Update Notice #1

February 1987

VAX TDMS Request

and Programming Manual
AD-GS14B-T1

Copyright © 1987 by Digital Equipment Corporation.
All Rights Reserved.

NEW AND CHANGED INFORMATION

This update contains changes and additions made to the VAX TDMS
Request and Programming Manual for Version 1.7.

INSTRUCTIONS

Place the enclosed pages in the VAX TDMS Request and
Programming Manual Version 1.7 as replacements for or additions
to current pages. Change bars on replacement pages indicate
changed text. For new pages and pages where most of the text has
been substantially revised, no change bars are used. Instead, only the
Version 1.7 release date is shown on the bottom corner of the page.

Old Page

Title Page/Copyright

iii to xi

xvii/xviii

1-11/1-12

3-1/3-2

6-11/6-12

Chapter 11

Chapter 18

Index

Reader’s Comments/Mailer

New Page

Title Page/Copyright

ii to xi

xvii/Blank

1-11/1-12

3-1/3-2

6-11/6-12

Chapter 11

Chapter 18

Index

Reader’s Comments/Mailer

VAX TDMS Request
and Programming Manual

Order No. AA-GS14B-TE
Including AD-GS14B-T1

February 1987

This manual describes the TDMS Requestion Definition
Utility (RDU). It explains how to create TDMS requests
and invoke them from application programs.

OPERATING SYSTEM: VMS
MicroVMS
SOFTWARE VERSION: VAX TDMS V1.7

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1986, 1987 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER’S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS MicroVMS VAX

CDD PDP VAXcluster

DATATRIEVE Rdb/ELN VAXinfo

DEC Rdb/VMS VAX Information Architecture
DECnet ReGIS VIDA

DECUS TDMS VMS

MicroVAX UNIBUS VT

ﬂﬂgﬂnan "’

Contents

How to Use This Manual xiii
Technical Changes and New Features xvii
Part One: Creating Requests

Introduction to Requests

1.1 General Conceptsof Requests 1-1
1.1.1 Using Form Definitions 1-2
1.1.2 Using Record Definitions 1-2

1.2 UsingRequestInstructions. 1-3
1.2.1 Usingthe FORMISInstruction 1-4
1.2.2 Usingthe RECORDISInstruction. 1-5
1.2.3 Using the DESCRIPTION Instruction and Comment Text . . . 1-6
1.2.4 Usingthe CLEARSCREEN Instruction 1-6
1.2.5 DisplayingtheForm 1-6

1.2.,56.1 Using the DISPLAY FORM Instruction. 1-6

1.2.56.2 Using the USE FORM Instruction 1-7

1.2.6 Moving Datatoand fromtheForm. 1-9
1.2.6.1 Usingthe INPUTTO Instruction 1-9

1.2.6.2 Usingthe OUTPUT TO Instruction. 1-11

1.2.6.3 Usingthe WAIT Instruction 1-12

1.2.7 Using Video Field Instructions 112
1.2.8 Using the END DEFINITION Instruction 1-13

1.3 Rules for Entering Request Instructions 1-13

"

Using the Request Definition Utility (RDU)

2.1 HowRDUUsestheCDD 0 0uiueu... 2-2
2.1.1 Setting RDU to Your CDD Directory 2-2
2.1.1.1 DefiningCDD$DEFAULT. 2-2

2.1.1.2 Usingthe SETDEFAULTCommand 2-3

2.1.2 Usingthe SHOWDEFAULTCommand 2-3
2.1.3 Naming Requests and Specifying Forms and Records 2-3

2.2 CreatingaRequest. ittt 2-5
2.2.1 Usingthe Interactive Method. 2-5
2.2.2 UsingtheFileMethod 2-6
2.2.3 UsingaCommandFile-DCLorRDULevel 2-6

2.3 CorrectingErrors. e 2-7

February 1987 iii

v

2.4 Validating Requests i vt i ittt ittt et e 2-7

2.4.1 Changing the RDU ValidationOption 2-8
2.4.2 Usingthe/NOJSTORE Qualifier. 2-9
2.4.3 HowRDU ValidatesaRequest 2-10
2.5 Copying RequestsintheCDD 2-10
2.6 ModifyingaRequest. i 2-11
2.7 ListingaRequest.t nnnnn. 2-11
2.8 DeletingaRequestttt ittt ittt 2-12
29 ExitingRDU i i e 2-13
Mapping Between Form Fields and Record Fields
3.1 Howthe TDMS Mapping InstructionsWork 3-2
3.2 How to Specify Fields in a Mapping Instruction. 3-3
3.3 WhentoUsethe %ALLSyntax 3-4
3.3.1 Using %ALLtoMapanEntireForm. 3-4

3.3.2 Using %ALL to Map Between a Form and a Larger Record . . . 3-6
3.3.3 Using %ALL to Map Between a Form and a Smaller Record. . . 3-7

3.4 Whento Use Explicit MappingSyntax. 3-9
3.4.1 Explicitly Mapping Betweena FormandaRecord. 3-9
3.4.2 Using Explicit Syntax to Map from One Field to Many Fields. . 3-10
3.4.3 Making Explicit References Unique 3-13

3.4.3.1 UsingGroupFieldNames. 3-15

3.4.3.2 UsingtheRecordName..................... 3-17
3.5 Using the %ALL and Explicit Syntax in the Same Request. 3-19
3.6 Mapping from a Formtoa Group RecordField 3-21
Making Sure Your Request Mappings Are Correct

4.1 RulesforMappingttt ineeeennn 4-1

4.2 Making Sure Record and Form Field Structures Are Compatible . .. 4-2
4.2.1 TDMS Record Field Structures. 4-2
4.2.2 TDMS Form Field Structures. 4-3
4.2.3 Compatible Form and Record Field Structures. 4-3

4.3 Making Sure Field Data Types and Length Are Compatible. 4-4
4.3.1 TDMS Form Field Data Typesand Lengths 4-4
4.3.2 The Record Data Typesto WhichYouMap............. 4-6

4.4 Creating Mappings Between Compatible Data Types 4-7

4.5 Form Definition Listings, 4-10
4.5.1 How to List the Form Definition 4-11
4.5.2 What You Need to Know About Form Definitions 4-11

4.6 Record DefinitionListings, 4-12
4.6.1 How to List the Record Definition 4-12
4.6.2 What You Need to Know About Record Definitions 4-12

February 1987

5 Finding and Correcting Your Errors

5.1 SyntaxErrorsFoundbyRDU
5.2 Semantic Errors FoundbyRDU.
5.2.1 MappingErrors i e e
5.2.1.1 %ALL Warning and Information Messages

5.2.1.2 Explicit Mappings and Error and Warning Level
MESSAZES & & v v v e v e et e e e e e e
5.2.2 Other Semantic Errors FoundbyRDU
5.3 Semantic Errors Not FoundbyRDU
5.3.1 OrderExecutionErrors0 ...
53.2 MappingErrors i i e e
5.3.3 Form-RelatedErrors
5.4 CorrectingErrors. i e e e
5.4.1 Usingthe EDITCommand
5.4.2 Usingthe MODIFYCommand
5.4.3 DefiningRDUSEDIT.
5.4.4 Usingthe SAVECommand

6 Using Conditional Instructions in Requests

6.1 Using ConditionalInstructions.
6.2 ConditionalRequests
6.3 Using Conditional Requests,
6.4 How TDMS Executes a Conditional Instruction at Run Time.
6.4.1 SpecifyingControlValues
6.4.1.1 Specifying More Than One Conditional Instruction
6.4.1.2 Using Nested CONTROL FIELD IS Instructions
6.4.2 SpecifyingCaseValues.
6.4.2.1 Usingthe NOMATCHCaseValue.
6.4.2.2 Usingthe ANYMATCH CaseValue.
6.4.2.3 ConditionalUseof Forms.

6.4.2.4 Case Values When You Use More Than One Control

6.4.3 Match Instructions ina CONTROL FIELD IS Instruction. . . .

7 Mapping Between Form Arrays and Record Arrays
7.1 WhatlsanArray?t e e
7.1.1 Typesof Form Arrays YouCan Maptoand from.
7.1.2 Types of Record Arrays You Can Maptoandfrom.
7.2 Syntax for Mapping Between Form and Record Arrays
7.2.1 Explicit Syntax for Mapping Array Elements
7.2.2 %ALL Syntax for Mapping Array Elements

February 1987

7-1

7.3 Rulesfor Mapping Arrays.o v vt ittt iiin e 7-9

7.3.1 Explicit MappingsandErrors. 7-10
7.3.2 %ALLMappingsandErrors. 7-10
7.4 Examples of Mapping Indexed and Scrolled Arrays 7-11
7.4.1 Explicit Mapping of Scrolled or Indexed Arrays 7-12
7.4.2 %ALLMappingst enmenenenenens 7-14
7.4.2.1 %ALL Mapping and a Scrolled Array. 7-14
7.4.2.2 Using %ALL Mappings and Indexed Arrays 7-15
7.4.3 Explicitly Mapping a Subset of a Scrolled or Indexed Array . . . 7-17
7.4.4 Mapping Scrolled Arrays to Several Record Arrays. 7-18
7.4.4.1 Explicitly Mapping Several Scrolled Arrays. 7-18
7.4.4.2 %ALL Mapping of Several Scrolled Arrays 7-20

8 Advanced Mapping Between Arrays

8.1 Horizontally-Indexed Scrolled FormArrays. 8-1
8.2 Two-Dimensional Record Arrays. 8-2
8.3 Syntax for Mapping Two-Dimensional Arrays. 8-4
8.4 General Rules for Two-Dimensional Arrays 8-4
8.5 Examples of Mapping Two-Dimensional Arrays 8-5
8.5.1 Explicit Syntax to Map a Two-Dimensional Array. 8-5
8.5.2 Rules for % ALL Mapping of Two-Dimensional Arrays 8-7
8.6.3 %ALLtoMapaTwo-DimensionalArray 8-7
8.5.4 Mapping a Subset of a Two-Dimensional Array. 8-9

9 Using an Array as a Control Value
9.1 How to Use an Array As a Control Value to Collect Varying

Elements e 9-1

9.2 How TDMS Evaluates a Control Value Array at Run Time 9-2
9.3 Rules for Specifying the Control Value Array 9-4
9.3.1 Explicitly Assigning Values to %LINE and ZENTRY 9-6
9.3.2 Usinga Work Array as a Control Value Array 9-6
9.3.3 Specifying an Entire Arrayasa ControlValue 9-6

9.4 Example - Using a One-Dimensional Control Value Array. 9-7
9.5 Example - Using a Two-Dimensional Control Value Array. 9-10

10 How to Display and Input Data in a Scrolled Region
10.1 How TDMS Displays and Collects Data in a Scrolled Array 10-2
10.2 How to Allow the Operator to View Data in Scrolled Regions 10-5

vi February 1987

11 Key Definition Instructions

11.1 Key DefinitionInstructionso L 11-1
11.2 WhichKeys CanBe Specified. 11-2
11.3 RulesofPrecedence. 0. 11-5
11.4 Defining Program Request Keys(PRKs) 11-5
11.4.1 Using Program RequestKeys 11-7
11.4.2 Creating a Request That Uses a Program Request Key 11-7
11.4.2.1 Default CHECK Mode Modifier 11-8
11.4.2.2 NOCHECKModifier 11-10
11.4.3 Examples of Using Program RequestKeys 11-11
11.4.3.1 Using PRKs to Allow the Operator to Control
ApplicationFlow o o oL 11-11
11.4.3.2 Using a PRK to Return a Value to a Control Value. 11-12
11.5 Using Function DefinitionKeys 11-14
11.5.1 KeyFunctionsttt eennnns 11-14
11.5.2 Using the ERROR Function to Deassign a Key Definition . . .11-16
11.5.3 Examplesof Key Definitions. 11-17
11.5.3.1 Redefining the RETURN Key to Have the NEXT
Function.ttt it ennnnnn 11-17
11.5.3.2 Redefining the F20 Key to Have the REFRESH
Function.o en.n 11-17

Part Two: Creating Request Libraries

12 Working with Request Libraries

12.1 Creating a Request Library Definition. 12-1
12.2 Copying a Request Library Definition. 12-2
12.3 Listing a Request Library Definition. 12-2
12.4 Modifying a Request Library Definition. 12-3
12.5 Validating a Request Library Definition. 12-3
12.6 Deleting a Request Library Definition. 12-4
12.7 Buildinga RequestLibraryFile. 12-4

Part Three: Writing Application Programs

13 Introduction to TDMS Programming
13.1 TDMS ProgrammingCalls, 138-1
13.2 General Format of TDMS ProgrammingCalls. 13-2

February 1987 vii

14 Using the Primary TDMS Synchronous Calls

14.1 Opening a Request Library File-TSSSOPEN_RLB 14-2
14.2 OpeningaChannel-TSS$OPEN. 14-3
14.3 Transferring Data and Displaying Forms - TSSSREQUEST 14-3
14.4 Closing the Request Libary File-TSS$CLOSE_RLB 14-5
14.5 Closinga Channel-TSS$CLOSE 14-6
14.6 Testingthe ReturnStatusCode 14-6
14.7 Compiling and Linkinga TDMS Program 14-9

14.7.1 Compilinga TDMSProgram. u... 14-9

14.7.2 LinkingaTDMSProgram voun... 14-9
14.8 Two Simple TDMS Programs. 14-10

15 Using Supplementary Calls
15.1 Reading Messages from the Terminal- TSS$READ_MSG_LINE . . 15-1

15.2 Sending MessagestotheTerminal. 15-2
15.2.1 Writing to the Message Line - TSS$WRITE_MSG_LINE . . . 15-3
15.2.2 Interrupting a Request or an Existing Message Line

Operation-TSS$WRITE_BRKTHRU 15-3

15.3 Copying the Current Form to a Specific Device -
TSS$COPY_SCREEN i it 15-4
15.4 Canceling Input/Output Calls in Progress - TSS$CANCEL 15-6

16 Using Record Definitions

16.1 Using CDD Record Definitions in BASIC programs 16-2
16.1.1 Referringtoa CDD Record Definitionin BASIC. 16-2
16.1.2 Referring to a CDD Record Definition Containing the

VARIANTS Syntax. . . o v ot vttt et e e et e e e e e s 16-4
16.1.3 Referring to CDD Array Record Definitions in BASIC 16-5

16.2 Using COBOL to Refer to CDD Record Definitions. 16-7
16.2.1 Referring toa CDD Record DefinitioninCOBOL 16-8
16.2.2 Referring to a CDD Record Definition Containing the

VARIANTS Syntax. . . . v o v v v vt i ettt e it e e 16-10
16.2.3 Referring to CDD Array Record Definitions in COBOL. 16-11

16.3 Using FORTRAN to Refer to CDD Record Definitions. 16-13
16.3.1 Referring toa CDD Record Definitionin FORTRAN 16-14
16.3.2 Referring to a CDD Record Definition Containing the

VARIANTSSyntax. o v v v v ettt i it e e ie s 16-156

16.3.3 Referring to CDD Array Record Definitions in FORTRAN. . .16-16

viii February 1987

16.4 Using Record Definitions Created by Database Management

41 7=) '+ V- 16-18
16.4.1 Using Record Definitions Created by VAX Rdb/VMS 16-19
16.4.2 Using Record Definitions Createdby VAX DBMS. 16-20
16.4.3 Displaying and Updating Database Records in Scrolled

Regions. i it it e 16-22
16.4.3.1 DefininganArrayRecord 16-23
16.4.3.2 Declaring the Array Record in the Application and
TDMSRequests v v v vt ittt et et oot ee e 16-24
16.4.3.3 Creating a Collection of Records and Loading the Array .16-24
16.4.3.4 Passingthe ArraytotheRequest. 16-25
16.56 Summary of Supported Data Types for Different Languages 16-25
17 Debugging a TDMS Application Program
17.1 HowtoEnablethe TraceFacility. 17-1
17.1.1 DefiningaLogicalName 17-2
17.1.2 Issuing Trace Calls from an Application Program 17-2
17.2 Resultsof UsingTrace. ittt 17-3
17.3 Debugging an Application Using Two Terminals 17-6
18 Application Function Keys (AFKS)
18.1 What Are Application FunctionKeys?. 18-1
18.2 When Do You Use Application FunctionKeys? 18-1
18.3 Declaring Application FunctionKeys 18-2
18.3.1 Terminal Keys You Can Declareas AFKs 18-3
18.3.2 HowtoWriteanASTRoutine. 18-4
18.4 Removingan AFK Key Definition 18-4
19 Using Asynchronous Calls
19.1 What Are AsynchronousCalls?. 19-1
19.2 When Do You Use Asynchronous Calls? 19-2
19.3 The General Format for AsynchronousCalls. 19-2
Index
Figures
1-1 RequestFormat. 1-4
1-2 Mapping Between a Record Definition and a Form Definition 1-10
2-1 Suggested TDMS Design Sequence: Effects of Validation 2-9
4-1 RecordFieldStructures. 4-2
4-2 FormPFieldStructures. 4-3
6-1 AConditional Request. ittt e 6-3

February 1987 ix

6-2 Request Containinga CONTROL FIELD IS Instruction 6-4

6-3 How a Conditional RequestWorks. 6-7
7-1 Definitionofan Array ittt i e e e 7-2
7-2 Indexed Array. o i it e e e e 7-3
7-3 ScrolledArray. oo i v it i e e e e 7-4
7-4 Simple One-Dimensional Record Arrays 7-5
7-5 One-Dimensional GrOUPAIrays« v v v v vt vt vt v o v o nnn 7-5
7-6 Exampleof Mapping Arraysttt 7-6
7-7 TheUnderlyingFormArray 7-11
7-8 Explicitly Mapping an Entire Scrolled Form Array. 7-13
7-9 Using %ALL to Map an Entire Scrolled Array. 7-14
7-10 Using %ALLto Map Entire Indexed Arrays 7-16
7-11 Mapping a Subset of an Indexed or Scrolled Array 7-17
7-12 Explicit Mapping of Several Scrolled Arrays. 7-18
7-13 %ALL Mapping of Several Scrolled Arrays. 7-20
8-1 Horizontally-Indexed Scrolled FormArray 8-1
8-2 Using Explicit Syntax to Map a Two-Dimensional Array 8-6
8-3 Using %ALL Syntax to Map Two-Dimensional Arrays 8-8
8-4 Mapping a Subset of a Two-Dimensional Array 8-9
9-1 UsinganArrayasaControlValue. 9-2
9-2 How TDMS Evaluates a Control Value Array at Run Time 9-3
9-3 TheScopeofaDependentRange 9-4
9-4 Illegal Nested DependentRanges 9-5
9-5 Specifying Nonarray or Single-Element Control Values 9-56
9-6 Explicitly Assigning Values to %LINE and ZENTRY. 9-6
9-7 Collecting Elements from Several ScrolledFields 9-7
9-8 Using a Two-Dimensional Array as a Control Value. 9-11
10-1 Displaying Dataina ScrolledRegion 10-6
11-1 ASample PRKInstruction, 11-6
11-2 Defining Program RequestKeys 11-8
11-3 Usingthe CHECKModifier. v 11-9
11-4 Using PRKs to Allow Operator Control of Application Flow. 11-12
11-5 Using PRKsin Conditional Instructions 11-13
14-1 Request That DisplaysaForm 14-10
16-1 Referring to a CDD Record Definitionin BASIC 16-2
16-2 Referring to a CDD Record Definition Containing the VARIANTS
SyntaxinBASIC e e 16-4
16-3 Referring to a CDD Record Definition with Nested Arrays 16-5
16-4 Referring to a Two-Dimensional CDD Array Record Definition in
BASIC. . . e e e 16-7
16-5 Referring toa CDD Record DefinitioninCOBOL. 16-9

February 1987

16-6 Referring to a CDD Record Definition with the VARIANTS Syntax

inCOBOL. e it i et 16-10
16-7 Referring to a CDD Record Definition with Nested OCCURS

SyntaxinCOBOL 16-11
16-8 Referring a Two-Dimensional CDD Array Record Definition in

COBOL . .. e e e e e e e e e 16-12
16-9 Referring to a CDD Record Definitionin FORTRAN. 16-14
16-10 Referring to a CDD Record Definition Containing the VARIANTS

Syntaxin FORTRAN ittt 16-15
16-11 CDDL Record Definition with Nested OCCURS Syntax. 16-17
16-12 Referring to a Two-Dimensional CDD Array Record Definition in

FORTRAN e e e e e e e i e e 16-17
17-1 SampleTraceOutput. ittt it ittt e e ee e 17-3
Tables
4-1 Effect of Scale FactoronFormFieldData 4-5
4-2 TDMS Form Field Pictures and Form Field Data Types. 4-5
4-3 RecordFieldDataTypest i it eeennen.. 4-7
4-4 Simplified Compatible Input Mappings (Form Fields to Record

Fields) oo i e 4-8
4-5 Simplified Compatible Output Mappings (Record Fields to Form

Fields) oo i e 4-9
11-1 TDMSKeyFunctions oo 11-15
11-2 Keysand Their Default Functions 11-16
16-1 DataTypeConversionChart 16-26
18-1 Application FunctionKeyCodes 18-3

February 1987 Xi

Technical Changes and New Features

This section summarizes the changes to VAX TDMS that are described in this
manual.

There are two new RDU commands and one new RDU instruction:

. ATTACH command
U SPAWN comfnand
. DEFINE KEY AS instruction

In addition, the PROGRAM KEY IS instruction has been extended to support
additional keys.

Information about the DEFINE KEY AS and PROGRAM KEY IS instructions
appears in Chapter 11 of this manual.

There are new parameters for the OUTPUT TO and RETURN TO instructions.
Both instructions now have a %TOD (time of day) parameter. The RETURN TO
instruction now has a %MODIFIED parameter.

For reference information about all these new RDU features, see the VAX TDMS
Reference Manual

February 1987 xvii

CITY TO CITY,

STATE TO STATE,
ZIP_CODE TO0 ZIP_CODE,
SEX TO SEX,
BIRTH_DATE TO BIRTH_DATE;

END DEFINITION;

Figure 1-2: Mapping Between a Record Definition and a Form Definition (Cont.)

You can also specify %ALL with the INPUT instruction. The INPUT %ALL
instruction causes TDMS to collect data from all the fields on the form that have
identically named record fields.

In Figure 1-2, the request EMPLOYEE_SAMPLE_REQUEST can be rewritten
as follows using the INPUT %ALL instruction because all the form fields have
matching record fields with identical names:

FORM IS EMPLOYEE_ADD_FORM;
RECORD IS EMPLOYEE_RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_ADD_FORM;

INPUT %ALL;
END DEFINITION;
The INPUT %ALL instruction maps form fields to record fields with identical

names (LAST_NAME, FIRST_NAME, MIDDLE_INITIAL, STREET, CITY,
STATE, ZIP_CODE, SEX, and BIRTH_DATE).

RDU does not create an input mapping for EMPLOYEE_NUMBER even though
you specify %ALL. EMPLOYEE_NUMBER is defined on the form as a Display
Only field, which means TDMS does not allow the operator to enter data in the
field and RDU does not create an input mapping for that field.

1.2.6.2 Using the OUTPUT TO Instruction -- You can describe what data you
want TDMS to move from the program record and display on the form using the
OUTPUT TO instruction. The general format of the OUTPUT TO instruction is:

OUTPUT record-field TO form-field;

You can list a series of output phrases after the keyword OUTPUT. Each phrase
must be separated by a comma. For example:

OUTPUT FIRST_NAME TO FORM_FIELD_1,
LAST_NAME TO FORM_FIELD_2;

Introduction to Requests 1-11

If you want to output data to all the fields on a form (that have record fields with
identical names), you can use %ALL. If you use %ALL, TDMS displays data to all
those form fields that have identically named record fields. For example, in the
following request, the OUTPUT %ALL instruction outputs data in all the form
fields listed after the DESCRIPTION instruction.

OUTPUT %ALL;

DESCRIPTION /=
EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER,

LAST_NAME TO LAST_NAME,
FIRST_NAME TO FIRST_NAME,
MIDDLE_INITIAL TO MIDDLE_INITIAL,
STREET TO STREET,

CITY TO CITY,

STATE TO STATE,

ZIP_CODE TO ZIP_CODE,

SEX TO SEX,

BIRTH_DATE TO BIRTH_DATE */;

1.2.6.3 Using the WAIT Instruction -- If a request performs output mappings
only, and does not include an INPUT TO instruction, you must use the WAIT
instruction to ensure that the operator sees any messages or data you display on

a form before TDMS clears the screen. The form remains on the screen until the
operator acknowledges it by pressing the RETURN key, a program request key
(PRK), or a termination key. See Chapter 11, for more information on program
request keys. See the the WAIT instruction in the VAX TDMS Reference Manual
for a list of the termination keys. The format of the WAIT instruction is:

WAIT;

1.2.7 Using Video Field Instructions

If you want to highlight certain fields on the form, you can use the video field
instructions to specify what video attributes the field has. For example, the
UNDERLINE FIELD instruction lets you specify that a field be underlined when
the form is displayed. Or you can use %ALL to change the video attributes of all
the fields on the form. The general format for this instruction is:

UNDERLINE FIELD form-field;

1-12 Introduction to Requests February 1987

Mapping Between Form Fields and Record Fields 3

The requests in Figures 1-1 and 1-2 contain mappings between form and record
fields, using the INPUT TO and OUTPUT TO instructions. TDMS has a total of
three mapping instructions:

e INPUTTO
e OUTPUTTO
e RETURNTO

With these instructions, you can use two different types of syntax:

* %ALL syntax, in which TDMS maps all form fields to and from record fields
with the same name

¢ Explicit syntax, in which you specify the field names of the form and record
fields you are mapping

In this chapter, you see examples of requests that map data between form and
record fields using both types of syntax. In addition, this chapter describes:

¢ How the TDMS mapping instructions work

¢ How to specify fields in a mapping instruction

e When to use the %ALL mapping syntax

e When to use the explicit mapping syntax

e How to use the %0ALL and explicit syntax in the same request

¢ How to map from a form to a group record field

3.1 How the TDMS Mapping Instructions Work

There are three mapping instructions:

e The INPUT TO instruction maps data from a form field to one or more
record fields. You can use the INPUT TO instruction to let the operator
enter data into a form field and return that data to the program in the record
field when the request completes.

If a form field is mapped for input but the operator does not enter data in
that field, TDMS returns one of the following to the record field:

Data output to the form field by the current request

- Data in the form field from the immediately previous request call (as a
result of the USE FORM instruction)

Data associated with the form field by a form definition default (if no
other data is in the field)

¢ The OUTPUT TO instruction maps data to one or more form fields. You can
use the OUTPUT TO instruction to display data on the form when the
request is invoked. The OUTPUT TO instruction uses a quoted string, a
record field, or %TOD (the current date or time) as a source of the mapping.

e The RETURN TO instruction maps data to one or more record fields. The
RETURN TO instruction is similar to the INPUT TO instruction with the
following exceptions:

The RETURN TO instruction uses a form field, a quoted string, %TOD
(the current system time in 64-bit format), or %MODIFIED (a value
indicating whether an operator has modified a field as a source of the
mapping).

The RETURN TO instruction does not open the field for input from the
operator if the source of the mapping is a form field. Instead, it uses the
current contents of that field.

The RETURN TO instruction is very useful for conditionally returning data
when the request completes or when the operator presses a predefined pro-
gram request key (PRK).

The examples in this chapter use the INPUT TO and OUTPUT TO instructions
to explain the general rules of field mapping.

3-2 Mapping Between Form Fields and Record Fields February 1987

ANYMATCH:
OUTPUT EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER,

SELECTION TO SELECTION;
INPUT EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER,
SELECTION TO SELECTION;

END CONTROL FIELD;

Note that the form fields EMPLOYEE_NUMBER and SELECTION are input
and output each time an error message is displayed on the form. Each time, there-
fore, that the program detects a run-time error:

1. The application program places an appropriate value indicating the error in
the control value

2. The program calls the request

3. TDMS executes the instructions if the control value matches one of the
case values

4. The operator can enter a new employee number and a new menu selection if
any one of the errors specified in the request occurs

6.4.2.3 Conditional Use of Forms -- It is best not to use the ANYMATCH
case value when you want to conditionally reference forms in case values. Instead,
repeat all mappings and include a DISPLAY FORM or USE FORM instruction
within each case value.

However, if you must use ANYMATCH in this situation, be aware that a special
situation exists when you try to conditionally reference forms in case values. RDU
cannot know which case values will be executed at run time. When you have a
mapping instruction in the ANYMATCH case value and DISPLAY FORM or
USE FORM instructions in any other case value instructions, RDU cannot deter-
mine what form, (if any), will be active at run time.

In addition, the TDMS run-time system does not retain context about control
field case values and associated instructions once the case value and instructions
are executed. Therefore, when ANYMATCH instructions are executed at run
time, TDMS does not know about any form referenced in any other case value
instructions within the control field.

Keep the following points in mind when you conditionally reference forms in
CONTROL FIELD IS instructions that use the ANYMATCH case value:

e Put a DISPLAY FORM or USE FORM instruction in all case values except
the ANYMATCH

Using Conditional Instructions in Requests 6-11

. Put instructions in ANYMATCH that do not reference form fields

¢ Do not put a DISPLAY FORM or USE FORM instruction in the
ANYMATCH case value

If you are not conditionally referencing forms, put the DISPLAY FORM or USE
FORM in the base request.

6.4.2.4 Case Values When You Use More Than One Control Value -- If you
have more than one CONTROL FIELD IS instruction, you also have more than
one series of case values. You can use the same case value twice if it is under a
different control field each time you use it.

If you select case values that are meaningful strings, the request will be clearer to
the programmer.

6.4.3 Match Instructions in a CONTROL FIELD IS Instruction

Match instructions are request instructions to be executed when a case value
matches the control value. You can associate any number of match instructions
with a particular case value.

Each match instruction is a request instruction in itself and must therefore be fol-
lowed by a semicolon (;).

When you create a conditional instruction, you can specify any request instruction
following a case value (except the FORM IS and RECORD IS instructions),
including instructions to:

¢ Display forms

e Input, output, and return data

e Change video attributes

e Use key definition instructions (discussed in Chapter 11)

6-12 Using Conditional Instructions in Requests February 1987

Key Definition Instructions 11

TDMS allows you to define or redefine the functions of various keys on the
terminal. This chapter discusses:

e Key definition instructions
e Which keys can be specified
¢ Rules that determine which key definition instructions take precedence

e How key definition instructions work

11.1 Key Definition Instructions

Key definition instructions are request instructions that allow you to redefine the
function of a terminal key. TDMS has two key definition instructions:

¢ PROGRAM KEY IS

This instruction specifies a program request key (PRK) and the resulting
instructions for TDMS to execute when the operator presses the PRK.

e DEFINE KEY AS

This instruction specifies a function for a key or key sequence.

When a request that contains a key definition instruction executes at run time,
the new key function is enabled. The operator can press the redefined key to
obtain special actions such as cursor positioning, menu selection, field validation,
or request termination.

The two key definition instructions are discussed in detail later in this chapter.

February 1987 11-1

11.2 Which Keys Can Be Specified

With the PROGRAM KEY IS instruction, you supply the prk-key parameter and
the instruction mapping(s) you want to occur when the operator presses that key.
In addition, pressing a PRK terminates the request.

With the DEFINE KEY AS instruction, you supply the key-name parameter and
the function that you want TDMS to perform when the operator presses that key.
In most cases, the keys that you can specify for both instructions are the same.
The major difference is that, except for the arrow keys, you can specify GOLD
key sequences only with the PROGRAM KEY IS instruction.

In defining keys, you should be aware that there are two modes for the numeric
keypad keys (specified with the KEYPAD keyword) as well as the ENTER key.
The modes are Numeric and Application. RDU cannot determine the keypad
mode at run time, so RDU does not check the mode when it validates the request
that maps to one of these keys. For information on how to specify the mode you
want, see the description of the KEYPAD MODE IS instruction in the VAX
TDMS Reference Manual

There are several categories of key designations:

e The KEYPAD keys are those on the numeric keypad at the right edge of the
keyboard. There is a numeric keypad on VT100- and VT200-series terminals.
Remember that the KEYPAD keyword is not enclosed in quotation marks
but the remaining part of the key designation is, for example, PROGRAM
KEY IS KEYPAD ”8”.

Note that the keypad must be set to Application mode when KEYPAD keys
are used in a request. You use the KEYPAD MODE IS instruction to set the
keypad to Application mode.

The following numeric keypad key designation can be specified with the

KEYPAD keyword:

0 4 8

1 5 9

2 6 . (period)
3 7 , (comma)

* PF keys are located on the numeric keypad on VT100- and VT200-series ter-
minals. You do notinclude the KEYPAD keyword as part of the key designa-
tion. The PF keys that you can specify are:

PF1
PF2
PF3
PF4

11-2 Key Definition Instructions February 1987

¢ The F (function) keys are located across the top row of VT200-series
keyboards. Keys F1 through F5 are local function keys that cannot be
redefined. You can specify the other F keys with the DEFINE KEY AS and
PROGRAM KEY IS instructions. When specifying an F key, do not separate
the F from the digit.

You can specify the following F keys:

F6 F10 F14 F18
F7 F11 F15 F19
F8 F12 F16 F20
F9 F13 F17

e Only VT200-series terminals have E keys. These six keys are located on the
editing keypad, above the arrow keys. The E keys that you can specify are:

El E4
E2 Eb5
E3 E6

* You use these keywords to specify the arrow keys. In addition, you can
specify the GOLD keyword with arrow keys.

DOWNARROW GOLD DOWNARROW
LEFTARROW GOLD LEFTARROW
RIGHTARROW GOLD RIGHTARROW
UPARROW GOLD UPARROW

e There are other key designations that you can specify. The keys are:

BACKSPACE (VT100 mode)
ENTER

LINEFEED (VT100 mode)
RETURN

TAB

Note that you should specify BACKSPACE and LINEFEED only for termi-
nals in VT100 mode. When using VT200-mode, you specify the F12 and F13
keys instead of BACKSPACE and LINEFEED as the key designation.

If you plan to redefine the ENTER key, be sure to set the keypad to
Application mode. When the keypad is in Numeric mode, the ENTER key
has the same definition as the RETURN key. When the keypad is in
Application mode, you can define the ENTER key to have a different func-
tion from the RETURN key.

February 1987 Key Definition Instructions 11-3

* You can use the GOLD keyword in combination with character keys only for
the PROGRAM KEY IS instruction. The DEFINE KEY AS instruction
restricts using GOLD to combinations with arrow keys (for example, GOLD

UPARROW).

When you specify the GOLD keyword with character keys, GOLD is not
enclosed in quotation marks but the designation of the character key is, for
example, GOLD ”&” (GOLD ampersand) and GOLD ” ” (GOLD space). The
default GOLD key is the PF1 key on the numeric keypad. (Note that you can
use the DEFINE KEY AS instruction to reassign the GOLD function to

some other key.)

The GOLD keyword can be used with alphanumeric keys as well as many
character keys. Note that uppercase and lowercase letters are interpreted as
the same key. The alphanumeric keys include:

A-Z
a-Z
0-9

You can specify the following characters with GOLD:

(ampersand)
(asterisk)

(at sign)
(backslash)
(circumflex)

(colon)

(comma)

(dollar sign)

(equal sign)
(exclamation point)
(grave accent)
(hyphen)

(left angle bracket)
(left brace)

(left parenthesis)
(left square bracket)
(number sign)

)/® * @

T e

*’_'I/'\P"\/\]

11-4 Key Definition Instructions

%

Ryt

R Y,

(percent)

(period)

(plus sign)

(question mark)
(quotation mark)
(right angle bracket)
(right brace)

(right parenthesis)
(right square bracket)
(semicolon)

(single quotation mark)
(slash)

(space)

(tilde)

(underscore)

(vertical line)

February 1987

11.3 Rules of Precedence

Some keys and key sequences can be defined in several ways. Many keys can be
specified with both the DEFINE KEY AS and the PROGRAM KEY IS instruc-
tions. In some instances such as BACKSPACE (CTRL/H), LINEFEED (CTRL/J),
and RETURN (CTRL/M), you can specify the same key as an application function
key (AFK) that you can define with a PROGRAM KEY IS and/or DEFINE KEY
AS instruction.

In all instances where the same key or key sequence has more than one definition,
you need to be aware that TDMS processes only one of the key definitions. These
are the rules that TDMS uses to resolve multiple definitions:

e If a key or key sequence is defined as an AFK, only the AFK function is ever
executed. TDMS ignores any key definition instructions (PROGRAM KEY
IS or DEFINE KEY AS) for that key or key sequence.

e If there is no AFK definition for a key or key sequence, the key definition
instruction within a conditional instruction takes precedence and is executed.
A key definition instruction in the base request is ignored.

e If no key definition instruction occurs within a conditional instruction, a key
definition instruction in the base request is executed.

e If two or more key definition instructions occur in the base request or in con-
ditional instructions defined at the same level within a request, one of the
instructions takes precedence and is executed. However, there are no rules to
determine which key definition instruction prevails in this instance.

11.4 Defining Program Request Keys (PRKs)

Program request keys (PRKs) are keys that you can define in a request to perform
mapping instructions. You define a PRK in a request by naming the key or key
sequence and associating mapping instructions with that key. When the TDMS
application is running and an operator presses a PRK that you defined, TDMS
executes the mapping instructions you associated with that PRK and terminates
the request.

February 1987 Key Definition Instructions 11-5

For example, you can create a request containing a program request key and asso-
ciated PRK mapping instructions, as shown in Figure 11-1.

PRK_SAMPLE_REQUEST

RECORD IS EMPLOYEE_SAMP_REC;
FORM IS EMPLOYEE_SAMP_FORM;
DISPLAY FORM EMPLOYEE_SAMP_FORM;

OUTPUT BADGE_NO TO BADGE;

INPUT NAME TO NAME_FLD;
Program
PROGRAM KEY IS GOLD "M" <«—— request key
RETURN "BACKUP" TO WK_CHANGE_FIELD; I PRK mapping
OUTPUT "RETURNING TO MENU" TO MESSAGE; instructions

END PROGRAM KEY;
END DEFINITION;

Figure 11-1: A Sample PRK Instruction

During a TDMS application, when an operator presses the PRK as defined in the
PRK_SAMPLE_REQUEST (the GOLD-M key sequence on the keyboard), the
TDMS software:

1. Executes the output and returns mapping instructions associated with the
PRK as follows:

e Returns the text string BACKUP to the record field
WK_CHANGE_FIELD

e Displays the string RETURNING TO MENU in the form field
MESSAGE

2. Terminates the request call and returns control to the application program

3. Returns a value to the program indicating that the request was terminated
by a PRK.

Note that when an operator presses a PRK at run time, TDMS checks that all
form fields defined as Response Required have data entered in them (in the
default mode of the PRK instruction). If these fields do not have data entered in
them, TDMS ignores the PRK and continues executing the instructions in the
request. (See the section in this chapter on the default CHECK modifier and the
NO CHECK modifier.)

11-6 Key Definition Instructions February 1987

11.4.1 Using Program Request Keys

PRKs are a convenient way for a TDMS operator to communicate with the appli-
cation program.

By returning messages (that you predefine in a request) to the program, PRKs
permit the operator to send run-time messages to the application program. The
program can then respond to the condition identified by the operator.

You can use program request keys in your request to let the operator:
e Select a menu option. (For example, you might have a menu in which the
operator selects an option by pressing a particular PRK.)

e Notify the application of a change in the sequence of operations. (For exam-
ple, the program might continue asking for employee data until the operator
presses a PRK to indicate readiness for a new employee form.)

* Notify a TDMS application program to exit.

e Indicate that a particular type of operator error occurred and that the pro-
gram should take certain corrective action.

You can also use PRKs in conditional instructions. Later in this chapter, you see
examples of program request key instructions that are used within a conditional
instruction to return values to control values. First, however, you learn how to cre-
ate a simple request containing a program request key.

11.4.2 Creating a Request That Uses a Program Request Key

The request in Figure 11-2 shows that to use a program request key in a request,
you must specify:

1. The instruction keywords, PROGRAM KEY IS
2. A valid prk-key

3. The following instructions:

e One RETURN quoted-string TO record-field instruction
® One of either (but not both):

- A MESSAGE LINE IS instruction
- An OUTPUT quoted-string TO instruction

February 1987 Key Definition Instructions 11-7

4. The end phrase END PROGRAM KEY followed by a semicolon

RECORD IS EMPLOYEE_ADD_REC;

PROGRAM KEY IS GOLD "D" <— 1 & 2 Keywords
and prk-name
RETURN "DONE" TO WK_CHECK_FLD;

OUTPUT "This employee record complete" <— 3 PRK instructions
TO MSG_FLD WITH BOLD;
END PROGRAM KEY; <— 4 End phrase

END DEFINITION;

Figure 11-2: Defining Program Request Keys

Notice that you must end the PROGRAM KEY IS instruction with the end
phrase END PROGRAM KEY and a semicolon. Note also that you do not use a
semicolon following the PROGRAM KEY IS prk-key phrase.

RDU automatically puts all PRK key designations in uppercase. So, for example,
saying GOLD ”A” is the same as GOLD "a”. At run time, when the operator
presses a PRK key, whether it is uppercase or lowercase, TDMS matches it to the
PRK key designation in the request. The PROGRAM KEY IS instruction can
occur anywhere within a request (except in the header section). TDMS responds
to program request keys only after it has executed all output mappings.

11.4.2.1 Default CHECK Mode Modifier -- When you define a program request
key, it has the default modifier, CHECK. (You can assign the NO CHECK modi-

fier to the PRK instruction.) With checking in effect, at run time when an opera-

tor presses a PRK:

1. TDMS checks to see that all form fields defined as Response Required (that
are also mapped for input) contain data
2. TDMS checks to see that all form fields defined as Must Fill fields are filled

3. TDMS checks to see that all field validators (Choice List, Range List, and
Check Digits) are met

11-8 Key Definition Instructions February 1987

If conditions 1, 2, and 3 are met, the TDMS software:

e Executes the PRK instructions and terminates the request

* Returns data from all the form fields that were mapped for input or
return

If the Response Required fields do not have data in them, the Must Fill
fields are not filled, or the field validators are not met, TDMS ignores the
PRK

Note that fields on a form that are mapped for input are not necessarily also
defined as Response Required fields. When a PRK is pressed, therefore, TDMS
might terminate a request even though the operator might not have entered data
in all fields mapped for input.

The data returned to a record, therefore, can be any of the following:

Data entered by the operator during the current call to the request
Data output to the form fields during the current call to the request
Data in the form fields from the immediately previous call to the request

Data associated with the form fields by form definition defaults (if no other
data is in the fields)

Figure 11-3 shows how the CHECK modifier works. At run time, when the opera-
tor presses the PRK, TDMS checks if the field BADGE has data entered into it

by the operator.
(A
NAME e
BADGE _3456656 - l:esponse Required field
TDMS checks that data
DEPARTMENT __ is in this field)
MSG_FLD
CANCEL _OPERATION
\ J

(continued on next page)

Figure 11-3: Using the CHECK Modifier

February 1987 Key Definition Instructions 11-9

DEPT_INFO_REQUEST

FORM IS DEPT_INFO_FORM;
RECORD IS DEPT_INFO_RECORD;
DISPLAY FORM DEPT_INFO_FORM;

INPUT NAME TO NAME,
BADGE TO BADGE,
DEPARTMENT TO DEPT;

PROGRAM KEY IS GOLD "C"
CHECK;
RETURN "CANCEL"
TO MSG_FLD;
OUTPUT "CANCEL OPERATION"
TO MSG_FLD;
END PROGRAM KEY;

END DEFINITION;

<— (perator presses the
GOLD-C key sequence
at run time

Figure 11-3: Using the CHECK Modifier (Cont.)

If the BADGE field does have data entered in it, the TDMS software:

1. Outputs the string "CANCEL OPERATION"” to the form field MSG_FLD
2. Returns the string "CANCEL” to the record field MSG_FLD

3. Terminates the request and returns the badge number entered by the

operator

4. Returns the values that happen to be in the form fields NAME and
DEPARTMENT (the operator did not enter values in these fields)

5. Returns a value to the program indicating that the request was terminated
by a check PRK and that Response Required fields were checked for input

If the field BADGE does not have data entered in it, the TDMS software:

1. Issues an error message indicating that BADGE is a Response Required

field

2. Ignores the PRK and the associated PRK instructions

3. Continues executing the request, including any remaining input instructions

11.4.2.2 NO CHECK Modifier -- If you assign a NO CHECK modifier, at run
time TDMS executes only the PRK instructions and terminates the request. That
is, when TDMS terminates the request in NO CHECK mode, it executes only the
RETURN TO, OUTPUT TO, or MESSAGE LINE IS instructions within the

PRK instruction.

11-10 Key Definition Instructions

February 1987

TDMS does not:

e Check for Response Required fields, Must Fill fields, or field validators

* Execute any remaining instructions outside the PRK instruction

11.4.3 Examples of Using Program Request Keys

The following sections contain two examples of using PRKs in requests.

11.4.3.1 Using PRKs to Allow the Operator to Control Application Flow -- By
defining PRKs that return strings to the program, you give the operator some
control over the flow of the application. The request in Figure 11-4 illustrates this
concept. The request contains a series of four program request keys. When the
operator presses them, TDMS returns a string to signal the program to take one
of the following actions:

String Action

BACK To go back to a form displayed earlier in an application
and redisplay it with information previously entered on
that form and to save the information collected so far
on this current form.

SKIP To discard changes entered on this current form and to
go to the Menu form in this application so the operator
can select a new form.

DONE To save the data entered so far on this form, to write
it to the appropriate record, and to return to the Menu
form for another selection.

EXIT To exit this application and to write all data collected
to the appropriate records.

By using these program keys, the operator can:

1. Move among many forms or menu selections in an application (PRK keypad
7 in Figure 11-4)

2. Skip the form that appears on the screen and discard any information
entered on this form during this call to the request (PRK keypad 8 in Figure
11-4)

3. Enter information on a form and indicate when he is done and wants the
information entered to be written to a file (PRK keypad 9 in Figure 11-4)

4. Exit the application program (PRK keypad 4 in Figure 11-4)

February 1987 Key Definition Instructions 11-11

CHANGE_EDUCATION_REQUEST

FORM IS CHANGE_EDUCATION_FORM;
RECORD IS EDUC_RECORD;
RECORD IS CHANGE_WORKSPACE;

CLEAR SCREEN;
DISPLAY FORM CHANGE_EDUCATION_FORM;

KEYPAD MODE IS APPLICATION;
PROGRAM KEY IS KEYPAD "7"
CHECK;
RETURN "BACK" TO WK_CONTROL_FIELD;
END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "8"

NO CHECK;

RETURN "SKIP" TO WK_CONTROL_FIELD;
END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "9"

CHECK ;

RETURN "DONE" TO WK_CONTROL_FIELD;
END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "4"

CHECK ;

RETURN "EXIT" TO WK_CONTROL_FIELD;
END PROGRAM KEY;

OUTPUT EDUC_UNIVERSITY TO UNIVERSITY,
EDUC_START_DATE TO START,
EDUC_STOP_DATE TO STOP,
EDUC_DEGREE TO DEGREE;

INPUT UNIVERSITY TO EDUC_UNIVERSITY,
START TO EDUC_START_DATE,
STOP TO EDUC_STOP_DATE,
DEGREE TO EDUC_DEGREE;

END DEFINITION;

Figure 11-4: Using PRKs to Allow Operator Control of Application Flow

Note that you must use KEYPAD MODE IS APPLICATION for the application
program to recognize data entered on the keypad as a keypad key (rather than
numeric data). However, RDU does not check when you create a request that you
have specified the KEYPAD MODE IS instruction if you use a keypad key as a
PRK.

11.4.3.2 Using a PRK to Return a Value to a Control Value -- You can use a
program request key to return a value to a control value in a conditional
instruction.

11-12 Key Definition Instructions February 1987

In Figure 11-5, for instance, the operator can press one of two PRKs at run time
(keypad 8 or keypad 4) and place predetermined values (MORE or DONE) in the
control value ACTION_TO_TAKE. In a subsequent call to this same request,
TDMS can evaluate the control value ACTION_TO_TAKE and then execute the
appropriate request instructions.

DEPT_LABOR_REQUEST

FORM IS DEPTLABOR_FORM;
RECORD IS DEPTLABOR_WORKSPACE;
RECORD IS LABOR_RECORD;

CLEAR SCREEN;
DISPLAY FORM DEPTLABOR_FORM;

CONTROL FIELD IS ACTION_TO_TAKE

NOMATCH:
INPUT NUMBER TO LABOR_EMPL_NUMBER,
NAME TO LABOR_NAME,
DEPT TO LABOR_DEPT;

"MORE" :
OUTPUT
LABOR_EMPL_NUMBER TO NUMBER,
LABOR_NAME TO NAME,
LABOR_DEPT TO DEPT;

END CONTROL FIELD;

INPUT PROJECTNO TO WK_PROJECT_NO,
HOURS TO WK_HOURS,
CODE TO WK_OPCODE;

KEYPAD MODE IS APPLICATION;

PROGRAM KEY IS KEYPAD "8"

CHECK;

RETURN "MORE" TO ACTION_TO_TAKE ;
END PROGRAM KEY;

PROGRAM KEY IS KEYPAD "4"
CHECK;
RETURN "DONE" TO ACTION_TO_TAKE;
END PROGRAM KEY;
END DEFINITION;

Figure 11-5: Using PRKs in Conditional Instructions

Note that, when the request DEPT_LABOR_REQUEST is first called, the control
value ACTION_TO_TAKE is blank. TDMS executes the INPUT instructions in
the base section and in the NOMATCH case value. It collects basic employee
information (NUMBER, NAME, and DEPT) and project information
(PROJECTNO, HOURS, and CODE).

February 1987 Key Definition Instructions 11-13

The operator can press one of two PRKs:

e The keypad 8 key, indicating there is more information to enter on the same
employee.

TDMS returns the string "MORE” to the control value and terminates the
request call. The program calls the DEPT_LABOR_REQUEST a second
time. TDMS executes the request instructions following the case value
"MORE". It displays the number, name, and department information. In
addition, TDMS executes the INPUT TO instruction in the base section of
the request and collects additional project-related data on the same
employee.

e The keypad 4 key, indicating there is no more information to enter on this
employee.

TDMS returns the string “"DONE” to the control value and terminates

the request call. The program issues a second call to the request
DEPT_LABOR_REQUEST. There is no match between the control field con-
taining “DONE” and the case values. TDMS, therefore, executes the
NOMATCH instructions. It collects employee information (NUMBER,
NAME, and DEPT) and project data (PROJECTNO, HOURS, and CODE)
for a different employee.

11.5 Using Function Definition Keys

Function definition keys are keys that you can define to perform certain TDMS
functions whenever an operator presses them. By default, there is at least one key
or key sequence for each function. However, you can use the DEFINE KEY AS
instruction to reassign those functions to other keys.

The DEFINE KEY AS instruction allows you to change the functions that are
associated with keys by default and to assign additional keys to have the same
functions. For example, you can define the RETURN key to perform the NEXT
function and also have the TAB key retain that function. Instead of having
LINEFEED or F13 handle the ERASE function, you can define E3 to have that
function and then redefine the LINEFEED or F13 key to the ERROR function.

11.5.1 Key Functions

TDMS has 15 functions that you can assign to keys. Certain keys are assigned
these functions by default. All remaining function definition keys are assigned the
ERROR function.

The ERROR function in TDMS provides a signal to the operator that the key or
key sequence pressed has no executable function. The cursor remains in its same
position on the form. In essence, the ERROR function means that there is no
function defined for that function definition key.

11-14 Key Definition Instructions February 1987

Table 11-1 lists the TDMS key functions and a description for each of them.

Table 11-1: TDMS Key Functions

Function Description

DONE Completes data entry and exits from the request.

ERASE Deletes the contents of the current field.

ERROR Signals the operator that an error has been made
and leaves the cursor where it was.

EXIT_SCROLL_DOWN | Moves the cursor out of a scrolled region to the
next field.

EXIT_SCROLL_UP Moves the cursor out of a scrolled region to the
previous field.

GOLD Combines with another key to perform a specific
operation.

HARDCOPY Copies the current state of the active form into
the file assigned to the logical TSS$HARDCOPY.

HELP Provides help text and/or a help form.

LEFT Moves the cursor one position to the left within
the current field.

NEXT Moves the cursor to the next field.

PREVIOUS Moves the cursor to the previous field.

REFRESH Clears and repaints the screen.

RIGHT Moves the cursor one position to the right within
the current field.

SCROLL_DOWN Moves the cursor to the next line of a scrolled
region.

SCROLL_UP Moves the cursor to the previous line of a scrolled
region.

Table 11-2 shows the function definition keys that are assigned by default to per-
form the various functions, except the ERROR function. Function definition keys
not listed in the table have the ERROR function by default.

February 1987 Key Definition Instructions 11-15

Table 11-2: Keys and Their Default Functions

Key Name Key Function
BACKSPACE PREVIOUS
DOWNARROW SCROLL_DOWN
ENTER DONE

F12 PREVIOUS

F13 ERASE

F15 HELP

GOLD DOWNARROW | EXIT_SCROLL_DOWN
GOLD UPARROW EXIT _SCROLL_UP
LEFTARROW LEFT

LINEFEED ERASE

PF1 GOLD

PF2 HELP

PF4 HARDCOPY
RETURN DONE
RIGHTARROW RIGHT

TAB NEXT

UPARROW SCROLL_UP

Note that CTRL/R and CTRL/W are assigned the REFRESH function by default.
Control key sequences can only be enabled by the TSS$DECL_AFK and
TSS$DECL_AFK_A programming calls. You cannot specify control key
sequences in key definition instructions. However, you can assign the REFRESH
function to other keys or key sequences.

11.5.2 Using the ERROR Function to Deassign a Key Definition

In TDMS, all definable keys and key sequences that do not have either a default
or specifically defined function are assigned the ERROR function. For example,

all the E keys on the editing keypad for VT200-series terminals have ERROR as
their default function.

Since all function definition keys must have functions assigned to them, you have
to assign the ERROR function to a function definition key that you want to
undefine. For example, suppose for VT200-series terminals you want to reassign

11-16 Key Definition Instructions February 1987

the ERASE function from the default key (F13) to the Remove key (E3) on the
editing keypad. You would need to define both the E3 key and the F13 key:

DEFINE KEY E3 AS ERASE;
DEFINE KEY F13 AS ERROR;

Now when the operator presses E3, the field is erased. When F13 is pressed, the
terminal bell sounds indicating that the key has no function.

11.5.3 Examples of Key Definitions

The following examples show how you might use the DEFINE KEY AS
instruction.

11.5.3.1 Redefining the RETURN Key to Have the NEXT Function -- By
default, TDMS assigns the NEXT function to the TAB key and the DONE func-
tion to the ENTER and RETURN keys. The following DEFINE KEY AS instruc-
tions exchange those functions so RETURN and ENTER now perform the NEXT
function and the TAB key performs the DONE function.

RDUDFN> DEFINE KEY TAB AS DONE;
RDUDFN> DEFINE KEY RETURN AS NEXT;

Now when the operator wants to move the cursor to the next field, he presses
either the RETURN or ENTER key. When he finishes entering data, he presses
the TAB key to exit from the request.

11.5.3.2 Redefining the F20 Key to Have the REFRESH Function -- By
default, the F20 key on VT200-series terminals is assigned the ERROR function.
The following DEFINE KEY AS instruction assigns the REFRESH function to
F20.

RDUDFN> DEFINE KEY F20 AS REFRESH;

Now, the operator can press CTRL/R, CTRL/W, or F20 to clear and repaint the
screen.

February 1987 Key Definition Instructions 11-17

Application Function Keys (AFKs) 18

This chapter explains how to redefine terminal keys from the application
program.

18.1 What Are Application Function Keys?

Application function keys (AFKs) are keys that trigger special application-specific
actions. AFKs are not restricted to the functions TDMS provides.

When the operator presses a key that the application program defines as an AFK,
either or both of the following events occurs:

e Anevent flag is set

* A user-written asynchronous system trap (AST) routine is invoked

If you are unfamiliar with AST routines, you should read the VMS documentation

on system services before continuing with this chapter.

18.2 When Do You Use Application Function Keys?

You should use AFKs when you want to associate a terminal key with an action
that is unrelated to TDMS or that interrupts TDMS. For instance, you can write
an AST routine that calls TSSSCANCEL and then declare an AFK that invokes
that AST routine. This way, the operator can cancel a request without entering
any data, even if the form defines the fields as Response Required.

18-1

18.3 Declaring Application Function Keys

You declare an AFK with the TSS$DECL_AFK call. The code to declare an AFK
is as follows:

BASIC

Return_status = TSS$DECL_AFK (Channel BY REF,
Key_id BY REF,
Key_event_flag BY REF,
Key_ast_routine BY REF,
Key_ast_parameter BY REF)

R

coBOL

CALL "TSS$DECL_AFK"
USING BY REFERENCE Channel,
BY REFERENCE Key-id,
BY REFERENCE Key-event-flag,
BY REFERENCE Key-ast-routine,
BY REFERENCE Key-ast-parameter,
GIVING Return-status.

FORTRAN

Return_status = TSS$DECL_AFK (%REF (Channel),
%REF (Key_id) ,
%REF (Key_event_flag),
%REF (Key_ast_routine),
%REF (Key_ast_parameter))

W) -

Channel is the channel number that was assigned on the TSS$OPEN call.

Key-id is a code representing the AFK. When the operator presses the key repre-
sented by the key-id parameter, the event flag will be set and the AST routine will
be invoked. These parameters are optional but you must include at least one. See
Table 18-1 for a list of application function keys.

Key-event-flag is the event flag that is set when the operator presses the AFK.
This parameter is optional; if it is not present, TDMS does not set an event flag
when the operator presses the key. However, if you do not specify an event flag,
you must specify an AST routine.

Key-ast-routine is a subroutine. This parameter is optional. When the operator
presses the AFK, TDMS calls this routine at AST level. You can use either the
event flag or the AST routine by itself, or together.

Key-ast-parameter is a parameter to be passed to the AST routine. This param-
eter is optional. If the AST parameter is not present and an AST routine is,
TDMS will pass an AST parameter of zero. You can pass any type of parameter
you would like your AST routine to receive, including addresses.

18-2 Application Function Keys (AFKs) February 1987

18.3.1 Terminal Keys You Can Declare as AFKs
Table 18-1 lists the valid key codes and the keys they represent.

Table 18-1: Application Function Key Codes

Key Id Control Key Key Id Control Key
0 CTRL/space bar 15 CTRL/O
1 CTRL/A 16 CTRL/P
2 CTRL/B 18 CTRL/R
3 CTRL/C 20 CTRL/T
4 CTRL/D 21 CTRL/U
5 CTRL/E 22 CTRL/V
6 CTRL/F 23 CTRL/W
7 CTRL/G 24 CTRL/X
8 CTRL/H 25 CTRL/Y
9 CTRL/N 26 CTRL/Z
10 CTRL/J 27 CTRL/
11 CTRL/K 28 CTRL/backslash
12 CTRL/L 29 CTRLY/]
13 CTRL/M 30 CTRL/”
14 CTRL/N 31 CTRL/?

Application Function Keys (AFKs) 18-3

18.3.2 How to Write an AST Routine

When the operator presses an AFK that has an AST routine associated with it,
TDMS invokes the AST routine and passes it three parameters. You must make
sure your AST routine receives the parameters correctly. The calling sequence is
as follows:

Return-status = Key-ast-routine (Key-ast-parameter by value,
channel by reference,
key-id by reference)

18.4 Removing an AFK Key Definition

To remove a key definition declared in a TSS$DECL_AFK call, you use the
TSSSUNDECL_AFK call. The code to remove a key definition is as follows.

BASIC

Return_status = TSS$UNDECL_AFK (Channel BY REF, &
Key_id BY REF)

COBOL

CALL "TSS$UNDECL_AFK"
USING BY REFERENCE Channel,
BY REFERENCE Key-id,
GIVING Return-status.

FORTRAN

Return_status = TSS$UNDECL_AFK (%REF (Channel),
1 %REF (Key_id))

Channel is the channel number that was assigned on the TSS$OPEN call.

Key-id is the code representing an AFK that was previously declared in a
TSS$DECL_AFK call.

18-4 Application Function Keys (AFKs)

In this index, a page number followed
by a “t” indicates a table reference.
A page number followed by an ”f”
indicates a figure reference.

* (asterisk)

See Asterisk (*)
@ (at sign)

See @file-spec command
! (exclamation point)

See Exclamation point (!)
- (hyphen)

See Hyphen (-)
; (semicolon)

See Semicolon (;)

A

AFK
See Application function keys
%ALL syntax, 3-3
arrays
elements of, 7-8
horizontally-indexed, 8-7, 8-8f
indexed, 7-15
multiple, 7-20

February 1987

Index

scrolled, 7-14
two-dimensional, 8-7
Display Only form fields, 3-6
entire forms, 3-4
errors in, 5-3, 5-7
example of, 3-5
form and larger record, 3-6
form and smaller record, 3-7
group record fields, 3-21
informational messages in, 5-3
rules, 3-3, 4-2
when not to use, 3-19
when to use, 3-4
with explicit syntax, 3-19
with INPUT TO, 1-11
with OUTPUT TO, 1-12
Ambiguous field names, 3-14
making unique
using group field names, 3-15
using record names, 3-17
using the WITH NAME modi-
fier, 3-17
qualifying, 3-14
ANYMATCH case value, 6-10
Application function keys (AFKs),
18-1, 18-3t
AST routines, 18-2, 18-4
deassigning, 18-4
declaring, 18-2
event flags, 18-2

Index-1

when to use, 18-1
Application mode, 11-2, 11-3
Application programs
canceling TDMS calls, 15-6
compiling, 14-9
data types, 16-1, 16-26t
debugging
sample, 17-3 to 17-6f
Trace facility, 17-1
using log files, 17-2
using two terminals, 17-6
VAX Symbolic Debugger, 17-6
with TDMS calls, 17-2
declaring records, 16-1
in BASIC programs, 16-2
in COBOL programs, 16-7, 16-8
in FORTRAN programs, 16-13,
16-14
linking, 14-9, 14-10
opening RLB files, 14-2
passing records to requests, 14-4,
14-5, 16-25
reading from the message line, 15-1
record definitions in, 14-5
sample
BASIC program, 14-10 to 14-12
COBOL program, 14-12 to 14-13
sequence of TDMS calls, 14-1
signaling errors, 14-7
testing return status, 14-6
using control values, 6-3
using DBMS, 16-20 to 16-22
using Rdb/VMS, 16-19, 16-20
Arguments for TDMS calls, 14-1
ARRAY clause (CDDL), 7-6
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
nesting, 8-2
Arrays, 7-1
%ALL syntax, 7-8, 7-14
horizontally-indexed, 8-7
two-dimensional, 8-5, 8-7
bounds
adjusting, 9-6

Index-2

in BASIC programs, 16-6, 16-7
in COBOL programs, 16-11
in RDU, 7-7
control values, 9-1
adjusting bounds, 9-6
evaluating at run time, 9-2
example, 9-2f
one-dimensional, 9-7, 9-8f
rules for specifying, 9-4
declaring
in BASIC programs, 16-5, 16-5f,
16-7f
in COBOL programs, 16-11, 16-
111, 16-12f
in FORTRAN programs, 16-16,
16-17f
explicit syntax, 7-7
for database scrolled regions, 16-23
for input, 16-25
initializing, 16-25
loading, 16-25
form, 7-2
horizontally-indexed, 8-1, 8-1f
indexed, 7-2, 7-3f
mapping from multiple, 7-20
scrolled, 7-3, 7-4f
simple, 4-3f
horizontally-indexed, 8-1f, 8-4, 8-9
indexed, 7-12
multiple, 7-18
nested
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
one-dimensional, 7-2f
as control values, 9-7, 9-8f
partial, 7-17, 8-10f
records
group, 7-5
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
multiple, 7-18
one-dimensional, 7-4, 7-5f
structure, 4-2f, 7-4

February 1987

two-dimensional, 8-2, 8-4
using ARRAY syntax, 7-6, 8-2
using OCCURS syntax, 7-6, 8-2
with database streams, 16-24
rules, 7-9
scrolled, 7-12, 7-15
displaying, 10-5, 10-6f, 10-7
horizontally-indexed, 8-1f
multiple, 7-20
structure of, 7-2f
subscripts, 7-1
See also Dependent names
ranges, 7-1
two-dimensional
%ALL syntax, 8-7
in BASIC programs, 16-7
in COBOL programs, 16-12
in FORTRAN programs, 16-18
rules, 8-4
work, 9-6
zero-based
as control values, 9-6
in BASIC programs, 16-6
in COBOL programs, 16-11
in RDU, 7-7
Arrow keys in key definitions, 11-3
AST routines
calling sequence, 18-4
for application function keys, 18-2,
18-4
for asynchronous calls, 19-2
parameters
for application function keys,
18-2
for asynchronous calls, 19-2, 19-3
writing, 18-4
Asterisk (*) character in Rdb/VMS
DML, 16-20
Asynchronous calls
See TDMS programming calls
Asynchronous System Trap routines
See AST routines
Attributes
field
Display Only, 3-6

February 1987

dummy fields, 10-5

Must Fill, 3-23

with CHECK modifier, 11-8

with NO CHECK modifier, 11-10
video, 1-12

in conditional instructions, 6-12

with HARDCOPY key, 15-5

with inactive forms, 5-7

BACK SPACE key, 10-1
Base instructions
in conditional requests, 6-2, 6-4f
in requests, 1-3
multiple OUTPUT TO instructions,
5-7
with PRKs, 11-13
BASIC programs, 14-1
CASE statement, 16-5
compiling, 14-9, 16-2
data types, 16-26t
CDDL, 16-3
declaring
record variants, 16-5
records, 16-2, 16-2f, 16-41, 16-5f,
16-7f
subscript variables, 16-6
%INCLUDE statement, 16-2
linking, 14-9
samples, 14-10 to 14-12
using DBMS, 16-21
using Rdb/VMS, 16-19
VARIANT statement, 16-5
Bell, ringing the terminal, 15-4
Binary structures
storing, 2-9, 2-10
after modification, 2-11
BLINK FIELD instruction, 1-13
BOLD FIELD instruction, 1-13
Bounds of arrays, 7-6
adjusting, 9-6
in BASIC programs, 16-6, 16-7
in COBOL programs, 16-11
in RDU, 7-7

Index-3

BUILD LIBRARY command (RDU),
124

ILOG qualifier, 7-10
Novalidate mode, 2-8

Building request libraries, 12-4 to 12-5
errors, 12-5
mapping messages in, 7-10
INOSTORE qualifier, 2-10
Novalidate mode, 2-8

BYTE data type, 16-26t

o

Calling sequence
asynchronous TDMS calls, 19-2
for AST routines, 18-4
TDMS synchronous calls, 13-2
Calls
See TDMS programming calls
Canceling TDMS calls, 15-6, 18-1
CASE statement (VAX BASIC), 16-5
Case values
ANYMATCH, 6-10
case insensitivity, 6-8
for error checking, 9-7
in conditional requests, 6-4f
with PRKs, 11-13
match instructions, 6-12
multiple control values, 6-12
NOMATCH, 6-9
specifying, 6-9
structure of, 6-2
with control arrays, 9-2
with nested control field instruc-
tions, 6-9
CDD
copying requests, 2-10
DBMS$RECORDS directory, 16-20
DBM$SUBSCHEMAS directory,
16-20
default directory
defining CDD$DEFAULT, 2-2
displaying, 2-3
setting, 2-2, 2-3
deleting requests, 2-12

Index-4

modifying requests, 2-11
naming conventions, 2-3 to 2-4
path names, 2-3, 16-2
DBMS databases, 16-20
for Rdb/VMS databases, 16-19
in BASIC programs, 16-2
in COBOL programs, 16-8
in FORTRAN programs, 16-13
RDB$RELATIONS directory,
16-19
record definitions
DBMS, 16-20
in BASIC programs, 16-2
in COBOL programs, 16-7
in FORTRAN programs, 16-13
Rdb/VMS, 16-19
storing
request library definitions, 12-1
requests, 2-2, 2-8
CDD$DEFAULT
defining, 2-2
in login command file, 2-2
in RDU, 2-3
in BASIC programs, 16-2
in COBOL programs, 16-8
in FORTRAN programs, 16-13
with CREATE REQUEST com-
mand, 2-5
with DBMS, 16-21
with Rdb/VMS databases, 16-19
CDDL
ARRAY clause, 7-6
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
nesting, 8-2
array definitions, 7-1, 7-7
COPY FROM statement, 16-23
data types, 16-26t
in BASIC programs, 16-3, 16-5
in FORTRAN programs, 16-15
TDMS, 4-6
DESCRIPTION IS statement
in FORTRAN programs, 16-13
OCCURS clause, 7-6

February 1987

in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
nesting, 8-2
record definitions, 1-2, 14-5
record names, 14-5
STRUCTURE statement
in BASIC programs, 16-3, 16-5
in COBOL programs, 16-9, 16-11
in FORTRAN programs, 16-15
VARIANT keyword
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
VARIANTS statement
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
Changing
request library definitions, 12-3
requests, 2-11
Channels
closing terminal, 14-6
opening terminal, 14-3
CHARACTER data type, 16-26t
CHECK modifier
assigning NO CHECK, 11-10
at run time, 11-10
default, 11-8
function of, 11-8
CLEAR SCREEN instruction, 1-6
Clearing the screen, 1-6, 14-6
Closing
I/O channels, 14-6
request libraries, 14-5
COBOL programs, 14-1
CDD path names in, 16-8
compiling, 14-9, 16-8
/LIST/COPY_LIST qualifiers,
16-8
COPY statement, 16-8
data types, 16-26t
declaring records, 16-7, 16-8, 16-9f,
16-10f, 16-111, 16-12f
linking, 14-9

February 1987

sample, 14-12 to 14-13
Command files
EDT startup, 5-8
login, 2-1, 2-2
RDU
creating requests, 2-6
default file type, 2-6
startup, 2-3
RDUS$EDIT, 5-9
TDMSS$EDIT, 5-9
Comment characters
in BASIC programs, 16-5
in DESCRIPTION instruction, 1-6
in FORTRAN programs, 16-13
TDMS, 1-6
Common Data Definition Language
See CDDL
Common Data Dictionary
See CDD
COMP-1 data type, 16-26t
COMP-2 data type, 16-26t
Compatibility
of data types, 4-4, 4-7
for input, 4-8
of field length and size, 4-9
of field structures, 4-3
of input mappings, 4-8t
of output mappings, 4-9t
of scale factors, 4-5
of sign conditions, 4-9
program and request records, 14-5
Compiling
BASIC programs, 16-2
COBOL programs, 16-8
FORTRAN programs, 16-13
TDMS programs, 14-9
COMPLEX data type, 16-26t
Condition codes
levels, 14-6
returned by TDMS calls, 13-2
signaling, 14-7
testing, 14-6
Conditional instructions
case values
ANYMATCH, 6-10

Index-5

NOMATCH, 6-9
specifying, 6-9
CONTROL FIELD IS, 6-4f
control values
arrays, 9-1, 9-2f
multiple, 6-12
DISPLAY FORM instructions, 6-11
evaluation of, 6-7f
run-time, 6-5
multiple, 6-8
nesting, 6-8
structure of, 6-2
USE FORM instructions, 6-11
Conditional requests, 6-1, 6-2
CONTROL FIELD IS, 6-4f
evaluation of, 6-7f
structure of, 6-3f
using PRKs to return values to con-
trol values, 11-12
when to use, 6-3
Control field arrays
illegal nesting of dependent ranges,
9-5, 9-5f
rules for specifying, 9-4
CONTROL FIELD IS instruction,
6-4f
case values
ANYMATCH, 6-10
NOMATCH, 6-9
specifying, 6-9
control values, 6-6
evaluation of, 6-7f
run-time, 6-5
match instructions, 6-12
multiple, 6-12
nesting, 6-8
Control fields
debugging, 17-1
returning a value using PRKs,
11-12
Control values
arrays, 9-1, 9-2f
dependent names, 9-1
dependent ranges, 9-1
evaluating at run time, 9-2

Index-6

one-dimensional, 9-7
rules for specifying, 9-4
two-dimensional, 9-10
multiple, 6-12
record fields, 6-6
specifying, 6-6
using in the program, 6-3
workspace arrays, 9-6
workspace records, 6-6
CONTROL Z
See CTRL/Z
Controlling application flow with pro-
gram request keys, 11-11
COPY LIBRARY command (RDU),
12-2
COPY REQUEST command (RDU),
2-10
COPY statement (VAX COBOL)
CDD path names in, 16-8
format of translated record defini-
tion, 16-8
general format, 16-8
Copying
from CDD to VMS file, 2-12
record definitions
into BASIC programs, 16-2
into COBOL programs, 16-7
into FORTRAN programs, 16-13
request library definitions, 12-2
requests, 2-10, 2-12
the active form, 15-4
Correcting errors, 2-7
CREATE LIBRARY command
(RDU), 12-1
CREATE REQUEST command
(RDU), 2-5
CDD$DEFAULT in, 2-5
errors in, 2-5
path names in, 2-5
syntax errors during, 5-2
with command file, 2-6
with database streams, 16-24
with text file, 2-6
Creating
forms, 1-2

February 1987

records, 1-2
request libraries, 12-4 to 12-5
request library definitions, 12-1 to
12-2
requests, 2-5
command-file method, 2-6
from DCL level, 2-6
interactively, 2-5
text-file method, 2-6
CTRL/Z, 2-13

D

D_FLOATING COMPLEX data type,
16-26t
D_FLOATING data type, 4-7t, 16-26t
Data Manipulation Language (DML)
DBMS, 16-21
Rdb/VMS, 16-19
Data types
allowable picture characters, 4-5t
compatibility, 4-7
for input, 4-8
of field lengths and sizes, 4-9
of field sign conditions, 4-9
conversion chart, 16-26t
form fields, 4-4
programming language support,
16-1
record fields, 4-6
DATATRIEVE
array definitions, 7-7
record names, 14-5
DATE data type, 4-7t, 16-26t
DBGS$INPUT logical name, 17-6
DBG$OUTPUT logical name, 17-6
DBMS$RECORDS directory, 16-20
DBM$SUBSCHEMAS directory,
16-20
DBMS
DBMS$RECORDS directory, 16-20
DBM$SUBSCHEMAS directory,
16-20
path names, 16-20
record definitions, 16-20

February 1987

naming conventions, 16-20
work areas, 16-21
sample programs, 16-21
schema names, 16-20
subschema definitions, 16-20
using scrolled regions with, 16-22
DCL commands
BASIC, 14-9
COBOL, 14-9
DEFINE, 2-2, 17-2
FORTRAN, 14-9
LINK, 14-9
TYPE, 5-9
Deassigning application function keys,
18-4
Deassigning key function definitions,
11-16
Debugging TDMS programs, 17-1
sample, 17-3 to 17-6f
using log files, 17-2
using two terminals, 17-6
VAX Symbolic Debugger, 17-6
with TDMS calls, 17-2
DECIMAL data type, 16-26t
DECLARE statement (VAX BASIC),
16-2
Declaring
application function keys, 18-2
AST routines, 18-2, 18-4
event flags, 18-2
records, 16-1
explicitly, 16-1
in BASIC programs, 16-2, 16-2f,
16-4f, 16-51, 16-7f
in COBOL programs, 16-7, 16-8,
16-9f, 16-10f, 16-11f, 16-12f
in FORTRAN programs, 16-13,
16-14, 16-14f, 16-15f, 16-17f
TDMS programming calls, 14-7
DEFAULT FIELD instruction
with inactive forms, 5-7
Defaults
AST parameters, 18-2
CDD directory, 2-2
showing, 2-3

Index-7

dependent names, 9-2
error message level, 5-4
file types
for executable images, 14-10
for object files, 14-9
for RDU command files, 2-6
for request library files, 14-2
for the SAVE command, 5-9
form fields
data types, 4-4
scale factor, 4-5
I/O device, 14-3
RDU editor, 2-7, 5-9, 12-3
VMS directory, 14-9
DEFINE command (DCL)
CDD$DEFAULT, 2-2
TSS$TRACE_OUTPUT, 17-2
DEFINE KEY AS instruction, 11-1,
11-2,11-14 to 11-17
Defining
CDD$DEFAULT, 2-2
forms, 1-2
RDU
default editor, 2-7
in login command files, 2-1
symbol, 2-1
RDUSEDIT, 5-9
records, 1-2
request libraries, 12-1
TSS$TRACE_OUTPUT, 17-2
DELETE command (DMU), 2-12
DELETE LIBRARY command
(RDU), 12-4
DELETE REQUEST command
(RDU), 2-12
Deleting
from the CDD, 2-12
request library definitions, 12-4
requests, 2-12
Dependent names, 9-1
%ENTRY, 9-2
redefining, 9-6
%LINE, 9-2
redefining, 9-6
Dependent ranges, 9-1

Index-8

DESCRIPTION instruction, 1-6
semicolon in, 1-13
DESCRIPTION IS statement
(CDDL)
in FORTRAN programs, 16-13
Dictionary Management Utility
See DMU commands
DICTIONARY statement (VAX
FORTRAN)
general format, 16-13
/LIST qualifier, 16-13
Directories
CDD default, 2-2
VMS default, 5-9, 12-4, 14-9
DISPLAY FORM instruction, 1-6
errors in, 5-5, 5-7
given names in, 2-4
in conditional instructions, 6-11
WITH OFFSET modifier, 5-6, 5-7
Displaying
default CDD directory, 2-3
forms, 1-6
with an offset, 5-6
request library definitions, 12-2
requests, 2-11
scrolled regions, 10-5, 10-7
DML
See Data Manipulation Language
DMU commands
DELETE, 2-12
EXTRACT, 2-12
LIST, 4-12
Documenting requests, 1-6
DOUBLE data type, 16-26t
Down arrow key, 10-1, 11-3

E

E keys, 11-3

EDIT command (RDU), 2-7, 5-8
default editor, 5-9

Editing
RDU commands, 2-7
request library definitions, 12-3
requests, 2-11

February 1987

Editor
changing, 5-9
default, 2-7, 5-8, 12-3
Elements of arrays, 7-1
explicitly mapping, 7-7
Enabling the Trace facility, 17-1
END DEFINITION instruction, 1-13
Ending
request definitions, 1-13
request instructions, 1-13
Entering RDU, 2-1
%ENTRY lexical function, 9-1, 9-2
redefining, 9-6
Erasing the screen, 1-6, 14-6
Error level status, 14-6
Errors
correcting, 5-8 to 5-10
with the SAVE command, 5-9
form-related, 5-7
in mappings, 5-3, 5-7
arrays, 7-10
explicit, 5-4
in request library definitions, 12-2
in TDMS programs, 14-6
notifying the operator
with TSS$WRITE_BRKTHRU,
15-3
with TSS$WRITE_MSG_LINE,
15-3
semantic, 5-3
severity, 5-2
signaling, 14-7
syntax, 5-1
how RDU reports, 5-2
in Interactive mode, 5-2
tracing at run time, 17-1
while building request libraries,
12-5
Evaluating conditional instructions,
6-5
Event flags
for asynchronous calls, 19-2
with application function keys, 18-2
Exclamation point (!) comment char-
acter, 1-6, 1-13

February 1987

Executing a request, 14-3
Execution order

errors in, 5-6

of conditional instructions, 6-5
EXIT command (RDU), 2-13
Exiting RDU, 2-13
Explicit mapping

arrays, 7-7, 7-12

errors in, 5-3, 5-4

group record fields, 3-21

multiple fields, 3-10

partial arrays, 7-17

rules, 3-3, 4-1

for specifying fields, 3-9

syntax, 3-3

when to use, 3-9

with %ALL syntax, 3-19
EXTRACT command (DMU), 2-12

F

F keys, 11-3
F_FLOATING COMPLEX data type,
16-26t
F_FLOATING data type, 4-7t, 16-26t
Fatal level status, 14-6
FDU, 1-2, 4-11
FDU commands
LIST FORM, 4-11
Field names
conventions, 3-3
making unique
using group field names, 3-15
using record names, 3-17
using the WITH NAME quali-
fier, 3-17
qualifying, 3-14
record arrays, 7-4
Fields
data types, 4-4
form field structures, 4-3
mapping, 1-9
%ALL syntax, 1-11
arrays, 7-6
multiple fields, 3-10, 3-21

Index-9

restrictions, 3-23
with %ALL syntax, 1-12
naming conventions, 3-3
record structures, 4-2f, 4-3
video attributes, 1-12
FILE IS instruction
file name in, 12-1
in request library definition, 12-5
File method of creating requests, 2-6
@file-spec command (RDU), 2-6
Files
names
default for SAVE command, 5-9
request library files, 12-2, 12-4
request libraries, 12-1
TDMS shareable image, 14-9
TSS$HARDCOPY, 15-4
TSS$TRACE_OUTPUT, 17-2
Flags
See Event flags
Floating-point data types, 4-7t
Form arrays, 7-1, 7-2
horizontally-indexed, 8-1, 8-1f
indexed, 7-2, 7-3f
mapping, 7-6, 7-8
multiple, 7-20
with %ALL, 7-8
scrolled, 7-3, 7-4f
collecting data from, 10-2 to 10-5
displaying, 10-5, 10-6f, 10-7
Form Definition Utility
See FDU
Form definitions, 1-2
listing, 4-11
Form fields
data types, 4-4, 4-5t
length, 4-4
picture characters, 4-4
picture strings, 4-4
scale factors, 4-4
simple, 4-3f
structures, 4-3, 4-3f
array, 4-3
simple, 4-3
FORM IS instruction

Index-10

error messages, 1-5
general format, 1-4
given names in, 2-4
in conditional request
path names in, 1-5, 2-

s, 6-12
4

with DISPLAY FORM, 5-5
WITH NAME maodifier, 1-5, 5-6
with USE FORM, 5-5

Forms
active, 5-7
with ANYMATCH
6-11

case value,

with NOMATCH case value,

6-10
CDD path names, 2-3
copying to a file, 15-4
defining, 1-2
displaying, 1-6
listing, 4-11
mapping

entire forms, 3-4

to larger record, 3-6
to smaller record, 3-7
offset on the screen, 5-6

unique names, 1-5
using in requests, 1-4

validating request references, 2-7

video attributes, 1-12
FORTRAN programs, 1

4-1

CDD path names in, 16-13

CDDL data types in,

16-15

comment character for CDDL

descriptions, 16-

13

compiling, 14-9, 16-13
contents of listing file, 16-13

data types, 16-26t
declaring

records, 16-13, 16-14, 16-14f, 16-

151, 16-17f

DICTIONARY statement
/LIST qualifier, 16-13
IG_FLOATING qualifier, 16-27

/14 qualifier, 16-27
linking, 14-9
listing, 16-13

February 1987

MAP statement, 16-16
two-dimensional arrays, 16-18
UNION statement, 16-16
Full path names, 2-3
in RDU, 2-4
in request library definitions, 12-2
Function definition keys, 11-14 to
11-17
examples of, 11-17
Function keys, 11-3
application, 18-1, 18-3t
deassigning, 18-4
declaring, 18-2
when to use, 18-1
Functions
See Lexical functions

G

G_FLOATING COMPLEX data type,
16-26t
G_FLOATING data type, 4-7t, 16-26t
GFLOAT data type, 16-26t
Given names, 2-3
and logical names, 2-4
in DISPLAY IS, 24
in FORM IS, 2-4
in RDU, 2-4
in RECORD IS, 2-4
in REQUEST IS, 2-4
in USE FORM, 2-4
GOLD key in key definitions, 11-2 to
11-4
Group record
with %ALL, 3-21
Group record arrays, 7-5, 7-5f
two-dimensional, 8-3f
Group record fields, 3-15, 4-2f
mapping, 3-21
restrictions, 3-23

H

H_FLOATING COMPLEX data type,
16-26t
H_FLOATING data type, 4-7t, 16-26t

February 1987

HARDCOPY key, 15-4
video attributes, 15-5
when to use, 15-5
Header instructions
in conditional requests, 6-2, 6-4f
in requests, 1-3
HFLOAT data type, 16-26t
Horizontally-indexed scrolled arrays,
8-1
%ALL syntax, 8-7
entire array, 8-5
partial, 8-9
rules, 8-4
size of, 8-1
syntax, 8-4
Hyphen (-)
continuation character, 2-6
in COBOL programs, 16-8

I/O channels
closing terminal, 14-6
opening terminal, 14-3
Implicit mapping
See %0 ALL syntax
%INCLUDE statement (VAX BASIC)
CDD path names, 16-2
general syntax, 16-2
Including record definitions
in BASIC programs, 16-2
in COBOL programs, 16-7
in FORTRAN programs, 16-13
Indexed form arrays, 7-2, 7-3f
%ALL syntax, 7-8, 7-15, 7-16f
mapping partial, 7-17
Informational level messages, 5-3
Informational level status, 14-6
Input mappings, 1-9
%ALL syntax, 1-11
compatibility, 4-8t
of data types, 4-8
from a scrolled region, 10-1
from the message line, 15-1
without operator input, 3-2

Index-11

INPUT TO instruction, 1-9, 3-2

%ALL syntax, 1-11

See also %eALL syntax

commas in, 1-9

example of, 3-5

in conditional requests, 6-5

mapping arrays, 7-8, 7-15

with PRKs, 11-11
Instances of records

See Declaring records
Instructions

See Request instructions
INTEGER data type, 16-26t

with FORTRAN /14 qualifier, 16-27
Interactive mode, 2-5

reporting syntax errors, 5-2
Interrupting requests, 15-3
Invoking

RDU, 2-1

requests, 14-3

Trace facility, 17-1

K

Key definition
rules of precedence, 11-5
Key function definitions
deassigning, 11-16
Keyboard keys, 11-4
KEYPAD keys in key definitions, 11-2
KEYPAD MODE IS instruction, 11-2
Keys
See also function definition keys
See also Program request keys
application function keys, 18-1,
18-3t
deassigning, 18-4
declaring, 18-2
when to use, 18-1
arrow, 11-3
BACK SPACE, 10-1
down arrow, 10-1
E, 11-3
F,11-3
function definitions for, 11-14 to
11-17

Index-12

GOLD, 11-2 to 11-4
HARDCOPY, 15-4
keyboard, 11-4

KEYPAD, 11-2

PF, 11-2

TAB, 10-1

up arrow, 10-1

viewing scrolled regions, 10-1

L

Leaving RDU, 2-13
Left arrow key, 11-3
LEFT OVERPUNCHED NUMERIC
data type, 4-7t, 16-26t
LEFT SEPARATE NUMERIC data
type, 4-7t, 16-26t
Length
of form fields, 4-4
of record fields, 4-6
Lexical functions
% ALL
example, 1-12
%ALL syntax, 1-12
See also %ALL syntax
%ENTRY, 9-1, 9-2
%LINE, 9-1, 9-2
Libraries
See Request libraries
Limits of an array, 7-6
%LINE lexical function, 9-1, 9-2
redefining, 9-6
LINK command (DCL), 14-9
Linking TDMS programs, 14-9, 14-10
LIST command (DMU), 4-12
LIST FORM command (FDU), 4-11
LIST LIBRARY command (RDU),
12-2
/LIST qualifier (VAX FORTRAN),
16-13
LIST REQUEST command (RDU),
2-11
general format of, 2-11
sample output, 2-12
Listing

February 1987

BASIC programs with CDD
records, 16-2
debugger log files, 17-2
form definitions, 4-11
FORTRAN programs with CDD
records, 16-13
record definitions, 4-12
request library definitions, 12-2
requests, 2-11
/LOG qualifier
with %ALL syntax, 7-16
with BUILD LIBRARY command,
7-10
Logging errors, 17-2
Logical names
and CDD given names, 2-4
CDD$DEFAULT, 2-2, 2-3
DBGSINPUT, 17-6
DBG$OUTPUT, 17-6
RDUSEDIT, 5-9
TDMSS$EDIT, 5-9
to enable Trace facility, 17-2
TSS$HARDCOPY, 15-4
TSS$TRACE_OUTPUT, 17-6
Login command files
defining CDD$DEFAULT, 2-2
defining RDU, 2-1
LONG data type, 16-26t

MAP statement (VAX BASIC), 16-2
MAP statement (VAX FORTRAN),
16-16
Mapping
%ALL syntax, 3-3
arrays, 7-8, 7-14, 7-15, 8-7
Display Only form fields, 3-6
entire forms, 3-4
errors in, 5-7
form and larger record, 3-6
form and smaller record, 3-7
when not to use, 3-19
when to use, 3-4
with explicit syntax, 3-19
with OUTPUT TO, 1-12

February 1987

arrays, 7-6
%ALL syntax, 7-8, 7-14, 7-15,
8-7
explicit syntax, 7-12, 8-5
horizontally-indexed, 8-5
horizontally-indexed scrolled, 8-1
partial, 7-17
rules, 7-9
at run time, 14-3
compatibility
of data types, 4-4, 4-7
of field length and size, 4-9
of input, 4-8t
of output, 4-9t
of sign conditions, 4-9
errors, 5-3, 5-7
explicit syntax, 3-3
errors in, 5-4
specifying fields, 3-9
when to use, 3-9
with %ALL syntax, 3-19
group record fields, 3-21
restrictions, 3-23
multiple fields, 3-10, 3-21
restrictions, 3-13, 3-23
names
identical, 3-13
making unique, 3-13
rules, 3-3, 4-1
several form arrays, 7-20
several record arrays, 7-18
Mapping instructions, 1-9
commas in, 1-14
function of, 1-9
INPUT TO, 1-9, 3-2
OUTPUT TO, 1-11, 3-2
parentheses in, 1-14
RETURN TO, 3-2
validating, 12-5
Mapping tables
simplified input, 4-8t
simplified output, 4-9t
Match instructions, 6-12
Matching
any case value, 6-10
no case values, 6-9

Index-13

Message line
reading from, 15-1
writing to, 15-3
MESSAGE LINE IS instruction
in PRKs, 11-7
%MODIFIED
RETURN TO, 3-2
Modifiers to request instructions, 1-14
MODIFY LIBRARY command
(RDU), 12-3
MODIFY REQUEST command
(RDU), 2-11
correcting errors with, 5-8
default editor, 5-9
path names in, 2-11
Modifying
request library definitions, 12-3
requests, 2-11
Multiple conditional instructions, 6-8
Multiple control values, 6-12
Multiple fields
mapping, 3-10, 3-21
restrictions, 3-23

N

Names
CDD path names, 2-3
field name conventions, 3-3
of DATATRIEVE records, 14-5
resolving ambiguous, 3-13
unique
for forms, 1-5
for records, 1-5
Naming conventions, 2-3
fields, 3-3
record definitions
DBMS, 16-20
Rdb/VMS, 16-19
request library definitions, 12-1
request library files, 12-2, 12-4
Nesting
arrays, 16-5
conditional instructions
CONTROL FIELD IS, 6-8

Index-14

NOMATCH case value, 6-9
Nonprocedural instructions, 1-4
INOSTORE qualifier, 2-9
in Validate mode, 2-10
Notifying the operator
with TSSSREAD_MSG_LINE,
15-1
with TSS$WRITE_BRKTHRU,
15-3
with TSS$WRITE_MSG_LINE,
15-3
Novalidate mode
effects of, 2-8, 2-9f
setting, 2-8
ISTORE qualifier in, 2-9
Numeric data types, 4-7t
Numeric mode, 11-2, 11-3

o

OCCURS clause (CDDL), 7-6
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
nesting, 8-2
Offsetting the form on the screen, 5-6
One-dimensional arrays, 7-2f
as control values, 9-7
group, 7-5f
mapping, 7-7
record, 7-4, 7-5f
Opening
log files, 17-2
request libraries, 14-2
terminal for 1/O, 14-3
Operator
canceling TDMS calls, 18-1
input from the message line, 15-1
notifying
with TSS$WRITE_BRKTHRU,
15-3
with TSS$WRITE_MSG_LINE,
15-3
Optional parameters for TDMS calls,
14-1

February 1987

Order of execution of conditional
instructions, 6-5
Order of TDMS programming calls,
14-1
Output mappings, 1-11
%ALL syntax, 1-12
compatible, 4-9t
to the message line, 15-3
OUTPUT TO instruction, 1-11, 3-2
%ALL syntax, 1-12
See also %ALL syntax
example of, 3-5
in PRKs, 11-7
mapping arrays, 7-8, 7-15
%TOD, 3-2

P

PACKED DECIMAL data type,
16-26t
PACKED NUMERIC data type,
16-26t
Parameters for TDMS calls, 14-1
Partial mapping of form arrays, 7-17
Partial path names
See Relative path names
Path names, 2-3
for DBMS databases, 16-20
for Rdb/VMS databases, 16-19
full, 2-3
given, 2-3
in RDU, 2-4
relative, 2-3
PF keys, 11-2
PF4 (HARDCOPY) key, 15-4
Picture characters
and data types, 4-4, 4-56
function of, 4-4
resulting data type, 4-5t
Picture strings
assigning, 4-4
function of, 3-3
Positioning the cursor in a scrolled
region, 10-3
Precedence in key definitions, 11-5

February 1987

Primary TDMS calls, 14-1
PRKs
See Program request keys
Procedure calling standard, 13-2
PROGRAM KEY IS instruction, 11-1,
11-2,11-5 to 11-14
Program request keys, 11-5 to 11-14
CHECK modifier, 11-8
controlling application flow, 11-11
creating request that uses, 11-7
examples of, 11-11 to 11-14
in conditional instructions, 6-12
PROGRAM KEY IS instruction,
11-8
returning values to control values,
11-12
WALIT instruction with, 1-12
when to use, 11-7
with conditional instructions, 11-7
Programming calls
See TDMS programming calls
Programming languages, 14-1
Programs
See also Application programs
canceling TDMS calls, 15-6
compiling, 14-9
debugging, 17-1
sample, 17-3 to 17-6f
using log files, 17-2
using two terminals, 17-6
VAX Symbolic Debugger, 17-6
general concepts, 13-1
linking, 14-9, 14-10
reading from the message line, 15-1
signaling errors, 14-7
testing return status, 14-6
Prompts
on the message line, 15-2
RDU >, 2-1
RDUDFN >, 2-6

Q

Qualifying field names, 3-14

Index-15

R

Ranges of subscripts, 9-1
RDB$RELATIONS directory, 16-19
Rdb/VMS
database path names, 16-19
DML
example in BASIC, 16-20
wildcard character in, 16-20
record definitions, 16-19
naming conventions, 16-19
sample program, 16-19
using scrolled regions with, 16-22
RDU, 1-2
correcting errors, 2-7, 5-8
creating
request library definitions, 12-1
to 12-2
requests, 2-5
default editor, 2-7
defining symbol for, 2-1
exiting, 2-13
form-related errors, 5-7
invoking, 2-1
startup command file, 2-3
RDU commands
BUILD LIBRARY, 12-4
COPY LIBRARY, 12-2
COPY REQUEST, 2-10
CREATE LIBRARY, 12-1
CREATE REQUEST, 2-5
DELETE LIBRARY, 12-4
DELETE REQUEST, 2-12
EDIT, 2-7, 5-8
EXIT, 2-13
LIST LIBRARY, 12-2
LIST REQUEST, 2-11
MODIFY LIBRARY, 12-3
MODIFY REQUEST, 2-11, 5-8
SET DEFAULT, 2-3
SET VALIDATE, 2-8
SHOW DEFAULT, 2-3
VALIDATE LIBRARY, 12-4
RDU editor
changing, 5-9
default, 5-9, 12-3

Index-16

RDU error messages
for %ALL mappings, 5-3
syntax errors, 5-2
RDUSEDIT logical name, 2-7, 5-9
changing, 5-9
RDUINI.COM file, 2-3
Reading from the message line, 15-1
REAL data type, 16-26t
Record arrays, 7-1, 7-4
ARRAY syntax, 7-6
group, 7-5, 7-5f
mapping, 7-6
multiple, 7-18
OCCURS syntax, 7-6
one-dimensional, 7-4, 7-5f
simple, 7-4
two-dimensional, 8-2, 8-4
ARRAY syntax, 8-2
OCCURS syntax, 8-2
Record definitions, 1-2
CDD path names, 2-3
data types, 4-6
DBMS, 16-20
work areas, 16-21
declaring, 16-1
explicitly, 16-1
in BASIC programs, 16-2, 16-2f,
16-41, 16-51, 16-7f
in COBOL programs, 16-7, 16-8,
16-91, 16-10f, 16-11f, 16-12f
in FORTRAN programs, 16-13,
16-14, 16-141, 16-151, 16-17f
defining workspaces, 6-6
in BASIC programs, 16-2
in COBOL programs, 16-8
listing, 4-12
making fields unique, 1-5, 3-17
using group field names, 3-15
Rdb/VMS, 16-19
specifying in TDMS calls, 14-4
using in requests, 1-5
using the WITH NAME qualifier,
3-17
validating request references, 2-7
with VARIANTS

February 1987

in BASIC, 16-5
Record fields
arrays
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
subscripts, 7-1
See also Dependent names
as control values, 6-6
data types, 4-6, 4-7t
length, 4-6
making unique, 3-13
group field names, 3-15
record names, 3-17
WITH NAME qualifier, 3-17
mapping multiple fields, 3-21
naming conventions, 3-13
qualifying, 3-14
scale factors, 4-6
structures, 4-2, 4-2f
array, 4-2
group, 4-2
simple, 4-2, 4-2f
RECORD IS instruction, 1-5
given names in, 2-4
in conditional requests, 6-12
mapping errors in, 5-7
path names in, 2-4
with DBMS path names, 16-21
WITH NAME modifier, 5-6
with workspace records, 6-6
RECORD statement (VAX
FORTRAN), 16-13
Relations
See Rdb/VMS
Relative path names, 2-3
in RDU, 2-4
REPLACING phrase (VAX COBOL),
16-8
Reporting errors, 14-7, 19-2
Request base, 1-3
Request Definition Utility
See RDU
Request definitions
terminating, 1-13

February 1987

Request header, 1-3
Request instructions, 1-3
CLEAR SCREEN, 1-6
DEFINE KEY AS, 11-14 to 11-17
DESCRIPTION, 1-6
DISPLAY FORM, 1-6
END DEFINITION, 1-13
ending, 1-13
FILE IS, 12-1, 12-5
FORM IS, 14
format, 1-4
INPUT TO, 1-9, 3-2
KEYPAD MODE IS, 11-2
modifiers, 1-14
order of execution, 5-6
OUTPUT TO, 1-11, 3-2
PROGRAM KEY IS, 11-5 to 11-14
RECORDIS, 1-5
REQUESTS, 12-1
RETURN TO, 3-2
rules for entering, 1-13
syntax rules, 1-13
USE FORM, 1-7
video field instructions, 1-12
WAIT, 1-12
with case values, 6-12
REQUEST IS instruction, 12-1
given names in, 2-4
path names in, 2-4
Request libraries, 12-1
building, 12-4 to 12-5
closing, 14-5
defining, 12-1
errors while building, 12-5
files, 12-1
opening, 14-2
validating, 12-5
Request library definitions, 12-1
building, 12-4
copying, 12-2
creating, 12-1 to 12-2
deleting, 12-4
errors in, 12-2
listing, 12-2
modifying, 12-3

Index-17

naming conventions, 12-1
storing in the CDD, 12-1
validating, 12-3
Request library files
building, 12-4 to 12-5
closing, 14-5
default file type, 14-2
naming conventions, 12-2, 12-4
opening, 14-2
specifying, 12-5
in BUILD LIBRARY command,
12-4
in FILE IS instruction, 12-1
in RDU, 12-4
in TDMS programs, 14-2
Requests
base instructions, 1-3
binary structures, 2-9, 2-10, 2-11
building request libraries, 12-4
canceling, 15-6, 18-1
comments in, 1-6
concepts, 1-1
conditional, 6-1, 6-2
structure of, 6-3f
copying, 2-10
correcting errors, 2-7, 5-8 to 5-10
creating, 2-5
command-file method, 2-6
interactively, 2-5
text-file method, 2-6
data types, 4-Tt
debugging, 17-1
deleting, 2-12
displaying a form, 1-6
ending, 1-13
executing, 14-3
format, 1-4f, 1-4
forms in, 1-4
header instructions, 1-3
interrupting, 15-3
listing, 2-11
mapping
arrays, 7-6
errors, 5-3
for input, 1-9

Index-18

for output, 1-11
rules, 4-1
modifying, 2-11
naming conventions, 2-3 to 2-4
order of execution, 5-6
parts of, 1-3
passing program records to, 14-4,
14-5
records in, 1-5
request instructions, 1-3
specifying
in request libraries, 12-1
in TDMS calls, 14-4
storing, 2-2
syntax errors, 5-1
terminating, 1-14
validating, 2-7, 2-10, 12-3, 12-5
RESET FIELD instruction, 1-13
with inactive forms, 5-7
Return status
for asynchronous calls, 19-2
levels, 14-6
signaling, 14-7
synchronous calls, 13-2
testing, 14-6
Return status block (rsb) parameter,
13-2,19-2
RETURN TO instruction, 3-2
in PRKs, 11-7
mapping arrays, 7-8, 7-15
%MODIFIED, 3-2
%TOD, 3-2
REVERSE FIELD instruction, 1-13
Right arrow key, 11-3
RIGHT OVERPUNCHED
NUMERIC data type, 4-7t,
16-26t
RIGHT SEPARATE NUMERIC data
type, 4-7t, 16-26t
Ringing the terminal bell, 15-4
RLB files
See also Request library files
closing, 14-5
default file type, 14-2
specifying

February 1987

in RDU, 12-4
in TDMS programs, 14-2
in the request library definition,
12-5
Rsb
See Return status block (rsb)
parameter
Rules
for mapping arrays, 7-9
for specifying control value arrays,
9-4
Run-time evaluation
of conditional instructions, 6-5
of control value arrays, 9-2

S

SAVE command (RDU)
correcting errors with, 5-9
default file type, 5-9
viewing saved file, 5-9

Saving the current form, 15-4

Scale factor
default, 4-5
effect on data, 4-5t
of form fields, 4-4
of record fields, 4-6

Schema
See DBMS

Screen
attributes, 1-12
clearing, 1-6, 14-6
copying, 15-4

Scrolled form arrays, 7-2, 7-3, 7-4f
%ALL syntax, 7-14
collecting data from, 10-2 to 10-5
displaying, 10-1, 10-5, 10-7
horizontally-indexed, 8-1, 8-1f, 8-5,

8-7
mapping
%ALL syntax, 7-8
explicit syntax, 7-12
multiple, 7-20
partial, 7-17
to several record arrays, 7-18

February 1987

windows, 7-3
Scrolled regions with database
streams, 16-22
Semantic errors, 5-3
Semicolon (;)
terminating
comment text, 1-13
DESCRIPTION instruction, 1-6
request instructions, 1-13
SET DEFAULT command (RDU), 2-3
SET VALIDATE command (RDU),
2-8
Setting event flags, 18-2
Shareable images (TSSSHR.EXE),
14-9
SHOW DEFAULT command (RDU),
2-3
Signaling errors, 14-7
with TSSSWRITE_BRKTHRU,
15-3
with TSSS$WRITE_MSG_LINE,
15-3
SIGNED BYTE data type, 4-7t,
16-26t
Signed data types, 4-7t
SIGNED LONGWORD data type, 4-
7t, 16-26t
SIGNED NUMERIC data type,
16-26t
SIGNED OCTAWORD data type,
16-26t
SIGNED QUADWORD data type, 4-
7t, 16-26t
SIGNED WORD data type, 4-7t,
16-26t
SINGLE data type, 16-26t
Startup files
EDT, 5-8
in RDU, 2-3
Status
asynchronous calls, 13-2
for asynchronous calls, 19-2
levels, 14-6
signaling, 14-7
synchronous calls, 13-2

Index-19

testing TDMS calls, 14-6
Store mode
effects of, 2-9
ISTORE qualifier, 2-9
in Novalidate mode, 2-9
Storing
form images, 15-4
request library definitions, 12-1
requests, 2-8, 2-9
STRING data type, 16-26t
STRUCTURE statement (CDDL)
in BASIC programs, 16-3, 16-5
in COBOL programs, 16-9, 16-11
in FORTRAN programs, 16-15
Structures
compatibility, 4-3
form field, 4-3, 4-3f
record, 4-2, 4-2f
Subfields, 7-5
Subschema
See DBMS
Subscripts, 7-1
%ALL syntax, 8-7
arrays used as control values, 9-6
dependent ranges, 9-1
explicit syntax, 8-9
in BASIC programs, 16-6
in FORTRAN programs, 16-17
in RDU, 7-7
in two-dimensional arrays, 8-2
limits, 7-6
%LINE and %ENTRY, 9-2
assigning values to, 9-6
ranges, 7-1
See also Dependent names
specifying in array mappings, 7-7
with database streams, 16-25
Success level status, 14-6
Symbolic Debugger, 17-6
DBGSINPUT logical name, 17-6
DBGS$OUTPUT logical name, 17-6
Synchronous calls
See TDMS programming calls
Syntax errors, 5-1
correcting, 2-7

Index-20

how RDU reports, 5-2
in Interactive mode, 5-2
Syntax rules for request instructions,
1-13
SYSS$INPUT as default terminal, 14-3

T

TAB key, 11-3
viewing scrolled regions, 10-1
Tables
See Arrays
TDMS data types, 16-26t
See Data types
TDMS programming calls
asynchronous, 13-2, 19-1
AST parameters, 19-2, 19-3
AST routines, 19-2
event flags, 19-2
parameters, 19-2 to 19-3
status block, 19-2
syntax, 19-2
when to use, 19-2
canceling, 15-6, 18-1
compiling, 14-9
debugging, 17-1
declaring, 14-7
errors in records, 5-7
format, 13-2
general concepts, 13-1
linking, 14-9, 14-10
return status, 13-2
signaling, 14-7
testing, 14-6
samples, 14-10 to 14-13
sequence, 14-1
synchronous, 13-2
TSS$CANCEL, 15-6
TSS$CLOSE, 14-6
TSS$CLOSE_RLB, 14-5
TSS$COPY_SCREEN, 15-4
TSS$DECL_AFK, 18-2
TSS$OPEN, 14-3
TSS$OPEN_RLB, 14-2
TSS$READ_MSG_LINE, 15-1

February 1987

TSS$SREQUEST, 14-3
TSS$SIGNAL, 14-7
TSS$TRACE_OFF, 17-2
TSS$TRACE_ON, 17-2
TSS$UNDECL_AFK, 18-4
TSS$SWRITE_BRKTHRU, 15-3
TSS$WRITE_MSG_LINE, 15-3
using DBMS, 16-20 to 16-22
using Rdb/VMS, 16-19, 16-20
TDMS programs
See Application programs
TDMS shareable image, 14-9
TDMSSEDIT logical name, 5-9
Terminals
clearing the screen, 1-6, 14-6
closing, 14-6
opening, 14-3
ringing the bell, 15-4
specifying in TSS$OPEN, 14-3
using two to debug TDMS pro-
grams, 17-6
Terminating
request definitions, 1-13
request instructions, 1-13
TEXT data type, 4-7t, 16-26t
Text editor, RDU default, 2-7
Text-file method of creating requests,
2-6
%TOD
OUTPUT TO, 3-2
RETURN TO, 3-2
Trace facility, 17-1
disabling
with TSS$TRACE_OFF, 17-2
enabling, 17-1
with logical names, 17-2
with TSS$TRACE_ON, 17-2
sample, 17-3 to 17-6f
TSS$_NORMAL status code, 14-7
TSS$CANCEL programming call,
15-6
parameter, 15-7
results of, 15-7
samples, 15-7
TSS$CLOSE programming call, 14-6

February 1987

parameters, 14-6
samples, 14-6
TSS$CLOSE_RLB programming call,
14-5
parameters, 14-5
samples, 14-5
TSS$COPY_SCREEN programming
call, 15-4
hardcopy function, 15-4
parameters, 15-6
samples, 15-5
when to use, 15-5
TSS$DECL_AFK programming call,
18-2
parameters, 18-2
samples, 18-2
TSS$HARDCOPY logical name, 15-4,
15-6
TSS$OPEN programming call, 14-3
parameters, 14-3
samples, 14-3
TSS$OPEN_RLB programming call,
14-2
parameters, 14-2
samples, 14-2
TSS$READ_MSG_LINE program-
ming call, 15-1
parameters, 15-2
samples, 15-2
TSS$REQUEST programming call,
14-3
parameters, 14-4 to 14-5
samples, 14-4
TSS$SIGNAL programming call, 14-7
sample, 14-7, 14-8
TSS$TRACE_OFF programming call,
17-2
TSS$TRACE_ON programming call,
17-2
samples, 17-2
TSS$TRACE_OUTPUT logical name,
17-2,17-6
TSS$UNDECL_AFK programming
call, 18-4
parameters, 18-4

Index-21

samples, 18-4

TSS$SWRITE_BRKTHRU program-
ming call, 15-3

parameters, 15-4

samples, 15-3
TSS$WRITE_MSG_LINE program-

ming call, 15-3

parameters, 15-3

samples, 15-3
TSSSHR.EXE file, 14-9
Two-dimensional arrays, 8-2

%ALL syntax, 8-7

as control values, 9-10

group, 8-2

in BASIC programs, 16-7

in COBOL programs, 16-12

in FORTRAN programs, 16-18

mapping, 8-4

partial, 8-10f

rules, 8-4

U

UNDERLINE FIELD instruction
general format, 1-12
Underlying virtual array
See Scrolled form arrays
Underscore (_)
in COBOL programs, 16-8
UNION statement (VAX FORTRAN),
16-16
Unique names
for forms, 1-5
for records, 1-5
UNSIGNED BYTE data type, 4-7t,
16-26t
Unsigned data types, 4-7t
UNSIGNED LONGWORD data type,
4-7t, 16-26t
UNSIGNED NUMERIC data type, 4-
7t, 16-26t
UNSIGNED OCTAWORD data type,
16-26t
UNSIGNED QUADWORD data type,
4-T7t, 16-26t

Index-22

UNSIGNED WORD data type, 4-7t,
16-26t
Up arrow key, 10-1, 11-3
USE FORM instruction, 1-7
errors in, 5-5
form-related errors, 5-8
given names in, 2-4
in conditional instructions, 6-11
WITH OFFSET modifier, 5-6

\'

VALIDATE LIBRARY command
(RDU), 2-8, 12-4
Validate mode, 2-7
effects of, 2-9f
error checking, 5-3
INOSTORE qualifier with, 2-10
VALIDATE REQUEST command
(RDU), 2-8
Validating
mapping instructions, 12-5
request libraries, 2-8, 12-5
request library definitions, 12-3
requests, 2-7, 12-3
errors during, 5-3
VARIANT keyword (CDDL)
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
VARIANTS statement (CDDL)
in BASIC programs, 16-5
in COBOL programs, 16-11
in FORTRAN programs, 16-16
VARYING TEXT data type, 4-7t
VAX data types, 16-26t
VAX Procedure Calling Standard,
13-2
VAX Symbolic Debugger, 17-6
DBGSINPUT logical name, 17-6
DBGS$OUTPUT logical name, 17-6
Video attributes
in conditional instructions, 6-12
instructions to control, 1-12
with HARDCOPY key, 15-5

February 1987

with inactive forms, 5-7
Viewing scrolled regions, 10-1, 10-5,
10-7
Virtual array
See Scrolled form arrays

w

WAIT instruction
general format, 1-12
with program request keys, 1-12
Warning level messages, 5-3
Wildcard character (*) in Rdb/VMS
DML, 16-20
Windows, 7-3
collecting data from, 10-2 to 10-5
displaying data in, 10-5
displaying scrolled regions, 10-1

February 1987

WITH NAME modifier, 1-5
making record names unique, 3-17
uniqueness of names, 5-6

WITH OFFSET modifier, 5-6, 5-7

WORD data type, 16-26t

Work areas for DBMS, 16-21

Workspace records, 6-6
arrays as control values, 9-6

Writing
AST routines, 18-4
messages

to the trace file, 17-3
to the message line, 15-3

Z
ZONED NUMERIC data type, 16-26t

Index-23

VAX TDMS

Request and
Programming Manual
AA-GS14B-TE

Reader’s Comments Including: AD-GS14B-T1

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company’s discretion. If you require a writ-
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please

make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[0 Assembly language programmer
[0 Higher-level language programmer
O Occasional programmer (experienced)
[0 User with little programming experience
(0 Student programmer
[0 Other (please specify)
Name Date
Organization
Street
City State leor(': ode

Country

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: DISG Documentation
ZK02-2/N53

Digital Equipment Corporation
110 Spit Brook Road

Nashua, NH 03062-2698

e

iR a A mamamirml

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

