VAX TDMS Request
and Programming Manual

Order No. AA-GS14B-TE

August 1986

This manual describes the TDMS Request Definition
Utility. It explains how to create TDMS requests and
invoke them from application programs.

OPERATING SYSTEM: VMS
MicroVMS
SOFTWARE VERSION: VAX TDMS V1.6

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1986 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS MicroVMS VAXcluster

CDD PDP VAXinfo

DATATRIEVE Rdb/ELN VAX Information Architecture
DEC Rdb/VMS VIDA

DECnet TDMS VMS

DECUS UNIBUS VT

MicroVAX VAX

ﬂﬂaﬂuan)

1

Contents

How to Use This Manual xiii
Technical Changes and New Features xvii
Part One: Creating Requests

Introduction to Requests

1.1 GeneralConceptsof Requests, 1-1
1.1.1 UsingFormDefinitions 1-2
1.1.2 Using Record Definitions 1-2

1.2 UsingRequestInstructions., 1-3
1.2.1 Usingthe FORMISInstruction 1-4
1.2.2 Usingthe RECORDISInstruction. 1-5
1.2.3 Using the DESCRIPTION Instruction and Comment Text . . . 1-6
1.2.4 Usingthe CLEARSCREENInstruction 1-6
1.2.5 DisplayingtheForm 1-6

1.2.5.1 Usingthe DISPLAY FORM Instruction. 1-6

1.2.5.2 Usingthe USE FORM Instruction 1-7

1.2.6 Moving Datatoand fromtheForm. 1-9
1.2.6.1 Usingthe INPUTTOInstruction 1-9

1.2.6.2 Usingthe OUTPUT TOInstruction. 1-11

1.2.6.3 Usingthe WAITInstruction 1-12

1.2.7 UsingVideoFieldInstructions 1-12
1.2.8 Usingthe END DEFINITION Instruction 1-13

1.3 Rules for Entering RequestInstructions 1-13

Using the Request Definition Utility (RDU)

2.1 HowRDUUsestheCDDo, 2-2
2.1.1 Setting RDU to Your CDD Directory 2-2
2.1.1.1 DefiningCDD$DEFAULT. 2-2

2.1.1.2 Usingthe SETDEFAULTCommand 2-3

2.1.2 Usingthe SHOWDEFAULTCommand 2-3
2.1.3 Naming Requests and Specifying Forms and Records 2-3

2.2 CreatingaRequest. ittt ittt 2-5
2.2.1 UsingthelInteractiveMethod. 2-5
2.2.2 UsingtheFileMethod 2-6
2.2.3 UsingaCommandFile-DCLorRDULevel 2-6

2.3 Correcting Errors. e e 2-7

iii

v

2.4 ValidatingRequests,
2.4.1 Changingthe RDU ValidationOption
2.4.2 Usingthe/[NOJSTORE Qualifier.
2.4.3 HowRDU ValidatesaRequest

2.5 Copying RequestsintheCDD

2.6 ModifyingaRequest. it

2.7 ListingaRequest. it e

2.8 DeletingaRequest. i,

29 ExitingRDU e e

Mapping Between Form Fields and Record Fields

3.1 How the TDMS Mapping Instructions Work
3.2 How to Specify Fields in a Mapping Instruction.
3.3 WhentoUsethe WALLSyntax euunenn..
3.3.1 Using %ALLtoMapanEntireForm.
3.3.2 Using %ALL to Map Between a Form and a Larger Record . . .
3.3.3 Using %ALL to Map Between a Form and a Smaller Record. . .

3.4 Whento Use Explicit MappingSyntax
3.4.1 Explicitly Mapping Betweena FormandaRecord.
3.4.2 Using Explicit Syntax to Map from One Field to Many Fields . .
3.4.3 Making Explicit ReferencesUnique
3.4.3.1 UsingGroupFieldNames.

3.4.3.2 UsingtheRecordName.

3.5 Usingthe %ALL and Explicit Syntax in the Same Request.
3.6 Mapping froma Formtoa GroupRecordField

Making Sure Your Request Mappings Are Correct
4.1 RulesforMappingttt e
4.2 Making Sure Record and Form Field Structures Are Compatible . . .
4.2.1 TDMS Record Field Structures.
4.2.2 TDMSFormField Structures.
4.2.3 Compatible Form and Record Field Structures.
4.3 Making Sure Field Data Types and Length Are Compatible.
4.3.1 TDMS Form Field Data Typesand Lengths
4.3.2 The Record Data Typesto WhichYouMap.............
4.4 Creating Mappings Between Compatible Data Types
4.5 Form DefinitionListings
4.5.1 How toListthe Form Definition
4.5.2 What You Need to Know About Form Definitions
4.6 Record DefinitionListings
4.6.1 How to List the Record Definition
4.6.2 What You Need to Know About Record Definitions

5 Finding and Correcting Your Errors

5.1 SyntaxErrorsFoundbyRDU
5.2 Semantic ErrorsFoundbyRDU.
5.2.1 MappingErrors e
5.2.1.1 %ALL Warning and Information Messages

5.2.1.2 Explicit Mappings and Error and Warning Level
MeSSages i e e e e e e
5.2.2 Other Semantic Errors FoundbyRBU
5.3 Semantic Errors Not FoundbyRDU
5.3.1 OrderExecutionErrors
5.3.2 MappingErrors e .
5.3.3 Form-RelatedErrors
5.4 CorrectingErrors. L e
5.4.1 UsingtheEDITCommand
5.4.2 Usingthe MODIFYCommand
5.4.3 DefiningRDUSEDIT.
5.4.4 Usingthe SAVECommand

6 Using Conditional Instructions in Requests

6.1 Using Conditional Instructions.
6.2 ConditionalRequests i,
6.3 UsingConditionalRequests
6.4 How TDMS Executes a Conditional Instruction at Run Time.
6.4.1 SpecifyingControlValues
6.4.1.1 Specifying More Than One Conditional Instruction
6.4.1.2 Using Nested CONTROL FIELD IS Instructions
6.4.2 SpecifyingCaseValues.
6.4.2.1 Usingthe NOMATCH CaseValue.
6.4.2.2 Usingthe ANYMATCH CaseValue.
6.4.2.3 Conditional UseofForms.

6.4.2.4 Case Values When You Use More Than One Control

6.4.3 Match Instructionsina CONTROL FIELD IS Instruction. . .

7 Mapping Between Form Arrays and Record Arrays
7.1 WhatlIsanArray? e e
7.1.1 Typesof Form Arrays YouCan Maptoand from.
7.1.2 Typesof Record Arrays You Can Maptoandfrom.
7.2 Syntax for Mapping Between Form and Record Arrays
7.2.1 Explicit Syntax for Mapping Array Elements
7.2.2 %ALL Syntax for Mapping Array Elements

7-1
7-2
7-4
7-6
7-7
7-8

7.3 Rulesfor Mapping Arrays.t 7-9

7.3.1 Explicit MappingsandErrors. 7-10
7.3.2 %ALLMappingsandErrors. 7-10
7.4 Examples of Mapping Indexed and Scrolled Arrays 7-11
7.4.1 Explicit Mapping of Scrolled or Indexed Arrays 7-12
7.4.2 TALLMappIngsot v v v ittt ittt ettt 7-14
7.4.2.1 %ALL MappingandaScrolled Array. 7-14
7.4.2.2 Using %ALL Mappings and Indexed Arrays 7-15
7.4.3 Explicitly Mapping a Subset of a Scrolled or Indexed Array . . . 7-17
7.4.4 Mapping Scrolled Arrays to Several Record Arrays 7-18
7.4.4.1 Explicitly Mapping Several Scrolled Arrays. 7-18
7.4.4.2 %ALL Mapping of Several Scrolled Arrays 7-20

8 Advanced Mapping Between Arrays

8.1 Horizontally-Indexed Scrolled Form Arrays. 8-1
8.2 Two-Dimensional Record Arrays. 8-2
8.3 Syntax for Mapping Two-Dimensional Arrays. 8-4
8.4 General Rules for Two-Dimensional Arrays 8-4
8.5 Examples of Mapping Two-Dimensional Arrays 8-5
8.5.1 Explicit Syntax to Map a Two-Dimensional Array. 8-5
8.5.2 Rules for %ALL Mapping of Two-Dimensional Arrays 8-7
8.6.3 “%ALL to MapaTwo-DimensionalArray 8-7
8.5.4 Mapping a Subset of a Two-Dimensional Array. 8-9

9 Using an Array as a Control Value
9.1 How to Use an Array As a Control Value to Collect Varyving

Elements e e 9-1

9.2 How TDMS Evaluates a Control Value Array at Run Time 9-2
9.3 Rulesfor Specifying the Control ValueArray 9-4
9.3.1 Explicitly Assigning Values to %LINE and ZENTRY 9-6
9.3.2 Using a Work Array as a Control Value Array 9-6
9.3.3 Specifying an Entire Arrayasa Control Value 9-6

9.4 Example - Using a One-Dimensional Control Value Array. 9-7
9.5 Example- Using a Two-Dimensional Control Value Array. 9-10

10 How to Display and Input Data in a Scrolled Region
10.1 How TDMS Displays and Collects Datain a Scrolled Array 10-2
10.2 How to Allow the Operator to View Data in Scrolled Regions 10-5

vi

11 Program Request Keys

11.1 What Are Program Request Keys?. 11-2
11.2 Using ProgramRequestKeys. 11-4
11.3 Creating a Request That Uses a Program Request Key. 11-4
11.3.1 Default CHECK Mode Modifier. 11-6
11.3.2 NOCHECKModifier 11-8
11.4 Examples of Using Program RequestKeys. 11-8
11.4.1 Using PRKs to Allow the Operator to Control Application
Flow . . . o e e 11-8
11.4.2 Usinga PRKtoReturna ValuetoaControlValue 11-10
Part Two: Creating Request Libraries
12 Working with Request Libraries
12.1 Creating a Request Library Definition. 12-1
12.2 Copying a Request Librarv Definition. 12-2
12.3 Listing a Request Library Definition. 12-2
12.4 Modifying a Request Library Definition. 12-3
12.5 Validating a Request Library Definition. 12-3
12.6 Deleting a Request Library Definition. 12-4
12.7 BuildingaRequestLibraryFile. 12-4
Part Three: Writing Application Programs
13 Introduction to TDMS Programming
13.1 TDMS ProgrammingCalls 13-1
13.2 General Format of TDMS ProgrammingCalls. 13-2
14 Using the Primary TDMS Synchronous Calls
14.1 Opening a Request Library File-TSS$OPEN_RLB 14-2
14.2 OpeningaChannel-TSS$OPEN. 14-3
14.3 Transferring Data and Displaying Forms- TSSSREQUEST 14-3
14.4 Closing the Request Libary File- TSS$CLOSE_RLB 14-5
14.5 ClosingaChannel-TSS$CLOSE 14-6
14.6 Testingthe Return StatusCode 14-6
14.7 Compiling and Linkinga TDMS Program 14-9
14.7.1 Compilinga TDMSProgram. 14-9
14.7.2 LinkingaTDMSProgram 14-9
14.8 TwoSimple TDMSPrograms. oo 14-10

vii

15 Using Supplementary Calls
15.1 Reading Messages from the Terminal - TSSSREAD_MSG_LINE . . 15-1
15.2 Sending MessagestotheTerminal. 15-2
15.2.1 Writing to the Message Line- TSS$WRITE_MSG_LINE . . . 15-3
15.2.2 Interrupting a Request or an Existing Message Line

Operation- TSS$WRITE_BRKTHRU 15-3

15.3 Copying the Current Form to a Specific Device -
TSSSCOPY_SCREEN e 15-4
15.4 Canceling Input/Output Calls in Progress- TSSSCANCEL 15-6

16 Using Record Definitions

16.1 Using CDD Record Definitions in BASIC programs 16-2
16.1.1 Referring toa CDD Record Definitionin BASIC 16-2
16.1.2 Referring to a CDD Record Definition Containing the

VARIANTS Syntax. . .« v v v v vt i et e e e e it e e e 16-4
16.1.3 Referring to CDD Array Record Definitionsin BASIC 16-5

16.2 Using COBOL to Refer to CDD Record Definitions. 16-7
16.2.1 Referring toa CDD Record Definitionin COBOL 16-8
16.2.2 Referring to a CDD Record Definition Containing the

VARIANTS Syntax. . . . o v v i v ittt e et e e e e n 16-10
16.2.3 Referring to CDD Array Record Definitionsin COBOL. 16-11

16.3 Using FORTRAN to Refer to CDD Record Definitions. 16-13
16.3.1 Referring toa CDD Record Definitionin FORTRAN 16-14
16.3.2 Referring to a CDD Record Definition Containing the

VARIANTS Syntax. - . .« v vt ittt e ittt e et 16-15

16.3.3 Referring to CDD Array Record Definitionsin FORTRAN. . .16-16
16.4 Using Record Definitions Created by Database Management

SYyStemsS o i e e e e e 16-18
16.4.1 Using Record Definitions Created by VAX Rdb/VMS 16-19
16.4.2 Using Record Definitions Createdby VAXDBMS. 16-20
16.4.3 Displaying and Updating Database Records in Scrolled

Regions. i i it i e e 16-22
16.4.3.1 DefininganArrayRecord 16-23
16.4.3.2 Declaring the Array Record in the Application and

TDMSRequests . . . - . v v v v ittt e e et e e e 16-24
16.4.3.3 Creating a Collection of Records and Loading the Array .16-24
16.4.3.4 Passingthe ArraytotheRequest. 16-25

16.5 Summary of Supported Data Types for Different Languages 16-25

viii

17 Debugging a TDMS Application Program

17.1 HowtoEnablethe TraceFacility. 17-1
17.1.1 DefiningalogicalName 17-2
17.1.2 Issuing Trace Calls from an Application Program 17-2

17.2 Resultsof UsingTrace. 17-3

17.3 Debugging an Application Using Two Terminals 17-6

18 Application Function Keys (AFKS)

18.1 What Are Application FunctionKeys?. 18-1

18.2 When Do You Use Application FunctionKeys? 18-1

18.3 Declaring Application FunctionKeys 18-2
18.3.1 Terminal Keys You Can DeclareasAFKs 18-3
18.3.2 HowtoWriteanASTRoutine 18-4

18.4 Removingan AFKKeyDefinition 18-4

19 Using Asynchronous Calls

19.1 What Are AsynchronousCalls?. 19-1

19.2 When Do You Use AsynchronousCalls? 19-2

19.3 The General Format for AsynchronousCalls. 19-2

Figures

I-1 RequestFormat. 1-4

1-2 Mapping Between a Record Definition and a Form Definition 1-10

2-1 Suggested TDMS Design Sequence: Effects of Validation 2-9

4-1 RecordFieldStructures. 4-2

4-2 FormFieldStructures. i 4-3

6-1 AConditionalRequest. 6-3

6-2 Request Containinga CONTROL FIELD IS Instruction 6-4

6-3 Howa Conditional RequestWorks. 6-7

7-1 DefinitionofanArrayt e 7-2

7-2 Indexed Array. i e e e 7-3

7-3 Scrolled Array. e 7-4

7-4 Simple One-Dimensional Record Arrays 7-5

7-5 One-Dimensional Group Arrayso i i 7-5

7-6 Exampleof Mapping AITays v v v i v i v i v it e e e 7-6

7-7 TheUnderlyingFormArray 7-11

7-8 Explicitly Mapping an Entire Scrolled Form Array. 7-13

7-9 Using %2ALL to Map an Entire Scrolled Array. 7-14

7-10 Using %ALL to Map Entire Indexed Arrays 7-16

7-11 Mapping a Subset of an Indexed or Scrolled Array 7-17

7-12 Explicit Mapping of Several Scrolled Arrays. 7-18

7-13 % ALL Mapping of Several Scrolled Arrays. 7-20

ix

8-1 Horizontally-Indexed Scrolled FormArray 8-1

8-2 Using Explicit Syntax to Map a Two-Dimensional Array 8-6
8-3 Using %ALL Syntax to Map Two-Dimensional Arrays 8-8
8-4 Mapping a Subset of a Two-Dimensional Array 8-9
9-1 UsinganArrayasaControlValue. 9-2
9-2 How TDMS Evaluates a Control Value Array at RunTime 9-3
9-3 The ScopeofaDependentRange 9-4
9-4 Illegal Nested DependentRanges 9-5
9-5 Specifying Nonarray or Single-Element Control Values 9-5
9-6 Explicitly Assigning Values to %LINE and #ENTRY. 9-6
9-7 Collecting Elements from Several ScrolledFields 9-7
9-8 Usinga Two-Dimensional Array as a Control Value. 9-11
10-1 Displaying Dataina ScrolledRegion 10-6
11-1 ASample PRKInstruction 11-3
11-2 Defining Program RequestKeys 11-5
11-3 Usingthe CHECK Modifier. 11-7
11-4 Using PRKs to Allow Operator Control of Application Flow 11-9
11-5 Using PRKsin Conditional Instructions 11-10
14-1 Request ThatDisplaysaForm 14-10
16-1 Referring toa CDD Record Definitionin BASIC 16-2
16-2 Referring to a CDD Record Definition Containing the VARIANTS
Syntax in BASIC. e 16-4
16-3 Referring toa CDD Record Definition with Nested Arrays 16-5
16-4 Referring to a Two-Dimensional CDD Array Record Definition in
BASIC. . . e e 16-7
16-5 Referring toa CDD Record DefinitioninCOBOL. 16-9
16-6 Referring to a CDD Record Definition with the VARIANTS Syntax
iINCOBOL. i it e e 16-10
16-7 Referring to a CDD Record Definition with Nested OCCURS
SyntaxinCOBOLttt 16-11
16-8 Referring a Two-Dimensional CDD Array Record Definition in
COBOL . . . e e 16-12
16-9 Referring toa CDD Record Definitionin FORTRAN. 16-14
16-10 Referring to a CDD Record Definition Containing the VARIANTS
SyntaxinFORTRAN it 16-15
16-11 CDDL Record Definition with Nested OCCURS Syntax. 16-17
16-12 Referring to a Two-Dimensional CDD Array Record Definition in
FORTRAN i i 16-17

17-1 SampleTraceOutput. v v v i it ittt e e e e e e 17-3

Tables

4-1
4-2
4-3
4-4

4-5
11-1

16-1
18-1

Effect of Scale Factoron FormFieldData 4-5
TDMS Form Field Pictures and Form Field Data Types. 4-5
RecordField DataTvpes0t 4-7
Simplified Compatible Input Mappings (Form Fields to Record
Fields) oo e e 4-8
Simplified Compatible Qutput Mappings (Record Fields to Form
Fields) . . . oo i e e 4-9
Run-TimeFunctionKeys 11-1
Data TypeConversionChart 16-26
Application FunctionKeyCodes 18-3

Xi

How to Use This Manual

This manual describes the use of requests in the VAX Terminal Data
Management System (TDMS) soitware, also referred to in this manual simply as
TDMS. There are three parts to the manual, representing the three distinct steps
for using requests:

e Creating requests using the Request Definition Utility (RDU)
¢ Creating and building request libraries using RDU

e Creating an application program that invokes the requests

Intended Audience

This manual is intended for TDMS users who need to describe terminal input and
output (I/0) for an application program. You should:

¢ Be familiar with application design using screen forms

. Know how to store and access definitions in the VAX Common Data
Dictionary

e Be familiar with the VMS operating system, the Digital Command Language
(DCL), and a DIGITAL editor such as EDT

If you are new to TDMS, or are unfamiliar with the general concepts of forms and
requests, you should read Chapters 1 and 2 of the VAX TDMS Forms Manual
before proceeding with this manual.

If you are new to the VMS operating system, you should read the Introduction to
VAX/VMS manual that comes with the VMS documentation set.

xiii

Operating System Information

To verify which versions of your operating system are compatible with this ver-
sion of VAX TDMS, check the most recent copy of the VAX System Software
Order Table/Optional Software Cross Reference Table, SPD 28.98.xx.

Structure

This manual has three parts: creating requests, creating request libraries, and
writing application programs. There are 19 chapters and an index:

Part One: Creating Requests

Chapter 1 Provides an introduction to requests and describes the
syntax for the most common request instructions.

Chapter 2 Explains how to use the Request Definition Utility
(RDU) to create, change, and delete requests.

Chapter 3 Describes the request instructions that move data to
and from a form.

Chapter 4 Explains how to make sure that the requests you create
are correct.

Chapter 5 Explains RDU error messages and how to correct the
errors that cause them.

Chapter 6 Introduces the concept of conditional requests and
explains how they are used and how to create conditional
requests using a control field.

Chapter 7 Explains how to transfer data between one-dimensional
form and record arrays.

Chapter 8 Explains how to transfer data between two-dimensional
form and record arrays.

Chapter 9 Explains how to use conditional instructions to collect
data selectively in a scrolled field.

Chapter 10 Explains how TDMS displays and collects data in
scrolled fields.

Chapter 11 Explains how to create requests that redefine terminal
keys for special functions.

xiv

Part Two: Creating Request Libraries

Chapter 12 Introduces the concept of request libraries and explains
how to create them in RDU.

Part Three: Writing Application Programs

Chapter 13 Introduces the concept of TDMS routine calls that open
request libraries and invoke requests.

Chapter 14 Explains how to use the primary synchronous calls, and
gives a simple example program in both VAX BASIC
and VAX COBOL.

Chapter 15 Explains how to use the supplementary synchronous
calls.

Chapter 16 Explains how to declare CDD records in application
programs.

Chapter 17 Explains how to debug a TDMS application program.

Chapter 18 Explains how to define special functions for terminal

keys using a TDMS routine call.

Chapter 19 Introduces the concept of asynchronous calls, and
explains how to use them.

Related Documents

As you use this book, you may find the following manuals helpful:

VAX TDMS Forms Manual

VAX TDMS Reference Manual

VAX/VMS DCL Dictionary

VAX Common Data Dictionary Data Definition Language Reference Manual
VAX Common Data Dictionary Utilities Reference Manual

VAX Run-Time Library Reference Manual

VAX/VMS System Services Reference Manual

Conventions

This section explains the special symbols used in this book:

(1

{1

()

RDU>

RDUDFN >

UPPERCASE

CTRL/x

Color

<RET>

Xxvi

In syntax diagrams, square brackets enclose optional items
from which you can choose one or none. Square brackets also
enclose array subscripts.

Braces enclose items from which you must choose one and
only one alternative.

Bars in braces indicate that you must choose one or more of
the items enclosed.

Horizontal ellipses indicate that you can repeat the previous
item one or more times.

Vertical ellipses in an example indicate that information

unrelated to the example has been omitted.

In RDU syntax, matching parentheses enclose lists of receiv-
ing fields in mapping instructions and CDD passwords.

The RDU > prompt indicates the utility is at command level
and ready to accept RDU commands.

Indicates that the RDU utility is at the instruction level and
ready to accept request or request library instructions.

An uppercase word indicates a command or instruction
keyword. Keywords are required unless otherwise indicated. Do
not use keywords as variable names.

The dollar sign prompt indicates that you are at DIGITAL
Command Language (DCL) level. (It is possible to change the
DCL prompt. However, in this manuai the examples use the
default prompt, the dollar sign.)

Indicates that you press both the CTRL (control) key and the
specified key simultaneously.

Colored text in examples shows what you enter.

Indicates the RETURN key. Unless otherwise stated, end all
input by pressing the RETURN key.

Technical Changes and New Features

This section summarizes the changes to VAX TDMS that are described in this
manual.

¢ Information about using the ANYMATCH and NOMATCH instructions in
conditional requests has been added to Chapter 6, Using Conditional
Instructions in Requests.

¢ In addition to its regular date formats, TDMS now includes the standard
VMS date format:

DD-MMM-YYYY
This information has been added to the Data Type Conversion Chart.

For additonal information about this date format, see the Input and Qutput
Mapping Tables in the VAX TDMS Reference Manual

e TDMS has a predefined set of run-time function keys that operators can use
to perform various operations on the screen such as moving from field to
field, refreshing the screen, and getting help. These predefined keys are
listed in Table 11-1 in the chapter called Program Request Keys.

¢ TDMS can now be used with VT200-series terminals set to VIT200 mode. The
following function keys from the LK201 keyboard used by VT200-series ter-
minals are supported:
The F12 (BS) key performs the BACK SPACE key function.
The F13 (LF) key performs the LINE FEED key function.

The HELP key performs the PF2 or HELP key function.

Xvii

Information about these keys has been included where appropriate through-
out the documentation set.

e The file names for the OUTPUT and /LIST qualifiers to RDU commands
now accept file names up to 39 characters in length, including dollar signs ($)
and underscores (_).

Xviii

Part une:

Creating Requests

der with text:

ivi

Insert first d

Introduction to Requests 1

This manual explains how to create TDMS requests and request libraries and
invoke them from application programs. Requests are the central feature of VAX
TDMS. If you are unfamiliar with the general concepts of VAX TDMS, you
should read Chapters 1 and 2 of the VAX TDMS Forms Manual for an overview
of the product before continuing with this manual. This chapter introduces the
concept of requests and describes the syntax of a simple request.

1.1 General Concepts of Requests

A request is a set of instructions that you define outside of the application pro-
gram. These instructions describe the exchange of data between a form and a
TDMS application program.

When an application program calls a request at run time, the request can perform
a variety of functions, including:

e Display a form
e Allow data to be entered on a form and returned to one or more records
e Display data from one or more records on a form

e Perform conditional operations, moving data between a form and a record
depending on conditions within a program or on data entered by the operator

. Override certain features of a form definition (video attributes) without
redefining the form

e Notify the program or operator of special conditions by displaying messages
on the screen or in a record field

1-1

Because you describe all the terminal I/O for an application in one or more
requests, you considerably reduce the amount of program code needed in any
application. You also increase the independence of the application program from
the forms and records that the application uses. This independence makes TDMS
applications easier to develop and to maintain.

You use the Request Definition Utility (RDU) to create, change, or delete
requests. RDU stores the requests in a central storage facility, the Common Data
Dictionary (CDD). Chapter 2 describes the RDU commands you use to create,
modify, and delete requests.

This chapter describes what a request looks like. First, however, you should
understand how requests use:
. Form definitions

. Record definitions

1.1.1 Using Form Definitions

Requests use form definitions to format data on the terminal screen. Forms are
created in the Form Definition Utility (FDU) and they define fields that the
request uses for data entry and/or display. Since you refer to these fields when
you move data between a form and a record in a request, you must know:

¢ The name of the form definition in the CDD

. The names of the fields

e The data types, lengths, and other characteristics of the form fields

You learn more about how to access and use form definitions in Chapter 4,
Making Sure Your Request Mappings Are Correct. For information about creat-
ing forms, see the VAX TDMS Forms Manual

1.1.2 Using Record Definitions

Requests use record definitions to send and receive data to the form fields. You
can define a record definition using any of the following products:

e The Common Data Dictionary Data Definition Language (CDDL)

e VAX DATATRIEVE

¢ VAX DBMS

e VAX Rdb/VMS

1-2 Introduction to Requests

The record definitions are then stored in the CDD. To use the definitions in a
request, you must know:

. The names of the record definitions in the CDD
o The names of the record fields

e The data types, lengths, and other characteristics of the record fields

Note

For the purpose of examples, all the record definitions in this manual
are presented in CDDL syntax.

You learn more about accessing and using record definitions in Chapter 4, Making
Sure Your Request Mappings Are Correct. To learn how to create record defini-
tions using CDDL, see the VAX Common Data Dictionary Data Definition
Language Reference Manual

1.2 Using Request Instructions

Once you define your forms and records, you are ready to create a request. Figure
1-1 contains an example of a simple TDMS request that uses the basic set of
request instructions. The instructions are easy-to-learn, English-like statements.

In a request, you name the form definition and the record definition that you want
to use. You also identify the form that you want to display on the terminal screen
and the form and record fields between which you want to map (move) data.

There are two parts to a simple request:

e The header, which identifies the forms and records that the request uses.

e The base, which contains instructions that TDMS performs every time an
application program calls this request. These instructions define how the
form appears on the screen and which fields to use for input and output
mapping.

Introduction to Requests 1-3

FORM IS EMPLOYEE_ADD_FORM; —— Header
RECORD IS EMPLOYEE_RECORD;

DESCRIPTION /#This is an example
of a simple request.*/;

CLEAR SCREEN;

DISPLAY FORM EMPLOYEE_ADD_FORM;
—— Base
!Displays the employee number.

OUTPUT
EMPLOYEE_NUMBER
TO EMPLOYEE_NUMBER;
BOLD FIELD EMPLOYEE_NUMBER;
INPUT %ALL;

END DEFINITION;

Figure 1-1: Request Format

The instructions that make up a request are nonprocedural That is, you can enter
instructions in any order, with the following exceptions:

¢ Header instructions must come before any other instructions.

o The END DEFINITION instruction must be the last instruction in the
request.

Although you can enter instructions in any order, at run time TDMS executes
them in a predetermined order. For instance, output mappings are executed
before input mappings. For a full listing of the order in which TDMS executes
instructions, see Chapter 7, Instruction Execution Order, in the VAX TDMS
Reference Manual

The following sections describe the basic set of request instructions.

1.2.1 Using the FORM IS Instruction

Usually the first instruction you type in a request is the FORM IS instruction.
This instruction identifies the form or forms you refer to in later instructions. You
name a form using the format:

FORM IS form-path-name;

1-4 Introduction to Requests

The form-path-name must be a legal CDD path name. You can select either the
given, the full, or the relative path name. If the form is in your default CDD direc-
tory, you can use the given name in the FORM IS instruction. For example:

FORM IS EMPLOYEE_ADD_FORM;

You can also use a WITH NAME modifier with the FORM 1IS instruction. The
WITH NAME modifier lets you assign a unique name to replace the CDD path
name for the form. You must use this modifier if two forms, or a form and a
record, in your request have the same given name. You can also use this modifier
if you wish to use a short name throughout the request instead of the long CDD
path name.

See Chapter 2, Using the Request Definition Utility (RDU) for more explanation
of CDD path names.

If you have FORM IS instructions that refer to forms that are never displayed or
used in a request, then you may receive error messages at run time and when you
try to build a request library.

1.2.2 Using the RECORD IS Instruction

You must also name the CDD record definitions you will use later in mapping
instructions within the request. You name a record using the following instruc-
tion:

RECORD IS record-path-name;

Like the form-path-name, the record-path-name you use can be the given, the full,
or the relative path name. If a record definition is in your default CDD directory,
you can use the given name with the RECORD IS instruction:

RECORD IS EMPLOYEE_RECORD;

You may have more than one RECORD IS instruction in a request. To identify
several different records that the request uses, specify several RECORD IS
instructions or use the single RECORDS ARE instruction and a list of record
names.

You can also use a WITH NAME modifier with the RECORD IS instruction. The
WITH NAME modifier lets you assign a unique name to replace the CDD path
name for the record. You must use this modifier if two records, or a form and a
record, in your request have the same given name. You can also use this modifier
if you wish to use a short name throughout the request instead of the long CDD
path name.

Introduction to Requests 1-5

1.2.3 Using the DESCRIPTION Instruction and Comment Text

You can use the DESCRIPTION instruction anywhere in a request where you
want to include descriptive text. The text you enter following the keyword
DESCRIPTION and the slash and asterisk symbols (/*) is stored with the request
in the CDD. You end the descriptive text with the asterisk and slash symbols (*/)
and a semicolon. For example:

DESCRIPTION /*This is an example
of a simple request.*/;

You can also include comments. To put a comment in your request, you put an
exclamation point (!) at the beginning of each line. The comment can be placed on
a separate line or after an instruction. (An example of a comment with an excla-
mation point is shown before the OUTPUT TO instruction in Figure 1-1.)

1.2.4 Using the CLEAR SCREEN Instruction

You can use the CLEAR SCREEN instruction to clear the terminal screen before
you display a form on that screen. It ensures that there is nothing on the screen
before you display a form. For example:

CLEAR SCREEN;

1.2.5 Displaying the Form

You identify which form a request can use by using the FORM IS instruction. In
addition, you must also identify how a request is to use a particular form. For
example, you can specify that TDMS:

¢ Display a form as defined in the form definition with the background text,
the field default characteristics, and the field default contents that are
assigned when a form is defined (the DISPLAY FORM instruction)

¢ Display a form with the background text and field contents from the last
request call (the USE FORM instruction)

1.2.5.1 Using the DISPLAY FORM Instruction -- If the form definition contains
default values for the form fields, these values are displayed when you specify the
DISPLAY FORM instruction. However, if your request also contains output
mappings, these output mappings override the form defaults. TDMS displays the
data mapped for output rather than the form definition defaults. For example:

DISPLAY FORM EMPLOYEE_ADD_FORM;
Note that you specify the given name of the form (or the name specified in the

WITH NAME clause to the FORM IS instruction) in the DISPLAY FORM
instruction; you cannot use the full or the relative path name.

1-6 Introduction to Requests

1.2.5.2 Using the USE FORM Instruction -- The USE FORM instruction dis-
plays a form as it looked (with the same background text and field contents) when
the previous request call ended. If the form was not used in the previous request
call, TDMS displays the form with its form definition defaults. For example:

USE FORM EMPLOYEE_CHANGE_FORM;

To see how you can use the DISPLAY FORM and the USE FORM instructions
in requests, examine the following example of a TDMS application. The applica-
tion program calls two requests, one with a DISPLAY FORM instruction
(Request A) and one with a USE FORM instruction (Request B).

When the application program calls Request A, TDMS executes the DISPLAY
FORM instruction and displays the form EMPLOYEE_INFO_FORM with all the
form definition defaults. Assuming the form definition assigns a default value of
000000 to the BADGE field, this value is displayed when TDMS displays the
form. The operator enters data in the form fields BADGE, NAME, and SEX.

Request A

RECORD IS EMPLOYEE_RECORD;
FORM IS EMPLOYEE_INFO_FORM;
<«— First

DISPLAY FORM EMPLOYEE_INFO_FORM; program call
INPUT BADGE TO BADGE, (to Request A)
NAME TO NAME,
SEX TO SEX;

END DEFINITION;

EMPLOYEE_INFO_FORM
4)

i ~— TONS displays

SEX: - form and
default value

(continued on next page)

Introduction to Requests 1-7

EMPLOYEE_INFO_FORM
()

BADGE: 954678
NAME: Hartwood

SEX: F ~— Operator
enters data

When the program calls the next request in the application, Request B, TDMS
executes the USE FORM instruction and displays EMPLOYEE_INFO_FORM
again. However, in this instance, the form fields you see, BADGE, NAME, and
SEX, contain all the data entered in those fields during the call to Request A.

Request B
RECORD IS EMPLOYEE_RECORD;
FORM IS EMPLOYEE_INFO_FORM; ~— Second
program call
USE FORM EMPLOYEE_INFO_FORM; (to Request B)
WAIT;
END DEFINITION;

EMPLOYEE_INFO_FORM
()

BADGE: 954€78
NAME: Hartwood
sex: F <— TDMS displays data
that was collected
in the call to
Request A

. y

Note that a USE FORM instruction displays the form context from a previous
request call only if the form was used in the immediately previous request call.

1-8 Introduction to Requests

1.2.6 Moving Data to and from the Form

The instructions that cause TDMS to move data between the form and the record
are called mapping instructions. The basic mapping instructions in TDMS are:

. The INPUT TO instruction
. The OUTPUT TO instruction
. The RETURN TO instruction

Using these mapping instructions, you can create requests that handle most of
the forms input/output (I/0O) for TDMS applications. Chapter 3, Mapping Between
Form Fields and Record Fields, describes these instructions in detail. The follow-
ing sections introduce the most important mapping instructions, INPUT TO and
OUTPUT TO.

1.2.6.1 Using the INPUT TO Instruction -- If you want TDMS to collect data
from a form field and return it to a record, you must use the INPUT TO or
INPUT %ALL instruction. The general format of the INPUT TO instruction is:

INPUT form-field TO record field;
For example:

INPUT EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER;

The INPUT TO instruction causes TDMS to place the cursor in the form field
named EMPLOYEE_NUMBER and return the value the operator enters in that
field to the record field named EMPLOYEE_NUMBER.

The INPUT TO instruction in Figure 1-2 shows how you can use the input
instruction to map data between the record definition and form definition. (Note
that, in this example, the names of the form fields are the same as the back-
ground text displayed next to each form field. Note also that the
EMPLOYEE_NUMBER field is defined as a Display Only field, which means the
operator cannot enter data.)

The request shows that you can list a series of input phrases (LAST_NAME TO
LAST_NAME, FIRST_NAME TO FIRST_NAME, and so on) after the keyword
INPUT. Each input phrase is separated by a comma, and the last phrase in the
series ends with a semicolon. Note also that you must specify a receiving record
field for each form field.

Introduction to Requests 1-9

EMPLOYEE_ADD_FORM
' N

Enployee Basic Infornation
ADD

EMPLOYEE_NUMBER: 9999933
NAME:

FIRST_NAME: RAAARRARARA
MIDDLE_INITIAL: A
LAST_NAME: RAARRRARRRARARARARARAR

ADDRESS:
STREET: XXXXXXXXXXKXXKKXXKKK
CITY: CCCccccccecccece
STATE: AR
ZIP_CODE: CCcCcCC

SEX: A BIRTH_DATE: 99-RAA-99

\. J

EMPLOYEE_RECORD Definition

DEFINE RECORD EMPLOYEE_RECORD.
EMPLOYEE_RECORD STRUCTURE.
EMPLOYEE_NUMBER DATATYPE UNSIGNED LONGWORD.
EMPLOYEE_NAME STRUCTURE.
LAST_NAME DATATYPE TEXT 20.
FIRST_NAME DATATYPE TEXT 10.
MIDDLE_INITIAL DATATYPE TEXT 1.
END EMPLOYEE_NAME STRUCTURE.
EMPLOYEE_ADDRESS STRUCTURE.

STREET DATATYPE TEXT 20.
CITY DATATYPE TEXT 15.
STATE DATATYPE TEXT 2.
ZIP_CODE DATATYPE TEXT 5.
END EMPLOYEE_ADDRESS STRUCTURE.
SEX DATATYPE TEXT 1.
BIRTH_DATE DATATYPE DATE.

END EMPLOYEE_RECORD STRUCTURE.
END EMPLOYEE_RECORD.

EMPLOYEE_SAMPLE_REQUEST

FORM IS EMPLOYEE_ADD_FORM;
RECORD IS EMPLOYEE_RECORD;
CLEAR SCREEN;

DISPLAY FORM EMPLOYEE_ADD_FORM;

INPUT LAST_NAME TO LAST_NAME,
FIRST_NAME TO FIRST_NAME,
MIDDLE_INITIAL TO MIDDLE_INITIAL,
STREET TO STREET,

Figure 1-2: Mapping Between a Record Definition and a Form Definition

1-10 Introduction to Requests

CITY TO CITY,

STATE TO STATE,
ZIP_CODE TO ZIP_CODE,
SEX TO SEX,
BIRTH_DATE TO BIRTH_DATE;

END DEFINITION;

Figure 1-2: Mapping Between a Record Definition and a Form Definition
(Cont.)

You can also specify %ALL with the INPUT instruction. The INPUT %ALL
instruction causes TDMS to collect data from all the fields on the form that have
identically named record fields.

In Figure 1-2, the request EMPLOYEE_SAMPLE_REQUEST can be rewritten
as follows using the INPUT %ALL instruction since all the form fields have
matching record fields with identical names:

FORM IS EMPLOYEE_ADD_FORM;
RECORD IS EMPLOYEE_RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_ADD_FORM;

INPUT %ALL;
END DEFINITION;

The INPUT %ALL instruction maps form fields to record fields with identical
names (LAST_NAME, FIRST_NAME, MIDDLE_INITIAL, STREET, CITY,
STATE, ZIP_CODE, SEX, and BIRTH_DATE).

RDU does not create an input mapping for EMPLOYEE_NUMBER even though
you specify %2ALL. EMPLOYEE_NUMBER is defined on the form as a Display
Only field, which means TDMS does not allow the operator to enter data in the
field and RDU does not create an input mapping for that field.

1.2.6.2 Using the OUTPUT TO Instruction -- You can describe what data you
want TDMS to move from the program record and display on the form using the
OUTPUT TO instruction. The general format of the OUTPUT TO instruction is:

OUTPUT record-field TO form-field;

You can list a series of output phrases after the keyword OUTPUT. Each phrase
must be separated by a comma. For example:

OUTPUT FIRST_NAME TO FORM_FIELD_1,
LAST_NAME TO FORM_FIELD_2;

Introduction to Requests 1-11

If you want to output data to all the fields on a form (that have record fields with
identical names), you can use %ALL. If you use %ALL, TDMS displays data to all
those form fields that have identically named record fields. For example in the fol-
lowing request, the OUTPUT %ALL instruction outputs data in all the form
fields listed after the DESCRIPTION instruction:

OUTPUT %ALL;

DESCRIPTION /*
EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER,

LAST_NAME TO LAST_NAME,
FIRST_NAME TO FIRST_NAME,
MIDDLE_INITIAL TO MIDDLE_INITIAL,
STREET TO STREET,

CITY TO CITY,

STATE TO STATE,

ZIP_CODE TO ZIP_CODE,

SEX TO SEX,

BIRTH_DATE TO BIRTH_DATE */;

1.2.6.3 Using the WAIT Instruction -- If a request performs output mappings
only, and does not include an INPUT TO instruction, you must use the WAIT
instruction to ensure that the operator sees any messages or data you display on
a form before TDMS clears the screen. The form remains on the screen until the
operator acknowledges it by pressing the RETURN key or a program request key
(PRK). See Chapter 11, Program Request Keys, for more information. The format
of the WAIT instruction is:

WAIT;

1.2.7 Using Video Field Instructions

If you want to highlight certain fields on the form, you can use the video field
instructions to specify what video attributes the field has. For example, the
UNDERLINE FIELD instruction lets you specify that a field be underlined when
the form is displayed. Or you can use %ALL to change the video attributes of all
the fields on the form. The general format for this instruction is:

UNDERLINE FIELD form-field;

1-12 Introduction to Requests

TDMS executes the UNDERLINE FIELD instruction when it executes the out-
put mappings. UNDERLINE FIELD is one of five request instructions that
affects the video attributes of form fields. The others are:

* BOLD FIELD
* BLINKFIELD
* REVERSE FIELD

* RESETFIELD

See Chapter 3, Request and Request Library Instructions in the VAX TDMS
Reference Manual, for more information on using video field instructions.
1.2.8 Using the END DEFINITION Instruction

To identify the end of the request, you use the END DEFINITION instruction.
When RDU encounters an END DEFINITION instruction, it returns you to the
RDU > prompt and checks that your mappings are valid according to TDMS map-
ping rules. It checks that the form and record fields have compatible data types,
lengths, and so on. For more information on how RDU decides whether a map-
ping is valid, see Chapter 4, Making Sure Your Request Mappings Are Correct.

Note that you must put a semicolon after the END DEFINITION instruction.

1.3 Rules for Entering Request Instructions

When you are entering request instructions, you should keep the following syntax
rules in mind:

e Header instructions must appear first in the request definition.

e All instructions must end with a semicolon (;).

Note that if comment text begins with the DESCRIPTION keyword, then it
is part of a DESCRIPTION instruction and must end with a semicolon (;).

Comment text that follows an exclamation point (!) does not need to end with
a semicolon.

* A ssingle instruction can extend over many lines or several instructions can
appear on one line as long as each instruction is separated by a semicolon
(except the MESSAGE LINE IS instruction and all quoted strings). For
example:

CLEAR SCREEN; DISPLAY FORM EMPLOYEE_ADD_FORM;

Introduction to Requests 1-13

¢ Certain instructions can have modifiers. Modifiers are statements usually
beginning with the keyword WITH.

e Alist of field names must be separated by commas.

e A series of INPUT, OUTPUT, or RETURN phrases must be separated by
commas. A phrase is a portion of a full instruction, in this case the portion
that names the form and record fields between which data is mapped.

* Two or more receiving field names in a mapping instruction must be enclosed
in parentheses. For example:

INPUT BADGE TO (BADGE, ID);
e All requests must end with an END DEFINITION instruction followed by a

semicolon.

Refer to the VAX TDMS Reference Manual for information on all the request and
request library instructions.

1-14 Introduction to Requests

Using the Request Definition Utility (RDU) 2

You use the Request Definition Utility (RDU) to create, modify, and delete
requests and request library definitions. To invoke the Request Definition Utility
from DCL level, enter the following command:

$ RUN SYS$SYSTEM:RDU

The system responds with:

RDU>

Another method you might find easier is to define RDU as a symbol. First, make
sure your system manager has not already assigned a meaning to the symbol
RDU by using the SHOW SYMBOL command at DCL level:

$ SHOW SYMBOL RDU
%DCL-W-UNDSYM, undefined symbol - check validity and spelling

If no meaning has been assigned to the symbol RDU, you can define it as a sym-
bol for entering the Request Definition Utility. Using a text editor (such as EDT),
edit your login command file to define RDU as a symbol. Include the following
line in your login command file:

$ RDU :== $RDU

Once you execute your new login command file, you can invoke the Request
Definition Utility by typing the symbol RDU:

$ OLOGIN.COM
$ RDU
RDU>

The system responds with the RDU > prompt, which indicates you are at the util-
ity level. If the RDU > prompt does not appear on your screen, see your system
manager.

Once you are in RDU, you can:

s Issue commands to create requests and request library definitions

¢ Issue commands to manipulate (modify, delete, copy, list, replace, and so on)
requests and request library definitions

The following sections explain how to perform these actions and which RDU com-
mands to use.

2.1 How RDU Uses the CDD

RDU connects directly with the CDD when you issue certain commands
(CREATE, MODIFY, REPLACE, COPY, DELETE, LIST, or VALIDATE) in
RDU. When you enter request text in RDU, the utility checks the records and
forms you specify in that text against the information the CDD has about these
records and forms. If the request text contains correct references and it is other-
wise valid, RDU stores the request in a CDD directory.

2.1.1 Setting RDU to Your CDD Directory

By default, when you enter RDU, it automatically connects to the CDD directory
CDDS$TOP. For RDU to connect to the CDD directory of your choice, you must
define the logical name CDD$DEFAULT to point to that CDD directory, or you
must use the command SET DEFAULT within RDU.

2.1.1.1 Defining CDD$DEFAULT -- If you define the logical CDD$DEFAULT
to point to a personal CDD directory, RDU automatically connects to that direc-
tory when you invoke the utility and issue the CREATE command (or the
MODIFY, REPLACE, COPY, DELETE, LIST, or VALIDATE commands).

To define CDD$DEFAULT from DCL level, use the DEFINE command. For
example:

$ DEFINE CDD$DEFAULT CDD$TOP.YOUR_DIRECTORY

Now when you invoke RDU and issue commands, RDU connects to the CDD
directory CDD$TOP.YOUR_DIRECTORY. This logical definition remains until
you log off your computer or until you use another DEFINE command to change
the definition.

You can insert the DEFINE CDD$DEFAULT command in your login command
file. Then, when you log in, CDD$DEFAULT is set to the CDD directory of your
choice.

2-2 Using the Request Definition Utility (RDU)

2.1.1.2 Using the SET DEFAULT Command -- When you are in RDU and want
to set the CDD directory location, you must use the RDU command SET
DEFAULT. For example:

RDU> SET DEFAULT CDD$TOP.YOUR_DIRECTORY

RDU automatically stores the requests and request library definitions that you :
create in this directory. When you use the SET DEFAULT command in RDU, the
dictionary setting remains only until you exit RDU or until you issue another
SET DEFAULT command.

You can insert the SET DEFAULT command in an RDU startup command file.
This file, RDUINI.COM, contains commands that you want RDU to execute each
time you invoke the utility. See the @file-spec command in the VAX TDMS
Reference Manual for more information.

2.1.2 Using the SHOW DEFAULT Command

When you are in RDU, you can check which CDD directory RDU is connected to
by typing:

RDU> SHOW DEFAULT

RDU responds with:

Current CDD default path is '_CDD$TOP.YOUR_DIRECTORY’

2.1.3 Naming Requests and Specifying Forms and Records

Because you are creating requests and request library definitions and referring to
forms and records from the CDD, the names you use must be legal CDD path
names.

A path name is the CDD name that indicates where in the CDD the request,
request library, record, or form definition is stored. A legal CDD path name can
be:

e A full path name, that is, all the names in the path name starting with the
topmost name, CDD$TOP and ending with the given name
(CDDS$TOP.YOUR_DIRECTORY.EMPLOYEE_REQUEST, for example)

e A relative path name, that is, a portion of the full path name (for example,
YOUR_DIRECTORY.EMPLOYEE_REQUEST)

e A given name, that is, the last name in the full path name (for example,
EMPLOYEE_REQUEST)

Whenever you use a given or relative name for a request (or any CDD object),
RDU converts that name to its full CDD path name. It does this by checking the

Using the Request Definition Utility (RDU) 2-3

CDDS$DEFAULT or the current setting of your CDD directory. It adds that direc-
tory name to the given or relative name of your request or object and stores or
accesses the request or object in that directory. For instance, if you set your direc-
tory or CDD default to CDD$TOP.YOUR_DIRECTORY and specify a request as
EMPLOYEE_REQUEST, RDU adds that directory name to your request given
name EMPLOYEE_REQUEST and stores the request in that directory:

CDD$TOP . YOUR_DIRECTORY . EMPLOYEE_REQUEST

(If you have not defined CDD$DEFAULT or set your CDD directory, RDU uses
the system default and stores your request in the topmost directory, CDD$TOP.)

You can use a given name in:
e All the request commands that require you to specify a request or request
library definition name (CREATE, REPLACE, MODIFY, LIST, and so on)

* The instructions that require you to specify a form, record, or request name
(FORM IS, RECORD IS, DISPLAY FORM, USE FORM, REQUEST IS,
and so on)

Note

The given name is the last name you type when specifying a path name.
It is usually the same as the final name of the path name in the CDD.
However, from DCL level, you can assign a logical name to the given
name used in a request or request library definition. In that case, the
final name of the object in the CDD can be different from the given
name in your request. For instance, if you use the name
EMPLOYEE_REQUEST in your request and you define,

at DCL level, EMPLOYEE_REQUEST to be
EMPLOYEE_REQUESTS.EMPLOYEE_ONE, the final name

of the request in the CDD is EMPLOYEE_ONE.

You can use a full or relative path name in:

* The commands requiring you to specify a request or request library definition
name (CREATE, REPLACE, MODIFY, LIST, and so on).

e The FORM IS, RECORD IS, and REQUEST IS instructions. You cannot
use the full or relative path name in the USE FORM or DISPLAY FORM
instructions or in references to records in other request instructions. With
these instructions, you must use the given name only.

2-4 Using the Request Definition Utility (RDU)

For all the rules concerning creating and using legal CDD path names, see the
VAX Common Data Dictionary Data Definition Language Reference Manual

2.2 Creating a Request

Once you assign a default CDD directory, you are ready to create requests. There
are two ways to create a request:

¢ The interactive method. Once you enter RDU, you issue the CREATE
REQUEST command and enter instructions. RDU prompts you for further
input. When you finish entering the request text, RDU then stores it in the
CDD.

* The file method. From either DCL or RDU level, you pass to RDU a VMS
command file containing a CREATE REQUEST command and request text
or a text file that contains just request text. RDU executes the command file
and places the request in the CDD.

The first few times you create requests, you will probably want to use the inter-
active method. RDU prompts you for commands and returns error messages,
when appropriate, as you enter the request text.

2.2.1 Using the Interactive Method

To create a request interactively, type the CREATE REQUEST command in
response to the RDU > prompt and a request name in response to the prompt for
a request name:

$ RDU
RDU> CREATE REQUEST
Request Name: EMPLOYEE_REQUEST

The name you assign the request will be the CDD given name. If you define
CDDS$DEFAULT to point to your personal CDD directory, RDU will store the
request you are creating in that directory. For example, if you define
CDD$DEFAULT to be CDD$TOP.YOUR_DIRECTORY, the preceding
example would create a request with the CDD path name
CDD$TOP.YOUR_DIRECTORY.EMPLOYEE_REQUEST.

If you get an error from the CREATE REQUEST command:
e CDDS$DEFAULT does not point to an existing CDD directory or points to a

directory you do not have privilege to create an object in. Change your
default directory and try the CREATE REQUEST command again.

¢ Arequest named EMPLOYEE_REQUEST already exists in that directory.
Either delete the existing request, or use the REPLACE command to replace
the existing request.

Using the Request Definition Utility (RDU) 2-5

If neither of these corrects the problem, see your system manager.

After you enter the command CREATE REQUEST and name the request, RDU
displays the RDUDFN > prompt. This prompt indicates that RDU is ready to
receive request instructions. Note, as the following example indicates, you can
enter the request name following the CREATE REQUEST command rather than
waiting for RDU to prompt you for a request name.

$ RDU
RDU> CREATE REQUEST EMPLOYEE_REQUEST
RDUDFN>

2.2.2 Using the File Method

To create a request using the file method, type the request text into a VMS file
and pass the file to RDU using the CREATE REQUEST command:

RDU> CREATE REQUEST EMPLOYEE_REQUEST -
RDU>_ [YOURVMS.DIRECTORY]EMPSAMP .RDF

Another example is to pass the file to RDU at DCL level by typing the symbol
RDU and the command:

$ RDU CREATE REQUEST EMPLOYEE_REQUEST -
$_ [YOURVMS.DIRECTORY]EMPSAMP . RDF

When you create a request using the file method, RDU looks for a default file type
.RDF. Note that at DCL level, you must type the symbol RDU before you type
the CREATE REQUEST command. (Note also that the hyphen at the end of the
command line allows you to continue the command on the next line.)

The text file EMPSAMP.RDF in the directory YOURVMS.DIRECTORY con-
tains the request text. The instructions in the file must follow the same format as
those you enter interactively in RDU.

2.2.3 Using a Command File - DCL or RDU Level

You can also use a command file to create a request. First type the RDU com-
mand CREATE REQUEST and the associated request text into a command file,
then pass the file to RDU using the @file-spec command:

RDU> ©[YOURVMS.DIRECTORY]EMPSAMP.COM

You can also pass the file to RDU at DCL level by typing first the RDU symbol
and then the @file-spec command:

$ RDU @[YOURVMS.DIRECTORY]EMPSAMP.COM

2-6 Using the Request Definition Utility (RDU)

In the preceding example, the command file EMPSAMP.COM in the directory
YOURVMS.DIRECTORY can contain the command CREATE REQUEST
EMPLOYEE_REQUEST and the associated request text. The commands and
instructions in the file must follow the same format as those you enter
interactively in RDU. A single command file can contain any number of request
commands and accompanying request instructions.

2.3 Correcting Errors

After you have entered all the request instructions, including the END
DEFINITION instruction, RDU checks your request definition for syntax errors
and invalid mappings. If there are any errors, RDU displays messages telling you
where the errors are. Rather than typing the entire request definition over again,
you can edit your last command by entering the EDIT command:

RDU> EDIT

The EDIT command calls the default system editor. (In this manual the EDIT
command calls the VMS EDT editor. You can specify a text editor of your choice
by defining the logical name RDUSEDIT. You learn how to do this in Chapter 5,
Finding and Correcting Your Errors.) When you issue the EDIT command:

1. RDU calls your editor and displays the last command you entered (including
any request instructions associated with that command)

2. You can correct your typing errors just as you would in a regular text file,
using all of the editor’s features

3. When you are done, exit from the editor by issuing the appropriate exit
command

4. RDU executes the last command you entered and checks this corrected
request text for further errors

If you corrected all the errors, RDU stores this request in the CDD. If you still
have errors in your request text, RDU continues to display error messages and
does not store the request in the CDD. Use the EDIT command again to correct
those errors that RDU identifies.

2.4 Validating Requests
By default, RDU is in Validate mode when you invoke the utility. In Validate

mode, when you create, modify, or replace a request, RDU checks that:

* The form names and record names you refer to are in the CDD.

Using the Request Definition Utility (RDU) 2-7

¢ The form field names you specify in the request match the form field names
in the CDD form definition.

e The record field names you specify in the request match the record field
names in the CDD record definition(s).

* Ina %ALL mapping, at least one form field has an identically named record
field.

¢ The mappings you define in the request are valid mappings. See Chapter 4,
Making Sure Your Request Mappings Are Correct, for more information.

If the request is valid, RDU stores the new request definition in the CDD. If you
do not specify the NOSTORE qualifier on the command, the request binary
structure is stored in the CDD with the request. See the section in this chapter,
Using the //NO]JSTORE Qualifier, for more information on request binary struc-
tures.

Similarly, if you create, modify, or replace a request library definition in Validate
mode, RDU checks that the requests or forms you specify are in the CDD. If they
are, RDU stores the new request library definition in the CDD. See Chapter 12,
Working with Request Libraries, for more information about request library defi-
nitions.

Figure 2-1 shows how using Validate/Novalidate mode can affect your design
sequence.

2.4.1 Changing the RDU Validation Option

You can change the default Validate mode to Novalidate mode by using the SET
NOVALIDATE command. Novalidate mode allows you to create the request
before the form and/or record(s). If you use Novalidate mode, you save space in
the CDD; however, building a request library that refers to that request will sub-
sequently take more time because the BUILD LIBRARY command will have to
validate the request.

Once RDU is in Novalidate mode, you can get validation by:

Exiting RDU and reentering the utility. This resets RDU to Validate mode.
e Issuing the SET VALIDATE command. This resets RDU to Validate mode.

* Issuing the VALIDATE REQUEST command. This leaves RDU in
Novalidate mode but validates the specific request.

* Issuing the VALIDATE LIBRARY command. This leaves RDU in
Novalidate mode but validates the specific request library definition.

2-8 Using the Request Definition Utility (RDU)

Create request

Create record (Novalidate mode)

y A

Create form Create record

Y

Create request
(Validate mode)

Create form

Y

Validate request

1 4

Create request
library definition

ZK-00088-00

Figure 2-1: Suggested TDMS Design Sequence: Effects of Validation

2.4.2 Using the /[NOJSTORE Qualifier

When RDU is in Validate mode, it also defaults to Store mode. That is, whenever
you create, modify, replace, or validate a request, RDU stores a binary representa-
tion of the request in the CDD. Similarly, whenever you validate a request library
definition, RDU stores the request binary structure for each request contained in
the library. (Note that you do not see the request binary structure if you list the
contents of the CDD directory. The request binary structure is simply an internal
representation of the validated request and its mappings.)

If you validate a request library definition when the request binary structure is
already stored in the CDD, RDU follows the same validation sequence that it fol-
lows for a request. See the section entitled How RDU Validates a Request for
more information.

If you use the /ISTORE qualifier when RDU is in Novalidate mode, RDU signals
an error and does not create, modify, replace, or validate a request.

Using the Request Definition Utility (RDU) 2-9

If you use the INOSTORE qualifier when RDU is in Validate mode, RDU does not
store any request binary structures in the CDD. The size of the CDD decreases,
but the time needed to build a request library file increases.

You should use the /NOSTORE qualifier only when RDU is in Novalidate mode or
CDD space is limited. Unless CDD space is extremely important at your site, you
should accept the TDMS default Validate mode and the resulting Store mode
default.

2.4.3 How RDU Vvalidates a Request

Validation of a request proceeds in three phases:

1. If the request was validated previously, RDU checks that any related forms
or records have not changed. If the request has not changed, it is still valid.

2. If the request has not been validated previously, or if any related forms or
records have changed, RDU validates the request.

3. RDU stores the request binary structure in the CDD. This third phase
occurs only if:
¢ The second phase was necessary
e The validation process completed successfully

. RDU is in Store mode

2.5 Copying Requests in the CDD

When you want to use a request, record, or form definition that already exists and
is stored in another CDD directory, you have two choices:
e Leave the request in that directory and refer to it with a full CDD path name

e Copy the request, form, or record into your personal CDD directory and refer
to it with the given name

To copy a request, use the COPY REQUEST command:

RDU> COPY REQUEST -
RDU>_ CDD$TOP.TDMS$SAMPLES .EMPLOYEE.EMPLOYEE_ADD_REQUEST -
RDU>_ EMPLOYEE_ADD_REQUEST

RDU creates a new request that is an exact copy of the first request you specify.
The original request is left unchanged.

2-10 Using the Request Definition Utility (RDU)

2.6 Modifying a Request

When you copy a request from another directory, it is very possible the request
refers to form and record definitions stored in the original directory by their given
names. To make sure the request can find these forms and records, you must
modify the request to point to correct form and record path names.

To change an existing request, you use the MODIFY REQUEST command. The
MODIFY REQUEST command extracts the requests from the CDD and calls the
editor of your choice so you can edit the request in RDU. For example:

RDU> MODIFY REQUEST EMPLOYEE_ADD_REQUEST

You can now change the FORM IS and RECORD IS instructions to point to the
forms and records that remain in the original directory by changing the given
names to the full path names. After making your changes, type the appropriate
command to exit your VMS editor and return to the RDU > prompt.

If you make no typing or spelling errors, RDU stores the modified request and its
associated request binary structure in the CDD. If you make typing or spelling
errors, RDU displays error messages and does not store the modified request.
Instead, it asks whether you want to edit the request again. For example:

Do you want to re-try the MODIFY (y or n)?

If you enter a Y, RDU returns you to the editor and places the incorrect request
text in the buffer for you to edit.

RDU continues to prompt you to retry the modify operation until the request text
is correct. If you want to exit without making corrections, enter N. RDU discards
all the request text and returns you to the RDU > prompt. In this case, the origi-

nal request remains unchanged.

2.7 Listing a Request

To see a request that is stored in the CDD, use the LIST REQUEST command.
The format is:

LIST REQUEST request-path-name;

Using the Request Definition Utility (RDU) 2-11

For example, to list the EMPLOYEE_ADD_REQUEST request, type:

RDU> LIST REQUEST EMPLOYEE_ADD_REQUEST

Request EMPLOYEE_ADD_REQUEST 1-JUL-1986 13:44:37 VAX RDU V1.6 Page 1
Source listing 1-JUL-1986 13:44:37 SYS$INPUT:[].coM; (1
FORM IS EMPLOYEE_ADD_FORM,;
RECORD IS EMPLOYEE_RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_ADD_FORM;

OUTPUT EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER;
'Displays the employee EMPLOYEE_NUMBER. You do not
‘allow the operator to enter data in this
'field: do not map the EMPLOYEE_NUMBER field for input.

INPUT %ALL;
DESCRIPTION
/* Inputs the following fields
LAST_NAME TO LAST_NAME,
FIRST_NAME TO FIRST_NAME,

L%/,
END DEFINITION;

2.8 Deleting a Request

To delete a request from the CDD from within RDU, use the DELETE
REQUEST comand. For example:

RDU> DELETE REQUEST YOUR_REQUEST

You can also delete a request from within the CDD Dictionary Management
Utility (DMU), using the DMU DELETE command. These DELETE commands
will remove the request from the CDD; they do not affect any VMS file in which a
copy of the request might be stored. Before you delete a request, you might want
to do one of the following:

e Enter RDU and copy the request to another name, such as
YOUR_REQUEST_OLD. Copying the request within the CDD has the dis-
advantage that the size of the CDD remains the same.

e Enter DMU and use the EXTRACT command to copy the request from the
CDD to a VMS file specification. Copying the request to a VMS file has the
disadvantage of removing the request from the layers of security that might
be present in the CDD. The size of the CDD, however, decreases.

. Print the request.

2-12 Using the Request Definition Utility (RDU)

2.9 Exiting RDU

To exit from an RDU session and return to DCL command level, enter the EXIT
command:

RDU> EXIT
$

You can also press CTRL/Z to exit from the utility.

Using the Request Definition Utility (RDU) 2-13

Mapping Between Form Fields and Record Fields 3

The requests in Figures 1-1 and 1-2 contain mappings between form and record
fields, using the INPUT TO and OUTPUT TO instructions. TDMS has a total of
three mapping instructions:

e INPUTTO
e OUTPUTTO
e RETURN TO

With these instructions you use two different types of syntax:

* %ALL syntax, in which TDMS maps all form fields to and from record fields
with the same name

e Explicit syntax, in which you specify the field names of the form and record
fields you are mapping

In this chapter, you see examples of requests that map data between form and
record fields using both types of syntax. In addition, this chapter describes:

e How the TDMS mapping instructions work

* How to specify fields in a mapping instruction

¢ When to use the %ALL mapping syntax

e When to use the explicit mapping syntax

* Using the %ALL and explicit syntax in the same request

e Mapping from a form to a group record field

3-1

3.1 How the TDMS Mapping Instructions Work

There are three mapping instructions:

e The INPUT TO instruction maps data from a form field to one or more
record fields. You can use the INPUT TO instruction to let the operator
enter data into a form field and return that data to the program in the record
field when the request completes.

If a form field is mapped for input but the operator does not enter data in
that field, TDMS returns one of the following to the record field:

Data output to the form field by the current request

Data in the form field from the immediately previous request call (as a
result of the USE FORM instruction)

Data associated with the form field by a form definition default (if no
other data is in the field)

e The OUTPUT TO instruction maps data to one or more form fields. You can
use the OUTPUT TO instruction to display data on the form when the
request is invoked. The OUTPUT TO instruction uses either a quoted string
or record field as a source of the mapping.

e The RETURN TO instruction maps data to one or more record fields. The
RETURN TO instruction is similar to the INPUT TO instruction with the
following exceptions:

- The RETURN TO instruction uses either a form field or a quoted string
as a source of the mapping.

- The RETURN TO instruction does not open the field for input from the
operator if the source of the mapping is a form field. Instead, it uses the
current contents of that field.

The RETURN TO instruction is very useful for conditionally returning data
when the request completes or when the operator presses a predefined pro-
gram request key (PRK).

The examples in this chapter use the INPUT TO and OUTPUT TO instructions
to explain the general rules of field mapping.

3-2 Mapping Between Form Fields and Record Fields

3.2 How to Specify Fields in a Mapping Instruction

There are two types of mapping syntax:

¢ %ALL syntax
e Explicit syntax

When you use the % ALL syntax, you specify %ALL in place of the actual field
names. For example:

OUTPUT %ALL;

When you use the explicit mapping syntax, you name the fields you want to map
explicitly in the mapping instruction. The form and record field names you use in
the mapping instructions are the field names as they appear in the record and
form definitions. For example:

OUTPUT DATE_FIELD TO DATE_FIELD;

RDU uses the actual field names to create the mapping between the form and the
record. By default, before RDU creates a mapping, it checks that:

e Ina %ALL mapping, each form field matches one and only one record field
with the same name

e In an explicit mapping:

The form field names you specify exist in the form definition that the
request uses

The record field names you specify exist in the record definition(s) that
the request uses

The record field name is unique in the record definitions

RDU also checks that the structures of form fields and record fields (group,
indexed, simple, and so on) are compatible and that the data types (TEXT,
NUMERIC, and so on) and the lengths of form and record fields are compatible.

Chapter 4, Making Sure Your Request Mappings Are Correct, discusses more
about the form and record field structures and data types between which you can
map. For now, however, as you examine the mapping examples in this chapter,
notice that the form fields in the illustrations have picture strings. These picture
strings describe which types of data an operator can enter in that form field and
which kind of data a program can display in that field. For example, a form field
with a picture string of AAA can accept data that is alphabetic and three charac-
ters long.

Mapping Between Form Fields and Record Fields 3-3

The record fields in the illustrations also describe what type of data they can con-
tain by specifying a data type (TEXT, NUMERIC, UNSIGNED LONGWORD,
and so on) next to the record field name. This data type must be compatible with
the form field picture string before RDU will create the mapping.

3.3 When to Use the %ALL Syntax

The examples in this chapter show that you can use %ALL when you want to:

e Map to or from all the fields on a form (that have matching record fields).
* Reduce the number of mapping instructions you need to write.

* Increase the independence of requests from record and form definitions. (For
example, you can add form and record fields to form and record definitions.
The keyword %ALL maps these new fields without requiring any change to
the request instructions.)

The examples in the following sections illustrate how to use the %ALL syntax to
make your requests easy to create.

You can also use %ALL to map between form and record arrays. Examples and
an explanation of how to map between form and record array fields are in Chapter
7, Mapping Between Form Arrays and Record Arrays.

3.3.1 Using %ALL to Map an Entire Form

With the %ALL syntax, you can display data in all the fields of a form and then
collect data from all the fields on the form using only two instructions, OUTPUT
%ALL and INPUT %ALL.

When you specify the OUTPUT %ALL and INPUT %ALL mapping instructions,
TDMS:
* Displays data in all the form fields that have identically named matching

record fields

¢ Collects data from all the form fields and returns it to identically named
record fields

Note

For the purposes of explanation, the form field names used in the
request are shown in the form definitions as background text next to
the field picture strings.

3-4 Mapping Between Form Fields and Record Fields

EMPL_ADD_FORM

e 2
Enployes Basic Information
ADID

EMPL_NUMBER: 9999993

NAME:
FIRST: AARAARARAA
INITIAL: A
LAST: AARRARARARARRARARRARAARA

ADDRESS:
STREET: XXXXXXXKXXXKXXXKXXKX
CITY: RAARRARRARRARARARA
STATE: AA
ZIP_CODE: CccccC

SEX: A BIRTH_DATE: 99-RAR-99
. J

EMPL_ADD_RECORD

DEFINE RECORD EMPL_ADD_RECORD.
EMPL_RECORD STRUCTURE.
EMPL_NUMBER DATATYPE UNSIGNED LONGWORD.

NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
INITIAL DATATYPE TEXT 1.
END NAME STRUCTURE.
ADDRESS STRUCTURE.
STREET DATATYPE TEXT 20.
CITY DATATYPE TEXT 15.
STATE DATATYPE TEXT 2.
ZIP_CODE DATATYPE TEXT 5.
END ADDRESS STRUCTURE.
SEX DATATYPE TEXT 1.
BIRTH_DATE DATATYPE DATE.
END EMPL_RECORD STRUCTURE.

END EMPL_ADD_RECORD.

EMPL_ADD_REQUEST

FORM IS EMPL_ADD_FORM;
RECORD IS EMPL_ADD_RECORD;
CLEAR SCREEN;

DISPLAY FORM EMPL_ADD_FORM;

END DEFI

INPUT %ALL;
OUTPUT %ALL;

NITION;

Mapping Between Form Fields and Record Fields 3-5

When you use the % ALL syntax for input and output (and return) mappings,
RDU:

¢ Checks first to identify the form field names on the active form definition
(EMPL_NUMBER, FIRST, INITIAL, LAST, STREET, CITY, STATE,
ZIP_CODE, SEX, BIRTH_DATE)

. Then searches the record definitions for record field names identical to the
form field names

After RDU determines that the form field names have identically named record
fields, it checks that the fields have compatible field structures, data types, and
lengths. See Chapter 4, Making Sure Your Request Mappings Are Correct, for
more information.

If RDU finds an error in a mapping instruction implied by the %ALL syntax, it
does not create a mapping for that single incorrect implied mapping. RDU does,
however, create a request in the CDD that contains all the remaining correct
mappings implied by the %ALL syntax, if the rest of the request is also valid. The
entire request fails only if all the implied mappings are incorrect.

At run time, TDMS executes only the correct mapping instructions.

Note that the form field EMPL_NUMBER is a Display Only field. When you
specify an INPUT %ALL mapping for a form that includes a Display Only field,
RDU does not create an input mapping for that field. Instead, if the /LOG quali-
fier is specified, RDU displays an information message indicating that it cannot
create an input mapping for a Display Only form field.

3.3.2 Using %ALL to Map Between a Form and a Larger Record

You can use the %ALL syntax to map between a form and a record that contains
more fields than the form. RDU creates mappings to and from only those form
fields that have identically named record fields.

For instance, in the following example, RDU creates successful output and input
mappings between the form and record fields NUMBER, FIRST, MID_INIT, and
LAST.

Because RDU uses the form as the key for %ALL mappings, including both input
and output mappings, it ignores the remaining unmapped record fields:
UNIVERSITY, DEGREE, START_DATE, STOP_DATE.

3-6 Mapping Between Form Fields and Record Fields

EMPLOYEE_HEADER_FORM
(’)

Enployee Header Form

NUMEER: 5555999

NEHE!

FIRST: ARAARRRRARR
HIDINIT: A

LAST: ARRARARARARARAGAGARR

EDUCATION_INFO_REC

DEFINE RECORD EDUCATION_INFO_REC.

EDUCATION_REC STRUCTURE.

NUMBER DATATYPE UNSIGNED LONGWORD.

EDUC_NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
MID_INIT DATATYPE TEXT 1.

END EDUC_NAME STRUCTURE.

UNIVERSITY DATATYPE TEXT 18.
DEGREE DATATYPE TEXT 15.
START_DATE DATATYPE DATE.
STOP_DATE DATATYPE DATE.

END EDUCATION_REC STRUCTURE.
END EDUCATION_INFO_REC.

ALL_LARGER_REC_REQUEST

FORM IS EMPLOYEE_HEADER_FORM;
RECORD IS EDUCATION_INFO_REC;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_HEADER_FORM;

OUTPUT %ALL;
INPUT %ALL;

END DEFINITION;

3.3.3 Using %ALL to Map Between a Form and a Smaller Record

You can use the %ALL syntax to map between the fields on a form and a record
definition with fewer fields than the form. For instance, in the following example,

Mapping Between Form Fields and Record Fields 3-7

the form has eight fields but the record has only four fields. RDU generates suc-
cessful mappings to and from form fields that have identically named matching
record fields: EDUC_NUMBER, FIRST, MID_INIT, and LAST.

At run time, TDMS executes the four correct mapping instructions between the
form and record fields EDUC_NUMBER, FIRST, MID_INIT, and LAST.

Because RDU cannot identically match the names of form fields UNIVERSITY,
DEGREE, START_DATE, and STOP_DATE, it does not create these individual
mapping instructions. (If you specify the /[LOG qualifier with the CREATE,
MODIFY, REPLACE, VALIDATE or BUILD commands, RDU generates infor-
mation level messages indicating the fields that it mapped. See Chapter 5,
Finding and Correcting Your Errors, for more information on the types of error
messages RDU displays.)

EMPLOYEE_EDUCATION_FORM
(

Enployee Education Information
Add

EDUC_NUMBER: 9999999

NAME:
FIRST: ARARRARRAA
MID_INIT: A
LAST: AARARARARARRARARRARARAAAA

UNIVERSITY: CCCCCCCCCCCCCCCCCC
DEGREE: CCCCCCcccccecce

START_DATE: 93/RAA/9I
L, STOP_DATE: 93/RAAR/ 99

EDUCATION_INFO_RECORD

DEFINE RECORD EDUCATION_INFO_RECORD.
EDUCATION_RECORD STRUCTURE.
EDUC_NUMBER DATATYPE UNSIGNED LONGWORD.
EDUC_NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
MID_INIT DATATYPE TEXT 1.
END EDUC_NAME STRUCTURE.
END EDUCATION_RECORD STRUCTURE.
END EDUCATION_INFO_RECORD.

EMPL_EDUCATION_REQUEST

FORM IS EMPLOYEE_EDUCATION_FORM;
RECORD IS EDUCATION_INFO_RECORD;

CLEAR SCREEN;

3-8 Mapping Between Form Fields and Record Fields

DISPLAY FORM EMPLOYEE_EDUCATION_FORM;

OUTPUT %ALL;
INPUT 9%ALL;

END DEFINITION;

3.4 When to Use Explicit Mapping Syntax

You must use explicit mapping syntax when you want:

¢ To specify each mapping
e To map record fields and form fields that do not have identical names

e To have RDU reject a request unless it can create a mapping for every
instruction in the request

¢ To map a single form or record field to several receiving form or record fields

e To map to or from several record fields that do not have unique field names
within the record definitions used by a request

3.4.1 Explicitly Mapping Between a Form and a Record

Unlike a request using the %ALL syntax, if a single mapping is incorrect when
explicitly mapping between form and record fields, the entire request fails. RDU
generates error messages for the incorrect mappings and does not create the
request. For example, in the following request, RDU cannot find matching record
fields for the record and form fields you explicitly name in the input mapping
(UNIVERSITY, DEGREE, START_DATE, and STOP_DATE). This request
fails.

EMPLOYEE_EDUCATION_FORM
(

Enployee Education Information
Add

EDUC_NUMBER: 99939999

E:
FIRST: ARRARARARRR
MID_INIT: A
LAST: AARARRARRARARARRARARARRA

UNIVERSITY: CCCCCCCCCCCCCCCCCC
DEGREE: CCCCCCcccccecce

START_DATE: 99/ARA/ 99
STOP_DATE: $99/RAAR/393

(continued on next page)

Mapping Between Form Fields and Record Fields 3-9

EDUCATION_INFO_RECORD

DEFINE RECORD EDUCATION_INFO_RECORD.
EDUCATION_RECORD STRUCTURE.
EDUC_NUMBER DATATYPE UNSIGNED LONGWORD.
EDUC_NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
MID_INIT DATATYPE TEXT 1.
END EDUC_NAME STRUCTURE.
END EDUCATION_RECORD STRUCTURE.
END EDUCATION_INFO_RECORD.

EMPL_EDUC_REQUEST

FORM IS EMPLOYEE_EDUCATION_FORM;
RECORD IS EDUCATION_INFO_RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_EDUCATION_FORM;

! This request is not correct

INPUT EDUC_NUMBER TO EDUC_NUMBER,
FIRST TO FIRST,
LAST TO LAST,
MID_INIT TO MID_INIT,
UNIVERSITY TO UNIVERSITY,
DEGREE TO DEGREE,
START_DATE TO START_DATE,
STOP_DATE TO STOP_DATE;
OUTPUT EDUC_NUMBER TO EDUC_NUMBER,
FIRST TO FIRST,
LAST TO LAST,
MID_INIT TO MID_INIT;

END DEFINITION;

3.4.2 Using Explicit Syntax to Map from One Field to Many Fields

You can create a request that explicitly inputs, outputs, or returns one field to
many receiving fields. This is called a one-to-many mapping. For example, the fol-
lowing request demonstrates how to map a single form field to two record fields.

The INPUT TO instruction maps a single form field, NUMBER, to two record
fields, EDUC_NUMBER and FAMILY_NUMBER. In this example, the two
record fields are within two separate records, EDUCATION_RECORD and
FAMILY_RECORD. RDU searches these two records for the specified record
field names. You do not need to specify a record name for each field, as long as
the record field names are unique. Note also that the items in the list of receiving
record fields are separated by commas and enclosed in parentheses.

3-10 Mapping Between Form Fields and Record Fields

EMPLOYEE_HEADER_FORM
4 N\
Enployee Basic Information

Add

NUMBER: 9893399

EDUCATION_RECORD

DEFINE RECORD EDUCATION_RECORD.
EDUCATION_RECORD STRUCTURE.

EDUC_NUMBER DATATYPE UNSIGNED LONGWORD.
END EDUCATION_RECORD STRUCTURE.
END EDUCATION_RECORD.

FAMILY_RECORD

DEFINE RECORD FAMILY_RECORD.
FAMILY_RECORD STRUCTURE.
FAMILY_NUMBER DATATYPE UNSIGNED LONGWORD.
END FAMILY_RECORD STRUCTURE.
END FAMILY_RECORD.

EMPLOYEE_INFO_REQUEST

FORM IS EMPLOYEE_HEADER_FORM;
RECORD IS EDUCATION_RECORD;
RECORD IS FAMILY_RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_HEADER_FORM;

INPUT NUMBER TO (EDUC_NUMBER, FAMILY_NUMBER);
END DEFINITION;

The following example performs a similar one-to-many mapping. However, this
example illustrates an output mapping that maps a single record field to two form
fields on the same form. The OUTPUT TO instruction maps a single record field,
EDUC_NUMBER, to two form fields, NUMBER and BADGE.

Mapping Between Form Fields and Record Fields 3-11

EMPLOYEE_HEADER_FORM
(

Enployee Basic Information
ek

NUMBER: 93993999
BADGE: $999999

EDUCATION_FAM_RECORD

DEFINE RECORD EDUCATION_FAM_RECORD.
EDUCATION_RECORD STRUCTURE.
EDUC_NUMBER DATATYPE UNSIGNED LONGWORD.
END EDUCATION_RECORD STRUCTURE.
END EDUCATION_FAM_RECORD.

EMPLOYEE_FAM_REQUEST

FORM IS EMPLOYEE_HEADER_FORM;
RECORD IS EDUCATION_FAM_RECORD;
CLEAR SCREEN;

DISPLAY FORM EMPLOYEE_HEADER_FORM;
OUTPUT EDUC_NUMBER TO (NUMBER, BADGE);
END DEFINITION;

Note the following about one-to-many mappings:
¢ Inan INPUT TO or RETURN TO mapping:

- One form field can map to several record fields

- The record fields can exist in the same record, or in different records
* Inan OUTPUT TO mapping:

- A single record field can map to two or more form fields.

- The form fields must be on a single, active form. You cannot map to
more than one form.

3-12 Mapping Between Form Fields and Record Fields

You cannot output, return, or input many fields to one receiving field. RDU issues
an error message and does not create a request if the request contains a many-to-
one mapping.

You cannot use %ALL in a one-to-many mapping. The %ALL syntax requires an
identical, unambiguous match between a single form field name and a single
record field name.

3.4.3 Making Explicit References Unique

In the previous sections, all the request examples show mappings to record fields
that have unique names within the record definitions used by that request.
However, you may need to map to one or more record definitions that contain
fields that have the same names.

For example, the record definition used in this section, EMP_INFO_RECORD,
contains two of each of the following fields: LAST, FIRST, and MID_INIT.

EMPLOYEE_HEADER_FORM
4 N
Enployee Header Forn

EMPLOYEE MO+ 9999999

NAKE:
FIRST: AARRARARRA
KIDINIT: A
LAST: ARRRARRRARARRARAARRA

EMP_INFO_RECORD

DEFINE RECORD EMP_INFO_RECORD.
EMP_FAM_RECORD STRUCTURE.
FAMILY_INFORMATION STRUCTURE.
FAM_NUM DATATYPE UNSIGNED LONGWORD.
SPOUSE_INFO STRUCTURE.
SPOUSE_NUM DATATYPE UNSIGNED LONGWORD.
NAME STRUCTURE.

LAST DATATYPE TEXT 20. Fields with

FIRST DATATYPE TEXT 10. <— duplicate names

MID_INIT DATATYPE TEXT 1. (LAST, FIRST,
END NAME STRUCTURE. MID_INIT)

END SPOUSE_INFO STRUCTURE.
(continued on next page)

Mapping Between Form Fields and Record Fields 3-13

CHILD_INFO STRUCTURE.
CHILD_NUM DATATYPE UNSIGNED LONGWORD.
NAME STRUCTURE.

LAST DATATYPE TEXT 20. Fields with

FIRST DATATYPE TEXT 10. <— duplicate names

MID_INIT DATATYPE TEXT 1. (LAST, FIRST,
END NAME STRUCTURE. MID_INIT)

END CHILD_INFO STRUCTURE.

END FAMILY_INFORMATION STRUCTURE.
END EMP_FAM_RECORD STRUCTURE.

END EMP_INFO_RECORD.

When record field names are the same, you must use unique names to refer to
these fields. If the references you make are not unique, RDU returns an error
message stating that your mapping reference is ambiguous. An ambiguous refer-
ence is a reference to a record field name that matches more than one record field
within the records used by that request. If references to these duplicate record
field names are not unique, RDU cannot resolve the references.

For example, the following request contains ambiguous field references. It maps
the form fields FIRST, MID_INIT, and LAST to the record fields FIRST,
MID_INIT, LAST. Because each record field exists twice in the record
EMP_INFO_RECORD, this request will fail. RDU cannot resolve the ambiguous
reference to the two fields. It generates an error message and does not create this
request in the CDD.

EMPLOYEE_INFO_REQUEST

FORM IS EMPLOYEE_HEADER_FORM;
RECORD IS EMP_INFO_RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_HEADER_FORM;

! This request is not correct.

INPUT
LAST TO LAST,
FIRST TO FIRST,
MID_INIT TO MID_INIT;

OUTPUT
LAST TO LAST,
FIRST TO FIRST,
MID_INIT TO MID_INIT;

END DEFINITION;

Usually, to refer to record fields with the same name uniquely, you can:

* Qualify the field names with as many preceding group field names as neces-
sary to make the record field name unique.

3-14 Mapping Between Form Fields and Record Fields

A group field is a field that contains other fields. For instance, in the
EMP_INFO_RECORD record definition, the fields EMP_FAM_RECORD,
FAMILY_INFORMATION, SPOUSE_INFOQ, CHILD_INFO,
SPOUSE_INFO.NAME, and CHILD_INFO.NAME are all group fields. You
can use these group field names to make the record field references unique.

* Qualify the field names with the record definition name. The record defini-
tion name is the top-level group name.

The following examples show how you can avoid ambiguous references by using
preceding group field names and the record definition name.

Note

Not all references can be made unique by using preceding group field or
record names. For ways to create unique field references in all cases,
see Chapter 6, Rules for Resolving Ambiguous Field References, in the
VAX TDMS Reference Manual.

Because you cannot qualify the %ALL syntax with group field or record definition
names, you cannot use the %ALL syntax to map to record fields that are not
unique within the record definitions used by a request.

3.4.3.1 Using Group Field Names -- The following request maps to the identi-
cally named fields in the EMP_INFO_RECORD.
EMPLOYEE_FAMILY_FORM

a)
Enployee Fanily Information
Aokl

FAM_NUM: 9939999

SPOUSE NAME:
SFIRST: ARRARARRARA
SHMID_INIT: A
SLAST: ARRARRRAAAARARARARARA

SPOUSE_NUM: 3999999

CHILD NAME:
CFIRST: RARRARARAA
CMID_INIT: A
CLAST: AARARARARRAARAAARRAA

CHILD_NUM: 93939399
. J

(continued on next page)

Mapping Between Form Fields and Record Fields 3-15

EMP_INFO_RECORD

DEFINE RECORD EMP_INFO_RECORD.
EMP_FAM_RECORD STRUCTURE.
FAMILY_INFORMATION STRUCTURE.
FAM_NUM DATATYPE UNSIGNED LONGWORD.
SPOUSE_INFO STRUCTURE.
SPOUSE_NUM DATATYPE UNSIGNED LONGWORD.
NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
MID_INIT DATATYPE TEXT 1.
END NAME STRUCTURE.
END SPOUSE_INFO STRUCTURE.

CHILD_INFO STRUCTURE.
CHILD_NUM DATATYPE UNSIGNED LONGWORD.
NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
MID_INIT DATATYPE TEXT 1.
END NAME STRUCTURE.
END CHILD_INFO STRUCTURE.
END FAMILY_INFORMATION STRUCTURE.
END EMP_FAM_RECORD STRUCTURE.
END EMP_INFO_RECORD.

EMPLOYEE_INFO_REQUEST

FORM IS EMPLOYEE_FAMILY_FORM;
RECORD IS EMP_INFO_RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_FAMILY_FORM;

INPUT
FAM_NUM TO FAM_NUM,
SLAST TO SPOUSE_INFO.LAST,
SFIRST TO SPOUSE_INFO.FIRST,

SMID_INIT TO SPOUSE_INFO.MID_INIT,
SPOUSE_NUM TO SPOUSE_NUM,

CLAST TO CHILD_INFO.LAST,
CFIRST TO CHILD_INFO.FIRST,
CMID_INIT TO CHILD_INFO.MID_INIT,
CHILD_NUM TO CHILD_NUM;

OUTPUT
FAM_NUM TO FAM_NUM,
SPOUSE_INFO.LAST TO SLAST,

SPOUSE_INFO.FIRST TO SFIRST,
SPOUSE_INFO.MID_INIT TO SMID_INIT,

SPOUSE_NUM TO SPOUSE_NUM,
CHILD_INFO.LAST TO CLAST,
CHILD_INFO.FIRST TO CFIRST,
CHILD_INFO.MID_INIT TO CMID_INIT,
CHILD_NUM TO CHILD_NUM;

END DEFINITION;

3-16 Mapping Between Form Fields and Record Fields

In this example, both the names of the record fields to which you map and some
of the preceding group field names are not unique. The record fields LAST,
FIRST, MID_INIT and the group field NAME occur several times within this sin-
gle record.

Note that you need use only those preceding group field names necessary to make
your field references unique. For instance, you need not specify all the preceding
group field names, as in the following reference:

OUTPUT SPOUSE_INFO.NAME.LAST TO SLAST;

You can say, instead:

OUTPUT SPOUSE_INFO.LAST TO SLAST;

The intervening group field name, NAME, is not necessary to make the field ref-
erence complete.

Note that you refer to record fields using the same syntax, regardless of whether
the record fields are in the same or different records.

3.4.3.2 Using the Record Name -- Two separate record definitions may contain
fields for which all the field names are identical. For instance, in the following
request both records contain the group name NAME and the field names LAST,
FIRST, MID_INIT. There is no preceding group name that is unique.

If you map to two such identical record definitions, you can generally create a
unique reference by using the record definition name. The record definition name
is either:

¢ The given name that is specified in the RECORD IS instruction.

e The name specified by the WITH NAME modifier in the RECORD IS
instruction. If the WITH NAME modifier is used in the RECORD IS instruc-
tion and you use a record name in a mapping instruction, you must use this
name.

The request must specify the record names in the mapping instructions. Note
that the record names are separated from field names by a period, just as field
names within a record are separated by a period.

Note also that by using the record name to identify the fields uniquely, you can
eliminate the intervening group name in the mapping reference. You need not
specify, for instance:

OUTPUT FAMILY_RECORD.NAME.LAST TO LAST;

Mapping Between Form Fields and Record Fields 3-17

You can say, instead:
OUTPUT FAMILY_RECORD.LAST TO LAST;

The intervening group name, NAME, is not necessary to make the record refer-
ence unique.

EMPLOYEE_HEADER_FORM
4 N
Enployee Header Information

NUHBER: 9999993

»

FIT: anehanaetn
HOINIT:
LaST: ARARARARARAARARARAAR

FAMILY_RECORD

DEFINE RECORD FAMILY_RECORD.
FAMILIES_RECORD STRUCTURE.
FAMILY_NUMBER DATATYPE UNSIGNED LONGWORD.
NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
MID_INIT DATATYPE TEXT 1.
END NAME STRUCTURE.
END FAMILIES_RECORD STRUCTURE.
END FAMILY_RECORD.

DEPENDENT_RECORD

DEFINE RECORD DEPENDENT_RECORD.
FAMILIES_RECORD STRUCTURE.
FAMILY_NUMBER DATATYPE UNSIGNED LONGWORD.
NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
MID_INIT DATATYPE TEXT 1.
END NAME STRUCTURE.
END FAMILIES_RECORD STRUCTURE.
END DEPENDENT_RECORD.

3-18 Mapping Between Form Fields and Record Fields

EMPLOYEE_INFO_REQUEST

FORM IS EMPLOYEE_HEADER_FORM;
RECORD IS DEPENDENT_RECORD;
RECORD IS FAMILY_RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_HEADER_FORM;

INPUT
NUMBER TO (DEPENDENT_RECORD.FAMILY_NUMBER,
FAMILY_RECORD.FAMILY_NUMBER),
LAST TO (DEPENDENT_RECORD.LAST,FAMILY_RECORD.LAST),
FIRST TO (DEPENDENT_RECORD.FIRST,FAMILY_RECORD.FIRST),
MID_INIT TO (DEPENDENT_RECORD.MID_INIT,
FAMILY_RECORD.MID_INIT);

OUTPUT
DEPENDENT_RECORD .FAMILY_NUMBER TO NUMBER,
DEPENDENT_RECORD .LAST TO LAST,
DEPENDENT_RECORD .FIRST T0 FIRST,
DEPENDENT_RECORD .MID_INIT TO MID_INIT;

END DEFINITION;

Note

Using a record name will not always let you create unique field
references. For ways to create unique field references in all cases, see
Chapter 6, Rules for Resolving Ambiguous Field References, in the
VAX TDMS Reference Manual

You cannot use the %ZALL syntax to map between a single form field and a record
field that is not unique. If you create such a mapping, RDU generates an informa-
tion message and does not create that instruction with the request in the CDD.

3.5 Using the %ALL and Explicit Syntax in the Same Request

You can create requests that contain both explicit and %ALL mappings for the
same fields. You may want to do this if you use the % ALL syntax to reduce the
number of request instructions but know that RDU will not create mappings for
all the form fields indicated by the %ALL syntax.

For instance, the following request uses the %ALL syntax for both input and out-
put mappings. RDU attempts to create mappings for all the form fields when it
executes the %ALL mapping instructions.

Mapping Between Form Fields and Record Fields 3-19

EMPL_ENGINEER_FORM
- ™

Enployee Engineer Information
ADD

NAHE:

FIRST: AARAARAAAR
INITIRL: &

LAST! ARARRAARARAAARARARAR

PROJECT_LERDER! ARRRARAAARARAGAAAANR
PROJECTNO: 999999999
ENGINEER_NO: 999999999

EMPL_MAIN_RECORD

DEFINE RECORD EMPL_MAIN_RECORD.
EMPL_RECORD STRUCTURE.

NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
INITIAL DATATYPE TEXT 1.

END NAME STRUCTURE.
END EMPL_RECORD STRUCTURE.
END EMPL_MAIN_RECORD.

EMPL_ENGINEER_RECORD

DEFINE RECORD EMPL_ENGINEER_RECORD.
EMPL_RECORD STRUCTURE.

NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
INITIAL DATATYPE TEXT 1.

END NAME STRUCTURE.

PROJECT_LEADER = DATATYPE TEXT 20.
PROJECT_NO DATATYPE NUMERIC 9.
ENGINEER_NO DATATYPE NUMERIC 9.

END EMPL_RECORD STRUCTURE.
END EMPL_ENGINEER_RECORD.

EMPLOYEE_INFO_REQUEST

FORM IS EMPL_ENGINEER_FORM;
RECORD IS EMPL_MAIN_RECORD;
RECORD IS EMPL_ENGINEER_RECORD;
CLEAR SCREEN;

3-20 Mapping Between Form Fields and Record Fields

DISPLAY FORM EMPL_ENGINEER_FORM;

INPUT
LAST TO (EMPL_MAIN_RECORD.LAST,
EMPL_ENGINEER_RECORD.LAST),
INITIAL TO (EMPL_MAIN_RECORD.INITIAL,
EMPL_ENGINEER_RECORD.INITIAL),
FIRST TO (EMPL_MAIN_RECORD.FIRST,
EMPL_ENGINEER_RECORD.FIRST) ;
INPUT %ALL;

OUTPUT
EMPL_MAIN_RECORD.LAST TO LAST,
EMPL_MAIN_RECORD.INITIAL TO INITIAL,
EMPL_MAIN_RECORD.FIRST TO FIRST;
OUTPUT %ALL;

END DEFINITION;

RDU can create mappings for the form fields PROJECT_LEADER,
PROJECT_NO, and ENGINEER_NO but not for the form fields FIRST,
INITIAL, and LAST. Instead, if the /[LOG qualifier is specified, RDU generates
informational messages and does not create mappings for the fields FIRST,
INITIAL, and LAST. These fields exist twice in the records used by the request.
A %ALL mapping to or from them results in ambiguous field references that
RDU cannot resolve. You must use the explicit syntax in order to map these
fields.

Thus, though you specify two mappings for the fields FIRST, INITIAL, and
LAST, RDU creates only one set of mappings for these fields. At run time,
TDMS has only one set of the mapping instructions to execute.

3.6 Mapping from a Form to a Group Record Field

Typically, when you map between a form and a record, you are moving the data in
a single record field to a single form field. Under some circumstances, however,
you may want to move the data in all the fields within a particular group field to a
single form field.

For example, the following request illustrates how you can move all the data in
the record fields AREA, EXCHANGE, and LOCAL by mapping between the
group record field TELEPHONE and the form field TELEPHONE.

Mapping Between Form Fields and Record Fields 3-21

EMPL_ADD_FORM

~
Enployee Basic Information

el

EMPLOYEE_NUMBER: 3939999

NAME:
FIRST: ARAARRRAARARA
MID: R
LAST: AARARARRARARRARARAAARARARA

TELEPHONE: (999>999-9933
SEX: A BIRTH_DATE: 99-AAR-99

L» For help press PF2 key

EMPL_RECORD

DEFINE RECORD EMPL_RECORD.
EMPL_RECORD STRUCTURE.
EMPLOYEE_NUMBER DATATYPE UNSIGNED LONGWORD.

NAME STRUCTURE.
LAST DATATYPE TEXT 20.
FIRST DATATYPE TEXT 10.
MID DATATYPE TEXT 1.

END NAME STRUCTURE.
TELEPHONE STRUCTURE.

AREA DATATYPE TEXT 3.
EXCHANGE DATATYPE TEXT 3.
LOCAL DATATYPE TEXT 4.
END TELEPHONE STRUCTURE.
SEX DATATYPE TEXT 1.
BIRTH_DATE DATATYPE DATE.

END EMPL_RECORD STRUCTURE.
END EMPL_RECORD.

EMPL_ADD_REQUEST

FORM IS EMPL_ADD_FORM;
RECORD IS EMPL_RECORD;
CLEAR SCREEN;

DISPLAY FORM EMPL_ADD_FORM;

INPUT TELEPHONE TO TELEPHONE;
OUTPUT TELEPHONE TO TELEPHONE;

END DEFINITION;

3-22 Mapping Between Form Fields and Record Fields

Note that the input and output mapping instructions refer to a simple form field
called TELEPHONE, which consists of a single piece of data that can be divided
into three pieces of information: area code, exchange, and local number. You are
mapping this form field to and from the group field called TELEPHONE.

To make sure that the correct data is moved between the form and record at run
time in this example, you must:

e Check that for input mappings:

The form field picture has the same number of characters as the group
record field

The form field is defined as a Must Fill field

This allows the operator to enter only data that matches the record field
length. The form field TELEPHONE has a picture string of ten 9’s. Because
this is a Must Fill field, the operator must enter the full ten digits at run
time.

e Check that for output mappings, the record fields identically match the
length of the form field.

RDU checks the length of the form field against the combined length of the
fields within the group record field. (The backslash and hyphen are not part

of the character count in a form field.) For instance, the record fields AREA,
EXCHANGE, and LOCAL must contain ten characters (collectively) to cor-
respond to the form field TELEPHONE, which is ten characters long.

When you map a simple form field to or from a group field, RDU does not check
the data type of the sending or receiving field either on input or output mappings.
In addition, TDMS does not check the data type at run time. Therefore, you
should be very careful when creating such mappings.

Note that you cannot map a group record field to several form fields. If you map a
group record field to or from a form field, that form field must be a single field.

You can also use %ALL to map between a form field and a group field.

Mapping Between Form Fields and Record Fields 3-23

Making Sure Your Request Mappings Are Correct 4

Chapter 3 discussed how to specify input and mappings using the request map-
ping instructions. However, even if the syntax of the mapping instruction is cor-
rect, the fields you are mapping may be incompatible. If the fields are not
compatible, the request will fail. Therefore, it is important to know when
mappings will be successful.

This chapter describes:

e Rules for creating correct mappings
e How to tell if record and form field structures are compatible
¢ How to determine if record and form field data types are compatible

. How to list and read form and record definitions

4.1 Rules for Mapping

When you create, replace, modify, or validate a request, validate a request library,
or build a request library file (when RDU is in Validate mode), you must observe
the following rules:

e The form and record definitions you refer to in the FORM IS and RECORD
IS instructions must exist in the CDD.

e If you use explicit mapping:
- Each record field name you specify must match one and only one record
field name in the record definitions that the request uses

- Each form field name you specify must match one form field name in
the active form definition (the form definition specified in the DISPLAY
FORM or USE FORM instruction)

4-1

e If you use the %ALL syntax, at least one form field must have an identically
named matching record field.

e References to record fields with identical names must be unique.

e The form field structures and record field structures must be compatible.
(For instance, an indexed form field must be mapped to a record array; see
Chapter 7, Mapping Between Form Arrays and Record Arrays, for informa-
tion on arrays.)

e The form field and record fields between which you map must be compatible
in structure and data type.

4.2 Making Sure Record and Form Field Structures Are
Compatible

To create mappings between record and form fields, you must be sure that they
have compatible field structures.

4.2.1 TDMS Record Field Structures

There are three distinct record field structures. The first two structures are sim-
ple and group fields (as described in Chapter 3). TDMS also supports record
arrays. An array is a field that contains items (elements) that occur more than
once. For more information on arrays, see Chapter 7, Mapping Between Form
Arrays and Record Arrays.

Figure 4-1 shows the three record field structures: simple, group, and array.

EMPLOYEE_RECORD

DEFINE RECORD EMPLOYEE_RECORD.
EMPLOYEE_RECORD STRUCTURE.

EMPLOYEE_NUMBER DATATYPE SIGNED LONGWORD. <— Simple field
EMPLOYEE_NAME STRUCTURE. <— Group field
EMPLOYEE_LAST DATATYPE TEXT 20 CHARACTERS.

EMPLOYEE_FIRST DATATYPE TEXT 10 CHARACTERS.
END EMPLOYEE_NAME STRUCTURE.
EMPLOYEE_PROJECT_NUMBERS OCCURS 3 TIMES <— Array field

DATATYPE NUMERIC 10 CHARACTERS.
END EMPLOYEE_RECORD STRUCTURE.
END EMPLOYEE_RECORD.

Figure 4-1: Record Field Structures

4-2 Making Sure Your Request Mappings Are Correct

4.2.2 TDMS Form Field Structures

There are two form field structures in TDMS:

e A simple field that contains a single piece of data

e A form array field (either indexed or scrolled) that, like a record-array, con-
tains items (elements) that occur more than once

Figure 4-2 shows the form field structures, simple and array.

[)

Enployee Status Form

EHPL:OYEE_NO: __________ <— Simple field
PROJECT_NOS:

Array field

\)

Figure 4-2: Form Field Structures

4.2.3 Compatible Form and Record Field Structures

You can map between the following form and record field structures (the numbers
in brackets indicate specific elements in an array):

* A simple form field and a simple or a group record field:

INPUT EMPLOYEE_NO TO EMPLOYEE_NUMBER;

e A simple record or form field and a single element of a record or form array:

OUTPUT EMPLOYEE_NUMBER TO PROJECT_NOS[1];

e A simple record or form field and a set of elements in a record or form array:

OUTPUT EMPLOYEE_NUMBER TO PROJECT_NOS[1 TO 3];

Making Sure Your Request Mappings Are Correct 4-3

e A form array and a record array:

OUTPUT EMPLOYEE_PROJECT_NUMBERS[1 TO 3] TO PROJECT_NOS[1 TO 3];

4.3 Making Sure Field Data Types and Length Are Compatible

To map between form and record fields, you must make sure that the data types
of those fields are compatible. For instance, you can map a form field that is
defined to accept alphabetic data to and from a record field with a text data type.

You must also be sure that the lengths of the fields are compatible. The length of
a form or record field refers to the number of characters or digits that you can
enter in that field. For example, to see what data types and field lengths are com-
patible, you must first understand the TDMS form field data types and the CDD
record field data types presented in the following two sections.

4.3.1 TDMS Form Field Data Types and Lengths

When you create a form, you define the data type of each field by assigning a
picture string. The picture string shows what type of data can be placed in the
field and how long it can be. It combines the picture character with the field
length.

A picture character (A,C,X, and so on) describes the type of data that can be
entered in a form field (alphabetic, numeric, or date). TDMS assigns data types to
these picture strings. For instance, if a field has a picture string of CCC, by
default TDMS calls this a TEXT data type.

The number of times the picture character is repeated determines the length of a
form field. For instance, a field with a picture string of AA is two characters long.

A field size validator (BYTE, UNSIGNED BYTE, and so on) determines both the
type and size of data that can be entered in a form field.

When defining a form, you can assign size validators only for form fields that
have a picture character of N or 9 (data type UNSIGNED NUMERIC or
SIGNED NUMERIC). If assigned, the size validator (rather than the field picture)
determines both the data type and the size of the form field.

For example, if you assign a size validator of UNSIGNED BYTE to a form field
with a field picture of 999, TDMS calls this an UNSIGNED BYTE data type. The
field can contain a value from 0 to 255.

For numeric fields, the length of the form field is also affected by the scale factor.
The scale factor is a positive or negative integer that positions the decimal point
in a numeric field. Scale factors can be assigned only to numeric fields with data
types of UNSIGNED NUMERIC (NU) and SIGNED NUMERIC (NX).

4-4 Making Sure Your Request Mappings Are Correct

For example, if a form field picture string is NNNN and the scale factor is 2, the
total number of digits in the field is actually 6: there are 6 whole numbers on the
left side of the decimal point. If, however, the picture string is NNNN and you
assign a -2 scale factor, the total number of digits remains 4: there are 2 digits on
each side of the decimal point. (A receiving or sending record field must have a
compatible number of digits on both sides of the decimal point.) Table 4-1 shows
the effect of the scale factor.

Table 4-1: Effect of Scale Factor on Form Field Data

Field Scale Factor Data Entered Value Sent
Picture on the Form to the Record
9999 0 (thedefault) |7234 7234

NNNN 2 7234 723400
99999 -2 49522 495.22

Table 4-2 shows which field picture characters can be used in each data type.
Chapter 8, VAX TDMS Input and Output Mapping Tables in the VAX TDMS
Reference Manual, contains a complete list of all the form and record field
mappings RDU allows.

Table 4-2: TDMS Form Field Pictures and Form Field Data Types

Field

Picture

Type

Description

Data Type
(Symbol)

Simplified Data
Type Categories

C

Alphanumeric
(A-Z,a-z,0-9,
space, and
alphanumeric DEC
Multinationa!l
characters)

Alphabetic (A-Z,
a-z, space, and
alphabetic DEC
Multinational
characters)

TEXT(T)

TEXT(T)

Text

Text

(continued on next page)

Making Sure Your Request Mappings Are Correct 4-5

Table 4-2: TDMS Form Field Pictures and Form Field Data Types (Cont.)

Field
Picture Data Type Simplified Data
Type Description (Symbol) Type Categories
X Any displayable TEXTI(T) Text
ASCllorDEC
Multinational
character
Mixed Combination C, A, TEXT(T) Text
X,N,9
9 Unsigned numeric UNSIGNED Numeric
(0-9) NUMERIC (NU)
N Signed numeric SIGNED NUMERIC Numeric
(plus sign, minus (NX)
sign, 0-9,
period)
DATE and | Date and time DATE (ADT) DATE
TIME

4.3.2 The Record Data Types to Which You Map

In the last section, you saw a list of the TDMS form field data types. Table 4-3
lists the CDDL record field data types that you can map to the TDMS form field
data types. Only the subset of the CDDL record field data types that TDMS sup-
ports is listed in the table.

Record fields, like form fields, have a length. In the case of certain data types (for
example, TEXT or SIGNED NUMERIC), the record definition explicitly specifies
a field length in addition to the data type. Other data types (for example, WORD,
BYTE, LONGWORD, F_FLOATING, H_FLOATING) have an implied length.
Some record fields, like form fields, also have scale factors.

TDMS does not support the use of scale factors (implied decimal points) for
binary integer or floating-point record field data types. Any scale factor appearing
with the CDD record definitions of such fields is ignored when you build a request
library file. If you want to use scaled record fields and have TDMS correctly han-
dle decimal point alignment at mapping time, you must use one of the numeric
string or packed-decimal record data types.

4-6 Making Sure Your Request Mappings Are Correct

For the description of these CDDL record field data types and how record field
length and scale factor are determined, see the VAX Common Data Dictionary

Data Definition Language Reference Manual

As with the TDMS form field data types, the CDD record field data types in
Table 4-3 are categorized to help you understand, in general, the types of

mappings RDU allows.

Table 4-3: Record Field Data Types

CDD Record Field Data Types
that TDMS Supports

Simplified Record Field
Data Types

TEXT(T)
VARYING TEXT (VT)

SIGNEDBYTE (B)

SIGNED WORD (W)

SIGNED LONGWORD (L)

SIGNED QUADWORD (Q)

UNSIGNED BYTE (BU)

UNSIGNED WORD (WU)

UNSIGNED LONGWORD (LU)
UNSIGNED NUMERIC (NU)

LEFT SEPARATE NUMERIC (NL)
RIGHT SEPARATE NUMERIC (NR)
LEFTOVERPUNCHED NUMERIC (NLO)
RIGHT OVERPUNCHED NUMERIC (NRO)
SIGNED NUMERIC (NZ)

PACKED NUMERIC (P)

F_FLOATING (F)

D_FLOATING (D)
G_FLOATING (G)
H_FLOATING (H)

DATE (ADT)

Text

Numeric

Numeric
Floating-point

Date

4.4 Creating Mappings Between Compatible Data Types

Read this section for general information about creating input and output
mappings between form field and record field data types. If you need detailed

information, see Chapter 8, VAX TDMS Input and Output Mapping Tables, in the

VAX TDMS Reference Manual

Making Sure Your Request Mappings Are Correct

In most cases, if field length (including scale factor), size, and signs are
compatible:

* You can:

- Input a Numeric form field to a Text record field

- Output a Text record field to a Numeric form field without a size
validator

Output a Numeric record field to a Text form field

* You cannotinput a Text form field to a Numeric record field

For both Tables 4-4 and 4-5:

* Y indicates that mapping is permitted if field length (including scale factor),
size, and sign are compatible

e N indicates that mapping is not permitted

The explanatory notes following Table 4-5 apply to both tables.

Table 4-4: Simplified Compatible Input Mappings (Form Fields to Record

Fields)
Form Field
Data Type Record Field Data Type
Numeric
Text Numeric Floating-Point
Text Y N N
Numeric Y Y Y

4-8 Making Sure Your Request Mappings Are Correct

Table 4-5: Simplified Compatible Output Mappings (Record Fields to Form

Fields)
Record Field
Data Type Form Field Data Type
Numeric with

Text Numeric Size Validator

Text Y Y N

Numeric Y Y Y

Numeric Y N N

Floating-Point

Notes to Tables 4-4 and 4-5

An N entry indicates that RDU will not let you map between the field data
types.

You cannot map between fields if the data type of the sending field, when
converted by TDMS, is not compatible with the receiving field data type.

Note that RDU may allow output mappings from Text to Numeric data
types, but it will not allow input mappings from Text to Numeric data types.
This is because the program can test the contents of a field before it is
mapped for output and thus prevent run-time errors.

A'Y entry indicates that, generally, you can map between the indicated data
types if the length (including scale factor), size, and sign conditions of the
fields are compatible. (There are special tests for floating-point and group
fields; these tests are described in more detail in Chapter 8 of the VAX
TDMS Reference Manual, VAX TDMS Input and Output Mapping Tables.)

Keep in mind that:
The field size or length is generally compatible if the size or length of
the receiving field is equal to or greater than the field size or length of

the sending field. RDU takes the scale factors of the receiving and send-
ing fields into account when determining if field lengths are compatible.

The sign condition is compatible if both sending and receiving fields are
signed or if both sending and receiving fields are unsigned.

Making Sure Your Request Mappings Are Correct 4-9

¢ RDU allows some output mappings even if the length, size, or sign condition
of the sending and receiving fields are incompatible. For example, RDU
issues a warning message but creates the mapping in the following cases:

- You output a record field of size UNSIGNED LONGWORD to a form
field with a picture of seven 9s. The warning level message indicates
possible overflow of the form field at run time. However, RDU creates
this mapping because the program can take action to prevent a value
being entered in the record field that would cause a run-time error.

- You output a signed record field to an UNSIGNED NUMERIC form
field. You can design the program so that a negative value never
appears in a record field that is to be mapped to an UNSIGNED
NUMERIC form field.

* RDU does not create input mappings if the field size, length, or sign condi-
tions of the sending and receiving fields are incompatible. For example, RDU
issues an error message and does not create the input mapping if:

- You input a form field with a picture of seven 9s (an UNSIGNED
NUMERIC data type) to a record field with the type WORD. Although
the data types are compatible according to Table 4-5, the form field
length is not compatible with the record field size. A field length of
9999999 could contain a number like 9876543; however, the maximum
value that a WORD can contain is 32767. Therefore, RDU does not cre-
ate a mapping.

- You input a SIGNED NUMERIC form field to an UNSIGNED
NUMERIC record field. Though the data types are compatible, the
application program cannot stop the operator from entering a negative
value that could be returned to the unsigned record field, thus causing a
run-time error. Therefore, RDU does not create the mapping.

4.5 Form Definition Listings

To see if form field data types, structures, and names are correct, you must list
the form definitions that the request uses. The following section describes how to
list the form definition.

4-10 Making Sure Your Request Mappings Are Correct

4.5.1 How to List the Form Definition

By using the LIST FORM command in FDU you can put the form definition into

a file and then display it on your terminal or print it. To use the LIST FORM

command, invoke FDU and enter the LIST FORM command using the /OUTPUT

qualifier to create a VMS file of the listing information. You can then type (or
print) the file specified in the LIST FORM command. For example:

$ FDU

FDU> LIST FORM/OUTPUT=MY_FORM.LIS ADD_EMPLOYEE_FORM
FDU> EXIT

$ PRINT MY_FORM.LIS

When you have a listing of the form definition, you can examine it for the infor-
mation described in the next section. For more information, see the LIST FORM

command in the VAX TDMS Reference Manual

4.5.2 What You Need to Know About Form Definitions

The information you need from a form listing includes:

¢ The CDD path name of the form you will use in an application

e The name of each form field you are mapping

¢ The structure of each form field (for example, simple, scrolled, or indexed)

You may also need to know:

¢ The field picture type of each field (numeric, alphabetic, date, alphanumeric,

and so on)
e The length of each field

. The scale factor of each field

e The data type TDMS assigned each form field (TEXT, SIGNED NUMERIC,

UNSIGNED NUMERIC, and so on)

e If the form has a Display Only field (you cannot use the field in an input
mapping)

e If a field is a Response Required field (the operator must enter data if you

map the field for input)

e If a field has a default value (a value TDMS returns from a form field if that
field is mapped for input and the operator or the request did not enter data

in it)

Making Sure Your Request Mappings Are Correct

4-11

e If the field has special field validators (these validators check operator-
entered data against specified ranges, lists of acceptable data, or other char-
acteristics)

4.6 Record Definition Listings

To see if record field data types, structures, and names are correct, you access the
record definitions associated with the request you are creating. You must list
them from the CDD to get all the information you need to create mappings.

4.6.1 How to List the Record Definition

By using the LIST command in the Dictionary Management Utility (DMU), you
can put the record definition into a file and then display it on your terminal or
print it.

To use the LIST command, invoke DMU at DCL level on your system (if DMU is
not defined as a symbol, you should define it first) and enter the LIST command
using the /FULL and /LISTING qualifiers to create a VMS file of the listing infor-
mation. You can then type (or print) the file specified in the LIST command. For
example:

$ DMU :== $DMU

$ DMU

DMU> LIST/FULL/LISTING=MY_RECORD.LIS ADD_EMPLOYEE_RECORD

DMU> EXIT
$ PRINT MY_RECORD.LIS

When you have a listing of the record definition, you can examine it for the infor-
mation described in the next section. For more information, see the LIST com-
mand in the VAX Common Data Dictionary Data Definition Language Reference
Manual

4.6.2 What You Need to Know About Record Definitions

Examine the listing for the following information that you need to map data to
record fields:

e The CDD path names of all record definitions your application uses
¢ The name of each record field

¢ The structure of each record field (simple field, group field, or array)

4-12 Making Sure Your Request Mappings Are Correct

You may also want to know:

e The data type of each record field (NUMERIC, WORD, TEXT, DATE and so
on)

e The length or size of each field in the record

e The scale factor of each field (if any)

For a full understanding of CDDL record definition syntax, refer to the VAX
Common Data Dictionary Data Definition Language Reference Manual

Making Sure Your Request Mappings Are Correct 4-13

Finding and Correcting Your Errors 5

If, when you create a request, you misspell a word, or refer to a form or record
incorrectly, RDU responds with error messages. There are many possible errors
that RDU checks for, to make sure your request is valid. This chapter describes
the following types of errors RDU checks for when you create, replace, or modify
a request definition:

* Syntax errors - Errors in spelling and punctuation.

* Semantic errors -- Errors in request logic. (Semantic errors include errors in
references to CDD form and record definitions and errors in the mapping
instructions between form fields and record fields.)

This chapter also describes semantic errors that RDU cannot check for you.

5.1 Syntax Errors Found by RDU

When RDU creates, modifies, or replaces a request or a request library definition,
it checks for syntax errors. Syntax errors include punctuation and spelling
mistakes.

The following are examples of syntax errors:

e Missing semicolon at the end of an instruction
e Misspelled instruction keyword
e Missing commas between elements in a list

e Missing END DEFINITION instruction followed by a semicolon at the end
of a request

5-1

Whenever RDU encounters syntax errors, it displays error level messages. Error
level messages always result in the failure of a request. RDU does not create,
modify, or replace a request or a request library definition that contains syntax
€errors.

For example, the following requests illustrate the types of syntax errors you can
make and how RDU responds:

RDU> CREATE REQUEST EMPLOYEE_TEST_REQUEST You forgot
RDUDFN> FORM IS EMPLOYEE_MENU_FORM <€— a semicolon.
RDUDFN> RECORD IS EMPLOYEE_RECORD
0002 RECORD IS EMPLOYEE_RECORD
1
%Rbﬁ;ﬁ;ﬁbéﬁﬁiéiﬁ;'Missing ';' at end of previous instruction
RDUDFN>

RDU> CREATE REQUEST EMPLOYEE_TEST_REQUEST_2

RDUDFN> FORM IS EMPLOYEE_ADD_FORM; You misspelled
RDUDFN> DISPALY FORM EMPLOYEE_ADD_FORM; <€— an instruction.
0002 DISPALY FORM EMPLOYEE_ADD_FORM;

%RDU-E-MISPELKWD, misspelled keyword *DISPALY’; should be ’'DISPLAY’
RDUDFN>

RDU> CREATE REQUEST EMPLOYEE_TEST_REQUEST_3

RDUDFN> FORM IS EMPLOYEE_ADD_FORM;

RDUDFN> RECORD IS EMPLOYEE_ADD_REC;

"RDUDFN> DISPLAY FORM EMPLOYEE_ADD_FORM; You forgot the
RDUDFN> OUTPUT comma between
RDUDFN> EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER <€— 1list elements.
RDUDFN> EMPLOYEE_FIRST TO EMPLOYEE_FIRST;

0006 EMPLOYEE_FIRST TO EMPLOYEE_FIRST;
1

%RDU-E-SYNTAXERR, Found 'EMPLOYEE_FIRST' when expecting ’with’
RDUDFN>

Note that, in Interactive mode, RDU displays syntax error messages when it
encounters the error. However, it does not cancel the CREATE REQUEST com-
mand. You can continue to enter request instructions and RDU checks for further
errors.

When you finish entering the source text, RDU indicates that the CREATE
REQUEST instruction has failed and returns you to the RDU > prompt. At this
point, you can use the EDIT command to correct the source text and have RDU
perform the CREATE REQUEST command again. See the section entitled Using
the EDIT Command for more information.

5-2 Finding and Correcting Your Errors

5.2 Semantic Errors Found by RDU

When RDU is in Validate mode and you are creating, replacing, modifying, or vali-
dating a request or building a request library file, RDU checks for semantic
errors. Semantic errors are mistakes that occur either in the internal logic of a
request or in the external logic that the request establishes between any forms
and records referred to by the request. The most common semantic errors you
find when working with a request are mapping errors.

Be aware that RDU cannot check all semantic errors. For more information, read
the section in this chapter entitled, Semantic Errors Not Found by RDU.

5.2.1 Mapping Errors

The following are examples of mapping errors for which RDU generates
messages:

e The record and form definitions you refer to in a request do not exist in the
CDD.

¢ The record fields you specify in a mapping instruction do not exist in the
record definition.

e The form fields you specify in a mapping instruction do not exist in the
active form definition.

e None of the form fields in a mapping implied by the %ALL syntax have an
identically named record field.

e Arecord field that you specify (or that is implied by a % ALL mapping) is not
unique within all the record definitions used by a request.

e The form and record fields you map do not have compatible structures, data
types, lengths, or sizes.

If you refer to a record or form definition in the header section that does not exist
in the CDD, RDU issues an error level message whether the request contains
%ALL or explicit mappings.

5.2.1.1 %ALL Warning and Information Messages -- In the case of %ZALL
mappings, if RDU finds mapping errors other than a nonexisting form or record
definition, only the single incorrect mapping instruction fails. (If the /LOG quali-
fier is specified with the command, RDU issues information and warning level
messages to indicate that the incorrect mapping instruction was not created).
RDU creates all other correct mapping instructions implied by the %ALL syntax.
The entire request fails only if all the implied mappings are incorrect.

Finding and Correcting Your Errors 5-3

For example, in the following request, the record EMPLOYEE_RECORD does
not contain a field named PROJECT to match the form field PROJECT. RDU
does not create a mapping between the fields PROJECT and PROJECT. It does,
however, create the request with the two other mapping instructions.

Note that because you used the /LOG qualifier, RDU issues an information level
message indicating both the mapping that failed and the request RDU created.

RDU> CREATE REQUEST EMPLOYEE_MENU_REQUEST/LOG
RDUDFN> FORM IS EMPLOYEE_MENU_FORM;
RDUDFN> RECORD IS EMPLOYEE_RECORD;
RDUDFN> DISPLAY FORM EMPLOYEE_MENU_FORM;
RDUDFN> OUTPUT %ALL;
RDUDFN> DESCRIPTION

/* %ALL outputs

LAST TO LAST,

MID_INIT TO MID_INIT,

PROJECT TO PROJECT */; <«— Form field PROJECT
has no identically
named record field.

RDUDFN> END DEFINITION;

Request at EMPLOYEE_MENU_REQUEST
0001 FORM IS EMPLOYEE_MENU_FORM;

%RDU-I-LODFRMNAM, loading form
%RDU-I-BLDFRMNAM, building form
0002 RECORD IS EMPLOYEE_RECORD;

%RDU-I-LODRECNAM, loading record

Request at EMPLOYEE_MENU_REQUEST;
............... 1
%RDU-I-BLDREQNAM, building request
A 00040UTPUT EMPLOYEE_RECORD.LAST TO LAST
A 0004 OUTPUT EMPLOYEE_RECORD.MID_INIT TO MID_INIT
A 0004 OUTPUT PROJECT TO PROJECT

%RDU-I-NOSUCHFLD, no such field

%RDU-I-NOMAPCRE, no mapping created

%RDU-S-REQCREATE, request EMPLOYEE_MENU_REQUEST created
RDU>

5.2.1.2 Explicit Mappings and Error and Warning Level Messages -- For
explicit mappings, if RDU finds mapping errors, it issues either warning or error
level messages.

For example, in the following request, RDU cannot create a mapping between the
data types of the form and record fields. TDMS does not allow mapping between
the data types UNSIGNED WORD and DATE. It issues an error level message
whether the mapping is an input, output, or return mapping.

RDU> CREATE REQUEST EMPLOYEE_INFO_REQUEST
RDUDFN> FORM IS EMPLOYEE_INFO_FORM;
RDUDFN> RECORD IS EMPL_RECORD;

RDUDFN> DISPLAY FORM EMPLOYEE_INFO_FORM;

5-4 Finding and Correcting Your Errors

RDUDFN> OUTPUT

RDUDFN> EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER,

RDUDFN> DAY_NUM TO DAY_DATE; <— Data type error
RDUDFN> END DEFINITION ;

0006 DAY_NUM TO DAY_DATE;

%RDU-E-ILLDSTDAT, Unsupported data type in destination of mapping
%RDU-E-NOMAPCRE, no mappings created

%RDU-E-ERRDPAR, Error during instruction processing
%RDU-E-NOREQCRE, no request created

RDU>

In some cases, RDU allows you to create mappings between fields with data types
or field lengths, sizes, or signed conditions that may cause run-time errors if cer-
tain data is mapped. In these cases, RDU issues warning level messages but
allows you to create the mappings. In the following example, for instance, the
request outputs data between the form field EMPLOYEE_BADGE with a field
picture of seven 9's and a record field EMPLOYEE_BADGE with a data type of
SIGNED LONGWORD. RDU issues the warning level messages for this single
mapping instruction indicating that:

e If a negative number exists in the record field at run time and is mapped to
the form field, you get a run-time error.

» If a number with a length of ten digits is in the record field at run time, the
data will be truncated. (The longest length of data a LONGWORD record
field can contain is ten digits and the form field can contain a figure only
seven digits long.)

Note that RDU does, however, allow you to create this request.
RDU> CREATE REQUEST EMPLOYEE_ACCT_REQUEST

RDUDFN> FORM IS EMPLOYEE_ACCT_FORM;

RDUDFN> RECORD IS EMPL_ACCT_RECORD;

RDUDFN> DISPLAY FORM EMPLOYEE_ACCT_FORM;

RDUDFN> OUTPUT
RDUDFN> EMPLOYEE_BADGE TO EMPLOYEE_BADGE; <— Sign and length
RDUDFN>END DEFINITION; warning
REQUEST AT EMPLOYEE_ACCT_REQUEST
0005 output employee_badge to employee_badge;
.................. 1

%RDU-W-CNDNEGSRC, Mapping may produce conversion error if source is negative
%RDU-W-DSTLENGEQ, DESTINATION LENGTH must be greater than or equal to 10

RDU>

5.2.2 Other Semantic Errors Found by RDU

If you include a DISPLAY FORM or USE FORM instruction in your request, but
forget to include a corresponding FORM IS instruction in your request header,
RDU signals an error.

Finding and Correcting Your Errors 5-5

If you specify a WITH OFFSET modifier for a DISPLAY FORM or USE FORM
instruction, RDU checks that the combination of the offset value and the form
size does not exceed 23. Your limit is 23 lines per screen; the 24th line is reserved
for the terminal message line. For example, if you specify an offset value of 10,
and the form itself is 15 lines long, RDU signals an error.

If you specify a WITH NAME modifier for two or more forms, records, or for a
combination of form(s) and record(s), the name must be unique. RDU signals an
error if two or more WITH NAME modifiers use duplicate names.

Chapter 6, Using Conditional Instructions in Requests, describes how to set up
conditional instructions within a request using a CONTROL FIELD IS instruc-
tion. If you misuse a DISPLAY FORM or USE FORM instruction within the con-
text of a CONTROL FIELD IS instruction, RDU signals an error.

5.3 Semantic Errors Not Found by RDU

RDU cannot check all semantic errors. Sometimes you set up instructions that
are legal within RDU but generate unexpected results. The following information
offers you a starting point for finding errors in your request.

5.3.1 Order Execution Errors

The order in which request instructions occur is not necessarily the order in which
they execute.

For example, you might try to default a form field first, then output information
to that field:

DEFAULT FIELD EMPLOYEE_NAME;

OUTPUT SMITH TO EMPLOYEE_NAME;

Only one of these instructions is performed but TDMS does not guarantee which
one.

When you place two OUTPUT TO instructions for a single field in two different
parts of the base request, you appear to lose one of the instructions. Suppose you
say:

OUTPUT A TO B_FIELD;

OUTPUT C TO B_FIELD;

5-6 Finding and Correcting Your Errors

Only one of these OUTPUT TO instructions is performed but TDMS does not
guarantee which one.

5.3.2 Mapping Errors

RDU cannot identify the following common mapping errors:

An error in the relationship of a RECORD IS instruction to the request invo-
cation call in the application program:

The number of records in the request must match the number of records
in the programming call that invokes the request

The order of records in the request must match the order of the records
in the programming call that invokes the request

A %ALL mapping error if one form field matches one record field. For exam-
ple, you can refer to the wrong record in your request, and a record field in
that record can accidentally match a form field. In this case, RDU will vali-
date the % ALL mapping, yet your results will not meet your expectations.

Whenever you use %ALL syntax, double check to be sure that you refer to
the forms and records that you intended.

In Chapter 7, Mapping Between Form Arrays and Record Arrays, you learn
some restrictions about arrays. For now, be aware that TDMS restricts the
number of elements that you can use in the source and destination of an
array mapping.

5.3.3 Form-Related Errors

Form-related errors that RDU cannot identify include the following:

TDMS supports a single active form at any given time. If you leave one form
on the screen from the previous request and add another form, using a
DISPLAY FORM WITH OFFSET instruction, both forms appear on your
screen at once. However, only the current form is considered active:

- If you press CTRL/W in order to refresh your screen, you will lose the
inactive form.

- Any input, output, or return mappings must direct information to or
from the active form. You cannot perform any mappings to or from the
inactive form.

- You cannot apply any video attributes or DEFAULT FIELD or RESET
FIELD instructions to the inactive form.

Finding and Correcting Your Errors 5-7

e A USE FORM instruction causes TDMS to display the active form from the
immediately preceding request.

The preceding request call must use that form in a USE FORM or
DISPLAY FORM instruction. Otherwise, the USE FORM instruction
defaults to a DISPLAY FORM instruction. The result is that the data
entered in form fields seems to be lost.

5.4 Correcting Errors

As mentioned in Chapter 2, you can use the RDU EDIT and MODIFY commands
to correct any errors you detect in your requests.

5.4.1 Using the EDIT Command

The EDIT command places the last command and any associated request text in
the edit buffer and allows you to correct or change the RDU command or the text
using the editor’s features. You can use it in RDU after you enter an RDU com-
mand (such as CREATE REQUEST, REPLACE REQUEST, SET DEFAULT,
and so on) and any text that may be associated with that command. When you
exit the editor and create a file, RDU executes the commands in the file.

If you exit the editor without creating an output file, RDU returns you to the
RDU > prompt. It does not keep a copy of your request text in the RDU buffer.

5.4.2 Using the MODIFY Command

The MODIFY command allows you to make changes to requests or request
library definitions that are already stored in the CDD. RDU extracts the request
or request library definition from the CDD and displays it on your screen for
editing. When you exit the edit buffer, if you made no syntax or mapping errors,
RDU stores the modified request (or request library definition). If RDU finds addi-
tional errors, it displays error messages and does not store the modified request.
Instead, it prompts you to indicate whether you want to edit the request or
request library definition again. RDU continues to prompt you until the request
text is correct. If you exit before you make all corrections, RDU discards all the
request text and returns you to the RDU > prompt.

5.4.3 Defining RDUSEDIT

When you issue the EDIT command or MODIFY command, RDU translates a
series of logical definitions to invoke the VMS EDT editor and your startup file
(EDTINILEDT), if one exists.

5-8 Finding and Correcting Your Errors

The logical RDUSEDIT points to a system-defined logical TDMS$EDIT.
TDMSSEDIT in turn points to a system-defined command procedure file
(SYS$COMMON:[SYSEXE]TDMSEDIT.COM). The command file invokes the
editor EDT and your startup file. (This chain of logical definitions is set up at
installation time.)

You can change the RDU EDIT and MODIFY commands to invoke a personal
command procedure that points to a particular editor. To do so, you must define
the process logical RDUSEDIT to call a command procedure you create. That pro-
cedure, in turn, invokes the editor with the characteristics you want.

5.4.4 Using the SAVE Command

Another way you may wish to make corrections to requests or request library defi-
nitions is to use the SAVE command. The SAVE command lets you save the last
command entered and any associated text. RDU saves the text in the VMS file
you specify:

RDU> SAVE

Save to file : EMPREQ

%RDU-I-SAVETOFIL, previous command SAVEd to file DBA2: [SMITH]EMPREQ.SAV;1
RDU>

This command creates a file (in this example EMPREQ.SAV) in your current
default directory, containing the last command you entered and the request or
request library definition text associated with that command. The default file type
is .SAV.

If you issue the TYPE command at DCL level, you can see the request (or request
library definition) text and RDU commands in the file EMPREQ.SAV.

For example:

$ TYPE EMPREQ.SAV

CREATE REQUEST EMPLOYEE_ADD
FORM IS EMPLOYEE_MENU_FORM;
RECORD IS EMPLOYEE_SELECT_RECORD;

CLEAR SCREEN;
DISPALY FORM EMPLOYEE_ADD_FORM; <— Error
OUTPUT
EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER <€— Error
EMPLOYEE_LAST TO EMPLOYEE_LAST;
END DEFINITION;

You can use the SAVE command if you want to create a file containing your
request text and then make corrections to your request text in that file. Note that
the file contains none of the error messages that RDU generates.

Finding and Correcting Your Errors 5-9

When you have made the necessary corrections, you can resubmit this file to
RDU:

RDU> CEMPREQ.SAV

Note that the file you create contains the last command you entered. Be sure that

the command is the one you want RDU to execute before passing the file back to
RDU.

5-10 Finding and Correcting Your Errors

Using Conditional Instructions in Requests 6

A conditional instruction is a request instruction that TDMS executes only if cer-
tain conditions are true. A request containing one or more of these instructions is
called a conditional request. Whether or not TDMS executes a conditional instruc-
tion depends on a run-time value called a control value. This chapter discusses the
general concept of a conditional instruction.

6.1 Using Conditional Instructions

You may want to use conditional instructions to:

¢ Simplify maintaining and developing an application by placing all terminal
I/O instructions within fewer requests

* Simplify the programmer’s task by removing code associated with logical
statements from the program and placing it in conditional instructions
within a request

For example, you can use conditional instructions to:

¢ Collect menu selections and direct the resulting flow of an application from a
single request

e Select and display appropriate error messages, using a single request when
one of a series of predefined run-time errors occurs

* Collect data from a selected group of elements within a form array, using a
single request (you learn about collecting selected form array elements in
Chapter 9, Using an Array as a Control Value)

e Output, input, and return data conditionally

6-1

6.2 Conditional Requests

A conditional request contains one or more conditional instructions. It contains:
¢ A header section with one or more of the following instructions:

- FORM IS
- RECORD IS

As in a simple request, you must enter header instructions before any other
request instructions.

e A base section containing instructions that TDMS executes each time a pro-
gram calls the request.

. One or more conditional instructions. Each conditional instruction contains:

- The key phrase CONTROL FIELD IS to identify the kind of conditional
instruction to be executed. It is not followed by a semicolon.

- A control value that identifies the record field TDMS evaluates during
request processing. The run-time control value determines which set of
instructions TDMS executes.

The control value must be data type TEXT.

- One more more case values associated with the control field. At run
time, TDMS matches the case values you specify with the values in the
control value. The case value must be a quoted string or the keyword
ANYMATCH or NOMATCH.

- Optional match instructions associated with each case value. A match
instruction is a request instruction to be executed when a case value
matches the control value.

Each match instruction is a request instruction in itself and must there-
fore be followed by a semicolon ;).

- The end phrase END CONTROL FIELD to indicate that this condi-
tional instruction is complete: there are no more case values to compare
with the current control value.

Because the ending phrase concludes the conditional instruction, it
must be followed by a semicolon (;).

e An END DEFINITION instruction followed by a semicolon (;) to indicate the
end of the request.

6-2 Using Conditional Instructions in Requests

Figure 6-1 illustrates the structure of a conditional request.

FORM IS form-name;
RECORD IS record-name;

request-instruction;

CONTROL FIELD IS control-value
case-value:

match-instruction;

[case-value:

match-instruction;]

END CONTROL FIELD;
END DEFINITION;

Figure 6-1: A Conditional Request

6.3 Using Conditional Requests

When a TDMS application program runs, it places values in the control value.
These values are usually determined by the program when it evaluates either data
returned from the operator in a previous request call or data from a database.

Because the program places values in the control value to determine 1/O action, it
is necessary for the programmer to know:

e What fields you declare as control values

e Which case values you declare

e Which action you define as a result of a control value evaluation

You can make sure the programmer has such information by using comment text
in the requests you create.

Using Conditional Instructions in Requests 6-3

(Though the value in the control value is usually placed there by the action of the
program, you can design a request that maps values to the control value, either
directly from the operator or from literals within the request.)

When an application program calls conditional requests, the following action
occurs:

1. TDMS checks your control value

2. TDMS compares the control value with all the case values that you associ-
ated with that control value

3. If the control value matches any of the case values associated with that con-
trol value, TDMS executes the instructions following the matching case
value

For example, a request might contain an instruction to collect information about
an employee’s spouse only if a control value indicates the employee is married, as
in Figure 6-2. Figure 6-2 shows a request containing a single CONTROL FIELD
IS instruction. This single conditional instruction contains two sets of request
instructions. TDMS executes one of these sets of instructions depending on the
value in the WK_MARITAL field when the program calls this request.

FAMILY_ADD Request

FORM IS FAMILY_FORM;
RECORD IS FAMILY_REC; <— Header
RECORD IS FAMILY_WORKREC;

CLEAR SCREEN; <— Base
DISPLAY FORM FAMILY_FORM;
CONTROL FIELD IS WK_MARITAL <— (Control value
"N": <€— (Case value
INPUT
NUMBER TO
NUMBER, <—— Request CONTROL
MARITAL_STATUS TO instructions FIELD IS
MARITAL_STATUS; conditional
nye. -<«— (Case value instruction
INPUT
FIRST TO
SPOUSE_FIRST, <—— Request
LAST TO instructions
SPOUSE_LAST;
END CONTROL FIELD; <€«— End control value
END DEFINITION;

Figure 6-2: Request Containing a CONTROL FIELD IS Instruction

6-4 Using Conditional Instructions in Requests

Notice that Figure 6-2 contains all the elements of a conditional request:

. A header section with FORM IS and RECORD IS instructions.

e A base section. The CLEAR SCREEN and DISPLAY FORM instructions
are part of the base request.

. A conditional instruction, CONTROL FIELD IS, that contains:

A control value, WK_MARITAL. The application program places a "Y"”
or an “N” in this control value.

Two case values associated with that control value. Here the case values
are two quoted strings, “"N” and "Y".

- Request instructions associated with each case value. In Figure 6-2 both
case values are followed by INPUT TO instructions.

The end phrase END CONTROL FIELD.

. The END DEFINITION instruction.

6.4 How TDMS Executes a Conditional Instruction at Run
Time

Figure 6-3 shows how the conditional request in Figure 6-2 works in a TDMS
application.

At run time, the following sequence of events occurs:

1. The TDMS application program places an “N” (the default value) in the con-
trol value WK_MARITAL and calls the FAMILY_ADD request.

2. TDMS executes the FAMILY_ADD request and:

e Displays the FAMILY_FORM
¢ Collects an employee number and marital status
e Returns the data to the program record

e Terminates the request

Using Conditional Instructions in Requests 6-5

3. The program evaluates the marital status. If the employee is married, the
program places a ”"Y” in the control value WK_MARITAL, replacing the
”"N” that was already in that field. If the employee is not married, the pro-
gram leaves the “N” in the control value.

4. The program calls the request a second time.

5. TDMS executes the FAMILY_ADD request and:

e Displays the FAMILY_FORM
¢ Collects spouse name if a ”Y” is in the control value

* Collects the employee number and marital status for a new employee if
an "N” is in the control value

. Terminates the request

Each time the application program calls the conditional request in Figure 6-2
TDMS executes only one set of instructions. The control value WK_MARITAL
determines which set of instructions TDMS executes.

6.4.1 Specifying Control Values

It is often useful to define the control values in separate records that serve as
workspaces. Although these workspace records are stored in the CDD, they are
not used to contain data that is input or output to the terminal.

Workspace records are different from database records. Workspace records are
used to collect information that the application program will use, then discard.
Database records are used to collect permanent information. By using a separate
workspace record to contain control values, you avoid the danger of mapping
extraneous information to a database.

In your request, you name these workspace records in the RECORD IS instruc-
tion. When the application program or the request sets up control values, the
database information is not affected.

For example, in Figure 6-3, the control value WK_MARITAL is a field in the
workspace record FAMILY_WORKREC. The record FAMILY_REC contains the
database information returned in record field MARITAL_STATUS.

6-6 Using Conditional Instructions in Requests

Application Program

1 Places “N" in
control value

2. Calls request
FAMILY _ ADD

Request

Terminal Output
(displays form)

FAMILY __ ADD Request

FORM IS FAMILY_FORM;
RECORD IS FAMILY_RECS
RECORD IS FAMILY_WORKRECS
CLEAR SCREENS3
DISPLAY FORM FAMILY_FORM;

CONTROL FIELD IS WK_MARITAL

g

INPUT

NUMBER TO NUMBER »

MARITAL_STATUS TO
MARITAL_STATUS

Fanily Form)

NUMBER:

MARITAL_STATUS: &

SPOUSE NAME:
FIRST:
LAST:

Terminal Input
(operator enters badge
number and marital status)

TDMS returns data to program

Application Program

1. Evaluates marital
status

2. Places "Y" in
control value if
status is married

3. Calls FAMILY _ADD
request again

CRYAT
1

INPUT
FIRST TO SPOUSE_FIRST:,
LAST TO SPOUSE_LAST:

END CONTROL FIELDS
END DEFINITION;S

Terminal Output
(displays form)

Fanily Forn

MARITAL_STATUS: _
SPOUSE NAME:
FIRST:
LAST:

Terminal Input
(operator enters
spouse name)

TDMS returns data to program

Figure 6-3: How a Conditional Request Works

ZK-00080-00

Using Conditional Instructions in Requests 6-7

6.4.1.1 Specifying More Than One Conditional Instruction -- You can specify
any number of CONTROL FIELD IS instructions in a single request. For every
conditional instruction, you specify a single control value. However, you must be
careful that the instructions under separate control values do not conflict.

For example, the following conditional request could result in conflicting
mappings at run time. TDMS does not signal an error when such mappings occur.

The request contains two CONTROL FIELD IS instructions. The control values
are EMPLOYEE_WAGE_CLASS and EMPLOYEE_JOB_CODE. If the program
places an ”"S” in the first control value and an “M” in the second control value,
TDMS tries to map two different literals, “SALARIED” and “CLASS 3”, to the
form field EMPLOYEE_STATUS.

CONTROL FIELD IS EMPLOYEE_WAGE_CLASS
"H": OUTPUT "HOURLY" TO EMPLOYEE_STATUS;
"S": OUTPUT "SALARIED" TO EMPLOYEE_STATUS;
END CONTROL FIELD;

CONTROL FIELD IS EMPLOYEE_JOB_CODE

"J" : OUTPUT "CLASS 1" TO EMPLOYEE_STATUS;
"L" : OUTPUT "CLASS 2" TO EMPLOYEE_STATUS;
"M" : OUTPUT "CLASS 3" TO EMPLOYEE_STATUS;

END CONTROL FIELD;

If the program does place an ”S” in EMPLOYEE_WAGE_CLASS and an “M” in
EMPLOYEE_JOB_CODE, TDMS executes only one of the mapping instructions
(with no guarantee of which one). TDMS issues no warning message either at
build time or at run time.

Note that case values are case insensitive. Any combination of upper and lower
case letters in the control field produces a match. For example, either "H” or “h”
will match the control value "H” in the previous example.

6.4.1.2 Using Nested CONTROL FIELD IS Instructions -- You can nest layers
of CONTROL FIELD IS instructions just as you nest IF statements in program
code. For example, the following request illustrates the use of nested CONTROL
FIELD IS instructions.

CONTROL FIELD IS JOB_CODE
"H" : OUTPUT "Hourly" TO WAGE_FIELD;
"S" : OUTPUT "Salaried" TO WAGE_FIELD;

CONTROL FIELD IS BENEFIT_CODE
llSll .
OUTPUT "Participating in stock option"
TO BENEFITS_FIELD;
NOMATCH :
OUTPUT "No benefits"
TO BENEFITS_FIELD;
END CONTROL FIELD;
END CONTROL FIELD;

6-8 Using Conditional Instructions in Requests

When a program calls this request, TDMS first evaluates the outer control value
JOB_CODE, finds a matching case value, and executes the associated OUTPUT
instructions.

TDMS executes the nested OUTPUT instructions only after it executes the outer
OUTPUT instructions. The case value containing the nested control field instruc-
tion must match the control value in the outer CONTROL FIELD IS instruction.

For instance, in the preceding example, TDMS evaluates the conditional instruc-
tion CONTROL FIELD IS BENEFIT_CODE only if the value ”S” is in the con-
trol value JOB_CODE. It executes the first of the nested mapping instructions to
BENEFITS_FIELD only if the case value ”S” appears in BENEFIT_CODE. Any
other value causes TDMS to execute the second nested mapping instruction.

At run time, TDMS executes all INPUT instructions, both outer and nested, after
it executes all OUTPUT instructions.

You can nest conditional instructions as many times as you want. You should be
careful, however, to avoid mappings that may lead to conflicting run-time instruc-
tions when creating complex conditional instructions.

Note

Conflicting mapping instructions always result in only one mapping. If
you have mapping instructions in a base request that conflict with map-
ping instructions in a conditional instruction, the conditional mappings
override the mappings in the base request. If mapping instructions in a
nested conditional instruction conflict with those in the outer condi-
tional instruction, the nested mapping is executed.

6.4.2 Specifying Case Values

Each control value must have one or more associated case values. Any of the fol-
lowing is a legal case value for the CONTROL FIELD IS instruction:

* A quoted string

¢ NOMATCH
e ANYMATCH

6.4.2.1 Using the NOMATCH Case Value -- If you specify the NOMATCH case
value and no other case values match the control value, TDMS executes the
instructions associated with NOMATCH. In the following example, TDMS
executes the instructions following the keyword NOMATCH only if the other
case value, "FIRST”, does not match the value in the control value,
START_PROGRAM.

Using Conditional Instructions in Requests 6-9

CONTROL FIELD IS START_PROGRAM

"FIRST":
DISPLAY FORM EMPLOYEE_INITIAL_FORM;
RETURN " " TO START_PROGRAM;
WAIT;

NOMATCH :
DISPLAY FORM EMPLOYEE_MENU_FORM;
INPUT SELECTION TO SELECTION;
INPUT EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER;

END CONTROL FIELD;

In the first call to this request, the value "FIRST” is in START_PROGRAM and
the RETURN instruction returns an empty string to the control value,
START_PROGRAM. This string clears the control value for the next call to the
request.

In the next call, the control value no longer matches the case value "FIRST”, so
TDMS executes the NOMATCH instructions.

Note that if you conditionally reference forms and you are using the NOMATCH
case value, make sure you have a DISPLAY FORM or USE FORM in the
NOMATCH case value. Otherwise, RDU cannot determine which form is active.

If you are not conditionally referencing forms, put the DISPLAY FORM or USE
FORM instructions in the base request.

6.4.2.2 Using the ANYMATCH Case Value -- You can also specify the
ANYMATCH case value. If TDMS finds any matches between a control value and
its associated case values, it executes not only those instructions but also the
ANYMATCH instructions.

In the following example, TDMS executes the instructions following the keyword
ANYMATCH if either of the other case values ("DUPLICATE” or
"NO_RECORD”) match the control value, SELECT_ERROR.

CONTROL FIELD IS SELECT_ERROR

"DUPLICATE":
OUTPUT "EMPLOYEE RECORD ALREADY EXISTS"
TO FIRST_MESSAGE_FIELD,
"ENTER NEW NUMBER OR NEW SELECTION"
TO SECOND_MESSAGE_FIELD;

"NO_RECORD" :
OUTPUT "NO RECORD EXISTS WITH THAT NUMBER."
TO FIRST_MESSAGE_FIELD,
"CHECK NUMBER AND TRY AGAIN."
TO SECOND_MESSAGE_FIELD;

6-10 Using Conditional Instructions in Requests

ANYMATCH:
OUTPUT EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER,

SELECTION TO SELECTION;
INPUT EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER,
SELECTION TO SELECTION;

END CONTROL FIELD;

Note that the form fields EMPLOYEE_NUMBER and SELECTION are input
and output each time an error message is displayed on the form. Each time, there-
fore, that the program detects a run-time error:

1. The application program places an appropriate value indicating the error in
the control value

2. The program calls the request

3. TDMS executes the instructions if the control value matches one of the
case values

4. The operator can enter a new employee number and a new menu selection if
any one of the errors specified in the request occurs

6.4.2.3 Conditional Use of Forms -- It is best not to use the ANYMATCH
case value when you want to conditionally reference forms in case values. Instead,
repeat all mappings and include a DISPLAY FORM or USE FORM instruction
within each case value.

However, if you must use ANYMATCH in this situation, be aware that a special
situation exists when you try to conditionally reference forms in case values. RDU
cannot know which case values will be executed at run time. When you have a
mapping instruction in the ANYMATCH case value and DISPLAY FORM or
USE FORM instructions in any other case value instructions, RDU cannot deter-
mine what form, (if any), will be active at run time.

In addition, the TDMS run-time system does not retain context about control
field case values and associated instructions once the case value and instructions
are executed. Therefore, when ANYMATCH instructions are executed at run
time, TDMS does not know about any form referenced in any other case value
instructions within the control field.

Keep the following points in mind when you conditionally reference forms in
CONTROL FIELD IS instructions that use the ANYMATCH case value:

Put a DISPLAY FORM or USE FORM instruction in all case values except
the ANYMATCH

Using Conditional Instructions in Requests 6-11

. Put instructions in ANYMATCH that do not reference form fields

* Do not put a DISPLAY FORM or USE FORM instruction in the
ANYMATCH case value

If you are not conditionally referencing forms, put the DISPLAY FORM or USE
FORM in the base request.

6.4.2.4 Case Values When You Use More Than One Control Value -- If you
have more than one CONTROL FIELD IS instruction, you also have more than
one series of case values. You can use the same case value twice if it is under a
different control field each time you use it.

If you select case values that are meaningful strings, the request will be clearer to
the programmer.

6.4.3 Match Instructions in a CONTROL FIELD IS Instruction

Match instructions are request instructions to be executed when a case value
matches the control value. You can associate any number of match instructions
with a particular case value.

Each match instruction is a request instruction in itself and must therefore be fol-
lowed by a semicolon (;).

When you create a conditional instruction, you can specify any request instruction
following a case value (except the FORM IS and RECORD IS instructions),
including instructions to:

¢ Display forms

e Input, output, and return data

¢ Change video attributes

e Use program request keys (discussed in Chapter 11, Program Request Keys)

6-12 Using Conditional Instructions in Requests

Mapping Between Form Arrays and Record Arrays 7

This chapter describes how to map between form arrays (including scrolled form
arrays) and record arrays.

The ability to define mappings between form and record arrays is a particularly
powerful feature of the request. Once you define an array mapping, TDMS han-
dles the display and collection of data within the scrolled or indexed form array.
The application program, therefore, as in all other form 1/O operations, need con-
tain no code to deal with data in a scrolled form region.

The examples in this chapter illustrate the correct syntax for referencing form
arrays and record arrays when you create mappings. They also show the kinds of
array mappings you may wish to use in a TDMS application.

7.1 What Is an Array?

An array (either a record or a form array) is a table of items in which all the items
are referred to by the same name and have the same characteristics.

For example, there are four elements in the record or form array LAST_NAME in
Figure 7-1. You refer to an element by using the name of the array and a number
(subscript) that indicates the position of the element in the array. The array
LAST_NAME begins at 1 and has the subscripts 1, 2, 3, and 4. To refer to the
third element of the array LAST_NAME, you use the array name and the
number 3.

A form array always begins at 1. A record array defined using CDDL can begin at
any value. If a record array begins with a subscript other than 1, you count from
the lowest subscript. Suppose a record array begins at 0, and you want to refer to
the third element of that array. Because the array begins at 0, the subscripts are
0, 1, 2, and 3, so you use the array name and the number 2.

See the section entitled Explicit Syntax for Mapping Array Elements for more
information about array subscripts.

LAST_NAME <—— Array name
LAST_NAME[1] | RICH
LAST_NAME[2] JONES

Array elements
LAST_NAME[3] | HEILMAN containing data

LAST_NAME [4] JAMISON

Figure 7-1: Definition of an Array

Note that each element of an array can contain a unique piece of data that has the
same characteristics as all the other elements of the array. Figure 7-1 shows the
array LAST_NAME, where all the elements of the array contain different last
names. Each last name consists of alphabetic data with a maximum size of 7
characters.

The array in Figure 7-1 is a one-dimensional array. That is, it consists of a single
row of data, and each element in that array is referred to by a single subscript
value. Each element in that array has the same data type and the same maximum
field length. Chapter 8, Advanced Mapping Between Arrays, discusses the use of
two-dimensional arrays in TDMS requests.

7.1.1 Types of Form Arrays You Can Map to and from

You can create mappings to indexed, scrolled, and horizontally-indexed scrolled
form arrays in TDMS. This chapter discusses indexed and scrolled arrays.
Chapter 8, Advanced Mapping Bétween Arrays, discusses mapping horizontally-
indexed scrolled arrays.

Both indexed and scrolled form arrays are one-dimensional and you refer to ele-
ments in them with a single subscript. The only difference between the two form
array types is that with indexed form arrays you can map only a fixed number of
elements, while with scrolled form arrays you can map an almost unlimited num-
ber of elements.

¢ Inan indexed form array, you designate how many elements the array con-
tains. An indexed array can be horizontally or vertically indexed.

For example, the form in Figure 7-2 contains a single, vertically-indexed
array, LAST_NAME. The array contains four elements, each of which has
the same name, length, and data type. As the example shows, each element
can contain a separate piece of data.

7-2 Mapping Between Form Arrays and Record Arrays

Form Definition
Indexed Form Array

F N
LAST_NAME:
ARRAAAA
ARRRAAAR
AARRRAA
AARRAAA
\ D,

Run-Time Form
Indexed Form Array

()
LAST_NAME:
RICH
JONES
HEILMAN
JAMISON
\. J

Figure 7-2: Indexed Array

In a scrolled form array or region, the total number of elements is not
defined when the form is created. Instead, a window into the scrolled array is
defined.

A window is one or more lines defined as a scrolled region on a form. At run
time, the operator can scroll data up and down within the window to see or
enter much more than one line of data.

Mapping Between Form Arrays and Record Arrays 7-3

For example, in Figure 7-3, DEPT_NO is a scrolled array with a window of
three lines. You can map the seven elements in the record array WK_DEPT
to the scrolled form array DEPT_NO. At run time, if the operator moves
through the scrolled window, TDMS displays all seven elements, three at a
time, in the three-line window.

See Chapter 10, How to Display and Input Data in a Scrolled Region, for
information on how data is presented in a scrolled array.

When you create a form with one or more scrolled form arrays, the entire
width of the form that contains the form array is called a scrolled region. You
define mappings to several scrolled arrays in exactly the same way as you do
for a single scrolled array.

Scrolled Form

- ™)
Employee Status
Changes
DEPT_NO
-— <—— 0Only three lines
il are visible at any
one time in the
form window
L y,

Record Array Within Group Field

DEFINE RECORD PERSONNEL_RECORD.
PERSONNEL STRUCTURE.
WK_DEPT OCCURS 7 TIMES DATATYPE TEXT 3. | <€— Seven elements
END PERSONNEL STRUCTURE. are mapped to
END PERSONNEL_RECORD. the scrolled
form array

Figure 7-3: Scrolled Array

7.1.2 Types of Record Arrays You Can Map to and from

TDMS lets you map form arrays to and from one-dimensional and two-
dimensional record arrays. This chapter illustrates one-dimensional record arrays.

A one-dimensional record array, in TDMS, is any array whose elements can be
identified by a single subscript value. Figures 7-4 and 7-5 contain examples of two
types of one-dimensional record arrays, simple arrays and group arrays.

7-4 Mapping Between Form Arrays and Record Arrays

In a simple array, each element has the same name, data type, length, and other
field characteristics. A simple array has no subfields. For example, in Figure 7-4,
WK_DEPT is a simple array that contains 7 elements. You refer to a simple array

using the array name and a subscript value.

DEFINE RECORD PERSONNEL_RECORD.
PERSONNEL STRUCTURE.
WK_DEPT OCCURS 7 TIMES DATATYPE TEXT 3.
END PERSONNEL STRUCTURE.
END PERSONNEL_RECORD.

DEFINE RECORD PERSONNEL_RECORD.
PERSONNEL STRUCTURE.
WK_DEPT ARRAY 0:6 DATATYPE TEXT 3.
END PERSONNEL STRUCTURE.
END PERSONNEL_RECORD.

Figure 7-4: Simple One-Dimensional Record Arrays

<— Seven-element array

<— Seven-element array

In a group array, each element of the array contains other fields, called subfields.
For instance, in Figure 7-5, the group array CHILD_INFO repeats 10 times. Each
occurrence of CHILD_INFO contains the subfields CHILD_F_NAME and
CHILD_AGE. You refer to a particular subfield entry in the array by the subfield

name and a single subscript.

DEFINE RECORD EMPL_DEPENDENT_RECORD.
EMPL_DEPENDENT STRUCTURE.
CHILD_INFO STRUCTURE OCCURS 10 TIMES.

END CHILD_INFO STRUCTURE.
END EMPL_DEPENDENT STRUCTURE.
END EMPL_DEPENDENT_RECORD.

CHILD_F_NAME DATATYPE TEXT 15 CHARACTERS.
CHILD_AGE DATATYPE NUMERIC 2 DIGITS.

Group array
Subfield
Subfield

14

DEFINE RECORD PROJECT_SUMMARY_RECORD.
PROJECT_SUMMARY STRUCTURE.
PROJECT STRUCTURE ARRAY 1:10.
PROJECT_NUMBERS DATATYPE TEXT

END PROJECT STRUCTURE.
END PROJECT_SUMMARY STRUCTURE.
END PROJECT_SUMMARY_RECORD.

5.
TOTAL_EMPLOYEES DATATYPE UNSIGNED NUMERIC 3.

Group array
Subfield
Subfield

11

Figure 7-5: One-Dimensional Group Arrays

Mapping Between Form Arrays and Record Arrays 7-5

Both the group array and its subfields are referred to as arrays. For instance, we
say the CHILD_AGE array has 10 elements and that the group array
CHILD_INFO has 10 elements.

In the preceding examples, the record definitions contain the two keywords
CDDL uses to define arrays, OCCURS and ARRAY:

e The keyword OCCURS and the number following it identify the field as an
array and indicate the number of times the elements in the array repeat.

e The keyword ARRAY and the numbers following it identify the field as an
array and indicate the upper and lower limits of the array subscript.

The syntax you use to map arrays is the same whether your request uses a record
containing the OCCURS syntax or a record containing the ARRAY syntax. See
the VAX Common Data Dictionary Data Definition Language Reference Manual
for more information on record definition syntax. See Chapter 16, Using Record
Definitions, for more information on how programming languages convert these
arrays for use in an application program.

7.2 Syntax for Mapping Between Form and Record Arrays

You can map arrays using either explicit syntax (with subscript values) or the
%ALL mapping syntax. Figure 7-6 shows array mappings with both types of
syntax.

Request

FORM IS EMPLOYEE_STATUS_CHANGES;
RECORDS ARE EMPL_DEPENDENT_RECORD,
PERSONNEL_RECORD;

DISPLAY FORM EMPLOYEE_STATUS_CHANGES;
Maps element 3 of a simple
OUTPUT WK_DEPT[3] TO DEPT_NO[1 TO 5]; <— record array to elements
1 to 5 of the form array

Maps elements 1 to 10 of

OUTPUT CHILD_AGE[1 TO 10] TO <— the subfield CHILD_AGE to
CHILD_AGE[1 TO 10]; the corresponding elements
of the scrolled form array
INPUT %ALL; <— Inputs all the elements
of form arrays CHILD_AGE
END DEFINITION; and DEPT_NO

Figure 7-6: Example of Mapping Arrays

7-6 Mapping Between Form Arrays and Record Arrays

7.2.1 Explicit Syntax for Mapping Array Elements

If you explicitly map array elements, the subscript values identify the elements
that you wish to map.

You can explicitly map:

¢ A single element in a form or record array:

CHILD_AGE[3]

e All the elements in a form or record array:

CHILD_AGE[1 TO 10]

e A subset of elements in a form or record array:

CHILD_AGE[2 TO 6]

The subscript always follows the array name and is enclosed in brackets. When
you refer to subfields in group arrays, the subscript value always follows the final
subfield in the reference, rather than the group array name. For example, the fol-
lowing subfield name and subscript value refers to the third element of the
subfield CHILD_AGE:

CHILD_INFO.CHILD_AGE[3]

The subscript must be a positive integer constant. If you refer to the first element
of an array, the subscript you use must be a 1; it cannot be a 0. The first element
in a form array always has a subscript of 1. However, when a record is defined
using CDDL or VAX DATATRIEVE, the first subscript can have any value.

If a request uses a CDD record array that has a first subscript value other than 1,
RDU redefines the array to a one-based array. For example, if you create a
request that refers to a zero-based record array, RDU displays the following mes-
sage indicating it is adjusting the bounds of the array:

WK_DEPT ARRAY 0:6

........................... 1
%RDU-W-CHNGBND, changing the' bound of the array from 0:6 to 1:7

RDU redefines the elements of the array WK_DEPT:

WK_DEPT[0] --> WK_DEPT[1]
WK_DEPT[1] --> WK_DEPT[2]

WK_DEPT[6] --> WK_DEPT[7]

Mapping Between Form Arrays and Record Arrays 7-7

When you reference the first element in your request, you use the subscript [1]. If
you do not, RDU tells you that your reference is outside the bounds of the array.

This conversion does not change the array itself or the number of elements in the
array. WK_DEPT still has seven elements. Although you access them by using
the subscripts [1] to [7], the application program references them according to the
normal procedure of the program language. For instance, BASIC would reference
WK_DEPT[0 TO 6].

7.2.2 %ALL Syntax for Mapping Array Elements

If you use the %ALL syntax to refer to all the elements of a form and a record
array, you do not explicitly specify subscripts (or array names).

Note that when you use %ALL to map:

e A scrolled form array, RDU maps the number of elements in the record
array (since there is no defined size for a scrolled form array).

* An indexed form array, RDU attempts to map the smaller number of ele-
ments, whether they are in the record or the form array.

This is true whether the mappings are INPUT TO, OUTPUT TO, or RETURN
TO instructions.

As you would expect, when RDU creates mappings for an entire form or record
array, it begins by creating a mapping between the first element of the sending
and receiving arrays. It maps that first element of the sending form or record
array to the first element of the receiving array. It then continues to map each
succeeding element to the corresponding element in the receiving array. For
example, the INPUT %ALL instruction in Figure 7-6 results in the following
run-time mappings:

Inputs CHILD_AGE[1] TO CHILD_AGE[1]
CHILD_AGE([2] TO CHILD_AGE[2]

CHILD_AGE[iO] TO CHILD_AGE[10]

The first element mapped in both form and record arrays is always assigned the
subscript value of [1]. As with explicit mappings, if the first element in a CDD
record array has a subscript value other than [1], RDU redefines this array to be a
one-based array.

7-8 Mapping Between Form Arrays and Record Arrays

7.3 Rules for Mapping Arrays

The following rules apply to all mappings you create between form and record
arrays (including two-dimensional arrays):

* You can map a single element of an array to a single element of any other
array (or to a simple field):

OUTPUT SIMPLE_RECORD_FIELD TO SCROLLED_FORM_ARRAY[3];
INPUT SCROLLED_FORM_ARRAY([3] TO TWO_DIM_ARRAY[3,4];

* You can map a single element of a sending array to a range of elements in a
receiving array:

OUTPUT RECORD_ARRAY[1] TO INDEXED_FORM_ARRAY[3 TO 5];
INPUT SCROLLED_FORM_ARRAY[3] TO TWO_DIM_ARRAY[3, 4 TO 5];

* You can map a range of elements to a range of elements:

OUTPUT RECORD_ARRAY[3 TO 5] TO SCROLLED_FORM_ARRAY[3 TO 5];
INPUT SCROLLED_FORM_ARRAY[2 TO 7] TO RECORD_ARRAY[1 TO 6];

The maximum number of dimensions for a record field is 16.

If you explicitly map more than a single element from a sending array, these addi-
tional rules apply:

* The receiving array and sending array must have the same number of dimen-
sions. For example, since scrolled and indexed form arrays have only one
dimension, you must map them to record arrays of only one dimension.

* The mapping instruction must specify the same number of elements in each
corresponding range in the sending and receiving arrays. You cannot explic-
itly map a smaller (or larger) range of elements to a larger (or smaller) range
of elements.

If RECORD_ARRAY contains only four elements and FORM_ARRAY con-
tains ten elements, the following mapping instruction is incorrect because
the range in the sending array is smaller than the corresponding range in the
receiving array:

OUTPUT RECORD_ARRAY[1 TO 4] TO FORM_ARRAY[1 TO 10];

However, you can use a subset of the larger FORM_ARRAY and create a
correct mapping:

OUTPUT RECORD_ARRAY[1 TO 4] TO FORM_ARRAY[1 TO 4];
INPUT FORM_ARRAY([3 TO 6] TO RECORD_ARRAY[1 TO 4];

Mapping Between Form Arrays and Record Arrays 7-9

e The elements you specify in a form and record array reference must be
within the bounds (in each dimension) of the form and record array
definitions.

7.3.1 Explicit Mappings and Errors

In explicit mappings, RDU displays error level messages and does not create a
request if you do not follow the array mapping rules specified in the previous
section.

7.3.2 9%ALL Mappings and Errors

In a %ALL mapping, you are implicitly mapping an entire array. The number of
elements in the receiving and sending arrays do not have to match. In the follow-
ing portion of a request, RDU maps all those elements for which it finds matching
receiving elements. Note that the record and form arrays have different defined
sizes.

INPUT %ALL;

OUTPUT %ALL;

DESCRIPTION /* The record array contains 4 elements.
The scrolled form array contains 10 elements.

INPUT %ALL
inputs form array ARRAY[1 TO 4] to
record array ARRAY[1 TO 4]

OUTPUT %ALL
outputs record array ARRAY[1 TO 4] to
form array ARRAY[1 TO 4] x/;

When you use the %ALL syntax to map between a larger array and a smaller
array, RDU always maps the smaller number of elements. RDU generates an
information level message and indicates the elements it was able to map (if you
specify the /LOG qualifier with the CREATE, MODIFY, REPLACE, or
VALIDATE commands). If you specify the /LOG qualifier with the BUILD
LIBRARY command, RDU indicates the elements it was able to map if:

e The request was created with the /NOSTORE qualifier
¢ The BUILD LIBRARY is validating each request in the library

7-10 Mapping Between Form Arrays and Record Arrays

As in requests with nonarray mappings, if RDU is able to create any of the
mappings implied by %ALL, it creates the %ALL mapping successfully.

7.4 Examples of Mapping Indexed and Scrolled Arrays

The remaining sections of this chapter contain examples of mappings between
indexed and scrolled form arrays and one-dimensional record arrays. Note that
you use the same syntax to explicitly map indexed and scrolled form arrays. The
only difference is:

¢ When you map an indexed array, you can map only the number of elements
defined in the indexed form array definition

* When you map a scrolled array, you can map as many elements as are
contained in the matching record array

When you map a record array to or from a scrolled form array, TDMS sets up an
underlying form array structure to contain all the elements of the array you map.
The operator does not see this array. It is the underlying structure that contains

all the elements you map to or from the scrolled array.

For instance, in Figure 7-7, the underlying form array contains seven elements
when you map the seven element record array DEPT_NO to the form array
DEPT_NO.

') _—
Employee Status
Changes
DEPT_.NO | | e e e s
_ y,

(continued on next page)
Figure 7-7: The Underlying Form Array

Mapping Between Form Arrays and Record Arrays 7-11

One-Dimensional Record

DEFINE RECORD EMPLOYEE_HIST_RECORD.
EMPLOYEE_HIST STRUCTURE.
DEPT_CHANGES STRUCTURE.
OCCURS 7 TIMES.
DEPT_NO DATATYPE TEXT 4.
DEPT_LOC DATATYPE TEXT 3.
END DEPT_CHANGES STRUCTURE.
END EMPLOYEE_HIST STRUCTURE.
END EMPLOYEE_HIST_RECORD.

Figure 7-7: The Underlying Form Array (Cont.)

TDMS determines which elements of the underlying form array are displayed in
the scrolled form array. See Chapter 10, How to Display and Input Data in a
Scrolled Region, for a discussion of screen presentation of data in a scrolled
region.

7.4.1 Explicit Mapping of Scrolied or Indexed Arrays

The request in Figure 7-8 shows how you can map an entire form array,
DEPT_NO, to and from a group record array, DEPT_CHANGES, subfield
DEPT_NO.

Note that, because a scrolled form array has no predefined size, the number of ele-
ments you specify in a mapping determines the number of elements in the form
array. (The number of elements you specify cannot exceed the number of ele-
ments in the record array that you are mapping.) In the following example, for
instance:

e The output mapping in the request establishes a size of seven elements for
the scrolled form array

e The input mapping in the request establishes a size of five elements for the
scrolled form array

7-12 Mapping Between Form Arrays and Record Arrays

—
Employee Status
Changes
DEPT_NO
_738
_435
_214
-
Record

o
nN
-
0
- e e e ————— - = = -

DEFINE RECORD EMPLOYEE_HIST_RECORD.
EMPLOYEE_HIST STRUCTURE.
DEPT_CHANGES STRUCTURE
OCCURS 7 TIMES.
DEPT_NO DATATYPE TEXT 4.
DEPT_LOC DATATYPE TEXT 3.
END DEPT_CHANGES STRUCTURE.
END EMPLOYEE_HIST STRUCTURE.
END EMPLOYEE_HIST_RECORD.

Request

FORM IS EMPLOYEE_STATUS_CHANGES;
RECORD IS EMPLOYEE_HIST_RECORD;

DISPLAY FORM EMPLOYEE_STATUS_CHANGES;

END DEFINITION;

OUTPUT DEPT_NO[1 TO 7] TO DEPT_NO[1 TO 7]; | <€— Seven elements

mapped for output

INPUT DEPT_NO[1 TO 5] TO DEPT_NO[1 TO 5]; <— Five elements

mapped for input

Figure 7-8: Explicitly Mapping an Entire Scrolled Form Array

Mapping Between Form Arrays and Record Arrays 7-13

7.4.2 %ALL Mappings

You can also map all the elements to and from a scrolled or indexed form array
using the %ALL syntax. In this section, you see how RDU creates %ALL
mappings first for a scrolled form array and second for an indexed form array.

7.4.2.1 %ALL Mapping and a Scrolied Array -- Figure 7-9 shows a request
that contains a %ALL mapping to and from a scrolled array. Note that because
the scrolled array has no predefined size and because you do not specify sub-
scripts with %ALL, RDU determines the number of elements to map.

Since the record array DEPT_NO contains seven elements, RDU creates input
and output mappings for seven elements.

At run time, TDMS:

Displays seven elements in the scrolled array DEPT_NO

Collects seven elements from the operator in the scrolled array DEPT_NO

————— = — - —
1
-~
w
<«

435
214
6219
-398
0816
(~N 4339
Employee Status
Changes
DEPTNO | T == =T=T======
738
435
_214
\. J

Figure 7-9: Using %ALL to Map an Entire Scrolled Array

7-14 Mapping Between Form Arrays and Record Arrays

One-Dimensional Record Array

DEFINE RECORD EMPLOYEE_HIST_RECORD.
EMPLOYEE_HIST STRUCTURE.
DEPT_CHANGES STRUCTURE
OCCURS 7 TIMES.
DEPT_NO DATATYPE TEXT 4.
DEPT_LOC DATATYPE TEXT 3.
END DEPT_CHANGES STRUCTURE.
END EMPLOYEE_HIST STRUCTURE.
END EMPLOYEE_HIST_RECORD.

Request

FORM IS EMPLOYEE_STATUS_CHANGES;
RECORD IS EMPLOYEE_HIST_RECORD;

DISPLAY FORM EMPLOYEE_STATUS_CHANGES;

INPUT %ALL;
OUTPUT %ALL;

END DEFINITION;

Figure 7-9: Using %ALL to Map an Entire Scrolled Array (Cont.)

7.4.2.2 Using %ALL Mappings and Indexed Arrays -- Figure 7-10 shows that
you can use %ALL to map all the elements in an indexed array. Again, because
you do not specify the number of elements in a %ALL mapping, RDU determines
the number of elements to map when you create the request.

In the case of an indexed form array, RDU always attempts to map the smaller
number of elements, whether in the indexed form array or the record array. This
is true whether the mappings are INPUT TO, OUTPUT TO, or RETURN TO

instructions.

The request in Figure 7-10 maps form arrays that each contain one less element
than the record array.

At run time, TDMS:

e Inputs all four elements of the indexed form arrays PROJECT_NO, HOURS,
and STATUS to corresponding elements in an identically named record
array

e Outputs four out of the five elements in the record arrays PROJECT_NO,
HOURS, and STATUS to the corresponding elements in the identically
named form arrays

Mapping Between Form Arrays and Record Arrays 7-15

Form

Employee Project Form

|EMPLOYEE NaME: __________ |

PROJECT_NO HOURS STATUS

__________ — - <€— Four
---------- -—- - indexed
elements

Group Record Array

DEFINE RECORD PROJECT_RECORD.
PROJECT STRUCTURE.
EMPLOYEE_NAME DATATYPE TEXT 1.
PRO_INFO STRUCTURE OCCURS <— Five elements
5 TIMES.
PROJECT_NO DATATYPE TEXT 10
HOURS DATATYPE NUMERIC 3.
STATUS DATATYPE TEXT 2.
END PRO_INFO STRUCTURE.
END PROJECT STRUCTURE.
END PROJECT_RECORD.

Request

FORM IS PROJECT_FORM;
RECORD IS PROJECT_RECORD;

DISPLAY FORM PROJECT_FORM;

INPUT %ALL;
OUTPUT %ALL;

END DEFINITION;

Figure 7-10: Using %ALL to Map Entire Indexed Arrays

Note that RDU always maps the smaller number of elements. RDU generates an
information level message indicating which elements it was able to map if you use
the /LOG qualifier.

7-16 Mapping Between Form Arrays and Record Arrays

7.4.3 Explicitly Mapping a Subset of a Scrolled or Indexed Array

You can map a subset of the entire array by using the range subscript. For both
indexed form arrays and scrolled form arrays, the rules for mapping an entire

array apply.

For example, in Figure 7-11, the request maps elements 3 through 7 of the group
record array DEPT_NO, to elements 2 through 6 of the form array DEPT_NO.

- - ———— - —

\

Employee Status
Changes

DEPT_NO

6219

One-Dimensional Record Array

w
4
©
— " ——— ——— ———— —

DEFINE RECORD EMPLOYEE_HIST_RECORD.
EMPLOYEE_HIST STRUCTURE.
DEPT_CHANGES STRUCTURE
OCCURS 7 TIMES.
DEPT_NO DATATYPE TEXT 4.
DEPT_LOC DATATYPE TEXT 3.
END DEPT_CHANGES STRUCTURE.
END EMPLOYEE_HIST STRUCTURE.
END EMPLOYEE_HIST_RECORD.

Request
FORM IS EMPLOYEE_STATUS_CHANGES;
RECORD IS EMPLOYEE_HIST_RECORD;

DISPLAY FORM EMPLOYEE_STATUS_CHANGES;

(continued on next page)

Figure 7-11: Mapping a Subset of an Indexed or Scrolled Array

Mapping Between Form Arrays and Record Arrays 7-17

OUTPUT DEPT_NO[3 TO 7] TO DEPT_NO[2 TO 6];
INPUT DEPT_NO[2 TO 6] TO DEPT_NO[3 TO 7];

END DEFINITION;

Figure 7-11: Mapping a Subset of an Indexed or Scrolled Array (Cont.)

7.4.4 Mapping Scrolled Arrays to Several Record Arrays

You can map to and from several scrolled (or indexed) arrays just as you do from
a single scrolled array.

You can map these arrays to one or more record definitions. This section illus-
trates mapping several form arrays to two records: a group array and a simple
array.

7.4.4.1 Explicitly Mapping Several Scrolled Arrays -- Figure 7-12 maps all ele-
ments of the CHILD_NAME array to two scrolled form arrays, LAST and

FIRST. It also maps the elements in the CHILD_AGE simple array to the
scrolled form array CHILD_AGE.

Note that the CHILD_NAME record array is a group record array. Because it
contains two subfields, LAST and FIRST, you can map two scrolled or indexed
form arrays to and from this record array.

r - s s s s ~

] 1

I I

I |

I 1

| |

| I

I TUTTLE JANNIE 5 !

| TUTTLE MIMI 7 |

I TUTTLE DONNIE 13 I

. TUTTLE JOEY 3 1

(~ N HAZEL 6 |

SUSIE 10

Family Form :

PARENT_NAME: TUTTLE PARENT_AGE: 41 |

|

_______________ 7

LAST FIRST CHILD_AGE
TUTTLE JANNIE 5
TUTTLE MIMI 7
TUTTLE DONNIE 13
_)

Figure 7-12: Explicit Mapping of Several Scrolled Arrays

7-18 Mapping Between Form Arrays and Record Arrays

One-Dimensional Group Record Array

DEFINE RECORD FAML_NAME_RECORD.
FAML_NAME STRUCTURE.

CHILD_NAME STRUCTURE
OCCURS 6 TIMES.

END CHILD_NAME STRUCTURE.
END FAML_NAME STRUCTURE.
END FAML_NAME_RECORD.

PARENT_NAME DATATYPE TEXT 10.

LAST DATATYPE TEXT 10.
FIRST DATATYPE TEXT 10.

One-Dimensional Simple Array

DEFINE RECORD FAML_AGE_RECORD.
FAML_AGE STRUCTURE.
PARENT_AGE DATATYPE NUMERIC 2.
CHILD_AGE OCCURS 6 TIMES
DATATYPE NUMERIC 2.
END FAML_AGE STRUCTURE.
END FAML_AGE_RECORD.

Request

FORM IS FAMILY_FORM;
RECORD IS FAML_NAME_RECORD;
RECORD IS FAML_AGE_RECORD;

DISPLAY FORM FAMILY_FORM;

OUTPUT
PARENT_NAME TO PARENT_NAME,
PARENT_AGE TO PARENT_AGE;
OUTPUT
LAST[1 TO 6] TO LAST[1 TO 6],
FIRST[1 TO 6] TO FIRST[1 TO 6],

WAIT;
END DEFINITION;

CHILD_AGE[1 TO 6] TO CHILD_AGE[1 TO 6];

<— Group array
CHILD_NAME

<—— Simple array
CHILD_AGE

<— Maps s8ix
elements

Figure 7-12: Explicit Mapping of Several Scrolied Arrays (Cont.)

You define the size of the scrolled form arrays when you explicitly state the sub-
script ranges. In addition, although you are referring to record fields in two sepa-
rate record definitions, the record names are not needed. All the field names,
FIRST, LAST, CHILD_AGE, PARENT_NAME, and PARENT_AGE, are
unique within the record definitions (FAML_NAME_RECORD and

FAML_AGE_RECORD) used by the request.

Mapping Between Form Arrays and Record Arrays 7-19

7.4.4.2 %ALL Mapping of Several Scrolled Arrays -- Figure 7-13 maps three
scrolled arrays to one-dimensional simple and group record arrays using the
%ALL syntax. As with any %ALL array mappings, you do not specify the ele-
ments to be mapped. When you create the request, RDU determines the number
of elements to map depending on the size of the record arrays.

In this example, the record array CHILD_AGE has four elements, while the
record array CHILD_NAME has six elements. RDU, therefore, creates:

e Six input and output mappings for the scrolled arrays LAST and FIRST
* Four input and output mappings for the scrolled array CHILD_AGE

Although the record elements are mapped to three scrolled arrays that have the
same window, you do not have to map the same number of elements to each
scrolled array.

P 2uuesibeeiiasienii et ~
1 1
| |
I 1
1 i
I TUTTLE JANNIE 5 :
1 TUTTLE MIMI 7
1 TUTTLE DONNIE 13 |
1 TUTTLE JOEY 2 [
- N HAZEL - |
SUSIE - |
Family Form |
PARENT_NAME: TUTTLE PARENT_AGE: 41 :
|
LAST FIRST CHILD_AGE '
i U rd
TUTTLE JANNIE 5
TUTTLE MIMI 7
TUTTLE DONNIE 13
_ J

One-Dimensional Group Record Array

DEFINE RECORD FAML_NAME_RECORD.
FAML_NAME STRUCTURE.

PARENT_NAME DATATYPE TEXT 10. Six-element
CHILD_NAME STRUCTURE OCCURS 6 TIMES. | <€— group array CHILD_NAME
LAST DATATYPE TEXT 10.

FIRST DATATYPE TEXT 10.
END CHILD_NAME STRUCTURE.
END FAML_NAME STRUCTURE.
END FAML_NAME_RECORD.

Figure 7-13: %ALL Mapping of Several Scrolled Arrays

7-20 Mapping Between Form Arrays and Record Arrays

One-Dimensional Simple Array

DEFINE RECORD FAML_AGE_RECORD.
FAML_AGE STRUCTURE.
PARENT_AGE DATATYPE NUMERIC 2.

CHILD_AGE OCCURS 4 TIMES Four-element
DATATYPE NUMERIC 2. <— simple array
END FAML_AGE STRUCTURE. CHILD_AGE

END FAML_AGE RECORD.

Request

FORM IS FAMILY_FORM;
RECORD IS FAML_NAME_RECORD;
RECORD IS FAML_AGE_RECORD;
DISPLAY FORM FAMILY_FORM;

INPUT %ALL;
OUTPUT %ALL;

END DEFINITION;

Figure 7-13: %ALL Mapping of Several Scrolled Arrays (Cont.)

Mapping Between Form Arrays and Record Arrays 7-21

Advanced Mapping Between Arrays 8

The preceding chapter discussed mapping between indexed and scrolled form
arrays and one-dimensional record arrays. This chapter explains how to map
between a horizontally-indexed scrolled form array and two-dimensional record
arrays.

8.1 Horizontally-Indexed Scrolled Form Arrays

A horizontally-indexed form array is an array with several elements that repeat
across a form. For instance, the form array CHILD_NAME in Figure 8-1 repeats
three times across the line on a form.

A horizontally-indexed array can also be a scrolled array. In Figure 8-1, for exam-
ple, the array CHILD_NAME consists of an undefined number of scrolled rows as
well as the three indexed columns. (Note that PARENT_LAST_NAME is a sepa-
rate one-dimensional scrolled array on the form.)

4)
Employee Dependent Form

PARENT _LAST_NAME CHILD_NAME

. J

Figure 8-1: Horizontally-Indexed Scrolled Form Array

8-1

A horizontally-indexed scrolled array always has two dimensions:

¢ The first dimension, the scrolled dimension, has no fixed size when the form
is created.

¢ The second dimension, the horizontally-indexed portion of the array, has a
fixed number of elements when the form is created.

8.2 Two-Dimensional Record Arrays

A two-dimensional record array is any array that contains elements that are speci-
fied using two subscript values.

You can map a one-dimensional form array to:

* A one-dimensional record array

* A two-dimensional record array

Note

In TDMS, arrays are categorized as one-dimensional or two-dimensional
according to whether you refer to the elements in those arrays by one
or two subscript values, respectively. How a particular programming
language refers to these same fields does not affect how you refer to
them in a request. See Chapter 16, Using Record Definitions, for infor-
mation on how BASIC, FORTRAN, and COBOL convert these arrays
to record definitions the programs can use.

The following examples show two-dimensional arrays.

These record definitions were created using CDDL. As in the preceding chapter,
both the ARRAY and OCCURS syntax are shown:

¢ Where the keywords OCCURS or ARRAY are nested, the inner, or nested
OCCURS or ARRAY indicates the second dimension of the array.

e Where the keyword ARRAY is not nested and two sets of subscripts are
specified, the second set of subscript values identifies the second dimension
of the array.

8-2 Advanced Mapping Between Arrays

In FAMILY_RECORD, the array CHILD_NAME repeats three times within the
group array FAMILY_NAME, which occurs five times.

FAMILY_RECORD

DEFINE RECORD FAMILY_RECORD.
FAMILY STRUCTURE.
FAMILY_NUMBER
DATATYPE NUMERIC & DIGITS.
FAMILY_NAME STRUCTURE
OCCURS 5 TIMES.
PARENT_LAST_NAME

DATATYPE TEXT 15. Nested OCCURS
CHILD_NAME OCCURS 3 TIMES <€— two-dimensional
DATATYPE TEXT 5. group array

END FAMILY_NAME STRUCTURE.
END FAMILY STRUCTURE.
END FAMILY_RECORD.

In PROJECT_SUMMARY_RECORD, the array WAGE_CLASS repeats three
times within the ten-element group array PROJECT.

PROJECT_SUMMARY_RECORD

DEFINE RECORD PROJECT_SUMMARY_RECORD.
PROJECT_SUMMARY STRUCTURE.
PROJECT STRUCTURE ARRAY 1:10.
PROJECT_NUMBERS
DATATYPE TEXT 5.
TOTAL_EMPLOYEES
DATATYPE NUMERIC 5.
WAGE_CLASS ARRAY 1:3
DATATYPE NUMERIC 5. <—— Two-dimensional
END PROJECT STRUCTURE. array
END PROJECT_SUMMARY STRUCTURE.
END PROJECT_SUMMARY_RECORD.

In PROJECT_CONTROL_RECORD, the array CONTROL_PROJECT contains
elements that repeat 30 times in a 10 by 3 matrix.
PROJECT_CONTROL_RECORD

DEFINE RECORD PROJECT_CONTROL_RECORD.
PROJECT_SUMMARY STRUCTURE.

CONTROL_NO OCCURS 3 TIMES
DATATYPE NUMERIC 5. One-dimensional

CONTROL_COST ARRAY 1:5 arrays
DATATYPE NUMERIC 5.

CONTROL_PROJECT ARRAY 1:10,1:3 <— Two-dimensional
DATATYPE NUMERIC §. array

END PROJECT_SUMMARY STRUCTURE.
END PROJECT_CONTROL_RECORD.

Advanced Mapping Between Arrays 8-3

8.3 Syntax for Mapping Two-Dimensional Arrays

With horizontally-indexed scrolled form arrays and two-dimensional record arrays,
as with all arrays, you can refer to:

* A single element in the array

e A subset of all the elements using a range subscript

¢ The entire two-dimensional array using explicit subscript references

e All the elements of the array using the %ALL syntax

The subscript values you specify are positioned following the last record field or
form field name you are mapping and are enclosed in brackets and separated by
commas. For example:

FAMILY_NAME.CHILD_NAME[1 TO 5, 1 TO 3];

As in all references to record fields, you need specify only as many preceding
group field names as necessary to make a record field reference unique. You can
refer to CHILD_NAME in FAMILY_RECORD, for instance, as:

CHILD_NAME[1 TO 5, 1 TO 3];

8.4 General Rules for Two-Dimensional Arrays
With horizontally-indexed scrolled form arrays and two-dimensional record arrays:
* You can map a single element of an array to a single element of any other
array (or to a simple field):
OUTPUT TWO_DIM_ELEMENT[4,7] TO HORIZONTAL_ELEMENT[4,7];
INPUT HORIZONTAL_ELEMENT([3,2] TO TWO_DIM_ELEMENT[3,2];

* You can map a single element of a sending array to a range of elements in a
receiving array:

OUTPUT TWO_DIM_ELEMENT[4,7] TO HORIZONTAL_RANGE[4 TO 7, 7 TO 10];
INPUT HORIZONTAL_ELEMENT[3,2] TO TWO_DIM_RANGE[3, 2 TO 10];
* You can map a range of elements to a range of elements:
OUTPUT TWO_DIM_RECORD_ARRAY[1 TO 8, 1 TO 4]
TO HORIZONTAL_ARRAY[4 TO 11, 1 TO 4];

INPUT HORIZONTAL_ARRAY[3 TO 5, 2 TO 8]
TO TWO_DIM_ARRAY[1 TO 3, 1 TO 7];

8-4 Advanced Mapping Between Arrays

In all mappings, if you explicitly map more than a single element from a sending
array:

* You must specify the same number of elements (in each dimension) in the
receiving and sending arrays

e The sending and receiving arrays must have two dimensions

e The elements referenced in each dimension must be within the bounds (in
each dimension) of the record and form array definitions

In a %ALL mapping of a two-dimensional array, you do not specify subscript val-

ues. In all cases where you are mapping two-dimensional arrays, both sending and
receiving arrays must have two dimensions (unless both the arrays contain only a
single element).

Because you do not specify the elements to map, when you create a request RDU
determines the number of elements to map according to the following procedure:

e RDU maps to the horizontally-indexed area whichever is lower, either:

The number of elements in the indexed portion of the form array

The number of elements in the second dimension of the two-dimensional
record array

e RDU maps to the scrolled area the number of elements in the first dimen-
sion of the record array

8.5 Examples of Mapping Two-Dimensional Arrays

The following sections show how you can map an entire horizontally-indexed
scrolled array first using explicit syntax and then using %ALL. The final example
shows how you can map a subset of a two-dimensional array.

8.5.1 Explicit Syntax to Map a Two-Dimensional Array

Figure 8-2 shows how you can explicitly specify a mapping to and from all the ele-
ments in a horizontally-indexed scrolled array.

The request maps for output:

e All five elements in the one-dimensional array PARENT_LAST_NAME to
the scrolled array PARENT_LAST_NAME

e All three elements in each occurrence of the two-dimensional record array
CHILD_NAME to all three elements in each row of the horizontally-indexed
scrolled form array CHILD_NAME

Advanced Mapping Between Arrays 8-5

Notice in the mapping instructions that the scrolled or row portion subscript (1 to
5) of the CHILD_NAME array is expressed first, and the indexed or column sub-
script (1 to 3) is expressed last. The request maps the same number of elements

(in each dimension) in the receiving and sending arrays.

EMPLOYEE_DEPENDENT_FORM

—— - ——— = —

ANDERSON
DODD
TOOKER
WALKER
ZAPPO
f)
Employee Dependent Form

PARENT_LAST _NAME CHILD_NAME

ANDERSON BUD BETTY MWALLY

DODD ANNIE CUBBY BILLY

L)

Two-Dimensional Group Record (FAMILY_RECORD)

DEFINE RECORD FAMILY_RECORD.
FAMILY STRUCTURE.
FAMILY_NUMBER DATATYPE NUMERIC 5 DIGITS.
FAMILY_NAME STRUCTURE OCCURS 5 TIMES.
PARENT_LAST_NAME DATATYPE TEXT 15.

CHILD_NAME OCCURS 3 TIMES
DATATYPE TEXT 5.
END FAMILY_NAME STRUCTURE.
END FAMILY STRUCTURE.
END FAMILY_RECORD.

Request

FORM IS EMPLOYEE_DEPENDENT_FORM;
RECORD IS FAMILY_RECORD;

DISPLAY FORM EMPLOYEE_DEPENDENT_FORM;

OUTPUT PARENT_LAST_NAME[1 TO 5]
TO PARENT_LAST_NAME[1 TO 5],

BUD BETTY
ANNIE CUBBY
FRED PAM

LUKE DIlzzy
RED HARRY

Group array
<€— occurs five

times

WALLY
BILLY
JACK

BOBBY
GABBY

<— Two-dimensional

array occurs
three times

Figure 8-2: Using Explicit Syntax to Map a Two-Dimensional Array

8-6 Advanced Mapping Between Arrays

CHILD_NAME[1 TO 5, 1 TO 3]
TO CHILD_NAME[1 TO 5, 1 TO 3];
WAIT;

END DEFINITION;

Figure 8-2: Using Explicit Syntax to Map a Two-Dimensional Array (Cont.)

8.5.2 Rules for %ALL Mapping of Two-Dimensional Arrays

In a %ALL mapping of a two-dimensional array, you do not specify subscript val-
ues. Because you do not explicitly specify the elements to map when you create
the request, RDU determines the number of elements to map according to the fol-
lowing procedure:

¢ RDU maps to the horizontally-indexed area whichever is lower, either:

The number of elements in the indexed portion of the form array

The number of elements in the second dimension of the two-dimensional
record array

e RDU maps to the scrolled area the number of elements in the first dimen-
sion of the record array

8.5.3 %ALL to Map a Two-Dimensional Array

Figure 8-3 shows how you map an entire horizontally-indexed scrolled array using
the %ALL syntax. The %ALL syntax maps to and from both the arrays on the
EMPLOYEE_DEPENDENT_FORM. Since you do not specify the subscript val-
ues, RDU determines the number of elements to map to both scrolled and
horizontally-indexed scrolled arrays:

e In the case of the scrolled form array PARENT_LAST_NAME, RDU maps
five elements. That is, it maps the number of elements in the record array
PARENT_LAST_NAME.

¢ In the case of the two-dimensional, horizontally-indexed scrolled array
CHILD_NAME:

RDU maps two elements to and from the indexed portion of the form.
That is, it maps the number of elements in the second dimension of the
record array CHILD_NAME. (Note that the second dimension of the
form array has three elements while the second dimension of the record
array has only two elements.)

Advanced Mapping Between Arrays 8-7

RDU maps five elements to the scrolled area, the number of elements in
the first dimension of the record array CHILD_NAME.

ANDERSON
DODD
TOOKER
WALKER
ZAPPO
—
Employee Dependent Form
PARENT _LAST_NAME CHILD_NAME
ANDERSON BUD BETTY _____
DODD ANNIE CUBBY _____
\

Two-Dimensional Group Record Array

BUD BETTY _____
ANNIE CUBBY _____
FRED PAM _____
RED HARRY _____

|
|
|
|
|
LUKE DIZzY ____. I
|
1
I
|
|
|

DEFINE RECORD FAMILY_RECORD.
FAMILY STRUCTURE.

FAMILY_NAME STRUCTURE OCCURS 5 TIMES.
CHILD_NAME OCCURS 2 TIMES
END FAMILY_NAME STRUCTURE.

END FAMILY STRUCTURE.
END FAMILY_RECORD.

FAMILY_NUMBER DATATYPE NUMERIC &5 DIGITS.
PARENT_LAST_NAME DATATYPE TEXT 15.
DATATYPE TEXT 5.

<€— (Occurs five times

<€— Two-dimensional
array occurs
two times

Request

FORM IS EMPLOYEE_DEPENDENT_FORM;
RECORD IS FAMILY_RECORD;

DISPLAY FORM EMPLOYEE_DEPENDENT_FORM;

OUTPUT %ALL;
INPUT %ALL;

END DEFINITION;

Figure 8-3: Using %ALL Syntax to Map Two-Dimensional Arrays

8-8 Advanced Mapping Between Arrays

8.5.4 Mapping a Subset of a Two-Dimensional Array

Figure 8-4 shows how to map a subset of an entire form or record array by explic-
itly specifying the subscript values. It also shows that you can specify different
subscripts in the sending array than in the receiving array as long as the number
of elements you map is the same.

The request maps elements 2 to 5 of the one-dimensional record array
PARENT_LAST_NAME to the first four lines of the scrolled form array
PARENT_LAST_NAME. It also outputs elements 1 to 2 from the record array
CHILD_NAME.

Note that the request maps these record array elements to a different subset of
elements on the form. That is, the record elements 2 to 5 from the
FAMILY_NAME group array are displayed in the form array on rows 1 to 4. The
record elements 1 to 2 of the CHILD_NAME array are displayed on the
horizontally-indexed fields 2 to 3.

rm s s s smsEmssmEsmEmEmsmEmEE - ~
] |
| I
1 [
| i
| ANDERSON _____ BETTY MWALLY I
pob» CUBBY BILLY |

| TOOKER ___~ PAM JACK
| WALKER - DIZZY BOBBY :
I 1
4 A :
Employee Dependent Form 1
PARENT _LAST _NAME CHILD_NAME :
ANDERSON . BETTY WALLY [
poo» - CUBBY BILLY |+= —m— e —e———— .

_ p,

{(continued on next page)

Figure 8-4: Mapping a Subset of a Two-Dimensional Array

Advanced Mapping Between Arrays 8-9

Two-Dimensional Group Record

DEFINE RECORD FAMILY_RECORD.
FAMILY STRUCTURE.

FAMILY_NUMBER DATATYPE NUMERIC 5 DIGITS. Group array
FAMILY_NAME STRUCTURE OCCURS 5 TIMES. <—— occurs five times
PARENT_LAST_NAME DATATYPE TEXT 15.
CHILD_NAME OCCURS 3 TIMES <— Two-dimensional
DATATYPE TEXT 5. array occurs
END FAMILY_NAME STRUCTURE. three times

END FAMILY STRUCTURE.
END FAMILY_RECORD.

Request

FORM IS EMPLOYEE_DEPENDENT_FORM;
RECORD IS FAMILY_RECORD;

DISPLAY FORM EMPLOYEE_DEPENDENT_FORM;

OUTPUT
PARENT_LAST_NAME[2 TO 5]
TO PARENT_LAST_NAME[1 TO 4],
CHILD_NAME[2 TO 5, 1 TO 2]
TO CHILD_NAME[1 TO 4, 2 TO 3];
WAIT;
END DEFINITION;

Figure 8-4: Mapping a Subset of a Two-Dimensional Array (Cont.)

8-10 Advanced Mapping Between Arrays

Using an Array as a Control Value 9

Chapter 6, Using Conditional Instructions in Requests, described how to use con-
ditional instructions to execute different request instructions depending on a con-
trol value. This chapter explains how to use conditional instructions to input or
output selective elements in an array depending on a control value array. For
instance, by using a conditional instruction, you can specify that TDMS collect
only those elements in a scrolled field that an coperator did not enter correctly the
first time.

9.1 How to Use an Array As a Control Value to Collect Varying
Elements

For TDMS to display or collect selective elements at run time, you can specify a
conditional instruction that uses both:

* An array as a control value

* A variable as a subscript to specify and map elements that are in a form or
record array

The array you specify as a control value must use a contiguous range of subscript
values called a dependent range. For instance, in the following phrase there are
two dependent ranges, 1 to 10 and 1 to 5:

CONTROL FIELD IS CONTROL_ARRAY[1 TO 10, 1 TO 5]

The variable subscript you specify can be one of two keywords: %LINE or
%ENTRY. These subscript names are known as dependent names. You can use a
dependent name as a subscript in mapping instructions:

OUTPUT RECORD_FIELD[%LINE] TO FORM_FIELD[%LINE];

The value of the dependent name varies at run time depending on the values in
the dependent range. For instance, in Figure 9-1, %LINE and %2ENTRY vary in
value depending on the dependent ranges in the control value array
CONTROL_ARRAY.

At run time:

U %LINE takes on the values 1 to 10
. %ENTRY takes on the values 1 to 5

RECORDS ARE CONTROL_RECORD, DATABASE_RECORD;
FORM IS FORM_NAME;

DISPLAY FORM FORM_NAME;

Control array
CONTROL FIELD IS CONTROL_ARRAY[1 TO 10, 1 TO 5] | <«—— dependent ranges

"99999": INPUT FORM_FIELD[%LINE] TO
RECORD_FIELD[%LINE]; <— %LINE can vary
from 1 to 10
"999" : OUTPUT RECORD_FIELD[%ENTRY] TO
FORM_FIELD[%ENTRY]; <«— Y%ENTRY can vary

from 1 to 5
END CONTROL FIELD;
END DEFINITION;

Figure 9-1: Using an Array as a Control Value

Figure 9-1 shows that when you declare a control value array, RDU automatically
assigns the subscript range values to the dependent names %LINE and
%ENTRY. By default, RDU always assigns the first dimension in a control value
array to %LINE and the second dimension to %ENTRY.

9.2 How TDMS Evaluates a Control Value Array at Run Time

When a program calls a request, TDMS evaluates the control value, element by
element. As with any conditional instruction, TDMS checks that the value in the
control value (in this case, the value in an element) matches the case value in the
request. When TDMS finds a match, it executes the instructions associated with
that case value. For a one-dimensional control array, %LINE has the same sub-
script value as the element TDMS is currently evaluating.

For instance, suppose you specify a CONTROL FIELD IS instruction that:

e Uses a one-dimensional array of five elements as a control value

e Has an associated conditional mapping instruction using the dependent
name %LINE

9-2 Using an Array as a Control Value

CONTROL_ARRAY[1 TO 5] (in record CONTROL_RECORD)
99999 Element 1
Element 2
Element 3
99999 Element 4
99999 Element 5
Request

RECORDS ARE CONTROL_RECORD,
DATABASE _RECORD;
FORM IS FORM_NAME ;

CONTROL FIELD IS CONTROL_ARRAY[1 TO 5]
"99999": INPUT FORM_FIELD[%LINE] TO
RECORD_FIELD[%LINE];
END CONTROL FIELD;

END DEFINITION;

Suppose also that, at run time, elements 1, 4, and 5 in the control value array
CONTROL_ARRAY contain the value 99999. Figure 9-2 shows that when TDMS
finds the value 99999 in CONTROL_ARRAY elements 1, 4, and 5, it executes the

conditional mapping instruction specified in the request.

FORM_NAME
e)
FORM_FIELD
data__
data__
data__
. J

—_—

RECORD_FIELD
(in record
DATABASE_RECORD)

data

data

data

Figure 9-2: How TDMS Evaluates a Control Value Array at Run Time

Using an Array as a Control Value 9-3

The value of %LINE in the mapping instructions in Figure 9-2 is, successively, 1,
4, and 5. TDMS therefore inputs:

FORM_FIELD[1] TO RECORD_FIELD[1]
FORM_FIELD[4] TO RECORD_FIELD[4]
FORM_FIELD[5] TO RECORD_FIELD[5]

9.3 Rules for Specifying the Control Value Array

You must observe the following rules when using an array as a control value:

¢ The array must be TEXT data type.

* You must explicitly specify the dependent range or dependent ranges. You
can specify the entire array or a subset of the array.

* You cannot nest CONTROL FIELD IS instructions that use dependent
ranges.

e The array can be a one- or two-dimensional array.

e When you end a conditional instruction with the ending key phrase (END
CONTROL FIELD), a dependent range is no longer active; that is, it is no
longer assigned to a dependent name.

Once you specify a control value array range and RDU assigns that range to a
TDMS-defined dependent name, the range remains associated with that depen-
dent name until you end that control value with an END CONTROL FIELD

phrase.

Figure 9-3 shows that when you end a CONTROL FIELD IS instruction with an
END CONTROL FIELD phrase, a dependent range is no longer active. The two
TDMS-defined dependent names can be reassigned in a new CONTROL FIELD
IS instruction. They cannot be referred to until they are reassigned.

. Assigns
CONTROL FIELD IS CONTROL_ARRAY_A[1 TO 10, 1 TO 5] | <€— values to %LINE
"ERROR": INPUT FORM_FIELD[%LINE,%ENTRY] and %ENTRY
TO RECORD_FIELD[%LINE, %ENTRY];
END CONTROL FIELD; <— Ends assignment
CONTROL FIELD IS CONTROL_ARRAY B[1 TO 7, 1 TO 3] <—— Assigns new
"ERROR": INPUT FORM_FIELD[%LINE, %ENTRY] values to %LINE
TO RECORD_FIELD[%LINE, %ENTRY]; and %ENTRY
END CONTROL FIELD; <— Ends assignment

END DEFINITION;

Figure 9-3: The Scope of a Dependent Range

9-4 Using an Array as a Control Value

If you attempt to declare an additional dependent range before you end a current
one (by nesting CONTROL FIELD IS instructions that use dependent ranges),
RDU returns an error message, as Figure 9-4 shows.

CONTROL FIELD IS CONTROL_ARRAY[1 TO 10] <— Assigns values
"ERROR": INPUT to %LINE
FORM_FIELD[%LINE] TO RECORD_FIELD[%LINE];
010 CONTROL FIELD IS NESTED_ARRAY_2[1 TO 10] -«— INCORRECT
%RDU-E-ILLDEPRNG, Illegal nested dependent ranges dependent
range

"BAD": INPUT FORM_FIELD[%LINE] TO
RECORD_FIELD[%LINE] ;
END CONTROL FIELD;

END CONTROL FIELD;

Figure 9-4: lliegal Nested Dependent Ranges

In addition, if you attempt to declare a three-dimensional array as a control value,
RDU returns errors messages.

Figure 9-5 shows how you can specify one element of an array as a control value
or a nonarray control value within a single conditional instruction. (%LINE and
%ENTRY do not get assigned to single element or nonarray control values.)

Assigns
CONTROL FIELD IS ARRAY[1 TO 10] <— values
999" : to %LINE

INPUT FORM_ARRAY[%LINE] TO RECORD_ARRAY[%LINE];
CONTROL FIELD IS SIMPLE_FIELD
"ERR": OUTPUT RECORD_FIELD TO FORM_FIELD;
CONTROL FIELD IS ONE_ELEMENT_ARRAY[3]
"NOT": MESSAGE LINE IS "WRONG";
END CONTROL FIELD;
END CONTROL FIELD;
END CONTROL FIELD; <— Ends
END DEFINITION; assignment

Figure 9-5: Specifying Nonarray or Single-Element Control Values

Using an Array as a Control Value 9-5

9.3.1 Explicitly Assigning Values to %LINE and %ENTRY

In some cases, you may wish to specify the assignment of %LINE and %ENTRY
explicitly. You can include the dependent names followed by an equal sign in the
CONTROL FIELD IS phrase:

CONTROL FIELD IS CONTROL_ARRAY[%ENTRY=1 TO 10, %LINE= 1 TO 5]

Figure 9-6 shows that you follow the dependent names by specific subscript val-
ues. This allows you to specify 2ENTRY as the first dependent name and
%LINE as the second dependent name.

CONTROL FIELD IS
CONTROL_ARRAY[JENTRY= 1 TO 10, %LINE= 1 TO 5]
"ERROR": INPUT FORM_FIELD[%ENTRY, %LINE] TO
RECORD_FIELD[%ENTRY, %LINE];

END CONTROL FIELD;
END DEFINITION;

Figure 9-6: Explicitly Assigning Values to %LINE and %ENTRY

9.3.2 Using a Work Array as a Control Value Array

You may want to use the array to which you input data from a scrolled or indexed
form array as your control array. TDMS can then search the array for the case
values you specify in a request.

More often, however, as with all control values, you may want to use a work array
as a control value. A work array is separate from the array containing database
information. The application program can analyze the data in your database array
and place values in corresponding elements of a work array. By using a separate
work array, you avoid the danger of mapping extraneous data to your database.
The work array need not contain the same number of elements as the array to
which you are mapping database information.

9.3.3 Specifying an Entire Array as a Control Value

If you use an entire array as a control value, you must specify 1 as the lower sub-
script. Since some record arrays may be created in the CDD with the beginning
subscript of 0 or a minus number, as with all array records, RDU adjusts that
array to be a one-based array. RDU generates a warning message indicating the
new subscript values that it assigns to the record array:

CONTROL_ARRAY 0:9
%RDU-W-CHNGBND, changing the bounds of the array from 0:9 to 1:10

9-6 Using an Array as a Control Value

When you use this array as a control value, you must specify the elements
1to10:

CONTROL_ARRAY[1 TO 10]

9.4 Example - Using a One-Dimensional Control Value Array

Figure 9-7 shows a request using a one-dimensional control array. Mapping
instructions using %LINE collect and display data in several scrolled form fields.
To create this request, you must:

¢ Declare an array with a dependent range as a control value. In this example,
the control array CONTROL_ZIP_STATE is the control value.

e Specify as a case value the error value that you want TDMS to check. In
this example, TDMS tests each element in the control value array
CONTROL_ZIP_STATE for the case value 99999.

¢ Specify the %LINE dependent name in the mapping instructions associated
with the case value.

Data Address Form - -

ZIP_CODE STATE - ———————— o = —— s

(continued on next page)

Figure 9-7: Collecting Elements from Several Scrolled Fields

Using an Array as a Control Value 9-7

Records

DEFINE RECORD DATA_ADDRESS_RECORD.
DATA_ADDRESS STRUCTURE.

ADDRESS STRUCTURE OCCURS 6 TIMES.
ZIP_CODE DATATYPE NUMERIC 5.
STATE DATATYPE TEXT 2.

END ADDRESS STRUCTURE.

END DATA_ADDRESS STRUCTURE.
END DATA_ADDRESS_RECORD.

DEFINE RECORD ZIP_STATE_CONTROL_REC.
ZIP_STATE_CONTROL_REC STRUCTURE.
START_PROGRAM
DATATYPE TEXT 5.
CONTROL_ZIP_STATE
OCCURS 6 TIMES
DATATYPE TEXT 5.
END ZIP_STATE_CONTROL_REC STRUCTURE.
END ZIP_STATE_CONTROL_REC.

Request

FORM IS DATA_ADDRESS_FORM;
RECORD IS DATA_ADDRESS_RECORD;
RECORD IS ZIP_STATE_CONTROL_REC;

DISPLAY FORM DATA_ADDRESS_FORM;

CONTROL FIELD IS START_PROGRAM
"BEGIN":
INPUT %ALL;
DESCRIPTION /* Input ZIP_CODE[1 to 6]
and STATE[1 TO 6] */;
END CONTROL FIELD;

CONTROL FIELD IS CONTROL_ZIP_STATE[1 TO 6]
"99999" :
BOLD FIELD ZIP_CODE[%LINE], STATE[%LINE];
BLINK FIELD ZIP_CODE[%LINE]}, STATE[%LINE];

OUTPUT STATE[%LINE] TO STATE[%LINE],
ZIP_CODE[%LINE] TO ZIP_CODE[%LINE];

MESSAGE LINE IS
"Zip code and state information conflict. Please reenter";

INPUT ZIP_CODE([%LINE] TO ZIP_CODE[%LINE],
STATE[%LINE] TO STATE([%LINE];
END CONTROL FIELD;
END DEFINITION;

Figure 9-7: Collecting Elements from Several Scrolled Fields (Cont.)

9-8 Using an Array as a Control Value

Collects
initial
zip code
and state
data

Control
array
Bolds and
blinks
incorrect
fields

Outputs
incorrect
data

Collects
new data

When an application program calls the request in Figure 9-7, the following
sequence of events occurs:

1. When the program first calls the request, TDMS evaluates both control val-
ues. (The program places "BEGIN” in the first control value and clears the
control value array before it calls the request.)

2. TDMS executes the instructions following the "BEGIN” case value in the
first control value. It collects all the elements from the form field
ZIP_CODE[1 TO 6] and STATE[1 TO 6] and returns them to record arrays
ZIP_CODE[1 TO 6] and STATE[1 TO 6].

3. The program checks that each zip code is associated with an appropriate
state abbreviation.

4. When there is an error in any element of the arrays ZIP_CODE or STATE,
the program places a 99999 in the corresponding array element of the con-
trol value array, CONTROL_ZIP_STATE]I1 to 6]. (It also clears the control
value START_PROGRAM.)

Suppose the application program finds that information in elements 2, 4,
and 6 of the arrays ZIP_CODE and STATE is not compatible. The program
places a 99999 in the corresponding elements 2, 4, and 6 of the control
value array, CONTROL_ZIP_STATE. For example:

CONTROL_ZIP_STATE

Element 1
99999 Element 2
Element 3
99999 Element 4
Element 5
99999 Element 6

5. The second time the request is called, TDMS evaluates the control value
array, element by element. It executes the mapping instructions following
the matching 99999 case value in the request. TDMS:

¢ Bolds and blinks the fields ZIP_CODE|2] and STATE|2],
ZIP_CODEJ4] and STATE[4], ZIP_CODE[6] and STATEI6]

* Displays the incorrect data in those same fields

Using an Array as a Control Value 9-9

¢ Displays the message from the MESSAGE LINE IS instruction

e Allows the operator to input new zip code and state data in those same

fields
|
|
| 05034
: 02840
| 923214
I 01801
| 75220
' 03055
-
Data Address Form
21P_CODE STATE
05034 NJ
L

9.5

NJ
RI
CA
MA
X
NH

Example - Using a Two-Dimensional Control Value Array

S S —— —— — o — t— — — —— -

TDMS allows you to collect selected elements from a horizontally-indexed scrolled
field. To do so, you can use a two-dimensional array as a control value. In Figure
9-8, % LINE takes on the subscript values of the first dependent range. %ZENTRY
takes on the subscript values of the second dependent range.

The request maps between:

e Two scrolled form arrays PROJECT_NUMBERS and
TOTAL_EMPLOYEES and two subfields in the group record array

PROJECT

e The horizontally-indexed scrolled form array WAGE_CLASS and the
subfield WAGE_CLASS within the two-dimensional record array

WAGE_CLASSES

9-10 Using an Array as a Control Value

PROJECT_SUMMARY_FORM

4)
Project Summary Form

PROJECT TOTAL WAGE CLASS
NUMBERS EMPLOYEES FIRST SECOND THIRD

Record

DEFINE RECORD PROJECT_SUMMARY_RECORD.
PROJECT_SUMMARY STRUCTURE.

PROJECT STRUCTURE OCCURS 10 TIMES.
PROJECT_NUMBERS DATATYPE TEXT 5.
TOTAL_EMPLOYEES DATATYPE NUMERIC 3.
WAGE_CLASSES STRUCTURE OCCURS 3 TIMES.

WAGE_CLASS DATATYPE NUMERIC 3.
END WAGE_CLASSES STRUCTURE.
END PROJECT STRUCTURE.
END PROJECT_SUMMARY STRUCTURE.
END PROJECT_SUMMARY_RECORD.

Record

DEFINE RECORD PROJECT_SUMMARY_CONTROL_RECORD.
PROJECT_SUMMARY_CONTROL STRUCTURE.

START_PROGRAM DATATYPE TEXT 5.

CONTROL_PROJECT ARRAY 1:10,1:3 DATATYPE TEXT 3.
END PROJECT_SUMMARY_CONTROL STRUCTURE.
END PROJECT_SUMMARY_CONTROL_RECORD.

Request
FORM IS PROJECT_SUMMARY_FORM;
RECORD IS PROJECT_SUMMARY_RECORD;
RECORD IS PROJECT_SUMMARY_CONTROL_RECORD;

DISPLAY FORM PROJECT_SUMMARY_FORM;
CONTROL FIELD IS START_PROGRAM
"BEGIN":
INPUT
PROJECT_NUMBERS[1 TO 10]
TO PROJECT_NUMBERS[1 TO 10],

<— Two-dimensional
array

<— Two-dimensional
array

(continued on next page)

Figure 9-8: Using a Two-Dimensional Array as a Control Value

Using an Array as a Control Value 9-11

WAGE_CLASS[1 TO 10, 1 TO 3]
TO WAGE_CLASS[1 TO 10,1 TO 3];
END CONTROL FIELD;

CONTROL FIELD IS CONTROL_PROJECT[1 TO 10,1 TO 3]
" ggg" .
OUTPUT
PROJECT_NUMBERS [%LINE]
TO PROJECT_NUMBERS[%LINE],
TOTAL_EMPLOYEES [%LINE]
TO TOTAL_EMPLOYEES[%LINE],
WAGE_CLASS[%LINE,1 TO 3]
TO WAGE_CLASS[%LINE, 1 TO 3];

BOLD FIELD TOTAL_EMPLOYEES[%LINE],
WAGE_CLASS[%LINE,%ENTRY];
BLINK FIELD TOTAL_EMPLOYEES[%LINE],
WAGE_CLASS[%LINE, %ENTRY];
INPUT

WAGE_CLASS[%LINE, %ENTRY]
TO WAGE_CLASS[%LINE, %ENTRY];

MESSAGE LINE IS
"Wage class totals are incorrect. Please reenter";

END CONTROL FIELD;
END DEFINITION;

Figure 9-8: Using a Two-Dimensional Array as a Control Value (Cont.)

At run time:

When the program first calls the request in Figure 9-8, TDMS collects all
the elements from the form field PROJECT_NUMBERSI[1 TO 10] and
WAGE_CLASSI1 TO 10, 1 to 3] and returns them to matching record
arrays. (Before calling the request, the program places "BEGIN” in the con-
trol value START_PROGRAM and clears the control value array
CONTROL_PROJECT.)

The program checks that for each project number, the number of employees
specified in each wage class does not exceed thirty percent in wage classes 1
and 2 and forty percent in wage class 3.

When there is an error in any one of the wage class numbers, the program
places a 999 in the corresponding array element of the control value array,
CONTROL_PROJECT]1 to 10, 1 to 3]. (It also clears the control value
START_PROGRAM.) For instance, if the program finds errors in the
data returned to WAGE_CLASS|1,3], WAGE_CLASSI3,2], and
WAGE_CLASS|9,1], it places a 999 in the corresponding elements of

the control array as in the following example.

9-12 Using an Array as a Control Value

CONTROL_PROJECT Array

Column 1 Column 2 Column 3

999 Row 1

Row 2
999 Row 3

Row 8

999 Row 9

Row 10

The second time the request is called, TDMS evaluates the control value
array, element by element. When it finds a matching 999 in an element of
the control value array, it executes the mapping instructions following the
case value. TDMS:

. Bolds and blinks the element of the form field WAGE_CLASS in
which the error occurs and associated element of the field
TOTAL_EMPLOYEES.

¢ Displays a message indicating the wage class totals are incorrect.

e Displays the information related to that incorrect data. The project
number, the total number of employees assigned to that project, the
incorrect wage class number, and the correct numbers in the other two
wage classes are displayed. This lets the operator see the correct data
associated with the error.

e Allows the operator to enter a correct number in the wage class field in
error, WAGE_CLASS|1,3], WAGE_CLASS|[3,2], WAGE_CLASSI9,1].

Using an Array as a Control Value 9-13

When the request ends, the application program recalculates the percent-
ages. If there are still errors, TDMS collects further wage class information
or goes back to collecting new project and wage class information. For

example:
o e —— ———— ————— — —— o— — —
/)
I I
1
| |
: 67854 12 -3 -3 -6 |
: 32412 _#2 “21 ¥ _32 I
_____ -_— -_— _— -_— I
I _— — _— _—
oo - - - - 1
- D=
Project Summary Form ~20 ~38 % |
T T - |
PROJECT TOTAL WAGE CLASS :

NUMBERS EMPLOYEES FIRST SECOND THIRD

. y

Note that you can combine the use of a dependent name with a specific range as
did the following mapping instruction in the request in Figure 9-8:

OUTPUT WAGE_CLASS[%LINE, 1 TO 3] TO WAGE_CLASS[%LINE, 1 TO 3];

9-14 Using an Array as a Control Value

How to Display and Input Data in a Scrolled
Region 10

Whether a specific element of a record array is displayed in the form window or
whether an element of a form array can be accessed to enter new data, depends
on several conditions, including:

¢ Operator action at run time

¢ Kinds of mappings that you create

To view the data in a scrolled form array, the operator must use the TAB, the
BACK SPACE, the up arrow, and the down arrow keys on the keyboard to move
from input field to input field:

e The TAB key moves the cursor from one input field to the next.

e The BACK SPACE key moves the cursor from one input field back to the
immediately previous input field.

e The up arrow key scrolls data in the window back up toward the top of the
array; for example, from element[15] back to element[3].

¢ The down arrow key scrolls data down toward the bottom of the array; for
example, from element[1] to element[15].

The elements from the underlying virtual array scroll through the form array win-
dow. This chapter describes how the request can control the display of a scrolled
region.

Because TDMS moves the cursor from one field mapped for input to the next
field mapped for input, you must map at least one field on each line of the scrolled
form region for input if you want the operator to be able to tab to each line in a
scrolled form region.

10-1

10.1 How TDMS Displays and Collects Data in a Scrolled

Array

The following example shows how an operator accesses elements (fields) that are
mapped for input in a scrolled array. The form contains a single scrolled region
containing two scrolled arrays, UNIVERSITY and DEGREE. The visible window
is five lines long. The request shows the specific mappings between the form and
record that you wish to create. Although this may not be a typical mapping, it
illustrates how TDMS allows the operator to move through a scrolled array and

access the fields you map for input.

EMPLOYEE_ADD_EDUCATION

4)
Employee Add Education

UNIVERSITY: DEGREE:

L3 B /Y N

EDUC_RECORD

DEFINE RECORD EDUC_RECORD.
EDUC_RECORD STRUCTURE.
EDUC_EMPL_NUMBER DATATYPE UNSIGNED LONGWORD.
EDUC_EMPL STRUCTURE OCCURS 15 TIMES.
EDUC_UNIVERSITY DATATYPE TEXT 20.
EDUC_DEGREE DATATYPE TEXT 5.
END EDUC_EMPL STRUCTURE.
END EDUC_RECORD STRUCTURE.
END EDUC_RECORD.

EDUC_REQUEST

FORM IS EMPLOYEE_ADD_EDUCATION;
RECORD IS EDUC_RECORD;

DISPLAY FORM EMPLOYEE_ADD_EDUCATION;

INPUT UNIVERSITY[1] TO EDUC_UNIVERSITY[1],
UNIVERSITY[3] TO EDUC_UNIVERSITY[3],
UNIVERSITY[7] TO EDUC_UNIVERSITY[7],
UNIVERSITY[15] TO EDUC_UNIVERSITY[15];

10-2 How to Display and Input Data in a Scrolled Region

INPUT DEGREE[1] TO EDUC_DEGREE[1],

DEGREE [3] TO EDUC_DEGREE[3],
DEGREE[7] TO EDUC_DEGREE[7],
DEGREE [15] TO EDUC_DEGREE[15];

END DEFINITION;

In the preceding example, the lines in the scrolled region of the form are num-
bered for ease of explanation. These numbers do not actually appear on the
screen.

When TDMS executes the request instructions:

1. The form is displayed on the screen. The operator sees five lines of the
scrolled region. The operator can enter data on those lines that you map for
input (up to the total number of elements in the receiving record array).

2. The cursor is automatically positioned at the first character of the first field
mapped for input, in this case UNIVERSITY][1]. Note that the cursor moves
only to those fields mapped for input.

3. When the operator has filled the UNIVERSITY([1] field and presses the
TAB key, the cursor moves horizontally to the DEGREE(1] field on the
same line since it is also mapped for input.

4. After the operator fills the two input fields on the same line of the scrolled
region and presses a TAB key, the cursor moves to the third row, since
UNIVERSITY][3] is the next input field. No scrolling occurs. The cursor
simply moves to the third line. Both the first and third lines remain in the
window.

5. The operator enters data in form fields UNIVERSITY[3], presses the TAB
key, and enters data in DEGREEJ3].

()

Employee Add Education

UNIVERSITY: DEGREE:

How to Display and Input Data in a Scrolled Region 10-3

10.
11.

12.

The next field mapped for input is UNIVERSITY[7].

The operator presses the TAB key and the cursor moves to the next input
field, UNIVERSITY][7].

Scrolling occurs because there cannot be seven lines in the window at one
time. UNIVERSITY][7] is on a line that can be displayed in the window if
TDMS scrolls the third line to the first position in the scrolled region.
TDMS scrolls through the underlying virtual array until UNIVERSITY([7] is
in the bottom row of the window. Note that TDMS always attempts to keep
both fields in the window:

a R
Employee Add Education

UNIVERSITY: DEGREE:
3

(4]

The operator presses the TAB key after entering data in DEGREE[7].

The next field mapped for input is UNIVERSITY][15].

TDMS cannot display both fields in the window because UNIVERSITY[15]
is more than four lines away from the last field mapped for input,
DEGREE[7). TDMS “jumps” to the next field mapped for input.

TDMS places the new input field, UNIVERSITY[15}, in the last line of the
scrolled form field. Line 15 is in the bottom position in the window.
Intervening lines (lines 11 through 14) are seen by the operator.

10-4 How to Display and Input Data in a Scrolled Region

Employee Add Education

UNIVERSITY: DEGREE:
i1
i2
i3
i4
is

10.2 How to Allow the Operator to View Data in Scrolled
Regions

TDMS moves through a scrolled region from input field to input field. If you
create a request that displays data to a scrolled array but contains no input
mappings for that scrolled array, the operator cannot tab through the field
to view all the data.

If you want to display a large record array in a scrolled form array but do not
want to allow operator input in these fields, you can use the following technique:

* Inyour form definition, define a dummy, one-character form array. Each field
of this dummy array appears at the beginning of each line of the scrolled
form array. The dummy field should have the No Echo attribute. That is,
anything the operator types in this field is not echoed back on the form
screen.

¢ In your record definition, create a receiving array.

¢ In your request, define an input mapping from this dummy form array to the
record array.

e At run time, the operator can then scroll through this form array, moving
from dummy input field to dummy input field.

Note that the operator need not enter data in the dummy field. The array pro-
vides a mechanism to traverse the scrolled array. If the operator does enter data
in a dummy field, it is discarded by the application program.

Figure 10-1 shows the request, the form, and the record definitions for an applica-
tion that uses a dummy array.

How to Display and Input Data in a Scrolled Region 10-5

——— - ————

Employee Status
Changes

NEW_DEPT

L)
T—————————— Visible portion of the virtual array

No Echo dummy array named DUM[1 TO 7]

Group Array

DEFINE RECORD HIST_RECORD.
HIST_CHANGES STRUCTURE
OCCURS 7 TIMES.
HIST_DEPT DATATYPE TEXT 3.
DUM DATATYPE TEXT 1.
END HIST_CHANGES STRUCTURE.
END HIST_RECORD.

Request

FORM IS EMPLOYEE_STATUS_CHANGES;
RECORD IS HIST_RECORD;

DISPLAY FORM EMPLOYEE_STATUS_CHANGES;

INPUT DUM[1 TO 7] TO DUM[1 TO 7];
OUTPUT HIST_DEPT[1 TO 7] TO NEW_DEPT[1 TO 7];

END DEFINITION;

Figure 10-1: Displaying Data in a Scrolled Region

10-6 How to Display and input Data in a Scrolled Region

At run time, when the request in Figure 10-1 is called, the following action occurs:
1. TDMS displays the seven element record array, HIST_CHANGES, subfield
HIST_DEPT, in the form array NEW_DEPT.

2. The operator can tab through the array from form field DUM[1] to form
field DUM]7], placing the cursor on each scrolled line. This allows the opera-
tor to view all the data that is output to that scrolled region, line by line.

Note that if the dummy array DUM were not present on the form and you did not
map it for input, the operator would be unable to tab through the scrolled array.

How to Display and Input Data in a Scrolled Region 10-7

Program Request Keys 11

This chapter discusses program request keys, how they work, and the correct syn-
tax for using them. Several examples illustrate ways you can use program request
keys in your TDMS applications.

Program request keys provide a convenient and efficient way for the operator to
communicate with a TDMS application program.

By default, TDMS defines a number of keys to have a special function when the
operator presses them at run time. These keys are shown in Table 11-1. You can
use the PROGRAM KEY IS instruction to define other keys to supplement these.
You cannot redefine any of the keys that already have special functions assigned
by TDMS.

The description of the PROGRAM KEY IS instruction in the VAX TDMS
Reference Manual lists the keys that can be redefined.

Table 11-1: Run-Time Function Keys

Key Function

TAB Moves the cursor to the next field on a form
without changing the contents of the current
field.

BACK SPACE (F12) Moves the cursor to the previous field on a
form without changing the contents of the
current field.

LINE FEED (F13) Deletes the contents of the field in which
the cursor is positioned.

{continued on next page)

Table 11-1: Run-Time Function Keys (Cont.)

Key Function

HELP (PF2or F15) Accesses help information and help forms. If
the cursor is located at a field that has a

help message, the help message is displayed
the first time the operator presses the HELP
key and the Help form is displayed the
second time. Subsequent Help forms are
displayed each time the operator presses

HELP.
CTRL/R Refreshes the screen.
CTRL/W Refreshes the screen.
Right arrow Moves to the right within a field.
Left arrow Moves to the left within a field.
Down arrow Moves down one line in a scrolled region.
Up arrow Moves up one line in a scrolled region.
GOLD-down arrow Exits from a scrolled region and moves the

cursor to the next field.

GOLD-up arrow Exits from a scrolled region and moves the
cursor to the preceding field.

RETURN Moves to the next form.
ENTER Performs the same function as RETURN.
PF4 Prints an image of the active form if

TSS$HARDCOPY is defined as one or more
devices or file specifications.

11.1 What Are Program Request Keys?

Program request keys (PRKs) are keyboard and keypad keys that you can define
in a request to have special meaning.

11-2 Program Request Keys

You define a PRK in a request by naming the key and associating mapping
instructions with that key. When the TDMS application is running, if an operator
presses a PRK that you defined, TDMS executes the mapping instructions you
associated with that PRK and terminates the request. For instance, you can cre-
ate the following request containing a program request key and associated PRK
mapping instructions.
PRK_SAMPLE_REQUEST

RECORD IS EMPLOYEE_SAMP_REC;
FORM IS EMPLOYEE_SAMP_FORM;
DISPLAY FORM EMPLOYEE_SAMP_FORM;

OUTPUT BADGE_NO TO BADGE;

INPUT NAME TO NAME_FLD;
Program
PROGRAM KEY IS GOLD "M" <— request key
RETURN "BACKUP" TO WK_CHANGE_FIELD; PRK mapping
OUTPUT "RETURNING TO MENU" TO MESSAGE; instructions

END PROGRAM KEY;

END DEFINITION;

Figure 11-1: A Sample PRK Instruction

During a TDMS application, when an operator presses the PRK as defined in the
PRK_SAMPLE_REQUEST (the GOLD-M key sequence on the keyboard),
TDMS:

1. Executes the output and return mapping instructions associated with the
PRK as follows:

¢ Displays the string "ZRETURNING TO MENU” in the form field
MESSAGE

* Returns the text string “"BACKUP” to the record field
WK_CHANGE_FIELD

2. Terminates the request call and returns control to the application program

3. Returns a value to the program indicating that the request was terminated
by a PRK

Note that when an operator presses a PRK at run time, TDMS checks that all
form fields defined as Response Required have data entered in them (in the
default mode of the PRK instruction). If these fields do not have data entered in
them, TDMS ignores the PRK and continues executing the instructions in the
request. (See the section on the default CHECK modifier and the NO CHECK
modifier.)

Program Request Keys 11-3

11.2 Using Program Request Keys

PRKs are a convenient way for a TDMS operator to communicate with the appli-
cation program.

By returning messages (that you predefine in a request) to the program, PRKs
permit the operator to send run-time messages to the application program. The
program can then respond to the condition identified by the operator.

You can use program request keys in your request to let the operator:

e Select a menu option. (For example, you might have a menu in which the
operator selects an option by pressing a particular PRK.)

e Notify the application of a change in the sequence of operations. (For exam-
ple, the program may continue asking for employee data until the operator
presses a PRK to indicate readiness for a new employee form.)

e Notify a TDMS application program to exit.

e Indicate that a particular type of operator error occurred and that the pro-
gram should take certain corrective action.

You can also use PRKs in conditional instructions. Later in this chapter, you see
examples of program request key instructions that are used within a conditional
instruction to return values to control values. First, however, you learn how to cre-
ate a simple request containing a program request key.

11.3 Creating a Request That Uses a Program Request Key

The request in Figure 11-2 shows that to use a program request key in a request,
you must specify:

1. The instruction words, PROGRAM KEY IS
2. A PRK name, either:
e The keyword GOLD followed by the name of any key valid with

GOLD. (See the PROGRAM KEY IS instruction in the VAX TDMS
Reference Manual for a list of keys that you can use as PRKs.)

e The keyword KEYPAD and one key from the keypad: 0-9, hyphen (-),
period (.), or comma (,).

11-4 Program Request Keys

The keypad must be set to Application mode using the KEYPAD
MODE IS APPLICATION instruction. See the KEYPAD MODE IS
instruction in the VAX TDMS Reference Manual

3. The following instructions:

¢ One RETURN quoted-string to record-field instruction
e One of either (but not both):

A MESSAGE LINE IS instruction
An OUTPUT quoted-string instruction

4. The end phrase END PROGRAM KEY followed by a semicolon

RECORD IS EMPLOYEE_ADD_REC;

PROGRAM KEY IS GOLD "D" <— 1 & 2 Keywords
and key name
RETURN "DONE" TO WK_CHECK_FLD;
OUTPUT "This employee record complete" <—— 3 PRK instructions
TO MSG_FLD WITH BOLD;
END PROGRAM KEY; <— 4 End phrase

END DEFINITION;

Figure 11-2: Defining Program Request Keys

Notice that you must:

e Specify the keyword GOLD or KEYPAD
¢ Enclose the key name in quotation marks

e End the PROGRAM KEY IS instruction with the end phrase END
PROGRAM KEY and a semicolon

Note also that you do not use a semicolon following the PROGRAM KEY IS
prk-key-name phrase.

RDU automatically puts all PRK names in uppercase. So, for example, saying
GOLD ”A” is the same as GOLD ”a”. At run time, when the operator presses a
PRK key, whether it is uppercase or lowercase, TDMS matches it to the PRK
name in the request.

Program Request Keys 11-5

The PROGRAM KEY IS instruction can occur anywhere within a request (except
in the header section). TDMS responds to program request keys only after it has
executed all output mappings.

11.3.1 Default CHECK Mode Modifier

When you define a program request key, it has the default modifier, CHECK.
(You can assign the NO CHECK modifier to the PRK instruction.) With checking
in effect, at run time when an operator presses a PRK:

1. TDMS checks to see that all form fields defined as Response Required (that
are also mapped for input) contain data
2. TDMS checks to see that all form fields defined as Must Fill fields are filled

3. TDMS checks to see that all field validators (Choice List, Range List, and
Check Digits) are met

4. 1If conditions 1, 2, and 3 are met, TDMS:

¢ Executes the PRK instructions and terminates the request
e Returns data from all the form fields that were mapped for input or
return

5. If the Response Required fields do not have data in them, the Must Fill
fields are not filled, or the field validators are not met, TDMS ignores the
PRK

Note that fields on a form that are mapped for input are not necessarily also
defined as Response Required fields. When a PRK is pressed, therefore, TDMS
may terminate a request even though the operator may not have entered data in
all fields mapped for input.

The data returned to a record, therefore, may be any of the following:

e Data entered by the operator during the current call to the request
e Data output to the form fields during the current call to the request
e Data in the form fields from the immediately previous call to the request

e Data associated with the form fields by form definition defaults (if no other
data is in the fields)

Figure 11-3 shows how the CHECK modifier works. At run time, when the opera-
tor presses the PRK, TDMS checks if the field BADGE has data entered into it
by the operator.

11-6 Program Request Keys

NAME e
BADGE _345665¢
DEPARTMENT __
MSG_F

_FLD
CANCEL _OPERATION

DEPT_INFO_REQUEST

FORM IS DEPT_INFO_FORM;
RECORD IS DEPT_INFO_RECORD;
DISPLAY FORM DEPT_INFO_FORM;

INPUT NAME TO NAME,
BADGE TO BADGE,
DEPARTMENT TO DEPT;

PROGRAM KEY IS GOLD "C"
CHECK;
RETURN "CANCEL"
TO MSG_FLD;
OUTPUT "CANCEL OPERATION"
T0O MSG_FLD;
END PROGRAM KEY;

END DEFINITION;

Figure 11-3: Using the CHECK Modifier

If the field does have data entered in it, TDMS:

<— Response Required field
(TDMS checks that data
is in this field)

Operator presses the
GOLD-C key sequence
at run time

1. Outputs the string “CANCEL OPERATION"” to the form field MSG_FLD

2. Returns the string "CANCEL” to the program

3. Terminates the request and returns the badge number entered by the

operator

4. Returns the values that happen to be in the form fields NAME and
DEPARTMENT (the operator did not enter values in these fields)

5. Returns a value to the program indicating that the request was terminated
by a PRK and that Response Required fields were checked for input

Program Request Keys 11-7

If the field BADGE does not have data entered in it, TDMS:
1. Issues an error message indicating that BADGE is a Response Required
field
2. Ignores the PRK and the associated PRK instructions

3. Executes the remaining input instructions in the request and terminates
the request normally

11.3.2 NO CHECK Modifier

If you assign a NO CHECK modifier, at run time TDMS executes only the PRK
instructions and terminates the request. That is, when TDMS terminates the
request in the NO CHECK mode, it executes only the RETURN, OUTPUT, or
MESSAGE LINE IS instructions within the PRK instruction. It does not:

¢ Check for Response Required, Must Fill fields, or field validators

e Execute any instructions outside the PRK instruction

e Execute any INPUT TO instructions

11.4 Examples of Using Program Request Keys

The following sections contain two examples of PRKs in requests.

11.4.1 Using PRKs to Allow the Operator to Control Application Flow

By defining PRKs that return strings to the program, you give the operator some
control over the flow of the application.

The request in Figure 11-4 illustrates this concept.

This request contains a series of four program request keys. When the operator
presses them, TDMS returns a string to signal the program to take one of four
actions:

String Action

"BACK” Go back to a form displayed earlier in an application and
redisplay it with information previously entered on that form.
Save the information collected so far on this current form.

"SKIP” Discard changes entered on this current form and go to the Menu
form in this application so the operator can select a new form.

"DONE” Save the data entered so far on this form and write it to the
appropriate record. Go to the Menu form for another selection.

11-8 Program Request Keys

String Action

"EXIT” Exit this application and write all data collected to the
appropriate records.

By using these program keys, the operator can:

1. Move among many forms or menu selections in an application (PRK keypad
7 in Figure 11-4).

2. Skip the form that appears on the screen and discard any information
entered on this form during this call to the request (PRK keypad 8 in
Figure 11-4).

3. Enter information on a form and indicate when he or she is done and wants
information entered to be written to a file (PRK keypad 9 in Figure 11-4).

4. Exit the application program (PRK keypad 4 in Figure 11-4).

CHANGE_EDUCATION_REQUEST

FORM IS CHANGE_EDUCATION_FORM;
RECORD IS EDUC_RECORD;
RECORD IS CHANGE_WORKSPACE;

CLEAR SCREEN;
DISPLAY FORM CHANGE_EDUCATION_FORM;

KEYPAD MODE IS APPLICATION;
PROGRAM KEY IS KEYPAD "7"
CHECK;
RETURN "BACK" TO WK_CONTROL_FIELD;
END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "8"

NO CHECK;

RETURN "SKIP" TO WK_CONTROL_FIELD;
END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "9"

CHECK;

RETURN "DONE" TO WK_CONTROL_FIELD;
END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "4"

CHECK ;

RETURN "EXIT" TO WK_CONTROL_FIELD;
END PROGRAM KEY;

OUTPUT EDUC_UNIVERSITY TO UNIVERSITY,
EDUC_START_DATE TO START,
EDUC_STOP_DATE TO STOP,
EDUC_DEGREE TO DEGREE;

(continued on next page)
Figure 11-4: Using PRKs to Allow Operator Control of Application Flow

Program Request Keys 11-9

INPUT UNIVERSITY TO EDUC_UNIVERSITY,

START TO EDUC_START_DATE,
STOP TO EDUC_STOP_DATE,
DEGREE TO EDUC_DEGREE;

END DEFINITION;

Figure 11-4: Using PRKs to Allow Operator Control of Application Flow (Cont.)

Note that you must use the KEYPAD MODE IS APPLICATION instruction for

the application program to recognize data entered on the keypad as an application
program key (rather than numeric data). However, RDU does not check when you
create a request that you specify the KEYPAD MODE IS instruction if you use a

keypad key as a PRK.

11.4.2 Using a PRK to Return a Value to a Control

You can use a program request key to return a value to a control value in a condi-

tional instruction.

In Figure 11-5, for instance, the operator can press one of two PRKs at run time
(keypad 8 or keypad 4) and place predetermined values (MORE or DONE) in the
control value ACTION_TO_TAKE. In a subsequent call to this same request,

TDMS can evaluate the control value ACTION_TO_TAKE and then execute the

appropriate request instructions.

DEPT_LABOR_REQUEST

Value

FORM IS DEPTLABOR_FORM;
RECORD IS DEPTLABOR_WORKSPACE;
RECORD IS LABOR_RECORD;

CLEAR SCREEN;
DISPLAY FORM DEPTLABOR_FORM;

CONTROL FIELD IS ACTION_TO_TAKE
NOMATCH:

"MORE":
OUTPUT
LABOR_EMPL_NUMBER
LABOR_NAME
LABOR_DEPT

END CONTROL FIELD;

INPUT PROJECTNO TO WK_PROJECT_NO,
HOURS TO WK_HOURS,
CODE TO WK_OPCODE;

Figure 11-5: Using PRKs in Conditional Instructions

11-10 Program Request Keys

INPUT NUMBER TO LABOR_EMPL_NUMBER,
NAME TO LABOR_NAME,
DEPT TO LABOR_DEPT;

TO NUMBER,
TO NAME,
TO DEPT;

KEYPAD MODE IS APPLICATION;

PROGRAM KEY IS KEYPAD "8"

CHECK ;

RETURN "MORE" TO ACTION-TO_TAKE ;
END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "4"
CHECK;
RETURN "DONE" TO ACTION_TO_TAKE;
END PROGRAM KEY;
END DEFINITION;

Figure 11-5: Using PRKs in Conditional Instructions (Cont.)

Note that, when the request DEPT_LABOR_REQUEST is first called, the control
value ACTION_TO_TAKE is blank. TDMS executes the INPUT instructions in
the base section and in the NOMATCH case value. It collects basic employee
information (NUMBER, NAME, AND DEPT) and project information
(PROJECTNO, HOURS, and CODE).

The operator can press one of two PRKs:

* The keypad 8 key, indicating there is more information to enter on the same
employee.

TDMS returns the string “MORE” to the control value and terminates the
request call. The program calls the DEPT_LABOR_REQUEST a second
time. TDMS executes the request instructions following the case value
"MORE". It displays the number, name, and department information.
TDMS also executes the INPUT TO instruction in the base section of the
request and collects additional project-related data on the same employee.

e The keypad 4 key, indicating there is no more information to enter on this
employee.

TDMS returns the string “DONE” to the control value and terminates the
request call. The program issues a second call to the
DEPT_LABOR_REQUEST. There is no match between the control field con-
taining "DONE” and the case values. TDMS, therefore, executes the
NOMATCH instructions. It collects employee information (NUMBER,
NAME, and DEPT) and project data (PROJECTNO, HOURS, and CODE)
for a different employee.

Program Request Keys 11-11

Insert second divider with text: Creating Request Libraries

om] yed

Working with Request Libraries 12

After you successfully create a request or a series of requests in the CDD, you can
create a request library definition. A request library definition allows you to iden-
tify, in one place, all the requests that are used in an application or a portion of an
application. From the request library definition, you then build a request library
file that the application program accesses when it wants to call a request.

This chapter explains how you use the Request Definition Utility (RDU) to:

e Create and modify request library definitions

e Build request libraries

12.1 Creating a Request Library Definition

You can create the request library definition, like the request, within RDU or in a
separate text or command file. As with requests, forms, and records, you can
assign a given, a full, or a relative CDD path name to the request library defini-
tion. RDU translates the given name into the full CDD path name and stores the
request library definition in that CDD directory:

RDU> CREATE LIBRARY EMPLOYEE_LIBRARY

The request library definition you create is stored in your default CDD directory.
The two main instructions in a request library definition are:

e The REQUEST IS instruction, which identifies all the requests you want to
list in this request library.

e The FILE IS instruction, which names the VMS request library file (RLB)
that you will subsequently create. (You can specify the RLB name in the
BUILD LIBRARY command rather than using the FILE IS instruction in
the request library definition. See the section entitled Building a Request
Library File for more information.)

12-1

The following is an example of a request library definition:

RDU> CREATE LIBRARY EMPLOYEE_LIBRARY

RDUDFN> REQUEST IS EMPLOYEE_MENU_REQUEST;
RDUDFN> REQUEST IS EMPLOYEE_ADD_REQUEST;
RDUDFN> REQUEST IS EMPLOYEE_DISPLAY_REQUEST;
RDUDFN> FILE IS "EMPLOYLIB.RLB";

RDUDFN> END DEFINITION;

Note that the RLB file name must be enclosed in quotation marks and conform to
the rules for correct VMS file names. RDU stores this request library definition in
the CDD unless:

* One of the requests you name is not in the CDD (only in VALIDATE mode)
* You make syntax errors

If RDU is in validate mode, it tells you which request it cannot find. You should
check to see that you have entered the correct names for your requests. A spelling
or typing error can result in RDU being unable to find a request in the CDD. If
you have made an error, you can use the EDIT command (as described in Chapter
2) to edit your last command.

You can change the text of any of the requests named in the CDD request library
definition without changing the request library definition. Because the library defi-
nition contains only the names of your requests, it is not affected by changes you
make to text in those individual requests.

12.2 Copying a Request Library Definition

You can use the COPY LIBRARY command if you wish to move your request
library definition to another directory in the CDD. Note that if you change the
CDD directory of the request library definition, you must do one of the following:

* Move the requests named in the request library definition to the same
directory

e Use a full CDD path name to identify those requests within the request
library definition, if they remain in a different CDD directory

For more information on the COPY LIBRARY command, see the VAX TDMS
Reference Manual

12.3 Listing a Request Library Definition

You can list a request library definition. The LIST LIBRARY command allows
you to see the date and time stamp of the request library definition, the names of
the requests contained in it, and the RLB file specification (if any).

12-2 Working with Request Libraries

Use the LIST LIBRARY command to look at the contents of the request library
definition:

RDU> LIST LIBRARY EMPLOYEE_LIBRARY

The LIST LIBRARY command is particularly useful when you create, modify, or
replace a request library definition in Novalidate mode. You can list the contents
of the request library definition and check for errors before you try to validate
your request library definition or build your request library file.

12.4 Modifying a Request Library Definition

After you have created a request library definition, you can use the MODIFY
LIBRARY command to change its contents. For example:

RDU> MODIFY LIBRARY EMPLOYEE_LIBRARY

This is particularly useful if you:

e Misspell one of the request names

e Need to change the given name of a request to a full CDD path name
because the request is not in the same CDD directory

¢ Omit a request that you need
e Include a request that you do not need

¢ Decide to change, omit, or include a FILE IS instruction

Note that the MODIFY LIBRARY command invokes your VMS editor just as the
MODIFY REQUEST command does. After making your changes, enter the
appropriate command to exit your VMS editor.

12.5 Validating a Request Library Definition

You can validate the request library definition before you build the corresponding
request library file if you:

e Create, modify, or replace one or more of the requests contained in the
request library definition in Novalidate mode

e Change a form referred to by one or more of those requests

e Change a record referred to by one or more of those requests

Working with Request Libraries 12-3

You can do this at the RDU > prompt by issuing a VALIDATE LIBRARY
command:

RDU> VALIDATE LIBRARY EMPLOYEE_LIBRARY

See Chapter 2, Using the Request Definition Utility (RDU), for more information
on Validate mode.

12.6 Deleting a Request Library Definition

You can delete a request library definition from the CDD by using the DELETE
LIBRARY command:

RDU> DELETE LIBRARY EMPLOYEE_LIBRARY

The DELETE LIBRARY command removes the request library definition from
the CDD. It does not affect either the request library file or the requests the
request library definition contains.

12.7 Building a Request Library File

The CDD provides an efficient and convenient way to store the definitions you
create for a TDMS application. You can access them easily and make corrections
and changes as needed. A TDMS application program, however, cannot access the
CDD directly. A program can access the request instructions much more quickly
from a file either in your directory or another VMS directory. You must create
this file containing all the requests and their related form and record information.
You do this by using the BUILD LIBRARY command to build a request library
file. For example:

RDU> BUILD LIBRARY EMPLOYEE_LIBRARY EMPLOYLIB.RLB
CDD request library VMS request library
definition name file name

RDU searches the CDD for the request library definition,
EMPLOYEE_LIBRARY, that you specify in the BUILD LIBRARY command. It
extracts the requests listed in that library from the CDD and places them in the
request library file, EMPLOYLIB.RLB. Note that the name RDU assigns to the
new request library file is either:

¢ The name you specify in the FILE IS instruction, in the request library
definition

e The name you specify in the BUILD LIBRARY command

12-4 Working with Request Libraries

You can omit the FILE IS instruction in a request library definition if you specify
a file when you build the request library file. You do not have to specify the file
both within the request library definition and in the BUILD LIBRARY command.

Usually you name the request library file (RLB) name in only one place. If you
specify the name in both places, the BUILD LIBRARY command overrides the
FILE IS instruction.

After you build a request library file, the application program can access the
requests and the form and record references directly from that file.

RDU can complete a successful build only if:

e Allrequests listed in the CDD request library definition exist in the CDD
e All forms and records referred to in the listed requests exist in the CDD

e All mapping instructions within the requests contain correct references and
mapping instructions

* You specify the name of the request library file either in the request library
definition or in the BUILD LIBRARY command

RDU protects you, therefore, against placing requests that contain incorrect map-
ping instructions or that refer to forms or records that do not exist in the CDD in
a request library file. If the BUILD command fails, RDU:

1. Displays an error message to tell you which request is incorrect or that a
request library file name was not specified

2. Returns you either to the RDU > prompt or to the DCL prompt, if you
entered the BUILD LIBRARY command at DCL level

3. Does not attempt to build a request library file

Working with Request Libraries 12-5

rart inree.

Programs

ion

1cat

Writing Appli

ider with text:

V1

Insert third d

e
oo

Introduction to TDMS Programming 13

TDMS is designed to make it easier to program an interactive forms application.
TDMS does this by providing you with utilities that let you define all the terminal
I'O and screen forms outside the program, in forms and requests. Consequently,
you can focus your attention on designing the application and writing clear, modu-
lar program code.

Before you try to write a TDMS application program, you should know about the
following TDMS elements:

* Requests and request library files

e Form definitions

* Record definitions

* Programming calls

Because TDMS stores form definitions, requests, and request library definitions
in the VAX Common Data Dictionary (CDD), you should also understand the
organization of the CDD. For information on the CDD, refer to the VAX Common
Data Dictionary Utilities Reference Manual

13.1 TDMS Programming Calls

To use requests in an application program, you must include TDMS calls in the
program code. You use five of the programming calls most often in a TDMS appli-
cation program; the rest of the calls provide further capabilities for a program.
TDMS programming calls provide the following routines and services:

* Opening and closing request library files to access requests

* Opening and closing channels to the terminal for input and output

13-1

* Executing requests to:

Display forms.

Transfer data between a form and/or a request and a program record.
That is, TDMS converts form field data to data types of receiving
record fields on input and, on output, converts data types of record
fields to form field data.

* Signaling TDMS return status and any extended status

* Writing or reading text from the reserved message line on the terminal
¢ Tracing the action of a request at run time

¢ Canceling a call in progress

¢ Copying a form to:

A file you specify
The file defined by the logical TSS$HARDCOPY

TDMS provides both synchronous and asynchronous programming calls. When
you use a synchronous call, the call will complete before control returns to the
application program.

The asynchronous calls are intended for the sophisticated application designed by
an experienced programmer. When you use an asynchronous call, the call is initi-
ated and control returns immediately to the application program.

However, the actions that the synchronous and asynchronous calls perform are
essentially the same.

13.2 General Format of TDMS Programming Calls

TDMS programming calls conform to the VAX Procedure Calling and Condition
Handling Standard. For synchronous calls, TDMS returns a standard VAX condi-
tion code to the program after a call completes, so you should include code in the
program to test the return status.

For asynchronous programming calls, TDMS returns a standard VAX condition
code which indicates only that the call was initiated, not that it was completed.
You can test this return status by including code in your application program.
Asynchronous programming calls also return a special return status block (rsb)
parameter. You will learn more about this status block in Chapter 19, Using
Asynchronous Calls.

13-2 Introduction to TDMS Programming

Using the Primary TDMS Synchronous Calls 14

This chapter describes the general syntax and uses of the five primary TDMS
synchronous calls and an additional call that lets you process the TDMS return
status. The main functions of the primary calls are:

* Opening a request library file

¢ Opening a channel to the terminal for input and output

¢ Executing a request to display a form and transferring data between a form
and a program record

¢ Closing the request library file

¢ Closing the channel to the terminal

There are two general concepts about TDMS synchronous calls that you should
understand:

e Each call will complete before control returns to the program.

e TDMS returns a standard VAX condition code to the program after a call, so
you should define a variable to receive the return status code.

Examples of the calls are presented in VAX BASIC, VAX COBOL, and VAX
FORTRAN. However, you can understand the general format for most languages
by studying the VAX BASIC syntax. The calls are presented in the order that you
would use them in a program.

14-1

Note

In TDMS call examples, all parameters and all passing mechanisms are
shown. In the calls where there are optional parameters, it is noted in
the discussion.

Following the presentation of the calls, there is a discussion of how to test for the
return status code. A simple program at the end of the chapter illustrates all of
the primary calls.

14.1 Opening a Request Library File - TSSSOPEN_RLB

A request library file is a file containing one or more requests and the form and
record information necessary to execute the requests. At run time, TDMS uses
this file to access a request.

TSS$OPEN_RLB should be the first call in a program, because if the request
library file does not exist or is not accessible, TDMS cannot use requests to trans-
fer data between the form and program. The code to open a request library file is
as follows.

BASIC

Return_status = TSS$O0PEN_RLB (Request_library_file BY DESC, &
Library_id BY REF)

COBOL

CALL "TSS$OPEN_RLB"
USING BY DESCRIPTOR Request-library-file,
BY REFERENCE Library-id,
GIVING Return-status.

FORTRAN

Return_status = TSS$OPEN_RLB (%DESCR(Request_library_file),
1 %REF (Library_id))

Request-library-file is a variable name that contains the name of the request
library file to open. You can also pass the name of the request library file in quota-
tion marks. The default file type is .RLB. This is a required parameter.

Library-id is a variable to receive the unique number that identifies the request
library file. Be sure to use different names for the library-id if you open more than
one request library in a single program. This is a required parameter.

14-2 Using the Primary TDMS Synchronous Calls

14.2 Opening a Channel - TSSSOPEN

You must open a channel to the terminal before you can perform a TDMS input
or output call on that terminal. TDMS assigns a unique number for each channel
that you open. The program must then pass that channel number to future TDMS
calls to identify which terminal to use. The number of terminals allowed to be
simultaneously open during the execution of a TDMS application is 1024.

Note

The channel number returned is not the VMS channel number returned
by the SYSSASSIGN service. Input/output calls to other services (such
as VAX RMS or the $QIO system routines) should not be issued to the
terminal.

The code to open a channel for input and output is as follows.
BASIC

Return_status = TSS$OPEN (Channel BY REF, &
Device BY DESC)

coBOL

CALL "TSS$OPEN"
USING BY REFERENCE Channel,
BY DESCRIPTOR Device,
GIVING Return-status.

FORTRAN

Return_status = TSS$O0PEN (%REF (Channel),
1 %DESCR (Device))

Channel is the channel number that TDMS assigns to the terminal. You must
define a variable to receive the channel number. It is a required parameter.

Device is a variable name that contains the name of the device you want to open.
It is an optional parameter; SYSSINPUT is the default device. You can also pass
the name of the device in quotation marks.

14.3 Transferring Data and Displaying Forms - TSSSREQUEST

You can transfer data between a program record and a form by using a request
created in RDU. Requests handle all of the input and output and eliminate the
need for you to code the interaction with the form in a program. When the pro-
gram issues a request call, TSSSREQUEST reads and executes the instructions
in the request. The code to issue a request call is as follows.

Using the Primary TDMS Synchronous Calls 14-3

BASIC

Return_status = TSS$REQUEST (Channel BY REF, &
Library_id BY REF, &
Request_name BY DESC, &
Record_1 BY REF, &
Record_2 BY REF, &
Record_n BY REF)

COBOL

CALL "TSS$REQUEST"

USING BY REFERENCE Channel,
BY REFERENCE Library-id,
BY DESCRIPTOR Request-name,
BY REFERENCE Record-1,
BY REFERENCE Record-2,
BY REFERENCE Record-n,

GIVING Return-status.

FORTRAN

Return_status= TSS$REQUEST (%REF (Channel),
%REF (Library_id),
%DESCR (Request_name) ,
%REF (Record_1),
%REF (Record_2),
%REF (Record_n))

Channel is the channel number assigned by TDMS on the TSS$OPEN call. This
is a required parameter.

g W) -

Library-id is the unique number assigned to the request library file on the
TSS$OPEN_RLB call, and identifies the request library file to use for this
request. This is a required parameter.

Request-name is a variable that contains the name of the request. you can also
pass the name of the request in quotation marks. This is a required parameter.

The record parameter corresponds to the record name or names in the RECORD
IS instruction in the request. It is an optional parameter, and there can be more
than one record. However, you can omit the record parameter only if there is no
RECORD IS instruction in the request.

You include the record parameter when a request contains a RECORD IS instruc-
tion. The structure of the records must be the same as the structure of the
records referred to in the request, and the order of the records passed must match
the order of the records in any RECORD IS instructions in the request. In addi-
tion, the order, data type, and length of fields in the records named in the request
and the records in the application program must be compatible according to the
TDMS mapping rules. (See the VAX TDMS Input and Output Mapping Tables in
the VAX TDMS Reference Manual for a complete discussion of TDMS mapping
rules).

14-4 Using the Primary TDMS Synchronous Calls

There are three important rules you must remember when passing records to the
request:

1. Record definitions in an application program must be compatible with
record definitions referenced in a request.

2. CDDL record definitions must be compatible with your programming lan-
guage.

3. Because you pass records by reference, TDMS has no way of validating that
you are passing the correct records.

If your programming language supports the extraction of records from the CDD,
record structure should not be a problem. This is because you can compile your
application program using the same version of the record definition that TDMS
used to build the request library file.

Note that if you use CDDL or DATATRIEVE to define your records, you must
pass a variable name to TSSSREQUEST that corresponds to the top level struc-
ture name in the record definition.

With languages that do not support the CDD, you have to be careful to define
your records so that they are compatible with your programming language or you
may generate unexpected results at run time. Chapter 16, Using Record
Definitions, contains a discussion of how to define records if your programming
language does not support the CDD.

14.4 Closing the Request Libary File - TSSSCLOSE_RLB

When you finish using the requests in a request library file, close the request
library file with the TSS$CLOSE_RLB call. The code to close a request library
file is as follows.

BASIC
Return_status = TSS$CLOSE_RLB (Library_id BY REF)
COBOL
CALL "TSS$CLOSE_RLB"
USING BY REFERENCE Library-id,
GIVING Return-status.
FORTRAN
Return_status = TSS$CLOSE_RLB (%REF (Library_id))

Library-id is the unique number assigned to the request library file on the
TSS$OPEN_RLB call. It identifies which request library file to close. It is a
required parameter.

Using the Primary TDMS Synchronous Calls 14-5

14.5 Closing a Channel - TSS$SCLOSE

When you finish using a channel opened by TDMS, close the channel with the
TSS$CLOSE call. After you close a channel, you cannot issue any more TDMS
input or output calls on that channel. If you want to use TDMS on that terminal
again, you must issue another TSS$OPEN call on that terminal. TSS$CLOSE
releases all TDMS resources associated with that terminal. The code to close a
channel is as follows.

BASIC

Return_status = TSS$CLOSE (Channel BY REF, &
Clear_screen BY REF)

CcOBOL

CALL "TSS$CLOSE"
USING BY REFERENCE Channel,
BY REFERENCE Clear-screen,
GIVING Return-status.

FORTRAN

Return_status = TSS$CLOSE (%REF (Channel),
1 %REF (Clear_screen))

Channel is the unique number assigned to the terminal on the TSS$OPEN call. It
identifies which channel to close. It is a required parameter.

Clear-screen is a variable name that, when equal to 1, clears the screen. It is an
optional parameter; an uncleared screen is the default when the parameter is
omitted or included and equal to 0.

14.6 Testing the Return Status Code

Each TDMS synchronous call returns a standard VAX condition code, as
described in the Introduction to VAX/VMS System Routines Manual When you
use a TDMS call in an application program, you should check the return status
code to be sure that the call completes successfully before you issue any more
TDMS calls on the channel. If a TDMS call does not complete successfully and
you have not made provisions to check the error, the results are unpredictable.

To check a return status, you must examine the first bit in the 32-bit status. If
the first bit is set, the call was successful and the return status represents a suc-
cess or informational level status code. If the first bit is not set, the call was not
successful, and the return status represents a warning, error or fatal level status
code.

14-6 Using the Primary TDMS Synchronous Calls

When you test the return status and find that a call is not successful, you can
issue the TSS$SIGNAL call to signal the return status and any extended status
information to the terminal. TSS$SIGNAL has no parameters, so when you issue
this call, it refers to the last TDMS call in the program on any channel. If you
issue TSS$SIGNAL as the first call in a program, the return status code of
TSS$_NORMAL is returned.

TSS$SIGNAL is useful for TDMS calls that have an extended status (that is,
calls using other facilities) because in addition to the TDMS status, you get the
status from the other facilities (such as VAX RMS). If a TDMS call does not have
extended status information, you see the single status as if you used the VAX
Run-Time Library routine LIB§SIGNAL.

The following example shows an extended status that may be returned if a
TSS$OPEN_RLB call fails because the request library file referenced in the call
does not exist. In this instance, when you use TSS$SIGNAL to display the
extended return status, you see the following:

%TSS-F-ERROPNRLB, error opening request library
-RMS-E-FNF, file not found
-SYSTEM-W-NOSUCHFILE, no such file

To test the return status in a BASIC program, you can:

1. Declare a LONGWORD integer variable to receive the return status code
2. Declare all calls as external integer functions

3. Write a routine to test the return status

The following BASIC program segment shows how you can test the return status
in an application program. In this example, if the TDMS call does not complete
successfully, processing of the program ends with the call to TSS$SIGNAL. You
can use the same routine to test the return status for each TDMS call.

BASIC

400 DECLARE INTEGER
Return_status,
Channel

R

500 EXTERNAL INTEGER FUNCTION
TSS$OPEN,
TSS$OPEN_RLB,
TSS$REQUEST,
TSS$CLOSE_RLB,
TSS$CLOSE,
TSS$SIGNAL

R

{continued on next page)

Using the Primary TDMS Synchronous Calls 14-7

1010 Return_status = TSS$OPEN (Channel BY REF)

GOSUB Check_return_status

19500 Check_return_status:

IF (Return_status AND 1%) <> 0%
THEN RETURN

ELSE Return_status = TSS$SIGNAL
END IF

To test the return status in a COBOL program:
1. Define a variable in WORKING-STORAGE to receive the return status
code
2. Write a subroutine to test the return status

The following COBOL program segment shows how you can test the return sta-
tus. In this example, if the call to TDMS does not complete successfully, the pro-
gram ends with a call to TSS$SIGNAL.

COBOL

WORKING-STORAGE SECTION.

01 Return-status PIC S 9(5) COMP.
01 Channel PIC S 9(5) COMP.

PROCEDURE DIVISION.

CALL "TSS$O0PEN" USING
BY REFERENCE Channel
GIVING Return-status.

PERFORM 900-CHECK-RETURN-STATUS.

14-8 Using the Primary TDMS Synchronous Calls

900-CHECK-RETURN-STATUS.

IF Return-status IS FAILURE
CALL "TSS$SIGNAL" GIVING Return-status.

14.7 Compiling and Linking a TDMS Program

You have seen all of the primary calls and learned how to test the return status
that TDMS returns when you issue a TDMS call. To run any TDMS program, you
have to compile it and then link it with TDMS. The following sections describe
how to compile and link a TDMS program.

14.7.1 Compiling a TDMS Program

You compile a TDMS program just as you do any other program. For VAX
BASIC, you issue the following command at DCL level:

$ BASIC program-name

For VAX COBOL, you issue the following command at DCL level:

$ COBOL program-name

For VAX FORTRAN, you issue the following command at DCL level:
$ FORTRAN program-name

When you compile a program, the compiler generates another file in your default
directory with the same name and the file type .OBJ.

14.7.2 Linking a TDMS Program

The VAX TDMS program interface is a shareable image named TSSSHR.EXE.
When the VAX TDMS software is installed, TSSSHR.EXE is placed in the
shareable image symbol table library, SYSSLIBRARY:IMAGELIB.OLB.

When you link any program, the VAX Linker by default searches
SYS$SLIBRARY:IMAGELIB.OLB. Consequently, you can link a TDMS program
simply by issuing the following command at DCL level:

$ LINK program-name

Using the Primary TDMS Synchronous Calls 14-9

When you issue this command:

1. The linker searches IMAGELIB.OLB

2. All references to TDMS calls are resolved

3. The linker generates another file in your default directory with the same
name and the file type .EXE

14.8 Two Simple TDMS Programs

The following are two simple TDMS application programs, one written in BASIC
and the other in COBOL, that use all of the primary TDMS calls. This program
uses the request in Figure 14-1 to display a form. Note that the program uses no
records.

EMPLOYEE_INITIAL_REQUEST

DESCRIPTION /* Displays descriptive text.
Explains how to use sample.
- Collects no data - */;

FORM IS EMPLOYEE_INITIAL_FORM;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_INITIAL_FORM;

WAIT;
!The WAIT instruction allows the operator
'to view the screen until the RETURN key
!is pressed by the operator.

END DEFINITION;

Figure 14-1: Request That Displays a Form

BASIC

150 DECLARE INTEGER
Return_status,
Channel,
Library_id

e

DECLARE INTEGER CONSTANT Clear_screen = 1Y%

200 EXTERNAL INTEGER FUNCTION
TSS$OPEN_RLB,
TSS$OPEN,
TSS$REQUEST,
TSS$CLOSE,
TSS$CLOSE_RLB
TSS$SIGNAL

FRrRrrer

14-10 Using the Primary TDMS Synchronous Calls

250

300

500

600

700

800

1+
! Open the request library file; it is a good practice to open
! the request library file first.

Return_status = TSS$0PEN_RLB &
("Employee.rlb", &
Library_id BY REF)

GOSUB Check_return_status

1+
! Open the channel to the terminal for input and output;
! you must issue this call before you can issue a TDMS input or

! output call on the channel.
!..

Return_status = TSS$0PEN (Channel BY REF)

GOSUB Check_return_status

t+
! Issue the request call; the initial request displays a form.
! There are no records used by the request, so none are included

! on the call.
!..

Return_status = TSS$REQUEST &
(Channel BY REF, &
Library_id BY REF, &
"EMPLOYEE _INITIAL_REQUEST")

GOSUB Check_return_status

1+

! Close the TDMS channel; note that in order to issue any more
! TDMS input or output calls on this channel, you have to

! reopen it.

!_

Return_status = TSS$CLOSE
(Channel BY REF,
Clear_screen BY REF)

Rr R

GOSUB Check_return_status

'+

! Close the request library file; note that the only parameter is
! the library-id.

1 -

Return_status = TSS$CLOSE_RLB &
(Library_id BY REF)

GOSUB Check_return_status

GOTO 32767
{continued on next page)

Using the Primary TDMS Synchronous Calls 14-11

19000 1+

! The subroutine to test the return status from a TDMS call is as

! follows.
!-

Check_return_status:

IF (Return_status AND 1%) <> 0%
THEN RETURN

ELSE Return_status = TSS$SIGNAL
END IF

32767 END

COBOL

IDENTIFICATION DIVISION.

PROGRAM-ID. Simpleprg.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 Return-status PIC S9(5) COMP.
01 Library-id PIC S9(5) COMP.
01 Request-library-file PIC X(19) VALUE

"Employee.rlb".

01 Clear-screen PIC S9(5) COMP VALUE 1.
01 Channel PIC S9(5) COMP.

PROCEDURE DIVISION.

100-0PENS.

%
%

Open the request library file; it is a good practice to open the
request library file first.

CALL "TSS$OPEN_RLB" USING
BY DESCRIPTOR Request-library-file,
BY REFERENCE Library-id
GIVING Return-status.

Routine to test the return status.
PERFORM 900-CHECK-RETURN-STATUS.

Open the channel to the terminal for input and output; you must issue
this call before you can issue a TDMS input or output call on the channel.

CALL "TSS$OPEN" USING
BY REFERENCE Channel
GIVING Return_status.
Routine to test the return status.

PERFORM 900-CHECK-RETURN-STATUS.

14-12 Using the Primary TDMS Synchronous Calls

300-REQUEST.

* Issue the request call; the initial request displays a form.
* No records are used, thus none appear on the call.

CALL "TSS$REQUEST" USING
BY REFERENCE Channel,
BY REFERENCE Library-id,
BY DESCRIPTOR Employee-initial-request
GIVING Return_status.

* Routine to test the return status.
PERFORM 900-CHECK-RETURN-STATUS.
500-CLOSE.

*

Close the TDMS channel; in order to issue any more TDMS
* input or output calls on this channel, you must reopen it.

CALL "TSS$CLOSE" USING
BY REFERENCE Channel,
BY REFERENCE Clear-screen
GIVING Return-status.

* Routine to test the return status.

PERFORM 900-CHECK-RETURN-STATUS.

*

Close the request library file; note that the only parameter
is the request library id.

CALL "TSS$CLOSE_RLB" USING
BY REFERENCE Library-id
GIVING Return-status.

*

* Routine to test the return status.
PERFORM 900-CHECK-RETURN-STATUS.
GO TO 950-STOP.

*

Routine to test the return status.

900-CHECK-RETURN-STATUS.

IF Return-status IS FAILURE
CALL "TSS$SIGNAL" GIVING Return-status.

950-STOP.
STOP RUN.

Using the Primary TDMS Synchronous Calls

14-13

Using Supplementary Calls 15

In addition to the five primary calls, TDMS provides a set of supplementary calls
you can use in an application program. The supplementary calls let you:

¢ Read input from the terminal without using a request
(TSSSREAD_MSG_LINE)

¢ Send messages to the terminal without using a request
(TSS$WRITE_MSG_LINE and TSS$WRITE_BRKTHRU)

e Copy the current form to another device (TSS$COPY_SCREEN)
¢ Cancel input/output (TSS$CANCEL)

* Assign and deassign application function keys (TSS$DECL_AFK and
TSS$UNDECL_AFK)

. Trace TDMS call execution (TSS$TRACE_ON and TSS$TRACE_OFF)

Chapter 18 discusses application function keys and Chapter 17 discusses the
Trace facility and the trace calls. This chapter introduces you to the rest of the
supplementary calls. Examples are shown in VAX BASIC, VAX COBOL, and
VAX FORTRAN.

15.1 Reading Messages from the Terminal -
TSSSREAD_MSG_LINE

You can use TSSSREAD_MSG_LINE to place a message on the reserved mes-
sage line on the terminal and read a line of data from the operator without using a
request. The reserved message line is generally the last line on the terminal. This
call gives the application program flexibility to notify the operator when the pro-
gram detects an unusual condition and to prompt the operator for an answer.
When the program issues this call, TDMS waits for a response from the operator.

15-1

The code to read a message from the message line is the following.

BASIC

Return_status = TSS$READ_MSG_LINE(Channel BY REF, &
Response_text BY DESC, &
Message_prompt BY DESC, &
Response_length BY REF)

COBOL

CALL "TSS$READ_MSG_LINE"
USING BY REFERENCE Channel,
BY DESCRIPTOR Response-text,
BY DESCRIPTOR Message-prompt,
BY REFERENCE Response-length,
GIVING Return-status.

FORTRAN

Return_status = TSS$READ_MSG_LINE (%REF (Channel),
%DESCR (Response-text),
%DESCR (Message_prompt),
%REF (Response_length))

W -

Channel is the channel number assigned by TDMS on the TSSSOPEN call. It is a
required parameter.

Response-text is a variable that identifies a string to receive the response. It is a
required parameter.

Message-prompt is a variable that contains the message you can put on the mes-
sage line to prompt the operator for a reply; it is an optional parameter. You can
also pass the message prompt in quotation marks.

Response-length is the address of a word to receive the length of the message line
read into the buffer; it is an optional parameter. Note that the combined length of
the response text and the message prompt cannot exceed the width of the termi-
nal screen.

15.2 Sending Messages to the Terminal

TDMS provides two ways for the program to send a message to the operator:

e TSS$WRITE_MSG_LINE
¢ TSS$WRITE_BRKTHRU

15-2 Using Supplementary Calls

15.2.1 Writing to the Message Line - TSSSWRITE_MSG_LINE

You can issue a TSS$WRITE_MSG_LINE call to write a message to the reserved
message line on the terminal without using a request. You cannot read the mes-
sage line with this call. It is useful to signal the operator to input data in form
fields or to send error messages to the operator.

The code to write a message on the message line using this call is the following.

BASIC

Return_status = TSS$WRITE_MSG_LINE (Channel BY REF, &
Message_text BY DESC)

COBOL

CALL "TSS$WRITE_MSG_LINE"
USING BY REFERENCE Channel,
BY DESCRIPTOR Message-text,
GIVING Return-status.

FORTRAN

Return_status = TSS$WRITE_MSG_LINE (%REF(Channel),
1 %DESCR (Message_text))

Channel is the channel number that was assigned on the TSSSOPEN call. This
parameter is required.

Message-text is a variable that contains the message to be displayed on the
reserved message line. This parameter is required. You can also pass the message
text in quotation marks.

15.2.2 Interrupting a Request or an Existing Message Line Operation -
TSS$SWRITE_BRKTHRU

You can also write to the reserved message line on the terminal by issuing a
TSS$WRITE_BRKTHRU call. This call allows you to interrupt the current
request or message line operation in order to send a message to the operator. The
code to write 2 message on the message line using this call is the following.

BASIC

Return_status = TSS$WRITE_BRKTHRU (Channel BY REF, &
Message_text BY DESC, &
Bell_flag BY REF)

Using Supplementary Calls 15-3

CcOoBOL

CALL "TSS$WRITE_BRKTHRU"
USING BY REFERENCE Channel,
BY DESCRIPTOR Message-text,
BY REFERENCE Bell-flag,
GIVING Return-status.

FORTRAN

Return_status = TSS$WRITE_BRKTHRU (%REF(Channel),

1 %DESCR (Message_text)
2 %REF (Bell_flag))

Channel is the channel number that was assigned on the TSS$OPEN call. This
parameter is required.

Message-text is a variable that contains the message to be displayed on the
reserved message line. This parameter is required. You can also pass the message
text in quotation marks.

Bell-flag is a flag for the terminal bell; this parameter is optional. If it is set to 1,
the flag will cause the terminal bell to ring when the message text is displayed. If
you do not pass this parameter, or if this parameter has a value of 0, TDMS does
not ring the bell.

15.3 Copying the Current Form to a Specific Device -
TSS$SCOPY_SCREEN

You can issue a TSS$COPY_SCREEN call to copy the contents of the currently
active form to the VMS file specified in the call or the file defined by the logical
name TSS$HARDCOPY.

If you use TSS$HARDCOPY, it must be defined as one or more devices or file
specifications. You can define the logical name:

* As asystem logical name

* As a process logical name (for example, in the operator’s login command file)
e As an application program definition

To use the logical TSSSHARDCOPY without issuing a TSS$COPY_SCREEN
call, the operator presses the key defined with the HARDCOPY function (the PF4
key) each time he wants a copy of the contents of the currently active form. The
HARDCOPY key function and TSS$COPY_SCREEN copy:

* The background text on the form

15-4 Using Supplementary Calls

. Double-size characters (simulated)
. Double-wide characters (simulated)
. Lines (simulated)

. Boxes (simulated)

Other video attributes are ignored.

The HARDCOPY key function also copies the data that is displayed in any field
at the moment when the operator presses the HARDCOPY key.

TSS$COPY_SCREEN copies any field data that has been entered during the pre-
ceding call to the request. For example, if the preceding request included a
DISPLAY FORM or USE FORM instruction, the data in the form fields at the
completion of that request is copied when the TSS$COPY_SCREEN call is
issued.

You cannot issue a TSS$COPY_SCREEN call while input or output is active on
the specified channel, as with an outstanding call to TSSS$REQUEST,
TSS$SREQUEST_A, TSS$WRITE_MSG_LINE, or TSS$WRITE_MSG_LINE_A.

You can use the HARDCOPY key function to copy form contents during a
request call; you can use the TSS$COPY_SCREEN call to copy form contents
between request calls.

The code to copy the screen is the following.

BASIC

.Return_status = TSS$COPY_SCREEN (Channel BY REF, &
File_spec BY DESC, &
Append_flag BY REF)

CcOBOL

CALL "TSS$COPY_SCREEN"
USING BY REFERENCE Channel,
BY DESCRIPTOR File-spec,
BY REFERENCE Append-flag,
GIVING Return-status.

FORTRAN

Return_status = TSS$COPY_SCREEN (%REF(Channel),

1 %DESCR(File_spec),
2 %REF (Append_flag))

Using Supplementary Calls 15-5

Channel is the channel number that was assigned on the TSS$OPEN call. This
parameter is required.

File-spec is the VMS file specification to which the contents of the currently
active form will be directed. This parameter is optional. You can also pass the
file-spec in quotation marks. If you do not specify this parameter, the value of the
logical TSSSHARDCOPY will be used to determine where the contents of the
currently active form are directed. If you do not specify this parameter and the
logical TSSSHARDCOPY is not defined, this call will do nothing. The return sta-
tus will be TSS$_NOOUTFILE, an informational status.

Append-flag is a flag that determines whether to create a new version of the
file or to append the copy of the screen to the latest version of the file. This
parameter is optional. A new version of the output file will be created if any of
the following conditions exist:

e The parameter is not present
¢ The flag has a value of 0
e There is no existing version of the file

Otherwise, the current contents of the screen will be appended to the latest ver-
sion of an existing VMS file.

15.4 Canceling Input/Output Calls in Progress - TSS$SCANCEL

You can use TSS$CANCEL to cancel an input/output call on a channel while the
call is in progress. You can do this when another facility, such as VAX RMS,
detects an error in your application program. This is the only way in a TDMS
application to cancel an input/output call in progress.

For example, to use TSS$CANCEL, you can have the system service $QIO read
messages from a mailbox. If you have an asynchronous read outstanding on the
mailbox, when a message is put into the mailbox, the AST routine associated with
the mailbox initiates a TSS$CANCEL.

A return status of success on TSS$CANCEL tells the program that a call is in
progress on the channel. At this point, the cancel is posted. However, the cancel is
complete only when the call you are canceling is returned to the program.

15-6 Using Supplementary Calls

TSS$CANCEL is the only synchronous TDMS call that can be used at asynchro-
nous system trap (AST) level without causing an error. The TDMS calls that you
can cancel are:

* TSS$COPY_SCREEN and TSS$COPY_SCREEN_A

e TSSSREAD_MSG_LINE and TSSSREAD_MSG_LINE_A

e TSS$SREQUEST and TSSSREQUEST_A

e TSS$SWRITE_MSG_LINE and TSS$WRITE_MSG_LINE_A

If TSS$CANCEL cancels a request call, the results depend entirely on whether
the operator has entered data on the form and pressed the RETURN key. If the
operator has pressed the RETURN key, the record buffer contains all of the data.
If the operator is in the process of entering data on the form and has not pressed
the RETURN key, the record buffer is not updated.

If TSS$CANCEL cancels a read message line call (TSSSREAD_MSG_LINE), the
results are similar to canceling a request call. If the operator has not pressed the
RETURN key, nothing is returned to the record buffer.

If you cancel a call, you cannot issue another TDMS call on the channel until the
canceled call returns to the program. If you try to issue another TDMS call before
then, the call will fail and you will get a return status indicating that there is
either a cancel in progress or input/output in progress on the channel. Once the
canceled call returns, you can issue further TDMS calls.

The code to cancel a TDMS input/output call is the following.
BASIC

Return_status = TSS$CANCEL (Channel BY REF)
COBOL

CALL "TSS$CANCEL"
USING BY REFERENCE Channel,
GIVING Return-status.

FORTRAN
Return_status = TSS$CANCEL (%REF (Channel))
Channel is the same channel number that was assigned on the TSS$OPEN call.

It is a required parameter.

Using Supplementary Calls 15-7

Using Record Definitions 16

One of the most important elements of a TDMS application program is the defini-
tion of the records you use to pass information back and forth to the TDMS
requests. To ensure that the record definitions the program uses match the record
definition(s) that RDU uses to define its mappings, you should copy the CDD
record definition(s) into your program. This chapter shows you the syntax for
including CDD record definitions into programs written in three languages:

¢ VAX BASIC
* VAX COBOL

¢ VAX FORTRAN

Note that you do not have to use the BASIC, COBOL, or FORTRAN statements
that let you refer to CDD record definitions. However, if you choose to define the
records explicitly in the source program, you must make sure that the records you
define and the CDD record definition the request uses are compatible.

TDMS supports a number of VAX data types. Included in the list is every data
type that VAX BASIC, VAX COBOL, and VAX FORTRAN support (except
UNSIGNED QUADWORD, a data type supported by COBOL). However, TDMS
does not support all data types that you can define with the Common Data
Dictionary Data Definition Language Utility (CDDL). When you are defining
records, be sure you consult the data type conversion table at the end of this
chapter. It will help you avoid run-time data type conversion errors.

In addition to explaining how to include record definitions into your application
program, this chapter also explains how to use record definitions created by other
products besides CDDL, including:

¢ VAX Rdb/VMS
e VAX DBMS

16-1

16.1 Using CDD Record Definitions in BASIC programs

VAX BASIC lets you refer to record definitions in the CDD using the
%INCLUDE statement. This eliminates the need to define the record structure
in the application program itself. However, before you pass this record to
TSS$REQUEST, you must use the DECLARE or MAP statement to declare

a record instance.

When you compile a BASIC program, you can use the /SHOW qualifier with the
/LIST qualifier to bring the record definition into the listing file of the source pro-
gram. You can then print or type the listing file and see the conversion of the
record definition to BASIC RECORD syntax. The syntax of the %ZINCLUDE
statement is as follows:

%INCLUDE %FROM %CDD cdd-path-name

The parameter cdd-path-name is a quoted string containing the path name of a
CDD record definition. It can be a full, a relative, or a given CDD path name.
When using relative or given path names, you must have the logical name
CDDS$DEFAULT defined.

The %INCLUDE statement defines and names a data structure that you use in a
later DECLARE or MAP statement. You can use the %INCLUDE statement
anywhere in a BASIC program to refer to CDD record definitions. However, it is
a good programming practice to declare record structures at the beginning of the
program to make sure the record is declared before you use it.

In the following sections you see four types of CDD record definitions, the trans-
lated BASIC version of the same record definitions if you compile the program
with the /SHOW and /LIST qualifiers, and the BASIC syntax to:

¢ Copy the record definitions from the CDD

. Declare the record instance with the MAP statement

16.1.1 Referring to a CDD Record Definition in BASIC

Figure 16-1 shows a CDDL record definition with some group structures, the
BASIC source to copy the record definition, the MAP statement, and the listing
file that shows the BASIC translation.

CDD Record Definition (EMPLOYEE_RECORD)

DEFINE RECORD EMPLOYEE_RECORD.
EMPLOYEE_RECORD STRUCTURE.

EMPLOYEE_NUMBER DATATYPE SIGNED LONGWORD.
EMPLOYEE_NAME STRUCTURE.

FIRST_NAME DATATYPE TEXT 15.

MIDDLE_INITIAL DATATYPE TEXT 1.

Figure 16-1: Referring to a CDD Record Definition in BASIC

16-2 Using Record Definitions

LAST_NAME DATATYPE
END EMPLOYEE_NAME STRUCTURE.
EMPLOYEE_ADDRESS STRUCTURE.

STREET DATATYPE
CITY DATATYPE
STATE DATATYPE
ZIP DATATYPE
END EMPLOYEE_ADDRESS STRUCTURE.
SEX DATATYPE
BIRTH_DATE DATATYPE

END EMPLOYEE_RECORD STRUCTURE.
END EMPLOYEE_RECORD.

TEXT

TEXT
TEXT
TEXT
TEXT

TEXT
TEXT

BASIC Source Program Segment to Copy and Map the Record Definition

100 %INCLUDE %FROM %CDD ’'Employee_record’

MAP (Employee_record_buffer) Employee_record
BASIC Translation

1 100 %INCLUDE %FROM %CDD ’'Employee_record’

C1 1 RECORD EMPLOYEE_RECORD '
c1 1 LONG EMPLOYEE_NUMBER !
C1 1 GROUP EMPLOYEE_NAME !
C1 1 STRING FIRST_NAME = 15 !
C1 1 STRING MIDDLE_INITIAL = !
C1 1 STRING LAST_NAME = 20 !
C1 1 END GROUP
C1 1 GROUP EMPLOYEE_ADDRESS !
c1 1 STRING STREET = 20 !
C1 1 STRING CITY = 15 !
C1 1 STRING STATE = 2 !
C1 1 STRING ZIP =5 '
C1 1 END GROUP
C1 1 STRING SEX =1 !
C1 1 STRING BIRTH_DATE =7 !
C1 1 END RECORD

Emp_rec

UNSPECIFIED
SIGNED LONGWORD
UNSPECIFIED
TEXT

TEXT

TEXT

UNSPECIFIED
TEXT
TEXT
TEXT
TEXT

TEXT
TEXT

Figure 16-1: Referring to a CDD Record Definition in BASIC (Cont.)

There are some important features you should note about the BASIC translation:

The record name corresponds to the field name specified in the first CDDL

STRUCTURE statement.

BASIC substitutes the keyword GROUP for any further CDDL

STRUCTURE statements.

The listing shows the BASIC data type and uses the comment character to
show the CDDL data type. In BASIC, neither GROUP nor RECORD can

have a data type.

Using Record Definitions 16-3

16.1.2 Referring to a CDD Record Definition Containing the VARIANTS
Syntax

Figure 16-2 shows a record definition with some group and variant structures, the
BASIC source to copy the record definition, the MAP statement, and the listing
file that shows the BASIC translation.

CDD Record Definition (EMPL_WORKSPACE)

DEFINE RECORD EMPL_WORKSPACE.
EMPL_WORKSPACE STRUCTURE.
VARIANTS.
VARIANT.
WK_OPERATION DATATYPE SIGNED WORD 1.
END VARIANT.
VARIANT.
WK_DELETE DATATYPE TEXT 2.
END VARIANT.
END VARIANTS.

VARIANTS.
VARIANT.

WK_ERR_MSG_PARTS STRUCTURE.
WK_ERROR_MSG_1 DATATYPE TEXT 40.
WK_ERROR_MSG_2 DATATYPE TEXT 40.

END WK_ERR_MSG_PARTS STRUCTURE.

END VARIANT.
VARIANT.
WK_ERR_MSG DATATYPE TEXT 80.
END VARIANT.
END VARIANTS.

END EMPL_WORKSPACE STRUCTURE.
END EMPL_WORKSPACE.

BASIC Source Program Segment to Copy and Map the Record Definition

100 %INCLUDE %FROM %CDD ’'Empl_workspace’
MAP (Workspace_buffer) Empl_workspace Emp_wk

BASIC Translation
1 100 %INCLUDE %FROM %CDD ’Empl_workspace’
C1 1 RECORD EMPL_WORKSPACE ! UNSPECIFIED
C1 1 VARIANT
C1 1 CASE
C1 1 WORD WK_OPERATION ! SIGNED WORD
c1 1 CASE
C1 1 STRING WK_DELETE = 2 ! TEXT
C1 1 END VARIANT
C1 1 VARIANT
C1 1 CASE
C1 1 GROUP WK_ERR_MSG_PARTS ! UNSPECIFIED

Figure 16-2: Referring to a CDD Record Definition Containing the VARIANTS
Syntax in BASIC

16-4 Using Record Definitions

C1 1 STRING WK_ERROR_MSG_1 = 40 ! TEXT
C1 1 STRING WK_ERROR_MSG_2 = 40 ! TEXT
C1 1 END GROUP

C1 1 CASE

C1 1 STRING WK_ERR_MSG = 80 ! TEXT
C1 1 END VARIANT

C1 1 END RECORD

Figure 16-2: Referring to a CDD Record Definition Containing the VARIANTS
Syntax in BASIC (Cont.)

In the BASIC translation:

e BASIC translates the CDDL keyword VARIANTS to VARIANT
e BASIC translates the CDDL keyword VARIANT to CASE

* The record name corresponds to the field name specified in the first CDDL
STRUCTURE statement

* BASIC substitutes the keyword GROUP for any further CDDL
STRUCTURE statements

e The BASIC RECORD statement shows the BASIC data type and uses the
comment character to show the CDDL data type. Note that in BASIC,
neither GROUP nor RECORD can have a data type.

16.1.3 Referring to CDD Array Record Definitions in BASIC

You can define and store array record definitions in the CDD and include them in
a BASIC program. CDDL lets you define arrays using the OCCURS and the
ARRAY keywords. If you nest a CDDL array, you get two one-dimensional arrays.

Figure 16-3 shows a CDDL record definition with a nested array, the BASIC
source to copy the record definition, the MAP statement, and finally the listing
file that shows the BASIC translation. Following the figure, you see how to refer
to the second dimension of the array PROJECT.

CDD Record Definition (PROJECT_SUMMARY_RECORD)

DEFINE RECORD PROJECT_SUMMARY_RECORD.
PROJECT_SUMMARY_RECORD STRUCTURE.
PROJECT STRUCTURE ARRAY 1:10.
PROJECT_NUMBERS DATATYPE TEXT 6&.
TOTAL_EMPLOYEES DATATYPE F_FLOATING.
WAGE_CLASS ARRAY 1:3 DATATYPE F_FLOATING.
END PROJECT STRUCTURE.
END PROJECT_SUMMARY_RECORD STRUCTURE.
END PROJECT_SUMMARY_RECORD.

(continued on next page)
Figure 16-3: Referring to a CDD Record Definition with Nested Arrays

Using Record Definitions 16-5

BASIC Source Program Segment to Copy and Map the Record Definition

100 %INCLUDE %FROM %CDD 'Project_summary_record’
MAP (Project_buffer) Project_summary_record Proj
DECLARE INTEGER Subscripti, &
Subscript2

BASIC Translation

1 225 %INCLUDE Y%FROM %CDD ’Project._ summary._ record’
Cc1 1 RECORD PROJECT_SUMMARY_RECORD UNSPECIFIED
Cc1 1 GROUP PROJECT(9) ! UNSPECIFIED
Cc1 1 STRING PROJECT_NUMBERS = 5 ! TEXT
C1 1 SINGLE TOTAL_EMPLOYEES ! F_FLOATING
Cc1 1 SINGLE WAGE_CLASS(2) ! F_FLOATING
C1 1 END GROUP
C1 1 END RECORD

%BASIC-I-CDDADJBOU, S 2, 1: adjusted bounds to be zero based for:
dimension 1 of PROJECT_SUMMARY_RECORD::PROJECT

%BASIC-I-CDDADJBOU, S 2, 1: adjusted bounds to be zero based for:
dimension 1 of PROJECT_SUMMARY_RECORD::PROJECT: :WAGE_CLASS

Figure 16-3: Referring to a CDD Record Definition with Nested Arrays (Cont.)
Note that:

e BASIC adjusts the bounds of the arrays to be zero based.

e Where the CDD record definition defined PROJECT as occurring 10 times,
BASIC copies the definition and defines that field as PROJECT(9). The (9)
refers to the upper bound of the array PROJECT, because BASIC changes
all arrays to begin with element 0 rather than element 1. If you look further
in the listing files, you see that the top bound of WAGE_CLASS is (2).

You can refer to the wage class field of PROJECT_SUMMARY_RECORD as:
PROJ: :PROJECT (Subscript1) : : WAGE_CLASS (Subscript2)

The variable, Subscript(n), is declared on the DECLARE INTEGER statement
and can be used to reference the elements in the nested arrays.

If the value of the first subscript is 0 and the value of the second subscript is 2,
you get the third element of WAGE_CLASS in the first occurrence of PROJECT.

In Figure 16-4 you see a record definition that BASIC interprets as a two-
dimensional array.

16-6 Using Record Definitions

CDD Record Definition (PROJECT_SUMMARY)

DEFINE RECORD PROJECT_SUMMARY.
PROJECT_SUMMARY STRUCTURE.
START_PROGRAM DATATYPE TEXT 5.
CONTROL_PROJECT ARRAY 1:10 1:3 DATATYPE TEXT 3.
END PROJECT_SUMMARY STRUCTURE.
END PROJECT_SUMMARY.

BASIC Program Segment to Copy and Map the Record Definition

100 %INCLUDE %FROM Y%CDD ’Project_summary'’

MAP (Proj_summary_buffer; Project_summary Wk

DECLARE INTEGER Subscripti, &

Subscript2
BASIC Translation
2 100 %INCLUDE %FROM %CDD ’Project_summary’

c1 2 RECORD PROJECT_SUMMARY ! UNSPECIFIED
C1 2 STRING START_PROGRAM = § ! TEXT
C1 2 STRING CONTROL_PROJECT(9,2) = 3 ! TEXT
C1 2 END RECORD

%BASIC-I-CDDADJBOU, S 1, 1: adjusted bounds to be zero based for:
dimension 2 of PROJECT_SUMMARY::CONTROL_PROJECT

%BASIC-I-CDDADJBOU, S 1, 1: adjusted bounds to be zero based for:
dimension 1 of PROJECT_SUMMARY::CONTROL_PROJECT

Figure 16-4: Referring to a Two-Dimensional CDD Array Record Definition in
BASIC

You can refer to the control project field of PROJECT_SUMMARY as:

WK: :CONTROL_PROJECT (Subscripti, Subscript2)

Table 16-1, at the end of this chapter, shows the data types that TDMS supports
and the corresponding VAX, CDDL, COBOL, BASIC, and FORTRAN data types.

16.2 Using COBOL to Refer to CDD Record Definitions

VAX COBOL lets you refer to record definitions in the CDD using the COPY
statement. You can use the COPY statement in the following sections of a
COBOL program:

* FILE SECTION
e WORKING-STORAGE SECTION
e LINKAGE SECTION

Using Record Definitions 16-7

The syntax of the COBOL COPY statement is:
COPY cdd-path-name FROM DICTIONARY
When you compile a COBOL program that uses the COPY statement:

e The compiler translates the record definition you name to COBOL source
text.

e The translated record definition is in terminal format if the source program
containing the COPY statement is in terminal format; otherwise, the record
definition is translated to ANSI format.

e The translated definition logically replaces the COPY statement, beginning
with the word COPY and ending with (and including) the punctuation charac-
ter period (.).

¢ The compiler changes the source text as it copies it if there is a
REPLACING phrase. The compiler replaces each successfully matched
occurrence of a text-matching argument in the source text with the corre-
sponding replacement item.

The parameter cdd-path-name represents a full, relative, or given CDD path name
specifying a CDD record definition to be copied into the source program. It can be
a nonnumeric literal or a COBOL word formed according to the rules for COBOL
user-defined names. If cdd-path-name is not a literal, the compiler:

e Translates hyphens in the COBOL word to underline characters
e Treats the word as if it were enclosed in quotation marks

The resulting path name must conform to all rules for forming CDD path names.

In the following sections you see four types of CDD record definitions, the trans-
lated COBOL version of the same record definitions if you compile the program
with the /LIST/ICOPY_LIST qualifiers, and the COBOL syntax to refer to the
record definitions from the CDD.

16.2.1 Referring to a CDD Record Definition in COBOL

Figure 16-5 shows a CDD record definition with some group structures, the
COBOL source to copy the record definition, and the listing file that shows the
COBOL translation.

16-8 Using Record Definitions

CDD Record Definition (EMPLOYEE_RECORD)

DEFINE RECORD EMPLOYEE_RECORD.
EMPLOYEE_RECORD STRUCTURE.

EMPLOYEE_NUMBER DATATYPE SIGNED LONGWORD.
EMPLOYEE_NAME STRUCTURE.

FIRST_NAME DATATYPE TEXT 15.

MIDDLE_INITIAL DATATYPE TEXT 1.

LAST_NAME DATATYPE TEXT 20.

END EMPLOYEE_NAME STRUCTURE.
EMPLOYEE_ADDRESS STRUCTURE.

STREET DATATYPE TEXT 20.

CITY DATATYPE TEXT 15.

STATE DATATYPE TEXT 2.

ZIP DATATYPE TEXT 5.
END EMPLOYEE_ADDRESS STRUCTURE.

SEX DATATYPE TEXT 1.

BIRTH_DATE DATATYPE TEXT 7.

END EMPLOYEE_RECORD STRUCTURE.
END EMPLOYEE_RECORD.

COBOL Program Segment to Copy the CDD Record Definition

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY ’Employee_record’ FROM DICTIONARY.

COBOL Translation
6 COPY ’Employee_record’ FROM DICTIONARY.
7L *
8L * CDD$TOP.EMPLOYEE_RECORD
9L *
10L 01 EMPLOYEE_RECORD.
11L 02 EMPLOYEE_NUMBER PIC S9(9) COMP.
12L 02 EMPLOYEE_NAME.
13L 03 FIRST_NAME PIC X(15).
14L 03 MIDDLE_INITIAL PIC X.
15L 03 LAST_NAME PIC X(20).
16L 02 EMPLOYEE_ADDRESS.
17L 03 STREET PIC X(20).
18L 03 CITY PIC X(15).
19L 03 STATE PIC X(2).
20L 03 ZIP PIC X(5).
21L 02 SEX PIC X.
22L 02 BIRTH_DATE PIC X(7).

Figure 16-5: Referring to a CDD Record Definition in COBOL

It is important to note that COBOL deletes the CDDL keyword STRUCTURE
from the record definition. The (01) top level structure name is the same as the
first CDDL structure name.

Using Record Definitions 16-9

16.2.2 Referring to a CDD Record Definition Containing the VARIANTS
Syntax

Figure 16-6 shows a record definition with group and variant structures, the
COBOL source to copy the record definition, and the listing file that shows the
COBOL translation.

CDD Record Definition (EMPL_WORKSPACE)

DEFINE RECORD EMPL_WORKSPACE.
EMPL_WORKSPACE STRUCTURE.
VARIANTS.
VARIANT.
WK_OPERATION DATATYPE SIGNED WORD 1.
END VARIANT.
VARIANT.
WK_DELETE DATATYPE TEXT 2.
END VARIANT.
END VARIANTS.
VARIANTS.
VARIANT.

WK_ERR_MSG_PARTS STRUCTURE.
WK_ERROR_MSG_1 DATATYPE TEXT 40.
WK_ERROR_MSG_2 DATATYPE TEXT 40.

END WK_ERR_MSG_PARTS STRUCTURE.

END VARIANT.
VARIANT.
WK_ERR_MSG DATATYPE TEXT 80.
END VARIANT.
END VARIANTS.
END EMPL_WORKSPACE STRUCTURE.
END EMPL_WORKSPACE.

COBOL Program Segment to Copy the CDD Record Definition

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY 'Empl_workspace’ FROM DICTIONARY.

COBOL Translation
23 COPY 'Empl_workspace’ FROM DICTIONARY.
24L *
25L * CDD$TOP.EMPL_WORKSPACE
26L *
27L 01 EMPL_WORKSPACE.
28L 02 WK_OPERATION PIC 89(4) COMP.
29L 02 WK_DELETE REDEFINES WK_OPERATION PIC X(2).
30L 02 WK_ERR_MSG_PARTS.
31L 03 WK_ERROR_MSG_1 PIC X(40).
32L 03 WK_ERROR_MSG_2 PIC X(40).
33L 02 WK_ERR_MSG REDEFINES WK_ERR_MSG_PARTS PIC X(80).

Figure 16-6: Referring to a CDD Record Definition with the VARIANTS Syntax
in COBOL

16-10 Using Record Definitions

In the COBOL translation:

e COBOL translates the CDDL keyword VARIANT to the COBOL
REDEFINES

e COBOL deletes the CDDL keyword STRUCTURE

16.2.3 Referring to CDD Array Record Definitions in COBOL

You can define and store array record definitions in the CDD and include them in
a COBOL program. CDDL lets you define arrays using the OCCURS and the
ARRAY keywords. Note that if you define a zero-based array in the CDD, and you
try to copy it into a COBOL program, you will get a fatal level error message and
COBOL will not create an object file. Therefore, all your arrays must be one-
based. Figure 16-7 shows a record definition with a nested CDDL array, the
COBOL source code to copy the record definition, and the listing file that shows
the COBOL translation. Following the figure, you see how to refer to the second
dimension of the array PROJECT.

CDD Record Definition (PROJECT_SUMMARY_RECORD)

DEFINE RECORD PROJECT_SUMMARY_RECORD.
PROJECT_SUMMARY_RECORD STRUCTURE.
PROJECT STRUCTURE ARRAY 1:10.
PROJECT_NUMBERS DATATYPE TEXT 5.
TOTAL_EMPLOYEES DATATYPE F_FLOATING.
WAGE_CLASS ARRAY 1:3 DATATYPE F_FLOATING.
END PROJECT STRUCTURE.
END PROJECT_SUMMARY_RECORD STRUCTURE.
END PROJECT_SUMMARY_RECORD.

COBOL Program Segment to Copy the CDD Record Definition

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY ’'Project_summary_record’ FROM DICTIONARY.

COBOL Translation
11 COPY 'Project_summary_record’ FROM DICTIONARY.
12L *
13L * PROJECT_SUMMARY_RECORD
14L *
15L 01 PROJECT_SUMMARY_RECORD.
16L 02 PROJECT OCCURS 10 TIMES.
17L 03 PROJECT_NUMBERS PIC X(5).
18L 03 TOTAL_EMPLOYEES COMP-1.
19L 03 WAGE_CLASS COMP-1 OCCURS 3 TIMES.

Figure 16-7: Referring to a CDD Record Definition with Nested OCCURS
Syntax in COBOL

Using Record Definitions 16-11

You can refer to the wage class field of PROJECT_SUMMARY_RECORD as:
WAGE_CLASS(Subscripti,Subscript2)

Figure 16-8 shows a two-dimensional CDD array record definition, the syntax to
copy the definition into the program, and the COBOL translation. After the
figure, there is an explanation of the COBOL translation.

CDD Record Definition (PROJECT_SUMMARY)

DEFINE RECORD PROJECT_SUMMARY.
PROJECT_SUMMARY STRUCTURE.
START_PROGRAM DATATYPE TEXT 5.
CONTROL_PROJECT ARRAY 1:10 1:3 DATATYPE TEXT 3.
END PROJECT_SUMMARY STRUCTURE.
END PROJECT_SUMMARY.

COBOL Program Segment to Copy the CDD Record Definition

DATA DIVISION.
WORKING-STORAGE SECTION.
COPY ’Project_summary’ FROM DICTIONARY.

COBOL Translation
20 COPY ’'Project_summary’ FROM DICTIONARY.
21L *
22L * PROJECT_SUMMARY
23L *
24L 01 PROJECT_SUMMARY.
25L 02 START_PROGRAM PIC X(5).
26L 02 CONTROL_PROJECT PIC X(3) OCCURS 10 TIMES.

1
%COBOL-E-ERROR 401, (1) Invalid multidimensional OCCURS

Figure 16-8: Referring a Two-Dimensional CDD Array Record Definition in
COBOL

Note that in PROJECT_SUMMARY, COBOL ignores the second dimension of
CONTROL_PROJECT and issues an error level message. In this case, COBOL
creates the object file but drops the second dimension and you get a one-
dimensional array that occurs 10 times. Therefore, you cannot use a multi-
dimensional array with COBOL.

Table 16-1, at the end of this chapter, shows the data types that TDMS supports
and the corresponding VAX, CDDL, COBOL, BASIC, and FORTRAN data types.

16-12 Using Record Definitions

16.3 Using FORTRAN to Refer to CDD Record Definitions

VAX FORTRAN lets you refer to record definitions in the CDD using the
DICTIONARY statement. This eliminates the need for you to define records in an
application program. However, before you pass this record to TSSSREQUEST,
you should use the RECORD statement to declare a record instance.

When you compile a FORTRAN program, you can use the qualifier
ISHOW=DICTIONARY with the /LIST qualifier to bring the record definition
into the listing file of the source program. If the data attributes of the record defi-
nition are consistent with FORTRAN requirements, the record definition is
included in the FORTRAN program. You can then print or type the listing file
and see the conversion of the record definition to FORTRAN RECORD syntax.
The syntax of the DICTIONARY statement is:

DICTIONARY cdd-path-name

The parameter cdd-path-name is a quoted string containing the path name of a
CDD record definition. It can be a full, a relative, or a given CDD path name.
When using relative or given path names, you must have the logical name
CDDS$DEFAULT defined.

The DICTIONARY statement can be used anywhere in a FORTRAN program
that a specification statement (such as an STRUCTURE/END STRUCTURE
block) is allowed. You can optionally include a /LIST qualifier with the
DICTIONARY command:

DICTIONARY ’CDD$TOP.YOUR_DICTIONARY.YOUR_RECORD/LIST’

The DICTIONARY statement with the /LIST qualifier performs the same func-
tion as the FORTRAN/LIST/SHOW=DICTIONARY command. Note that the
/LIST qualifier in the previous example follows cdd-path-name and occurs within
the quotation marks.

When you use the DICTIONARY statement, the result is that FORTRAN names
and defines a data structure that you can use in a later RECORD statement.

A CDD record definition can contain explanatory text in the CDDL
DESCRIPTION IS clause. If you specify /SHOW=DICTIONARY with the
FORTRAN command (or /LIST in the DICTIONARY statement), this text is
included in the FORTRAN listing as comments. The programmer can use these
comments to indicate the data type of each element. The punctuation for CDDL
comments is the same as for other FORTRAN comments if you use the exclama-
tion mark (!) comment character.

Even if you choose not to list the extracted record, the names, data types, and
offsets of the CDD record definition are displayed in the program listing file’s
symbol map.

Using Record Definitions 16-13

In the next sections you see four types of CDD record definitions, the translated
FORTRAN version of the same record definitions if you compile the program
with the /SSHOW and /LIST qualifiers, and the FORTRAN syntax to:

e Copy the record definitions from the CDD

° Declare the record instance with the RECORD statement

16.3.1 Referring to a CDD Record Definition in FORTRAN

Figure 16-9 shows a record definition with some group structures, the FORTRAN
source to copy the record definition, the RECORD statement, and the listing file
that shows the FORTRAN translation.

CDD Record Definition (EMPLOYEE_RECORD)

DEFINE RECORD EMPLOYEE_RECORD.
EMPLOYEE_RECORD STRUCTURE.

EMPLOYEE_NUMBER DATATYPE SIGNED LONGWORD.
EMPLOYEE_NAME STRUCTURE.

FIRST_NAME DATATYPE TEXT 15.

MIDDLE_INITIAL DATATYPE TEXT 1.

LAST_NAME DATATYPE TEXT 20.

END EMPLOYEE_NAME STRUCTURE.
EMPLOYEE_ADDRESS STRUCTURE.

STREET DATATYPE TEXT 20.

CITY DATATYPE TEXT 15.

STATE DATATYPE TEXT 2.

ZIP DATATYPE TEXT 5.
END EMPLOYEE_ADDRESS STRUCTURE.

SEX DATATYPE TEXT 1.

BIRTH_DATE DATATYPE TEXT 7.

END EMPLOYEE_RECORD STRUCTURE.
END EMPLOYEE_RECORD.

FORTRAN Program Segment to Copy the CDD Record Definition

DICTIONARY ’Employee_record’
RECORD /Employee_record/ Emp_rec

FORTRAN Translation

0001 DICTIONARY ’'Employee_record’
0002 1 ! CDD Path Name "Employee_record"
0003 1 STRUCTURE /EMPLOYEE_RECORD/

0004 1 INTEGER*4 EMPLOYEE_NUMBER
0005 1 STRUCTURE EMPLOYEE_NAME

0006 1 CHARACTER%15 FIRST_NAME
0007 1 CHARACTER=1 MIDDLE_INITIAL
0008 1 CHARACTER*20 LAST_NAME
0009 1 END STRUCTURE

0010 1 STRUCTURE EMPLOYEE_ADDRESS

Figure 16-9: Referring to a CDD Record Definition in FORTRAN

16-14 Using Record Definitions

0011 1 CHARACTER*20 STREET
0012 1 CHARACTER*15 CITY
0013 1 CHARACTER*2 STATE
0014 1 CHARACTER#5 ZIP
0015 1 END STRUCTURE

0016 1 CHARACTER*1 SEX

0017 1 CHARACTER+7 BIRTH_DATE
0018 1 END STRUCTURE

Figure 16-9: Referring to a CDD Record Definition in FORTRAN (Cont.)

There are two important features you should note about the FORTRAN
translation:

e The FORTRAN record structure name corresponds to the field name speci-
fied in the first CDDL STRUCTURE statement.

e The listing shows the equivalent FORTRAN data types for each field.
16.3.2 Referring to a CDD Record Definition Containing the VARIANTS
Syntax

Figure 16-10 shows a record definition with some group and variant structures,
the FORTRAN source to copy the record definition, the RECORD statement, and
the listing file that shows the FORTRAN translation.

CDD Record Definition (EMPL_WORKSPACE)

DEFINE RECORD EMPL_WORKSPACE.
EMPL_WORKSPACE STRUCTURE.
VARIANTS.
VARIANT.
WK_OPERATION DATATYPE SIGNED WORD 1.
END VARIANT.
VARIANT.
WK_DELETE DATATYPE TEXT 2.
END VARIANT.
END VARIANTS.

VARIANTS.
VARIANT.

WK_ERR_MSG_PARTS STRUCTURE.
WK_ERROR_MSG_1 DATATYPE TEXT 40.
WK_ERROR_MSG_2 DATATYPE TEXT 40.

END WK_ERR_MSG_PARTS STRUCTURE.

END VARIANT.
VARIANT.
WK_ERR_MSG DATATYPE TEXT 80.
END VARIANT.
END VARIANTS.

END EMPL_WORKSPACE STRUCTURE.
END EMPL_WORKSPACE.

(continued on next page)
Figure 16-10: Referring to a CDD Record Definition Containing the VARIANTS
Syntax in FORTRAN

Using Record Definitions 16-15

FORTRAN Program Segment to Copy the CDD Record Definition

DICTIONARY ’*EMPL_WORKSPACE’
RECORD /EMPL_WORKSPACE/ EMP_WK

FORTRAN Translation
0022 DICTIONARY ’Empl_workspace’
0023 1 ! CDD Path Name "Empl_workspace"
0024 1 STRUCTURE /EMPL_WORKSPACE/
0025 1 UNION
0026 1 MAP
0027 1 INTEGER*2 WK_OPERATION
0028 1 END MAP
0029 1 MAP
0030 1 CHARACTER%2 WK_DELETE
0031 1 END MAP
0032 1 END UNION
0033 1 UNION
0034 1 MAP
0035 1 STRUCTURE WK_ERR_MSG_PARTS
0036 1 CHARACTER*40 WK_ERROR_MSG_1
0037 1 CHARACTER*40 WK_ERROR_MSG_2
0038 1 END STRUCTURE
0039 1 END MAP
0040 1 MAP
0041 1 CHARACTER*80 WK_ERR_MSG
0042 1 END MAP
0043 1 END UNION
1

0044 END STRUCTURE

Figure 16-10: Referring to a CDD Record Definition Containing the VARIANTS
Syntax in FORTRAN (Cont.)

In the FORTRAN translation:

* FORTRAN translates the keyword VARIANTS to UNION
e FORTRAN translates the keyword VARIANT to MAP

16.3.3 Referring to CDD Array Record Definitions in FORTRAN

You can define and store array record definitions in the CDD and include them in
a FORTRAN program. CDDL lets you define arrays using the OCCURS and the
ARRAY keywords. If you nest CDDL arrays, you get a one-dimensional array
within a one-dimensional array structure.

Figure 16-11 shows a record definition with a nested array, the FORTRAN source
to copy the record definition, the RECORD statement, and the listing file that
shows the FORTRAN translation. Following the figure, you see how to refer to
the second dimension of the array PROJECT.

16-16 Using Record Definitions

CDD Record Definition (PROJECT_SUMMARY_RECORD)

DEFINE RECORD PROJECT_SUMMARY_RECORD.
PROJECT_SUMMARY_RECORD STRUCTURE.
PROJECT STRUCTURE ARRAY 1:10.
PROJECT_NUMBERS DATATYPE TEXT 5.
TOTAL_EMPLOYEES DATATYPE F_FLOATING.
WAGE_CLASS ARRAY 1:3 DATATYPE F_FLOATING.
END PROJECT STRUCTURE.
END PROJECT_SUMMARY_RECORD STRUCTURE.
END PROJECT_SUMMARY_RECORD.

FORTRAN Program Segment to Copy the CDD Record Definition

DICTIONARY ’'PROJECT_SUMMARY_RECORD’
RECORD /PROJECT_SUMMARY_RECORD/ PROJ
INTEGER SUBSCRIPT1, SUBSCRIPT2

FORTRAN Translation

0048 DICTIONARY ’Project_summary_record’
0049 1 ! CDD Path Name "Project_summary_record"
0050 1 STRUCTURE /PROJECT_SUMMARY_RECORD/

0051 1 STRUCTURE PROJECT(1:10)

0052 1 CHARACTER*5 PROJECT_NUMBERS

0053 1 REAL*4 TOTAL_EMPLOYEES

0054 1 REAL*4 WAGE_CLASS(1:3)

0055 1 END STRUCTURE

0056 1 END STRUCTURE

Figure 16-11: CDDL Record Definition with Nested OCCURS Syntax

You can refer to the wage class field of PROJECT_SUMMARY_RECORD as:

PROJ: :PROJECT (Subscriptl) : : WAGE_CLASS (Subscript2)

If the value of the first subscript is 1 and the value of the second subscript is 3,
you get the third element of WAGE_CLASS.

In Figure 16-12 you see a record definition that FORTRAN interprets as a two-
dimensional array.

CDD Record Definition (PROJECT_SUMMARY)

DEFINE RECORD PROJECT_SUMMARY.
PROJECT_SUMMARY STRUCTURE.
START_PROGRAM DATATYPE TEXT 5.
CONTROL_PROJECT COLUMN_MAJOR ARRAY 1:10 1:3 DATATYPE TEXT 3.
END PROJECT_SUMMARY STRUCTURE.
END PROJECT_SUMMARY.

(continued on next page)
Figure 16-12: Referring to a Two-Dimensional CDD Array Record Definition in
FORTRAN

Using Record Definitions 16-17

FORTRAN Program Segment to Copy the CDD Record Definition

DICTIONARY 'PROJECT_SUMMARY’
RECORD /PROJECT_SUMMARY/ WK
INTEGER SUBSCRIPT1, SUBSCRIPT2

FORTRAN Translation

0001 DICTIONARY 'PROJECT_SUMMARY’

0002 1 ! CDD Path Name "Employee_record"

0003 1 STRUCTURE /PROJECT_SUMMARY/

0004 1 STRUCTURE PROJECT

0005 1 CHARACTER*5 NUMS

0006 1 CHARACTER*3 WAGE_CLASS(1:10,1:3)
0007 1 END STRUCTURE

0008 1 END STRUCTURE

0009 1

Figure 16-12: Referring to a Two-Dimensional CDD Array Record Definition in
FORTRAN (Cont.)

You can refer to the control project field of PROJECT_SUMMARY as:
WK : : CONTROL_PROJECT (Subscriptl, Subscript2)

Note that a multi-dimensional array must specify COLUMN_MAJOR or
FORTRAN issues a fatal error and does not finish compiling the program.

Table 16-1, at the end of this chapter, shows the data types that TDMS supports
and the corresponding VAX, CDDL, FORTRAN, BASIC, and COBOL data types.

16.4 Using Record Definitions Created by Database
Management Systems

Throughout this book, the examples use record definitions created with the VAX
CDD Data Definition Language (CDDL). However, there are several other prod-
ucts that create CDD record definitions that TDMS can use. In particular, both of
the VAX Information Architecture database management systems can store
records in the CDD:

e VAX Rdb/VMS
e VAX DBMS

It is important, when building applications that use these products, to make sure
your application program and your TDMS requests refer to the correct record
definitions. If your requests do refer to the correct record definitions, changes to
the database (adding a new record field or changing the size of an existing field)
can often be accomplished without changing any request or programming code.
You simply rebuild the request library and recompile the application program.

16-18 Using Record Definitions

The following sections explain how to refer to record definitions created by VAX
Rdb/VMS and VAX DBMS.

16.4.1 Using Record Definitions Created by VAX Rdb/VMS

One of the products you can use to create record definitions in the CDD is VAX
Rdb/VMS. When you define a database using Rdb/VMS, it optionally creates a
hierarchy of record definitions and other CDD entities in the CDD under a path
name you specify.

The records you use for mapping data from an Rdb/VMS database to a TDMS
form field are the record definitions for the Rdb/VMS relations. These record defi-
nitions are stored in the subdirectory RDB$SRELATIONS, using the name of the
relation as the record name.

For example, if the Rdb/VMS database path name is RDB_DB (in your default
CDD directory) and the relation you are mapping to a form is called
SALARY_HISTORY, the path name for the record definition that defines that
relation is RDB_DB.RDB$RELATIONS.SALARY_HISTORY. This is the path
name you must use in the RECORD IS instruction in the request and in the pro-
gram statement that copies the record definition. This also assumes that you have
defined CDD$DEFAULT.

The following example illustrates how to use the Rdb/VMS record definition to
pass information from an Rdb/VMS relation to a TDMS request. The example
uses Rdb/VMS data manipulation statements for VAX BASIC.

! Declare the Rdb records.
%INCLUDE %FROM %CDD "Rdb_db.Rdb$relations.Salary_history"
DECLARE Salary_history Salary_rec

! Invoke the database.
&RDB& INVOKE DATABASE PATHNAME "Rdb_db"

! Get a record.
&RDB& FOR S IN Salary_history

&RDB& WITH S.Id_number = Salary_rec::Id_number
&RDB& GET Salary_rec::Start_date = S.Start_date
&RDB& Salary_rec::End_date = S.End_date
&RDB& Salary_rec::Salary = S.Salary

&RDB& END_GET

(continued on next page)

Using Record Definitions 16-19

! Display the record.
Return_status = TSS$REQUEST (Tdms_channel,
Tdms_1ib_id,
"Salary_request",
Salary_rec BY REF)

R Rr Rr

&RDB& END_FOR

In cases where you are fetching the entire record for use by TDMS, you can
abbreviate the Rdb/VMS GET statement with the use of the asterisk (*) wildcard
character. For example:

! Get a record.
&RDB& FOR S IN Salary_history

&RDB& WITH S.Id_number = Salary_rec::Id_number
&RDB& GET Salary_rec = S.x*
&RDB& END_GET

For more information on Rdb/VMS and Rdb/VMS data manipulation statements,
see the VAX Rdb/VMS Guide to Programming.

16.4.2 Using Record Definitions Created by VAX DBMS

Another product that creates record definitions in the CDD is VAX DBMS. When
you define a DBMS database, DBMS creates a hierarchy of subdirectories to con-
tain the record definitions for the schema and its subschemas.

A DBMS database can have several subschema definitions, each providing a dif-
ferent logical description of the records and sets in the database. However, you
can specify only one subschema when you invoke the database. That one
subschema defines the structure of the records for the database transactions dur-
ing that session. Consequently, you must use the records defined by that
subschema when mapping record fields contained in the DBMS database to
TDMS form fields.

Subschema definitions are stored in a CDD subdirectory named
DBM$SUBSCHEMAS under the main DBMS schema name. The record defini-
tions are then stored in a subdirectory named DBM$RECORDS within each
subschema subdirectory. For example, if the path name for the DBMS schema is
DBMS_DB (in your default CDD directory), the subschema you are using is
SUBSCHEMALI, and you want to map the record PERSONNEL to a TDMS
form, the path name for that record definition is:

DBMS_DB . DBM$SUBSCHEMAS . SUBSCHEMA1 . DBM$RECORDS . PERSONNEL

16-20 Using Record Definitions

This is the path name you must use in the RECORD IS instruction in the request
and in the program statement that copies the record definition. This assumes that
you have defined CDD$DEFAULT.

Note that you must define the records as work areas in your program. Although
the DBMS precompiler creates its own work area for fetching and storing data
from the database root file, it is safest to use a separate work area for transmit-
ting data to and from TDMS. Consequently, as in the following example, you
must move data values from the TDMS work area to the DBMS work area
between calls to TDMS requests and DBMS DML statements to fetch and store
data.

The following example illustrates the use of DBMS record definitions to select
and update a DBMS record using TDMS forms and requests. The example uses
the VAX DBMS data manipulation language (DML) for VAX BASIC:

! Declare the TDMS work area
%INCLUDE %FROM %CDD &
"DBMS_db.Dbm$subschemas.Subschemal.Dbm$records.Employee"
DECLARE Employee Employee_rec

! Invoke the database, specifying the subschema SUBSCHEMA1
INVOKE Subschemal WITHIN DBMS_db
READY CONCURRENT UPDATE

! Get the name of an employee
Return_status = TSS$REQUEST (Channel,
Library_id,
"Get_name_request",
Employee_rec)

fr 2r ¢

! Move the name into the DBMS work area
Emp_name = Employee_rec::Emp_name

! Find the appropriate record
FETCH FIRST Employee USING Emp_name

! Move the DBMS data into the TDMS work area
Employee_rec: :Emp_name = Emp_name
Employee_rec: :Address = Address
Employee_rec::City = City
Employee_rec::State = State

! call the update request
Return_status = TSS$REQUEST (Channel,
Library_id,
"Update_request",
Employee_rec)

RrRr &

(continued on next page)

Using Record Definitions 16-21

! Move the updated data back into the DBMS work area

Emp_name = Employee_rec::Emp_name
Address = Employee_rec::Address
City = Employee_rec::City
State = Employee_rec::State

! Modify the DBMS record
MODIFY Employee
COMMIT

For more information on VAX DBMS and the DBMS data manipulation lan-
guage, see the VAX DBMS Programming Guide and VAX DBMS Programming
Reference Manual

16.4.3 Displaying and Updating Database Records in Scrolled Regions

The previous sections explain how to use VAX Rdb/VMS and VAX DBMS
records for entering, displaying, and updating individual records using TDMS.
Another common practice is to use TDMS scrolled regions to display and/or
update a collection of records.

The nature of databases is to store each record separately. A stream of records
can then be created using data manipulation statements. However, there is no sin-
gle record definition that represents the entire collection.

What you must do to use the record collection in a TDMS scrolled region is:

1. Define a record that contains an array of records

2. Declare the new array record in your application program and TDMS
request

3. Use data manipulation statements to create a collection of records and load
the collection into the array record

4. Pass the array record to the TDMS request

The following sections discuss this process in detail, using an Rdb/VMS database
as an example.

Note

Although the following sections use Rdb/VMS as an example, the pro-
cess is identical for creating scrolled regions for VAX DBMS records.

16-22 Using Record Definitions

16.4.3.1 Defining an Array Record -- In the Rdb/VMS example in the section
entitled Using Record Definitions Created by VAX Rdb/VMS, the database
(RDB_DB) contains personnel records and has a relation that defines the struc-
ture of a single record, SALARY_HISTORY, containing fields for the employee
id, start and end dates, and salary. One possible application might be to display
the entire salary history for one employee in a scrolled region. To do this you need
a scrolled region with fields for the start date, end date, and salary for each of the
employee’s salary records.

The easiest way to create a record that contains an array of SALARY_HISTORY
records is to use the CDDL COPY FROM statement:

TDMS_REC

DEFINE RECORD TDMS_REC.
TDMS_REC STRUCTURE.
SAL_ARRAY STRUCTURE OCCURS 50 TIMES.
SALARY COPY FROM RDB_DB.RDB$RELATIONS.SALARY_HISTORY.
END SAL_ARRAY STRUCTURE.
END TDMS_REC STRUCTURE.
END TDMS_REC RECORD.

By using the COPY FROM statement, any changes to the database will be
reflected in the TDMS requests and the application program when you rebuild the
request library and recompile the program.

However, if the request uses the scrolled region for display only, you will also need
a one character array field to map for input so the operator can view the scrolled
region. See Chapter 10, How to Input and Display Data in a Scrolled Region, for
more information on scrolled regions. This field can be added to the array record:

TDMS_REC

DEFINE RECORD TDMS_REC.
TDMS_REC STRUCTURE.
SAL_ARRAY STRUCTURE OCCURS 50 TIMES.
SALARY COPY FROM RDB_DB.RDB$RELATIONS.SALARY_HISTORY.
! One character field for
! display-only scrolled regions.
FIELD_FOR_DISPLAY DATATYPE IS TEXT SIZE IS 1.
END SAL_ARRAY STRUCTURE.
END TDMS_REC STRUCTURE.
END TDMS_REC RECORD.

Using Record Definitions 16-23

16.4.3.2 Declaring the Array Record in the Application and TDMS
Requests -- To use the new array record, you must declare it in the application
program and in the TDMS request as you would any other CDD record. For
example, a VAX BASIC program would require the following statements:

! Declare the TDMS array record.
%INCLUDE %FROM %CDD "Tdms_rec"
DECLARE Tdms_rec Salary_rec

The TDMS request might look like the following:

SALARY_HIST_REQUEST

CREATE REQUEST SALARY_HIST_REQUEST
FORM IS SALARY_HIST_FORM;
RECORD IS TDMS_REC;

USE FORM SALARY_HIST_FORM;

OUTPUT ID_NUMBER [1 TO 50] TO ID_NUMBER [1 TO 50],
START_DATE [1 TO 50] TO START_DATE [1 TO 50],
END_DATE [1 To 50] TO END_DATE [1 TO 50],
SALARY [1 TO 50] TO SALARY [1 TO 50];

INPUT FIELD_FOR_DISPLAY [1 TO 50] TO
FIELD_FOR_DISPLAY [1 TO 50];

END DEFINITION;

16.4.3.3 Creating a Collection of Records and Loading the Array -- Once you
define the array record and the request that maps the array to a scrolled region,
you can then write the program code that will load the array. What you must do is
create a program loop that performs a data manipulation statement to read each
record and copy it into one element of the array. This is done by using a counter
that identifies which element of the array is currently being loaded and increment-
ing the counter by one each time the loop is executed. For the Rdb/VMS example,
the program might look as follows:

! Initialize a counter for the array.
Counter = 0O

! Load a collection of records in the array.
&RDB& FOR S IN Salary_history

&RDB& WITH S.Id_number = Salary_rec::Id_number

&RDB& GET Salary_rec::Sal_array(Loop_index)::Start_date = S.Start_date
&RDB& Salary_rec::Sal_array(Loop_index)::End_date = S.End_date
&RDB& Salary_rec::Sal_array(Loop_index)::Salary = S.Salary

&RDB& END_GET

16-24 Using Record Definitions

! Increment the counter.
Counter = Counter + 1

&RDB& END_FOR

Note that the array subscript is specified with the name of the structure
Sal_array, not with the record name or the field name.

You must also be careful to initialize any array elements not loaded from the
database. There are two reasons for this:

1. If the program routine that loads the array is called more than once, the
remaining array elements might contain spurious data from a previous call.

2. Any uninitialized fields mapped for output can result in spurious data on the
form or a TDMS data type conversion error. (Data type conversion errors
commonly occur when a text field contains null characters.)

You can either initialize the entire array before loading the record collection, or
you can initialize the remaining array elements after the load operation. For
example, the following program fragment uses the value of the counter (set by the
previous loop) to initialize the remaining array elements after the load operation:

! Initialize the remaining array elements

FOR Loop_index = Counter to 49
Salary_rec::Sal_array(Counter)::Start_date = SPACE$(8)
Salary_rec::Sal_array(Counter)::End_date = SPACE$(8)
Salary_rec::Sal_array(Counter)::Salary = 0

NEXT Loop_index

16.4.3.4 Passing the Array to the Request -- Once the record collection is
loaded into the array, the program can call the TDMS request passing the array
record name as an argument. For example:

! Call the update request
Return_status = TSS$REQUEST (Channel,
Library_id,
"Salary_hist_request",
Salary_rec)

fr 2 R

If the request uses the scrolled region for input, the program must then perform
the reverse operation -- unloading the array record and modifying the database
records associated with each array element.

16.5 Summary of Supported Data Types for Different
Languages

Table 16-1 lists all VAX data types that TDMS supports. It also lists the corre-
sponding data type names for those data types in CDDL, VAX BASIC, VAX
COBOL, VAX FORTRAN.

Using Record Definitions 16-25

Table 16-1: Data Type Conversion Chart
VAX CDDL TOMS BASIC COBOL FORTRAN
Data Type Data Type Data Type Data Type Data Type Data Type
SIGNED BYTE SIGNED BYTE SIGNED BYTE BYTE Unsupported BYTE
SIGNED WORD SIGNED WORD SIGNED WORD WORD PIC S9(1-4) INTEGER*2
COMP
SIGNED SIGNED SIGNED LONG PIC S9(5-9) INTEGER*4 or
LONGWORD LONGWORD LONGWORD COMP INTEGER
SIGNED SIGNED SIGNED Unsupported PIC S9(10-18) Unsupported
QUADWORD QUADWORD QUADWORD COMP
SIGNED SIGNED Unsupported Unsupported Unsupported Unsupported
OCTAWORD OCTAWORD
UNSIGNED UNSIGNED UNSIGNED Unsupported Unsupported Unsupported
BYTE BYTE BYTE
UNSIGNED UNSIGNED UNSIGNED Unsupported PIC 9(4) COMP Unsupported
WORD WORD WORD
UNSIGNED UNSIGNED UNSIGNED Unsupported PIC 9(9) COMP Unsupported
LONGWORD LONGWORD LONGWORD
UNSIGNED UNSIGNED Unsupported Unsupported PIC 9(18) COMP Unsupported
QUADWORD QUADWORD
UNSIGNED UNSIGNED Unsupported Unsupported Unsupported Unsupported
OCTAWORD OCTAWORD
F _ FLOATING F _ FLOATING F _ FLOATING SINGLE COMP-1 REAL or
REAL*4
D _ FLOATING D _ FLOATING D_ FLOATING DOUBLE COMP-2 REAL*8
G _ FLOATING G _ FLOATING G _ FLOATING GFLOAT Unsupported REAL*8
H_ FLOATING H_ FLOATING H_ FLOATING HFLOAT Unsupported REAL*16
F _ FLOATING F _ FLOATING Unsupported Unsupported Unsupported COMPLEX or
COMPLEX COMPLEX COMPLEX*8
D _ FLOATING D _ FLOATING Unsupported Unsupported Unsupported COMPLEX*16
COMPLEX COMPLEX
G _ FLOATING G _ FLOATING Unsupported Unsupported Unsupported COMPLEX*16
COMPLEX COMPLEX
H _ FLOATING H _ FLOATING Unsupported Unsupported Unsupported Unsupported
COMPLEX COMPLEX
CHARACTER TEXT TEXT STRING PIC X(n) CHARACTER*n
UNSIGNED UNSIGNED UNSIGNED Unsupported PIC 9(m)V9(n) Unsupported
NUMERIC NUMERIC NUMERIC
LEFT LEFT LEFT Unsupported PIC S9(m)V9(n) Unsupported
SEPARATE SEPARATE SEPARATE LEADING
NUMERIC NUMERIC NUMERIC SEPARATE
RIGHT RIGHT RIGHT Unsupported PIC S9(m)V9(n) Unsupported
SEPARATE SEPARATE SEPARATE TRAILING
NUMERIC NUMERIC NUMERIC SEPARATE
LEFT LEFT LEFT Unsupported PIC S9(m)V9(n) Unsupported
OVERPUNCHED OVERPUNCHED OVERPUNCHED LEADING
NUMERIC NUMERIC NUMERIC

16-26 Using Record Definitions

Table 16-1: Data Type Conversion Chart (Cont.)

VAX CcDDL TDMS BASIC CcOoBOL FORTRAN

Data Type Data Type Data Type Data Type Data Type Data Type
RIGHT RIGHT RIGHT Unsupported PIC S9(m)V9(n) Unsupported
OVERPUNCHED OVERPUNCHED OVERPUNCHED TRAILING
NUMERIC NUMERIC NUMERIC
ZONED SIGNED ZONED Unsupported Unsupported Unsupported
NUMERIC NUMERIC NUMERIC
PACKED PACKED PACKED DECIMAL PIC S9(m)V9(n) Unsupported
DECIMAL NUMERIC DECIMAL COMP-3
DATE DATE DATE Unsupported PIC S9(11)V9(7) Unsupported

Notes to Table 16-1

e COBOL has no exact equivalent for the unsigned integer data types
UNSIGNED WORD and UNSIGNED LONGWORD. The COBOL compiler
issues a warning diagnostic and treats the item as an unsigned COMP data

type.

e The FORTRAN data type INTEGER corresponds to SIGNED LONGWORD
if you compile the program with the default qualifier /14. If you compile the
program with the /NOI4 qualifier, INTEGER corresponds to the TDMS data

type SIGNED WORD.

e The FORTRAN data type REAL*8 corresponds to G_FLOATING if you
compile the program with the /G_FLOATING qualifier; otherwise, REAL*8

corresponds to the TDMS data type D_FLOATING.

e The FORTRAN data type COMPLEX*16 corresponds to G_FLOATING
COMPLEX if you compile the program with the /G_FLOATING qualifier;
otherwise, COMPLEX*16 corresponds to the VAX data type D_FLOATING

COMPLEX.

Using Record Definitions 16-27

Debugging a TDMS Application Program 17

The Trace facility is a tool TDMS provides to help you debug a TDMS application
program. Trace lets you monitor the action of a TDMS application program at run
time. It is most useful as an aid to debug programs that use conditional requests
because you have no way of knowing which set of instructions in a conditional
request will be executed until you run an application. You can use Trace to:

e Trace the execution of a request at run time, including:

Transfer of data from a program record to a form
Transfer of data from a form to a program record

- Values of control fields
e Trace TDMS calls, including:

- Parameter values

- Entry and exit time of each TDMS call

17.1 How to Enable the Trace Facility

There are two methods of enabling the Trace facility:

e Defining a logical name before you run an application program

e Issuing trace calls from an application program

In each case you can direct the trace output to a device or file specification.

17-1

17.1.1 Defining a Logical Name

You can define a logical name for the trace output before you run an application
program. For example, you can issue the DCL command:

$ DEFINE TSS$TRACE_OUTPUT PROG1

When you issue this command:

e The TDMS Trace facility is turned on when the program issues the first
TDMS call

¢ PROG1.LOG contains the trace output (note that .LOG is the default file
type)

e Trace is on for as long as the program is running or until the program issues
a TSS$TRACE_OFF call

When an application program stops, you can type or print PROG1.LOG to see the
trace output.
17.1.2 Issuing Trace Calls from an Application Program

There are two calls you can use in an application program to enable and disable
Trace:

1. TSS$TRACE_ON
2. TSS$TRACE_OFF

Each time you call TSS$TRACE_ON or TSS$TRACE_OFF, a message is written
to the trace output file or device, stating the time the action occurred. In addition,
TDMS attempts to translate TSS$TRACE_OUTPUT (the logical name). If
TDMS cannot find a translation, the trace output defaults to DBG$SOUTPUT,
which in turn defaults to SYS$OUTPUT.

The code to issue the trace calls is the following.

BASIC

TSS$TRACE_ON
TSS$TRACE_OFF

Return_status
Return_status

CcOoBOL

CALL "TSS$TRACE_ON" GIVING Return-status.
CALL "TSS$TRACE_OFF" GIVING Return-status.

17-2 Debugging a TDMS Application Program

FORTRAN

TSS$TRACE_ON ()
TSS$TRACE_OFF ()

Return_status
Return_status

won

There are no parameters for the trace calls. When you issue the call to
TSS$TRACE_ON, TDMS turns on the Trace facility and writes a message to a
trace log file, noting that Trace is on and the time the call was issued. If you want
to turn Trace off during the application program, you can use the
TSS$TRACE_OFF call in the program. For example, if you want to trace the
action of request calls only, you can precede each request call with
TSS$TRACE_ON and follow it with TSS$TRACE_OFF.

17.2 Results of Using Trace

The trace output you get is similar to Figure 17-1. Following the figure, there is
an explanation of each line of the trace output.

This sample output comes from running the Employee sample application
through the following procedures with Trace on. The Employee sample is avail-
able to you as an optional part of the TDMS installation procedure.

¢ TSS$OPEN_RLB

e TSS$OPEN

e TSS$REQUEST: the Initial request

¢ TSS$REQUEST: the Menu request

e TSS$REQUEST: the Add request

e TSS$REQUEST: the Menu request

¢ TSS$CLOSE_RLB

¢ TSS$CLOSE

Line numbers are inserted for ease of explanation only. You do not see line num-
bers when you use the Trace facility. In this example, Trace was enabled by
defining a logical name.

1. %TSS-I-TRARET, TSS$TRACE_ON returned on 8-NOV-1986 11:22:48.93
2. %TSS-I-TRACALL, TSS$OPEN_RLB called on 8-NOV-1986 11:22:49.08

3. %TSS-I-TRARET, TSS$OPEN_RLB returned on 8-NOV-1986 11:22:49.30

(continued on next page)
Figure 17-1: Sample Trace Output

Debugging a TDMS Application Program 17-3

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

%TSS-I-TRACALL, TSS$OPEN called on 8-NOV-1986 11:22:49.31
%TSS-I-TRARET, TSS$0PEN returned on 8-NOV-1986 11:22:49.38
%TSS-I-TRACALL, TSS$REQUEST called on 8-NOV-1986 11:22:49.60
%TSS-I-TRAPRMCHN, channel is 898528

%TSS-I-TRAPRMREQNAM, request name is EMPLOYEE_INITIAL_REQUEST
%TSS-I-TRARET, TSS$REQUEST returned on 8-NOV-1986 11:22:52.29
%TSS-I-TRACALL, TSS$REQUEST called on 8-NOV-1986 11:22:52.29
%TSS-I-TRAPRMCHN, channel is 898528

%TSS-I-TRAPRMREQNAM, request name is EMPLOYEE_MENU_REQUEST

%TSS-I-TRAOUTPUT,
EMPLOYEE WORKSPACE . EMPLOYEE_WORKSPACE . FIRST_MESSAGE_FIELD of value
" output to FIRST_MESSAGE_FIELD

%TSS-I-TRAQUTPUT,
EMPLOYEE_WORKSPACE.EMPLOYEE_WORKSPACE . SECOND_MESSAGE_FIELD of value
" " output to SECOND_MESSAGE_FIELD

%TSS-I-TRAINPUT, SELECTION of value "1" input to
EMPLOYEE_WORKSPACE .EMPLOYEE_WORKSPACE . SELECTION

%TSS-I-TRAINPUT, EMPLOYEE_NUMBER of value "1232342" input to
EMPLOYEE_RECORD.EMPLOYEE_RECORD.EMPLOYEE_NUMBER

%TSS-I-TRARET, TSS$REQUEST returned on 8-NOV-1986 11:22:58.51
%TSS-I-TRACALL, TSS$REQUEST called on 8-NOV-1986 11:22:58.85
%TSS-I-TRAPRMCHN, channel is 898528

%TSS-I-TRAPRMREQNAM, request name is EMPLOYEE_ADD_REQUEST

%TSS-I-TRAOUTPUT,
EMPLOYEE_RECORD.EMPLOYEE_RECORD.EMPLOYEE_NUMBER of
value "1232342" output to EMPLOYEE_NUMBER

%TSS-I-TRAINPUT, FIRST_NAME of value "Jack "
input to EMPLOYEE_RECORD.EMPLOYEE_RECORD.EMPLOYEE_NAME.FIRST_NAME

%TSS-I-TRAINPUT, MIDDLE_INITIAL of value "R" input to
EMPLOYEE_RECORD.EMPLOYEE_RECORD.EMPLOYEE_NAME .MIDDLE_INITIAL

%TSS-I-TRAINPUT, LAST_NAME of value "Sinical " input to
EMPLOYEE_RECORD.EMPLOYEE_RECORD.EMPLOYEE_NAME .LAST_NAME

Figure 17-1: Sample Trace Output (Cont.)

17-4 Debugging a TDMS Application Program

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

%TSS-I-TRAINPUT, STREET of value "12 Maple St. " input to
EMPLOYEE_RECORD .EMPLOYEE_RECORD.EMPLOYEE_ADDRESS . STREET

%TSS-I-TRAINPUT, CITY of value "Newport " input to
EMPLOYEE_RECORD . EMPLOYEE_RECORD.EMPLOYEE_ADDRESS.CITY

%TSS-I-TRAINPUT, STATE of value "RI" input to
EMPLOYEE_RECORD .EMPLOYEE_RECORD.EMPLOYEE_ADDRESS . STATE

%TSS-I-TRAINPUT, ZIP of value "02840" input to
EMPLOYEE_RECORD .EMPLOYEE_RECORD .EMPLOYEE_ADDRESS . ZIP

%TSS-I-TRAINPUT, SEX of value "M" input to
EMPLOYEE_RECORD . EMPLOYEE_RECORD. SEX

%TSS-I-TRAINPUT, BIRTH_DATE of value "0O1Sepii" input to
EMPLOYEE_RECORD.EMPLOYEE_RECORD.BIRTH_DATE

%TSS-I-TRARET, TSS$REQUEST returned on 8-NOV-1986 11:23:30.91
%TSS-I-TRACALL, TSS$REQUEST called on 8-NDOV-1986 11:23:31.05
%TSS-I-TRAPRMCHN, channel is 898528

%TSS-I-TRAPRMREQNAM, request name is EMPLOYEE_MENU_REQUEST

%TSS-I-TRAQUTPUT,
EMPLOYEE_WORKSPACE . EMPLOYEE_WORKSPACE .FIRST_MESSAGE_FIELD of value
" " output to FIRST_MESSAGE_FIELD

%TSS-I-TRAOUTPUT,
EMPLOYEE WORKSPACE . EMPLOYEE_WORKSPACE . SECOND_MESSAGE_FIELD of value
" output to SECOND_MESSAGE_FIELD

%TSS-I-TRAINPUT, SELECTION of value "5" input to
EMPLOYEE_WORKSPACE . EMPLOYEE_WORKSPACE . SELECTION

%TSS-I-TRAINPUT, EMPLOYEE_NUMBER of value " "
input to EMPLOYEE_RECORD.EMPLOYEE_RECORD.EMPLOYEE_NUMBER

%TSS-I-TRARET, TSS$REQUEST returned on B8-NOV-1986 11:23:37.88
%TSS-I-TRACALL, TSS$CLOSE_RLB called on 8-NOV-1986 11:23:37.97
%TSS-I-TRARET, TSS$CLOSE_RLB returned on 8-NOV-1986 11:23:37.99
%TSS-I-TRACALL, TSS$CLOSE called on 8-NOV-1986 11:23:38.00

%TSS-I-TRARET, TSS$CLOSE returned on 8-NOV-1986 11:23:38.19

Figure 17-1: Sample Trace Output (Cont.)

Debugging a TDMS Application Program 17-5

Notes to Figure 17-1:

e Lines 1 through 5 indicate entry and exit times of TSS$TRACE_ON,
TSS$OPEN_RLB, and TSS$SOPEN calls.

e Lines 7,11, 19, and 33 show the channel number passed on the
TSSSREQUEST call. It is the same number that was assigned on the
TSS$OPEN call.

e Lines 8, 12, 20, and 34 show the request name passed on the
TSS$REQUEST call.

e Lines6,9,10,17, 18, 31, 32, and 39 indicate entry and exit times of the
request calls.

e Lines 13 through 16, 21 through 30, and 35 through 38 show the data that
was transferred between the form and the program record during each
request.

¢ Lines 40 through 43 show the entry and exit times of TSS$CLOSE_RLB
and TSS$CLOSE.

17.3 Debugging an Application Using Two Terminals

If you use the VAX Symbolic Debugger to debug your programs, you can use two
terminals and the TDMS Trace facility to make your job easier. If you use one ter-
minal and set breakpoints at specific lines, the output from the debugger appears
over the form, making your job much more difficult.

One of the terminals should be logged in (term-1), and the second one should be
logged out (term-2). Note that the second terminal must be logged out because
you can assign a terminal to your process only if it is not in use. Also note that to
assign another terminal you need the system privilege SYSPRV. On term-1 issue
the following commands at DCL level:

$ DEFINE DBG$INPUT term-2
$ DEFINE DBG$OUTPUT term-2
$ DEFINE TSS$TRACE_OUTPUT term-2

At term-1 type:
$ RUN program-name
On term-2 you see:

DBG>

17-6 Debugging a TDMS Application Program

When you issue these commands:

* You can issue all debug commands at term-2
* You see all debugger output on term-2
¢ You see TDMS trace output on term-2

Using two terminals lets you keep the form intact, examine variables, and see the
trace output on the second terminal. You can now enter all debugger commands
on term-2 and run the application from term-1.

When the program exits, term-1 is returned to command level and term-2 is
returned to its original state.

Debugging a TDMS Application Program 17-7

Application Function Keys (AFKS) 18

This chapter explains how to redefine terminal keys from the application pro-
gram.

18.1 What Are Application Function Keys?

Application function keys (AFKs) are keys that trigger special application-specific
actions. AFKs are not restricted to the functions TDMS provides.

When the operator presses a key that the application program defines as an AFK,
either or both of the following events occurs:

¢ Anevent flag is set
e A user-written asynchronous system trap (AST) routine is invoked

If you are unfamiliar with AST routines, you should read the VAX/VMS System
Services Reference Manual before continuing with this chapter.

18.2 When Do You Use Application Function Keys?

You should use AFKs when you want to associate a terminal key with an action
that is unrelated to TDMS or that interrupts TDMS. For instance, you can write
an AST routine that calls TSSSCANCEL and then declare an AFK that invokes
that AST routine. This way, the operator can cancel a request without entering
any data, even if the form defines the fields as Response Required.

18-1

18.3 Declaring Application Function Keys

You declare an AFK with the TSS$DECL_AFK call. The code to declare an AFK
is as follows.

BASIC

Return_status = TSS$DECL_AFK (Channel BY REF,
Key_id BY REF,
Event_flag BY REF,
Ast_routine BY REF,
Ast_parameter BY VALUE)

R

coBOL

CALL "TSS$DECL_AFK"
USING BY REFERENCE Channel,
BY REFERENCE Key-id,
BY REFERENCE Event-flag,
BY REFERENCE Ast-routine,
BY VALUE Ast-parameter,
GIVING Return-status.

FORTRAN

Return_status = TSS$DECL_AFK(%REF (Channel),
%REF (Key_id)
%REF (Event_flag),
%REF (Ast_routine),
Ast_parameter)

W -

Channel is the channel number that was assigned on the TSS$OPEN call.

Key-id is a code representing the AFK. When the operator presses the key repre-
sented by the key-id parameter, the event flag will be set and the AST routine will
be invoked. These parameters are optional but you must include at least one. See
Table 18-1 for a list of application function keys.

Event-flag is the event flag that is set when the operator presses the AFK. This
parameter is optional; if it is not present, TDMS does not set an event flag when
the operator presses the key. However, if you do not specify an event flag, you
must specify an AST routine.

Ast-routine is a subroutine. This parameter is optional. When the operator presses
the AFK, TDMS calls this routine at AST level. You may use either the event flag
or the AST routine by itself, or together.

Ast-parameter is a parameter to be passed to the AST routine. This parameter is
optional. If the AST parameter is not present and an AST routine is, TDMS will

pass an AST parameter of zero. TDMS treats this parameter as a value: you can

pass any type of parameter you would like your AST routine to receive, including
addresses (parameters by reference).

18-2 Application Function Keys (AFKS)

18.3.1 Terminal Keys You Can Declare as AFKs
Table 18-1 lists the valid key codes and the keys they represent.

Table 18-1: Application Function Key Codes

KeyId Control Key Key Id Control Key
0 CTRL/space bar 15 CTRL/O
1 CTRL/A 16 CTRL/P
2 CTRL/B 18 CTRL/R
3 CTRL/C 20 CTRL/T
4 CTRL/D 21 CTRL/U
5 CTRL/E 22 CTRL/V
6 CTRL/F 23 CTRL/W
7 CTRL/G 24 CTRL/X
8 CTRL/H 25 CTRL/Y
9 CTRLI 26 CTRL/Z
10 CTRL/J 27 CTRL/
11 CTRL/K 28 CTRL/backslash
12 CTRL/L 29 CTRL/]
13 CTRL/M 30 CTRL/”
14 CTRL/N 31 CTRL/?

Application Function Keys (AFKS) 18-3

18.3.2 How to Write an AST Routine

When the operator presses an AFK that has an AST routine associated with it,
TDMS invokes the AST routine and passes it three parameters. You must make
sure your AST routine receives the parameters correctly. The calling sequence is
as follows:

Return-status = AST-routine (AST-parameter by value,
channel by reference,
key-id by reference)

The values AST-parameter, channel, and key-id that TDMS passes to the AST
routine are the same values specified in the TSSSDECL_AFK call.

18.4 Removing an AFK Key Definition

To remove a key definition declared in a TSS$DECL_AFK call, you use the
TSS$UNDECL_AFK call. The code to remove a key definition is as follows.

BASIC

Return_status = TSS$UNDECL_AFK (Channel BY REF, &
Key_id BY REF)

coBOL

CALL "TSS$UNDECL_AFK"
USING BY REFERENCE Channel,
BY REFERENCE Key-id,
GIVING Return-status.

FORTRAN

Return_status = TSS$UNDECL_AFK (%REF (Channel),
1 %REF (Key_id))

Channel is the channel number that was assigned on the TSS$OPEN call.

Key-id is the code representing an AFK that was previously declared in a
TSSSDECL_AFK call.

18-4 Application Function Keys (AFKS)

Using Asynchronous Calls 19

This chapter describes the TDMS asynchronous programming calls. You should
have a complete understanding of the TDMS synchronous calls before you try to
use TDMS asynchronous calls. See Chapters 14 and 15 of this manual for infor-
mation on the TDMS synchronous calls. For further information on asynchronous
calls and AST routines, see the VAX/VMS System Services Reference Manual.

19.1 What Are Asynchronous Calls?

When you invoke an asynchronous call, TDMS initiates the operation and then
returns control immediately to the application program. TDMS provides an asyn-
chronous equivalent for most of the synchronous calls. The asynchronous calls
include:

e TSS$CLOSE_A

e TSS$COPY_SCREEN_A

e TSS$DECL_AFK_A

e TSSSOPEN_A

e TSS$READ_MSG_LINE_A

e TSS$REQUEST_A

e TSS$UNDECL_AFK_A

e TSS$WRITE_BRKTHRU_A

¢ TSS$SWRITE_MSG_LINE_A

191

19.2 When Do You Use Asynchronous Calls?

Since asynchronous calls return control to the application program immediately,
they are very useful for performing multiple actions at the same time.

One occasion when you might want to use asynchronous calls is if your database
is on a remote network node. You can invoke requests asynchronously with the
TSS$REQUEST_A; when the operator finishes entering one record, the next
request is called immediately and the operator can begin entering the next record
without having to wait. While the operator fills in the second form, the application
program can write the first record to the database. In this way, the time delay
caused by the network connection is not apparent to the operator.

19.3 The General Format for Asynchronous Calls

TDMS asynchronous calls are identical to the synchronous calls, with the follow-
ing exceptions:

¢ The name of the asynchronous call has the suffix _A
¢ The call has four additional parameters
The general syntax of an asynchronous call is:

return-status = TSS$xxx_A (channel by reference,
[rsb by reference],
[event-flag by reference],
[ast-routine by reference],
| ast-parameter by value],
| call-specific] , ...)

Return-status is the standard VAX/VMS return status indicating the success or
failure of the call. The return status for an asynchronous call, if successful, indi-
cates only that the call was initiated, not that it was completed.

Rsb is the address of a longword to receive the completion status for the call. This
parameter is optional. If the parameter is not present, it is passed as a 0.
However, if you do not specify a completion status, there is no way of knowing
whether the call completed successfully or not.

Event-flag is the number of the event flag set when the call completes. This
parameter is optional. If the parameter is not present, TDMS does not set an
event flag for this call.

Ast-routine is the routine TDMS invokes when the call completes. This parameter
is optional. However, either the event flag parameter or the AST routine param-
eter must be present for the call, or the application program has no way of know-
ing when the call completes.

19-2 Using Asynchronous Calls

Ast-parameter is a parameter TDMS passes to the AST routine when the call
completes. This parameter is optional. If the AST parameter is not present, and
an AST routine is, TDMS passes an AST parameter of zero to the AST routine.

Call-specific is a parameter specific to the call. For example, the call-specific
parameters for the TSSSREQUEST call are the request library id, the name of
the request, and the records to pass to the request.

See the VAX TDMS Reference Manual for more information on call-specific
parameters for each call.

Using Asynchronous Calls 19-3

In this index, a page number followed
by a “t” indicates a table reference.
A page number followed by an ”f”
indicates a figure reference.

* (asterisk)

See Asterisk (*)
@ (at sign)

See @file-spec command
! (exclamation point)

See Exclamation point (!)
- (hyphen)

See Hyphen (-)
; (semicolon)

See Semicolon ;)

A

AFK
See Application function keys
%ALL syntax, 3-3
arrays
elements of, 7-8
horizontally-indexed, 8-7, 8-8f
indexed, 7-15
multiple, 7-20

Index

scrolled, 7-14
two-dimensional, 8-7
Display Only form fields, 3-6
entire forms, 3-4
errors in, 5-3, 5-7
example of, 3-5
form and larger record, 3-6
form and smaller record, 3-7
group record fields, 3-21
informational messages in, 5-3
rules, 3-3, 4-2
when not to use, 3-19
when to use, 3-4
with explicit syntax, 3-19
with INPUT TO, 1-11
with OUTPUT TO, 1-12

Ambiguous field names, 3-14

making unique
using group field names, 3-15
using record names, 3-17
using the WITH NAME modi-
fier, 3-17
qualifying, 3-14

ANYMATCH case value, 6-10
Application function keys (AFKs),

18-1, 18-3t
AST routines, 18-2, 18-4
deassigning, 18-4
declaring, 18-2
event flags, 18-2

Index-1

when to use, 18-1
Application programs
canceling TDMS calls, 15-6
compiling, 14-9
data types, 16-1, 16-26t
debugging
sample, 17-3 to 17-6f
Trace facility, 17-1
using log files, 17-2
using two terminals, 17-6
VAX Symbolic Debugger, 17-6
with TDMS calls, 17-2
declaring records, 16-1
in BASIC programs, 16-2
in COBOL programs, 16-7, 16-8
in FORTRAN programs, 16-13,
16-14
linking, 14-9, 14-10
opening RLB files, 14-2
passing records to requests, 14-4,
14-5, 16-25
reading from the message line, 15-1
record definitions in, 14-5
sample
BASIC program, 14-10 to 14-12
COBOL program, 14-12 to 14-13
sequence of TDMS calls, 14-1
signaling errors, 14-7
testing return status, 14-6
using control values, 6-3
using DBMS, 16-20 to 16-22
using Rdb/VMS, 16-19, 16-20
Arguments for TDMS calls, 14-1
ARRAY clause (CDDL), 7-6
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
nesting, 8-2
Arrays, 7-1
%ALL syntax, 7-8, 7-14
horizontally-indexed, 8-7
two-dimensional, 8-5, 8-7
bounds
adjusting, 9-6
in BASIC programs, 16-6, 16-7

Index-2

in COBOL programs, 16-11
in RDU, 7-7
control values, 9-1
adjsting bounds, 9-6
evaluating at run time, 9-2
example, 9-2f
one-dimensional, 9-7, 9-8f
rules for specifying, 9-4
declaring
in BASIC programs, 16-5, 16-5f,
16-7f
in COBOL programs, 16-11, 16-
111, 16-12f
in FORTRAN programs, 16-16,
16-17f
explicit syntax, 7-7
for database scrolled regions, 16-23
for input, 16-25
initializing, 16-25
loading, 16-25
form, 7-2
horizontally-indexed, 8-1, 8-1f
indexed, 7-2, 7-3f
mapping from multiple, 7-20
scrolled, 7-3, 7-4f
simple, 4-3f
horizontally-indexed, 8-1f, 8-4, 8-9
indexed, 7-12
multiple, 7-18
nested
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
one-dimensional, 7-2f
as control values, 9-7, 9-8f
partial, 7-17, 8-10f
records
group, 7-5
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
multiple, 7-18
one-dimensional, 7-4, 7-5f
structure, 4-2f, 7-4
two-dimensional, 8-2, 8-4

using ARRAY syntax, 7-6, 8-2
using OCCURS syntax, 7-6, 8-2
with database streams, 16-24
rules, 7-9
scrolled, 7-12, 7-15
displaying, 10-5, 10-6f, 10-7
horizontally-indexed, 8-1f
multiple, 7-20
structure of, 7-2f
subscripts, 7-1
See also Dependent names
ranges, 7-1
two-dimensional
%ALL syntax, 8-7
in BASIC programs, 16-7
in COBOL programs, 16-12
in FORTRAN programs, 16-18
rules, 8-4
work, 9-6
zero-based
as control values, 9-6
in BASIC programs, 16-6
in COBOL programs, 16-11
in RDU, 7-7
AST routines
calling sequence, 18-4
for application function keys, 18-2,
18-4
for asynchronous calls, 19-2
parameters
for application function keys,
18-2
for asynchronous calls, 19-2, 19-3
writing, 18-4
Asterisk (*) character in Rdb/VMS
DML, 16-20
Asynchronous calls
See TDMS programming calls
Asynchronous System Trap routines
See AST routines
Attributes
field
Display Only, 3-6
dummy fields, 10-5
Must Fill, 3-23

with CHECK modifier, 11-6

with NO CHECK modifier, 11-8
video, 1-12

in conditional instructions, 6-12

with HARDCOPY key, 15-5

with inactive forms, 5-7

B

BACK SPACE key, 10-1, 11-1t
Base instructions
in conditional requests, 6-2, 6-4f
in requests, 1-3
multiple OUTPUT TO instructions,
5-7
with PRKs, 11-11
BASIC programs, 14-1
CASE statement, 16-5
compiling, 14-9, 16-2
data types, 16-26t
CDDL, 16-3
declaring
record variants, 16-5
records, 16-2, 16-2f, 16-4f, 16-5f,
16-7f
subscript variables, 16-6
%INCLUDE statement, 16-2
linking, 14-9
samples, 14-10 to 14-12
using DBMS, 16-21
using Rdb/VMS, 16-19
VARIANT statement, 16-5
Bell, ringing the terminal, 15-4
Binary structures
storing, 2-9, 2-10
after modification, 2-11
BLINK FIELD instruction, 1-13
BOLD FIELD instruction, 1-13
Bounds of arrays, 7-6
adjusting, 9-6
in BASIC programs, 16-6, 16-7
in COBOL programs, 16-11
in RDU, 7-7
BUILD LIBRARY command (RDU),
12-4

Index-3

ILOG qualifier, 7-10
Novalidate mode, 2-8

Building request libraries, 12-4 to 12-5
errors, 12-5
mapping messages in, 7-10
INOSTORE qualifier, 2-10
Novalidate mode, 2-8

BYTE data type, 16-26t

C

Calling sequence
asynchronous TDMS calls, 19-2
for AST routines, 18-4
TDMS synchronous calls, 13-2
Calls
See TDMS programming calls
Canceling TDMS calls, 15-6, 18-1
CASE statement (VAX BASIC), 16-5
Case values
ANYMATCH, 6-10
case insensitivity, 6-8
for error checking, 9-7
in conditional requests, 6-4f
with PRKs, 11-11
match instructions, 6-12
multiple control values, 6-12
NOMATCH, 6-9
specifying, 6-9
structure of, 6-2
with control arrays, 9-2
with nested control field instruc-
tions, 6-9
CDD
copying requests, 2-10
DBMS$RECORDS directory, 16-20
DBM3$SUBSCHEMAS directory,
16-20
default directory
defining CDD$DEFAULT, 2-2
displaying, 2-3
setting, 2-2, 2-3
deleting requests, 2-12
modifying requests, 2-11
naming conventions, 2-3 to 2-4

Index-4

path names, 2-3, 16-2
DBMS databases, 16-20
for Rdb/VMS databases, 16-19
in BASIC programs, 16-2
in COBOL programs, 16-8
in FORTRAN programs, 16-13
RDBSRELATIONS directory,
16-19
record definitions
DBMS, 16-20
in BASIC programs, 16-2
in COBOL programs, 16-7
in FORTRAN programs, 16-13
Rdb/VMS, 16-19
storing
request library definitions, 12-1
requests, 2-2, 2-8
CDD$DEFAULT
defining, 2-2
in login command file, 2-2
in RDU, 2-3
in BASIC programs, 16-2
in COBOL programs, 16-8
in FORTRAN programs, 16-13
with CREATE REQUEST com-
mand, 2-5
with DBMS, 16-21
with Rdb/VMS databases, 16-19
CDDL
ARRAY clause, 7-6
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
nesting, 8-2
array definitions, 7-1, 7-7
COPY FROM statement, 16-23
data types, 16-26t
in BASIC programs, 16-3, 16-5
in FORTRAN programs, 16-15
TDMS, 4-6
DESCRIPTION IS statement
in FORTRAN programs, 16-13
OCCURS clause, 7-6
in BASIC programs, 16-5
in COBOL programs, 16-11

in FORTRAN programs, 16-16
nesting, 8-2
record definitions, 1-2, 14-5
record names, 14-5
STRUCTURE statement
in BASIC programs, 16-3, 16-5
in COBOL programs, 16-9, 16-11
in FORTRAN programs, 16-15
VARIANT keyword
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
VARIANTS statement
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
Changing
request library definitions, 12-3
requests, 2-11
Channels
closing terminal, 14-6
opening terminal, 14-3
CHARACTER data type, 16-26t
CHECK modifier
assigning NO CHECK, 11-8
at run time, 11-7
default, 11-6
function of, 11-6
CLEAR SCREEN instruction, 1-6
Clearing the screen, 1-6, 14-6
Closing
I/O channels, 14-6
request libraries, 14-5
COBOL programs, 14-1
CDD path names in, 16-8
compiling, 14-9, 16-8
/LIST/COPY_LIST qualifiers,
16-8
COPY statement, 16-8
data types, 16-26t
declaring records, 16-7, 16-8, 16-9f,
16-10f, 16-11f1, 16-12f
linking, 14-9
sample, 14-12 to 14-13
Command files

EDT startup, 5-8
login, 2-1, 2-2
RDU
creating requests, 2-6
default file type, 2-6
startup, 2-3
RDUSEDIT, 5-9
TDMSS$EDIT, 5-9
Comment characters
in BASIC programs, 16-5
in DESCRIPTION instruction, 1-6
in FORTRAN programs, 16-13
TDMS, 1-6
Common Data Definition Language
See CDDL
Common Data Dictionary
See CDD
COMP-1 data type, 16-26t
COMP-2 data type, 16-26t
Compatibility
of data types, 4-4, 4-7
for input, 4-8
of field length and size, 4-9
of field structures, 4-3
of input mappings, 4-8t
of output mappings, 4-9t
of scale factors, 4-5
of sign conditions, 4-9
program and request records, 14-5
Compiling
BASIC programs, 16-2
COBOL programs, 16-8
FORTRAN programs, 16-13
TDMS programs, 14-9
COMPLEX data type, 16-26t
Condition codes
levels, 14-6
returned by TDMS calls, 13-2
signaling, 14-7
testing, 14-6
Conditional instructions
case values
ANYMATCH, 6-10
NOMATCH, 6-9
specifying, 6-9

Index-5

CONTROL FIELD IS, 6-4f
control values
arrays, 9-1, 9-2f
multiple, 6-12
DISPLAY FORM instructions, 6-11
evaluation of, 6-7f
run-time, 6-5
multiple, 6-8
nesting, 6-8
structure of, 6-2
USE FORM instructions, 6-11
Conditional requests, 6-1, 6-2
CONTROL FIELD IS, 6-4f
evaluation of, 6-7f
structure of, 6-3f
using PRKs to return values to con-
trol values, 11-10
when to use, 6-3
Control field arrays
illegal nesting of dependent ranges,
9-5, 9-5f
rules for specifying, 9-4
CONTROL FIELD IS instruction,
6-4f
case values
ANYMATCH, 6-10
NOMATCH, 6-9
specifying, 6-9
control values, 6-6
evaluation of, 6-7f
run-time, 6-5
match instructions, 6-12
multiple, 6-12
nesting, 6-8
Control fields
debugging, 17-1
returning a value using PRKs,
11-10
Control values
arrays, 9-1, 9-2f
dependent names, 9-1
dependent ranges, 9-1
evaluating at run time, 9-2
one-dimensional, 9-7
rules for specifying, 9-4

Index-6

two-dimensional, 9-10
multiple, 6-12
record fields, 6-6
specifying, 6-6
using in the program, 6-3
workspace arrays, 9-6
workspace records, 6-6
CONTROL Z
See CTRL/Z
Controlling application flow with pro-
gram request keys, 11-8
COPY LIBRARY command (RDU),
12-2
COPY REQUEST command (RDU),
2-10
COPY statement (VAX COBOL)
CDD path names in, 16-8
format of translated record defini-
tion, 16-8
general format, 16-8
Copying
from CDD to VMS file, 2-12
record definitions
into BASIC programs, 16-2
into COBOL programs, 16-7
into FORTRAN programs, 16-13
request library definitions, 12-2
requests, 2-10, 2-12
the active form, 15-4
Correcting errors, 2-7
CREATE LIBRARY command
(RDU), 12-1
CREATE REQUEST command
(RDU), 2-5
CDDSDEFAULT in, 2-5
errors in, 2-5
path names in, 2-5
syntax errors during, 5-2
with command file, 2-6
with database streams, 16-24
with text file, 2-6

Creating
forms, 1-2
records, 1-2

request libraries, 12-4 to 12-5

request library definitions, 12-1 to
12-2

requests, 2-5
command-file method, 2-6
from DCL level, 2-6
interactively, 2-5
text-file method, 2-6

CTRL/Z, 2-13

D

D_FLOATING COMPLEX data type,

16-26t

D_FLOATING data type, 4-7t, 16-26t

Data Manipulation Language (DML)
DBMS, 16-21
Rdb/VMS, 16-19
Data types
allowable picture characters, 4-5t
compatibility, 4-7
for input, 4-8
of field lengths and sizes, 4-9
of field sign conditions, 4-9
conversion chart, 16-26t
form fields, 4-4
programming language support,
16-1
record fields, 4-6
DATATRIEVE
array definitions, 7-7
record names, 14-5
DATE data type, 4-7t, 16-26t
DBGSINPUT logical name, 17-6
DBG$OUTPUT logical name, 17-6
DBMSRECORDS directory, 16-20
DBM$SUBSCHEMAS directory,
16-20
DBMS
DBMS$RECORDS directory, 16-20
DBM$SUBSCHEMAS directory,
16-20
path names, 16-20
record definitions, 16-20
naming conventions, 16-20
work areas, 16-21

sample programs, 16-21

schema names, 16-20

subschema definitions, 16-20
using scrolled regions with, 16-22

DCL commands

BASIC, 14-9
COBOL, 14-9
DEFINE, 2-2, 17-2
FORTRAN, 14-9
LINK, 14-9
TYPE, 5-9

Deassigning application function keys,

18-4

Debugging TDMS programs, 17-1

sample, 17-3 to 17-6f

using log files, 17-2

using two terminals, 17-6
VAX Symbolic Debugger, 17-6
with TDMS calls, 17-2

DECIMAL data type, 16-26t
DECLARE statement (VAX BASIC),

16-2

Declaring

application function keys, 18-2
AST routines, 18-2, 18-4
event flags, 18-2
records, 16-1
explicitly, 16-1
in BASIC programs, 16-2, 16-2f,
16-4f, 16-5f, 16-7f
in COBOL programs, 16-7, 16-8,
16-91, 16-10f, 16-111, 16-12f
in FORTRAN programs, 16-13,
16-14, 16-14f, 16-15f, 16-17f
TDMS programming calls, 14-7

DEFAULT FIELD instruction

with inactive forms, 5-7

Defaults

AST parameters, 18-2
CDD directory, 2-2
showing, 2-3
dependent names, 9-2
error message level, 5-4
file types
for executable images, 14-10

Index-7

for object files, 14-9
for RDU command files, 2-6
for request library files, 14-2
for the SAVE command, 5-9
form fields
data types, 4-4
scale factor, 4-5
I/0 device, 14-3
RDU editor, 2-7, 5-9, 12-3
run-time function keys, 11-1t
VMS directory, 14-9
DEFINE command (DCL)
CDD$DEFAULT, 2-2
TSS$TRACE_OUTPUT, 17-2
Defining
CDD$DEFAULT, 2-2
forms, 1-2
RDU
default editor, 2-7
in login command files, 2-1
symbol, 2-1
RDUSEDIT, 5-9
records, 1-2
request libraries, 12-1
TSS$TRACE_OUTPUT, 17-2
DELETE command (DMU), 2-12
DELETE LIBRARY command
(RDU), 12-4
DELETE REQUEST command
(RDU), 2-12
Deleting
from the CDD, 2-12
request library definitions, 12-4
requests, 2-12
Dependent names, 9-1
%ENTRY, 9-2
redefining, 9-6
%LINE, 9-2
redefining, 9-6
Dependent ranges, 9-1
DESCRIPTION instruction, 1-6
semicolon in, 1-13
DESCRIPTION IS statement
(CDDL)
in FORTRAN programs, 16-13

Index-8

Dictionary Management Utility

See DMU commands
DICTIONARY statement (VAX

FORTRAN)

general format, 16-13

/LIST qualifier, 16-13
Directories

CDD default, 2-2

VMS default, 5-9, 12-4, 14-9
DISPLAY FORM instruction, 1-6

errors in, 5-5, 5-7

given names in, 2-4

in conditional instructions, 6-11

WITH OFFSET modifier, 5-6, 5-7
Displaying

default CDD directory, 2-3

forms, 1-6

with an offset, 5-6

request library definitions, 12-2

requests, 2-11

scrolled regions, 10-5, 10-7
DML

See Data Manipulation Language
DMU commands

DELETE, 2-12

EXTRACT, 2-12

LIST, 4-12
Documenting requests, 1-6
DOUBLE data type, 16-26t
Down arrow key, 10-1, 11-2t

E

EDIT command (RDU), 2-7, 5-8
default editor, 5-9
Editing
RDU commands, 2-7
request library definitions, 12-3
requests, 2-11
Editor
changing, 5-9
default, 2-7, 5-8, 12-3
Elements of arrays, 7-1
explicitly mapping, 7-7
Enabling the Trace facility, 17-1

END DEFINITION instruction, 1-13
Ending
request definitions, 1-13
request instructions, 1-13
ENTER key, 11-2t
Entering RDU, 2-1
%ENTRY lexical function, 9-1, 9-2
redefining, 9-6
Erasing the screen, 1-6, 14-6
Error level status, 14-6
Errors
" correcting, 5-8 to 5-10
with the SAVE command, 5-9
form-related, 5-7
in mappings, 5-3, 5-7
arrays, 7-10
explicit, 5-4
in request library definitions, 12-2
in TDMS programs, 14-6
notifying the operator
with TSS$WRITE_BRKTHRU,
15-3
with TSS$WRITE_MSG_LINE,
15-3
semantic, 5-3
severity, 5-2
signaling, 14-7
syntax, 5-1
how RDU reports, 5-2
in Interactive mode, 5-2
tracing at run time, 17-1
while building request libraries,
12-5
Evaluating conditional instructions,
6-5
Event flags
for asynchronous calls, 19-2
with application function keys, 18-2
Exclamation point (!) comment char-
acter, 1-6, 1-13
Executing a request, 14-3
Execution order
errors in, 5-6
of conditional instructions, 6-5
EXIT command (RDU), 2-13

Exiting RDU, 2-13
Explicit mapping
arrays, 7-7, 7-12
errors in, 5-3, 5-4
group record fields, 3-21
multiple fields, 3-10
partial arrays, 7-17
rules, 3-3, 4-1
for specifying fields, 3-9
syntax, 3-3
when to use, 3-9
with %ALL syntax, 3-19
EXTRACT command (DMU), 2-12

F

F12 key, 11-1t
F13 key, 11-1t
F15 key, 11-2t
F_FLOATING COMPLEX data type,
16-26t
F_FLOATING data type, 4-7t, 16-26t
Fatal level status, 14-6
FDU, 1-2, 4-11
FDU commands
LIST FORM, 4-11
Field names
conventions, 3-3
making unique
using group field names, 3-15
using record names, 3-17
using the WITH NAME quali-
fier, 3-17
qualifying, 3-14
record arrays, 7-4
Fields
data types, 4-4
form field structures, 4-3
mapping, 1-9
%ALL syntax, 1-11
arrays, 7-6
multiple fields, 3-10, 3-21
restrictions, 3-23
with %ALL syntax, 1-12
naming conventions, 3-3

Index-9

record structures, 4-2f, 4-3 in conditional requests, 6-12

video attributes, 1-12 path names in, 1-5, 2-4
FILE IS instruction with DISPLAY FORM, 5-5
file name in, 12-1 WITH NAME modifier, 1-5, 5-6
in request library definition, 12-5 with USE FORM, 5-5
File method of creating requests, 2-6 Forms
@file-spec command (RDU), 2-6 active, 5-7
Files with ANYMATCH case value,
names 6-11
default for SAVE command, 5-9 with NOMATCH case value,
request library files, 12-2, 12-4 6-10
request libraries, 12-1 CDD path names, 2-3
TDMS shareable image, 14-9 copying to a file, 15-4
TSS$HARDCOPY, 15-4 defining, 1-2
TSS$TRACE_OUTPUT, 17-2 displaying, 1-6
Flags listing, 4-11
See Event flags mapping
Floating-point data types, 4-7t entire forms, 3-4
Form arrays, 7-1, 7-2 to larger record, 3-6
horizontally-indexed, 8-1, 8-1f to smaller record, 3-7
indexed, 7-2, 7-3f offset on the screen, 5-6
mapping, 7-6, 7-8 unique names, 1-5
multiple, 7-20 using in requests, 1-4
with %ALL, 7-8 validating request references, 2-7
scrolled, 7-3, 7-4f video attributes, 1-12
collecting data from, 10-2 to 10-5 FORTRAN programs, 14-1
displaying, 10-5, 10-6f, 10-7 CDD path names in, 16-13
Form Definition Utility CDDL data types in, 16-15
See FDU comment character for CDDL
Form definitions, 1-2 descriptions, 16-13
listing, 4-11 compiling, 14-9, 16-13
Form fields contents of listing file, 16-13
data types, 4-4, 4-5t data types, 16-26t
length, 4-4 declaring
picture characters, 4-4 records, 16-13, 16-14, 16-14f, 16-
picture strings, 4-4 15f, 16-17f
scale factors, 4-4 DICTIONARY statement
simple, 4-3f /LIST qualifier, 16-13
structures, 4-3, 4-3f IG_FLOATING qualifier, 16-27
array, 4-3 /14 qualifier, 16-27
simple, 4-3 linking, 14-9
FORM IS instruction listing, 16-13
error messages, 1-5 MAP statement, 16-16
general format, 1-4 two-dimensional arrays, 16-18
given names in, 2-4 UNION statement, 16-16

Index-10

Full path names, 2-3
in RDU, 2-4
in request library definitions, 12-2
Function keys
application, 18-1, 18-3t
deassigning, 18-4
declaring, 18-2
when to use, 18-1
run-time, 11-1t
Functions
See Lexical functions

G

G_FLOATING COMPLEX data type,
16-26t
G_FLOATING data type, 4-7t, 16-26t
GFLOAT data type, 16-26t
Given names, 2-3
and logical names, 2-4
in DISPLAY IS, 2-4
in FORM IS, 2-4
in RDU, 2-4
in RECORD IS, 2-4
in REQUEST IS, 24
in USE FORM, 2-4
GOLD key, 11-2t
GOLD key in program request keys,
11-4,11-5
Group record
with %ALL, 3-21
Group record arrays, 7-5, 7-5f
two-dimensional, 8-3f
Group record fields, 3-15, 4-2f
mapping, 3-21
restrictions, 3-23

H

H_FLOATING COMPLEX data type,
16-26t
H_FLOATING data type, 4-7t, 16-26t
HARDCOPY key, 11-2t, 15-4
video attributes, 15-5
when to use, 15-5
Header instructions

in conditional requests, 6-2, 6-4f
in requests, 1-3
HELP key, 11-2t
HFLOAT data type, 16-26t
Horizontally-indexed scrolled arrays,
8-1
%ALL syntax, 8-7
entire array, 8-5
partial, 8-9
rules, 8-4
size of, 8-1
syntax, 8-4
Hyphen (-)
continuation character, 2-6
in COBOL programs, 16-8

I/O channels

closing terminal, 14-6

opening terminal, 14-3
Implicit mapping

See % ALL syntax
%INCLUDE statement (VAX BASIC)

CDD path names, 16-2

general syntax, 16-2
Including record definitions

in BASIC programs, 16-2

in COBOL programs, 16-7

in FORTRAN programs, 16-13
Indexed form arrays, 7-2, 7-3f

%ALL syntax, 7-8, 7-15, 7-16f

mapping partial, 7-17
Informational level messages, 5-3
Informational level status, 14-6
Input mappings, 1-9

%ALL syntax, 1-11

compatibility, 4-8t

of data types, 4-8

from a scrolled region, 10-1

from the message line, 15-1

without operator input, 3-2
INPUT TO instruction, 1-9, 3-2

%ALL syntax, 1-11

See also % ALL syntax

Index-11

commas in, 1-9

example of, 3-5

in conditional requests, 6-5

mapping arrays, 7-8, 7-15

with PRKs, 11-8
Instances of records

See Declaring records
Instructions

See Request instructions
INTEGER data type, 16-26t

with FORTRAN /14 qualifier, 16-27
Interactive mode, 2-5

reporting syntax errors, 5-2
Interrupting requests, 15-3
Invoking

RDU, 2-1

requests, 14-3

Trace facility, 17-1

K

KEYPAD MODE IS instruction, 11-5
Keys
See also Program request keys
application function keys, 18-1,
18-3t
deassigning, 18-4
declaring, 18-2
when to use, 18-1
BACK SPACE, 10-1, 11-1t
CTRLIR, 11-2¢
CTRL/W, 11-2t
down arrow, 10-1, 11-2t
ENTER, 11-2t
F12,11-1t
F13,11-1t
F15,11-2t
GOLD, 11-2t
HARDCOPY, 11-2t, 15-4
HELP, 11-2t
left arrow, 11-2t
LINE FEED, 11-1t
PF2, 11-2t
PF4, 11-2t
RETURN, 11-2¢t

Index-12

right arrow, 11-2t

run-time, 11-1t

TAB, 10-1, 11-1t

up arrow, 10-1, 11-2¢t

viewing scrolled regions, 10-1

L

Leaving RDU, 2-13
Left arrow key, 11-2t
LEFT OVERPUNCHED NUMERIC
data type, 4-7t, 16-26t
LEFT SEPARATE NUMERIC data
type, 4-7t, 16-26t
Length
of form fields, 4-4
of record fields, 4-6
Lexical functions
%ALL
example, 1-12
%ALL syntax, 1-12
See also % ALL syntax
%ENTRY, 9-1, 9-2
%LINE, 9-1, 9-2
Libraries
See Request libraries
Limits of an array, 7-6
LINE FEED key, 11-1t
%LINE lexical function, 9-1, 9-2
redefining, 9-6
LINK command (DCL), 14-9
Linking TDMS programs, 14-9, 14-10
LIST command (DMU), 4-12
LIST FORM command (FDU), 4-11
LIST LIBRARY command (RDU),
12-2
[LIST qualifier (VAX FORTRAN),
16-13
LIST REQUEST command (RDU),
2-11
general format of, 2-11
sample output, 2-12
Listing
BASIC programs with CDD
records, 16-2

debugger log files, 17-2
form definitions, 4-11
FORTRAN programs with CDD
records, 16-13

record definitions, 4-12
request library definitions, 12-2
requests, 2-11

ILOG qualifier
with %ALL syntax, 7-16
with BUILD LIBRARY command,

7-10

Logging errors, 17-2

Logical names
and CDD given names, 2-4
CDDS$DEFAULT, 2-2, 2-3
DBGSINPUT, 17-6
DBG$OUTPUT, 17-6
RDUSEDIT, 5-9
TDMSSEDIT, 5-9
to enable Trace facility, 17-2
TSS$SHARDCOPY, 15-4
TSS$TRACE_OUTPUT, 17-6

Login command files
defining CDD$DEFAULT, 2-2
defining RDU, 2-1

LONG data type, 16-26t

MAP statement (VAX BASIC), 16-2
MAP statement (VAX FORTRAN),
16-16
Mapping
%ALL syntax, 3-3
arrays, 7-8, 7-14, 7-15, 8-7
Display Only form fields, 3-6
entire forms, 3-4
errors in, 5-7
form and larger record, 3-6
form and smaller record, 3-7
when not to use, 3-19
when to use, 3-4
with explicit syntax, 3-19
with OUTPUT TO, 1-12
arrays, 7-6

%ALL syntax, 7-8, 7-14, 7-15,
8-7
explicit syntax, 7-12, 8-5
horizontally-indexed, 8-5
horizontally-indexed scrolled, 8-1
partial, 7-17
rules, 7-9
at run time, 14-3
compatibility
of data types, 4-4, 4-7
of field length and size, 4-9
of input, 4-8t
of output, 4-9t
of sign conditions, 4-9
errors, 5-3, 5-7
explicit syntax, 3-3
errors in, 5-4
specifying fields, 3-9
when to use, 3-9
with %ALL syntax, 3-19
group record fields, 3-21
restrictions, 3-23
multiple fields, 3-10, 3-21
restrictions, 3-13, 3-23
names
identical, 3-13
making unique, 3-13
rules, 3-3, 4-1
several form arrays, 7-20
several record arrays, 7-18
Mapping instructions, 1-9
commas in, 1-14
function of, 1-9
INPUT TO, 1-9, 3-2
OUTPUT TO, 1-11, 3-2
parentheses in, 1-14
RETURN TO, 3-2
validating, 12-5
Mapping tables
simplified input, 4-8t
simplified output, 4-9t
Match instructions, 6-12
Matching
any case value, 6-10
no case values, 6-9

Index-13

Message line
reading from, 15-1
writing to, 15-3
MESSAGE LINE IS instruction
in PRKs, 11-5
Modifiers to request instructions, 1-14
MODIFY LIBRARY command
(RDU), 12-3
MODIFY REQUEST command
(RDU), 2-11
correcting errors with, 5-8
default editor, 5-9
path names in, 2-11
Modifying
request library definitions, 12-3
requests, 2-11
Multiple conditional instructions, 6-8
Multiple control values, 6-12
Multiple fields
mapping, 3-10, 3-21
restrictions, 3-23

N

Names
CDD path names, 2-3
field name conventions, 3-3
of DATATRIEVE records, 14-5
resolving ambiguous, 3-13
unique
for forms, 1-5
for records, 1-5
Naming conventions, 2-3
fields, 3-3
record definitions
DBMS, 16-20
Rdb/VMS, 16-19
request library definitions, 12-1
request library files, 12-2, 12-4
Nesting
arrays, 16-5
conditional instructions
CONTROL FIELD IS, 6-8
NOMATCH case value, 6-9
Nonprocedural instructions, 1-4

Index-14

INOSTORE qualifier, 2-9
in Validate mode, 2-10
Notifying the operator
with TSSSREAD_MSG_LINE,
15-1
with TSS$WRITE_BRKTHRU,
15-3
with TSS$WRITE_MSG_LINE,
15-3
Novalidate mode
effects of, 2-8, 2-9f
setting, 2-8
ISTORE qualifier in, 2-9
Numeric data types, 4-7t

0

OCCURS clause (CDDL), 7-6
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
nesting, 8-2
Offsetting the form on the screen, 5-6
One-dimensional arrays, 7-2f
as control values, 9-7
group, 7-5f
mapping, 7-7
record, 7-4, 7-5f
Opening
log files, 17-2
request libraries, 14-2
terminal for 1/0, 14-3
Operator
canceling TDMS calls, 18-1
input from the message line, 15-1
notifying
with TSSSWRITE_BRKTHRU,
15-3
with TSSSWRITE_MSG_LINE,
15-3
Optional parameters for TDMS calls,
14-1
Order of execution of conditional
instructions, 6-5

Order of TDMS programming calls,
14-1
Output mappings, 1-11
%ALL syntax, 1-12
compatible, 4-9t
to the message line, 15-3
OUTPUT TO instruction, 1-11, 3-2
%ALL syntax, 1-12
See also % ALL syntax
example of, 3-5
in PRKs, 11-5
mapping arrays, 7-8, 7-15

P

PACKED DECIMAL data type,
16-26t
PACKED NUMERIC data type,
16-26t
Parameters for TDMS calls, 14-1
Partial mapping of form arrays, 7-17
Partial path names
See Relative path names
Path names, 2-3
for DBMS databases, 16-20
for Rdb/VMS databases, 16-19
full, 2-3
given, 2-3
in RDU, 2-4
relative, 2-3
PF2 key, 11-2t
PF4 (HARDCOPY) key, 15-4
PF4 key, 11-2t
Picture characters
and data types, 4-4, 4-5
function of, 4-4
resulting data type, 4-5t
Picture strings
assigning, 4-4
function of, 3-3
Positioning the cursor in a scrolled
region, 10-3
Primary TDMS calls, 14-1
PRKs
See Program request keys

Procedure calling standard, 13-2
PROGRAM KEY IS instruction, 11-5
Program request keys
CHECK modifier, 11-6
controlling application flow, 11-8
creating request that uses, 11-4
-defined by TDMS, 11-1t
definition of, 11-2
examples of, 11-8 to 11-11
GOLD key as, 11-4
in conditional instructions, 6-12
names of, 11-4
PROGRAM KEY IS instruction,
11-5
returning values to control values,
11-10
run-time execution of, 11-3
WAIT instruction with, 1-12
when to use, 11-4
with conditional instructions, 11-4
Programming calls
See TDMS programming calls
Programming languages, 14-1
Programs
See also Application programs
canceling TDMS calls, 15-6
compiling, 14-9
debugging, 17-1
sample, 17-3 to 17-6f
using log files, 17-2
using two terminals, 17-6
VAX Symbolic Debugger, 17-6
general concepts, 13-1
linking, 14-9, 14-10
reading from the message line, 15-1
signaling errors, 14-7
testing return status, 14-6
Prompts
on the message line, 15-2
RDU>, 2-1
RDUDFN >, 2-6

Q

Qualifying field names, 3-14

Index-15

R

Ranges of subscripts, 9-1
RDBS$RELATIONS directory, 16-19
Rdb/VMS
database path names, 16-19
DML
example in BASIC, 16-20
wildcard character in, 16-20
record definitions, 16-19
naming conventions, 16-19
sample program, 16-19
using scrolled regions with, 16-22
RDU, 1-2
correcting errors, 2-7, 5-8
creating
request library definitions, 12-1
to 12-2
requests, 2-5
default editor, 2-7
defining symbol for, 2-1
exiting, 2-13
form-related errors, 5-7
invoking, 2-1
startup command file, 2-3
RDU commands
BUILD LIBRARY, 12-4
COPY LIBRARY, 12-2
COPY REQUEST, 2-10
CREATE LIBRARY, 12-1
CREATE REQUEST, 2-5
DELETE LIBRARY, 12-4
DELETE REQUEST, 2-12
EDIT, 2-7, 5-8
EXIT, 2-13
LIST LIBRARY, 12-2
LIST REQUEST, 2-11
MODIFY LIBRARY, 12-3
MODIFY REQUEST, 2-11, 5-8
SET DEFAULT, 2-3
SET VALIDATE, 2-8
SHOW DEFAULT, 2-3
VALIDATE LIBRARY, 12-4
RDU editor
changing, 5-9
default, 5-9, 12-3

Index-16

RDU error messages
for %ALL mappings, 5-3
syntax errors, 5-2
RDUSEDIT logical name, 2-7, 5-9
changing, 5-9
RDUINI.COM file, 2-3
Reading from the message line, 15-1
REAL data type, 16-26t
Record arrays, 7-1, 7-4
ARRAY syntax, 7-6
group, 7-5, 7-5f
mapping, 7-6
multiple, 7-18
OCCURS syntax, 7-6
one-dimensional, 7-4, 7-5f
simple, 7-4
two-dimensional, 8-2, 8-4
ARRAY syntax, 8-2
OCCURS syntax, 8-2
Record definitions, 1-2
CDD path names, 2-3
data types, 4-6
DBMS, 16-20
work areas, 16-21
declaring, 16-1
explicitly, 16-1
in BASIC programs, 16-2, 16-2f,
16-4f, 16-51, 16-7f
in COBOL programs, 16-7, 16-8,
16-91, 16-10f, 16-11f, 16-12f
in FORTRAN programs, 16-13,
16-14, 16-141, 16-15f, 16-17f
defining workspaces, 6-6
in BASIC programs, 16-2
in COBOL programs, 16-8
listing, 4-12
making fields unique, 1-5, 3-17
using group field names, 3-15
Rdb/VMS, 16-19
specifying in TDMS calls, 14-4
using in requests, 1-5
using the WITH NAME qualifier,
3-17
validating request references, 2-7
with VARIANTS

in BASIC, 16-5
Record fields
arrays
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
subscripts, 7-1
See also Dependent names
as control values, 6-6
data types, 4-6, 4-7t
length, 4-6
making unique, 3-13
group field names, 3-15
record names, 3-17
WITH NAME qualifier, 3-17
mapping multiple fields, 3-21
naming conventions, 3-13
qualifying, 3-14
scale factors, 4-6
structures, 4-2, 4-2f
array, 4-2
group, 4-2
simple, 4-2, 4-2f
RECORD IS instruction, 1-5
given names in, 2-4
in conditional requests, 6-12
mapping errors in, 5-7
path names in, 2-4
with DBMS path names, 16-21
WITH NAME modifier, 5-6
with workspace records, 6-6
RECORD statement (VAX
FORTRAN), 16-13
Relations
See Rdb/VMS
Relative path names, 2-3
in RDU, 2-4
REPLACING phrase (VAX COBOL),
16-8
Reporting errors, 14-7, 19-2
Request base, 1-3
Request Definition Utility
See RDU
Request definitions
terminating, 1-13

Request header, 1-3
Request instructions, 1-3
CLEAR SCREEN, 1-6
DESCRIPTION, 1-6
DISPLAY FORM, 1-6
END DEFINITION, 1-13
ending, 1-13
FILE IS, 12-1, 12-5
FORM IS, 1-4
format, 1-4
INPUT TO, 1-9, 3-2
modifiers, 1-14
order of execution, 5-6
OUTPUT TO, 1-11, 3-2
PROGRAM KEY IS, 11-5
RECORD IS, 1-5
REQUEST IS, 12-1
RETURN TO, 3-2
rules for entering, 1-13
syntax rules, 1-13
USE FORM, 1-7
video field instructions, 1-12
WAIT, 1-12
with case values, 6-12
REQUEST IS instruction, 12-1
given names in, 2-4
path names in, 2-4
Request libraries, 12-1
building, 12-4 to 12-5
closing, 14-5
defining, 12-1
errors while building, 12-5
files, 12-1
opening, 14-2
validating, 12-5
Request library definitions, 12-1
building, 12-4
copying, 12-2
creating, 12-1 to 12-2
deleting, 12-4
errors in, 12-2
listing, 12-2
modifying, 12-3
naming conventions, 12-1
storing in the CDD, 12-1

Index-17

validating, 12-3

Request library files

building, 12-4 to 12-5
closing, 14-5
default file type, 14-2
naming conventions, 12-2, 12-4
opening, 14-2
specifying, 12-5
in BUILD LIBRARY command,
12-4
in FILE IS instruction, 12-1
in RDU, 12-4
in TDMS programs, 14-2

Requests

base instructions, 1-3
binary structures, 2-9, 2-10, 2-11
building request libraries, 12-4
canceling, 15-6, 18-1
comments in, 1-6
concepts, 1-1
conditional, 6-1, 6-2
structure of, 6-3f
copying, 2-10
correcting errors, 2-7, 5-8 to 5-10
creating, 2-5
command-file method, 2-6
interactively, 2-5
text-file method, 2-6
data types, 4-7t
debugging, 17-1
deleting, 2-12
displaying a form, 1-6
ending, 1-13
executing, 14-3
format, 1-4f, 1-4
forms in, 1-4
header instructions, 1-3
interrupting, 15-3
listing, 2-11
mapping
arrays, 7-6
errors, 5-3
for input, 1-9
for output, 1-11
rules, 4-1

Index-18

modifying, 2-11
naming conventions, 2-3 to 2-4
order of execution, 5-6
parts of, 1-3
passing program records to, 14-4,
14-5
records in, 1-5
request instructions, 1-3
specifying
in request libraries, 12-1
in TDMS calls, 14-4
storing, 2-2
syntax errors, 5-1
terminating, 1-14
using program request keys, 11-3
validating, 2-7, 2-10, 12-3, 12-5
RESET FIELD instruction, 1-13
with inactive forms, 5-7
RETURN key, 11-2t
Return status
for asynchronous calls, 19-2
levels, 14-6
signaling, 14-7
synchronous calls, 13-2
testing, 14-6
Return status block (rsb) parameter,
13-2, 19-2
RETURN TO instruction, 3-2
in PRKs, 11-5
mapping arrays, 7-8, 7-15
REVERSE FIELD instruction, 1-13
Right arrow key, 11-2t
RIGHT OVERPUNCHED
NUMERIC data type, 4-7t,
16-26t

RIGHT SEPARATE NUMERIC data

type, 4-7t, 16-26t
Ringing the terminal bell, 15-4
RLB files
See also Request library files
closing, 14-5
default file type, 14-2
specifying
in RDU, 12-4
in TDMS programs, 14-2

in the request library definition,
12-5
Rsb
See Return status block (rsb)
parameter
Rules
for mapping arrays, 7-9
for specifying control value arrays,
9-4
Run-time evaluation
of conditional instructions, 6-5
of control value arrays, 9-2
Run-time function keys, 11-1t

S

SAVE command (RDU)
correcting errors with, 5-9
default file type, 5-9
viewing saved file, 5-9

Saving the current form, 15-4

Scale factor
default, 4-5
effect on data, 4-5t
of form fields, 4-4
of record fields, 4-6

Schema
See DBMS

Screen
attributes, 1-12
clearing, 1-6, 14-6
copying, 15-4

Scrolled form arrays, 7-2, 7-3, 7-4f
%ALL syntax, 7-14
collecting data from, 10-2 to 10-5
displaying, 10-1, 10-5, 10-7
horizontally-indexed, 8-1, 8-1f, 8-5,

8-7

mapping

%ALL syntax, 7-8

explicit syntax, 7-12

multiple, 7-20

partial, 7-17

to several record arrays, 7-18
windows, 7-3

Scrolled regions with database
streams, 16-22
Semantic errors, 5-3
Semicolon (;)
errors, 5-2
terminating
comment text, 1-13
DESCRIPTION instruction, 1-6
request instructions, 1-13
SET DEFAULT command (RDU), 2-3
SET VALIDATE command (RDU),
2-8
Setting event flags, 18-2
Shareable images (TSSSHR.EXE),
14-9
SHOW DEFAULT command (RDU),
2-3
Signaling errors, 14-7
with TSS$WRITE_BRKTHRU,
15-3
with TSS$WRITE_MSG_LINE,
15-3
SIGNED BYTE data type, 4-7t,
16-26t
Signed data types, 4-7t
SIGNED LONGWORD data type, 4-
7t, 16-26t
SIGNED NUMERIC data type,
16-26t
SIGNED OCTAWORD data type,
16-26t
SIGNED QUADWORD data type, 4-
7t, 16-26t
SIGNED WORD data type, 4-7t,
16-26t
SINGLE data type, 16-26t
Special function keys, 11-1t
Startup files
EDT, 5-8
in RDU, 2-3
Status
asynchronous calls, 13-2
for asynchronous calls, 19-2
levels, 14-6
signaling, 14-7

Index-19

synchronous calls, 13-2
testing TDMS calls, 14-6
Store mode
effects of, 2-9
ISTORE qualifier, 2-9
in Novalidate mode, 2-9
Storing
form images, 15-4
request library definitions, 12-1
requests, 2-8, 2-9
STRING data type, 16-26t
STRUCTURE statement (CDDL)
in BASIC programs, 16-3, 16-5
in COBOL programs, 16-9, 16-11
in FORTRAN programs, 16-15
Structures
compatibility, 4-3
form field, 4-3, 4-3f
record, 4-2, 4-2f
Subfields, 7-5
Subschema
See DBMS
Subscripts, 7-1
%ALL syntax, 8-7
arrays used as control values, 9-6
dependent ranges, 9-1
explicit syntax, 8-9
in BASIC programs, 16-6
in FORTRAN programs, 16-17
in RDU, 7-7
in two-dimensional arrays, 8-2
limits, 7-6
%LINE and %2ENTRY, 9-2
assigning values to, 9-6
ranges, 7-1
See also Dependent names
specifying in array mappings, 7-7
with database streams, 16-25
Success level status, 14-6
Symbolic Debugger, 17-6
DBGSINPUT logical name, 17-6
DBGSOUTPUT logical name, 17-6
Synchronous calls
See TDMS programming calls
Syntax errors, 5-1

Index-20

correcting, 2-7
how RDU reports, 5-2
in Interactive mode, 5-2
Syntax rules for request instructions,
1-13
SYSS$INPUT as default terminal, 14-3

T

TAB key, 11-1t
viewing scrolled regions, 10-1
Tables
See Arrays
TDMS data types, 16-26t
See Data types
TDMS programming calls
asynchronous, 13-2, 19-1
AST parameters, 19-2, 19-3
AST routines, 19-2
event flags, 19-2
parameters, 19-2 to 19-3
status block, 19-2
syntax, 19-2
when to use, 19-2
canceling, 15-6, 18-1
compiling, 14-9
debugging, 17-1
declaring, 14-7
errors in records, 5-7
format, 13-2
general concepts, 13-1
linking, 14-9, 14-10
return status, 13-2
signaling, 14-7
testing, 14-6
samples, 14-10 to 14-13
sequence, 14-1
synchronous, 13-2
TSS$CANCEL, 15-6
TSS$CLOSE, 14-6
TSS$CLOSE_RLB, 14-5
TSS$COPY_SCREEN, 15-4
TSS$DECL_AFK, 18-2
TSS$OPEN, 14-3
TSS$OPEN_RLB, 14-2

TSS$READ_MSG_LINE, 15-1
TSS$SREQUEST, 14-3
TSS$SIGNAL, 14-7
TSS$TRACE_OFF, 17-2
TSS$TRACE_ON, 17-2
TSS$UNDECL_AFK, 18-4
TSS$WRITE_BRKTHRU, 15-3
TSS$WRITE_MSG_LINE, 15-3
using DBMS, 16-20 to 16-22
using Rdb/VMS, 16-19, 16-20
TDMS programs
See Application programs
TDMS shareable image, 14-9
TDMSSEDIT logical name, 5-9
Terminals
clearing the screen, 1-6, 14-6
closing, 14-6
opening, 14-3
ringing the bell, 15-4
specifying in TSSSOPEN, 14-3
using two to debug TDMS pro-
grams, 17-6
Terminating
request definitions, 1-13
request instructions, 1-13
TEXT data type, 4-7t, 16-26t
Text editor, RDU default, 2-7
Text-file method of creating requests,
2-6
Trace facility, 17-1
disabling
with TSS$TRACE_OFF, 17-2
enabling, 17-1
with logical names, 17-2
with TSS$TRACE_ON, 17-2
sample, 17-3 to 17-6f
TSS$_NORMAL status code, 14-7
TSS$CANCEL programming call,
15-6
parameter, 15-7
results of, 15-7
samples, 15-7
TSS$CLOSE programming call, 14-6
parameters, 14-6
samples, 14-6

TSS$CLOSE_RLB programming call,
14-5
parameters, 14-5
samples, 14-5
TSS$COPY_SCREEN programming
call, 15-4
hardcopy function, 15-4
parameters, 15-6
samples, 15-5
when to use, 15-5
TSS$DECL_AFK programming call,
18-2
parameters, 18-2
samples, 18-2
TSS$HARDCOPY logical name, 11-
2t, 15-4, 15-6
TSS$OPEN programming call, 14-3
parameters, 14-3
samples, 14-3
TSS$OPEN_RLB programming call,
14-2
parameters, 14-2
samples, 14-2
TSS$READ_MSG_LINE program-
ming call, 15-1
parameters, 15-2
samples, 15-2
TSSSREQUEST programming call,
14-3
parameters, 14-4 to 14-5
samples, 14-4
TSS$SIGNAL programming call, 14-7
sample, 14-7, 14-8
TSS$TRACE_OFF programming call,
17-2
TSS$TRACE_ON programming call,
17-2
samples, 17-2
TSS$TRACE_OUTPUT logical name,
17-2, 17-6
TSS$UNDECL_AFK programming
call, 18-4
parameters, 18-4
samples, 18-4

Index-21

TSS$WRITE_BRKTHRU program-
ming call, 15-3
parameters, 15-4
samples, 15-3
TSS$WRITE_MSG_LINE program-
ming call, 15-3
parameters, 15-3
samples, 15-3
TSSSHR.EXE file, 14-9
Two-dimensional arrays, 8-2
%ALL syntax, 8-7
as control values, 9-10
group, 8-2
in BASIC programs, 16-7
in COBOL programs, 16-12
in FORTRAN programs, 16-18
mapping, 8-4
partial, 8-10f
rules, 8-4

u

UNDERLINE FIELD instruction
general format, 1-12
Underlying virtual array
See Scrolled form arrays
Underscore (_)
in COBOL programs, 16-8
UNION statement (VAX FORTRAN),
16-16
Unique names
for forms, 1-5
for records, 1-5
UNSIGNED BYTE data type, 4-7t,
16-26t
Unsigned data types, 4-7t
UNSIGNED LONGWORD data type,
4-7t, 16-26t
UNSIGNED NUMERIC data type, 4-
7t, 16-26t
UNSIGNED OCTAWORD data type,
16-26t
UNSIGNED QUADWORD data type,
4-7t, 16-26t
UNSIGNED WORD data type, 4-7t,
16-26t

Index-22

Up arrow key, 10-1, 11-2t

USE FORM instruction, 1-7
errors in, 5-5
form-related errors, 5-8
given names in, 2-4
in conditional instructions, 6-11
WITH OFFSET modifier, 5-6

v

VALIDATE LIBRARY command
(RDU), 2-8, 12-4
Validate mode, 2-7
effects of, 2-9f
error checking, 5-3
INOSTORE qualifier with, 2-10
VALIDATE REQUEST command
(RDU), 2-8
Validating
mapping instructions, 12-5
request libraries, 2-8, 12-5
request library definitions, 12-3
requests, 2-7, 12-3
errors during, 5-3
VARIANT keyword (CDDL)
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
VARIANTS statement (CDDL)
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
VARYING TEXT data type, 4-7t
VAX data types, 16-26t
VAX Procedure Calling Standard,
13-2
VAX Symbolic Debugger, 17-6
DBGSINPUT logical name, 17-6
DBG$OUTPUT logical name, 17-6
Video attributes
in conditional instructions, 6-12
instructions to control, 1-12
with HARDCOPY key, 15-5
with inactive forms, 5-7
Viewing scrolled regions, 10-1, 10-5,
10-7

Virtual array
See Scrolled form arrays

w

WAIT instruction
general format, 1-12
with program request keys, 1-12
Warning level messages, 5-3
Wildcard character (*) in Rdb/VMS
DML, 16-20
Windows, 7-3
collecting data from, 10-2 to 10-5
displaying data in, 10-5
displaying scrolled regions, 10-1
WITH NAME modifier, 1-5

making record names unique, 3-17

uniqueness of names, 5-6
WITH OFFSET modifier, 5-6, 5-7
WORD data type, 16-26t
Work areas for DBMS, 16-21
Workspace records, 6-6

arrays as control values, 9-6
Writing

AST routines, 18-4

messages

to the trace file, 17-3
to the message line, 15-3

Z
ZONED NUMERIC data type, 16-26t

Index-23

How to Order Additional Documentation

If you live in:

Call:

or Write:

New Hampshire,
Alaska

603-884-6660

Digital Equipment Corp.
P.O. Box CS2008
Nashua, NH 03061-2698

Continental USA,
Puerto Rico, Hawaii

1-800-258-1710

Same as above.

Canada
(Ottawa-Hull)

613-234-7726

Digital Equipment Corp.
940 Belfast Road

Ottawa, Ontario K1G 4C2
Attn: P&SG Business
Manager or approved
distributor

Canada
(British Columbia)

1-800-267-6146

Same as above.

Canada
(All other)

112-800-267-6146

Same as above.

All other areas

Digital Equipment Corp.
Peripherals & Supplies
Centers

P&SG Business Manager
¢/o DIGITAL's local
subsidiary

Note: Place prepaid orders from Puerto Rico with the local DIGITAL subsid-
iary (phone 809-754-7575).

Place internal orders with the Software Distribution Center, Digital Drive,
Westminster, MA 01473-0471.

VAX TDMS

Request and
Programming Manual
AA-GS14B-TE

Reader’s Comments

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company’s discretion. If you require a writ-
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

O Assembly language programmer
[0 Higher-level language programmer
[0 Occasional programmer (experienced)
O User with little programming experience
O Student programmer
O Other (please specify)
Name Date
Organization
Street
City State Z“’o? ode

Country

No Postage
Necessary
if Mailed in the

United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: DISG Documentation
ZK02-2/N53

Digital Equipment Corporation
110 Spit Brook Road

Nashua, NH 03062-2698

Y

L1 A A A TR

1
|
|
|
|
=}
]
r4
=3
-3
®
0
=
2]
[=]
&
oo
5]
e
»
g3
Q
=
&
9
®
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
A

Cut Along Dotted Line

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

