
HP DECset for OpenVMS
Performance and Coverage Analyzer
Command-Line Interface Guide
Order Number: BA358-90003

March 2007

This guide describes how to use the command-line interface to the
Performance and Coverage Analyzer (PCA).

Revision/Update information: This is a revised manual.

Operating System and Version: OpenVMS I64 Version 8.2-1 and 8.3
OpenVMS Alpha Version 7.3-2, 8.2, and
8.3

Windowing System Version: HP DECwindows Motif for OpenVMS I64
Version 1.6
HP DECwindows Motif for OpenVMS
Alpha Version 1.3-1 or 1.5

Software Version: HP DECset Version 12.8 for OpenVMS

HP Performance and Coverage Analyzer
for OpenVMS Version 5.0

Hewlett-Packard Company
Palo Alto, California

© Copyright 2007 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a US trademark of Sun Microsystems, Inc.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Printed in the US

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . ix

1 Introduction

1.1 Overview . 1–1
1.2 The Collector . 1–2
1.3 The Analyzer . 1–3
1.4 Getting Started . 1–6
1.4.1 Using the Collector . 1–6
1.4.1.1 Invoking the Collector . 1–6
1.4.1.2 Collecting the Data . 1–7
1.4.1.3 Exiting the Collector . 1–8
1.4.2 Using the Analyzer . 1–8
1.4.2.1 Invoking the Analyzer . 1–8
1.4.2.2 Creating the Default Plot . 1–9
1.4.2.3 Scrolling Through the Display on Your Terminal 1–9
1.4.2.4 Interpreting the Summary Page 1–10
1.4.2.5 Viewing the Currently Active Plot 1–15
1.4.2.6 Printing, Filing and Appending Analyzer Output 1–15
1.4.2.7 Stopping Terminal Output or Exiting the Analyzer

Session . 1–16

2 Using the Collector

2.1 Overview . 2–1
2.2 Invoking the Collector . 2–2
2.3 Specifying the Performance Data File . 2–3
2.4 Specifying Data Collection . 2–3

iii

2.4.1 Program Counter Sampling Data: System Time 2–4
2.4.1.1 PC Sampling Data Distortion . 2–5
2.4.1.2 Interpreting System Service Wait Times 2–6
2.4.1.3 Interpreting I/O Services Wait Times 2–6
2.4.1.4 Interpreting Page-Faulting Data 2–7
2.4.1.5 Collecting PC Sampling Data and Other Data in the

Same Run . 2–7
2.4.2 Program Counter Sampling Data: CPU Time 2–7
2.4.3 Test Coverage Data . 2–8
2.4.3.1 Codepaths . 2–9
2.4.3.2 Modules . 2–10
2.4.3.3 Routines . 2–10
2.4.3.4 Lines . 2–10
2.4.3.5 Path-Name Qualification . 2–11
2.4.3.6 Collecting Coverage Data from Multiple Test Runs 2–11
2.4.3.7 Gathering Test Coverage Without Optimization 2–12
2.4.4 Execution Count Data . 2–13
2.4.5 Page Fault Data . 2–14
2.4.6 System Services Data . 2–14
2.4.7 Input/Output Data . 2–15
2.4.8 Tasking Data . 2–15
2.4.9 Events Data . 2–16
2.4.10 Collecting Vector Instruction Data . 2–17
2.4.10.1 Vector Program Counter Sampling Data 2–17
2.4.10.2 Vector CPU Time Data . 2–17
2.4.10.3 Vector Instruction Execution Count Data 2–18
2.4.11 Collecting PC Values from the Call Stack 2–18
2.4.11.1 Collecting Stack PCs by Data Kind 2–19
2.5 Selecting the Language of Your Application 2–20
2.6 Naming the Collection Run . 2–20
2.7 Starting and Terminating Data Collection 2–21
2.8 Using Collector Command Procedures . 2–21
2.9 Using Collector Logical Names . 2–22
2.10 Gathering Shareable Image Data . 2–22

3 Using the Analyzer

3.1 Overview . 3–1
3.2 Invoking the Analyzer . 3–2
3.3 Generating Histograms and Tables . 3–2
3.3.1 Specifying the Kind of Data to Tally in the Histogram or

Table . 3–3

iv

3.3.2 Partitioning Histograms into Buckets 3–3
3.3.2.1 Filtering Performance Data . 3–6
3.3.2.2 Specifying Modules and Routines 3–9
3.3.2.3 Specifying Individual Buckets . 3–10
3.3.2.4 Specifying a Set of Buckets . 3–11
3.3.2.5 Specifying Lines . 3–11
3.3.2.6 Specifying Codepaths . 3–14
3.3.2.7 Specifying Bytes . 3–15
3.3.2.8 Omitting Node Specifications . 3–16
3.3.3 Using Nonaddress Domains . 3–16
3.3.3.1 File Name Domain . 3–17
3.3.3.2 File Key Domain . 3–17
3.3.3.3 File Virtual Block Number Domain 3–17
3.3.3.4 I/O System Services Domain . 3–18
3.3.3.5 Physical Read Count Domain . 3–18
3.3.3.6 Physical Write Count Domain . 3–18
3.3.3.7 Total Physical I/O Count Domain 3–18
3.3.3.8 Record Size Domain . 3–19
3.3.3.9 System Services Domain . 3–19
3.3.3.10 Task Domains . 3–21
3.3.3.11 Time Domain . 3–21
3.3.4 Sorting the Histogram or Table . 3–22
3.3.5 Omitting Buckets of Certain Values . 3–23
3.3.6 Showing Source Code in BY LINE and BY CODEPATH

Histograms and Tables . 3–23
3.3.7 Using CALL_TREE Node Specifications 3–24
3.3.8 Specifying Which Program Counter Values to Tally 3–26
3.3.8.1 Performing Call Stack Analysis . 3–27
3.3.8.2 Defining the Program Unit as the Main Image 3–27
3.3.8.3 Performing Specific Call Stack Analysis 3–27
3.3.8.4 Tallying Program Counter Values 3–28
3.3.8.5 Using Program Address Selection Qualifiers 3–28
3.3.9 Filling and Scaling the Histogram . 3–29
3.3.9.1 Defining the Character String for the Histogram Bar . . . 3–29
3.3.9.2 Setting the Range for the Histogram Bar 3–29
3.3.10 Performing Multi-tasking Analysis . 3–30
3.3.11 Interpreting TABULATE Confidence Intervals 3–31
3.4 Creating a Multiple Data-Kind Plot . 3–32
3.4.1 Merging PCA Performance and Software Performance

Monitor (SPM) Files . 3–37
3.5 Listing the Raw Performance Data . 3–39
3.6 Using Acceptable Noncoverage (ANC) . 3–40
3.7 Editing Source Code from Within the Analyzer 3–41

v

3.8 Using Initialization Files and Command Procedures 3–43
3.8.1 Using Analyzer Logical Names . 3–43

4 Productivity Enhancements with PCA

4.1 Example 1: Reducing Execution Time . 4–1
4.2 Example 2: Analyzing Call Stack Data . 4–6
4.3 Example 3: Using Multiple Data Kinds . 4–12
4.4 Example 4: Using Event Markers for Selective Analysis 4–21
4.5 Determining Acceptable Noncoverage (ANC) 4–27
4.6 Example 6: Measuring Ada Tasking Data 4–34
4.7 Using PCA in Screen Mode . 4–39
4.7.1 Concepts and Terms . 4–40
4.7.2 Defining Windows . 4–41
4.7.3 Screen Displays . 4–41
4.7.3.1 Default Displays . 4–41
4.7.3.2 User-Defined Displays . 4–42
4.7.3.3 Pseudo-Display Names . 4–42
4.7.4 Selecting Displays for Output or Scrolling 4–43
4.7.4.1 Viewing Displays with TYPE and SEARCH

Commands . 4–44
4.7.4.2 Setting the Directory Search List 4–45
4.7.5 Manipulating Displays . 4–46
4.7.6 Saving and Extracting Displays . 4–48
4.7.7 Keypad Key Functions . 4–48
4.7.8 Defining Keys . 4–49

5 Using VAX Vectors with PCA

5.1 Analyzing the Vector Instructions in Your Program—an
Overview . 5–1

5.2 Finding Where Your Application Uses Vector Processing 5–2
5.2.1 Collecting Concurrent Scalar and Vector Sampling 5–3
5.2.2 Gathering Scalar PC Sampling Within the Vector Instruction

Emulator Only . 5–3
5.3 Counting Vector Processor Instructions . 5–3
5.4 Analyzing Vector Processor Data . 5–4
5.4.1 Finding the Most-Used Vector Instructions 5–5
5.4.2 Finding the Locations of Vector Instructions 5–5
5.4.3 Finding if the Vector Processor is Optimally Used 5–6
5.4.4 Finding How Well the Use of Vector Registers Is

Distributed . 5–7
5.4.5 Vectors Special Considerations . 5–9

vi

A Sample Programs

B PCA Reference Tables

B.1 Collector Reference Tables . B–1
B.2 Analyzer Reference Tables . B–5
B.2.1 Analyzer Node Specification Summary B–9
B.3 Screen Displays . B–13

C Questions and Answers

Index

Examples

1–1 Summary Page for a Single Data-Kind Plot 1–10
1–2 Summary Page for a Multiple Data-Kind Plot 1–13
3–1 Displaying PC Sampling Data in a Histogram 3–4
3–2 Displaying PC Sampling Data in Tabular Form 3–5
3–3 Node Specs Used to Focus on Program Elements 3–6
3–4 BY LINE Clause Output . 3–12
3–5 Using /SOURCE with BY LINE . 3–13
3–6 Showing Noncovered Codepaths . 3–14
3–7 Indented Call Tree Plot . 3–25
3–8 Comma List Form of a Call Tree Plot 3–26
3–9 Interpreting Confidence Intervals . 3–31
3–10 Creating a Multiple Data-Kind Plot . 3–33
3–11 Adding Data Kinds to Plots . 3–34
3–12 Excluding Data Kinds from a Plot . 3–37
5–1 Sample Output of PLOT/VCOUNTERS Command 5–6
5–2 Displaying Vector Register Usage . 5–8
5–3 Displaying Register Usage for Individual Vector

Instructions . 5–9

vii

Figures

1–1 The PCA Model . 1–4
2–1 The PCA Collector . 2–2
2–2 A Program Represented as a Tree . 2–8
3–1 A Program Represented as a Tree . 3–10
3–2 The File Name Domain . 3–17
3–3 The Record Size Domain . 3–19
3–4 System Services Domain . 3–20
B–1 Collector-Defined Keypad Key Functions B–15
B–2 Analyzer-Defined Keypad Key Functions B–16
B–3 PCA-Defined Keypad Key Functions for Screen

Manipulation . B–17

Tables

1 Conventions Used in This Guide . xi
B–1 RMS Services Measured by the Collector B–1
B–2 Non-RMS Services Measured by the Collector B–1
B–3 Node Specification Parameter Syntax B–2
B–4 Collector Logical Names . B–2
B–5 Analyzer Logical Names . B–5
B–6 Data-Kind Qualifiers and Supported Domains B–6
B–7 The SET Command with Corresponding Data-Kind

Qualifiers . B–8
B–8 Analyzer Node Specifications . B–9
B–9 Filter Specification by Data Kind . B–11
B–10 Default Key Bindings for Traverse Commands B–13
B–11 Analyzer Screen Mode Pseudo Display Names B–13

viii

Preface

This guide explains how to use the command-line interface to the Performance
and Coverage Analyzer (PCA). It describes the two components of PCA, as
follows:

• The Collector, which gathers various kinds of performance and test
coverage data on your program.

• The Analyzer, which processes and displays that data in histograms
and tables.

Intended Audience
This guide is intended for experienced programmers and technical managers
who are concerned with the performance of their application programs. PCA
serves as a flexible and reliable tool that you can use to:

• Analyze the performance characteristics of your applications

• Analyze the text coverage characteristics of the tests you run on your
applications to determine what code paths and tests are executing.

Document Structure
The HP DECset for OpenVMS Performance and Coverage Analyzer Command-
Line Interface Guide is divided into five chapters and three appendixes:

• Chapter 1 provides an overview of PCA and briefly describes how to use
the Collector and the Analyzer to gather and manipulate data.

• Chapter 2 explains how to invoke the Collector and how to specify what
kinds of data you want to gather.

• Chapter 3 explains how to invoke the Analyzer and how to generate
performance histograms and tables.

• Chapter 4 offers solutions to complex problems through practical examples.
This chapter also introduces screen mode, discusses how to create and use
screen displays, and how to use the predefined keypad definitions.

ix

• Chapter 5 describes how to do performance analysis on applications
containing vector instructions.

• Appendix A contains the sample program used for many of the examples
throughout this file. It also contains the programs that are used in the
examples in Chapter 4.

• Appendix B contains information on Collector and Analyzer logical names,
node specifications, and data kinds. Also, this appendix contains keypad
figures used in screen mode.

• Appendix C answers questions that are commonly asked about this tool.

Associated Documents
The following documents might also be helpful when using PCA:

• The HP DECset for OpenVMS Performance and Coverage Analyzer
Reference Manual describes all the commands available in PCA.

• The HP DECset for OpenVMS Guide to Performance and Coverage Analyzer
provides a tutorial description of the use of PCA from the windows
interface, and contains other important user information.

• HP DECset for OpenVMS Installation Guide gives instructions for
installing PCA on OpenVMS I64 and OpenVMS Alpha systems.

• HP Fortran Performance Guide details the performance features of the
HP Fortran High Performance Option, and discusses ways to improve the
run-time performance of HP Fortran programs.

References to Other Products
Some older products that HP DECset components previously worked with
might no longer be available or supported by HP. Any reference in this manual
to such products does not imply actual support, or that recent interoperability
testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue
to use these products with HP DECset.

Refer to the Software Product Description for a current list of the products that
the HP DECset components are warranted to interact with and support.

x

Conventions
Table 1 lists the conventions used in this guide.

Table 1 Conventions Used in This Guide

Convention Description

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP3 or KP-.

file-spec, ... A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

. . . A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

() In format descriptions, if you choose more than one
option, parentheses indicate that you must enclose the
choices in parentheses.

[] In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all
of the choices.

{} In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text Boldface text represents the introduction of a new
term.

monospaced boldface text Boldface, monospace text represents user input in
interactive examples.

italic text Italic text represents book titles, parameters,
arguments, and information that can vary in system
messages (for example, Internal error number).

(continued on next page)

xi

Table 1 (Cont.) Conventions Used in This Guide

Convention Description

UPPERCASE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

lowercase Lowercase in examples indicates that you are to
substitute a word or value of your choice.

mouse The term mouse refers to any pointing device, such as
a mouse, puck, or stylus.

MB1,MB2,MB3 MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button.

xii

1
Introduction

This chapter presents an overview of the HP Performance and Coverage
Analyzer (PCA). It includes a demonstration of a sample program used with
PCA.

1.1 Overview
PCA is one of the DECset software development tools. It helps you produce
efficient and reliable applications by analyzing your program’s dynamic
behavior. PCA also measures codepath coverage within your program so that
you can devise tests that exercise all parts of your application.

Components
PCA has two operational components:

• The Collector. The Collector gathers performance or test coverage data
on a running program and writes that data to a performance data file.

• The Analyzer. The Analyzer reads the performance data file produced by
the Collector and processes the data to produce performance or coverage
histograms and tables.

You can run the Collector and the Analyzer in batch as well as interactively.

Online Help
To get help with PCA commands, or any of the qualifiers or parameters used
with these commands, type HELP, followed by the command or topic.

For the DECwindows interface, you can obtain help on any screen object by
positioning the pointer on the desired object, pressing and holding the HELP
key while you press MB1, and releasing both keys. You can also obtain help by
choosing a menu item from the Help pull-down menu.

Introduction 1–1

Introduction
1.2 The Collector

1.2 The Collector
The Collector collects that data you request and deposits the data into a data
file during the program run. Afterward, you can use the Analyzer to display
and filter the collected data.

There are three aspects of Collector operation:

• Image selection

• Measurement and control selection

• Output to data file

Image Selection
You may select either the main image or one of the shareable images in the
program address space. PCA measures the dynamic behavior of the image you
have selected. The image must be in the address space when the application
program is activated.

Measurement and Control Selection
You may select one or more of the following measurements to be collected
during the program’s execution:

• Program counter (PC) sampling data. PCA samples the program counter at
an interval you specify (by default, every 10 milliseconds).

• CPU sampling data. This is the same as PC sampling data, except that
PCA uses the virtual-process time instead of the system or wall clock time
as the basis for sampling. Data counts reflect only the CPU time usage,
and not the time spent by the program waiting for the completion of I/O
operations, page faulting, and so on.

• Counters. PCA counts the exact number of times that specified program
locations execute.

• Coverage data. PCA collects information that indicates which portions of
your program are or are not executed during each test run.

• Page fault data. PCA shows you where a page fault occurs and which
program address caused it.

• System services data. PCA counts which system services your program
calls, how often it calls them, and which program segments do the calling.

• Input/Output services data. PCA counts information about all I/O service
calls that your program makes.

• Ada tasking data. PCA collects information on all context switches in Ada
multi-tasking applications.

1–2 Introduction

Introduction
1.2 The Collector

• Events data. PCA collects data from a specified phase of your program.

• Vector program counter (VPC) sampling data. PCA samples the program
counter at intervals you specify to show where the wall-clock time is being
spent in the application performing vector instructions.

• Vector CPU (VCPU) sampling data. This is the same as VPC sampling
data, except that PCA uses the virtual-process time instead of the system
or wall clock time.

• Vector counters data. PCA counts all the vector instructions in all or part
of your application containing vector instructions.

You must set controls on the following measurements before collecting the data
to be deposited into the data file:

• You must set a control to define the length of the sampling interval for PC
sampling, CPU sampling, vector PC sampling, and vector CPU sampling.
The fastest timer on the system is 10 milliseconds, the default.

• You must set a program address control for gathering counters, vector
counters, and coverage data.

• You must define an event name and set program address controls for
gathering events data.

Output to Data File
The data file receives the collected data and can then be passed to the Analyzer
for analysis and filtering.

1.3 The Analyzer
The Analyzer lets you analyze and filter the data produced by the Collector
and creates views of the specified data.

There are three aspects of Analyzer operation:

• Data file selection

• Data specification

• View selection

Data File Selection
The Analyzer operates on data produced by the Collector. You may choose one
data file or merge several from different collections.

Introduction 1–3

Introduction
1.3 The Analyzer

Data Specification
After selecting the data file, you must specify the data to be viewed. There are
three interrelated kinds of data specification:

• Data kind

• Domain

• Filters

The Collector gathers many data kinds. In the Analyzer, you select which ones
to analyze. Each data kind has one or more domains associated with it. For
example, if you collected PC sampling, you can choose to view the following
domains in the Analyzer: the program address, the call tree, the task, the task
priority, and the task type. You can further restrict the data to be viewed with
a filter. Any of the domains can be chosen and the value of the domain can
be tested to be within a range of values. If it is within the range, then the
selected domain value is passed along to be viewed. The general flow of control
in PCA is shown in Figure 1–1.

Figure 1–1 The PCA Model

PCA

Collector Analyzer

Image Data Data View

Selection Control Selection Filter

ZK−7996−GE

File

One way to think of PCA performance data is to consider each data kind as a
record with one or more domains as fields in the record. As another example,
the I/O data kind has these domains associated with it:

1–4 Introduction

Introduction
1.3 The Analyzer

• The program counter (PC) of the I/O call

• The file name

• The virtual block number

• Record size

• I/O service name

Choosing the I/O data kind means you want to know the frequency of I/O calls.
Choosing the Program Address domain indicates that you want to know where
in the program the I/O calls occur. The Analyzer creates a view of the I/O
data kind with the value of the PC from each I/O ‘‘record’’. The Analyzer uses
the data to construct a view of the program, which shows where the I/O calls
originate.

Filter selection differs from other selections because it is based on the values
in the domain, not on the larger class of the data kind. For example, if you
choose the I/O data kind with the Program Address Domain, set the filter for
the Virtual Block Number domain, and specify a range of 1 to 5, the Program
Address domain values then passed to the View are those which have Virtual
Block Number domain values in the range of 1 to 5. In other words, you are
asking where in my program are the I/O calls for Virtual Block number 1 to 5.

Selecting data kinds and domains can be thought of as progressively refining
selected data from the data file before passing it on to be viewed.

View Selection
After you select one or more data kinds and specify domains, the Analyzer
produces a view of the data. A view is a graphic representation, displayed on
the screen in one of the following formats:

• Histograms (Plot/Tables)

• Source listings annotated with bars or numbers

• Lists

• Trees

You may alter the appearance of a view by performing any of the following
operations allowed by the Analyzer:

• Selecting the appearance of the view

• Defining the granularity or size of each bucket

• Defining the complete range

• Setting the upper, lower, no zeros limits

Introduction 1–5

Introduction
1.3 The Analyzer

• Setting or canceling acceptable noncoverage (ANC)

• Traversing the table

• Expanding to source

• Scaling

• Scrolling

• Selecting vertical versus horizontal views

• Selecting numbers versus bars

• Changing the title

1.4 Getting Started
This section uses as an example a FORTRAN program called PCA$PRIMES,
which generates all the prime numbers in a given integer range. The program’s
source code has the file name PCA$PRIMES.FOR. The complete program is
included in Appendix A and is supplied with the PCA kit. (After installation,
you can find PCA demonstration programs in the directory PCA$EXAMPLES.)

1.4.1 Using the Collector
The Collector gathers performance or test coverage data on applications
programs as they run. In the example in the following sections, the
Collector gathers program counter sampling data on the FORTRAN program
PCA$PRIMES.

1.4.1.1 Invoking the Collector
You must perform the following steps to invoke the Collector:

1. Compile the source file. Use the /DEBUG qualifier with a compilation
command to create a Debug Symbol Table (DST) in the object module. The
DST contains all of the symbol and line number information PCA needs
to specify user program locations. Enter the following DCL command
to compile the FORTRAN program PCA$PRIMES.FOR for use with the
Collector:

$ FORTRAN/DEBUG PCA$PRIMES.FOR

This command creates the file PCA$PRIMES.OBJ.

2. Link the user program. The /DEBUG qualifier passes the DST
information generated by the compiler to the executable image file where it
can be accessed by the Collector. Type the following DCL command to link
PCA$PRIMES.OBJ for running under Collector control:

1–6 Introduction

Introduction
1.4 Getting Started

$ LINK/DEBUG PCA$PRIMES.OBJ

3. Run the program. Invoke the Collector on an image linked for debugging
by defining the LIB$DEBUG logical to be PCA$COLLECTOR.EXE. This
causes the OpenVMS image activator to invoke the Collector as a debugger.
You can then enter Collector commands. Type the following commands to
define the LIB$DEBUG logical:

$ DEFINE LIB$DEBUG SYS$LIBRARY:PCA$COLLECTOR.EXE
$ RUN PCA$PRIMES.EXE

When the Collector product header and the Collector prompt (PCAC>)
appear on your terminal, you have successfully invoked the Collector.

PCA Collector Version 4.6

PCAC>

1.4.1.2 Collecting the Data
At the Collector prompt, use the SET DATAFILE command to specify a name
for the performance data file to contain the collected data. To specify the data
file PCA$PRIMES.PCA, type the following:

PCAC> SET DATAFILE PCA$PRIMES

The default file type for the Collector data file is .PCA. Next, enter a data
collection command to specify the kind of performance or coverage data you
want to collect. For example, to collect program counter sampling data, enter
the following command:

PCAC> SET PC_SAMPLING

The GO command tells the Collector to start your program, to collect data
according to the current data collection settings, and to write that data to the
performance data file:

PCAC> GO

After you enter the GO command, the Collector does not return you to the
Collector prompt; instead, your program runs to completion and returns you to
the DCL ($) prompt. The following information is displayed on the screen:

%PCA-I-BEGINCOL, data collection begins
169 prime numbers generated between 1 and 1000
FORTRAN STOP
%PCA-I-ENDCOL, data collection ends
$

Introduction 1–7

Introduction
1.4 Getting Started

1.4.1.3 Exiting the Collector
To end the Collector session at any time prior to saying GO, or to suspend data
collection, enter the EXIT command or press Ctrl/Z.

Repeat the RUN command to invoke the Collector again and to collect
additional data on your program’s performance or coverage. If you want
the same file to contain data collections from many executions of the same
program, use the /APPEND qualifier with the SET DATAFILE command:

PCAC> SET DATAFILE/APPEND PCA$PRIMES.PCA

You can run your program without collecting data by entering the GO
command with the /NOCOLLECT qualifier.

The Collector allows you to collect different kinds of data in the same collection
run, but you should be cautious in doing so. Values may be distorted if
different kinds of data are collected in the same collection run. The Collector
provides informational messages warning about potential conflicts. Section 1.2
contains a listing of the different kinds of data you can collect.

1.4.2 Using the Analyzer
The Analyzer reads the performance data file written by the Collector and
uses the data to produce histograms, tables, and other reports that help you
evaluate your program’s performance or coverage. In the example in the
following sections, the Analyzer is used on the data file previously produced by
the Collector to create histograms and tables, to display the source code and
the summary page, and to print, file, and append Analyzer output.

1.4.2.1 Invoking the Analyzer
To invoke the Analyzer, type the PCA command and specify the name of a
performance data file at DCL level. For example:

$ PCA PCA$PRIMES

Performance and Coverage Analyzer Version 5.0

PCAA>

The data file in the previous example, PCA$PRIMES.PCA, contains the
performance or coverage data and all symbol table information required by
the Analyzer.

You can use the /COMMAND qualifier to specify a list of commands to execute
after the Analyzer executes the initialization file (if any) and before it prompts
you for interactive commands. The list of commands used with /COMMAND
must be enclosed in quotation marks. To list more than one command, use
semicolons to separate them. For example:

1–8 Introduction

Introduction
1.4 Getting Started

$ PCA/COMMAND="SHOW DATAFILE; SHOW LANGUAGE" PCA$PRIMES.PCA

Performance and Coverage Analyzer Version 5.0

Performance Data File: SYS$DISK01:[SMITH]PCA$PRIMES.PCA;1
Language: FORTRAN
PCAA>

In this example, SHOW DATAFILE and SHOW LANGUAGE are executed
before the Analyzer prompt appears.

1.4.2.2 Creating the Default Plot
After invoking the Analyzer and specifying the data file, you can enter a
traverse command (NEXT, BACK, FIRST, CURRENT), and let the Analyzer
default settings create a useful plot for you. The traverse commands walk you
through your program’s structure, pointing out the most significant portions of
your application.

Entering the NEXT command at the first Analyzer prompt creates a source
plot with the PC sampling data kind. A pointer is positioned at the line with
the most data points in the routine with the most data points, that is, the place
where the most PC samples were gathered and most of the time was spent.
Subsequent NEXT commands traverse the program structure to show you the
most-to-least significant line in the program.

The Analyzer supplies the default data kind. The default data kind is the last
data kind collected by the Collector. If CPU sampling was the last data kind
collected, then CPU sampling is the default data kind. You can change the
default with the SET PLOT or PLOT commands.

1.4.2.3 Scrolling Through the Display on Your Terminal
A histogram or table is displayed on your terminal one page at a time. To
see the next page, press the Return key. You can keep pressing Return to
see successive pages until you reach the summary page. The summary
page contains various summary statistics and lists all qualifiers and node
specifications used to generate the Analyzer display. It can be more than one
page. Section 1.4.2.4 provides a detailed interpretation of the summary page.
If you press Return at the end of the summary, the Analyzer brings you back
to the first page of the histogram or table.

You can use the PAGE command to page through the histogram or table. You
can also use the FIND command to look for a page with a specific label or line
number.

When you have a histogram or table that you want to print or save in a
file, you can do so with the PRINT, FILE, and APPEND commands (see
Section 1.4.2.6).

Introduction 1–9

Introduction
1.4 Getting Started

1.4.2.4 Interpreting the Summary Page
The last few terminal pages of every histogram or table display are called
the summary page. The summary page gives various summary statistics
and lists all qualifiers, node specifications, and filters used to generate the
histogram or table. This section explains the various parts of the summary
page for histograms or tables with one data kind (Example 1–1), and for those
with multiple data kinds (Example 1–2). These two examples have numbered
callouts to the right, which are explained in the following lists.

Example 1–1 Summary Page for a Single Data-Kind Plot

Performance and Coverage Analyzer Page 2
Program Counter Sampling Data (27546 data points total) - "*"!

PCA Version 5.0 20-OCT-2006 14:13:18 "

PLOT Command Summary Information:
Number of buckets tallied: 17 #

Program Counter Sampling Data - "*"

Data count in largest defined bucket: 27477 99.7% $
Data count in all defined buckets: 27539 100.0% %
Data count not in defined buckets: 0 0.0% &
Portion of above count in P0 space: 0 0.0% ’
Number of PC values in P1 space: 0 0.0% (
Number of PC values in system space: 0 0.0%)
Data points failing /STACK_DEPTH or /MAIN_IMAGE: 7 0.0% +>

Total number of data values collected: 27546 100.0% +?
Command qualifiers and parameters used: +@
Qualifiers:
/PC_SAMPLING /DESCENDING /NOMINIMUM /NOMAXIMUM
/NOCUMULATIVE /NOSOURCE /ZEROS /NOSCALE /NOCREATOR_PC
/NOPATHNAME /NOCHAIN_NAME /WRAP /NOPARENT_TASK /NOKEEP /NOTREE
/FILL=("*","O","x","@",":","#","/","+")
/NOSTACK_DEPTH /MAIN_IMAGE

Node specifications:
PROGRAM_ADDRESS BY MODULE

No filters are defined +A

PCAA>

! Data-kind line. This line tells you what kind of data was tallied to form the
histogram or table and the total number of data points collected. The count
does not include data points removed by filtering. This line, in conjunction
with the line beginning with Command qualifiers and parameters used,
described at the end of this list, tells you what command generated the
histogram or table associated with this summary page.

1–10 Introduction

Introduction
1.4 Getting Started

" Version number and current date. This line tells you the version number of
the Analyzer and the date the plot was created.

Number of buckets in histogram or table. This line tells you how many
buckets the current histogram or table has. For source listings, this count
includes only those source lines that generated object code.

$ Data count in largest defined bucket. This line shows the largest data
count found for any bucket in the histogram or table. Used to scale the
histogram bars, this number tells you how many data counts correspond to
a full-length histogram bar.

% Data count in all defined buckets. This line shows the total number of data
points tallied in the buckets of this histogram or table. Data points that
fall outside all buckets and data points removed by filters are not counted.
Data points that fall in more than one bucket are only counted once.

& Data count not in defined buckets. This line gives the number of data
points that do not fall in the buckets you specified for this histogram or
table. Data points removed by filtering are not included.

’ Portion of above count in P0 space. This line tells you how many of the
data points counted in the previous line (data count not in defined buckets)
have addresses in P0 space. P0 space is the virtual address range from
address 0 to address 3FFFFFFF hexadecimal and contains all code and
static data in your program.

(Number of PC values in P1 space. This line tells you how many program
counter values (code addresses) fell in P1 space. P1 space is the virtual
address range from address 40000000 to address 7FFFFFFF hexadecimal
and contains the stack, various VMS tables, and the system service vector.
PC values in P1 space reflect activity in the system service vector. In
particular, PC sampling data in P1 space reflects the amount of I/O or
other system service wait time your program experiences.

) Number of PC values in system space. This line tells you how many
program counter values fell in system space. System space is the virtual
address range from address 80000000 to address FFFFFFFF hexadecimal
and contains all system code. You see only system code that executes in
user mode. Such code includes some condition handler code and certain
system services (such as SYS$FAO) that execute in user mode. System
services that execute in more privileged modes enter system code by means
of a change-mode instruction in the system service vector, so the PC values
you observe are in P1 space.

Introduction 1–11

Introduction
1.4 Getting Started

+> Data points failing /STACK_DEPTH or /MAIN_IMAGE. This line tells
you the total number of data points that could not be tallied because the
address specified with the /STACK_DEPTH or the /MAIN_IMAGE qualifier
could not be found on the stack.

+? Total number of data values collected. This line tells you the total number
of data points tallied in this histogram or table that were found in the
performance data file. This count excludes data points eliminated by any
filters you specified. This total count is used to compute the percentage
shown for each bucket in the histogram or table.

+@ Command qualifiers and parameters used. The lines that follow this one
show all qualifiers and node specifications used to create this histogram or
table. By looking at this output, you can see what defaults were applied.
This line, in conjunction with the line beginning with Data-kind line,
described at the beginning of this list, tells you what command generated
the histogram or table associated with this summary page.

+A Filter definition line. This line either tells you that no filters are defined
(as in this example), or lists the filters that are defined. Filters cause the
Analyzer to include or exclude in the histogram or table only selected data
points from the performance data file.

Not all of the lines shown in the example appear in all summary pages. For
example, the summary page does not display the lines showing the number
of PC values in P0, P1, or system space unless you have tallied program
addresses.

Some summary pages have additional lines. For test coverage data, the
summary page shows the number of buckets covered, not covered, and
acceptably not covered, along with the corresponding percentages. Also, if
you use the /CUMULATIVE qualifier, a line stating the cumulative count in all
defined buckets is added. This count may be larger than the data count in all
defined buckets because some data points may be included more than once in
the cumulative count.

1–12 Introduction

Introduction
1.4 Getting Started

Example 1–2 Summary Page for a Multiple Data-Kind Plot

Performance and Coverage Analyzer Page 3
I/O System Service Calls (3581 data points total) - "*"

Page Fault Program-Counter Data (121 data points total) - "O" !

Program Counter Sampling Data (27546 data points total) - "x"

PCA Version 5.0 20-OCT-2006 14:15:32

PLOT Command Summary Information:
Number of buckets tallied: 17

I/O System Service Calls - "*" "

Data count in largest defined bucket: 3581 100.0%
Data count in all defined buckets: 3581 100.0%
Data count not in defined buckets: 0 0.0%
Portion of above count in P0 space: 0 0.0%
Number of PC values in P1 space: 0 0.0%
Number of PC values in system space: 0 0.0%
Data points failing /STACK_DEPTH or /MAIN_IMAGE: 0 0.0%

Total number of data values collected: 3581 100.0%

Command qualifiers and parameters used: #
Qualifiers:
/IO_SERVICES /DESCENDING /NOMINIMUM /NOMAXIMUM
/NOCUMULATIVE /NOSOURCE /ZEROS /NOSCALE /NOCREATOR_PC
/NOPATHNAME /NOCHAIN_NAME /WRAP /NOPARENT_TASK /NOKEEP /NOTREE
/FILL=("*","O","x","@",":","#","/","+")
/NOSTACK_DEPTH /MAIN_IMAGE

Node specifications:
PROGRAM_ADDRESS BY MODULE

Filter definitions: $
Filter F1:
RUN_NAME = 2

Page Fault Program-Counter Data - "O"

Data count in largest defined bucket: 46 38.0%
Data count in all defined buckets: 121 100.0%
Data count not in defined buckets: 0 0.0%
Portion of above count in P0 space: 0 0.0%
Number of PC values in P1 space: 0 0.0%
Number of PC values in system space: 24 19.8%

Total number of data values collected: 121 100.0%

Qualifiers applied to this datakind:

(continued on next page)

Introduction 1–13

Introduction
1.4 Getting Started

Example 1–2 (Cont.) Summary Page for a Multiple Data-Kind Plot

/NOCUMULATIVE /NOSTACK_DEPTH /NOPARENT_TASK /NOCREATOR_PC
/NOMAIN_IMAGE

Filter definitions:
Filter F1:
RUN_NAME = 1

Program Counter Sampling Data - "x"

Data count in largest defined bucket: 27477 99.7%
Data count in all defined buckets: 27539 100.0%
Data count not in defined buckets: 0 0.0%
Portion of above count in P0 space: 0 0.0%
Number of PC values in P1 space: 0 0.0%
Number of PC values in system space: 0 0.0%
Data points failing /STACK_DEPTH or /MAIN_IMAGE: 7 0.0%

Total number of data values collected: 27546 100.0%

Qualifiers applied to this datakind: %

/NOCUMULATIVE /NOSTACK_DEPTH /NOPARENT_TASK /NOCREATOR_PC
/MAIN_IMAGE

No filters are defined

! Data kind lines. Each line of this header information names one of the
data kinds plotted, in the order that they were plotted.

" Summary information by data kind. The summary information is repeated
for each data kind, and is presented in the order that they were plotted.

Qualifier information. This list includes all qualifiers used by the Analyzer.
Subsequent qualifier information lists only those applied to the data kind.

$ Filters applied to this data kind. This line includes only the filters that
were defined for this data kind.

% Qualifiers applied to this data kind. This list includes only the qualifiers
applied to this data kind.

Information that does not vary among the data kinds (such as the number of
buckets, the qualifier list, and node specification) is only displayed once.

1–14 Introduction

Introduction
1.4 Getting Started

1.4.2.5 Viewing the Currently Active Plot
The plot or table resulting from the last PLOT or TABULATE command you
entered is known as the currently active plot. The currently active plot
is the source of all default qualifiers and parameters for a subsequent PLOT
or TABULATE command. Use the SHOW PLOT command to view all the
attributes of the currently active plot.

1.4.2.6 Printing, Filing and Appending Analyzer Output
The PRINT, FILE, and APPEND commands act on the output from the last
PLOT, TABULATE, INCLUDE, EXCLUDE, LIST or traverse command you
entered. You can use PRINT, FILE, APPEND commands to print or file
raw performance data in addition to histograms and tables. Also, with the
FILE/DDIF command, you can store your output in a DDIF file to process for a
specified printing device.

To print a hard copy of a histogram or table that is displayed on your terminal,
use the PRINT command. The PRINT command accepts no parameters as
follows:

PCAA> PRINT
%PCA-I-FILQUE, print file queued to SYS$PRINT
PCAA>

To be notified on your terminal when the print job has completed, use the
/NOTIFY qualifier with the PRINT command. No other qualifiers are accepted.

To save the current plot or table in a file, use the FILE command. The default
file type is .PCALIS. The following command sequence writes the full text of
the current plot or table, including its summary page, to the specified file:

PCAA> FILE OUTFILE
%PCA-I-CREFILE, creating file SYS$DISK01:[LEE]OUTFILE.PCALIS;1
PCAA>

Introduction 1–15

Introduction
1.4 Getting Started

To append the current histogram or table to an existing text file, use the
APPEND command. This command allows you to add as many plots or tables
as you wish to a single text file. It is not necessary to specify the name of the
file to which the PCA output will be appended. The default file specification
is taken from the most recent FILE or APPEND command. The following
command appends the current plot or table, including its summary page, to the
file created in the previous example:

PCAA> APPEND
%PCA-I-APPFILE, appending to file SYS$DISK01:[LEE]OUTFILE.PCALIS;1
PCAA>

1.4.2.7 Stopping Terminal Output or Exiting the Analyzer Session
To stop the Analyzer’s terminal output, such as long output from a SHOW or
LIST command, press Ctrl/C. The Analyzer aborts the current output operation
and prompts for a new command.

To end the Analyzer session, enter the EXIT command or press Ctrl/Z.

1–16 Introduction

2
Using the Collector

This chapter explains how to invoke the Collector, how to set up the Collector
environment, and how to specify and filter the data you want to collect on your
application’s performance.

2.1 Overview
As your application runs, the Collector gathers data to discover performance
bottlenecks or lack of test coverage. To collect performance data on your
application, perform the following steps:

1. Invoke the Collector by compiling, linking and running your application.

2. Specify the name of the performance data file.

3. Specify the data kinds to collect.

4. Select the language of your application.

5. Name the collection run.

6. Type GO to start the collection run and store the data in the performance
data file.

Using the Collector 2–1

Using the Collector
2.1 Overview

Figure 2–1 shows how the Collector interacts with your application to collect
data.

Figure 2–1 The PCA Collector

PC Sampling

CPU Sampling

Coverage

Counters

Page Fault

System Services

I/O Services

Ada Tasking

Events

ZK−9512−GE

Vector PC Sampling

Vector CPU Sampling

Vector Counters

Application

Compile

Run

Link with PCA Collector

Performance
Data File

2.2 Invoking the Collector
To invoke the Collector on an image linked for debugging, define the
LIB$DEBUG logical to be PCA$COLLECTOR.EXE. This causes the OpenVMS
image activator to invoke the Collector as a debugger. You can then enter
Collector commands. Type the following commands to define the LIB$DEBUG
logical:

$ LINK/DEBUG PCA$PRIMES.OBJ
$ DEFINE LIB$DEBUG PCA$COLLECTOR.EXE
$ RUN PCA$PRIMES.EXE

PCA Collector Version 4.6

PCAC>

2–2 Using the Collector

Using the Collector
2.2 Invoking the Collector

To return to the debugger, deassign the logical name LIB$DEBUG, as follows:

$ DEASSIGN LIB$DEBUG
$ RUN PCA$PRIMES.EXE

OpenVMS Debugger Version 7.0

DBG>

When collecting coverage data, use the /NOOPTIMIZE qualifier during
compilation.

2.3 Specifying the Performance Data File
After you invoke the Collector, use the SET DATAFILE command to specify
the performance data file that is to contain the gathered data. Give the data
file a mnemonic name that tells you something about the collection run.
For example, you could expand the data file name from PCA$PRIMES to
PCA$PRIMES_PC_SMPL with the following command:

PCAC> SET DATAFILE PCA$PRIMES_PC_SMPL

If you do not specify a data file, the Collector names the data file after the
executable image file of the program you are measuring with a default file type
of .PCA.

To direct the gathered data to a new data file with each run, enter a new SET
DATAFILE command for each collection run.

Appending a New Data Collection to an Existing File
To append a new data collection to an existing data file with the default file
name, use both the /APPEND and the /EXECUTABLE qualifiers. For example:

PCAC> SET DATAFILE/APPEND/EXECUTABLE

This example sets the data file to the default data file. When using the
/EXECUTABLE qualifier, omit the file specification parameter.

2.4 Specifying Data Collection
When you invoke the Collector and name the data file, you must specify the
kinds of data you want to gather.

Use the Collector SET commands to specify collection of the following data
kinds:

• PC Sampling

• CPU Sampling

• Coverage

Using the Collector 2–3

Using the Collector
2.4 Specifying Data Collection

• Counters

• Page fault

• System services

• I/O services

• Ada tasking

• Events

• Vector PC sampling

• Vector CPU sampling

• Vector counters

By default, PCA collects PC sampling and stack data when you enter a GO
command without specifying a data kind,

PCA supports the following data collection commands on both OpenVMS VAX
and OpenVMS Alpha:

• Set PC_Sampling (see Section 2.4.1)

• Set PCU_Sampling (see Section 2.4.2)

• Set Page_Faults (see Section 2.4.1.4)

• Set Services (see Section 2.4.6)

• Set IO_Services (see Section 2.4.7)

• Set Tasking (see Section 2.4.8)

2.4.1 Program Counter Sampling Data: System Time
PC sampling provides a broad measure of where your program is spending its
time. For this reason, PC sampling is the single most useful way to measure
program performance. You can sample the program counter (PC) of your
running program to determine which parts consume the most time. The
program counter contains the address of the next machine instruction to be
executed. Specify collection of PC sampling data with the following command:

PCAC> SET PC_SAMPLING

The Collector samples the PC by setting up an asynchronous system trap
(AST) timer routine in supervisor mode. By default, the AST timer routine
is activated every 10 milliseconds. Each time the routine is activated, the
Collector retrieves the current PC value for output to the data file. Because
the timer operates in supervisor mode, it samples the PC in all user-mode and

2–4 Using the Collector

Using the Collector
2.4 Specifying Data Collection

user AST-mode that your program executes. The Collector cannot collect data
on programs that run in other modes.

PC sampling data collection is efficient. The extra overhead of gathering this
data is typically no more than 5 percent of the total run time of the user
program. However, run times of a minute or more are required to gather
enough PC values for statistically significant results. You can gather at most
100 values per second, and you usually need to gather thousands of values to
get significant results.

2.4.1.1 PC Sampling Data Distortion
PC sampling provides correct and repeatable results if the Collector supplies
enough PC values for statistically significant results. When collecting PC
values under ideal conditions, the chances of finding the PC in a given address
range is proportional to the amount of time the program actually spends in
that address range. However, when less than ideal conditions exist, the results
of PC sampling may be distorted. This section discusses those situations that
can distort PC sampling data and lead you to draw incorrect conclusions about
the behavior of your program.

The overall system load at the time of collection affects the number of program
counter values the Collector gathers, because program execution slows down as
more demands are made on the system CPU. When program execution slows,
the 10-millisecond timer (which is relatively unaffected by the CPU load)
gathers more PC values per program run than when your system is lightly
loaded and processing faster. The actual number of PC values collected is not
important as long as the number is large enough to establish a representative
sample. Only the proportion of PC values found in a given address range is
significant and repeatable.

A less than ideal condition exists when the system load changes markedly
during the PC sampling session. This condition may force the program you are
measuring to share the system with a CPU-intensive process. This would cause
the program to run more slowly in real time, produce more 10-millisecond
ticks, and collect a greater number of PC values. Now, consider that the other
process may terminate at some point through the PC sampling run. If this
occurs, then the rest of the PC sampling run executes at full speed, experiences
fewer 10-millisecond ticks, and collects fewer PC values than it did before the
other process terminated. Under these conditions, the PC sampling data would
be misleading because the program was not run on an evenly loaded system.
There could be a skew of PC sampling data toward the beginning of the run.

Using the Collector 2–5

Using the Collector
2.4 Specifying Data Collection

Synchronizing your code with the 10-millisecond timer can also cause PC
sampling data distortion. For example, if your program sets up a user-mode
timer AST routine, then that routine normally gains control as soon as the
Collector’s supervisor-mode timer AST routine runs to completion. The AST
routine starts early in the Collector’s timer interval and probably finishes
before the next 10-millisecond tick occurs. Therefore, no PC values are likely
to be collected from such an AST routine, and you may wrongly conclude that
no time is consumed in that routine. An example of this situation is an Ada
multi-tasking program that is time slicing at every 10 milliseconds.

2.4.1.2 Interpreting System Service Wait Times
Interpreting system service wait times can also be deceiving. When your
program calls a system service that runs in executive or kernel mode, the
PC points to the first byte following a change-mode instruction in the system
service vector in P1 space. However, as long as the system service is running
in that higher mode, the Collector’s supervisor-mode timer AST routine cannot
gain control. When the higher-mode code has finished executing, the Collector’s
AST routine gains control and collects only one PC value, even if many 10-
millisecond ticks occur in that time frame. Therefore, the amount of CPU
time consumed in system services may not be properly represented in the PC
sampling data.

2.4.1.3 Interpreting I/O Services Wait Times
In comparison to system service wait times, I/O services wait times are
properly represented in PC sampling data. The CPU time used by the I/O
system services may be under represented, but once the physical I/O operation
is queued or started, the Collector’s timer AST routine can continue to collect
PC values. Therefore, I/O-bound programs may result in large numbers of PC
values occurring in P1 space. These values represent I/O system service wait
times.

Under some circumstances, I/O wait times should be evaluated cautiously.
For example, if your program is accessing an overloaded disk, much of the wait
time may be due to competition from other processes accessing the same device.
In such cases, the best way to reduce program I/O wait time is to reduce the
load on that disk, perhaps by spreading its files over several disks. Before you
decide to code your program to make it faster, you should consider both the
internal and external factors that can be causing poor I/O performance.

Because terminals are inherently slow devices, terminal I/O is likely to cause
many PC values to be collected in P1 space. A terminal-bound application can
easily spend 80 to 90 percent of its time waiting for the terminal. Collecting
many PC values in P1 space is a normal characteristic of terminal-bound
programs.

2–6 Using the Collector

Using the Collector
2.4 Specifying Data Collection

2.4.1.4 Interpreting Page-Faulting Data
PC sampling data measures page faulting time in addition to CPU and I/O
time. When a page fault occurs, the Collector gathers the PC value of the
instruction that caused the page fault. If you find a big PC sampling peak in
a routine or in a code segment, the peak could be due to page faulting rather
than to CPU usage. If you are in doubt about the PC data, collect page fault
data or collect CPU sampling data to see if that can explain the PC sampling
peak in that code segment.

2.4.1.5 Collecting PC Sampling Data and Other Data in the Same Run
You can collect different kinds of data in the same collection run. However,
some kinds of data impose a high collection overhead that can substantially
alter the run-time behavior of your program. For this reason, the Collector
provides an informational message warning about possible conflicts. For
example, execution counters can slow your program down several hundred
times. If you try to collect execution counts and PC sampling data at the same
time, the overhead of collecting execution counts may make the PC sampling
data meaningless.

Although you should avoid collecting PC sampling data and execution count
data at the same time, there are exceptions. For example, an execution counter
that is ‘‘hit’’ only half a dozen times in a long collection run may have no
appreciable effect on the PC sampling process.

Usually, you can collect page fault data and PC sampling data at the same time
with little or no distortion in either kind of data. However, avoid collecting
system services data, I/O data, CPU sampling data, execution counts, or test
coverage data at the same time that you collect PC sampling data.

2.4.2 Program Counter Sampling Data: CPU Time
The SET CPU_SAMPLING command collects PC values in the same way that
SET PC_SAMPLING does, with one important difference. The CPU sampling
interval is based on virtual process time, not system time. When you enter the
SET CPU_SAMPLING command, PCA collects PC values whenever there has
been one or more clock ticks on the process clock. Specify the collection of CPU
sampling data with the following command:

PCAC> SET CPU_SAMPLING

There are many external factors that can affect the behavior of a program in
relation to the system clock (for example, page faulting and system service
wait time, including I/O wait time). These conditions make it difficult to
determine whether the program counter contains a specific location because of
the structure of the program’s algorithm or because of other external factors
occurring in that interval. Under these conditions, sampling the PC values

Using the Collector 2–7

Using the Collector
2.4 Specifying Data Collection

based on the CPU time is more effective and reproducible because the effects
caused by contending processes are eliminated.

2.4.3 Test Coverage Data
If you want to see which parts of your application are covered or not covered
by your test suite, use the SET COVERAGE command. You must use node
specifications to specify program locations on which to place breakpoints so
that test coverage data or execution counts can be gathered for that area of the
program. Node specifications refer to those elements of your application that
can be defined as a program address, a module, a routine, a codepath, or a line.

Figure 2–2 depicts the different elements of a program as a tree structure.
Many of the examples used in the following sections refer to its modules and
routines by name.

Figure 2–2 A Program Represented as a Tree

Routine R1 Routine R2 Routine R3 Routine R6 Routine R7

Routine R4 Routine R5

Module M1

Program

Module M2

ZK−4189−GE

A breakpoint is a location in a program in which that program’s execution may
be suspended so that partial results can be examined. For example, to measure
test coverage for every codepath in your program and collect stack PC values,
type the following:

PCAC> SET COVERAGE/STACK_PCS PROGRAM BY CODEPATH

By default, the Collector removes each breakpoint the first time the code
executes. This allows the program to run faster because it does not collect
counts at locations that have already been covered. Therefore, frequently
executed code runs at full speed after the first execution.

2–8 Using the Collector

Using the Collector
2.4 Specifying Data Collection

The complete syntax of node specifications, as used with the SET COUNTERS,
SET COVERAGE, and SET EVENT commands, is shown in Table B–3.

2.4.3.1 Codepaths
When you use the SET COVERAGE command, the most useful node
specification is one with a BY CODEPATH clause. This nodespec causes
the Collector to examine the program’s object code in order to find all relevant
codepaths. The term codepath is any piece of object code that the executing
program enters only at the beginning (at the first instruction) and exits only at
the end.

The codepath search starts at all entry points and labels. The Collector puts
breakpoints at the entry points of the routines and at all possible destinations
of conditional branches. In this regard, you can think of the codepath source as
being a basic block within a high level language. In the Analyzer, you can plot
or tabulate the collected data to see which codepaths are not covered by your
tests.

The following command selects all codepath nodes in module M2, and puts
coverage breakpoints on all corresponding program locations:

PCAC> SET COVERAGE MODULE M2 BY CODEPATH

Similarly, the following command places test coverage counters on all codepaths
in the entire program:

PCAC> SET COVERAGE PROGRAM_ADDRESS BY CODEPATH

Because the MACRO assembler does not provide adequate symbol table
information, the Collector may not be able to find all codepaths in MACRO
programs. To minimize this problem, you should declare all MACRO routines
with .ENTRY directives. Even then, constructs such as indexed jump
instructions or passing code addresses as parameters may cause codepaths
to be missed.

You can specify comma lists of node specifications with these commands.
Figure 2–2 shows a program with its elements represented in a tree structure
and is used in the following example. To specify the collection of tests coverage
on routines R6 and R7, and all the routines in module M1, enter the following
command line:

PCAC> SET COVERAGE ROUTINE R6, ROUTINE R7, MODULE M1 BY ROUTINE

Codepath measurement has one drawback. If the generated code contains
dynamically determined destination addresses (for example, self-modifying
code or jump table constructs), those codepaths are not measured. To ensure
covering as many points as possible, enter the following command:

Using the Collector 2–9

Using the Collector
2.4 Specifying Data Collection

PCAC> SET COVERAGE PROG BY LINE, PROG BY CODE

This covers the union of addresses specified in the nodespec but may create an
inordinate number of buckets.

Although the SET COVERAGE command causes the Collector to remove test
coverage breakpoints after the first execution, you can order the breakpoints
removed after any specified number of executions by using the /UNTIL:n
qualifier. The following command specifies placement of test coverage
breakpoints on every codepath of routine FINDSUM, and removal of them
after the third execution:

PCAC> SET COVERAGE/UNTIL:3 ROUTINE FINDSUM BY CODEPATH

When compiling your program to gather coverage data, use the /NOOPTIMIZE
qualifier to prevent the compiler from optimizing code and gathering incorrect
results.

2.4.3.2 Modules
You can specify a type of program location by providing a formal node name
followed by a BY clause. For example, to test coverage on every routine in
Module M1, enter the following command:

PCAC> SET COVERAGE MODULE M1 BY ROUTINE

If the subtree with Module M1 as its root has routine nodes for both R1 and
R2, coverage breakpoints are placed on those two routine nodes, but not on
root node Module M1.

2.4.3.3 Routines
To specify an individual program location with a nodespec, you must provide
the formal name of the corresponding node in the program tree. For example,
to get test coverage on Routine R3, use the nodespec ROUTINE R3:

PCAC> SET COVERAGE ROUTINE R3

2.4.3.4 Lines
In addition to modules and routines, a program contains nodes for all lines in a
program. You can specify all lines in a given program unit by using a BY LINE
clause. For example, you can test for coverage on every line in Routine R3 by
entering the following command:

PCAC> SET COVERAGE ROUTINE R3 BY LINE

You can also use the PROGRAM_ADDRESS BY LINE nodespec. Measuring
test coverage at that many program locations is reasonable because test
coverage data is collected only once for each line.

2–10 Using the Collector

Using the Collector
2.4 Specifying Data Collection

You can use the SEARCH and TYPE commands to display specific lines, or a
range of lines. See Section 4.7.4.1 for information on these commands.

2.4.3.5 Path-Name Qualification
If the name of a routine or line is not unique, you must specify its formal name
with a partial or full path-name qualification. A path name for a program
unit is either the formal name of that unit or an expansion of the name that
specifies the unit’s nesting within other program units. In a path name, the
name of the program unit is preceded by the name of its rootnode; backslashes
(\) separate the names. (If the language is set to DEC Ada, you can also use
the period (.) as a separator.) For example, if the name of Routine R2 is not
unique, you would have to specify it as M1\R2. R2 is still the routine name,
but it is prefixed with M1\ to indicate that the desired routine is Routine R2
in Module M1:

PCAC> SET COVERAGE ROUTINE M1\R2 BY LINE

If a routine is nested within other routines, further qualification may be
required in the routine’s path name. Routine R4, for example, is nested within
Routine R3, which is nested in Module M2. Its full path name is M2\R3\R4.

Specifying Path Names for Source Lines
Path names also apply to source lines. A source line is identified by a name
of the form %LINE n, where n is the line number. Because line numbers
are generally not unique in programs with multiple modules, line numbers
usually require path-name qualification. For example, line 25 in Routine
R4 might have path names such as R4\%LINE 25, R3\R4\%LINE 25, or
M2\R3\R4\%LINE 25. However, specifying only the module name and
line number is sufficient because line numbers are always unique within a
separately compiled module. For example:

PCAC> SET COVERAGE LINE M2\%LINE 25

2.4.3.6 Collecting Coverage Data from Multiple Test Runs
Generally, a series of executions is necessary to test all parts of a large
program. To collect coverage data from multiple test runs, use the /APPEND
qualifier on the SET DATAFILE command. Then, to avoid gathering redundant
data for commonly used code, use the /PREVIOUS qualifier with the SET
COVERAGE command, as in the following example:

PCAC> SET DATAFILE/APPEND MY_DATAFILE.PCA
PCAC> SET COVERAGE/PREVIOUS PROGRAM_ADDRESS BY CODEPATH

Using the Collector 2–11

Using the Collector
2.4 Specifying Data Collection

The /PREVIOUS qualifier causes the Collector to measure coverage at each
designated program location only once during the entire set of program
executions (collection runs). If a location has been covered in a prior execution,
the Collector does not attempt to measure coverage of that location in
subsequent executions of the program.

If the SET DATAFILE command creates a new data file, it then places test
coverage breakpoints on all program locations that you specified on the SET
COVERAGE command. When the collection run ends, all breakpoint locations
not hit (or not hit n times if /UNTIL:n was also specified) are recorded in the
data file as not covered.

If the SET DATAFILE command finds an existing file, then the breakpoint
locations recorded by the previous collection run (those that were requested
but not hit) are used. In this case, if you specify node specifications, they are
ignored. When the collection run ends, all breakpoint locations still not hit are
once again recorded in the data file as not covered. Thus, each collection run
starts with the breakpoint locations remaining from the previous collection run
and passes on a reduced breakpoint table to the next collection run.

If you intend to use the Analyzer MERGE/ANC command (see Section 3.4.1)
to write acceptable noncoverage information to a table, use the /ANC qualifier.
This qualifier instructs the Collector to save the codepaths of the current
version of the program for comparison with codepaths from another version
of the program. This information is comprised of all codepath information in
the modules that were specified by the nodespec in the SET COVERAGE/ANC
command. The Analyzer can tell which routines have changed from this saved
information. See Section 3.6 for information on acceptable noncoverage (ANC).
See Section 4.5 for an example of collecting, merging and setting ANC data.

2.4.3.7 Gathering Test Coverage Without Optimization
When gathering information on how completely a given set of test data covers
your program, you may find it helpful to first compile your program with the
/NOOPTIMIZE qualifier. Compiling the program without optimization makes
the program run slower, but may make it easier to relate the coverage points
in the object module back to the original source code. If you measure test
coverage over fully optimized code, then simple one-to-one correspondence
between the coverage points in the optimized object code and the constructs in
your source program may be lost.

2–12 Using the Collector

Using the Collector
2.4 Specifying Data Collection

2.4.4 Execution Count Data
The SET COUNTERS command determines the exact number of times that
various parts of your program execute by placing breakpoints at specified
program locations. Each time a breakpoint executes, the Collector records a
count for that location. The Collector lets you specify these locations either
individually or collectively. For example, an individual location could be line
6 of routine FINDSUM in your program, whereas a type of program locations
could be every routine in the whole program or every line in a given routine.

Specify these code locations by using node specifications on the SET
COUNTERS command. (See Section 2.4.3 for a full explanation of Collector
node specifications.) The following example specifies placement of an execution
counter on line 6 of routine FINDSUM:

PCAC> SET COUNTERS LINE FINDSUM\%LINE 6

The nodespec FINDSUM\%LINE 6 specifies an individual program location
for an execution counter. In the next example, the PROGRAM_ADDRESS BY
ROUTINE nodespec causes execution counters to be placed on every routine in
the entire program:

PCAC> SET COUNTERS PROGRAM_ADDRESS BY ROUTINE

Note

Counting the number of times that program locations execute greatly
increases CPU overhead. Therefore, you should be selective in using
execution counters.

Placing an execution counter on every line in a program may make the
program run a hundred times slower. Place execution counters at the entry
point to each routine in your program, or for all lines in one routine, or for only
strategic program locations.

It is practical to use execution counters when you need more exact data than
you can get from PC sampling. Because execution count results are repeatable
(provided the program and its input are fixed), useful data can be collected in
short collection runs.

Using the Collector 2–13

Using the Collector
2.4 Specifying Data Collection

2.4.5 Page Fault Data
The SET PAGE_FAULTS command collects the following kinds of data for each
page fault the user program generates:

• The address of the instruction that caused the fault

• The faulting virtual address

• The current CPU time

Specify the collection of this data with the following command:

PCAC> SET PAGE_FAULTS

Collecting page fault data alters your program’s page faulting behavior. The
Collector requires some code and data to collect page fault data and therefore
produces paging of its own. This reduces your program’s working set, which
increases the program’s paging. This usually has little or no effect on the sites
of the page faulting peaks in your program; the small disruptions introduced
by the Collector can usually be ignored when you are trying to discover where
your program is producing the most page faults.

Distortions introduced by collecting page fault data and other data at the same
time can be significant. The process of collecting these other kinds of data
may in itself cause page faulting, which distorts the page fault data. Avoid
collecting call stack return addresses when collecting page fault data because
the Collector can affect your program’s page faulting behavior as it traverses
the call stack. Call stack return addresses cannot be collected for the page
fault data itself, but can be collected for other kinds of data during the run.

PCA supports this command on both OpenVMS VAX and OpenVMS Alpha.

2.4.6 System Services Data
The SET SERVICES command determines exactly how many times your
program calls each system service. For each system service call, PCA command
gathers the following data:

• The system service index

• The PC address of the system service call

• The current CPU time

Specify the collection of this data with the following command:

PCAC> SET SERVICES

PCA supports this command on both OpenVMS VAX and OpenVMS Alpha.

2–14 Using the Collector

Using the Collector
2.4 Specifying Data Collection

For more information on system services and a list of the available system
services, see the OpenVMS System Services Reference Manual.

2.4.7 Input/Output Data
Use the SET IO_SERVICES command when you want to collect more
information on I/O data than you can collect with the SET SERVICES
command. For example:

PCAC> SET IO_SERVICES

The SET IO_SERVICES command measures several Record Management
Services (RMS). See Appendix B for a listing of both RMS and non-RMS
services measured by this command. For more information on RMS services,
see the OpenVMS Record Management Services Reference Manual.

The data gathered for each I/O system service depends on the service, but,
where appropriate, includes the following information:

• The I/O system service index

• The PC address of the I/O call

• The current CPU time

• The file name

• The physical I/O read count

• The physical I/O write count

• The file access block (FAB)

• The record access block (RAB)

PCA supports this command on both OpenVMS VAX and OpenVMS Alpha.

2.4.8 Tasking Data
For multi-task applications, you can determine how much time or other
resource is spent in a particular task. Use the following command to instruct
the Collector to gather tasking information:

PCAC> SET TASKING

The Collector records the following:

• The context switch

• The task priority

• The task type

• The PC value of the address where the task was created

Using the Collector 2–15

Using the Collector
2.4 Specifying Data Collection

• The CPU time

• The parent task

PCA supports this command on both OpenVMS VAX and OpenVMS Alpha.

2.4.9 Events Data
You can filter your data so that the Analyzer creates histograms or tables using
only data from a specified phase of your program. Place event markers in
the data file using the Collector SET EVENT command. An event marker is a
record that the Collector inserts into the data file whenever control passes to a
specified program location during program execution.

The SET EVENT command uses two parameters to identify an event. The first
parameter is the event name you want to use, and the second parameter is a
list of one or more node specifications whose execution constitutes the actual
event. Each program location is specified by a node specification. For more
information on node specifications, see Section 2.4.3. The second parameter
may specify multiple node specifications separated by commas. The following
is an example of a valid SET EVENT command:

PCAC> SET EVENT COMPUTE LINE M1\R2\%LINE 25

In this example, the event name is COMPUTE and the event breakpoint
location is line 25 of Routine R2 in Module M1. Whenever line 25 executes, an
event marker for event COMPUTE is written to the data file. If you specify
more than one breakpoint location for the event COMPUTE, execution of any
of the designated locations would mark that event in the file.

You can use event markers to limit analysis of performance data to data
collected between any two events occurring in your program’s execution. The
event marked is the execution of code at that program location.

The SET EVENT command causes the Collector to insert breakpoints at
specified program locations. When the breakpoint location executes, all
currently accumulated data is written to the data file followed by a time-
stamped event marker record. The event marker record signifies that the
indicated event occurred. You must specify an event name for each event. The
Collector records all event names in your data file. Event markers, in effect,
partition the collected data by time.

For example, if your program consists of three main phases—an input phase,
a compute phase, and an output phase, executed in that order—you may want
to look at the data from only one of these phases. If you want to investigate
how often your program calls a particular utility routine during the compute
phase of your program, place an event marker at the beginning of the compute
phase and at the beginning of the output phase. Then, you can examine the

2–16 Using the Collector

Using the Collector
2.4 Specifying Data Collection

data that is collected between these event markers. Data gathered between
two event markers is associated with the event name given to the first of the
two markers.

2.4.10 Collecting Vector Instruction Data
The Collector provides the following three commands to allow you to gather
information on the execution of vector instructions in your programs:

• SET VCOUNTERS

• SET VCPU_SAMPLING

• SET VPC_SAMPLING

This section summarizes each of these commands. Chapter 5 contains a
complete discussion of using VAX Vectors with PCA.

2.4.10.1 Vector Program Counter Sampling Data
The SET VPC_SAMPLING Collector command lets you collect PC values for
random vector instructions based on the wall clock. The collected data lets you
determine the scalar/vector parallelism throughout your entire program.

When you collect vector PC samples, you set a sampling interval timer that
includes all idle time associated with the current run of the program. This
form of sampling shows you where the time is being spent in the program with
little cost to the time of actually running the program.

2.4.10.2 Vector CPU Time Data
The SET VCPU_SAMPLING Collector command allows you to collect PC
values for random vector instructions based on the processor clock. The
collected data lets you determine the scalar/vector parallelism throughout
your entire program.

When you collect vector CPU samples, you set a sampling interval timer that
includes only the time when the program is actually running the processor.
This form of sampling allows you to focus on the particular area of the
program’s algorithm where the time is being spent, and not on the areas
where outside influences consume time.

Using the Collector 2–17

Using the Collector
2.4 Specifying Data Collection

2.4.10.3 Vector Instruction Execution Count Data
The SET VCOUNTERS command determines the exact number of times that
vector processor instructions are executed in all or part of your program. You
must specify at least one nodespec on the command line to indicate one of the
following domains of the data to be collected:

• PROGRAM ADDRESS by VINSTRUCTION

• MODULE module-name by VINSTRUCTION

• ROUTINE routine-name by VINSTRUCTION

2.4.11 Collecting PC Values from the Call Stack
For some forms of data collection, the Collector records the current value of
the program counter, along with the other data collected. The Analyzer uses
the program counter to associate the collected data with the particular module,
routine, line, or other program unit that generate the data.

Sometimes the value of the program counter may not be the most meaningful
program address to collect. For example, if you gather I/O data on your
FORTRAN program, the PC values of all the I/O system service calls are
within the address range of the FORTRAN Run-Time Library. What you really
need to know is what sections of your FORTRAN program are causing the I/O
calls. To discover what program code is calling the Run-Time Library, you must
gather all subroutine return addresses stored on the stack for each collected
data point.

The SET STACK_PCS command allows you to gather stack PC values,
consisting of the original PC value and all subroutine return addresses on the
Call Stack, for the following kinds of data:

• PC sampling data

• CPU sampling data

• System services data

• I/O services data

• Exact execution counts

• Test coverage data

• Vector PC sampling data

• Vector CPU sampling data

2–18 Using the Collector

Using the Collector
2.4 Specifying Data Collection

• Vector counters data

The Call Stack return addresses cannot be gathered for page fault data. Page
fault data is collected within the OpenVMS operating system at a point where
it is not possible to traverse the call stack to gather return addresses. (Walking
the stack at that point can generate page faults.)

To collect additional PC values from the Call Stack for all data collections,
enter the following command:

PCAC> SET STACK_PCS

Collecting this data adds to the amount of data gathered and to the processing
overhead of gathering the data. However, you can gather exactly the data you
need and minimize PCA’s overhead by selectively collecting desired data kinds
with the /STACK_PCS qualifier.

2.4.11.1 Collecting Stack PCs by Data Kind
Call Stack return addresses can be gathered selectively by data kind with the
/STACK_PCS qualifier. The /STACK_PCS qualifier allows you to collect only
the data that you need, thus minimizing PCA’s overhead.

The /STACK_PCS qualifier causes the collection of stack PC values. The
/NOSTACK_PCS qualifier prevents the collection of stack PC values.

For example, the following command disables the collection of stack PC
values for the current CPU_SAMPLING collection. Further CPU_SAMPLING
requests assume a default of /NOSTACK_PCS.

PCAC> SET CPU_SAMPLING/NOSTACK_PCS

Note that canceling a collection does not affect the present /STACK_PCS
default value. For example, enter the following commands to collect stack PC
values:

PCAC> SET IO_SERVICE/STACK_PCS
PCAC> CANCEL IO_SERVICE
PCAC> SET IO_SERVICE

You can collect stack PC values for all nodespecs of a measurement, or for
none. If you enter the following command sequence, then stack PC values are
not collected:

PCAC> SET COUNTERS/STACK_PCS MODULE A BY LINE
PCAC> SET COUNTERS/NOSTACK MODULE B BY LINE
PCAC> SET COUNTERS MODULE A BY LINE

The SET STACK_PCS command overrides all previously set /NOSTACK_PCS
qualifiers and causes a new default of /STACK_PCS. The CANCEL STACK_
PCS command overrides all previously set /STACK_PCS qualifiers and causes

Using the Collector 2–19

Using the Collector
2.4 Specifying Data Collection

a new default of /NOSTACK_PCS. For information on data kind collection in
vector applications, see Chapter 5.

2.5 Selecting the Language of Your Application
The language setting determines how PCA parses symbol names in command
input. If the language is set to C, PCA treats symbol names as case sensitive.
If the language is set to anything other than C or C++, symbol names are
assumed to be case insensitive.

When you use the SET DATAFILE command, the language setting is
determined by the language of the main routine in the program. Typically, you
need not change this setting. However, if you have a mixed-language program
that includes C or C++ modules, you may have to change the language setting
before you can reference symbols that include lowercase letters. You can
change the language setting by using the SET LANGUAGE command. For
example:

PCAC> SET LANGUAGE C

This command changes the language setting to C. Symbol names are then
parsed by the C language rules.

2.6 Naming the Collection Run
Each program execution run under Collector control is called a collection
run. The data collected from each collection run is recorded separately in the
performance data file. Collection run numbers are assigned sequentially by the
Collector, starting at 1.

You may assign a name of your choice to each collection run with the Collector
SET RUN_NAME command, as follows:

PCAC> SET RUN_NAME name-of-run

If name-of-run does not start with an alphabetic character, you must enclose it
in quotation marks.

If you assign the same collection run name to more than one collection run in
the same data file, data from all those runs passes the filter specified by that
name. Thus, you can assign the same collection run name to a whole group
of collection runs when you intend to filter that group of runs as a unit in the
Analyzer.

If you do not use the SET RUN_NAME command, you get a null run name; the
Collector assigns a number as a run name. To show collection run names, use
the SHOW RUN_NAME command.

2–20 Using the Collector

Using the Collector
2.7 Starting and Terminating Data Collection

2.7 Starting and Terminating Data Collection
After you invoke the Collector and optionally set the data file and collection
type, enter the GO command to start data collection.

To stop a Collector session before you enter the GO command, enter the EXIT
command or press Ctrl/Z. If the data collection has already started, you cannot
enter an EXIT command; you must press Ctrl/Y to stop the collection run.

If you press Ctrl/Y, do not use the DCL STOP command immediately afterward.
If Ctrl/Y interrupts the Collector when the Collector is executing supervisor-
mode code, a subsequent STOP command may cause a supervisor-mode
exception that kills your entire process and logs you out. To avoid this, execute
another program after pressing Ctrl/Y, or type EXIT. The Collector’s exit
handlers then successfully close out the data collection.

To stop Collector output to your terminal, such as SHOW command output,
press Ctrl/C. The Collector aborts the command and returns to DCL level.

To run your program without collecting data, use the /NOCOLLECT qualifier
with the GO command.

2.8 Using Collector Command Procedures
If you repeatedly enter the same group of commands to the Collector, then
place those commands into a command procedure. This makes command
entry more efficient and less error prone.

A command procedure is a text file of commands that substitute for an
interactively entered sequence of commands. The default file type is .PCAC.
Add SET VERIFY to the procedure to view the commands as they are executed
from the procedure.

When the Collector encounters a GO command in a command procedure,
it starts collecting data and does not accept additional commands from the
terminal or from the command procedure. If a command procedure does
not contain a GO command, the Collector interactively prompts for further
commands after executing the commands in the command procedure.

When the Collector encounters an EXIT command in a command procedure,
that command procedure terminates and control returns to the command
stream (either the terminal or a previous command procedure) that invoked
the command procedure.

Using the Collector 2–21

Using the Collector
2.8 Using Collector Command Procedures

You can also create a special type of command procedure called an
initialization file that is automatically read and executed every time the
Collector is initialized for a new collection run. A Collector initialization file
allows you to collect the same performance or coverage data in many separate
collection runs, and to collect data in a batch run. Define the Collector
initialization file by defining the logical name PCAC$INIT to be the file
specification for the initialization file. The following DCL command defines the
file COLLECTOR_STARTUP.PCAC as an initialization file:

$ DEFINE PCAC$INIT SYS$LOGIN:COLLECTOR_STARTUP.PCAC

An initialization file often includes a SET DATAFILE command (usually with
the /APPEND qualifier), some data collection commands, and a GO command.
For example:

SET DATAFILE/APPEND PRIMES_IO ! Append data to existing file
SET IO_SERVICES ! Collect I/O services data
GO ! Start collection

2.9 Using Collector Logical Names
The Collector checks for a number of logical names which, if defined, modify
the activity of the Collector in various ways. These names perform functions
such as defining input and output streams and defining the name of the
performance data file to use. In Section 2.8, PCAC$INIT was used to define an
initialization file. As a convenience, use logical names rather than repeated
commands to pass information to the Collector.

The Collector accepts the following logical names:

PCAC$DATAFILE PCA$RUN_NAME

PCA$INHIBIT_MSG PCAC$INIT

PCAC$INPUT PCAC$OUTPUT

PCAC$DECW$DISPLAY

For a more detailed description of these logical names, see Table B–4.

2.10 Gathering Shareable Image Data
To measure the performance of a shareable image, use the /SHAREABLE
qualifier with the SET DATAFILE command. When you measure the
performance of a program, some of the data you collect may come from
shareable images called by your program.

2–22 Using the Collector

Using the Collector
2.10 Gathering Shareable Image Data

Note

There are two classes of shareable images: those that are user written,
and those that are provided. The Analyzer can report symbolically only
on user-written shareable images. See the OpenVMS Linker Reference
Manual for more information on shareable images.

The Collector writes all shareable image names and address ranges to the
performance data file. The Analyzer uses this information to report on each
shareable image.

User-Written Shareable Images
Before you can collect data, you must build a shareable image on which to
collect that data. Next, you must link an executable image that uses that
shareable image. The following steps are necessary:

1. Compile all sources for the shareable image with /DEBUG to gather
performance data on a shareable image.
To do symbolic performance analysis on the shareable image, first compile
the sources:

$ FORTRAN/DEBUG SHARE

In this example, MAIN.FOR is the source file for your main image, and
SHARE.FOR is the source file for the shareable image to be called by other
programs. Assume that SHARE.FOR has a single universal symbol called
SHARED_ROUTINE, which is a routine called from the main program
MAIN.FOR.

2. Enter LINK/SHAREABLE/DEBUG to create a version of the shareable
image that contains the DST information the Collector needs and enter the
universal symbol:

$ LINK/SHARE/DEBUG SHARE,SYS$INPUT/OPTION-
_$ UNIVERSAL=SHARED_ROUTINE CTRL/Z

This command builds the shareable image SHARE.EXE in your current
directory.

3. Link the program /DEBUG to link the programs that use the shareable
image. Because it is a shareable image, you cannot run SHARE.EXE
directly. Instead, you have to link your main image against it, then point
the logical name SHARE to your copy of SHARE.EXE:

$ LINK/DEBUG MAIN,SYS$INPUT/OPTION SHARE.EXE/SHARE CTRL/Z

$ DEFINE SHARE SYS$DISK:[]SHARE.EXE

Using the Collector 2–23

Using the Collector
2.10 Gathering Shareable Image Data

Point LIB$DEBUG to PCA Collector:

$ DEFINE LIB$DEBUG PCA$COLLECTOR

4. Run the programs that use your shareable image, as follows:

$ RUN MAIN

PCA Collector Version 4.6

PCAC>

5. Enter the SET DATAFILE/SHAREABLE=img-name command. This
command specifies the shareable image to be measured. (The
/SHAREABLE=(img-name,dst-file) form of the /SHAREABLE qualifier is
supported, but only for the sake of compatibility with PCA Version 1.0.)
When you get the Collector prompt, enter the SET DATAFILE command:

PCAC> SET DATAFILE/SHAREABLE=SHARE MY_DATAFILE.PCA

SHARE is the name of the shareable image to be measured, and
MY_DATAFILE.PCA is the file specification for the performance data
file.

The Collector creates the performance data file, extracts the required
symbol table information from the shareable image, and writes it to the
data file. The Collector then prompts for additional commands.

6. Specify your remaining data collection commands and enter a GO command
to start the data collection. After the collection run ends, you can process
the performance data by running the Analyzer.

You can measure the performance of one shareable image averaged over many
executions of different programs. Use the /APPEND qualifier to collect data
from several program executions into one data file.

2–24 Using the Collector

3
Using the Analyzer

This chapter describes the Analyzer, explains the steps you must follow to use
the Analyzer, and provides examples of tasks you can perform while using the
Analyzer.

3.1 Overview
The Analyzer provides a graphical representation of the performance data
gathered by the Collector. To display and analyze the data in your performance
data file, you perform the following general steps:

1. Invoke the Analyzer, which then reads the performance data file that the
Collector has built.

2. View the performance data results as tabular and graphical reports,
filtering and refining the data to get a more detailed view.

3. Analyze and pinpoint the bottlenecks in your application or evaluate the
thoroughness of your testing environment.

Each of these steps is described fully in this chapter.

You can use the Analyzer to produce the following kinds of reports:

• Performance histograms showing how much time or other resource is
consumed by various parts of your program

• Tables showing information in the form of raw data counts and percentages

• Annotated source listings showing performance or coverage data

• Histograms and tables for other data domains, such as the number of calls
per system service, or the amount of I/O per file used by your program

• Listings of your raw performance data

• Dynamic call trees that show the frequency of each call chain

Using the Analyzer 3–1

Using the Analyzer
3.2 Invoking the Analyzer

3.2 Invoking the Analyzer
To invoke the Analyzer, type the PCA command and specify the name of a
performance data file at DCL level. For example:

$ PCA PCA$PRIMES

Performance and Coverage Analyzer Version 5.0

PCAA>

The data file in the previous example, PCA$PRIMES.PCA, contains the
performance or coverage data and all symbol table information required by the
Analyzer.

See Chapter 1 for complete information on invoking the Analyzer, creating the
default plot, scrolling through your display, interpreting the summary page,
and printing, filing, and appending Analyzer output.

3.3 Generating Histograms and Tables
The PLOT and TABULATE commands display performance and coverage
data in an understandable form. The PLOT command produces performance
histograms that plot the distribution of resource usage over your program
or over other data domains. The TABULATE command presents the same
information in the form of tables so you can see the actual data counts, instead
of scaled histogram bars.

The PLOT and TABULATE command qualifiers specify the kind of data to
analyze, and the format and display of the output.

When you enter a PLOT command, use the qualifiers to specify what kind
of data to tally and how to partition the histogram into buckets. These
two elements define the meanings of the horizontal and vertical axes of the
histogram.

If you do not specify a data-kind qualifier on a PLOT or TABULATE command,
then a default data kind is used based on the data collected in the data file.
See the online PCA Command Dictionary for detailed information on the PLOT
and TABULATE commands.

3–2 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.1 Specifying the Kind of Data to Tally in the Histogram or Table
In order to plot or tabulate a certain kind of data, you must have already
collected the data in the Collector. The Analyzer data kind directly corresponds
to the data gathered in the Collector. Table B–7 shows the correspondence of
the Collector SET commands to the Analyzer data-kind qualifiers.

Use the data-kind qualifiers on the PLOT or TABULATE command to specify
which kind of performance or coverage data to tally in the histogram. For
example, if coverage data has been collected in the Collector, then the Analyzer
data kind can have coverage, noncoverage, and acceptable noncoverage (ANC)
information in the performance data file. To display coverage data, enter the
following command:

PCAA> PLOT/COVERAGE

The initial default data-kind qualifier is /PC_SAMPLING.

3.3.2 Partitioning Histograms into Buckets
The node specifications on PLOT and TABULATE commands define how
the vertical axis of a histogram or table is partitioned into buckets. Each
bucket is defined by a value range and corresponds to one histogram bar.
Each data-point in the data file is tallied in the bucket whose value range
includes the value of that data point. For example, the node specification
PROGRAM_ADDRESS BY ROUTINE selects the program address domain,
the domain of all possible program addresses. From this domain, it selects the
address ranges of the routines in the program. Each of these address ranges
defines a bucket. When the Analyzer tallies data points from the performance
file, it compares each program address data point value to the value ranges of
the buckets and puts the data point in the bucket for the appropriate routine.
The resulting plot or table shows the resource usage for each routine in the
program. To do this, enter the following command:

PCAA> PLOT/PC_SAMPLING PROGRAM_ADDRESS BY ROUTINE

Buckets are defined by attributes of the data points in the data file. Depending
on the data kind, these attributes can be the program address value, the
CPU time stamp, the system service name, the file name, the record size,
the physical I/O count, and so on. You can partition many different kinds of
data domains along the vertical axis of the plot, not just the program address
domain. For example, you can partition the system services domain so that
each histogram bar represents the number of calls on one system service.

Using the Analyzer 3–3

Using the Analyzer
3.3 Generating Histograms and Tables

The PLOT and TABULATE node specifications are similar to those on the
Collector SET command. However, the Analyzer accepts a wider range of
nodespecs than the Collector does, because the Analyzer nodespecs can cover
domains other than the program address domain. Node specifications are
discussed in Section 2.4.3, but some simple examples are presented here.
Example 3–1 shows how to plot program counter sampling data against the
whole program partitioned by module.

Example 3–1 Displaying PC Sampling Data in a Histogram

PCAA> PLOT/PC_SAMPLING PROGRAM_ADDRESS BY MODULE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (386 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
PROGRAM_ADDRESS\ |
PRIMES|* 0.8%
PRIME|** 61.9%
READ_RANGE|**** 4.7%
READ_END_OF_FILE . .| 0.0%
READ_ERROR| 0.0%
OUTPUT_TO_DATAFILE .| 0.3%
SHARE$FORRTL|**** 5.4%
SHARE$LIBRTL|** 2.6%
SHAREPCACOLLECTOR | 0.0%
SHARE$DBGSSISHR . .| 0.0%
SHAREPCAPRVSHR . .| 0.0%
SHARE$LBRSHR| 0.0%
SHARE$SMGSHR| 0.0%

|
|
|
+----+----+----+----+----+----+----+----+----+----+

PCAA>

The /PC_SAMPLING qualifier defines the meaning of the horizontal axis of
the previous plot; the number of PC sampling data points in each bucket is
plotted along that dimension. The node specification defines the meaning of
the vertical axis; modules are plotted along that dimension. In this case, each
bucket is defined by a module address range and is labeled by a module name.

The scale of the histogram is adjusted so that the longest bar occupies the full
width of the plot. You can adjust this scale with the /SCALE qualifier to make
the comparison of histograms more convenient.

3–4 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

If you prefer a table to a histogram, use the TABULATE command.
Example 3–2 displays the same information contained in Example 3–1 in
tabular form.

Example 3–2 Displaying PC Sampling Data in Tabular Form

PCAA> TABULATE/PC_SAMPLING PROGRAM_ADDRESS BY MODULE

Performance and Coverage Analyzer Page 1
Program Counter Sampling Data (386 data points total) - "*"

Data 95% Conf
Bucket Name Count Percent Interval
PROGRAM_ADDRESS\
PRIMES 3 0.8%
PRIME 239 61.9% +/- 4.8%
READ_RANGE 18 4.7% +/- 2.2%
READ_END_OF_FILE 0 0.0%
READ_ERROR 0 0.0%
OUTPUT_TO_DATAFILE 1 0.3%
SHARE$FORRTL 21 5.4% +/- 2.3%
SHARE$LIBRTL 10 2.6% +/- 1.6%
SHAREPCACOLLECTOR . . . 0 0.0%
SHARE$DBGSSISHR 0 0.0%
SHAREPCAPRVSHR 0 0.0%
SHARE$LBRSHR 0 0.0%
SHARE$SMGSHR 0 0.0%

PCAA>

This example shows that most of the time is consumed in module PRIME. To
focus on the area that consumes the most time in module PRIME, examine
that module at a finer level of detail.

Using the Analyzer 3–5

Using the Analyzer
3.3 Generating Histograms and Tables

Example 3–3 shows how to use nodespecs to reduce data by focusing on certain
parts of your program.

Example 3–3 Node Specs Used to Focus on Program Elements

PCAA> PLOT MODULE PRIME BY LINE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (386 data points total) - "*"

Percent Count Line
PRIME\

1:
2: C Function to identify whether a given number is p
3: C If it is prime, the returned function value is T
4: C

0.0% 5: LOGICAL FUNCTION PRIME(NUMBER)
0.0% 6: PRIME = .TRUE.
0.3% 7: DO 10 I = 2, NUMBER/2
60.4% ******** 8: IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THEN

9: PRIME = .FALSE.
0.0% 10: RETURN
0.0% 11: ENDIF
1.3% 12: 10 CONTINUE
0.0% 13: RETURN

14: END

PCAA>

This example shows that line 8 of module PRIME consumes about 60% of
the total time in the program. To improve performance, concentrate on the
algorithm that contains line 8 or calls routine PRIME.

3.3.2.1 Filtering Performance Data
You can filter performance or coverage data before the data is used to generate
histograms or tables. This is useful when you want only a certain part of that
data to be considered in a given data reduction. For example, you may only
want the data associated with a certain event marker to be included in your
histogram.

3–6 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

Setting Filters
To filter data, you must establish filter definitions with the SET FILTER
command. The SET FILTER command takes two parameters: a filter name
that you define and a comma-delimited list of filter restrictions (see the online
PCA Command Dictionary). The filter restrictions specify limits or conditions
that any given data point must satisfy in order to pass the filter. You can filter
data on all attributes that are used to plot or tabulate data.

For example, if you want all data points that are tallied in a certain plot to
come from collection run 3 or collection run 5, use the following SET FILTER
command before entering the PLOT command:

PCAA> SET FILTER F1 RUN_NAME=3, RUN_NAME=5

Any data point that comes from collection run 3 or collection run 5 passes filter
F1.

Similarly, if you want to tally all data points from all collections other than
collection run 8, use the following SET FILTER command before entering the
PLOT command:

PCAA> SET FILTER F2 RUN_NAME<>8

Specifying Multiple Filter Restrictions
By specifying multiple restrictions for a single filter, you can logically OR the
restrictions. Also, by declaring more than one filter, each with a separate SET
FILTER command and name, you can logically AND the restrictions. That is,
if you have several filters, data points must pass every one of those filters to be
included in a plot or table. These capabilities give you considerable flexibility
in filtering your performance or coverage data. See the description of the SET
FILTER command in the online PCA Command Dictionary for examples of
specifying multiple filter restrictions.

Multiple filters are applied in the order that they are specified. There are no
precedence rules.

Filtering Data by Event Name
You can filter data by event name. To do this, use the following filter
declaration:

PCAA> SET FILTER F2 TIME=EVENT_NAME

EVENT_NAME is the name of an event marker whose data you want to
include in subsequent plots or tables. Event markers are declared with the
SET EVENT command in the Collector.

Using the Analyzer 3–7

Using the Analyzer
3.3 Generating Histograms and Tables

You can also filter data by chain_name, as in the following example:

PCAA> SET FILTER CHAIN_NAME=(ROUTINE1,*)

(ROUTINE1,*) filters all the data points with the call chains that have
ROUTINE1 at the bottom of the stack. If you specified
(*,ROUTINE1,*,ROUTINE2,*), the filter would apply to data points that have
the call chain of ROUTINE1 calling ROUTINE2 directly or indirectly. Note
that you can only use wildcards for program unit names as a whole, but not
for portions of their identifiers. For example, (ROUT*) does not mean all of the
routines that begin with ROUT. Rather, the meaning is for the program unit
name of ROUT*.

The SET FILTER command, described in the online PCA Command Dictionary,
contains the filter restrictions that specify the conditions that any given
data point must satisfy in order to pass the filter. You can filter data on all
attributes that are used to plot or tabulate data.

The following command selects only the data points that have ROUTINE_1 on
their stack:

PCAA> SET FILTER/CUMULATIVE F1 PROG_ADDR=ROUTINE_1

PROG_ADDR=ROUTINE_1 indicates that the PC used must be in the address
range of ROUTINE_1. /CUMULATIVE indicates that every PC on the stack
should be looked at, and any PC that passes the data point passes the filter.

The following command selects only those data points where ROUTINE_2
called ROUTINE_1 directly:

PCAA> SET FILTER/MAIN=ROUTINE_1/STACK=1 F1 PROG_ADDR=ROUTINE_2

/MAIN=ROUTINE_1 indicates a step down the stack until the return PC
is in ROUTINE_1. /STACK=1 indicates a step one frame further down.
PROG=ROUTINE2 indicates that the PC must be in the range of ROUTINE_2.

The following command selects only those data points where ROUTINE_2
called ROUTINE_1 indirectly:

PCAA> SET FILTER/MAIN=ROUTINE_1/STACK=2/CUM F1 PROG_ADDR=ROUTINE_2

/MAIN=ROUTINE_1 indicates a step down the stack until the return PC
is in ROUTINE_1. /STACK=2 indicates a step two frames further down
the stack. /CUMULATIVE specifies to look at all the remaining addresses.
PROG=ROUTINE_2 specifies that if the address is in the range of ROUTINE_
2, the PC passes the filter.

3–8 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

Rules for Applying Filter Specifications
After you have defined a filter, that filter remains in effect for all subsequent
PLOT and TABULATE commands. However, that does not mean that the filter
will always be applied to the current plot. If the data kind is inconsistent with
the specified filter because of the data collected, then the filter is ignored and
the data point is included in the histogram. Table B–9 shows when the filter
specification is applied and when it is not.

Canceling a Filter
You can cancel a filter with the CANCEL FILTER command or enter another
SET FILTER command with the same filter name. The CANCEL FILTER
command takes as a parameter the name of the filter to cancel. If you want to
cancel all current filters, use the CANCEL FILTER/ALL command.

Showing Filters
To show what filters you currently have defined, use the SHOW FILTER
command. The summary page from any PLOT or TABULATE command also
lists the current filters.

3.3.2.2 Specifying Modules and Routines
Each node in a program tree has an associated address range. The address
range for each routine is the first code address of the routine through the
last code address. Each module also has, as an address range, the sum of all
the routine address ranges within that module. (A module may have several
disjoint address ranges since the routines within that module may not be
contiguous in memory.) All such address range information is derived from the
program’s Debug Symbol Table (DST) and stored in the performance data file.
For example, to plot the address ranges of routines in a specific module, use
the formal name for the module and the BY ROUTINE nodespec:

PCAA> PLOT MODULE M1 BY ROUTINE

Using the Analyzer 3–9

Using the Analyzer
3.3 Generating Histograms and Tables

Figure 3–1 shows the relationship of modules and routines to each other within
a program’s tree structure.

Figure 3–1 A Program Represented as a Tree

Routine R1 Routine R2 Routine R3 Routine R6 Routine R7

Routine R4 Routine R5

Module M1

Program

Module M2

ZK−4189−GE

3.3.2.3 Specifying Individual Buckets
When you want to specify an individual routine or module in a node
specification, you must specify the formal name of the corresponding node
in the program tree. For example, if you want one bucket (and one histogram
bar) for Routine R3, use the nodespec ROUTINE R3:

PCAA> PLOT ROUTINE R3

This command does not give you a significant histogram because it requests
only a single bucket. However, you can specify a comma list of buckets:

PCAA> PLOT ROUTINE R3, ROUTINE R4, MODULE M1

This command results in a histogram with three buckets: one for Routine R3,
one for Routine R4, and one for Module M1. Each histogram bar is labeled
with the name of the corresponding routine or module.

3–10 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.2.4 Specifying a Set of Buckets
You can specify a whole set of buckets by using node specifications that consist
of a formal node name and a BY clause. If you want a bucket in your histogram
for every routine in Module M1, specify the MODULE M1 BY ROUTINE
nodespec with the following command:

PCAA> PLOT MODULE M1 BY ROUTINE

Module M1 specifies a node in the program tree, and that node is the root of a
subtree. The BY ROUTINE clause selects each routine node in the Module M1
subtree and creates a bucket for each one.

The subtree that has Module M1 at its root has routine nodes for routines R1
and R2. The Analyzer creates one histogram bar for each of these two routines.

The formal node name also can be the name of the rootnode for the whole tree:
PROGRAM_ADDRESS. If you want a histogram where every routine in your
program gets one histogram bar, use the following command:

PCAA> PLOT PROGRAM_ADDRESS BY ROUTINE

This command creates buckets for routines R4 and R5 (which are nested within
routine R3) as well as for all the top-level routines. All routine nodes in the
tree are therefore included, even if they are nested below other routine nodes.
Similarly, the nodespec MODULE M2 BY ROUTINE includes routines R4 and
R5 as well as R3, R6, and R7.

The following command breaks the tree down by module:

PCAA> PLOT PROGRAM_ADDRESS BY MODULE

This command is useful if your program uses shareable images, such as the
run-time library, for your language. The Analyzer creates module nodes for all
shareable images and assigns them the appropriate address ranges. Each such
module has a formal name of the form MODULE SHARE$imgname, where
imgname is the shareable image name. This PLOT command lets you see
how much time or other resource is consumed in each shareable image your
program calls. You can break down provided shareable images by module only.

3.3.2.5 Specifying Lines
The program tree contains nodes for all lines in the program. Using a BY
LINE clause, you can create a bucket for each line in a given program unit.
The BY LINE clause in Example 3–4 selects all line nodes in the subtree that
have Routine R3 as their root.

Using the Analyzer 3–11

Using the Analyzer
3.3 Generating Histograms and Tables

Example 3–4 shows the output of the previous command.

Example 3–4 BY LINE Clause Output

PCAA> PLOT/NOSOURCE ROUTINE R3 BY LINE

Performance and Coverage Analyzer Page 2

Program Counter Sampling Data (386 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
%LINE 37| 0.0%
%LINE 38| 0.0%
%LINE 45| 0.0%
%LINE 46| 0.0%
%LINE 48| 0.0%
PRIME\ |
%LINE 5| 0.0%
%LINE 6| 0.0%
%LINE 7| 0.3%
%LINE 8|** 60.4%
%LINE 10| 0.0%
%LINE 11| 0.0%
%LINE 12|* 1.3%
%LINE 13| 0.0%
READ_RANGE\ |
%LINE 5| 0.0%
%LINE 8|** 1.8%

+----+----+----+----+----+----+----+----+----+----+
PCAA>

In the previous histogram, each line in Routine R3 gets one histogram bar.
Only lines that generate object code appear in the plot. The /NOSOURCE
qualifier causes the generation of a histogram instead of an annotated source
listing.

You can group several lines per bucket in the histogram or table by using the
BY n LINES clause. For example:

PCAA> PLOT ROUTINE R3 BY 10 LINES

Such a clause shortens the histogram or table by a factor of n, but gives less
resolution.

When plotting or tabulating by line, it is best to use the /SOURCE qualifier to
see the annotated listing of your program’s source.

3–12 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

Example 3–5 shows what an annotated source listing looks like when the
/SOURCE qualifier and a BY LINE node specification are used.

Example 3–5 Using /SOURCE with BY LINE

PCAA> PLOT/SOURCE ROUTINE PRIME BY LINE

Performance and Coverage Analyzer Page 4

Program Counter Sampling Data (386 data points total) - "*"

Percent Count Line
4: C

0.0% 5: LOGICAL FUNCTION PRIME(NUMBER)
0.0% 6: PRIME = .TRUE.
0.3% 7: DO 10 I = 2, NUMBER/2
60.4% ******** 8: IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THEN

9: PRIME = .FALSE.
0.0% 10: RETURN
0.0% 11: ENDIF
1.3% 12: 10 CONTINUE
0.0% 13: RETURN

14: END

PCAA>

You can also use a node specification such as PROGRAM_ADDRESS BY LINE,
but because a large program may have thousands or tens of thousands of
lines, you may generate a very large plot that is time-consuming to create
and difficult to read. A better strategy is to locate the areas of high resource
usage at the module or routine level first; then investigate, line by line, those
modules or routines that have high resource usage.

The formal name of a line number node has the following form:

LINE [module-name\]%LINE n

In this context, module-name is the name of the module containing the line,
and n is the line number. You can specify the appropriate routine name instead
of the module name if the routine name is unique. The line number is always
the compiler-assigned listing line number; it is the same line number that
the OpenVMS Debugger uses. You can use line number node specifications on
PLOT and TABULATE commands, although a BY LINE clause is usually more
practical.

You can also use the SEARCH or TYPE commands to determine specific line
numbers for desired sections of source. See Section 4.7.4.1 for information.

Using the Analyzer 3–13

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.2.6 Specifying Codepaths
If you collect test coverage data or other information by codepath in the
Collector, you can use the BY CODEPATH clause when plotting or tabulating
such data. Like line nodes, codepath nodes are part of the program tree
and are attached to the appropriate routine nodes. Codepath nodes do not
have formal names, and therefore cannot be listed individually in node
specifications. However, you can use the BY CODEPATH clause to specify
all codepaths in a given program unit. Example 3–6 shows which codepaths in
Module M1 are not covered by your tests.

Example 3–6 Showing Noncovered Codepaths

PCAA> PLOT/NONCOVERAGE/SOURCE MODULE M1 BY CODEPATH

Performance and Coverage Analyzer Page 3

Test Noncoverage Data (48 data points total) - "*"

Percent Count Line
28:
29: C Verify that the numbers in PRIMES_TABLE really a
30: C

2.2% 31: ERROR_COUNT = 0
32: DO 20 I = 1, COUNT

2.2% %LINE 32 + 7
2.2% 33: IF (.NOT. PRIME(PRIMES_TABLE(I))) THEN
2.2% %LINE 33 + 0C
0.0% ******** 34: ERROR_COUNT = ERROR_COUNT + 1

35: END IF
2.2% 36: 20 CONTINUE
2.2% 37: IF (ERROR_COUNT .NE. 0) THEN
0.0% ******** 38: TYPE 30, ERROR_COUNT
0.0% ******** %LINE 38 + 10
0.0% ******** %LINE 38 + 19

39: 30 FORMAT (I5, ’ wrong prime numbers generated’)
40: END IF
41:

PCAA>

Example 3–6 shows histogram bars next to codepaths that are not covered.
These noncovered codepaths contain code to handle various error conditions
that did not arise when this particular program test was run. In addition,
the /SOURCE qualifier displays the source line that starts or contains each
codepath.

3–14 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

Codepaths that do not begin on line boundaries are given names of the form
%LINE n + offs. Here n is a line number, and offs is the hexadecimal byte
offset of the codepath from the start of line n. For example, %LINE 38 + 10
means that the codepath begins 16 bytes after the start of the code for line 38.

Once you have decided which noncovered program addresses do not need to be
tested, that is, those that are acceptably noncovered (ANC), you can save that
information for the next test run. See Section 3.6 for a discussion of acceptable
noncoverage.

3.3.2.7 Specifying Bytes
The program tree can also be partitioned by byte. You can use a nodespec such
as ROUTINE R1 BY BYTE when you want to create one bucket per byte of
address space in Routine R1. This means that you can see how much time
(or other resource) is spent at each individual instruction in your program.
Not every byte starts an instruction, but those that do show histogram bars
proportional to the resource usage of that instruction. Bytes that do not start
instructions do not show any resource usage.

Partitioning program units by byte is useful if you have access to machine
listings for those units.

A useful variant of the BY BYTE clause is the BY n BYTES clause. This clause
causes the Analyzer to generate a histogram with buckets that represent n-byte
address ranges. For example:

PCAA> PLOT ROUTINE R1 BY 10 BYTES

Each bucket represents a 10-byte address range within routine R1. Hence,
the histogram has one-tenth as many buckets as the full address range of
the routine, giving a more compact and more easily understood histogram.
By selecting an appropriate n value, you can make your own choice between
compactness and expanded detail.

You can look at the performance of a shareable image by entering the following
command:

PCAA> PLOT/PC_SAMPLING MODULE SHARE$LIBRTL BY 100 BYTES

Using the Analyzer 3–15

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.2.8 Omitting Node Specifications
If you omit the node specifications on a PLOT or TABULATE command,
that command inherits all qualifier settings and node specifications from the
previous PLOT or TABULATE command. Any qualifiers you specify with
the new command override the corresponding qualifiers from the previous
command. Using this feature, you can first display a plot or table that is
approximately what you want, and then modify the qualifiers on that plot or
table until you get exactly what you want. You can also change from a plot to
a table and vice versa.

For example, suppose you generate a plot with the following command:

PCAA> PLOT/PC_SAMPLING/NOSORT PROGRAM_ADDRESS BY MODULE

After examining this plot, you may decide that you would rather see the
corresponding table, and you may want that table sorted in descending order.
You then enter the following TABULATE command:

PCAA> TABULATE/DESCENDING

Because no parameters are specified with this command, it inherits the
qualifiers and node specifications from the previous PLOT command. The
/DESCENDING qualifier, however, overrides the previous sorting qualifier,
/NOSORT, when the histogram changes to a table.

After seeing this table, you may decide that you prefer a plot after all, but
you want all buckets with zero data counts suppressed. Enter the following
command:

PCAA> PLOT/NOZEROS

The resulting plot inherits the PROGRAM_ADDRESS BY MODULE node
specification and the /PC_SAMPLING and /DESCENDING qualifiers from the
TABULATE command. However, the /NOZEROS qualifier applies when your
histogram is displayed. Entering additional commands without parameters
lets you see more variations on this particular histogram without requiring you
to enter a full PLOT or TABULATE command each time.

3.3.3 Using Nonaddress Domains
Domains that do not have a value for the program address are grouped
together in a class of nonaddress domains. The following sections describe
these nonaddress domains.

3–16 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.3.1 File Name Domain
The Analyzer defines the file name domain in the same way as system services,
described in Section 3.3.3.4. When you collect I/O data, the Collector collects
data values for each I/O system service call, including the file name, the record
size, and the I/O system service index for the call. The Analyzer defines a tree
for each such domain. Figure 3–2 shows what the nodespec tree for the file
name domain may look like.

Figure 3–2 The File Name Domain

FILE_NAME

SYS$INPUT: SYS$OUTPUT: DEV:[DIR]FNAME.TYP;2

ZK−4192−GE

The rootnode is named FILE_NAME, and the other nodes represent the files
the program uses.

3.3.3.2 File Key Domain
The file key domain is useful when you are using indexed sequential files. This
domain consists of file keys such as file key 0, the primary key (no key used
in I/O call), file key 1 (secondary key used), and file key 2. Use the following
command to partition the file key domain by key number:

PCAA> PLOT/IO_SERVICES FILE_KEY BY KEY

If your program is using the secondary key more than the primary key for I/O
access, you can switch key positions; primary key access is more efficient.

For RMS services that the Analyzer can plot, see Table B–1.

3.3.3.3 File Virtual Block Number Domain
You can plot data against the file virtual block number domain. This domain
has a rootnode with the formal name FILE_VBN. You can partition this domain
by block or by n blocks, as in the following examples:

PCAA> PLOT/PHYSICAL_IO_COUNT FILE_VBN BY BLOCK
PCAA> PLOT/IO_SERVICES FILE_VBN BY 3 BLOCKS

Using the Analyzer 3–17

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.3.4 I/O System Services Domain
A tree similar to the system services domain exists for the I/O services
domain, described in Section 3.3.3.4. This tree has the root node IO_SYSTEM_
SERVICES and a node for each I/O service, with a formal name such as IO_
SERVICE SYS$PUT or IO_SERVICE SYS$GET. Based on Figure 3–2, you
can plot the number of I/O system service calls per file with the following
command:

PCAA> PLOT/IO_SERVICES FILE_NAME BY FILE

The formal node name FILE_NAME specifies the root of a tree, and the BY
clause specifies that all FILE nodes in that tree define the buckets of the
histogram.

3.3.3.5 Physical Read Count Domain
You can plot data against the physical read count domain. This domain has a
rootnode with the formal name READ_COUNT. You can partition the physical
read count domain by block or by n blocks, as in the following examples:

PCAA> PLOT/IO_SERVICES READ_COUNT BY COUNT
PCAA> PLOT/IO READ BY 10 COUNTS

Note that /IO_SERVICES is the only data-kind qualifier that can be used with
this domain.

3.3.3.6 Physical Write Count Domain
You can plot data against the physical write count domain. This domain has a
rootnode with the formal name WRITE_COUNT. You can partition the physical
write count domain by block or by n blocks, as in the following examples:

PCAA> PLOT/IO_SERVICES WRITE_COUNT BY COUNT
PCAA> PLOT/IO WRITE BY 10 COUNTS

Note that /IO_SERVICES is the only data-kind qualifier that can be used with
this domain.

3.3.3.7 Total Physical I/O Count Domain
You can plot data against the total physical I/O count domain. This domain has
a rootnode with the formal name PHYSICAL_IO_COUNT. You can partition
this domain by count or by n counts, as in the following examples:

PCAA> PLOT/IO_SERVICES PHYSICAL_IO BY COUNT
PCAA> TAB/IO PHYS BY 10 COUNTS

Note that /IO_SERVICES is the only data-kind qualifier that can be used with
this domain.

3–18 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.3.8 Record Size Domain
For the record size domain, the root node is called RECORD_SIZE and the
nodes represent different record sizes: zero-byte records, one-byte records,
two-byte records, up to the maximum record size recorded. Figure 3–3 shows
the record size tree.

Figure 3–3 The Record Size Domain

RECORD_SIZE

0 1 2 max

ZK−4193−GE

The only node specification for the record size domain is the whole domain
partitioned by byte, as follows:

PCAA> PLOT/IO_SERVICES RECORD_SIZE BY BYTE

The resulting histogram has one bucket per record size, given in bytes. It
displays the distribution of record sizes characteristic of this program’s I/O,
showing how many short records, long records, or in-between records the
program has read or written.

You can modify the record size nodespec to specify a range of record sizes for
each bucket, as in the following command:

PCAA> PLOT/IO_SERVICES RECORD_SIZE BY 10 BYTES

In this case, each histogram bar represents a 10-byte range of record sizes,
giving a less detailed but more compact histogram.

3.3.3.9 System Services Domain
When you collect system services data, the Collector records both the address
of the system service call and the system service index. To partition the system
services domain into buckets, use a PLOT command to produce a histogram
where each bar corresponds to one system service.

PCAA> PLOT/SERVICES SYSTEM_SERVICES BY SERVICE

This plot tells you how many times each system service is called.

Using the Analyzer 3–19

Using the Analyzer
3.3 Generating Histograms and Tables

Figure 3–4 shows how this node specification is constructed. The system
services domain is represented as a tree very similar to the program tree
shown in Figure 3–1.

Figure 3–4 System Services Domain

SYSTEM_SERVICES

SYS$QIOW SYS$GETJPI SYS$GET

ZK−4191−GE

Attached to the SYSTEM_SERVICES rootnode are nodes for all the individual
system services, such as SYS$QIO and SYS$GETJPI. The system service nodes
have formal names, such as SERVICE SYS$QIO and SERVICE SYS$GETJPI.
These formal names can be listed in the nodespecs of a PLOT or TABULATE
command. For example:

PCAA> PLOT/SERVICES SERVICE SYS$QIO, SERVICE SYS$GETJPI

Each nodespec creates one bucket whose value range is defined by the
corresponding system service index.

The most useful node specification for the system services domain applies the
BY SERVICE clause to the rootnode, as in the following example:

PCAA> PLOT/SERVICES/NOZEROS/DESCENDING SYSTEM_SERVICES BY SERVICE

In this case, every system service gets one histogram bar. The /NOZEROS
qualifier shortens this plot by eliminating all system services that are not
called. Sorting the services in descending order of use lets you examine the
most-used service first.

3–20 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.3.10 Task Domains
You can plot data against the following task domains, expressed as node
specifications:

Domain Node Specification

TASK TASK BY TASK_IDENTIFIER

TASK_IDENTIFIER task_id

TASK_TYPE TASK_TYPE BY TASK_TYPE_NAME

TASK_TYPE_NAME task_type

TASK_PRIORITY TASK_PRIORITY BY n PRIORITY_UNITS

The TASK domain consists of all the instances of a task. Each instance is
a label composed of an integer identifying the run and a label and integer
identifying the task. The following string is an example of a typical identifier
for the instance of a task:

RUN 3\%TASK 2

Although this label identifies each instance of the task, it lacks a symbolic
meaning. For this reason, the TASK_TYPE domain is available. The task type
is the declared type of the task object. Several instances of a task may have
the same type. The TASK_PRIORITY domain is the RTL priority at which
each of the tasks run. The range of task priority is between 0 and 15 (this is
the dynamic priority).

3.3.3.11 Time Domain
You can also plot data against the time domain. The time domain has a
rootnode with the formal name TIME. You can partition the time domain by
event, as follows:

PCAA> PLOT TIME BY EVENT

Each bar of the resulting histogram shows the amount of data collected after
event markers for one event name in your collection run. (The Collector SET
EVENT command sets event markers.) You can specify individual event names
in node specifications by using the following command line.

PCAA> PLOT EVENT INPUT, EVENT COMPUTE, EVENT OUTPUT

Using the Analyzer 3–21

Using the Analyzer
3.3 Generating Histograms and Tables

You can also partition the time domain by millisecond ranges. For page fault,
system services, task_switch, and I/O data, you can use node specifications of
the form TIME BY n MSECS, where n specifies the number of milliseconds of
CPU time per bucket. For example:

PCAA> PLOT/PAGE_FAULTS TIME BY 100 MSECS

You cannot specify a value of n less than 10 in a BY n MSECS clause because
the CPU measures time in 10-millisecond increments.

3.3.4 Sorting the Histogram or Table
Sorting qualifiers gives you the option of displaying only buckets that are
within a certain region of the histogram or table. This helps you reduce the
size of the output. The sorting qualifiers specify how to sort the buckets
before a histogram or table is displayed. The available sorting qualifiers are
/ALPHABETICALLY, /ASCENDING, /DESCENDING, and /NOSORT.

The initial default sorting qualifier is /DESCENDING. The /NOSORT qualifier
specifies no sorting at all. In that case, the Analyzer selects an order.

Sorting qualifiers are ignored for source displays. If you use the /SOURCE
qualifier and a BY LINE or BY CODEPATH node specification on a PLOT or
TABULATE command, the source lines are always presented in line number
order regardless of the sorting qualifier.

You can specify that only the first n buckets be included in the histogram by
adding =n to the sorting qualifier, or you can specify that only the buckets
numbered n through m be included by adding =n:m to the sorting qualifier.
The bucket numbers are assigned sequentially after sorting, and the first
bucket is bucket number 1.

The following example shows how to select the first 20 buckets after a
histogram has been sorted in descending order:

PCAA> PLOT/DESCENDING=20 PROGRAM BY MODULE

Similarly, the following command generates a table where the buckets are first
sorted alphabetically. After that, the first 10 buckets are discarded, buckets 11
through 20 are kept, and all remaining buckets are discarded:

PCAA> TABULATE/ALPHABETICALLY=11:20 PROGRAM BY MODULE

If the =n or =n:m parameters are omitted, all buckets are kept in the histogram
or table.

3–22 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.5 Omitting Buckets of Certain Values
The bucket selection qualifiers let you remove unwanted buckets from your
histogram or table. The initial default bucket selection qualifiers are /ZEROS,
/NOMINIMUM, and /NOMAXIMUM.

The /NOZEROS qualifier omits buckets with a data count of zero from the
histogram or table. Because buckets with a count of zero are frequently
insignificant, the /NOZEROS qualifier allows you to condense a histogram or
table to only those buckets that contain data. The /ZEROS qualifier retains
buckets with zero data counts.

The /MINIMUM=n qualifier causes the Analyzer to omit buckets whose
percentage falls below the given minimum from the histogram or table. For
example, /MINIMUM=10 signifies that the Analyzer should drop all buckets
whose data count is less than 10% of the total number of data points. If
you use the /NOMINIMUM qualifier, no minimum threshold applies. The
/NOMINIMUM and the /MINIMUM=0 qualifiers are equivalent.

Similarly, the /MAXIMUM=n qualifier deletes buckets whose percentage
exceeds the given maximum from the histogram or table. The /MAXIMUM=30
qualifier omits all buckets whose data count is more than 30% of the total
number of data points. If you use the /NOMAXIMUM qualifier, no maximum
threshold applies. The /NOMAXIMUM and the /MAXIMUM=100 qualifiers are
equivalent.

Bucket selection qualifiers are ignored for source displays. If you use the
/SOURCE qualifier and a BY LINE or BY CODEPATH node specification on a
PLOT or TABULATE command, the source lines are always presented in line
number order regardless of the bucket selection qualifier.

3.3.6 Showing Source Code in BY LINE and BY CODEPATH Histograms
and Tables

Source code display qualifiers specify whether the Analyzer displays source
code next to the bars in histograms or next to the data counts in tables that
are generated with BY LINE or BY CODEPATH node specifications.

The initial default source code display qualifier is /SOURCE. Use the
PLOT/NOSOURCE command if you do not want to display source code in
the histogram or table.

The /SOURCE qualifier has no effect if you use any node specification other
than BY LINE or BY CODEPATH. When /SOURCE is in effect, the sorting
qualifiers and the /NOZEROS, /MINIMUM, and /MAXIMUM qualifiers also
have no effect. You always see the full source context around each source line.

Using the Analyzer 3–23

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.7 Using CALL_TREE Node Specifications
With the PROGRAM_ADDRESS domain, you can perform specific call stack
analysis by using CALL_TREE node specifications on a PLOT or TABULATE
command. This results in a call tree plot that displays the call stack
relationship of program units by name. As with the /STACK_DEPTH qualifier,
in order to perform any kind of call stack analysis, you must first collect stack
PC values in the Collector. You cannot use the /ANC, /NONCOVERAGE,
/PAGE_FAULT, and /FAULT_ADDRESS qualifiers with the CALL_TREE node
specification because no call stack information can be collected for them.

A call tree plot allows you to pinpoint the set of subroutine calls that is
consuming most of the system’s time. This is particularly useful for programs
that utilize commonly-called subroutines that are known to be time-consuming.
As an example, suppose your program consists of routines FILE$LOAD,
FILE$UPDATE, and FILE$WRITE. The PROG BY ROUTINE nodespec may
create a plot that shows most of your time being spent in FILE$WRITE.
However, the CALL_TREE BY CHAIN_ROUTINE nodespec may show that
most of the time was spent performing the FILE$WRITE routine when called
from the FILE$LOAD routine.

Each bucket in the plot is a call chain. A call chain is the set of return
addresses found on the call stack associated with each data point. The
Analyzer attempts to match each PC value on the call stack to a program unit.
Any PC value that cannot be matched to a program address unit is resolved to
a ‘‘best guess,’’ such as a shareable image or the hexadecimal representation.

The Analyzer creates the call tree plot by scanning the data file once to
determine all the measured call chains, then again to match the data points
to the specified buckets. The set of measured call chains is the domain. The
CALL_TREE node specification represents that domain.

The following node specifications can be given on a PLOT or TABULATE
command to provide the domain:

• CALL_TREE BY CHAIN_MODULE

• CALL_TREE BY CHAIN_ROUTINE

• CALL_TREE BY CHAIN_LINE

• CHAIN_MODULE chain_name

• CHAIN_ROUTINE chain_name

• CHAIN_LINE chain_name

3–24 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

A chain_name is represented as a comma list of program unit names. The
list must be delimited by parentheses. Preceding the chain_name is any one
of the identifiers CHAIN_MODULE, CHAIN_ROUTINE, or CHAIN_LINE.
The Analyzer interprets each of these identifiers in the same way. The list of
program unit names can be line numbers, routines, modules, and hexadecimal
numbers.

Note

For case-sensitive languages, use the SET LANGUAGE command to
permit the correct parsing. For example, to handle C identifiers and
FORTRAN identifiers in the same call chain, set the language to C and
use uppercase for all the FORTRAN identifiers.

Example 3–7 shows an indented call tree plot.

Example 3–7 Indented Call Tree Plot

PCAA> PLOT/NOCHAIN_NAME CALL_TREE BY CHAIN_ROUTINE

Performance and Coverage Analyzer Page 1
Program Counter Sampling Data (1156 data points total) - "*"

Percent Count Call Chain Name
1.2% Chain : MAIN_PROGRAM
5.5% ** Chain : . ROUTINE_A
6.5% ** Chain : . . UTILITY_ROUTINE_A
12.5% ***** Chain : . ROUTINE_B
3.5% * Chain : . ROUTINE_C
1.4% Chain : . . SHARE$FORRTL
15.5% ******* Chain : . . UTILITY_ROUTINE_A
2.3% * Chain : . . ROUTINE_D
0.4% Chain : . . ROUTINE_E

In Example 3–7, a routine name is indented by two characters if that routine
was called by another routine. The call levels are hierarchical. That is, MAIN_
PROGRAM called ROUTINE_A, ROUTINE_B, and ROUTINE_C directly.
ROUTINE_A in turn called UTILITY_ROUTINE_A. ROUTINE_B did not call
any other routines, and so on.

The counts and percentages shown are those that occurred in the routines. The
/CUMULATIVE qualifier can be used to find the data counts in a given routine,
plus all of its calls. The /MAIN_IMAGE and /STACK_DEPTH qualifiers will
start the call chains that begin at the specified point on the call stack. The

Using the Analyzer 3–25

Using the Analyzer
3.3 Generating Histograms and Tables

/ALPHABETICALLY[=[n:]m] qualifier provides an alphabetical sort on the first
255 characters of each call chain in a call tree plot.

If you specify /NOCHAIN_NAME, then the PLOT command’s maximum,
minimum, and sorting qualifiers are ignored. If you specify /CHAIN_NAME,
then these qualifiers are in effect.

Using the comma list form of a call tree plot results in the same output as the
previous PLOT command except that each call chain is represented by comma
list instead of by indentation. This is useful when specifying sorting options.
Example 3–8 shows the comma list form of a call tree plot.

Example 3–8 Comma List Form of a Call Tree Plot

PCAA> PLOT/CHAIN_NAME CALL_TREE BY CHAIN ROUTINE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (1156 data points total) - "*"

Percent Count Call Chain Name
1.2% Chain : MAIN_PROGRAM
5.5% ** Chain : MAIN_PROGRAM,ROUTINE_A
6.5% ** Chain : MAIN_PROGRAM,ROUTINE_A,UTILITY_ROUTINE_A
12.5% ***** Chain : MAIN_PROGRAM,ROUTINE_B
3.5% * Chain : MAIN_PROGRAM,ROUTINE_C
1.4% Chain : MAIN_PROGRAM,ROUTINE_C,UTILITY_ROUTINE_A
15.5% ******* Chain : MAIN_PROGRAM,ROUTINE_C,SHARE$FORRTL
2.3% * Chain : MAIN_PROGRAM,ROUTINE_C,ROUTINE_D
0.4% Chain : MAIN_PROGRAM,ROUTINE_C,ROUTINE_E

The comma list form of a call tree plot is useful when specifying sorting
options.

3.3.8 Specifying Which Program Counter Values to Tally
Program address selection qualifiers determine which program addresses the
Analyzer selects before tallying them in a histogram or table. The initial
default program address selection qualifiers are /NOSTACK_DEPTH and
/NOCUMULATIVE.

The /[NO]MAIN_IMAGE default depends on the data kind being plotted. If
stack PCs have been collected, then /MAIN_IMAGE is the default. In all other
cases, /NOMAIN_IMAGE is the default. For example, SET PC_SAMPLING
in the Collector defaults to collecting stack PCs, and therefore /MAIN_IMAGE
is the default in the Analyzer’s PLOT command. SET COUNTERS does not
default to collecting stack PCs, and therefore the Analyzer uses /NOMAIN_
IMAGE as the default.

3–26 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.8.1 Performing Call Stack Analysis
To perform any kind of call stack analysis, you must first collect stack PC
values in the Collector. The /MAIN_IMAGE[=prog-unit], /STACK_DEPTH=n,
and /CUMULATIVE[=n] qualifiers use call stack return addresses (stack PC
values) when creating histograms and tables.

The /MAIN_IMAGE qualifier causes the Analyzer to tally the first program
address on the call stack that falls within the program’s address range. (This
value may be the original PC value.) If much of your data falls in shareable
images, use the /MAIN_IMAGE qualifier to instruct the Analyzer to charge
back that data to the places in your program (the main image) that call the
shareable images.

The /NOMAIN_IMAGE qualifier causes the Analyzer to use the original PC
value for each data point.

3.3.8.2 Defining the Program Unit as the Main Image
You can define the main image by specifying a program unit with the /MAIN_
IMAGE=prog-unit qualifier. By default, the program unit is the entire user
program but it can be a module, routine, or line. Specifying the program unit
you want starts the call stack at that point. If no program address on the stack
is within the program unit’s address range, then it does not appear in any of
the buckets and is added to the total of "Data points failing /STACK_DEPTH
or /MAIN_IMAGE" that appears on the summary page.

Note that the SYSTEM$SERVICE and the SYSTEM$SPACE program units
that represent the system service vector and the system space can be used in
the /MAIN_IMAGE=prog-unit qualifier.

3.3.8.3 Performing Specific Call Stack Analysis
You can accomplish more specific call stack analysis with the /STACK_DEPTH
qualifier. With the /STACK_DEPTH=n qualifier, the Analyzer selects data
points that are n call frames lower than the return address you specified with
the /MAIN_IMAGE qualifier. You must specify an integer that is greater than
or equal to one. Each increment in the integer represents going one more call
frame lower in the stack. The /STACK_DEPTH=1 qualifier causes the address
of the caller to be charged, /STACK_DEPTH=2 causes the address of the
caller’s caller to be charged, and so on. If you specify a number that is greater
than the number of call frames on the stack, then the corresponding program
address will not appear in any of the buckets; rather, it will be added to the
summary total of "Data points failing /STACK_DEPTH or /MAIN_IMAGE" that
appears on the summary page.

The /NOSTACK_DEPTH qualifier, the initial default, specifies that no stack
depth analysis be performed and causes the original PC to be used.

Using the Analyzer 3–27

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.8.4 Tallying Program Counter Values
The /CUMULATIVE qualifier determines whether all program counter values
on the call stack are tallied or if only one is tallied. The /CUMULATIVE
qualifier causes the Analyzer to tally all stack PC values. You can use the
/CUMULATIVE=n qualifier to request that only n return addresses down the
stack be tallied. Thereby, the Analyzer adds each data point in many buckets
of the histogram or table. The effect is that each bucket shows how much time
or other resource is consumed not only by the corresponding program unit but
also by all return addresses (or n return addresses if /CUMULATIVE=n that
call that unit directly or indirectly).

For example, if you plot program counter sampling data by routine for the
whole program, using the /CUMULATIVE qualifier, then each data point is
tallied in the buckets for the routine in which it was collected, for the caller of
that routine, for the caller of the caller, and so on (or for the number of calls
specified with /CUMULATIVE=n). All data points are tallied in the bucket for
the main routine because the main routine is always the ultimate caller; the
main routine contains 100% of the data points. The histogram bar for each
routine shows how much time is consumed in that routine and in all routines
it calls.

The /NOCUMULATIVE qualifier causes only the first program counter value to
be tallied; other stack PC values are not used.

3.3.8.5 Using Program Address Selection Qualifiers
If you use all the program address selection qualifiers together, they are
applied in the following order: /MAIN_IMAGE, /STACK_DEPTH, then
/CUMULATIVE. Therefore, if you specify the /MAIN_IMAGE=prog-unit and
/STACK_DEPTH=n qualifiers, the Analyzer searches the stack for the first
address within the specified program unit. However, it does not charge the
data point to this address, but to the address n call frames on the stack from
the main image address. If you include /CUMULATIVE on that command, the
same action occurs, but the Analyzer also charges the data point to every caller
(or n callers if /CUMULATIVE=n) below the address that was charged.

The following command causes the Analyzer to charge all the calls that Routine
1 made to the caller of Routine 1, and to every caller below it:

PCAA> TABULATE/MAIN=ROUTINE_1/STACK=1/CUM PROG BY ROUTINE

Note the acceptable abbreviated forms of /STACK_DEPTH, /MAIN_IMAGE,
and /CUMULATIVE that are used.

3–28 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.9 Filling and Scaling the Histogram
Design qualifiers let you determine the character fill to be used for the
histogram bar, to adjust the scale of the histogram, and to wrap plot output
that is too long. Each of these features is useful in controlling the appearance
of the plot. The design qualifiers are /FILL, /SCALE, /[NO]WRAP, /[NO]KEEP,
and /[NO]TREE. The /FILL and /SCALE qualifiers are described in the
following sections. See the HP DECset for OpenVMS Performance and
Coverage Analyzer Reference Manual for more information on them, as well
as complete descriptions for the /[NO]WRAP, /[NO]KEEP, and /[NO]TREE
qualifiers.

3.3.9.1 Defining the Character String for the Histogram Bar
Use the /FILL qualifier to define the character string that makes up the
histogram bar. This is useful when building a multiple data-kind plot.
/FILL=‘‘a’’, where ‘‘a’’ is a character string delimited by double or single
quotation marks, specifies a fill of character string ‘‘a’’ for the data kind in
the first position in the plot. /FILL=(‘‘a’’,‘‘b’’, . . .) specifies a fill of character
string ‘‘a’’ for the first data kind, a fill of character string ‘‘b’’ for the second
data kind, and so on. A series of character string specifications are enclosed
within parentheses. A maximum of eight character strings can be defined.
Note that blanks, spaces, and other nonprinting ASCII characters should not
be used in this string because it will be used as the fill in a plot. The standard
default fill for each of the eight positions is listed in the online PCA Command
Dictionary under the PLOT command.

3.3.9.2 Setting the Range for the Histogram Bar
By default, histogram scales are adjusted so that the longest bar occupies the
full width of the plot. This adjusted scale is convenient for viewing individual
histograms, but can make comparing histograms with each other difficult.
When comparing histograms, you can set the range of the histogram bar with
the /SCALE=n qualifier on the PLOT, TABULATE, and SET PLOT commands.
/SCALE=n selects a fixed scale, set to n percent, where n is an integer value
from 1 to 100. To restore the default scale, specify the /NOSCALE qualifier on
the PLOT, TABULATE, or SET PLOT command.

For example, assume that the longest bar shown in a histogram represents
40% of the total data points. The default scale will set the histogram range to
40%, causing that bar to occupy the full width of the histogram. To override the
default and to set the histogram range to 75%, enter the following command:

PCAA> PLOT/SCALE=75

This command will cause the longest bar to occupy about half of the histogram
width.

Using the Analyzer 3–29

Using the Analyzer
3.3 Generating Histograms and Tables

Fixed scaling can cause histogram bars to represent percentages that are larger
than the histogram range. In plots produced with /NOSOURCE, these bars
are truncated to equal the specified range, and the right-angle character (>)
appears in the rightmost position of the bar. In plots produced with /SOURCE,
the left-angle character (<) appears in the leftmost position of the truncated
bar.

The fixed scaling option can be useful when comparing multiple data kinds in
one histogram. In multiple data-kind plots, the scaling option used for the first
data kind also applies to subsequent data kinds included in the plot.

3.3.10 Performing Multi-tasking Analysis
You can gather tasking information with the SET TASKING Collector
command, and then in the Analyzer use task qualifiers to perform multi-
tasking analysis.

The /TASK_SWITCH qualifier selects a data kind that represents the number
of times there was a task context switch. It can be applied to the following
domains: TIME BY n MSECs, TASK, TASK_PRIORITY, and TASK_TYPE.
This qualifier will only work with the TIME, TASK, TASK_PRIORITY, and
TASK_TYPE filter specifications.

The /CREATOR_PC qualifier selects a program address that charges a data
point to the location in the program that created the task, rather than to
the PC value of the measurement. This qualifier can only be used when the
PROGRAM_ADDRESS domain is in effect, and when tasking data has been
collected. It overrides /MAIN_IMAGE, /STACK_DEPTH, and /CUMULATIVE.

The /PARENT_TASK qualifier charges a data point to the parent of the current
task, rather than to the current task. It can only be used when the TASK or
the TASK_TYPE domain is in effect, and when tasking data has been collected.

3–30 Using the Analyzer

Using the Analyzer
3.3 Generating Histograms and Tables

3.3.11 Interpreting TABULATE Confidence Intervals
When you use the TABULATE command to display either PC sampling data or
CPU sampling data, for each bucket you get a data count column, a percentage
column, and a 95% confidence interval column as shown in Example 3–9.

Example 3–9 Interpreting Confidence Intervals

PCAA> TABULATE/PC PROGRAM BY ROUTINE

Performance and Coverage Analyzer Page 1
Program Counter Sampling Data (386 data points total)

Data 95% Conf
Bucket Name Count Percent Interval
PROGRAM_ADDRESS\
PRIMES 3 0.8%
PRIME 239 61.9% +/- 4.8%
READ_RANGE 18 4.7% +/- 2.1%
READ_END_OF_FILE 0 0.0%
READ_ERROR 0 0.0%
OUTPUT_TO_DATAFILE 1 0.3%
SHARE$FORRTL 21 5.4% +/- 2.3%
SHARE$LIBRTL 10 2.6% +/- 1.6%
SHAREPCACOLLECTOR . . . 0 0.0%
SHARE$DBGSSISHR 0 0.0%
SHAREPCAPRVSHR 0 0.0%
SHARE$LBRSHR 0 0.0%
SHARE$SMGSHR 0 0.0%

PCAA>

The Analyzer computes the percentage of PC values that fall in each bucket
by dividing the data count on the same line by the total number of PC values
collected (the sample size) and multiplying by 100. This yields the percentage
of the total execution time consumed in the corresponding routine or other
program unit.

However, these measurements are random sampling processes. This means
that the number of PC values collected in a given routine may not be exactly
proportional to the amount of time consumed in that routine. Random
variations in the sampling process may cause more PC values to be collected
from one routine than from another, even if the two routines take exactly
the same amount of time. Unpredictable variations in system load, interrupt
processing, and disk access times are among the causes of random variation in
the PC sampling process.

Using the Analyzer 3–31

Using the Analyzer
3.3 Generating Histograms and Tables

Obtaining the true percentage of time spent in each routine (or whatever
program units you are tabulating) based on PC sampling data is impossible.
The computed percentage is only an estimate of the true percentage. However,
using this estimated percentage and the sample size, you can compute a
confidence interval for the true percentage. To help understand how close
the estimate is likely to be to the true percentage, the Analyzer computes a
95% confidence interval around the estimated percentage, assuming a normal
distribution.

The interpretation of the confidence interval is as follows. If the computed
percentage (the estimate) is 13.0% and the 95% confidence interval is expressed
as +/– 2.0%, then the confidence interval is 11% to 15%. This means you can
be 95% confident that the true percentage is in this range.

If the data count is within 3 of zero or within 3 of the total sample size,
no confidence interval is computed. For such small deviations from 0% or
from 100%, the formula used to compute the confidence interval may not
be statistically valid. Therefore, the confidence interval is left blank in the
TABULATE output.

3.4 Creating a Multiple Data-Kind Plot
You can compare more than one data kind in the same plot. For example, you
can plot PC sampling hits, page fault addresses, and I/O service calls in the
same histogram to determine if the PC sampling spikes are caused by page
faults or by I/O service calls.

3–32 Using the Analyzer

Using the Analyzer
3.4 Creating a Multiple Data-Kind Plot

You must build a multiple data-kind plot incrementally. Enter a PLOT or
TABULATE command containing the first data-kind qualifier. The first data-
kind qualifier remains permanent to the plot. Example 3–10 shows how to
start creating a multiple data-kind plot.

Example 3–10 Creating a Multiple Data-Kind Plot

PCAA> PLOT/PC_SAMPLING/FILL=("pc") PROGRAM BY ROUTINE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (11236 data points total) - "pc"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . |pc 40.2%
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . |pcpcpcpcpc 7.9%
BUCKETS\ |
BUCKETS |pc 1.4%
AVERAGES\ |
AVERAGES | 0.2%
CODLNS\ |
CODLNS | 0.2%
MATCHREC\ |
MATCHREC | 0.1%
MATCHST1\ |
MATCHST1 | 0.0%

|
|
|
+----+----+----+----+----+----+----+----+----+----+

Performance and Coverage Analyzer Page 1

Use the INCLUDE and EXCLUDE commands to add and delete different data
kinds to and from the plot. Example 3–11 demonstrates how to add several
data kinds to your plot. The heading lines indicate the data kinds, the total
number of data points for each data kind, and the fill for each data kind.
Each bucket in a multiple data-kind plot contains a line for each data kind in
the plot, and each line shows the percentage of the total data points for that
bucket. If you create a multiple data-kind plot with the TABULATE command,
the number of hits in each bucket is represented by a decimal integer instead
of a histogram bar.

Using the Analyzer 3–33

Using the Analyzer
3.4 Creating a Multiple Data-Kind Plot

Example 3–11 Adding Data Kinds to Plots

PCAA> INCLUDE/IO_SERVICES/MAIN_IMAGE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (138 data points total) - "pc"
I/O System Service Calls (108 data points total) - "io"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
PRIMES\ |
WRITELN |pc 87.7%

|io 94.4%
OPENIN |pc 4.3%

|i 1.9%
PUTINT |pc 2.9%

| 0.0%
LISTPRIMES |p 2.2%

| 0.0%
CLOSEIN | 0.7%

| 0.9%
OPENOUT | 0.7%

|i 1.9%
PRIME | 0.7%

| 0.0%
PUTSTR | 0.7%

| 0.0%
CLOSET | 0.0%

| 0.9%
READING | 0.0%

| 0.0%
READLN | 0.0%

| 0.0%
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | 0.0%

| 0.0%
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . | 0.0%

| 0.0%
+----+----+----+----+----+----+----+----+----+----+

PCAA> INCLUDE/PAGE_FAULTS/FILL="pf"

(continued on next page)

3–34 Using the Analyzer

Using the Analyzer
3.4 Creating a Multiple Data-Kind Plot

Example 3–11 (Cont.) Adding Data Kinds to Plots

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (11236 data points total) - "pc"
I/O System Service Calls (3581 data points total) - "io"

Page Fault Program-Counter Data (121 data points total) - "pf"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . |pc 40.2%

| 0.0%
| 0.0%

SYSTEM$SPACE\ |
SYSTEM$SPACE . . . |pcpcpcpcpc 7.9%

| 0.0%
|pfpfpfpfpfpfpfpfpfpfpfpfpf 19.8%

BUCKETS\ |
BUCKETS |pc 1.4%

|io 97.7%
|pf 38.0%
|
|
|
+----+----+----+----+----+----+----+----+----+----+

PCAA> INCLUDE/MAIN_IMAGE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (11236 data points total) - "pc"
I/O System Service Calls (3581 data points total) - "io"

Page Fault Program-Counter Data (121 data points total) - "pf"
Program Counter Sampling Data (11236 data points total) - "@"

(continued on next page)

Using the Analyzer 3–35

Using the Analyzer
3.4 Creating a Multiple Data-Kind Plot

Example 3–11 (Cont.) Adding Data Kinds to Plots

Bucket Name +----+----+----+----+----+----+----+----+----+----+
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . |pc 40.2%

| 0.0%
| 0.0%
| 0.0%

SYSTEM$SPACE\ |
SYSTEM$SPACE . . . |pcpcpcpcpc 7.9%

| 0.0%
|pfpfpfpfpfpfpfpfpfpfpfpfpf 19.8%
| 0.0%
|
|
|
|
+----+----+----+----+----+----+----+----+----+----+

The INCLUDE command uses a subset of PLOT qualifiers and parameters.
See the online PCA Command Dictionary for a listing of qualifiers and
parameters for the INCLUDE command. The default qualifiers are taken from
the currently active plot.

The use of INCLUDE command qualifiers does not affect the qualifiers of the
currently active plot. The INCLUDE command adds new data kinds to the
present plot with the following conditions:

• There is a maximum of eight data kinds per plot.

• The data kinds must be compatible with the node specifications for the
current plot.

• There is an active plot available.

A different filter or restriction can be applied to the data kind for every
INCLUDE command, by entering SET FILTER commands between the
INCLUDE commands. The current filters are applied to all data kinds when
the INCLUDE command is entered. The newly created plot will appear after
you enter the INCLUDE command.

Each EXCLUDE command eliminates one data kind from the plot, and is
immediately followed by the newly created plot. Example 3–12 demonstrates
the EXCLUDE command. This command deletes the last data kind included
and creates a new plot.

3–36 Using the Analyzer

Using the Analyzer
3.4 Creating a Multiple Data-Kind Plot

Example 3–12 Excluding Data Kinds from a Plot

PCAA> EXCLUDE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (11236 data points total) - "pc"
I/O System Service Calls (3581 data points total) - "io"

Page Fault Program-Counter Data (121 data points total) - "pf"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . |pc 40.2%

| 0.0%
| 0.0%

SYSTEM$SPACE\ |
SYSTEM$SPACE . . . |pcpcpcpcpc 7.9%

| 0.0%
|pfpfpfpfpfpfpfpfpfpfpfpfpf 19.8%

BUCKETS\ |
BUCKETS |pc 1.4%

|io 97.7%
|pf 38.0%
|
|
|
+----+----+----+----+----+----+----+----+----+----+

When you switch data files, any information that depends on the symbol table
in the current data file is lost. This information includes the currently active
plot, the current default node specifications, and any filters you may have set.

3.4.1 Merging PCA Performance and Software Performance Monitor
(SPM) Files

The Software Performance Monitor (SPM) is a collection of individually
executed utilities. SPM is run by entering DCL commands. To analyze data
contained in several files, you can use the Analyzer MERGE command. The
MERGE command allows you to:

• Merge data from one or more performance data files into another
performance data file, where all the files have been created in succession
for the same image. While this may sometimes be convenient, it is usually
simpler and more efficient to use the SET DATAFILE/APPEND command
in the Collector.

Using the Analyzer 3–37

Using the Analyzer
3.4 Creating a Multiple Data-Kind Plot

• Merge data from one or more SPM data files into a performance data file.
This is the only way to make SPM data available for analysis with PCA.
You must ensure that the merged SPM data pertains to the image for
which the output performance data file has been created. This is because
PCA cannot perform all the necessary checks for SPM data.

• Merge ANC information from an old performance data file to a newer
one that was created for the same program. Note that all coverage set
information (not just ANC information) is merged for each unchanged
routine. This preserves the proper context for the ANC information.

• Merge data from one or more performance data files into another
performance data file, where all the files have been created simultaneously
for the same image, and have been executed in a parallel processing
environment. Note that the MERGE operation preserves collection run
names. After all the data has been merged, you can use the original
collection run names to analyze any subset of the parallel collections.
Thereby, important insight can be gained into the performance of the
parallel processing itself, in addition to the performance of the image being
run.

Note that only input files are specified on the MERGE command. The output
file is implicit; it is the currently open performance data file. Therefore,
MERGE requires that a current performance data file be set. Enter the
following command to collect SPM’s PC sampling data.

$ PERFORMANCE[/INTERVAL=ticks] [/IDENTIFICATION=process-id]-
_$ COLLECT=SYSTEM_PC

PC values are then sampled at a specified interval. You can specify the interval
in the range of 1 to 100 ticks with the /INTERVAL qualifier, where each tick
equals 10 milliseconds. The resulting PC log file includes the PC values
for all processes on the system, unless you select a single process with the
/IDENTIFICATION qualifier. The MERGE command accepts SPM data only
from system-wide PC log files, hereafter referred to as SPM data files.

Data merged from SPM data files must have been gathered for the same image
as the image for the currently open performance data file. To prepare the
image for data collection with SPM and with the Collector, you may link the
image with the /DEBUG qualifier. Then, to collect data with SPM, run the
image with /NODEBUG.

3–38 Using the Analyzer

Using the Analyzer
3.5 Listing the Raw Performance Data

3.5 Listing the Raw Performance Data
To view the raw data gathered by the Collector, use the LIST command to
display a list of the raw performance data.

To input the raw performance data to a reduction program of your own:

1. Enter the FILE command.

2. Use the PRINT command to print the output.

The simplest form of the LIST command takes the ALL keyword as its
parameter and lists all performance and coverage data. For example:

PCAA> LIST ALL

To see data records of several different kinds, specify the corresponding
keywords in a comma list. For example:

PCAA> LIST SERVICES, IO_SERVICES, PAGE_FAULTS

To see a complete list of the LIST qualifiers, refer to the LIST command in the
Command Dictionary section of the HP DECset for OpenVMS Performance and
Coverage Analyzer Reference Manual.

Use the SHOW RUN_DESCRIPTION command to display a list of the kinds
of data gathered in the data file for each collection run. The SHOW RUN_
DESCRIPTION command shows an abbreviated version of what the SHOW
ALL command would have shown in the original Collector sessions. The
SHOW RUN_DESCRIPTION command takes one parameter that specifies
which collection run or range of collection runs you want described. For
example, to see what data you collected for runs 2 through 4, use the following
command:

PCAA> SHOW RUN_DESCRIPTION 2:4

Use the parameter /START_TIME with the LIST command to display system
service CPU start times in the LIST output. For example:

PCAA> LIST/START_TIME

The parameter default is NOSTART_TIME.

You can specify a run name as the parameter. If you use the SET RUN_
NAME EVENT1 command in the Collector, you can use the SHOW RUN_
DESCRIPTION EVENT1 in the Analyzer.

Using the Analyzer 3–39

Using the Analyzer
3.5 Listing the Raw Performance Data

Use asterisks (*) as wildcard characters. Each asterisk matches zero or
more characters in the run name. For example, to see descriptions of all the
collection runs in the data file, use the following command:

PCAA> SHOW RUN_DESCRIPTION *

Here the asterisk matches all possible run names.

3.6 Using Acceptable Noncoverage (ANC)
Most programs have portions of code that you would not expect to be tested; for
example, internal error paths, difficult-to-test paths, and so on. These portions
of code are considered acceptably noncovered, or ANC.

Once you have decided which portions of a program are acceptably noncovered,
you can save that information for the next test run.

If you have modified the program and you want to preserve the ANC
information from a previous version of the program, then you can use the
MERGE/ANC command to copy the ANC information from the old data file
to the new one. The information will only be copied for those routines in
the program that have not changed. PCA decides if a routine has changed
by looking at two sets of codepath information for each routine. One set is
from the current version of the program, and the other (saved) set is from a
previous version. If the codepath information has not changed, then the ANC
information is considered valid, and is merged. If the codepath information
has changed, then the ANC information is disregarded by MERGE/ANC for
the given routine. See the online PCA Command Dictionary for complete
information about the MERGE command.

There are two ways to specify ANC information. One is to generate a
noncoverage plot or tabulation, then use a traverse command (such as NEXT)
or the FIND command to pinpoint a particular noncovered point. Then, enter
the SET ANC command at the Analyzer prompt. The SET ANC command
declares all the noncovered points within the selected bucket’s address range
as acceptably noncovered. If you use the SET ANC command in this manner
when the FIND pointer is pointing to a routine bucket, then all the lines or
codepaths within the routine are flagged as ANC, whether they are covered
or not. You can continue traversing the plot in this manner until you have
reviewed all the noncovered points. Use the NEXT command to move the
pointer from one noncovered point to another.

3–40 Using the Analyzer

Using the Analyzer
3.6 Using Acceptable Noncoverage (ANC)

Another way to save ANC information is to provide a nodespec on a SET
ANC command. The following command will declare all noncovered lines for
routines R2 and R4 as acceptably noncovered:

PCAA> SET ANC ROUTINE R2 BY LINE, ROUTINE R4 BY LINE

The nodespec must specify one or more program address locations.

ANC information is stored in the coverage-set table section in the
performance data file. You can list the full contents of that table with the
LIST/COVERAGE_SET command. The SHOW ANC command displays the
current status of ANC information.

If you want to remove ANC information from the coverage-set table, use the
CANCEL ANC command. If you enter the CANCEL ANC command without a
nodespec, then it pertains to all the ANC points within the bucket pointed to
with a FIND or traverse arrow. You can provide a nodespec on this command
to specify which ANC points to remove. You can also use the CANCEL
ANC/ALL command to remove all the ANC information from the current data
file.

You can specify a filter restriction that will pass a data point only if it is an
ANC point, as in the following example:

PCAA> SET FILTER F1 PROGRAM_ADDRESS=%ANC

See the online PCA Command Dictionary for complete information on the SET
FILTER command.

Section 4.5 contains an example of the complete cycle of merging, setting, and
using ANC information.

3.7 Editing Source Code from Within the Analyzer
If you want to edit the source code displayed by the most recent PLOT or
TABULATE command, you can use the EDIT command to invoke an editor
directly from the Analyzer. The HP Language-Sensitive Editor (LSE) is
the default editor. To use the EDIT command, you must have an editor
installed on your system. For more information on LSE, see the Guide to HP
Language-Sensitive Editor for OpenVMS Systems.

The editor you select must be one you can access from DCL level. Use the
Analyzer SET EDITOR command to specify the editor you want to use. This
will cause subsequent EDIT commands to invoke the editor you chose.

The SET EDITOR command accepts the following qualifiers: /CALLABLE_
EDT, /CALLABLE_LSEDIT, /CALLABLE_TECO, and /CALLABLE_TPU.

Using the Analyzer 3–41

Using the Analyzer
3.7 Editing Source Code from Within the Analyzer

Enter the SHOW EDITOR command to display the current setting of the editor
and its command line. For example:

PCAA> SET EDITOR/CALLABLE_TPU
PCAA> SHOW EDITOR
The editor is CALLABLE_TPU having the command line:

"TPU"

You can specify a command line if you use the /CALLABLE_LSEDIT or the
/CALLABLE_TPU qualifiers, but not if you use the /CALLABLE_EDT or the
/CALLABLE_TECO qualifiers.

If you are positioned at a source listing produced by the /SOURCE qualifier on
a PLOT or TABULATE command, use the EDIT command without parameters
to invoke the editor, as follows:

PCAA> EDIT

This command spawns a subprocess to run the editor. The Analyzer
automatically positions the editor at the point in the source file displayed
by the PLOT or TABULATE command. When you exit from the editor, the
Analyzer session resumes.

If you use the /EXIT qualifier on the EDIT command, you terminate the
Analyzer session and invoke the editor in the same process.

If you want to position the editor at a different line or file than you get by
default, the EDIT command can take a module name and a line number as a
parameter. In this example, MODNAME is a module name and 25 is a line
number:

PCAA> EDIT MODNAME\25

If you omit the module name and backslash, the editor defaults to the module
referenced by the PLOT or TABULATE command currently in effect.

The following SET EDITOR command causes subsequent EDIT commands to
invoke callable LSEDIT with the default command line of LSEDIT/READ_
ONLY:

PCAA> SET EDITOR/CALLABLE_LSEDIT/START_POS "LSED/READ_ONLY"

Also, the /START_POSITION qualifier will be appended to the command line,
causing the editing session to start on the source line that the Analyzer is
currently pointing to. Note the abbreviated form of /START_POSITION. Also
note that the command line is enclosed in quotation marks.

3–42 Using the Analyzer

Using the Analyzer
3.8 Using Initialization Files and Command Procedures

3.8 Using Initialization Files and Command Procedures
The Analyzer initialization file is automatically read and executed at the
start of each session. It is useful for defining frequently used keypad keys or
command abbreviations, establishing mode settings, such as screen mode or
SET PLOT defaults, or setting up a SET SOURCE command.

Define the Analyzer initialization file by defining the logical name PCAA$INIT
to be the file specification for the initialization file. The following DCL
command defines ANL_STARTUP.PCAA as the Analyzer initialization file:

$ DEFINE PCAA$INIT ANL_STARTUP.PCAA

After reading the initialization file, the Analyzer solicits additional command
input from the terminal until you enter the EXIT command.

To make command entry more efficient, you can place often-used commands
into a command procedure. For example, you can use command procedures
for lengthy but frequently used filter specifications.

Analyzer command procedures are similar to Collector command procedures
discussed in Section 2.8.

3.8.1 Using Analyzer Logical Names
The Analyzer checks for several logical names that can be defined before
invocation. The logical names can specify the Analyzer initialization file, the
Analyzer input stream, the Analyzer output stream, or the line printer page
size. The Analyzer recognizes the following logical names:

• PCAA$INIT

• PCAA$INPUT

• PCAA$OUTPUT

• SYS$LP_LINES

• SYS$PRINT

• PCAA$DECW$DISPLAY

Table B–5 describes the logical names the Analyzer accepts.

Using the Analyzer 3–43

4
Productivity Enhancements with PCA

The examples in this chapter demonstrate how to use PCA to solve common
problems and improve the performance of your applications. Section 4.7 shows
how to use the Analyzer in screen mode.

The examples in this chapter include the following:

• Section 4.1 demonstrates how to find where most of the time is being
spent in a typical application, then applies a change that improves that
program’s performance.

• Section 4.2 demonstrates the analysis of call stack data.

• Section 4.3 demonstrates how a multiple data-kind plot can isolate the
reason a program statement takes the most time.

• Section 4.4 demonstrates the use of event markers for selective analysis.

• Section 4.5 demonstrates the collection and analysis of coverage data, and
shows how you can determine acceptable noncoverage.

• Section 4.6 demonstrates the measurement of Ada tasks.

Some of the programs used in this chapter are compiled with the
/NOOPTIMIZE qualifier because they are so simple the compiler would
otherwise optimize away the effect that the examples are intended to show.

4.1 Example 1: Reducing Execution Time
This example demonstrates a simple method of finding out where most of the
time is being spent in a typical application.

PCA is used on a FORTRAN program that counts the prime numbers within
a given range. The Collector gathers PC sampling data. Then the Analyzer is
invoked specifying the performance data file PCA$PRIMES. When you enter
the NEXT command, the Analyzer creates a source plot, pointing to the most
significant line.

Productivity Enhancements with PCA 4–1

Productivity Enhancements with PCA
4.1 Example 1: Reducing Execution Time

To compile, link, and run the program, enter the following commands:

$ FOR/NOOPTIMIZE/DEBUG PCA$PRIMES.FOR
$ LINK/DEBUG PCA$PRIMES
$ DEFINE LIB$DEBUG PCA$COLLECTOR.EXE
$ RUN PCA$PRIMES

PCA Collector Version 5.0

PCAC> GO

%PCA-I-DEFDATFIL, set datafile required in this context, creating ’[]PCA$PRIMES
.PCA’
%PCA-I-BEGINCOL, data collection begins
%PCA-I-DATADEFPC, defaulting to collecting PC sampling data
169 prime numbers generated between 1 and 1000
FORTRAN STOP
%PCA-I-ENDCOL, data collection ends

$ PCA PCA$PRIMES

Performance and Coverage Analyzer Version 5.0

PCAA> NEXT

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (93 data points total) - "*"

Routine PRIME\PRIME

Percent Count Line
PRIME\PRIME\
0.0% 5: LOGICAL FUNCTION PRIME(NUMBER)
0.0% 6: PRIME = .TRUE.
0.0% 7: DO 10 I = 2, NUMBER/2
33.3% ******* -> 8: IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THE

-: N
0.0% 9: PRIME = .FALSE.
0.0% 10: RETURN

11: ENDIF
2.2% 12: 10 CONTINUE
0.0% 13: RETURN

The resulting source plot shows that 33.3% of the time is spent at line 8. This
is expected, because this is where the calculation that determines the prime is
done. To reduce the time spent at line 8, you must either make the calculation
more efficient or reduce the number of times the calculation is done. At this
point, confirm that the time being spent is caused by CPU consumption.

4–2 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.1 Example 1: Reducing Execution Time

Gathering and Analyzing CPU Sampling Data
Use the /APPEND and /EXECUTABLE qualifiers on the SET DATAFILE
command to gather and analyze the CPU sampling data. The /APPEND
qualifier adds the CPU sampling data to the file already created for the PC
sampling data, and the /EXECUTABLE qualifier uses the default data file
specification. For example:

$ RUN PCA$PRIMES

PCA Collector Version V5.0

PCAC> SET DATAFILE/APPEND/EXE
PCAC> SET CPU_SAMPLING

%PCA-I-PCDISTORT, PC sampling data may be distorted by collection of other data
%PCA-I-CPUDISTOR, CPU sampling data may be distorted by collection of other data
PCAC> GO
%PCA-I-BEGINCOL, data collection begins
169 prime numbers generated between 1 and 1000
FORTRAN STOP
%PCA-I-ENDCOL, data collection ends

$

Analyze the CPU sampling data. You can use this sequence of collection and
analysis with any data kind. The buckets in the resulting plot are partitioned
by routine (by default). For example:

$ PCA PCA$PRIMES

Performance and Coverage Analyzer Version V5.0

PCAA> PLOT/CPU

Performance and Coverage Analyzer Page 1

CPU Sampling Data (114 data points total) - "*"

Productivity Enhancements with PCA 4–3

Productivity Enhancements with PCA
4.1 Example 1: Reducing Execution Time

Bucket Name +----+----+----+----+----+----+----+----+----+----+
PRIME\ |
PRIME |** 62.3%
OUTPUT_TO_DATAFILE\ |
OUTPUT_TO_DATAFILE |*************** 19.3%
READ_RANGE\ |
READ_RANGE |******** 10.5%
PCA$PRIMES\ |
PCA$PRIMES |****** 7.9%
READ_END_OF_FILE\ |
READ_END_OF_FILE . | 0.0%
READ_ERROR\ |
READ_ERROR | 0.0%
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | 0.0%
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . | 0.0%

|
|
+----+----+----+----+----+----+----+----+----+----+

Now you can use Ctrl/N (defined as NEXT) to find the most significant line, as
in the following example:

PCAA> CTRL/N

Performance and Coverage Analyzer Page 1

CPU Sampling Data (114 data points total) - "*"

Routine PRIME\PRIME

Percent Count Line
PRIME\PRIME\
0.0% 5: LOGICAL FUNCTION PRIME(NUMBER)
0.0% 6: PRIME = .TRUE.
0.0% 7: DO 10 I = 2, NUMBER/2
58.8% ******* -> 8: IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THE

-: N
0.0% 9: PRIME = .FALSE.
0.0% 10: RETURN

11: ENDIF
3.5% 12: 10 CONTINUE
0.0% 13: RETURN

This confirms that CPU consumption, caused by a CPU-intensive instruction,
is the problem.

4–4 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.1 Example 1: Reducing Execution Time

Editing and Modifying the Program
Now you can use the EDIT command to invoke an editor (see Section 3.7) to
modify the program:

PCAA> EDIT

In this example, the program is modified by making the loop in the subroutine
PRIME go from two to the square root of the number, instead of the number
divided by two. Compile, link, and run the program again, gather the data,
and look at the most significant line:

$ FOR/NOOPT/DEBUG PCA$PRIMES.FOR
$ LINK/DEBUG PCA$PRIMES
$ DEFINE LIB$DEBUG PCA$COLLECTOR.EXE
$ RUN PCA$PRIMES

PCA Collector Version V5.0

PCAC> GO
%PCA-I-DEFDATFIL, set datafile required in this context, creating ’[]PCA$PRIMES.PCA’
%PCA-I-BEGINCOL, data collection begins
%PCA-I-DATADEFPC, defaulting to collecting PC sampling data
1000 prime numbers generated between 1 and 1000
FORTRAN STOP
%PCA-I-ENDCOL, data collection ends

$ PCA PCA$PRIMES

Performance and Coverage Analyzer Version V5.0

PCAA> CTRL/N

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (90 data points total) - "*"

Productivity Enhancements with PCA 4–5

Productivity Enhancements with PCA
4.1 Example 1: Reducing Execution Time

Percent Count Line
PRIME\

1: C Function to identify whether the number in
2: C the given range is prime number or not. If
3: C so, returned function value is TRUE.
4: C

3.3% * 5: LOGICAL FUNCTION PRIME(NUMBER)
6: C
7: REAL*8 R

0.0% 8: PRIME = .TRUE.
0.0% 9: R = NUMBER
4.4% * 10: DO 10 I = 2, (SQRT(R))

11: C
46.7% ******** 12: IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THEN
1.1% 13: PRIME = .FALSE.
0.0% 14: RETURN

15: ENDIF
16: C

6.7% * 17: 10 END DO
18: C

0.0% 19: RETURN
20: END

The percentage of time spent at the calculation is smaller now, but some of the
other percentages are larger. The modification has reduced the relative time
spent at one line, causing the same amount of time at another line to be a
larger portion of the total time.

Relative measures do not always confirm that performance has been improved.
Actual timing of the execution is used to confirm that a program performs
better (particularly if the changes are extensive). Sometimes, changes only
move a ‘‘bottleneck’’ to another place in the program.

4.2 Example 2: Analyzing Call Stack Data
In this example, the Collector gathers PC sampling data and I/O services data
on the Pascal program PCA$8QUEENS. Both data kinds are gathered with call
stack return addresses. Then, the data is analyzed to find out what portions
of the program are causing the I/O calls. This example runs optimized code so
you can go directly to the real ‘‘hot spots’’, avoiding sections of code that can be
optimized by the compiler.

Compile, link, and run program PCA$8QUEENS and collect PC sampling
data and I/O services data. Two separate runs are necessary because I/O
data-gathering can distort the PC sampling data. The two runs must have
the same input because they are going to be compared with each other. For
example:

4–6 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.2 Example 2: Analyzing Call Stack Data

$ PASCAL/DEBUG PCA$8QUEENS.PAS
$ LINK/DEBUG PCA$8QUEENS
$ DEFINE LIB$DEBUG PCA$COLLECTOR.EXE
$ RUN PCA$8QUEENS

PCA Collector Version V5.0

PCAC> SET PC_SAMPLING/STACK_PCS
PCAC> GO
%PCA-I-DEFDATFIL, set datafile required in this context, creating ’[]PCA$
PCA$8QUEENS.PCA’
%PCA-I-BEGINCOL, data collection begins
%PCA-I-ENDCOL, data collection ends

$ RUN PCA$8QUEENS

PCA Collector Version V5.0

PCAC> SET IO_SERVICES/STACK_PCS
PCAC> GO
%PCA-I-DEFDATFIL, set datafile required in this context, creating ’[]PCA$
PCA$8QUEENS.PCA’
%PCA-I-BEGINCOL, data collection begins
%PCA-I-ENDCOL, data collection ends

$

The /STACK_PCS qualifier, although used in this example, is the default
setting for both kinds of data being gathered.

The following plot shows that most of the PC sampling hits occur within the
system space, and that most I/O service calls are made within the Pascal
Run-Time Library (RTL):

$ PCA PCA$8QUEENS.PCA;1

Performance and Coverage Analyzer Version V5.0

PCAA> MERGE PCA$8QUEENS
PCAA> PLOT/PC_SAMPLING/NOMAIN_IMAGE PROGRAM_ADDRESS BY MODULE
PCAA> INCLUDE/IO_SERVICES

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (35 data points total) - "*"
I/O System Service Calls (97 data points total) - "O"

Productivity Enhancements with PCA 4–7

Productivity Enhancements with PCA
4.2 Example 2: Analyzing Call Stack Data

Bucket Name +----+----+----+----+----+----+----+----+----+----+
PROGRAM_ADDRESS\ |
SYSTEM$SPACE . . . |** 42.9%

| 0.0%
PCA$8QUEENS . . . |*** 40.0%

| 0.0%
SHARE$PASRTL . . . |***************** 14.3%

|OO 100.0%
SHARE$LIBRTL . . . |*** 2.9%

| 0.0%
+----+----+----+----+----+----+----+----+----+----+

It is interesting to see which portions of the program caused these effects.
Instead of charging the data points to where the measurements were made,
use the /MAIN_IMAGE qualifier to charge the data points to the first address
on the stack within the program’s main image. For example:

PCAA> PLOT/PC_SAMPLING/MAIN_IMAGE PROGRAM_ADDRESS BY ROUTINE
PCAA> INCLUDE/IO_SERVICES

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (35 data points total) - "*"
I/O System Service Calls (97 data points total) - "O"

Bucket Name +----+----+----+----+----+----+----+----+
EIGHTQUEENS\EIGHTQUEENS\
TRYCOL |** 93.8%

|OO 99.0%
EIGHTQUEENS\EIGHTQUEENS\TRYCOL\
SETQUEEN |* 3.3%

| 0.0%
REMOVEQUEEN . . . |* 2.8%

| 0.0%
EIGHTQUEENS\ |
EIGHTQUEENS . . . | 0.0%

| 1.0%
EIGHTQUEENS\EIGHTQUEENS\
PRINT | 0.0%

+----+----+----+----+----+----+----+----+

Most of the time is spent doing I/O in routine TRYCOL. To check the
performance of this routine alone, use routine TRYCOL as the main image.
Now all data points resulting from calls made by routine TRYCOL are charged
to the address within routine TRYCOL that made the call.

4–8 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.2 Example 2: Analyzing Call Stack Data

For example:

PCAA> PLOT/PC_SAMPLING/MAIN_IMAGE=TRYCOL ROUTINE TRYCOL BY LINE
PCAA> INCLUDE/IO_SERVICES

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (35 data points total) - "*"
I/O System Service Calls (97 data points total) - "O"

Percent Count Line
PCA$8QUEENS\PCA$8QUEENS\TRYCOL\

21: end ; (* print *)
22:
23:

0.0% 24: procedure trycol(j : integer) ;
0.0%

25:
26: var
27: i : integer ;
28:
29:
30: procedure setqueen ;
31:
32: begin (* setqueen *)
33: a[i] := false ;
34: b[i + j] := false ;
35: c[i - j] := false ;
36: end ; (* setqueen *)
37:
38:
39: procedure removequeen ;
40:
41: begin (* removequeen *)
42: a[i] := true ;
43: b[i + j] := true ;
44: c[i - j] := true ;
45: end ; (* removequeen *)
46:
47:
48: begin (* trycol *)

0.0% 49: i := 0 ;
0.0%
0.0% 50: repeat
0.0%
0.0% 51: i := i + 1 ;
0.0%
2.4% 52: safe := a[i] and b[i + j] and c[i - j] ;
0.0%
1.2% 53: if safe then
0.0%

54: begin
1.2% 55: setqueen ;

Productivity Enhancements with PCA 4–9

Productivity Enhancements with PCA
4.2 Example 2: Analyzing Call Stack Data

0.0%
0.0% 56: x[j] := i ;
0.0%
0.0% 57: if j < 8 then
0.0%
0.0% 58: trycol(j + 1)
0.0%

59: else
95.2% ******** 60: print ;
99.0% OOOOOOOO
0.0% 61: removequeen ;
0.0%

62: end ;
63: until i = 8 ;

0.0% 64: end ; (* trycol *)
0.0%

Now you can see that most of the consumed time is a result of the call to the
PRINT routine (line 60). Comparatively little time was spent as a result of
the calls to the routines SETQUEEN and REMOVEQUEEN. Now look at the
entire call chain to analyze each level of recursion. The following example
tabulates the IO_SERVICES data kind against the domain of call chains. See
Section 3.3.7 for complete information about call tree node specifications.

PCAA> TABULATE/IO_SERVICES CALL_TREE BY CHAIN_ROUTINE

Performance and Coverage Analyzer Page 1

I/O System Service Calls (97 data points total) - "*"
Percent Count Call Chain Name
1.0% 1 Chain : EIGHTQUEENS
0.0% 0 Chain : . TRYCOL
0.0% 0 Chain : . . TRYCOL
0.0% 0 Chain : . . . TRYCOL
0.0% 0 Chain : TRYCOL
0.0% 0 Chain : TRYCOL
0.0% 0 Chain : TRYCOL
0.0% 0 Chain : TRYCOL
99.0% 96 Chain : TRYCOL

You can see that one I/O service call was made within the main routine of
PCA$8QUEENS and 96 I/O service calls were made at the eighth level of the
TRYCOL recursion.

4–10 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.2 Example 2: Analyzing Call Stack Data

Sorting Call Chains
To see which level of recursion took the most time, sort the call chains in
descending order, specifying the /CHAIN_NAME qualifier on the PLOT
command. The /WRAP qualifier wraps the chain name identifier onto the
next line instead of being truncated. For example:

PCAA> PLOT/DESCENDING/WRAP/CHAIN_NAME/PC_SAMPLING CALL_TREE BY CHAIN_ROUTINE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (35 data points total) - "*"

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (35 data points total) - "*"

Percent Count Call Chain Name
60.0% ******** Chain : PCA$8QUEENS, TRYCOL, TRYCOL, TRYCOL, TRYCOL, TRYCOL,

-: TRYCOL, TRYCOL, TRYCOL
11.4% ** Chain : PCA$8QUEENS, TRYCOL, TRYCOL, TRYCOL, TRYCOL, TRYCOL
8.6% * Chain : PCA$8QUEENS, TRYCOL, TRYCOL, TRYCOL, TRYCOL, TRYCOL,

-: TRYCOL
5.7% * Chain : PCA$8QUEENS, TRYCOL, TRYCOL, TRYCOL, TRYCOL, TRYCOL,

-: TRYCOL, TRYCOL
5.7% * Chain : PCA$8QUEENS, TRYCOL, TRYCOL, TRYCOL, TRYCOL
2.9% Chain : PCA$8QUEENS, TRYCOL, TRYCOL, TRYCOL, TRYCOL, TRYCOL,

-: SETQUEEN
2.9% Chain : PCA$8QUEENS, TRYCOL, TRYCOL, TRYCOL
2.9% Chain : PCA$8QUEENS, TRYCOL, TRYCOL, TRYCOL, TRYCOL, SETQUEEN

The resulting plot shows that most of the time is spent at the eighth level
of recursion, although the fourth, fifth, and seventh levels do not appear
significantly different.

Filtering by Call Chain
You can now filter by call chain. Although you can combine the
/CUMULATIVE[=n], /MAIN_IMAGE[=program_address], and
/STACK_DEPTH=n qualifiers to perform call chain analysis, most queries
can be more simply expressed with the CHAIN_NAME filter specification.
See Section 3.3.2.1 for complete information about the CHAIN_NAME filter
specification. For example:

PCAA> SET FILTER F1 CHAIN_NAME=(PCA$8QUEENS,*,SETQUEEN)
PCAA> PLOT/PC_SAMPLING ROUTINE SETQUEEN BY LINE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (2 data points total) - "*"

Productivity Enhancements with PCA 4–11

Productivity Enhancements with PCA
4.2 Example 2: Analyzing Call Stack Data

Percent Count Line
PCA$8QUEENS\PCA$8QUEENS\TRYCOL\SETQUEEN\
0.0% 30: procedure setqueen ;

31:
32: begin (* setqueen *)

0.0% 33: a[i] := false ;
100.0% ******** 34: b[i + j] := false ;
0.0% 35: c[i - j] := false ;
0.0% 36: end ; (* setqueen *)

This example plots only those points where routine EIGHTQUEENS is on the
bottom of the stack and routine SETQUEEN is on the top of the stack, with
any set of routines in between these two.

4.3 Example 3: Using Multiple Data Kinds
This example demonstrates a method of isolating the most time-consuming
statement of a program. First, find out which lines of a program take the most
time to complete, then compare multiple data kinds in one plot to find out
exactly what is causing the time to be spent.

This example uses an expansion of the program used in Section 4.1. It has
more extensive I/O. It inputs the numbers to be used instead of using a loop,
sorts the primes it finds, and outputs the primes to a text file.

You can begin by compiling, linking, and running the program PCA$PRIMES_
1.FOR, and by gathering PC sampling data. The /EXECUTABLE qualifier on
the SET DATAFILE command causes the Collector to use the default data file
specification, as in the following example:

$ FOR/NOOPT/DEBUG PCA$PRIMES_1.FOR
$ LINK/DEBUG PCA$PRIMES_1
$ DEFINE LIB$DEBUG PCA$COLLECTOR.EXE
$ RUN PCA$PRIMES_1

PCA Collector Version V5.0

PCAC> SET DATAFILE/EXECUTABLE
PCAC> SET PC_SAMPLING
PCAC> GO
%PCA-I-BEGINCOL, data collection begins
%PCA-I-ENDCOL, data collection ends
$
$ PCA PCA$PRIMES_1

Performance and Coverage Analyzer Version V5.0

4–12 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

Finding the Routine that Takes the Most Time
Enter the following command to find out which routine is taking the most time.
The /MAIN_IMAGE qualifier charges any time spent in RTL routines back to
the main image. The resulting plot shows that most of the time is spent in the
sorting routine:

PCAA> PLOT/PC_SAMPLING/MAIN_IMAGE PROGRAM BY ROUTINE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (1019612 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
SORT_PRIMES\ |
SORT_PRIMES . . . |** 83.7%
INPUT_DATA\ |
INPUT_DATA |******* 11.9%
OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . |** 3.1%
PRIME\ |
PRIME |* 1.0%
PCA$PRIMES_1\ |
PCA$PRIMES_1 . . . | 0.2%
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | 0.0%
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . | 0.0%

|
+----+----+----+----+----+----+----+----+----+----+

Examine the plot to see how the time is divided among the lines of the sorting
routine. Entering the NEXT command is equivalent to entering the following:

PCAA> PLOT/SOURCE/MAIN_IMAGE ROUTINE SORT_PRIMES BY LINE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (1019612 data points total) - "*"

Percent Count Line
SORT_PRIMES\SORT_PRIMES\
0.0% 11: SUBROUTINE SORT_PRIMES(IARRAY, M, N, IPARRAY, O)

.

.

.

Productivity Enhancements with PCA 4–13

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

34: C Loop writing the elements to the indexed file
35: C

0.0% 36: WRITE(UNIT = 10) 0, 0
0.0% 37: DO I = 1, M
0.0% 38: DO J = 1, N

39: C
0.0% 40: IF (IARRAY (I,J) .NE. 0) THEN
56.7% ******** 41: WRITE (UNIT = 10) 250000-IARRAY(I, J)

42: ENDIF
43: C

0.0% 44: END DO
0.0% 45: END DO

46: C
47: C Read the elements back
48: C

0.0% 49: READ(UNIT = 10, KEY = 0, KEYID = 1) I, J
0.0% 50: DO I = 1, O

51: C
27.0% **** 52: READ(UNIT = 10, END = 3000) T, IPAR>

53: C
0.0% 54: END DO

55: C
0.0% 56: 3000 CLOSE(UNIT=10)
0.0% 57: L = I

58: C
0.0% 59: RETURN

You can see that all of the time is spent at the two I/O statements in the
sorting routine. The next step is to gather I/O data and create a table to see
the raw data counts, as follows:

$ RUN PCA$PRIMES_1

PCA Collector Version V5.0

PCAC> SET DATAFILE/EXECUTABLE/APPEND
PCAC> SET IO_SERVICES
PCAC> GO
%PCA-I-BEGINCOL, data collection begins
%PCA-I-ENDCOL, data collection ends
$ PCA PCA$PRIMES_1

Performance and Coverage Analyzer Version V5.0

PCAA> TABULATE/IO_SERVICES ROUTINE SORT_PRIMES BY LINE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (1019612 data points total) - "*"
I/O System Service Calls (316152 data points total) - "O"

4–14 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

Percent Count Line
SORT_PRIMES\SORT_PRIMES\

33: C
34: C Loop writing the elements to the indexed file
35: C

0.0% 115 36: WRITE(UNIT = 10) 0, 0
0.0% 0 37: DO I = 1, M
0.0% 0 38: DO J = 1, N

39: C
0.0% 483 40: IF (IARRAY (I,J) .NE. 0) THEN
7.0% 22045 41: WRITE (UNIT = 10) 250000-IARRAY(I, J)

42: ENDIF
43: C

0.0% 83 44: END DO
0.0% 0 45: END DO

46: C
47: C Read the elements back
48: C

0.0% 7 49: READ(UNIT = 10, KEY = 0, KEYID = 1) I, J
0.0% 0 50: DO I = 1, O

51: C
7.0% 22046 52: READ(UNIT = 10, END = 3000) T, IPA>

53: C
0.0% 8 54: END DO

55: C
0.0% 25 56: 3000 CLOSE(UNIT=10)
0.0% 0 57: L = I

58: C
0.0% 0 59: RETURN

These are surprising results because one might expect to see a lot of time spent
in the I/O statements shown here. However, most of the I/O is done elsewhere
in the program. The following command plots the I/O services data in all the
routines:

PCAA> PLOT/MAIN_IMAGE/IO_SERVICES/FILL="io" PROGRAM BY ROUTINE

Performance and Coverage Analyzer Page 1

I/O System Service Calls (316152 data points total) - "io"

Productivity Enhancements with PCA 4–15

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

Bucket Name +----+----+----+----+----+----+----+----+----+----+
INPUT_DATA\ |
INPUT_DATA |io 79.1%
SORT_PRIMES\ |
SORT_PRIMES . . . |ioioioioi 13.9%
OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . |ioio 7.0%
PCA$PRIMES_1\ |
PCA$PRIMES_1 . . . | 0.0%
PRIME\ |
PRIME | 0.0%
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | 0.0%
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . | 0.0%

|
+----+----+----+----+----+----+----+----+----+----+

The resulting plot shows that most of the I/O service calls are in the input
module.

Correlating I/O Service Calls with PC Sampling
At this point, examine the correlation between I/O service calls and PC
sampling data. The INCLUDE command allows you to build a multiple data-
kind plot, bringing in one new data kind at a time. The default qualifiers are
taken from the currently active plot. For example:

PCAA> INCLUDE/PC_SAMPLING/FILL="pc"

Performance and Coverage Analyzer Page 1

I/O System Service Calls (316152 data points total) - "io"
Program Counter Sampling Data (1019612 data points total) - "pc"

4–16 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

Bucket Name +----+----+----+----+----+----+----+----+----+----+
INPUT_DATA\ |
INPUT_DATA |io 79.1%

|pcpcpcp 11.9%
SORT_PRIMES\ |
SORT_PRIMES . . . |ioioioioi 13.9%

|pc 83.7%
OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . |ioio 7.0%

|pc 3.1%
PCA$PRIMES_1\ |
PCA$PRIMES_1 . . . | 0.0%

| 0.2%
PRIME\ |
PRIME | 0.0%

|p 1.0%
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | 0.0%

| 0.0%
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . | 0.0%

| 0.0%
+----+----+----+----+----+----+----+----+----+----+

The resulting plot shows no significant relationship between I/O service calls
and PC sampling.

Correlating I/O Service Calls with Physical I/O
Try the physical I/O counts next, and see the comparison:

PCAA> INCLUDE/PHYSICAL_IO/FILL="phys_io"

Performance and Coverage Analyzer Page 1

I/O System Service Calls (316152 data points total) - "io"
Program Counter Sampling Data (1019612 data points total) - "pc"

Total Physical I/O Counts (206391 data points total) - "phys_io"

Productivity Enhancements with PCA 4–17

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

Bucket Name +----+----+----+----+----+----+----+----+----+----+
INPUT_DATA\ |
INPUT_DATA |io 79.1%

|pcpcpcp 11.9%
|p 0.1%

SORT_PRIMES\ |
SORT_PRIMES . . . |ioioioioi 13.9%

|pc 83.7%
|phys_iophys_iophys_iophys_iophys_iophys_iophys_iop 99.8%

OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . |ioio 7.0%

|pc 3.1%
| 0.0%

PCA$PRIMES_1\ |
PCA$PRIMES_1 . . . | 0.0%

| 0.2%
| 0.0%

PRIME\ |
PRIME | 0.0%

|p 1.0%
| 0.0%

SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | 0.0%

| 0.0%
| 0.0%

SYSTEM$SPACE\ |
SYSTEM$SPACE . . . | 0.0%

| 0.0%
| 0.0%
|
+----+----+----+----+----+----+----+----+----+----+

This is a good correlation. Most of the time is being spent doing physical I/O
in the sorting routine. Check now to see if most of the time being spent in the
sorting routine is in the READ or the WRITE statement.

PCAA> INCLUDE/READ_COUNT/FILL=("rd","wrt")

Performance and Coverage Analyzer Page 1

I/O System Service Calls (316152 data points total) - "io"
Program Counter Sampling Data (1019612 data points total) - "pc"

Total Physical I/O Counts (206391 data points total) - "phys_io"
Total Physical Read Counts (155125 data points total) - "rd"

4–18 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

Bucket Name +----+----+----+----+----+----+----+----+----+----+
INPUT_DATA\ |
INPUT_DATA |io 79.1%

|pcpcpcp 11.9%
|p 0.1%
| 0.2%

SORT_PRIMES\ |
SORT_PRIMES . . . |ioioioioi 13.9%

|pc 83.7%
|phys_iophys_iophys_iophys_iophys_iophys_iophys_iop 99.8%
|rd 99.8%

OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . |ioio 7.0%

|pc 3.1%
| 0.0%
| 0.0%

PCA$PRIMES_1\ |
PCA$PRIMES_1 . . . | 0.0%

| 0.2%
| 0.0%
| 0.0%

PRIME\ |
PRIME | 0.0%

|p 1.0%
+----+----+----+----+----+----+----+----+----+----+

PCAA> INCLUDE/WRITE_COUNT

Performance and Coverage Analyzer Page 1

I/O System Service Calls (316152 data points total) - "io"
Program Counter Sampling Data (1019612 data points total) - "pc"

Total Physical I/O Counts (206391 data points total) - "phys_io"
Total Physical Read Counts (155125 data points total) - "rd"
Total Physical Write Counts (51266 data points total) - "wrt"

Productivity Enhancements with PCA 4–19

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

Bucket Name +----+----+----+----+----+----+----+----+----+----+
INPUT_DATA\ |
INPUT_DATA |io 79.1%

|pcpcpcp 11.9%
|p 0.1%
| 0.2%
| 0.0%

SORT_PRIMES\ |
SORT_PRIMES . . . |ioioioioi 13.9%

|pc 83.7%
|phys_iophys_iophys_iophys_iophys_iophys_iophys_iop 99.8%
|rd 99.8%
|wrtwrtwrtwrtwrtwrtwrtwrtwrtwrtwrtwrtwrtwrtwrtwrtwr 99.9%

OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . |ioio 7.0%

|pc 3.1%
| 0.0%
+----+----+----+----+----+----+----+----+----+----+

The multiple data-kind plot shows that the time is being spent doing physical
reads and writes. Examine the relationship of these data kinds in the source
display. This example uses a TABULATE command, so you can see the raw
data counts.

The following series of commands builds a multiple data-kind table that allows
you to examine the relationship of the data kinds by their data counts:

PCAA> TABULATE/MAIN_IMAGE ROUTINE SORT_PRIMES BY LINE
PCAA> INCLUDE/IO_SERVICES
PCAA> INCLUDE/PHYSICAL_IO
PCAA> INCLUDE/READ_COUNT
PCAA> INCLUDE/WRITE_COUNT

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (1019612 data points total) - "*"
I/O System Service Calls (316152 data points total) - "O"
Total Physical I/O Counts (206391 data points total) - "x"
Total Physical Read Counts (155125 data points total) - "@"
Total Physical Write Counts (51266 data points total) - ":"

Percent Count Line
35: C
.
.
.

4–20 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.3 Example 3: Using Multiple Data Kinds

56.7% 577999 41: WRITE (UNIT = 10) 250000-IARRAY(I, J), IARRAY (I, J)
7.0% 22045
78.3% 161681
71.2% 110476
99.9% 51205

.

.

.

27.0% 274885 52: READ(UNIT = 10, END = 3000) T, IPARRAY(I)
7.0% 22046
21.5% 44326
28.6% 44326
0.0% 0

53: C

4.4 Example 4: Using Event Markers for Selective Analysis
This example demonstrates the use of event markers. The Analyzer filters the
data so that only the data set off with the event markers is used. This example
uses the same program as the one used in Section 4.3.

If you want to see the program’s performance independent of the I/O wait time,
place the data gathered during the I/O statements in the event marker IO, and
the rest of the program in the event marker NO_IO. Data gathered between
two event markers is associated with the event name given to the first of the
two markers.

The I/O statements you want to eliminate from analysis are as follows:

• Line 34 in module INPUT_DATA (a READ statement)

• Lines 41 and 52 in module SORT_PRIMES (the WRITE and the READ
statements)

• Line 28 in module OUTPUT_PRIMES (an IF THEN statement)

The event markers are not placed on the lines themselves or on the lines
immediately after the I/O statement. This prevents PCA from gathering
two event markers for every iteration of the loop (a relatively ‘‘expensive’’
operation).

Productivity Enhancements with PCA 4–21

Productivity Enhancements with PCA
4.4 Example 4: Using Event Markers for Selective Analysis

If there were significant calculations in the loop, you would set the event
marker on the line itself and on the one immediately after. Use the TYPE
command to find the exact line numbers. For example:

$ FOR/NOOPTIMIZE/DEBUG PCA$PRIMES_1.FOR
$ LINK/DEBUG PCA$PRIMES_1
$ DEFINE LIB$DEBUG PCA$COLLECTOR.EXE
$ RUN PCA$PRIMES_1

PCA Collector Version V5.0

PCAC> SET DATAFILE/EXECUTABLE/APPEND
PCAC> TYPE INPUT_DATA 30:47

module INPUT_DATA\
30: C
31: DO I = 1, M
32: DO J = 1, N
33: C
34: READ(UNIT = 10,
35: 1 FMT = *,
36: 1 IOSTAT = IOS,
37: 1 END = 1000
38: 1)
39: 1 IARRAY(I, J)
40: C
41: END DO
42: END DO
43: C
44: 1000 CLOSE(UNIT = 10)
45: C
46: RETURN
47: END

4–22 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.4 Example 4: Using Event Markers for Selective Analysis

PCAC> SET EVENT IO LINE INPUT_DATA\INPUT_DATA\%LINE 31
PCAC> SET EVENT NO_IO LINE INPUT_DATA\INPUT_DATA\%LINE 44
PCAC> TYPE SORT_PRIMES\35:60

module SORT_PRIMES\
35: C
36: WRITE(UNIT = 10) 0, 0
37: DO I = 1, M
38: DO J = 1, N
39: C
40: IF (IARRAY (I,J) .NE. 0) THEN
41: WRITE (UNIT = 10) 250000-IARRAY(I, J), IARRAY (I, J)
42: ENDIF
43: C
44: END DO
45: END DO
46: C
47: C Read the elements back
48: C
49: READ(UNIT = 10, KEY = 0, KEYID = 1) I, J
50: DO I = 1, O
51: C
52: READ(UNIT = 10, END = 3000) T, IPARRAY(I)
53: C
54: END DO
55: C
56: 3000 CLOSE(UNIT=10)
57: L = I
58: C
59: RETURN
60: END

PCAC> SET EVENT IO LINE SORT_PRIMES\SORT_PRIMES\%LINE 36
PCAC> SET EVENT NO_IO LINE SORT_PRIMES\SORT_PRIMES\%LINE 56
PCAC> TYPE OUTPUT_PRIMES\20:39

module OUTPUT_PRIMES\
20: C
21: IF (IOS .NE. 0) THEN
22: WRITE (6,*) ’ Error opening listing file, Status = ’,IOS
23: STOP
24: ENDIF
25: C
26: DO I = 1, O
27: C
28: IF (IPARRAY(I) .NE. 0) THEN
29: WRITE(10, 2000) IPARRAY(I)
30: END IF
31: C
32: END DO
33: C
34: 2000 FORMAT(I6)

Productivity Enhancements with PCA 4–23

Productivity Enhancements with PCA
4.4 Example 4: Using Event Markers for Selective Analysis

35: C
36: 3000 CLOSE(UNIT=1)
37: C
38: RETURN
39: END

PCAC> SET EVENT IO LINE OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 26
PCAC> SET EVENT NO_IO LINE OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 36
PCAC> SET PC
PCAC> GO
%PCA-I-BEGINCOL, data collection begins
%PCA-I-ENDCOL, data collection ends

Use the SET FILTER command to include only the data in the NO_IO event:

$ PCA PCA$PRIMES_1

Performance and Coverage Analyzer Version V5.0

PCAA> SET FILTER FOO TIME=NO_IO
PCAA> PLOT/MAIN_IMAGE

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (16995 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
PCA$PRIMES_1\ |
PCA$PRIMES_1 . . . |** 68.8%
PRIME\ |
PRIME |********************** 30.5%
SORT_PRIMES\ |
SORT_PRIMES . . . | 0.5%
OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . | 0.2%
INPUT_DATA\ |
INPUT_DATA | 0.1%
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | 0.0%
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . | 0.0%

+----+----+----+----+----+----+----+----+----+----+

PCAA> NEXT

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (16995 data points total) - "*"

Routine PCA$PRIMES_1\PCA$PRIMES_1

4–24 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.4 Example 4: Using Event Markers for Selective Analysis

Percent Count Line
PCA$PRIMES_1\PCA$PRIMES_1\

23: C
24: C Input the data
25: C

0.0% 26: CALL INPUT_DATA(ARRAY, ARRAY_LENGTH, ARRAY_WIDTH)
27: C
28: C
29: C Loop to calculate the primes
30: C

0.0% 31: DO I = 1, ARRAY_LENGTH
0.0% 32: DO J = 1, ARRAY_WIDTH
63.8% ******* -> 33: R = ARRAY(I,J)
3.6% 34: IF (PRIME(R) .NE. .TRUE.) THEN
0.1% 35: ARRAY(I,J) = 0

36: END IF
37:

0.3% 38: END DO
0.0% 39: END DO

The results show that this program spends a lot of time at an assignment
statement. A simple assignment like the one in this example does not take
significantly longer than the immediately following test. At this point, gather
page fault data. The event setting commands are the same as before, but are
shown without their output:

$ FOR/NOOPTIMIZE/DEBUG PCA$PRIMES_1.FOR
$ LINK/DEBUG PCA$PRIMES_1
$ DEFINE LIB$DEBUG PCA$COLLECTOR.EXE
$ RUN PCA$PRIMES_1

PCA Collector Version V5.0

PCAC> SET DATAFILE/EXECUTABLE/APPEND
PCAC> TYPE INPUT_DATA 20:40
PCAC> SET EVENT IO INPUT_DATA\INPUT_DATA\%LINE 31
PCAC> SET EVENT NO_IO INPUT_DATA\INPUT_DATA\%LINE 44
PCAC> TYPE SORT_PRIMES 35:55
PCAC> SET EVENT IO SORT_PRIMES\SORT_PRIMES\%LINE 36
PCAC> SET EVENT NO_IO SORT_PRIMES\SORT_PRIMES\%LINE 56
PCAC> TYPE OUTPUT_PRIMES 20:40
PCAC> SET EVENT IO OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 26
PCAC> SET EVENT NO_IO OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 36
PCAC> SET PAGE_FAULTS
PCAC> GO
%PCA-I-BEGINCOL, data collection begins
%PCA-I-ENDCOL, data collection ends

Productivity Enhancements with PCA 4–25

Productivity Enhancements with PCA
4.4 Example 4: Using Event Markers for Selective Analysis

Now, plot the page fault data:

$ PCA PCA$PRIMES_1

Performance and Coverage Analyzer Version V5.0

PCAA> SET FILTER FOO TIME=NO_IO
PCAA> PLOT/PAGE_FAULT

Performance and Coverage Analyzer Page 1

Page Fault Program-Counter Data (266378 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
PCA$PRIMES_1\ |
PCA$PRIMES_1 . . . |** 94.4%
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . |* 1.6%
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | 0.1%
PRIME\ |
PRIME | 0.0%
SORT_PRIMES\ |
SORT_PRIMES . . . | 0.0%
OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . | 0.0%
INPUT_DATA\ |
INPUT_DATA | 0.0%

+----+----+----+----+----+----+----+----+----+----+

PCAA> NEXT

Performance and Coverage Analyzer Page 1

Page Fault Program-Counter Data (266378 data points total) - "*"

Routine PCA$PRIMES_1\PCA$PRIMES_1

4–26 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.4 Example 4: Using Event Markers for Selective Analysis

Percent Count Line
PCA$PRIMES_1\PCA$PRIMES_1\

23: C
24: C Input the data
25: C

0.0% 26: CALL INPUT_DATA(ARRAY, ARRAY_LENGTH, ARRAY_WIDTH)
27: C
28: C
29: C Loop to calculate the primes
30: C

0.0% 31: DO I = 1, ARRAY_LENGTH
0.0% 32: DO J = 1, ARRAY_WIDTH
94.3% ******* -> 33: R = ARRAY(I,J)
0.0% 34: IF (PRIME(R) .NE. .TRUE.) THEN
0.0% 35: ARRAY(I,J) = 0

36: END IF
37:

0.0% 38: END DO
0.0% 39: END DO

Because FORTRAN walks arrays in column-major order and because there is
a large number of page faults in processing this array, you might try changing
the order of the array walking to reduce the page faults.

4.5 Determining Acceptable Noncoverage (ANC)
Coverage data is collected and analyzed to determine whether tests should
be written to cover certain parts of the code, or whether they are acceptably
noncovered. For complete information on the collection of coverage data, see
Section 2.4.3. For information on the analysis of that data, see Section 3.6.

This example uses the PRIMES_1.FOR program used in Section 4.4.

Enter the following commands to collect coverage data at the starting address
of each codepath in the program PRIMES_1.FOR. The collection points
comprise the coverage-set. Specify the /ANC qualifier to store codepath
information for each module containing coverage points in the performance
data file. This does not declare coverage-set points as acceptably noncovered.
For example:

$ RUN PRIMES_1

PCA Collector Version V5.0

Productivity Enhancements with PCA 4–27

Productivity Enhancements with PCA
4.5 Determining Acceptable Noncoverage (ANC)

PCAC> SET COVERAGE/ANC PROGRAM_ADDRESS BY CODEPATH
%PCA-I-DEFDATFIL, set datafile required in this context, creating ’[]PCA$PRIMES_1.PCA’
PCAC> GO
%PCA-I-BEGINCOL, data collection begins
FORTRAN STOP
%PCA-I-ENDCOL, data collection ends
$

Enter the following commands to begin the analysis of the coverage data
collected. To examine the lines of code that are not covered, the example
traverses a /NONCOVERAGE plot. Buckets that do not contain coverage-set
points have a hyphen (-) in the percentage column of the plot.

$ PCA PRIMES_1

Performance and Coverage Analyzer Version 5.0

PCAA> PLOT/NONCOVERAGE

Performance and Coverage Analyzer Page 1

Test Noncoverage Data (71 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
SORT_PRIMES\ |
SORT_PRIMES . . . |*** 40.8%
INPUT_DATA\ |
INPUT_DATA |************************ 18.3%
OUTPUT_PRIMES\ |
OUTPUT_PRIMES . . |********************** 16.9%
PCA$PRIMES\ |
PCA$PRIMES |******************** 15.5%
PRIME\ |
PRIME |********* 8.5%
SYSTEM$SERVICE\ |
SYSTEM$SERVICE . . | -
SYSTEM$SPACE\ |
SYSTEM$SPACE . . . | -

|
|
|
+----+----+----+----+----+----+----+----+----+----+

The resulting plot shows that all the buckets (except those for the pseudo-
routines SYSTEM$SERVICE and SYSTEM$SPACE) are covered. The following
example is a series of traversals of the individual buckets of the previous plot.
The routines are traversed in their natural order.

4–28 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.5 Determining Acceptable Noncoverage (ANC)

PCAA> NEXT

Routine PRIME\PRIME
cannot be expanded into a subtree

No noncovered points found

The first plot showed that routine PRIME had some data hits and therefore
was covered as a whole. This plot shows that all of its codepaths are covered.
Continue to traverse:

PCAA> NEXT
.
.
.

PCAA> NEXT

Performance and Coverage Analyzer Page 1

Test Noncoverage Data (71 data points total) - "*"

Routine OUTPUT_PRIMES\OUTPUT_PRIMES

Percent Count Line
OUTPUT_PRIMES\OUTPUT_PRIMES\
1.4% 8: SUBROUTINE OUTPUT_PRIMES(IPARRAY, O)

9: C
10: INTEGER*4 IOS, O, I

- 11: DIMENSION IPARRAY(O)
12: C

1.4% 13: OPEN(UNIT=10,
14: 1 FILE=’PCA$PRIMES.LIS’,
15: 1 STATUS=’NEW’,
16: 1 IOSTAT = IOS
17: 1)
18: C
19: C Error if it cannot be found
20: C

1.4% 21: IF (IOS .NE. 0) THEN
0.0% ******** -> 22: WRITE (6,*) ’ Error opening listing file,>

The traverse arrow points to a line of code that executes only when an
unexpected error condition occurs. Therefore, it is reasonable to declare this
line as acceptably noncovered (ANC) with the SET ANC command:

PCAA> SET ANC

PCAA> NEXT
.
.
.

Productivity Enhancements with PCA 4–29

Productivity Enhancements with PCA
4.5 Determining Acceptable Noncoverage (ANC)

Assume that while traversing further, you have also entered the SET ANC
command when the traverse arrow was pointing to line 23 in the OUTPUT_
PRIMES routine, and to lines 25 and 26 in the INPUT_DATA routine.

The SHOW ANC command can be used at any time to list all the currently set
acceptably noncovered points:

PCAA> SHOW ANC

Number of ANC points = 10
000014E6 ------- INPUT_DATA\INPUT_DATA\%LINE 25
000014EF ------- INPUT_DATA\INPUT_DATA\%LINE 25 + 9
000014FA ------- INPUT_DATA\INPUT_DATA\%LINE 25 + 14
00001503 ------- INPUT_DATA\INPUT_DATA\%LINE 25 + 1D
0000150A ------- INPUT_DATA\INPUT_DATA\%LINE 26
0000172D ------- OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 22
00001736 ------- OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 22 + 9
00001740 ------- OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 22 + 13
00001749 ------- OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 22 + 1C
00001750 ------- OUTPUT_PRIMES\OUTPUT_PRIMES\%LINE 23

As a result of the four SET ANC commands entered, all the noncovered
coverage set points within the four lines of code have been set as acceptably
noncovered. Several codepaths can correspond to a single line of source code.

For more information on the SET ANC and SHOW ANC commands, as well
as on other related commands such as CANCEL ANC and LIST/COVERAGE_
SET, refer to Section 3.6.

Now assume that you have decided to modify program PRIMES_1.FOR by
changing lines 29 and 34 in routine OUTPUT_PRIMES from the following:

.

.

.
WRITE(10, 2000) I, IPARRAY(I)
.
.
.

2000 FORMAT(I,I6)
.
.
.

4–30 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.5 Determining Acceptable Noncoverage (ANC)

To the following:

.

.

.
WRITE(10, 2000) IPARRAY(I)
.
.
.

2000 FORMAT(I6)
.
.
.

You performed coverage analysis of the original version of the program, and
set certain points as ANC. You now want to reuse this information, where
applicable, for the new version of the program. This way, you do not have to
repeat the analysis of those parts of the program that are unchanged.

Rename the previously used performance data file from PRIMES_1.PCA
to PRIMES_1.OLD. This file contains the ANC information you set for the
original version of the program. Now assume you have collected coverage
data for the new version of the program, and have stored that data in a new
PRIMES_1.PCA performance data file. You are now ready to analyze the new
data:

$ PCA PRIMES_1

Performance and Coverage Analyzer Version 5.0

PCAA> SHOW ANC
No ANC points set

The new file does not yet contain any ANC information. Use the MERGE/ANC
command to bring any previously set ANC information that is still valid into
the new file:

PCAA> MERGE/ANC PRIMES_1.OLD
Merging file DISK$:[USER.EXAMPLES]PCA$PRIMES_1.OLD;1

PCAA> SHOW ANC

Number of ANC points = 5
000014E6 ------- INPUT_DATA\INPUT_DATA\%LINE 25
000014EF ------- INPUT_DATA\INPUT_DATA\%LINE 25 + 9
000014FA ------- INPUT_DATA\INPUT_DATA\%LINE 25 + 14
00001503 ------- INPUT_DATA\INPUT_DATA\%LINE 25 + 1D
0000150A ------- INPUT_DATA\INPUT_DATA\%LINE 26

Productivity Enhancements with PCA 4–31

Productivity Enhancements with PCA
4.5 Determining Acceptable Noncoverage (ANC)

As a result of the modification to routine OUTPUT_PRIMES, all the ANC
information pertaining to that routine has been invalidated. However, the
remaining ANC information has been merged from PRIMES_1.OLD into
PRIMES_1.PCA. Analyze the OUTPUT_PRIMES routine again:

PCAA> PLOT/ANC ROUTINE OUTPUT_PRIMES BY LINE

Performance and Coverage Analyzer Page 1

Test Noncoverage/ANC Data (70 data points total) - "*"

Percent Count Line
OUTPUT_PRIMES\OUTPUT_PRIMES\
1.4% 8: SUBROUTINE OUTPUT_PRIMES(IPARRAY, O)

9: C
10: INTEGER*4 IOS, O, I

- 11: DIMENSION IPARRAY(O)
12: C

1.4% 13: OPEN(UNIT=10,
14: 1 FILE=’PCA$PRIMES.LIS’,
15: 1 STATUS=’NEW’,
16: 1 IOSTAT = IOS
17: 1)
18: C
19: C Error if it cannot be found
20: C

1.4% 21: IF (IOS .NE. 0) THEN
0.0% ******** 22: WRITE (6,*) ’ Error opening listing file,

status= ’, IOS
0.0% ******** 23: STOP

24: ENDIF

You still want the two noncovered lines to be declared as acceptably
noncovered:

PCAA> SET ANC ROUTINE OUTPUT_PRIMES BY LINE

PCAA> PLOT/ANC ROUTINE OUTPUT_PRIMES BY LINE

Performance and Coverage Analyzer Page 1

Test Noncoverage/ANC Data (70 data points total) - "*"

4–32 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.5 Determining Acceptable Noncoverage (ANC)

Percent Count Line
OUTPUT_PRIMES\OUTPUT_PRIMES\
1.4% 8: SUBROUTINE OUTPUT_PRIMES(IPARRAY, O)

9: C
10: INTEGER*4 IOS, O, I

- 11: DIMENSION IPARRAY(O)
12: C

1.4% 13: OPEN(UNIT=10,
14: 1 FILE=’PCA$PRIMES.LIS’,
15: 1 STATUS=’NEW’,
16: 1 IOSTAT = IOS
17: 1)
18: C
19: C Error if it cannot be found
20: C

1.4% 21: IF (IOS .NE. 0) THEN
ANC ******** 22: WRITE (6,*) ’ Error opening listing file,

status= ’, IOS
ANC ******** 23: STOP

24: ENDIF

The resulting plot shows that both lines are again set as ANC.

The above example shows two sequences of operations:

1. An initial analysis performed for a new program. Because no ANC
information exists initially, you analyze the whole program and use the
SET ANC command to set any acceptably noncovered points.

2. A cycle performed after each modification of an existing program. The
MERGE/ANC command is used to validate any previously set ANC points.
You then repeat analysis only for routines that have been modified.

Interpreting the Test Noncoverage Data Summary Page
This section explains some of the test noncoverage data appearing in the
summary page.

Performance and Coverage Analyzer

Test Non-Coverage Data (44 data points total) - "*"

PCA Version 5.0 29-APR-2006 09:43:51

PLOT Command Summary Information:
Number of buckets tallied: 59

Test Non-Coverage Data - "*"
Number of covered buckets: 44 74.6%
Number of acceptably not covered buckets: 0 0.0% !
Number of remaining not covered buckets: 15 25.4% "
Number of buckets with no coverage data: 0 0.0% #

Productivity Enhancements with PCA 4–33

Productivity Enhancements with PCA
4.5 Determining Acceptable Noncoverage (ANC)

Data count in largest defined bucket: 1 2.3%
Data count in all defined buckets: 44 100.0%
Data count not in defined buckets: 0 0.0%
Portion of above count in P0 space: 0 0.0%
Number of PC values in P1 space: 0 0.0%
Number of PC values in system space: 0 0.0%

Total number of data values collected: 44 100.0%

Command qualifiers and parameters used:
Qualifiers:
/NONCOVERAGE /NOSORT /NOMINIMUM /NOMAXIMUM
/NOCUMULATIVE /SOURCE /ZEROS /NOSCALE /NOCREATOR_PC
/NOPATHNAME /NOCHAIN_NAME /WRAP /NOPARENT_TASK /NOKEEP /NOTREE
/FILL=("*","O","x","@",":","#","/","+")
/NOSTACK_DEPTH /NOMAIN_IMAGE

Node specifications:
PROGRAM_ADDRESS BY 1 CODEPATHS

No filters are defined

! Number of acceptably not covered buckets. This line tells you the number
of places in your application you have specified as acceptably noncovered
(ANC). See Section 3.6 for more information on ANC.

" Number of remaining not covered buckets. This line tells you the number of
places in your application that were not covered by tests.

Number of buckets with no coverage data. This line tells you the number
of places in your application on which PCA could not collect coverage data;
for example, a protected section in your application where PCA could not
insert a breakpoint.

4.6 Example 6: Measuring Ada Tasking Data
This example demonstrates the measurement of Ada tasks. Data is reduced
interactively to determine the performance of the Ada tasking program. See
Section 2.4.8 for complete information about the collection of tasking data.

The following commands compile, link, and run the Ada program DISCCHAR:

$ ACS SET LIB DISK$:[USER.ADA]
$ ADA/DEBUG DISCCHAR.ADA
$ ACS LINK/DEBUG DISCCHAR
$ DEFINE LIB$DEBUG PCA$COLLECTOR.EXE
$ RUN DISCCHAR.EXE

PCA Collector Version V5.0

PCAC>

4–34 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.6 Example 6: Measuring Ada Tasking Data

For this example, you need to collect tasking information and PC sampling
data. Enter the following commands:

PCAC> SET PC_SAMPLING
PCAC> SET TASKING
PCAC> GO
%PCA-I-DEFDATFIL, set datafile required in this context,

creating ’[]DISCCHAR.PCA’
%PCA-I-BEGINCOL, data collection begins
%PCA-I-ENDCOL, data collection ends

$

At this point, the following tasking data has been collected and can be
analyzed:

• Task identifiers for all tasks

• Task types for all tasks

• The parent task for all tasks

• The program counter for the location of the creation of the task

• All context switches

• The priority of the task upon the context switch

• The relative time of the context switch

Invoke the Analyzer and specify the DISCCHAR data file:

$ PCA DISCCHAR

Performance and Coverage Analyzer Version V5.0

PCAA>

You may want to see when the program is doing the most context switching.
If this program represents a paging system, this would be the point where
‘‘thrashing’’ occurs. For example:

PCAA> PLOT/TASK_SWITCH/NOSORT TIME BY 30 MSECS

Performance and Coverage Analyzer Page 1

Total Task Context Switches (72 data points total) - "*"

Productivity Enhancements with PCA 4–35

Productivity Enhancements with PCA
4.6 Example 6: Measuring Ada Tasking Data

Bucket Name +----+----+----+----+----+----+----+
TIME\ |

0 - 29 . . .|** 1.4%
30 - 59 . . .|************************** 15.3%
60 - 89 . . .|**************************** 16.7%
90 - 119 . . .|*********************************** 20.8%
120 - 149 . . .|********************************* 19.4%
150 - 179 . . .|********************************* 19.4%
180 - 200 . . .|************ 6.9%

|
+----+----+----+----+----+----+----+

The resulting plot shows a peak between 90 and 179 milliseconds. To see
which tasks are doing the context switching during that period of time, create
a filter for a new plot:

PCAA> SET FILTER F1 TIME=90:179
PCAA> PLOT/TASK_SWITCH TASK_TYPE BY TASK_TYPE_NAME

Performance and Coverage Analyzer Page 1

Total Task Context Switches (43 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+
TASK_TYPE\ |
MAIN$TASK |** 34.9%
DISPOSABLESEMAPHORE|******************************** 27.9%
DH |******************* 16.3%
SCHEDULER |**************** 14.0%
SPACEMANAGER . . . |******** 7.0%
ADA$START_UP . . . | 0.0%

|
|
+----+----+----+----+----+----+----+----+

The resulting plot shows that the tasks DISPOSABLESEMAPHORE and
MAIN$TASK are doing the most context switching. There are several instances
of the task type DISPOSABLESEMAPHORE. Therefore, you may want to look
at only those task switches caused by DISPOSABLESEMAPHORE. To do this,
you have to AND two filters together. Enter the following set of commands to
create this plot. FILTER F1 specifies a period of time; FILTER F2 specifies a
task type.

PCAA> SET FILTER F1 TIME=90:179
PCAA> SET FILTER F2 TASK_TYPE=DISPOSABLESEMAPHORE
PCAA> TABULATE/NOZERO/TASK_SWITCH TASK by TASK_IDENTIFIER

Performance and Coverage Analyzer Page 1

Total Task Context Switches (12 data points total) - "*"

4–36 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.6 Example 6: Measuring Ada Tasking Data

Data
Bucket Name Count Percent
TASK\
Run 1\%Task 6 4 33.3%
Run 1\%Task 7 4 33.3%
Run 1\%Task 8 4 33.3%

The resulting table shows that each instance of the task has four context
switches. Analyzing the code, you can see that the context switches occurred at
creation, rendezvous point P, rendezvous point V, and once more before exiting.

At this point, you want to analyze which task used the most time. Before you
do this, cancel the filters:

PCAA> CANCEL FILTER/ALL
PCAA> PLOT/PC_SAMPLING TASK_TYPE BY TASK_TYPE_NAME

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (36 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+
TASK_TYPE\ |
ADA$START_UP . . . |** 58.3%
DH |***************** 25.0%
SCHEDULER |****** 8.3%
MAIN$TASK |**** 5.6%
SPACEMANAGER . . . |** 2.8%
DISPOSABLESEMAPHORE| 0.0%

|
|
+----+----+----+----+----+----+----+----+

This plot shows that most of the time is spent in the startup phase of the
program.

The following commands filter out the startup data and create a new plot:

PCAA> SET FILTER F1 TASK_TYPE<>ADA$START_UP
PCAA> PLOT/PC_SAMPLING TASK_TYPE BY TASK_TYPE_NAME

Performance and Coverage Analyzer Page 1

Program Counter Sampling Data (15 data points total) - "*"

Productivity Enhancements with PCA 4–37

Productivity Enhancements with PCA
4.6 Example 6: Measuring Ada Tasking Data

Bucket Name +----+----+----+----+----+----+----+----+
TASK_TYPE\ |
DH |** 60.0%
SCHEDULER |************* 20.0%
MAIN$TASK |********* 13.3%
SPACEMANAGER . . . |**** 6.7%
ADA$START_UP . . . | 0.0%
DISPOSABLESEMAPHORE| 0.0%

|
+----+----+----+----+----+----+----+----+

You can see now that ADA$START_UP has 0%, and the other task types have
increased their share of the time.

Because priorities may change during the execution of a program, you may
want to check the range and frequency of the values associated with one task
by entering the following commands. Note that FILTER F1 specifies only those
data points that are associated with %TASK 2:

PCAA> SET FILTER F1 TASK_IDENTIFIER = %TASK 2
PCAA> TABULATE/TASK_SWITCH/NOSORT TASK_PRIORITY BY PRIORITY_UNIT

Performance and Coverage Analyzer Page 1

Total Task Context Switches (8 data points total) - "*"

Data
Bucket Name Count Percent
TASK_PRIORITY\

0 0 0.0%
1 0 0.0%
2 0 0.0%
3 0 0.0%
4 0 0.0%
5 6 75.0%
6 0 0.0%
7 2 25.0%
8 0 0.0%
9 0 0.0%
10 0 0.0%
11 0 0.0%
12 0 0.0%
13 0 0.0%
14 0 0.0%
15 0 0.0%

In the previous example, you may first want to know what type of task %TASK
2 is, then which task created %TASK 2 and what other tasks were created by
%TASK 2. The following command requests the Analyzer to look only at the
data for %TASK 2:

PCAA> SET FILTER F1 TASK_IDENTIFIER = %TASK 2

4–38 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.6 Example 6: Measuring Ada Tasking Data

The following command plots this data against the TASK_TYPE domain:

PCAA> PLOT/TASK_SWITCH/NOSORT TASK_TYPE BY TASK_TYPE_NAME

The following command includes more data within the plot; however, all of the
data is charged to the parent task instead of the task itself.

PCAA> INCLUDE/PARENT

Performance and Coverage Analyzer Page 1

Total Task Context Switches (8 data points total) - "*"
Total Task Context Switches (8 data points total) - "O"

Bucket Name +----+----+----+----+----+----+----+----+
TASK_TYPE\ |
SPACEMANAGER . . . |** 100.0%

| 0.0%
| 0.0%

ADA$START_UP . . . | 0.0%
| 0.0%
| 0.0%

DH | 0.0%
| 0.0%
| 0.0%

DISPOSABLESEMAPHORE| 0.0%
| 0.0%
| 0.0%

MAIN$TASK | 0.0%
|OO 87.5%
| 0.0%

SCHEDULER | 0.0%
| 0.0%
| 0.0%
+----+----+----+----+----+----+----+----+

The resulting plot shows that %TASK 2 was type SPACEMANAGER. Its
parent was MAIN$TASK and it had no children.

4.7 Using PCA in Screen Mode
You can display Analyzer output in either nonscreen mode (the default) or
screen mode. Screen mode output is best displayed on any terminal that
supports DECterms. VT52 class terminals are not well suited for screen mode
because they do not support scrolling regions.

With screen mode, you can divide the terminal screen into sections or windows
and display different kinds of data in each window. For example, you can
display PLOT or TABULATE output at the top of the screen, LIST, SHOW, or
SEARCH command output in the middle, and TYPE command output at the

Productivity Enhancements with PCA 4–39

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

bottom. You can scroll through the output in each window with the SCROLL
command.

To run PCA in screen mode, enter the SET MODE SCREEN command. If
you plan to use screen mode frequently, you may want to add the SET MODE
SCREEN command to your Analyzer initialization file. To return to line-by-line
output, enter the command SET MODE NOSCREEN.

To see the names, windows, and types of all current displays, use the SHOW
DISPLAY command. To cancel a display that you have previously defined with
the SET DISPLAY command, use the CANCEL DISPLAY command.

You cannot make a display reappear once you have canceled it. Any displays
that may have been hidden under the canceled display then become visible.

4.7.1 Concepts and Terms
The terms display, window, screen, and pasteboard, used throughout this
chapter, have the following meanings:

Display A collection of text lines, consisting of the output from Analyzer
commands, such as PLOT, TABULATE, SHOW, or LIST. Each display
is associated with a screen window through which you view the
display’s text.

Window A rectangular region on the terminal screen through which you view
a display. Its size is defined by a starting line number and by the
number of text lines that you want to view through that window. You
can use the SCROLL command to move a window over display text.
You can view a whole display by using this command with its various
qualifiers.

Screen The terminal screen. On a terminal of VT100-class or higher, the
screen consists of 24 lines by 80 or 132 columns of text. The screen
can also consist of up to 100 lines by 255 columns, depending on the
terminal model and the terminal height and width settings.

Pasteboard Similar to a drawing board on the terminal screen to which windows
are attached. Each window is pasted onto the pasteboard in the order
that it is referenced, and each display is placed in the window with
which it is associated. The most recently referenced display is pasted
last onto the pasteboard. Also, as you create more displays, the later
displays that you have created may overlay part or all of your earlier
displays. What you see on the screen is the final appearance of the
pasteboard.

4–40 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

4.7.2 Defining Windows
When you want to specify a window for a command (such as the DISPLAY
command), you can use either a predefined PCA window name or the name of a
window you have defined yourself. PCA provides a large number of predefined
window names. To show the current PCA-defined windows and any windows
you have defined, enter the SHOW WINDOW command.

Although these predefined windows should be adequate for almost any
situation, you can create your own window definitions with the SET WINDOW
command, described in the online PCA Command Dictionary.

To delete a window definition, use the CANCEL WINDOW command. This
command can be used to permanently remove any PCA-defined window
definitions, as well as any of your own window definitions.

4.7.3 Screen Displays
PCA automatically defines the OUT, PLOT, SRC, and PROMPT screen
displays. Note that the PLOT display is not defined in the Collector. You can
create your own screen displays by referring to either their regular names or
special pseudo-display names described in Section 4.7.3.3.

4.7.3.1 Default Displays
PCA defines the following displays for output by default:

OUT Shows output generated by the PCA commands you enter. By default, this
display holds the most current 100 lines of output, but you can change this
number. You can scroll through this output text using either the SCROLL
command or the scrolling keys on the keypad.

PLOT Shows output generated by the Analyzer from the most recent PLOT or
TABULATE command. You can scroll through this output text using either
the SCROLL command or the scrolling keys on the keypad.

SRC Shows output generated by the most recent TYPE command. You can scroll
through this output text using either the SCROLL command or the scrolling
keys on the keypad.

PROMPT Shows PCA’s input. By default, it also displays PCA’s error messages. This
display cannot be scrolled.

Productivity Enhancements with PCA 4–41

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

4.7.3.2 User-Defined Displays
You can define your own screen displays with the SET DISPLAY command.
The SET DISPLAY command defines the name, window location, and contents
of a display. The name appears in the top left corner of the screen window and
serves as a tag on the window itself and as a name for future reference in other
commands.

If you want to use the name of an existing display, you must cancel the existing
display before you can define the new display.

The following command generates a PLOT display, names it PLOT2, and places
it in the lower half of the screen:

PCAA> SET DISPLAY PLOT2 AT H2 PLOT

If you omit the display-kind parameter on the SET DISPLAY command, an
output screen display is created.

Other PCA output can be directed to any of these displays with the SELECT
command.

4.7.3.3 Pseudo-Display Names
Each screen display has a unique name, such as OUT, to which you can refer.
However, commands that accept display names also accept the names of five
pseudo-displays that refer to displays relative to their positions in the PCA
display list.

Each time you refer to a specific display with a DISPLAY or SET DISPLAY
command, PCA updates its screen display list and reorders the list, if
necessary. PCA always puts the display you referenced most recently at
the end of the display list because that display should be pasted last on the
pasteboard. The display you referenced first is at the beginning of the list and
is likely to be covered by other displays. Pseudo-display names never refer to
displays that were created with the /REMOVE qualifier on the DISPLAY and
SET DISPLAY commands.

Pseudo-display names are used mainly in keypad and command definitions.
For instance, KP9 is bound to the command DISPLAY %NEXTDISP. Repeated
use of this key causes each successive display on the display list to be shown
until you reach the display you want. See Table B–11 for the descriptions of
the pseudo-display names.

4–42 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

4.7.4 Selecting Displays for Output or Scrolling
The SELECT command determines which screen display receives PCA output,
and lets you choose the current scrolling display. You can specify any one of
the following, with the restrictions noted in the SELECT qualifier descriptions
in the online PCA Command Dictionary:

• A predefined display (SRC, OUT, PLOT, and PROMPT)

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTOUTPUT, %NEXTPLOT, %NEXTSCROLL, and %NEXTSOURCE

If you omit this parameter and do not specify a qualifier, you cancel the current
scrolling display (no display then has the scrolling attribute). If you omit this
parameter but specify a qualifier, you cancel the current display with that
attribute.

Attributes are used to select the current scrolling display and to direct
various types of PCA output to particular displays. This gives you the option
of mixing or isolating different types of information, such as PCA input,
output, diagnostic messages, and so on, in scrollable displays. You can use
the SELECT command with one or more qualifiers to assign one or more
corresponding attributes to a display.

Note that if you do not specify a qualifier, the /SCROLL qualifier is assumed by
default.

If you use the SELECT command without specifying a display name, in general
the attribute assignment indicated by the command qualifier is canceled. To
reassign display attributes you must use another SELECT command. See
the individual SELECT command qualifier descriptions in the online PCA
Command Dictionary for details.

The following command selects display SRC2 as the current source and
scrolling display:

PCAC> SELECT/SOURCE/SCROLL SRC2

The following command selects display OUT as the current input and error
display. This causes PCA input, output (assuming OUT is the current output
display), and diagnostic messages to be logged in the OUT display in the
correct sequence:

PCAC> SELECT/INPUT/ERROR OUT

Productivity Enhancements with PCA 4–43

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

4.7.4.1 Viewing Displays with TYPE and SEARCH Commands
You can use the SEARCH command to find locations of text strings in your
source, and you can use the TYPE command to view a section of source. The
sections of source that will be displayed are found in the files that were used
in compiling the current image. If your sources have moved to a different
directory, then you must use the SET SOURCE command to inform PCA of
the locations of the source. See Section 4.7.4.2 for information on using SET
SOURCE.

Use the TYPE command to specify which lines of source code to place in the
current display.

You can specify a list of line numbers, separated with commas, to display
source code corresponding to each of the line numbers.

You can specify a range of line numbers, separating the starting and ending
numbers in the range with a colon, to display the source code corresponding to
that range of line numbers.

You can specify a module name with the line numbers to indicate that the lines
are located in that module. The module name must be followed by a backslash
(\) and the line numbers, without intervening spaces. It is not necessary to
enter a module name if there are no other modules with those line numbers.

In nonscreen mode, the following TYPE command displays line 160 and lines
22 through 24 in the module COBOLTEST:

PCAA> TYPE COBOLTEST\160,22:24
module COBOLTEST

160: START-IT-PARA.
module COBOLTEST

22: 02 SC2V2 PC S99V99 COMP VALUE 22.33.
23: 02 SC2V2N PC S99V99 COMP VALUE -22.33.
24: 02 CPP2 PC PP99 COMP VALUE 0.0012.

In screen mode, line 22 will be placed in the middle of the current source
display.

The SEARCH command searches your source code for a specified string. The
source line or lines containing an occurrence of that string are then displayed
in the output window.

The following example searches for all occurrences of the letter D in lines 40
through 50 of the module COBOLTEST. In screen mode, the result is displayed
in the output window.

4–44 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

PCAA> SEARCH/STRING/ALL COBOLTEST\40:50 D
40: 02 D2N COMP-2 VALUE -234560000000
41: 02 D COMP-2 VALUE 222222.33
47: 02 DRO COMP-2 VALUE 0.1
50: 02 DR5 COMP-2 VALUE 0.000001

You can reset the SEARCH command’s default qualifiers with the SET
SEARCH command. The SET SEARCH command establishes current
qualifiers and parameters to be used in the absence of SEARCH command
qualifiers.

You can display the current SEARCH parameters with the SHOW SEARCH
command, as follows:

PCAA> SET SEARCH ALL, STRING
PCAA> SHOW SEARCH
Default search qualifiers: /ALL /STRING

4.7.4.2 Setting the Directory Search List
The SET SOURCE command directs PCA to search a specified list of directories
for source files when source text must be displayed. By default, PCA expects
a source file to be located in the same directory and in the same file as it was
when it was compiled. If that file has been moved to another location, you
must use the SET SOURCE command to specify that location. This search list
is used by the EDIT, PLOT, SEARCH, and TYPE commands.

If you specify more than one directory on a single SET SOURCE command,
PCA searches each directory in the list in the specified order whenever it needs
to access a source file. PCA also checks the creation date and time recorded in
the Debug Symbol Table to determine which version of a file was compiled by
the compiler. If PCA finds a file in the directory list that matches the compiled
file, it displays that file. If PCA does not find the compiled file, it displays the
first file in the list with the correct name, along with an informational message.

If you frequently use the same SET SOURCE command, you may want to
include it in your initialization file (see Section 3.8).

You can use the CANCEL SOURCE command to cancel the current source
file directory search list established with a previous SET SOURCE command.
After the directory search list is canceled, PCA is unable to find any source file
that has been moved since being compiled.

You can use the SHOW SOURCE command to display the current source
directory search lists established with the SET SOURCE command. You can
use the /EDIT qualifier with this command to show the directory search list
established with the last SET SOURCE/EDIT command.

Productivity Enhancements with PCA 4–45

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

The following SET SOURCE command tells PCA to look for source files in
directories [MYDIR], [YOURDIR], and [MOREDIR] in that order. The SHOW
SOURCE command tells PCA to display the directory settings.

PCAA> SET SOURCE [MYDIR],[YOURDIR],[MOREDIR]
PCAA> SHOW SOURCE

source directory search list for all modules:
[MYDIR]
[YOURDIR]
[MOREDIR]

4.7.5 Manipulating Displays
You can manipulate screen displays in a variety of ways. You can scroll a
window over a display, move the display across the screen, or you can expand
or contract a window associated with a display. For all operations, the default
display is the one currently marked with the scroll attribute.

Scrolling Displays
The SCROLL command moves the screen window over the text of a screen
display. With this command you can look at all sections of a display, even
though the display text is much larger than the screen window.

You must use one of the following qualifiers with the SCROLL command:
/UP[:n], /DOWN[:n], /LEFT[:n], /RIGHT[:n], /TOP, or /BOTTOM. If you use
one of the four qualifiers that has the optional :n parameter, you can specify
the number of lines or spaces by which you want to scroll the window over
the display. If you do not use this optional parameter, the display is scrolled
by approximately three quarters of the height of the window for the /UP and
/DOWN qualifiers, or eight spaces left or right for the /LEFT and /RIGHT
qualifiers.

To see the ends of very long display lines, shift the window to the right using
the SCROLL/RIGHT command. To shift the window back to the left, use the
SCROLL/LEFT command.

To scroll the window up or down over a display, use the SCROLL/UP or
SCROLL/DOWN command. The SCROLL/TOP command moves the window to
the top of the specified display. The SCROLL/BOTTOM command moves the
window to the bottom of the display.

The following command scrolls the window up through the OUT display by
four lines:

PCAA> SCROLL/UP:4 OUT

4–46 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

Moving Displays
The MOVE command allows you to move a screen display vertically and
horizontally across the screen. For each display specified, the MOVE command
creates a window of the same dimensions elsewhere on the screen and maps
the display to it, while maintaining the relative position of the text within the
existing window.

You must use one of the following qualifiers with the MOVE command: /UP[:n],
/DOWN[:n], /LEFT[:n], or /RIGHT[:n]. By using the optional :n parameter,
you can specify the number of lines or spaces by which you want to move
the display (the default is 1). You can change the direction indicated by the
qualifier by specifying a negative number.

The MOVE command does not change the order of a display on the display
pasteboard. Depending on the relative order of displays, the MOVE command
may cause the display to hide or uncover another display or be hidden by
another display, partially or totally. A display can only be moved up to the
edge of the screen.

The following command moves display NEW_OUT up by 3 lines and to the
right by 5 columns:

PCAA> MOVE/UP:3/RIGHT:5 NEW_OUT

Expanding or Contracting Displays
The EXPAND command expands or contracts a window associated with a
screen display by moving one or more display-window borders according to
the qualifiers specified (/UP[:n], /DOWN[:n], RIGHT[:n], /LEFT[:n], where the
optional n parameters default to 1). You can contract a display by specifying a
negative value.

The EXPAND command does not affect the order of a display on the display
pasteboard. Depending on the relative order of displays, the EXPAND
command may cause the specified display to hide, uncover another display,
or be hidden by another display, partially or totally.

Except for the PROMPT display, any display can be contracted to the point
where it disappears (at which point it is marked as removed). It can then
be expanded from that point. Contracting a display to the point where it
disappears will cause it to lose any attributes that were selected for it. The
PROMPT display cannot be contracted or expanded horizontally but can be
contracted vertically to a height of two lines.

The following command moves the top border of display OUT2 up by one line,
and the right border to the left by 12 columns:

PCAA> EXPAND/UP/RIGHT:-12 OUT2

Productivity Enhancements with PCA 4–47

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

Figure B–3 shows the PCA-defined keypad functions for manipulating screen
displays. Depending on the type of keyboard you have, you can either press a
key or type a command to put the keypad in a DEFAULT, MOVE, EXPAND, or
CONTRACT state.

4.7.6 Saving and Extracting Displays
When you want to keep the current contents of a display for later reference,
you can save a copy of an existing screen by using the SAVE command.

When you want to view the contents you have saved, use the new display name
with a DISPLAY command.

Just as you can save a plot or table in a file with the FILE command, you can
save the contents of a screen display in a file with the EXTRACT command.
You can also use EXTRACT to create a file containing all of the information
necessary to create the current screen at a later time.

When you use the EXTRACT command to save the contents of a display into
a file, only those lines that are currently stored in the display’s memory buffer
(as determined by the /SIZE qualifier on the DISPLAY or SET DISPLAY
command) are written to the file. Note that you cannot extract the contents
of the PROMPT display into a file, and you cannot save those contents into
another display.

The following command writes all the lines in display SRC into the file
PCA.TXT:

PCAA> EXTRACT SRC

The following command appends all the lines in display OUT to the end of file
[STEVE.WORK]MYFILE.TXT:

PCAA> EXTRACT/APPEND OUT [STEVE.WORK]MYFILE

4.7.7 Keypad Key Functions
Instead of using the terminal keyboard keys to type in PCA commands, you
can press keys on your terminal’s numeric keypad to enter various commands
bound to those keys. Using the keypad speeds input entry because one or two
keystrokes will enter an entire command for you. You can also use the color
keys (PF1=GOLD, PF4=BLUE) to associate each keypad key with one or more
command sequences or functions. A keypad key may have a default function
that is automatically performed when you press it.

4–48 Productivity Enhancements with PCA

Productivity Enhancements with PCA
4.7 Using PCA in Screen Mode

PCA provides a set of standard keypad definitions that perform most of
the commonly used PCA commands. These include commands such as PAGE
NEXT, SET MODE SCREEN, the scrolling commands, and traverse commands.
Many of the standard keypad definitions manipulate screen displays when PCA
is in screen mode. Figure B–2 shows the Analyzer-defined keypad functions.

4.7.8 Defining Keys
You can define your own keypad definitions or change the PCA-defined
standard keypad definitions with the DEFINE/KEY command. The
DEFINE/KEY command associates a command string and a set of attributes
with a key on the terminal keyboard or keypad.

Note that one key can have several different functions, and that the function
used depends on the state you choose. The PCA-defined state names are
DEFAULT, GOLD, and BLUE. States are established with the /SET_STATE
qualifier or with the SET KEY command. See the online PCA Command
Dictionary for complete information on the SET KEY command. The state-
name parameter that is used with the /IF_STATE, /LOCK_STATE, and /SET_
STATE qualifiers can be any alphanumeric string you choose.

The following command associates KP7 with the SHOW PLOT command.
Because the /TERMINATE qualifier is used, you do not need to press the
Return key after pressing KP7 to execute the command.

PCAA> DEFINE/KEY/TERMINATE KP7 "SHOW PLOT"

Use the SHOW KEY command to see what keys are currently defined:

PCAA> SHOW KEY KP2
DEFAULT keypad definitions:
KP2 = "Scroll/Down"

The DELETE/KEY command cancels the key definitions established with the
DEFINE/KEY command. The UNDEFINE/KEY command performs the same
function.

See the online PCA Command Dictionary for complete information on SET
KEY, SHOW KEY, and DELETE/KEY, for all states.

Productivity Enhancements with PCA 4–49

5
Using VAX Vectors with PCA

This chapter explains how to analyze your application if you are using a
vector processor or the VAX Vector Instruction Emulator Facility (VVIEF). The
following topics are discussed:

• Analyzing programs containing vector instructions

• Performing vector instruction sampling

• Performing vector instruction counting

• Analyzing vector processor data

• Analyzing vector instructions using vector-specific domains and data kinds

All the features described in this chapter work for both real vector processors
and VVIEF.

5.1 Analyzing the Vector Instructions in Your Program—an
Overview

PCA lets you:

• Examine how you have split the processing of the application between
scalar and vector processors.

• Analyze how well your application’s algorithms use the vector processor.

Certain programs run significantly faster on computers containing scalar
and vector processors than on computers containing scalar processors alone.
Programs that use repetitive array and matrix operations can run faster
on a vector processor because those programs are constrained by scalar
performance bottlenecks. Programs that spend most of their time performing
I/O operations, executing system services, or using data types not supported by
vector hardware (for example, BYTE and LOGICAL) do not benefit as much by
being executed on a computer with both scalar and vector processors. See the
HP FORTRAN Performance Guide for information on improving the run-time
performance of HP FORTRAN programs executed on a vector processor.

Using VAX Vectors with PCA 5–1

Using VAX Vectors with PCA
5.2 Finding Where Your Application Uses Vector Processing

5.2 Finding Where Your Application Uses Vector Processing
The Collector provides two data kinds for sampling vector-processing
information: vector PC sampling and vector CPU sampling. You use the
SET command, as shown in the following example, to enable sampling of PC
values for random vector instructions:

PCAC> SET VPC_SAMPLING

The last command enables the sampling of vector PC values and shows you
where the wall-clock time is being spent in the application performing vector
instructions. The sampling rate defaults to an interval of 10 milliseconds and
includes all the idle process time associated with running the program. Call
stack information is collected by default. The following command enables the
sampling of vector PC values and lets you examine the particular areas of your
application where process time is spent performing vector instructions.

PCAC> SET VCPU_SAMPLING

The sampling rate defaults to an interval of 10 milliseconds and includes
only the time that the application is running on the processor. Call stack
information is collected by default.

You can disable the collection of call stack information with the /NOSTACK_
PCS qualifier. You can set the timer interval length with the /INTERVAL
qualifier.

When you sample the vector PC values, you can determine the scalar/vector
parallelism throughout your entire program. The collection of vector PC or
CPU sampling data provides you with the following information on each vector
instruction:

• Program counter of the vector instruction

• Program relative timestamp

• Vector instruction opcode

• Vector stride

• Vector control word (instruction dependent)

• Vector length register

• Vector mask register

• Call stack information (optionally)

5–2 Using VAX Vectors with PCA

Using VAX Vectors with PCA
5.2 Finding Where Your Application Uses Vector Processing

5.2.1 Collecting Concurrent Scalar and Vector Sampling
You can collect both scalar and vector samples during a collection run. The
timer intervals must be the same for both types of sampling. If you have set
different intervals for each, the Collector uses the timer interval of the last
sampling command entered. The following example sets the timer interval
to 20 milliseconds for CPU sampling, and 100 milliseconds for vector CPU
sampling:

PCAC> SET CPU_SAMPLING/INTERVAL:20
PCAC> SET VCPU_SAMPLING/INTERVAL:100

In the example above, the interval for CPU and vector CPU sampling is reset
to 100.

Note

You should not try to collect scalar PC samples and vector CPU
samples in the same collection, as this will cause a distortion in the
data collected. Likewise, you should not try to collect scalar CPU
samples and vector PC samples in the same collection.

5.2.2 Gathering Scalar PC Sampling Within the Vector Instruction
Emulator Only

When you gather scalar PC sampling data in the collection run, there is a
probability that the sampled PC values are within the emulator image itself.
Because you are only seeking information on PCs in the application and not in
the vector emulator, the Collector can determine what the PC value was within
the address range of the application when the emulator was invoked. In this
way the PC value is traced back to the location that was being executed in
your application when the PC was sampled.

5.3 Counting Vector Processor Instructions
Use the SET VCOUNTERS command to instruct the Collector to count all
vector processor instructions in all or part of an application. From this
information, you can determine to what extent the vector processor is used.
You must specify at least one nodespec to indicate the domain of the data
collected.

The following example collects vector instruction counts using the nodespec for
an entire program:

PCAC> SET VCOUNTERS PROGRAM_ADDRESS BY VINSTRUCTION

Using VAX Vectors with PCA 5–3

Using VAX Vectors with PCA
5.3 Counting Vector Processor Instructions

The following example collects vector instruction counts using the nodespec for
routine XYZ.

PCAC> SET VCOUNTERS ROUTINE XYZ BY VINSTRUCTION

See the online PCA Command Dictionary for a complete list of available
nodespecs with the SET VCOUNTERS command.

To collect call stack information, use the /STACK_PCS qualifier on the
command line. (The /NOSTACK_PCS qualifier is the default.)

The same information is collected for vector counting as for vector sampling.

5.4 Analyzing Vector Processor Data
The Analyzer plots and displays the results of the vector instructions data
gathered in the Collector. You can use three views to aid in the analysis of the
scalar/vector processor parallelism: Table, Histogram, and Annotated Source.

Depending on what was gathered by the collection run, you can set the data
kind to the any of the following:

• Vector instructions counted

• Vector PC sampling

• Vector CPU sampling

The following domains are available with vector instruction analysis:

• VINSTRUCTIONS—Sets the domain to the vector instruction found at the
sampled or counted PC.

• VLENGTH—Sets the domain to the Vector Length Register (VLR) values.

• VMASK—Sets the domain to the Vector Mask Register (VMR) values.

• VOPCODE—Sets the domain to specific vector instructions.

• VOPERATIONS—Sets the domain to the number of operations per Vector
instruction.

• VREGISTERS—Sets the domain to the Vector Register usage.

• VSTRIDE—Sets the domain to the Vector Stride values.

5–4 Using VAX Vectors with PCA

Using VAX Vectors with PCA
5.4 Analyzing Vector Processor Data

5.4.1 Finding the Most-Used Vector Instructions
To determine which vector instructions are used most by your program in the
INSTRUCTION domain, enter the following command line:

PCAA> PLOT/VCOUNTERS INSTRUCTION BY VOPCODE

This command bases the report view on the disassembled opcode for each
vector instruction in the entire application. The number of times a vector
instruction is used lets you see if your application is spending a lot of time
performing certain operations. For example, if you see that the SYNC vector
instruction is executed more than any other vector instruction, you can infer
that the scalar processor is spending too much idle time waiting for the vector
processor to finish an operation.

You can specify the vector instructions you want to display, as in the following
example, which displays only the SYNC and MSYNC vector instructions on the
report.

PCAA> PLOT/VCOUNTERS VOPCODE SYNC, VOPCODE MSYNC

5.4.2 Finding the Locations of Vector Instructions
To find where in your program you are using vector instructions, use the
following command:

PCAA> PLOT/VCOUNTERS PROGRAM_ADDRESS BY VINSTRUCTION

This command displays the address of each vector instruction in your program.
In the display, the Analyzer also shows the ratio, as a percentage, of the
execution count of each vector instruction to the execution count of all the
vector instructions.

Example 5–1 shows the output produced by the PROGRAM_ADDRESS BY
VINSTRUCTION nodespec.

Using VAX Vectors with PCA 5–5

Using VAX Vectors with PCA
5.4 Analyzing Vector Processor Data

Example 5–1 Sample Output of PLOT/VCOUNTERS Command

Performance and Coverage Analyzer Page 1
Vector Instruction Execution Counts (3469 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
FFT\FFT\ |
%LINE 46 + 18 MSYNC|** 1.8%
%LINE 46 + 2F MTVLR|** 1.8%
%LINE 46 + 33 VLDL |** 1.8%
%LINE 47 + 14 VSTL |** 1.8%
%LINE 47 + 28 MSYNC|** 1.8%
%LINE 47 + 2D SYNC |** 1.8%
%LINE 47 + 6 VSADDL|** 1.8%
%LINE 47 VSADDL . |** 1.8%
%LINE 72 + 32 |
MTVMRLO |** 1.8%

%LINE 74 VSADDL . |** 1.8%
%LINE 75 + 3 MSYNC |** 1.8%
%LINE 75 + 8 SYNC |** 1.8%
FFT$MAIN\FFT$MAIN\ |
%LINE 24 VVMERGE . |************************* 0.9%

|
+----+----+----+----+----+----+----+----+----+----+

5.4.3 Finding if the Vector Processor is Optimally Used
The VLENGTH domain lets you determine the number of elements in the
vectors that are acted on by a vector instruction. Generally, the larger the
vector length, the more optimally the vector processor is being used. The
following example bases the report view on the value of the Vector Length
Register (VLR) for each vector instruction sampled.

PCAC> PLOT/VPC_SAMPLING VLENGTH BY ELEMENT

The VLR contains the number of elements in the vector that is being acted
upon.

The VMASK domain lets you determine how many elements in the vector
register are being operated on. For example:

PCAC> PLOT/VCOUNTERS VMASK BY CELL

In the previous examples, if the VLR is 20 and the VMASK has 10 cells
enabled, only 10 of the first 20 elements in the register are acted on.

5–6 Using VAX Vectors with PCA

Using VAX Vectors with PCA
5.4 Analyzing Vector Processor Data

Finding if Faster Instruction Execution is Needed
Use the VSTRIDE domain to determine how far apart consecutive vector
elements are in memory. Stride is the distance between the starting addresses
of consecutive elements of a vector. Instructions execute faster if the stride is
smaller. For example, a vector of bytes would have a stride of 1; a vector of
longwords would have a stride of 4. The following example causes the report
view to be based on the length of the stride per vector instruction:

PCAA> PLOT/VCOUNTERS VSTRIDE BY BYTE

Showing the Vector Processor Usage
Use the VOPERATIONS domain to determine the number of operations
performed by the various vector instructions. The number of operations is
represented by the number of enabled elements in the VMR up to the length in
the VLR.

If the number of operations per instruction is high, the vector processor is
being used optimally. (See the example of the PLOT/VCOUNTERS VMASK
BY CELL command earlier in this section, which shows that the number of
operations is 10.) To plot the number of operations per vector instruction, enter
the following command:

PCAA> PLOT/VCPU_SAMPLING VOPERATIONS BY OPERATION

5.4.4 Finding How Well the Use of Vector Registers Is Distributed
During the collection phase, the names of the registers used in the vector
instruction is derived from the vector control word. There are 16 vector
registers numbered V0 through V15.

If the data shows that only a few vector registers are being used, you can
probably optimize the application by using more registers or by allowing for
more vector instruction chaining or pipelining. However, the extent to which
you can optimize your application is dependent on the language you are using.

The more vector registers your application uses during vector processing, the
better the performance. Vector registers should be large. Memory referencing
patterns must support a continuous supply of data to the vector registers for
optimal vector performance.

Using VAX Vectors with PCA 5–7

Using VAX Vectors with PCA
5.4 Analyzing Vector Processor Data

Example 5–2 displays all vector registers.

Example 5–2 Displaying Vector Register Usage

PCAA> PLOT/VCOUNTERS VREGISTER BY REGISTER

Performance and Coverage Analyzer Page 1

Vector Instruction Execution Counts (5263 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
VREGISTER\ |
V00|**

| 11.0%
V02|*** 9.1%
V10|************************************ 7.9%
V03|****************************** 6.7%
V09|****************************** 6.7%
V04|**************************** 6.1%
V05|************************* 5.5%
V07|********************** 4.9%
VLR|********************** 4.9%
V06|********************** 4.9%
V08|********************** 4.9%
V11|******************* 4.3%
V01|***************** 3.8%
V12|***************** 3.6%
V13|***************** 3.6%
V14|***************** 3.6%
V15|***************** 3.6%
VMRHI|*********** 2.4%
VMRLO|*********** 2.4%
VCR| 0.0%

|
+----+----+----+----+----+----+----+----+----+----+

5–8 Using VAX Vectors with PCA

Using VAX Vectors with PCA
5.4 Analyzing Vector Processor Data

Example 5–3 plots the use of registers V00 and V02.

Example 5–3 Displaying Register Usage for Individual Vector Instructions

PCAA> PLOT VCOUNTER REGISTER V00, REGISTER V02

Performance and Coverage Analyzer Page 1

Vector Instruction Execution Counts (5263 data points total) - "*"

Bucket Name +----+----+----+----+----+----+----+----+----+----+
VREGISTER\ |
V00 |**11.0%
V02 |*** 9.1%

|
+----+----+----+----+----+----+----+----+----+----+

5.4.5 Vectors Special Considerations
Because vector instructions are likely to be grouped together, sampling hits
of vector initialization instructions like VLD occur more frequently. Sampling
hits of SYNC and MSYNC vector instructions are also frequent because they
tend to be time-consuming; the probability of hitting them, or the instructions
immediately following, are higher.

Note also that there may be a skewing of vectors data collection because of
the algorithm PCA uses: when PCA encounters a time-consuming vector
instruction, it is likely that PCA will not sample that instruction. Instead,
PCA will sample the vectors instruction that immediately follows.

Using VAX Vectors with PCA 5–9

A
Sample Programs

This appendix contains a HP FORTRAN program called PRIMES that is used
in many of the examples throughout this file, and the programs (or relevant
fragments) used for the examples in Chapter 4. The program is found in the
PCA$EXAMPLES area.

Program PCA$PRIMES
0001 PROGRAM PCA$PRIMES
0002
0003 C This program generates all the prime numbers in a given integer
0004 C range. Prime numbers are placed in PRIMES_TABLE as they are
0005 C generated. After being verified, these prime numbers are written
0006 C out to a text file PRIMES.DAT.
0007 C
0008 INTEGER LOW,HIGH,COUNT,ERROR_COUNT,PRIMES_TABLE
0009 LOGICAL PRIME
0010 DIMENSION PRIMES_TABLE(10000)
0011
0012 C Read in the desired integer range from a file and range-check it.
0013 C
0014 CALL READ_RANGE(LOW, HIGH)
0015 LOW = MAX (1, LOW)
0016 HIGH = MIN (HIGH, 10000)
0017 HIGH = MAX (LOW, HIGH)
0018
0019 C Generate all prime numbers in the given range.
0020 C
0021 COUNT = 0
0022 DO 10 I = LOW, HIGH
0023 IF (PRIME(I)) THEN
0024 COUNT = COUNT + 1
0025 PRIMES_TABLE (COUNT) = I
0026 END IF
0027 10 CONTINUE
0028
0029 C Verify that the numbers in PRIMES_TABLE really are prime.
0030 C
0031 ERROR_COUNT = 0
0032 DO 20 I = 1, COUNT
0033 IF (.NOT. PRIME(PRIMES_TABLE(I))) THEN

Sample Programs A–1

Sample Programs

0034 ERROR_COUNT = ERROR_COUNT + 1
0035 END IF
0036 20 CONTINUE
0037 IF (ERROR_COUNT .NE. 0) THEN
0038 TYPE 30, ERROR_COUNT
0039 30 FORMAT (I5, ’ wrong prime numbers generated’)
0040 END IF
0041
0042 C Write the prime numbers out to PRIMES.DAT and type summary data
0043 C on the terminal.
0044 C
0045 CALL OUTPUT_TO_DATAFILE(PRIMES_TABLE, COUNT)
0046 TYPE 40,COUNT,LOW,HIGH
0047 40 FORMAT(I5, ’ prime numbers generated between’, I5, ’ and’, I5)
0048 STOP
0049 END

0001
0002 C Function to identify whether a given number is prime or not.
0003 C If it is prime, the returned function value is TRUE.
0004 C
0005 LOGICAL FUNCTION PRIME(NUMBER)
0006 PRIME = .TRUE.
0007 DO 10 I = 2, NUMBER/2
0008 IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THEN
0009 PRIME = .FALSE.
0010 RETURN
0011 ENDIF
0012 10 CONTINUE
0013 RETURN
0014 END

0001
0002 C Subroutine to read in the integer range in which primes are to
0003 C be found.
0004 C
0005 SUBROUTINE READ_RANGE(LOW, HIGH)
0006 INTEGER LOW, HIGH
0007
0008 OPEN(UNIT=1, FILE=’PRIMESIN.DAT’, STATUS=’OLD’)
0009 READ(1,100,END=110,ERR=120) LOW, HIGH
0010 100 FORMAT(2I5)
0011 CLOSE(UNIT=1)
0012 RETURN
0013 110 CALL READ_END_OF_FILE
0014 RETURN
0015 120 CALL READ_ERROR
0016 RETURN
0017 END

A–2 Sample Programs

Sample Programs

0001
0002 C Subroutine to print an error message for a read end-of-file.
0003 C
0004 SUBROUTINE READ_END_OF_FILE
0005
0006 TYPE 150
0007 150 FORMAT(’ Unexpected end-of-file reading input file’)
0008 RETURN
0009 END

0001
0002 C Subroutine to print an error message for an input read-error.
0003 C
0004 SUBROUTINE READ_ERROR
0005
0006 TYPE 160
0007 160 FORMAT(’ Read error reading input file’)
0008 RETURN
0009 END

0001
0002 C Subroutine to output the prime numbers to a data file.
0003 C
0004 SUBROUTINE OUTPUT_TO_DATAFILE(IPRIMES_TABLE, ICOUNT)
0005 DIMENSION IPRIMES_TABLE(ICOUNT)
0006
0007 OPEN(UNIT=2, FILE=’PRIMESOUT.DAT’, STATUS=’NEW’)
0008 WRITE (2, 200) (IPRIMES_TABLE(I), I=1,ICOUNT)
0009 200 FORMAT(I5)
0010 CLOSE(UNIT=2)
0011 RETURN
0012 END

The following programs are used for the examples in Chapter 4.

Program for Section 4.1
C
C PCA$PRIMES
C

PROGRAM PCA$PRIMES
C
C This program counts the prime numbers in the range 1 to 10000.
C

INTEGER*4 I,COUNT
C

LOGICAL PRIME
C
C
C Loop to calculate the primes
C

DO I = 1, 10000

Sample Programs A–3

Sample Programs

IF (PRIME(I) .EQ. .TRUE.) THEN
COUNT = COUNT + 1

END IF

END DO
C

WRITE(6,*) ’Total number of primes = ’, COUNT
STOP
END

C
C Function to identify whether the number in the given range is prime
C number or not. If so, returned function value is TRUE.
C

LOGICAL FUNCTION PRIME(NUMBER)
C

PRIME = .TRUE.
DO 10 I = 2, (NUMBER/2)

C
IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THEN

PRIME = .FALSE.
RETURN

ENDIF
C
10 END DO
C

RETURN
END

Program for Section 4.2
program eightqueens(output) ;

(**)
(* The purpose of this program is to determine where eight *)
(* queens are safe on a chess board without any of them *)
(* able to capture another. *)
(**)

var
i : integer ;
a : array[1..8] of boolean ;
b : array[2..16] of boolean ;
c : array[-7..7] of boolean ;
x : array[1..8] of integer ;
safe : boolean ; k: integer;

procedure print ;

(**)
(* This routine will print the contents of the board. *)
(**)

A–4 Sample Programs

Sample Programs

begin (* print *)
for k := 1 to 8 do

write(x[k]: 2) ;
writeln ;

end ; (* print *)

procedure trycol(j : integer) ;

(**)
(* This routine will try the Jth column on the board. *)
(**)

var
i : integer ;

procedure setqueen ;

(**)
(* This routine will set the value of the queen on the board *)
(**)

begin (* setqueen *)
a[i] := false ;
b[i + j] := false ;
c[i - j] := false ;

end ; (* setqueen *)

procedure removequeen ;

(**)
(* This routine will remove the queen from the board. *)
(**)

begin (* removequeen *)
a[i] := true ;
b[i + j] := true ;
c[i - j] := true ;

end ; (* removequeen *)

begin (* trycol *)
i := 0 ;
repeat

i := i + 1 ;
safe := a[i] and b[i + j] and c[i - j] ;
if safe then

begin
setqueen ;
x[j] := i ;
if j < 8 then

trycol(j + 1)
else

print ;
removequeen ;
end ;

until i = 8 ;
end ; (* trycol *)

Sample Programs A–5

Sample Programs

begin (* eightqueens *)

(**)
(* This is the main program. It will first initialize the arrays *)
(* that represent the board. Next, it will try the first column *)
(* for safeness. *)
(**)

for i := 1 to 8 do
a[i] := true ;

for i := 2 to 16 do
b[i] := true ;

for i := -7 to 7 do
c[i] := true ;

trycol(1) ;

writeln ;

end. (* eightqueens *)

Program for Section 4.3, Section 4.4, and Section 4.5
C PCA$PRIMES_1

C This program generates all the prime numbers in a given integer
C range. Prime numbers are placed in PRIMES_TABLE as they are
C generated. After being verified, these prime numbers are written
C out to a text file PRIMES.DAT.
C
INTEGER LOW,HIGH,COUNT,ERROR_COUNT,PRIMES_TABLE
LOGICAL PRIME
DIMENSION PRIMES_TABLE(10000)

C Read in the desired integer range from a file and range-check it.
C
CALL READ_RANGE(LOW, HIGH)
LOW = MAX (1, LOW)
HIGH = MIN (HIGH, 10000)
HIGH = MAX (LOW, HIGH)

C Generate all prime numbers in the given range.
C
COUNT = 0
DO 10 I = LOW, HIGH
IF (PRIME(I)) THEN
COUNT = COUNT + 1
PRIMES_TABLE (COUNT) = I

END IF
10 CONTINUE

A–6 Sample Programs

Sample Programs

C Verify that the numbers in PRIMES_TABLE really are prime.
C
ERROR_COUNT = 0
DO 20 I = 1, COUNT
IF (.NOT. PRIME(PRIMES_TABLE(I))) THEN
ERROR_COUNT = ERROR_COUNT + 1

END IF
20 CONTINUE
IF (ERROR_COUNT .NE. 0) THEN
TYPE 30, ERROR_COUNT

30 FORMAT (I5, ’ wrong prime numbers generated’)
END IF

C Write the prime numbers out to PRIMES.DAT and type summary data
C on the terminal.
C
CALL OUTPUT_TO_DATAFILE(PRIMES_TABLE, COUNT)
TYPE 40,COUNT,LOW,HIGH
40 FORMAT(I5, ’ prime numbers generated between’, I5, ’ and’, I5)
STOP
END

C Function to identify whether a given number is prime or not.
C If it is prime, the returned function value is TRUE.
C
LOGICAL FUNCTION PRIME(NUMBER)
PRIME = .TRUE.
DO 10 I = 2, NUMBER/2
IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THEN
PRIME = .FALSE.
RETURN

ENDIF
10 CONTINUE
RETURN
END

C Subroutine to read in the integer range in which primes are to
C be found.
C
SUBROUTINE READ_RANGE(LOW, HIGH)
INTEGER LOW, HIGH

OPEN(UNIT=1, FILE=’PRIMESIN.DAT’, STATUS=’OLD’)
READ(1,100,END=110,ERR=120) LOW, HIGH
100 FORMAT(2I5)
CLOSE(UNIT=1)
RETURN
110 CALL READ_END_OF_FILE
RETURN
120 CALL READ_ERROR
RETURN
END

Sample Programs A–7

Sample Programs

C Subroutine to print an error message for a read end-of-file.
C
SUBROUTINE READ_END_OF_FILE

TYPE 150
150 FORMAT(’ Unexpected end-of-file reading input file’)
RETURN
END

C Subroutine to print an error message for an input read-error.
C
SUBROUTINE READ_ERROR

TYPE 160
160 FORMAT(’ Read error reading input file’)
RETURN
END

C Subroutine to output the prime numbers to a data file.
C
SUBROUTINE OUTPUT_TO_DATAFILE(IPRIMES_TABLE, ICOUNT)
DIMENSION IPRIMES_TABLE(ICOUNT)

OPEN(UNIT=2, FILE=’PRIMESOUT.DAT’, STATUS=’NEW’)
WRITE (2, 200) (IPRIMES_TABLE(I), I=1,ICOUNT)
200 FORMAT(I5)
CLOSE(UNIT=2)
RETURN
END

C
C
C Loop to calculate the primes
C
DO I=1, 10000
IF (PRIME(I) .EQ. .TRUE.) THEN
COUNT = COUNT + 1

END IF
END DO

WRITE(6,*) ’Total number of primes = ’, COUNT
STOP
END

A–8 Sample Programs

Sample Programs

C
C Function to identify whether the number in the given range
C is prime number or not. If so, returned function value is
C TRUE.
C
LOGICAL FUNCTION PRIME(NUMBER)

C
PRIME = .TRUE.
DO 10 I = 2, (NUMBER/2)

IF ((NUMBER - ((NUMBER / I) * I)) .EQ. 0) THEN
PRIME = .FALSE.
RETURN

ENDIF
10 CONTINUE

RETURN
END

Program for Section 4.6
-- ++
-- ABSTRACT:
-- The following is a test program that simulates disc IO.
--
-- --
package DiscCharacteristics is

-- ++
-- The purpose of this package is to make known all of the global
-- characteristics that describe the disc.
-- --

tracks : constant INTEGER := 200;
sectors : constant INTEGER := 12;
surfaces : constant INTEGER := 2;
platters : constant INTEGER := 2;

type discaddress is record
pl : INTEGER range 0..platters-1;
tr : INTEGER range 0..tracks-1;
su : INTEGER range 0..surfaces-1;
se : INTEGER range 0..sectors-1;

end record;

type discrequest is (seek,read,write);
type discstatus is (busy,done,seekerror,readerror,writerror);

sectorlength : constant INTEGER := 512; -- this in bytes
type discbuffer is array(1..sectorlength) of character;
type discbufferptr is access discbuffer;

Sample Programs A–9

Sample Programs

type disccommand is record
dreq : discrequest;
addr : discaddress;
bptr : discbufferptr;

end record;

pragma PACK(discbuffer);

end DiscCharacteristics;
.
.
.

package Semaphores is

-- ++
-- The purpose of the semaphore package is to create a semaphore on the
-- fly. Each semaphore is a dynamically created task.
-- --

task type disposablesemaphore is
entry P;
entry V;

end disposablesemaphore;

procedure P (s : in disposablesemaphore);
procedure V (s : in disposablesemaphore);

end Semaphores;

package body Semaphores is

-- ++
-- The P routine is used to signal that the user has entered a critical
-- region.
-- --

procedure P(s : in disposablesemaphore) is
begin

s.P;
end P;

-- ++
-- The V routine is used to signal that the user has left the critical
-- region.
-- --

procedure V(s : in disposablesemaphore) is
begin

s.V;
end V;

A–10 Sample Programs

Sample Programs

task body disposablesemaphore is
begin

accept V;
accept P;

end disposablesemaphore;

end Semaphores;
.
.
.

end Discchar;

Sample Programs A–11

B
PCA Reference Tables

This appendix contains reference tables for both the Collector and the
Analyzer, as well as screen display information.

B.1 Collector Reference Tables
Table B–1 lists the Record Management Services (RMS) measured by the
Collector SET IO_SERVICES command.

Table B–1 RMS Services Measured by the Collector

$CLOSE $ERASE $OPEN $REWIND

$CONNECT $EXTEND $PARSE $SEARCH

$CREATE $FIND $PUT $SPACE

$DELETE $FLUSH $READ $TRUNCATE

$DISCONNECT $FREE $RELEASE $UPDATE

$DISPLAY $GET $REMOVE $WAIT

$ENTER $NXTVOL $RENAME $WRITE

For more information on these RMS services, see the OpenVMS Record
Management Services Reference Manual.

Table B–2 lists the non-RMS system services measured by the Collector SET
IO_SERVICES command.

Table B–2 Non-RMS Services Measured by the Collector

$ASSIGN $DASSGN $QIO $QIOW

$CANCEL $CREMBX $DELMBX

PCA Reference Tables B–1

PCA Reference Tables
B.1 Collector Reference Tables

Table B–3 describes the node specification parameter syntax.

Table B–3 Node Specification Parameter Syntax

Node Specification Parameters

node specification LINE [path-name\] %LINE n
ROUTINE path-name
ROUTINE path-name BY nodekind
MODULE path-name BY nodekind
LINE path-name BY nodekind
PROGRAM_ADDRESS BY nodekind

path-name identifier [\identifier . . .]

nodekind ROUTINE
LINE
CODEPATH
VINSTRUCTION (not valid for LINE)

n Any integer line number

identifier Any routine or module name

Table B–4 lists and describes the logical names recognized by the Collector.

Table B–4 Collector Logical Names

Logical Name Description

PCA$DATAFILE Defines the name of the performance data file the Collector
uses. Defining this logical name is equivalent to using
the SET DATAFILE/APPEND command. To specify the
performance data file, use the following command at DCL
level:

$ DEFINE PCA$DATAFILE [LEE]MYDATA.PCA

(continued on next page)

B–2 PCA Reference Tables

PCA Reference Tables
B.1 Collector Reference Tables

Table B–4 (Cont.) Collector Logical Names

Logical Name Description

PCAC$DECW$DISPLAY Establishes the workstation display screen for the PCA
Collector DECwindows interface. If you are using a
workstation, the DECwindows interface is the default.
If you do not want to use the DECwindows interface while
on a workstation, type the following DCL command before
you invoke the Collector:

$ DEFINE PCAC$DECW$DISPLAY " "
To return to the default DECwindows display, deassign the
logical name, as follows:

$ DEASSIGN PCAC$DECW$DISPLAY

PCA$RUN_NAME Defines the name of the current collection run. Defining this
logical name is equivalent to using the SET RUN_NAME
command. To define a collection run name, use the following
command at DCL level:

$ DEFINE PCA$RUN_NAME "name-of-run"

PCA$INHIBIT_MSG Specifies that PCA’s informational messages should not
be output. The value you assign to this logical name is
not significant, but you must assign some value to it. For
example, use the following command at the DCL level:

$ DEFINE PCA$INHIBIT_MSG "INFO"

PCAC$INIT Defines the initialization file the Collector looks for at the
beginning of the Collector session. If you do not specify
a file type for the initialization file, the default is .PCAC.
To define the Collector initialization file, use the following
command at DCL level:

$ DEFINE PCAC$INIT [LEE]PCAC_STARTUP.PCAC

PCAC$INPUT Defines the input stream for the Collector. If this
logical name is not defined, the default input stream is
SYS$INPUT. To define the Collector input stream, use the
following command at DCL level:

$ DEFINE PCAC$INPUT [LEE]MYINPUT.PCAC

(continued on next page)

PCA Reference Tables B–3

PCA Reference Tables
B.1 Collector Reference Tables

Table B–4 (Cont.) Collector Logical Names

Logical Name Description

PCAC$OUTPUT Defines the output stream for the Collector. If this
logical name is not defined, the default output stream is
SYS$OUTPUT. To define the Collector output stream, use
the following command at DCL level:

$ DEFINE PCAC$OUTPUT [LEE]MYOUTPUT.DAT

B–4 PCA Reference Tables

PCA Reference Tables
B.2 Analyzer Reference Tables

B.2 Analyzer Reference Tables
Table B–5 list and describes the logical names recognized by the Analyzer.

Table B–5 Analyzer Logical Names

Logical Name Description

PCAA$DECW$DISPLAY Establishes the workstation display screen for the PCA
Analyzer DECwindows interface. If you are using a
workstation, the DECwindows interface is the default.
If you do not want to use the DECwindows interface while
on a workstation, type the following DCL command before
you invoke the Analyzer:

$ DEFINE PCAA$DECW$DISPLAY " "
To return to the default DECwindows display, deassign the
logical name, as follows:

$ DEASSIGN PCAA$DECW$DISPLAY

PCAA$INIT Defines the initialization file the Analyzer looks for at the
beginning of the Analyzer session. If you do not specify
a file type for the initialization file, a default file type of
.PCAA is assumed. Define the Analyzer initialization file at
DCL level using the following command:

$ DEFINE PCAA$INIT [LEE]PCAA_STARTUP.PCAA

PCAA$INPUT Defines the input stream for the Analyzer. If this
logical name is not defined, the default input stream is
SYS$INPUT. Define the Analyzer input stream at DCL level
using the following command:

$ DEFINE PCAA$INPUT [LEE]MYINPUT.PCAA

PCAA$OUTPUT Defines the output stream for the Analyzer. If this
logical name is not defined, the default output stream is
SYS$OUTPUT. Define the Analyzer output stream at DCL
level using the following command:

$ DEFINE PCAA$OUTPUT [LEE]MYOUTPUT.DAT

(continued on next page)

PCA Reference Tables B–5

PCA Reference Tables
B.2 Analyzer Reference Tables

Table B–5 (Cont.) Analyzer Logical Names

Logical Name Description

SYS$LP_LINES Defines the number of lines per page to be used by the
PRINT and FILE commands when formatting PLOT or
TABULATE output. If this logical name is not defined, 66
lines per page is assumed. Define a page size of 40 lines at
DCL level using the following command:

$ DEFINE SYS$LP_LINES 40

SYS$PRINT Defines the printer queue. For example:

$ DEFINE SYS$PRINT CLUSTER_PRINTER

Table B–6 lists the data-kind qualifiers and their respective domains.

Table B–6 Data-Kind Qualifiers and Supported Domains

Data-Kind Qualifier Appropriate Domains

/PC_SAMPLING PROGRAM_ADDRESS
CALL_TREE
TASK
TASK_PRIORITY
TASK_TYPE
TIME1

/CPU_SAMPLING PROGRAM_ADDRESS
CALL_TREE
TASK
TASK_PRIORITY
TASK_TYPE
TIME1

/COUNTERS PROGRAM_ADDRESS
CALL_TREE
TASK
TASK_PRIORITY
TASK_TYPE
TIME1

1These data-kind qualifiers work with TIME BY EVENT only.

(continued on next page)

B–6 PCA Reference Tables

PCA Reference Tables
B.2 Analyzer Reference Tables

Table B–6 (Cont.) Data-Kind Qualifiers and Supported Domains

Data-Kind Qualifier Appropriate Domains

/COVERAGE PROGRAM_ADDRESS
CALL_TREE
TASK
TASK_PRIORITY
TASK_TYPE
TIME1

/NONCOVERAGE
/ANC

PROGRAM_ADDRESS
TIME1

/PAGE_FAULTS
/FAULT_ADDRESS

PROGRAM_ADDRESS
TIME2

TASK
TASK_PRIORITY
TASK_TYPE

/SERVICES PROGRAM_ADDRESS
CALL_TREE
TIME2

SYSTEM_SERVICES
TASK
TASK_PRIORITY
TASK_TYPE

/IO_SERVICES
/READ_COUNT
/WRITE_COUNT
/PHYSICAL_IO

PROGRAM_ADDRESS
CALL_TREE
TIME2

IO_SYSTEM_SERVICES
FILE_NAME
RECORD_SIZE
FILE_VBN
FILE_KEY
READ_COUNT
WRITE_COUNT
PHYSICAL_IO_COUNT

/TASK_SWITCH TASK
TASK_TYPE
TASK_PRIORITY
TIME2

/EVENT PROGRAM ADDRESS
TASK
TASK2

1These data-kind qualifiers work with TIME BY EVENT only.
2These data-kind qualifiers work with TIME BY EVENT and with TIME BY [n] MSECS.

(continued on next page)

PCA Reference Tables B–7

PCA Reference Tables
B.2 Analyzer Reference Tables

Table B–6 (Cont.) Data-Kind Qualifiers and Supported Domains

Data-Kind Qualifier Appropriate Domains

/VCOUNTERS
/VCPU_SAMPLING
/VPC_SAMPLING

VLENGTH
VMASK
VOPCODE
VOPERATIONS
VSTRIDE

Table B–7 shows the correspondence of the Collector SET commands to the
Analyzer data-kind qualifiers.

Table B–7 The SET Command with Corresponding Data-Kind Qualifiers

Collector SET Command Corresponding Analyzer Data-Kind Qualifier

SET PC_SAMPLING /PC_SAMPLING

SET CPU_SAMPLING /CPU_SAMPLING

SET COUNTERS /COUNTERS
/COVERAGE
/NONCOVERAGE
/ANC

SET COVERAGE /COVERAGE
/NONCOVERAGE
/ANC

SET PAGE_FAULTS /PAGE_FAULTS
/FAULTING_ADDRESS

SET SERVICES /SERVICES

SET IO_SERVICES /IO_SERVICES
/READ_COUNT1

/WRITE_COUNT1

/PHYSICAL_IO_COUNT1

SET TASKING /TASK_SWITCH

SET EVENT /EVENT

SET VCOUNTERS /VCOUNTERS
/COVERAGE

SET VCPU_SAMPLING /VCPU_SAMPLING

SET VPC_SAMPLING /VPC_SAMPLING

1This is collected for disk I/O only, not terminal I/O.

B–8 PCA Reference Tables

PCA Reference Tables
B.2 Analyzer Reference Tables

B.2.1 Analyzer Node Specification Summary
Valid node specifications that the Analyzer accepts on the PLOT and
TABULATE commands are shown in Table B–8. They are grouped by data
domain.

Table B–8 Analyzer Node Specifications

Data Domain Valid Node Specifications

Program Address PROGRAM_ADDRESS BY MODULE
PROGRAM_ADDRESS BY ROUTINE
PROGRAM_ADDRESS BY [n] LINES
PROGRAM_ADDRESS BY CODEPATH
PROGRAM_ADDRESS BY [n] BYTES
PROGRAM_ADDRESS BY VINSTRUCTION

MODULE pathname
MODULE pathname BY ROUTINE
MODULE pathname BY [n] LINES
MODULE pathname BY CODEPATH
MODULE pathname BY [n] BYTES
MODULE pathname BY VINSTRUCTION

ROUTINE pathname BY [n] LINES
ROUTINE pathname BY CODEPATH
ROUTINE pathname BY [n] BYTES
ROUTINE pathname BY VINSTRUCTION

LINE [pathname\] %LINE n
LINE [pathname\] %LINE n BY CODEPATH
LINE [pathname\] %LINE n BY [n] BYTES

Call Tree CALL_TREE BY CHAIN_MODULE
CALL_TREE BY CHAIN_ROUTINE
CALL_TREE BY CHAIN_LINE
CHAIN_MODULE chain_name
CHAIN_ROUTINE chain_name
CHAIN_LINE chain_name

Vector length VLENGTH BY [n] ELEMENTS

Vector masks VMASK BY [n] CELLS

Vector opcodes INSTRUCTION BY VOPCODES
VOPCODE vector-opcode

Vector operations VOPERATIONS BY [n] OPERATIONS

Vector registers VREGISTER BY REGISTER
REGISTER vector-reg

(continued on next page)

PCA Reference Tables B–9

PCA Reference Tables
B.2 Analyzer Reference Tables

Table B–8 (Cont.) Analyzer Node Specifications

Data Domain Valid Node Specifications

Vector strides VSTRIDES BY [n] BYTES

Time TIME BY EVENT
TIME BY [n] MSECS
EVENT event-name
EVENT event-name BY [n] MSECS

Task TASK_TYPE BY TASK_TYPE_NAME
TASK_PRIORITY BY n PRIORITY_UNITS
TASK BY TASK_IDENTIFIER
TASK_IDENTIFIER task_id
TASK_TYPE_NAME task_type

System Services SYSTEM_SERVICES BY SERVICE
SERVICE service-name

I/O System Services IO_SYSTEM_SERVICES BY IO_SERVICE
IO_SERVICE io_service-name

File Name FILE_NAME BY FILE

File Virtual Block Number FILE_VBN BY [n] BLOCKS

Indexed File Keys FILE_KEY BY KEYS

File Record Size RECORD_SIZE BY [n] BYTES

Physical Read Count READ_COUNT BY [n] COUNTS

Physical Write Count WRITE_COUNT BY [n] COUNTS

Total Physical I/O Count PHYSICAL_IO_COUNT BY [n] COUNTS

n Any integer or integer line number

path name identifier [\identifier . . .]

identifier Any routine or module name

vector-opcode A vector instruction opcode

vector-reg A vector register name

event-name Any event marker name

service-name Any system service name

io_service-name Any I/O system service name

task_id An instance of a task

task_type A declared task type

B–10 PCA Reference Tables

PCA Reference Tables
B.2 Analyzer Reference Tables

You can abbreviate all keywords to their shortest unique forms. However, you
must always spell out module names, routine names, event names, and system
service names.

Table B–9 lists the filter restrictions by data-kind qualifier.

Table B–9 Filter Specification by Data Kind

Filter Restriction A B C D E F G

CHAIN_NAME Yes1 Yes Yes Yes Yes Yes

FAULT_ADDRESS Yes

FILE_KEY Yes

FILE_NAME Yes

FILE_VBN Yes

IO_SERVICE Yes

PROGRAM_ADDRESS Yes Yes Yes Yes Yes Yes Yes

PHYSICAL_IO_COUNT Yes

READ_COUNT Yes

RECORD_SIZE Yes

RUN_NAME Yes Yes Yes Yes Yes Yes

SERVICE Yes

TASK_IDENTIFIER Yes Yes Yes Yes Yes

TASK_PRIORITY Yes Yes Yes Yes Yes

TASK_TYPE Yes Yes Yes Yes Yes

TIME=x[:y] Yes2 Yes Yes Yes Yes Yes

TIME=event Yes Yes Yes Yes Yes Yes

VLENGTH=n Yes

1Note that yes means the filter is applied to the given data kind. A blank means that it is not.
2For /CPU_SAMPLING only
Data Kind Table Key

A—/COUNTERS, /COVERAGE, /CPU_SAMPLING, /PC_SAMPLING
B—/ANC, /NONCOV
C—/IO_SERVICES, /READ_COUNT, /PHYS_IO_COUNT, /WRITE_COUNT
D—/SERVICES
E—/PAGE_FAULTS, /FAULT_ADDR
F—/TASK_SWITCH, /EVENT
G—/VCOUNTERS, /VCPU_SAMPLING, /VPC_SAMPLING

(continued on next page)

PCA Reference Tables B–11

PCA Reference Tables
B.2 Analyzer Reference Tables

Table B–9 (Cont.) Filter Specification by Data Kind

Filter Restriction A B C D E F G

VMASK=n Yes

VOPCODE=vector-opcode Yes

VOPERATIONS=n Yes

VREGISTER=vector-reg Yes

VSTRIDE=n Yes

WRITE_COUNT Yes

Data Kind Table Key

A—/COUNTERS, /COVERAGE, /CPU_SAMPLING, /PC_SAMPLING
B—/ANC, /NONCOV
C—/IO_SERVICES, /READ_COUNT, /PHYS_IO_COUNT, /WRITE_COUNT
D—/SERVICES
E—/PAGE_FAULTS, /FAULT_ADDR
F—/TASK_SWITCH, /EVENT
G—/VCOUNTERS, /VCPU_SAMPLING, /VPC_SAMPLING

B–12 PCA Reference Tables

PCA Reference Tables
B.3 Screen Displays

B.3 Screen Displays
Table B–10 lists the default key bindings for the traverse commands.

Table B–10 Default Key Bindings for Traverse Commands

Function Key

FIRST KP5

FIRST SUBTREE GOLD KP5

NEXT Ctrl/N

NEXT SUBTREE GOLD Ctrl/N

BACK Ctrl/P

BACK SUBTREE GOLD Ctrl/P

Table B–11 describes the pseudo-display names.

Table B–11 Analyzer Screen Mode Pseudo Display Names

Name Description

%CURDISP Refers to the current display (the display you have most recently
viewed using a DISPLAY or SET DISPLAY command).

%NEXTDISP Refers to the next display in the list after the current display (the
least recently viewed display).

%NEXTOUTPUT Refers to the next output display in the display list after the current
output display. An output display receives regular PCA output.

%NEXTPLOT Refers to the next plot display in the display list after the current
plot display. The current plot display receives output from PLOT,
TABULATE, and related commands.

%NEXTSOURCE Refers to the next source display in the display list after the current
source display. The current source display receives output from the
TYPE command.

%NEXTSCROLL Refers to the next scroll display in the display list after the current
scrolling display. The current scrolling display is the default display
for the SCROLL command and for the keypad scrolling keys.

PCA Reference Tables B–13

PCA Reference Tables
B.3 Screen Displays

Figure B–1 shows the Collector-defined keypad functions. Figure B–2 shows
the Analyzer-defined keypad functions. Both figures show default functions at
the top of each key, GOLD functions in the middle, and the BLUE functions at
the bottom.

Note

Most keypad keys are terminated, which means that you do not have to
press the Return or the Enter key before the command executes. Some
of the BLUE keys are not terminated, to allow you to enter additional
parameters to the command before pressing the Return or the Enter
key. Those commands are echoed on the terminal screen.

The Enter key has the same effect as the Return key. To cancel the GOLD or
the BLUE function, press the Reset (Period) key immediately after pressing
either of those keys.

Pressing Ctrl/W refreshes the screen. It has the same effect as the
DISPLAY/REFRESH command.

Figure B–3 shows the PCA-defined keypad functions for screen manipulation.

B–14 PCA Reference Tables

PCA Reference Tables
B.3 Screen Displays

Figure B–1 Collector-Defined Keypad Key Functions

Display
%Nextdisp at FS;

Select/Scroll %Curdisp

Blue

Blue

Blue

Gold

Gold

Gold

Reset

Reset

Reset

Help
Keypad Nocolor

Help
Keypad Gold

Help
Keypad Blue

Scroll/Up

Scroll/Top

Scroll/Up

Scroll/Down

Scroll/Bottom

Scroll/Down

Display
SRC at H1
Out at E567

Scroll/Left

Scroll/Left:255

Scroll/Left

Set
Mode Screen

Set
Mode Noscreen

Display
% Nextdisp

Set Key/
State=Default

Set Key/
State=Move

Scroll/Right

Scroll/Right:255

Scroll/Right

Select Scroll
% Nextscroll

Select Output
% Nextoutput

PF1 PF2 PF3 PF4

7 8 9

5 64

1 2 3

ENTER
0

,

.

Default

Gold

Blue

Default

Gold

Blue

Default

Gold

Blue

Default

Gold

Blue

Default

Gold

Blue

ZK−6133−GE

Display SRC at Q123
Out at E7

Select/Source SRC

GO

PCA Reference Tables B–15

PCA Reference Tables
B.3 Screen Displays

Figure B–2 Analyzer-Defined Keypad Key Functions

Display
%Nextdisp at FS;

Select/Scroll %Curdisp

Blue

Blue

Blue

Gold

Gold

Gold

Reset

Reset

Reset

Help
Keypad Nocolor

Help
Keypad Gold

Help
Keypad Blue

Scroll/Up

Scroll/Top

Scroll/Up

First

First Subtree

Scroll/Down

Scroll/Bottom

Scroll/Down

Display
SRC at H1
Out at E567

Returns Screen to
Default Screen Layout

Scroll/Left

Scroll/Left:255

Scroll/Left

Page Previous

Page 1

Set
Mode Screen

Set
Mode Noscreen

Display
% Nextdisp

Set Key/
State=Default

Set Key/
State=Move

Scroll/Right

Scroll/Right:255

Scroll/Right

Select Scroll
% Nextscroll

Select Output
% Nextoutput

Select Plot
% Nextplot

Page Next

Page Summary

Set ANC

PF1 PF2 PF3 PF4

7 8 9

5 64

1 2 3

ENTER
0

,

.

Default

Gold

Blue

Default

Gold

Blue

Default

Gold

Blue

Default

Gold

Blue

Default

Gold

Blue

1

ZK−6132−GE

1. Default screen layout: Display at Q123, Plot at Q123
Out at E7; Select/Scroll Plot;
Select/Source SRC

B–16 PCA Reference Tables

PCA Reference Tables
B.3 Screen Displays

Figure B–3 PCA-Defined Keypad Key Functions for Screen Manipulation

EXPAND STATE

EXPAND/UP

EXPAND/UP:5
EXPAND/UP:999

8

EXPAND/LEFT
EXPAND/LEFT:999

4 6

EXPAND/RIGHT
EXPAND/RIGHT:999

2

EXPAND/DOWN
EXPAND/DOWN:999
EXPAND/DOWN:5

6

MOVE/UP

MOVE/UP:5
MOVE/UP:999

8

MOVE/LEFT
MOVE/LEFT:999

4

MOVE/RIGHT:999
MOVE/RIGHT

6

MOVE/DOWN
MOVE/DOWN:999
MOVE/DOWN:5

2

MOVE STATE

ZK−6023−GE

CONTRACT STATE

SCROLL STATE

4

2

6

SCROLL/LEFT
SCROLL/LEFT:255

SCROLL/RIGHT
SCROLL/RIGHT:255

SCROLL/DOWN
SCROLL/BOTTOM

8

SCROLL/UP
SCROLL/TOP

8

EXPAND/UP:−1
EXPAND/UP:−999
EXPAND/UP:−5

EXPAND/LEFT:−1
EXPAND/LEFT:−999
EXPAND/LEFT:−10

EXPAND/RIGHT:−1
EXPAND/RIGHT:−999
EXPAND/RIGHT:−10

EXPAND/DOWN:−1

EXPAND/DOWN:−5
EXPAND/DOWN:−999

2

4

F17 F18 F19 F20

MOVE CONTRACT
(EXPAND −)

EXPAND
(EXPAND +)

DEFAULT
(SCROLL)

VT−100 Keyboard:

Type

SET KEY/STATE=DEFAULT
SET KEY/STATE=MOVE
SET KEY/STATE=EXPAND
SET KEY/STATE=CONTRACT

Keys 2,4,6,8

SCROLL
MOVE
EXPAND
CONTRACT

LK201 Keyboard:

Press

F17
F18
F19
F20

MOVE
SCROLL

EXPAND
CONTRACT

Keys 2,4,6,8

SCROLL/UP

SCROLL/LEFT SCROLL/RIGHT

SCROLL/DOWN

EXPAND/LEFT:5 EXPAND/RIGHT:5

MOVE/LEFT:5 MOVE/RIGHT:5

PCA Reference Tables B–17

C
Questions and Answers

This appendix contains commonly asked questions about PCA and their
answers.

1. Why is 80% of my program in P1 space? How do I get the wait time
reflected in code I can change?

When your program is waiting for a system service to complete, the
program counter points to a location in the system service vector in P1
space. Because waiting for an I/O operation to complete is the most
common form of system service wait, your program can appear to be
spending most of its time in P1 space.

If your program does a lot of terminal I/O, you should expect the program
to be I/O-bound and to appear to spend a lot of time in P1 space; the
terminal is a slow device. If your program primarily does disk or tape
I/O and appears to spend a lot of time in P1 space, investigate why the
program is I/O-bound. By reprogramming your program’s I/O to reduce the
I/O wait time, you may be able to speed up your program considerably.

To get the system service wait time reflected in the code of your own
program, gather stack PC values using the STACK_PC command in
the Collector, then issue the PLOT or TABULATE command with the
/MAIN_IMAGE qualifier to plot your data. This will charge the time
outside your image (including that spent in P1 space) to the actual location
within your image that caused the time to be spent.

2. How do I get the time spent in shareable images to be charged to
the parts of my program that used it?

Gather stack PC data in the Collector and use the /MAIN_IMAGE qualifier
with your PLOT command. This charges the time outside your image to
the PC within the image that caused it.

3. How do I get the time spent in a specific RTL routine to be charged
to the parts of my program that used it?

Gather stack PC data in the Collector, then issue the the PLOT command
with /MAIN_IMAGE = SHARE$RTL and /STACK = n qualifiers.

Questions and Answers C–1

Questions and Answers

4. How can I find the specific instructions within a line that are
taking the most time?

Use PLOT LINE module_name\%LINE nnn BY BYTE. Then, look at a
machine listing to correlate byte offsets from the beginning of the line to
the specific instructions.

5. How do I discard the time spent in terminal I/O?

Place an event marker before each terminal I/O statement and a different
event marker after the terminal I/O statement. Then use SET FILTER foo
TIME <> the_first_event_marker_name in the Analyzer. This discards all
the time spent waiting for terminal I/O. See Chapter 4 for an example of
this.

6. When linked with PCA, why does my program ACCVIO before
entering the Collector?

If the PCAC> prompt never appears, the Collector has probably not been
installed as a privileged image. Possibly, the system manager forgot to edit
the system startup file to include @SYS$STARTUP:PCA$STARTUP.COM.
If the PCAC> prompt does appear, see question 7.

7. Why does my program behave differently when running with PCA?

One of the following conditions probably exists:

1. Uninitialized stack variables

2. Dependence on memory above SP

3. Assumptions about memory allocation
Conditions 1 and 2 occur because PCA comes in as a handler and uses
the stack above the user program’s stack. Consequently, the stack is
manipulated in ways that are different than when run without PCA.
Although this is unlikely to happen, compiler code generation bugs have
caused this sort of behavior.

Condition 3 occurs because PCA now lives in the process memory space
and requests memory by means of SYS$EXPREG. PCA requests a large
amount of memory at initialization to minimize the altering of memory
allocation, but this still may happen.

PCA may have a bug where it is smashing the stack or the random user
memory. HP appreciates your input on this because these bugs are hard to
track down, and because they have been known to come and go based on
the order of modules in a linker options file.

HP recommends that you do the following:

C–2 Questions and Answers

Questions and Answers

• Issue the GO/NOCOLLECT command. If the program does not behave
as expected, the problem is your link with PCA.

• Try a run with simple PC sampling only. PC sampling is the least
likely mode for bugs. If your program does not behave as expected, the
problem probably lies with your program. If your program behaves as
expected, the problem probably lies with PCA.

If you still believe that PCA is changing the behavior of your program,
please submit an SPR with the following:

• A copy of the .EXE linked with PCA.

• A command procedure which reproduces the problem using the above
program.

• Anything else you think HP might find useful.

8. Why does it take so long to create a performance data file?

The Collector copies the portions of the DST it needs to the performance
data file. This can take some time for large programs. The DST is placed
in the performance data file to avoid confusion over which image contains
the DST for the data gathered. Also, PCA does not need all the information
in the DST and condenses it. This avoids the overhead of reading useless
information every time the file is used.

9. My application takes 10 days to compile. Is there a way I can avoid
compiling my whole application with /DEBUG?

Yes. PCA provides all functionality except annotated source listings and
codepath analysis, because all objects contain traceback information and
most of the DST information that PCA needs is there. Once you find which
modules are of interest, you can compile those with /DEBUG, then relink
the application and gather the data again.

10. PCA tells me a large amount of time is being spent at a call
instruction. Why? The call instruction should be a small part of
the time spent executing the routine.

First, check page faulting. Sometimes the faulting behavior of a program
causes a moderately called routine to get paged out just before it is called,
and the page fault is a disk access. If that is not the case, check for JSB
linkages to an RTL routine.

For performance reasons, some RTL routines use JSB linkages. This can
cause confusion for the user when the /MAIN_IMAGE qualifier is used.
This is especially true with PC sampling data, but can occur with any kind
of data for which you can gather stack PC data.

Questions and Answers C–3

Questions and Answers

Because a JSB linkage does not place a call frame on the stack, the return
address to the site of the call is lost to PCA. Consequently, the first return
address found by /MAIN_IMAGE is the site of the call to the routine that
called the RTL by means of a JSB linkage. As an example, suppose routine
MAIN called routine FOO, which in turn called the RTL by means of a
JSB linkage. Then, suppose that a PC sampling hit occurred in the RTL.
The PCs recorded are the actual PC when the hit occurred, the PC of the
call to FOO, and the PC of the call to MAIN. Thus, in the presence of the
/MAIN_IMAGE qualifier, the first PC within the image is the PC of the call
to FOO. Consequently, FOO’s call site is inflated by the number of data
points in the RTL that are in routines that have JSB linkages.

This method can yield useful information. If you compare the time with
/MAIN_IMAGE to the time without /MAIN_IMAGE, you can tell how much
time was spent in JSB linkage routines. You cannot, however, separate the
various JSB linkage routines. Note further that if the JSB routine is called
from the main program, the data points will be lost because there is no
caller of the main program.

11. Why does the Analyzer report 0.0% for a line and then output a full
line of stars, indicating that the line was covered?

Probably, the total number of data points is over 2000, and the percentage
is less than 0.05%. Therefore, rounding makes it 0.0%.

12. I have a utility routine that I have optimized as much as I can. I
need to know who is calling it and how often, so I can reduce the
number of calls to it. How do I get this information?

Use the PLOT command with the /MAIN_IMAGE = utility_routine
qualifier to obtain the following options:

• PLOT CALL_TREE BY CHAIN_ROUTINE lists all the call chains that
pass through utility_routine with the number of data points for each
call chain. See Section 3.3.7.

• PLOT/STACK = 1 PROGRAM BY ROUTINE lists all the callers of
utility_routine.

C–4 Questions and Answers

Questions and Answers

• If one particular caller of utility_routine is of interest, try the following:
SET FILTER filter_name CHAIN=(*,caller,utility_routine,*). This
assures that the data being viewed is only that whose chains have a
subchain caller, utility_routine.

• Many other combinations of /CUMULATIVE,/MAIN_IMAGE, /STACK
with various filters and nodespecs may be useful.

13. Why am I getting several coverage data points associated with my
routine declaration when I do COVERAGE BY CODEPATH?

Several languages generate prologue code at each routine entry to initialize
the language specific semantics. As far as PCA is concerned, code is code
and deserves code path analysis. This environment is usually set up by a
CALLS or JSB to an RTL routine. PCA considers CALLS, CALLG, and
JSB to be transfers of control, because control does not in principle have to
come back, and places a BPT in the instruction following.

14. Why are hexadecimal numbers showing up in the CALL_TREE
plot?

The Analyzer was not able to symbolize the return address it found in the
call stack. If I/O services or services data is being gathered, these may be
addresses in the relocated system service vector.

15. How can I avoid all the source header information and get right to
the most interesting line?

Use the traverse commands, NEXT, FIRST, PREVIOUS, CURRENT.

16. How can I easily compare different kinds of data?

Use the INCLUDE command, which uses a subset of PLOT qualifiers and
parameters.

17. The Analyzer is running out of virtual memory. What do I do?

Raise the appropriate quotas, limit the number of displays, and limit the
memory used by displays (use /SIZE=n).

Limit the size of your plots with the following methods:

• Use limiting nodespecs. For example, if PROGRAM_ADDRESS BY
LINE does not work, try MODULE foo BY LINE, or ROUTINE fee BY
LINE.

• Use the traverse commands after issuing PLOT/your_qualifiers
PROGRAM_ADDRESS BY MODULE.

• Use the /NOZEROS, /MINIMUM, /MAXIMUM qualifiers.

Questions and Answers C–5

Questions and Answers

• Use filters with CALL_TREE nodespecs to reduce the number of call
chains.

• Do not use the DECwindows interface.

18. The Collector is running out of virtual memory. What do I do?

If you are doing coverage or counter analysis, limit the number of
breakpoint settings by using either MODULE BY LINE or CODEPATH
node specifications instead of using PROGRAM BY LINE or do not use the
DECwindows interface. Then do several collection runs to gather the data.

19. Why do some plots execute more quickly than others?

Some PLOT commands execute more quickly than others because PCA
uses all available information from the previous plot to produce the
requested one. For example, if you enter PLOT PROGRAM BY LINE
and then enter PLOT/DESCENDING, PCA only sorts the previous plot.
However, if you use a different nodespec, such as PLOT ROUTINE foo$bar
BY CODEPATH, then PCA must rebuild its internal tables and read the
data again, which takes more time. In addition, the number of filters and
buckets you use affects the time it takes to build a plot. This is because
filters affect the amount of data the Analyzer looks at, and because all
buckets must be searched for each data point.

20. Why don’t I see all my subroutine calls in a CALL_TREE plot?

It may be that you have a JSB linkage. See question 7.

21. Why do I get bad offsets when plotting MACRO modules by byte?

When plotting MACRO modules by byte, the offset is actually from the
beginning of the module, including the data psects. You get bad offsets
because the linker moves the psects around based on the psect attributes.
Thus, the offsets you get may have no relationship to any listing you may
have. However, if you use PLOT ROUTINE foo BY BYTE, then the offsets
are from the beginning of the routine. (This only works if you have an
.ENTRY foo . . . directive in your program.)

22. Can PCA measure shareable images activated ‘‘on the fly’’ with
LIB$FIND_IMAGE_SYMBOL?

Yes, if you relink against the image you want to activate. PCA uses a
structure built by the image activator to find all the shareable image
information it needs. By relinking the image, the image activator knows
about the image and LIB$FIND_IMAGE_SYMBOL will work.

C–6 Questions and Answers

Questions and Answers

23. Why do I get an undefined symbol error message when I use the
hexadecimal number FF0?

PCA considers FF0 an identifier unless you precede it with a zero. Any
hexadecimal number with the digits A through F must be preceded by a
zero to be correctly interpreted by PCA.

24. Why do most of my PC samples land on instructions immediately
after a time-consuming hardware instruction rather than the
hardware instruction itself?

ASTs cannot be delivered during a hardware instruction. Therefore, when
the AST fires to collect the PC sample, it is most likely to fire right after
the time-consuming instruction. This behavior is apparent in MACRO.

Questions and Answers C–7

Index

A
Acceptable noncoverage, 3–40

example, 4–27
Access violations

occuring before entering the Collector,
C–2

Ada tasking data, 1–2
Addresses

hexadecimal, 1–11
Analyzer

appending output, 1–16
command procedures, 3–43
data file selection, 1–3
data specification, 1–4
default plot, 1–9
defaults, 1–9
description of, 1–1, 3–1
editing source code, 3–42
exiting, 1–16
filing output, 1–15
filter restrictions, 3–7
interpreting summary page

for multiple data-kinds, 1–12
for single data-kind, 1–10

invoking, 1–8, 3–2
logical names, 3–43, B–5
node specifications, 3–6, 3–26
operations, 1–3
overview, 3–1
printing output, 1–15
processing data, 1–8
sample session, 1–8 to 1–16

Analyzer-defined keypad functions, B–14
Analyzer node specifications

See Node specifications
Analyzer node specification summary, B–9
ANC

See Acceptable noncoverage
APPEND (Analyzer command), 1–9, 1–16
Appending output

Analyzer, 1–15
AST (asynchronous system trap)

See Asynchronous system trap
Asynchronous system trap (AST), 2–5

B
Batch mode

using PCA in, 1–1
Breakpoint, 2–8

execution of, 2–13
Buckets

defined, 1–9
selection qualifiers, 3–23
specifying a set of, 3–11
specifying bytes

example, 3–15
specifying codepaths

example, 3–14
specifying file key, 3–17
specifying file names, 3–17
specifying I/O system services, 3–18
specifying individual, 3–10
specifying lines

examples, 3–12 to 3–13
specifying modules and routines

Index–1

Buckets
specifying modules and routines (cont’d)

examples, 3–10 to 3–11
specifying record size, 3–19
specifying system services, 3–16
specifying task, 3–21
specifying time, 3–21

BY CODEPATH clause, 2–9
BY CODEPATH node specification, 3–14
BY LINE node specification, 3–12
Bytes

specifying, 3–15

C
Call chain, 3–24

filtering example, 4–11
sorting example, 4–11

Call instructions
time spent in, C–3

Call Stack, 2–18, 2–19
collecting PC values from, 2–18

Call stack analysis, 3–26
example, 4–6

Call tree plot, 3–24
example, 3–25, 3–26

CALL_TREE plot
appearance of subroutine calls in, C–6
hexadecimal numbers in, C–5

CANCEL ANC (Analyzer command), 3–41
CANCEL DISPLAY (PCA command), 4–40
CANCEL FILTER (Analyzer command),

3–7, 3–9, 4–37
CANCEL SOURCE (PCA command), 4–45
CANCEL STACK_PCS (PCA command),

2–19
CANCEL WINDOW (PCA command), 4–41
Chain name, 3–7
Codepath, 2–9

specifying, 3–14
Collection run

naming, 2–20
Collector

command procedures, 2–21
control selection, 1–2

Collector (cont’d)
description of, 1–1
exiting, 1–8
gathering data, 1–6
image selection, 1–2
initialization file, 2–22
invoking, 1–6, 2–2

with image linked for debugging, 2–2
logical names, 2–22, B–2
measurement selection, 1–2
node specification syntax, B–2
non-RMS services measured by I/O

services, B–1
output to data file, 1–3
overview of, 2–1
prompt, 1–7
Record Management Services measured

by, B–1
sample session, 1–6 to 1–8
specifying the performance data file, 2–3
starting, 2–21
stopping, 2–21
stopping output, 2–21
use of memory, C–6

Collector-defined keypad functions, B–14
Collector node specifications

See Node specifications
Comma list, 3–26
Command procedures, 2–21, 3–43

defined, 2–21
initialization file, 3–43
use of EXIT command in, 2–21

/COMMAND qualifier, 1–8
Confidence intervals

interpreting, 3–31
Control selection, 1–2
Counters data, 1–2
COVERAGE BY CODEPATH, C–5
Coverage data, 1–2

collecting from multiple test runs, 2–11
determining acceptable noncoverage,

4–27
test, 2–8

Index–2

CPU, 2–13
CPU overhead

effects of execution counts, 2–13
CPU sampling data, 1–2

analyzing, 3–3
collecting, 2–7
example of gathering and analyzing, 4–3
performance data, 2–7

CPU time
program counter sampling data, 2–6

Ctrl/C, 2–21
Ctrl/Y, 2–21
Ctrl/Z, 1–8, 2–21
%CURDISP pseudo-display name, B–13
Currently active plot, 1–15

D
Data

different kinds
comparing, C–5

Data collection
specifying, 2–3

Data distortion
PC sampling, 2–5

Data file
appending data to, 2–3
selection of, 1–7
specifying, 2–3

Data kind, 1–4
collecting stack PCs by, 2–15
specifying, 1–7, 3–3

Data-kind qualifiers, 3–3, B–6
with SET commands, B–8

Data specification
Analyzer, 1–4

DEBUG
partial compilations, C–3

Debug Symbol Table (DST), 3–10
creation, 1–6

Default
keypad functions, B–14
screen displays, 4–41

Default editor, 3–41
Default plot

creating of, 1–9
DEFINE/KEY (PCA command), 4–49

example, 4–49
Delays

while creating a performance data file,
C–3

DELETE/KEY (PCA command), 4–49
Design qualifiers, 3–29
Directory search list

setting of, 4–45
Display

defined, 4–48
defining windows, 4–41
expanding or contracting, 4–47
extracting, 4–48
moving, 4–47
OUT, 4–41, 4–44
PLOT, 4–41
PROMPT, 4–41
saving, 4–48
scrolling, 4–46
selecting, 4–43
SRC, 4–41, 4–44
user-defined, 4–42
viewing, 4–44

Domain
file key, 3–17
file name, 3–17
file virtual block number, 3–17
I/O system services domain, 3–18
physical read count domain, 3–18
physical write count domain, 3–18
record size domain, 3–19
total physical I/O, 3–18
using nonaddress, 3–16

Domains, 1–4
INSTRUCTION, 5–5
VINSTRUCTIONS, 5–4
VLENGTH, 5–4, 5–6
VMASK, 5–4, 5–6
VOPCODE, 5–4
VOPERATIONS, 5–4, 5–7
VREGISTERS, 5–4

Index–3

Domains (cont’d)
VSTRIDE, 5–4, 5–7

DST
See Debug Symbol Table

E
EDIT (Analyzer command), 3–42

example, 4–5
Editor, 3–41
Event markers

example, 4–21
inserting, 2–16

Events, 3–7
Events data, 1–2

collecting, 2–16
EXCLUDE (Analyzer command), 3–33

examples, 3–33 to 3–37
Execution count data

analyzing, 3–3
collecting, 2–13

Execution time
of plots, C–6
reducing, 4–1

EXIT (PCA command), 1–8, 2–21
EXIT command

in command procedures, 2–21
Exiting

Analyzer, 1–16
Collector, 1–8

EXPAND (PCA command), 4–47
EXTRACT (PCA command), 4–48

F
FILE (Analyzer command), 1–9, 1–15, 3–39
File key domain, 3–17
File name

I/O data kind, 1–4
File name domain, 3–17
@file-spec (PCA command), 2–21
File virtual block number domain, 3–17
Filing output

Analyzer, 1–15

Filter
canceling, 3–7
coverage data, 3–6
performance data, 2–16, 3–6
restrictions, 3–7
setting, 3–7
specifying multiple, 3–7
using stack PCs, 3–8
with /CUMULATIVE, 3–8
with /MAIN_IMAGE, 3–8
with chain name, 3–7
with events, 3–7
with run names, 3–7

Filter definition line, 1–12
Filters, 1–4
Filter specification

by data kind, B–11
FIND (Analyzer command), 1–9, 3–40

G
GO (Collector command), 1–7, 2–21

H
Header information

in sources
avoiding, C–5

HELP (PCA command), 1–1
Hexadecimal addresses, 1–11
Hexadecimal numbers

error inputting, C–7
in CALL_TREE plot, C–5

Histograms
See PLOT
appending, 1–15
discrepancies in, C–4
filling, 3–29
producing, 1–8
scaling, 3–29
sorting, 3–16

Index–4

I
I/O data kind, 1–4

analyzing, 3–3
collecting, 2–15, 2–18
file name, 1–4
I/O service name, 1–4
PC of I/O call, 1–4
record size, 1–4
virtual block number, 1–4

I/O service calls, 1–2
I/O services data

tabulating against call chain, 4–10
I/O services wait time

interpreting, 2–6
with PC sampling data, 2–6

I/O system services domain, 3–18
Image selection, 1–2
Images linked for debugging

gathering data from, 2–2
logical name, 2–2

INCLUDE (Analyzer command), 3–33
examples, 3–33 to 3–37
use with multiple data-kind plots, 4–16

Initialization file (Analyzer), 3–43
Initialization file (Collector), 2–22
Input/Output data

See I/O data kind
INSTRUCTION domain, 5–5
Instructions

within a line
measuring performance of, C–2

Invoking
Analyzer, 1–8, 3–2
Collector, 1–6, 2–2
PCA screen mode, 4–40

K
Key bindings

default for traverse commands, B–13
Key functions

Analyzer-defined, B–16
Collector-defined, B–14

Key functions (cont’d)
PCA-defined, B–17

Keypad
key functions, 4–48
predefined keys, 4–49

Keypad functions
Analyzer-defined, B–14
Collector-defined, B–14
PCA-defined, B–14, B–17

L
Language-Sensitive Editor (LSE), 3–41
Language setting, 2–20
Large applications

compiling partly without DEBUG, C–3
LIB$DEBUG logical name, 2–2
LIB$FIND_IMAGE_SYMBOL

measuring shareable images dynamically,
C–6

Lines
program, 2–10
specifying, 3–11

LINK command, 1–6
LIST (Analyzer command), 3–39, 4–40
Listing system services CPU data, 3–39
Logical name (Analyzer), 3–43

PCAA$DECW$DISPLAY, B–5
PCAA$INIT, B–5
PCAA$INPUT, B–5
PCAA$OUTPUT, B–5
SYS$LP_LINES, B–6
SYS$PRINT, B–6

Logical name (Collector)
PCA$DATAFILE, 2–22, B–2
PCA$INHIBIT_MSG, 2–22, B–3
PCA$RUN_NAME, 2–22, B–3
PCAC$DECW$DISPLAY, 2–22, B–3
PCAC$INIT, 2–22, B–3
PCAC$INPUT, 2–22, B–3
PCAC$OUTPUT, 2–22, B–4

Logical names
Analyzer, B–5
Collector, B–2

Index–5

LSE
See Language-Sensitive Editor

M
MACRO

incorrect offsets in, C–6
Main image

using the program unit, 3–28
Measurement selection

Collector, 1–2
Memory

virtual
running out of, C–5

MERGE (Analyzer command), 2–12, 3–37,
3–40

parallel collections, 3–38
Modules, 2–10
MOVE (PCA command), 4–47
MSYNC

vector instruction, 5–5, 5–9
Multiple data-kind plot

example, 4–12
Multiple data kinds, 3–32

examples, 3–33 to 3–37

N
NEXT (Analyzer command)

example, 4–4
%NEXTDISP pseudo-display name, B–13
%NEXTOUTPUT pseudo-display name,

B–13
%NEXTPLOT pseudo-display name, B–13
%NEXTSCROLL pseudo-display name,

B–13
%NEXTSOURCE pseudo-display name,

B–13
Node specification

Analyzer summary, B–9
Collector parameter syntax of, B–2

Node specifications (Analyzer), 3–6, 3–26
bytes, 3–15
CALL_TREE, 3–24

example, 3–25, 3–26

Node specifications (Analyzer) (cont’d)
codepaths, 3–14
comparison between Collector and

Analyzer, 3–10
examples, 3–4 to 3–6
explained, 3–6
file key, 3–17
file names, 3–17
I/O system services, 3–18
inheriting, 3–16
lines, 3–12
modules, 3–4
modules and routines, 3–10
omitting, 3–16
record size, 3–19
routine, 3–3
system services, 3–16
task, 3–21
time, 3–21
using, 3–6

Node specifications (Collector), 2–13
codepaths, 2–9
defined, 2–8
lines, 2–10
modules, 2–10
path names, 2–11
routines, 2–10
syntax summary, 2–8
using, 2–8

Node specifications(Collector), 2–8
Nodespecs

See node specifications, 2–8
Nonaddress domains, 3–16 to 3–22
Non-RMS services

measured by I/O services, B–1
Nonscreen mode, 4–44
/NOOPTIMIZE qualifier

use with test coverage, 2–3, 2–10, 2–12
/NOSTACK_PCS qualifier, 2–19

Index–6

O
Offsets

bad
in MACRO modules, C–6

Online help, 1–1
OUT display, 4–43
Output

appending Analyzer, 1–15
stopping Collector, 2–21

Overview, 1–1
of Analyzer, 3–1
of Collector, 2–1
PCA, 1–1

P
P0 space, 1–11
P1 space, 1–11, 2–6

programs spending a lot of time in, C–1
PAGE (Analyzer command), 1–9
Page fault data, 1–2, 2–14

analyzing, 3–3
collecting, 2–14
gathering with other data, 2–14
interpreting, 2–7
with PC sampling, 2–19

Pasteboard
defined, 4–40

Path-name qualification, 2–11
PCA

components of, 1–1
running in batch, 1–1

PCA$DATAFILE logical name, 2–22
PCA$DATAFILE logical name (Collector),

B–2
PCA$DECW$DISPLAY logical name, 3–43
PCA$INHIBIT_MSG logical name, 2–22
PCA$INHIBIT_MSG logical name (Collector),

B–3
PCA$OBJ, 1–6

program behavior when linked with, C–2

PCA$RUN_NAME logical name, 2–22
PCA$RUN_NAME logical name (Collector),

B–3
PCAA$DECW$DISPLAY logical name

(Analyzer), B–5
PCAA$INIT, 3–43
PCAA$INIT logical name, 3–43
PCAA$INIT logical name (Analyzer), B–5
PCAA$INPUT logical name, 3–43
PCAA$INPUT logical name (Analyzer), B–5
PCAA$OUTPUT logical name, 3–43
PCAA$OUTPUT logical name (Analyzer),

B–5
PCAC$DECW$DISPLAY logical name, 2–22
PCAC$DECW$DISPLAY logical name

(Collector), B–3
PCAC$INIT, 2–22
PCAC$INIT logical name, 2–22
PCAC$INIT logical name (Collector), B–3
PCAC$INPUT logical name, 2–22
PCAC$INPUT logical name (Collector), B–3
PCAC$OUTPUT logical name, 2–22
PCAC$OUTPUT logical name (Collector),

B–4
PCA command, 1–8, 3–2
PCA-defined keypad functions, B–14, B–17
PC sampling

distortions in measurement, C–7
example of collecting and analyzing, 4–1

PC sampling data, 1–2
analyzing, 3–3
collecting, 2–5
collecting with other data, 2–7
CPU time, 2–7
distortion of, 2–5
histogram example, 3–4
page fault, 2–19
system service wait time with, 2–6
system time, 2–4
table example, 3–5

PC sampling from SPM data, 3–38
PC stack values

collecting, 2–18

Index–7

Performance data
analysis of, 3–3
analyzing, 3–3
CPU sampling, 2–7
execution counts, 2–13
filtering, 2–16, 3–6
gathering, 1–7
input/output, 2–15
kinds to collect, 1–2, 2–3
listing, 3–39
merging, 3–37
page fault, 2–14
PC sampling, 2–5
processing, 1–8
system services, 2–14
tasking, 2–15
test coverage, 2–8

Performance data file, 2–3
time spent creating, C–3

Performance Data File
specifying, 2–3

Performance problems
solving, examples, 4–1

Physical read count domain, 3–18
Physical write count domain, 3–18
Plot

interpreting summary page, 1–10
PLOT (Analyzer command), 3–2 to 3–32

bucket selection qualifiers, 3–23
currently active plot, 1–15
data-kind qualifiers, 3–3
defining buckets, 3–3
design qualifiers, 3–25, 3–29
histograms, 3–2
multiple data kinds, 3–32

examples, 3–33 to 3–37
node specifications, 3–6 to 3–26
PC sampling, example, 3–6
program address selection qualifiers,

3–27
sorting qualifiers, 3–22
task qualifiers, 3–30
vector instructions, 5–5

Plots
execution time, C–6

PRINT (Analyzer command), 1–9, 1–15,
3–39

Printing
raw performance data, 3–39

Printing output
Analyzer, 1–15

Program
compiling, 1–6
linking, 1–6
running, 1–6

Program address selection qualifiers, 3–26
Program address space, 1–2
Program counter data

I/O data kind, 1–4
Program counter sampling data, 1–2

See PC sampling
Program counter stack values

See PC stack values
collecting by data kind, 2–19

Program counter values, 2–5
Program execution counts, 1–2
Program lines, 2–10
Program unit

as main image, 3–27
PROMPT display, 4–47, 4–48
Pseudo display, 4–41
Pseudo-display name

%CURDISP, B–13
for Analyzer screen mode, B–13
%NEXTDISP, B–13
%NEXTOUTPUT, B–13
%NEXTPLOT, B–13
%NEXTSCROLL, B–13
%NEXTSOURCE, B–13

R
Record Management Services (RMS), 2–15

measured by Collector, B–1
Record size

I/O data kind, 1–4

Index–8

Record size domain, 3–19
Reducing output, 3–22
RMS

See Record Management Services
Root node, 3–19
Routine nodes, 3–11
Routines, 2–10, 3–10 to 3–11
RUN command, 1–6
Run names, 3–7, 3–38, 3–40
Run-Time Library routines

charging to code that uses them, C–1

S
Sample programs

FORTRAN examples, A–1 to A–11
Sample session

Analyzer, 1–8 to 1–16
Collector, 1–6 to 1–8

SAVE (PCA command), 4–48
Scalar PC sampling data

gathering, 5–3
Scalar samples

collecting, 5–3
Screen displays

creating your own, 4–41
defaults, 4–41
OUT, 4–41
PLOT, 4–41
pseudo-display, 4–41
SRC, 4–41

Screen mode, 4–39
default displays, 4–41
defining keys, 4–49
defining windows, 4–41
displays, 4–40, 4–41
expanding or contracting displays, 4–47
extracting displays, 4–48
keypad functions, 4–48
moving displays, 4–47
predefined windows, 4–41
pseudo-display names, 4–42, B–13
saving displays, 4–48
scrolling displays, 4–46
Selecting output displays, 4–43

Screen mode (cont’d)
terminals, 4–40
user-defined, 4–42
windows, 4–40, 4–42

SCROLL (PCA command), 4–46
SEARCH (PCA command), 2–11, 4–40, 4–44
SELECT (PCA command), 4–42, 4–43
Selection qualifiers

bucket, 3–23
SET ANC (Analyzer command), 3–40, 4–29

nodespecs for, 3–41
SET commands

relationship to Analyzer data-kind
qualifiers, B–8

SET COUNTERS (Collector command),
2–13

specifications for, 2–13
SET COVERAGE (Collector command), 2–8
SET CPU_SAMPLING (Collector command),

2–7
SET DATAFILE (PCA command), 1–7, 2–3,

2–11, 2–20, 2–24
SET DISPLAY (PCA command), 4–42

example, 4–42
SET EDITOR (Analyzer command), 3–41,

3–42
SET EVENT (Collector command), 2–16,

3–7
SET FILTER (Analyzer command)

examples, 3–7
SET IO_SERVICES (Collector command),

2–15
SET IO_SERVICES command (Collector)

non-RMS services measured by, B–1
SET LANGUAGE (Collector command),

2–20
SET MODE NOSCREEN (PCA command),

4–40
SET MODE SCREEN (PCA command),

4–40
SET PAGE_FAULTS (Collector command),

2–14

Index–9

SET PC_SAMPLING (Collector command),
2–4

SET RUN_NAME (Collector command),
2–20, 3–39

SET SEARCH (PCA command), 4–45
SET SERVICES (Collector command), 2–14
SET SOURCE (PCA command), 4–45

example, 4–46
SET STACK_PCS (Collector command),

2–18
SET TASKING (Collector command), 2–15
SET VCOUNTERS (Collector command),

2–17, 2–18, 5–3
SET VCPU_SAMPLING (Collector

command), 2–17, 5–2
SET VERIFY (PCA command), 2–21
SET VPC_SAMPLING (Collector command),

2–17, 5–2
Shareable images

building user-written, 2–23
charging to programs that use it, C–1
gathering data from, 2–22
measuring dynamically activated images,

C–6
name, 2–22

/SHAREABLE qualifier, 2–22
SHOW (PCA command), 4–40
SHOW ANC (Analyzer command), 3–41,

4–30
SHOW DISPLAY (PCA command), 4–40
SHOW FILTER (Analyzer command), 3–9
SHOW KEY (PCA command)

example, 4–49
SHOW RUN_DESCRIPTION (Analyzer

command), 3–39
SHOW RUN_NAME (Collector command),

2–20
SHOW SOURCE (PCA command), 4–45
SHOW WINDOW (PCA command), 4–41
Software Performance Monitor

files, 3–37
Sorting options, 3–26
Sorting qualifiers, 3–22

Source code
display qualifiers, 3–23
editing from within Analyzer, 3–41, 3–42

Source header information
avoiding, C–5

SPM
See Software Performance Monitor

SPM data, 3–38
SRC display, 4–43
Stack PC values, 2–19, 3–24

collecting, 2–18
/STACK_PCS qualifier, 2–19
Stride

defined, 5–7
Structure of the view, 1–4
Summary page

for multiple data kinds, 1–12
for single data-kind, 1–10

SYNC
vector instruction, 5–5, 5–9

Syntax summary
node specifications, 2–8

SYS$LP_LINES, 3–43
SYS$LP_LINES logical name (Analyzer),

B–6
SYS$PRINT, 3–43
SYS$PRINT logical name (Analyzer), B–6
SYSTEM$SERVICE, 3–27
SYSTEM$SPACE, 3–27
System services

SYS$FAO, 1–11
System services data, 1–2

analyzing, 3–3
collecting, 2–14

System services domain, 3–19
specifying, 3–17

System service vector, 1–11
System service wait time

interpreting, 2–6
with PC sampling data, 2–6

System space, 1–11
System time, 1–2

program counter sampling data, 2–4

Index–10

T
Tables

generating, 1–8, 3–3
sorting, 3–16

TABULATE (Analyzer command), 3–32
interpreting confidence interval, 3–31
multiple data kinds, 3–32
See PLOT, 3–2
tables, 3–2

TABULATE command
use with currently active plot, 1–15

Task domains, 3–21
Tasking data

Ada, 1–2
analyzing, 3–21, 3–30
collecting, 2–15
example of collecting and analyzing, 4–34

Terminal I/O
filtering from coverage, C–2

Test coverage data, 1–2
analyzing, 3–3
collecting, 2–8
gathering without optimization, 2–12

Time domain, 3–21
Total physical I/O count domain, 3–18
Traverse command

use with default plot, 1–9
Traverse commands

key bindings for, B–13
TYPE (PCA command), 2–11, 4–40, 4–44

example, 4–44

U
UNDEFINE/KEY (PCA command), 4–49

V
VAX Call Stack

example of analysis, 4–6
VAX Vector Instruction Emulator Facility

using PCA on VVIEF applications, 5–1

Vector counters data, 1–3
Vector CPU sampling data, 1–3
Vector CPU time data, 2–17
Vector instruction data

collecting, 2–17
Vector instructions

finding in program, 5–5
MSYNC, 5–9
SYNC, 5–9
VLD, 5–9

Vector Length Register (VLR), 5–4, 5–6
Vector Mask Register (VMR), 5–4
Vector processing

analyzing data, 5–4
Vector processor

counting instructions, 5–3
finding if optimally used, 5–6
plotting register usage of, 5–9
showing usage of, 5–7

Vector program counter sampling data, 1–3,
2–17

Vector registers
distribution of, 5–7
showing usage of, 5–9

Vectors
counting instructions, 5–3
CPU sampling, 5–2
PC sampling, 5–2
using with PCA, 5–1

Vector samples
collecting, 5–3

View
altering of, 1–5
defined, 1–4
structure of, 1–4

Viewing Analyzer output, 1–5
annotated source listings, 1–5
histograms, 1–5
tree organization, 1–5

View selection
Analyzer, 1–5

VINSTRUCTIONS domain, 5–4
Virtual memory

limitations of, C–5

Index–11

Virtual-process time, 1–2
VLD

vector instruction, 5–9
VLENGTH domain, 5–4, 5–6
VLR

See Vector Length Register
VMASK domain, 5–4, 5–6
VMR

See Vector Mask Register
VOPCODE domain, 5–4

VOPERATIONS domain, 5–4, 5–7
VREGISTERS domain, 5–4
VSTRIDE domain, 5–4, 5–7
VVIEF

PC sampling in, 5–3
using PCA on VVIEF applications, 5–1

W
Windows, 4–41

defined, 4–40

Index–12

