angle brackets specified
in 1 2. The values specified in the LANGUAGE_RADIOBOX(1).TAG,
LANGUAGE_RADIOBOX(2).TAG, and LANGUAGE_RADIO(3).TAG are
English and French, respectively. The value in
LANGUAGE_RADIOBOX(3).TAG depends on the value in
LANGUAGE_RADIOBOX(3).PROTECTED. It may be "Hebrew" or "{
Hebrew }" and the TAG field may or may not be protected. These values
are displayed in a vertical list, starting at line 7, column 6.

1 9 This function response specifies that when the Select key is pressed
in this field, LANGUAGE_RADIOBOX(*).TOGGLE is reset to 0.
LANGUAGE_RADIOBOX(N3).TOGGLE is set to 1 where N3 is the
index of the current occurrence. A filled-in diamond appears between the
angle brackets specified in 1 2.

2 0 This ACTIVE HIGHLIGHT clause specifies that the
LANGUAGE_RADIOBOX.TAG should be displayed in reverse video if the
cursor is positioned on it.

2 1 This PROTECTED WHEN clause specifies that when the value in
LANGUAGE_RADIOBOX(n).PROTECT is set to 1, the field is protected.
This is what causes the Hebrew choice to be protected when you press the
F20 key.

Implementing Controls 6–7

2 2 This literal places a line of dots between the radio fields and the command
items in the Print Options... menu.

6.3 Check Fields
Check fields are fields that are not mutually exclusive: you can select more
than one check field in a list. The check fields in the Add Registration dialog
box (Figure 5–1) are implemented as fields and icons.

Example 6–3 shows the IFDL code to implement the check fields in the Add
Registration dialog box.

Example 6–3 Check Fields IFDL Code Example

Form TAFR_FORM
.
.
.

Panel ADD_REGISTRATION_DIALOG 1

Viewport ADD_REGISTRATION_VIEWPORT 2

Function Response DISCARD 3
Deactivate

Panel ADD_REGISTRATION_DIALOG
Remove

ADD_REGISTRATION_VIEWPORT
Position To Previous Item

End Response
.
.
.

Literal Text 4
Line 8
Column 3
Value "Events"

End Literal

Literal Text 5
Line 9
Column 3
Value "[]"

End Literal

(continued on next page)

6–8 Implementing Controls

Example 6–3 (Cont.) Check Fields IFDL Code Example

Field TOGGLE_SHOT_PUT 6
Line 9
Column 4
Display

Character Set Private_Rule
Output Picture X
Output "‘" 7

When (TOGGLE_SHOT_PUT = 1)
Output " "

When (TOGGLE_SHOT_PUT <> 1)
Protected

End Field

Icon EVENT_SHOT_PUT 8
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT 9

If (TOGGLE_SHOT_PUT = 0) Then
Let TOGGLE_SHOT_PUT = 1

Else
Let TOGGLE_SHOT_PUT = 0

End If
End Response

Literal Text 1 0

Line 9
Column 6
Value " Shot Put"

End Literal

End Icon

1 This PANEL declaration specifies the panel that is displayed as the Add
Registration dialog box.

2 This VIEWPORT declaration specifies the viewport in which the
ADD_REGISTRATION_DIALOG panel is displayed. The
ADD_REGISTRATION_VIEWPORT was specified earlier in the form as:

Viewport ADD_REGISTRATION_VIEWPORT
Lines 2 Through 20
Columns 11 Through 67

End Viewport

3 The DISCARD function response is declared for the
ADD_REGISTRATION_DIALOG panel. When you press the F8 key or the
PF1-Q key sequence on this panel, the ADD_REGISTRATION_DIALOG
panel is deactivated, and the cursor is positioned on the previous item (the
Registration choice on the main panel).

Implementing Controls 6–9

4 This LITERAL declaration places a string, "Events" on the panel at line 8,
column 3.

5 This LITERAL declaration places a pair of square brackets ([]) on the
panel at line 9, column 3. (This pair of brackets is the set of brackets next
to the Shot Put check field.)

6 The TOGGLE_SHOT_PUT field is declared. TOGGLE_SHOT_PUT is
displayed at line 9, column 4 (between the brackets specified in 5), and is
displayed as a filled-in diamond when the value of TOGGLE_SHOT_PUT
is 1. A filled-in diamond indicates that the corresponding toggle field was
selected.

7 This OUTPUT WHEN clause outputs a filled-in diamond when the value
of TOGGLE_SHOT_PUT is 1, and outputs nothing when the value of
TOGGLE_SHOT_PUT is not equal to 1.

8 The ICON that corresponds to TOGGLE_SHOT_PUT is declared. The
EVENT_SHOT_PUT icon has the attributes specified in BUTTON_
DEFAULTS, declared earlier in the form as:

Field Default BUTTON_DEFAULTS
Active Highlight

Reverse
End Default

The result of applying BUTTON_DEFAULTS is that the string "Shot Put"
is highlighted when active (displayed in reverse video).

9 The SELECT function response specifies that if the Select key is pressed
in the EVENT_SHOT_PUT icon, the value of TOGGLE_SHOT_PUT
is modified. If TOGGLE_SHOT_PUT is currently set to 0 (the
corresponding toggle field was not already selected), it becomes 1,
marking the corresponding field as selected. If the current value of
TOGGLE_SHOT_PUT is 1, it is changed to 0, deselecting the corresponding
toggle field. A filled-in diamond is displayed if the value is 1, and nothing
is displayed if the value is 0.

1 0 This LITERAL TEXT declaration places the string "Shot Put" on the icon
at line 9, column 6, next to the brackets specified in 5 .

6–10 Implementing Controls

6.4 Text Entry Fields
Text entry fields allow you to enter and manipulate character strings. Text
entry fields are implemented in TAFR as fields and literals.

Example 6–4 shows the IFDL code used to create the text entry fields in the
Add Registration dialog box. (See Figure 5–1.)

Example 6–4 Text Entry Field IFDL Code Example

Form TAFR_FORM
.
.
.

Literal Text 1
Line 3
Column 3
Value "Registration Number:"

End Literal

Field REGISTRATION_NUMBER 2
Line 3
Column 24
Apply Field Default TEXT_DEFAULTS 3
Output Picture 9(9)

End Field

Literal Text 4
Line 4
Column 3
Value "First Name:"

End Literal

Field FIRST_NAME 5
Line 4
Column 24
Apply Field Default TEXT_DEFAULTS

End Field

Literal Text 6
Line 5
Column 3
Value "Last Name:"

End Literal

(continued on next page)

Implementing Controls 6–11

Example 6–4 (Cont.) Text Entry Field IFDL Code Example

Field LAST_NAME 7
Line 5
Column 24
Apply Field Default TEXT_DEFAULTS

End Field

Literal Text 8
Line 6
Column 3
Value "Country...:"

End Literal

Field COUNTRY 9
Line 6
Column 24
Apply Field Default TEXT_DEFAULTS
Function Response SELECT 1 0

Let CALL_FROM = "ADD_REGISTRANTS "
Activate

Panel COUNTRY_LIST_OPTION_MENU
Position To Panel COUNTRY_LIST_OPTION_MENU

End Response
End Field

1 A text string, "Registration Number:" is displayed at line 3, column 3.
This serves as the label for the text entry fields.

2 The REGISTRATION_NUMBER field, an all-numeric output picture, is
declared at line 3, column 24.

3 The REGISTRATION_NUMBER field has the TEXT_DEFAULTS attributes
applied to it. TEXT_DEFAULTS was specified earlier in the form, as
follows:

Field Default TEXT_DEFAULTS
Active Highlight

Underlined
Display

Underlined
End Default

This set of defaults specifies that text is displayed with an underline.

4 A text string "First Name:" is displayed at line 4, column 3. (This places
"First Name:" beneath "Registration Number:").

5 The FIRST_NAME field, a character text panel field, is declared at line 4,
column 24, with the same defaults as specified in 3 .

6–12 Implementing Controls

6 A text string, "Last Name:" is displayed at line 5, column 3. (This places
"Last Name:" beneath "First Name:").

7 The LAST_NAME field, a character text panel field, is declared at line 5,
column 24, with the same defaults as specified in 3 .

8 A text string, "Country . . . :" is displayed at line 6, column 3. (This places
"Country . . . :" beneath "Last Name:").

9 The field COUNTRY is declared; it is quite similar to the fields specified in
2 , 5 and 7 , with the same defaults.

1 0 This function response specifies that when the Select key is pressed,
CALL_FROM is set to the text string "ADD_REGISTRANTS".
CALL_FROM is used later in the COUNTRY_LIST_OPTIONS_MENU.

Next, the COUNTRY_LIST_OPTION_MENU panel is activated, and
the list of participating countries is displayed in a pull-down menu
on the screen. The cursor is positioned on the first country on the
COUNTRY_LIST_OPTION_MENU.

6.5 List Groups
List groups are used to display lists of items when there is not enough room
on the screen to display the entire list at one time. The best example of list
groups in TAFR is in the File Filter dialog box. For an example of how list
groups are implemented, see Section 8.3.

6.6 Option Fields
Option fields consist of labels and values. Example 6–5 is from the List
Registrants by Country menu shown in Figure 2–4.

Example 6–5 Option Fields IFDL Code Example

(continued on next page)

Implementing Controls 6–13

Example 6–5 (Cont.) Option Fields IFDL Code Example

Form TAFR_FORM
.
.
.

Panel COUNTRY_LIST_DIALOG_PANEL 1

Viewport COUNTRY_LIST_DIALOG_VIEWPORT 2

Function Response TRANSMIT 3
Deactivate

Panel COUNTRY_LIST_DIALOG_PANEL
Remove

COUNTRY_LIST_DIALOG_VIEWPORT
Include PERFORM_LIST_FUNCTION

End Response

Function Response DISCARD 4
Deactivate

Panel COUNTRY_LIST_DIALOG_PANEL
Remove

COUNTRY_LIST_DIALOG_VIEWPORT
Position To Previous Item

End Response

Literal Text 5
Line 4
Column 3
Value "Country:"

End Literal

Literal Rectangle 6
Line 3 Column 12
Line 5 Column 28

End Literal

Field COUNTRY_OPTIONS 7
Line 4
Column 13
Function Response SELECT 8

Let CALL_FROM = "LIST_REGISTRANTS"
Activate

Panel COUNTRY_LIST_OPTION_MENU
Position To Panel COUNTRY_LIST_OPTION_MENU

End Response

(continued on next page)

6–14 Implementing Controls

Example 6–5 (Cont.) Option Fields IFDL Code Example

Active Highlight
Reverse

Output Picture ’ ’X(13)
No Data Input
Output " ··· " 9

When (COUNTRY_OPTIONS = " ")
End Field

.

.

.
End Panel

1 A panel, COUNTRY_LIST_DIALOG_PANEL, is declared.

2 The viewport in which COUNTRY_LIST_DIALOG_PANEL is displayed,
COUNTRY_LIST_DIALOG_VIEWPORT, was declared earlier in the form,
as follows:

Viewport COUNTRY_LIST_DIALOG_VIEWPORT
Lines 6 Through 19
Columns 25 Through 55

End Viewport

3 The TRANSMIT function response is declared for the
COUNTRY_LIST_DIALOG_PANEL panel. When you press the F10 key
on this panel, COUNTY_LIST_DIALOG_PANEL is deactivated. The
PERFORM_LIST_FUNCTION response is performed.

4 The DISCARD function response is declared for the
COUNTRY_LIST_DIALOG_PANEL panel. When you press the F8 key or
the PF1-Q key sequence on this panel, the COUNTRY_LIST_DIALOG_PANEL
panel is deactivated, and the cursor is positioned on the previous item (the
Registration choice on the main panel).

5 This LITERAL declaration places the label "Country:" in the option field.

6 This LITERAL declaration draws the box next to the "Country:" label in
the option field.

7 The COUNTRY_OPTIONS field is declared. This field is associated with
a CHARACTER(13) form data item that was declared earlier in the form.
COUNTRY_OPTIONS reserves a space for the country that will be selected
by the registrant.

Implementing Controls 6–15

8 When the Select key is pressed, CALL_FROM is set to the text
string "LIST_REGISTRANTS". The value of CALL_FROM
is used later in the COUNTRY_LIST_OPTION_MENU. The
COUNTRY_LIST_OPTION_MENU panel is activated, and the cursor
is positioned on the topmost item on the menu.

9 If the COUNTRY_OPTIONS field is not yet filled, an ellipsis (. . .) is
displayed in the option field.

6–16 Implementing Controls

7
Implementing Menus

All menus are lists of items from which to choose. Although all menus are
basically alike, not all menus are implemented in the same way. The following
sections show how to implement bar menus, pull-down menus, and pop-up
menus.

7.1 Bar Menus
The bar menu is implemented as a separate panel in the Track and Field
Registration application (TAFR). Each menu item on the bar menu is an icon
with an associated control field. The control field is used to display the selected
menu item in reverse video when its pull-down menu appears. This makes
it easy for the user to see the path of various menu items through the menu
system.

Example 7–1 shows the TAFR bar menu with one menu entry, File. All other
menu items are implemented in a similar fashion. The bar menu is shown in
Figure 2–2.

Implementing Menus 7–1

Example 7–1 TAFR Bar Menu IFDL Code Example

Form TAFR_FORM
.
.
.
Form Data

MODIFIED Unsigned Byte 1
Value 0

.

.

.
FILE_ENTRY_CONTROL Unsigned Byte 2
REGISTRATION_ENTRY_CONTROL Unsigned Byte
SCHEDULE_ENTRY_CONTROL Unsigned Byte
OPTIONS_ENTRY_CONTROL Unsigned Byte
HELP_ENTRY_CONTROL Unsigned Byte
LIST_ENTRY_CONTROL Unsigned Byte

.

.

.
End Data
.
.
. .
Layout VT_LAYOUT
.
.
.

Viewport BAR_MENU_VIEWPORT 3
Lines 2 Through 2
Columns 1 Through 80

End Viewport
.
.
.

Function DISCARD 4
Is %F8

(%PF1 %CAPITAL_Q)
(%PF1 %SMALL_Q)

End Function
.
.
.

Internal Response QUIT_APPLICATION 5
Signal
Message

"Quitting application. Data discarded."
Return Immediate

(continued on next page)

7–2 Implementing Menus

Example 7–1 (Cont.) TAFR Bar Menu IFDL Code Example

End Response
.
.
.

Field Default MENU_DEFAULTS 6
Active Highlight

Reverse
End Default

.

.

.
Panel BAR_MENU_PANEL 7

Viewport BAR_MENU_VIEWPORT 8

Function Response DISCARD 9
If (MODIFIED = 1) Then

Activate
Panel CAUTION_BOX_PANEL

Position To Icon QUIT_NO_BUTTON On CAUTION_BOX_PANEL
Else

Include QUIT_APPLICATION
End If

End Response

Function Response MNEMONIC_F 1 0

Let FILE_ENTRY_CONTROL = 1
Activate

Panel FILE_PULLDOWN_PANEL
Position To Panel FILE_PULLDOWN_PANEL

End Response

Apply Field Default MENU_DEFAULTS 1 1

Icon FILE_CASCADE_BUTTON 1 2

Function Response SELECT 1 3

Let FILE_ENTRY_CONTROL = 1
Activate

Panel FILE_PULLDOWN_PANEL
Position To Panel FILE_PULLDOWN_PANEL

End Response

(continued on next page)

Implementing Menus 7–3

Example 7–1 (Cont.) TAFR Bar Menu IFDL Code Example

Highlight 1 4

Reverse
When (FILE_ENTRY_CONTROL = 1)

Literal Text 1 5

Line 1
Column 2
Value " File "
Display

Underlined
End Literal

End Icon

1 The MODIFIED form data item is declared. It has an UNSIGNED BYTE
data type, and its value is 0. The value of MODIFIED is used later in the
DISCARD function response.

2 This statement declares the FILE_ENTRY_CONTROL form data
item to have an UNSIGNED BYTE data type. The value of
FILE_ENTRY_CONTROL is used later in the MNEMONIC_F function
response.

3 The viewport for the TAFR bar menu, BAR_MENU_VIEWPORT,
is specified as line 2 through 2, columns 1 through 80. The
BAR_MENU_VIEWPORT viewport is the top two lines of the display,
all the way across the display.

4 The DISCARD function is declared to occur when the F8 key, or the PF1-Q
key sequence is pressed. The action that occurs when the DISCARD
function is invoked is specified in 9 .

5 An internal response, called QUIT_APPLICATION, is specified.
QUIT_APPLICATION displays a message, "Quitting application. Data
discarded.", when the DISCARD function is invoked in 9 .

6 When MENU_DEFAULTS is applied to a field, the field is displayed in
reverse video whenever the cursor is positioned to it.

7 The BAR_MENU_PANEL panel is declared.

8 This statement specifies that BAR_MENU_PANEL is displayed within
BAR_MENU_VIEWPORT.

7–4 Implementing Menus

9 The DISCARD function response is defined for this panel. If the value of
the MODIFIED form data item is equal to 1, CAUTION_BOX_PANEL is
activated. The value of MODIFIED was set to 0 in 1 . It is set to 1 later in
the form, when the values in the COUNTRY_LIST_OPTIONS box are set
to their initial values. If the CAUTION_BOX_PANEL panel is displayed,
the cursor is positioned to the NO button on the panel that asks you if you
wish to quit. If you have not changed any data, you quit the application
immediately without being asked if you want to quit.

1 0 This function response associates the MNEMONIC_F function with this
response. The value of the FILE_ENTRY_CONTROL form data item is set
to 1, and FILE_PULLDOWN_PANEL is activated. This panel displays a
pull-down menu with Exit and Quit choices. The cursor is positioned to the
panel.
The MNEMONIC_F function occurs when the PF4 key and the F key are
pressed in sequence. This function was declared earlier in the form, as
follows:

Function MNEMONIC_F
Is (%PF4 %CAPITAL_F)
(%PF4 %SMALL_F)

End Function

1 1 This FIELD DEFAULT application specifies that the field defaults declared
in 6 are applied to all icons within the BAR_MENU_PANEL. This apply
clause is defined for the panel level.

1 2 The FILE_CASCADE_BUTTON icon is declared.

1 3 When the Select key is pressed within the icon, the FILE_PULLDOWN_
PANEL panel is activated, and the cursor is positioned to it. This is
the same action that the MNEMONIC_F function response invokes. An
internal response could have been used to create the same effect.

1 4 When the icon is selected, a highlight is applied to it. The icon is displayed
in reverse video.

1 5 This LITERAL TEXT declaration specifies that "File" is displayed at line
1, column 2, and that it is underlined. This makes "File" the first choice
on the bar menu.

7.2 Pull-Down Menus
Pull-down menus appear when a user selects a menu name from the bar
menu or a cascade item from another menu. The implementation of the List
Registrants pull-down menu of the Add Registration dialog box, shown in
Figure 4–6 is discussed in Example 7–2.

Implementing Menus 7–5

Example 7–2 List Registrants Pull-Down Menu IFDL Code

Form TAFR_FORM
.
.
.

Panel REGISTRATION_PULLDOWN_PANEL 1

Viewport REGISTRATION_PULLDOWN_VIEWPORT 2

Function Response DISCARD 3
Deactivate

Panel REGISTRATION_PULLDOWN_PANEL
Remove

REGISTRATION_PULLDOWN_VIEWPORT
Position To Previous Item
Let REGISTRATION_ENTRY_CONTROL = 0

End Response
.
.
.

Function Response MNEMONIC_L 4
Let LIST_ENTRY_CONTROL = 1
Activate

Panel LIST_PULLDOWN_PANEL
Position To Panel LIST_PULLDOWN_PANEL

End Response

Apply Field Default MENU_DEFAULTS 5

Literal Text 6
Line 5
Column 2
Value "·······························"

End Literal
.
.
.

Icon LIST_CASCADE_BUTTON 7

Function Response MOVE_RIGHT 8
Let LIST_ENTRY_CONTROL = 1
Activate

Panel LIST_PULLDOWN_PANEL
Position To Panel LIST_PULLDOWN_PANEL

End Response

Function Response SELECT 9
Let LIST_ENTRY_CONTROL = 1
Activate

Panel LIST_PULLDOWN_PANEL
Position To Panel LIST_PULLDOWN_PANEL

End Response

(continued on next page)

7–6 Implementing Menus

Example 7–2 (Cont.) List Registrants Pull-Down Menu IFDL Code

Display 1 0

Underlined
Highlight

Reverse
When (LIST_ENTRY_CONTROL = 1)

Literal Text 1 1

Line 6
Column 2
Value " List Registrants ->"
Display

Nounderlined
End Literal

Literal Text
Line 6
Column 3
Value "L" 1 2

Display
Underlined

End Literal

End Icon

Literal Rectangle 1 3

Line 1 Column 1
Line 7 Column 33

End Literal

End Panel

Panel LIST_PULLDOWN_PANEL 1 4

Viewport LIST_PULLDOWN_VIEWPORT
Function Response DISCARD 1 5

Let LIST_ENTRY_CONTROL = 0
Deactivate

Panel LIST_PULLDOWN_PANEL
Remove

LIST_PULLDOWN_VIEWPORT
Position To Previous Item

End Response

Apply Field Default MENU_DEFAULTS 1 6

Literal Rectangle 1 7

Line 1 Column 1
Line 6 Column 14

End Literal

(continued on next page)

Implementing Menus 7–7

Example 7–2 (Cont.) List Registrants Pull-Down Menu IFDL Code

Icon BY_COUNTRY_ENTRY 1 8

Function Response SELECT 1 9

Deactivate
Panel LIST_PULLDOWN_PANEL

Remove
LIST_PULLDOWN_VIEWPORT

Deactivate
Panel REGISTRATION_PULLDOWN_PANEL

Remove
REGISTRATION_PULLDOWN_VIEWPORT

Activate
Panel COUNTRY_LIST_DIALOG_PANEL

Position To Panel COUNTRY_LIST_DIALOG_PANEL
Let LIST_ENTRY_CONTROL = 0
Let REGISTRATION_ENTRY_CONTROL = 0

End Response

Literal Text 2 0

Line 2
Column 2
Value " By Country "

End Literal

End Icon

Icon BY_EVENT_ENTRY 2 1

Function Response SELECT 2 2

Signal
Message

"LIST BY EVENT function not yet implemented."
End Response

Literal Text 2 3

Line 3
Column 2
Value " By Event "

End Literal

End Icon

Icon BY_NAME_ENTRY 2 4

Function Response SELECT 2 5

Signal
Message

"LIST BY NAME function not yet implemented."
End Response

(continued on next page)

7–8 Implementing Menus

Example 7–2 (Cont.) List Registrants Pull-Down Menu IFDL Code

Literal Text 2 6

Line 4
Column 2
Value " By Name "

End Literal

End Icon

Icon BY_NUMBER_ENTRY 2 7

Function Response SELECT 2 8

Signal
Message

"LIST BY NUMBER function not yet implemented."
End Response

Literal Text 2 9

Line 5
Column 2
Value " By Number "

End Literal

End Icon

End Panel

1 The panel on which the registration pull-down menu appears,
REGISTRATION_PULLDOWN_PANEL, is declared.

2 The viewport in which REGISTRATION_PULLDOWN_PANEL is
displayed, REGISTRATION_PULLDOWN_VIEWPORT, is declared.

3 The DISCARD function response is specified for
REGISTRATION_PULLDOWN_PANEL. The DISCARD function response
deactivates REGISTRATION_PULLDOWN_PANEL and removes the
viewport from the display. DISCARD also positions the cursor to the
previous item, and sets the REGISTRATION_ENTRY_CONTROL form
data item to 0.

The DISCARD function response is invoked if the user presses the F8 key
or the PF1-Q key sequence.

4 This function response associates the MNEMONIC_L function with this
response. The value of the LIST_ENTRY_CONTROL form data item is set
to 1, and the LIST_PULLDOWN_PANEL panel is activated. The cursor is
positioned to the panel.

Implementing Menus 7–9

The MNEMONIC_L function occurs when the PF4 key and the L key are
pressed in sequence. This function was declared earlier in the form, as
follows:

Function MNEMONIC_L
Is (%PF4 %CAPITAL_L)
(%PF4 %SMALL_l)

End Function

5 A FIELD DEFAULT application specifying that MENU_DEFAULTS is
applied to all fields and icons on the panel is declared. MENU_DEFAULTS
specifies that fields are displayed in reverse video when they are active.

6 This LITERAL TEXT declaration places a line of periods between the List
Registrants choice and the bottom of the menu.

7 The LIST_CASCADE_BUTTON icon is specified. LIST_CASCADE_BUTTON
is an icon, not a field: only function key input is allowed.

8 The MOVE_RIGHT function response is declared for the icon.
MOVE_RIGHT specifies that when the right arrow key is pressed in
this icon, the
LIST_PULLDOWN_PANEL panel is activated and the cursor is positioned
to the first item on that panel. Pressing the right arrow key sets the form
data item LIST_ENTRY_CONTROL to 1.

9 The SELECT function response is identical to the MOVE_RIGHT function
response. Pressing the Select key has the same effect as pressing the right
arrow key.

1 0 This DISPLAY clause specifies that LIST_CASCADE_BUTTON is
underlined. The HIGHLIGHT clause specifies that this button is displayed
in reverse video when LIST_ENTRY_CONTROL is 1.

1 1 This clause specifies that a text string "List Registrants ->" is displayed at
line 6, column 2, of the icon.

1 2 This clause specifies that the L in "List Registrants" is underlined. It
must be declared after the full text in 1 1.

1 3 This clause specifies the rectangle in which the Add Registrants menu is
displayed.

1 4 The LIST_PULLDOWN_PANEL panel is specified. LIST_PULLDOWN_PANEL
is displayed in the LIST_PULLDOWN viewport, declared earlier in the
form, as follows:

7–10 Implementing Menus

Viewport LIST_PULLDOWN_VIEWPORT
Lines 7 Through 12
Columns 41 Through 54

End Viewport

1 5 The DISCARD function response is specified for LIST_PULLDOWN_PANEL.
The DISCARD function response deactivates LIST_PULLDOWN_PANEL
and removes the viewport from the display. DISCARD also positions
the cursor to the previous item, and sets the form data item
LIST_ENTRY_CONTROL form data item to 0.

The DISCARD function response is invoked if the user presses the F8 key
or the PF1 and Q keys in sequence.

1 6 This FIELD DEFAULT application specifies that MENU_DEFAULTS be
applied to the fields and icons declared in LIST_PULLDOWN_PANEL.

1 7 This LITERAL declaration specifies the rectangle in which the List
Registrants pull-down menu is displayed.

1 8 This icon specifies the first choice in the List Registrants pull-down menu,
By Country.

1 9 The SELECT function response is declared for the icon. SELECT specifies
that when the Select key is pressed in this icon, the
LIST_PULLDOWN_PANEL panel is deactivated and removed
from the display. The REGISTRATION_PULLDOWN_PANEL
panel is also deactivated and removed from the display. The
COUNTRY_LIST_DIALOG_PANEL panel is activated, and the cursor
is positioned to the first item on that panel. Pressing the Select key sets
the form data item LIST_ENTRY_CONTROL to 0, and the form data item
REGISTRATION_ENTRY_CONTROL to 0.

2 0 This LITERAL declaration specifies that a text string "By Country"

is displayed at line 2, column 2—the first line of the List Registrants
pull-down menu.

2 1 This icon specifies the second choice in the List Registrants pull-down
menu, By Event.

2 2 The SELECT function response is declared for the icon. SELECT specifies
that when the Select key is pressed in this icon, the message "LIST BY
EVENT function not yet implemented" is displayed in the message panel.

2 3 This LITERAL declaration specifies that a text string "By Event" is
displayed at line 3, column 2—the second line of the List Registrants
pull-down menu—directly beneath 1 8.

Implementing Menus 7–11

2 4 This icon specifies the third choice in the List Registrants pull-down menu,
By Name.

2 5 The SELECT function response is declared for the icon. SELECT specifies
that when the Select key is pressed in this icon, the message "LIST BY
NAME function not yet implemented" is displayed in the message panel.

2 6 This LITERAL declaration specifies that a text string "By Name" is
displayed at line 4, column 2—the third line of the List Registrants
pull-down menu—directly beneath 2 1.

2 7 This icon specifies the fourth choice in the List Registrants pull-down
menu, By Number.

2 8 The SELECT function response is declared for the icon. SELECT specifies
that when the Select key is pressed in this icon, the message "LIST BY
NUMBER function not yet implemented" is displayed in the message
panel.

2 9 This LITERAL declaration specifies that a text string "By Number" is
displayed at line 5, column 2—the fourth line of the List Registrants
pull-down menu—directly beneath 2 4.

7.3 Pop-Up Menus
Pop-ups are used to display lists of items when there is not enough room on
the screen to display the entire list at time. In Example 7–3 the pop-up menu
that is implemented is the country pop-up menu from the Add Registration
dialog box, shown in Figure 3–14.

7–12 Implementing Menus

Example 7–3 TAFR Country Pop-Up Menu IFDL Code Example

Form TAFR_FORM
.
.
.

Group COUNTRY_LIST_OPTIONS 1

Occurs 12 2
Current N2 3
STRING Character(13) 4
CONTROL Unsigned Byte 5

End Group
.
.
.

Enable Response 6
.
.
.

Let COUNTRY_LIST_OPTIONS(1).STRING = "Australia" 7

Let COUNTRY_LIST_OPTIONS(2).STRING = "Canada" 8
Let COUNTRY_LIST_OPTIONS(3).STRING = "China"
Let COUNTRY_LIST_OPTIONS(4).STRING = "Denmark"
Let COUNTRY_LIST_OPTIONS(5).STRING = "Egypt"
Let COUNTRY_LIST_OPTIONS(6).STRING = "England"
Let COUNTRY_LIST_OPTIONS(7).STRING = "France"
Let COUNTRY_LIST_OPTIONS(8).STRING = "Germany"
Let COUNTRY_LIST_OPTIONS(9).STRING = "Japan"
Let COUNTRY_LIST_OPTIONS(10).STRING = "Sweden"
Let COUNTRY_LIST_OPTIONS(11).STRING = "United States"
Let COUNTRY_LIST_OPTIONS(12).STRING = "Soviet Union"

.

.

.
Panel COUNTRY_LIST_OPTION_MENU 9

Viewport COUNTRY_LIST_OPTION_VIEWPORT 1 0

Apply Field Default MENU_DEFAULTS 1 1

Group COUNTRY_LIST_OPTIONS 1 2

Vertical 1 3

Field STRING 1 4

Line 2
Column 3
Output Picture X(14)
Highlight 1 5

Reverse
When (COUNTRY_LIST_OPTIONS(**).CONTROL = 1)

Protected
End Field

(continued on next page)

Implementing Menus 7–13

Example 7–3 (Cont.) TAFR Country Pop-Up Menu IFDL Code Example

Field CONTROL 1 6

Line 2
Column 2
Entry Response 1 7

Let COUNTRY_LIST_OPTIONS(N2).CONTROL = 1
End Response

Exit Response 1 8

Let COUNTRY_LIST_OPTIONS(N2).CONTROL = 0
End Response

Function Response SELECT 1 9

If CALL_FROM = "LIST_REGISTRANTS" Then
Let COUNTRY_OPTIONS = COUNTRY_LIST_OPTIONS(N2).STRING

End If

IF CALL_FROM = "ADD_REGISTRANTS " THEN
Let COUNTRY = COUNTRY_LIST_OPTIONS(N2).STRING

End If

Deactivate
Panel COUNTRY_LIST_OPTION_MENU

Remove
COUNTRY_LIST_OPTION_VIEWPORT

End Response

Output Picture X 2 0

No Data Input 2 1

Output " " 2 2

When 1 = 1
End Field

End Group

Literal Rectangle 2 3

Line 1 Column 1
Line 14 Column 17

End Literal

End Panel

1 A form data group, COUNTRY_LIST_OPTIONS, is declared.

2 The COUNTRY_LIST_OPTIONS group is a one-dimensional array of 12
elements.

3 The variable N2 is used in 1 7, 1 8, and 1 9 to control actions based on cursor
position.

7–14 Implementing Menus

4 This statement specifies that the first form data item in
COUNTRY_LIST_OPTIONS(n) has a CHARACTER(13) string data type
and is specified as COUNTRY_LIST_OPTIONS(n).STRING.

5 This statement specifies that the value of the second form data item in
COUNTRY_LIST_OPTIONS(n) has an UNSIGNED BYTE data type and is
specified as COUNTRY_LIST_OPTIONS(n).CONTROL.

6 This ENABLE response initializes all the values in the LET response steps
that follow it when the form is enabled.

7 This LET response assigns ’Australia’ as the value of the
COUNTRY_LIST_OPTIONS(1).STRING form data item.
COUNTRY_LIST_OPTIONS(1).STRING appears as the first menu choice
in the By Country pop-up menu.

8 This LET response assigns ’Canada’ as the value of the
COUNTRY_LIST_OPTIONS(2).STRING form data item.
COUNTRY_LIST_OPTIONS(2).STRING appears as the second menu choice
in the By Country pop-up menu. The following LET statements assign
values to all 12 elements in COUNTRY_LIST_OPTIONS(n).STRING

9 This PANEL declaration begins the COUNTRY_LIST_OPTION_MENU
panel.

1 0 This VIEWPORT declaration specifies where
COUNTRY_LIST_OPTION_MENU should be displayed. The viewport was
specified earlier in the form, as follows:

Viewport COUNTRY_LIST_OPTION_VIEWPORT
Lines 2 Through 15
Columns 40 Through 56

End Viewport

1 1 A set of field defaults, MENU_DEFAULTS, is specified for the panel.
MENU_DEFAULTS, declared earlier in the form, specify that fields are
displayed in reverse video when activated.

1 2 This GROUP declaration specifies a panel group, COUNTRY_LIST_OPTIONS,
associated with the form data group of the same name.

1 3 COUNTRY_LIST_OPTIONS is specified as a vertical group.

1 4 The field STRING appears at line 2, column 3. This field contains the
values that are in COUNTRY_LIST_OPTIONS(n).STRING.

1 5 The field STRING is output in reverse video when its corresponding control
variable (COUNTRY_LIST_OPTIONS(**).CONTROL) is set to 1.

1 6 The field CONTROL appears at line 2, column 2, to the left of 1 4.

Implementing Menus 7–15

1 7 The COUNTRY_LIST_OPTIONS(N2).CONTROL variable is used to specify
where the cursor is (see 1 4).

1 8 When the CONTROL field is exited, the value in
COUNTRY_LIST_OPTIONS(N2).CONTROL is set to 0.

1 9 When the Select key is pressed within this field, depending where the
pop-up menu was called from, the SELECT response sets the appropriate
variable.

If the user was on the List Registrants pull-down menu before the cursor
moved to the pop-up menu, the COUNTRY_LIST_OPTIONS(N2).STRING
value is stored in COUNTRY_OPTIONS to reflect the correct value when
the user views List Registrants.

If the user was on the Add Registrants pull-down menu before he selected
the pop-up menu, the COUNTRY_LIST_OPTIONS(N2).STRING value is
stored in the COUNTRY field to reflect the correct value when the user
views Add Registrants.

The COUNTRY_LIST_OPTION_MENU panel is deactivated. The
COUNTRY_LIST_OPTION_VIEWPORT viewport is removed from the
display.

2 0 An output picture is specified for the CONTROL field.

2 1 You can only type function keys, like the Select key or the right arrow key.

2 2 The control field is always displayed as a space.

2 3 This LITERAL declaration specifies the rectangle that is drawn around the
country pop-up menu.

7–16 Implementing Menus

8
Implementing Dialog Boxes

Dialog boxes can be simple or complex. In the following examples, both simple
and complex dialog boxes are implemented.

8.1 Work in Progress Dialog Box
The IFDL coding for the Work in Progress dialog box shown in Figure 5–8 is
shown in Example 8–1.

Example 8–1 Work in Progress Dialog Box IFDL Code Example

Form TAFR_FORM
.
.
.

Panel WORK_IN_PROGRESS_BOX 1

Viewport WORK_IN_PROGRESS_VIEWPORT 2

Literal Rectangle 3
Line 1 Column 1
Line 5 Column 20

End Literal

Literal Text 4
Line 1
Column 2
Value " Work in Progress "
Display

Reverse
End Literal

(continued on next page)

Implementing Dialog Boxes 8–1

Example 8–1 (Cont.) Work in Progress Dialog Box IFDL Code Example

Literal Text 5
Line 3
Column 3
Value "Printing List..."
Display

Blinking
End Literal

End Panel

1 The panel, WORK_IN_PROGRESS_BOX, is declared.

2 The viewport in which WORK_IN_PROGRESS_BOX is displayed,
WORK_IN_PROGRESS_VIEWPORT, was declared earlier in the form, as
follows:

Viewport CAUTION_BOX_VIEWPORT
Lines 7 Through 18
Columns 16 Through 64

End Viewport

3 This rectangle frames the panel.

4 This LITERAL TEXT declaration specifies that a text string, "Work in
Progress" is displayed at line 1, column 2 of the panel. This text literal is
displayed in reverse video. This text overlaps the rectangle specified in 3 .

5 This LITERAL TEXT declaration specifies that a text string "Printing
List..." is displayed at line 3, column 3. The text literal blinks.

8.2 Informational Dialog Box
Informational dialog boxes are used to convey warnings, cautions, and
information to the user. Example 8–2 is the IFDL coding for the Quit Caution
box from TAFR, similar to the box shown in Figure 5–10.

8–2 Implementing Dialog Boxes

Example 8–2 Quit Caution Dialog Box IFDL Code Example

Form TAFR_FORM
.
.
.

Panel CAUTION_BOX_PANEL 1

Viewport CAUTION_BOX_VIEWPORT 2

Function Response TRANSMIT 3
Include CANCEL_QUIT

End Response

Function Response DISCARD 4
Include NO_FUNCTION

End Response

Apply Field Default MENU_DEFAULTS 5

Literal Rectangle 6
Line 1 Column 1
Line 12 Column 49

End Literal

Literal Text 7
Line 1
Column 2
Value " Quit Caution Box "
Display

Reverse
End Literal

Literal Text 8
Line 3
Column 4
Value "Modifications made during this application"

End Literal

Literal Text 9
Line 4
Column 5
Value "session will be discarded. Do you really"

End Literal

Literal Text 1 0

Line 5
Column 19
Value "wish to quit?"

End Literal

(continued on next page)

Implementing Dialog Boxes 8–3

Example 8–2 (Cont.) Quit Caution Dialog Box IFDL Code Example

Icon QUIT_YES_BUTTON 1 1

Function Response SELECT 1 2

Include QUIT_APPLICATION 1 3

End Response

Literal Text 1 4

Line 9
Column 17
Value " Yes "

End Literal

End Icon

Literal Rectangle 1 5

Line 8 Column 16
Line 10 Column 22

End Literal

Literal Rectangle 1 6

Line 8 Column 29
Line 10 Column 34

End Literal

Icon QUIT_NO_BUTTON 1 7

Function Response SELECT 1 8

Include CANCEL_QUIT
End Response

Literal Text 1 9

Line 9
Column 30
Value " No "

End Literal

End Icon

End Panel

1 The panel, CAUTION_BOX_PANEL, is declared.

2 The viewport in which CAUTION_BOX_PANEL is displayed,
CAUTION_BOX_VIEWPORT is specified. CAUTION_BOX_VIEWPORT
was declared earlier in the form, as follows:

Viewport CAUTION_BOX_VIEWPORT
Lines 7 Through 18
Columns 16 Through 64

End Viewport

8–4 Implementing Dialog Boxes

3 The TRANSMIT function response is specified for the panel. The
TRANSMIT function response includes the CANCEL_QUIT internal
response, declared earlier in the form, as follows:

Internal Response CANCEL_QUIT
Signal
Message

"Quit function cancelled."
Deactivate

Panel CAUTION_BOX_PANEL
Remove

CAUTION_BOX_VIEWPORT
Position To Previous Item

End Response

This function response, invoked when the F10 key is pressed, displays the
message "Quit function cancelled" in the message panel and deactivates
the panel. The viewport is removed, and the cursor is positioned to the
previous panel.

4 The DISCARD function response specifies that the NO_FUNCTION
internal response happens when the F8 key or the PF1-Q key sequence is
pressed. The NO_FUNCTION internal response was specified earlier in
the form, as follows:

Internal Response NO_FUNCTION
Signal
Message

"That key has no function at this level."
End Response

The message "That key has no function at this level" is displayed in the
message panel.

5 This FIELD DEFAULT application specifies that MENU_DEFAULTS
be applied to all fields on CAUTION_BOX_PANEL. MENU_DEFAULTS
specifies that fields be displayed in reverse video when they are active.

6 This LITERAL declaration draws the box around the caution.

7 This LITERAL TEXT declaration displays "Quit Caution Box" at line 1,
column 2—the label for the box.

8 This LITERAL TEXT declaration displays "Modifications made during this
application" at line 3, column 4. This is the first line of the caution box
question.

9 This LITERAL TEXT declaration displays "session will be discarded. Do
you really" at line 4, column 5. This is the second line of the caution box
question.

Implementing Dialog Boxes 8–5

1 0 This LITERAL TEXT declaration displays "wish to quit?" at line 5, column
19. This is the last line of the caution box question.

1 1 An icon, QUIT_YES_BUTTON, is specified.

1 2 The SELECT function response is specified for the QUIT_YES_BUTTON
icon. The SELECT function response, invoked when the Select key or
the keypad period key is pressed, is the QUIT_APPLICATION internal
response.

1 3 QUIT_APPLICATION was specified earlier in the form, as follows:

Internal Response QUIT_APPLICATION
Signal
Message

"Quitting application. Data discarded."
Return Immediate

End Response

QUIT_APPLICATION gives the user the "Quitting application. Data
discarded" message, and quits the application, bypassing any validation.

1 4 This LITERAL TEXT declaration outputs a "Yes" at line 9, column 17, in
the middle of the box drawn in 1 5.

1 5 This LITERAL declaration draws the box around the "Yes".

1 6 This LITERAL declaration draws the box around the "No", specified in 1 8.

1 7 An icon, QUIT_NO_BUTTON, is specified.

1 8 The SELECT function response is specified for the QUIT_NO_BUTTON
icon. The SELECT function response, invoked when the Select key or the
keypad perid key is pressed, is the CANCEL_QUIT internal response.

CANCEL_QUIT was specified earlier in the form, as follows:

Internal Response CANCEL_QUIT
Signal
Message

"Quit function cancelled."
Deactivate

Panel CAUTION_BOX_PANEL
Remove

CAUTION_BOX_VIEWPORT
Position To Previous Item

End Response

CANCEL_QUIT gives the user the message "Quit function cancelled.",
then deactivates the panel and positions the cursor to the previous item.

8–6 Implementing Dialog Boxes

1 9 This LITERAL TEXT declaration outputs a "No" at line 9, column 30, in
the middle of the box drawn in 1 6.

8.3 File Selection Dialog Box
The file selection dialog box allows a user to select a file name within your
application. File selection boxes contain file filter text entry fields, selection
text entry fields, list boxes and list box labels, and Filter, OK, and Cancel push
buttons, as shown in Figure 5–11.

Example 8–3 shows the IFDL code used to create Figure 5–11.

Example 8–3 File Selection Dialog Box IFDL Code Example

Form TAFR_FORM
.
.
.

Group FILEBOX_LIST 1

Occurs 64 2
current current_file_index 3

FILE_SPEC Character(48) 4
End Group
FILEBOX_LIST_TOP_INDICATOR Character(1) 5

FILEBOX_LIST_BOTTOM_INDICATOR Character(1) 6

FILEBOX_LIST_TOP_CONTROL Unsigned Longword 7

FILEBOX_FILTER_FIELD Character(48) 8
Value " "

FILEBOX_SELECTION_FIELD Character(48) 9
End Data

Form Record FILEBOX_LIST_RECORD 1 0

Group FILEBOX_LIST
Occurs 64
FILE_SPEC Character(48)

End Group
End Record

.

.

.
Panel PRINT_FILEBOX_PANEL 1 1

Viewport PRINT_FILEBOX_VIEWPORT 1 2

Function Response TRANSMIT 1 3

If (FILEBOX_SELECTION_FIELD = " ") Then
Signal
Message "You must make a selection."

(continued on next page)

Implementing Dialog Boxes 8–7

Example 8–3 (Cont.) File Selection Dialog Box IFDL Code Example
Position To Field FILEBOX_SELECTION_FIELD on PRINT_FILEBOX_PANEL

Else 1 4

Deactivate
Panel PRINT_FILEBOX_PANEL

Remove
PRINT_FILEBOX_VIEWPORT

Position To Previous Item
End if

End Response

Function Response DISCARD 1 5

Deactivate
Panel PRINT_FILEBOX_PANEL

Remove
PRINT_FILEBOX_VIEWPORT

Position To Previous Item
End Response

Literal Rectangle 1 6

Line 1 Column 1
Line 16 Column 68

End Literal

Literal Text 1 7

Line 1
Column 2
Value " Print to File "-

" "
Display

Reverse
End Literal

Literal Text 1 8

Line 3
Column 3
Value "Filter:"

End Literal

Field FILEBOX_FILTER_FIELD 1 9

Line 3
Column 11

Function Response SELECT 2 0

Include DO_FILEBOX_FILTER
End Response

Exit Response 2 1

Include DO_FILEBOX_FILTER
End Response

End Field

(continued on next page)

8–8 Implementing Dialog Boxes

Example 8–3 (Cont.) File Selection Dialog Box IFDL Code Example

Group FILEBOX_LIST 2 2

Vertical
Displays 8 First FIRST_FILE_INDEX

Field FILE_SPEC 2 3

Line 5
Column 4

Entry Response 2 4

Include COMPUTE_UNSEEN_FILE_COUNT
End Response

Function Response MOVE_DOWN 2 5

If FILEBOX_LIST(current_file_index+1).FILE_SPEC = " " Then
Signal
Message "No more files."

Else
Position To Down Occurrence

End If
End Response

Function Response MOVE_UP 2 6

Position To Up Occurrence
End Response

Function Response MOVE_LEFT 2 7

Message "No items in that direction."
Signal

End Response

Function Response MOVE_RIGHT 2 8

Position To Icon FILEBOX_OK_BUTTON On PRINT_FILEBOX_PANEL
End Response

Function Response SELECT 2 9

Let FILEBOX_SELECTION_FIELD =
FILEBOX_LIST(current_file_index).FILE_SPEC

End Response

Function Response JUMP_UP 3 0

Position To Field FILEBOX_FILTER_FIELD On PRINT_FILEBOX_PANEL
End Response

Function Response JUMP_DOWN 3 1

Position To Field FILEBOX_SELECTION_FIELD On PRINT_FILEBOX_PANEL
End Response

No Data Input
Active Highlight Reverse

End Field

(continued on next page)

Implementing Dialog Boxes 8–9

Example 8–3 (Cont.) File Selection Dialog Box IFDL Code Example

End Group

Literal Text 3 2

Line 5
Column 52
Value " "

End Literal

Field FILEBOX_LIST_TOP_INDICATOR 3 3

Line 5
Column 53 Protected

Display
Character Set Private_Rule

Output "w" When FIRST_FILE_INDEX = 1
Output ":" When FIRST_FILE_INDEX <> 1

End Field

Field FILEBOX_LIST_BOTTOM_INDICATOR 3 4

Line 12
Column 53 Protected

Display
Character Set Private_Rule

Output "v" When UNSEEN_FILE_COUNT <= 0
Output ":" When UNSEEN_FILE_COUNT > 0

End Field

Literal Polyline 3 5

Line 6 Column 53
Line 11 Column 53

End Literal

Literal Rectangle 3 6

Line 4 Column 3
Line 13 Column 54

End Literal

Literal Text 3 7

Line 15
Column 3
Value "Selection: "

End Literal

Literal Rectangle 3 8

Line 7 Column 57
Line 9 Column 66

End Literal

(continued on next page)

8–10 Implementing Dialog Boxes

Example 8–3 (Cont.) File Selection Dialog Box IFDL Code Example

Field FILEBOX_SELECTION_FIELD 3 9

Line 15
Column 14

End Field

Icon FILEBOX_FILTER_BUTTON 4 0

Literal Rectangle
Line 4 Column 57
Line 6 Column 66

End Literal

Literal Text
Line 5
Column 58
Value " Filter "

End Literal

End Icon

Icon FILEBOX_OK_BUTTON 4 1

Function Response SELECT 4 2

If (FILEBOX_SELECTION_FIELD = " ") Then
Signal
Message "You must make a selection."
Position To Field FILEBOX_SELECTION_FIELD On PRINT_FILEBOX_PANEL

Else
Deactivate

Panel PRINT_FILEBOX_PANEL
Remove

PRINT_FILEBOX_VIEWPORT
Position To Previous Item

End If
End Response

Active Highlight
Reverse

Literal Text
Line 8
Column 58
Value " OK " 4 3

End Literal

End Icon

(continued on next page)

Implementing Dialog Boxes 8–11

Example 8–3 (Cont.) File Selection Dialog Box IFDL Code Example

Icon FILEBOX_CANCEL_BUTTON 4 4

Function Response SELECT 4 5

Deactivate
Panel PRINT_FILEBOX_PANEL

Remove
PRINT_FILEBOX_VIEWPORT

End Response

Literal Rectangle 4 6

Line 10 Column 57
Line 12 Column 66

End Literal

Literal Text 4 7

Line 11
Column 58
Value " Cancel "

End Literal

End Icon

End Panel

End Layout

1 A form data group, FILEBOX_LIST, is declared.

2 FILEBOX_LIST is an array of 64 form data items.

3 The CURRENT clause specifes the variable CURRENT_FILE_INDEX
to contain the current index of the form data item where the cursor is
positioned. If the cursor is positioned to FILEBOX_LIST(31).FILE_SPEC,
then CURRENT_FILE_INDEX is 31.

4 The first item in FILEBOX_LIST is a form data item named FILE_SPEC.
FILE_SPEC has a CHARACTER data type, and is 48 characters long.

5 A form data item, FILEBOX_LIST_TOP_INDICATOR, is declared to have
a CHARACTER data type, and to be one character long.

6 A form data item, FILEBOX_LIST_BOTTOM_INDICATOR, is declared to
have a CHARACTER data type, and to be one character long.

7 A form data item, FILEBOX_LIST_TOP_CONTROL, is declared to have a
UNSIGNED LONGWORD data type.

8 A form data item, FILEBOX_FILTER_FIELD, is declared to have a
CHARACTER data type, and to be 48 characters long. The value of
FILEBOX_FILTER_FIELD is set to blanks.

8–12 Implementing Dialog Boxes

9 A form data item, FILEBOX_SELECTION_FIELD, is declared to have a
CHARACTER data type, and to be 48 characters long.

1 0 A form record, FILEBOX_LIST_RECORD, is declared. This form
record contains a FILEBOX_LIST record group that corresponds to
the FILEBOX_LIST data group.

1 1 A panel, PRINT_FILEBOX_PANEL, is declared.

1 2 The viewport in which PRINT_FILEBOX_PANEL is displayed is
PRINT_FILEBOX_VIEWPORT. PRINT_FILEBOX_VIEWPORT was
specified earlier in the form, as follows:

Viewport PRINT_FILEBOX_VIEWPORT
Lines 5 Through 20
Columns 7 Through 74

End Viewport

1 3 If the F10 key is pressed while the cursor is in the panel, and the value in
FILEBOX_SELECTION_FIELD is set to blanks, a message saying "You
must make a selection" is displayed, and the cursor is positioned to the
FILEBOX_SELECTION_FIELD on PRINT_FILEBOX_PANEL.

1 4 If the value in FILEBOX_SELECTION_FIELD is not set to blanks, the
PRINT_FILEBOX_PANEL is deactivated and removed from the display.
(Removing the viewport accomplishes this.) The cursor is positioned to the
previous item. (Printing is not yet implemented.)

1 5 The DISCARD function response specifies that the PRINT_FILEBOX_PANEL
is deactivated and removed from the display when the F8 key or the PF1-Q
key sequence is pressed.

1 6 This LITERAL declaration specifies the rectangle that is drawn around the
file box.

1 7 This LITERAL TEXT declaration places the phrase "Print to File" at line
1, column 2, in the file box. The text is displayed in reverse video.

1 8 This LITERAL TEXT declaration places the phrase "Filter:" at line 3,
column 3, in the file box.

1 9 The FILEBOX_FILTER_FIELD is specified at line 3, column 11. (This
places the field next to the label, "Filter:".)

2 0 The SELECT function response is declared for the field. If the Select key is
pressed while the field is active, the internal response
DO_FILEBOX_FILTER occurs.

Implementing Dialog Boxes 8–13

2 1 This EXIT RESPONSE specifies that the internal response
DO_FILEBOX_FILTER occurs when the field is exited.
DO_FILEBOX_FILTER was specified earlier in the form, as follows:

Internal Response DO_FILEBOX_FILTER
Call "FILL_FILEBOX" Using

By Reference FILEBOX_FILTER_FIELD
By Reference FILEBOX_LIST_RECORD
By Value FILE_SPEC_LENGTH
By Value FILE_ARRAY_SIZE

Giving FILE_COUNT
Message FILE_COUNT " files located."
Let FIRST_FILE_INDEX = 1
Include COMPUTE_UNSEEN_FILE_COUNT

end response

DO_FILEBOX_FILTER makes a call to a procedural escape; "fill_filebox"
updates the file index by one and then returns to the program.

2 2 The panel group FILEBOX_LIST is a vertical group (it scrolls) and it
displays eight fields at a time.

2 3 The FILE_SPEC field is displayed at line 5, column 4. The contents of
FILE_SPEC are the data items in 4 .

2 4 This entry response specifies that an internal response,
COMPUTE_UNSEEN_FILE_COUNT, occur when the field is entered.
COMPUTE_UNSEEN_FILE_COUNT was declared earlier in the form, as
follows:

Internal Response COMPUTE_UNSEEN_FILE_COUNT
Let UNSEEN_FILE_COUNT = FILE_COUNT - FILE_LIST_WINDOW_SIZE -

FIRST_FILE_INDEX + 1
End Response

This response computes a value, UNSEEN_FILE_COUNT.

2 5 The MOVE_DOWN function response is specified for the panel group. If
the down arrow key is pressed in the panel, and the value in
FILEBOX_LIST(current_file_index+1).FILE_SPEC equals blank, a message
saying "No more files" is displayed. Otherwise, the cursor moves to the
next position down.

2 6 The MOVE_UP function response is specified for the panel group. If the up
arrow key is pressed in the panel, the cursor moves to the next item up.

2 7 The MOVE_LEFT function response is specified for the panel group. If the
left arrow key is pressed in the panel, a message saying "No more items in
that direction" is displayed.

8–14 Implementing Dialog Boxes

2 8 The MOVE_RIGHT function response is specified for the panel group. If
the right arrow key is pressed in the panel, the cursor is positioned to the
OK button on PRINT_FILEBOX_PANEL.

2 9 The SELECT function response is declared for the group. If the Select key
is pressed while the cursor is on the icon, the value of
FILEBOX_SELECTION_FIELD is set to
FILEBOX_LIST(current_file_index).FILE_SPEC.

3 0 The JUMP_UP function response is specified for the group. The JUMP_UP
function was specified earlier in the form, as follows:

Function JUMP_UP
Is (%PF1 %UP)

End Function

When the PF1 and up arrow keys are pressed, the cursor is positioned to
the file box filter field on PRINT_FILEBOX_PANEL.

3 1 The JUMP_DOWN function response is specified for the group. The
JUMP_DOWN function was specified earlier in the form, as follows:

Function JUMP_DOWN
Is (%PF1 %DOWN)

End Function

When the PF1 and up arrow keys are pressed, the cursor is positioned to
the file box selection field on PRINT_FILEBOX_PANEL.

3 2 This LITERAL TEXT declaration puts a blank space at line 5, column 52.

3 3 The FILEBOX_LIST_TOP_INDICATOR field is declared. It is displayed at
line 5, column 53, in the PRIVATE_RULE character set. The indicator is
displayed as a T (�) when the value in FIRST_FILE_INDEX is equal to 1,
and as a colon (:) when the value in FIRST_FILE_INDEX is not equal to 1.

3 4 The FILEBOX_LIST_BOTTOM_INDICATOR field is declared. It is
displayed at line 12, column 53, in the PRIVATE_RULE character
set. The indicator is displayed as a reversed T (�) when the value in
UNSEEN_FILE_COUNT is less than or equal to 0, and as a colon (:) when
the value in UNSEEN_FILE_COUNT is greater than 0.

3 5 This LITERAL declaration specifies the line between the top indicator (�)
and the bottom indicator (�.)

3 6 This LITERAL declaration specifies the rectangle around the list indicator.

3 7 This LITERAL TEXT declaration puts the Selection label in the File Filter
box.

Implementing Dialog Boxes 8–15

3 8 This LITERAL declaration puts the box around the selection field.

3 9 The FILEBOX_SELECTION_FIELD field is declared. It is displayed at
line 15, column 14.

4 0 The FILEBOX_FILTER_BUTTON icon is specified. A rectangle is placed
on the icon with the LITERAL declaration, and the button is labeled
"Filter" by the LITERAL TEXT declaration.

4 1 The FILEBOX_OK_BUTTON icon is specified.

4 2 If the Select key is pressed while the cursor is on the icon, and the value
of FILEBOX_SELECTION_FIELD is blank, the message, "You must make
a selection" is displayed and the cursor is positioned to the FILEBOX_
SELECTION_FIELD on PRINT_FILEBOX_PANEL. Otherwise, the
PRINT_FILEBOX_PANEL is deactivated and removed from the display.
(The REMOVE response step does this.)

4 3 This LITERAL TEXT declaration places the OK on the icon.

4 4 The FILEBOX_CANCEL_BUTTON icon is specified.

4 5 If the Select key is pressed while the cursor is on the icon,
PRINT_FILEBOX_PANEL is deactivated and removed from the display.
(The REMOVE response step does this by removing the viewport in which
PRINT_FILEBOX_PANEL is displayed.)

4 6 This LITERAL declaration places a rectangle around the word "Cancel".

4 7 This LITERAL TEXT declaration places the Cancel within the rectangle on
the icon.

8–16 Implementing Dialog Boxes

A
Track and Field Registration Form

The IFDL that creates the Track and Field Registration form follows.

Form TAFR_FORM

Form Data
MODIFIED Unsigned Byte

Value 0
N1 Unsigned Longword
N2 Unsigned Longword
N3 Unsigned Longword
COUNTRY_OPTIONS Character(13)
Group PRINT_FORMAT_RADIOBOX

Occurs 3
Current N1
TOGGLE Unsigned Byte
TAG Character(18)

End Group
Group COUNTRY_LIST_OPTIONS

Occurs 12
Current N2
STRING Character(13)
CONTROL Unsigned Byte

End Group
FILE_ENTRY_CONTROL Unsigned Byte
REGISTRATION_ENTRY_CONTROL Unsigned Byte
SCHEDULE_ENTRY_CONTROL Unsigned Byte
OPTIONS_ENTRY_CONTROL Unsigned Byte
HELP_ENTRY_CONTROL Unsigned Byte
LIST_ENTRY_CONTROL Unsigned Byte
COACHING_ENABLE Unsigned Byte
Group LANGUAGE_RADIOBOX

Occurs 3
Current N3
TOGGLE Unsigned Byte
TAG Character(21)
PROTECT Unsigned Byte

End Group
REGISTRATION_NUMBER Integer(9)
FIRST_NAME Character(32)
LAST_NAME Character(32)

Track and Field Registration Form A–1

COUNTRY Character(13)
CALL_FROM Character(16)
TOGGLE_SHOT_PUT Unsigned Byte
TOGGLE_HIGH_JUMP Unsigned Byte
TOGGLE_JAVELIN Unsigned Byte
TOGGLE_POLE_VAULT Unsigned Byte
TOGGLE_DISCUS Unsigned Byte
TOGGLE_LONG_JUMP Unsigned Byte
TOGGLE_100_METER Unsigned Byte
TOGGLE_400_METER Unsigned Byte
TOGGLE_5000_METER Unsigned Byte
TOGGLE_10000_METER Unsigned Byte
TOGGLE_4X4_RELAY Unsigned Byte
WORKING_DELAY Unsigned Longword

Value 5
FIRST_FILE_INDEX Longword Integer
CURRENT_FILE_INDEX Longword Integer
FILE_COUNT Longword Integer
UNSEEN_FILE_COUNT Longword Integer
FILE_ARRAY_SIZE Longword Integer value 64
FILE_SPEC_LENGTH Longword Integer value 48
FILE_LIST_WINDOW_SIZE Longword Integer value 8
Group FILEBOX_LIST

Occurs 64
Current CURRENT_FILE_INDEX
FILE_SPEC Character(48)

End Group
FILEBOX_LIST_TOP_INDICATOR Character(1)
FILEBOX_LIST_BOTTOM_INDICATOR Character(1)
FILEBOX_LIST_TOP_CONTROL Unsigned Longword
FILEBOX_FILTER_FIELD Character(48)

Value " "
FILEBOX_SELECTION_FIELD Character(48)

End Data

Form Record FILEBOX_LIST_RECORD
Group FILEBOX_LIST

Occurs 64
FILE_SPEC Character(48)

End Group
End Record

Layout VT_LAYOUT
Device

Terminal
Type %VT100

End Device
Size 24 Lines by 80 Columns

Viewport BANNER_VIEWPORT
Lines 1 Through 1
Columns 1 Through 80

End Viewport

A–2 Track and Field Registration Form

Viewport BAR_MENU_VIEWPORT
Lines 2 Through 2
Columns 1 Through 80

End Viewport

Viewport MESSAGE_VIEWPORT
Lines 23 Through 24
Columns 1 Through 80

End Viewport

Viewport FILE_PULLDOWN_VIEWPORT
Lines 3 Through 6
Columns 1 Through 8

End Viewport

Viewport REGISTRATION_PULLDOWN_VIEWPORT
Lines 3 Through 9
Columns 10 Through 42

End Viewport

Viewport LIST_PULLDOWN_VIEWPORT
Lines 7 Through 12
Columns 41 Through 54

End Viewport

Viewport CAUTION_BOX_VIEWPORT
Lines 7 Through 18
Columns 16 Through 64

End Viewport

Viewport COUNTRY_LIST_DIALOG_VIEWPORT
Lines 6 Through 19
Columns 25 Through 55

End Viewport

Viewport COUNTRY_LIST_OPTION_VIEWPORT
Lines 2 Through 15
Columns 40 Through 56

End Viewport

Viewport OPTIONS_PULLDOWN_VIEWPORT
Lines 3 Through 16
Columns 35 Through 63

End Viewport

Viewport ADD_REGISTRATION_VIEWPORT
Lines 2 Through 20
Columns 11 Through 67

End Viewport

Viewport WORK_IN_PROGRESS_VIEWPORT
Lines 8 Through 12
Columns 30 Through 49

End Viewport

Track and Field Registration Form A–3

Viewport PRINT_FILEBOX_VIEWPORT
Lines 5 Through 20
Columns 7 Through 74

End Viewport

Function SELECT
Is %SELECT

%KP_PERIOD
End Function

Function SPECIAL_FUNCTION
Is %DO

End Function

Function MOVE_UP
Is %UP

End Function

Function MOVE_DOWN
Is %DOWN

End Function

Function MOVE_LEFT
Is %LEFT

End Function

Function MOVE_RIGHT
Is %RIGHT

End Function

Function JUMP_UP
Is (%PF1 %UP)

End Function

Function JUMP_DOWN
Is (%PF1 %DOWN)

End Function

Function JUMP_LEFT
Is (%PF1 %LEFT)

End Function

Function JUMP_RIGHT
Is (%PF1 %RIGHT)

End Function

Function DISCARD
Is %F8

(%PF1 %CAPITAL_Q)
(%PF1 %SMALL_Q)

End Function

Function NEXT_SCREEN
Is %NEXT_SCREEN

End Function

A–4 Track and Field Registration Form

Function PREV_SCREEN
Is %PREV_SCREEN

End Function

Function ADD_REGISTRATION
Is %CONTROL_A

End Function

Function MAGIC
Is %F20

End Function

Function MNEMONIC_A
Is (%PF4 %CAPITAL_A)

(%PF4 %SMALL_A)
End Function

Function MNEMONIC_C
Is (%PF4 %CAPITAL_C)

(%PF4 %SMALL_C)
End Function

Function MNEMONIC_D
Is (%PF4 %CAPITAL_D)

(%PF4 %SMALL_D)
End Function

Function MNEMONIC_E
Is (%PF4 %CAPITAL_E)

(%PF4 %SMALL_E)
End Function

Function MNEMONIC_F
Is (%PF4 %CAPITAL_F)

(%PF4 %SMALL_F)
End Function

Function MNEMONIC_L
Is (%PF4 %CAPITAL_L)

(%PF4 %SMALL_L)
End Function

Function MNEMONIC_O
Is (%PF4 %CAPITAL_O)

(%PF4 %SMALL_O)
End Function

Function MNEMONIC_Q
Is (%PF4 %CAPITAL_Q)

(%PF4 %SMALL_Q)
End Function

Function MNEMONIC_R
Is (%PF4 %CAPITAL_R)

(%PF4 %SMALL_R)
End Function

Track and Field Registration Form A–5

Function MNEMONIC_S
Is (%PF4 %CAPITAL_S)

(%PF4 %SMALL_S)
End Function

Internal Response NO_FUNCTION
Signal
Message

"That key has no function at this level."
End Response

Internal Response BORDER_PATROL
Signal
Message

"There are no items in that direction."
End Response

Internal Response QUIT_APPLICATION
Signal
Message

"Quitting application. Data discarded."
Return Immediate

End Response

Internal Response CANCEL_QUIT
Signal
Message

"Quit function cancelled."
Deactivate

Panel CAUTION_BOX_PANEL
Remove

CAUTION_BOX_VIEWPORT
Position To Previous Item

End Response

Internal Response EXIT_APPLICATION
Message

"Exiting application..."
Return

End Response

Internal Response COMPUTE_UNSEEN_FILE_COUNT
Let UNSEEN_FILE_COUNT = FILE_COUNT - FILE_LIST_WINDOW_SIZE -

FIRST_FILE_INDEX + 1
End Response

A–6 Track and Field Registration Form

Internal Response DO_FILEBOX_FILTER
Call "FILL_FILEBOX" Using

By Reference FILEBOX_FILTER_FIELD
By Reference FILEBOX_LIST_RECORD
By Value FILE_SPEC_LENGTH
By Value FILE_ARRAY_SIZE
Giving FILE_COUNT

Message FILE_COUNT " files located."
Let FIRST_FILE_INDEX = 1
Include COMPUTE_UNSEEN_FILE_COUNT

End Response

Internal Response PERFORM_LIST_FUNCTION
If (PRINT_FORMAT_RADIOBOX(1).TOGGLE = 1) Then

Signal
Message

"DISPLAY SCREEN LIST function not yet implemented."
Position to previous item

End If
If (PRINT_FORMAT_RADIOBOX(2).TOGGLE = 1) Then

Message
"Printing list..."

Display
WORK_IN_PROGRESS_BOX

Call "pause_interface" Using
By Value WORKING_DELAY

Remove
WORK_IN_PROGRESS_VIEWPORT

Message
"List printed."

Signal
Position To Previous Item

End If
If (PRINT_FORMAT_RADIOBOX(3).TOGGLE = 1) Then

Activate
Panel PRINT_FILEBOX_PANEL

Position To Panel PRINT_FILEBOX_PANEL
If (FILEBOX_FILTER_FIELD = " ") Then

Let FILEBOX_FILTER_FIELD = "*.*"
Include DO_FILEBOX_FILTER

End If
End If

End Response

Track and Field Registration Form A–7

Enable Response
Let PRINT_FORMAT_RADIOBOX(1).TAG = " Display on Screen"
Let PRINT_FORMAT_RADIOBOX(2).TAG = " Print List"
Let PRINT_FORMAT_RADIOBOX(3).TAG = " Print to File"
Let COUNTRY_LIST_OPTIONS(1).STRING = "Australia"
Let COUNTRY_LIST_OPTIONS(2).STRING = "Canada"
Let COUNTRY_LIST_OPTIONS(3).STRING = "China"
Let COUNTRY_LIST_OPTIONS(4).STRING = "Denmark"
Let COUNTRY_LIST_OPTIONS(5).STRING = "Egypt"
Let COUNTRY_LIST_OPTIONS(6).STRING = "England"
Let COUNTRY_LIST_OPTIONS(7).STRING = "France"
Let COUNTRY_LIST_OPTIONS(8).STRING = "Germany"
Let COUNTRY_LIST_OPTIONS(9).STRING = "Japan"
Let COUNTRY_LIST_OPTIONS(10).STRING = "Sweden"
Let COUNTRY_LIST_OPTIONS(11).STRING = "United States"
Let COUNTRY_LIST_OPTIONS(12).STRING = "Soviet Union"
Let LANGUAGE_RADIOBOX(1).TAG = " English"
Let LANGUAGE_RADIOBOX(2).TAG = " French"
Let LANGUAGE_RADIOBOX(3).TAG = " Hebrew"
Display

BANNER_PANEL
Activate

Panel BAR_MENU_PANEL
Position To Panel BAR_MENU_PANEL
Let MODIFIED = 1

End Response

Function Response MOVE_UP
If (NOT UPPERMOST ITEM) Then

Position To Up Item
Else

Include BORDER_PATROL
End If

End Response

Function Response MOVE_DOWN
If (NOT LOWERMOST ITEM) Then

Position To Down Item
Else

Include BORDER_PATROL
End If

End Response

Function Response MOVE_LEFT
If (NOT LEFTMOST ITEM) Then

Position To Left Item
Else

Include BORDER_PATROL
End If

End Response

A–8 Track and Field Registration Form

Function Response MOVE_RIGHT
If (NOT RIGHTMOST ITEM) Then

Position To Right Item
Else

Include BORDER_PATROL
End If

End Response

Function Response NEXT ITEM
If (NOT PANEL LAST ITEM) Then

Position To Next Item
Else

Include BORDER_PATROL
End If

End Response

Function Response PREVIOUS ITEM
If (NOT PANEL FIRST ITEM) Then

Position To Previous Item
Else

Include BORDER_PATROL
End If

End Response

Function Response TRANSMIT
Include EXIT_APPLICATION

End Response

Function Response DISCARD
If (MODIFIED = 1) Then

Activate
Panel CAUTION_BOX_PANEL

Position To Icon QUIT_NO_BUTTON On CAUTION_BOX_PANEL
Else

Include QUIT_APPLICATION
End If

End Response

Function Response ADD_REGISTRATION
Activate

Panel ADD_REGISTRATION_DIALOG
Position To Panel ADD_REGISTRATION_DIALOG

End Response

Function Response SELECT
Signal
Message

"Feature not yet implemented."
End Response

Field Default BUTTON_DEFAULTS
Active Highlight

Reverse
End Default

Track and Field Registration Form A–9

Field Default MENU_DEFAULTS
Active Highlight

Reverse
End Default

Field Default TEXT_DEFAULTS
Active Highlight

Underlined
Display

Underlined
End Default

Message Panel MESSAGE_PANEL
Viewport MESSAGE_VIEWPORT

End Panel

Panel BANNER_PANEL
Viewport BANNER_VIEWPORT
Literal Text

Line 1
Column 1
Value " Track and Field Registration V1.0 "
Display

Font Size Double Wide
Underlined

End Literal

End Panel

Panel BAR_MENU_PANEL
Viewport BAR_MENU_VIEWPORT
Function Response DISCARD

If (MODIFIED = 1) Then
Activate

Panel CAUTION_BOX_PANEL
Position To Icon QUIT_NO_BUTTON On CAUTION_BOX_PANEL

Else
Include QUIT_APPLICATION

End If
End Response

Function Response MNEMONIC_F
Let FILE_ENTRY_CONTROL = 1
Activate

Panel FILE_PULLDOWN_PANEL
Position To Panel FILE_PULLDOWN_PANEL

End Response

Function Response MNEMONIC_R
Let REGISTRATION_ENTRY_CONTROL = 1
Activate

Panel REGISTRATION_PULLDOWN_PANEL
Position To Panel REGISTRATION_PULLDOWN_PANEL

End Response

A–10 Track and Field Registration Form

Apply Field Default MENU_DEFAULTS
Icon FILE_CASCADE_BUTTON

Function Response SELECT
Let FILE_ENTRY_CONTROL = 1
Activate

Panel FILE_PULLDOWN_PANEL
Position To Panel FILE_PULLDOWN_PANEL

End Response

Highlight
Reverse

When (FILE_ENTRY_CONTROL = 1)
Literal Text

Line 1
Column 2
Value " File "
Display

Underlined
End Literal

End Icon

Icon REGISTRATION_CASCADE_BUTTON
Function Response SELECT

Let REGISTRATION_ENTRY_CONTROL = 1
Activate

Panel REGISTRATION_PULLDOWN_PANEL
Position To Panel REGISTRATION_PULLDOWN_PANEL

End Response

Highlight
Reverse

When (REGISTRATION_ENTRY_CONTROL = 1)
Literal Text

Line 1
Column 10
Value " Registration "
Display

Underlined
End Literal

End Icon

Icon SCHEDULE_CASCADE_BUTTON
Function Response SELECT

Signal
Message

"SCHEDULE menu not yet implemented."
End Response

Track and Field Registration Form A–11

Highlight
Reverse

When (SCHEDULE_ENTRY_CONTROL = 1)
Literal Text

Line 1
Column 25
Value " Schedule "
Display

Underlined
End Literal

End Icon

Icon OPTIONS_CASCADE_BUTTON
Function Response SELECT

Let OPTIONS_ENTRY_CONTROL = 1
Activate

Panel OPTIONS_PULLDOWN_PANEL
Position To Panel OPTIONS_PULLDOWN_PANEL

End Response

Highlight
Reverse

When (OPTIONS_ENTRY_CONTROL = 1)
Literal Text

Line 1
Column 36
Value " Options "
Display

Underlined
End Literal

End Icon

Icon HELP_CASCADE_BUTTON
Highlight

Reverse
When (HELP_ENTRY_CONTROL = 1)

Literal Text
Line 1
Column 74
Value " Help "
Display

Underlined
End Literal

End Icon

Literal Text
Line 1
Column 1
Value " "

End Literal

A–12 Track and Field Registration Form

Literal Text
Line 1
Column 1
Value " "-

" "
Display

Underlined
End Literal

End Panel

Panel FILE_PULLDOWN_PANEL
Viewport FILE_PULLDOWN_VIEWPORT
Function Response DISCARD

Deactivate
Panel FILE_PULLDOWN_PANEL

Remove
FILE_PULLDOWN_VIEWPORT

Position To Previous Item
Let FILE_ENTRY_CONTROL = 0

End Response

Function Response MNEMONIC_E
Let FILE_ENTRY_CONTROL = 0
Include EXIT_APPLICATION

End Response

Function Response MNEMONIC_Q
If (MODIFIED = 1) Then

Activate
Panel CAUTION_BOX_PANEL

Position To Icon QUIT_NO_BUTTON On CAUTION_BOX_PANEL
Else

Include QUIT_APPLICATION
End If
Deactivate

Panel FILE_PULLDOWN_PANEL
Remove

FILE_PULLDOWN_VIEWPORT
Let FILE_ENTRY_CONTROL = 0

End Response

Apply Field Default MENU_DEFAULTS
Literal Rectangle

Line 1 Column 1
Line 4 Column 8

End Literal

Icon EXIT_ENTRY
Function Response SELECT

Let FILE_ENTRY_CONTROL = 0
Include EXIT_APPLICATION

End Response

Track and Field Registration Form A–13

Literal Text
Line 2
Column 2
Value " Exit "

End Literal

Literal Text
Line 2
Column 3
Value "E"
Display

Underlined
End Literal

End Icon

Icon QUIT_ENTRY
Function Response SELECT

If (MODIFIED = 1) Then
Activate

Panel CAUTION_BOX_PANEL
Position To Icon QUIT_NO_BUTTON On CAUTION_BOX_PANEL

Else
Include QUIT_APPLICATION

End If
Deactivate

Panel FILE_PULLDOWN_PANEL
Remove

FILE_PULLDOWN_VIEWPORT
Let FILE_ENTRY_CONTROL = 0

End Response

Literal Text
Line 3
Column 2
Value " Quit "

End Literal

Literal Text
Line 3
Column 3
Value "Q"
Display

Underlined
End Literal

End Icon

End Panel

Panel CAUTION_BOX_PANEL
Viewport CAUTION_BOX_VIEWPORT
Function Response TRANSMIT

Include CANCEL_QUIT
End Response

A–14 Track and Field Registration Form

Function Response DISCARD
Include NO_FUNCTION

End Response

Apply Field Default MENU_DEFAULTS
Literal Rectangle

Line 1 Column 1
Line 12 Column 49

End Literal

Literal Text
Line 1
Column 2
Value " Quit Caution Box "
Display

Reverse
End Literal

Literal Text
Line 3
Column 4
Value "Modifications made during this application"

End Literal

Literal Text
Line 4
Column 5
Value "session will be discarded. Do you really"

End Literal

Literal Text
Line 5
Column 19
Value "wish to quit?"

End Literal

Icon QUIT_YES_BUTTON
Function Response SELECT

Include QUIT_APPLICATION
End Response

Literal Text
Line 9
Column 17
Value " Yes "

End Literal

End Icon

Literal Rectangle
Line 8 Column 16
Line 10 Column 22

End Literal

Track and Field Registration Form A–15

Literal Rectangle
Line 8 Column 29
Line 10 Column 34

End Literal

Icon QUIT_NO_BUTTON
Function Response SELECT

Include CANCEL_QUIT
End Response

Literal Text
Line 9
Column 30
Value " No "

End Literal

End Icon

End Panel

Panel REGISTRATION_PULLDOWN_PANEL
Viewport REGISTRATION_PULLDOWN_VIEWPORT
Function Response DISCARD

Deactivate
Panel REGISTRATION_PULLDOWN_PANEL

Remove
REGISTRATION_PULLDOWN_VIEWPORT

Position To Previous Item
Let REGISTRATION_ENTRY_CONTROL = 0

End Response

Function Response MNEMONIC_A
Deactivate

Panel REGISTRATION_PULLDOWN_PANEL
Remove

REGISTRATION_PULLDOWN_VIEWPORT
Let REGISTRATION_ENTRY_CONTROL = 0
Activate

Panel ADD_REGISTRATION_DIALOG
Position To Panel ADD_REGISTRATION_DIALOG

End Response

Function Response MNEMONIC_C
Signal
Message

"CHANGE REGISTRATION action not yet implemented."
End Response

Function Response MNEMONIC_D
Signal
Message

"DELETE REGISTRATION action not yet implemented."
End Response

A–16 Track and Field Registration Form

Function Response MNEMONIC_L
Let LIST_ENTRY_CONTROL = 1
Activate

Panel LIST_PULLDOWN_PANEL
Position To Panel LIST_PULLDOWN_PANEL

End Response

Apply Field Default MENU_DEFAULTS
Literal Text

Line 5
Column 2
Value "·······························"

End Literal

Icon ADD_ENTRY
Function Response SELECT

Deactivate
Panel REGISTRATION_PULLDOWN_PANEL

Remove
REGISTRATION_PULLDOWN_VIEWPORT

Let REGISTRATION_ENTRY_CONTROL = 0
Activate

Panel ADD_REGISTRATION_DIALOG
Position To Panel ADD_REGISTRATION_DIALOG

End Response

Display
Underlined

Literal Text
Line 2
Column 2
Value " Add Registration... Ctrl+A"
Display

Nounderlined
End Literal

Literal Text
Line 2
Column 3
Value "A"
Display

Underlined
End Literal

End Icon

Icon CHANGE_ENTRY
Function Response select

Signal
Message

"CHANGE REGISTRATION action not yet implemented."
End Response

Track and Field Registration Form A–17

Display
Underlined

Literal Text
Line 3
Column 2
Value " Change Registration... "
Display

Nounderlined
End Literal

Literal Text
Line 3
Column 3
Value "C"
Display

Underlined
End Literal

End Icon

Icon DELETE_ENTRY
Function Response select

Signal
Message

"DELETE REGISTRATION action not yet implemented."
End Response

Display
Underlined

Literal Text
Line 4
Column 2
Value " Delete Registration... "
Display

Nounderlined
End Literal

Literal Text
Line 4
Column 3
Value "D"
Display

Underlined
End Literal

End Icon

Icon LIST_CASCADE_BUTTON
Function Response MOVE_RIGHT

Let LIST_ENTRY_CONTROL = 1
Activate

Panel LIST_PULLDOWN_PANEL
Position To Panel LIST_PULLDOWN_PANEL

End Response

A–18 Track and Field Registration Form

Function Response SELECT
Let LIST_ENTRY_CONTROL = 1
Activate

Panel LIST_PULLDOWN_PANEL
Position To Panel LIST_PULLDOWN_PANEL

End Response

Display
Underlined

Highlight
Reverse

When (LIST_ENTRY_CONTROL = 1)
Literal Text

Line 6
Column 2
Value " List Registrants ->"
Display

Nounderlined
End Literal

Literal Text
Line 6
Column 3
Value "L"
Display

Underlined
End Literal

End Icon

Literal Rectangle
Line 1 Column 1
Line 7 Column 33

End Literal

End Panel

Panel LIST_PULLDOWN_PANEL
Viewport LIST_PULLDOWN_VIEWPORT
Function Response DISCARD

Let LIST_ENTRY_CONTROL = 0
Deactivate

Panel LIST_PULLDOWN_PANEL
Remove

LIST_PULLDOWN_VIEWPORT
Position To Previous Item

End Response

Apply Field Default MENU_DEFAULTS
Literal Rectangle

Line 1 Column 1
Line 6 Column 14

End Literal

Track and Field Registration Form A–19

Icon BY_COUNTRY_ENTRY
Function Response SELECT

Deactivate
Panel LIST_PULLDOWN_PANEL

Remove
LIST_PULLDOWN_VIEWPORT

Deactivate
Panel REGISTRATION_PULLDOWN_PANEL

Remove
REGISTRATION_PULLDOWN_VIEWPORT

Activate
Panel COUNTRY_LIST_DIALOG_PANEL

Position To Panel COUNTRY_LIST_DIALOG_PANEL
Let LIST_ENTRY_CONTROL = 0
Let REGISTRATION_ENTRY_CONTROL = 0

End Response

Literal Text
Line 2
Column 2
Value " By Country "

End Literal

End Icon

Icon BY_EVENT_ENTRY
Function Response select

Signal
Message

"LIST BY EVENT function not yet implemented."
End Response

Literal Text
Line 3
Column 2
Value " By Event "

End Literal

End Icon

Icon BY_NAME_ENTRY
Function Response select

Signal
Message

"LIST BY NAME function not yet implemented."
End Response

Literal Text
Line 4
Column 2
Value " By Name "

End Literal

End Icon

A–20 Track and Field Registration Form

Icon BY_NUMBER_ENTRY
Function Response select

Signal
Message

"LIST BY NUMBER function not yet implemented."
End Response

Literal Text
Line 5
Column 2
Value " By Number "

End Literal

End Icon

End Panel

Panel COUNTRY_LIST_DIALOG_PANEL
Viewport COUNTRY_LIST_DIALOG_VIEWPORT
Function Response TRANSMIT

Deactivate
Panel COUNTRY_LIST_DIALOG_PANEL

Remove
COUNTRY_LIST_DIALOG_VIEWPORT

Include PERFORM_LIST_FUNCTION
End Response

Function Response DISCARD
Deactivate

Panel COUNTRY_LIST_DIALOG_PANEL
Remove

COUNTRY_LIST_DIALOG_VIEWPORT
Position To Previous Item

End Response

Literal Text
Line 4
Column 3
Value "Country:"

End Literal

Literal Rectangle
Line 3 Column 12
Line 5 Column 28

End Literal

Field COUNTRY_OPTIONS
Line 4
Column 13
Function Response SELECT

Let CALL_FROM = "LIST_REGISTRANTS"
Activate

Panel COUNTRY_LIST_OPTION_MENU
Position To Panel COUNTRY_LIST_OPTION_MENU

End Response

Track and Field Registration Form A–21

Active Highlight
Reverse

Output Picture ’ ’X(13)
No Data Input
Output " ··· "

When (COUNTRY_OPTIONS = " ")
End Field

Literal Text
Line 6
Column 3
Value "Print Format:"

End Literal

Literal Text
Line 7
Column 3
Value "< >"

End Literal

Literal Text
Line 8
Column 3
Value "< >"

End Literal

Literal Text
Line 9
Column 3
Value "< >"

End Literal

Group PRINT_FORMAT_RADIOBOX
Vertical
Field TOGGLE

Line 7
Column 4
Display

Character Set Private_Rule
Output Picture X
Output " "

When (PRINT_FORMAT_RADIOBOX(**).TOGGLE = 0)
Output "‘"

When (PRINT_FORMAT_RADIOBOX(**).TOGGLE = 1)
Protected

End Field

A–22 Track and Field Registration Form

Field TAG
Line 7
Column 6
Function Response SELECT

Reset
PRINT_FORMAT_RADIOBOX(*).TOGGLE

Let PRINT_FORMAT_RADIOBOX(N1).TOGGLE = 1
End Response

Active Highlight
Reverse

No Data Input
End Field

End Group

Literal Rectangle
Line 11 Column 8
Line 13 Column 13

End Literal

Literal Rectangle
Line 11 Column 15
Line 13 Column 24

End Literal

Literal Rectangle
Line 1 Column 1
Line 14 Column 31

End Literal

Literal Text
Line 1
Column 2
Value " List Registrants by Country "
Display

Reverse
End Literal

Icon LIST_DIALOG_OK_BUTTON
Function Response SELECT

Deactivate
Panel COUNTRY_LIST_DIALOG_PANEL

Remove
COUNTRY_LIST_DIALOG_VIEWPORT

Include PERFORM_LIST_FUNCTION
End Response

Active Highlight
Reverse

Track and Field Registration Form A–23

Literal Text
Line 12
Column 9
Value " OK "

End Literal

End Icon

Icon LIST_DIALOG_CANCEL_BUTTON
Function Response SELECT

Message
"List Operation cancelled."

Signal
Deactivate

Panel COUNTRY_LIST_DIALOG_PANEL
Remove

COUNTRY_LIST_DIALOG_VIEWPORT
Position To Previous Item

End Response

Active Highlight
Reverse

Literal Text
Line 12
Column 16
Value " Cancel "

End Literal

End Icon

End Panel

Panel COUNTRY_LIST_OPTION_MENU
Viewport COUNTRY_LIST_OPTION_VIEWPORT
Apply Field Default MENU_DEFAULTS
Group COUNTRY_LIST_OPTIONS

Vertical
Field STRING

Line 2
Column 3
Output Picture X(14)
Highlight

Reverse
When (COUNTRY_LIST_OPTIONS(**).CONTROL = 1)

Protected
End Field

Field CONTROL
Line 2
Column 2
Entry Response

Let COUNTRY_LIST_OPTIONS(N2).CONTROL = 1
End Response

A–24 Track and Field Registration Form

Exit Response
Let COUNTRY_LIST_OPTIONS(N2).CONTROL = 0

End Response

Function Response SELECT
If CALL_FROM = "LIST_REGISTRANTS" Then

Let COUNTRY_OPTIONS = COUNTRY_LIST_OPTIONS(N2).STRING
End If

If CALL_FROM = "ADD_REGISTRANTS " Then
Let COUNTRY = COUNTRY_LIST_OPTIONS(N2).STRING

End If

Deactivate
Panel COUNTRY_LIST_OPTION_MENU

Remove
COUNTRY_LIST_OPTION_VIEWPORT

End Response

Output Picture X
No Data Input
Output " "

When 1 = 1
End Field

End Group

Literal Rectangle
Line 1 Column 1
Line 14 Column 17

End Literal

End Panel

Panel OPTIONS_PULLDOWN_PANEL
Viewport OPTIONS_PULLDOWN_VIEWPORT
Function Response MAGIC

If (LANGUAGE_RADIOBOX(3).PROTECT = 0) Then
Let LANGUAGE_RADIOBOX(3).PROTECT = 1
Let LANGUAGE_RADIOBOX(3).TAG = "{Hebrew}"

Else
Let LANGUAGE_RADIOBOX(3).PROTECT = 0
Let LANGUAGE_RADIOBOX(3).TAG = " Hebrew"

End If
End Response

Function Response discard
Let OPTIONS_ENTRY_CONTROL = 0
Deactivate

Panel OPTIONS_PULLDOWN_PANEL
Remove

OPTIONS_PULLDOWN_VIEWPORT
Position To Previous Item

End Response

Track and Field Registration Form A–25

Apply Field Default MENU_DEFAULTS
Icon PRINT_OPTIONS_ENTRY

Function Response SELECT
Signal
Message

"PRINT OPTIONS function not yet implemented."
End Response

Literal Text
Line 2
Column 6
Value " Print Options... "

End Literal

End Icon

Icon PROCESS_OPTIONS_PULLDOWN
Function Response SELECT

Signal
Message

"PROCESS OPTIONS function not yet implemented."
End Response

Literal Text
Line 3
Column 6
Value " Process Options ->"

End Literal

End Icon

Literal Text
Line 4
Column 2
Value "···························"

End Literal

Literal Text
Line 5
Column 3
Value "[]"

End Literal

A–26 Track and Field Registration Form

Field COACHING_ENABLE
Line 5
Column 4
Display

Character Set Private_Rule
Output Picture X
Output " "

When (COACHING_ENABLE = 0)
Output "‘"

When (COACHING_ENABLE = 1)
Protected

End Field

Icon COACHING_ENTRY
Function Response SELECT

If (COACHING_ENABLE = 0) Then
Let COACHING_ENABLE = 1

Else
Let COACHING_ENABLE = 0

End If
End Response

Literal Text
Line 5
Column 6
Value " Coaching "

End Literal

End Icon

Literal Text
Line 6
Column 2
Value "···························"

End Literal

Group LANGUAGE_RADIOBOX
Vertical
Literal Text

Line 7
Column 3
Value "< >"

End Literal

Track and Field Registration Form A–27

Field TOGGLE
Line 7
Column 4
Display

Character Set Private_Rule
Output Picture X
Output " "

When (LANGUAGE_RADIOBOX(**).TOGGLE = 0)
Output "‘"

When (LANGUAGE_RADIOBOX(**).TOGGLE = 1)
Protected

End Field

Field TAG
Line 7
Column 6
Function Response SELECT

Reset
LANGUAGE_RADIOBOX(*).TOGGLE

Let LANGUAGE_RADIOBOX(N3).TOGGLE = 1
End Response

Active Highlight
Reverse

Output Picture X(22)
No Data Input
Protected

When (LANGUAGE_RADIOBOX(**).PROTECT = 1)
End Field

End Group

Literal Text
Line 10
Column 2
Value "···························"

End Literal

Icon SAVE_SETTINGS_ENTRY
Function Response SELECT

Signal
Message

"SAVE SETTINGS function not yet implemented."
End Response

Literal Text
Line 11
Column 6
Value " Save Settings "

End Literal

End Icon

A–28 Track and Field Registration Form

Icon RESTORE_SETTINGS_ENTRY
Function Response SELECT

Signal
Message

"RESTORE SETTINGS function not yet implemented."
End Response

Literal Text
Line 12
Column 6
Value " Restore Settings "

End Literal

End Icon

Icon USE_DEFAULTS_ENTRY
Function Response SELECT

Signal
Message

"USE DEFAULT SETTINGS function not yet implemented."
End Response

Literal Text
Line 13
Column 6
Value " Use System Settings "

End Literal

End Icon

Literal Rectangle
Line 1 Column 1
Line 14 Column 29

End Literal

End Panel

Panel ADD_REGISTRATION_DIALOG
Viewport ADD_REGISTRATION_VIEWPORT
Function Response DISCARD

Deactivate
Panel ADD_REGISTRATION_DIALOG

Remove
ADD_REGISTRATION_VIEWPORT

Position To Previous Item
End Response

Track and Field Registration Form A–29

Function Response TRANSMIT
Message

"Recording registrant data."
Deactivate

Panel ADD_REGISTRATION_DIALOG
Remove

ADD_REGISTRATION_VIEWPORT
Position To Previous Item

End Response

Literal Rectangle
Line 1 Column 1
Line 19 Column 57

End Literal

Literal Text
Line 1
Column 2
Value " Add Registration "
Display

Reverse
End Literal

Literal Text
Line 3
Column 3
Value "Registration Number:"

End Literal

Field REGISTRATION_NUMBER
Line 3
Column 24
Apply Field Default TEXT_DEFAULTS
Output Picture 9(9)

End Field

Literal Text
Line 4
Column 3
Value "First Name:"

End Literal

Field FIRST_NAME
Line 4
Column 24
Apply Field Default TEXT_DEFAULTS

End Field

Literal Text
Line 5
Column 3
Value "Last Name:"

End Literal

A–30 Track and Field Registration Form

Field LAST_NAME
Line 5
Column 24
Apply Field Default TEXT_DEFAULTS

End Field

Literal Text
Line 6
Column 3
Value "Country...:"

End Literal

Field COUNTRY
Line 6
Column 24
Apply Field Default TEXT_DEFAULTS
Function Response SELECT

Let CALL_FROM = "ADD_REGISTRANTS "
Activate

Panel COUNTRY_LIST_OPTION_MENU
Position To Panel COUNTRY_LIST_OPTION_MENU

End Response
End Field

Literal Text
Line 8
Column 3
Value "Events"

End Literal

Literal Text
Line 9
Column 3
Value "[]"

End Literal

Field TOGGLE_SHOT_PUT
Line 9
Column 4
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_SHOT_PUT = 1)
Output " "

When (TOGGLE_SHOT_PUT <> 1)
Protected

End Field

Track and Field Registration Form A–31

Icon EVENT_SHOT_PUT
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_SHOT_PUT = 0) Then
Let TOGGLE_SHOT_PUT = 1

Else
Let TOGGLE_SHOT_PUT = 0

End If
End Response

Literal Text
Line 9
Column 6
Value " Shot Put"

End Literal

End Icon

Literal Text
Line 9
Column 24
Value "[]"

End Literal

Field TOGGLE_100_METER
Line 9
Column 25
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_100_METER = 1)
Output " "

When (TOGGLE_100_METER <> 1)
Protected

End Field

Icon EVENT_100_METER
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_100_METER = 0) Then
Let TOGGLE_100_METER = 1

Else
Let TOGGLE_100_METER = 0

End If
End Response

Literal Text
Line 9
Column 27
Value " 100 Meter"

End Literal

End Icon

A–32 Track and Field Registration Form

Literal Text
Line 10
Column 3
Value "[]"

End Literal

Field TOGGLE_HIGH_JUMP
Line 10
Column 4
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_HIGH_JUMP = 1)
Output " "

When (TOGGLE_HIGH_JUMP <> 1)
Protected

End Field

Icon EVENT_HIGH_JUMP
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_HIGH_JUMP = 0) Then
Let TOGGLE_HIGH_JUMP = 1

Else
Let TOGGLE_HIGH_JUMP = 0

End If
End Response

Literal Text
Line 10
Column 6
Value " High Jump"

End Literal

End Icon

Literal Text
Line 10
Column 24
Value "[]"

End Literal

Track and Field Registration Form A–33

Field TOGGLE_400_METER
Line 10
Column 25
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_400_METER = 1)
Output " "

When (TOGGLE_400_METER <> 1)
Protected

End Field

Icon EVENT_400_METER
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_400_METER = 0) Then
Let TOGGLE_400_METER = 1

Else
Let TOGGLE_400_METER = 0

End If
End Response

Literal Text
Line 10
Column 27
Value " 400 Meter"

End Literal

End Icon

Literal Text
Line 11
Column 3
Value "[]"

End Literal

Field TOGGLE_JAVELIN
Line 11
Column 4
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_JAVELIN = 1)
Output " "

When (TOGGLE_JAVELIN <> 1)
Protected

End Field

A–34 Track and Field Registration Form

Icon EVENT_JAVELIN
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_JAVELIN = 0) Then
Let TOGGLE_JAVELIN = 1

Else
Let TOGGLE_JAVELIN = 0

End If
End Response

Literal Text
Line 11
Column 6
Value " Javelin"

End Literal

End Icon

Literal Text
Line 11
Column 24
Value "[]"

End Literal

Field TOGGLE_5000_METER
Line 11
Column 25
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_5000_METER = 1)
Output " "

When (TOGGLE_5000_METER <> 1)
Protected

End Field

Icon EVENT_5000_METER
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_5000_METER = 0) Then
Let TOGGLE_5000_METER = 1

Else
Let TOGGLE_5000_METER = 0

End If
End Response

Literal Text
Line 11
Column 27
Value " 5,000 Meter"

End Literal

End Icon

Track and Field Registration Form A–35

Literal Text
Line 12
Column 3
Value "[]"

End Literal

Field TOGGLE_POLE_VAULT
Line 12
Column 4
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_POLE_VAULT = 1)
Output " "

When (TOGGLE_POLE_VAULT <> 1)
Protected

End Field

Icon EVENT_POLE_VAULT
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_POLE_VAULT = 0) Then
Let TOGGLE_POLE_VAULT = 1

Else
Let TOGGLE_POLE_VAULT = 0

End If
End Response

Literal Text
Line 12
Column 6
Value " Pole Vault"

End Literal

End Icon

Literal Text
Line 12
Column 24
Value "[]"

End Literal

A–36 Track and Field Registration Form

Field TOGGLE_10000_METER
Line 12
Column 25
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_10000_METER = 1)
Output " "

When (TOGGLE_10000_METER <> 1)
Protected

End Field

Icon EVENT_10000_METER
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_10000_METER = 0) Then
Let TOGGLE_10000_METER = 1

Else
Let TOGGLE_10000_METER = 0

End If
End Response

Literal Text
Line 12
Column 27
Value " 10,000 Meter"

End Literal

End Icon

Literal Text
Line 13
Column 3
Value "[]"

End Literal

Field TOGGLE_DISCUS
Line 13
Column 4
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_DISCUS = 1)
Output " "

When (TOGGLE_DISCUS <> 1)
Protected

End Field

Track and Field Registration Form A–37

Icon EVENT_DISCUS
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_DISCUS = 0) Then
Let TOGGLE_DISCUS = 1

Else
Let TOGGLE_DISCUS = 0

End If
End Response

Literal Text
Line 13
Column 6
Value " Discus"

End Literal

End Icon

Literal Text
Line 13
Column 24
Value "[]"

End Literal

Field TOGGLE_4X4_RELAY
Line 13
Column 25
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_4X4_RELAY = 1)
Output " "

When (TOGGLE_4X4_RELAY <> 1)
Protected

End Field

Icon EVENT_4X4_RELAY
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_4X4_RELAY = 0) Then
Let TOGGLE_4X4_RELAY = 1

Else
Let TOGGLE_4X4_RELAY = 0

End If
End Response

Literal Text
Line 13
Column 27
Value " 4x4 Relay"

End Literal

End Icon

A–38 Track and Field Registration Form

Literal Text
Line 14
Column 3
Value "[]"

End Literal

Field TOGGLE_LONG_JUMP
Line 14
Column 4
Display

Character Set Private_Rule
Output Picture X
Output "‘"

When (TOGGLE_LONG_JUMP = 1)
Output " "

When (TOGGLE_LONG_JUMP <> 1)
Protected

End Field

Icon EVENT_LONG_JUMP
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

If (TOGGLE_LONG_JUMP = 0) Then
Let TOGGLE_LONG_JUMP = 1

Else
Let TOGGLE_LONG_JUMP = 0

End If
End Response

Literal Text
Line 14
Column 6
Value " Long Jump"

End Literal

End Icon

Literal Rectangle
Line 16 Column 19
Line 18 Column 24
Display

Bold
End Literal

Literal Rectangle
Line 16 Column 26
Line 18 Column 35

End Literal

Track and Field Registration Form A–39

Icon ADD_REG_OK_BUTTON
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

Message
"Recording registrant data."

Deactivate
Panel ADD_REGISTRATION_DIALOG

Remove
ADD_REGISTRATION_VIEWPORT

Position To Previous Item
End Response

Literal Text
Line 17
Column 20
Value " OK "
Display

Bold
End Literal

End Icon

Icon ADD_REG_CANCEL_BUTTON
Apply Field Default BUTTON_DEFAULTS
Function Response SELECT

Deactivate
Panel ADD_REGISTRATION_DIALOG

Remove
ADD_REGISTRATION_VIEWPORT

Position To Previous Item
End Response

Literal Text
Line 17
Column 27
Value " Cancel "

End Literal

End Icon

End Panel

Panel WORK_IN_PROGRESS_BOX
Viewport WORK_IN_PROGRESS_VIEWPORT
Literal Rectangle

Line 1 Column 1
Line 5 Column 20

End Literal

A–40 Track and Field Registration Form

Literal Text
Line 1
Column 2
Value " Work in Progress "
Display

Reverse
End Literal

Literal Text
Line 3
Column 3
Value "Printing List..."
Display

Blinking
End Literal

End Panel

Panel PRINT_FILEBOX_PANEL
Viewport PRINT_FILEBOX_VIEWPORT
Function Response TRANSMIT

If (FILEBOX_SELECTION_FIELD = " ") Then
Signal
Message "You must make a selection."
Position To Field FILEBOX_SELECTION_FIELD on PRINT_FILEBOX_PANEL

Else
Deactivate

Panel PRINT_FILEBOX_PANEL
Remove

PRINT_FILEBOX_VIEWPORT
Position To Previous Item

End If
End Response

Function Response DISCARD
Deactivate

Panel PRINT_FILEBOX_PANEL
Remove

PRINT_FILEBOX_VIEWPORT
Position To Previous Item

End Response

Literal Rectangle
Line 1 Column 1
Line 16 Column 68

End Literal

Track and Field Registration Form A–41

Literal Text
Line 1
Column 2
Value " Print to File "-

" "
Display

Reverse
End Literal

Literal Text
Line 3
Column 3
Value "Filter:"

End Literal

Field FILEBOX_FILTER_FIELD
Line 3
Column 11

Function Response SELECT
Include DO_FILEBOX_FILTER

End Response

Exit Response
Include DO_FILEBOX_FILTER

End Response
End Field

Group FILEBOX_LIST
Vertical

Displays 8 First FIRST_FILE_INDEX
Field FILE_SPEC

Line 5
Column 4

Entry Response
Include COMPUTE_UNSEEN_FILE_COUNT

End Response

Function Response MOVE_DOWN
If FILEBOX_LIST(CURRENT_FILE_INDEX+1).FILE_SPEC = " " Then

Signal
Message "No more files."

Else
Position To Down Occurrence

End If
End Response

Function Response MOVE_UP
Position To Up Occurrence

End Response

A–42 Track and Field Registration Form

Function Response MOVE_LEFT
Message "No items in that direction."
Signal

End Response

Function Response MOVE_RIGHT
Position To Icon FILEBOX_OK_BUTTON On PRINT_FILEBOX_PANEL

End Response

Function Response SELECT
Let FILEBOX_SELECTION_FIELD =

FILEBOX_LIST(current_file_index).FILE_SPEC
End Response

Function Response JUMP_UP
Position To Field FILEBOX_FILTER_FIELD On PRINT_FILEBOX_PANEL

End Response

Function Response JUMP_DOWN
Position To Field FILEBOX_SELECTION_FIELD On PRINT_FILEBOX_PANEL

End Response

No Data Input
Active Highlight Reverse

End Field

End Group

Literal Text
Line 5
Column 52
Value " "

End Literal

Field FILEBOX_LIST_TOP_INDICATOR
Line 5
Column 53 Protected

Display
Character Set Private_Rule

Output "w" when first_file_index = 1
Output ":" when first_file_index <> 1

End Field

Field FILEBOX_LIST_BOTTOM_INDICATOR
Line 12
Column 53 Protected

Display
Character Set Private_Rule

Output "v" when unseen_file_count <= 0
Output ":" when unseen_file_count > 0

End Field

Literal Polyline
Line 6 Column 53
Line 11 Column 53

End Literal

Track and Field Registration Form A–43

Literal Rectangle
Line 4 Column 3
Line 13 Column 54

End Literal

Literal Text
Line 15
Column 3
Value "Selection: "

End Literal

Literal Rectangle
Line 7 Column 57
Line 9 Column 66

End Literal

Field FILEBOX_SELECTION_FIELD
Line 15
Column 14

End Field

Icon FILEBOX_FILTER_BUTTON
Literal Rectangle

Line 4 Column 57
Line 6 Column 66

End Literal

Literal Text
Line 5
Column 58
Value " Filter "

End Literal

End Icon

Icon FILEBOX_OK_BUTTON
Function Response SELECT

If (FILEBOX_SELECTION_FIELD = " ") Then
Signal
Message "You must make a selection."
Position To Field FILEBOX_SELECTION_FIELD On PRINT_FILEBOX_PANEL

Else
Deactivate

Panel PRINT_FILEBOX_PANEL
Remove

PRINT_FILEBOX_VIEWPORT
Position To Previous Item

End If
End Response

Active Highlight
Reverse

A–44 Track and Field Registration Form

Literal Text
Line 8
Column 58
Value " OK "

End Literal

End Icon

Icon FILEBOX_CANCEL_BUTTON
Function Response select

Deactivate
Panel PRINT_FILEBOX_PANEL

Remove
PRINT_FILEBOX_VIEWPORT

End Response

Literal Rectangle
Line 10 Column 57
Line 12 Column 66

End Literal

Literal Text
Line 11
Column 58
Value " Cancel "

End Literal

End Icon

End Panel

End Layout
End Form

Track and Field Registration Form A–45

B
Track and Field Registration Application

The program that follows is the DECforms Track and Field Registration
program. The application is written in C.

/*
*
* © Copyright 2005 Hewlett-Packard Development Company, L.P.
*
* This software is furnished under a license and may be used and copied
* only in accordance with the terms of such license and with the
* inclusion of the above copyright notice. This software or any other
* copies thereof may not be provided or otherwise made available to any
* other person. No title to and ownership of the software is hereby
* transferred.
*
* The information in this software is subject to change without notice
* and should not be construed as a commitment by Hewlett-Packard Development
* Company.
*
* HP assumes no responsibility for the use or reliability of its
* software on equipment which is not supplied by HP.
*
*
* Facility: tafr - track and field registration demo
*
* Abstract: This module contains the main driver and general purpose routines.
*
* Environment: VAX/VMS and RISC/ULTRIX
*
*/

#include <stdio.h>
#include <forms_def.h>

#ifdef vms
#include <descrip.h>
#else
#include <sys/dir.h>
#endif

Track and Field Registration Application B–1

/*
* Table of contents
*/
int main();
void pause_interface();
unsigned fill_filebox();
void check_status ();

#ifdef vms
unsigned vms_fill_filebox();
#else
unsigned ultrix_fill_filebox();
#endif

/*
* Variables used by the Portable API request calls.
*/

Forms_Request_Options enable_options[2];
Forms_Session_Id session_id;
Forms_Form_Object TAFR_FORM;
Forms_Status status;

/*
* Platform dependent information.
*/

#ifdef vms
#define device_name "SYS$OUTPUT"

/*
* VMS Descriptors
*/
typedef struct {

unsigned short length;
unsigned char dtype;
unsigned char class;
char *pointer;

} Descriptor;

#define _dx_Empty {0, DSCK_DTYPE_T, DSCK_CLASS_S, NULL}
#else

/*
* Constants for ULTRIX
*/

#define device_name "/dev/tty"
#define MAX_COMMAND_LENGTH 256
#define MAX_STRING_LENGTH 48
#endif

B–2 Track and Field Registration Application

/*
* Routine: main
*
* Functional Description:
*
* Executive routine for the tafr program. This routine controls the high-
* level execution which consists of enabling and disabling the form. All
* user interaction takes place as a result of the enable response. The
* enable request does not terminate until the user terminates the
* interactive session.
*
* Formal Parameters:
*
* none (the argc and argv C parameters are not used by this program)
*
* Routine Value:
*
* true
*
*/

int main ()
{

char display_device[11];

/* Set up display device name for the Enable call */
strcpy (display_device, device_name);

enable_options[0].option = forms_c_opt_form;
enable_options[0].form.object = TAFR_FORM;

enable_options[1].option = forms_c_opt_end;

status = forms_enable (session_id,
display_device,
NULL,
"TAFR_FORM",
enable_options);

check_status (status, "Enable");

/*
* Disable the form
*/

status = forms_disable (session_id, NULL);
check_status (status, "Disable");

}

void check_status (Forms_Status status, char *request_name)
{

char msg_text[256];
Forms_Status disable_status;

/* */
/* If request status is not normal then call forms_errormsg */
/* to translate fims error number into message text. */
/* */

forms_errormsg (status, msg_text);

Track and Field Registration Application B–3

if ((status != forms_s_normal) &&
(status != forms_s_return_immed) &&
(status != forms_s_converr)) {

/*
* Disable the form
*/
disable_status = forms_disable (session_id, NULL);

/* print out the fims error number */
fprintf(stderr, "%s FIMS error number is %d or in hex %x \n", request_name, status, status);

/* print out the corresponding message text */
fprintf(stderr, "%d : %s", status, msg_text);

if (disable_status != forms_s_normal)
fprintf (stderr, "Failure disabling the form. Status is %d \n.", disable_status);

exit (0);
}

}

/*
* Routine: pause_interface
*
* Functional Description:
*
* This procedural escape routine pauses for the specified number of
* seconds. It is used as a "stub" for a function that, if actually
* implemented, might take a significant length of time. This routine
* could be used, for example, to display a "work in progress" box for
* a specified period of time.
*
* Formal Parameters:
*
* none
*
* Routine Value:
*
* none
*
*/
void pause_interface (delay)

unsigned delay;
{

sleep (delay);
return;

}

B–4 Track and Field Registration Application

/*
* Routine: fill_filebox
*
*
* Functional Description:
*
* This jacket routine determines the platform and calls the appropriate
* fill_filebox routine.
*
* Formal Parameters:
*
* filter (by ref) - A file specification which may consist of directory spec,
* file spec, file type and wildcards.
* file_array (by ref) - An array buffer to store all the file names which match the
* criteria specified by the filter.
* string_length (by value) - Maximum length of the file filter.
* array_length (by value) - Maximum length of the array buffer.
*
* Routine Value:
*
* file_count - number of files that match the given filter.
*
*/
unsigned fill_filebox (

char *filter,
char *file_array,
int string_length,
int array_length)

{
unsigned file_count;

#ifdef vms
file_count = vms_fill_filebox (filter, file_array, string_length, array_length);

#else
file_count = ultrix_fill_filebox (filter, file_array, string_length, array_length);

#endif

return file_count;
}

#ifdef vms

Track and Field Registration Application B–5

/*
* Routine: vms_fill_filebox
*
*
* Functional Description:
*
* This VMS specific routine sets up VMS descriptors and make a call to Lib$Find_File
* using the given filter and load all the file names satisfying the filter criteria
* into the array buffer.
*
* Formal Parameters:
*
* filter (by ref) - A file specification which may consist of directory spec,
* file spec, file type and wildcards.
* file_array (by ref) - An array buffer to store all the file names which match the
* criteria specified by the filter.
* string_length (by value) - Maximum length of the file filter.
* array_length (by value) - Maximum length of the array buffer.
*
* Routine Value:
*
* n - number of files that match the given filter.
*
*/

unsigned vms_fill_filebox (
char *filter,
char *file_array,
int string_length,
int array_length)

{
unsigned n, ok, context = 0;
Descriptor result_dx = _dx_Empty;
Descriptor filter_dx = _dx_Empty;
char *ptr;

/* Initialize the file array buffer with blank spaces */
memset (file_array, ’ ’, string_length * array_length);

/* Set up VMS descriptors for Lib$Find_File */

filter_dx.length = string_length;
filter_dx.pointer = filter;

result_dx.length = string_length;
result_dx.pointer = malloc (string_length);

/* Locate all files which matches the given filter criteria */
/* and load their names into the file array buffer. */

for (n = 0; n < array_length; n++) {

ok = Lib$Find_File (&filter_dx, &result_dx, &context);

/* VMS status divisible by 2 indicates failure. */
/* Bail out if this is the case. */

if (ok % 2 == 0) break;

B–6 Track and Field Registration Application

ptr = file_array + (n * string_length);
strncpy (ptr, result_dx.pointer, string_length);

}

/* clean up before we return */

Lib$Find_File_End (&context);
free (result_dx.pointer);
return n;

}
#endif

#ifndef vms

/*
* Routine: ultrix_fill_filebox
*
*
* Functional Description:
*
* This ULTRIX specific routine sets up a pipe to execute a "ls" command with the given
* filter and stores the result listing into the array buffer.
*
* Formal Parameters:
*
* filter (by ref) - A file specification which may consist of directory spec,
* file spec, file type and wildcards.
* file_array (by ref) - An array buffer to store all the file names which match the
* criteria specified by the filter.
* string_length (by value) - Maximum length of the file filter.
* array_length (by value) - Maximum length of the array buffer.
*
* Routine Value:
*
* n - number of files that match the given filter.
*
*/

unsigned ultrix_fill_filebox (
char *filter,
char *file_array,
int string_length,
int array_length)

{
char buf[MAX_STRING_LENGTH];
char *file_array_ptr;
char *command_string;
FILE *popen_ptr;
size_t trim_blanks;
int n;

/* Initialize variables */

command_string = (char *) malloc (MAX_COMMAND_LENGTH);
memset (file_array, ’ ’, string_length * array_length);
n = 0;

/* Construct the command string to be executed */

Track and Field Registration Application B–7

strcpy (command_string, "/bin/ls ");
trim_blanks = strcspn (filter, " ");
strncat (command_string, filter, trim_blanks);

/* Establish a pipe for reading the result of the ls command */

popen_ptr = popen (command_string, "r");
if (popen_ptr == NULL) return 0;

/* Locate all files which matches the given filter criteria */
/* and load their names into the file array buffer. */

while (fscanf(popen_ptr, "%48[^\n]", buf) != EOF) {
fgetc (popen_ptr);
file_array_ptr = file_array + (char *) (n++ * string_length);
strcpy(file_array_ptr, buf);
*buf = 0;

}

/* clean up before we leave */

pclose (popen_ptr);
free (command_string);
return n;

}
#endif

B–8 Track and Field Registration Application

Glossary

accelerator

A key or key sequence that provides a shortcut to access an application
function quickly. Also called a keyboard accelerator.

bar menu

A rectangular area at the top of the screen that contains the names of
pull-down menus for an application.

button

An on-screen control that allows users to choose actions or operations. See also
push button.

cascade indicator

An arrow character (�) that appears to the right of a menu item to indicate
that the menu item is a cascade item.

cascade item

A menu item that displays a cascade menu.

cascade menu

A pull-down menu evoked from another menu that provides selections that
amplify the parent menu item. A cascade indicator associated with the parent
menu item indicates the availabilty of a cascade menu. Also called a submenu.

caution box

A standard informational dialog box that informs the user of the consequences
of carrying out an action. When the box appears, application activity stops,
and user input is required for application activity to proceed.

Glossary–1

check field

A control used to choose options that are not mutually exclusive. A check field
consists of a label describing an option and a check indicator to show if the
field is on or off. Compare with radio field.

check indicator

A graphic symbol used to show whether a check field is on or off. The indicator
is made of square brackets surrounding a diamond character. The diamond
character disappears when the check field is turned off.

command item

A choice on a menu that initiates an action or operation directly, without
calling a submenu.

command line

A field in which users can enter typed commands.

control

An on-screen object that allows users to provide input to applications. See also
button, check field, list group, option field, push button, radio field, text-entry
field.

control panel

A permanently displayed dialog box containing controls that are used often
during a work session.

cursor

An on-screen symbol that indicates the current object.

default push button

The push button that provides the user with the most likely response to a
dialog box query.

dialog box

A secondary panel that displays messages to the user and solicits input from
the user. Usually, the user must take an appropriate action (as indicated by
the choices presented in the dialog box) to continue application activity.

dismiss

To remove a menu or dialog box from the screen without changing any settings.

Glossary–2

file selection dialog box

A specialized dialog box that allows the user to specify a file name within the
application.

flush left

The beginning of the text or graphic object is lined up evenly with the left
margin with no indentation.

flush right

The end of the text or graphic object is lined up evenly with the right margin
with no indentation.

highlight

A visual indication of the current object. Typically the highlight is
accomplished through reverse video.

icon

A form element that is composed entirely of background literals. An icon is
similar to a field, but it cannot have data input. An icon can have function key
input.

indicator

A symbol that designates the status or presence of a particular object. See also
cascade indicator, check indicator, list indicator, radio indicator.

informational dialog box

A specialized dialog box that is used to display important messages that
require acknowledgement.

label

The text that identifies a control.

left-justify

To align a group of text elements by lining up the beginning character of each
element in the same column.

list group

A displayed list of items, such as available files, from which the user can
select. The user scrolls through the list by using navigational keys to display a
portion of the list in the scroll area.

Glossary–3

list indicator

Graphic symbols used with a list group to indicate whether or not there are
more items in the underlying list in either scroll direction.

menu

A list from which users can choose one or more items. See also bar menu,
cascade menu, pop-up menu, pull-down menu, submenu.

menu item

A choice on any type of menu. See also cascade item, command item, toggle
item.

menu name

The title of a menu listed in the bar menu.

message panel

The two-line area on the bottom of the screen used by the application to
display messages not requiring immediate action.

mnemonic

A single character in a menu item, indicated by an underscore, that provides
a shortcut for choosing that menu item. Users can press the PF4 key and the
mnemonic character to choose the corresponding menu item without using the
navigation keys.

navigation key

One of the keys defined for moving the cursor on the screen.

object

An entity on the screen, such as a button, control, menu, text, and so on.

obscure

To conceal all or part of the screen that would otherwise be visible.

option field

A field that the user completes by choosing from a list of options. The list of
options is presented in either an associated pop-up menu or in a list group in
a dialog box. Once an option is chosen, the option becomes the value of that
field.

Glossary–4

pop-up menu

A context-sensitive menu that appears whenever the user presses a special key
sequence.

pull-down menu

A menu that is displayed when the user selects a menu item from the menu
bar or a cascade item from another menu.

push button

A control that consists of a rectangular box surrounding a label that indicates
a command to be performed. The user chooses the command by selecting the
push button.

question dialog box

A specialized dialog box used to ask the user a brief question. Question dialog
boxes are used typically to caution the user and to confirm an action.

radio box

A set of radio fields. Only one radio field in a radio box can be on at one time.

radio field

A control used to choose among mutually exclusive options. Radio fields
consist of a label describing an option and an indicator made of angle brackets
surrounding a diamond character. The diamond character disappears when the
radio field is turned off. Within a set of radio fields, only one can be on at a
time. Compare with check field.

radio indicator

A graphic symbol used to show whether a radio field is on or off. The indicator
is made of angle brackets surrounding a diamond character. The diamond
character disappears when the radio field is turned off.

reverse video

A video display characteristic that is used to highlight an object on the screen.
If the default video display is white characters on a black background, reverse
video displays black characters on a white background.

right-justify

To align a group of text elements by lining up the last character of each
element in the same column.

Glossary–5

select

To initiate an action by positioning the cursor to a screen object and pressing
the Select key or the keypad period key.

scroll area

A window behind which the items in a list group can be scrolled.

submenu

A menu, associated with a pull-down or pop-up menu, that expands on the
choices offered by the menu and is displayed in response to selecting the name
of the submenu. A cascade indicator (�) at the right of the submenu name
indicates the availability of a submenu. Also called a cascade menu.

text entry field

A field into which the user can type information.

toggle

To switch a two-state option to its opposite state.

toggle item

A menu item that is either a check field or one of a group of radio fields. Also
called a toggle field.

unavailable menu item

A disabled menu item that is currently visible but cannot be selected. When a
menu item is unavailable, it is surrounded by braces ({ }).

work area

The panel in which users perform most application tasks.

work in progress dialog box

A specialized dialog box used to display information about a current operation.

Glossary–6

Index

A
Accelerators, 4–3

placement, 4–1
when unavailable, 4–5

Application title bar
description, 2–2

B
Bar menu

description, 2–3, 4–1, 4–6
example, 2–2, 2–3
example with pull-down menus, 4–7
standard items, 4–7
two-line, 4–7

C
Cascade indicator

description, 4–3
example, 4–2, 4–4
location relative to pull-down menu, 4–8
placement, 4–1
when highlighted, 4–4

Cascade item
description, 4–3
example, 4–2
placement, 4–1
when unavailable, 4–5

Caution
in dialog box, 5–8

Check field
appearance, 3–5
as toggle item, 4–3
description, 3–5
example, 3–5
label, 3–5
labeling guidelines, 2–9
selection, 3–5
when to use, 2–6

Check indicator, 3–5
Color

use, 1–5
Column heading

with list group, 3–8
Command item

description, 4–3
example, 4–2

Confirmation
in dialog box, 5–8

Consistency
definition, 1–5
purpose, 1–5

Control panel, 2–1
when to use, 2–7

Controls, 3–1 to 3–13
check fields, 3–5
list groups, 3–8 to 3–11
option fields, 3–12 to 3–13
push buttons, 3–1 to 3–3
radio fields, 3–3 to 3–4
text entry fields, 3–6 to 3–8

Ctrl/H keys
in screen navigation, 2–10

Index–1

Ctrl/J keys
in text editing, 3–7

Ctrl/Z keys
in dialog box, 5–3
in file selection dialog box, 5–11
in screen navigation, 2–10

D
Default push button

alternate appearance of, 3–2
appearance of, 3–2
example, 3–2
when to use, 5–4

Delete key
in text editing, 3–7

Design
common pitfalls, 1–7

Dialog box
appearance, 5–1
arranging text entry fields in, 5–5
banner, 5–1
cancelling, 5–3
chaining, 5–3
description, 2–5
example, 2–5
file selection, 5–9
grouping controls, 5–3
grouping push buttons, 5–3
informational, 5–7
labeling guidelines, 2–8
labeling objects within, 2–9
linking to a text entry field, 3–7
location, 5–2
purpose, 5–1
question, 5–8
sample, 5–2
size and placement, 5–2
specialized, 5–6
standard, 5–6
title, 5–1
when to use, 2–5
with command item, 4–3
with option field, 3–13
Work in Progress, 5–6

Direct manipulation, 1–4
Dismissing menus, 4–6
Down arrow key

in list group, 3–10
in screen navigation, 2–10

E
Editing text

in text entry field, 3–7
Edit menu item, 4–8
Ellipsis

in menus, 4–3
in option field, 3–12
in push button, 3–3
in text entry field, 3–7
use in menus, 5–1
use in text entry field, 5–1

Entering text
in text entry field, 3–7

Error messages
displayed in dialog box, 5–7

Errors
guidelines for anticipating, 1–6

Explicit destruction
use, 1–7

Extending this style guide, 1–2

F
F10 key

in dialog box, 5–3
in file selection dialog box, 5–11
in screen navigation, 2–10

F12 key
in screen navigation, 2–10

F13 key
in text editing, 3–7

F8 key
in dialog box, 5–3
in file selection dialog box, 5–11
in menus, 4–6
in screen navigation, 2–10

Index–2

File filter, 5–10
File menu item, 4–8
File selection box, 5–9

example, 5–10
keys used to navigate, 5–11

Filter push button, 5–10

H
Help menu item, 4–8

I
Informational dialog box, 5–7

example, 5–8
Interface design

elements of good, 1–3

K
Keyboard accelerators, 4–3
KP. key

in list group, 3–11

L
Labeling guidelines, 2–7 to 2–9

dialog boxes, 2–8
general, 2–7
menus, 2–8
objects in dialog boxes, 2–9
push buttons, 2–9

Left arrow key
in list group, 3–10
in screen navigation, 2–10
in text editing, 3–7

Linefeed key
in text editing, 3–7

List group
appearance, 3–8
description, 3–8
example, 3–8
example of two column, 3–9
keys used to navigate within, 3–10
navigation within, 3–10
selection, 3–9

List group (cont’d)
using text entry fields, 3–8
when to use, 2–6
with option field, 3–13

List indicator, 3–8, 3–9

M
Main screen

different areas, 2–1
example, 2–2
when to use, 2–1

Menu items
choosing, 4–4
description, 4–3
grouping guidelines, 4–12
naming guidelines, 4–11
when unavailable, 4–5

Menus
appearance, 4–1
bar menu, 2–3, 4–1, 4–6
choosing an item, 4–4
components, 4–3
description, 2–4
dismissing, 4–6
guidelines for designing, 4–11
keyboard accelerators, 4–3
labeling guidelines, 2–8
menu items, 4–3
mnemonics, 4–4
pop-up, 4–1, 4–10
pull-down, 4–1, 4–8
separators, 4–4, 4–12
showing unavailable items, 4–5
types, 4–6
when to use, 2–4

Message panels
description, 2–3
example, 2–2
use with Work in Progress dialog box,

5–7
when to use, 3–3, 5–6

Mnemonic introducer key, 4–4

Index–3

Mnemonics
description, 4–4
for standard items, 4–7

Modifying this style guide, 1–2

N
Navigation

guidelines, 2–9
guidelines for, 1–5
keys used, 2–10
within a list group, 3–10

Next Screen key
in list group, 3–10

O
Option field

appearance, 3–12
description, 3–12
example, 3–12
example when highlighted, 3–12
example with pop-up menu, 3–13
example with undefined initial value,

3–12
label, 3–12
labeling guidelines, 2–9
selection, 3–13
when to use, 2–6

Options menu item, 4–8

P
PF1 B keys

in list group, 3–11
PF1 down arrow keys

in list group, 3–11
PF1 KP4 keys

in list group, 3–10
PF1 KP5 keys

in list group, 3–11
PF1 left arrow keys

in list group, 3–11

PF1 Next Screen keys
in list group, 3–11

PF1 Prev Screen keys
in list group, 3–11

PF1 Q keys
in menus, 4–6
in screen navigation, 2–10

PF1-Q keys
in dialog box, 5–3
in file selection dialog box, 5–11

PF1 right arrow keys
in list group, 3–11

PF1 T keys
used in list group, 3–11

PF1 up arrow keys
in list group, 3–11

PF3 key, 4–10
PF4 key, 4–4
Pop-up menu

description, 4–1, 4–10
example used with option field, 3–13
implementing, 4–11
location, 4–11
used with option field, 3–13
when to use, 2–7

Prev Screen key
in list group, 3–11

Progress indicator, 5–7
Progressive disclosure, 1–4
Pull-down menu

description, 4–1, 4–8
example, 2–4, 4–9
example when space is tight, 4–10
from bar menu, 4–6
location of, 4–9
when to use, 2–7

Push buttons
alternate appearance, 3–2
appearance, 3–1
default, 3–2, 5–4
description, 3–1
example, 3–2, 3–3
example of horizontal arrangement, 5–3
example of vertical arrangement, 5–4
grouping in dialog box, 5–3

Index–4

Push buttons (cont’d)
label, 3–3
labeling guidelines, 2–9
placed horizontally, 5–3
selection, 3–3
stacked vertically, 5–3

Q
Question dialog box

description, 5–8
example, 5–9

R
Radio box

arranged horizontally, 5–5
arranged vertically, 5–5
description, 5–5
example of horizontal arrangement, 5–5
example of vertical arrangment, 5–5
title, 5–5

Radio field, 3–3
appearance, 3–4
as toggle item, 4–3
example, 3–4
label, 3–4
labeling guidelines, 2–9
selection, 3–4
used in radio box, 5–5
when to use, 2–6

Radio indicator, 3–4
Response

guidelines for, 1–4
Return key

in list group, 3–11
in screen navigation, 2–10

Right arrow key
in list group, 3–10
in screen navigation, 2–10
in text editing, 3–7

S
Screen design, 2–1 to 2–10

labeling screen objects, 2–7
when to use check fields, 2–6
when to use control panels, 2–7
when to use dialog boxes, 2–5
when to use list groups, 2–6
when to use main screen, 2–1
when to use menus, 2–4
when to use option fields, 2–6
when to use pop-up menus, 2–7
when to use pull-down menus, 2–7
when to use radio fields, 2–6

Screen navigation, 2–9
Screen object

labeling guidelines, 2–7
Scroll area, 3–8
Selection field, 5–10
Select key

in list group, 3–11
Separators

in menus, 4–4, 4–12
Style guide

advantages of using, 1–1, 1–2
extending, 1–2
modifying, 1–2

Submenu
indication, 4–3
maximum number, 4–12
pull-down menus, 4–8

T
Text entry field

appearance, 3–6
arranging in dialog box, 5–5
description, 3–6
entering text, 3–6
example, 3–6
example of link to dialog box, 3–8
example of stacking, 5–6
in list group, 3–8
keys used to edit text, 3–7

Index–5

Text entry field (cont’d)
label, 3–6
labeling guidelines, 2–9
linking to a dialog box, 3–7

Title bar
example, 2–2

Toggle indicator
example, 4–4
placement, 4–2
when highlighted, 4–4

Toggle item
description, 4–3
example, 4–2
example when highlighted, 4–5
placement, 4–2
when unavailable, 4–5

U
Unavailable menu items, 4–5

example, 4–6
Up arrow key

in list group, 3–10
in screen navigation, 2–10

V
View menu item, 4–8

W
Warning

displayed in dialog box, 5–7
Work area

description, 2–3
example, 2–2

Work in Progress dialog box, 5–6
example, 5–7
when to use, 3–3

Index–6

