
HP DECset for OpenVMS
Using HP DECset for OpenVMS
Systems
Order Number: AA–PQ9ND–TE

July 2005

This guide describes how to use the Software Engineering Tools (HP
DECset) with other OpenVMS facilities to create an effective software
development environment on OpenVMS systems.

Revision/Update Information: This is a revised manual.

Operating System Version: OpenVMS I64 Version 8.2

OpenVMS Alpha Version 7.3–2 or 8.2

OpenVMS VAX Version 7.3

Windowing System Version: DECwindows Motif for OpenVMS I64
Version 1.5

DECwindows Motif for OpenVMS Alpha
Version 1.3–1 or 1.5

DECwindows Motif for OpenVMS VAX
Version 1.2–6

Software Version: HP DECset Version 12.7 for OpenVMS

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendors standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a US trademark of Sun Microsystems, Inc.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.
Printed in the US

This document is available on CDROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xiii

Part I HP DECset and Managing the Project Environment

1 HP DECset Overview

1.1 HP DECset Product Set . 1–1
1.1.1 HP Code Management System . 1–2
1.1.1.1 Features of CMS . 1–2
1.1.1.2 CMS Libraries . 1–3
1.1.1.3 Groups and Classes . 1–3
1.1.2 HP Language-Sensitive Editor . 1–4
1.1.3 HP Source Code Analyzer . 1–5
1.1.4 HP Module Management System . 1–7
1.1.5 HP DIGITAL Test Manager . 1–8
1.1.6 HP Performance and Coverage Analyzer 1–9
1.1.6.1 Collector Features . 1–9
1.1.6.2 Analyzer Features . 1–10
1.1.6.3 Additional PCA Features . 1–10
1.1.7 Program Design Facility . 1–11
1.2 HP DECset and the OpenVMS Programming Environment 1–12
1.2.1 Using HP DECset to Manage the Software Life Cycle 1–12
1.2.2 Programming Languages . 1–15
1.2.3 Integration Features of the HP DECset Tools 1–15
1.2.3.1 CMS Integration . 1–16
1.2.3.2 LSE Integration . 1–17
1.2.3.3 LSE/SCA Integration . 1–17
1.2.3.4 MMS Integration . 1–18
1.2.3.5 HP DIGITAL Test Manager Integration 1–18
1.2.3.6 PCA Integration . 1–18
1.3 Additional OpenVMS Tools and Utilities 1–19

iii

2 DECset Environment Manager

2.1 Environment Manager Basic Concepts . 2–1
2.1.1 Context . 2–1
2.1.2 Context Hierarchy . 2–2
2.1.3 Context File . 2–2
2.1.4 Context Database . 2–3
2.2 DECset Tool Selection . 2–4
2.3 DECset Context Window . 2–5
2.3.1 Menu Bar . 2–7
2.3.1.1 File Menu . 2–7
2.3.1.2 View Menu . 2–8
2.3.1.3 Options Menu . 2–8
2.3.1.4 Help Menu . 2–9
2.3.1.5 Settings Menu . 2–10
2.3.2 Context Specification Area . 2–23
2.3.3 Dialog Buttons Area . 2–24
2.4 Command-Line Interface . 2–25
2.4.1 DECSET SET Command . 2–25
2.4.2 DECSET SHOW Command . 2–26
2.5 Disabling Environment Manager . 2–26

3 Organizing Files, Libraries, and Directories

3.1 Setting Up User Accounts and Directory Protection 3–1
3.2 Setting Up a Project Directory Structure 3–2
3.2.1 Setting Up the Initial Project Directory Structure 3–3
3.2.1.1 Planning CMS Libraries . 3–5
3.2.1.2 Considerations for Large Projects 3–6
3.2.2 Setting Up the Build Directory . 3–7
3.2.2.1 Work Area for Carrying Out Your Builds 3–9
3.2.2.2 SCA Library System . 3–9
3.2.2.3 Reference Copy Area . 3–13
3.2.2.4 MMS Description File . 3–14
3.2.3 Setting Up the HP DIGITAL Test Manager Storage Area

Directory . 3–16

iv

4 Managing a Project in the OpenVMS Environment

4.1 Project Standards . 4–2
4.1.1 Design Standards . 4–2
4.1.2 Coding Standards . 4–2
4.1.3 Using LSE Templates . 4–3
4.1.4 Testing Standards . 4–4
4.1.5 Performance Standards . 4–5
4.2 Using Logical Names . 4–5
4.3 Communications Management and Status Reporting 4–7
4.3.1 Using MAIL . 4–7
4.3.2 Using DEC Notes . 4–7
4.3.3 Using DECplan . 4–8
4.3.4 Documentation Reviews . 4–11
4.4 Extending the Library Structure . 4–11
4.5 Establishing Project and Personal Build Procedures 4–11
4.5.1 Individual Build Procedures . 4–12
4.5.2 Project Build Procedures . 4–12
4.5.3 Access to SCA Libraries . 4–13
4.5.4 Access to Source Files . 4–16
4.6 Customizing the LSE Environment . 4–18
4.6.1 Environment File for LSE . 4–18
4.6.2 Redefining Tokens, Placeholders, and Language

Definitions . 4–19
4.6.3 Saving Modified Definitions . 4–20
4.7 Setting Up Tests . 4–22
4.8 Analyzing Performance and Coverage . 4–24
4.9 Tracking Reports During Field Testing . 4–25
4.10 Final Project Steps . 4–28
4.10.1 Prepare Final Build . 4–28
4.10.2 Permanent Storage . 4–29

Part II HP DECset Case Study

5 Example Project Setup

5.1 Setting Up Directories . 5–1
5.2 Creating Directories and Libraries . 5–3
5.3 Setting Up an OpenVMS ACL-Based Security Mechanism 5–5
5.4 Setting Defaults with a LOGIN.COM File 5–6

v

6 Using CMS to Maintain Project Source Files

6.1 Using CMS Access Control Lists . 6–1
6.1.1 Example of a CMS ACL Scheme . 6–2
6.1.1.1 Specifying ACLs in the CMS ACL Dialog Box 6–4
6.1.1.2 Granting Control Access to Library Elements 6–4
6.1.1.3 Specifying a Default ACE for Library Elements of

project_source . 6–6
6.1.1.4 Granting Access for Holders of project_source_read 6–6
6.1.1.5 Copying CMS ACLs to Existing Objects 6–6
6.1.2 Placing ACLs on CMS Commands . 6–7
6.1.3 Using Event Notification ACEs . 6–7
6.1.4 Access During Normal Development 6–7
6.1.5 Access when Preparing for a System Build 6–8
6.2 Maintaining CMS Source Libraries . 6–8
6.2.1 Storing Files in a CMS Library . 6–9
6.2.2 Modifying Elements . 6–11
6.2.3 Concurrent Access . 6–11
6.2.4 Creating Classes . 6–13
6.2.5 Retrieving Class Contents and Preparing a Build 6–15

7 Writing, Compiling, and Debugging Source Code

7.1 Finding the Problem . 7–3
7.2 Localizing the Problem . 7–7
7.3 Fixing the Problem . 7–12
7.4 Compiling and Reviewing Source Code . 7–15
7.5 Building the Program . 7–17

8 Designing Programs with the Program Design Facility

8.1 Overview . 8–1
8.1.1 Entering Pseudocode . 8–2
8.1.2 Refining the Design . 8–3
8.1.3 Using Tagged Comments . 8–4
8.1.4 Compiler Support . 8–6
8.1.5 Loading Design Information into an SCA Library 8–6
8.1.6 Generating Design Reports . 8–6
8.1.7 Code Elision . 8–7
8.2 Designing the COPY_FILE Module . 8–7
8.2.1 Beginning the Design for COPY_FILE 8–8
8.2.2 Compiling COPY_FILE . 8–12

vi

8.2.3 Loading COPY_FILE Design Information into an SCA
Library . 8–12

8.2.4 Generating an Internals Report of COPY_FILE 8–14
COPY_FILE (void function) . 8–15

9 Building the Application with MMS

9.1 Building from CMS Classes . 9–1
9.2 MMS Flags and Macros . 9–5
9.3 MMS Rules . 9–8
9.4 MMS Targets . 9–10
9.5 MMS Description File Command Options 9–13

10 Setting Up a Test System with HP DIGITAL Test Manager

10.1 Setting Up a Noninteractive Test . 10–1
10.1.1 Creating the Collection Prologue File 10–2
10.1.2 Creating the Collection Epilogue File 10–4
10.1.3 Establishing the Default Template and Benchmark File

Directory . 10–5
10.1.4 Setting Up the Test Prologue and Epilogue Files 10–5
10.1.5 Creating the Template File for the Test 10–6
10.1.6 Creating the Test Description . 10–8
10.1.7 Setting Up the HP DIGITAL Test Manager Variables 10–9
10.1.8 Inserting the Template File into the CMS Library 10–10
10.1.9 Creating the Collection . 10–10
10.2 Setting Up an Interactive Terminal Test 10–12
10.2.1 Invoking the Forms translit Application 10–12
10.2.2 Terminating the Recording Session . 10–15
10.2.3 Running the Session File . 10–15
10.2.4 Reviewing Test Results . 10–15
10.3 Verifying Your Test System . 10–17
10.4 Changing Input for a Test . 10–18
10.5 Recording a DECwindows Test . 10–19
10.5.1 Processing Considerations for DECwindows Tests 10–19
10.5.1.1 Playing DECwindows Tests . 10–19
10.5.1.2 Storing DECwindows Benchmark and Result Files 10–20
10.5.1.3 Environment Initialization . 10–21
10.5.2 Recording a DECwindows Session . 10–21
10.6 Displaying DECwindows Test Results . 10–22
10.7 Creating a DECwindows Benchmark Mask 10–25

vii

11 Using HP DIGITAL Test Manager with PCA

11.1 Linking a Program with the Collector . 11–2
11.2 Creating a Collector Initialization File . 11–2
11.3 Creating a Collection Prologue File . 11–3
11.4 Creating a HP DIGITAL Test Manager Collection 11–4
11.5 Executing a HP DIGITAL Test Manager Collection 11–5
11.6 Using the Analyzer when Reviewing a Collection 11–7
11.7 Sample Session . 11–9
11.8 Additional Considerations . 11–11
11.9 Examining Test Coverage Information . 11–12
11.10 Using the Analyzer to Perform a Call Tree Analysis 11–14

12 Maintaining the Application

12.1 CMS Provides History . 12–1
12.2 SCA Provides Structural Information . 12–3
12.3 MMS Simplifies Maintenance . 12–5
12.4 CMS Used with MMS for Maintenance . 12–5

Glossary

Index

Examples

2–1 Context File PLAN9.DECSET_CONTEXT 2–3
2–2 Context Database File PLAN1.DECSET_CONTEXT_DB 2–4
5–1 Sample LOGIN.COM File . 5–7
5–2 Project Logical Definitions File . 5–8
9–1 A Build Procedure Using an MMS Description File 9–3
9–2 Flags and Macros Section of the Description File 9–5
9–3 Rules Section of the Description File 9–8
9–4 Targets Section of the Description File 9–10
10–1 Sample Collection Prologue File . 10–3
10–2 Sample Collection Epilogue File . 10–4
10–3 Test Prologue File for translit_test . 10–5
10–4 Test Epilogue File for translit_test . 10–6
10–5 translit Test Template File . 10–7
11–1 Sample Collection Prologue File . 11–3

viii

11–2 Sample Collection Prologue File . 11–4
11–3 PCA Collector Initialization File . 11–9
11–4 Example Collection Prologue File . 11–10
12–1 Dependencies in an MMS Description File 12–5

Figures

1–1 DECset Tools Integration . 1–16
2–1 DECset Tool Selection Pull-down Menu 2–4
2–2 DECset Context Window . 2–6
2–3 DECset Context CMS Library Dialog 2–11
2–4 DECset Context Logical Names Dialog 2–13
2–5 MMS Options Input and Output Dialog 2–16
2–6 MMS Options Definitions and Directives Dialog 2–18
2–7 MMS Macro Definitions Dialog . 2–20
2–8 MMS Linker Options Files Dialog . 2–21
2–9 DECset Context Symbol Definitions Dialog 2–22
3–1 Initial Storage Areas for a Typical Project 3–3
3–2 CMS Fetch Dialog Box . 3–5
3–3 Build Directory Structure . 3–8
3–4 Filling an SCA Library . 3–10
3–5 Physical and Virtual SCA Libraries . 3–12
3–6 Directory Structure of HP DIGITAL Test Manager

Libraries . 3–17
4–1 Initial Storage Areas for a Typical Project 4–6
4–2 SCA New Library Dialog Box . 4–14
4–3 SCA Load Dialog Box . 4–15
4–4 Working SCA Libraries for Developers 4–16
4–5 Source Code Management . 4–17
4–6 Extracting a Token . 4–20
4–7 Creating an Environment File . 4–21
4–8 Grouping Test Descriptions . 4–24
4–9 DEC Notes Display Keywords Dialog Box 4–27
6–1 Specifying an ACL for an Element List 6–5
6–2 Creating an Element . 6–9
6–3 New Element Dialog Box . 6–10
6–4 CMS Library with Two Generations . 6–11

ix

6–5 Replace Dialog Box . 6–12
6–6 New Class Dialog Box . 6–13
6–7 Insert Generation Dialog Box . 6–14
6–8 Classes in a CMS Library . 6–15
6–9 Description File as Part of a CMS Class 6–17
7–1 Steps to Correct translit Bug . 7–2
7–2 Invoking the Debugger . 7–4
7–3 Stepping into copy_file . 7–5
7–4 Printing the Values of Variables . 7–6
7–5 Finding the Declaration of a Variable 7–8
7–6 Opening a File . 7–9
7–7 Finding the Declaration of a Variable 7–10
7–8 Finding All Occurrences of a Variable 7–11
7–9 Expanding the Token of a for Statement 7–13
7–10 Expanding the Token of an if Statement 7–14
7–11 Completing Changes to the Source Code 7–15
7–12 LSE Review Buffer . 7–16
8–1 Sample Routine Containing Pseudocode 8–3
8–2 Tags in a C Header Comment . 8–4
8–3 Providing Header Comments for COPY_FILE 8–8
8–4 COPY_FILE Top-Level Outline . 8–9
8–5 Creating a while Loop with Pseudocode Placeholders 8–10
8–6 Replacing Pseudocode with Actual Code 8–11
8–7 SCA Cross-Reference Output . 8–13
10–1 Modify Library Dialog Box . 10–3
10–2 Create DECwindows Test Dialog Box 10–8
10–3 Create Variable Dialog Box . 10–9
10–4 Create Collection Dialog Box . 10–11
10–5 Displaying Differences . 10–17
10–6 Expanding a Library Specification . 10–18
10–7 Sample DECwindows Recording Session 10–22
10–8 Displaying Differences . 10–24
10–9 Creating a Benchmark Mask . 10–26
11–1 Phases in Test Execution when Using HP DIGITAL Test

Manager with PCA . 11–6
11–2 PCA Annotated Source Listing . 11–13
11–3 Static Call Tree Analysis . 11–14

x

11–4 PCA Dynamic Call Tree . 11–15
12–1 CMS Restrict Elements Dialog Box . 12–2
12–2 CMS Restrict History Dialog Box . 12–3
12–3 SCA Cross Reference Query . 12–4

Tables

1 Conventions Used in this Guide . xv

xi

Preface

This guide has four objectives:

• To describe the OpenVMS programming environment, with special
attention to using the HP software engineering tools (HP DECset) to
extend programmer productivity in this environment

• To show HP DECset in the HP DECwindows Motif environment

• To provide helpful hints to the project leader who is managing a project
using HP DECset, with special attention to organizing project files,
libraries, and directories

• To show a case study of HP DECset tools being used to accomplish specific
tasks that make up the major steps in the software life cycle

Intended Audience
This guide is intended for programmers, software engineers, and project
managers using one or more of the HP DECset tools. The users should be
familiar with the OpenVMS operating system, OpenVMS program development
facilities, and OpenVMS utilities.

Document Structure
This guide consists of two parts. The topics covered in each part are as follows:

• Part I, HP DECset and Managing the Project Environment, consists of four
chapters that describe HP DECset and show how you can use it to set up
and manage a software project. Specifically, Part I covers the following
topics:

The six tools that make up the HP DECset package.

A description of the HP DECset environment manger and how to use
this interface with other HP DECset tools.

HP DECset in the OpenVMS programming environment with a focus
on integration features.

xiii

Additional OpenVMS tools that you can use to extend the programming
environment.

Suggestions on how to create a project directory area. Special emphasis
is given on organizing subdirectories for the project, including CMS,
HP DIGITAL Test Manager, and SCA libraries.

Topics of interest to a project leader who is using HP DECset.

• Part II, HP DECset Case Study, consists of eight chapters that provide
specific procedures and examples for using the HP DECset tools at each
major stage of the software life cycle. Part II describes the steps that
a hypothetical project team takes to plan, implement, build, and test a
particular application, showing how this team uses the HP DECset tools
during the entire project. All examples, where possible, show each tool in
the HP DECwindows environment.

At the end of this book is a glossary of HP DECset terms.

References to Other Products
Some older products that HP DECset components previously worked with
might no longer be available or supported by HP. Any reference in this manual
to such products does not imply actual support, or that recent interoperability
testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue
to use these products with HP DECset.

Refer to the Software Product Description for a current list of the products that
the HP DECset components are warranted to interact with and support.

Associated Documents
The following documents might be helpful when using HP DECset:

• OpenVMS documentation set

• OpenVMS DECwindows User’s Guide

• HP DECSet for OpenVMS Language-Sensitive Editor

• Guide to DIGITAL Source Code Analyzer for OpenVMS Systems

• HP DECSet for OpenVMS Code Management System

xiv

• HP DECset for OpenVMS Module Management System

• HP DECset for OpenVMS Guide to DIGITAL Test Manager

• Guide to DIGITAL Performance and Coverage Analyzer for OpenVMS
Systems

• HP DECSet for OpenVMS Installation Guide

• Guide to Detailed Program Design for OpenVMS Systems

• CMS Client for Windows User’s Guide—Component of the product "HP
DECset Clients for CMS and MMS"

Conventions
Table 1 lists the conventions used in this guide.

Table 1 Conventions Used in this Guide

Convention Description

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

Return In interactive examples, a label enclosed in a box
indicates that you press a key on the terminal, for
example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP3 or KP-.

file-spec, ... A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

. . . A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

(continued on next page)

xv

Table 1 (Cont.) Conventions Used in this Guide

Convention Description

() In format descriptions, if you choose more than one
option, parentheses indicate that you must enclose the
choices in parentheses.

[] In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all
of the choices.

{} In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text Boldface text represents the introduction of a new
term, and HP DECwindows menu items in description
lists.

monospace boldface text Boldface, monospace text represents user input in
interactive examples in this guide.

UPPERCASE Uppercase text indicates the name of a command,
routine, macro, directory, or file.

italic text Italic text represents book titles, parameters,
arguments, variables, and information that can vary in
system messages (for example, Internal error number).

lowercase Lowercase in examples indicates that you are to
substitute a word or value of your choice.

mouse The term mouse refers to any pointing device, such as
a mouse, puck, or stylus.

MB1,MB2,MB3 MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button.

xvi

Part I
HP DECset and Managing the Project

Environment

Part I of this guide gives an overview of HP DECset and some suggested
guidelines for organizing and managing a project using HP DECset tools.

1
HP DECset Overview

This chapter presents an overview of the HP software engineering tools (HP
DECset) and how they fit into the OpenVMS programming environment to
give you a cohesive, tightly integrated software development environment. At
the end of this chapter is a summary of other OpenVMS tools and utilities that
you can use to further build upon the OpenVMS environment.

1.1 HP DECset Product Set
HP DECset is a group of the following layered products:

• HP Code Management System (CMS)

• HP Language-Sensitive Editor (LSE)

• HP Source Code Analyzer (SCA)

• HP Module Management System (MMS)

• HP DIGITAL Test Manager

• HP Performance and Coverage Analyzer (PCA)

HP DECset also includes the HP DECset Environment Manager, which
provides a single mechanism for tailoring the execution environ ment across
the HP DECset tools. In addition to the tools, HP DECset provides the
program design facility, a set of features in LSE, SCA, and the compilers that
aid in the detailed program design phase of software development. HP DECset
Clients for CMS and MMS—a separately orderable product—allows access
from a PC to CMS libraries residing on OpenVMS systems, and allows users to
run MMS on OpenVMS systems from a PC.

Individually, each tool is a useful product that can enhance programmer
productivity. Used together, these tools combine with the program design
facility, the OpenVMS programming languages, system services, and utilities
to make an integrated environment with the following characteristics:

• Support for the multiple phases of the software life cycle

HP DECset Overview 1–1

HP DECset Overview
1.1 HP DECset Product Set

• Support for applications written in multiple languages

• Compilers and tools that pass substantial information among themselves to
automate tasks previously performed manually

The following sections provide a brief overview of each of the six products that
make up HP DECset.

1.1.1 HP Code Management System
The HP Code Management System (CMS) provides an efficient method for
storing project files and tracking all changes to those files. Code management
is especially important on large projects with long lifespans and with several
versions of the software. CMS is available in HP DECwindows, character-cell,
and a PC interface using the HP DECset Clients for CMS and MMS product.

CMS stores any kind of valid RMS format file, including files created by an
editor, a compiler, or a linker. You can use CMS to efficiently store documents,
plans, specifications, status reports, object files, executable images, sixel
files, or other records. (CMS cannot store directory files.) It is a tool that all
team members can use—managers, system analysts, technical writers, and
programmers.

1.1.1.1 Features of CMS
You can use CMS to do the following:

• Keep track of files at every stage of development by showing who made
changes, when, and why.

• Monitor changes in files to avoid conflict.

• Allow multiple team members to work concurrently on the same file
without losing the changes made by any team member, while reporting any
conflicts.

• Conserve disk space as it stores consecutive versions of your files in a
space-efficient manner.

• Maintain a history of library activity.

• Store files created by other software development tools, such as HP
DIGITAL Test Manager, by means of the CMS callable interface. Using
the callable interface, other tools can integrate directly with CMS.

• Initiate an action when a specific CMS event occurs; for example, to send
mail notification to project members when a specific CMS object is accessed.

• Mark an element generation for review to indicate its contents should be
reviewed by other users.

1–2 HP DECset Overview

HP DECset Overview
1.1 HP DECset Product Set

• Automatically copy the latest generation of a library element into a
reference copy area.

1.1.1.2 CMS Libraries
CMS keeps your files in project libraries, which are OpenVMS directories.
These directories store your project’s files, or elements, as well as history
information. As a project evolves, CMS tracks changes to the library by storing
only the changes made to a file with each reservation and replacement. Not
only does this reduce the amount of disk space used for storing multiple
versions of files, but it allows CMS to reconstruct any previous version of a file
and to identify the changes made between any two versions, or generations.

In addition to storing successive changes, CMS maintains a record of who
is currently working on a library element and a historical record of library
access. Team members can retrieve information about library transactions
and contents. A project leader can restrict access to the library or individual
elements by using security features such as access control lists (ACLs), user
identification codes (UICs), and rights identifiers. See Chapter 5 for examples
of how to use these features.

The CMS library provides a record of the following:

• Transactions that created specific element generations

• Transactions related to the evolution of a specific element

• The entire transaction history of the library; that is, all actions which
create, delete, or modify the library or its contents

1.1.1.3 Groups and Classes
CMS can create both functional and time-phased collections of elements.

Groups are functional collections of elements in the CMS library that are
combined for easy handling. For instance, you can make a group of all the
project documents. With one command, you can reserve all of the documents at
once from the library. Groups enable you to easily manipulate large numbers
of related elements.

Classes are time-phased collections of elements that represent a current or
past state of the application. A class contains one generation of each element
that makes up the application. At HP, a common use of this feature is to
specify a base level or version of the software system. This base level or
version represents a major stage in the system, such as a field test version or a
version ready for customer release.

HP DECset Overview 1–3

HP DECset Overview
1.1 HP DECset Product Set

1.1.2 HP Language-Sensitive Editor
The HP Language-Sensitive Editor (LSE) is a multilanguage, programmable
editor designed to help develop and maintain source code. LSE is layered on
top of the HP Text Processing Utility (HP DECTPU), and is available with the
EVE and EDT interfaces. LSE provides language-specific templates for each
language it supports. These templates help both the novice and experienced
programmer build syntactically correct programs faster and with fewer errors.

LSE provides the following features:

• Syntax support for each of the following languages and products:

HP Ada
VAX ACMS
HP BASIC
VAX BLISS-32
HP C
HP C++
Oracle CDD/Repository
HP COBOL
HP VAX COBOL
HP DATATRIEVE
HP DIBOL
HP DECdocument
HP Fortran
LSE
VAX MACRO
HP DEC Pascal
PLSE
VAX PL/I
VAX Rdb/ELN
HP DECwindows UIL

• Language-specific source code templates to quickly and efficiently enter
source code.

• Compiling, reviewing, and correcting compile-time errors within a single
editing session.

• Interactive editing capabilities during a debugging session.

• Support for the program design facility, enabling you to perform the
following tasks:

Enter structured text, or pseudocode, in source files.

1–4 HP DECset Overview

HP DECset Overview
1.1 HP DECset Product Set

View top-level design information of source files; this is known as code
elision, holophrasting, or outlining.

Capture design information in comments when you replace the
pseudocode with actual code.

• Ability to modify existing language environments, or define a new language
environment.

• Ability to customize your editing environment to your programming style
or preference.

• Ability to extend your editing environment to handle highly specialized
editing needs through HP DECTPU.

• Integrated access to the cross-referencing features of SCA.

• Support for a package facility to define your own subroutine call templates.
LSE packages allow you to specify a subroutine and its calling sequence
once, and have tokens and placeholders for the subroutine and its
parameters available for use by multiple LSE language environments.

• Source code templates for calls to OpenVMS system services and the
OpenVMS Run-Time Library.

• Support for user-written diagnostic files, enhancing support for user-
modified or non-supported compilers.

1.1.3 HP Source Code Analyzer
The HP Source Code Analyzer (SCA) is a multilanguage, multimodule,
interactive cross-reference and static analysis tool. It can help you to
understand the complexities of a large software project by enabling you to
make inquiries about the symbols used in the project’s code. With SCA, you
can move through all your project’s sources, quickly locating the definitions of
any identifier or any references made to that identifier.

SCA provides the following features:

• Navigation capabilities that let you locate and view the components of
your source code. SCA accomplishes this by storing compiler-generated
information about a set of source files in an SCA library. SCA then enables
you to perform queries about your source code in several ways:

By using a name browser to quickly locate all items that match a
search string

By specifying a cross-reference query to find how and where program
symbols are used

HP DECset Overview 1–5

HP DECset Overview
1.1 HP DECset Product Set

By specifying a call graph query to graphically display call relationships
between routines

By specifying a data structure query to graphically display the
structure of data types in your code, or find symbols of a given type

After you have a query result, you can use the go-to-source feature to
navigate to locations of interest in your source code.

• Support for the following languages:

HP Ada
HP BASIC
VAX BLISS-32
HP C
HP C++
HP COBOL
HP VAX COBOL
HP Fortran
VAX MACRO
HP DEC Pascal
VAXELN Pascal
VAX PL/I

• A graphical user interface that makes it easy to specify complex queries
without learning a specialized query language. It is easy to navigate
between call graph queries, data structure queries, and cross-reference
queries. The context-sensitive help facility enables you to display help
information on all parts of the user interface.

• Library creation and maintenance features in which SCA merges analysis
data (.ANA) files generated by supporting compilers into SCA libraries
to create a picture of your entire source code. These files contain a
collection of information relating to all the program symbols, modules,
and files contained in your source files. Once you open an SCA library
for a particular software project, you can use the SCA navigational and
static analysis features. You can also open a personal library, containing
information on only those modules that you are working on, and use this
library with the main library describing the rest of the system.

• A sample library that you can open from the SCA Main window. The
library is in SCA$ROOT:[EXAMPLE].

• Static analysis capabilities that let you check for consistent use of program
symbols. This capability is provided by the INSPECT command:

The INSPECT command provides different types of consistency
checking; for example, symbols implicitly declared, unused symbols,

1–6 HP DECset Overview

HP DECset Overview
1.1 HP DECset Product Set

symbols written but never read, symbols read but never written, or
consistent argument types among routine calls.

The results produced by the INSPECT command are reported in the
form of a query with diagnostic error messages.

To extend its ability to produce specific results, INSPECT allows you to
tailor checks.

• Support for the program design facility, allowing you to perform the
following tasks:

Extract design information into formal documentation.

Locate design information through the use of tagged comments.

Cross-index modules using keyword tags.

1.1.4 HP Module Management System
The HP Module Management System (MMS) automates and simplifies the
building of software applications, whether they are simple programs of only
one or two files or complex programs consisting of many source files, message
files, and documentation. MMS can optimize the build process by rebuilding
only those components of a system that have changed since the system was
last built. In this way, MMS eliminates the steps of recompiling and linking
modules that have not changed. Once set up, MMS can build both small and
large systems with one command.

MMS provides the following features:

• Increases the speed of building a system because it builds only the parts
that need building

• Increases the accuracy of the build because MMS consistently reproduces
the same system each time you build it

When you initially use MMS to build your application, you perform two steps:

1. Create a description file.

2. Invoke MMS to carry out the build.

The description file is an ASCII text file that contains rules describing the
relationships among the components of your application and the MMS
commands to build the application. Once you create a description file, you
can use it every time you invoke MMS to build your system. In addition, this
description file keeps all the application’s structural information in one place,
giving a clear representation of the application, while at the same time making
the build procedure available to all team members.

HP DECset Overview 1–7

HP DECset Overview
1.1 HP DECset Product Set

1.1.5 HP DIGITAL Test Manager
The HP DIGITAL Test Manager organizes software tests and automates the
way you run tests and evaluate test results. HP DIGITAL Test Manager
automates regression testing, a procedure in which you run established
software tests and compare the current test results with previously established
benchmark results. These benchmark results, retained from previous testing
or created otherwise, must be duplicated if the software is functioning properly.
If the current results do not agree with the benchmark results, the modified
software might contain errors. If this is the case, the software has regressed
from previously established behavior. HP DIGITAL Test Manager enables you
to quickly discover any regressive developments in your software. HP DIGITAL
Test Manager provides testing support for multiple testing environments,
including the noninteractive environment (command file), interactive terminal
environment, and HP DECwindows environment.

HP DIGITAL Test Manager provides the following features:

• Creates descriptions of software tests.

• Captures terminal and HP DECwindows sessions to be used as test scripts.

• Groups these test descriptions into meaningful combinations for later runs.

• Tests interactive applications in batch mode. This includes applications
that normally need to interact with a terminal or workstation; for example,
an editor or a menu system.

• Executes specific tests, groups of tests, and combinations of test groups,
either interactively or in batch mode.

• Sets up the test environment so tests are executed under controlled
conditions.

• Compares the results of each executed test with its benchmark test results
to determine differences.

• Lets you examine test result files interactively.

• Generates summary reports of test set runs.

1–8 HP DECset Overview

HP DECset Overview
1.1 HP DECset Product Set

1.1.6 HP Performance and Coverage Analyzer
The HP Performance and Coverage Analyzer (PCA) helps you analyze the
run-time behavior of your application. PCA serves two functions, as follows:

• Pinpoints execution bottlenecks, then enables you to determine the cause
of them.

• Analyzes test coverage by measuring what parts of an application are
executed by a given set of test data. Using this information, you can create
tests that thoroughly exercise your application.

PCA consists of two facilities: the Collector and Analyzer. When you link
the Collector with your application, the Collector gathers and deposits data
into a file during execution. After execution, you can invoke the Analyzer to
interactively analyze the data stored in that file.

The following sections describe the features of PCA in three categories:
Collector features, Analyzer features, and additional features.

1.1.6.1 Collector Features
The Collector gathers the following kinds of data:

• Elapsed time information—Provides a good overview of where your
program consumes the most elapsed time

• Process time information—Tells where your program spends the most
process, or CPU, time

• Page fault data—Helps you to determine what sections of the program
cause the most page faults

• System services data—Tells you which sections of the program call system
services

• Input/Output data—Details all OpenVMS Record Management Services
(RMS) calls in your program, helping you to understand your program’s
input and output behavior

• Exact execution counts—Tells you the exact number of times your program
executes specified locations, thereby helping you to find the inefficient
algorithms (for example, the O(n2) algorithms)

• Test coverage data—Shows you which sections of code are or are not
executed when you run tests of your program

• Tasking data—Shows all context switches in HP Ada multitasking
applications

HP DECset Overview 1–9

HP DECset Overview
1.1 HP DECset Product Set

In addition, PCA allows you to selectively state which of these measurements
should also include the current set of return addresses on the stack (except
for page faults and tasking data). This allows you to determine relationships
among the called subroutines.

1.1.6.2 Analyzer Features
The Analyzer reads the performance data file written by the Collector and uses
the data to produce the following types of symbolic reductions that help you to
evaluate your program’s performance or coverage:

• Histograms and tables—The Analyzer enables you to produce performance
histograms that plot the distribution of resource usage over your program
or over other data domains. If you prefer, the Analyzer will produce tables
that present the same information in the form of actual data counts instead
of scaled histogram bars.

• Annotated source file listings—The Analyzer displays high-level language
program source code next to the requested performance or coverage data on
a line-by-line basis.

• Call trees—The Analyzer enables you to perform specific call stack
analysis, from which you can get a call tree plot, displaying the dynamic
call stack relationship of program units by name. This permits you to
pinpoint precisely the set of subroutine calls that is consuming most
of the time. This is useful for programs that utilize commonly called,
time-consuming subroutines.

1.1.6.3 Additional PCA Features
Additional features include the following:

• Traversing—Once the Analyzer has tabulated the performance and
coverage data by means of histograms or tables, PCA enables you to
traverse through the data by using traverse commands. Using traverse
commands, you can sift through your performance data, directing the
Analyzer from one area of high activity to the next.

• Screen mode—If you are viewing your performance data on a terminal that
supports multiple windows, the Analyzer enables you to display different
types of data in separate windows.

• Multiple data kinds—The Analyzer enables you to display different
categories of performance data in the same histogram or table. For
example, you can display program counter (PC) sampling data, page
fault addresses, and I/O service calls in the histogram. This enables you to
correlate each bottleneck with its cause (for example, I/O service call, page
fault, CPU consumption, and so on).

1–10 HP DECset Overview

HP DECset Overview
1.1 HP DECset Product Set

• Acceptable noncoverage—If you have portions of code that you do not
expect to be tested—for example, internal error paths or difficult-to-
test sections—you can indicate to the Analyzer that those portions are
acceptably noncovered. On iterative test runs of your code, the Analyzer
keeps track of those portions so you can ignore them in future coverage
analysis.

• Filtering—The Analyzer enables you to filter performance or coverage data
before it creates histograms or tables. This feature is useful when you
want only a certain subset of that data to be analyzed; for example, data
associated with a particular event.

1.1.7 Program Design Facility
HP DECset provides for incremental program design and development by
means of the program design facility, allowing you to write structured text, or
pseudocode, in source files. You use this pseudocode to describe the design
of the code before you write the actual program statements. You can then
process source files containing pseudocode using any of the following supported
OpenVMS compilers:

HP Ada
HP BASIC
VAX BLISS-32
HP C
HP COBOL
HP VAX COBOL
HP Fortran
HP DEC Pascal
VAX PL/I

Unlike other HP DECset tools, the program design facility is not an individual
tool that you can run independently. Rather, you access it through supported
language compilers and the following HP DECset tools:

• LSE—To enter the pseudocode into your source programs to express design
information, and to interactively display designs at various levels of detail

• Compilers—To compile the design information and create analysis data
files

• SCA—To provide static analysis and cross-reference information on the
source files containing pseudocode, and to generate a variety of reports,
including online help

HP DECset Overview 1–11

HP DECset Overview
1.1 HP DECset Product Set

In addition, the program design facility enables you to capture the design
information in comments, and provides various reports such as design cross-
reference, help files, and LSE package reports.

1.2 HP DECset and the OpenVMS Programming Environment
The OpenVMS programming environment supports many programming
languages and a large set of utilities and services. By combining a set of
programmer productivity tools with this variety of languages and utilities, you
extend your productivity beyond the usual range of operating system services
and program development utilities and languages. HP DECset tools also help
you plan, write, compile, debug, test, and build applications and systems by
addressing multiple phases of the software development life cycle.

The remaining sections of this chapter describe the following primary areas in
which HP DECset is integrated with the OpenVMS programming environment:

• The stages of the software life cycle in which the HP DECset tools are used

• The programming languages supported in the OpenVMS programming
environment

• The integration features of the individual HP DECset tools: both with the
compilers and among the tools themselves

1.2.1 Using HP DECset to Manage the Software Life Cycle
The following sections list and describe the typical stages of the software life
cycle and show which stages of the software life cycle each HP DECset tool is
specifically designed to manage.

The software life cycle typically includes the following five phases:

1. Requirements and specifications

2. Design

3. Implementation

4. Testing

5. Maintenance

This section describes each of these steps in detail.

1–12 HP DECset Overview

HP DECset Overview
1.2 HP DECset and the OpenVMS Programming Environment

Phase 1: Requirements and Specifications
This first phase in the software development life cycle defines the project in
two distinct steps: the requirements step and the specifications step. During
the requirements step, a project team of technical and management people
identify business opportunities, product objectives, and technical options. They
might also perform an analysis of the costs versus benefits for the application.
During the specifications step that follows, the project team formulates detailed
specifications that define what the system will do and how it will be used.

Defining the product requirements depends heavily on feedback from outside
the team—from customers, internal users, and marketing representatives.
Other groups within an organization (a central quality group and engineering
departments) also provide information. The requirements define project goals:
that is, what is to be built. They do not define how to build it. Documents
typically produced during the requirements step include a requirements
document and a business plan.

During the specifications step, the project team maps out technical approaches
for building the new application. Often, the team produces prototypes to help
solve difficult technical problems. These prototypes can be tested, providing
references for future development work. These prototypes, in turn, help ensure
that the team understands the risks involved with implementing the product.
Prototyping can also help develop usability requirements, if the team subjects
the prototypes to human engineering testing. By comparing the specifications
to the requirements, the project team members can show that if the system is
built as specified, it will meet its requirements. At the end of this stage, the
project team has defined the application, produced a preliminary functional
specification, and must decide whether to go forward with the project.

Phase 2: Design
During the design phase, the project team determines in more detail what they
must build and how to build it. The first step is to write the final specifications
for development and documentation.

Based on the functional specifications (and, optionally, usability requirements),
the project team completes top-level design for all forms, data structures,
program modules, file formats, and human interfaces. Once complete, the
design technically defines the project.

To document the design, the team generates a design specification and test
plan to serve as a basis for acceptance by strategic and technical planners.
It is important to have the design standards and policies documented in
this specification. The team estimates the resources needed to implement
a particular piece of functionality. As project designs evolve, the team can
modify the design specification to include changes. This design document

HP DECset Overview 1–13

HP DECset Overview
1.2 HP DECset and the OpenVMS Programming Environment

makes it possible to keep the design plans in one location, which are accessible
to all programmers. Once the design is complete, it is possible to develop a
schedule as well, which is included in the design document and applies to each
deliverable item in the project.

As part of the design process, the team should also refine its procedural
strategy to aid in completing the project. By the end of this phase, the team
should have established storage areas (libraries and a basic directory structure)
and implementation standards.

Phase 3: Implementation
During the implementation phase, the team builds and modifies source code
modules, then compiles, links, and executes the resulting images. Often the
team implements the system in a series of stages or base levels. Each base
level adds more of the required functionality. Along with the software, the
team must generate user documentation, which remains up-to-date with the
ongoing changes in the software’s features.

At the end of this phase, the project team arranges for master copies of the
user documentation and the software to be handed over to a production group
that copies and distributes the product to customers. A final task is to archive
copies of the product.

Phase 4: Testing
During the testing phase (which usually runs parallel with the implementation
phase), the project team tests the software to make sure that it conforms to the
initial requirements. The team then refines the application’s code to optimize
its performance. To aid in this refinement stage, the application might be made
available to selected customer sites. The project team stays in close contact
with these test sites to ensure that any problems are corrected in the version
of the software or user documentation shipped to customers. In the final stages
of this phase, the source code and documentation are frozen, and the team
prepares final copies of the documentation and distribution media.

Phase 5: Maintenance
After the product has been shipped, a process of maintenance and evolution
begins. If errors exist in the software or documentation, the maintenance team
makes the necessary changes. Enhancements might be planned. At the same
time, suggestions for new requirements arrive from customers. This phase
becomes an information-gathering activity that can begin the early phases for
the next version of the software.

1–14 HP DECset Overview

HP DECset Overview
1.2 HP DECset and the OpenVMS Programming Environment

1.2.2 Programming Languages
Programming languages are central to the OpenVMS software development
environment. Applications and systems programmers have a diversified
range of higher-level programming languages at their disposal, including the
following:

HP Ada
HP BASIC
VAX BLISS-32
HP C
HP C++
Oracle CDD/Repository
HP COBOL
HP VAX COBOL
HP DATATRIEVE
VAX DIBOL
HP Fortran
VAX MACRO
HP DEC Pascal
VAX PL/I

With this range of supported languages, you are free to choose the language
best suited to your needs. Additionally, because most languages support the
OpenVMS Calling Standard, you can combine modules written in different
languages into the same program.

1.2.3 Integration Features of the HP DECset Tools
Integration features of the HP DECset tools exist on three levels:

• With the language compilers

• With the multilanguage programming environment

• Among the tools themselves

The primary integration is in the information flow among the tools and
compilers. The compilers generate a substantial amount of information for
tools, such as symbol table information for PCA, diagnostic information for
LSE, and cross-reference and calling-sequence information for SCA. The
compilers are the sole sources of semantic program information, and they make
that information available in suitable forms to all tools that need it.

HP DECset Overview 1–15

HP DECset Overview
1.2 HP DECset and the OpenVMS Programming Environment

Figure 1–1 shows the many connections and information flows among tools
that give the OpenVMS programming environment its high level of integration.
The boxes represent tools and the arrows represent information flows, either
by means of files or through direct calls between tools.

Figure 1–1 DECset Tools Integration

SCA

Debugger

Source files,
compile
commands

Analysis
files

SCA
output

Diagnostics,
template,
help files

ZK−9297−GE

DIGITAL
Test

Manager

Compilers
and

Language
Definitions

LSE CMS

SCA
commands

PCA

MMS

Test scripts,
benchmarks

CMS calls

CMS
Client

CDD

’Kind
Objects

CMS
commands

CMS
commands

Files

Object
revision
times

Source files,
CMS output

Diagnostics

Description files,
source files

CMS
commands

Description
files

Edit commands

MMS
commands

MMS
Client

MMS
build commands

DEBUG
symbol table

PCA calls,
collection
information

1.2.3.1 CMS Integration
You can access CMS elements directly from within the HP Language-Sensitive
Editor (LSE). LSE commands then let you manipulate CMS elements from the
LSE command line.

Because CMS can store any file as an element, it is particularly useful as a
central repository, not only for source files for code and documentation, but
also for a variety of files generated by other OpenVMS tools. CMS can store
description files for the HP Module Management System (MMS), and test files
(prologue, template, epilogue) for the HP DIGITAL Test Manager as well as
results description files (benchmarks). These tools can also access elements
in CMS libraries automatically. Also, as developers modify the files, CMS can

1–16 HP DECset Overview

HP DECset Overview
1.2 HP DECset and the OpenVMS Programming Environment

track the changes. CMS has a callable interface and can be customized to
assist in collecting project metrics.

1.2.3.2 LSE Integration
LSE provides a highly interactive environment for source code development.
Within LSE, you can create and edit code, compile and review that code, and
correct compile-time errors.

LSE can move among languages in different files. LSE determines the
language you are using by the file type, thereby providing the proper interface
for the appropriate compiler and the language-specific templates and online
help.

LSE is integrated with CMS to provide source code management. From LSE,
you can enter commands that direct how you want LSE to obtain a file from
CMS. For example, you can obtain a read-only copy of a generation with the
OPEN FILE command, which instructs CMS to perform a Fetch operation. You
can also use the RESERVE command to reserve a generation of a CMS element
and have that generation placed in your default directory. See Section 6.2.2 for
more details and an example of LSE integration with CMS.

LSE is integrated with the HP Source Code Analyzer (see Section 1.1.3 for
more details). You can also invoke LSE from the Analyzer portion of the HP
Performance and Coverage Analyzer (see Section 1.1.6 for more details), from
OpenVMS Mail. Chapter 7 provides additional examples of LSE’s integration
with other OpenVMS tools.

1.2.3.3 LSE/SCA Integration
Using LSE and SCA together creates an extremely powerful, integrated editing
environment. Instead of relying on memory, cross-reference listings, or guess
work to locate items, you can access your entire system quickly from LSE.
You can browse through all of your code to look for specific declarations of
symbols or other pertinent information without regard to file location, saving
you considerable time.

LSE and SCA are part of the multilanguage environment on the OpenVMS
operating system. Your source code can be written in more than one language;
LSE always provides you with the right language support for the file you are
editing. Similarly, SCA lets you navigate through your entire project regardless
of the languages used in each module.

If you have SCA and LSE running simultaneously in separate windows, LSE
can display the source code associated with symbols displayed by SCA. Because
these capabilities are available in LSE and SCA, you save considerable time
when finding particular symbols, retrieving the related files from a reference
copy area or a CMS library, and then editing the files.

HP DECset Overview 1–17

HP DECset Overview
1.2 HP DECset and the OpenVMS Programming Environment

The combination of LSE and SCA provides the report generation capability of
the program design facility. LSE generates and formats the report, which is
based on the design information provided by SCA.

1.2.3.4 MMS Integration
You can access elements in CMS libraries during your build. All files used
for the build, documentation, and the MMS description file can be kept in a
CMS library. All these files can be updated, including the description file, so
MMS works with the latest sources your team has produced. Alternatively,
your MMS description file can build from CMS classes that represent previous
versions of your system. Additionally, MMS can access records stored in the
Common Data Dictionary (Oracle CDD/Repository), or forms stored in libraries
for HP DEC or VAX Forms Management System (FMS) or HP DECforms.

MMS also provides support for SCA, in that analysis data can be automatically
generated as part of the MMS build procedure for storage in an SCA library.

1.2.3.5 HP DIGITAL Test Manager Integration
You can use the storage and update capabilities of CMS for HP DIGITAL
Test Manager’s templates, benchmark files, test data files, prologue files, and
epilogue files. When stored in a CMS library, these files can be retrieved by
HP DIGITAL Test Manager to run specified versions of tests. This feature
can be useful in testing multiple versions of a software system in situations
where the expected results change from version to version. For example,
you can run previous versions of tests and compare their results against the
results that were valid for the corresponding maintenance version of a system.
CMS enables you to easily store and access the tests that correspond to older
versions of the system still being maintained.

By using HP DIGITAL Test Manager with the HP Performance and Coverage
Analyzer, you can measure the performance or coverage of tests run under
DIGITAL Test Manager’s control. Using an MMS description file to build your
application, you can also execute your tests automatically. Examples of these
types of integration are detailed in Chapter 9 and Chapter 11.

1.2.3.6 PCA Integration
When used with HP DIGITAL Test Manager, PCA can evaluate code coverage
of your test system. Additionally, you can use the regression tests as
performance tests for PCA.

You can also use PCA to analyze programs that are composed of modules
written in different languages. Additionally, from PCA you can invoke LSE
and have access to all of the LSE features, such as links to SCA and CMS.

1–18 HP DECset Overview

HP DECset Overview
1.3 Additional OpenVMS Tools and Utilities

1.3 Additional OpenVMS Tools and Utilities
In addition to the HP DECset tools, the OpenVMS environment and other
layered products are also important components of an integrated software
development environment.

The OpenVMS Mail Utility (MAIL) aids communication within your
development group and among your group and other groups by providing
a means to send mail electronically. This feature of the OpenVMS environment
should be part of any development team’s effort to maximize the quality and
timeliness of their project.

Related software includes optional capabilities for information management,
data communications and networking, program migration, cross development,
and many other capabilities. You can incorporate features of related software
products into your application programs. Descriptions of some of these
products are as follows:

• The Common Data Dictionary (Oracle CDD/Repository)—The
Common Data Dictionary (Oracle CDD/Repository) can act as the central
repository for data descriptions and definitions used by various languages
(including fourth-generation languages), databases, and tools.

Oracle CDD/Repository provides an efficient way to help manage and
control definitions across the modules that make up an application. Early
planning for its use can simplify management tasks.

• DEC Notes—DEC Notes is a computer conferencing system that lets
you conduct online conferences or meetings. Using DEC Notes, you can
communicate conveniently and economically. A development team can take
advantage of DEC Notes to discuss and exchange information on product
design and development issues, particularly with people geographically
separated from the primary team.

• DECplan—DECplan is a tool that automates project management
activities throughout the software development life cycle. You can use
DECplan to plan, control, and estimate software projects. Using DECplan,
you can record and modify project information, track project costs and
resources, and produce project schedules, charts, and reports quickly.

• DEC Visual User Interface Tool—DEC Visual User Interface Tool
(VUIT) is an interactive design tool (IDT) for building and testing Motif
user interfaces. VUIT addresses the problems that contribute to the
high expense of producing Motif applications. VUIT provides continuous
visual feedback as user interface construction progresses, immediately
reflecting the effect of design decisions. Programmers can position and
label components, build forms, create icons, and apply colors and fonts

HP DECset Overview 1–19

HP DECset Overview
1.3 Additional OpenVMS Tools and Utilities

in real time. The ability to create or modify a user interface by directly
manipulating its graphical elements drastically cuts development time for
the graphical user interface.

With VUIT, programmers can produce a working prototype in a fraction of
the time it would take to write such a program by hand. Its simulation and
code generation capabilities enable programmers to profitably involve end
users in the design of the interface early in the product lifecycle, resulting
in greater satisfaction with the finished application.

• DECdesign—DECdesign is a tool to automate and facilitate systems
analysis and design methods. DECdesign completes and validates your
work by expanding implicit designs into explicit objects. For example,
DECdesign automatically creates and names objects, places entries into
data dictionaries, and links related objects together whenever your work
implies the need for these actions. DECdesign builds on industry-wide
trends and takes advantage of the HP clustered hardware environment
and strategic directions.

• DECdocument—DECdocument is a system for producing technical
documentation and is designed to fully automate the creation of
typeset-quality documentation from generically coded input files. Using
DECdocument, a project team can write and maintain files for a document,
produce typeset-quality output for a wide range of output devices, and
correct errors and incorporate changes into source files using a text editor.
DECdocument supports a wide variety of document types, ranging from
interoffice memos to software reference manuals, which ensure consistency
in format, typeset design, and organization. DECdocument also provides
a document type that meets the federal government’s requirements for
DOD-STD-2167 and templates for each of the Data Item Descriptors (DIDs)
specified in that standard.

1–20 HP DECset Overview

HP DECset Overview
1.3 Additional OpenVMS Tools and Utilities

• HP DATATRIEVE—HP DATATRIEVE is a tool for managing and
manipulating data either interactively at a terminal or from an application
program. With a set of English-like commands and statements, you can
interactively retrieve, store, modify, and report on data. For applications
programmers, HP DATATRIEVE can save coding and debugging time and
source space by handling the following actions:

Finding and opening data files

Performing input and output operations

Formatting data

Converting data types

Handling error and end-of-file conditions

HP DECset Overview 1–21

2
DECset Environment Manager

This chapter describes the DECset Environment Manager, its graphical user
interface, and command-line interface.

2.1 Environment Manager Basic Concepts
The DECset Environment Manager provides a single mechanism for tailoring
the execution environment for a set of DECset tools. The tailoring factor is
known simply as a context.

Using the DECwindows user interface, a context can be applied to all tools
displaying on a particular DECwindows display. Using the command line
interface, a context can be applied to a particular process and all subprocesses
subsequently created by that process.

2.1.1 Context
A context is defined as a named set of values that tailors the DECset tools
to a specific software development activity (for example, fixing bugs or
implementing enhancements). The supported attributes for which these
values are supplied are: logical name definitions; symbol definitions; MMS
macro definitions; MMS build options; linker options file specifications; library
settings; a source directory specification; output directory specifications; and a
default directory specification.

Each context has a unique name. The context name is limited to a length of 16
characters. There can be only one context in a particular context database (see
Section 2.1.4) with that name.

At any given time, the named context most recently applied to a tool is known
as the tool’s current context. If no context has been applied, the tool has no
current context.

DECset Environment Manager 2–1

DECset Environment Manager
2.1 Environment Manager Basic Concepts

A tool’s execution environment is not fully defined by the values associated
with a named context. Rather, a tool’s execution environment is constructed
from the following sources, in order:

1. Parent process

2. X Windows resource file (if applicable)

3. Named context (if applicable)

4. Command-line qualifiers used to invoke the tool

A specification retrieved from a higher-numbered source always supersedes
any specification of the same object retrieved from a lower-numbered source.

2.1.2 Context Hierarchy
A project context is associated with a development project. A project context
is typically used by all users working on the particular project.

A user-specific context can be based on a project context, thereby tailoring the
project context to a particular user. In this case, the project context becomes a
parent context.

A context based upon another context is said to be a child context. Each child
context inherits all the information associated with its parent context. If the
same attribute in both a child and its parent have different values, the child’s
value overrides that of the parent.

Any context can be based upon another context, which (in turn) can itself be
based upon yet another context. A child context inherits information from its
entire ‘‘chain’’ of parent contexts. The term context object refers to a context
that includes all of this inherited information.

2.1.3 Context File
A context file is used to store information specific to a particular named
context. The context file is specified by an OpenVMS file specification, which
is stored in the context database entry (see Section 2.1.4) associated with the
named context. The default context file type is .DECSET_CONTEXT.

The context file is a sequential ASCII text file. In a context file, a continuation
line must be terminated by a hyphen character. Trailing comments are not
allowed on a continuation line. The context file specification must exist in the
format: DISK:[DIRECTORY.SUBDIRECTORY]*.DECSET_CONTEXT.

If you specify a node name in the File menu New Context... Context File
field—even if the node name is part of a local cluster—the node specification is
invalid at the time of context file retrieval from the context database.

2–2 DECset Environment Manager

DECset Environment Manager
2.1 Environment Manager Basic Concepts

Example 2–1 shows the contents of the context file
PLAN9.DECSET_CONTEXT.

Example 2–1 Context File PLAN9.DECSET_CONTEXT

!
! Context file DISK12:[JONES]XXX01.DECSET_CONTEXT
! Written by DECset Environment Manager at 7-SEP-1998 15:03:24.82
!

SET DEFAULT DISK12:[JONES]

DEFINE/TABLE=LNM$GROUP_TABLE LOGICAL -
EQUIV

SET_MMS RULES

SET_MMS DESCRIPTION

SET_MMS NOOVERRIDE

SET_MMS NOCMS

SET_MMS VERIFY

SET_MMS ACTION

SET_MMS NOIGNORE

SET_MMS NOFORCE

SET_MMS NOCHECK_STATUS

SET_MMS NOREVISE_DATE

SET_MMS NOSKIP_INTERMEDIATE

SET_MMS NOLOG

2.1.4 Context Database
A context is defined in a context database. This database is stored as a
sequential ASCII text file. Each record of this file has the following format:

context-name context-file-spec [parent-context] ["context-description"]

A context database entry must include a complete file specification. For
example:

DISK12:[USER.DIRECTORY]context_database_file.DECSET_CONTEXT_DB

DECset Environment Manager 2–3

DECset Environment Manager
2.1 Environment Manager Basic Concepts

Example 2–2 shows the contents of context database file
PLAN1.DECSET_CONTEXT_DB.

Example 2–2 Context Database File PLAN1.DECSET_CONTEXT_DB

PLAN1 DISK12:[JONES]PLAN1.DECSET_CONTEXT "Top Level Product for LSE"
PLAN4 DISK12:[JONES]PLAN4.DECSET_CONTEXT PLAN1 "Debug Context for LSE"
XXX01 DISK12:[JONES]XXX01.DECSET_CONTEXT PLAN1 "Experiment 01 for LSE"
PLAN9 DISK12:[JONES]PLAN9.DECSET_CONTEXT PLAN4 "Modified Debug Context for LSE"

2.2 DECset Tool Selection
The DECset tool selection pull-down menu appears in the FileView and Session
Manager menu bars under the label DECset. Figure 2–1 illustrates the
DECset tool selection pull-down menu.

Figure 2–1 DECset Tool Selection Pull-down Menu

SDXVMS2

By default, when you start a DECset tool, the tool runs as a subprocess of the
session manager’s process. The DECset tool shares its quotas and environment
with the Session Manager. Click on the ellipsis next to the DECset tool to
bring up a dialog box that allows you to specify whether the process is to be
started as a detached process.

2–4 DECset Environment Manager

DECset Environment Manager
2.2 DECset Tool Selection

When a DECset tool is started up within the DECwindows interface, the
tool invokes the Environment Manager (if the Environment Manager is
installed) as part of tool initialization. If the Environment Manager is not
already running, it is started up and initially appears as an icon on the
DECwindows display; the tool registration then proceeds. The Environment
Manager processes are named ‘‘DECSET$EM_xxxx’’, where xxxx refers to the
hexadecimal representation of your process identifier. Multiple versions of each
file can exist.

The base priority of an Environment Manager process is initially set to the
current value of the DEFPRI system parameter on the host system. When
the Environment Manager is applying a context, the base priority is raised to
10. After the context apply operation has completed, the initial base priority
setting is restored.

2.3 DECset Context Window
The DECset Context window is the main window of the Environment
Manager’s graphical user interface. Select the Context option from the DECset
tool selection pull-down menu (see Section 2.2) to bring up the DECset Context
window, shown in Figure 2–2.

DECset Environment Manager 2–5

DECset Environment Manager
2.3 DECset Context Window

Figure 2–2 DECset Context Window

The DECset context window consists of the following working areas:

• Menu bar

• Context specification area

• Dialog buttons area

By default, the DECset Environment Manager tries to load a context
database. The default context database is specified by the translation of
the DECSET$CONTEXT_DB logical name. If this logical name is undefined,
SYS$LOGIN:DECSET$KNOWN_CONTEXTS.DECSET_CONTEXT_DB is used
as the default database, if that file exists.

2–6 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

The default context is specified by the translation of the DECSET$CONTEXT
logical name; if this logical name is undefined, SAMPLE is used as the default
context if a database entry exists for the SAMPLE context.

2.3.1 Menu Bar
The Menu bar contains some standard pull-down menus: File, View, Settings,
Options and Help. The menus are described in the following sections.

2.3.1.1 File Menu
The menu items in this pull-down are used to control the contents of the
DECset Context, Context File, and Context Database fields. The menu items
are as follows:

• Apply Context—Used to apply the context shown in the DECset Context
field. This menu item has the same function as the Apply button.

• Delete—Used to delete the context entry, context file, or context database.

Click on Context Entry to delete the context entry shown in the Context
field from the Context Database Entries field, and to delete the selected
context entry from the context database. The DECset Environment
Manager checks to ensure that the context to be deleted is not a parent of
another context.

Click on Context File to delete the context file shown in the Context File
field. The DECset Environment Manager updates the window to reflect the
deletion.

Click on Database to delete the currently-opened context database.

• Modify Database Entry—Used to modify any of the fields in a selected
database entry.

The DECset Environment Manager displays a dialog box with fields filled
in with information from the selected context.

• New—Used to create a context or database.

• Open Database—Used to select a context database file to open

• Print—Used to print the context, context file, context including attributes
from the parents, or context database.

Click on Context to print the information associated with the current
selected context, without its inherited information but including any
modifications made to the context that may not have been saved to the
associated context file.

DECset Environment Manager 2–7

DECset Environment Manager
2.3 DECset Context Window

Click on Context File to print the information associated with the
current selected context in a scrollable window. This context file might
not be the same as the result of Print Context depending on whether
you have made modifications to the current selected context and have
saved the modifications to the associated context file.

Click on Context Including Inheritance to print the information
associated with the context that would be the result of applying the
selected context and its inherited context.

Click on Database to print the contents of the context database.

• Save Context File—Used to save the contents of the selected context file.
The Save Context File menu item performs the same operation as the Save
button.

• Exit—Used to exit the DECset Context window.

2.3.1.2 View Menu
The menu items in this pull-down are used to review the contents of the
context, context file, and context including inheritance.

• Click on Context to display in a scrollable window the information
associated with the current selected context, without its inherited
information but including any modifications made to the context that
may not have been saved to the associated context file.

• Click on Context File to bring up the context file associated with the
current selected context in a scrollable window. This context file might
not be the same as the result of View Context, depending on whether you
have made modifications to the current selected context and have saved the
modifications to the associated context file.

• Click on Context Including Inheritance to display the current context in a
scrollable window. This is the context that would be the result of applying
the selected context with its inherited information.

2.3.1.3 Options Menu
The menu items in this pull-down are used to apply, save, or confirm context
entry information. The menu items are as follows:

• Apply Context on Save—Used to automatically apply the selected context
(the context shown in the Context field). The Apply Context on Save toggle
button, when turned on, applies the context object after saving the context.
By default, the Apply Context on Save toggle button is turned off.

2–8 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

• Save Context on Apply—Used to automatically save the context shown
in the Context File field. The Save Context on Apply toggle button, when
turned on, saves the context file prior to applying the context. A context
must be saved before it can be applied. By default, the Save Context on
Apply toggle button is turned off.

• Confirm Apply—Used to bring up a Yes/No confirmation message box as
part of the apply operation. By default, the Confirm Apply toggle button is
turned on.

• Confirm Save—Used to bring up a Yes/No confirmation message box
on the Save Context File operation. By default, the Confirm Save toggle
button item is turned on.

• Confirm Delete Context Entry—Used to bring up a Yes/No confirmation
message box on the Delete Context Entry operation. By default, the
Confirm Delete Context Entry toggle button is turned on.

• Confirm Delete Context File—Used to bring up a Yes/No confirmation
message box on the Delete Context File operation. By default, the Confirm
Delete Context File toggle button is turned on.

• Confirm Delete Database—Used to bring up a Yes/No confirmation
message box on the Delete Database operation. By default, the Confirm
Delete Database toggle button is turned on.

• Save Options—Used to write the current options settings to a user-profile
file. If this file exists, the settings in the user-profile file override the
default settings.

2.3.1.4 Help Menu
This menu provides access to help screens. It contains the items usually
present in DECset tool Help pull-down menus, including the following:

• On Context—Used to bring up information about an object in a window or
dialog box

• On Window—Used to display an overview

• On Help—Used to bring up information on how to use the help system

• On Version—Used to display copyright and version information

DECset Environment Manager 2–9

DECset Environment Manager
2.3 DECset Context Window

2.3.1.5 Settings Menu
The Settings pull-down menu specifies or modifies the definitions and settings
that define a particular context. The Settings menu is disabled until values are
supplied in both the Context and Context File fields.

The Settings pull-down menu items include the following:

• CMS Library—Directory search list to specify a CMS library

• Default Directory—Used to specify a default directory associated with
the current context

• DTM Library—Used to specify a directory as the HP DIGITAL Test
Manager library

• Logical Names—Used to specify logical name definitions that are specific
to the current context

• MMS Generate Function—The MMS Generate function provides you the
capability to define several qualifiers to be used during the creation of a
descriptor file.

• MMS Options—Used to specify the following MMS build command
options:

Linker Object Libraries—Directory search list to specify the object
library to be included as input to the linking operation

Linker Options—Directory search list to specify user-written options
files to be included in the LINK command in the MMS description file

Input/Output—Used to set the input and output qualifiers that could
go on the MMS command line

Definition/Directive—Used to specify definitions and directives for
the MMS build command

MMS Macros—Used to direct MMS to add to or to override the macro
definitions in the MMS description file

Executable Files—Used to specify a directory into which executable
files will be written

Listing Files—Used to specify that compilations use the /LIST
qualifier and optionally write the listing files to the specified directory

Object Files—Used to specify a directory into which object files are to
be written

Object Library—Used to specify into which library the object files
from the compilations are to be inserted

2–10 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

• SCA Library—Directory search list to specify an SCA library

• Source Directory—Directory search list to specify a directory from which
source files will be retrieved

• Symbols—Used to add DCL symbol definitions to the specified context

The following sections describe these menu items in detail.

CMS Library
The CMS Library... menu item brings up a dialog box as shown in Figure 2–3.

Figure 2–3 DECset Context CMS Library Dialog

Enter a directory specification into the Directory field and click on either the
Append or Add Before Selected button to add the directory in the appropriate
place in the Directory List field. The Directory List field contains a search list
of directory specifications, one directory specification per line.

If CMS library information exists for the current context, that information is
shown in the CMS Library List field when the dialog box is displayed. Delete
items from the directory list by selecting the appropriate items in the Directory
List field and clicking on the Delete Selected button. The OK button accepts
the directory list and dismisses the dialog box. The Cancel button dismisses
the dialog box without changing the CMS library.

Click on the Select... button to specify the directory.

DECset Environment Manager 2–11

DECset Environment Manager
2.3 DECset Context Window

Default Directory
The Default Directory... menu item displays a file selection window that
enables you to specify a default directory associated with the current context.
If the default directory specification is available for the currently selected
context, the input fields of the file selection window are filled in with the
appropriate file specification.

DTM Library
The DTM Library... menu item brings up a file selection window that enables
you to specify a HP DIGITAL Test Manager library (directory specification) to
be associated with the current context. If the currently selected context already
includes a HP DIGITAL Test Manager library specification, the input fields of
the file selection window are filled in with the appropriate file specification.

Logical Names
The Logical Names... menu item displays the dialog box shown in Figure 2–4.

2–12 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

Figure 2–4 DECset Context Logical Names Dialog

The logical name definitions retrieved from the context file specified in
the Context File field of the main window are displayed in the Logical
Names/Equivalences field of this dialog box.

The dialog box contains the following buttons :

• Conceal Translation—Used to specify that the translation(s) of the logical
name are ‘‘concealed’’.

• Enter Definition—Used to add the logical name and corresponding
equivalence strings specified in the Logical Name and Equivalences fields
to the Logical Names/Equivalence Strings list shown in the dialog box.

Use this feature to supersede a definition from a parent context.

DECset Environment Manager 2–13

DECset Environment Manager
2.3 DECset Context Window

• Enter Deassign—Used to enter a deassign logical name specified in the
logical name field to the Logical Names/Equivalence Strings list. The
contents of the Equivalence string field are ignored.

Use this feature in a context to supersede a definition from a parent
context.

The DECset Environment Manager does not allow duplicate definitions of
a logical name in the Logical Names/Equivalence Strings field.

• Remove—Used to remove the selected logical name definition or the
DEASSIGN from the Logical Names/Equivalence Strings list.

• Show Context Logicals—Used to display the context logicals in memory.

When you create or edit a logical name, if logical has no inheritance, the
Environment Manager does not display logical names when you press the
Include inheritance dialog button.

• Add Table—Used to specify an option menu containing the options system,
group, job, the default setting, process, or other user-defined tables.

The value indicates the logical name table into which the logical name is
inserted or from which the logical name is deassigned.

• OK—Used to dismiss the dialog box and write changes made to the current
context.

The current changes are not written to the context file until after you
either apply or save these changes. Changes are written to the current
context in memory only.

• Cancel—Used to dismiss the dialog box, discarding current changes made.

• Help—Used to bring up a help window containing text describing the
dialog box.

The Logical Names/Equivalence Strings field places equivalence strings on
separate lines to distinguish between logicals defined. For example:

DEFINE LIONS BAR
DEFINE TIGERS A,B,C
DEASSIGN BEARS

The Environment Manager does not accept logical name specifications that
include quotation marks.

When you enter a logical name definition or deassignment, the definition is
entered into the list box and the corresponding logical name table as specified
in the Add Table dialog button. If you switch logical name tables, you work
in that tables’ list box and name table. It is only when you press OK that you

2–14 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

effectively enter these modifications into the currently selected context. If you
press Cancel, the context is not modified.

It is the context logicals that are displayed by the Show Context Logicals dialog
button, not the list box or the logical name tables. Further, it is the context
in memory that is modified when you press OK to one of these types of dialog
buttons. It is only when you press the Save button that the context on disk is
modified. Again, you may Cancel by refusing to save the changes.

MMS Generate Function
The MMS Generate function provides you the capability to define several
qualifiers to be used during the creation of a descriptor file. There are two
toggle buttons that can be set and two text input fields that can contain
additional qualifiers for compile and link commands.

• Scan_Include—Setting this button causes entries to be placed in the
descriptor file to scan C/C++ include files for any dependencies.

• Built-In Rules Apply—Setting this button causes the Generate function
to use the built-in rules when creating the descriptor file. When this button
is set, the Additional Compiler text field is disabled.

• Additional Compiler Switches—Use this text field to provi de additional
qualifiers that are to be placed on the compiler command when crea ting
a descriptor file. The entry requires that the slash character (/) on each
qualifier also to be included.

/ABC/DEF

• Additional Linker Switches—Use this text field to provide additional
qualifiers that are to be placed on the Link command when creating a
descriptor file. The entry requires that the slash character (/) on each
qualifier also to be included.

/ABC/DEF

MMS Options
The Input/Output... menu item from the MMS Options... menu displays the
dialog box shown in Figure 2–5.

DECset Environment Manager 2–15

DECset Environment Manager
2.3 DECset Context Window

Figure 2–5 MMS Options Input and Output Dialog

Use this dialog box to set options for the MMS command. These options
correspond to MMS command-line qualifiers. If the currently selected context
already includes any of these MMS option settings, this dialog box reflects
that information; otherwise, the default settings are represented as shown in
Figure 2–5.

The following sections describe the dialog box in detail.

Input Section Click on the buttons and use the text fields following the Input:
label to specify input files for any subsequent build. The buttons are as follows:

• Description File—Click on this toggle button to specify an MMS
description file for any subsequent build. Click on the Description File...
push button and select a file from the dialog box, or enter a file specification
into the text field. If you use the file selection box, this field is filled in with
the selected file.

• Regard as Changed—Click on this toggle button to direct MMS to treat
only the specified sources as having been changed, regardless of their
actual modification times. No date checking is performed at all; that
is, MMS simply rebuilds any targets that depend on one or more of the
specified sources.

Click on the Changed Source... push button and select a file from the
dialog box, or enter a file specification into the text field. If more than one
source is indicated, use a comma-separated list. If the file selection box is
used, this field is filled in with the selected file.

2–16 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

Output Section Click on the buttons and use the text fields following the
Output: label to specify output files for any subsequent build. The buttons are
as follows:

• List—Click on this toggle button to specify an MMS list file for any
subsequent build. Click on the List File... push button and select a
file from the dialog box, or enter a file specification into the text field. If
you use the file selection box, this field is filled in with the selected file.

• Output—Click on this toggle button to specify an MMS output file for any
subsequent build. Click on the Output File... push button and select a file
from the dialog box, or enter a file specification into the text field. If you
use the file selection box, this field is filled in with the selected file.

• Log Informational Messages—Click on this toggle button to instruct
MMS to log informational messages, in addition to warning and error
messages, to the List or Output file.

Navigation Buttons Click on the navigation buttons to save your selections,
cancel your selections, or get online Help. The buttons are as follows:

• OK—Click on the OK button to indicate that the options for the MMS
command are complete and you want to exit out of the dialog box.

• Cancel—Click on the Cancel button to quit the dialog box without
completing options and discard changes for the MMS command.

• Help—Click on the Help button to bring up the textual explanation of the
dialog box in a window.

MMS Definition/Directive
The Definition/Directive... menu item from the MMS Options... menu displays
the dialog box shown in Figure 2–6.

DECset Environment Manager 2–17

DECset Environment Manager
2.3 DECset Context Window

Figure 2–6 MMS Options Definitions and Directives Dialog

Use this dialog box to set options for the MMS command. These options
correspond to MMS command-line qualifiers. If the currently selected context
already includes any of these MMS settings, this dialog box reflects that
information; otherwise, the default settings are represented as shown in
Figure 2–6.

Definitions Section Click on the buttons and use the text fields following the
Definitions: label to specify definitions for any subsequent build. The buttons
are as follows:

• Macro Definitions—Click on this toggle button to direct MMS to add
to or override the macro definitions in the description file. Click on the
Macro File... push button and select a file from the dialog box, or enter
a file specification into the text field. If you use the file selection box, this
field is filled in with the selected file.

2–18 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

• Rules—Click on this toggle button to direct MMS to apply user-defined
built-in rules and a suffixes precedence list when it builds a system. Click
on the Rules File... push button and select a file from the dialog box,
or enter a file specification into the text field. If more than one source is
indicated, use a comma-separated list. If you use the file selection box, this
field is filled in with the selected file.

• Override Macros—Click on this toggle button to control the order in
which MMS applies definitions when it processes macros.

Directives Section The buttons and text fields following the Directives
label are implemented as toggle buttons, although some require additional
information. (For details on these toggle buttons, see the Guide to HP Module
Management System for OpenVMS Systems.) If an additional file specification
needs to be specified, a file selection window is used.
Navigation Buttons Click on the navigation buttons to save your selections,
cancel your selections, or get online Help. The buttons are as follows:

• OK—Click on the OK button to indicate that the options for the MMS
command are complete and you want to exit out of the dialog box.

• Cancel—Click on the Cancel button to quit the dialog box without
completing options and discard changes for the MMS command.

• Help—Click on the Help button to bring up the textual explanation of the
dialog box in a window.

MMS Macros
The MMS Macros... menu item from the MMS Options... menu displays the
dialog box shown in Figure 2–7.

DECset Environment Manager 2–19

DECset Environment Manager
2.3 DECset Context Window

Figure 2–7 MMS Macro Definitions Dialog

The macro definitions retrieved from the context file specified in the Context
File field of the main window are displayed in the Macro Definitions field of
this dialog box.

The dialog box contains the following buttons:

• Enter—Used to add a new macro definition to the Macro Definitions list
shown in the dialog box.

• Remove—Used to remove the selected macro definition from the Macro
Definitions list.

• OK—Used to dismiss the dialog box and write changes made to the current
context.

• Cancel—Used to dismiss the dialog box, discarding current changes made.

• Help—Used to display the help window containing text describing the
dialog box.

2–20 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

MMS Linker Options
The MMS Linker Options... menu item from the MMS Options... menu
displays the dialog box shown in Figure 2–8.

Figure 2–8 MMS Linker Options Files Dialog

Click on the Select... button to bring up a file selection window that allows you
to choose an options file.

Enter a linker options file specification into the Options File field and click
on either of the Append or Add Before Selected buttons to add the options file
specification in the appropriate place in the Options File List field.

The Options File List field contains an ordered list of options file specifications,
one file specification per line. Delete items from the options file list by selecting
the appropriate item(s) in the Options File List field and clicking on the Delete
Selected button. The OK button accepts the options file list and dismisses the
dialog box. The Cancel button dismisses the dialog box without changing the
current options file list.

Press Select... to specify the options file.

SCA Library
The SCA Library... menu item displays a dialog box similar to the one shown
in Figure 2–3. The only difference for the three menu choices is the text of the
title bar indicating that an SCA library is being set.

DECset Environment Manager 2–21

DECset Environment Manager
2.3 DECset Context Window

Source Directory
The Source Directory... menu item displays a dialog box similar to the one
shown in Figure 2–3. The only difference for the three menu choices is the text
of the title bar indicating that a source directory is being set.

Symbols
The Symbols... menu item displays the dialog box shown in Figure 2–9.

Figure 2–9 DECset Context Symbol Definitions Dialog

The symbol definitions retrieved from the context file specified in the Context
File field of the main window are displayed in the Symbol Definitions field of
this dialog box.

Use this dialog box to add DCL symbol definitions to the specified context.

The Environment Manager stores symbols only as global symbols. Both single
and double equal sign (‘‘=’’ or ‘‘= =’’) syntax is allowed for symbol definitions in a
context file; however, either syntax is interpreted as a global symbol definition.

The dialog box contains the following buttons:

• Enter Define—Used to add a new symbol definition to the Symbol
Definitions list shown in the dialog box.

Use this in a context to supersede a definition from a parent context.

• Remove—Used to remove the selected symbol definition or the DELETE
SYMBOL entry from the Symbol Definitions list.

2–22 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

• Enter Delete—Used to add a DELETE SYMBOL entry to the Symbol
Definitions list shown in the dialog box.

Use this feature in a context to supersede a definition from a parent
context.

• OK—Used to dismiss the dialog box and write changes made to the current
context.

• Cancel—Used to dismiss the dialog box, discarding current changes made.

• Help—Used to display a help window containing text describing the dialog
box.

2.3.2 Context Specification Area
The context specification area is used to display information about contexts,
and consists of the following fields:

• Context

• Parent

• Context file

• Context database entries

The context specification area consists of read-only fields. Use the menu bar
functions to make changes to any of these fields.

Context Field
You can display a context name in the Context field by single-clicking on a line
in the Context Database Entries field, or by selecting the New menu item from
the File menu.

Parent Field
In Figure 2–2, PLAN4 shown in the Context Database Entries field is the
parent of PLAN9. PLAN1 is the parent of PLAN4. This example illustrates
an ancestral chain of contexts. The DECset Environment Manager does not
allow a circular ancestral chain. If a circular chain is detected, the DECset
Environment Manager displays an error message dialog box, and aborts the
operation on that context.

Context File Field
If you select an existing context file from the Context Database Entries field,
the name of the context and the associated information is displayed in the
read-only Context, Parent, and Context File fields.

DECset Environment Manager 2–23

DECset Environment Manager
2.3 DECset Context Window

For a new context, or one for which you are modifying the associated context
file specification, you can use the Modify Database Entry... menu item from the
File menu to bring up a file selection window.

If any part of the file specification is not supplied (such as the disk name),
the corresponding component of your current, default directory specification is
used. If the name or the file type is not specified, the name of the currently
specified context is used as the file name and .DECSET_CONTEXT is used as
the file type.

Context Database Entries Field
The context names (and some associated information) are retrieved from the
context database listed in the Context Database Entries field of the DECset
context window.

2.3.3 Dialog Buttons Area
The dialog buttons area is used to apply or save information associated with
the currently-selected context. The buttons are as follows:

• Apply—Causes the selected context object to be applied to any DECset
tools displaying on the same DECwindows display as is the Context
window. You may also double-click on the context in the Context Database
Entries field to apply the context. In addition to applying this context, any
command line qualifiers that are in effect are then re-applied to the tool.

A named context must be saved before a context apply operation is
initiated.

• Save—Saves the context file shown in the Context File field.

This action saves the current definitions and settings (possibly modified via
the Settings menu) to the context file indicated in the Context File field of
the main window. If the value in the Context File field has changed since
the last Save operation for the current context, the DECset Environment
Manager writes the new file specification to the context database. For a
new context, the Save menu item ensures that the context is known by
adding the specified context name and associated context file specification
to the context database. The DECset Environment Manager displays a
confirmation dialog box for final approval before saving new information
in an existing context database entry or an existing context file. Saving a
context affects other DECset tools displaying on the DECwindows display
only when that context is subsequently applied.

2–24 DECset Environment Manager

DECset Environment Manager
2.3 DECset Context Window

Note

If you place your context files in a separate directory, you might want
to put a version limit on the directory to keep a set number of versions
of any context file or database. Use the SET FILE/VERSION_LIMIT or
the SET DIRECTORY/VERSION_LIMIT commands.

For example, you might choose to limit only the number of versions of
the database and purge context files by setting a version limit on the
database file.

2.4 Command-Line Interface
Use the DECSET SET CONTEXT and DECSET SHOW CONTEXT commands
to set or show the current context or the current context database for your
process. The following sections describe these commands in detail.

2.4.1 DECSET SET Command
The SET command line has one of the following forms, depending upon
whether a context or a context database is being set:

DECSET SET CONTEXT context-name [/DATABASE=database-file]

DECSET SET DATABASE database-file

DCL wildcards cannot be used in either the context-name or database-file
argument.

The /DATABASE qualifier allows you to set a context that is defined in
the specified database. If the /DATABASE qualifier is missing, the value
of the DECSET$CONTEXT_DB logical name is used. If this logical name
is undefined, your SYS$LOGIN directory is searched for a file named
DECSET$KNOWN_CONTEXTS.DECSET_CONTEXT_DB. If a database
cannot be located, an error message is displayed.

The DECSET SET CONTEXT command automatically defines the logical
names DECSET$CONTEXT and DECSET$CONTEXT_DB. The DECSET
SET DATABASE command automatically defines the logical name
DECSET$CONTEXT_DB.

DECset Environment Manager 2–25

DECset Environment Manager
2.4 Command-Line Interface

2.4.2 DECSET SHOW Command
The SHOW command line has one of the following forms, depending on
whether information about a context or a context database is being shown:

DECSET SHOW CONTEXT [context-name] [/DATABASE=database-file]

DECSET SHOW DATABASE

DCL wildcards cannot be used in either the context-name or database-file
argument.

If context-name is not specified in the DECSET SHOW CONTEXT command,
the value of the DECSET$CONTEXT logical name is used (if that logical name
is defined). If the context name cannot be determined, an error message is
displayed.

The /DATABASE qualifier enables you to show information about a context
that is defined in the specified database. If the /DATABASE qualifier is
missing, the value of the DECSET$CONTEXT_DB logical name is used. If
this logical name is undefined, your SYS$LOGIN directory is searched for a
file named DECSET$KNOWN_CONTEXTS.DECSET_CONTEXT_DB. If a
database cannot be located, an error message is displayed.

2.5 Disabling Environment Manager
You can stop the Environment Manager from running when you activate a
DECset component by defining the logical DECSET$DISABLE_ENVMGR.
The value of the logical is irrelevant. When invoking a component using
/INTERFACE=DECWINDOWS, the logical can be set in one of following three
ways:

• Use the DCL command to define the logical before running the component
DEFINE DECSET$DISABLE_ENVMGR " "

• Use the DCL command DECSET SET CONTEXT context-name
/DATABASE=database- file-name if the database and the context file
are already defined using the Environment Manager.This causes the logical
defined in the context file to be set for the current process.

• Set the logical while in the Session Manager, before invoking a DECset
component. Use the session pull-down menu and select the Logical
Names. The "Logical Names..." function is an optional menu item and
if not currently available it can be added to the Session Manager menu
bar. For more information on adding the "Logical Names..." item to the
Session Manager, refer to the DECwindows documentation. When running
the Common Desktop Environment (CDE), the command line interface
works the same as the first two items in the preceding list. For more

2–26 DECset Environment Manager

DECset Environment Manager
2.5 Disabling Environment Manager

information, refer to the CDE documentation for creating applications
using the Application Manager.

DECset Environment Manager 2–27

3
Organizing Files, Libraries, and Directories

This chapter describes ways to set up the files, libraries, and directories for
a software development project. The intended audience of this chapter is the
software development project leader who might be responsible for setting up
any or all of the following:

• User accounts

• Project directories

• File protection schemes

• CMS, HP DIGITAL Test Manager, and SCA libraries

• Build directories

• CMS library reference copy areas

The descriptions in this chapter are not steadfast rules that must be followed
in order to use the DECset and other OpenVMS tools; however, you might find
them useful for creating and maintaining a well-organized directory structure
for your project.

3.1 Setting Up User Accounts and Directory Protection
Before setting up user accounts for project team members, you must determine
what project information and resources each team member needs. Not
every member needs access to every directory and component of the project.
Restricting team members’ access to files and resources to only the ones they
need reduces the chances of errors related to revising or building versions of
software. Additionally, you want to prevent unauthorized users from gaining
access to confidential files and resources.

Organizing Files, Libraries, and Directories 3–1

Organizing Files, Libraries, and Directories
3.1 Setting Up User Accounts and Directory Protection

OpenVMS provides several tools to authorize and control the use of system
resources by individual users. The OpenVMS System Manager’s Handbook
describes these tools and describes how and when to use them. The OpenVMS
DCL Concepts Manual gives a detailed explanation of the following:

• Protection procedures

• User identification codes (UICs)

• Access control lists (ACLs)

To begin, set up a basis for system accounting, file protection, and interprocess
communication:

1. To protect your data, establish a group of user accounts by specifying
a common UIC group number for all project members; or set up rights
identifiers to provide varied and selective access, if necessary.

2. Create a list of rights identifiers for the members of your project team.
Enter those identifiers in the system rights list. For example, you might
want to make developers holders of the PROJECT_SOURCE identifier,
and make technical writers holders of the PROJECT_SOURCE_READ
identifier. See Chapter 6 for examples of using these rights identifiers.

3. Set up UIC protection masks (use the DCL SET PROTECTION command)
to further restrict outside access (system, owner, group, and world) to
member directories, certain project and library directories, and selected
files. You do so by defining categories of access within each group (read,
write, execute, and delete).

4. Use ACLs to restrict access to specific elements by defining protection rules
(UIC or identifier-based protection masks) for a file or a directory. By using
ACLs, you can provide access to specific elements for users having other
UIC numbers.

See Chapter 5 for an example of setting up protection for directories and
libraries.

3.2 Setting Up a Project Directory Structure
This section describes a suggested project directory structure, presented in
three parts:

1. The initial project directory structure—Contains public access files,
command files, logical name definitions, and CMS libraries for source code
and project documentation

3–2 Organizing Files, Libraries, and Directories

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

2. The build directory—Contains the following subdirectories:

• Object libraries

• Source files fetched from CMS

• SCA library system

• CMS library reference copy area

3. HP DIGITAL Test Manager storage area directory

3.2.1 Setting Up the Initial Project Directory Structure
Figure 3–1 shows the initial storage areas of an effective directory structure. It
contains the directories and libraries that you must set up in the early stages
of your project. You will add more directories and libraries to this hierarchy as
your project develops, as described in later sections of this chapter.

Figure 3–1 Initial Storage Areas for a Typical Project

GROUP: DISK

[PROJ] PROJECT AREA

SUBDIRECTORIES

[PROJ.PUBLIC]

(.MEM)
(.LIS)

Public access files

[PROJ.COMS]

(.COM)

[PROJ.DOC_CMSLIB] [PROJ.CODE_CMSLIB]

(.MMS)
(.FOR)
(.PAS)

(.RNO)

Global command
and ACL procedures

(.MEM)

Functional
specifications
Development plans
Design documents
User’s manuals

MMS description
Source files
Link option files

ZK−5944−GE

(.PS)

The first storage areas you need include the following:

• A subdirectory for public access—[PROJ.PUBLIC]

This subdirectory contains information for users and interested parties (for
example, printable documentation files). This directory could also be kept
outside the project area.

• A subdirectory for global command procedures—[PROJ.COMS]

Organizing Files, Libraries, and Directories 3–3

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

This subdirectory can include command files that contain logical name
definitions and files with command procedures developed during your
project cycle.

• A CMS library for documentation—[PROJ.DOC_CMSLIB]

This CMS library can contain files that document the application;
for example, those produced for HP Standard Runoff (DSR) (.RNO
files) or DECdocument (.SDML files). You can keep the most recent
printable files (.MEM or .PS files, for example) in the public subdirectory,
[PROJ.PUBLIC], or in your CMS library. If disk space is a concern, do not
store files in a CMS library that can easily be reproduced; for example,
.MEM or .PS files. In addition, you might want to store your document
sources in more than one CMS library; for example, use one CMS library
for requirements documentation and another CMS library for specifications
documentation.

• A CMS library for source code—[PROJ.CODE_CMSLIB]

This CMS library contains your source files. It is most useful for dynamic
storage; that is, storage of objects that frequently change. The code library
can include program module source files (.BAS, .PAS, .FOR, and others)
and precompiler source files (.RCO, .RBA, and others).

Initially, the CMS code library can store your team’s prototype sources.
This library is also a good location for the MMS description file, which
details and invokes your build procedures. CMS stores the various versions
of this file as your team periodically updates it. You can also store link
option files here to be fetched by MMS for link procedures.

3–4 Organizing Files, Libraries, and Directories

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

An alternative to setting up separate CMS libraries for the documentation
sources is to place them in the CMS code library. This way, you can fetch or
reserve both the documentation and the code source files with one generic file
designation. Figure 3–2 shows the CMS Fetch dialog box, using DECwindows
on a workstation, in which all project files are chosen for a fetch operation.

Figure 3–2 CMS Fetch Dialog Box

Chapter 6 provides an example of setting up CMS libraries. See the Guide to
HP Code Management System for OpenVMS Systems for detailed explanations
of CMS libraries and commands.

3.2.1.1 Planning CMS Libraries
In planning a CMS project library, you need to consider the following questions:

• What project tasks require a CMS library?

• Will the library be used mainly for static storage or more for dynamic
storage; that is, tracking files that change frequently?

• Will you be using the Distributed File Service (DFS)?

• Do you need a librarian to manage the library?

• What access rights do you need, if any, and for which files or libraries?

• How often will you build your application?

Organizing Files, Libraries, and Directories 3–5

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

• What will the naming conventions be for CMS library elements, groups,
and classes?

• What, if any, will be the protocols to use the system?

3.2.1.2 Considerations for Large Projects
For large projects, use a list of CMS libraries, or virtual libraries, to store
your project files instead of using only one library. Typically, as the size of a
library increases, so does the number of users attempting to gain access to it.
Although CMS does not have a restriction on the number of elements you can
have in a library, the problems of having a large library with numerous users
include the following:

• Access—CMS provides only single-thread entry; that is, only one door
for operations that modify the library’s contents (for example, Reserve,
Replace, and Insert operations).

Developers involved with a large project might interfere with one another if
they attempt frequent library operations that change the library’s contents.
This type of bottleneck is particularly noticeable during major batch
operations that change the contents of the library. Users can reduce
problems during these operations by adjusting their work habits; for
example, they should avoid wildcard operations during busy periods, or use
only FETCH operations during build procedures.

• Redundancy—Large applications do not necessarily have their functional
development occurring in parallel. Some pieces of functionality are
complete early in the project life cycle and remain relatively stable. To
some extent, build procedures repetitively access these stable modules, if
only to check their update status.

To avoid this problem, design your build procedure to be modular. Rather
than rebuilding stable targets, set up your build procedure to group stable
components and unstable components into separate targets. Then build
only the unstable targets.

3–6 Organizing Files, Libraries, and Directories

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

Multiple CMS libraries keyed to each logical or functional subsection (or
facility) of the application help to avoid the performance problems of many
elements. However, multiple CMS libraries create problems of their own. For
example, CMS does not have a cross-library referencing feature. This means
that CMS features such as groups and classes no longer easily encompass the
entire application.

To offset this, you can use the Search List facility of CMS to help with
managing multiple libraries. As you subdivide libraries to improve
performance, though, there is a tradeoff between performance and ease of
library management.

For operations that are common, and need to be faster than is possible with a
command procedure, you might want to write programs that use CMS callable
routines to perform the operations. Refer to the Guide to HP Code Management
System for OpenVMS Systems for more information.

The directory structure for a large project can still be based on Figure 3–1.
However, each facility of the application will have its own [PROJ] area as part
of the structure. The entire application will come together at major application
milestones or base levels.

Note

Although CMS can store nontext files, such as binary sources, you
might choose not to store files that can be produced from other stored
files (for example, object files that can be produced from source files).
This saves disk space.

3.2.2 Setting Up the Build Directory
This section describes the second area of your project directory structure—the
build directory. You can set up the build areas as parallel subdirectories that
correspond to the initial prototype build directory. Figure 3–3 shows a build
directory structure using this practice.

Organizing Files, Libraries, and Directories 3–7

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

Figure 3–3 Build Directory Structure

[PROJ] PROJECT AREA

SUBDIRECTORIES

ZK−5939−GE

[PROJ.BLD_V1]

(.OBJ)
(.ANA)
(.EXE)

Object library
Analysis data
Linked images
Fetched sources

SCA library Source code
Help
Message source file

[PROJ.BLD_V1.
CODE_REFCOPY]

[PROJ.BLD_V1.
SCALIB]

[PROJ.BLD_V1.
WORK]

In Figure 3–3, [PROJ.BLD_V1] is a directory area devoted to the periodic
building of your application, where 1 represents the version number of the
software. (As your project develops, you can create subdirectories to store
successive versions: [PROJ.BLD_V2], [PROJ.BLD_V3], and so on.) This
directory area contains the following subdirectories:

• [PROJ.BLD_V1.WORK]—Area for carrying out your project builds. This
area is described in more detail in Section 3.2.2.1.

• [PROJ.BLD_V1.SCALIB]—Area containing your project-wide SCA library
system. This area is described in more detail in Section 3.2.2.2.

• [PROJ.BLD_V1.CODE_REFCOPY]—The CMS library reference copy area.
This area is described in more detail in Section 3.2.2.3.

The end of this section describes an MMS description file you can use to
automate the building process itself.

3–8 Organizing Files, Libraries, and Directories

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

3.2.2.1 Work Area for Carrying Out Your Builds
During builds, the [PROJ.BLD_V1.WORK] directory stores the source files
fetched from CMS and the .EXE, .OBJ, and .ANA files produced during
compilation and linking.

You might want to group all the .OBJ files into an object library (.OLB to
simplify your linking procedures). You can link against the object library
rather than all the individual object files. See the OpenVMS Librarian Utility
Manual and the OpenVMS Linker Utility Manual for more information about
OpenVMS object libraries and how the linker uses libraries.

You need to determine how often you want to make major builds, and which
builds you want to keep. You can establish procedures where you rebuild or
update only at predetermined times. Alternatively, you can update the shared
build directory using CMS sources as soon as all your developers replace the
necessary CMS elements.

The advantage to keeping your build versions intact is that it allows your
team easy access to the files as they existed when that build was carried out.
However, because of the disk space needed to store all the contents of a build,
you probably need to limit the number of build versions that you actually keep.

You might find it useful to keep one major build that you frequently return to
for support and maintenance purposes. You do not need to keep intermediate
builds because of the class feature of CMS, which allows you to freeze the
sources for any build. By fetching the source files in a given class, you can
recreate a build from any development stage using the original source files in
CMS.

3.2.2.2 SCA Library System
You can make your project-wide SCA library a part of the build tree hierarchy
(for example, [PROJ.BLD_V1.SCALIB] as shown in Figure 3–3). To provide
an index of detailed source information for your project, you can arrange your
SCA library system to consist of the following:

• A comprehensive project-wide SCA library that reflects the development of
the entire software application

• Individual SCA libraries that correspond to local sources used by team
members during individual development tasks

During the compilation stage, compilers produce .ANA files containing modules
of analysis data. These .ANA files need to be loaded into an SCA library. SCA
then accesses the library for this information when carrying out any requested
queries.

Organizing Files, Libraries, and Directories 3–9

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

Figure 3–4 shows how to generate the analysis data from your source files.
In this case, a Pascal file, when compiled with the /ANALYSIS_DATA switch,
produces a corresponding .ANA file. Using the SCA LOAD command, you can
place the analysis data into the SCA library’s database.

Figure 3–4 Filling an SCA Library

FILE_A.PAS
$ PASCAL/ANALYSIS_DATA FILE_A

FILE_A.ANA

SCA LIBRARY

$SCA LOAD FILE_A

ZK−5942−GE

Project-Wide Development
By using the /SCA_LIBRARY switch on the MMS command line that initiates
a project-wide build procedure, MMS automatically compiles your files with
the /ANALYSIS_DATA switch and loads the .ANA files into the SCA project-
wide library. This produces a project-wide SCA library that reflects the latest
developmental work as maintained by the CMS library.

Chapter 9 contains an example of an MMS description file, which shows how to
set up your description file to take advantage of this feature.

Incremental Development
Your team will benefit from an SCA library structure in which team members
independently manage the libraries that are small and change frequently. This
is important for extremely large projects; individual developers benefit from
updating only their local SCA libraries on a regular basis, and not the project-
wide SCA library. It will be to your advantage to create functionally distinct
project-wide libraries to speed access to these libraries.

Developers can start each work day by reserving files from the CMS library to
their local work area where they can continue development. After compiling
the files, they can use their local SCA library to store the newly created
analysis data.

3–10 Organizing Files, Libraries, and Directories

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

When using SCA to query the application, developers can take advantage of
SCA’s ability to treat its multiple physical libraries as a single virtual library
(combination of physical libraries), shown by the following SET LIBRARY
command:

$ SCA SET LIBRARY LIB_1,LIB_2

This example sets up a library search list (similar to a OpenVMS directory
search list) for SCA to follow. For instance, the first SCA library on the list can
be a developer’s small local library. The last library on the list is the project-
wide SCA library. You can designate more than two libraries on the search
list.

Every module of the first library in the search list is included for viewing
in the virtual library. Each module in each subsequent library on the list is
then compared with the modules previously selected. If a module is uniquely
named, it is included for viewing in the virtual library; otherwise, it is excluded
(because it has already been defined).

Figure 3–5 shows how a virtual library concatenates the physical libraries on a
library list. As a result of the previous SET LIBRARY command, you create a
virtual library containing four modules: A and D from Physical LIB_1 together
with C and B from Physical LIB_2.

Organizing Files, Libraries, and Directories 3–11

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

Figure 3–5 Physical and Virtual SCA Libraries

ZK−5946−GE

Virtual Library

Physical LIB_2

Physical LIB_1 MODULE
D

HIDDEN

MODULE
C

MODULE
B

MODULE
A

HIDDEN

MODULE
D

MODULE
A

When making queries, you have access to the information in any of these
libraries. Because SCA looks into the libraries in the order specified in your
library list, you can efficiently access small portions of your application, unless
the sources’ analysis data can be found only in the libraries further down on
the list. When SCA joins the physical libraries into a virtual library, only
modules found in the first libraries will be accessed by SCA even if they
are duplicated in libraries further down on the library list. Only duplicate
modules with the same name are hidden. Consequently, when you modify
source modules, the library list will ensure that only the local SCA library that
corresponds to these source modules will be updated. This lets you use the
virtual library without concern for the fact that the project-wide library has not
been updated.

3–12 Organizing Files, Libraries, and Directories

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

A benefit of this procedure is that it prevents unintended changes to the
project-wide SCA library. If you do not specify which library you want modified,
SCA modifies the first physical library in the list. In Figure 3–5, if Module C
is modified, SCA will copy that module into Physical LIB_1 and incorporate
the modifications; Module C in Physical LIB_2 will remain unchanged. When
you update an SCA library with the LOAD command, only you have access
to the library until the load process is finished. If many people are using the
same library, and that library is subject to frequent updating, access will be
restricted. In general, loading is a slow procedure (comparable in time to a
compilation) and should be done in batch mode for a project-wide library. In
contrast, local library updating is more manageable. An SCA library supports
queries by multiple users.

As team members complete programming tasks, they need to update the
original source files and the project-wide SCA library. By replacing elements
in CMS, team members update the original sources. The next run of the
project-wide build procedure generates updated SCA information in the form of
.ANA files, which in turn can replace the outdated source analysis data in the
project-wide SCA library. These procedures produce a project-wide library that
reflects periodic modifications. By using local libraries, programmers efficiently
use SCA on immediate development tasks. Finally, when the team reaches
predefined milestones and begins a major application build, they recreate the
entire project-wide library. In this way, the team ties current build sources
and development status to specific milestones. In all cases, the team creates or
modifies build procedures to automatically and selectively update SCA libraries
at appropriate times; for example, when compiling local source files or during a
major application build.

For more details on SCA, see the Guide to HP Source Code Analyzer for
OpenVMS Systems.

3.2.2.3 Reference Copy Area
A reference copy area is a directory you create in which CMS maintains a
copy of the latest generation of the main line of descent of each element. You
can use a reference copy area as an alternative storage area (for example,
[PROJ.BLD_V1.CODE_REFCOPY] in Figure 3–3). Rather than MMS fetching
files directly from CMS, MMS accesses the files in a reference copy area and
builds up from all the sources located there.

One advantage to building from a reference copy area is the increase in speed
during the initial part of the build procedure. You instruct CMS to duplicate
every updated source in the reference copy area. CMS then functions as a
reliable backup with a detailed history of all transactions. A CMS library only
updates one reference copy area per library at a time. If you want to keep
more than one reference copy area intact as your project moves from version

Organizing Files, Libraries, and Directories 3–13

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

to version, you can either direct CMS to use a new reference copy area or use
multiple CMS libraries.

Whether you use the reference copy area for builds depends on the work
procedures of your project. You also need clear copies of your sources for PCA,
and for LSE when used with SCA. However, these clear copy sources can be
drawn from a project work area as well as from the reference copy area.

The main disadvantage of doing builds from the reference copy area is
the lack of historical tracking. However, you can use the CMS VERIFY
command to check for discrepancies between elements in the CMS library
and corresponding files in the reference copy area. If you choose to use a
reference copy area for building, you must restrict access to this directory so
people outside your group cannot copy your sources, and members of your
group can copy read-only versions of the files. Your developers must reserve
the files from CMS if they want to edit a file. This generates a history of the
file transaction.

Another disadvantage of building from the reference copy area is that you
cannot recreate earlier versions of your application: the reference copy area
maintains only the current versions of your sources. A final limitation of this
feature is that it works only with the main line of element descent in the CMS
library. You cannot use this feature for variant source development. Even
with these limitations, the reference copy area provides a useful intermediary
between the CMS library and individual work areas.

There are advantages to carrying out build procedures that rely on the CMS
library rather than a reference copy area. MMS can automatically carry
out a build based on a comparison of sources in a local directory and in
the CMS library. This is useful when a developer wants to see the effect of
modified modules on the entire application before replacing the modules to
the CMS library. In this case, MMS can rebuild the application using the new
modules only. This is the build procedure followed in the scenario described in
Chapter 9.

3.2.2.4 MMS Description File
MMS helps you with the build process by automatically accessing the source
files you store in a CMS library. It follows the sequence of dependencies among
your source files, includes all the necessary modules in the build, and ensures
that your build uses the current sources. You can use MMS to build not only
your code applications, but your documents as well.

3–14 Organizing Files, Libraries, and Directories

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

You describe the structure of your application to MMS in a description file.
Because you will update it as your project evolves, the description file should
be stored in your CMS source library. It can be incorporated into a CMS class
as part of a list of your files at each successive base level. When you need to
rebuild a class (for instance, an older base level), the sources are stored in that
class along with the MMS description file.

Your use of MMS will affect what you decide about your build procedures and
the frequency of your builds. MMS allows reliable incremental building; that
is, builds that incorporate only the changes made to modules since the last
build. Because of this feature, you might want to carry out nightly incremental
builds, leaving builds that use all your sources and regenerate all intermediate
files only for milestones during your project’s development. The advantage in
building incrementally is that you avoid the additional time needed to build
from all the sources when only a relatively small percentage of code actually
changed since the last build.

Chapter 9 contains an example of setting up an MMS description file. See the
Guide to HP Module Management System for OpenVMS Systems for a complete
description of MMS.

Considerations for Large Projects
For large projects, the functionally defined individual facilities can build
incrementally, as described previously in this section. Coordinating full
application builds involves the following steps:

1. Determine stages of development (milestones or base levels) at which
updated facilities contribute their sources.

2. Create classes within each facility that represent the current sources for
that facility.

3. Fetch from those classes to a storage area that has limited access.

4. Use a master build procedure to assemble the sources into the executable
application.

The way a project implements these steps varies depending on the demands
of the project. For example, the person who is the configuration manager can
layer another CMS library on top of the facility libraries to monitor the fetched
classes. This library will not be an active development library, but a storage
facility with the feature of detailed history for transactions. New classes at
future stages of development will be added to this library, and the application
builds will proceed from there.

Organizing Files, Libraries, and Directories 3–15

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

3.2.3 Setting Up the HP DIGITAL Test Manager Storage Area Directory
As part of your directory organization, you must set up test directories for the
HP DIGITAL Test Manager storage area. Setting up test directories early in
your project provides the following advantages:

• Your organizational directory structure is almost complete and you can
easily add components as your project grows.

• Your programmers can begin writing tests early in the project life cycle;
this is particularly useful on large-scale projects.

• Your team can produce tests for undeveloped code; these tests will make
it less likely that some design functionality will be lost as the project
develops.

• Your developers have a mechanism for intermediate testing before the code
has reached refined development.

As shown in Figure 3–6, your HP DIGITAL Test Manager directory
organization might require three storage areas.

3–16 Organizing Files, Libraries, and Directories

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

Figure 3–6 Directory Structure of HP DIGITAL Test Manager Libraries

[PROJ] PROJECT AREA

SUBDIRECTORIES

ZK−5943−GE

[PROJ.DTM_CMSLIB]

(.COM)
(.BMK)

Global templates
Global benchmarks
Global prologues
Global epilogues
Test data files

[PROJ.DTM_DATA]

(.EXE)
(.DAT)
(.TST)

Test library data

[PROJ.DTMLIB]

Result file
Difference file
PCA Collection file

COLLECT1
(.RES)
(.DIF)
(.PCA)

COLLECT2

DIGITAL Test
Manager
database

The three areas are as follows:

• A HP DIGITAL Test Manager library for test results

This library is a separate subdirectory (in Figure 3–6, it is designated
as [PROJ.DTMLIB]). This library stores HP DIGITAL Test Manager test
description information. This test information, located in a HP DIGITAL
Test Manager database, provides HP DIGITAL Test Manager with the
following:

The name of the test

The name and location of the file that executes the test (template)

The name and location of any procedure that runs before or after the
test (prologue and epilogue)

The name and location of the file (benchmark) against which to
measure the test results

The values for any symbols or logical names that HP DIGITAL Test
Manager sets up for each test or collection of tests while executing (HP
DIGITAL Test Manager variables)

Organizing Files, Libraries, and Directories 3–17

Organizing Files, Libraries, and Directories
3.2 Setting Up a Project Directory Structure

Any associated filter procedures

The HP DIGITAL Test Manager library also stores the results of your tests;
these results can also include PCA test coverage or performance results if
HP DIGITAL Test Manager is used to control PCA data gathering. In this
case, because HP DIGITAL Test Manager controls the data collecting, it
automatically places the PCA results in the HP DIGITAL Test Manager
library. After you use HP DIGITAL Test Manager and PCA results, if
problems occur you can purge the result files as part of your development
process. Note that the collections shown in the HP DIGITAL Test Manager
library ([PROJ.DTMLIB]) in Figure 3–6 are generated automatically by the
HP DIGITAL Test Manager.

When you collect data using PCA alone rather than through
HP DIGITAL Test Manager, the PCA data file can reside temporarily in
your work area or default directory. After analyzing the data collected by
PCA, you can discard this file.

• A CMS library for HP DIGITAL Test Manager test files

You can store templates, benchmarks, test data files, prologue files,
and epilogue files in this library. (In Figure 3–6, it has the designation
[PROJ.DTM_CMSLIB].) As you complete your test cycles, you can store
validated test output as benchmarks for future tests. CMS organizes
and tracks these files, ensuring the integrity of past and future test
performances.

As an alternative, you can create separate subdirectories for your HP
DIGITAL Test Manager test files rather than using a CMS library. You
can also create multiple subdirectories for this purpose that correspond
to important stages in the product’s development. The advantage will be
some gain in speed; however, you will use more disk space and not have
any of the history tracking features of CMS.

• A HP DIGITAL Test Manager subdirectory for test data

Whether you need this particular subdirectory depends on your application.
You might choose to use this directory to store input files needed for
generating output files for tests. For example, a linker project might
regularly, as part of its test procedure, read an .OBJ input file to generate
an .EXE output file. Although CMS can store these non-ASCII files, it
might be an organizational aid to maintain this subdirectory for testing
purposes. In Figure 3–6, [PROJ.DTM_DATA] stores these types of data
files.

3–18 Organizing Files, Libraries, and Directories

4
Managing a Project in the OpenVMS

Environment

This chapter contains procedures for the project leader of a software project in
the OpenVMS software development environment. The topics included in this
chapter are as follows:

• Project standards—Ways to establish and maintain standards in the
following areas:

Application design

Code

Testing

Software performance

• Using logical names to establish a context for the project

• Communication management and reporting mechanisms

• Project and individual build procedures

• Customizing the LSE environment

• Setting up tests

• Analyzing performance and coverage

• Field test management

• Final steps in a project

The procedures presented in this chapter are suggestions only. They are not
rigid guidelines that must be followed to use the OpenVMS programming
environment correctly. You might want to modify some of these procedures to
suit your specific needs.

Managing a Project in the OpenVMS Environment 4–1

Managing a Project in the OpenVMS Environment
4.1 Project Standards

4.1 Project Standards
As project leader, you establish standards for your team, such as design,
coding, and testing standards. When everyone adheres to these standards
early in the project’s development cycle, you avoid confusion and conflict later.
Standards also provide a consistent framework for team members joining the
project midway through the development cycle, and enable them to learn about
the project faster.

4.1.1 Design Standards
Part of establishing design standards means getting team members to agree
and adhere to the format of the application’s designs. The designs should
consider not only the specifics of how to implement functional areas, but also
the context of your application. Additional considerations include evaluating
dependencies outside of the project and deciding what languages you will use
to implement a particular functionality.

To make development decisions easy in the future, record design features you
decide to keep and alternatives that you discard.

4.1.2 Coding Standards
Set up coding standards, such as consistent naming conventions for modules
and routines, during the early stages of your project. Consistent naming
conventions provide the following advantages:

• Faster identification of code elements by developers

• Easier access to files, directories, and so on by means of wildcard characters

• Faster learning for new members of your team

• Faster work with the OpenVMS Debugger

• Easier maintenance of software in the future

You might want to set up periodic code review meetings. You can use these
meetings to inspect sections of code to see that they meet the team’s standards,
and that the code works efficiently.

The following examples show naming conventions for modules, routines, and
variables in an application. (See the Guide to Creating OpenVMS Modular
Procedures for more detailed information on coding standards.) The following
table lists the names used in the examples.

4–2 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.1 Project Standards

Name Meaning

PROJ Facility prefix for the routine

DB Indicates a database routine

GT Indicates a global text declaration

k Indicates a constant variable

g Indicates a global variable

• Routines: PROJ_DB_CREATE_OBJECT

To make it easier to locate a set of related routines, group your routines
into facilities. Providing related routines with a common facility prefix
organizes the routines. The remainder of the name indicates the type of
function of the routine.

• File name: PROJ_DB.PAS

The DB designation shows which type of routines are in this file.

• Modules: PROJ_DB

Module names are identical to file names, except module names do not
have extensions.

• Variables:

proj_gt_username

proj_k_maxfile_count

The k designates a constant, whereas the rest of the name describes
the function; in this case, a value for the maximum number of files to
be used. Unlike the last example, this is a local constant because it
does not have a g immediately before the k.

4.1.3 Using LSE Templates
LSE provides templates that you can use to enforce consistency in your
coding and commenting conventions. You can modify constructs, menus, and
descriptions within existing definitions. In addition, you can create your own
templates for a language if LSE does not support that language directly. See
Section 4.6.1 for procedures to create templates.

Another example of coding standards is the use of coding formats. Built into
LSE coding constructs is a consistent indenting format for each of its supported
languages. By using LSE in your project, you will ensure a consistent format
that makes your code much easier to read. LSE allows you to customize your
own language templates so they adhere to site-specific coding standards. This
benefits not only your team during development, but also new programmers

Managing a Project in the OpenVMS Environment 4–3

Managing a Project in the OpenVMS Environment
4.1 Project Standards

who might maintain or update your team’s work. See Chapter 7 for an example
of using LSE to help set up coding standards on your project.

You can create LSE templates for your documentation; for instance, design
or specification formats. These templates can be specific to your project or
tailored to the needs of your company or primary customer. LSE allows you to
customize the language templates provided with the LSE kit. Each individual
developer can make and save modifications. These templates can be available
to each developer, or they can become a permanent part of the environment
files provided with your system.

LSE also provides the CHECK LANGUAGE command to analyze the
definitions associated with a language. When you use this command on a
language, LSE detects and reports on the following:

• Undefined tokens

• Undefined or unreferenced placeholders

• Package routines with the same name as placeholders

• Package parameters with the same name as tokens

• Parameters defined with the same name in multiple packages

• Routines defined with the same name in multiple packages

• Invalid topic strings

If LSE detects any of these conditions, they are reported in an editing window
and can be sent to an output file. For more details, refer to the Guide to HP
Language-Sensitive Editor for OpenVMS Systems.

4.1.4 Testing Standards
Realistic testing goals include testing that starts with the building of tests
during the specifications stage, or at least early in the development process,
and runs through to the end of the cycle. By testing as your project grows,
you will not omit a particular piece of code from testing as future work layers
new functionality over it. In addition, you will discover errors while the code is
still fresh in people’s minds; waiting to test can result in developers having to
relearn code.

Your tests should cover every user feature that is part of your application,
along with all user error conditions. Additionally, you need to ensure that all
interactions between your application and other software applications perform
as described in your specifications. This type of testing (one that tests against
predicted external view) is referred to as black box testing, and is most
effective in advanced stages of development.

4–4 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.1 Project Standards

White box, or unit testing, is an internal approach to code testing. By
creating driver programs to exercise all the decision branches of a piece of
code, you can create tests that approach 100 percent coverage of asynchronous
applications. This type of exhaustive testing, in combination with black box
testing, meets the needs of those projects that demand extensive testing.

A team using these types of testing benefits from a feature of HP DIGITAL
Test Manager: when used in combination with PCA, it produces an annotated
listing of all code lines exercised by the test set. This shows how much of the
code is being exercised by the tests.

4.1.5 Performance Standards
After writing a certain amount of code, programmers will be able to run
a simple set of tests to compare against performance benchmarks. PCA
enables you to improve overall performance by helping you find performance
bottlenecks in your code.

4.2 Using Logical Names
Logical names serve two functions:

• To define commonly used files, directories, and devices to have short,
meaningful logical names. Such names are easier to remember and type
than full specifications.

• To safeguard the project against changes in the computing environment.
For example, if the project moves to a new disk, or to another OpenVMS
system, all you need to do is change the definitions for the logical names.
No changes need to be made to the application itself. Using logical names
can save last-minute changes when installing the application.

As part of the initial setup of your project, you want to implement the context
for the project from a command file. Store the file itself in an area such as
[PROJ.COMS] as shown in Figure 4–1.

You include logical name definitions in this command file. You can define
names that your team uses frequently in this common command procedure
that can be invoked by the individual login procedures of your team members,
or define these logicals in the system startup file with the /SYSTEM switch so
they only are defined once. See Section 5.4 for an example of this procedure.

As another alternative, you can define your logical names in the group logical
name table. The group table contains logical names available to all users with
your UIC group number. See the OpenVMS DCL Concepts Manual for more
information on logical name tables.

Managing a Project in the OpenVMS Environment 4–5

Managing a Project in the OpenVMS Environment
4.2 Using Logical Names

Figure 4–1 Initial Storage Areas for a Typical Project

GROUP: DISK

[PROJ] PROJECT AREA

SUBDIRECTORIES

[PROJ.PUBLIC]

(.MEM)
(.LIS)

Public access files

[PROJ.COMS]

(.COM)

[PROJ.DOC_CMSLIB] [PROJ.CODE_CMSLIB]

(.MMS)
(.FOR)
(.PAS)

(.RNO)

Global command
and ACL procedures

(.MEM)

Functional
specifications
Development plans
Design documents
User’s manuals

MMS description
Source files
Link option files

ZK−5944−GE

(.PS)

The following table lists examples of naming conventions for your directories.

Example Directory

PROJ_PUBLIC Public access area

PROJ_CMS_CODE CMS library for source code

PROJ_BLD Current version of build area

PROJ_DTM HP DIGITAL Test Manager library

You can also use logical names to save time as your project evolves. You are
likely to create multiple versions of your build areas along with corresponding
build subdirectories. You can have your command procedure update your
logical name for the build subdirectory by redefining it to the most recent build
version.

4–6 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.3 Communications Management and Status Reporting

4.3 Communications Management and Status Reporting
This section describes communication management both within and outside
your project, and describes the following three OpenVMS tools that are
designed for electronic correspondence, computer conferencing, and automated
project status reporting:

• OpenVMS Mail Utility (MAIL)

• DEC Notes

• DECplan

Note

Documentation reviews are described in Section 4.3.4.

4.3.1 Using MAIL
In addition to face-to-face contacts and telephone conversations, you can use
MAIL. By forwarding documents and memos to everyone in the team, you
enhance team awareness and cohesiveness. Using MAIL, you can track the
status of a project. Usually team leaders require monthly reports from the
team members. With MAIL, team leaders can consolidate these reports and
forward them to managers who are tracking the project’s schedule.

You can create a mail subdirectory for your project to hold project-related
messages. In the directory hierarchy, this would be a subdirectory of your
top-level directory: [PROJ.MAIL].

4.3.2 Using DEC Notes
If your project team has many members, and especially if the members are not
in the same location, you might want to use DEC Notes, a conferencing tool.

A goal of any project during development is to gain feedback from its users.
You can speed this process by using DEC Notes to create a conference for your
project that people outside of your group can access. You can create multiple
conferences with different titles and functions, and with varying degrees of
user access.

DEC Notes conferences can be used by anyone on a network and can promote
communication to a larger audience than MAIL. DEC Notes keeps a record
of all entries and replies. At a later date, you can use some of this online
information to document changes to the software. In this way, DEC Notes is
a useful tool for providing traceability for group decisions on project design,

Managing a Project in the OpenVMS Environment 4–7

Managing a Project in the OpenVMS Environment
4.3 Communications Management and Status Reporting

problem reporting and correcting, and so on. Some ways to use DEC Notes
conferences to facilitate your project’s goals include the following:

• Problem Forum Conference

Users outside your group can list errors or problems that they have found.
Someone from your group can suggest remedies, or if necessary, make
changes to the software. Other users who read the conference can also
suggest remedies or contribute their own opinions about the problem.
Keywords can be used to open, close, assign, and prioritize problem reports.

• Wish List Conference

This type of conference limits the entries to features that users would like
to have as part of the software functionality.

• Design Conference

This type of conference can be set up by the project team to discuss design
issues for a project.

• Restricted Conference

You can set up a conference accessible to a limited group of users. For
instance, if your group is large or its members are not near one another,
you can create a private conference for this group only. The conference can
also be open to a limited number of people who are not part of your group,
yet have a particular interest or a supervisory role in the project.

This type of conference can do more than distribute information or solicit
feedback; it can be used to speed your review procedures. For instance,
you can set up a private conference for requirements and another for
specifications. Your reviewers can read the information online and respond
within the conference. In addition, your group can extract comments from
the conference and incorporate these comments into documentation.

Your group can combine your use of MAIL and DEC Notes with traditional
means of communication to create an effective and customized communication
environment.

4.3.3 Using DECplan
DECplan allows you to perform integrated time and project management
activities throughout the software development life cycle. For time
management, you can use DECplan to manage your personal calendar,
record your activities, and coordinate your commitments to others. For project
management, you can define work, assign resources, schedule projects, control
costs, and display progress through charts and reports.

4–8 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.3 Communications Management and Status Reporting

DECplan is designed to handle task assignment negotiation, scheduling, and
individual status updating and is an important communications tool. The
Guide to DECplan has more details on using DECplan.

If you have DECplan installed on your system, you will find it useful for
monitoring project progress and for project management in general. DECplan
automates project management activities throughout the software development
life cycle.

You use DECplan to plan, monitor, and control projects. Using DECplan, you
define tasks and their dependencies, estimate effort, assign resources, schedule
the project, track progress and cost, and display status through charts and
reports.

You display information stored in a project planner through a view. Each
view is a separate window allowing you to display, edit, and print information.
Views enable you to see planner information displayed simultaneously in a
variety of formats. For example, you can display your daily calendar while
viewing a list or table of assigned tasks as an aid to daily planning. DECplan
views are summarized in the following list:

• Calendar views for time management

Day View—Your daily calendar

Month View—A one-month calendar

Year View—A one-year calendar

• Table views—Customized spreadsheet-like displays of information about
meetings, tasks, resources, and other items

• Work breakdown structure (WBS)—Graphical breakdown of work to be
performed

• Precedence network (PN)—Graphical representation of tasks, milestones,
and dependencies

• Gantt chart—Bar chart showing work to be performed in relation to time

• Resource loading chart—Chart showing the percentage of time a person or
group is expected to work on a task or set of tasks

• Rate charts—Set of charts showing comparisons of actual and expected
effort, cost, or earned value

• Report Layout Editor—Tool for modifying standard report formats and
creating customized reports

Managing a Project in the OpenVMS Environment 4–9

Managing a Project in the OpenVMS Environment
4.3 Communications Management and Status Reporting

These views, and the operations available from these views, support all aspects
of project management. The following list describes what views and operations
you would use on a typical project:

1. Create a project planner from the initial DECplan display. This planner
stores information about your project.

2. Break down work into distinct tasks using the work breakdown structure
(WBS). The WBS is a tree structure that helps you organize, define, and
display project tasks. The WBS also allows information such as effort and
cost to be rolled up for reporting purposes.

3. Use a table view of tasks to enter predicted effort and other information for
tasks.

4. Define dependencies for tasks and milestones using the precedence network
(PN). The PN shows the order in which tasks must be completed and
milestones must occur.

5. Schedule the project using the critical path method (CPM) from any view.
This schedule shows you the scope of the work and can help in making
staffing decisions.

6. Assign resources to tasks from any view. Each resource can have its own
personal planner. You can also define local resources within the project
planner.

7. Schedule the project using the constrained resources method from any view.
This schedule takes into account assignments to tasks and information
about resources. Resources are not scheduled to do more work than they
are available for, providing a more realistic schedule than a CPM schedule.

8. Negotiate or mandate assignments to resources from any view. This causes
task assignments to appear in the applicable resource’s planners.

9. Specify cost rates, define cost accounting periods, and calculate projected
costs for the project from any view.

10. Track progress with time charges. Each resource creates time charges
against specific assignments as they perform work and posts these charges
to the project planner.

11. Display project status with charts and reports. You can use standard
charts and reports or create your own through customization.

12. Make adjustments to the project based on changes in resource availability,
scope of work, or external dependencies and reschedule as required.

See the Guide to DECplan for details on using DECplan.

4–10 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.3 Communications Management and Status Reporting

4.3.4 Documentation Reviews
Because accurate and timely user documentation is critical to a product’s
success, the team must build in adequate review procedures. The review
procedures depend upon your team’s size. Smaller teams can rely on informal
means of review, although formal reviews are still necessary. Larger projects
might need defined responsibilities and more careful oversight.

All the members of your team should review the complete user documentation.
This overall review can combine with having individual developers responsible
for specific sections of the documentation.

Formal reviews supplement the informal and ongoing review process. The
result is documentation that is technically accurate and complete when the
product is shipped to customers.

4.4 Extending the Library Structure
As your project moves into the implementation stage, you might need to
re-evaluate the status of your directory structure. For instance, you might find
that a single CMS code library is inadequate. It is recommended that you start
with one CMS library for source code and break it up if you find that you have
library conflict problems.

You might want to rearrange your directory structure to reflect ongoing
development needs. You might find that by adding new storage areas, you can
better access specific groups of files.

4.5 Establishing Project and Personal Build Procedures
Section 3.2.2 described some of the considerations for determining your team’s
build procedures. You will need to finalize a number of decisions before you
begin to implement your code:

• Whether to use incremental builds or build from the sources; that is,
whether to use a reference copy area or allow MMS to fetch from CMS
directly

• How often to create builds

• How thoroughly to automate your build procedure

Managing a Project in the OpenVMS Environment 4–11

Managing a Project in the OpenVMS Environment
4.5 Establishing Project and Personal Build Procedures

4.5.1 Individual Build Procedures
Individual storage areas are typically less complicated than the overall project
structure. For example, individual developers probably do not need a personal
HP DIGITAL Test Manager library. Many developers rely on the project CMS
libraries to provide a storage area, although some developers set up personal
CMS libraries to track and organize their own work. Developers have a private
work area and possibly a separate build area; they might also need a local SCA
library.

You will want to establish procedures for how members of your team will work
on particular files. Your team members can follow these steps:

1. Identify a problem (for example, a routine that needs to be modified).

2. Use SCA and its project-wide library to locate the routine and source file.

3. Use LSE commands with SCA to bring a read-only copy of that file into an
LSE buffer (from the project work area or a reference copy area—both set
to read-only access).

4. Determine whether any changes need to be made in the file.

5. Use the LSE RESERVE function to reserve a generation of the
corresponding element from the CMS code library.

6. Use LSE to modify the file.

7. Use SCA to see if any other code is depending upon the code you have
changed. If so, you can reserve that element directly from CMS and make
the needed modifications.

8. Compile the modified files using the LSE COMPILE REVIEW function.

9. Review the compilation errors with LSE until the file compiles correctly.

10. Link the image.

11. Carry out any test procedures using HP DIGITAL Test Manager.

12. Replace the modified file into the CMS code library.

4.5.2 Project Build Procedures
Different members of your team will make varying degrees of progress on
their work as they modify files. Because modified modules affect the work of
other team members, you benefit by keeping your entire application up to date.
Otherwise, you risk accumulating discrepancies between modified files and
outdated files.

4–12 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.5 Establishing Project and Personal Build Procedures

You can automate the build process with MMS, along with automatically
running your HP DIGITAL Test Manager test system. By analyzing your
tests with PCA, you can have information supplied about how thoroughly your
tests exercise your application. You can also use your tests to analyze and
track performance problems in your application. By setting up a HP DIGITAL
Test Manager epilogue, you can have a full status report on the test collection
forwarded to everyone on the team. This automates repetitive tasks while
enhancing overall team communication. For examples of using these tools
together, see Chapter 11.

4.5.3 Access to SCA Libraries
When individual developers work on a small number of modules, they can
work within a virtual library consisting of their local SCA library and the
project-wide library. The SCA New Library... function creates a local library
specifically for the modules under development. These modules are then loaded
into the local SCA library ([USER.BASELEVEL_1.LIB1] in Figure 4–4). (If
there are substantial changes to code or to routine calling sequences, you might
want to use the COMPILE $/ANALYSIS_DATA command in LSE instead of
the Compile Review function.) When you create a new library, you can specify
that the new library be placed before the existing project-wide SCA library
([PROJ.BLD_V1.SCALIB] in Figure 4–4) on the library search list. All of these
actions take place within the framework of the individual developer’s work
area.

Managing a Project in the OpenVMS Environment 4–13

Managing a Project in the OpenVMS Environment
4.5 Establishing Project and Personal Build Procedures

Figure 4–2 shows the New Library dialog box, in which you specify the name
of the new library and where it is placed on the library search list.

Figure 4–2 SCA New Library Dialog Box

4–14 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.5 Establishing Project and Personal Build Procedures

Figure 4–3 shows the Load dialog box, in which you specify the names of the
analysis data files to be loaded into an SCA library.

Figure 4–3 SCA Load Dialog Box

The following example shows these commands:

$ SCA
sca> CREATE LIBRARY DISK1:[USER.BASELEVEL_1.LIB1]
sca> LOAD DISK1:[USER.BASELEVEL_1.SOURCE]MODULE_A.ANA,MODULE_G.ANA,MODULE_K.ANA
sca> SET LIBRARY/AFTER DISK1:[PROJ.BLD_V1.SCALIB]

Managing a Project in the OpenVMS Environment 4–15

Managing a Project in the OpenVMS Environment
4.5 Establishing Project and Personal Build Procedures

Figure 4–4 shows the relationship between the two physical libraries.

Figure 4–4 Working SCA Libraries for Developers

[USER.BASELEVEL_1.LIB1]

[PROJ.BLD_V1.SCALIB]

module_a

module_g

module_k

module_b

module_c

module_d

module_e

module_f

module_h

module_i

module_j

module_l
Local Library

Project−wide Library

Virtual Library

ZK−5935−GE

module_a module_g

module_k

4.5.4 Access to Source Files
Together, LSE, SCA, and CMS provide ways to manage access to files. The
goals are as follows:

• Easily display source code corresponding to variables and routines

• Readily access modifiable files when you are ready to make changes

• Prevent inadvertent changes to sources

All CMS transactions generate history information, and keep the sources intact
over their development cycle.

LSE can help manage source code by accessing your storage areas, including
your CMS library. The LSE file-access commands let you create a search list
of directories. Typically, this search list might consist of a local work area, a
project build area, and, optionally, a CMS library. The following commands
demonstrate how you do this:

LSE Command> SET DIRECTORY SOURCE [], PROJ_BUILD, CMS$LIB
LSE Command> SET DIRECTORY READONLY PROJ_BUILD

4–16 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.5 Establishing Project and Personal Build Procedures

The first command designates the order in which you want LSE to look for a
source: your local directory first, the project build area second, and the CMS
library last. The second command ensures that any sources drawn from the
project build area will be read only. Section 5.4 shows how to carry out a
similar procedure using logicals in a LOGIN.COM file. Figure 4–5 represents
the directories that correspond to the search list.

CMS objects can have access control lists (ACLs) attached to them. This
situation should be considered when reserving and replacing elements and
executing the commands themselves. You might want to use CMS ACLs to
control access to library elements rather than using the LSE SET
DIRECTORY/READ_ONLY command. While this command provides a
mechanism for preventing the accidental modification of files in a directory
or CMS library, it does not provide the level of protection that ACLs can. By
attaching OpenVMS ACLs to directories and CMS ACLs to CMS libraries, you
protect objects that should not be modified (except by selected people).

Figure 4–5 Source Code Management

PROJECT
CMS LIBRARY

PROJECT BUILD
AREA

LOCAL
DIRECTORY

ZK−5938−GE

Files stored
under
controlled
access

Files used
for
display

Files user
is changing

Managing a Project in the OpenVMS Environment 4–17

Managing a Project in the OpenVMS Environment
4.5 Establishing Project and Personal Build Procedures

CMS enables team members to modify a file concurrently. When team
members return the modifications, they can use CMS to merge them, informing
the most recent user of any conflicting code that needs to be resolved.

Team members should use the ‘‘Remark’’ feature of CMS each time they do
a transaction. Each CMS transaction is documented, providing a history
that gives the project leader a way to monitor ongoing changes to files and
also the progress of programmers’ work. If problems turn up later, the
CMS history information shows who made changes, when, and why. By
providing informational remarks, team members can speed future work on the
application, particularly during the maintenance stage. This information can
also contain information on metrics, such as how many modules have been
added or changed, how often, and so on.

4.6 Customizing the LSE Environment
This section provides guidelines for customizing your LSE environment in the
following three areas:

• Creating an environment file

• Redefining tokens, placeholders, and language definitions

• Saving modified definitions

Note

The LSE commands shown in this manual conform to the LSE portable
command language syntax. You can also use the original VMSLSE
command language if you prefer. See the HP Language-Sensitive Editor
Command-Line Interface and Callable Routines Reference Manual for
more information.

4.6.1 Environment File for LSE
The LSE environment file is a mechanism for providing language-specific
templates for members of a project team. A team can use an environment file
to implement coding and commenting conventions as well as design standards.
Using environment files gives you a way to apply programming conventions
and standards consistently. Additionally, the environment file is in binary
format, so it does not need to be compiled each time you invoke LSE.

LSE enables you to customize the environment file to redefine tokens,
placeholders, or language definitions.

4–18 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.6 Customizing the LSE Environment

4.6.2 Redefining Tokens, Placeholders, and Language Definitions
You can add or delete constructs, reformat menus, or edit descriptions within
existing definitions. To redefine templates for the current editing session only,
do the following:

1. Enter the NEW BUFFER command followed by a new buffer name to set
up an empty buffer.

2. Enter the EXTRACT TOKEN, EXTRACT PLACEHOLDER, or EXTRACT
LANGUAGE command, followed by the name of the token, placeholder, or
language element you want modified.

3. Edit the definition of the selected token, placeholder, or language.

4. Enter the EXECUTE BUFFER LSE command to execute the new
definition.

Note

If you want to save these modifications for future use, enter the SAVE
ENVIRONMENT command described in Section 4.6.3.

For example, to add a BREAK construct to the default definition of a C
SWITCH statement, enter the EXTRACT command to begin modifying
the default construct. After creating an empty buffer, enter the following
command:

LSE Command> EXTRACT TOKEN SWITCH C

Figure 4–6 shows the results of entering the EXTRACT command.

Edit the token by adding a BREAK statement. Once you have the definition
the way you want it, press Ctrl/Z to get the LSE Command> prompt. Enter the
EXECUTE BUFFER LSE command to execute the new definition. Now, each
time you use the SWITCH token in C during the current editing session, LSE
provides the new definition.

Managing a Project in the OpenVMS Environment 4–19

Managing a Project in the OpenVMS Environment
4.6 Customizing the LSE Environment

Figure 4–6 Extracting a Token

$MAIN

a

4.6.3 Saving Modified Definitions
You can save this modified SWITCH definition so it is available in subsequent
work sessions. You need to create an environment file that can store the
SWITCH definition and any other language-specific definitions you might
make. It is good practice to save the definition source in a text file as well.

To create an environment file, enter the SAVE ENVIRONMENT command
followed by the file name when you are still in the editing session. Figure 4–7
shows this step.

4–20 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.6 Customizing the LSE Environment

Figure 4–7 Creating an Environment File

LSE Command> save environment c.env

a

To use the definitions in subsequent sessions, enter the /ENVIRONMENT
switch on the LSE command line, as follows:

$ LSEDIT/ENVIRONMENT=DEVICE:[DIRECTORY]FILENAME.ENV

The environment file provides coding standards, which ensures consistency
among all the team’s developers. To make the environment file available to the
entire team, store it in a project directory. Each developer’s LOGIN.COM file
can define a logical name that LSE translates to obtain the file specification for
the environment file to be used when they invoke LSE.

If everyone on a project defines the logical name LSE$ENVIRONMENT in
their LOGIN.COM files, they can use the stored definitions without specifying
the /ENVIRONMENT switch every time they invoke LSE. To do this, they add
the following command to their LOGIN.COM files:

$ DEFINE LSE$ENVIRONMENT TRN_DISK:[TRN.COMS]C.ENV

Managing a Project in the OpenVMS Environment 4–21

Managing a Project in the OpenVMS Environment
4.7 Setting Up Tests

4.7 Setting Up Tests
Testing should be an integral part of all your developers’ work in the design
and implementation stages of your project. During the design stage, your
development team should be designing tests and a testing strategy in the same
way they are designing a strategy for coding.

As you move into the implementation stage and begin writing code, your team
should be writing tests in parallel with writing code. Because code develops
in an iterative fashion, programmers need to be sure they run tests on the
latest versions of a file. Otherwise, new code might introduce errors that are
not picked up, and the code will regress. All the modified code should have
tests stored in the CMS project library for HP DIGITAL Test Manager. (See
Section 3.2.3 for information about HP DIGITAL Test Manager libraries.)

To maximize the benefits from your tests, you need to decide how your team
will organize its tests. The HP DIGITAL Test Manager provides several
features for this task; however, the organization itself is left to the test users.

The first structure for organizing a test system is the test description. A test
description identifies a test to the HP DIGITAL Test Manager. It consists of
fields whose contents point to files needed to run the test. The core of each test
description is the test template file. The test template file is a DCL command
procedure or a recorded HP DIGITAL Test Manager session file that exercises
your software. Each test must have a template file.

Prologues and epilogues are command files associated with tests and
collections. The HP DIGITAL Test Manager provides two types of prologue
and epilogue files: those associated with collections and those with individual
tests. Collection prologue files run before, and collection epilogue files run
after, the collection. Similarly, test prologue files run before, and test epilogue
files after, the test template file. You can use the prologue file to establish any
special environment the test requires. The epilogue file can be used to perform
clean-up operations, or to filter the result file of run-dependent data.

For noninteractive and interactive terminal tests, the HP DIGITAL Test
Manager can perform certain filtering operations, such as time-stamp
information, automatically. For DECwindows tests, the HP DIGITAL Test
Manager provides selective masking during the comparison, allowing for
specified run-dependent information to be ignored.

A variable in the HP DIGITAL Test Manager is either a DCL symbol or logical
name. The HP DIGITAL Test Manager stores variables and uses them when
executing tests. You can use variables in templates, prologues, and epilogues.
Variables provide a convenient way for you to tailor a single template, prologue,
or epilogue file so you can use it with many tests. For example, by using a

4–22 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.7 Setting Up Tests

variable in place of a particular test name in a template file, you can use that
same template file to run many tests. You must define variables to the HP
DIGITAL Test Manager in a separate step, and also include them in each test
description that uses them. Chapter 10 contains an example of using the HP
DIGITAL Test Manager variables.

You can organize your test descriptions in the HP DIGITAL Test Manager
library by placing them in groups. For example, if you have several tests
that share a similar characteristic or function, such as testing a parser, you
can create a group called PARSER and place those test descriptions in the
group. You can group the test descriptions by developer, or group them by both
developer and function.

If you are doing incremental nightly builds, you might want to run a subset of
all the system’s tests. This subset should exercise all the basic functionality
of the application. Additionally, individual team members might choose to
run subsets of tests as they work. Running subsets can save considerable
time during the building and testing process. However, note that one of the
purposes of regression testing is to catch errors in seemingly unrelated areas
that were introduced by the changes. If possible, you should run an entire test
set, even for nightly builds. The sooner you find a problem, the less expensive
and easier it is to fix.

Another use of test groups might involve forwarding tests to a quality review
process in which a representative sample of tests rather than a full test system
is used. Figure 4–8 shows the concept of grouping test descriptions.

Managing a Project in the OpenVMS Environment 4–23

Managing a Project in the OpenVMS Environment
4.7 Setting Up Tests

Figure 4–8 Grouping Test Descriptions

ZK−5936−GE

Group PARSER Group DBASE

Group NBUILD

PTEST9 DBTEST12

CTEST1
.
.

BTEST1
.
.

ATEST1
.
.

DBTEST1
DBTEST2
DBTEST3
.
.
.

PTEST1
PTEST2
PTEST3
.
.
.

Grouping test descriptions simplifies the process of creating test collections—
the mechanism by which you initiate the running of tests. The key is to create
efficient test description subsets as groups to encourage your programmers to
use the tests. If you automate the test process, you can be sure that all new
code has been adequately tested. Chapter 9 explains how to use automated
testing procedures.

4.8 Analyzing Performance and Coverage
As your project moves into advanced stages of development, you need to check
that your application and its component parts perform efficiently. PCA can
identify those parts of your application that use excessive processing time, and
indicate when you have reached an optimum for the current design.

You can use PCA to analyze the coverage of your tests, ensuring that your
application has been thoroughly tested. PCA also lets you exclude certain
portions of your code from testing (if those portions are difficult to test or
are for internal error tracking) by allowing you to specify those portions as
acceptably noncovered. PCA keeps track of those portions from test to test,
and can automatically note if there have been any changes in those portions
between iterations.

4–24 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.9 Tracking Reports During Field Testing

4.9 Tracking Reports During Field Testing
During field test stages, the team needs an effective means of getting and
tracking feedback from its test sites. A team can use one or more of the
following techniques to ensure that it quickly receives and responds to
information from its test sites:

• Surveys

• Telephone contacts

• A quality assurance report (QAR) system to report, assign, and track
problems

A QAR system helps track feedback from field test sites. It organizes the
feedback from the test sites and your team’s responses. The following
information describes how to use DEC Notes to set up a functional QAR
system.

Using DEC Notes
For detailed information on using DEC Notes, refer to the Guide to DEC Notes.

You can use DEC Notes to organize feedback from the test sites. The feedback
mechanism can be written comment cards. In this case, members of the team
enter the comments into the QAR system. They also enter their responses to
the test site comments, as well as additional information for the team itself; for
example, the status of the response, or any changes made to eliminate program
errors. Finally, the response is sent to the test site by mail.

In addition to written comment cards, users might be able to dial in to accounts
to directly send their comments to the QAR system. In this case, your team’s
responses will also be entered directly into the QAR system. This method will
require users to refer back to the online QAR system for a response to their
comment. By having an online QAR system, test site users can look in the
QAR database for solutions to their problems and avoid entering duplicate
problem reports.

Managing a Project in the OpenVMS Environment 4–25

Managing a Project in the OpenVMS Environment
4.9 Tracking Reports During Field Testing

DEC Notes organizes and speeds up the process by organizing input and
replies. Further, it takes advantage of keywords, a feature of DEC Notes
that allows you to group notes that concern a particular subject and do not
have other attributes (such as title, author, or time of entry) in common. This
feature is similar to CMS groups.

A QAR system using DEC Notes will have the following characteristics:

• A conference devoted to problems, comments, suggestions, and so on.

• Restricted access (optional) to the conference to team members and possibly
field test users by means of a membership list (a feature of DEC Notes).

• Team members with CREATE_KEYWORDS or moderator privileges
along with responsibilities for responding to specific field test queries. A
moderator has certain privileges not available to other users.

• A team member assigned to the role of QAR system monitor (weekly,
monthly, or permanently), whose tasks might include collecting responses
from field test sites and adding them as topics in the conference. This
person also adds appropriate keywords.

When setting up the conference, you can use the first two topics to explain
the purpose and format of the notes. You can supply a template file in the
second introductory note that users can extract and then use, ensuring that
information is supplied in a consistent format.

The topic note contains the text of the problem report. For easy cross-
referencing, the note can be titled as follows:

{problem summary}

For example:

Generates Bad DEBUG SYMBOL TABLE Records

The system monitor sends the problem report to the maintainer assigned the
task of responding to the report. The response will be a standard DEC Notes
reply. This reply will then be sent to the field test user, or, if the user has
access to the QAR conference, the user will be able to read the reply directly.

4–26 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.9 Tracking Reports During Field Testing

The keyword feature permits the maintainers of the QAR system to quickly
access relevant notes. Keywords are first created for a conference by anyone
with moderator privileges using the DEC Notes CREATE KEYWORD function.
As stated previously, the system monitor adds the appropriate keywords (using
the ADD KEYWORD function) to the notes. Maintainers can then retrieve
all the notes to which a particular keyword has been added by using the DEC
Notes functions: DIRECTORY KEYWORD, SAVE KEYWORD, or PRINT
KEYWORD.

Figure 4–9 shows the DEC Notes DISPLAY KEYWORDS dialog box scrolled
to the last window. You might also type a partial string and wildcard in the
Keyword field at the top. For example, if you typed X* and pressed Return, the
window would display only the two keywords XTRAP and XUI.

Figure 4–9 DEC Notes Display Keywords Dialog Box

Managing a Project in the OpenVMS Environment 4–27

Managing a Project in the OpenVMS Environment
4.9 Tracking Reports During Field Testing

The following table lists some categories and examples of potential keywords.
Your project can use this feature to tailor its own cross-referencing system.

Category Keyword

Status Open
Closed
Answered

Answer Type Fault
Documentation
Suggestion
User_error

Maintainer Jones
Lewis
Peters

Version V1.0 (Released version)
T1.1 (Field test version)

Component Callable
Database
User_interface

4.10 Final Project Steps
The final steps in a project are usually not the end of work on the software
application. Maintenance and support can account for a high percentage of
a project’s cost. Software is continuously being maintained and enhanced.
Maintenance is an integral part of the application; in addition, future releases
might follow. The procedures described for software development will also help
to effectively maintain the software. The following steps of a product release
will contribute to this goal.

4.10.1 Prepare Final Build
The procedure for the final build is the same as that for earlier builds that
marked major milestones. After completion of the build, the sources, both code
and documentation, should be frozen using the class feature of CMS. Included
with this class should be the MMS description file that builds this version of
the software.

4–28 Managing a Project in the OpenVMS Environment

Managing a Project in the OpenVMS Environment
4.10 Final Project Steps

To make it easier to rebuild the final version, a master summary file stores
pertinent build information in the same CMS library. Using this master file to
provide information will ease future work, including:

• Names of related classes in different CMS libraries

• List of product dependencies—what versions of related software were used
to build this application

The amount of information you keep depends on how much disk space you
have. For instance, keeping your HP DIGITAL Test Manager tests and results
will benefit the people who maintain or upgrade the project. SCA library
information is useful, but it can be rebuilt if necessary from the sources in
CMS during compilation.

4.10.2 Permanent Storage
The sources for the code and documentation, along with any other information
(for example, online Help files), should be stored in a CMS library to prevent
loss of the master files.

Managing a Project in the OpenVMS Environment 4–29

Part II
HP DECset Case Study

Part II of this guide gives examples and procedures for using the HP DECset
tools on a hypothetical software development project called the Transliteration
project. All HP DECset tools are shown in the HP DECwindows Motif
environment. (For information on using a particular tool with its DCL
interface, refer to the documentation set for that tool.) Part II contains the
following chapters:

• Example Project Setup describes the basic project directory structure of the
Transliteration project.

• Using CMS to Maintain Project Source Files gives examples using CMS.

• Writing, Compiling, and Debugging Source Code provides examples of
using the debugger, SCA, and LSE to debug, modify, and compile code.

• Designing Programs with the Program Design Facility provides an
overview of designing programs using the program design features of LSE
and SCA, and shows an example of designing a module of code.

• Building the Application with MMS shows and explains the MMS
description file used to build the TRANSLIT application.

• Setting Up a Test System with HP DIGITAL Test Manager describes using
the HP DIGITAL Test Manager to set up a test system.

• Using HP DIGITAL Test Manager with PCA describes how you can use HP
DIGITAL Test Manager with PCA to optimize your testing environment.

• Maintaining the Application describes how you can use HP DECset tools to
manage the maintenance and support stages of software development.

5
Example Project Setup

This chapter describes the demonstration project, Transliteration, which is
based on the examples in Part II, referred to as the Transliteration project.
The objective of this project is to create the Transliteration application, known
as TRANSLIT. Part II of this guide shows how the Transliteration project
team organizes its code libraries and builds and tests TRANSLIT, using the
DECset tools, the OpenVMS Debugger, a HP processor running the OpenVMS
operating system, and multiple languages. These examples present techniques
that will help you make the best use of the DECset tools.

Although most of the examples relate to a single application being developed
by a relatively small team to support a larger project, many examples are
applicable to the problems associated with larger projects.

This chapter describes the following procedures carried out by the
Transliteration project team:

• Setting up project directories

• Creating CMS libraries

• Creating SCA libraries

• Creating HP DIGITAL Test Manager libraries

• Setting up an OpenVMS ACL-based, file access security mechanism

• Setting up LOGIN.COM files and other command files

5.1 Setting Up Directories
The Transliteration application manipulates and substitutes text strings
within a file. The project team, referred to throughout this chapter as
the Transliteration team, will produce documentation for the designs,
specifications, and the application itself. The application requires several
source code modules to be built periodically. To ensure that these tasks proceed
efficiently, the Transliteration team planned a directory structure to support
the tools and the project’s storage and communication needs.

Example Project Setup 5–1

Example Project Setup
5.1 Setting Up Directories

The Transliteration team needs a project directory structure that can meet the
following objectives:

• To manage the specific needs of the project

• To organize and facilitate access to the files of the application for the team
members

• To provide public directories to allow those outside of the project to have
access to nonrestricted files

• To create and maintain build directories for both the project and individual
developers

The following table lists the directories and libraries created by the
Transliteration team. (The table lists local directories for only one developer; in
reality, there would be local directories for each team member.) The directory
structure provides adequate storage for all the required libraries. It also
organizes the project’s files into functional units. A build area also stores the
end products of any build procedures.

Directory Logical Name Function

General Directories

[TRN.PUBLIC] TRN_PUBLIC Stores information (for example,
printable documentation) for
public users

[TRN.COMS] TRN_COMS Stores project command
procedures

[TRN.DOC_CMSLIB] TRN_CMS_DOC Stores documentation sources

[TRN.CODE_CMSLIB] TRN_CMS_CODE Stores source files

[TRN.DTM_DATA_CMSLIB] TRN_DTM_DATA_
CMS

Stores input files necessary to
generate output files for tests

5–2 Example Project Setup

Example Project Setup
5.1 Setting Up Directories

Directory Logical Name Function

HP DIGITAL Test Manager Directories

[TRN.DTMLIB] TRN_DTM Stores test descriptions and
results, including PCA results

[TRN.DTM_CMSLIB] TRN_CMS_DTM Stores templates, benchmarks,
test data files, prologue, and
epilogue files

[TRN.DTM_DATA] TRN_DTM_DATA Serves as a directory for files
and test data not stored in a
CMS library

Build Tree

[TRN.BLD_V1] undefined Root directory for Version 1
build subdirectories

[TRN.BLD_V1.WORK] TRN_BLD Stores sources and products of
build: source, .OBJ, and .EXE
files

[TRN.BLD_V1.SCALIB] TRN_SCA Stores SCA modules for project-
wide access

[TRN.BLD_V1.CODE_REFCOPY] TRN_REF Stores most recent clear copy
source files

Local Directories

[JONES.WORK] MY_AREA Local area work directory

[JONES.SCALIB] MY_SCALIB Stores local SCA analysis data

5.2 Creating Directories and Libraries
One of the first tasks in a project is to set up the directories and corresponding
libraries for the tools. The Transliteration team needs libraries for CMS, SCA,
and HP DIGITAL Test Manager.

Two steps are necessary to create a project library:

1. Create a directory for the library.

2. Create the library.

Example Project Setup 5–3

Example Project Setup
5.2 Creating Directories and Libraries

The Transliteration team sets protection by the DCL procedures for directory
protection. The following example shows how to set up a CMS library for
documentation while restricting access to the library’s directory:

$ CREATE/DIRECTORY/OWNER=[TRN,JONES]/PROTECTION=(S:RWE,O:RWE,G:RWE,W:RE) -
_$ TRN_DISK:[TRN.DOC_CMSLIB]
$ CMS CREATE LIBRARY TRN_DISK:[TRN.DOC_CMSLIB]
_Remark: CMS Library for Project Translit documentation

Creating a CMS library for source code follows a similar procedure:

$ CREATE/DIRECTORY/OWNER=[TRN,JONES]/PROTECTION=(S:RWE,O:RWE,G:RWE,W:RE) -
_$ TRN_DISK:[TRN.CODE_CMSLIB]
$ CMS CREATE LIBRARY/REFERENCE_COPY=TRN_DISK:[TRN.BLD_V1.CODE_REFCOPY] -
_$ TRN_DISK:[TRN.CODE_CMSLIB]
_Remark: CMS Library for Project Translit Code

The CMS CREATE LIBRARY command uses a /REFERENCE_COPY switch
to designate the directory where all reference copies will reside. Every time a
developer creates a main-line element generation (by using a CMS CREATE
ELEMENT or CMS REPLACE command), CMS puts a copy of the new
generation into the reference copy area, while deleting the previous version of
the element from your area. (Section 3.2.2.3 explains the use of a reference
copy area.)

The team creates an SCA library with the following commands:

$ CREATE/DIRECTORY/OWNER=[TRN,JONES]/PROTECTION=(S:RWE,O:RWE,G:RE,W:RE) -
_$ TRN_DISK:[TRN.BLD_V1.SCALIB]
$ SCA CREATE LIBRARY TRN_DISK:[TRN.BLD_V1.SCALIB]

The team creates the HP DIGITAL Test Manager library in the same way. In
all these examples, the CREATE LIBRARY command performs an implicit
SET LIBRARY command, so the developer can proceed to use CMS or SCA
commands with the respective libraries. Subsequently, when accessing existing
libraries, developers will need to first use the SET LIBRARY command before
any specific CMS, SCA, or HP DIGITAL Test Manager commands that access
the library, as in the following example:

$ CMS SET LIBRARY TRN_CMS_DOC

5–4 Example Project Setup

Example Project Setup
5.3 Setting Up an OpenVMS ACL-Based Security Mechanism

5.3 Setting Up an OpenVMS ACL-Based Security Mechanism
After creating a library, the team might want to further restrict access to
information within the library. By using access control lists (ACLs) together
with the standard UIC-based protection, the team can refine library protection
throughout its directory. The following example shows how to create and add
to ACLs:

$ SET DIRECTORY/ACL=(IDENTIFIER=[TRN],ACCESS=R+W+E+C) -
_$ [TRN.DOC_CMSLIB]
$ SET DIRECTORY/ACL=(IDENTIFIER=[TRN],OPTIONS=DEFAULT,ACCESS=R+W+E+D+C) -
_$ [TRN.DOC_CMSLIB]
$ SET DIRECTORY/ACL=(IDENTIFIER=[NETWORK],ACCESS=NONE) -
_$ [TRN.DOC_CMSLIB]
$ DIR/SECURITY

Directory TRN_DISK:[TRN]

DOC_CMSLIB.DIR;1 [PROJECT_SOURCE] (RWE,RWE,RE,E)
(IDENTIFIER=NETWORK,ACCESS=NONE)
(IDENTIFIER=[PROJECT_SOURCE],OPTIONS=DEFAULT,ACCESS=READ+WRITE+
EXECUTE+CONTROL)
(IDENTIFIER=[PROJECT_SOURCE],ACCESS=READ+WRITE+EXECUTE+CONTROL)

Total of 1 file.

The first command establishes access to the newly created directory file itself
(note the lack of DELETE access). The second command sets the default for
the CMS library: all users associated with the identifier TRN are allowed
READ, WRITE, EXECUTE, DELETE, and CONTROL access to the contents of
this library. This default access control entry (ACE) applies to all files added
to this library. The third command adds an ACE that prevents network access.
The last command gives a directory listing of the newly created directory along
with the ACL associated with it.

If you have already created a CMS library and placed files in that library
without specifying a default ACE, you can change the access to the files in that
library with the following commands:

$ SET DIRECTORY/ACL=(IDENTIFIER=[TRN],OPTIONS=DEFAULT,ACCESS=R+W+E+D+C) -
_$ [TRN.DOC_CMSLIB]
$ SET FILE/ACL/DEFAULT [TRN.DOC_CMSLIB...]*.*

The first command sets the default for the CMS library. The second command
applies the entire default ACL of the parent directory to all the files in that
directory as if they were newly created. See the OpenVMS DCL Concepts
Manual for a detailed explanation of protection procedures, user identification
codes (UICs), and ACLs. The OpenVMS Access Control List Editor Manual
contains information on using the ACL Editor, an OpenVMS utility used to

Example Project Setup 5–5

Example Project Setup
5.3 Setting Up an OpenVMS ACL-Based Security Mechanism

create and maintain ACLs. For more information on CMS library security, see
the Guide to HP Code Management System for OpenVMS Systems.

5.4 Setting Defaults with a LOGIN.COM File
Another early task of the team is to establish work conditions and default
values, or a work context, by means of LOGIN command files. A developer’s
LOGIN.COM file can automatically perform the following tasks at system
startup:

• Access a previously created LSE environment file.

• Define logical names that are both for the entire project and for each
individual.

• Set CMS, HP DIGITAL Test Manager, and SCA libraries.

• Set CMS search lists if using the project work areas as well as individual
work areas.

• Set up search lists if using the project’s work areas as well as individual
work areas.

• Set a source list to be used by LSE when accessing sources.

Note

You can improve the performance of your LOGIN.COM file if you
include the /NOVERIFY option with the SET LIBRARY commands for
CMS and HP DIGITAL Test Manager.

Logical names can be defined and made available for the project. On the
Transliteration project, they are defined in a command file stored in the
[TRN.COMS] directory, which individual LOGIN.COM files then execute.

Example 5–1 shows a LOGIN.COM file from one of the Transliteration project’s
developers.

This file makes available the environment file, C.ENV, and executes the logical
name command file, TRN_LOGICALS.COM. It also sets this developer’s CMS,
HP DIGITAL Test Manager, and SCA libraries, and establishes a library
search list for SCA that accesses the local SCA library first, followed by the
project-wide SCA library.

5–6 Example Project Setup

Example Project Setup
5.4 Setting Defaults with a LOGIN.COM File

The file also defines two LSE logical names to help in source management.
The first defines a logical name that causes LSE to draw files from locations in
a specific order (the user’s default directory, project build area, and CMS code
library). The second LSE logical name causes files that are read by LSE from
this directory to be placed in nonmodifiable, read-only buffers. This prevents
changes to files when developers are using LSE and SCA to move through
different modules. As a result of this command, developers must reserve a
module from CMS before making any changes, thus providing a history of their
activity.

Next, the LOGIN.COM file defines a logical name for the debug initialization
file (which is often tailored individually for each developer), and sets up LSE
as the editor to be invoked from MAIL.

Finally, the file defines logical names for the PCA Collector and Analyzer
initialization files. The file specification for the Collector is assigned to the
logical name PCAC$INIT.

Example 5–1 Sample LOGIN.COM File

$ DEFINE LSE$ENVIRONMENT TRN_DISK:[TRN.COMS]C.ENV
$ @TRN_DISK:[TRN.COMS]TRN_LOGICALS.COM
$ CMS SET LIBRARY TRN_CMS_CODE /NOVERIFY
$ DTM SET LIBRARY TRN_DTM /NOVERIFY
$ SCA SET LIBRARY MY_SCALIB, TRN_SCALIB
$ DEFINE LSE$SOURCE [], TRN_BLD, CMS$LIB
$ DEFINE LSE$READ_ONLY_DIRECTORY TRN_BLD
$ DEFINE DBG$INIT TRN_DISK:[TRN.COMS]MYDEBUGINIT.COM
$ DEFINE MAIL$EDIT CALLABLE_LSE
$ DEFINE PCAC$INIT TRN_DISK:[TRN.COMS]MYINITFILE.PCAC
$ DEFINE PCAA$INIT TRN_DISK:[TRN.COMS]MYINITFILE.PCAA

.

.

.

The Collector initialization file enables you to collect the same performance or
coverage data in several separate collection runs, or in a batch run.

The file specification for the Analyzer initialization file is assigned to the
logical name PCAA$INIT.

The logical name definitions file (TRN_LOGICALS.COM), accessed by the
LOGIN.COM file, defines the various directories and libraries for the project.
These logical names can be used in place of the full directory or library
specifications. Example 5–2 shows the contents of this file.

Example Project Setup 5–7

Example Project Setup
5.4 Setting Defaults with a LOGIN.COM File

Example 5–2 Project Logical Definitions File

$ DEFINE TRN_PUBLIC TRN_DISK:[TRN.PUBLIC]
$ DEFINE TRN_COMS TRN_DISK:[TRN.COMS]
$ DEFINE TRN_CMS_CODE TRN_DISK:[TRN.CODE_CMSLIB]
$ DEFINE TRN_DTM TRN_DISK:[TRN.DTMLIB]
$ DEFINE TRN_CMS_DOC TRN_DISK:[TRN.DOC_CMSLIB]
$ DEFINE TRN_CMS_DTM TRN_DISK:[TRN.DTM_CMSLIB]
$ DEFINE TRN_DTM_DATA_CMS TRN_DISK:[TRN.DTM_DATA_CMS]
$ DEFINE TRN_DTM_DATA TRN_DISK:[TRN.DTM_DATA]
$ DEFINE TRN_BLD TRN_DISK:[TRN.BLD_V1.WORK]
$ DEFINE TRN_REF TRN_DISK:[TRN.BLD_V1.CODE_REFCOPY]
$ DEFINE TRN_SCA TRN_DISK:[TRN.BLD_V1.SCALIB]
$ DEFINE MY_AREA TRN_DISK:[JONES.WORK]
$ DEFINE MY_SCALIB TRN_DISK:[JONES.SCALIB]

5–8 Example Project Setup

6
Using CMS to Maintain Project Source

Files

This chapter provides examples of the following procedures:

• Using the CMS Access Control List (ACL) feature to set up a security
mechanism for CMS objects

• Storing files in a CMS library

• Modifying elements in a CMS library

• Gaining concurrent access to elements in a CMS library

• Creating classes in a CMS library

• Retrieving contents of a class and preparing for a build

6.1 Using CMS Access Control Lists
OpenVMS user identification code (UIC) and ACL-based mechanisms do not
meet all the needs of a larger project. To refine the protection required in CMS,
CMS provides its own ACL mechanism. As OpenVMS ACLs protect access to
OpenVMS files and directories, CMS ACLs protect access to the following CMS
objects:

• Commands

• Elements

• Element lists

• Classes

• Class lists

• Groups

• Group lists

Using CMS to Maintain Project Source Files 6–1

Using CMS to Maintain Project Source Files
6.1 Using CMS Access Control Lists

• History

• Library attributes

CMS ACLs are not designed to provide tighter security than OpenVMS ACLs;
however, they can give you greater control over your CMS libraries by enabling
you to control access to all CMS objects, not just files and directories.

CMS ACLs are not designed to take the place of OpenVMS ACLs; it is
recommended that you use them together. In this section, OpenVMS ACLs
are used in combination with CMS ACLs for a well-tuned access control
mechanism. When considering access control for large projects, first create
a list of goals you want to achieve. Attaching ACLs to CMS objects costs in
disk space, performance, and ease of management, so plan the use of ACLs
carefully.

This section gives examples of creating ACLs for both CMS library elements
and commands. In some cases, it might not be necessary to have ACLs on both
elements and commands; how you design your protection mechanism depends
on your project needs. For the purposes of showing examples of CMS ACLs,
this section first shows a protection scheme geared toward protecting library
elements. Later, some examples are given showing the use of ACLs on CMS
commands.

6.1.1 Example of a CMS ACL Scheme
In the example used in this section, the Transliteration project team chose the
following goals for the project’s CMS security mechanism:

1. To establish four groups of users in the system rights list, each having their
own specific types of access to CMS objects. They hold one of the following
identifiers:

• CONFIG_MANAGER—Held only by the person with the responsibility
for building the entire system. This person has complete access to all
CMS objects.

• PROJECT_SOURCE_READ—Held by any user requiring read-only
access to files under the PROJECT product root (for example, a
technical writer).

• PROJECT_SOURCE—Held by any user requiring read and write
access to files under the PROJECT product root (for example, a
developer).

6–2 Using CMS to Maintain Project Source Files

Using CMS to Maintain Project Source Files
6.1 Using CMS Access Control Lists

• PROJECT_RED—Held by all users when the project enters its RED
period, in which users are prevented from executing the Create
Element and Replace functions. This RED period helps the project
leader prepare the PROJECT product root for a system build.

2. To grant CONTROL access to the library elements to the holder of
CONFIG_MANAGER. At least one person should have CONTROL access
to any ACLs that are created because CONTROL is the only access type
that permits you to modify an ACL (other than BYPASS privilege, which is
described later).

3. To specify a default access control entry (ACE) for elements added to the
library. This is needed because unless you specifically restrict access to a
CMS object with a CMS ACL, no restrictions will be enabled by default for
that object. Once you attach an ACL to a CMS object, access to that object
is permitted only to the holder of the identifiers specified in the ACL. For
example, one simple method to secure all elements in a CMS library is to
attach an ACL to the element list. Any user not matched to the identifier
in that ACL will not be permitted access to that list. Execution of ACL
commands from this point on is a process of granting access as opposed to
restricting it.

4. To grant holders of the PROJECT_SOURCE_READ identifier ACCEPT,
ANNOTATE, FETCH, and REVIEW access to the library elements.

5. To copy the previous ACLs to existing elements that have no ACLs.

6. To deny everyone access to the Create Element and Replace functions
when the project enters the RED period. This involves placing ACLs on
commands as well as library elements.

7. To use a CMS event notification ACE to cause the holders of the CONFIG_
MANAGER identifier to receive MAIL notification of any Replace function
executed while the project is in its RED period.

A brief description of using the BYPASS privilege is included in Section 6.1.5.

Note

When creating CMS ACLs, prepare the sequence of ACEs carefully. As
with OpenVMS ACLs, access is determined when CMS finds the first
match between the user attempting to gain access and the identifiers
in the ACEs, regardless of subsequent ACEs.

Using CMS to Maintain Project Source Files 6–3

Using CMS to Maintain Project Source Files
6.1 Using CMS Access Control Lists

6.1.1.1 Specifying ACLs in the CMS ACL Dialog Box
In the CMS DECwindows interface, CMS provides a dialog box for specifying
ACLs. In this dialog box, CMS provides fields for specifying the following:

• The object name

• The object type

• A remark string

• The ACE itself

In this dialog box, the Copy ACL From Object button enables you to specify the
name of an object whose ACL you want to copy to the current object. You can
also use the Add ACEs buttons to specify the order of the current ACE in an
existing ACL.

The following sections provide specific information you enter into the Set ACL
dialog box to create your security scheme.

6.1.1.2 Granting Control Access to Library Elements
As mentioned previously, at least one person should have CONTROL access
in any ACLs that are created because CONTROL is the only access type that
permits you to modify an ACL. The holder of CONFIG_MANAGER is given the
following access types in the library element list:

CONTROL
CREATE
DELETE
MODIFY
REPAIR
REPLACE
RESERVE
UNRESERVE

Specifying CONTROL access in the library element list ACE, along with
OPTIONS=DEFAULT, gives CONFIG_MANAGER the ability to modify the
ACLs on any element added to the library, as in the following ACL:

(IDENTIFIER=CONFIG_MANAGER,OPTIONS=DEFAULT,ACCESS=CONTROL+CREATE-
+DELETE+MODIFY+REPAIR+REPLACE+RESERVE+UNRESERVE)

6–4 Using CMS to Maintain Project Source Files

Using CMS to Maintain Project Source Files
6.1 Using CMS Access Control Lists

To assign this ACL to the library’s element list, specify ELEMENT_LIST in
the Object field of the Set ACL dialog box, and click on Library, as shown in
Figure 6–1.

Figure 6–1 Specifying an ACL for an Element List

Using CMS to Maintain Project Source Files 6–5

Using CMS to Maintain Project Source Files
6.1 Using CMS Access Control Lists

6.1.1.3 Specifying a Default ACE for Library Elements of project_source
When you specify OPTIONS=DEFAULT in an identifier ACE for a library
element list, all newly created elements in the library will inherit this ACE by
default. In this sample ACL, holders of PROJECT_SOURCE are granted the
following access types to the library element list:

CREATE REPLACE

DELETE RESERVE

MODIFY UNRESERVE

REPAIR

The following ACL sets these access types, and is attached to the library
element list:

(IDENTIFIER=PROJECT_SOURCE,OPTIONS=DEFAULT,ACCESS=CREATE-
+DELETE+MODIFY+REPAIR+REPLACE+RESERVE+UNRESERVE)

6.1.1.4 Granting Access for Holders of project_source_read
The next goal of the Transliteration project team is to grant holders of
PROJECT_SOURCE_READ the following access types to the library elements:

ACCEPT
ANNOTATE
FETCH
REVIEW

The following ACL, attached to the element list, grants these access types:

(IDENTIFIER=PROJECT_SOURCE_READ, ACCESS=ACCEPT+ANNOTATE+FETCH+
REVIEW)

To make this ACL the default for any new elements added to the CMS library,
click on Make Default ACL in the Set ACL dialog box.

6.1.1.5 Copying CMS ACLs to Existing Objects
The ACLs shown in the previous examples affect only those elements created
after the ACL commands are entered. To have those ACLs apply to elements
that already exist, enter the following ACL command:

$ CMS SET ACL/DEFAULT/OBJECT=ELEMENT *.* "Retrofit with ACLs -rmy"

6–6 Using CMS to Maintain Project Source Files

Using CMS to Maintain Project Source Files
6.1 Using CMS Access Control Lists

6.1.2 Placing ACLs on CMS Commands
The previous examples dealt with ACLs placed on library elements. The
example in this section shows how to place ACLs on CMS commands. One
major advantage to be gained by placing an ACL on a command, rather than
on each element, is that it reduces the number of ACLs that CMS checks when
a command is entered. (CMS needs to check only the ACL on the command,
rather than each ACL on each element.) This results in improved performance
and simplified maintenance.

One of the goals of the Transliteration project team is to establish a period
during which the libraries must be stable in order to prepare for a system
build. During this period, team members should be prohibited from being able
to create or replace elements in the libraries. This period is referred to as the
RED period. One way to prevent activity that interferes with the stability of
the libraries is to deny access to the Replace and Create Element commands
during that RED period. The following ACL on those commands restricts
access to them:

(IDENTIFIER=PROJECT_SOURCE+PROJECT_RED,ACCESS=NONE)

6.1.3 Using Event Notification ACEs
An event notification ACE is used to send MAIL notification when a specified
event occurs. The Transliteration project team needs to create an Event
Notification ACE that sends mail to CONFIG_MANAGER when anyone
attempts to execute the Replace function when the Transliteration project is in
its RED period. The following ACL placed on REPLACE accomplishes this:

(NOTIFY=CONFIG_MANAGER,IDENTIFIER=[*]+PROJECT_RED,ACCESS=EXECUTE)

CMS enables you to write your own event handling program to take a specific
action when a specific event occurs. See the Guide to HP Code Management
System for OpenVMS Systems for more details.

6.1.4 Access During Normal Development
During normal development, holders of either the PROJECT_SOURCE_READ
or PROJECT_SOURCE identifiers are the only users that require access to
the PROJECT product root. The system builder, who holds the CONFIG_
MANAGER identifier, also has access to the PROJECT product root during this
period, but generally does not have to access the product root at other times.

Using CMS to Maintain Project Source Files 6–7

Using CMS to Maintain Project Source Files
6.1 Using CMS Access Control Lists

6.1.5 Access when Preparing for a System Build
When creating a build class, the PROJECT product root must be locked for
read-only access. This RED period is needed so the system builder has a stable
product root when determining which sources to include in the next system
build.

The lock mechanism results from adding the PROJECT_RED identifier to the
system rights list. The following command carries out this procedure:

$ SET RIGHTS_LIST/ENABLE/SYSTEM PROJECT_RED

Because the system is a holder of the identifier, every process on the system
immediately becomes a holder of the identifier. This action affects only the
users who are the holders of the PROJECT_SOURCE identifier. Because
the PROJECT_SOURCE+PROJECT_RED identifier precedes the PROJECT_
SOURCE identifier in the product root ACL, any holder of both the PROJECT_
SOURCE and the PROJECT_RED identifiers will have read-only access. All
other users are unaffected.

After resolving which sources to include in the next system build, the
configuration manager unlocks the product root, allowing normal development
work to resume. To unlock the product root, the configuration manager
removes the PROJECT_RED identifier from the system rights list, and all
processes on the system lose the identifier.

As these examples demonstrate, protection procedures enable you to restrict
access to the library as a whole, or parts of the library, or to CMS commands,
yielding greater control during builds. Additionally, holding BYPASS or the
existence of an ACE granting BYPASS allows a user to replace or unreserve
elements for another user. Holding a process BYPASS privilege circumvents
CMS access checking, allowing your system manager or a user with system
privileges to correct your ACLs if you have inadvertently locked yourself out
and are unable to correct them yourself.

You need to maintain consistent team-working procedures to continue to
control library access. For more information on CMS security features, see the
Guide to HP Code Management System for OpenVMS Systems.

6.2 Maintaining CMS Source Libraries
CMS provides tracking, history, and source management information that
helps a team maintain its source files, design documents, and functional
specifications.

6–8 Using CMS to Maintain Project Source Files

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

6.2.1 Storing Files in a CMS Library
One of the first tasks of the Transliteration project is to produce specification
and design documents. As they are produced, the team stores them in the
CMS library for documentation (see Section 5.2 for the procedures that set up
this CMS library).

To place these documents into the library, invoke CMS using the
/INTERFACE=DECWINDOWS switch, and choose the New Element... item in
the File menu, as shown in Figure 6–2.

Figure 6–2 Creating an Element

When you choose New Element... from the File menu, CMS displays the New
Element dialog box, as shown in Figure 6–3.

Using CMS to Maintain Project Source Files 6–9

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

Figure 6–3 New Element Dialog Box

Enter INTERFACE_SPEC.SDML in the Element field, and ‘‘User interface
functional spec’’ in the Remark field, as shown in Figure 6–3.

Once inserted into the CMS library, INTERFACE_SPEC.SDML becomes an
element. When you place a file into a CMS library with the Create Element
function, that file becomes the first generation of the element. As you modify
the file, CMS creates subsequent generations of the element.

Although CMS can store both source and formatted files, you might want to
save disk space by storing only the source version (which can be recompiled at
any time). For example, you might save only the .SDML files but not the .PS
files for reports generated in DECdocument.

6–10 Using CMS to Maintain Project Source Files

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

6.2.2 Modifying Elements
Needing to modify the element SPEC.RNO, one of the developers, Mary,
retrieves it from the library with the CMS Reserve function, edits the file, and
returns it to the library with the CMS Replace function. All of these steps can
be done from within LSE, as in the following example:

LSE Command> RESERVE SPEC.RNO
_Remark: Modify tasks system -- expand discussion of capabilities
generation 1 of element SPEC.RNO reserved
LSE Command>

After editing the file, she returns it to the CMS library, as follows:

1. Clicks on the File menu in the LSE main window.

2. Chooses Replace Element.

The CMS library now contains two generations of the element. Figure 6–4
shows the contents of the CMS library.

Figure 6–4 CMS Library with Two Generations

ZK−5949−GE

CMS LIBRARY

SPEC.RNO;1
 |
SPEC.RNO;2

6.2.3 Concurrent Access
CMS allows more than one user to access a CMS element at the same time.
CMS notifies you when you try to access an element when another user
is working on that element. For example, Mary has reserved a copy of a
design specification. When a second developer, John, tries to reserve the same
element, he receives the following message:

Element TRANS_DESIGN.RNO currently reserved by:
(1) Mary 1 28-FEB-1998 08:37:28 "Reserved for update"

Proceed? [Y/N] (N): Y
%CMS-S-RESERVED, generation 1 of element TRN_DISK:[TRN.CODE_CMSLIB]
TRANS_DESIGN.RNO reserved

Using CMS to Maintain Project Source Files 6–11

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

John reserved the element after being notified that Mary had previously done
so. Meanwhile, Mary replaces her generation. Later that day, she continues
her work, developing another generation of the design specification.

Unlike Mary, who used the LSE CMS subsystem, John is using CMS directly.
When John replaces his generation, he indicates that his version is a variant in
the Replace dialog box, shown in Figure 6–5. John clicks on Options... to get a
dialog box in which he can specify that this particular generation is a variant.

Figure 6–5 Replace Dialog Box

TRANS1_DESIGN.RNO\1+

CMS displays a message in the DECterm or FileView window that invokes
CMS, indicating that the element is already reserved, and prompts if he wants
to continue or cancel the operation, as follows:

Element TRANS_DESIGN.RNO currently reserved by:
(1) Mary 1 28-FEB-1998 08:37:28 "Reserved for update"

Proceed? [Y/N] (N): Y
%CMS-S-GENCREATED, generation 2A1 of element TRN_DISK:[TRN.CODE_CMSLIB]
TRANS_DESIGN.RNO created

John can use CMS to incorporate his changes into subsequent generations
of this element while ensuring that his changes are consistent with Mary’s
changes. To do this when he reserves the generation, he clicks on the Options...
button at the bottom of the Reserve dialog box. Another dialog box is displayed,
in which John can specify the merge information in the appropriate field.

Before John replaces the merged element, he verifies that the merged element
is as expected. If the element is a code module, he compiles, links, and
executes the code before replacing it. John then replaces the element by
selecting Replace in the Data menu.

6–12 Using CMS to Maintain Project Source Files

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

In this case, no conflicts occurred between the two versions. Had there been
any, CMS would have flagged these and the reserved element would have
needed editing to resolve these conflicts.

For more information on merging variants of CMS elements, see the Guide to
HP Code Management System for OpenVMS Systems.

6.2.4 Creating Classes
The project leader now needs to write a status report based on the most up-to-
date versions of the files. By creating a class, the most up-to-date files can be
retrieved easily from the CMS library.

To create a class and begin inserting generations into that class, do the
following:

1. Choose New from the Maintenance menu in the CMS main window. (The
option Class... is available in a submenu, which you select.) The New Class
dialog box appears.

2. Specify the class name and an associated remark string, as shown in
Figure 6–6.

Figure 6–6 New Class Dialog Box

3. Choose Insert Generation... from the Maintenance menu. (The Generation
option is available in a submenu, which you select.)

Using CMS to Maintain Project Source Files 6–13

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

4. Specify the class First-status and a remark string in the Insert Generation
dialog box, as shown in Figure 6–7.

Figure 6–7 Insert Generation Dialog Box

TRANS1_DESIGN.RNO\1+

6–14 Using CMS to Maintain Project Source Files

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

Figure 6–8 shows the contents of the CMS class First-status after the files
have been inserted.

Figure 6–8 Classes in a CMS Library

ZK−5933−GE

CMS Library

SPEC.RNO;1
 |
SPEC.RNO;2
 |
SPEC.RNO;3
 |
SPEC.RNO;4

TRANS_DESIGN.RNO;1
 |
TRANS_DESIGN.RNO;2−TRANS_DESIGN.RNO;2A1
 (Mary) (John)
TRANS_DESIGN.RNO;3
 (Mary)

TRANS_DESIGN.RNO;4
 |

6.2.5 Retrieving Class Contents and Preparing a Build
You can use MMS to automatically fetch specific generations of elements from a
CMS library and invoke RUNOFF (and other actions) on those elements. MMS
automates the building of documents and software systems (see Chapter 9 for
an example of using MMS to build an entire software application). This section
describes using MMS to fetch and build a software system.

The first step in using MMS is to create a description file. A description file
describes the relationships among the modules that make up the system. The
description file is made up of dependency rules consisting of three parts:

• Target—A file to be updated by MMS

• Source—A file used by MMS to update a target

• Action line—The part of the dependency rule that tells MMS how to use
the sources to update the target

The format for arranging these three units in a dependency rule is as follows:

TARGET : SOURCE
ACTION LINE

Using CMS to Maintain Project Source Files 6–15

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

The Transliteration developers created the following description file to build a
complete set of specifications:

CMSFLAGS = /GENERATION=FIRST_STATUS

ALL_DOCS : SPEC.MEM TRANS_DESIGN.MEM
PRINT SPEC.MEM,TRANS_DESIGN.MEM

SPEC.MEM : SPEC.RNO
RUNOFF SPEC

TRANS_DESIGN.MEM : TRANS_DESIGN.RNO
RUNOFF TRANS_DESIGN

This description file also uses a macro, CMSFLAGS. A macro is a name that
represents a character string. You can use macros already provided with MMS,
or you can define your own. You can define a macro at the beginning of a
description file, as shown in this example, or on the DCL command line that
invokes MMS. Having defined your macro, you can use the macro name in the
description file in place of the character string it represents.

CMSFLAGS is a default macro provided by MMS, which designates that the
CMS FETCH command on an MMS action line should fetch the most recent
generation of an element on the main line of descent. This macro can be
redefined to indicate a specific element generation, or (as in our example) an
element generation that belongs to a particular class.

The documents are built using the following command to invoke MMS:

$ MMS/CMS

6–16 Using CMS to Maintain Project Source Files

Using CMS to Maintain Project Source Files
6.2 Maintaining CMS Source Libraries

Without the /CMS switch, MMS will not access the CMS library for elements
unless a rule specifically directs it to do so. The description file itself is placed
in the CMS library, as part of the class First-status. In this way, if it becomes
necessary to rebuild these specifications, the team will be able to find the
description file quickly. Figure 6–9 shows the final relationships in the CMS
library.

Figure 6–9 Description File as Part of a CMS Class

ZK−5934−GE

CMS Library

SPEC.RNO;1
 |
SPEC.RNO;2
 |
SPEC.RNO;3
 |
SPEC.RNO;4

TRANS_DESIGN.RNO;1
 |
TRANS_DESIGN.RNO;2−TRANS_DESIGN.RNO;2A
 (Mary) (John)
TRANS_DESIGN.RNO;3
 (Mary)

TRANS_DESIGN.RNO;4
 |

DESCRIP.MMS;1

Using CMS to Maintain Project Source Files 6–17

7
Writing, Compiling, and Debugging Source

Code

The Transliteration team has accumulated a body of code consisting of
multiple modules. The source files are stored in a source code library. As an
aid to analyzing their code, the team has set up a project-wide SCA library.
Individual developers might also use local SCA libraries for small tasks,
as needed. The team has developed a standard makefile, which defines the
procedure for creating new versions of TRANSLIT.

A recent enhancement to TRANSLIT provides a way to describe characters
that should not be replaced by preceding them with a hyphen (-). For example,
‘‘-A-Z’’ should cause TRANSLIT to replace all characters except the uppercase
letters A to Z.

Preliminary testing has shown that the new enhancement works as intended.
The developer has returned the changed modules to the source code library.
Subsequent testing shows that the code has regressed. In the process of
enhancing the code, some of the original functionality was lost.

The new version of TRANSLIT translates all lowercase letters to uppercase
letters, but deletes all other characters. Now when TRANSLIT is invoked, the
characters contained in TEST.DAT are incorrectly translated to ‘‘ACEGIK’’
instead of ‘‘ABCDEFGHIJK’’.

This chapter shows how the Transliteration team finds and fixes this problem.
Figure 7–1 shows the main steps the developers follow, as well as the DECset
tools that support those steps.

Writing, Compiling, and Debugging Source Code 7–1

Writing, Compiling, and Debugging Source Code

Figure 7–1 Steps to Correct translit Bug

ZK−5941−GE

Recompile/Link Modules
Using LSE Compile

Fix the Problem
Using LSE

Investigate Problem
Using LSE/CMS

Localize problem
Using LSE/SCA

Replace Element
Using LSE/CMS

Build and Test
Using MMS and

DIGITAL Test Manager

Problem in Code?
Use OpenVMS
VAX DEBUG

7–2 Writing, Compiling, and Debugging Source Code

Writing, Compiling, and Debugging Source Code
7.1 Finding the Problem

7.1 Finding the Problem
Mary has fetched the most current source files into her working directory and
built a version of TRANSLIT to run with the debugger. She can begin to look
for the problem by stepping through the code.

To invoke the debugger, she runs a debugger-linked executable image of
TRANSLIT from a DECterm.

The debugger displays two windows, as shown in Figure 7–2. The top window,
or Source View, contains the source code for the program Mary runs. A pointer
is positioned at the first executable line of code. Execution pauses at this point
and the debugger waits for Mary to choose an operation. The lower window,
or Control View, contains a control panel. In this window, Mary can click on
buttons or enter debugging commands at the prompt to control the program’s
execution.

Writing, Compiling, and Debugging Source Code 7–3

Writing, Compiling, and Debugging Source Code
7.1 Finding the Problem

Figure 7–2 Invoking the Debugger

 read_command_line (argc, argv, &in_file, &

**
** A new file is created.
**
**−−
*/
main (int argc, char *argv[])
{
 FILE *in_file;
 FILE *out_file;
 trans_table table;

 copy_file (in_file, out_file, table);

560
561
562
563
564
565
566
567
568
569
570
571
572

%DEBUG−I−INITIAL, language is C, module set to TRANSLIT
DBG>

OpenVMS VAX DEBUG Version V6.2−000

Mary wants to see why the characters are not being written to the output file.
She suspects the error occurs during execution of the COPY_FILE function.
She sets a breakpoint at that function by clicking on the box to the left of the
call to COPY_FILE, at line 572. When she clicks on Go in the Control View,
the debugger executes the program up to that breakpoint, then pauses and
waits for her to choose another operation.

Mary wants to execute COPY_FILE line by line so she can watch the
characters move from the input file to the output file. She clicks on the
Step-In button. The debugger executes the function call and pauses at the first
executable line in the function, as shown in Figure 7–3.

7–4 Writing, Compiling, and Debugging Source Code

Writing, Compiling, and Debugging Source Code
7.1 Finding the Problem

Figure 7–3 Stepping into copy_file

530
531
532
533
534
535
536

538
539
540
541
542

537

DBG> SET BREAK TRANSLIT\%LINE 572
DBG> go
break at TRANSLIT\main\%LINE 572
DBG> step/in
%DEBUG−I−DYNMODSET, setting module COPY_FILE
stepped to routine COPY_FILE\copy_file
DBG>

**
** newline:

**−−
*/
void copy_file (FILE *in_file, FILE *out_fil
{
 char in_line[max_record_len];
 char out_line[max_record_len];
 int in_index, out_index, in_len, i=_IOEOF
 code_value code;
 boolean copying;;

** A constant that indicates the max

** A constant that is used to indica

OpenVMS VAX DEBUG Version V6.2−000

Mary then clicks on Step in the Control View to execute the function one
line at a time. She stops when she reaches the first IF statement so she can
examine the values of variables.

She double clicks on the variable code to select it. Then she clicks on the
Examine button to display its ASCII code. To select the variable table[code],
she presses MB1 and drags the mouse cursor to the end of the name. Then she
clicks on the Examine button to see the values of the structure fields.

Writing, Compiling, and Debugging Source Code 7–5

Writing, Compiling, and Debugging Source Code
7.1 Finding the Problem

To translate the ASCII codes to their printed characters, Mary enters the
EXAMINE/ASCII:1 command in the Control View. She sees that the first
character is being translated correctly from ‘‘a’’ to ‘‘A’’. Figure 7–4 shows the
result of Mary’s investigation up to this point.

Figure 7–4 Printing the Values of Variables

**
** newline:

**−−
*/
void copy_file (FILE *in_file, FILE *out_fil
{
 char in_line[max_record_len];
 char out_line[max_record_len];
 int in_index, out_index, in_len, i=_IOEOF
 code_value code;
 boolean copying;;

** A constant that indicates the max

** A constant that is used to indica

544
545
546
547
548
549
550
551
552
553
554
555
556

 while (!feof(in_file))
 {
 /*
 ** Read a code
 */
 = fgetc (in_file);
 if (table[code].compress)
 {
 /*

code

 ** This code has the .compress bi
 ** Output its translation, then r
 ** (a) a code without the .compre
 ** of the input file

 file used is TRN_DISK:[TRN.BLD_V1]COPYFILE.C;1
stepped to routine COPY_FILE\copy_file
DBG> step

DBG> step

DBG> step

DBG> step
stepped to COPY_FILE\copy_file\copy_file1\%LINE 550
DBG> examin/ascii:1 code
COPY_FILE\copy_file\code: ’A’

stepped to COPY_FILE\copy_file\%LINE 537

stepped to COPY_FILE\copy_file\%LINE 544

stepped to COPY_FILE\copy_file\copy_file1\%LINE 549

Mary clicks on Step twice and sees that the character is written to the file with
FPUTC. She clicks on Step two more times to return to the beginning of the
loop, where she can repeat these steps to examine the next character in the
input file.

The second time through the loop, Mary notices that the function skips over
the statement that writes the character to the output file. She examines
the variable code and finds that it has a value of 66. She verifies that this
corresponds to the letter B. Mary then examines the variable table[code]. This

7–6 Writing, Compiling, and Debugging Source Code

Writing, Compiling, and Debugging Source Code
7.1 Finding the Problem

tells her that TABLE[CODE].TRANS_VALUE has a value of 258. Because this
value is greater than 255 (the upper limit for ASCII codes), the function does
not write the character to the file.

Mary suspects the problem is in the BUILD_TABLE function, which defines
how characters are translated. She decides to use LSE and SCA together to
see how the trans_value variable is used in the various modules that make up
TRANSLIT.

She enters LSE directly from the debugger by performing the following steps:

1. Enters the EDIT command in the bottom window of the debugger. This
causes character-cell LSE to be invoked in the DECterm in which the
debugger was invoked.

2. Clicks on the DECterm now containing LSE.

7.2 Localizing the Problem
With LSE and SCA both invoked, Mary has access to all the information stored
in the project-wide SCA library and quick access to the sources. Mary uses
the name browser in SCA to find the declaration for trans_value using the
following procedure:

1. In the SCA Main window, she clicks on Name Browser... The Name
Browser dialog box is displayed.

2. In the Filter: field, she enters trans*, and clicks on Filter. All the
occurrences matching that search string are displayed in the Names list
box.

3. In the Names list box, she double clicks on trans_value.

Writing, Compiling, and Debugging Source Code 7–7

Writing, Compiling, and Debugging Source Code
7.2 Localizing the Problem

SCA finds the declaration of trans_value in the TYPES.H file. LSE brings a
read-only version of TYPES.H into a buffer and positions the cursor at the
declaration. Figure 7–5 shows the display as it appears in the editing window.

Figure 7–5 Finding the Declaration of a Variable

 SCA: Name Browser

 h h DIGITAL Language−Sensitive Editor

7–8 Writing, Compiling, and Debugging Source Code

Writing, Compiling, and Debugging Source Code
7.2 Localizing the Problem

She opens the COPYFILE.C source file by choosing Open... from the File menu.
She selects the file name from the directory list, as shown in Figure 7–6, and
clicks on OK. The editor places a copy of the file in an editing buffer.

Figure 7–6 Opening a File

 LSE: OPEN FILE

Mary now wants to find a reference to trans_value. She chooses Search...
from the Search menu and enters trans_value as the string to search for. LSE
positions the cursor at the first reference to trans_value. This is the starting
point for Mary’s inquiry.

Mary double clicks on trans_value to select the name, then chooses Goto
Declaration from the Source menu. The result displays as shown in
Figure 7–7.

Writing, Compiling, and Debugging Source Code 7–9

Writing, Compiling, and Debugging Source Code
7.2 Localizing the Problem

Figure 7–7 Finding the Declaration of a Variable

 DIGITAL Language−Sensitive Editor

Mary sees that trans_value is of type trans_value. She double clicks on trans_
value, then displays its declaration by choosing Goto Declaration from the
Source menu. She finds that trans_value is a value between MIN_CODE and
MAX_CODE.

Continuing to gather more information, Mary then displays the declaration
of MIN_CODE. This section of code shows that UNDEF_CODE is defined to
be 258, the value she found in TABLE[CODE].trans_value when using the
debugger.

Mary suspects that no translation was defined for uppercase characters. To
find out if this is true, Mary wants to find all the places where trans_value is
assigned a value. In the SCA window, she does the following:

1. Clicks on Cross Reference... This causes the Cross Reference dialog box to
be displayed.

2. She enters trans_value in the Name field, and clicks on Apply. This causes
the Cross Reference Results window to be displayed.

3. In the Cross Reference Results window, she double clicks on the icon to the
left of trans_value, and SCA expands the entry to display all the locations
where trans_value is used in the source code.

7–10 Writing, Compiling, and Debugging Source Code

Writing, Compiling, and Debugging Source Code
7.2 Localizing the Problem

Mary finds out that trans_value is written in five places. She can see the
source where each of the write references is indicated by double clicking on
each write reference entry. Figure 7–8 shows Mary’s Cross Reference Results
window with the LSE window displaying the source associated with one
particular write reference.

Figure 7–8 Finding All Occurrences of a Variable

 DIGITAL Language−Sensitive Editor

 SCA: Cross Reference Results

Writing, Compiling, and Debugging Source Code 7–11

Writing, Compiling, and Debugging Source Code
7.2 Localizing the Problem

Mary studies a number of these references. She decides she can fix the
problem by adding a FOR loop that sets the values in the translation table
to handle un-translated characters. The loop had been part of the original
code. Mary speculates that while making the most recent enhancement, the
developer used the original loop as a guide. In the process, the developer might
have failed to reinsert the original loop back into the code.

7.3 Fixing the Problem
To change the code, Mary needs to obtain a modifiable source file from the
source code library. She reserves the file BUILDTABLE.C from her CMS
library directly from LSE by doing the following:

1. Clicking on the File menu.

2. Choosing Reserve.

LSE reserves the source file and places it in an editing buffer. Mary can now
use the language-sensitive features of LSE to modify the code.

To correct the error, Mary needs to add a FOR loop. This loop will set the
values in the translation table for characters that are not translated. Mary
modifies the code as follows:

1. She positions her cursor near the end of the file before the closing braces of
the ELSE statement.

7–12 Writing, Compiling, and Debugging Source Code

Writing, Compiling, and Debugging Source Code
7.3 Fixing the Problem

2. She types the word FOR then presses Ctrl/E. LSE recognizes FOR as a
token and expands it as shown in Figure 7–9. The cursor is positioned at
the first expression of the loop initialization portion of the statement.

Figure 7–9 Expanding the Token of a for Statement

 DIGITAL Language−Sensitive Editor

Writing, Compiling, and Debugging Source Code 7–13

Writing, Compiling, and Debugging Source Code
7.3 Fixing the Problem

3. Mary fills in the initialization expressions by using Ctrl/N to move her
cursor from one placeholder to the next. At the STATEMENT placeholder,
Mary types IF and presses Ctrl/E to expand that token, as shown in
Figure 7–10.

Figure 7–10 Expanding the Token of an if Statement

 DIGITAL Language−Sensitive Editor

7–14 Writing, Compiling, and Debugging Source Code

Writing, Compiling, and Debugging Source Code
7.3 Fixing the Problem

4. She fills in the expression and statements and deletes the extra
placeholders. The completed loop is shown in Figure 7–11.

Figure 7–11 Completing Changes to the Source Code

 DIGITAL Language−Sensitive Editor

Having modified the file, Mary now wants to see if her changes are
syntactically correct. She chooses Compile from the Source menu.

7.4 Compiling and Reviewing Source Code
Mary can now perform the following functions within LSE:

• Compile the source code.

• Review any error conditions in a diagnostics file.

• Move automatically from an error message in the diagnostics file to the
line in the source code that generated it.

• Edit the line in the source module that generated the error.

The example shown in this section shows how to compile and review a module
in TRANSLIT.

Writing, Compiling, and Debugging Source Code 7–15

Writing, Compiling, and Debugging Source Code
7.4 Compiling and Reviewing Source Code

To compile and review the code in the current buffer, Mary chooses the Compile
Review item in the Source menu. LSE displays a message in the message area
at the bottom of the window when the compilation is complete. LSE then
automatically begins reviewing the compilation errors generated by the
Compile Review function. LSE splits the screen into two windows, displaying
the compilation errors in the top window and the source code in the bottom
window, as shown in Figure 7–12.

Figure 7–12 LSE Review Buffer

 DIGITAL Language−Sensitive Editor

Once LSE displays both windows, Mary can position the pointer at an error
message in the top window and double click on it to move the editing cursor to
the line in the source code (in the bottom window) that generated that error.
She performs the following steps:

1. Clicks MB2 in the $REVIEW buffer. LSE displays the Review buffer
pop-up menu.

2. Chooses End Review.

When no errors are reported, she decides to build and test the program as part
of the full system. Mary returns the BUILDTABLE.C file to the source code
library. She enters the following REPLACE command at the LSE prompt:

LSE Command> REPLACE BUILDTABLE.C

This information becomes part of the history for that file.

7–16 Writing, Compiling, and Debugging Source Code

Writing, Compiling, and Debugging Source Code
7.5 Building the Program

7.5 Building the Program
Mary needs to compile and link the full application, including the modified
module, to make sure the application executes as intended.

Mary is now ready to return the file to CMS. She can directly replace the
element, now verified as correct, by performing the following steps:

1. Clicking on the File menu.

2. Choosing Replace.

Mary exits from SCA and LSE.

Working from her local build area ([JONES.WORK]), Mary initiates the MMS
build procedure with the following DCL command:

$ MMS/CMS WORK_BUILD

When the build is complete, the sources have been compiled and linked;
the project’s HP DIGITAL Test Manager test collection has also been run
automatically. Mary then uses the HP DIGITAL Test Manager to review the
test collection, and sees that the TRANSLIT utility now produces results that
match the benchmark. Her code changes have been successful.

Writing, Compiling, and Debugging Source Code 7–17

8
Designing Programs with the Program

Design Facility

This chapter presents an overview of the program design facility and an
example of how the Transliteration project team uses it to design and build the
COPY_FILE module.

8.1 Overview
DECset lets you use the program design facility for incremental program
design and development by enabling you to specify design information in
your source files in the form of structured text, or pseudocode. Using a
compiler that supports the program design facility, you can then compile these
modules and generate SCA analysis data files from them. With SCA, you can
perform cross-referencing and static analysis on the design information on
these modules, and subsequently extract design information and produce it
in a variety of design reports. The following OpenVMS compilers support the
program design facility:

• HP Ada

• HP BASIC

• VAX BLISS-32

• HP C

• HP C++

• HP COBOL

• HP VAX COBOL

• HP FORTRAN

• DEC Pascal

• VAX PL/I

Designing Programs with the Program Design Facility 8–1

Designing Programs with the Program Design Facility
8.1 Overview

The program design facility adds the following capabilities to your DECset
programming environment:

• Pseudocode support

• Design refinement: developing real code from pseudocode while preserving
the design information in the form of comments

• Tagged comments: allowing you to categorize the design information
contained in comments

• Support for compiling files containing pseudocode

• SCA cross referencing and static analysis of design information

• Generation of design reports

• Code elision: obtaining collapsed or expanded views of your modules and
design reports (also known as outlining or holophrasting)

The following sections provide details on each of these capabilities.

8.1.1 Entering Pseudocode
LSE provides the ENTER PSEUDOCODE command to let you create
pseudocode placeholders, in which you can specify design information. When
you use the ENTER PSEUDOCODE command, LSE displays the pseudocode
placeholder.

The pseudocode placeholder appears as a pair of double angle bracket
characters («»). When LSE displays this placeholder, you can begin typing
in natural language statements, which make up your pseudocode. In this way,
the compiler language you are using becomes your program design language.

8–2 Designing Programs with the Program Design Facility

Designing Programs with the Program Design Facility
8.1 Overview

Figure 8–1 shows a routine containing pseudocode.

Figure 8–1 Sample Routine Containing Pseudocode

 DIGITAL Language−Sensitive Editor

8.1.2 Refining the Design
LSE provides the ENTER COMMENT command to convert pseudocode
placeholders to program comments. This mechanism helps the development
process by preserving the original design of a program as you replace
pseudocode with real code. You can convert pseudocode into block or line
comments.

Using the keypad, you can press PF1-L (the ENTER COMMENT LINE
command) or PF1-B (the ENTER COMMENT BLOCK command). When you
press PF1-L, LSE does the following:

• Moves the pseudocode placeholder text into a comment in the right margin

• Inserts a {TBS} placeholder in the original position of the pseudocode
placeholder

• Places the cursor in the {TBS} placeholder, which allows you to enter a line
of code

When you press PF1-B, LSE does the following:

• Sets up a comment block

Designing Programs with the Program Design Facility 8–3

Designing Programs with the Program Design Facility
8.1 Overview

• Places the pseudocode placeholder text within any necessary comment
delimiters inside the block

• Creates a {TBS} placeholder after the comment block and positions the
cursor in it

8.1.3 Using Tagged Comments
Another feature of the program design facility is support for tagged
comments. Tagged comments let you extract design information from
comments in an organized fashion. This feature is especially useful for
generating reports. When you generate a report, you can extract the design
information associated with tags and it appears in the report.

LSE provides language templates for compilers supporting the program design
facility. These templates contain tags for specific categories of information
commonly appearing in comments. For example in C, when you expand the
initial {@COMPILATION-UNIT@} placeholder, one of the placeholders LSE
displays is [@MODULE LEVEL COMMENTS@]. When you expand this
placeholder, LSE displays the comment block shown in Figure 8–2.

Figure 8–2 Tags in a C Header Comment

 DIGITAL Language−Sensitive Editor

8–4 Designing Programs with the Program Design Facility

Designing Programs with the Program Design Facility
8.1 Overview

In Figure 8–2, note the following tags:

• FACILITY:

• MODULE DESCRIPTION:

• AUTHORS:

• CREATION DATE:

• DESIGN ISSUES:

When SCA generates a report for a module containing tagged comments,
it supplies the text associated with these tags. The program design facility
provides three categories of tags:

• Text

• Keyword

• Structured

Text tags contain ordinary text. The tags shown in Figure 8–2 are text tags.
Keyword tags contain a list of zero or more keywords and can be used to flag
sections of code. You can define a tag to accept keywords from a predefined
list. The keywords in the predefined list are defined with the LSE DEFINE
KEYWORD command.

Structured tags add another layer of structure to a tag. The value of a
structured tag consists of a sequence of one or more subtags. For example, the
FORMAL PARAMETERS tag consists of a sequence in which each parameter
name is a subtag, and the text description of the parameter becomes the value
of the subtag.

Using tags in your source files requires that you follow special syntax
guidelines so the compilers will recognize the tags and process them correctly.
The Guide to Detailed Program Design for OpenVMS Systems has complete
details on specifying tagged comments in your source files. You can also add
your own tags to represent various kinds of design information. LSE provides
the DEFINE TAG and DEFINE KEYWORDS commands to create your own
tags and keywords, and the SAVE ENVIRONMENT command to save your
new tag and keyword definitions.

Designing Programs with the Program Design Facility 8–5

Designing Programs with the Program Design Facility
8.1 Overview

8.1.4 Compiler Support
After a partial or complete design exists, you can process files containing
design information by using a supported compiler. Use the /DESIGN qualifier
to tell the compiler to process design information. The /DESIGN qualifier
accepts the following two keywords:

• [NO]COMMENT

Causes the compiler to process comment tags associated with keywords

• [NO]PLACEHOLDERS

Causes the compiler to recognize pseudocode placeholders as valid program
syntax

The default keywords for the /DESIGN qualifier are COMMENT and
PLACEHOLDERS.

8.1.5 Loading Design Information into an SCA Library
You can use the SCA LOAD command to load the analysis data files containing
design information, as described in Section 8.1.4. Because SCA does not
discriminate between an analysis data file containing design information and
one containing real code, you can place your designs and implementations in
the same library.

Once your design files are loaded into an SCA library, you can perform
SCA static analysis and cross-referencing procedures as you would on files
containing pure code.

8.1.6 Generating Design Reports
In addition to getting information directly from SCA queries, you can also
produce a variety of reports from the SCA database based on your design.
Typically, reports cover all or a designated part of your SCA database and
present information in a structured, organized way. To generate reports, you
must have both LSE and SCA available on your system.

Design reports can present information about your program in ways that
you can use to better understand the program. The program design facility
provides four types of reports:

• HELP—An OpenVMS Help file generated from your design or code

• PACKAGE—An LSE package definition

• INTERNALS—A general report that formats your entire design in an
organized manner

8–6 Designing Programs with the Program Design Facility

Designing Programs with the Program Design Facility
8.1 Overview

• 2167A_DESIGN—A report that produces a document that meets the
requirements of the US Defense Department’s DOD-STD-2167A Software
Design Document

An example of an internals report is given at the end of this chapter. For more
information on the other reports, see the Guide to Detailed Program Design for
OpenVMS Systems.

8.1.7 Code Elision
LSE lets you obtain overviews of your code or designs at various levels of detail
with the EXPAND and COLLAPSE commands. This is sometimes referred to
as code elision, holophrasting, or outlining. You can generate overviews of your
source files either interactively in LSE, or in reports. Section 8.2.4 gives an
example of generating reports.

When you collapse the lines in your source code, LSE displays overview lines.
Each overview line corresponds to one or more lines of code. When you collapse
lines, you can hide the details of your programs. LSE displays overview lines
as pseudocode placeholders.

You can also expand collapsed code to reveal the individual lines previously
hidden from view. For examples and more information on code elision, see the
Guide to Detailed Program Design for OpenVMS Systems.

8.2 Designing the COPY_FILE Module
This section shows the steps that the Transliteration project team takes
to design and build the COPY_FILE module of TRANSLIT. Bill, one of the
Transliteration team developers, has the task of using the program design
facility to provide the detailed level design in this module.

Designing Programs with the Program Design Facility 8–7

Designing Programs with the Program Design Facility
8.2 Designing the COPY_FILE Module

8.2.1 Beginning the Design for COPY_FILE
To start the design process, Bill begins filling in header comment information,
providing details for the MODULE DESCRIPTION, AUTHORS, CREATION
DATE tags, as shown in Figure 8–3.

Figure 8–3 Providing Header Comments for COPY_FILE

8–8 Designing Programs with the Program Design Facility

Designing Programs with the Program Design Facility
8.2 Designing the COPY_FILE Module

Bill then writes a top-level outline of the procedure, as shown in Figure 8–4.

Figure 8–4 COPY_FILE Top-Level Outline

 DIGITAL Language−Sensitive Editor

The design information is enclosed with double angle brackets («»),
which indicate pseudocode. When you press PF1-spacebar (the ENTER
PSEUDOCODE command), LSE displays the double angle brackets as a
placeholder, positioning the cursor on it.

Next, Bill expands the loop. He places the cursor on the following line and
types PF1-B (the ENTER COMMENT BLOCK command):

«Loop until we reach the end of the file»

The ENTER COMMENT BLOCK command does the following:

• Converts a single line of pseudocode into a block-format comment

• Creates a %[TBS]% placeholder and positions the cursor in it

Designing Programs with the Program Design Facility 8–9

Designing Programs with the Program Design Facility
8.2 Designing the COPY_FILE Module

Bill creates a WHILE loop, shown in Figure 8–5, and completes the loop with
pseudocode placeholders.

Figure 8–5 Creating a while Loop with Pseudocode Placeholders

 DIGITAL Language−Sensitive Editor

When Bill is ready to provide actual code where he has a pseudocode
placeholder, he positions the cursor on that placeholder and presses PF1-B
(the ENTER COMMENT BLOCK command).

8–10 Designing Programs with the Program Design Facility

Designing Programs with the Program Design Facility
8.2 Designing the COPY_FILE Module

Figure 8–6 shows Bill’s work up to this point.

Figure 8–6 Replacing Pseudocode with Actual Code

 DIGITAL Language−Sensitive Editor

Designing Programs with the Program Design Facility 8–11

Designing Programs with the Program Design Facility
8.2 Designing the COPY_FILE Module

8.2.2 Compiling COPY_FILE
Bill is now ready to do an initial compile of COPY_FILE. He uses the /DESIGN
qualifier, so the C compiler will recognize the pseudocode placeholders and
that the /ANALYSIS_DATA qualifier will generate an SCA analysis data file
containing the design information. The compile line is as follows:

$ CC COPYFILE/NOOBJECT/DESIGN/ANALYSIS_DATA

8.2.3 Loading COPY_FILE Design Information into an SCA Library
Bill enters the following command to load the analysis data file created in
Section 8.2.2 into his SCA library:

$ SCA LOAD COPY_FILE/LIBRARY=MYSCALIB

Bill can then perform SCA query operations on his design; for example,
checking the usage of tags. He uses the following procedure:

1. In the SCA main window, he clicks on Cross Reference...

2. In the list box to the right of the Type button, he selects Tag.

3. He clicks on Apply.

8–12 Designing Programs with the Program Design Facility

Designing Programs with the Program Design Facility
8.2 Designing the COPY_FILE Module

Figure 8–7 shows the output created by Bill’s cross-referencing procedure.

Figure 8–7 SCA Cross-Reference Output

 SCA: Cross Reference Query

 SCA: Cross Reference Results

As shown in Figure 8–7, SCA displays a buffer listing all the tags in
COPY_FILE.

Designing Programs with the Program Design Facility 8–13

Designing Programs with the Program Design Facility
8.2 Designing the COPY_FILE Module

8.2.4 Generating an Internals Report of COPY_FILE
Bill’s next task is to generate an INTERNALS report of the COPY_FILE
design to deliver to the other members of the Transliteration project team. The
INTERNALS report is a comprehensive module-by-module, routine-by-routine
report that extracts information from tagged comments to describe various
aspects of COPY_FILE.

Bill enters the following command to generate an INTERNALS report while
in SCA. This command generates a DECdocument source file, which he can
subsequently process in DECdocument. The command is as follows:

SCA> SET REPORT/INTERNALS/TARGET=DOCUMENT

The report created by the last command is shown at the end of this chapter.
Note the following characteristics of the code body shown in this report:

• The program statements in the code body are presented in a top-down,
hierarchical order—not in the sequential order in which they appear in
the source file. Each block is labeled with a numbered callout in the left
margin.

• The program design facility inserts overview placeholders to hide details at
the uppermost levels (shown as a placeholder with an ellipsis appended to
the end). For each overview placeholder that appears in the body, there is
a cross-reference callout in the right margin. This callout cross-references
the block in which the overview placeholder is expanded.

In DECdocument output, callouts appear as white-on-black numbers. In
Runoff output, callouts appear as boldface numbers.

8–14 Designing Programs with the Program Design Facility

COPYFILE
COPY_FILE (void function)

COPY_FILE (void function)

Copy the input file to the output file, with character translation.

Format

COPY_FILE in_file, out_file, table

Arguments

in_file

Type: pointer to FILE
The input file

out_file

Type: pointer to FILE
The output file

table

Type: trans_table
The translation table

Functional Description

Copy the input file to the output file, with character translation.

Side Effects

Data is read from the input file, and written to the output file.

Design

Use a simple while loop to move through the input file. Each iteration of the
while loop represents the processing of a single character or the end-of-line
character.

Implicit Input Parameters

max_record_len—A constant that indicates the maximum record length

newline—A constant that is used to indicate a new-line character

Designing Programs with the Program Design Facility 8–15

COPYFILE
COPY_FILE (void function)

Body

1 «while (!feof(in_file)) ...» 2
}

2 while (!feof(in_file))
{

«** Read a code ...» 3
}

3 /*
** Read a code
*/
code = fgetc (in_file);
«if (table[code].compress) ...» 4

4 if (table[code].compress)
{

«** This code has the .compress bit set. ...» 5
}
else

«** No need to deal with compression here -- just output the ...» 9
5 /*

** This code has the .compress bit set.
** Output its translation, then read until we find either
** (a) a code without the .compress bit set, or (b) the end
** of the input file
*/
«if ((code >= min_code) && (code <= max_code)) ...» 6

«while (!feof(in_file)) ...» 7

«if (!table[code].compress) ...» 8
6 if ((code >= min_code) && (code <= max_code))

fputc (table[code].trans_value, out_file);
7 while (!feof(in_file))

{
code = fgetc (in_file);
if (!table[code].compress)

break;
}

8 if (!table[code].compress)
/*
** We found a code without the .compress bit set.
** Output its translation.
*/
if ((code >= min_code) && (code <= max_code))

fputc (table[code].trans_value, out_file);
9 /*

** No need to deal with compression here -- just output the
** translation.
*/
if ((code >= min_code) && (code <= max_code))

8–16 Designing Programs with the Program Design Facility

COPYFILE
COPY_FILE (void function)

fputc (table[code].trans_value, out_file);

Note

The callouts shown in this example are actually a part of the report.
Final expanded items are marked with the callout figures seen on the
left side. A right-side callout shows pseudocode to be expanded.

Designing Programs with the Program Design Facility 8–17

9
Building the Application with MMS

This chapter describes the MMS description file used by the Transliteration
project team to build the following Transliteration applications:

• Previous versions of their software

• A new stage, or base level, of the project’s development

This chapter is divided into the following four sections:

• Section 9.1 describes the description file in general and lists what must be
in place for it to execute properly.

• Section 9.2 describes the section of the description file devoted to MMS
flags and macros.

• Section 9.3 describes the section of the description file that sets up MMS
rules.

• Section 9.4 describes the section of the description file that sets up the
MMS targets.

9.1 Building from CMS Classes
Building previous versions depends in part on how conscientiously the team
has used CMS to create classes or stages in the application’s development.
With the necessary class in place, the team can use MMS to build a previous
version from the sources in the CMS library.

The same MMS description file can build the ongoing development work as
well as previous versions of the software. The description file can also initiate
test procedures, with or without PCA coverage analysis, during the build.
Additionally, the build procedure can automatically update the SCA library.

Building the Application with MMS 9–1

Building the Application with MMS
9.1 Building from CMS Classes

To carry out these different tasks during the build, the following must be in
place:

• CMS, HP DIGITAL Test Manager, and SCA libraries

• The logicals for the default libraries

• Tests for the application

• A PCA Collector initialization file

• A HP DIGITAL Test Manager test collection prologue file

• A class in the CMS code library for a previous version; a class in the CMS
library for HP DIGITAL Test Manager that uses the same name, which
incorporates the tests that correspond to the source class.

The MMS description file shown in Example 9–1 carries out builds for both
new and previous development. Only the MMS command entry changes. The
description file also can run test collections on the build and optionally perform
coverage analysis on the test collection. Finally, it can update the SCA library
(usually done if the build constitutes a new version of the system).

Developers can initiate the build from within the group project area,
[TRN.BLD_V1.WORK], or from their own local work areas, for example,
[JONES.WORK]. Building from the group project area is appropriate during
a project build using validated sources. This compilation will update the
project-wide SCA library ([TRN.BLD_V1.SCALIB]).

A build from the local area is appropriate when a developer wants to see the
effects of changes made to modules under development. In this case, MMS will
do a time comparison between the modules in the developer’s local directory
and those in CMS. MMS carries out the build using any modules in the
local directory that are more recent than those in the CMS code library. The
resulting files are stored in the developer’s local work area. In this case, the
local SCA library ([JONES.SCALIB]) is updated based on this compilation.

Example 9–1 shows the complete MMS description file. This is followed by
sections of the file with explanatory text.

9–2 Building the Application with MMS

Building the Application with MMS
9.1 Building from CMS Classes

Example 9–1 A Build Procedure Using an MMS Description File

!++
! BUILD Procedure
!--

!==================
! FLAGS and MACROS
!==================

! Create default flags and macros
sca = sca
dtm = dtm
delete = delete
dtmlibrary = [.dtm] ! Default DTM library
scalibrary = sca$library ! Default SCA library
pca = false
pca_init_file = trn_coms:myinitfile.pcac ! Default PCAC Init file

dtmcollection = build_test ! Default collection name
dtmtests = * ! Use all tests
dtmcomment = "Test of build" ! Default collection remark

trace = trace
list = list
debug = debug
optimize = nooptimize
analysis_data = analysis_data
cflags = /$(debug) /nooptimize /$(analysis_data)
cldflags = /$(list)
msgflags = /$(list)

dtmflags = /submit=(notify,noprint,keep)/class=(template:"$(mms$cms_gen)", -
benchmark:"$(mms$cms_gen)")/var=(use_pca=$(pca),use_pca_init_file=$(pca_init_file), -
translit="’’f$parse("translit.exe")’")

linkflags =/map=$(mms$target_name)/exe=$(mms$target_name)/$(trace)
!Modules in build
!copyfile.obj
translit_modules= buildtable.obj, copyfile.obj, -

expandstring.obj, translit.obj

!=============
! RULES
!=============

! Modify the C rule to decide if analysis data files should be produced.

.c.obj ! a rule for compiling C files
if use_sca .eq. 0 THEN $(cc) $(cflags)/noanalysis_data $(mms$source)
if use_sca .eq. 1 then $(cc) $(cflags) $(mms$source)
if use_sca .eq. 1 then $(sca) load $(mms$target_name)
if use_sca .eq. 1 then $(delete) $(mms$target_name).ana;

(continued on next page)

Building the Application with MMS 9–3

Building the Application with MMS
9.1 Building from CMS Classes

Example 9–1 (Cont.) A Build Procedure Using an MMS Description File

!===============
! TARGETS
!===============

.first ! Set a flag to determine how objects are to be compiled
use_sca = 0
if "$(mmstargets)" .eqs. "work_build" .or. "$(mmstargets)" .eqs. "" -

then use_sca = 1
pca_link = ""
if "$(pca)" .nes. "false" then pca_link = "/debug"

! The normal development build (default if no other target specified)

work_build : translit.exe, - ! Build the translit executable image
test_set ! Run the regression tests

! Work build completed at this point.

! To build a particular version -- use same as work build, but different target
! will allow .FIRST directive to cause C not to generate .ANA files.

version_build : work_build
! Version build completed at this point

!The translit executable

translit.exe : $(translit_modules) ! put modules into an olb
$(link) $(linkflags) $(translit_modules) ’pca_link’
if "$(debug)" .eqs. "debug" then $(link) $(linkflags)/debug/exe= -

$(mms$target_name).debug $(translit_modules)

! The test set

test_set : ! Always run a test set
$(dtm) set library $(dtmlibrary)
$(dtm) create collection $(dtmcollection) $(dtmtests) -

$(dtmflags) $(dtmcomment)
! test set created at this point

! Source code dependencies to create the needed .OBJ file which
! is source for the target TRANSLIT.EXE.

translit.obj : translit.c, openfiles.h, types.h
buildtable.obj : types.h
copyfile.obj : types.h
expandstring.obj : types.h
openfile.obj : types.h

In the next three examples, the single description file in Example 9–1 has been
broken into sections, each followed by explanatory text: Example 9–2, Flags
and Macros; Example 9–3, Rules; and Example 9–4, Targets.

9–4 Building the Application with MMS

Building the Application with MMS
9.2 MMS Flags and Macros

9.2 MMS Flags and Macros
This section shows and describes the flags and macros section of the MMS
description file shown in this chapter. Example 9–2 is followed by a detailed
explanation of each part of the example.

Example 9–2 Flags and Macros Section of the Description File

!++
! BUILD Procedure
!--

!==================
! FLAGS and MACROS
!==================

! Create default flags and macros
1 sca = sca

dtm = dtm
delete = delete
dtmlibrary = [.dtm] ! Default DTM library
scalibrary = sca$library ! Default SCA library
pca = false
pca_init_file = trn_coms:myinitfile.pcac ! Default PCAC Init file

dtmcollection = build_test ! Default collection name
dtmtests = * ! Use all tests
dtmcomment = "Test of build" ! Default collection remark

trace = trace
list = list
debug = debug
optimize = nooptimize

2 analysis_data = analysis_data
cflags = /$(debug) /nooptimize /$(analysis_data)
cldflags = /$(list)
msgflags = /$(list)

3 dtmflags = /submit=(notify,noprint,keep)/class=(template:"$(mms$cms_gen)", -
benchmark:"$(mms$cms_gen)")/var=(use_pca=$(pca),use_pca_init_file=$(pca_init_file), -
translit="’’f$parse("translit.exe")’")

linkflags =/map=$(mms$target_name)/exe=$(mms$target_name)/$(trace)
!Modules in build
!copyfile.obj
translit_modules= buildtable.obj, copyfile.obj, -

expandstring.obj, translit.obj

Key to Example 9–2

1 This section defines macros, flags, and default libraries and names. These
defaults will make the description file more generic; that is, individual
instructions that use these defaults can be modified by changing the

Building the Application with MMS 9–5

Building the Application with MMS
9.2 MMS Flags and Macros

definitions rather than all the occurrences of the name, macro, and so on.
The TRN_DTM represents the default library; logicals are defined in the
[TRN.COMS] directory for access by individual LOGIN.COM files. The
SCA library has not been defined. As a result, MMS loads the .ANA files
into whatever SCA library is set at the time of the build.

To make the defaults easier to change, or to use them in more than one
place, they can be kept in a separate file. This file will then need to be
included as part of the description file.

Members of the team might want to change the default names and macros
occasionally. They can change any of the default values in this description
file when they invoke the file. For example, the following command
provides a unique HP DIGITAL Test Manager collection name (necessary if
they have kept previous collections):

$ MMS/MACRO=(DTMCOLLECTION=NEW_NAME)

2 The /ANALYSIS_DATA part of the PFLAGS macro causes the C compiler
to generate SCA data files (.ANA).

3 The DTMFLAGS macro is used to submit a collection of tests (the
tests must already exist), and invokes the appropriate templates and
benchmarks from the CMS library. By default, this collection contains all
the tests. The default class for the template and benchmark directories
is the same as the class from which the source code is drawn. By having
previously set up a class called V1.0 in both the HP DIGITAL Test Manager
and CMS libraries, the team can build and test V1.0 with the following
command:

$ MMS/CMS/MACRO=(MMS$CMS_GEN="V1.0") VERSION_BUILD

This command does not update the SCA library because it designates the
VERSION_BUILD option. This is described in the explanatory text of
Example 9–4.

The DTMFLAGS macro also uses three HP DIGITAL Test Manager
variables:

• /var=use_pca—Sets up a flag to specify coverage analysis for the test
collection

• /var=use_pca_init_file—Sets a default PCA Collector initialization file;
at the same time, it lets the team choose a different initialization file
when invoking MMS (the command examples follow)

• translit—Ensures that the HP DIGITAL Test Manager test collection is
created based on the default work directory

9–6 Building the Application with MMS

Building the Application with MMS
9.2 MMS Flags and Macros

For the test coverage analysis to occur, the team set up several conditions:

• They defined use_pca, use_pca_init_file, and translit variables in the
HP DIGITAL Test Manager library. These variables were defined with
the following HP DIGITAL Test Manager commands:

$ DTM CREATE VARIABLE/GLOBAL use_pca "false"
$ DTM CREATE VARIABLE/GLOBAL/LOGICAL use_pca_init_file -
_$ "TRN_DISK:[TRN.COMS]INITFILE.PCAC"
$ DTM CREATE VARIABLE/GLOBAL/LOGICAL translit -
_$ "TRN_DISK:[TRN.BLD_V1.WORK]TRANSLIT.EXE"

• A PCA Collector initialization file that determines what test coverage
data is collected.

• A HP DIGITAL Test Manager prologue file that sets up the PCA
coverage and points to the PCA Collector initialization file.

• An image of the product to be tested and linked to invoke the PCA
Collector. Linking is done with the /DEBUG switch. (The .FIRST part
of Example 9–4 shows how this is done.)

An example follows of the PCA Collector initialization file. The HP DIGITAL
Test Manager collection prologue file is shown in Section 10.1.

PCA Collector Initialization File The initialization file that follows contains
commands passed to the PCA Collector (the file is stored in the [TRN.COMS]
directory). This file must contain the GO command as the last command;
optionally, it can contain other Collector commands. The following example
collects system service counts and measures test coverage by code path over
the entire program. In addition, it selects output verification and the collection
of program counter (PC) values from the Call Stack; the file PCA_DTM.LOG
stores the output of the logging session. With this information, the Collector
can run in batch mode.

! Test coverage Collector Initialization File
!
SET LOG PCA_DTM.LOG !Turn on output logging
SET SERVICES !Gather system service counts
SET COVERAGE PROGRAM_ADDRESS BY CODEPATH !Gather coverage by codepath
SET STACK_PCS !Gather data from Call Stack
GO !Begin collection

Building the Application with MMS 9–7

Building the Application with MMS
9.2 MMS Flags and Macros

With the different files and commands in place, the team has two options using
two different MMS commands:

• Build an executable application (current or previous version) that has a
test collection, but no PCA coverage on the tests. Note that this command
builds the current, default version of the application and loads the SCA
library because WORK_BUILD is specified. The command is as follows:

$ MMS/CMS WORK_BUILD

• Build an executable application with a corresponding test collection and
PCA test coverage for that test collection. The command is as follows:

$ MMS/CMS/MACRO=PCA=TRUE

By adding to this command the additional switch,
/MACRO=PCA_INIT_FILE=DISK:[DIRECTORY]FILENAME.PCAC, other
PCA initialization files can be designated, which provides greater flexibility.

9.3 MMS Rules
This section shows and describes the Rules section of the MMS description file
shown in this chapter. Example 9–3 is followed by a detailed explanation of
each part of the example.

Example 9–3 Rules Section of the Description File

!=============
! RULES
!=============

! Modify the C rule to decide if analysis data files should be produced.

1 .c.obj ! a rule for compiling C files
if use_sca .eq. 0 then $(cc) $(cflags)/noanalysis_data $(mms$source)
if use_sca .eq. 1 then $(cc) $(cflags) $(mms$source)
if use_sca .eq. 1 then $(sca) load $(mms$target_name)
if use_sca .eq. 1 then $(delete) $(mms$target_name).ana;

!=============

Key to Example 9–3

1 This section modifies the C rule; this rule already exists because C is an
MMS-supported language. This gives the team the option of using SCA
based on a specific compilation. For example, for older versions, they
might not want to generate analysis data to be loaded into the SCA library.

9–8 Building the Application with MMS

Building the Application with MMS
9.3 MMS Rules

Alternatively, if the build is assembling a new version, they will want the
SCA library updated.

Building the Application with MMS 9–9

Building the Application with MMS
9.3 MMS Rules

Note

MMS provides built-in rules for using SCA and has a /SCA_LIBRARY
switch to indicate that automatic SCA handling is invoked. The
examples shown here, however, are included to show how MMS rules
can be manipulated by hand.

9.4 MMS Targets
This section shows and describes the Targets section of the MMS description
file shown in this chapter. Example 9–4 is followed by a detailed explanation
of each part of the example.

Example 9–4 Targets Section of the Description File

!===============
! TARGETS
!===============

.first ! Set a flag to determine how objects are to be compiled1
use_sca = 0
if "$(mmstargets)" .eqs. "work_build" .or. "$(mmstargets)" .eqs. "" -

then use_sca = 1
pca_link = ""
if "$(pca)" .nes. "false" then pca_link = "/debug"

! The normal development build (default if no other target specified)

work_build : translit.exe, - ! Build the translit executable image2
test_set ! Run the regression tests

! Work build completed at this point.

! To build a particular version -- use same as work build, but different target
! will allow .FIRST directive to cause C not to generate .ANA files.

version_build : work_build
! Version build completed at this point

!The translit executable

(continued on next page)

9–10 Building the Application with MMS

Building the Application with MMS
9.4 MMS Targets

Example 9–4 (Cont.) Targets Section of the Description File

translit.exe : $(translit_modules) ! put modules into an olb3
$(link) $(linkflags) $(translit_modules) ’pca_link’
if "$(debug)" .eqs. "debug" then $(link) $(linkflags)/debug/exe= -
$(mms$target_name).debug $(translit_modules)

! The test set

test_set : ! Always run a test set
$(dtm) set library $(dtmlibrary)
$(dtm) create collection $(dtmcollection) $(dtmtests) -

$(dtmflags) $(dtmcomment)
! test set created at this point

! Source code dependencies to create the needed .OBJ file which
! is source for the target TRANSLIT.EXE.

translit.obj : translit.c, openfiles.h, types.h4
buildtable.obj : types.h
copyfile.obj : types.h
expandstring.obj : types.h
openfile.obj : types.h

Key to Example 9–4

1 This section, in combination with the modified C rule from Example 9–3,
sets up the targets to update the SCA library. Two options exist:

• The SCA library is updated. This is done in either of two ways:

$ MMS/CMS

$ MMS/CMS WORK_BUILD

In both of these cases, the USE_SCA flag is set to 1. Based on this
value, the C rule causes the SCA library to be updated. This is likely
to be the most common invocation of the description file, and so is the
default command.

• The SCA library is not updated; designate VERSION_BUILD when
invoking MMS. This might be done when building an older generation,
as explained in Example 9–2.

Building the Application with MMS 9–11

Building the Application with MMS
9.4 MMS Targets

2 These target instructions set up the MMS dependencies. Different types of
executable images can be built depending on how the team invokes MMS:

• By default, two executable images that represent the current, up-to-
date application of the software system; one is a debugger version
(compiled and linked with the /DEBUG switch) and the other is a non-
debugger version that the HP DIGITAL Test Manager uses for its test
collection.

• By choice, an image that represents previous versions of the software
application as designated in a CMS class specified during the MMS
command.

See the explanatory text of Example 9–2 for specific MMS invocations.

3 In building the project executable image, the commands create an object
library based on the previously defined macro (TRANSLIT_MODULES).

4 It is good practice to include the final source dependencies as part of
the description file, although MMS will complete the build without this
information. For additional information about MMS and HP DIGITAL Test
Manager, see the Guide to HP Module Management System for OpenVMS
Systems and the Guide to HP DIGITAL Test Manager for OpenVMS
Systems.

9–12 Building the Application with MMS

Building the Application with MMS
9.5 MMS Description File Command Options

9.5 MMS Description File Command Options
The following table summarizes the different commands and their effects for
this MMS description file.

Command Effect

MMS/CMS Builds the current TRANSLIT.EXE with Test
Collection, no PCA coverage, and updates the
SCA library.

MMS/CMS WORK_BUILD Builds the current TRANSLIT.EXE with Test
Collection, no PCA coverage, and updates the
SCA library.

MMS/CMS/MACRO=PCA=TRUE Builds the current TRANSLIT.EXE with
Test Collection, PCA coverage on tests, and
updates the SCA library.

MMS/CMS/MACRO=(MMS$CMS_GEN="V1.0")
VERSION_BUILD

Builds the previous class with corresponding
Test Collection, no PCA coverage, and no
update to the SCA library.

MMS/CMS/MACRO=(MMS$CMS_GEN="V1.0")
/MACRO=PCA=TRUE VERSION_BUILD

Builds the previous class with corresponding
Test Collection, PCA coverage, and no update
to the SCA library.

MMS/CMS/MACRO=(MMS$CMS_GEN="V1.0") Builds the previous class with corresponding
Test Collection, with no PCA coverage, and
updates the SCA library.

MMS/CMS/MACRO=(MMS$CMS_GEN="V1.0")
WORK_BUILD

Builds the previous class with corresponding
Test Collection, with no PCA coverage, and
updates the SCA library.

Building the Application with MMS 9–13

10
Setting Up a Test System with HP DIGITAL

Test Manager

This chapter describes how the Transliteration team sets up its test system.
The chapter describes how to set up noninteractive, interactive, and
DECwindows tests.

Noninteractive tests, described in Section 10.1, are appropriate for testing
software that does not have a terminal-oriented or menu interface. The
TRANSLIT software described up to now fits this category, because the
application accepts an input text file and gives you an output file with
substituted characters.

To demonstrate the interactive testing capabilities of HP DIGITAL Test
Manager, a variant of TRANSLIT is demonstrated that uses forms created by
the VAX Forms Management System (FMS) for its menu-driven interface. The
test system for this variant application is described in Section 10.2.

A section on DECwindows application testing appears at the end of this
chapter.

10.1 Setting Up a Noninteractive Test
The first step in setting up the test system is to create the storage areas listed
in the following table. They were described previously, but are repeated here.

Directories Function

TRN_DISK:[TRN.DTMLIB] HP DIGITAL Test Manager library for test
results

TRN_DISK:[TRN.DTM_CMSLIB] CMS library for HP DIGITAL Test Manager
test files

TRN_DISK:[TRN.DTM_DATA]
TRN_DISK:[TRN.DTM_DATA_CMS]

Two subdirectories for test data

Setting Up a Test System with HP DIGITAL Test Manager 10–1

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

The following list gives the additional steps needed to set up a noninteractive
test:

1. Set up the collection prologue and epilogue files.

2. Set up the test prologue and epilogue files.

3. Establish the default test template and benchmark file directory.

4. Create the test template file.

5. Create the test description.

6. Set up HP DIGITAL Test Manager variables.

7. Insert the test template file into the CMS library.

The following sections describe each of these steps in detail.

10.1.1 Creating the Collection Prologue File
The collection prologue file is associated with one or more collections and
runs just before the test prologue file for the first test in the collection.
The collection prologue file is used as a setup file to establish any special
environment the collection requires. The collection prologue file that the
Transliteration project team creates does two things:

1. Examines the HP DIGITAL Test Manager variable use_pca (defined and
described later in this section) to determine whether to continue processing
the collection prologue file.

2. Defines the Collector initialization file according to the HP DIGITAL Test
Manager variable use_pca_init_file (also defined and described later in this
section).

Running the PCA Collector during a collection is especially useful for
determining which code paths are being exercised by the tests. Chapter 11
shows an example of analyzing coverage data after tests have been executed.

10–2 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

The collection prologue file is shown in Example 10–1.

Example 10–1 Sample Collection Prologue File

$! Collection prologue file for running the Collector in batch mode
$!
$ set verify
$!
$ translit:==$’f$logical("translit")’
$!
$! HP DIGITAL Test Manager variable to determine whether or not
$! to run PCA prologue
$!
$ if use_pca .eqs. "false" then exit
$!
$! Define the Collector initialization file
$!
$ define pcac$init use_pca_init_file
$!
$! End of collection prologue file

Next, you need to establish this collection prologue file as the default prologue
file for subsequently created test collections. As shown in Figure 10–1, click on
Prologue and enter the file specifications.

Figure 10–1 Modify Library Dialog Box

Setting Up a Test System with HP DIGITAL Test Manager 10–3

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

The Prologue field requires full file specifications for the prologue file. In
this example, the prologue file exists in the HP DIGITAL Test Manager CMS
library, DTM_CMSLIB.

10.1.2 Creating the Collection Epilogue File
Like the collection prologue file, the collection epilogue file is associated with
one or more collections and runs just after the test epilogue for the last test
in the collection run. A collection epilogue file is used to perform cleanup
procedures. For example, the epilogue file can clean up the directory in which
certain test files are created or modified for testing purposes. You can also use
an epilogue file to send MAIL notification to anyone on the project team when
the tests are completed—giving test results, for example.

The collection epilogue file, which the Transliteration project team creates,
sends the results of the collection TRANSLIT_COLLECTION to the project
leader Jones.

This collection epilogue file, shown in Example 10–2, also makes use of the
HP DIGITAL Test Manager-provided symbol DTM$COLLECTION_NAME.

Example 10–2 Sample Collection Epilogue File

$! Collection epilogue file for mailing test results to JONES,
$! upon completion of the test run.
$!
$ dtm show collection ’dtm$collection_name’/FULL-
$ /output=’dtm$collection_name’.report
$!
$ mail ’dtm$collection_name’.report/subject="Collection summary" JONES
$!
$! End of collection epilogue file

Next, you need to establish this epilogue file as the default epilogue file for
subsequently created test collections. Figure 10–1 shows the HP DIGITAL
Test Manager Modify Library dialog box in which you associate the collection
epilogue file with the HP DIGITAL Test Manager library, DTM_CMSLIB,
where the test collection for TRANSLIT exists.

The Epilogue field also requires full file specifications for the epilogue file.

10–4 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

10.1.3 Establishing the Default Template and Benchmark File Directory
When you set the default directories for the template and benchmark files, HP
DIGITAL Test Manager automatically looks for those files in those directories
during the test. (HP DIGITAL Test Manager looks for files with the same name
as the test, with a .COM extension for template files, and .BMK for benchmark
files.) You can override the default template and benchmark directories on each
test description by including a directory specification as part of the template or
benchmark names. The HP DIGITAL Test Manager assigns the default values
test-name.COM and test-name.BMK to those fields. It is good practice, though,
to use the following guidelines:

• Let the HP DIGITAL Test Manager assign default names to template and
benchmark files to make tracking the components of each test easier.

• Avoid overriding the template and benchmark directories when creating
test descriptions. This makes tests more portable. In addition, if you later
want to change the directory specifications for the template or benchmark
files, you do not need to modify each test description; you can modify the
information in the HP DIGITAL Test Manager Modify Library dialog box
instead, shown in Figure 10–1.

10.1.4 Setting Up the Test Prologue and Epilogue Files
You can create test prologue and epilogue files to set up and clean up special
conditions and tasks for a specific test. You can also use a test epilogue file to
perform filtering procedures, for example, removing run-specific data such as
time stamps and the amount of memory used.

Test Prologue File
In the example used in this section, the prologue file for the test TRANSLIT_
TEST establishes a default directory specification for the test.

Example 10–3 shows the contents of TRANSLIT_PROLOGUE.COM.

Example 10–3 Test Prologue File for translit_test

$! Test prologue file for translit_test
$! This prologue file sets the default directory specification
$! for translit_test to trn_disk:[jones.translit_test].
$!
$ set default trn_disk:[jones.translit_test]
$!
$! End of test prologue file.

Setting Up a Test System with HP DIGITAL Test Manager 10–5

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

Test Epilogue File
In the example used in this section, the epilogue file for the test TRANSLIT_
TEST deletes the output files created by TRANSLIT_TEST.

Example 10–4 shows the contents of the file TRANSLIT_EPILOGUE.COM:

Example 10–4 Test Epilogue File for translit_test

$! Test epilogue file for translit_test.
$! This epilogue file deletes the output files generated by translit_test
$!
$ delete out1.txt;
$ delete out2.txt;
$ delete out3.txt;
$ delete out4.txt;
$ delete out5.txt;
$ delete out6.txt;
$!
$! End of test epilogue file.

10.1.5 Creating the Template File for the Test
The Transliteration project team creates the template file, TRANSLIT_
TEST.COM, shown in Example 10–5.

10–6 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

Example 10–5 translit Test Template File

$ create test.txt
abc345ghijk
ABCDEFGH789
aBc gHiJk
abc ghijk
ABCDEFGHIJK
aBcDeFgHiJk
abcdefghijk
ABCDEFGHIJK
aBcDeFgHiJk
abcdefghijk
ABCDEFGHIJK
aBcDeFgHiJk
abcdefghijk
ABCDEFGHIJK
1Bc4eF7HiJk
$!
$! Changes the case of all letters.
$ translit/output=out1.txt test.txt "A-Za-z" "a-zA-Z"
$ type out1.txt
$!
$! Changes all sequences of nonletters to single new-lines. The output
$! contains each word (sequence of letters) on a separate line.
$ translit/output=out2.txt test.txt "-A-Za-z" "@n"
$ type out2.txt
$!
$! Replaces all escape characters by dollar signs.
$ translit/output=out3.txt test.txt "^[" "$"
$ type out3.txt
$!
$! Changes each sequence of spaces to a single space. (The @d makes the
$! original string longer than the replacement string, forcing translit
$! to do compression instead of simple replacement.)
$ translit/output=out4.txt test.txt " @d" " "
$ type out4.txt
$!
$! Deletes all backspaces.
$ translit/output=out5.txt test.txt "@B"
$ type out5.txt
$!
$! Changes all letters to lowercase, and deletes all digits.
$ translit/out=out6.txt test.txt "A-Z0-9" "a-z@d"
$ type out6.txt

Setting Up a Test System with HP DIGITAL Test Manager 10–7

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

10.1.6 Creating the Test Description
By using the HP DIGITAL Test Manager Create DECwindows Test dialog
box, you can create a test description for TRANSLIT_TEST, as shown in
Figure 10–2.

Figure 10–2 Create DECwindows Test Dialog Box

This dialog box also shows how to associate the test prologue and epilogue files
TRANSLIT_PROLOGUE and TRANSLIT_EPILOGUE to TRANSLIT_TEST.

By default, the HP DIGITAL Test Manager associates the template file
TRANSLIT_TEST.COM and the benchmark file TRANSLIT_TEST.BMK with
the test description.

10–8 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

10.1.7 Setting Up the HP DIGITAL Test Manager Variables
A HP DIGITAL Test Manager variable is a user-defined symbol or logical name
that HP DIGITAL Test Manager stores and uses during the tests. Variables
can be referred to in template, prologue, and epilogue files, and can provide a
convenient way to tailor those files to be used with multiple tests.

The Transliteration team creates the following HP DIGITAL Test Manager
variables:

Variables Function

translit Represents the executable image to be used by the test set

use_pca Gives PCA coverage, if invoked as true

use_pca_init_file Provides the file specifications for the default PCA Collector
initialization file

You use the HP DIGITAL Test Manager Create Variable dialog box to create
these
HP DIGITAL Test Manager variables, as shown in Figure 10–3.

Figure 10–3 Create Variable Dialog Box

This dialog box enables you to specify the variable name, its value, and an
associated remark.

Setting Up a Test System with HP DIGITAL Test Manager 10–9

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

10.1.8 Inserting the Template File into the CMS Library
The final step in setting up the test system is to insert the template file into
the CMS library, as follows:

1. Invoke the CMS interface, setting the default CMS library to
TRN_DISK:[TRN.DTM_CMSLIB].

2. From the File menu, click on New Element... and type TRANSLIT_TEST
into the Element field.

10.1.9 Creating the Collection
The following example creates the collection TRANSLIT_COLLECTION, and
also does the following:

• Inserts the test TRANSLIT_TEST

• Assigns the collection prologue file COLLECTION_PROLOGUE, described
previously

• Assigns the collection epilogue file COLLECTION_EPILOGUE, also
described previously

You can perform this step in the HP DIGITAL Test Manager Create Collection
dialog box, as shown in Figure 10–4.

10–10 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.1 Setting Up a Noninteractive Test

Figure 10–4 Create Collection Dialog Box

Setting Up a Test System with HP DIGITAL Test Manager 10–11

Setting Up a Test System with HP DIGITAL Test Manager
10.2 Setting Up an Interactive Terminal Test

10.2 Setting Up an Interactive Terminal Test
To create an interactive, or terminal, test of the translit variant that uses a
menu-driven interface, the Transliteration project team uses the same library
file, prologue files, and epilogue files described previously. To record the test
using the HP DIGITAL Test Manager DECwindows interface, do the following:

1. Pull down the Maintenance menu.

2. Choose the Create menu item. The system displays a submenu.

3. Choose the Test Terminal... menu item. The system displays the Create
Test dialog box.

4. Enter FTRANSLIT1 in the Test text entry field.

5. Click on OK.

6. Pull down the Testing menu.

7. Choose the Record Terminal... menu item. The system displays the
Terminal Record dialog box.

8. Enter FTRANSLIT1 in the Test text entry field.

9. Click on OK.

The HP DIGITAL Test Manager displays a message that it is creating a task
window. In this task window, the Transliteration engineer, John, begins the
recording session.

10.2.1 Invoking the Forms translit Application
In the task window that HP DIGITAL Test Manager creates, John enters a
command to invoke the Forms TRANSLIT application. As the applications
runs, it displays the forms shown in this section.

The following screens show the Forms TRANSLIT application in its test
session.

10–12 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.2 Setting Up an Interactive Terminal Test

John presses the Help key (PF2) twice to get to the Help form for the Main
Menu, shown in the next screen.

John selects Option 1, Translate an input file, shown in the next screen.

Setting Up a Test System with HP DIGITAL Test Manager 10–13

Setting Up a Test System with HP DIGITAL Test Manager
10.2 Setting Up an Interactive Terminal Test

John returns to the Main Menu and selects Option 3, View an output file,
shown in the next screen.

John returns to the Main Menu and selects Option 4, Exit.

10–14 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.2 Setting Up an Interactive Terminal Test

10.2.2 Terminating the Recording Session
John terminates the recording session by pressing Ctrl/P twice. This saves the
output as a benchmark for future comparisons.

$
^P

%DTM-I-BMK_SAVED, benchmark has been saved in file
TRN_DISK:[TRN.DTMLIB]FTRANSLIT1.BMK;1
%DTM-S-RECORDED, test FTRANSLIT1 has been successfully recorded

in file TRN_DISK:[TRN]FTRANSLIT1.SESSION
%DTM-S-CREATED, test description FTRANSLIT1 created

At this point, FTRANSLIT1 is like any other test description, whether created
interactively or not. You can place it in a collection and execute it interactively
or in batch mode. The sample build in Chapter 9 executes test collections
in batch mode. Batch execution is preferred if you do not want to tie up a
terminal or terminal emulator window on a workstation.

10.2.3 Running the Session File
You can run the SESSION file for an interactive test with the PLAY command.
A collection is not created and the results of the run are not saved. The PLAY
command enables you to view your SESSION file while it runs in order to
verify that it runs correctly.

If the terminal characteristics or terminal type for the display terminal differ
from those for the recording terminal, the SESSION file might not appear as
you expect.

The following command runs the SESSION file FTRANSLIT_TEST.SESSION
created in the previous step:

$ DTM PLAY FTRANSLIT

You can use the /RESULT_FILE switch with the PLAY command if you want
to have the output of the PLAY command saved in a file.

10.2.4 Reviewing Test Results
The HP DIGITAL Test Manager Display function enables you to review the
results generated by executing tests. HP DIGITAL Test Manager creates
result and difference files when the TRANSLIT test collection is executed. The
Display function enables you to examine these files as well as benchmark files
for your tests.

Setting Up a Test System with HP DIGITAL Test Manager 10–15

Setting Up a Test System with HP DIGITAL Test Manager
10.2 Setting Up an Interactive Terminal Test

To use the Display function to display the differences file created by an
unsuccessful test of a terminal recording session, do the following:

1. Expand the collection by double clicking on it. Expand the test by double
clicking on it. When you expand the test, the benchmark file, results file,
and differences file are listed.

2. In the HP DIGITAL Test Manager window, double click on the differences
file created by the collection execution. (This automatically opens the
collection and test for review.)

After you double click on the differences file, the HP DIGITAL Test Manager
displays the differences found between the results of the test and the
benchmark file, along with a control panel for toggling between the screens
in the differences file. Figure 10–5 shows reviewing differences created by a
terminal test in the DECwindows environment.

10–16 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.2 Setting Up an Interactive Terminal Test

Figure 10–5 Displaying Differences

10.3 Verifying Your Test System
To check your HP DIGITAL Test Manager library to ensure that you have
set your template, benchmark, prologue, and epilogue files correctly, you can
double click on the HP DIGITAL Test Manager library specifications in the
main window.

Setting Up a Test System with HP DIGITAL Test Manager 10–17

Setting Up a Test System with HP DIGITAL Test Manager
10.3 Verifying Your Test System

This displays the current directory specifications for CMS libraries containing
these files, as well as the number of collections, test descriptions, groups, and
variables in the library.

Figure 10–6 shows the library information HP DIGITAL Test Manager provides
when you expand a library specification by double clicking on it.

Figure 10–6 Expanding a Library Specification

 DIGITAL Test Manager: Collection View

10.4 Changing Input for a Test
HP DIGITAL Test Manager provides the Extract function to allow you to
change the input that your nonDECwindows tests are using, simplifying the
process of modifying your tests if the test results indicate you need to test for
additional or different input. The Extract function extracts an input file from a
session file without altering the session file. You can then edit this INPUT file,
or create a new one, and reinsert the INPUT file with either the MODIFY or
RECORD TEST_DESCRIPTION functions.

10–18 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.5 Recording a DECwindows Test

10.5 Recording a DECwindows Test
A DECwindows test is an interactive test that uses the DECwindows interface.
Tests performed in the DECwindows environment are recorded using the
HP DIGITAL Test Manager Record function in the Testing menu. DECwindows
tests accept input from the keyboard, pointer device, or both. HP DIGITAL
Test Manager uses the recorded session file to supply the input data when you
subsequently test an application, the same as with interactive terminal tests.

10.5.1 Processing Considerations for DECwindows Tests
The following sections describe processing considerations and restrictions on
the types of DECwindows applications you can test when using HP DIGITAL
Test Manager.

10.5.1.1 Playing DECwindows Tests
Tests played in a DECwindows environment play at a different rate than those
played in an interactive terminal environment.

During interactive terminal test playback, session files are generally played at
a rate faster than the rate at which they were recorded. This is because
HP DIGITAL Test Manager detects when an application is ready for more
input, and sends session file input to the application as fast as it will accept it.

However, during DECwindows testing, HP DIGITAL Test Manager does not
detect when an application is ready for more input. Thus, DECwindows
sessions are played in real time. When a session file is played, keyboard
and mouse movements are played back at the same speed at which they
were recorded. For example, if you press a key at 10-second intervals while
recording a test, the keypress events are repeated at 10-second intervals when
you play the session file.

DECwindows sessions are played in real time whether the session is played
as part of a test execution (using the RUN or SUBMIT commands) or played
separately (using the PLAY command).

Note

Because a DECwindows test is played in real time, it might be affected
by other processes that might degrade system performance.

Setting Up a Test System with HP DIGITAL Test Manager 10–19

Setting Up a Test System with HP DIGITAL Test Manager
10.5 Recording a DECwindows Test

You must ensure that no unanticipated loads are placed on the system while a
DECwindows session file is playing, or you might not get the desired results.
For example, to test the program Calendar, do the following:

1. Select the Calendar entry from the Session Manager Applications menu.

2. When the Calendar is displayed on the screen (after approximately 10
seconds) use its features as desired as part of the test recording.

3. Complete the test recording, initialize your environment for the test, and
start playing the session file.

Suppose you have another active process that is compiling at the same time
as the test play. When you play the session file, the Calendar might take
15 seconds to be displayed instead of the 10 seconds it took to be displayed
when the test was originally recorded. Because the DECwindows session file is
playing in real time, the keyboard and mouse input that occur in the Calendar
program during the test recording session is sent to the workstation before the
Calendar is displayed on the screen and is able to accept input. The input is
then lost and the session file fails to play as expected.

You can work around real-time restrictions by applying these solutions:

• Use a dedicated system for DECwindows testing. Do not run other
programs that use CPU cycles during the DECwindows test.

• Use the autosynchronization option on the test playback to automatically
enter synchronization information into the session file. Or, when recording
the test, change the timing factors in the keyboard and mouse movements
so the test will play at a slower rate in critical sections. See the HP
DIGITAL Test Manager release notes and documentation for more
information on working with DECwindows test session files.

10.5.1.2 Storing DECwindows Benchmark and Result Files
Screen image data stored in DECwindows benchmark and result files requires
significant disk storage space. HP DIGITAL Test Manager compresses the
image data to save storage space. However, HP DIGITAL Test Manager cannot
successfully compress screen images where a patterned background is used
(for example, the DECwindows default background). You must customize your
screen background to display a solid color before invoking HP DIGITAL Test
Manager in the DECwindows environment.

10–20 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.5 Recording a DECwindows Test

10.5.1.3 Environment Initialization
You must ensure that the DECwindows environment is in the same state for
a play as it was when the session file was recorded. Factors that might affect
the environment include applications with windows displayed and window
positions.

10.5.2 Recording a DECwindows Session
This section shows a sample DECwindows recording session that uses the
DECwindows TRANSLIT application.

To create and record the test TRANSLIT_TEST in the HP DIGITAL Test
Manager DECwindows environment, do the following:

1. Pull down the Maintenance menu.

2. Choose the Create Test DECwindows... menu item. The system displays
the Create DECwindows Test dialog box.

3. Enter TRANSLIT_TEST in the Test text entry field.

4. Enter RUN TRN_DISK:[TRN.BLD_V1.WORK]TRANSLIT in the Command
text entry field.

5. Click on OK.

6. Pull down the Testing menu.

7. Choose the Record DECwindows... menu item. The system displays the
DECwindows Record dialog box.

8. Enter TRANSLIT_TEST in the Test text entry field.

9. Click on OK.

10. Iconize all the HP DIGITAL Test Manager windows.

11. A status window is displayed. To begin recording the test, choose the File
menu and click on Start.

12. Select the screens you want to mark for comparison by pressing the F9
key and the M key simultaneously, as you would a control character (for
example, Ctrl/Y).

13. When you are done marking the screens, press the F9 key and the C key
simultaneously to end the recording session.

Setting Up a Test System with HP DIGITAL Test Manager 10–21

Setting Up a Test System with HP DIGITAL Test Manager
10.5 Recording a DECwindows Test

Figure 10–7 shows the DECwindows TRANSLIT application window and the
String Specification Box dialog box.

Figure 10–7 Sample DECwindows Recording Session

In Figure 10–7, the F9 key and the M key were pressed, marking the screen
for comparison in subsequent test runs. Because the attributes on the String
Specification Box dialog box are the only things to be tested in this test, only
this screen needed to be marked.

The window manager title bars do not appear in Figure 10–7. This is because
the window manager was not specified in the Record dialog box.

10.6 Displaying DECwindows Test Results
When you review a DECwindows test, HP DIGITAL Test Manager provides
you with screen images created from the benchmark files, result files, and
their differences (if any). If these files have been deleted, an error message is
displayed and you are not able to review the images.

10–22 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.6 Displaying DECwindows Test Results

To review test results in a collection, do the following:

1. Select the collection you want to review from the view window and open it.

2. Expand the collection view to the benchmark, result, or differences file that
you want to review.

3. Double click on the differences file that you want to review. This opens the
collection and starts the review display.

The HP DIGITAL Test Manager displays the Screen Editor showing the
selected file, in this case the differences file, shown in Figure 10–8. The screen
editor consists of three panels:

• The top panel shows an image of the DECwindows test differences of each
captured screen.

• The middle panel displays the HP DIGITAL Test Manager messages.

• The bottom panel enables you to toggle among the benchmark screen
image, the result screen image, or both screen images, one superimposed
on the other.

When viewing both images, you can use the OR and XOR buttons in the
bottom panel to display, respectively, a logical inclusive or exclusive OR of the
benchmark and result images. Figure 10–8 shows an inclusive OR.

To move among captured images, use the Current Screen bar, which indicates
which captured screen you are viewing.

Setting Up a Test System with HP DIGITAL Test Manager 10–23

Setting Up a Test System with HP DIGITAL Test Manager
10.6 Displaying DECwindows Test Results

Figure 10–8 Displaying Differences

 DIGITAL Test Manager: Screen Editor

10–24 Setting Up a Test System with HP DIGITAL Test Manager

Setting Up a Test System with HP DIGITAL Test Manager
10.7 Creating a DECwindows Benchmark Mask

10.7 Creating a DECwindows Benchmark Mask
When viewing a DECwindows test, you can create areas called masks on a
benchmark image using the Mask function. Areas that are masked are not
compared when HP DIGITAL Test Manager compares the results of a test
execution against the benchmark image.

You can open other benchmark images by pulling down the File menu and
choosing the Open Benchmark... dialog box.

To create a mask on a benchmark image, do the following:

1. Click on Mask in the bottom panel of the Screen Editor.

2. Move the pointer to the top left corner of the area to mask and press and
hold MB1.

3. Drag the pointer to the lower right corner of the area to mask and release
MB1.

Figure 10–9 shows the benchmark image from Figure 10–7 with masks defined.

Setting Up a Test System with HP DIGITAL Test Manager 10–25

Setting Up a Test System with HP DIGITAL Test Manager
10.7 Creating a DECwindows Benchmark Mask

Figure 10–9 Creating a Benchmark Mask

 DIGITAL Test Manager: Screen Editor

You can delete a mask by double clicking on a defined mask.

You can move a mask by placing the pointer on the mask you want to move,
pressing and holding MB3, and releasing MB3 when you move the mask to the
area you want.

Masked areas do not become part of the benchmark image. HP DIGITAL Test
Manager stores the coordinates of the masked areas in the image file, but you
determine whether to compare the image with or without the mask.

To save a masked image file, pull down the File menu and choose Save Mask.

10–26 Setting Up a Test System with HP DIGITAL Test Manager

11
Using HP DIGITAL Test Manager with PCA

The HP Performance and Coverage Analyzer (PCA) is a software development
tool that gathers performance and coverage data for a program and processes
and formats that data. Using HP DIGITAL Test Manager with PCA enables
you to evaluate how well the test system covers the program code and how well
the program performs.

Gathering coverage data on the test system helps ensure that all intended code
paths are accessed. During the development cycle, checking the test system
coverage helps you find untested code in the program. During the maintenance
cycle, checking the coverage of your test system helps you verify that your
tests exercise all the new code.

Gathering performance data on the program helps you evaluate how well the
program performs under different conditions of user input. You can check the
program’s performance either during individual test executions or averaged
over all the executions in the test system.

To use HP DIGITAL Test Manager with PCA, do the following:

1. Use the OpenVMS Linker Utility (Linker) to link the program to be tested
with the PCA Collector.

2. Create a Collector initialization file containing the data collection
commands.

3. Create a HP DIGITAL Test Manager collection prologue file pointing to the
Collector initialization file.

4. Create a HP DIGITAL Test Manager collection of tests. Use the
/PROLOGUE switch to specify the collection prologue file created in Step 3.

5. Execute the HP DIGITAL Test Manager collection. HP DIGITAL Test
Manager invokes the Collector in batch modeand the Collector then gathers
data from the program as HP DIGITAL Test Manager executes the tests.

6. Review the test results and invoke the PCA Analyzer.

The following sections describe each of these steps in detail.

Using HP DIGITAL Test Manager with PCA 11–1

Using HP DIGITAL Test Manager with PCA
11.1 Linking a Program with the Collector

11.1 Linking a Program with the Collector
Whenever you want to gather data on a program using the Collector, you
must compile, link, and run the program as described in the Guide to HP
Performance and Coverage Analyzer for OpenVMS Systems. The linking
procedure does not change when you use the Collector with HP DIGITAL Test
Manager; the difference is that instead of immediately running the Collector
yourself, HP DIGITAL Test Manager invokes the Collector in batch mode and
gathers data while running software tests over the program.

11.2 Creating a Collector Initialization File
When you want HP DIGITAL Test Manager to invoke the Collector in batch
mode, you must provide a Collector initialization file. PCA must know the
location of this file.

The Collector initialization file must contain all the commands you want to be
issued to the Collector. It might contain only one command: the GO command.
In this case, only program counter (PC) samples are gathered.

If you want other data gathered, specify the kinds of data you want gathered
by including the appropriate Collector SET commands. Note that the last
command entered into the Collector initialization file must be the GO
command. This command signals the beginning of the data-gathering process.

In the Collector initialization file, do not include Collector commands that
override the logical names that HP DIGITAL Test Manager specifies for the
names of the collection run and Collector data file. If you use either the
SET RUN_NAME command to designate a collection run name or the SET
DATAFILE command to designate a Collector data file name, the new values
override the values HP DIGITAL Test Manager assigns.

You might want to override these values if, for example, you want to use
a Collector data file with a name other than the name assigned by default.
However, if you do override one of these values, you cannot invoke the Analyzer
from the HP DIGITAL Test Manager Review subsystem. You must invoke the
Analyzer directly using the PCA command at DCL level.

PCA typically uses the term collection to mean that the Collector is collecting
or gathering data, and the term collection run to mean a single program
execution when the Collector gathers data. HP DIGITAL Test Manager uses
the term collection to refer to an assembly of tests to be executed.

11–2 Using HP DIGITAL Test Manager with PCA

Using HP DIGITAL Test Manager with PCA
11.3 Creating a Collection Prologue File

11.3 Creating a Collection Prologue File
The HP DIGITAL Test Manager collection prologue file is a user-written DCL
command procedure that HP DIGITAL Test Manager runs before running a
collection of software tests. Generally, the collection prologue file is used to set
up or alter the environment in which all the test files run.

Because HP DIGITAL Test Manager invokes the Collector in batch mode,
you must include a line in the collection prologue file informing PCA of the
name and location of the Collector initialization file. Specify the Collector
initialization file by defining the PCA logical name PCAC$INIT as equivalent
to the Collector initialization file specification in the collection prologue file.
Example 11–1 shows a collection prologue file in its simplest form.

Example 11–1 Sample Collection Prologue File

$! ** Collection prologue file for running the Collector in batch mode **
$! Define the Collector initialization file.
$!
$ define pcac$init trn_disk:[jones.dtmlib]myinitfile.pcac
$!
$! End of collection prologue file

If you typically use a DCL logical name for the executable image of the
program you want to test, you can redefine that logical name in the collection
prologue file to point to the image that has been linked with the Collector’s
shareable image.

For example, if you specify TRANSLIT$EXE to be equivalent to the executable
image of a program, you can redefine TRANSLIT$EXE to be the Collector-
linked version of the executable image in the collection prologue file.
Example 11–2 shows a collection prologue file making this assignment, as
well as specifying the Collector initialization file.

Using HP DIGITAL Test Manager with PCA 11–3

Using HP DIGITAL Test Manager with PCA
11.3 Creating a Collection Prologue File

Example 11–2 Sample Collection Prologue File

$! Collection prologue file for running the Collector in batch mode
$!
$! Define the Collector initialization file.
$!
$ define pcac$init trn_disk:[jones.dtmlib]myinitfile.pcac
$!
$! Define the Collector-linked exe.
$!
$ define translit$exe trn_disk:[jones.dtmlib]pca_translit.exe
$!
$! End of collection prologue file

By using this collection prologue file to specify all the information that PCA
needs, you place this tool on a single switch. Consequently, when you create a
collection using the CREATE COLLECTION command with the /PROLOGUE
switch to include the collection prologue file described previously, HP DIGITAL
Test Manager invokes PCA. When you do not use the /PROLOGUE switch to
include this collection prologue file, HP DIGITAL Test Manager does not invoke
PCA and the Analyzer is not available from the Review subsystem.

11.4 Creating a HP DIGITAL Test Manager Collection
You must create a collection to run HP DIGITAL Test Manager and one or
more tests.

As described in Section 11.3, you can use the CREATE COLLECTION
command with the /PROLOGUE switch as a switch for whether you want
to collect performance data while tests are running. To use PCA, specify the
prologue file that sets up and invokes the Collector. For example, the following
command specifies that you want to gather data with the Collector:

dtm> CREATE COLLECTION TRANSLIT_COLLECTION TRANSLIT_TEST -
_dtm> /PROLOGUE=TRN_DISK:[TRN.BLD_V1.WORK]PCA_PROLOGUE
_Remark: Invoking the PCA collector with the translit test
DTM>

The following command specifies that you do not want to use the Collector with
the collection MAILCARRIER:

dtm> CREATE COLLECTION MAILCARRIER MAIL*
_REMARK: Running all MAIL* tests without the collector

11–4 Using HP DIGITAL Test Manager with PCA

Using HP DIGITAL Test Manager with PCA
11.5 Executing a HP DIGITAL Test Manager Collection

11.5 Executing a HP DIGITAL Test Manager Collection
After you create a collection with a collection prologue file that sets up the
PCA environment, you are ready to execute the collection. HP DIGITAL
Test Manager always invokes PCA in batch mode, whether you execute the
collection in batch mode with the SUBMIT command, or you execute the
collection interactively with the RUN command. The following DTM SUBMIT
command invokes both HP DIGITAL Test Manager and PCA in batch mode:

dtm> SUBMIT TRANSLIT_COLLECTION/NOTIFY
%DTM-S-SUBMITTED, collection TRANSLIT_COLLECTION submitted
-DTM-I-TEXT, Job TRANSLIT_TEST (queue CLUSTER_BATCH, entry 314) started on ONE_BATCH
DTM>

Job TRANSLIT_TEST (queue ONE_BATCH, entry 314) completed
DTM>

When you create a collection, HP DIGITAL Test Manager builds a test
collection command file, which invokes the test template files and all related
files for all tests you specify. The following sections describe the actions that
occur when you execute a collection using HP DIGITAL Test Manager with
PCA. Figure 11–1 shows the relationship of these actions.

Using HP DIGITAL Test Manager with PCA 11–5

Using HP DIGITAL Test Manager with PCA
11.5 Executing a HP DIGITAL Test Manager Collection

Figure 11–1 Phases in Test Execution when Using HP DIGITAL Test Manager with
PCA

ZK−1541A−GE

Collection Command File Test Run

Defines global Variables

Defines DTM$COLLECTION_NAME

Defines PCA$DATAFILE

Runs collection prologue

Runs Test 2

Runs Test N

Performs a comparison for each test

Runs collection epilogue

Defines DTM$TEST_NAME

Defines PCA$RUN_NAME

Runs test prologue

Runs test template

Defines DTM$RESULT

Runs test epilogue

Undefines local variables

Defines local variables (Overrides global
variables if they are redefined by the test)

Runs Test 1

After all tests are run, the collection command file compares the result file
created for each test with the benchmark file for that test. The collection
command file then runs the collection epilogue file.

HP DIGITAL Test Manager provides variables that are symbols or logical
names that you create to tailor the HP DIGITAL Test Manager environment.
When you create a variable, you provide HP DIGITAL Test Manager with
a DCL symbol or logical name that you want defined when running a test.
See the Guide to HP DIGITAL Test Manager for OpenVMS Systems for more
information about HP DIGITAL Test Manager variables.

Variables are the main run-time communication mechanism between
HP DIGITAL Test Manager and PCA. Using the logical name PCA$DATAFILE,
HP DIGITAL Test Manager passes the name of the data file containing data
the Collector gathers to PCA. Using the logical name PCA$RUN_NAME, HP
DIGITAL Test Manager passes the name of the current test for the current
Collector run to PCA.

11–6 Using HP DIGITAL Test Manager with PCA

Using HP DIGITAL Test Manager with PCA
11.6 Using the Analyzer when Reviewing a Collection

11.6 Using the Analyzer when Reviewing a Collection
After HP DIGITAL Test Manager finishes running the collection, you can
review the test results and examine the performance and coverage data. If
you specify a data file name in the Collector initialization file, invoke the
Analyzer at the DCL level and enter the data file name you specified. This
process is described in the Guide to HP Performance and Coverage Analyzer for
OpenVMS Systems.

However, if you let HP DIGITAL Test Manager specify the name of the data
file by default, use the HP DIGITAL Test Manager Review subsystem PCA
command to examine the performance and coverage data gathered from the
program during the execution of a test system.

The PCA command shown in the following example invokes the Analyzer
from within the Review subsystem. This command accepts no switches or
parameters. It is described in the Command Descriptions section of the Guide
to HP DIGITAL Test Manager for OpenVMS Systems.

DTM_REVIEW> PCA

HP Performance and Coverage Analyzer Version 4.6

PCAA>

You must be in the HP DIGITAL Test Manager Review subsystem when you
enter the PCA command. You also must be positioned at a HP DIGITAL Test
Manager result description to enter this command. (The positioning commands
are FIRST, LAST, NEXT, BACK, and SELECT.) When you enter the PCA
command, HP DIGITAL Test Manager spawns a subprocess to invoke the
Analyzer. The command line that spawns the Analyzer as a subprocess also
specifies that the Collector data file created during the batch run of the tests
be used as input to the Analyzer.

HP DIGITAL Test Manager sets up the Analyzer filter DTM_FILTER to
include only the data that was gathered when the current test (that is, the
test at which you are now positioned) was run. In this way, the Analyzer can
examine the data the Collector gathers on a test-by-test basis.

If you want to examine the data the Collector gathers as averaged over all
tests in the test system (rather than on a test-by-test basis), you can deactivate
DTM_FILTER by entering the CANCEL FILTER command as follows:

PCAA> CANCEL FILTER DTM_FILTER

Using HP DIGITAL Test Manager with PCA 11–7

Using HP DIGITAL Test Manager with PCA
11.6 Using the Analyzer when Reviewing a Collection

If you want to examine data for a particular test in a HP DIGITAL Test
Manager collection and that test is not the current test, you can use the
Analyzer SET FILTER command to redefine the filter so that it specifies the
name of the test whose results you want to examine next. For example:

PCAA> SET FILTER DTM_FILTER RUN_NAME = TESTNAME

In this example, testname is the result description name of the test whose data
you want to examine next.

If you want HP DIGITAL Test Manager to filter the tests for you so you
can examine data separately for each test in a HP DIGITAL Test Manager
collection, do the following:

1. Exit the Analyzer to return to the DTM_REVIEW> prompt.

2. Locate a different test using the HP DIGITAL Test Manager Review
commands for positioning: FIRST, LAST, NEXT, BACK, and SELECT.

3. Enter the PCA command to use the Analyzer on the data for the newly
selected test.

These three steps are more complex than canceling the filter or changing the
filter definition, but they automate the selection of tests and enable you to
review test data for any number of tests on a test-by-test basis.

11–8 Using HP DIGITAL Test Manager with PCA

Using HP DIGITAL Test Manager with PCA
11.7 Sample Session

11.7 Sample Session
To use HP DIGITAL Test Manager with PCA, you must first link the program
you want tested with the Collector’s shareable image. In the following
example, TRANSLIT.C is the program to be tested:

$ CC/DEBUG TRANSLIT
$ LINK/DEBUG=SYS$LIBRARY:PCA$OBJ.OBJ TRANSLIT.OBJ
$

In this example, TRANSLIT.C is linked with the Collector; therefore, when HP
DIGITAL Test Manager executes TRANSLIT in batch mode, the Collector is
invoked in batch mode and data is gathered when tests are run on TRANSLIT.

Next, create a Collector initialization file that contains the commands you
want passed to the Collector. This file must contain a GO command; it can
optionally contain other Collector commands. The GO command must be the
last command entered.

Example 11–3 enables collection of system service counts and measurement
of test coverage by code path over the entire program. In addition, output
verification has been selected, the collection of program call (PC) values
from the Call Stack has been selected, and the file PCA_DTM.LOG has been
specified as the output of the logging session.

Example 11–3 PCA Collector Initialization File

! Test coverage Collector initialization file
!
set verify !Turn on output verification.
set log pca_dtm.log !Turn on output logging.
set services !Gather system service counts.
set coverage program_address by codepath !Gather coverage by codepath.
set stack_pcs !Gather data from Call Stack.
go !Begin collection.

After you supply all the information the Collector requires to run in batch
mode, create a HP DIGITAL Test Manager collection prologue file that specifies
the Collector initialization file for PCA to use. You can optionally use the
collection prologue file to perform other tasks.

The collection prologue file in Example 11–4 defines the Collector initialization
file to be MYINITFILE.PCAC, then redefines the logical name for the
program’s executable image to be the image that has been linked with the
Collector.

Using HP DIGITAL Test Manager with PCA 11–9

Using HP DIGITAL Test Manager with PCA
11.7 Sample Session

Example 11–4 Example Collection Prologue File

$! Collection prologue file for running the Collector in batch mode
$!
$! Define the Collector initialization file.
$!
$ define pcac$init trn_disk:[jones]myinitfile.pcac
$!
$! Define the Collector-linked exe.
$!
$ define runoff$exe trn_disk:[trn.bld_v1.work]pca_translit.exe
$!
$! End of collection prologue file
$

By redefining the logical name in the collection prologue file, you can use the
/PROLOGUE switch with the CREATE COLLECTION command as a single
switch between a collection run both with and without PCA.

If you implemented these examples, you have completed all the steps necessary
to use these two tools together.

Next, create a collection using HP DIGITAL Test Manager. (Note that in the
following example, the /PROLOGUE switch specifies the collection prologue
file from the previous example.) In this example, the asterisk (*) includes
in the collection TRANSLIT_COLLECTION all the tests in the HP DIGITAL
Test Manager library. The asterisk (*) is the wildcard character for test
descriptions.

After creating the collection, execute it. Then, after the tests have run, enter
the Review subsystem to review the test results and use the Analyzer.

DTM> CREATE COLLECTION TRANSLIT_COLLECTION * -
_DTM> /PROLOGUE=TRN_DISK:[TRN.BLD_V1.WORK]PCA_PROLOGUE
%DTM-S-CREATED, collection TRANSLIT_COLLECTION created
DTM> SUBMIT TRANSLIT_COLLECTION/NOTIFY
%DTM-S-SUBMITTED, collection TRANSLIT_COLLECTION submitted
-DTM-I-TEXT, Job TRANSLIT_COLLECTION (queue CLUSTER_BATCH, entry 314)
started on ONE_BATCH
DTM>

Job TRANSLIT_COLLECTION (queue ONE_BATCH, entry 314) completed
DTM>

11–10 Using HP DIGITAL Test Manager with PCA

Using HP DIGITAL Test Manager with PCA
11.7 Sample Session

Invoke the Review subsystem, select a specific test, and use the PCA command
to invoke the Analyzer. After invoking the Analyzer, you can display the
performance and coverage data gathered during the batch job for the selected
test. In the following example, the test selected is the first test. See the
Guide to HP Performance and Coverage Analyzer for OpenVMS Systems for
instructions on using the Analyzer.

DTM> REVIEW TRANSLIT_COLLECTION
Collection TRANSLIT_COLLECTION with 5 tests was created on 19-JAN-1998
15:08:55 by the command:

CREATE COLLECTION TRANSLIT_COLLECTION *
/PROLOGUE=TRN_DISK:[TRN.BLD_V1.WORK]PCA_PROLOGUE
Last Review Date = not previously reviewed
Success count = 2
Unsuccessful count = 2
New test count = 1
Updated test count = 0
Comparisons aborted =0
Test not run count = 0

DTM_REVIEW> FIRST
Result Description TRANSLIT_TEST Comparison Status : Unsuccessful
DTM_REVIEW> PCA

HP Performance and Coverage Analyzer Version 4.6

PCAA>

11.8 Additional Considerations
The following sections describe additional information for using HP DIGITAL
Test Manager and PCA together.

• Both HP DIGITAL Test Manager and PCA can generate large files and
large numbers of files. Make sure you have sufficient system resources
before using these tools.

• PCA provides a way to improve run time by reducing the size of the data
file created when collecting coverage information on a program. When you
use the /PREVIOUS switch with the Collector SET COVERAGE command,
PCA records only a single record for each breakpoint hit during an entire
run of a HP DIGITAL Test Manager collection. When you then analyze
the collected data, information is displayed more quickly on the screen, but
coverage data is accurate only for the first test in the collection run.

Using HP DIGITAL Test Manager with PCA 11–11

Using HP DIGITAL Test Manager with PCA
11.8 Additional Considerations

If you use the /PREVIOUS switch when collecting coverage data, use the
Analyzer CANCEL FILTER command and examine coverage for the entire
HP DIGITAL Test Manager collection as a unit. The command is as
follows:

PCAA> CANCEL FILTER DTM_FILTER

Note

If you want to examine coverage data for individual tests, do not use
the /PREVIOUS switch on the Collector SET COVERAGE command.

11.9 Examining Test Coverage Information
You can use PCA to collect and analyze the following test coverage information
on your application:

• Where your application is covered by tests

• Where your application is not covered by tests

With this information, you can determine whether all the code paths in your
application are being executed satisfactorily. Figure 11–2 shows a portion of an
annotated source listing created with the Analyzer.

11–12 Using HP DIGITAL Test Manager with PCA

Using HP DIGITAL Test Manager with PCA
11.9 Examining Test Coverage Information

Figure 11–2 PCA Annotated Source Listing

 DIGITAL Performance and Coverage Analysis

By examining this annotated source listing of the TRANSLIT software, you can
determine that a number of code paths are not covered by the tests specified
in the template file TRANSLIT_TEST.COM. Specifically, you can see that
some lines, starting with line number 202, which check for specific character
types, received no coverage. By redesigning the tests to include testing
for all character types, the Transliteration team can rebuild TRANSLIT,
and reexamine the coverage data to see if the tests are exercising all input
character types.

Using HP DIGITAL Test Manager with PCA 11–13

Using HP DIGITAL Test Manager with PCA
11.10 Using the Analyzer to Perform a Call Tree Analysis

11.10 Using the Analyzer to Perform a Call Tree Analysis
Although SCA is useful for giving you a static call tree analysis for all possible
call chains, you can use the PCA Analyzer to perform a dynamic call tree
analysis. The Analyzer can give you a run-time, call tree analysis that allows
you to examine the frequencies of how often each routine in your code is
called. To perform a run-time call tree analysis, use the CALL_TREE node
specifications on a PLOT or TABULATE command. This results in a call tree
plot, which displays the call stack relationship of program units by name.
This enables you to pinpoint the set of subroutine calls.

Figure 11–3 shows a static call tree analysis file produced by SCA on the
TRANSLIT application.

Figure 11–3 Static Call Tree Analysis

 SCA: Call Graph Results

11–14 Using HP DIGITAL Test Manager with PCA

Using HP DIGITAL Test Manager with PCA
11.10 Using the Analyzer to Perform a Call Tree Analysis

Figure 11–4, by contrast, shows a PCA dynamic call tree analysis of the same
application.

Figure 11–4 PCA Dynamic Call Tree

 DIGITAL Performance and Coverage Analyzer

Using HP DIGITAL Test Manager with PCA 11–15

12
Maintaining the Application

All the procedures described in this guide will make project maintenance
easier. The following procedures provide an online database from which
future developers can work. Several tools collect and provide access to this
information:

• CMS, with its ability to provide a history of a project’s evolution

• SCA, with its ability to provide structural information about the
application; that is, interrelations of routines, symbols, and modules

• MMS, with its ability to build a system based on its stored module
dependencies

12.1 CMS Provides History
CMS provides a history of a project that is useful to developers maintaining
the application. For example, CMS commands can generate the following
reports:

• Transactional history of the entire system

• Overall transactional history of an element, or specified for a time period

• Transactional history of certain kinds of operations

For example, a new developer on the Transliteration project can list selected
elements in the CMS code library by obtaining a restricted view of a library’s
elements. To get a restricted view of elements of file type .C in a CMS library,
do the following:

1. Click on the View menu.

2. Choose Element.

3. Click on the View menu again.

4. Click on Restrict...

Maintaining the Application 12–1

Maintaining the Application
12.1 CMS Provides History

Figure 12–1 shows the Restrict Elements dialog box that CMS displays when
you follow these steps.

Figure 12–1 CMS Restrict Elements Dialog Box

A great deal of information is available with the History View function.
However, this function gives so much information that it usually is issued only
on selected parts of the library; for example, for specific elements, transactions,
or times.

A developer might need to modify a particular element. Before starting
work, the developer might find a transaction history of that element useful.
A transaction history of the Replace function shows important element
milestones. Figure 12–2 shows the Restrict History dialog box CMS displays
in which you can specify a view of transactions performed on the element
EXPANDSTRING.C.

12–2 Maintaining the Application

Maintaining the Application
12.1 CMS Provides History

Figure 12–2 CMS Restrict History Dialog Box

By tailoring the CMS commands, individual developers can select the most
useful information. HP DIGITAL Test Manager also provides a similar history
for your test set.

12.2 SCA Provides Structural Information
SCA provides cross-reference and static analysis information across the project.
This eliminates the referencing barriers between modules, which speeds access
to different parts of the system. This means easier maintenance, particularly
if a developer did not work on the project originally. In this situation, SCA can
function as a learning aid by providing a means to move through the sources of
code using specific queries.

A developer new to a project can use SCA to learn the following:

• Definitional use of a data structure

• Declaration or call of a routine

Maintaining the Application 12–3

Maintaining the Application
12.2 SCA Provides Structural Information

• Coding standards

• Programming techniques

For example, by using the Cross Reference function, a developer can locate
calls to the routine EXPAND_STRING.

The static analysis capabilities of SCA, particularly its cross-reference
functions, can also ease maintenance. Figure 12–3 shows an example of
finding calls to the routine EXPAND_STRING.

Figure 12–3 SCA Cross Reference Query

 SCA: Cross Reference Query

 SCA: Cross Reference Results

By using similar functions, developers can learn about an application quickly
and independently.

12–4 Maintaining the Application

Maintaining the Application
12.3 MMS Simplifies Maintenance

12.3 MMS Simplifies Maintenance
Previous examples have shown how MMS automates the process of building
an application (see Chapter 9). With an MMS description file in place for
the complete application, developers assigned to maintenance can rebuild the
application. In addition, by examining the description file, they can learn the
dependency relationships among modules.

Example 12–1 is an extract from Example 9–1, and shows the dependencies
among modules in the Transliteration application. This example contains the
procedures to build the entire application.

Example 12–1 Dependencies in an MMS Description File

!Modules in build
!copyfile.obj
TRANSLIT_MODULES= buildtable.obj, copyfile.obj, -

expandstring.obj, translit.obj

!The translit executable

translit.exe : $(translit_modules) ! put modules into an olb
$(link) $(linkflags) $(translit_modules) ’PCA_LINK’
IF "$(DEBUG)" .EQS. "DEBUG" THEN $(link) $(linkflags)/debug/exe= -

$(MMS$TARGET_NAME).debug $(translit_modules)

! Source code dependencies to create the needed .OBJ file which
! is source for the target TRANSLIT.EXE.

translit.obj : translit.c, openfiles.h, types.h
buildtable.obj : types.h
copyfile.obj : types.h
expandstring.obj : types.h
openfile.obj : types.h

12.4 CMS Used with MMS for Maintenance
Problems can arise when developers attempt to find and correct an error that
occurred in a field test or customer version of an application that is no longer
the current version. This is where the CMS class feature, in combination with
MMS, can be of use in reconstructing a previous version.

Maintaining the Application 12–5

Maintaining the Application
12.4 CMS Used with MMS for Maintenance

Your team can rebuild the version of the software used by the customer site
(if you have not retained the working application as an intact build). After
reproducing the problem, you use SCA to help locate the source modules
involved with the problem. These files then are retrieved from CMS, modified,
and returned to the CMS library. MMS then rebuilds an identical version of
the customer’s application with the exception of the new modules. Next, use
HP DIGITAL Test Manager to regressively test the modified application before
sending the updated version to the customer.

12–6 Maintaining the Application

Glossary

Acceptable noncoverage

(PCA)—Those portions of your application code that you do not need tested
because that code covers internal error paths or difficult-to-test paths.

Access control entry (ACE)

An OpenVMS ACE is one of a list of entries placed in an Access Control List
(ACL) to grant or deny access to files. For more information on ACE protection,
see the OpenVMS DCL Concepts Manual. See also User Identification Code
(UIC).

Access Control List (ACL)

An OpenVMS ACL is a protection scheme that grants or denies access to files
based on a list of users. With ACLs, you can specify access for a set of users
who are not in the same UIC group. For more information on ACL protection,
see the OpenVMS DCL Concepts Manual. See also User Identification Code
(UIC). CMS also has its own ACL mechanism that allows or restricts access to
CMS objects.

Alias

(LSE)—An abbreviation for a long text string or identifier that you want
inserted into your source code.

Analysis data file (.ANA)

(SCA)—The file generated by compilers that contains information on symbols,
modules, and files used in the source code.

Glossary–1

Analyzer

(PCA)—The component of PCA that reads the performance data file produced
by the PCA Collector and processes the data to produce performance or
coverage histograms and tables. See also Collector and Histogram.

Archiving

(CMS)—The process by which you delete an element that you no longer need,
but that you might want to access. An archive file exists outside a CMS
library.

Asynchronous trap (AST)

(PCA)—A routine that PCA sets up to sample the program counter. By default,
the AST routine is activated every 10 milliseconds. Each time the routine is
activated, the PCA Collector retrieves the current program counter value and
sends it to the data file.

Auto substitute

(LSE)—An LSE switch of the DEFINE PLACEHOLDER command that
specifies whether you want the next placeholder with the same name to be
replaced with the same text you typed over the current placeholder.

Benchmark directory

(HP DIGITAL Test Manager)—An OpenVMS directory or CMS library used by
default for benchmark files in the current HP DIGITAL Test Manager library.

Benchmark file

(HP DIGITAL Test Manager)—A file that contains the expected results of a
correctly completed test. The benchmark file is created upon the first correct
completion of a test, or when subsequent correctly completed tests are used to
supersede the previous bench mark file.

Glossary–2

Bucket

(PCA)—A portion of a histogram, partitioned by the PCA Analyzer, that
corresponds to one bar of a histogram. Each bucket is defined by a value
range, and each data point in the data file is tallied in the bucket whose value
range includes the value of that data point.

Call stack analysis

(PCA)—An analysis of the stack program counter.

Call tree

(PCA)—A table or plot that displays the call stack relationship of program
units by name.

(SCA)—A table that shows the hierarchy of subroutine or function calls in a
program.

Class

(CMS)—A set of generations (specific versions of elements) that are combined
to represent progressive stages of development.

Code path

(PCA)—A piece of object code that the executing program enters only at the
beginning (at the first instruction) and exits only at the end.

Code elision

(Program design facility)—Obtaining a collapsed view of a source module
or design report, showing only the overview lines of code. Also known as
holophrasting or outlining.

Collection

(HP DIGITAL Test Manager)—One or more tests selected for execution as a
set. See also Group.

Glossary–3

Collection command file

(HP DIGITAL Test Manager)—A command file created by HP DIGITAL Test
Manager to execute a collection.

Collection epilogue file

(HP DIGITAL Test Manager)—An OpenVMS command procedure that you
create using a text editor, which contains the commands to be executed after
the collection command file is executed (see also Command file). You typically
use the collection epilogue file to delete directories created specifically for the
process, or for various other cleanup operations.

Collection expression

(HP DIGITAL Test Manager)—A command parameter specifying one or more
collections.

Collection name

(HP DIGITAL Test Manager)—A command parameter or name specifying a
particular collection.

Collection prologue file

(HP DIGITAL Test Manager)—An OpenVMS command procedure that you
create using a text editor, which contains the commands to be executed before
the collection command file is executed (see also Command file).

Collection subdirectory

(HP DIGITAL Test Manager)—A subdirectory of the library, created by HP
DIGITAL Test Manager, where collection-specific files are stored.

Collection summary

(HP DIGITAL Test Manager)—A summary of the results of a collection run
that is displayed when you invoke the SHOW/SUMMARY command in the
Review subsystem.

Glossary–4

Collector

(PCA)—The component of PCA that gathers performance or test coverage data
on a running program and writes that data to a performance data file.

Command file

(HP DIGITAL Test Manager)—An OpenVMS command procedure that you
create using a text editor. It contains the commands to run the application in
a noninteractive environment.

Comparison status

(HP DIGITAL Test Manager)—A message that indicates the state of a test;
for example, comparison aborted, new test, not run, successful, unsuccessful,
updated.

Context

(DECset)—The execution environment for all DECset tools running in a
project.

Context file

(DECset)—An OpenVMS sequential ASCII text file used to store information
about a specific context.

CMS library

An OpenVMS directory containing specially formatted files that serves as a
repository for various CMS objects.

Concurrent reservation

(CMS)—A reservation of an element generation that has been already reserved
by one or more users.

Glossary–5

CPU sampling

(PCA)—Data collected on the process clock, as opposed to the system clock, to
eliminate the effects caused by contending processes, such as page faulting,
system service wait time, I/O wait time, and so on.

Current context

(DECset)—The complete set of definitions and settings that influence the
behavior of a particular DECset tool.

Data file

(PCA)—The repository of performance or coverage data created by the PCA
Collector.

Data kind

(PCA)—The category of performance or coverage data tallied in a histogram or
table.

Delimiter

(LSE)—A character (typically a bracket or brace) that surrounds a placeholder.

Differences file

(HP DIGITAL Test Manager)—A file created from the results of a comparison
of the results file to the benchmark file. HP DIGITAL Test Manager generates
a difference file only if the result file and benchmark file do not match.

HP DIGITAL Test Manager library

(HP DIGITAL Test Manager)—An OpenVMS directory containing the HP
DIGITAL Test Manager control file, HP DIGITAL Test Manager collection
subdirectories, result files, difference files, and, optionally, benchmark and
session files.

Glossary–6

Display device

A terminal or workstation screen.

DTM$COLLECTION_NAME

(HP DIGITAL Test Manager)—A global HP DIGITAL Test Manager symbol
assigned to a collection used in prologue, epilogue, and command files during
the execution of that collection.

DTM$INIT

(HP DIGITAL Test Manager)—A logical name assigned by a user to a HP
DIGITAL Test Manager initialization file.

DTM$LIB

(HP DIGITAL Test Manager)—A logical name assigned by HP DIGITAL Test
Manager to the current HP DIGITAL Test Manager library.

DTM$RESULT

(HP DIGITAL Test Manager)—A logical name assigned to the result file for a
specific test used in prologue, epilogue, and command files during the execution
of the test epilogue file.

DTM$TEST_NAME

(HP DIGITAL Test Manager)—A local OpenVMS symbol assigned to a test
used in prologue, epilogue, and command files during the execution of that
test.

Element

(CMS)—The basic structural unit in a CMS library; it consists of one file and
all its versions.

Glossary–7

Element generation

(CMS)—A representation of a phase in the development of an element in
a CMS library. Every time you retrieve and then return an element to the
library, a new generation is created. Any generation of an element can
be retrieved; each generation reflects the changes that were made at that
particular point in development.

Event markers

(PCA)—A record that the Collector inserts into the data file whenever control
passes to a specified location during program execution. The event marked is
the execution of code at that program location.

Execution count data

(PCA)—A tally of the exact number of times that various parts of your program
execute.

Expand

(LSE)—An LSE command that replaces a placeholder, token, or alias at the
current cursor position with the appropriate body of text or code, or additional
language templates.

Expression

A command parameter specifying multiple instances of one or more parameters
in a single parameter field. An expression can consist of a name, wildcard
character, wildcard character used in conjunction with a name or partial name,
or a list of these separated by commas. The only exception is the
HP DIGITAL Test Manager result description expression, which cannot consist
of a list separated by commas.

Field

(HP DIGITAL Test Manager)—A test description element that associates
specific information with a test description. The test description fields are test
name, template, benchmark, prologue, epilogue, variables, groups, filters, and
remark. See also Test description and Field value.

Glossary–8

Field value

(HP DIGITAL Test Manager)—A value for a test description field. You
associate specific files, variables, filters, or other attributes with the associated
test. See also Test description and Field.

Filter

(HP DIGITAL Test Manager)—A means for substituting constant values for the
following run-time variables: directory names, file names, version numbers,
date, time, and trace-back information.

Global variable

(HP DIGITAL Test Manager)—A DCL symbol or logical name accessible by any
template, prologue file, and epilogue file in a collection. All global variables in
the current HP DIGITAL Test Manager library are defined at the beginning
of every collection run, regardless of whether the variable is used in the
collection.

Group

(HP DIGITAL Test Manager)—A named set of test descriptions (usually having
common characteristics) that can be manipulated as a unit.

(CMS)—A set of elements that are combined and manipulated as a unit.

Group expression

(HP DIGITAL Test Manager)—A command parameter specifying one or more
groups.

Group hierarchy

(HP DIGITAL Test Manager)—A description of the relationship among a
parent group and all subgroups under it.

Group name

(HP DIGITAL Test Manager)—A command parameter or name specifying a
particular group of test descriptions.

Glossary–9

Histogram

(PCA)—A graphical presentation of frequency distribution data consisting of
domains and buckets of data. See also Bucket.

History

(HP DIGITAL Test Manager)—A date- and time-stamped record of commands
that change the HP DIGITAL Test Manager library. For example, CREATE
and DELETE commands are logged; SHOW commands are not logged. The
history is created when you create a HP DIGITAL Test Manager library.

(CMS)—A record of transactions that are stored in the library in chronological
order for informational purposes.

Initialization file

(PCA)—A file automatically read and executed at the start of each Collector
session that defines the PCA Collector commands to execute for that collection.
You define the symbol PCAC$INIT to the file specification for this file.

(HP DIGITAL Test Manager)—A command file to be executed whenever
HP DIGITAL Test Manager is invoked as a subsystem.

Initial string

(LSE)—The first placeholder that LSE displays in a newly created buffer.

Input file

(HP DIGITAL Test Manager)—A translated session file containing a text
representation of all user input, nonprinting control characters, and recording
functions in a session file for an interactive terminal test.

Interactive test

(HP DIGITAL Test Manager)—A test whose template is a session file. See also
Session file and Noninteractive test.

Known context

(DECset)—The name and location of a context file as specified in a database.

Glossary–10

Learn sequence

(LSE)—An LSE command that associates a key with a sequence of keystrokes.

Line of descent

(CMS)—A series of generations of an element, created by successive reservation
and replacement transactions within a CMS library.

Local variable

(HP DIGITAL Test Manager)—A DCL symbol or logical name defined only
while the test with which it is associated is running. Local variables can be
used by the prologue, template, and epilogue files associated with this test.

Main line of descent

(CMS)—The first generation of an element and all its direct descendants.

Masking

(HP DIGITAL Test Manager)—Specifying areas in a benchmark file that are to
be ignored in the comparison of test results with the benchmark image during
the execution of a test collection.

Merging

(PCA)—The combining of several PCA performance data files into one using
the MERGE command.

Noninteractive test

(HP DIGITAL Test Manager)—A test whose template is a command file. See
also Interactive test.

Object

(CMS)—A library entity. It can be one of the following: an element, element
list, class, class list, group, group list, history, command, or the library itself.

Glossary–11

Object expression

(HP DIGITAL Test Manager)—A command parameter specifying one or more
tests, groups of tests, collections of tests, or variables. Object expressions
encompass all types of HP DIGITAL Test Manager entities.

Occlusion

(CMS)—The process by which CMS processes only the first occurrence of an
object in a search list and ignores any subsequent instances of that object.

Output files

(HP DIGITAL Test Manager)—One or more files associated with each test after
a collection has been executed and compared; output files can be benchmark,
result, or difference files.

Package

(LSE)—Templates that define OpenVMS System Services and OpenVMS
Record Management System routines.

Panning

(HP DIGITAL Test Manager)—Moving a workstation screen image with the
pointer; the image remains in the same position relative to the pointer.

Parameter switch

(HP DIGITAL Test Manager)—A switch (either /GROUP or /TEST_
DESCRIPTION) used after each item in a test group expression to identify the
item as either a test name or a group name.

Parent

(DECset)—A context file used for defining a user-specific context; that is, for
tailoring a project context to a particular user.

Glossary–12

Path name

(PCA)—A formal name or an expansion of a name that specifies the nesting
of a particular routine or line of a routine within other routines or lines. You
specify a path name for a routine or line that does not have a unique name.

Placeholder

(LSE)—An item surrounded by delimiters that is inserted into the editing
buffer by LSE that can be expanded to provide templates for corresponding
language constructs. Placeholders indicate locations in the source code where
you must provide additional program text.

Primary reviewer

(HP DIGITAL Test Manager)—A person who enters the REVIEW command
without the /READ_ONLY switch. Only one person at a time can be the
primary reviewer of a collection. This reviewer can use all Review subsystem
commands. See also Read-only reviewer.

Prologue file

(HP DIGITAL Test Manager)—See Collection prologue file and Test
prologue file.

Pseudocode

(Program design facility)—Structured text containing design information
appearing in an application source file.

Pseudocode placeholder

(Program design facility)—The double angle bracket character pair (« »)
displayed on the screen during an LSE editing session when you enter the
ENTER PSEUDOCODE command.

Query

(SCA)—A cross-referencing function that provides information about program
symbols and source files, enabling you to locate names, symbols, and source
files, and special occurrences of names, symbols, and source files.

Glossary–13

Query session

(SCA)—An interactive session during which you direct LSE to step through
a query buffer display, access a source buffer, and perform queries on SCA
libraries.

Read-only reviewer

(HP DIGITAL Test Manager)—A person who enters the REVIEW command
with the /READ_ONLY switch. A read-only reviewer can read the result
descriptions and print files, but cannot make any changes to the result
descriptions. A read-only reviewer cannot enter the UPDATE or INSERT
commands.

Record type

(HP DIGITAL Test Manager)—A 1-byte indicator that describes the contents of
a session file record. See also Terminal characteristics block.

Reference copy

(CMS)—A copy of the latest element generation on the main line of descent of
each element. Reference copies are stored in reference copy directories.

Reference copy directory

(CMS)—An OpenVMS directory in which CMS maintains a copy of the latest
generation on the main line of descent of each element.

Regression testing

(HP DIGITAL Test Manager)—A testing method that ensures that software
being developed or modified runs correctly. As new features are added, the
software is repeatedly tested to verify that new features do not affect the
correct execution of the previously tested features. When errors exist, the
software is said to have regressed.

Remark

A comment, associated with a HP DIGITAL Test Manager or CMS command,
that is recorded in the HP DIGITAL Test Manager or CMS history file.

Glossary–14

Reservation

(CMS)—The retrieval of an element generation from the CMS library.

Result description

(HP DIGITAL Test Manager)—A summary of test results accessible from the
Review subsystem. HP DIGITAL Test Manager generates a result description
for every test description in a collection.

Result description name

(HP DIGITAL Test Manager)—A command parameter or name specifying a
particular result description. The result description name for a test is the
same as its test name.

Result description expression

(HP DIGITAL Test Manager)—A command parameter specifying one or more
result descriptions. A result description expression cannot consist of a list
separated by commas. It can consist of a result description name, wildcard
character, or wildcard character used in conjunction with a full or partial
result description name.

Result file

(HP DIGITAL Test Manager)—A file containing the results of a test’s execution
and accessible only from within the Review subsystem.

Review

(CMS)—A process by which you can mark an element generation for review,
and later accept or reject the element for inclusion in the library.

Review mode

(LSE)—The mode in which LSE displays diagnostic information in a buffer
resulting from the compilation of source code. In review mode, you can see
diagnostic information in a window at the top of the screen, and the source
code that generated the diagnostic information in an editing buffer at the
bottom of the screen.

Glossary–15

Review subsystem

(HP DIGITAL Test Manager)—The HP DIGITAL Test Manager subsystem in
the terminal environment that enables you to examine and manipulate the
results of running a collection of tests. The Review subsystem is not used for
reviewing DECwindows tests; they are reviewed using the DECwindows HP
DIGITAL Test Manager user interface.

Root node

(PCA)—The main module of an application.

SCA Library

(SCA)—A collection of source information generated by supporting OpenVMS
compilers in the form of .ANA files.

Screen mode

(PCA)—The mode in which you can divide the terminal screen into sections, or
windows, and display different kinds of data in each window simultaneously.

Scrolling

Moving a workstation screen image with sliders or increment arrows in the
scroll bars.

Search list

(CMS)—A list of one or more CMS libraries.

Selection expression

A command parameter that either includes one or more items, or excludes one
or more items from the specification. See also Expression.

Separator text

(LSE)—A language statement terminator, such as a semicolon, that LSE
automatically places at the end of an assignment statement.

Glossary–16

Session file

(HP DIGITAL Test Manager)—A file containing a recording of an interactive
terminal or DECwindows session. It contains all actions that you enter until
you end the session.

Special strings

(HP DIGITAL Test Manager)—Text representations in input files for the
nonprinting characters and recording functions; they replace all nonprinting
characters and recording functions found in session files.

Status line

(LSE)—A line of information appearing at the bottom of an editing buffer that
displays the following information about the buffer: the name of the buffer,
whether you are in insert or overstrike editing mode, whether the buffer is in
a forward or reverse direction, and whether the buffer is write- or read-only.

Summary pages

(PCA)—The last few pages of every histogram or table display giving summary
statistics and listing all switches, node specifications, and filters used to
generate the histogram or table.

Syntax summary

(LSE)—A structural document containing syntactic rules of a computer
language.

Template

(LSE)—A formatted language construct, provided by LSE, that provides
keywords, punctuation, and placeholders for each supported OpenVMS
language.

Template directory

(HP DIGITAL Test Manager)—An OpenVMS directory or CMS library used by
default for template files in the current HP DIGITAL Test Manager library.

Glossary–17

Template file

(HP DIGITAL Test Manager)—An OpenVMS command procedure that executes
a noninteractive test or session file.

Terminal characteristics block

(HP DIGITAL Test Manager)—The first 12-byte record in a session file; it
describes the type of terminal on which the terminal session was recorded
and the characteristics of that terminal. The terminal characteristics block is
described in the OpenVMS I/O User’s Reference Volume.

Termination character

(HP DIGITAL Test Manager)—The character that, when entered twice,
terminates the recording of an interactive terminal session. The default
termination character is Ctrl/P.

Test

(HP DIGITAL Test Manager)—A command procedure that executes
applications for the purpose of regression testing.

Test description

(HP DIGITAL Test Manager)—A collection of fields for which you supply
values that point to the files and other entities associated with the test. A test
description contains all the information HP DIGITAL Test Manager needs to
run a particular test. Each test must have a corresponding test description.
See also Field and Field value.

Test epilogue file

(HP DIGITAL Test Manager)—An optional command file you specify, such as a
filter file, that is associated with a test and runs after the test executes. You
typically use a test epilogue file to modify the results file of run-dependent
data. Output from the epilogue file appears in the test results and can affect
test results.

Glossary–18

Test expression

(HP DIGITAL Test Manager)—A command parameter specifying one or more
test descriptions.

Test group expression

(HP DIGITAL Test Manager)—A command parameter specifying one or
more test descriptions or groups. The parameter switches /GROUP and
/TEST_DESCRIPTION identify the individual items in a test group expression
as specifying either groups or test descriptions.

Test name

(HP DIGITAL Test Manager)—A command parameter or name specifying a
particular test description.

Test prologue file

(HP DIGITAL Test Manager)—An optional command file, such as a setup file,
that is associated with a test and runs before the specified test. You typically
use the test prologue file to establish any special environment that the test
requires such as setting up constants, defining versions, defining logical names,
or creating directories. Output from the test prologue file does not appear in
the test results.

Token

(LSE)—A reserved word or function name typed into the LSE editing buffer
and then expanded to provide templates for corresponding language constructs.

Type-ahead

A function that enables you to enter keystrokes faster than the characters can
be sent to the output device. The type-ahead function places the characters
generated by the keystrokes into a buffer until system resources allow them to
be sent to the output device.

Glossary–19

User identification code (UIC)

A code that determines a user’s access rights to a file. For more information
on UIC protection, see the OpenVMS DCL Concepts Manual. See also Access
Control List.

Variable

(HP DIGITAL Test Manager)—A DCL symbol or logical name that you define
in a
HP DIGITAL Test Manager library and associate with collections or tests (or
both) in that library.

Variable expression

(HP DIGITAL Test Manager)—A command parameter specifying one or more
variables.

Variable name

(HP DIGITAL Test Manager)—A command parameter or name specifying a
particular variable.

Variant line of descent

(CMS)—A line of descent separate from the main line of descent—an alternate
development path within a CMS library. Generation numbers of variant line
generations consist of combinations of numbers and variant letters.

Wildcard characters

Characters used to specify one or more command parameter specifications. Use
the asterisk (*) for partial- or full-field substitutions; use the percent sign (%)
for single-character substitutions.

Glossary–20

Index

A
Acceptable noncoverage, PCA, Glossary–1
ACE (Access Control Entry), Glossary–1
ACL (Access Control List), Glossary–1

and large projects, 6–1
use with new libraries, 5–4
use with previously created libraries, 5–5

Alias, LSE, Glossary–1
Analysis data file, SCA, Glossary–1
Analyzer, PCA, Glossary–2
Application, maintaining, 12–1
Archiving, CMS, Glossary–2
Asynchronous trap (AST), PCA, Glossary–2
Auto substitute, LSE, Glossary–2

B
Benchmark directory, HP DIGITAL Test

Manager, Glossary–2
Benchmark file, HP DIGITAL Test Manager,

Glossary–2
restrictions, 10–20

Benchmark mask, HP DIGITAL Test
Manager, 10–25

Breakpoint, setting with debugger, 7–4
Bucket, PCA, Glossary–3
Build directory

See Directory structure
Build procedures

automating, 4–12, 9–1
final for maintenance, 4–28
for individual developers, 4–11
for large projects, 3–15

Build procedures (cont’d)
frequency of, 3–9, 3–15
MMS description file for, 3–14, 9–1
planning, 3–9
SCA libraries for, 3–9
with CMS classes, 9–1

Bypass privilege, CMS, 6–8

C
Call stack analysis, PCA, Glossary–3
Call trees, Glossary–3

dynamic, 11–15
obtaining from PCA, 11–14
obtaining from SCA, 11–14

Class, CMS, Glossary–3
CMS

archiving, Glossary–2
class, Glossary–3
classes, 1–3

See also CMS library
creating (figure), 6–17

concurrent reservation, Glossary–5
element, Glossary–7
element generation, Glossary–8
features, 1–2
groups, 1–3, Glossary–9
history, Glossary–10
history for maintenance, 12–1
integration, 1–16
libraries, 3–4, Glossary–5

See also CMS library
line of descent, Glossary–11
main line of descent, Glossary–11
object, Glossary–11

Index–1

CMS (cont’d)
occlusion, Glossary–12
planning libraries for, 3–5
reference copy, Glossary–14
reference copy directory, Glossary–14
remark, Glossary–14
replace command, 7–16
replacing element from LSE, 7–16
reservation, Glossary–15
reserving element from LSE, 7–12
review, Glossary–15
search list, Glossary–16
Search Lists, 3–7
use with HP DIGITAL Test Manager,

1–18, 3–18
variant line of descent, Glossary–20

CMS Access Control Lists, 4–17
event notification, 6–7
identifier, 6–4
placing on elements, 6–6
using, 6–1

CMS library
See also Libraries
concurrent access, 4–18, 6–11
creating, 5–3
creating class, 6–13
for HP DIGITAL Test Manager tests,

3–18
for large projects, 3–6
history tracking, 4–18
merging elements into, 6–12
modifying elements, 6–11
multiple libraries, 3–6 to 3–7
performance, 3–6
retrieving class, 6–15
storing elements, 6–9
using bypass, 6–8
using Search Lists, 3–7

Code elision, PDF, 8–7, Glossary–3
Code Management System

See CMS
Cod epath, PCA, Glossary–3
COLLAPSE command, LSE, 8–7

Collection, HP DIGITAL Test Manager,
Glossary–3 to Glossary–4

Collector, PCA, 11–2, Glossary–5
Collector initialization file

See PCA
Command file, HP DIGITAL Test Manager,

Glossary–5
Comments, PDF, 8–3, 8–9
Common Data Dictionary

See Oracle CDD/Repository
Communication management

using DEC Notes, 4–7
Using DEC Notes, 4–7
using OpenVMS MAIL, 4–7

Comparison status, Glossary–5
Compile command, LSE, 7–15
Concurrent reservation, CMS, Glossary–5
Context, DECset, Glossary–5
Control access, CMS ACL, 6–3
COPY_FILE, 8–15 to 8–17
CPU sampling, PCA, Glossary–6
Create library command, 5–4
Cross Reference function, SCA, 12–4
Current context, DECset, Glossary–6

D
Data file, PCA, Glossary–6
Data kind, PCA, Glossary–6
DATATRIEVE, 1–21
Debugger

exiting from, 7–7
invoking, 7–3
setting a breakpoint, 7–4

Debugging steps, 7–1
building the program, 7–17
finding the problem, 7–3
fixing the problem, 7–12
localizing the problem, 7–7

DECdesign, 1–20
DECdocument, 1–20
Declaration, finding, 7–9
DEC Notes

See Notes

Index–2

DECplan, 1–19
DECset

context, Glossary–5
current context, Glossary–6
known context, Glossary–10
parent, Glossary–12

DEC VUIT, 1–20
Default settings, LOGIN.COM, 5–6
Delimiter, LSE, Glossary–6
Description file

and large projects, 3–15
described, 3–14
example, 9–2
storing, 3–14
target dependencies, 6–15
target set-up, 9–10
to build documents, 6–15
with previous versions, 9–6
with unsupported languages, 9–8

Design facility
See Program design facility

Design reports, PDF, 8–6
Difference file, HP DIGITAL Test Manager,

Glossary–6
Directory protection, 3–2
Directory structure

build directory, 3–7
See also Reference copy area

build directory (figure), 3–8
for HP DIGITAL Test Manager libraries,

3–16
for individual developers, 4–11
for sample project (table), 5–2
initial requirements, 3–3 to 3–7
multiple libraries, 4–11
planning, 3–2
planning (figure), 3–3
public access, 3–3
storing command procedures, 3–3

Display device, Glossary–7
Displaying test results, 10–22 to 10–24
Documentation

reviews, 4–11
storing, 3–4

DTM$COLLECTION_NAME, Glossary–7
DTM$INIT, Glossary–7
DTM$LIB, Glossary–7
DTM$RESULT, Glossary–7
DTM$TEST_NAME, Glossary–7

E
EDT editor, 1–4
Element, CMS, Glossary–7
Element generation, CMS, Glossary–8
ENTER COMMENT command, LSE, 8–3,

8–9
ENTER PSEUDOCODE command, LSE,

8–2
Environment file

access from login file, 4–21
creating, 4–20
LSE, 4–19
using, 4–21

Epilogue file, HP DIGITAL Test Manager,
10–4

EVE editor, 1–4
Event markers, PCA, Glossary–8
Event notification ACLs, CMS, 6–7
EXAMINE/ASCII, debugger command, 7–6
Examine button, debugger, 7–5
Execution count data, PCA, Glossary–8
Expand, LSE, Glossary–8
EXPAND command, LSE, 8–7
Expression, HP DIGITAL Test Manager,

Glossary–8

F
Field, HP DIGITAL Test Manager,

Glossary–8
Field tests, tracking reports, 4–25
Field value, HP DIGITAL Test Manager,

Glossary–9
Filter, HP DIGITAL Test Manager,

Glossary–9
Find function, SCA, 12–4

Index–3

Find occurrences, SCA, 7–10

G
Global variable, HP DIGITAL Test Manager,

Glossary–9
Goto declaration, SCA, 7–9
Groups

CMS, Glossary–9
HP DIGITAL Test Manager, Glossary–9
, HP DIGITAL Test Manager, Glossary–9

H
Help file, creating from code, 8–6
Histogram, PCA, Glossary–10
History

CMS, Glossary–10
HP DIGITAL Test Manager, Glossary–10

Holophrasting
See Code elision

HP DIGITAL Test Manager
automating tests with MMS, 9–1
benchmark directory, Glossary–2
benchmark file, Glossary–2
collection, Glossary–3 to Glossary–4
command file, Glossary–5
creating a benchmark mask, 10–25
creating a library, 5–4
difference file, Glossary–6
displaying test results, 10–22
DTM$COLLECTION_NAME, Glossary–7
DTM$INIT, Glossary–7
DTM$LIB, Glossary–7
DTM$RESULT, Glossary–7
DTM$TEST_NAME, Glossary–7
environment initialization, 10–21
epilogue file, 4–13, 10–4
Expression, Glossary–8
features, 1–8
Field, Glossary–8
Field value, Glossary–9
Filter, Glossary–9
global variable, Glossary–9
groups, Glossary–9

HP DIGITAL Test Manager (cont’d)
history, Glossary–10
initialization file, Glossary–10
input file, Glossary–10
interactive test, 10–12, Glossary–10
library, 3–16
local variable, Glossary–11
masking, Glossary–11
noninteractive test, Glossary–11
object expression, Glossary–12
organizing tests, 4–22 to 4–24
output files, Glossary–12
panning, Glossary–12
panning an image, 10–23
parameter switch, Glossary–12
prologue file, 10–2, Glossary–13
read-only reviewer, Glossary–14
recording DECwindows tests, 10–19 to

10–22
record type, Glossary–14
regression testing, Glossary–14
remark, Glossary–14
result description, Glossary–15
result file, Glossary–15
review subsystem, Glossary–16
review subsystem, PCA, 11–7, 11–11
scrolling, 10–23
session files, Glossary–17
setting up a test system, 7–17, 10–1
special strings, Glossary–17
subdirectory for test data, 3–18
template directory, Glossary–17
template file, Glossary–18
terminal characteristics block,

Glossary–18
termination character, Glossary–18
test, Glossary–18 to Glossary–19

interactive, Glossary–10
noninteractive, Glossary–11

test description, 3–17, 10–8
use with CMS, 1–18
variable, 4–22, 10–9, Glossary–20

expression, Glossary–20
global, Glossary–9
in MMS description file, 9–6

Index–4

HP DIGITAL Test Manager
variable (cont’d)

local, Glossary–11
name, Glossary–20

viewing results of terminal tests, 10–15
HP DIGITAL Test Manager

integration, 1–18
primary reviewer, Glossary–13

HP DIGITAL Test Manager library
See also Libraries

HP Language-Sensitive Editor
See LSE

HP Module Management System
See MMS

HP Performance and Coverage Analyzer
See PCA

HP Source Code Analyzer
See SCA

Human engineering testing, 1–13

I
Initialization file

HP DIGITAL Test Manager, Glossary–10
PCA, Glossary–10
test coverage example, 9–7

Initial string, LSE, Glossary–10
Input file, HP DIGITAL Test Manager,

Glossary–10
Interactive tests, HP DIGITAL Test

Manager, 10–12, Glossary–10

K
Known context, DECset, Glossary–10

L
Language-Sensitive Editor

See LSE
Learn sequence, LSE, Glossary–11
Libraries

CMS, Glossary–5
controlling access, 5–4

for large project, 6–1 to 6–8

Libraries (cont’d)
creating, 5–1
HP DIGITAL Test Manager, Glossary–6
planning, 3–2
planning (figure), 3–3
SCA, Glossary–16

Life cycle
design, 1–13
implementation, 1–14
maintenance, 1–14
model (figure), 1–13
phases of, 1–12 to 1–14
requirements and specifications analysis,

1–13
testing, 1–14

Line of descent, CMS, Glossary–11
LOAD command, SCA, 8–6, 8–12
Local variable, HP DIGITAL Test Manager,

Glossary–11
Logical names

and LOGIN.COM, 5–6
for build directories, 4–6
for project setup, 4–5

Login command file
and logical names, 5–6
example, 5–6
setting defaults in, 5–6
storing, 5–6
to access environment file, 5–6

LSE
alias, Glossary–1
auto substitute, Glossary–2
compiling a file, 7–15
delimiter, Glossary–6
ENTER COMMENT command, 8–3, 8–9
ENTER PSEUDOCODE command, 8–9
environment file, 4–18, 4–20
exiting from, 7–17
expand, Glossary–8
EXPAND and COLLAPSE commands,

8–7
features, 1–4
initial string, Glossary–10
integration, CMS and SCA, 1–17
invoking from PCA, 11–13

Index–5

LSE (cont’d)
learn sequence, Glossary–11
packages, Glossary–12
placeholder, Glossary–13
replacing an element, 7–16
reserving an element, 7–12
review mode, Glossary–15
separator text, Glossary–16
set directory/read_only command, 4–17
status line, Glossary–17
supported languages, 1–4
syntax summary, Glossary–17
template, Glossary–17
tokens, Glossary–19

M
Macros

See MMS
MAIL

subdirectory, 4–7
use in environment, 1–19

Main line of descent, CMS, Glossary–11
Maintenance

and CMS, 12–1
and MMS, 12–5
and permanent storage, 4–29
and SCA, 12–3
for an application, 12–1
preparing for, 4–28

Masking, HP DIGITAL Test Manager,
Glossary–11

benchmark file, 10–25
Merging

CMS elements, 6–12
PCA, Glossary–11

MMS
and maintenance, 12–5
changing defaults in macros, 9–6
description file, 3–14
features, 1–7
integration, 1–18
macros in description file, 6–16, 9–6
/SCA switch, 3–10

Module Management System
See MMS

Multiple CMS libraries
See CMS library

N
Noninteractive test

HP DIGITAL Test Manager, Glossary–11
setting up, 10–1

Notes, 1–19
for communication management, 4–7 to

4–8
for QAR system, 4–25
use for project communications, 4–7

O
Object, CMS, Glossary–11
Object expression, HP DIGITAL Test

Manager, Glossary–12
Occlusion, CMS, Glossary–12
OpenVMS operating system

use in environment, 1–19
Oracle CDD/Repository (Common Data

Dictionary), 1–19
Outlining

See Code elision
Output files, HP DIGITAL Test Manager,

Glossary–12

P
Packages, LSE, Glossary–12
Panning, HP DIGITAL Test Manager,

Glossary–12
Parameter switch, HP DIGITAL Test

Manager, Glossary–12
Parent, DECset, Glossary–12
Path name, PCA, Glossary–13
PCA

acceptable noncoverage, Glossary–1
Analyzer, 11–7 to 11–8, Glossary–2
Analyzer filter, 11–7
asynchronous trap (AST), Glossary–2

Index–6

PCA (cont’d)
bucket, Glossary–3
call stack analysis, Glossary–3
call tree analysis, 11–14
call tree analysis (example), 11–15
call trees, Glossary–3
code path, Glossary–3
collector, Glossary–5
Collector, 11–2
Collector initialization file, 11–2
CPU sampling, Glossary–6
data file, Glossary–6
data kind, Glossary–6
event markers, Glossary–8
execution count data, Glossary–8
features, 1–9
histogram, Glossary–10
initialization file, Glossary–10
integration, 1–18
invoking LSE from, 11–13
merging, Glossary–11
path name, Glossary–13
root node, Glossary–16
running with HP DIGITAL Test Manager,

11–11 to 11–12
screen mode, Glossary–16
storing a data file, 3–18
summary pages, Glossary–17
using, 4–24
using HP DIGITAL Test Manager with,

11–1 to 11–8
PDF

See Program design facility
Performance and Coverage Analyzer

See PCA
Placeholders

LSE, Glossary–13
redefining, 4–19

Playing DECwindows tests, restriction,
10–19

Primary reviewer, HP DIGITAL Test
Manager, Glossary–13

DECwindows test, 10–23

Program Design Facility, 1–4
code elision, 8–7, Glossary–3
compiling programs with pseudocode,

8–6, 8–12
creating a help file, 8–6
creating an internals report, 8–6, 8–14
creating a Software Design Document,

8–6
ENTER COMMENT command, 8–3, 8–9
ENTER PSEUDOCODE command, 8–2,

8–9
example of using, 8–7 to 8–17
EXPAND and COLLAPSE commands,

8–7
generating design reports, 8–6
internals report (example), 8–14
loading design information into a library,

8–6, 8–12
overview, 1–11, 8–1
pseudocode, Glossary–13
pseudocode placeholder, Glossary–13
using tagged comments, 8–4
using the /DESIGN qualifier, 8–6

Programming language, compiling from LSE,
7–15

Prologue file, HP DIGITAL Test Manager,
Glossary–13

sample, 10–2
Protection

for libraries, 5–4
libraries for large projects, 6–1

Prototypes, building, 1–13
Pseudocode, LSE, 8–2, 8–9
Pseudocode, PDF, Glossary–13

placeholder, Glossary–13

Q
Query, SCA, Glossary–13
Query session, SCA, Glossary–14

Index–7

R
Read-only reviewer, HP DIGITAL Test

Manager, Glossary–14
Real-time, HP DIGITAL Test Manager,

10–19
Record type, HP DIGITAL Test Manager,

Glossary–14
Reference copy, CMS, Glossary–14
Reference copy area

and CMS libraries, 3–14
with builds, 3–13

Reference copy directory, CMS, Glossary–14
Regression testing, HP DIGITAL Test

Manager, Glossary–14
Remark

CMS, Glossary–14
HP DIGITAL Test Manager, Glossary–14

REPLACE command
CMS, 6–11
LSE, 7–16

Reports, creating with PDF, 8–6
Reservation, CMS, Glossary–15
RESERVE command, CMS, 6–11
Reserve function, CMS, 7–12
Result description, HP DIGITAL Test

Manager, Glossary–15
Result file, HP DIGITAL Test Manager,

Glossary–15
restriction, 10–20

Review
DECwindows test results, 10–23
mode, LSE, Glossary–15
process, CMS, Glossary–15
subsystem, HP DIGITAL Test Manager,

Glossary–16
Rights identifiers, 6–8

creating, 3–2
example, 6–3

Root node, PCA, Glossary–16

S
Samples

displaying differences file, 10–23
HP DIGITAL Test Manager DECwindows

recording session, 10–21
PCA with HP DIGITAL Test Manager,

using, 11–9 to 11–11
phases in test execution with PCA, 11–5

to 11–6
test collection prologue file, 11–4

SCA
analysis data file, Glossary–1
call trees, Glossary–3
exiting from, 7–17
features, 1–5
find function, 12–4
integration with LSE, 1–17
invoking, 7–7
LOAD command, 8–6, 8–12
loading design information into library,

8–6, 8–12
query, Glossary–13
query session, Glossary–14
static call tree (example), 11–14
use in maintenance, 12–3

SCA library, Glossary–16
access to, 4–13

See also Libraries
.ANA files, 3–9
call tree analysis, 11–14
creating, 5–4
for daily work, 3–10
loading, 3–13, 4–13

automating with MMS, 9–6
local, 3–10
physical versus virtual, 3–10 to 3–12
physical vs. virtual (figure), 4–16
search list, 3–11, 4–17

benefits of, 3–13
for directories (figure), 4–17

updating, 3–9 to 3–13, 4–13
with builds, 3–9

Index–8

Screen mode, PCA, Glossary–16
Scrolling, Glossary–16
Search command, LSE, 7–9
Search list, CMS, 3–7, Glossary–16
Selection expression, Glossary–16
Separator text, LSE, Glossary–16
Session files, HP DIGITAL Test Manager,

Glossary–17
sET LIBRARY command, 3–11
Set library command, 5–4
SHOW HISTORY command, CMS, 12–2
Software Design Document, PDF, 8–6
Software life cycle

See Life cycle
Source code

compiling from LSE, 7–15
fixing bugs in translit, 7–1

Source file
opening with LSE, 7–8
replacing from LSE, 7–16
reserving from LSE, 7–12

Source management
access to sources, 4–16
with CMS, 4–16
with LSE search list, 4–16

Special strings, HP DIGITAL Test Manager,
Glossary–17

Standards
coding, 4–2 to 4–3
design, 4–2
performance, 4–5
project, 4–2 to 4–5
testing, 4–4

Status line, LSE, Glossary–17
Step button, debugger, 7–4
Step-In button, debugger, 7–4
Storing restriction

benchmark files, 10–20
result files, 10–20

Summary pages, PCA, Glossary–17
Syntax summary, LSE, Glossary–17
System build, preparing, 6–8
System rights list, 6–8

T
Tagged comments, PDF, 8–4
Target dependencies

See Description file
Template

directory, HP DIGITAL Test Manager,
Glossary–17

file, HP DIGITAL Test Manager,
Glossary–18

LSE, 4–3, Glossary–17
Terminal characteristics block, HP DIGITAL

Test Manager, Glossary–18
Termination character, HP DIGITAL Test

Manager, Glossary–18
Test, HP DIGITAL Test Manager,

Glossary–18
changing input for, 10–18
creating an interactive, 10–12
creating a noninteractive, 10–1
DECwindows playing restriction, 10–19
description, Glossary–18
epilogue file, Glossary–18
evaluating with PCA, 11–1 to 11–8
expression, Glossary–19
group expression, Glossary–19
interactive, Glossary–10
name, Glossary–19
noninteractive, Glossary–11
phases in execution with PCA, 11–5 to

11–6
prologue file, Glossary–19

Test collection
creating, 11–4
executing, 11–5 to 11–6
in PCA, 11–2
prologue file, 11–3, 11–4

Test description, creating, 10–8
Testing phase of life cycle, 1–14
Test Manager

See HP DIGITAL Test Manager
Text Processing Utility, 1–4

Index–9

Tokens
expanding, 7–13
LSE, Glossary–19
redefining, 4–19

Translit project
using CMS and MMS, 7–17
using CMS from LSE, 7–12
using debugger, 7–3
using LSE and SCA, 7–7

Type-ahead, Glossary–19

U
UIC (User Identification Code), Glossary–20

for large projects, 6–1
for library access, 5–4

Usability requirements, 1–13
User accounts, 3–1

V
Variable

expression, HP DIGITAL Test Manager,
Glossary–20

finding declaration of, 7–9
finding occurrences of, 7–10
global, HP DIGITAL Test Manager,

Glossary–9
HP DIGITAL Test Manager, Glossary–20
local, HP DIGITAL Test Manager,

Glossary–11
name, HP DIGITAL Test Manager,

Glossary–20
Variant line of descent, CMS, Glossary–20

W
Wildcard characters, Glossary–20
Work procedures

for individual developers, 4–12 to 4–18

Index–10

