VAX TDMS
Forms Manual

Order No. AA-GS13B-TE

August 1986

This manual describes the use of the TDMS Form
Definition Utility (FDU), including the use of the form
editor.

OPERATING SYSTEM: VMS
MicroVMS
SOFTWARE VERSION: TDMS V1.6

digital equipment corporation, maynard, massachusetts



The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1983, 1986 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS MicroVMS VAXcluster

CDD PDP VAXinfo

DATATRIEVE Rdb/ELN VAX Information Architecture
DEC Rdb/VMS VIDA

DECnet TDMS VMS

DECUS UNIBUS VT

MicroVAX VAX

Eﬂgﬂnan )



Contents

How to Use This Manual ix
Technical Changes and New Features xiii
Introduction to VAX TDMS
1.1 AVAXTDMSFormDefinition ....................... 11
1.2 UsingaFormDefinition. . . . ... ... ..... ... .. ..., 1-2
1.3 ASimple FormDefinition. . . ... ... .........c..c0..... 1-2
1.4 ASimple Record Definition. . . . ... ... ...... ... 1-3
1.5 ASimpleRequest. . . . . . .. ... i i e e 1-4
1.6 A Simple Request Library Definition . . . .. ............... 1-6
1.7 Sequenceof Events WithinTDMS ..................... 1-6
1.8 Running the TDMS Sample Applications . ................ 1-7
1.8.1 TheEmployeeSample .. ... ..........c0oviu.n. 1-8
1.8.2 Extended Sample Applications . . . ................. 1-9
1.8.2.1 Running the Personnel Sample Application. . .. ... .. 19
1.8.2.2 Running the Department Sample Application. . . . . . .. 1-10
1.8.3 Creating the CDD Directory for Sample CDD Objects . . . . .. 1-11
Walking Through a Simple TDMS Application
2.1 QGettingStarted. . . . ... i e e e e e e 2-2
2.2 CreatingaFormDefinition. . ... ................ .. ... 2-2
2.2.1 Entering the Form Definition Utility(FDU) . .. ... ... ... 2-4
2.2.2 Assigning a Form Name and Entering the Form Editor . . . .. 2-4
2.2.3 Assigning Formwide Attributes. . . ... ... ........... 2-5
2.2.4 CreatingaScreenImageoftheForm ................ 2-7
2.2.5 Assigning Field Attributes. . . .. ... ............... 2-14
2.2.6 Saving the Form Definition and Storing ItintheCDD . . . . .. 2-23
2.3 CreatingRecords. . . . ... ... ..ttt 2-23
23.1 SourceFiles ... ... ... i 2-24
2.3.2 Compiling the Record Definition . . ... .............. 2-25
2.4 CreatingRequests . . ... .. ...t eeennnnn.n 2-26
2.4.1 Entering the Request Definition Utility (RDU). . . . .. ... .. 2-27
2.4.2 CreatingaSimpleRequest. . . . ......... ... c...... 2-27
2.4.21 FORMISInstruction . ................. ... 2-29
2.4.2.2 RECORDISInstruction . ............0.ovvu.. 2-29
2.4.2.3 CLEARSCREENInstruction. ................ 2-29
2.4.2.4 DISPLAYFORMInstruction . . . .............. 2-29
2.4.2.5 OUTPUTTOInstruction. ..............c.... 2-30

i



iv

2.4.2.6 DESCRIPTIONInstruction . . . .. .. ... ..o 2-30

2.4.2.7 WAITInstruction . .. .... ... ..ot en... 2-30

2.4.2.8 PROGRAMKEY ISInstruction. . . .. ... ........ 2-30

2.4.2.9 END DEFINITION Instruction. . . ... .......... 2-31

2.4.3 Creating a Conditional Request. . . . . . ... ... ........ 2-31
2.4.3.1 Header and Base Information for the Conditional

Request . . . . . ot i ittt it e e e e 2-33

2.4.3.2 BeginningKeyPhrase. . ... ................. 2-33

2433 CaseValues . . . ... ... ... 2-34

2.4.3.4 INPUTTOInstruction . ... .. ... .0ttt 2-34

2.4.3.5 USEFORMInstruction. . .. .. ............... 2-34

2.4.3.6 EndingKeyPhrase. . ...................... 2-35

2.4.3.7 PROGRAMKEY ISInstruction. . . ............. 2-35

2.4.3.8 END DEFINITION Instruction. . . ... .......... 2-35

24.4 ExitingRDU. ... ... ... ... .. 2-36

2.4.5 CorrectingYourErrors. . . .. .................... 2-36

2.4.6 Creating a Request Library Definition. . . ... .......... 2-37

2.4.7 Buildinga RequestLibraryFile. . . ... ... ... ........ 2-38

2.5 Writing the ApplicationProgram . . ... ................. 2-38

2.5.1 DeclaringRecords. . . .. ... ... ... ... . 2-40

2.5.2 Opening a Request Library File-TSSSOPEN_RLB. . . . . ... 2-40

2.5.3 OpeningaChannel-TSS$OPEN. . .. ... ............ 2-40

2.5.4 Transferring Data and Displaying the Form - TSSSREQUEST. 2-41

2.5.5 Closing the Request Libary File-TSS$CLOSE_RLB. . . . . .. 2-41

2.5.6 ClosingaChannel-TSS$CLOSE. . . . .. ............. 2-41

2.5.7 Using TDMS Callsina BASIC Program . ............. 2-42

2.6 Compilingthe TDMSProgram. . . . ... .. ............... 2-45

2.7 Linkingthe TDMSProgram . . ... .................... 2-45

2.8 Runningthe TDMSProgram. . ..............c..c.o... 2-46

Using the Form Definition Utility (FDU) and the Form
Editor

3.1 EnteringFDU. . . .. ... ... i it 3-1
3.2 LeavingFDU . . . . . ... it it iee et 3-2
3.3 UsingtheFormEditor. . . .. ......... ... ... . ..., 3-2
3.3.1 Creatinga New Form Definition ................... 3-2
3.3.2 Modifying an Existing Form Definition . . . . ... ........ 3-3
3.3.3 Making Changes After Modifying a Form Definition . . . . . .. 3-4
3.3.4 Replacing an Existing Form Definition . .............. 3-4
3.3.5 FivePhasesofthe FormEditor.................... 3-5



3.4 UsingOther FDUCommands . ....................... 3-7

3.4.1 Copying a Form DefinitionintheCDD . .............. 3-7
3.4.2 Listing Information About a Form Definition. . . . ........ 3-7
3.4.3 DeletingaForm Definition. . . .. .................. 3-9
Assigning Formwide Attributes
4.1 IntroductiontotheFormPhase . ...................... 4-1
4.2 EnteringtheFormPhase. .. ........................ 4-2
4.2.1 Settingthe ScreenBackground. . . ................. 4-3
4.2.2 SettingtheScreenWidth .. ... .................. 4-4
4.2.3 Assigning Default Field Attributes. . . . ... ........... 4-4
43 HelpForms . . .. ... . . . i 4-6
4.3.1 Assigning Input Field Highlighting . .. .............. 4-6
Laying Out the Form
5.1 EnteringtheLayoutPhase .. ........................ 5-1
5.2 LeavingtheLayoutPhase. .. ............ ... ......... 52
5.3 LayoutPhaseScreen. ... ...............c0iuiiienn.. 5-2
5.4 Layout Phase Keypad and FunctionKeys . ................ 5-5
5.5 Using Function KeystoMovetheCursor. . . ... ............ 5-6
5.6 Creating Background TextandFields . .................. 5-8
5.6.1 Creating Background Text: The TEXTKey ............ 5-8
5.6.2 Creating Fields: The FIELDKey . ... ............... 5-9
5.6.3 Identifying Field Picture Typeand Length . . .. ......... 59
5.6.4 Determining Form Field DataTypes. . . .............. 5-10
5.6.5 Creating Special Fields: DATEand TIMEKeys . . ........ 5-12
5.6.6 Creating Special Fields: The ADJACENTFIELD Key. . . . .. 5-13
5.7 EditingText. . . . ... . e e 5-15
5.7.1 Deletingand UndeletingText. . . . ................. 5-15
5.7.2 Moving Text: The Cutand Paste Feature . . . . .......... 5-17
5.7.3 Centering Text: The CENTERKey ................. 5-20
5.7.4 Inserting a Blank Line: The OPENLINEKey .. ....... .. 5-20
5.7.5 Changingthe Caseof ExistingText . . .. ............. 5-21
5.8 CreatingVideoFeatures. . . ... ...................... 5-21
5.8.1 Double-Wide and Double-SizeLines . . . .............. 5-22
5.8.2 VideoHighlighting . ... ....................... 5-24
5.8.3 Drawing Solid Linesand Rectangles. . . ... ........... 5-26
5.9 CreatingScrolledRegions. . . .. ... ... ... ............. 5-28
5.9.1 RulesforScrolledRegions. . ..................... 5-28
5.9.2 Defining a Scrolled RegionontheForm. . ............. 5-29
5.9.3 ExampleofaScrolledRegion . . ................... 5-30
5.9.4 AddingLinestoaScrolledRegion .................. 5-34
5.9.56 Special Provisions for a Display-Only Scrolled Region . . . . .. 5-35



vi

5.10 Creating Indexed Fieldsinthe LayoutPhase. . . . ... ........ 5-37

5.11 Assigning Field Attributes from the Layout Phase . . . ... ... .. 5-37
Assigning Field Attributes and Validators

6.1 Usesof Field Attributesand Validators. . . .. ... ........... 6-1
6.2 AssignPhase:Introduction. . ... ... ... .. ... .. . L 0L, 6-2
6.2.1 AssignPhaseMenu........................... 6-3
6.2.2 Attribute AssignmentForm. . ... ... ... ... ... .. ... 6-4
6.2.3 Assign PhaseFunctionKeys. . . ................... 6-5

6.3 FieldAttributes. . . . ... ... ... . e e e 6-6
6.3.1 Field NameAttribute. . . ... ... ... ... ... ........ 6-7
6.3.2 DefaultValue Attribute. . . . ... ... ............... 6-8

6.4 HelpText . . ... i ittt ee e e 6-9
6.4.1 AutotabAttribute. ... ... ... ... .. ... .. 6-10
6.4.2 NoEchoAttribute. . . ... ..... ... ... ... ........ 6-11
6.4.3 DisplayOnly Attribute . . . . ... ... ... ... ..., 6-11
6.4.4 RightJustifyAttribute. . ... ... ... ... ... .. .. .. 6-12
6.4.5 FixedDecimal . .. ........... ... ... ... 6-12
6.46 ZeroFill. .. ... .. . .. .. e e 6-13
6.4.6.1 Effect of Fill Character on Clear Character . ........ 6-14

6.4.6.2 Assigning Zero Fill and Deassigning Right Justify . . . . . 6-14

6.4.7 ZErOSUPPIESS . « ¢ vt v v i v vt et e e e et e e 6-15
6.4.8 UppercaseAttribute .. .......... ... ... ... 6-16
6.4.9 MustFillAttribute . ....... ... ... .. ... .. ..., 6-16
6.4.10 Response Required Attribute . ................... 6-17
6.4.11 Clear Character Attribute . ... .................. 6-18
6.4.12 ScaleFactorAttribute . ....................... 6-18
6.4.13 Indexed Field Attribute. . . .. ... .. ... ........... 6-19

6.5 FieldValidators. . . ... ... .. ... . . ... 6-21
6.5.1 Run-Time Effect of Field Validators . .. .............. 6-23
6.5.2 AssigningFieldValidators. . . . ................... 6-23
6.5.3 AssigningtheRangeValidator . . .................. 6-24
6.5.4 AssigningtheChoiceValidator . . . ... .............. 6-28
6.5.4.1 AbbreviationMarker. . . ... ... ... ... ... ..... 6-30

6.5.4.2 AbbreviationLength. . .. ................... 6-31

6.5.4.3 ExactCaseMatch ........................ 6-32

6.5.5 SizeFieldValidators . ......................... 6-33
6.5.6 Check Digit Field Validators. . . ... ................ 6-34
6.5.6.1 CheckDigit10 ....... ... ... ... ..., 6-35

6.5.6.2 CheckDigit1l .. ... ... ... ... ieeneenn. 6-35

6.5.6.3 CheckDigit300. ... ...... ... ... ... ..., 6-36



7 Assigning Field Order

7.1 Default Field AccessOrder . . .. .. ............. PR 7-2
7.2 UsingtheOrderPhase. . .. ........... . ... ... ... 7-2
7.2.1 Determining the Current Field AccessOrder. . . . ........ 7-3
7.2.2 Creating a Left-to-Right, Top-to-Bottom Field Access Order. . . 7-4
7.2.3 ChangingField AccessOrder . . ... ... ............. 7-4

7.2.4 Run-Time Cursor Movement and Access Order in Scrolled
7= U L= 7-7

8 Saving the Form

9 Using VAX TDMS with VAX DATATRIEVE
9.1 Preparinga TDMS Form for Use ina DATATRIEVE Application. . . 9-1

9.2 Modifyinga TDMS Form Used by DATATRIEVE . . . ... ...... 9-3
9.3 Converting VAX FMS Forms for Use with TDMS and
DATATRIEVE. . . . . . ittt et i e it i e e e 9-3

9.3.1 Using a Command Procedure to Convert FMS Form Libraries . 9-4
9.3.2 Converting an FMS Form to a TDMS Form Using Specific

COMMANAS . + v v v v et et ettt e e e 9-5
Index
Figures

1-1 ASimple FormDefinition. . . . .. ........... ... . ... 1-3
1-2 A Simple Record Definition. . . . . .................. ... 1-4
1-3 ASimpleRequest. . . .. ... ... . i e 1-5
1-4 A Simple Request Library Definition . . . . ... ............. 1-6
1-5 Suggested TDMS DesignSequence. . . .. ................ 1-7
2-1 Run-Time Form(withSampleData). . . .................. 2-3
2-2 PhaseSelectionMenu........... ... 2-5
2-3 FormPhaseScreen. . . . ... ...ttt enenenesas 2-6
2-4 AssignPhaseMenu ... ........... .00 2-16
2-5 Two Partsof FAMILY_DISPLAY REQUEST. ............. 2-28
2-6 Partsof FAMILY_CONDITIONAL_REQUEST. ............ 2-32
2-7 BASIC Program Illustrating Primary TDMS Calls. . . . .. ...... 2-42
4-1 FormPhaseScreen. . .. ... ...ttt eeeeanan 4-3
4-2 Default Attributes for New FieldsForm . . ................ 4-5
5-1 LayoutPhaseKeypad .............. ... .. 5-5
6-1 Attribute Assignment Form (80-ColumnForm). . . . .......... 6-4
6-2 ExamplesofIndexedFields. . . ... .................... 6-20
6-3 FieldValidatorForm. .. ... ... ...t 6-24

6-4 RangeListForm .. ... ...... ... ... 6-25

vii



viii

6-5 ChoiceListForm. .. ... ... ... ittt eennnn 6-29
6-6 ExampleofaChoiceList . .. ... ... ... ... ... ... .. 6-30
6-7 Example of AbbreviationMarkers. . . .. ...... ... .. ... ... 6-31
Tables

4-1 FormPhaseFunctionKeys............... ... ........ 4-2
4-2 Examples of Input Field Highlighting. . . . ... ... ....... ... 4-7
5-1 LayoutPhaseFunctionKeys......................... 5-5
5-2 PictureCharacters. . ... .. .. ..ottt i i it tenenennen. 5-9
5-3 FieldConstants. . ... ... ...ttt nneen. 5-10
5-4 FormFieldDataTypes .. ..... ...t ieennenen. 5-10
6-1 AssignPhaseFunctionKeys . ................ ... ..... 6-5
6-2 Effectof Clearand FillCharacters. . . .. ... ... .. ... ..... 6-15
6-3 TDMSFieldValidators . . ......... ... ... 6-22
6-4 RangeList FormFunctionKeys. ...................... 6-27
6-5 ChoiceList FormFunctionKeys. . .. ... .. ... ........... 6-29
6-6 Numeric Ranges for Size Validators. . . . ... ... ........... 6-33
6-7 Minimum Required Field Pictures for Size Validators . . . . . ... .. 6-34
7-1 Order PhaseFunctionKeys. . .. ... ... ... ... ... ...... 7-2



How to Use This Manual

This manual describes how to create and use forms using the VAX Terminal
Data Management System (TDMS). The TDMS software is also referred to in
this manual simply as TDMS. In particular, this manual discusses the TDMS
Form Definition Utility (FDU), which is used to create, modify, and store forms.

The VAX DATATRIEVE software is also referred to as DATATRIEVE in this
manual.

Intended Audience

You should use this manual if you want to:

Understand the characteristics of TDMS forms and the features available to
you in designing forms

Learn how to use the Form Definition Utility to create forms for use in a
TDMS application

Learn how to use the Form Definition Utility to store and retrieve forms
Learn how to create a simple TDMS application
Learn the general concepts of forms and requests

Learn how to run the TDMS samples optionally installed with the TDMS
software.

iX



In order to use this manual to create forms for a TDMS application, you should
have at least an elementary understanding of the following:

» The VMS operating system
* The use of VT100 or VT200 family of terminals
e Data management concepts (records, files, data types)

» Programming concepts

Structure

The first eight chapters of this manual describe how to use FDU and its form
editor to create forms for use in a TDMS application. Chapter 2 walks you
through a simple TDMS application. Chapter 9 discusses how to use VAX
TDMS with VAX DATATRIEVE.

Chapter 1 Explains the use of forms in a TDMS application.

Chapter 2 Provides a step-by-step walkthrough that creates a simple
TDMS application.

Chapter 3 Discusses the primary uses of the Form Definition Utility and
provides an overview of the form editor.

Chapters 4-8 Provides a detailed guide to using the form editor.

Chapter 9 Provides information on how to use VAX TDMS with VAX
DATATRIEVE.

Related Manuals

As you use this book, you may find the following manuals helpful:

VAX TDMS Request and Programming Manual

VAX TDMS Reference Manual

VAX/VMS DCL Dictionary

VAX Common Data Dictionary Utilities Reference Manual

VAX Common Data Dictionary Data Definition Language Reference Manual

VAX Run-Time Library Reference Manual



Operating System Information

To verify which versions of your operating system are compatible with this ver-
sion of VAX TDMS, check the most recent copy of the VAX System Software
Order Table/Optional Software Cross Reference Table, SPD 28.98.xx.

Conventions

The VT100 and VT200 keyboard includes a main keyboard and an auxiliary
keypad. The keys on the keypad (KP) are designated by the names shown in the
following diagram:

(PF1 ) (PF2 1(PF3 ) (PFa )
GOLD

. 7 \\ J 7 L J

r7 ) '3 ) rg N\ =\

. . J . J o J

(4 N (3 NG N N

\ J - J

1 RIE ME (ENTER

\.. J . J

P = (e )

L J J L ) Zkoo0se-00

This section explains the special symbols used in this book:

FDU>

RDU>

RDUDFN >

The FDU > prompt indicates the utility is at command level and
ready to accept FDU commands.

The RDU > prompt indicates the utility is at command level and
ready to accept RDU commands.

The RDUDFN > prompt indicates that the RDU utility is at the
instruction level and ready to accept request or request library
instructions.

The dollar sign prompt indicates that you are at DIGITAL Com-
mand Language (DCL) level. (It is possible to change the DCL
prompt. However, in this manual the examples use the default
prompt, the dollar sign.)

Xi



<CTRL/x>

<GOLD-x>

Color

<RET>

Xii

This symbol tells you press both the CTRL (control) key and a
specified letter key simultaneously.

This symbol indicates that you press the GOLD key and then
a specified letter key consecutively.

Colored text in examples shows what you enter.

This symbol indicates the RETURN key. Unless otherwise
stated, end all user input lines in examples by pressing the
RETURN key.



Technical Changes and New Features

This section summarizes the changes to VAX TDMS that are described in this
manual.

e  Characters from the DEC Multinational Character Set are now valid for
background text and range and choice validators. At run time, DEC
Multinational characters are valid for the X, A, and C picture characters.
Choice and range string validation is performed using the DEC Multinational
Character Set.

e  TDMS has a predefined set of run-time function keys that operators can use
to perform various operations on the screen such as moving from field to
field, refreshing the screen, and getting help. These predefined keys are
listed in Table 11-1 in the VAX TDMS Request and Programming Manual in
the chapter called Program Request Keys.

e  FDU can now be used with a VT200 terminal set to VT200 terminal mode.
The following function keys from the LK201 keyboard used by VT200-series
terminals are supported:

The F12 (BS) key performs the BACK SPACE key function.
The F13 (LF) key performs the LINE FEED key function.
The HELP key performs the PF2 or HELP key function.

In addition, the operator can use the following keys on the LK201 keyboard
in the form editor:

.

The SELECT key performs the KP-period (SELECT) key function in
the form editor

Xiii



xiv

- The REMOVE key performs the KP6 (CUT) key function in the form
editor

- The INSERT key performs the GOLD-KP6 (PASTE) function in the
form editor

Information about these keys has been included where appropriate through-
out the documentation set.

A date form field of spaces is now considered a valid date by TDMS. When
mapping a date from a date form field to a record field with the data type
ADT, TDMS stores the base system date, Nov 17, 1858. When outputting a
record field of data type ADT to a date form field, TDMS displays the base
system date as spaces instead of Nov 17, 1858.

Spaces input from a date form field to a field of data type TEXT are stored
and displayed as spaces. Any valid TDMS date input from a form field to a
record field of data type TEXT, including Nov 17, 1858, are stored and dis-
played as the text entered.

TDMS no longer assumes the base year of 1900 when mapping between
record fields with the ADT data type and two-digit year date form fields. The
last two digits of the year are used for output mapping. For input mapping,
TDMS attempts to use the century in your record. If there in no date in your
record, or if using the century in your record would result in an invalid date,
TDMS uses the current century.

In addition to its regular date formats, TDMS now includes the standard
VMS date format: DD-MMM-YYYY.

The LIST FORM command in FDU now lists all field attributes, including
Must Fill and Response Required.

In earlier versions of TDMS, a scrolled region whose first field was Display
Only was placed at the end of the order list. TDMS now correctly orders this
type of scrolled region.

The default listing file name now contains up to 39 characters and can
include the dollar sign ($) and underscore (_). This file name is generated in
FDU by use of the /OUTPUT qualifier and in RDU by use of the /OUTPUT
and /LIST qualifiers. The name is not truncated and includes any dollar signs
and underscores.



Introduction to VAX TDMS 1

VAX Terminal Data Management System (TDMS) is an information manage-
ment product that lets you use forms to collect and display information on a ter-
minal. It offers a wide range of features that make it easy to display and collect
information and to realize significant savings in developing and maintaining an
application.

This chapter discusses:

o The parts of TDMS, including form and record definitions, requests, and
request library definitions

» The sequence of events in designing a TDMS application

e How to run the sample applications

1.1 A VAX TDMS Form Definition

A form definition describes a form, which can be displayed on a terminal at
run time in a TDMS application. You create a form definition using the Form
Definition Utility (FDU).

When you create a form definition using the Form Definition Utility, FDU
stores the definition in a central storage facility, the VAX Common Data Dic-
tionary (CDD).



1.2 Using a Form Definition

In order to use a form definition in a TDMS application to collect or display
data, you must first do the following:

Create a form and store it in the CDD.

Create one or more record definition(s) and store them in the CDD. Record
definitions define the data type, structure, and length of the data used in an
application.

Create a request that:
— Identifies the form definition and contains an instruction to display it.
— Identifies the record definition.

— Contains instructions that allow data to be entered or displayed on the
form. These instructions in a request map, or associate, fields on the form
to fields in the record.

Create a request library definition that names the request.
Use the request library definition to build a request library file.

Write a program that opens the request library file and executes the request.

1.3 A Simple Form Definition

Figure 1-1 shows a simple form definition as it appears when you create the
form.

1-2 Introduction to VAX TDMS



EMPLOYEE__FORM

( Enployee Form )

NAME: AARARRARRARRRARARRARRARARARARAA

ADDRESS:
STREET: XXXXXRXXKXXXXXRKKRKK
CITY: ARARRARRARRARRAARARAAR
STATE: AR
ZIP: 999939

L Cursor Line B Coluan ] todes i} IR

Figure 1-1: A Simple Form Definition

This form definition includes background text (NAME:, ADDRESS:, STATE:,
and so on) and picture characters (9, A, X). Picture characters determine the
location, length, and picture type of fields. Picture characters indicate the type
of data that can be entered in a field. (For example, A indicates that only alpha-
betic characters can be entered, 9 indicates that only the digits 0-9 can be
entered, and X means that any printable character can be entered.) A group of
one or more picture characters that make up a single field (for example, 99999,
AA) is called a picture string. The picture string is not displayed at run time;
rather, fields are reserved for data, which is collected or displayed according to
instructions in the request.

1.4 A Simple Record Definition
Figure 1-2 shows a simple record definition in CDDL syntax.

Introduction to VAX TDMS 1-3



EMPLOYEE _RECORD

EMPLOYEE STRUCTURE.
NAME DATATYPE TEKT
ADDRESS STRUCTURE.
STREET  DATATYPE TEXT
CITY DATATYPE TEKT
STATE DATATYPE TEKT
ZIP DATATYPE TEKT
END ADDRESS STRUCTURE.
END EMPLOYEE STRUCTURE.
END EMPLOYEE_RECORD.

DEFINE RECORD EMPLOYEE-RECORD.

Figure 1-2: A Simple Record Definition

This definition describes a record with five fields named NAME, STREET,
CITY, STATE, and ZIP. The fields named STREET, CITY, STATE, and ZIP
make up a group field, named ADDRESS. The data type and length of each
record field are also included in the record definition.

Record definitions are stored in the CDD using one of the following:

« VAX CDD Data Definition Language (CDDL)

VAX DATATRIEVE
VAX DBMS
VAX Rdb/VMS

1.5 A Simple Request

Figure 1-3 shows a simple request.

1-4 Introduction to VAX TDMS




EMPLOYEE _ REQUEST

FORM IS EMPLOYEE_FORM;
RECORD IS EMPLOYEE_-RECORD;

CLEAR SCREEN;
DISPLAY FORM EMPLOYEE_FORM;

QUTPUT NAME  TO NAME,
STREET TO STREET,
CITY TO CITY,
STATE TO STATE,
ZIP T0 ZIF;
WAIT;

END DEFINITION;

Figure 1-3: A Simple Request

This request contains a series of instructions that:

Identify the form definition named EMPLOYEE_FORM (shown in Figure 1-1)
and the record definition named EMPLOYEE _RECORD (shown in Figure
1-2)

Clear the terminal screen

Display the form EMPLOYEE_FORM

Display, or output, the information in five record fields in the corresponding
form fields

Wait for operator acknowledgment

This request, when named in a request library definition and built in a request
library file, can be executed by a TDMS application program.

The VAX TDMS Request and Programming Manual provides complete informa-
tion about the use of requests, request library definitions, and request library
files.

Introduction to VAX TDMS 1-5



1.6 A Simple Request Library Definition
Figure 1-4 shows a simple request library definition.

REQUEST IS EMPLOYEE_REQUEST;

FILE IS "EMPLOYLIB.RLB";
END DEFINITION;

Figure 1-4: A Simple Request Library Definition

The request library definition identifies, in one place, all the requests that are
used in an application or a portion of an application. It contains only two types
of instructions:

o The REQUEST IS instruction, which identifies all the requests you want to
list in the request library

o The FILE IS instruction, which names the VMS request library file (RLB)
that you create

During the build operation, RDU searches this request library definition,
extracts the requests and forms, and places them in the request library file
EMPLOYLIB.RLB. The application program then accesses this file.

1.7 Sequence of Events Within TDMS

Now you know the pieces you need to build a TDMS application. Until you are
more familiar with TDMS, you can follow a step-by-step procedure in working
with these pieces. Figure 1-5: Suggested TDMS Design Sequence gives an over-
view of this procedure.

You should always start by planning your TDMS application. You need to con-
sider questions such as:

e Who will use this application?
« What records do you have or need? What record fields?
e How will your forms look?

o What is the structure of the application program itself?

1-6 Introduction to VAX TDMS



Note that you can create either the records or the forms first. You might begin by:

» Looking at the names of records and the names, lengths, and data types of
record fields if you use existing records

 Planning the records and record fields if you use new records and already
know how the forms should look

¢ Designing a prototype form for your intended audience if you want a nontech-
nical user to approve the form before you set up your database

Design TDMS application
v
Create record -
You can reverse
the order of
) these two steps
if you wish.
Create form -
y
Create request
y
Create request
library definition
y
Build request
library file
\
Code application program
ZK-00089-00

Figure 1-5: Suggested TDMS Design Sequence

1.8 Running the TDMS Sample Applications

The TDMS software includes several online sample applications illustrating var-
ious TDMS features. These sample applications can be installed as part of the
TDMS installation.

Introduction to VAX TDMS 1-7



1.8.1 The Employee Sample

The Employee sample demonstrates a record-keeping system for employees. The
system maintains records, or basic information, about each employee, including
the employee’s number, name, address, sex, and date of birth. The Employee
sample application allows you to add, modify, display, or delete these employee
records. Sample records have been provided for employee numbers 1001, 1002,
1003, and 1004.

Before you run the Employee sample, you must copy the file
TDMS$EXAMPLES:EMPLOYEE.DAT into your default directory and then exe-
cute a command procedure to set up process logical names. Run the Employee
sample to understand how a TDMS application looks at run time.

There are two versions of the Employee sample, one version using forms that
require a terminal with the Advanced Video Option (AVO), the other version
using forms that do not require an AVO terminal.

To copy the data file, type:

$ COPY TDMS$EXKAMPLES:EMPLOYEE.DAT EMPLOYEE.DAT

To execute the command procedure that defines logical names, type:

$ ATDMS$EXAMPLES : TDMSSANP

To run the Employee sample on a terminal with AVO, type:
$ RUN TDMSS$EXAMPLES:EMPBASAVD
(To run the sample coded in BASIC)

$ RUN TDMS$EXAMPLES:EMPCOBAVD
(To run the sample coded in COBOL)

$ RUN TDMS$EXAMPLES:EMPFORAVD
(To run the sample coded in FORTRAN)

To run the Employee sample on a terminal that does not have AVO, type:
$ RUN TDMS$EXAMPLES:EMPLOYBAS
(To run the sample coded in BASIC)

$ RUN TDMS$EXAMPLES:EMPLOYCOB
(To run the sample coded in COBOL)

$ RUN TDMSS$EXAMPLES:EMPLOYFOR
(To run the sample coded in FORTRAN)

1-8 Introduction to VAX TDMS



1.8.2 Extended Sample Applications

There are two extended sample applications installed with the TDMS software.
The Personnel sample application shows a solution to the administrative prob-
lem of maintaining a complete set of employee records. The Department sample
application shows one solution to the administrative problems of updating dates
of an employee’s performance appraisal and salary history and weekly reporting
of an employee’s hours per project. Each of these sample applications demon-
strates some advanced features of VAX TDMS such as scrolling and use of pro-
gram request keys to move between functions.

1.8.2.1 Running the Personnel Sample Application — The Personnel sample is
coded in two languages:

» BASIC

» COBOL

Before you run the Personnel sample, you should copy the data files that are in
TDMS$EXAMPLES to your default directory and you must execute a command
procedure to set up process logical names. There are nine sample records in the
data files. The personnel numbers associated with the sample records are 1001
to 1010. To copy the data files, type:

$ COPY TDMS$EXAMPLES:PERMAIN.DAT *
$ COPY TDMS$EXKAMPLES:PEREDUC.DAT *
$ COPY TDMS$EXAMPLES:PERFAML.DAT *
$ COPY TDMSS$EXAMPLES:PERHIST .DAT *

To execute the command procedure, type:

$ ATDMS$EXAMPLES: TDMSSAMP

To run the Personnel sample coded in BASIC, enter:

$ RUN TDMS$EXAMPLES:PERSONBAS (RET)

To run the Personnel sample coded in COBOL, enter:

$ RUN TDMS$EXAMPLES:PERSONCOB (RET)

Introduction to VAX TDMS 1-9



1.8.2.2 Running the Department Sample Application — The Department sam-
ple is coded in two languages:

+ BASIC
« COBOL

Before you run the Department sample, you should copy the data files that are
in TDMS$EXAMPLES to your default directory and you must execute a com-
mand procedure to set up process logical names. There are nine sample records
in the data files. The personnel numbers associated with the sample records are
1001 to 1010. To copy the data files, type:

$ COPY TDMS$EXAMPLES:DEPLABR.DAT *
$ COPY TDMS$EXAMPLES:DEPPRIV.DAT *
$ COPY TDWS$EXAMPLES:PERMAIN.DAT *
$ COPY TDMS$EXAMPLES:PERHIST.DAT *

To execute the command procedure, type:

$ ATDMS$ERAMPLES: TDHSSANMP

Note

Only one person at a time can access a single copy of the data files
used by the sample application. The reason is that the labor file is
organized sequentially, and sequential files do not allow concurrent
access. If more than one person needs to run the Department sample
at the same time, you can copy the data files to a different VMS direc-
tory and run the department sample with the copied files.

To run the Department sample coded in BASIC, enter:

$ RUN TDMS$EXAMPLES:DEPARTBAS (RET)

To run the Department sample coded in COBOL, enter:

$ RUN TDMS$EKAMPLES:DEPARTCOB (RET)

1-10 Introduction to VAX TDMS



1.8.3 Creating the CDD Directory for Sample CDD Objects

Installing the sample applications is an optional part of the TDMS installation
procedure. If you choose to install the samples, TDMS only links the samples to
produce executable images and provides the sample application source programs
and request library files. You can then run the samples but the CDD directory
containing the forms, records, requests, and request library definitions used by
the samples is not created.

To create the CDD directory containing the objects used by the samples, you
must run the following command file.

$ ATDMS$EXAMFLES: TDMSBLDSAMPLE . COM

In addition to storing the objects used by the samples, this command file
rebuilds the sample request library files. The objects are stored in
CDD$TOP.TDMS$SAMPLES.

Introduction to VAX TDMS 1-11






Walking Through a Simple TDMS Application 2

A major function in any business enterprise is to collect information. Generally,
the best way to do this is to use forms. Forms vary in clarity and complexity, as
anyone who has filled out a government form knows. TDMS allow lets you only
design the best form for your needs, but customize how you want to organize,
display, and collect that information.

A common business task is to keep track of employee data. Very simply, you
need to know the employee’s name, birth date, and identification number. In
addition, if the employee is married, you may want to collect information about
the spouse.

This chapter gives you step-by-step instructions on creating a simple TDMS
application to collect employee information. In addition, the application lets you
update records and display information. Feel free to adapt the application to
your particular needs. The employee number, for example, can easily be
changed to a social security number. This helps you to create a database that
has meaning to you.

You should allow approximately two hours to complete this walkthrough, which
is organized in the following main parts:

¢ Creating a form definition
e Creating records
¢ Creating requests

o Creating a request library definition

Building a request library file

Writing the application program

2-1



2.1 Getting Started

Before you can create a form definition, you must have an area in the CDD
where you want to store your form definition (and any other TDMS definitions
you create or use). If you do not have a CDD directory, (or are unsure of what a
CDD directory is), refer to the VAX Common Data Dictionary Utilities Reference
Manual before continuing with this walkthrough.

For example, you might want to store the definitions that you create or modify
in a CDD subdirectory using your last name. In that case, type the following
logical assignment (using your own last name) at DCL level:

$ DEFINE CDD$DEFALILT CDD$TOP.(your_lasi_name)

When you have defined CDD$DEFAULT in this manner, CDD precedes any
partial references that you make to a CDD directory or object with
CDDS$TOP.(your —_last__name).

The name you assign the form is the CDD given name as it is stored in the
CDD.

In this walkthrough, the name you assign the form is FAMILY _FORM.
Because you defined CDD$DEFAULT to point to your personal CDD directory
earlier, FDU will store the form in that directory:

CDD$TOP.(name __of __your __directory). FAMILY _FORM

If you get an error when you enter the CREATE FORM command, then
probably:

¢ You did not define CDD$DEFAULT to point to your personal CDD directory.
Change your default CDD directory and try to create the request again.

e You already have a request named FAMILY _FORM in your personal CDD
directory. Delete the existing form.

If neither of these corrects the problem, see your system manager.

2.2 Creating a Form Definition

Figure 2-1 shows the form that you create in this walkthrough as it might
appear after the operator enters information for a new employee. The form defi-
nition that you create includes:

» Background text (characters that TDMS always displays when the form is
on the screen)

* Fields (locations on the form in which TDMS displays data or where the oper-
ator can enter data)

2-2 Walking Through a Simple TDMS Application



Your goal in creating this form is to make it easy to collect accurate informa-
tion. You want to give the form a title, indicate the particular data you want to
collect, and give instructions on how to exit the application at any point during
its use.

—

\ Cursor MR Line [ Column Modes

Family Fornm

Employee Number: 1001
Name: Thomas McMorrow
Birth Date: 02-JAN-50
Marital Status: M
Spouse Information
Name: Margaret McMorrow
Birth Date: 22-MAY-50
Press GOLD-D to exit

Figure 2-1: Run-Time Form (with Sample Data)

You create this form by following the steps that are explained in the following
sections:

I S oA R

Entering FDU

Assigning a form name and entering the form editor
Assigning formwide attributes

Creating a screen image for the form

Assigning field attributes and validators

Saving the form definition and storing it in the CDD

Follow the instructions in this walkthrough carefully to create the form defini-
tion. Enter text that is shown in colored ink. Unless otherwise stated, always
follow each step by pressing the RETURN key.

Walking Through a Simple TDMS Application 2-3



2.2.1 Entering the Form Definition Utility (FDU)

To use the Form Definition Utility (FDU), you must use a VT100 or VT200 ter-
minal. Make sure that the VMS operating system recognizes the terminal by
issuing the following command at DCL level:

$ SET TERMINAL/INQUIRE

Now, enter FDU by issuing the command:

$ RUN SYS$SYSTEHM:FDU.EXE

The system returns the FDU> prompt. You are now ready to begin using FDU.

2.2.2 Assigning a Form Name and Entering the Form Editor

To create a form definition, you must first assign a form name. The form name
identifies a unique CDD location where you want to store your form definition.
To create the form named FAMILY _FORM, type the following at the FDU >

prompt:

FDU) CREATE FORM FAMILY_FORM

FDU does not accept this command if a form is stored already in the CDD with
the name FAMILY _FORM. If FDU issues an error message because there is
already a form entitled FAMILY__FORM, choose another form name and issue
the CREATE FORM command using a new form name. If FAMILY _FORM
already exists because you have partially completed this walkthrough and you
want to continue, enter FDU and use the MODIFY FORM command. For exam-
ple, enter the following text:

$ RUN SYS$SYSTEM: FDU.EKE
FDU> MODIFY FORM FAMILY_FORM

If you want to end the form editing session at any time during this walk-
through, press the sequence GOLD-KP7. If the form does not contain errors,
TDMS displays the Phase Selection menu. If there are errors in the form, TDMS
displays an error message at the bottom of the screen.

To save your form definition and return to FDU command level, type E and
press RETURN twice. You can then return to DCL level by typing EXIT and
pressing RETURN or CTRL/Z at the FDU> prompt.

2-4 Walking Through a Simple TDMS Application



Later, to continue creating your form definition, issue the MODIFY FORM com-
mand, reenter the appropriate form editor phase from the Phase Selection menu,
and continue the walkthrough from the point where you left off.

If you do not want to save your form definition, press RETURN and type N at
the prompt “Do you want to save this form?”. You can then return to the
FDU> prompt by pressing RETURN.

2.2.3 Assigning Formwide Attributes

The first step in creating a form is to determine how you want the form to look.
FDU allows you to give the entire form certain visual characteristics. You
assign these formwide attributes during the Form phase. In a subsequent
phase, you assign attributes to individual fields.

When you issue the CREATE FORM (or the MODIFY FORM) command and
press RETURN, the form editor displays the Phase Selection menu on your
screen as shown in Figure 2-2.

~ N

TDMS Form Editor

Phase Selection Menu

Phase choice: [

FORM Assign the form-wide attributes
LAYOUT Create or modify a form

ASSIGN Assign field attributes

ORDER Modify the default field access order
EXIT End this editor session

Form name: FAMILY_FORM
Input file! New Form being created
CDD Path:  EAMILY FORM

\. -/

Figure 2-2: Phase Selection Menu

The cursor is positioned at the Phase Choice prompt. To enter the Form phase,
type:

FORM

Walking Through a Simple TDMS Application 2-5



You can type an abbreviation of any phase choice that makes the name unique.
For example, you can type F, FO, or FOR to enter the Form phase. Figure 2-3
shows the Form phase screen.

s

Form Attributes

Attributes for Form Named:

Screen Background: [AS IS = 1; Black = 2; White = 3]
Screen Width: [80 Columns = {; 132 Columns = 2]
Do you wish to assign default field attributes [Y/N1?

T

HELP Form CDD Path-name: (Leave Blank If No HELP Form)

Do you want Input Field Highlighting (If so, mark X below as required) [Y/N1? [J
Bold _ Underscore _ Blink _ Reverse _

\ y

Figure 2-3: Form Phase Screen

The goal in this phase is to create a form with the following attributes:
» Black (dark) background

» 80-column width

¢ No input field highlighting

e No Help form

While you are filling out a form, if you want to move back to any field to
change your response, press the BACK SPACE key. Each time you press the
BACK SPACE key, the cursor moves back one field. If you want to move for-
ward to any field, press the TAB key. Each time you press the TAB key, the
cursor moves forward one field. Pressing the RETURN key tells FDU to save
your choices. If you wish to change your choices after you press RETURN, you
must reenter the phase.

2-6 Walking Through a Simple TDMS Application



The cursor is at the Screen Background prompt; the Screen Background attrib-
ute determines the shading of the screen background at run time. The form edi-
tor displays the default value 1, which leaves the screen background unchanged.
Type the following number:

2
By typing 2, you assign a black (dark) screen background. After you type 2, the
cursor automatically moves to the Screen Width prompt. Accept the rest of the

default values at each prompt (an 80-column screen, no Input Field highlighting,
no Help form, and no default field attributes) by pressing:

(RET>
FDU returns you to the Phase Selection menu.

2.2.4 Creating a Screen Image of the Form

By following the steps in this section, you create the screen image of the form.
You do this in the Layout phase.

While creating the form, you also learn how to use function keys to:
 Distinguish between background text and fields

¢ Create a double-size line

o Center text on a line

» Move the cursor

* Return to the Phase Selection menu
To enter the Layout phase of the form editor, at the Phase Choice prompt, type:

LAYOUT

The top 23 lines of your terminal screen clear, and the cursor status line (the
bottom, or 24th line) shows the following:

Cursor (i Line A Column Modes

Walking Through a Simple TDMS Application 2-7



In Chapter 5 of this manual, you learn about the cursor status line and each of
its elements. For this walkthrough, you should know that the first block after
the word Modes displays either TXT or FLD, distinguishing Text mode (TXT)
from Field mode (FLD). You are creating background text when you see TXT,
and you are creating a field when you see FLD.

For example, in Figure 2-1, Name is background text. Background text notes
the kind of information needed and serves as a prompt on the run-time form.
The name Thomas McMorrow occupies a field, or area on the form where actual
data is entered or displayed.

The cursor is now at the upper left corner of the screen at line 1, column 1.
Note that the cursor status line shows the current cursor location. To insert a
title for the form, move the cursor to line 2, column 1 by pressing:

(RET>
Then type:
Family Form

Now, change the line to a double-size (double-height and double-wide) line by
pressing the sequence:

{GOLD-S?

You can then center the title, Family Form, by pressing:

{KP1)

2-8 Walking Through a Simple TDMS Application



The cursor is on line 3, and your form looks like this:

e N
Family Form

Cursor 0GR Line E Column Modes )
.

The title is double-size and it is centered on line 3. To move the cursor to line 5,
column 1, press:

(RET) (two times)

The background text Employee Number begins at line 5, column 13. To move to
column 13, you can press space 12 times or use the repeat function by entering
the following key sequence:

{GOLD)-12-{space?

The cursor moves 12 spaces, to line 5 column 13. You can use the repeat func-
tion (GOLD-n-space) for any character except the digits 0-9.

Enter the background text:

Emplouee Number:

Leave one space after the colon for readability.

Now you want to create the field used to collect or display the employee num-
ber. Creating a field is different from what you have done so far. You have to
define acceptable characteristics for what a user can enter. You need to control
the data that is entered to make sure it is correct and can be processed as
intended.

Walking Through a Simple TDMS Application 2-9



Switch to Field mode by pressing:

{GOLD-KP8>

Notice that the block to the right of Modes on the cursor status line switches
from TXT to FLD. When you are in Field mode (FLD), the form editor accepts
only picture characters, field constants, or spaces. Picture characters specify
the location, length, and type of fields and determine the type of data that can
be entered or displayed in a form field. Field constants are commonly used sym-
bols and punctuation marks displayed in a field whenever TDMS displays the
form. You should be in Field mode ornly when typing picture characters or field
constants. ‘

In this walkthrough, you use two picture characters:

A, denoting an alphabetic character (only the characters A-Z, a-z, space, or
alphabetic characters from the DEC Multinational Character Set can be dis-
played or entered at run time)

9, denoting a numeric character (only the characters 0-9 can be displayed or
entered at run time)

Since employee numbers in your company can have up to five digits (but no let-
ters or symbols), you must identify a five-character field that has numeric pic-
ture characters by typing:

39999

2-10 Walking Through a Simple TDMS Application



Here is an example of the form.

~ 1
Family Form

Employee Number: 99999

L Cursor MR Line I8 Column Modes J

Now, change back to Text mode by pressing:

{KP8)

After you press KP8, the block to the right of Modes switches from FLD to TXT.
To move to line 7, column 1, press:

(RET) (two times)

Move 12 columns to the right by entering:

{(GOLD)-12-(space}

The cursor is at line 7, column 13. Type:

Name:

Remember to leave a space after the colon. To switch to Field mode, press:

{GOLD-KP8)>

Walking Through a Simple TDMS Application 2-11



To identify a 20-character field representing the employee’s name, enter the fol-
lowing sequence:

{GOLD)-28-<A)

Then, to switch back to Text mode, press:

(KPB>

Now use the RETURN key and repeat key sequences to position the cursor at
line 9, column 12. Then type the background text for the next field:

Birth Date:

On this form, the format for the employee’s birth date is Day-Month-Year (for
example, 01-DEC-49). TDMS provides a predefined key sequence to create a date
field. Enter the following next to Birth Date:

{GOLD-D)

The date choices appear on the bottom of the screen:

Choice: _ fi(month day, year) B(dd-mmm-yy) B(mm/dd/yy) Q(dd-mm-yy) B(dd-mmm-yyyy)

Next to Choice:, type:

el
<

For TDMS to accept your choice, type:

{RET)

By typing 2 and then pressing RETURN, you automatically select your desired
date field. Notice that you do not have to select Field mode. TDMS selects it for
you and returns you to Text mode after entering the correct date format.

Now move to line 11, column 13 to enter the next field. Type the background
text:

Marital Status:

Then switch back to Field mode and type:

fA

2-12 Walking Through a Simple TDMS Application



At this point, this is what your form looks like.

& )
Family Form
Employee Number: 99999
Name: AAAAAAAAAAAAAAAAAAAA
Birth Date! 99-AAA-99
Marital Status: A
L Cursor Line [f] Column Modes y

The remainder of the form is similar to the part you just created. Create the

remaining text and fields by entering the following:

(KP8)

{RET»

(RET»
{GOLD>-16-(space)
Spouse Information
{RET?

(RET?
{(GOLD)-12-(space}
Name:

{GULD-KP&}
{(GOLD>-28-(A)
{KP8)

{RET?

(RET)
{GOLD>-12-(space)
Birth Date:
{GOLD-KPB>
{GOLD-D»

(2)

(RET?

(RET}

{RET»

(KP8)
(GOLD>-12-(space}
Press GOLD-D to exit

Walking Through a Simple TDMS Application

2-13



This is how your completed form looks.

r ™

Family Form

Employee Number: 99999
Name: AAAAAAAAAAAAAAAAAAAA
Birth Date: 99-AAA-99
Marital Status: A

Spouse Information
Name: AAAAAAAAAAAAAAAAAAAA
Birth Date: 99-AAA-99
Press GOLD-D to exit

Cursor Line [E Column Modes )

You have finished identifying background text and fields, so you are ready to
leave the Layout phase and return to the Phase Selection menu. Use the MENU
function key by pressing the sequence:

(GOLD-KP?)

The form editor displays the Phase Selection menu.

2.2.5 Assigning Field Attributes

In this step, you assign attributes to specific fields that you have created.

Field attributes allow you to:

Identify the field to TDMS by providing a field name.

Provide a default value for the field. A default value allows you to identify a
frequently-used response (for example, NY in a field representing the
employee’s home state when most of the employees live in New York).

Provide a help message for the field that the operator can read at run time.

Affect the appearance of the field and the appearance of data entered into the
field. For example, a state abbreviation could appear as uppercase, even if a
user entered it in lowercase.

2-14 Walking Through a Simple TDMS Application



» Place certain conditions on the data entered by the operator. For example, if
all employee numbers have five digits, you can set up the field to accept five
and only five digits.

¢ Inform TDMS that there are special validation procedures (field validators)
associated with the field. For example, employees listed in your application
can only be married or single, so you can set up the marital status field to
accept only M or S as valid entries.

You assign field attributes in the Assign phase of the form editor. Chapter 6
provides a detailed discussion about the Assign phase and the use of field attrib-
utes. This walkthrough only introduces these topics.

Note

Do not press RETURN while in the Assign phase. If you press
RETURN, TDMS brings you to the next field to begin assigning
attributes. If you press RETURN while on the last field, TDMS ends
the phase and returns you to the Phase Selection menu.

To enter the Assign phase of the form editor from the Phase Selection menu,
type:

fA

The form editor displays the Assign Phase menu at the bottom of the screen.
See Figure 2-4.

Walking Through a Simple TDMS Application 2-15



Assign Attributes to Which Fields? fi
{ - New or Modified Fields
2 - All Fields
3 - Specific Field

. W,

Figure 2-4: Assign Phase Menu

To assign attributes to all fields, type:

2

The form editor displays the Attribute Assignment form superimposed on the
form you are creating.

The field to which you are assigning attributes is bolded, underlined, and blink-
ing. The field next to the background text Employee Number is the first field on
the form, so the picture characters (99999) are displayed bolded, underlined, and
blinking. The screen looks like the following example.

2-16 Walking Through a Simple TDMS Application



Family Fornm
Employee Number: FEEEE]
Name: AAAAAAAAAAAAAAAAAAAA
Birth Date: 99-AAA-99
Marital Status: A
Spouse Information

P
ATTRIBUTES for Field Named: E$000{
Default Value!

Help text:

Autotab - Right Justify _ Uppercase - Scale Factor _
No Echo - Fixed Decimal _ Must Fill - Indexed (N,V,H) N
Display Only _  Zero Fill - Response Req’d _ Index count Q0

Zero Suppress _ Clear character
NO Validators exist for this field; do you want to enter F/V Edit (Y/N)? N

. _J

The attributes that you assign apply only to the current field.

The cursor is now at the first character of the Field Name attribute. Each form
field must have a unique field name; the form editor assigns the default field
name F$0001 to the first field. You could accept this default field name; how-
ever, in order to make the field name more descriptive, change the name to
EMPLOYEE_NUMBER. To make this change, press:

(LINE FEED?

When you press LINE FEED, the name F$0001 is deleted, and the cursor is at
the beginning of the line. To assign the name EMPLOYEE_NUMBER to this

field, type:

EMPLOYEE_NUMBER

TDMS field names can contain up to 31 characters, including alphabetic charac-
ters (A-Z and a-z), numbers, dollar signs ($), and underscores (). The first
character must be an alphabetic character, and the last character can be neither
a dollar sign nor an underscore.

To go to the next attribute, press:

(TAB?

Walking Through a Simple TDMS Application 2-17



The cursor is at the first character of the Default Value attribute. When you
supply a default value for a field, the value is displayed on the form at run time
unless a request explicitly displays a different value in the field. If most
employees live in Massachusetts, for example, you could give MA as the default
value for a state field. Because each employee number is unique, you do not
want a default number here.

To go to the next attribute, press:

(TAB)

The cursor is now at the first character of the Help Text attribute. You can
specify a message (using up to 80 characters) that the operator can read by
pressing the HELP (PF2 or F15) key at run time. Type in the message:

Type the employee’s S5-digit employee number.

There cannot be an employee record without an employee number, so you want
to make a number entry mandatory. You can do this by using the Response
Required attribute. At run time, you must enter a number into this field or
TDMS signals an error. To move to the Response Required prompt, press:

<TAB) (ten times)
When you do not assign an attribute, you accept a default. In this case, you
accept the following defaults:

— Autotab (deassigned, thus preventing the cursor from moving automatically
to the next input field when the current one is filled at run time).

— No Echo (deassigned, thus allowing the operator’s response to be displayed
on the screen at run time).

— Display Only (deassigned, thus allowing the operator to enter data if the
request maps to the field for input).

— Right Justify (deassigned, thus allowing run time data to appear at from the
left margin on the field.)

— Fixed Decimal (deassigned, providing run-time characteristics for an
UNSIGNED NUMERIC field.)

— Zero fill (deassigned, thus assigning a blank fill character).

— Zero suppress (deassigned, thus allowing a zero to be displayed on a form
when a numeric record field with a null (zero) value is output to a form field).

2-18 Walking Through a Simple TDMS Application



— Uppercase (deassigned, thus not converting lowercase input to uppercase).

— Must Fill (deassigned, thus not requiring the operator to fill in the field com-
pletely if any data is entered).

Each employee has a unique identification number that must be entered on the
form. To do this you assign the Response Required attribute by typing:

¥

As the result of assigning this attribute, the operator must enter data in this
field at run time. To accept the default value of the Clear Character, the Scale
Factor, and the Indexed attributes, press:

(TAB)} (four times)

The Clear Character attribute determines the appearance of the field at run
time when the field is blank or partially blank. The Scale Factor is a positive or
negative integer that represents the location of a decimal point in a numeric
field. The Indexed attribute aligns two or more elements in a single form field
either vertically or horizontally.

The Attribute Assignment form looks like the following example.

( )
Family Form
Employee Number: EEEEF]
Name! AAAAAAAAAAAAAAAAAAAA
Birth Date: 99-AAA-99
Marital Status: A
Spouse Information

P
ATTRIBUTES for Field Named: EMPLOYEE NUMBER
Default Value:

Help text: .

Autotab - Right Justify _ Upp;rcase - Scale Factor __
No Echo - Fixed Decimal _ Must Fill - Indexed (N,V,H) N
Display Only _ Zero Fill - Response Req’d X Index count 00

Zero Suppress _ Clear character
NO Validators exist for this field; do you want to enter F/V Edit (Y/N)? N

Walking Through a Simple TDMS Application 2-19



The last attribute on the form is the Field Validation attribute. It allows you to
select ranges and choices of values that will be accepted by TDMS at run time.
Since you do not want to specify any special validators press:

(RET)

After you press RETURN, TDMS redisplays the Attribute Assignment form and
the field representing the employee’s name is shown bolded, underlined, and
blinking. To override the default field name, press:

(LINE FEED}

Then type:

EMPLOYEE_NAME

Now, move to the Help Text attribute by pressing:

(TAB) (two times)

Type the message:

Type the employee's name.

Again, you want to make this field required. Move to the Response Required
attribute by pressing:

(TAB) (ten times)

Assign the attribute by typing:

®

The operator cannot move past the Response Required field at run time without
making an entry. Accept the current default for the remaining attributes by
pressing:

(RET)

2-20 Walking Through a Simple TDMS Application



After you press RETURN, TDMS redisplays the Attribute Assignment form and
the field representing the employee’s birth date is shown bolded, underlined,
and blinking. To override the default field name, press:

({LINE FEED)

Then type:

BIRTH-DATE

To move to the Help Text attribute, press:

(1AB) (two times)

Type the message:

Type the employee's birth date.

Accept the current defaults for the remaining attributes by pressing:
(RET?

After you press RETURN, TDMS redisplays the Attribute Assignment form and
the field representing the employee’s marital status is shown bolded, underlined,
and blinking. To override the default field name, press:

(LINE FEED>

Then type:

MARITAL_STATUS

Move to the Help Text attribute and type the message:

Type the Employee's marital status: M or §

Move to the Uppercase attribute and type:

K

Walking Through a Simple TDMS Application 2-21



At run time, TDMS converts the entry in this field to an uppercase character.
To end the assignment of attributes for this field and move on to the next,
press:

(RET)

After you press RETURN, TDMS redisplays the Attribute Assignment form and
the field representing the employee spouse’s name is shown bolded, underlined,
and blinking. To override the default field name, press:

(LINE FEED?

Then type:

SFOUSE_NAME

Move to the Help Text attribute and type the message:

Tupe the name of the employee’s spouse.

To end the assignment of attributes for this field and move on to the next,
press:

(RET?

After you press RETURN, TDMS redisplays the Attribute Assignment form and
the field representing the birth date of the employee’s spouse is shown bolded,
underlined, and blinking. To override the default field name, press:

({LINE FEED?

Then type:

SPOUSE-BIRTH_DATE

Move to the Help Text attribute and type the message:

Tupe the birth date of the employee’s spouse.

To end the assignment of attributes for this field, press:

(RET>

2-22 Walking Through a Simple TDMS Application



Because Birth Date is the last field on the form, the form editor displays the
Phase Selection menu.

2.2.6 Saving the Form Definition and Storing It in the CDD

When you are satisfied with the form definition, it is ready to be saved and
stored in the CDD. Exit the Phase Selection menu by typing:

E

Then press:

(RET?

The cursor moves to the bottom of the form, where you are asked if you want to
save the form. Accept the default (Y, for yes) by pressing:

{RET>

At this point, FDU stores the form definition in the CDD and gives the form
definition the form name that you specified when you issued the CREATE
FORM command. When the form is stored successfully, you see the FDU >
prompt on your terminal.

Now you are done creating the form. To move on to the next phase of building
your TDMS application, type:

FDUY ERIT

TDMS returns you to DCL level.

The next step in creating a TDMS application is to create a record. For this
walkthrough, the names you give to the record fields are the same as the names
of the form fields.

2.3 Creating Records

A record definition defines the type, structure, and length of data in records. All
data called by a request must be defined in a record and stored in the CDD,
including data entered by the operator as well as information that is displayed
on the terminal screen.

Walking Through a Simple TDMS Application 2-23



A record is a key part of the TDMS application because it allows you to collect
information as part of a database. A record allows you to keep information in a
file. Records can also be used to collect temporary information that does not
need to be kept as part of the permanent database.

In this part of the walkthrough, you create two records using the VAX CDD
Data Definition Language (CDDL).

Creating a record consists of two steps:
1. Using a text editor to create a CDDL source file that defines a record

2. Invoking the CDDL compiler to insert the record definition into the CDD

In the source file, you specify the name and description of the record, the fields
that comprise it, and the attributes of those fields.

The source file contains the record definition to be placed in the CDD. The
default file type is .DDL.

2.3.1 Source Files

The first record you need to create for your application is the database record.
This record collects information that you want to save for later use. For exam-
ple, you want to keep an employee’s name and number as part of a permanent
record. Enter the following command at DCL level:

$ EDIT/,EDT FAMILY.DDL

This calls the EDT editor to create the CDDL source file.

The basic unit of a CDDL source file is the DEFINE statement, which names
the record you are creating. Following the DEFINE statement is a field descrip-
tion statement defining the record’s field attributes. Subordinate field descrip-
tion statements may be embedded within the field description statement. The
alignment of text is a visual aid to help you see the organization of the data. It
does not affect the compilation of the record.

Enter the following text in the file:

DEFINE RECORD FAMILY_RECORD.
FAMILY_RECORD STRUCTURE.
EMPLOYEE_NUMBER  DATATYPE SIGNED LONGHWORD.
EMPLOYEE_NAME DATATYPE TEXT 20.

BIRTH_DATE DATATYPE DATE.
MARITAL.STATUS DATATYFE TEXT 1.
SPOUSE_NAME DATATYPE TEXT 20.

SPOUSE_BIRTH_DATE DATATYPE DATE.
END FAMILY_RECORD STRUCTURE.
END FAMILY_RECORD.

2-24 Walking Through a Simple TDMS Application



To exit from the editor and save your edits, enter:

(CTRL,2Z}
*EXIT

2.3.2 Compiling the Record Definition

Once you have created a CDDL source file, you can invoke the CDDL compiler
to insert your record definition into the CDD. To invoke the CDDL compiler,
type the following command:

$ RUN SYS$SYSTEM:CDDL

The system responds with:

$_File:

At this prompt, type in the name of the file:

$_File: FAMILY.DDL

If the record has no errors and if there is no record in the CDD with the same
name, the CDDL compiler stores FAMILY.DDL in the CDD.

If the record you submitted has an error, such as a misspelling, the CDDL com-
piler returns an error message. To correct the record, edit and then recompile
the file.

To make replacing the record easier, define a symbol for CDDL. Enter the fol-
lowing line at DCL level:

$ CDDL :== $SYS$SYSTEM:CDDL
For example, if FAMILY.DDL could not compile, follow these steps:

1. Edit the file using your text editor.

2.  After you have made corrections, replace the old record definition with
the new by typing the following text at DCL level:

$ CDDL/REPLACE FAMILY.DDL

You now have a corrected version of the record FAMILY _RECORD in the
CDD.

Walking Through a Simple TDMS Application 2-25



The second record you need to create is a workspace record. A workspace record
is different from a database record because it is used to collect information that
the application program will use then discard. By using a separate workspace
record to contain temporary values, you avoid mapping extraneous information
to a database. Enter the following text at DCL level:

$ EDIT/EDT FAMILYREC.DDL

Then enter the following text in the file:

DEFINE RECORD FAMILYREC_RECORD.
FAMILYREC_RECORD STRUCTURE. -
PROGRAM_REQUEST_KEY DATATYPE TEXT 1.
END FAMILYREC-RECORD STRUCTURE.
END FAMILYREC-RECORD.

Note that PROGRAM _REQUEST _KEY is the only field in
FAMILYREC _RECORD. This value is used by the application program to test
certain conditions and is not stored permanently as part of the database.

Exit the editor and use CDDL to compile your new record definition by
entering:

$ RUN SYS$SYSTEM:CDDL
$_File: FAMILYREC.DDL

2.4 Creating Requests

Now you are ready to create the requests that control the data interchange for
your application. In this section, you create both a simple and a conditional
request using the Request Definition Utility (RDU).

Note that when you enter commands in RDU, you are at the RDU > prompt.
When you enter request instructions, you are at the RDUDFN > prompt.

If you make errors while you are creating either request, continue with the
walkthrough, entering all the remaining request instructions. When you finish
entering request text and type the final instruction, END DEFINITION, RDU
returns you to the RDU> prompt. You can then go back and correct any typing
errors using the EDIT command described in the section entitled Correcting
Your Errors.

2-26 Walking Through a Simple TDMS Application



Note

RDU usually remains at the RDUDFN > prompt and continues to
take additional request instructions when you make an error. If RDU
encounters an error in your request text from which it cannot recover,
it may return you to the RDU > prompt before you enter the END
DEFINITION instruction. If this happens, you must reenter the
request starting with the CREATE REQUEST command.

2.4.1 Entering the Request Definition Utility (RDU)
To enter RDU, type the following command at DCL level:

$ RUN SYS$SYSTEM:RDU.EKE

The system responds with:

RDUY

Once you are in RDU, you can issue commands:
¢ To create requests and request library definitions
e To manipulate (modify, delete, copy, list, replace, and so on) requests and

request library definitions

2.4.2 Creating a Simple Request

You can create a request using one of two methods: interactive or file. In this
walkthrough, you use the interactive method. The file method is described in
the VAX TDMS Request and Programming Manual.

To create the requests interactively, type the CREATE REQUEST command and
a request name at the RDU> prompt. To start creating your first request, enter
the following:

RDU) CREATE REQUEST FAMILY_DISPLAY_REQUEST

After you enter the CREATE REQUEST command and name the request, RDU
displays the RDUDFN > prompt. This prompt indicates that RDU is ready to
receive request instructions.

RDUDFN)

Walking Through a Simple TDMS Application 2-27



In the next sections, you enter the instructions that make up the

FAMILY _DISPLAY _REQUEST. This request clears the terminal screen and
displays the form FAMILY__FORM. It also takes data from the database record
FAMILY _RECORD and displays it in the form fields. Figure 2-5 shows the two
parts of a request:

» The header, which identifies the forms and records used by the request

o The base, which contains instructions that TDMS performs every time an
application program calls this request

RDUDFN) FORM IS FAMILY_FORM;
RDUDFN) RECORD IS FAMILY_RECORD; <«—— Header
RDUDFN} RECORD IS FAMILYREC_RECORD;

RDUDFN} CLEAR SCREEN;
RDUDFN) DISPLAY FORM FAMILY_FORH;

RDUDFN} OUTPUT ZALL;

RDUDFN}

RDUDFN> DESCRIPTION ,*

RDUDFN) The OUTPUT ZALL maps the following
RDUDFN} fields:

RDUDFN)

RDUDFN) EMPLOYEE_NUMBER  TO EMPLOYEE_NUMBER,
RDUDFN> EMPLOYEE-NAME TO EMPLOYEE_NAME,

RDUDFN> BIRTH-DATE TO BIRTH-DATE,

RDUDFN> MARITAL_STATUS TO MARITAL_STATUS, <«—— Base
RDUDFN} SPOUSE_NAME TG SPOUSE_NAME,

RDUDFN) SPOUSE_BIRTH_DATE TO SPOUSE_BIRTH.DATE*/;

RDUDFN)

RDUDFN} WAIT;

RDUDFN} PROGRAM KEY IS GOLD "D
RDUDFN} RETURN "¥*

T0 PROGRAM_REQUEST_KEY;

RDUDFN} END PROGRAM KEY:
RDUDFN} END DEFINITION;

Figure 2-5: Two Parts of FAMILY _DISPLAY __REQUEST

The request header contains the FORM IS and RECORD IS instructions. You
must enter these instructions before any mapping instructions.

The request base contains form usage and mapping instructions that TDMS
reads and executes each time an application program calls that request.

2-28 Walking Through a Simple TDMS Application



2.4.2.1 FORM IS Instruction — Usually the first instruction in a request is the
FORM IS instruction. This instruction identifies the form or forms you refer to
in later instructions.

As you enter instructions, RDU checks that the form you specify exists in the

CDD. If the form does not exist, RDU gives you an error message and does not
create the request in the CDD. RDU does, however, continue to accept further

request instructions and check them for errors.

The form name must be a legal CDD path name. You can select either a given,
a full, or a relative path name.

Enter this text:

RDUDFN) FORM IS FAMILY_FORM;

Be sure to complete each instruction with a semicolon.

A single call to a request can display no more than one form. However, you can
identify more than one form definition in a request containing conditional
instructions. You will create a conditional request later in this walkthrough.

2.4.2.2 RECORD IS Instruction — You must also name the CDD record defini-
tions you will use later in mapping instructions within the request.

Because you created two records, you need two RECORD IS instructions. Enter
this text:

RDUDFN} RECORD IS FAMILY_RECORD;
RDUDFN) RECORD IS FAMILYREC_RECORD;

2.4.2.3 CLEAR SCREEN Instruction — You want to clear the screen before dis-
playing a form. To do this, use the CLEAR SCREEN instruction. This ensures
that there is nothing on the screen before TDMS displays a form. Enter this
text:

RDUDFNY CLEAR SCREEN;

2.4.2.4 DISPLAY FORM Instruction — To view the form on the screen, use the
DISPLAY FORM instruction. Enter this text:

RDUDFN) DISPLAY FORM FAMILY_FORM;

Walking Through a Simple TDMS Application 2-29



2.4.2.5 OUTPUT TO Instruction — In your application, you want TDMS to
move data from the records and display it on the form. To do this, you use the
OUTPUT TO instruction with the %ALL parameter. To continue creating your
request, enter the following:

RDUDFN) OUTPUT ZALL;

If you use %ALL, TDMS displays data to all those form fields that have identi-
cally named record fields. Note that you do not need to specify any record fields
within FAMILY _RECORD.

2.4.2.6 DESCRIPTION Instruction — You can use the DESCRIPTION instruc-
tion any place in a request or request library definition where you want to
include descriptive text except embedded in a request instruction or a request
library definition instruction. The text you enter following the keyword
DESCRIPTION and the slash and asterisk symbols (/*) is stored with the
request or request library definition in the CDD. You end the descriptive text
with the asterisk and slash symbols and a semicolon (*/;).

As in this example, you might want to list which fields are being mapped for
output. This is done simply for clarity; the OUTPUT %ALL instruction does the
actual mapping. Enter this text:

RDUDFN) DESCRIPTION ,*

RDUDFN) The OUTPUT ZALL maps the following
RDUDFN) fields:

RDUDFN>

RDUDFN) EMPLOYEE_NUMBER  TO EMPLOYEE_NUMBER.,
RDUDFN) EMPLOYEE_NANME TGO EMPLOYEE_NAME,

RDUDFN?} BIRTH-DATE TO BIRTH-DATE,
RDUDFN? MARITAL-STATUS TO MARITAL_STATUS,
RDUDFN? SPOUSE_NAME TO SPOUSE-NAME,

RDUDFN) SPOUSE_BIRTH_DATE TO SPOUSE_BIRTH_DATE */;

2.4.2.7 WAIT Instruction — You use the WAIT instruction to ensure that the
form and the information you mapped to it stays on the screen until you press
the RETURN key or PRK at run time. Enter this text:

RDUDFN) WAIT;

2.4.2.8 PROGRAM KEY IS Instruction — You might want to leave the applica-
tion while it is running. A convenient way to do this is to use a program
request key (PRK).

2-30 Walking Through a Simple TDMS Application



By returning a message (that you predefine in a request) to the program, the
PROGRAM KEY IS instruction permits you to send a run-time message to the
application program. The program can then respond to the condition, which in
this case lets you to leave the program at any time.

You define a PRK in a request by naming the key and associating request
instructions with that key. Enter this text:

RDUDFN)> PROGRAM KEY IS GOLD "D"
KDUDFN) RETURN "¥" TO PROGRAM_REQUEST_KEY;
RDUDFN> END PROGRAM KEY;

When the operator presses the sequence GOLD-D, the value Y is returned to
PROGRAM_REQUEST_KEY, a program variable. The program then checks
the value of PROGRAM_REQUEST_KEY and exits from the application if it

contains Y.

2.4.2.9 END DEFINITION Instruction — When you finish entering request text,
type the instruction END DEFINITION. Note that you must put a semicolon (;)
after the END DEFINITION instruction. Enter this text:

RDUDFN> END DEFINITION;

RDU returns you to the RDU> prompt and checks that your mappings are
valid according to TDMS mapping rules. It checks that the form and record
fields have compatible data types, lengths, and so on.

2.4.3 Creating a Conditional Request

A conditional instruction is a request instruction that TDMS executes only if
certain conditions are true. A request containing one or more of these instruc-
tions is called a conditional request. Whether or not TDMS executes a condi-
tional instruction depends on a run-time value called a control value. A control
value is a record field that TDMS evaluates when a program calls a conditional
request.

The second request you create allows you to enter certain data into fields on the
form depending on the control value (marital status) of the employee.

Walking Through a Simple TDMS Application 2-31



Figure 2-6 shows the main parts of a conditional request:
¢ The header, which identifies the forms and records used by the request

* The base, which contains instructions that TDMS performs every time an
application program calls this request

» Conditional instructions, which TDMS executes only if certain conditions are
true

RDUDFN) FORM IS FAMILY_FORM;
RDUDFN) RECORD IS FAMILY_RECORD; <«— Header
RDUDFN> RECORD IS FAMILYREC_RECORD;

RDUDFNY DESCRIPTION ,*A conditional request that
opens fields for input
depending on the marital
status of the employee*/;

<— Base
RDUDFN> CLEAR SCREEN;
RDUDFN> CONTROL FIELD IS MARITAL_STATUS
RDUDFN) "§*:
RDUDFNY DISPLAY FORM FAMILY_FORM;
RDUDFN> INPUT
RDUDFN> EMPLOYEE_NUMBER TO EMPLOYEE_NUMBER.,
RDUDFN) EMPLOYEE_NAME  TO EMPLOYEE_NAME,
RDUDFN)Y BIRTH_DATE TO BIRTH-DATE, CONTROL
RDUDFN) MARITAL-STATUS TO MARITAL_STATUS; FIELD IS
~«—— conditional
instruction

RDUDFN> "M":
RDUDFN} USE FORM FAMILY_FORM;
RDUDFN} INPUT

RDUDFN} SPOUSE_NAME TO SPOUSE_NAME,
RDUDFN} SPOUSE-BIRTH_DATE TO SPOUSE_BIRTH_DATE;
RDUDFN)> RETURN "S" TO MARITAL-STATUS;

RDUDFN> END CONTROL FIELD;

RDUDFN) PROGRAM KEY IS GOLD "D

RDUDFN} RETURN "¥" TO PROGRAM_REQUEST_KEY;
RDUDFN> END PROGRAM KEY;: ~«—— Base
RDUDFN> END DEFINITION;

Figure 2-6: Parts of FAMILY _CONDITIONAL _REQUEST

2-32 Walking Through a Simple TDMS Application



In the next sections, you create the FAMILY _CONDITIONAL_REQUEST. If
RDU notifies you of errors, continue to enter the request. After you finish enter-
ing the request text, you can correct errors using the EDIT command described
in the section entitled Correcting Your Errors.

To create FAMILY _CONDITIONAL _REQUEST, enter the following text:

RDU) CREATE REQUEST FAMILY_-CONDITIONAL_REQUEST

When RDU displays the RDUDFN > prompt, you can begin to enter the request
instructions.

2.4.3.1 Header and Base Information for the Conditional Request — The
header and base information for the conditional request is the same as for the
simple request. That is, the form and records you use are the same. Enter this
text:

RDUDFN} FORM IS FAMILY_FORM;
RDUDFN} RECORD IS FAMILY_RECORD;
RDUDFN} RECORD IS FAMILYREC_RECORD;

RDUDFNY DESCRIPTION ,*A conditional request that
opens fields for input
depending on the marital
status of the employee¥*/;

RDUDFN} CLEAR SCREEN;

2.4.3.2 Beginning Key Phrase — The CONTROL FIELD IS instruction is the
key phrase that begins a conditional instruction. A CONTROL FIELD IS

instruction always contains a control value. The application program, or the
request, places an S or an M in MARITAL _STATUS. Enter this text:

RDUDFN) CONTROL FIELD IS MARITAL_STATUS

The beginning key phrase opens the conditional instruction block; therefore, it
is not followed by a semicolon (;).

Walking Through a Simple TDMS Application 2-33



2.4.3.3 Case Values — Each control value must have one or more associated
case values. In its most basic form, a case value is a quoted string. At run
time, TDMS matches the case values that you specify with the value in the con-
trol value. You can specify any number of case values in a conditional instruc-
tion. In this walkthrough, the case values are S for single and M for married.
Enter this text:

RDUDFN)> "s":

Within the conditional instruction block, you include request instructions in the
way described earlier for the simple request; that is, at the RDUDFN > prompt.
At run time, TDMS executes the following instructions if the control value,
MARITAL _STATUS, contains the value S. Enter this text:

RDUDFN> DISPLAY FORM FAMILY_FORM;

2.4.3.4 INPUT TO Instruction — If you want TDMS to collect data you enter
into a form field and return it to a record field, you use the INPUT TO instruc-
tion. Enter this instruction:

RDUDFN)> INPUT

RDUDFN} EMPLOYEE_NUMBER T0 EMPLOYEE_NUMBER,
RDUDFN) EMPLOYEE_NAME T EMPLOYEE_NAME,
RDUDFN) BIRTH-DATE TO BIRTH-DATE,
RDUDFN} MARITAL.STATUS TO WARITAL-STATUS;

2.4.3.5 USE FORM Instruction — The second case value in the conditional
instruction block is M for married. At run time, TDMS executes this block of
instructions only if the control value contains the value M.

Enter this text:

RDUDFN) "M":

In this block, you use the USE FORM instruction. The USE FORM instruction
uses the last form displayed (with the same background text and field contents)
when the previous request call ended.

You use the USE FORM instruction in this part of the request because you
want the employee information that the operator entered in the previous form
displayed as you enter information about the spouse. Enter this text:

RDUDFN) USE FORM FAMILY_FORM;

2-34 Walking Through a Simple TDMS Application



You can enter information on an employee’s spouse only if the employee is mar-
ried. Enter this text:

RDUDFN) INPUT
RDUDFN) SPOUSE_NAHE TO SPOUSE-NANME,
RDUDFN) SPOUSE_BIRTH_DATE TO SPOUSE_BIRTH_DATE;

A conditional instruction block can also return a value to the application pro-
gram. After you enter information on an employee’s spouse, you are finished
entering data on that employee. To enter information on a new employee, the
control value, MARITAL _STATUS, must be S. In other words, the program
assumes the employee is single until M is entered into the MARITAL__STATUS
field. Enter the text:

RDUDFN) RETURN "S" TO MARITAL-STATUS;

2.4.3.6 Ending Key Phrase — You must end each conditional instruction with
the ending key phrase that matches the beginning key phrase. This phrase tells
TDMS that this conditional instruction block is complete; there are no more
case values to compare with the current control value.

Enter this text:

RDUDFN) END CONTROL FIELD;

2.4.3.7 PROGRAM KEY IS Instruction — When you created the request
FAMILY _DISPLAY_REQUEST, you defined a key to be a PRK. This key defi-
nition allows you to communicate with the application program. You want the
same PRK to appear in this request, so enter the following text:

RDUDFN) PROGRAM KEY IS GOLD "D"
RDUDFN) RETURN "¥" TO PROGRAM_REQUEST_KEY:
RDUDFN} END PROGRAM KEY;

At run time, the operator can now press GOLD-D to end the terminal session.
When the operator presses the sequence GOLD-D, the value Y is returned to
PROGRAM _REQUEST_KEY, a program variable. The program then checks
the value of PROGRAM _REQUEST _KEY and exits from the application if it

contains Y.

2.4.3.8 END DEFINITION Instruction — When you finish entering request text,
enter the END DEFINITION instruction:

RDUDFN) END DEFINITION:

Walking Through a Simple TDMS Application 2-35



2.4.4 Exiting RDU

You are done creating requests. To move on to the next phase of building your
TDMS application, type EXIT at the RDU > prompt.

RDU) EXIT

2.4.5 Correcting Your Errors

If you have entered all the request text, including the END DEFINITION
instruction, RDU reports any problems by issuing an error message. You can
correct any typing and spelling errors by using the EDIT command. Type the
following command:

RDUY EDIT

The EDIT command calls the system editor. (In this manual, the EDIT com-
mand calls the VMS editor, EDT.) When you issue the EDIT command:

« RDU invokes your editor and displays the last command you entered,
CREATE REQUEST, and all the request text you entered after the CREATE
REQUEST command

¢ You can correct your typing errors just as you would in a regular text file,
using all of your editor’s features

e You can then exit your editor by using the appropriate exit command for that
editor.

¢ RDU then executes the CREATE REQUEST command and checks this cor-
rected request text for further errors

After you correct all the errors and enter the EXIT command, RDU stores this
request in the CDD. If you still have errors in your request text, RDU continues
to display error messages and does not store the request in the CDD. Use the
EDIT command again to correct those errors that RDU identifies.

2-36 Walking Through a Simple TDMS Application



2.4.6 Creating a Request Library Definition

In this section of the walkthrough, you create a request library definition and a
request library file. Both are necessary to make your requests accessible to a
TDMS application program. A request library definition allows you to identify,
in one place, all the requests that are used in an application or a portion of an
application. A request library definition is stored in the CDD. After you create
the request library definition, you must build a request library file using RDU.
This request library file contains the same information as the request library
definition but in a form easier for the application program to access.

To create a request library definition, enter RDU and type this text:

RDU) CREATE LIBRARY FAMILY_LIBRARY

A request library definition generally contains only two types of instructions:

¢« The REQUEST IS instruction, which identifies all the requests you want to
list in this request library

e The FILE IS instruction, which names the VMS request library file (RLB)
that you will subsequently create

In certain cases, such as when the form will be used by VAX DATATRIEVE, it
can also contain the FORM IS instruction. See the chapter entitled Using VAX
TDMS with VAX DATATRIEVE for more information.

Enter these request library definition instructions:

RDUDFNY REQUEST IS FAMILY_DISPLAY_REQUEST;
RDUDFN} REQUEST IS FAMILY_CONDITIONAL-REQUEST:
RDUDFN} FILE IS "FAMILYLIB.RLB";

RDUDFN} END DEFINITION;

Note that the RLB file specification, FAMILYLIB.RLB, must be enclosed in quo-
tation marks and must conform to the rules for correct VMS file names.

RDU stores this request library definition in the CDD unless:
e One of the requests you name is not in the CDD

e Syntax errors exist

RDU tells you which request it cannot find. You should check to see that you
have entered the correct names for your requests. A spelling or typing error can
result in RDU being unable to find a request in the CDD.

Walking Through a Simple TDMS Application 2-37



If you have made an error, use the EDIT command, as described earlier in this
chapter.

Note

You can change the text of any of the requests named in the CDD
request library definition without changing the request library defini-
tion itself. Because the request library definition contains only the
names of your requests, it is not affected by changes you make to text
in those individual requests. However, you will have to rebuild the
request library file.

2.4.7 Building a Request Library File

The form, two records, and two requests you created are now in your CDD direc-
tory. Your CDD directory also contains a request library definition that names
both requests.

To build a request library file, enter this text:

RDUY BUILD LIBRARY FAMILY_LIBRARY

RDU searches the CDD for the request library definition, FAMILY _LIBRARY,
as you specified in the BUILD LIBRARY command. It extracts the requests
listed in that library from the CDD and places them in the VMS request library
file, FAMILYLIB.RLB, that you specified in the request library definition. It
also stores the forms used by the request and information about the records
used in the request.

2.5 Writing the Application Program

To use the requests that you created, you need to write an application program.
Within the program you include calls, which are instructions that TDMS follows
to perform tasks, such as displaying a form on the screen. The program you cre-
ate here uses the following five primary TDMS calls:

+ TSS$OPEN_RLB
To open a request library file
+ TSS$OPEN

To open a channel to the terminal for input and output

2-38 Walking Through a Simple TDMS Application



» TSS$REQUEST

To execute a request to display a form and transfer data between a form or a
request and a record

» TSS$CLOSE _RLB
To close the request library file
+ TSS$CLOSE

To close the channel to the terminal

This program also uses three additional calls:
» TSS$SIGNAL

To receive more information about the previous TDMS call
+ TSS$READ_MSG_LINE

To write a prompt and read a message from the reserved message line (line
24) of the screen

o TSS$WRITE _MSG_LINE

To write a message on the reserved message line (line 24) of the screen

See the VAX TDMS Reference Manual for more information about these calls.

There are two general concepts about TDMS synchronous calls that you should
understand:

« Each call will complete before control returns to the program.

e TDMS returns a standard VAX condition code to the program after a call, so
you should define a variable to receive the return status code.

This example of the calls is presented in VAX BASIC. The calls are presented
in the order that you use them in your program. Following the presentation of
the calls is the BASIC program that drives your application.

Walking Through a Simple TDMS Application 2-39



2.5.1 Declaring Records

This walkthrough uses two record definitions that your program has to know
about. Since you are using BASIC, which supports extraction of records from the
CDD, you can use simple statements in the source program to bring the record
definitions into your program. These statements in BASIC are:

ZINCLUDE ZFROM ZCDD ‘FAMILY_RECORD'
ZINCLUDE ZFROM ZCDD 'FAMILYREC_RECORD'

You can then declare program variables with those record structures using the
MAP statement in BASIC. For example:

MAP (FAMILY_BUF) FAMILY_RECORD FAM
MAP (FAMILYREC_BUF) FAMILYREC.RECORD FAMREC

2.5.2 Opening a Request Library File - TSSSOPEN__RLB

The next step is to open the request library file FAMILYLIB.RLB that you
created in the section entitled, Building a Request Library File. At run time,
TDMS uses this file to access a request and forms.

TSS$OPEN _RLB should be the first call in a program because if the request
library file does not exist or is not accessible, TDMS cannot use requests to
transfer data between the form and program. The code to open the request
library file in this application is:

RET_STATUS = TSS$OPEN-RLB ("FAMILYLIB.RLB", &
LIBRARY_ID BY REF)

2.5.3 Opening a Channel - TSS$OPEN

You must open a TDMS channel to the terminal before you can perform any
I/0 on that terminal. TDMS assigns a unique number for each channel that you
open. The program must then pass that channel number to future TDMS calls
to identify which terminal to use. The code to open a channel for input and out-
put is:

RET_STATUS = TSS$OPEN (CHANNEL BY REF)

2-40 Walking Through a Simple TDMS Application



Note

The channel number returned is not the VMS channel number
returned by the SYS$ASSIGN service. Input/output calls to other sys-

tems (such as VAX RMS or $QIO) should not be issued to the
terminal.

2.5.4 Transferring Data and Displaying the Form - TSSSREQUEST

Now you call the requests you created to transfer data and display the form.
When the program issues a request call, TSSSREQUEST reads and executes the
instructions in the request. For example, the code to issue a request call for the
FAMILY _DISPLAY _REQUEST is:

RET_STATUS = TSS$REQUEST (CHANNEL BY REF,
LIBRARY_ID BY REF,
"FAMILY_DISPLAY_REQUEST",
FAM BY REF,

FAMREC BY REF)

&
&
&
)

Note that the order of the records passed on the call is the same as the order of
the records declared in the request.

2.5.5 Closing the Request Libary File - TSS$CLOSE _RLB

When you finish using the requests in a request library file, close the request
library file with the TSS$CLOSE _RLB call. The code to close a request library
file is:

RET_STATUS = TSS$CLOSE-RLB (LIBRARY_.ID BY REF)

2.5.6 Closing a Channel - TSS$CLOSE

When you finish using a channel opened by TDMS, close the channel with the
TSS$CLOSE call. TSS$CLOSE releases all TDMS resources associated with that
terminal. After you close a channel, you cannot issue any more TDMS calls that
may do input or output on that channel unless you issue another TSS$OPEN
call on that terminal. The code to close a channel is:

RET_STATUS = TSS$CLOSE &
(CHANNEL BY REF)

Walking Through a Simple TDMS Application 2-41



2.5.7 Using TDMS Calls in a BASIC Program

Figure 2-7 is the TDMS application program that uses all of the primary TDMS
calls.

To create the file for the application program, enter the following text at DCL
level:

$ EDIT,EDT FAMILY.BAS

To create the application program, type in the following text:

1 OPTION TYPE = EXPLICIT
ON ERROR GOTO ERROR_HANDLER

DECLARE INTEGER
RET_STATUS,
CHANNEL ,
LIBRARY_ID,
ANSWER_-LEN,
WE-ARE_DONE,
NUMBER

RO GO O RO RO RO

DECLARE INTEGER CONSTANT &
TRUE = -1Z, &
RECORD_NOT_FOUND = 1557, &
DUFLICATE_KEY_DETECTED = 134/

DECLARE STRING ANSWER

EXTERNAL INTEGER FUNCTION &
TSS$OPEN_RLE, &
TSS$OPEN, &
TSS$REQUEST, &
TSS$CLIOSE, &
TSS$CLOSE-RLB, &
TSS$SIGNAL, &
TSS$TRACE, &

TSS$READ_MSG_LINE, &

TSS$WRITE_MSG-LINE

ZINCLUDE ZFROM ZCDD 'FAMILY_RECORD'
ZINCLUDE ZFROM ZCDD ‘FAMILYREC_RECORD'

MAF CFAMILY_BUF) FAMILY_RECORD FAM

MAF (FAMILY_BUF) STRING FILL_BUFFER_-WITH_BLANKS = 61

MAF (FAMILYREC_BUF) FAMILYREC_RECORD FAMREC
FILL_-BUFFER_WITH_BLANKS = SPACE$(LENCFILL_BUFFER_WITH_BLANKS})

RET_STATUS = TSS$OFEN_RLE &
("FAMILYLIB.RLB",LIBRARY_ID BY REF)

GOSUB CHECK_TDMS_STATUS
(continued on next page)

Figure 2-7: BASIC Program lllustrating Primary TDMS Calls

2-42 Walking Through a Simple TDMS Application



100 RET-STATUS = TSS$OFENCCHANNEL BY REF)
GOSIB CHECK_TDMS_STATUS

OFEN "FAMILY.DAT" AS FILE #1
s ORGANIZATION INDEKED FIXED
»RECORDTYPE LIST
;ACCESS MODIFY
JALLOW MODIFY
;MAF FAMILY_BUF
»PRIMARY KEY FAM::EMFLOYEE_NUMBER

)

OG0 0 0O /0 0

200 MAIN_LOOF:

UNTIL WE_ARE_-DONE
RET_STATUS = TSS$READ_MSG_LINE &
(CHANNEL BY REF, &
ANSWER BY DESC, &
"Do you wish to add or display a form? “, &
ANSWER_-LEN BY REF)

! Change the response to uppercase
! and remove blanks or tabs.

SELECT EDIT$(ANSKER, 32 + 2)
CASE "ADD"
GOSUB ADD_RECORD

CASE "DISPLAY"
GOSUB DISPLAY_RECORD

END SELECT
NEXT
GOTO END_OF_PROGRAM
388 ADD_RECORD:

I Initialize the buffer.
FILL_BUFFER_WITH_BLANKS = SPACE$(LEN(FILL_BUFFER_WITH_BLANKS))

! First, assume the person is single.
FAM: :MARITAL_STATUS = "S"

310
RET-STATUS = TSS$REQUEST C(CHANNEL BY REF,
LIBRARY_ID BY REF,
"FAMILY_-CONDITIONAL_REQUEST",
FAM BY REF.,
FAMREC BY REF)

20 R0 20 RO

GOSUB CHECK_TDMS_STATUS
I If the person is married, return and gather
! their spouse’s name.

(continued on next page)

Figure 2-7: BASIC Program lllustrating Primary TDMS Calls (Cont.)

Walking Through a Simple TDMS Application 2-43



GOTD 31@ IF FAM::MARITAL_STATUS = "M

FUT #1
RETURN

408 DISPLAY_RECORD:

RET_STATUS = TSS$READ_MSG_LINE
(CHANNEL BY REF,
ANSWER BY DESC,
"Type in the number of the recard “,
ANSWER_LEN BY REF)

RO 20 RO

GOSIUB CHECK-TDMS_STATUS

FAM: : EMPLOYEE_-NUMBER = VALZ(ANSHER)
GET #1, KEY #@ EQ FAM::EMPLOYEE-NUMBER

RET_STATUS = TSS$RENUEST (CHANNEL BY REF, &
LIBRARY.ID BY REF, &
"FAMILY_DISPLAY_REQUEST", &
FAM BY REF, &
FAMREC BY REF)

GOSUE CHECK-TDMS_STATLS
RETURN
S@@ CHECK_TDMS.STATUS:
IF (RET.STATUS AND 17) = @/

THEN RET_STATUS = TSS$SIGNAL
CALL LIB$STOF (RET.STATUS BY VALUE)

END IF

! Check to see if the user pressed
! the program request key.

IF FAMREC: :PROGRAM_REQUEST_KEY = "y"
THEN WE-ARE-DONE = TRUE
END IF

RETURN
15008  ERROR-HANDLER:

I Display the error message, then resume
! {0 the appropriate subroutine.

RET-STATUS = TSS$URITE_MSG_LINE &
(CHANNEL BY REF. &
ERT$CERR?)

SLEEP 3

(continued on next page)

Figure 2-7: BASIC Program lllustrating Primary TDMS Calls (Cont.)

2-44 Walking Through a Simple TDMS Application



SELECT ERR
CASE DUPLICATE_KEY_DETECTED
RESUME 300

CASE RECORD-NOT_FOUND
RESUME 400

CASE ELSE
ON ERROR GOTO @
END SELECT

32080  END_OF_PROGRAM:
RET_STATUS = TSS$CLOSE_RLBCLIBRARY.ID BY REF)
GOSUB CHECK_TDMS_STATUS
RET_STATUS = TSS$CLOSECCHANNEL BY REF)
GOSUB CHECK_TDMS_STATUS
32767 END

Figure 2-7: BASIC Program lllustrating Primary TDMS Calls (Cont.)

2.6 Compiling the TDMS Program
You compile a TDMS program just as you do any other program.

Issue the following command at DCL level:

$ BASIC FAMILY.BAS

When you compile a program and there are no errors, the compiler generates
another file in your default directory with the same name and a file type .OBJ.
2.7 Linking the TDMS Program

The TDMS program interface is a shareable image named TSSSHR.EXE. When
the TDMS software is installed, TSSSHR.EXE is placed in the VAX/VMS share-
able image symbol table library, SYSSLIBRARY:IMAGELIB.OLB.

When you link any program, the VAX Linker searches, by default,
SYSSLIBRARY:IMAGELIB.OLB.

You can link a TDMS program simply by issuing the following command at
DCL level:

$ LINK FAMILY

Walking Through a Simple TDMS Application 2-45



2.8 Running the TDMS Program

You can run this program simply by issuing the following command at DCL
level:

$ RUN FARILY

2-46 Walking Through a Simple TDMS Application



Using the Form Definition Utility (FDU) and the
Form Editor

This chapter describes some important FDU commands, including those that let
you to use the form editor, and provides an overview of the form editor. The rest
of this manual provides more detailed explanation. Complete information about
the syntax of all FDU commands can be found in the VAX TDMS Reference
Manual.

FDU allows you to create, modify, and store customized form definitions. The
product of your work with the form editor is a form definition, which FDU
stores in the Common Data Dictionary (CDD). The form definition contains the
information that identifies:

e Screen image of the form. The screen image includes the location of back-
ground text and fields as well as video highlighting. (Background text is
text that is always displayed when the form is displayed; fields are locations
on the form where data can be collected or displayed.)

o Length and data type of each field.

o Set of attributes for each field on the form (including means for validating
data).

e Location of scrolled regions on the form.

e Name of a Help form, which the operator can display at run time.

3.1 Entering FDU
To enter FDU from DCL level, type the command:

$ RUN SYS$SYSTEM:FDU.EKE



You can set up a global symbol in your login command file to allow you to enter
FDU commands at DCL level. For example:

$ FDU :== $FDU
When you enter FDU, the FDU> prompt is displayed on your terminal. When
the FDU > prompt is displayed, you can give only valid FDU commands.

This chapter discusses the use of several FDU commands that you will use most
frequently, including those that allow you to use the form editor and create a
listing that provides information about the form definition and objects in the
CDD.

3.2 Leaving FDU

To leave FDU, type EXIT or press CTRL/Z. Both of these commands will return
you to DCL level. For example:

FDUY EXIT
$

or

FDUY (CTRL/Z}
$

3.3 Using the Form Editor

You can use the form editor only when you issue one of the following commands
at FDU level:

« CREATE FORM
- MODIFY FORM
« REPLACE FORM

All FDU commands can be abbreviated to their shortest unambiguous form.

3.3.1 Creating a New Form Definition

To create a new form definition, enter FDU. At the FDU > prompt, issue the
command CREATE FORM followed by the form name that you want to assign
to the form definition. The form name is generally the CDD path name of the
form definition; it is stored in your default CDD directory unless you explicitly
state a different location.

3-2 Using the Form Definition Utility (FDU) and the Form Editor



The given name is the last name you type when referring to the form. It is
usually the same as the final name of the CDD path name. However, from DCL
level, you can assign a logical name to the given name of the form. If you do,
the final name of the object in the CDD can be different from the given name
of the form. For instance, if you use the name EMPLOYEE_FORM for

your form, and you define, at DCL level, EMPLOYEE _FORM to be
EMPLOYEE _FORMS.EMPLOYEE _ONE, the final name of the form in

the CDD is EMPLOYEE__ONE.

For example, to create a form named CDD$TOP.ACCOUNTING.PAYROLL__FORM
when your CDD$DEFAULT is defined as CDD$TOP.ACCOUNTING, type:

FDU> CREATE FORM PAYROLL_FORM

(You can abbreviate this command to a few characters, such as CR FO
PAYROLL_FORM.)

The form definition that you create is stored in the CDD location
CDD$TOP.ACCOUNTING.PAYROLL _FORM.

After you issue the CREATE FORM command, FDU calls the form editor and
displays the form editor Phase Selection menu.

Note

If you do not want to use the form editor with the CREATE FORM
and REPLACE FORM commands, then be sure to use the
/FORM_FILE qualifier. This qualifier allows you to use a file, gener-
ated by the VAX FMS form editor, that contains a form definition.

If you do not use the /FORM_FILE qualifier on a CREATE FORM or
REPLACE FORM command, the form editor will be invoked
automatically.

You can then create the form definitions as described later in this manual.
When you issue the form editor command that saves the finished form defini-
tion, FDU stores it in the CDD location specified by the form name.

3.3.2 Modifying an Existing Form Definition

You may wish to make changes or additions to a form definition already stored
in the CDD. The MODIFY FORM command allows you to enter the form editor
and make any desired changes or additions without having to recreate the form
definition.

Using the Form Definition Utility (FDU) and the Form Editor 3-3



For example, to modify the existing form definition PAYROLL _FORM, issue
the command:

FDU) MODIFY FORM PAYROLL-FORM

(You can abbreviate this command to MO FO PAYROLL _FORM.)

FDU places the form definition PAYROLL _FORM in the form editor. You can
then use the form editor to make any desired changes.

When you have made the desired changes and additions to the form definition,
FDU stores the modified form with the same name and in the same CDD loca-
tion as the original form; the original form definition is deleted.

The form definition that you identify in the MODIFY FORM command must
exist in the CDD. If you provide a CDD path name that does not exist or does
not contain a form, FDU gives an error message and returns you to FDU level.

3.3.3 Making Changes After Modifying a Form Definition

If you modify (or replace) a form definition after a request that uses the form
has been created, it may be necessary to revise the request. If you modify a
form definition, keep in mind:

e Changes that were made to the form definition

e Time that the changes were made
If you modify or replace a form definition after a request library file (RLB) that

uses the form has been built, it will always be necessary to rebuild the RLB
file.

3.3.4 Replacing an Existing Form Definition

If you wish to replace a form definition that already exists in the CDD with a
new form, use the REPLACE FORM command. For example, to create a new

form to replace the form definition PAYROLL.INFORMATION _FORM, issue
the command:

FDU> REPLACE FORM PAYROLL.INFORMATION_FORM

(You can abbreviate this to REP FO PAYROLL.INFORMATION _FORM.)

3-4 Using the Form Definition Utility (FDU) and the Form Editor



When you issue the REPLACE FORM command, FDU calls the form editor
with no form defined. After you finish creating the new form definition, the
newly created form definition is stored in PAYROLL.INFORMATION _FORM,
and the old form is deleted. The MODIFY FORM and REPLACE FORM com-
mands are similar, since both commands call the form editor and replace an
existing form definition.

When you issue the MODIFY FORM command, the form editor begins by plac-
ing the existing form that you name in the form editor buffer. When you issue
the REPLACE FORM command, the form editor begins with no existing infor-
mation in the form editor buffer.

3.3.5 Five Phases of the Form Editor

When you issue FDU commands to create, modify, or replace a form definition,
you ordinarily enter the form editor. The form editor has five phases, each of
which has a distinct function:

1. Form phase

In the Form phase, you define characteristics that apply to the entire
form definition or to all fields that you create on the form. In this phase,
you can specify:

o Screen background for the form (dark, light, or current screen)
e Screen width (allowing 80-column or 132-column forms)

o Video highlighting for input fields (that determine the run-time video
attributes of a field available for input)

Name of a Help form to be associated with the form

Default field attribute assignments for the form
2. Layout phase

In the Layout phase of the form editor, you create the overall appearance
of the form and identify the fields on the form. You use the Layout phase

to specify:

e Location and text of all background text

o Location, length, and picture type of fields

e Location and number of lines of scrolled regions

e Video highlighting for any areas of the form

Using the Form Definition Utility (FDU) and the Form Editor 3-5



The Layout phase is one of two required phases of the form editor. (The
other is the Exit phase.) You must explicitly include background text
and/or fields during the Layout phase to have a meaningful form
definition.

3.  Assign phase

In the Assign phase, you can assign particular attributes to individual
fields that you identified in the Layout phase. The most important attrib-
ute assigned in this phase is the Field Name, since form field names
must be associated, or mapped, to record field names in order to transfer
data between a form and a record. Other attributes that can be assigned
to each field:

e Provide a default value for the field, which is displayed in the field at
run time (only if a request does not map data into the field)

o Provide a help message, which the operator can read at run time
o Affect the appearance of the field and of data entered into the field

» Provide special validation procedures, called field validators, which can
specify a list or range of valid entries or apply a predefined check digit
algorithm to data entered by the operator at run time

4.  Order phase

In the Order phase, you specify the order in which the operator accesses
the fields for input at run time.

Use the Order phase to change the access order or to determine the cur-
rent field access order.

5. Exit phase

In the Exit phase, you either save the form that you have just defined
(storing it in the CDD) or you choose not to save it. The Exit phase of the
form editor is always the final phase.

Note

If you entered the form editor using either the REPLACE
FORM or MODIFY FORM command and choose not to save the
newly-defined form, the original form definition (that would
have been replaced or modified) is not deleted from the CDD.

After completing the Exit phase, TDMS returns you to FDU level and
displays the FDU> prompt.

3-6 Using the Form Definition Utility (FDU) and the Form Editor



3.4 Using Other FDU Commands

In addition to the three FDU commands that enable you to use the form editor,
other especially useful FDU commands are:

« COPY FORM

Makes a copy of a form definition within the CDD.
« LIST FORM

Produces a listing of important information about the form definition.
« DELETE FORM

Deletes a form definition from the CDD.

These commands are described in the following sections.

Other commands that you can issue at the FDU > prompt, as well as complete
information concerning syntax, qualifiers, defaults, and usage for all FDU com-
mands are found in the VAX TDMS Reference Manual.

3.4.1 Copying a Form Definition in the CDD

Use the COPY FORM command in FDU to copy an existing form definition in
the CDD and store it in a new CDD location.

For example, to make a copy of the form definition named PAYROLL_FORM,
issue the command:

FDU) COPY FORM PAYROLL_FORM FINANCE_FORM

This creates a new form definition named FINANCE _FORM, stored in your
current default CDD directory with the name FINANCE _FORM. This form
definition is identical to PAYROLL _FORM.

Use the COPY FORM command to save time when you are creating similar
forms. You can create a single form, use the COPY FORM command to generate
copies, and then make any modifications needed using the MODIFY FORM
command.

3.4.2 Listing Information About a Form Definition
You need to know a great deal of information about the form definition when

creating requests or if you are creating record definitions after you create form
definitions. Use the LIST FORM command in FDU to generate this information.

Using the Form Definition Utility (FDU) and the Form Editor 3-7



The LIST FORM command provides the following:

e Form name

o Formwide attributes, including:

Screen width

Screen background

Video characteristics for input fields

CDD path name of the Help form

Date and time that the form was stored in the CDD

Field access order list

¢ Information for each field on the form, including:

You usually need all of this information before creating the requests that use
the form. If records are defined after the form, you need to know the names, pic-

Field name

Field picture characters
Length

Default value

Help text

Attributes

Field validators

Video highlighting
Scrolling

Indexing

ture types, and lengths of the form fields.

To create a file that lists this information about the form definition, use the
LIST FORM command, giving the form name and the /OUTPUT qualifier. For
example, this command directs the form definition information to a file named

PAYROLL.TXT in your default VMS directory:

FDU) LIST FORM PAYROLL_FORM,OUTPUT=PAYROLL.TXT

3-8

Using the Form Definition Utility (FDU) and the Form Editor



If you do not use the /OUTPUT qualifier, the form definition information in
PAYROLL_FORM is displayed on your terminal (or to the device designated as
SYS$OUTPUT).

You can send the output of the LIST FORM command directly to your default
line printer by using the /PRINT qualifier with the LIST FORM command. For
example:

FDU) LIST FORM PAYROLL-FORM/PRINT

This command creates a listing of information about the form definition
PAYROLL _FORM that is sent to the default line printer.

You may use both the /OUTPUT and /PRINT qualifiers on the LIST FORM
command to create a file and a line printer listing. For example:

FDU) LIST FORM PAYROLL-FORM/OUTPUT=PAYROLL.TXT/PRINT

Issuing this command does the following:

1. Writes the information about PAYROLL _FORM to a file named
PAYROLL.TXT

2.  Sends the file PAYROLL.TXT to the line printer
3.4.3 Deleting a Form Definition
You can delete a form definition from the CDD by using the DELETE FORM
command. For example, to delete the form PAYROLL_FORM from the CDD,

issue the command:

FDU) DELETE FORM PAYROLL_FORM

Using the Form Definition Utility (FDU) and the Form Editor 3-9






Assigning Formwide Attributes 4

In the Form phase, you assign attributes that apply to the entire form. This
chapter discusses the use of features that are available in this phase.

4.1 Introduction to the Form Phase

Use the Form phase to:

e Set the screen background of the form

Set the width of the form

Assign video attributes for fields when they are available for input

Identify a Help form

Assign default field attributes
To assign attributes in the Form phase, move the cursor and denote your selec-

tions with a single character or a string. When in the Form phase, you can use
the function keys listed in Table 4-1.

4-1



Table 4-1: Form Phase Function Keys

Key

Function

TAB

BACK SPACE (or F12)
LINE FEED (or F13)
RETURN

MENU (GOLD-KP7)

HELP (PF2 or F15)

Moves the cursor to the next field.
Moves the cursor to the previous field.
Deletes contents of the current field.

Saves all current field values and returns you to the
Phase Selection menu or saves all current values and dis-
plays the Default Field Attribute form.

Saves all current field values and returns you to the
Phase Selection menu.

Displays a line of help information at the bottom of the
screen.

The following section describes the use and meaning of the parts of the Form

phase.

4.2 Entering the Form Phase

You can enter the Form phase only from the Phase Selection menu. (The Phase
Selection menu is displayed when you enter the form editor after issuing the
CREATE FORM, MODIFY FORM, or REPLACE FORM command at FDU level.)
At the Phase Selection menu, type FORM (or just the abbreviation F) and press
RETURN. The Form phase screen is then displayed, as shown in Figure 4-1.

4-2 Assigning Formwide Attributes




Form Attributes
Attributes for Form Named:
Screen Background: [AS IS = {; Black = 2; White = 3] 1]
Screen Width: [80 Columns = 1; 132 Columns = 2] 1]
Do you wish to assign default field attributes [Y/N1? [
HELP Form CDD Path-name: (Leave Blank If No HELP Form)

Do you want Input Field Highlighting (If so, mark X below as required) [Y/N]?
Bold . Underscore _ Blink _ Reverse _

N J

Figure 4-1: Form Phase Screen

To leave the Form phase of the form editor, press either RETURN or GOLD-
KP7. If you press RETURN and have chosen to assign default field attributes,
the Default Field Attribute form is displayed; otherwise, the Phase Selection
menu is displayed. (Press RETURN to reach the Phase Selection menu from the
Default Field Attribute form.)

4.2.1 Setting the Screen Background

During the Form phase, you determine the screen background that the operator
sees at run time. You can specify one of the following:

1. As Is (Default)

TDMS does not change the screen background on the terminal. If the
operator’s screen is set to dark background, the run-time form has dark
background. If the operator’s screen is set to light background, the run-
time form has light background.

2. Black

The run-time form is displayed with black (dark) background.
3.  White

The run-time form is displayed with white (light) background.

Assigning Formwide Attributes 4-3



Choose the screen background for the form by entering the corresponding num-
ber in the Screen Background field or accept the current value (as displayed)
and move to the next field by pressing the TAB key.

4.2.2 Setting the Screen Width

The screen width setting allows you to specify whether the form will be 80
columns wide or 132 columns wide form. The 132-column form allows you to
include more fields on the form than an 80-column form; however, the larger
characters on the 80-column form are easier to read. You can achieve an espe-
cially readable form by using a 132-column form (assigned in the Form phase)
and double-wide lines (assigned in the Layout phase). Characters displayed with
this configuration are about 20% larger than characters displayed in 80-column
mode with normal-width lines.

To set the screen width, enter either 1 or 2 at the Screen Width field depending
on the size you need:

1. 80 Columns

The form editor is set to 80-column mode and the run-time form has 80
columns.

2. 132 Columns
The form editor is set to 132-column mode and the run-time form has 132

columns.

4.2.3 Assigning Default Field Attributes

Field attributes are special characteristics that you can apply to form fields dur-
ing the Assign phase. Chapter 6 of this manual discusses the use and meaning
of field attributes.

Note

Avoid assigning default field attributes if you do not understand their
use and meaning. You can leave the Form phase and not assign
default field attributes by pressing RETURN.

4-4 Assigning Formwide Attributes



In the Form phase, you can specify field attributes that are assigned by default
to any field you subsequently create in the form while in the current FDU ses-
sion. Any field attribute that has been assigned by default in the Form phase
can be deassigned in the Assign phase. Similarly, you can assign any attribute
in the Assign phase, regardless of the default specified in the Form phase.

To assign default field attributes, type Y at the question on the Form Attributes
form:

"Da you wish to assian default field attributes?"

When you complete the Form phase by pressing RETURN, the form editor dis-
plays a list of field attributes. To return to the Phase Selection menu, press
GOLD-KP7. Figure 4-2 shows the Default Attributes for New Fields form.

( )

Default Attributes for New Fields

_ Autotab ~ Right Justify _ Zero Suppress _ Response req’d
— No Echo _ Fixed Decimal — Uppercase Clear Character
_ Display Only . Zero Fill — Must Fill

Default Field Video
- Bold
_ Blink
— Reverse
— Underline

. J

Figure 4-2: Default Attributes for New Fields Form

Enter X next to those attributes that you want to assign by default; press the
space bar when the cursor is next to those attributes that you want to deassign.
For Default Value and Help Text selections, type in the text you wish to be dis-
played by default for each field.

Assigning Formwide Attributes 4-5



Remember that the default field attributes that you specify apply only to fields
that you create later in the Layout phase. If you leave FDU, save the form, and
then later modify it, any new fields will not have the defaults. You do not affect
the attributes of any fields that have already been created when you specify
default field attributes.

4.3 Help Forms

Help forms are forms that provide information to the operator at run time. They
are created in FDU and stored in the CDD. Help forms should include only
background text since you cannot map any fields on a Help form for input or
output.

At run time, if the cursor is located at a field that has a help message, the help
message is displayed the first time that the operator presses the HELP key (PF2
or F15). This message is displayed on the last line of the screen and is created
in the Assign phase. See chapter 6, Assigning Field Attributes and Validators,
for more information. When the operator presses the HELP key a second time,
the entire screen is cleared (regardless of the screen area used by the Help form)
and a Help form is displayed.

Each Help form can have one Help form assigned to it in the Form phase. These
additional forms are displayed each time you press the HELP key.

You can have a single Help form for any form and a single help message for
each field on a form.

If your form has an associated Help form, enter the name of the Help form. It is
good practice to use the full CDD path name (CDD$TOP.PAYROLL.HELPFORM,
for example) when identifying a Help form.

If the name of your Help form continues beyond one line, you can continue typ-
ing and the text automatically wraps to the next line. Whenever the name of a
Help form is on more than one line, FDU concatenates all of the text.

4.3.1 Assigning Input Field Highlighting

VAX TDMS allows you to specify video highlighting for fields when they are
available (open) for input at run time. The video attributes that you assign for
input fields during the Form phase replace other video attributes that you may
assign to the field during the Layout phase but only when the field is the current
input field. If the cursor is not in the current input field, the video attributes
assigned in the Layout phase override those set in the Form phase.

Video characteristics set by a request override those set during the Form phase.

4-6 Assigning Formwide Attributes



The video highlights available include:

e Blink
« Bold
¢ Reverse

¢ Underline

To assign video highlights, type Y to the question on the Form Attributes form:

"D you want Input Field Highlighting"

Mark the appropriate video highlights with an X. The cursor moves to the next

video highlight when you press:
e X to assign the video highlights

« Space bar to deassign the video highlights

+ TAB key to keep the current value

You can choose more than one video highlight attribute, or you can choose none.
Table 4-2 provides several examples that demonstrate the run-time effect of input
field video highlighting.

Table 4-2: Examples of Input Field Highlighting

Input
Highlighting
Activated
(Form Phase)

Input Field
Highlights
(Form Phase)

Other Video
Highlights
(Layout Phase)

Run-time result when the
cursor is in the field

Yes
Yes

Yes

Bold
Blink

None

None

Blink, Bold

Reverse

Blink, Bold,
Reverse

Blink,
Underline

Underline

Underline

Bold
Blink

None

Underline

Underline

Assigning Formwide Attributes



To remove all video attributes from a field when it is open for input, leave each
of the video characteristics blank after typing Y to the question:

"Do you want Input Field Highlighting?"

Determine the screen background, screen width, and video highlights that will
render the most legible run-time form. The readability of the form that you
define can have a significant impact on the accuracy and productivity of
operators.

4-8 Assigning Formwide Attributes



Laying Out the Form 5

In the Layout phase of the form editor, you create the screen image of the form
and the fields that are included on the form. Specifically, you identify:

e Location and text of all background text
» Location, length, and picture type of all fields

» Scrolled regions

Video attributes that are displayed whenever the form is displayed, including:
— Video highlights (bold, blink, underline, and reverse)
— Lines that are double-wide or double-size

— Rectangles or lines drawn by the form editor

5.1 Entering the Layout Phase

To enter the Layout phase, type the word LAYOUT, or use the abbreviation L,
when the Phase Selection menu is displayed. When you press RETURN, the
form editor displays the Layout phase screen.

You can enter the Layout phase only from the Phase Selection menu.

5-1



5.2 Leaving the Layout Phase

MENU key (GOLD-KP7) Press the MENU key to exit from the Layout
phase and return to the Phase Selection menu.
To use the MENU key, press the sequence
GOLD-KP7.

You can use the MENU key at any time except
when there is an active select range. To leave
the Layout phase when a select range is active,
first press RESET (GOLD-KP period) and then
press MENU.

5.3 Layout Phase Screen
The Layout phase screen has 24 lines:

e Lines 1 to 23 show the current background text, picture characters, field cons-
tants, and video highlights.

e Line 24 is a message line that displays the cursor status line, help messages,
date or time formats, and other information.

When you attempt a Layout phase operation that is not valid, the form editor
signals an error by ringing the terminal bell. You can get specific information
about the error that you have just made by pressing the HELP key on your ter-
minal. If you defined the screen background to be black or white in the Form
phase, you can press the sequence GOLD-Q to cause the form editor to signal
errors by reversing the screen background (rather than ringing the terminal
bell). If you defined the screen to be “As is”, you cannot use the sequence
GOLD-Q.

The cursor status line is always displayed on the 24th line of the screen dur-
ing the Layout phase. When you create a new form and enter the Layout phase,
the first 23 lines are blank and the cursor status line looks like this:

Cursor [OR Line I Column Modes

Each of the blocks of text on the cursor status line provides information that is
useful during the creation of the form definition. The following section explains
the meaning of each block.

5-2 Laying Out the Form



Cursor

Line

Column

Modes

The two blocks of text to the right of Cursor provide information
about what already exists (in terms of background text or fields
and scrolled or nonscrolled lines) at the location where the cursor
is positioned.

TXT When the first Cursor block reads TXT, the cursor is on a
character (or blank space) that is currently defined as
background text.

FLD When the first Cursor block reads FLD, the cursor is on a
character that is currently defined as belonging to a field.

Every space on a form is either background text or part of a
field.

NOR When the second Cursor block reads NOR, the cursor is
on a character that is on a nonscrolled (normal) line.

SCR When the second Cursor block reads SCR, the cursor is on
a character that is on a scrolled line.

Every line on a form is defined as either normal or scrolled; the
default is normal.

The number in the Line block indicates the line (row) on which
the cursor is currently positioned. If you press down arrow, the
cursor moves down one line and the line number increases by
one. You cannot move the cursor above Line 1 or below Line 23.

The number in the Column block indicates the column on which
the cursor is currently positioned. If you press right arrow, the
cursor moves one column to the right and the column number
increases by one. The column range is from 1 to 80 (on an
80-column form) or from 1 to 132 (on a 132-column form).

The two blocks to the right of Modes provide information about
whether you are typing a field or background text, and how
characters will appear as they are typed on the screen.

TXT When the first Modes block reads TXT, anything that you
type is background text. You can type any character
when you are in Text mode (TXT).

FLD When the first Modes block reads FLD, anything that you
type is part of a field. You can type only valid picture
characters, field constants, or spaces when you are in
Field mode (FLD).

Laying Out the Form 5-3



The form editor is always in either Text mode (TXT) or Field
mode (FLD). The default is Text mode.

OVS When the second Modes block reads OVS, the form editor
is in Overstrike mode. In Overstrike mode, if you type a
character with the cursor at a position where another
character already exists, you replace that character. For
example, say you are in Overstrike mode with the cursor
at the letter “s” in the word ‘“‘seven.” If you type “eight,”
the word ”’seven” is erased from the form, and the word
“eight” replaces it.

If you are in Overstrike mode and type background text
over picture characters, the field or portion of a field
represented by the characters is deleted. Similarly, typing
picture characters over background text replaces the back-
ground text with a field, if you are in FLD mode.

INS When the second Modes block reads INS, the form editor
is in Insert mode. In Insert mode, typing a character with
the cursor at a position where another character already
exists moves the existing character to the right. For
example, say you are in Insert mode with the cursor at
the letter “s” in the word “seven”. If you type “eight,”
the word “seven” is moved five spaces to the right. The
result is the word “eightseven”.

The form editor is always in either Overstrike mode or Insert
mode. The default is Overstrike mode.

When the cursor is positioned on an existing field, the cursor status line also
includes a Field-name block, to the right of the second Modes AINS/OVS)
block. The Field-name block displays the current name of the field on which the
cursor is positioned. If no field name has been assigned, the default field name
assigned by the form editor (FSNNNN) is shown. You learn about field names
and how to assign them in Chapter 6 of this manual. When the cursor is posi-
tioned on any location that is not an existing field, the Field-name block is not
displayed.

The Field-name block is especially useful when reviewing a form definition in
the Layout phase because it provides you with the current field name. Addition-
ally, if you define adjacent fields, the Field-name block shows you where one
field ends and the second begins. (You learn how to define adjacent fields later
in this chapter.)

5-4 Laying Out the Form



5.4 Layout Phase Keypad and Function Keys

In the Layout phase, you use the main keyboard to type background text and
picture characters, and you use the keypad (to the right of the main keyboard)
to activate various features of the form editor. Figure 5-1 shows the keypad for

the Layout phase.

(Prl ) Fz h (PF:! (PFa )
oversTRk | | DEL LINE
GOLD HELP
INSERT | | unD LINE
J\ J L J L J
(7 (3 Y0 N ~\
VIDEO TEXT SCROLL DRAW
MENU FELD | [unscroLL|| unDRAW
J L J L J L J
4 eno ][5 eno (6 O )
OF LINE SCROLL cut DELC
BOTTOM ToP PASTE UND C
_JL JL JL )
1 (2 eno )3 TesT )[enter )
CENTER || oF TEXT PASTE
DEL ADJACENT
CHNGCASE[ | eNDLINE FIELD ENTER
J J \ J
- S —
BEGINNING OF LINE SELECT ASSIGN
FIELD ATT
OPEN LINE RESET
L L L J

ZK-00095-00

Figure 5-1: Layout Phase Keypad

To use function keys shown in the lower half of the key, first press the GOLD
key and then press the keypad key.

In addition to the keypad function keys, there are several other function keys
available in the Layout phase as shown in Table 5-1.

Table 5-1: Layout Phase Function Keys

Key

Function

LINE FEED (F13)
BACK SPACE (F12)
HELP (PF2 or F15)
Right arrow

Moves down one line.
Moves backward one character.
Displays the Help form for the Layout phase.

Moves forward one character.

(continued on next page)

Laying Out the Form 5-5



Table 5-1: Layout Phase Function Keys (Cont.)

Down arrow
CTRL/U
CTRL/R
CTRL/W
GOLD-D
GOLD-T
GOLD-Q
GOLD-S
GOLD-W
GOLD-n

Key Function
Left arrow Moves backward one character.
Up arrow Moves up one line.

Moves down one line.
Deletes to beginning of line.
Refreghes screen.

Refreshes screen.

Inserts Date field.

Inserts Time field.

Reverses error mode.
Specifies a double-size line.
Specifies a double-wide line.

Repeats n times.

The remainder of this chapter describes how you use these keys to take advan-

tage of the features available in the Layout phase.

5.5 Using Function Keys to Move the Cursor

Use the keypad and other function keys to move the cursor on the form. You
can always determine the exact cursor location by checking the Line and

Column blocks on the cursor status line.

Right arrow key

Left arrow key

Pressing the right arrow key once moves the
cursor one character to the right. If you are at
the end of a line, pressing the right arrow key
moves the cursor to the first position of the

next line.

Pressing the left arrow key once moves the cur-
sor one character to the left. If you are at the
beginning of a line, pressing the left arrow key
moves the cursor to the end of the previous

line.

5-6 Laying Out the Form




Up arrow key

Down arrow key

LINE FEED key (F13)

BACK SPACE key (F12)

END-OF-LINE key (KP4)

END-OF-TEXT key (KP2)

BEGINNING-OF-LINE key
(KPO)

Pressing the up arrow key once moves the cur-
sor up one line, in the same column position.
You cannot move the cursor above Line 1.

Pressing the down arrow key once moves the
cursor down one line, in the same column posi-
tion. You cannot move the cursor below Line
23.

Pressing the LINE FEED key moves the cursor
down one line, in the same column position.
The LINE FEED key is identical to the down
arrow key.

Pressing the BACK SPACE key moves the cur-
sor one character to the left.

Pressing the END-OF-LINE key moves the cur-
sor to the rightmost column of the current line.
To use the END-OF-LINE key, press KP4.

If the cursor is already at the rightmost posi-
tion of the current line, pressing END-OF-LINE
moves the cursor to the rightmost column of
the next line.

Pressing the END-OF-TEXT key moves the cur-
sor to the last nonblank character of the cur-
rent line. (A nonblank character is any picture
character, any field constant or any background
text other than a space.) To use the END-OF-
TEXT key, press KP2.

If the cursor is already positioned at (or to the
right of) the last nonblank character, the cursor
moves to the last nonblank character of the
next line.

Pressing the BEGINNING-OF-LINE key moves
the cursor to the first column of the current
line. To use the BEGINNING-OF-LINE key,
press KPO.

If the cursor is already in Column 1, pressing
BEGINNING-OF-LINE moves the cursor to the
first column of the previous line.

Laying Out the Form 5-7



BOTTOM key (GOLD-KP4)

TOP key (GOLD-KP5)

Pressing the BOTTOM key moves the cursor to
Column 1 on the bottom line of the form. To
use the BOTTOM key, press the sequence
GOLD-KP4.

Pressing the TOP key moves the cursor to the
first column of the top line of the form (Line 1,
Column 1). To use the TOP key, press
GOLD-KP5.

5.6 Creating Background Text and Fields

The most important parts of a form definition are fields and background text.
Although not every form definition has both fields and background text (Help
forms, for example, are usually entirely background text), most forms used to
enter or display data include both fields and background text. When defining a
form with the form editor, use two keypad function keys to distinguish between
background text and fields: the TEXT key (KP8) and the FIELD key (GOLD-

KP8).

5.6.1 Creating Background Text: The TEXT Key

TEXT key (KP8)

Pressing the TEXT key puts the form editor in
Text mode, where any character that you type
is background text. To use the TEXT key, press
KP8.

Text mode is the default when you enter the
Layout phase to create a new form. When you
press the TEXT key or when you enter the
Layout phase, the first Modes block on the cur-
sor status line reads TXT.

When the form editor is in Text mode (TXT),
anything that you type becomes background
text and is shown whenever the form is dis-

played at run time.

Background text is often used to:

» Give a title or header to a form (for example, Basic Employee Information)

» Provide prompts for a field (for example, a field that collects or displays an
employee’s name is likely to have the background text Name: next to the

field)

5-8 Laying Out the Form



e Provide messages that are always displayed to the operator (For example, a
message that says: Be sure to check your work)

You can type any character from the main keyboard when the form editor is in

Text mode.

5.6.2 Creating Fields: The FIELD Key

FIELD key (GOLD-KP8) Pressing the FIELD key puts the form editor in

Field mode, in which any characters that you
type are picture characters, blank spaces, or
field constants.To use the FIELD key, press the
sequence GOLD-KP8. When you use the FIELD
key, the first Modes block on the cursor status
line reads FLD indicating that you are in Field
mode.

5.6.3 Identifying Field Picture Type and Length

When the editor is in Field mode (FLD), you can type only picture characters,
field constants, or spaces. A picture character indicates the picture type of the
data that is allowed for input at run time. A field constant is a character or
embedded space in a field that is displayed at run time. For example, to include
a hyphen in a field representing a telephone number, you would use the picture
character 9 and the hyphen field constant (-) to create the seven-character
numeric field 999-9999.

Table 5-2 lists the valid picture characters and the picture type that each
represents, and Table 5-3 lists the valid field constants.

Table 5-2: Picture Characters

Picture Character

Picture Type

©

Numeric (0-9)

Alphabetic (A-Z, a-z, space, and any alphabetic character in the
DEC Multinational Character Set)

Alphanumeric (A-Z, a-z, 0-9, space, and any alphanumeric
character in the DEC Multinational Character Set)

Signed numeric (0-9, +, -, period)

Any displayable character in the DEC Multinational Character
Set

Laying Out the Form 5-9



Characters from the DEC Multinational Character Set are valid for background
text.

Table 5-3: Field Constants

! " # $ & ’ ( )
* + , . - / : %
; < > = ? @ [ 1

4

AN ~ - { L I ~

B (marks an embedded space)

If you want to have a space embedded within a single field, use the field con-
stant B. At run time, one space appears in the field for each B used in the Lay-
out phase field definition. For example, a field indicated by the following picture
characters and field constant results in a single, six-character field:

KXKBKKK

At run time, TDMS automatically inserts a space in the fourth position of the
form field when the onerator enters data or when data is output to the field by
a request.

A field can be no longer than one screen line (80 or 132 characters depending on
the current form width).

5.6.4 Determining Form Field Data Types

The form field data type is determined by the picture string, which is the group
of picture characters that make up the field. Table 5-4 shows the form field data
types and the corresponding picture characters for each data type.

Table 5-4: Form Field Data Types

Picture Characters Field Data Type
All 9s UNSIGNED NUMERIC

All A’s TEXT

All Cs TEXT

All Ns SIGNED NUMERIC

All Xs TEXT

(continued on next page)

5-10 Laying Out the Form



Table 5-4: Form Field Data Types (Cont.)

Picture Characters Field Data Type

Any combination of TEXT

identifiers

All 9s or all Ns with Named size field validator (UNSIGNED BYTE, SIGNED
size field validator WORD, and so on)

Date (inserted using DATE

DATE key)

Time (inserted using TIME

TIME key)

For example, a form field defined as AAAAA is a five-character TEXT field, and
a field defined as NNN is a three-character SIGNED NUMERIC field. You can
also use field validators to define numeric fields to have data types of SIGNED
or UNSIGNED BYTE, WORD, or LONGWORD or SIGNED QUADWORD. You
learn how to use and assign field validators in Chapter 6.

You can use combinations of picture characters to identify a field. For example,
if your invoice numbers are always two letters followed by five numbers, you
would define a field as:

AARF3995

At run time, if that field is open for operator input, the operator can enter only
alphabetic characters in the first two positions and only numeric characters in
the last five positions. (You can impose additional validation of operator input
for each field using field validators, as described in Chapter 6.)

Any field that includes at least one Text picture character has a TEXT data
type. The following field pictures show fields with TEXT data types:

AAAAAA
€999)CC9-9999
KX-9993
A.X.B.9

In a TDMS application, the data type of a form field must be compatible with
the data type of any record field to which the form field is mapped in a request.
If the form and record fields are incompatible, TDMS request library files can-
not be built.

Laying Out the Form 5-11




5.6.5 Creating Special Fields: DATE and TIME Keys

DATE-FIELD key
(GOLD-D)

TIME-FIELD key
(GOLD-T)

5-12

Laying Out the Form

The form editor provides a special function key
that automatically inserts a Date field in the
form definition. To use the DATE-FIELD key,
press the sequence GOLD-D. When you press
DATE-FIELD, the cursor status line clears and
five date formats are displayed on the bottom
line of the screen:

1 Month Day, Year (AARARARAAAAB99,B9999)
2 Day-Honth-Year (99-AAA-99)

3 Month/Day/Year (99,99,99)

4 Day-Month-Year (99-99-99)

S Day-Month-Year (99-AAA-9993)

To select a date format, type the appropriate
number for the format and press RETURN. The
form editor inserts a Date field in the format
that you chose on the form. If there is insuffi-
cient space on the line for the Date field, the
form editor signals an error. Once the Date
field is inserted, you can delete only the entire
field and not a portion of it.

When you create a field using the DATE-
FIELD key, the field has a DATE data type.
When a Date field is mapped for input, the cur-
rent date is displayed in the Date field unless
specifically overridden by a default value on
the form or an output mapping in a request.

The form editor provides a special function key
that automatically inserts a Time field on the
form definition. To use the TIME-FIELD key,
press the sequence GOLD-T.

When you press TIME-FIELD, the cursor status
line clears and two time formats are displayed
on the bottom line of the screen. Choose one of
the two formats by typing the appropriate num-
ber. The two time field formats are:

1 hour:minute:second (9%:93:993)
2 hour:minute:AM/PM (99:99BAA)



Mapping combined
DATE/TIME FIELDS

After you select a format, a Time field is
inserted on the form. If there is insufficient
space on the line for the Time field, the form
editor signals an error. Once the Time field is
inserted, you can delete only the entire field
and not a portion of it.

When you create a field using the TIME-FIELD
key, the field has a TIME data type.

In a request, you can map between two
FIELDS form fields with data types of TIME
and DATE and a single record field with data
type DATE (ADT). For example:

INPUT FORM-TIME-FLD TO RECORD-DATE-FLD;
INPUT FORM-DATE-FLD TO RECORD-DATE-FLD;

TDMS moves the data from two separate fields
and merges it into the single record field with
data type DATE.

You can also map the single record field with
DATE data type to two separate form fields
TIME and DATE. For example:

OUTPUT RECORD-DATE-FLD TO
(FORM-DATE-FLD, FORM-TIME-FLD);

At run time TDMS moves the data from a sin-
gle record field and displays it in the appropri-
ate Date and Time form fields.

5.6.6 Creating Special Fields: The ADJACENT FIELD Key

ADJACENT FIELD key
(GOLD-KP3)

The ADJACENT FIELD key lets you define
separate fields when you have contiguous pic-
ture characters. (By default, a string of contigu-
ous picture characters represents a single field.)
To use the ADJACENT FIELD key, press the
sequence GOLD-KP3.

Laying Out the Form 5-13



5-14

Laying Out the Form

For example, say that you want a ten-digit tele-
phone number to be represented on the form as
13 consecutive characters (ten digits, a set of
parentheses, and a hyphen), but you want two
separate fields. The first field represents the
first three digits of the phone number (the area
code) and the second field represents the final
seven digits. Type the background text, picture
characters, and field constants as follows:

Telephone: (999)999-9999

Telephone: is background text, the 9s are pic-
ture characters representing a ten-digit tele-
phone number, and the parentheses and
hyphen are field constants that are displayed
on the form without interrupting the continuity
of the field. So far, this creates a single, ten-
character field, with a numeric picture type.
(The field constants are not counted when
determining the length of the field.)

To divide the one field into two, move the cur-
sor (with the right and left arrows) to the first
character of the desired second field. In this
case, you would move the cursor to the first 9
after the right parenthesis. Press the
ADJACENT FIELD key and you now have two
fields, one represented by the first three picture
characters (999) and the second represented by
the last seven picture characters (999-9999).

When the new field is created, the Field-name
block on the cursor status line displays the
default field name of the newly created field.
When you have adjacent fields, you can see
where one field ends and a second begins by
moving the cursor (with the left arrow and
right arrow keys) and checking the Field-name
block. The second field begins at the position
where the Field-name block changes.



5.7 Editing Text

Form editor function keys let you edit background text and fields directly in
your form definition. The following sections describe these keys.

Note that when you delete a field and then undelete it, field attributes assigned
to the field, except field validators, are carried over.

5.7.1 Deleting and Undeleting Text

DELETE-LINE key (PF4)

DELETE-TO-
BEGINNING-OF-LINE
(DEL/BOL) Key (CTRL/U)

Pressing the DELETE-LINE key deletes the
entire line on which the cursor is positioned. To
use the DELETE-LINE key, press PF4 (on the
keypad).

If you press DELETE-LINE while the form edi-
tor is in Overstrike mode, no other lines on the
form are affected. If you press DELETE-LINE
while the form editor is in Insert mode, each
line below the deleted line moves up one line.

For example, if the form editor is in Insert
mode and the cursor is on line 8. If you press
DELETE-LINE, all of line 8 is deleted and
stored in the line buffer, and any text or fields
on lines 9 to 23 move to lines 8 to 22,
respectively.

You cannot use the DELETE-LINE key to
delete a line in a scrolled region or a vertically-
indexed field. To delete a line in a scrolled
region, use the UNSCROLL key. To delete a
line on which there is a vertically-indexed field,
you must first deassign the vertical indexing,
and then you can delete the line.

Pressing the DELETE-TO-BEGINNING-OF-
LINE (DEL/BOL) key deletes all characters
from the beginning of the current line to the
character to the immediate left of the cursor.

To use the DEL/BOL key, press CTRL/U.

For example, if the cursor is on line 9, column
41 and you press DEL/BOL, the characters in
columns 1 to 41 are deleted; any characters
between column 42 and the end of the line are
unaffected.

Laying Out the Form 5-15



DELETE-TO-END-OF-
LINE (GOLD-KP2)

UNDELETE-LINE key
(GOLD-PF4)

DELETE-CHARACTER
key (KP comma)

5-16 Laying Out the Form

Pressing the DELETE-TO-END-OF-LINE
(DEL/EOL) key deletes all characters from the
cursor position to the end of the current line.
To use the DEL/EOL key, press the sequence
GOLD-KP2.

For example, if the cursor is on line 9, column
41 and you press DEL/EOL, the characters in
columns 41 to 80 (or, on a 132-column form, the
characters in columns 41 to 132) are deleted.

The UNDELETE-LINE key places the contents
of the last line that you deleted on the screen.

If the form editor is in Overstrike mode, the
cursor must be on a blank line for the line to
appear. If the form editor is in Insert mode, the
cursor can be on any line, but existing lines are
moved down one line.

To use the UNDELETE-LINE key, press the
sequence GOLD-PF4.

Pressing the DELETE-CHARACTER key
comma) deletes the character on which the cur-
sor is positioned. To use the DELETE-
CHARACTER key, press the comma key on the
keypad (KP comma).

If the form editor is in Overstrike mode, press-
ing DELETE-CHARACTER deletes one charac-
ter but does not move the cursor. If the form
editor is in Insert mode, pressing DELETE-
CHARACTER deletes one character and moves
the remaining characters on the line one posi-
tion to the left. The cursor remains in its cur-
rent position.



DELETE key The DELETE key on the main keyboard
deletes the character to the left of the cursor.

If the form editor is in Overstrike mode, press-
ing the DELETE key moves the cursor one
character to the left, replacing that character
with a space. All other characters on the line
are unchanged. If the form editor is in Insert
mode, the DELETE key moves the cursor and
all characters to the right of the cursor one
character to the left, and inserts a blank space
at the end of the line.

UNDELETE-CHARACTER The UNDELETE-CHARACTER key places the

key (GOLD-KP comma) last single character that you deleted (with the
DELETE-CHARACTER or DELETE key) in the
current cursor position. To use the
UNDELETE-CHARACTER key, press the
sequence (GOLD-KP comma).

5.7.2 Moving Text: The Cut and Paste Feature

The cut and paste function allows you to move an area of the form to one or
more other areas of the form. The following rules apply to cutting and pasting:

e You can cut and paste a portion of a line (except in a scrolled region), an
entire line, or a rectangular area with the following exceptions:

— A portion of a field
— A portion of a vertically indexed field
— A complete horizontally indexed field

o The area onto which you paste can contain neither text nor picture charac-
ters.

o The pasted area cannot extend beyond any boundary of the form.

To use the cut and paste feature of the form editor, follow this procedure:

1.  Identify the area that you want to move by creating a select range using
the SELECT key (KP period) and cursor movement keys.

2. Remove the area with the CUT (KP6) key.

3.  Replace the section that you removed in one or more locations with the
PASTE (GOLD-KP6) key.

Laying Out the Form 5-17



SELECT key (KP period)

CUT key (KP6 or
REMOVE)

TEST-PASTE key (KP3)

5-18

Laying Out the Form

The SELECT key identifies the area of the
form that you wish to move. (After you select
and cut the area, you may replace it in its
original position if you wish.) To use the
SELECT key, press the period (.) key on the
keypad (KP period). (On the VT200 keyboard,
press the SELECT key or KP period.)

Position the cursor at the beginning of the line,
line segment, or rectangular area that you
want to move. When you press the SELECT
key, the character where the cursor is posi-
tioned is shown in reverse video.

When you use the SELECT key, you will find
it very helpful to use an underscore cursor
rather than a block cursor. The select function
shows the currently selected area in reverse
video, and it is often difficult to see exactly
where the select area ends when you use a
block, rather than underline cursor.

Now, move the cursor to the end of the line or
line segment, or the opposite corner of the rec-
tangle, depending on the type of area that you
intend to be moved. While in Select mode, you
can use any function key that moves the cur-
sor. As the cursor moves, the current selected
range is shown in reverse video, and all other
video characteristics on the form are temporar-
ily turned off.

Use the CUT key to move the contents of the
selected range to the paste buffer. To use the
CUT key, press KP6. (On the VT200 keyboard,
press the REMOVE key or KP6.)

With the select range shown in reverse video,
press CUT. The area that you want to move is
deleted from the form and stored in the paste
buffer. When you press CUT, the select func-
tion stops, and TDMS restores the video screen
attributes.

Press the TEST-PASTE key to determine where
you can paste an area on a form. To use the
TEST-PASTE key, press KP3.



PASTE key (GOLD-KP6 or
INSERT)

After you have selected and cut the area that
you want to duplicate elsewhere on the form,
move the cursor to the upper-left corner of an
area on the form. Press TEST-PASTE and you
see an outline of the paste buffer in reverse
video. TDMS removes all other video attributes.
If the paste buffer can validly be placed in the
space that you test, you see an entire outline of
the paste buffer and receive no error. If the
contents of the paste buffer do not meet the
form editor paste requirements, you get an
error message and see only a portion of the out-
line. As soon as you type any character, the
form editor removes the outline of the paste
buffer and restores all other video attributes.
Using the TEST-PASTE key does not affect the
contents of the paste buffer.

The PASTE key duplicates the contents of the
paste buffer on the form. To use the PASTE
key, press the sequence GOLD-KP6. (On the
VT200 keyboard, press the INSERT key or
GOLD-KPS6.)

When you use the PASTE key, all of the condi-
tions for pasting in the form editor must be
met. (The area that is used for pasting can con-
tain neither text nor picture characters. The
pasted area can extend neither beyond the bot-
tom of the form nor beyond the right boundary
of the form.) If you press PASTE and the opera-
tion is not valid, the form editor signals an
error and does not paste anything on the form.
The contents of the paste buffer are unchanged.

You can paste onto an area that includes a
double-wide or double-size line as long as the
resulting line does not extend beyond the right
margin of the form. However, it is generally
better practice to create any double-wide or
double-size lines after you complete the cutting
and pasting.

Laying Out the Form 5-19



When you cut and paste fields, the form editor
continues to recognize the areas as fields. Any
attributes assigned to the original fields are
carried over to the fields created by the
cut/paste feature. Field validators assigned to
the form fields are not carried over.

Cutting and pasting a field places the field at
the end of the access order list. The access
order list, used to determine the run-time
access order of input fields, is discussed in the
chapter entitled Assigning Field Order.

5.7.3 Centering Text: The CENTER Key

CENTER key (KP1)

The CENTER key lets you center text on a line
or in a rectangular area. To use the CENTER
key, press KP1.

To center text on a line, move the cursor to any
point on the line and press CENTER. The form
editor centers the existing background text and
fields between the left and right boundaries of
the form.

To center text within a rectangular area, use
the cursor-movement keys and the SELECT
key to put the area in a select range. With the
rectangular area in the select range (shown in
reverse video), press CENTER. All of the text
in the area is centered on each line between
the left and right boundaries of the select
range. When you press CENTER, the SELECT
function stops and TDMS restores video
attributes.

5.7.4 Inserting a Blank Line: The OPEN LINE Key

OPEN-LINE key
(GOLD-KPO)

5-20

Laying Out the Form

Pressing the OPEN-LINE key inserts a blank
line on the form. To use the OPEN-LINE key,
press the sequence GOLD-KPO. You can use
the OPEN-LINE key only if line 23 of the form
is blank.



You cannot use the OPEN-LINE key if the cur-
sor is on the bottom line of the form (line 23) or
if there are any characters on line 23.

Pressing OPEN-LINE causes the current line to
be blank and moves each line below the cur-
rent line down one line. For example, if the
cursor is anywhere on line 7 and you press
OPEN-LINE, line 7 becomes blank and all text
and fields that were on lines 7 to 22 are moved
to lines 8 to 23, respectively.

5.7.5 Changing the Case of Existing Text

CHANGE-CASE key
(GOLD-KP1)

Press the CHANGE-CASE key to change upper-
case background text to lowercase and to
change lowercase background text to uppercase.
To use the CHANGE-CASE key, press the
sequence GOLD-KP1.

You can use the CHANGE-CASE key with the
REPEAT key (GOLD-n) to change the case of a
series of letters. For example, to change the
case of the background text “address,” move
the cursor to the first letter, press the sequence
GOLD-7 (use the 7 on the main keyboard), then
press the sequence GOLD-KP1. The form editor
changes the text to “ADDRESS.”

You can also select text with the SELECT key
and change the case of the text within the
selected area.

The CHANGE-CASE key does not affect any
characters other than alphabetic background
text.

5.8 Creating Video Features

The form editor provides a variety of video attributes that you can include on a
form. Using video attributes can enhance form design and improve operator

productivity.

Laying Out the Form 5-21



The video features that the form editor provides in the Layout phase include the
ability to:

« Emphasize lines with double-wide or double-size characters

» Highlight any parts of the form with any combination of bolding, blinking,
underlining, and reverse video

¢ Draw solid boxes or lines on the form

In addition, a request can specify that a field is displayed with a particular
video attribute. See the VAX TDMS Request and Programming Manual to learn
about this feature. .

This section describes how to use the video features that the Layout phase of
the form editor provides.

5.8.1 Double-Wide and Double-Size Lines

DOUBLE-WIDE key Pressing the GOLD-W key sequence either

(GOLD-W) causes a normal-width line to change to a
double-wide line or causes a double-wide line to
change to normal width line.

When you press the GOLD-W sequence, any
characters on the current line double in width.
All characters that you type on the line after
pressing GOLD-W also become double-wide. At
run time, all background text and fields are
shown double-wide.

You can assign video attributes to double-wide
lines. You can also include double-wide lines in
scrolled regions. To do this, first define the
lines of the scrolled region as double-wide.
Then create the fields and define the region as
scrolled.

5-22 Laying Out the Form



DOUBLE-SIZE key
(GOLD-S)

A double-wide line displays characters twice as
wide as normal VT100 or VT200 characters.
There are 40 columns in a double-wide line for
an 80-column screen and 66 columns in a
double-wide line for a 132-column screen. In a
double-wide line, all characters and spaces are
enlarged. You cannot create a double-wide line
when any characters are to the right of column
40 (for an 80-column form) or column 66 (for a
132-column form).

To change a double-wide line to normal width,
press GOLD-W.

Double-wide lines on a 132-column form provide
excellent readability. Characters displayed in
this format are larger than characters dis-
played in 80-column mode.

Pressing GOLD-S either causes a normal line
to change to a double-size line or causes a
double-size line to change to normal size.

When you press GOLD-S, the characters on the
current line are redisplayed in double size, and
each line below the current line moves down
one line. (For example, if the cursor is at line 8
and you press GOLD-S, text and fields on lines
9 to 22 move to lines 10 to 23.) You cannot use
GOLD-S if there are any characters on line 23
of the form.

A double-size line displays characters that are
twice as wide and twice as high as normal
VT100 or VT200 characters. All double-size
lines use two lines of a form; they use 40
columns on an 80-column screen or 66 columns
on a 132-column screen.

Any field on a double-size line must be a Dis-
play Only field and therefore it cannot be used
as an input field. If you create a field on a
double-size line (in the Layout phase), be sure
to assign the Display Only attribute in the
Assign phase. FDU defaults the Display Only
attribute to fields in double-size lines.

Laying Out the Form 5-23



To change the current line from a double-size
line to a normal line, press GOLD-S. The
double-size line returns to normal size, and
each line below the current line moves up one
line. (For example, if the cursor is on the
double-size line 9 and you press GOLD-S, the
current line becomes normal-size line 8, and
any text and fields on lines 10 to 23 move to
lines 9 to 22.)

5.8.2 Video Highlighting

The form editor allows you to display any portion of the form with bolding,
blinking, underlining, reverse video, or any combination of these features. In
the Layout phase, you assign video highlights that display whenever the run
time form displays. In the Form phase, you can also assign video highlights that
display only when a field is open for input (see Chapter 4).

If you assign video attributes to a field in the Layout phase, these video attrib-
utes are added to the default video attributes assigned in the Form phase.

If you assign video attributes to an area (rather than a field) in the Layout
phase and then create a field in that area, the video attributes are not added to
the default video attributes assigned in the Form phase. Rather, the default
attributes assigned in the Form phase apply to the field.

The following restrictions govern the use of video highlighting:

e The same video attributes must apply to the entire field. (That is, you cannot
have a field that is part blinking and part reverse video.)

e In a scrolled region, all columns in the scrolled region must have the same
video attributes.

You may apply video attributes to all or part of any double-wide or double-size
line except for the conditions previously listed.

To apply video attributes to a character, line segment, or rectangular area, fol-
low this procedure:

1. (Optional). Make sure that you are using an underline cursor rather than
a block cursor. Using the block cursor can make it very difficult to deter-
mine exactly where a video attribute begins or ends.

5-24  Laying Out the Form



Move the cursor to the beginning or end of the area to which you want to
assign or change video highlights. To assign highlights:

« To a single space, move the cursor to that space

» To a line segment, move the cursor to the beginning of that line
segment

« To a rectangular area, move the cursor to one corner of the rectangle

Press the SELECT key (KP period or SELECT). The cursor position is
shown in reverse video, and all other video attributes on the form are
temporarily removed.

Move the cursor to the other end of the area of video highlighting with
the arrow keys and other form editor function keys (END-OF-LINE, LINE
FEED, and so on). For a line, move to the other end of the line or line
segment; for a rectangle, move to the opposite corner of the rectangle. As
you move the cursor, the form editor shows the select range in reverse
video. (Skip this step if you want to assign video attributes to only one
character.)

Note

At this point, the select range is shown in reverse video. Any
video attribute you assign applies to the entire area that is
shown in reverse video. If you are satisfied that the area shown
is the area to which you want to assign video attributes, go to
the next step.

To expand or reduce the area, move the cursor. To cancel the
select range and start over, use the RESET key (GOLD-KP
period). When you press RESET, the select range is canceled
and the previous video attributes are restored.

Press the VIDEO key (KP7) when the correct area is in the select range.
The cursor status line clears and the VIDEO prompt appears in the lower
left corner of the screen. At the VIDEO prompt, you can type one or more
attributes, as in the following list. You can type either the full name of
the attribute or the abbreviation as shown with underlined letters:

BOLD - Activates the Bold attribute
BLINK - Activates the Blinking attribute
REVERSE - Activates the Reverse Video attribute

Laying Out the Form 5-25



UNDERLINE - Activates the Underline attribute
CLEAR - Clears all video attributes
SAVE - Saves current (or named) attributes

RESTORE - Ends the video attribute assignment and restores any
video attributes that had previously been assigned to the select range

To assign more than one video attribute, separate the attribute names
with a space, a comma, or a RETURN.

When you are finished assigning video attributes, type SAVE or S or
press RETURN at the VIDEO prompt. The form with its new video
attributes displays, and all video attributes that had previously been
assigned outside the select range are restored.

5.8.3 Drawing Solid Lines and Rectangles

DRAW key (KP hyphen) Use the DRAW key to create solid boxes or

lines on the form. To use the DRAW key, press
KP hyphen.

The DRAW key creates a solid rectangle or
solid line around the the current select range.
To draw a box, use the SELECT key and
cursor-movement keys to create a select range
where you want the box drawn. Press DRAW
and the form editor draws the box.

The following steps demonstrate how to use the DRAW key:

1.

5-26

Create a select range, including blank rows and columns on either side.

Laying Out the Form



2.

Employee Basic Information
DD

EMPLOYEE NUMBER: 9999999
NAME: AAAAAAARAA A ARAAAAAAAAAAAAAAAAAA

ADDRESS:
STREET: XXXXXXXXXXXXXXXXXXXX
CITY: c€cccececceccecce
STATE: AA
ZIP: CCCCC

SEX: A DATE OF BIRTH: 99-AAA-99

Press PF2 for HELP

Cursor MR Line B Column IR} Modes

-

J

Press the DRAW key, and the form editor draws a box around the area.

( )
Employee Basic Information
EMPLOYEE NUMBER: 9999999
NAME: AAAAAAAAAA A AAAAAAAAAAARAAAAAAAA
ADDRESS:
STREET: XXXXXXXXXXXXXXXXXXXX
CITY: ccccceeceecccce
STATE: AA
ZIP: CCCCC
SEX: A DATE OF BIRTH: 99-AAA-99
Press PF2 for HELP
Cursor MR Line B Column Modes
\ y,

To draw a solid line, use the SELECT key to create a linear select range

(either vertical or horizontal), and then press DRAW. All lines in the
select range must have the same width and height characteristics.

Laying Out the Form

5-27



You cannot use the DRAW key if there are any characters (background text,
picture characters, or field constants) in the top or bottom lines of the rightmost
or leftmost column of the select range. If there are any characters in these loca-
tions, the form editor signals an error. However, you can use the DRAW key to
create intersecting lines and boxes.

UNDRAW key Use the UNDRAW key to remove boxes and

(GOLD-KP hyphen) lines (or portions of boxes and lines) that were
created with the DRAW key. To use the
UNDRAW key, press the sequence GOLD-KP
hyphen.

To remove a box or a line, use the SELECT
key to create a select range that includes the
box or line that you want to remove. Press
UNDRAW, and all boxes and lines, or portions
of boxes and lines, on the perimeter of the
select range are deleted.

You can also remove lines and boxes by using
any of the delete function keys provided with
the form editor.

5.9 Creating Scrolled Regions

A scrolled region is a section with one or more identical lines on a form that
enables the operator to enter and/or read many lines of data on the form.

In TDMS applications, scrolled regions are defined on the form. The request
identifies the form (for display) and its fields (for input/output) and maps the
scrolled region on the form to one or more record arrays. The application pro-
gram opens data files and executes the request.

5.9.1 Rules for Scrolled Regions

The following rules govern the use of scrolled regions on a form:

1.  Only entire lines can be scrolled. All fields and background text on a line
become part of the scrolled line.

2.  All lines in a scrolled region must be identical. That is, each line must
have the same fields (with the same picture type), the same background
text, and the same video attributes.

3.  Scrolled regions can be from 1 to 23 lines long. The last line on the form
is reserved by TDMS.

5-28 Laying Out the Form



4.  Scrolled regions can include double-wide lines but they cannot include
double-size lines. If one line in a scrolled region is a double-wide line, all
lines in the scrolled region must be double-wide. To create a double-wide
line scrolled region, first create the double-wide lines, and then create the
scrolled region.

5.  Scrolled regions can be contiguous on the form. For example, you can
define one scrolled region on lines 2 to 7 and a second scrolled region on
lines 8 to 10.

6. If you create a scrolled region in which there will be no operator input,
you must follow certain procedures in the form definition. If your scrolled
region does not include any fields from which operator information will
be collected, be sure to read the section Special Provisions for a Display-
Only Scrolled Region.

5.9.2 Defining a Scrolled Region on the Form

You create scrolled regions in the form definition during the Layout phase,
using the form editor keypad function keys. This section describes the function
keys that you use; the following section is a brief example of a scrolled region in
a form definition.

SCROLL key (KP9) The SCROLL key identifies a line that is to be
part of a scrolled region. To use the SCROLL
key, press KP9. When you press SCROLL, the
current line is shown in reverse video.

To add or create lines in the scrolled region
below the current line, use the down arrow or
the LINE FEED key. Each time you press
either of these keys, the scrolled line is dupli-
cated below the current line and shown in
reverse video.

To add or create lines in the scrolled region
above the current line, use the up arrow or the
BEGINNING-OF-LINE key. Each time you
press either of these keys, the scrolled line is
duplicated above the current line and shown in
reverse video.

Laying Out the Form 5-29



ENDSCROLL key (KP5)

UNSCROLL key
(GOLD-KP9)

Adding or creating lines in this way occurs
only when you are first defining the scrolled
region. To add or create lines in an existing
scrolled region, see the section entitled Adding
Lines to a Scrolled Region.

The ENDSCROLL key ends the definition of a
scrolled region. To use the ENDSCROLL key,
press KP5.

After defining the scrolled region using the
SCROLL key and the up or down arrows, press
the ENDSCROLL key to end the scrolled
region. When you press ENDSCROLL, the
scrolled region is no longer shown in reverse
video. After you press ENDSCROLL, you can
determine the location and length of any
scrolled region by looking at the second cursor
block of the cursor status line. When this block
reads SCR, the line is scrolled; when the block
reads NOR, the line is not scrolled. No line can
be only partially scrolled.

The UNSCROLL key deletes a scrolled line. To
use the UNSCROLL key, press the sequence
GOLD-KP9. When you press UNSCROLL, the
form editor deletes the entire line on which the
cursor is positioned as long as that line is part
of a scrolled region. If you press UNSCROLL
with the cursor on a one-line scrolled region,
that line is changed from a scrolled line (SCR
on the cursor status line) to a normal line
(NOR).

5.9.3 Example of a Scrolled Region

This section gives a brief example of how to include a scrolled region in a form
definition. In a Corporate Personnel application, one of the forms collects and
displays information about specific departments in the company. Because there
are more than 50 departments, it is useful to collect and display this informa-

tion in a scrolled region.

5-30 Laying Out the Form



After an operator enters data onto the form, it looks like this:

4 N
DEPT., NO., DEPARTMENT NAME MANAGER
344 Quality Assurance A Bierstadt
004 Administration J § Sargent
785 Engineering J M Whistler
554 Sales and Marketing F Lane
999 Security J § Copley

L Cursor MR Line B Column Modes
J

The first line (DEPT. NO., DEPARTMENT NAME, MANAGER) is background
text that is not part of the scrolled region; the other five lines are the scrolled
region and contain data. In addition to the five lines of data shown on the form,
the operator can enter or read as many lines of information as the TDMS
request allows using TAB, BACK SPACE, up arrow, and down arrow keys.

To create a scrolled region such as this on the form, make sure that you are in
the Layout phase and follow this procedure:

1. Type the background text DEPT. NO., DEPARTMENT NAME, and
MANAGER on a single line of the form.

Laying Out the Form 5-31



5-32

9 Cursor MR Line JB Column Modes
J

Move to the next line on the form and change from Text mode (TXT) to
Field mode (FLD). Type the picture characters representing the depart-
ment number (three 9s, representing a 3-character numeric field), depart-
ment name (20 Cs, representing a 20-character alphanumeric field), and
manager (15 A’s, representing a 15-character alphabetic field) under the
corresponding background text.

\
( DEPT. NO, DEPARTMENT NAME

MANAGER
999 cccecceecceceeccceecce AAAAAAAAAAAAAAA

L Cursor U0 Line I Column I Modes

Laying Out the Form



Press SCROLL (KP9) when you have finished typing the three fields on
the line and with the cursor still on the line with the three fields. The
line is shown in reverse video.

([ )

DEPARTMENT NAME MANAGER
EEE] cceeeeeccceeccceceee AARAAAAAAAAAAAA

Cursor {OR Line B Coluan Modes
L J

Press the down arrow (or LINE FEED) four times to create a five-line
scrolled region. You will see five identical lines in reverse video.

r . )

ARINENT NAN
cceeeeeccecccccccece ARARAAARAAAARAAA
cceeeceecceecccecccce AAAAAAAAAAAAAAA

cceececcceeccceccece AAARARARAAAAAAA
cceeececcceecccceeccc ARAAAAAAAAAAAAA
cceeccccececcccccccece AAAAARAAAAAAAAA

Cursor Line [B Column Modes

.

Press the ENDSCROLL key (KP5) to end the definition of the scrolled
region. The lines that had been shown in reverse video return to normal
video and the definition of the scrolled region is complete.

Laying Out the Form 5-33



The form definition, including the cursor status line, looks like this:

( )
DEPT. NO, DEPARTMENT NAME HMANAGER
999 CCCCCCCCCCCCCCCeCeCe AAAAAAARAAAAAAAA
999 CCCCCCCCCCCCeeeeecee AAAAAAAAAAAAAAR
999 CCCCCCCCCCCCCCCCCCCe AAAAAAAAAAAAAAA
999 CCCCCCCCCCCCCCCCCCCC AAAAAAAAARAAAAA
999 ccecccccecceccccecce AAAAAAARAAARAAA

L Cursor Line | Colunn [} Modes

The cursor status line indicates that the cursor is:
o At background text (TXT)

o In a scrolled region

e At line 8, column 1

¢ In Field and Overstrike mode

5.9.4 Adding Lines to a Scrolled Region

To increase the number of lines in an existing scrolled region on a form, you
must follow this procedure:

1. Use the UNSCROLL key (GOLD-KP9) to delete all but one of the lines in
the scrolled region. For example, to change an existing four-line scrolled
region to a six-line scrolled region, first unscroll the fourth, third, and
second lines of the scrolled region.

2. Use the UNSCROLL key to change the remaining first line of the
scrolled region from a scrolled line (SCR on the cursor status line) to a
normal line (NOR).

5-34 Laying Out the Form



3.  Press the SCROLL key (KP9) with the cursor on the remaining line to
move the cursor down five lines (using either down arrow or LINE
FEED), then press ENDSCROLL (KP5). You now have a six-line scrolled
region, and each field in the new scrolled region has the same name,
attributes, and field validators as the previous scrolled region.

5.9.5 Special Provisions for a Display-Only Scrolled Region

For any field, the cursor moves at run time to that field only when the field is
mapped for input (and the field is not defined in the form definition as Display
Only). For nonscrolled fields, this is not a problem, because the operator can
read any information that is displayed in (that is, output to) the fields regard-
less of the cursor position. However, in a scrolled region where none of the fields
are mapped for input, the operator would be able to read only those lines that
appear on the screen when the form is displayed. The cursor, which is used to
scroll the information up or down, cannot get to the scrolled region, and the
operator cannot use the scrolling mechanism.

The solution to the problem is to include a one-character, “dummy” field in the
scrolled region, which will be mapped for input by the request. The following
example demonstrates the use of a dummy input field for a Display-Only
scrolled region.

The information that you generated in the previous example of a scrolled region
could be part of another form, which is used to display information about your
company:

4 N\
DEPT, NO, DEPARTMENT NAME HANAGER
344 Quality Assurance A Bierstadt
004 Administration J § Sargent
785 Engineering J M Whistler
554 Sales and Marketing F Lane
999 Security J § Copley

L Cursor MR Line B Column Modes

Laying Out the Form 5-35



In addition to the 5 lines displayed on the screen, there are 40 more lines of
information that the operator might need to see. On this form, the operator can
only read information from the form but cannot enter information.

Set up the scrolled region on your form definition to look like this:

4 )
DEPT, NO. DEPARTMENT NAME MANAGER
X 999 cccccecceeccceceecee AAAAAAAAAAAAAAA
X 999 c¢ccececccecceeccccce AARAAAAAAAAAAAA
X 999 cceceeeeeccecceececce AAAAAAAAAAAAAAA
X 999 gececcecccceccecccce ARAAAAAAAAAAAAA
X 999 ¢ceeccccccececcecccee ARARAAAAAAAAAAA
Cursor IR Line Column Modes J
\,

Follow the same procedure as when you created the scrolled region in the previ-
ous section, adding a single-character field (using the X picture character) to the

left of the field representing DEPT. NO.

The field represented by the single X is the “dummy” input field. The person
creating the request maps the dummy field for input and maps the other fields
for output (from the record to the form). At run time, the cursor moves to the
field that is mapped for input (the dummy field), and the operator is able to
scroll through the region and read any information available.

Remember the following when you create a scrolled region that includes no
fields that are available for input:

1. Create a one-character field that will be used for input. You can place the
field anywhere on the scrolled line, and you can use any picture charac-
ter to designate the field. At run time, the cursor moves to this field,
allowing the operator to use TAB, BACK SPACE, up arrow, and down

arrow keys in the scrolled region.

2.  Make sure that the record definition includes a provision for this field.
Even though the field has no meaningful data, a record field must be

provided for the input mapping.

5-36 Laying Out the Form



3.  Define the field as No Echo when you assign attributes to this field (in
the Assign phase) so that the run-time form does not display any inadver-
tent operator input. Be sure that the field does not have a Response
Required attribute.

4.  Follow this procedure only if none of the fields in a scrolled region is
available for input. If some of the fields in a scrolled region are output-
only, but at least one field on each line is mapped for input (and not
defined as Display Only in the form definition), you do not need to
include the dummy input field.

5.10 Creating Indexed Fields in the Layout Phase

An indexed field is a single form field with two or more elements having the
same name but a different numerical index for identification. You define the
location of an indexed field and its individual elements in the Layout phase, and
you define the field as being indexed in the Assign phase. Chapter 6 discusses
indexed form fields, including rules governing their use, examples, and detailed
procedures for creating them.

In the Layout phase, you should know the following about creating an indexed
field:

e Each element in the indexed field must have the same length, picture type,
video attributes, and field attributes.

» Indexed fields must be either entirely inside or outside of a scrolled region.

o The elements of a vertically indexed field must be aligned in the same column
with no intervening blank lines.

o The elements of a horizontally indexed field must be on the same line with
the same number of columns between each element.

5.11 Assigning Field Attributes from the Layout Phase

ASSIGN-FIELD- The ASSIGN-FIELD-ATTRIBUTE key allows
ATTRIBUTE key (GOLD-ENTER) you to go to the Assign phase
(GOLD-ENTER) from the Layout phase to assign attributes to a

single field. To use the ASSIGN-FIELD-

ATTRIBUTE key, press the sequence GOLD-
ENTER when the cursor is positioned on the
field to which you want to assign attributes.

Laying Out the Form 5-37



5-38

Laying Out the Form

When you press GOLD-ENTER, you enter the
Assign phase in order to assign attributes to
the field on which the cursor is positioned. (In
Chapter 6, you learn the meaning and use of
field attributes including field validators.) After
you finish assigning attributes to the field, the
form editor returns you to the Layout phase
(unless you press the MENU key on the Attrib-
ute Assignment form.)



Assigning Field Attributes and Validators 6

In this chapter, you learn how to use field attributes and field validators in
form definitions. You assign field attributes and validators in the Assign phase
of the form editor.

6.1 Uses of Field Attributes and Validators

Field attributes and field validators provide specific characteristics to individual
fields on a form. Each field has its own set of attributes and validators; you
assign them during the Assign phase. If you do not use the Assign phase, TDMS
provides default field attribute values for each field that you identify during the
Layout phase.

Field attributes can do one or more of the following:
o Identify the field to TDMS by providing a field name
e Provide a default value

* Provide a help message

Affect the appearance of the field and data entered into it

Describe or place certain conditions on the data entered by the operator

Inform TDMS that there are validators associated with the field



Field validators provide special validation procedures for data entered by the
operator at run time. They supplement the input requirements that you specify
with picture characters in the Layout phase. You can use field validators to
identify:

o A list of valid entries
e A numeric or alphabetic range of valid entries
« A check digit, which applies a predefined algorithm to a numeric field

» A predefined size (for example, SIGNED BYTE or UNSIGNED LONGWORD)
for a numeric field.

Any data entered by the operator at run time must conform to the requirements
of:

o The picture string and maximum field length specified by picture characters
during the Layout phase

o The field attributes specified during the Assign phase
e The field validators, if specified during the Assign phase

6.2 Assign Phase: Introduction

You can enter the Assign phase to assign field attributes and validators in
either of two ways:

e From the Phase Selection menu, by typing ASSIGN at the Phase choice
prompt. Entering the Assign phase from the Phase Selection menu gives you
the choice of assigning attributes and validators to all fields, new or modified
fields, or an individual field.

¢ From the Layout phase, using the ASSIGN-FIELD-ATTRIBUTE (GOLD-
ENTER) key, with the cursor positioned in a field. This method allows you to
assign attributes only to that field on which the cursor is positioned.

6-2 Assigning Field Attributes and Validators



6.2.1 Assign Phase Menu

If you enter the Assign phase from the Phase Selection menu, the Assign Phase
menu is displayed at the bottom of the Phase Selection menu form. The Assign
Phase menu allows you to choose new or modified fields, all fields, or a specific
field. The Assign Phase menu is shown here:

( )

Assign Attributes to Which Fields? fI
{ - New or Modified Fields
2 - All Fields
3 - Specific Field

\. J

e Type 1 or press RETURN. This is the default response to assign attributes to
all new or modified fields.

A field is considered to be new or modified if you have not assigned attributes
to the field and the field was created or modified during the current form-
editing session. Choose this selection when you are either:

— Creating a new form and want to assign attributes to all of the fields that
you have just created in the Layout phase

— Modifying a form and want to assign attributes to fields that you have just
added or modified in the Layout phase

After you have assigned attributes to all new or modified fields, the form edi-
tor returns you to the Phase Selection menu.

» Type 2 to assign attributes to all fields on the form. Choose this selection
when you want to assign attributes to all of the fields on the form and have
previously assigned attributes (or accepted defaults) for some or all of the
fields.

Assigning Field Attributes and Validators 6-3



When you choose this menu selection, you can assign attributes (or accept the
existing attributes) to every field on the form before the form editor returns
you to the Phase Selection menu.

« Type 3 to assign attributes to a specific field on the form. When you choose
this menu selection, the form editor prompts you with the message Enter field
name: at the bottom of the screen. Type in the current field name and press
RETURN. When you have assigned attributes to the field that you named,
the form editor returns you to the Phase Selection menu.

If you want to assign attributes to a specific field but do not know the field
name, you should enter the Layout phase, move the cursor to the field, and use
the ASSIGN-FIELD-ATTRIBUTE key. The form editor places you in the Assign
phase for that field only. When you have assigned attributes to the field, the
form editor returns you to the Layout phase.

6.2.2 Attribute Assignment Form

The Attribute Assignment form, shown in Figure 6-1, is used to collect and dis-
play field attribute information for each field.

( A

ATTRIBUTES for Field Named: E$000{
Default Value:

Help text:

Autotab - Right Justify _ Uppercase - Scale Factor ___
No Echo - Fixed Decimal _ Must Fill - Indexed (N,V,H) N
Display Only _ Zero Fill - Response Req’d _ Index count

Zero Suppress Clear character

NO Validators exist for this field; do you want to enter F/V Edit (Y/N)? N

\ y

Figure 6-1: Attribute Assignment Form (80-Column Form)

The Attribute Assignment form for an 80-column form has a slightly different
format than the one for a 132-column form. The 80-column form is used to
demonstrate examples throughout this chapter.

6-4 Assigning Field Attributes and Validators



When the Attribute Assignment form is displayed for any field, it shows the
current value for each attribute. The current value is determined by the attrib-
utes that you previously specified for the field in the Assign phase. If you have
not used the Assign phase for this field, the current value is determined by:

o The formwide default attributes, if you specified them in the Form phase

o The form editor defaults, if you did not specify formwide default attributes

Note

In the Form phase, you cannot specify formwide attributes for Field
Name, Help Text, Default Value, Scale Factor, Indexed, Index Count,
or Field Validators.

Later in this chapter, you learn the meaning of each of the field attributes
listed on the Attribute Assignment form.

6.2.3 Assign Phase Function Keys

The TDMS form editor provides several function keys that you can use during
the Assign phase, as shown in Table 6-1.

Table 6-1: Assign Phase Function Keys

Key Function

TAB Moves the cursor to the next field on the Attribute Assign-
ment form. Press TAB to move the cursor from field to
field within the Attribute Assignment form. Pressing the
TAB key does not change the contents of a field.

BACK SPACE (F12) Moves the cursor to the previous field on the Attribute
Assignment form. Use BACK SPACE to move the cursor
backwards from field to field within the Attribute Assign-
ment form. Pressing the BACK SPACE key does not
change the contents of a field.

LINE FEED (F13) Deletes the contents of the field where the cursor is posi-
tioned. The LINE FEED key is most useful when you want
to replace the current contents of the Field Name, Help
Text, or Default Value fields.

(continued on next page)

Assigning Field Attributes and Validators 6-5



Table 6-1: Assign Phase Function Keys (Cont.)

Key

Function

HELP (PF2 or F15)

CTRL/W and CTRL/R

RESTORE (GOLD-R)

RETURN and ENTER

MENU (GOLD-KP7)

Displays help messages for individual fields during the
Assign phase.

Refresh the screen. Press CTRL/W or CTRL/R to display
the Attribute Assignment form and the current values for
each attribute. (You can use CTRL/W or CTRL/R to clear
the screen of disruptions such as broadcast messages.)

Restores all attribute values to their status when the
Attribute Assignment form was first displayed. For exam-
ple, if you change a Help text, then decide that you want
to keep the original Help text, press RESTORE. All field
values are restored including the Help text.

Tell the form editor to assign the attributes that you have
specified to the field. When you press RETURN or ENTER,
the form editor displays:

¢ The Field Validator form if you indicate that you want
to enter F/V Edit

o The Attribute Assignment form if you are assigning
attributes to more fields (after selecting either All Fields
or New/Modified Fields at the Assign Phase menu)

¢ The Phase Selection menu if you entered the Assign
phase from the menu and have no more fields to which
you are assigning attributes

¢ The Layout phase if you entered the Assign phase using
the ASSIGN-FIELD-ATTRIBUTE key

Saves the attributes that you have specified for a field and
returns you to the Phase Selection menu. Use the MENU
key when you are assigning attributes to a series of fields
(All Fields or New/Modified Fields) and want to leave the
Assign phase without assigning attributes to the remaining
fields.

6.3 Field Attributes

This section describes:

o The meaning of each attribute

6-6 Assigning Field Attributes and Validators




o The run-time effect of each response

« How to assign each attribute

6.3.1 Field Name Attribute

The Field Name is the most important field attribute. In order to collect or dis-

play information in the field, a TDMS request must associate, or map, the field

name of the form field to a field name in a record definition. When you assign a
field name to a form field, you should be aware of any naming conventions that
are to be used in the application.

Usually, field names serve as self-documenting descriptions of the field. In the
Employee sample application, for example, the field names on the Add form are:

EMPLOYEE _NUMBER STREET Z1P

FIRST _NAME CITY SEX

MIDDLE __INITIAL STATE BIRTH_DATE
LAST_NAME

In addition, the form fields in the Employee sample have the same names as the
record fields to which they are mapped. This simplifies the input and output
mapping process, and it also allows the person who designs the request to take
advantage of the “map to all fields” capability provided by RDU.

Field names must conform to CDD naming requirements. The field name can
have up to 31 characters, and the first character must be alphabetic (A-Z). The
remaining characters in the field name can include:

Alphabetic characters (A-Z and a-z)
Numeric characters (0-9)

Dollar sign ($)

e Underscore (_)

The last character in a field name cannot be either a dollar sign ($) or an under-
score ().

The form editor assigns a default field name for each field. The first field that
you create has the default name of F$0001, the second field has the default
name of F$0002, and so forth. When the Attribute Assignment form is dis-
played, the current field name is shown; the current field name is the default
field name until and unless you change the default field name.

Assigning Field Attributes and Validators 6-7



To replace the current field name, press the LINE FEED key to delete the exist-
ing field name. Then, with the field name blank, type in the name that you
wish to assign to the field.

You do not automatically delete the existing field name when you type in a new
field name; you only delete as many characters as you type in. Therefore,
always press LINE FEED to delete the existing contents of this field before
replacing a field name.

For example, assume the field representing City in the Employee sample has a
current field name of F$0006, the default field name assigned by the form edi-
tor. If you type City without first pressing the LINE FEED key, the resulting
field name is City06. To make sure that the field is named correctly, first press
LINE FEED and then type City.

6.3.2 Default Value Attribute

The Default Value attribute is a value that is displayed in the field at run time
unless overridden by a request. A request overrides a default value and places a
different value in the field, when either:

« The request includes instructions to display a form and to output a literal
string to the form field

e The request includes instructions to display a form and to output data from a
record field to the form field

If you map a field for input and you provide a Default Value, the Default Value
is returned to the record unless the operator overrides it or unless the request
outputs another value to the field. For example, if the Default Value for the
field representing State is CA (for California), the field looks like this when it is
displayed at run time:

State: CA

When the cursor is at the State field (assuming that it is mapped for input), the
operator can either accept this Default Value (by pressing TAB) or override it by
entering another value (for example, NY). When the operator completes the
form, the current value displayed in the field is the value that is returned to
the record.

6-8 Assigning Field Attributes and Validators



Use the Default Value to save operator keystrokes by providing frequently used
responses. However, keep in mind the following important notes about the use
of Default Values:

o The form editor does not check Default Values against the field picture string
or any field validators. If you use a Default Value that does not meet these
requirements (for example, having a Default Value of ABC in a numeric
field), you may have a run-time error when TDMS displays the form.

o The operator must delete the Default Value of a field by pressing the LINE
FEED key before overriding the Default Value. If the operator neglects to
delete the Default Value, the Default Value is overwritten but not necessarily
erased. For example, if the Default Value for the City field is LOS ANGELES,
and the operator types in RENO (without first deleting the Default Value by
pressing LINE FEED), the field reads RENOANGELES. Therefore, remind
the operator to delete the Default Value of the field before overriding the
Default Value.

To assign a Default Value to a field, type in the Default Value in the Attribute
Assignment form.

6.4 Help Text

The help text for a field is a message that TDMS displays at run time on the
message line (line 24) when all of the following occur:

o The cursor is at the field
» The field is open for input
o The operator presses the HELP key (or PF2)

The help text can have up to 80 characters (for an 80-column form) or up to 132
characters (for a 132-column form). Use the help text to provide explanatory
messages or special instructions to the operator. For example, you might tell the
operator that only numeric input is valid in the field. Remember that the opera-
tor can read the message only when the field is open for input; do not use the
help text if the field is not mapped for input in a request.

To replace the current help text, clear the field by pressing LINE FEED and
then type in the help text. There is no default help text.

Assigning Field Attributes and Validators 6-9



6.4.1 Autotab Attribute

The Autotab attribute automatically moves the cursor at run time to the next
input field when the current field is filled. For example, assume a portion of a
form looks like this:

State: __ Zip Code: ___

If you assigned the Autotab attribute to the State field (a two-character field),
the cursor automatically moves to the Zip (Postal) Code field as soon as the
operator types in two valid characters for the State field. (The characters are
valid if they meet the requirements of the picture string, field attributes, and
any field validators.)

When the Autotab attribute is assigned to the last field mapped for input on the
form, the form is complete and the request completes its execution when the
operator fills in the last field. In the following example, assume the
BIRTH_DATE field is the last input field and has the Autotab attribute.

e ™
EMPLOYEE NAME: AAAAAAARAAAAAAAAAAAA

ADDRESS:
STREET: CCCCCCCCCCCCCCCCCCCe
CITY: AAAAAAARAAAAAAA
STATE: AA

BIRTH DATE: 99-AAA-99

L Cursor MR Line W Column Modes y

At run time, typing in the full birth date (for example, 01-DEC-47) has the same
effect as entering data in a field and then pressing RETURN at any other time.

Use the Autotab attribute to save operator keystrokes for fields that are fre-
quently filled.

To assign the Autotab attribute, type an X to the right of Autotab (or press
TAB if X is already entered). To deassign the Autotab attribute, press the space
bar or the LINE FEED key. (Pressing the space bar or LINE FEED key erases
the X.)

6-10 Assigning Field Attributes and Validators



6.4.2 No Echo Attribute

The No Echo attribute prevents any data from being displayed in a field at run
time regardless of whether the data is:

o The field default value
o A record field or literal string output by a request to the form field

e Data entered by the operator

Although the data is not displayed on the terminal, it is returned to the pro-
gram (when the operator completes the form) if the form field has been mapped
to a record field in the request.

Use the No Echo attribute when you do not want someone to accidentally see
the data that is input or output to the field (for example, salary information).
Keep in mind, however, that the operator’s inability to see the field and to
check input can significantly increase the likelihood of input error. Therefore, it
is often a good idea to use field validators to verify operator input for No Echo
fields. You learn about field validators later in this chapter.

To assign the No Echo attribute, type X to the right of No Echo on the Attrib-
ute Assignment form. To deassign the No Echo attribute, press the space bar or
LINE FEED key.

6.4.3 Display Only Attribute

The Display Only attribute prevents the cursor from moving to the field for
input at run time thus preventing a field from accepting operator input. In most
instances, the person who designs the request determines which fields are
mapped for input. However, there are some instances when you want to map all
but a few fields for input (using a request feature that maps all form fields to
all record fields). Here, it is helpful to use the form definition to prevent map-
ping a particular field for input.

See the Employee sample for an example of using the Display Only attribute.
The request EMPLOYEE _ADD_REQUEST uses an INPUT %ALL instruction
that would ordinarily accept input from all fields whose names match the record
definitions named in the request. However, the field EMPLOYEE _NUMBER
has the Display Only attribute so that it is not open for input at run time.

Type X to the right of Display Only in the Attribute Assignment form to assign
the Display Only attribute; press the space bar or LINE FEED key to deassign it.

Assigning Field Attributes and Validators 6-11



6.4.4 Right Justify Attribute

The Right Justify attribute fills in a field from the right margin rather than the
left margin. The Right Justify attribute applies to:

e Input from the operator
o A default value for the field

e Output to the form field from a record field

For example, assume the Employee Number field is a seven-character numeric
field:

Employee Number: __

If you assign the Right Justify attribute and the operator enters the number
1234, the field looks like this:

Employee Number: ___1234

If you do not assign the Right Justify attribute, data entered by the operator is
filled in from the left margin:

Employee Number: 1234___

To assign the Right Justify attribute, type X to the right of Right Justify on the
Attribute Assignment form; to deassign it, press the space bar or LINE FEED
key.

6.4.5 Fixed Decimal

The Fixed Decimal attribute provides specific run-time characteristics for an
UNSIGNED NUMERIC field. When the operator enters data into a Fixed Deci-
mal field at run time, the data is entered in the field:

1.  To the left of the decimal point initially, until the operator presses the
period (decimal point) key

2.  To the right of the decimal point after the operator presses the period key

6-12 Assigning Field Attributes and Validators



The following chart shows the run-time sequence for a Fixed Decimal field with
picture characters 9999.99:

Operator Keystroke Form Display
(Initial display) —_ .ow
1 ___1.00
2 __12.00
3 __123.00
. _123.00
4 _123. 40

5 _123.45

Note that the Zero Suppress attribute does not change the display of zeroes to
the right of the decimal point in a Fixed Decimal field. The Fixed Decimal
attribute can be assigned to a field only when both occur:

The field has a picture of all 9s

There is one period (decimal point) in the field, with at least one picture
character (9) on each side of the period. No other field identifiers or field cons-
tants can be used in a Fixed Decimal field. The following chart shows exam-
ples of valid and nonvalid Fixed Decimal fields:

Valid Nonvalid

999.999 NNN.999

9.99 .99
NNNN . %%
799.99

To use a punctuation character at the beginning or end of a Fixed Decimal
field (for example, dollar sign ($) or percent sign (%)), define the punctuation
mark as background text rather than a picture character. Remember, you can
have only one field constant in a Fixed Decimal field, and that field constant
must be a period (decimal point).

To assign the Fixed Decimal attribute, type X to the right of Fixed Decimal on
the Attribute Assignment form. To deassign the Fixed Decimal attribute, press
the space bar or LINE FEED key. .

6.4.6 Zero Fill

The Zero Fill attribute determines whether the assigned fill character will be 0
or space.

Assigning Field Attributes and Validators 6-13



At run time, TDMS uses the fill character to fill non-data positions of an inter-
nal representation of form field data. Any position that contains the clear
character in the field on the screen will contain the fill character in the internal
representation of the form field. The internal representation eventually is
mapped to the record field. After the internal representation is mapped to the
record field, the record field may or may not contain the fill character. This
depends on the data type of the record field.

For example, if the record field is a NUMERIC STRING data type, the record
contains a 0 in non-data positions. If the record field is a TEXT data type, the
record field contains the fill character. Refer to Table 6-2 for examples.

If you type the clear character into a field, it echoes to the screen as the clear
character and is stored in the internal representation of the field as the fill
character. This also means that if you type the fill character into a field, it is
echoed to the screen as the clear character and stored in the internal represen-
tation of the field as the fill character.

6.4.6.1 Effect of Fill Character on Clear Character — FDU allows you to
specify a fill character of 0 with a clear character other than 0. However, at run
time, if the fill character is zero, then the clear character is always treated as
zero.

If the Zero Fill attribute is assigned, the form field should be defined as
NUMERIC, right justified, and have a clear character of 0.

6.4.6.2 Assigning Zero Fill and Deassigning Right Justify — If you assign the
Zero Fill attribute, you should also assign the Right Justify attribute. If you
assign the Zero Fill attribute and deassign the Right Justify attribute, you run
the risk of sending inaccurate data to the record.

For example, you type the value 1234 into a left-justified, seven-digit numeric
field (for example, 9999999) with the fill character assigned to 0, the form field
contains the value 1234000 and the value 1234000 is sent to the record field.

If you must assign the Zero Fill attribute and deassign the Right Justify attrib-
ute, you should be sure to assign the Must Fill attribute to prevent extra zeros
from being added to the end of a number. A field defined in this manner cannot
contain a zero anywhere in the field. TDMS determines whether a field is com-
pletely filled by checking that there are no fill characters in the internal form
field representation.

Table 6-2 gives examples showing the effect the clear and fill characters have on
the form field value and the value returned to the record field. In this table, the
form field is defined with the picture string of 9999999 (UNSIGNED NUMERIC,
seven digits) and the value 1234 is entered into the form field.

6-14 Assigning Field Attributes and Validators



Table 6-2: Effect of Clear and Fill Characters

Field Form Field Record Field Record Field

Attributes Value Definition Value
Zero fill 0001234 Unsigned numeric 0001234
Right Justify 7 digits
Clear = 0
Zero fill 1234000 Unsigned numeric 1234000
Left Justify 7 digits
Clear = 0 '
Blank fill 1234 Unsigned numeric 0001234
Right Justify 7 digits
Clear = space
Blank fill 1234 Unsigned numeric 0001234
Left Justify 7 digits
Clear = space
Zero fill 0001234 TEXT 0001234
Right Justify 7 characters
Clear = 0
Zero fill 1234000 TEXT 1234000
Left Justify 7 characters
Clear = 0
Blank fill 1234 TEXT 1234
Right Justify 7 characters
Clear = space
Blank fill 1234 TEXT 1234
Left Justify 7 characters
Clear = space

To assign the Zero Fill attribute (setting the Fill Character to 0), type X to the
right of Zero Fill on the Attribute Assignment form. To deassign the Zero Fill
attribute (and thus setting the Fill Character to space), press the space bar or
LINE FEED key.

6.4.7 Zero Suppress

The Zero Suppress attribute prevents a zero from being displayed on a form
when a numeric record field with a null (zero) value is output to a form field.
Use the Zero Suppress attribute to prevent a value of zero from being displayed
in a form field.

Assigning Field Attributes and Validators 6-15



Note that the Zero Suppress attribute does not change the display of zeros to
the right of the decimal point in a Fixed Decimal field.

To assign the Zero Suppress attribute, type X to the right of Zero Suppress on
the Attribute Assignment form. To deassign the Zero Suppress attribute, press
the space bar or LINE FEED key.

6.4.8 Uppercase Attribute

The Uppercase attribute causes any alphabetic character the operator enters at
run time to be displayed on the terminal and sent to the record in uppercase.
Use the Uppercase attribute to save the operator from having to press the
SHIFT key for fields that should always be uppercase (for example, two-letter
state abbreviations).

To assign the Uppercase attribute, type X to the right of Uppercase on the
Attribute Assignment form. To deassign the Uppercase attribute, press the
space bar or LINE FEED key.

6.4.9 Must Fill Attribute

The Must Fill attribute requires that any input made by the operator (or any
value returned by the request from a Default Value that the operator does not
modify) fill all of the characters in the field. The Must Fill attribute does not
require that the operator enter data; it requires that, if any data is entered, the
data fill the entire field. For example, assume that your form has a five-
character field for Employee Number:

Employee Number:

If all employee numbers in a company have five digits — no more and no less —
you should assign the Must Fill attribute to this field. Then, if the operator
enters any data for the Employee Number field, the data must be exactly five
characters (digits, if the picture string specifies a numeric picture type). The
operator cannot move the cursor to the next field until either filling the field or
deleting the entire contents of the field.

When you assign the Must Fill attribute, the operator must also satisfy all
other input requirements (for example, Response Required attribute, picture
type, field validators) of the form definition. See the Response Required attrib-
ute for more information on combining the Response Required and Must Fill
attributes. See the Zero Fill attribute for more information about how TDMS
determines if the field is full.

6-16 Assigning Field Attributes and Validators



To assign the Must Fill attribute, type X to the right of Must Fill on the Attrib-
ute Assignment form. To deassign the Must Fill attribute, press the space bar or
LINE FEED key.

6.4.10 Response Required Attribute

The Response Required attribute requires that the operator type at least one
character in a field or that a value is displayed in the field by the request or
the form definition Default Value at run time. Otherwise, the operator cannot
move the cursor beyond the field.

When you assign the Response Required attribute to a field in a scrolled region,
input must be provided to every potential line in the scrolled region. For exam-
ple, assume that a request maps a scrolled form field to a record field and lets
the operator input up to 50 entries. If the form field has the Response Required
attribute, then the operator must enter data in all 50 possible lines of the
scrolled region before moving on to the next field or pressing the RETURN key.

When you assign the Response Required attribute to a field, the operator must
also satisfy all other input requirements (for example, picture string, field vali-
dators) of the form definition. Use the Response Required attribute to make sure
that necessary fields are not left blank by the operator. You can also use the
Response Required attribute with the Must Fill attribute and/or field validators
to ensure more specific responses.

If you assign the Response Required attribute and the Must Fill attribute to a
field, the operator must respond (or the request must output a Default Value)
and must completely fill the field.

If you assign the Response Required attribute and deassign the Must Fill attrib-
ute, the operator must enter (or the request must output a Default Value) at
least one valid character into the field. However, the operator is not required to
fill the field.

If you deassign Response Required and assign Must Fill to a field, the operator
must fill the field only if he enters one or more characters into the field. That
is, the operator has the choice of filling the field or leaving it blank.

When Response Required and Must Fill are used with field validators, the oper-
ator must satisfy the requirements of both the attributes that are assigned and
the field validators.

To assign the Response Required attribute, type X to the right of Response
Required on the Attribute Assignment form. To deassign the Response Required
attribute, press the space bar or LINE FEED key.

Assigning Field Attributes and Validators 6-17



6.4.11 Clear Character Attribute

The Clear Character attribute determines the appearance of the field at run
time when the field is blank or partially blank. Usually, the Clear Character is
a space ( ) or an underscore (). For example, if the Clear Character for the
seven-character Employee Number field is an underscore and there is no data
displayed in the field, the field looks like this at run time:

Employee Number:

If the Clear Character for the Employee Number field is a space (blank), the
field looks like this:

Employee Number:

When a field is partially filled in, the Clear Character is displayed in that por-
tion of the field that contains no data. For example, a partially filled, left-
justified, seven-digit numeric field with the Clear Character defined to be space
would look like this:

Employee Number: 1234

See the section on the Zero Fill attribute for more information about the inter-
action between the Clear Character and the Fill Character.

Using a space as a clear character often has the advantage of improving the
appearance of a run-time form by reducing the amount of clutter on the screen.
Using an underscore can have the advantage of showing the operator the num-
ber of characters that are permitted in the field. You can achieve a similar
effect (of showing the length of the field) by using the input field highlighting
feature in the Form phase (Chapter 4).

To assign a Clear Character to a field, type the character that you want to dis-
play in the Clear Character field on the Attribute Assignment Form. The
default Clear Character is space.

6.4.12 Scale Factor Attribute
The Scale Factor attribute is a positive or negative integer that represents the

location of a decimal point in a numeric field. (That is, the scale factor
represents a power of 10 by which the number in the form field is multiplied.)

6-18 Assigning Field Attributes and Validators



The examples show the effect of the Scale Factor:

Data Entered
Field Picture Scale Factor on Form Value Sent to Record
9999 0 (default) 5162 5162
NNNN 2 5162 516200
$999.99 —2 (default) 267.95 267.95
99.9% -3 14.6 .146

When a numeric field includes a decimal point (period), the default Scale Factor
is the number of digits to the right of the decimal point, preceded by a minus
sign. For example, in a field with picture 999.99, the default Scale Factor is —2.
When a numeric field does not include a decimal point, the default Scale Factor
is 0.

You cannot change the default scale factor for a field to which the Fixed Deci-
mal attribute has been assigned. If you want to create a field that includes a
decimal point and has a scale factor other than the default (for example, a field
with picture 99.99% with scale factor —4), do not assign the Fixed Decimal
attribute to that field.

To assign a Scale Factor, type in a positive or negative number next to Scale
Factor on the Attribute Assignment form.

6.4.13 Indexed Field Attribute

An indexed field is a single form field defined with two or more elements
aligned either vertically or horizontally. Indexed fields (like scrolled fields) are
form field arrays. Form field arrays can be mapped to simple record fields, to
record arrays, or to both. See the VAX TDMS Request and Programming Man-
ual to learn about mapping between array form fields and records. Figure 6-2
shows examples of indexed fields.

Assigning Field Attributes and Validators 6-19



ARAAA  AAAAA  AAAAA  AAAAA ~— Horizontally-
indexed
fields

ceeeee $999,99 X

ceeece $999.99 X

e B < Yortouy

Ceeeee $999.99 X indexed
fields

Cursor Line JE} Column Modes
\_

Figure 6-2: Examples of Indexed Fields
The following rules govern indexed fields on a form:

» Each element in the indexed field must have the same length, picture string,
video attributes, and field attributes.

* Elements in a vertically-indexed field must be aligned in the same columns
with no intervening blank lines.

* Elements in a horizontally-indexed field must be on the same line with the
same number of columns between each element. (In the example shown in
Figure 6-2, each element has a five-character alphabetic picture type, and
there are three columns between each of the four elements.) You can include
varying background text between elements in a horizontally-indexed field.

To define an indexed field, follow this procedure:

1. Enter the Layout phase to create a series of fields that adhere to the
rules listed in previous sections. You can use the cut and paste feature in
the Layout phase to make sure that each of the elements has the same
picture type, video attributes, and (for horizontally-indexed fields) spacing
between elements.

6-20 Assigning Field Attributes and Validators



2. Enter the Assign phase to assign attributes to the top element in a
vertically-indexed field or the leftmost element in a horizontally-indexed
field. Assign those attributes that you want to apply to the indexed field
(for example, Autotab or Right Justify), and type V (for vertically-
indexed) or H (for horizontally-indexed) at the Indexed attribute on the
Attribute Assignment form. (The default value N indicates that the field
is not an indexed field.) The cursor then moves to the Index Count
attribute.

3. Use the Index Count attribute to identify the number of elements in the
indexed field. In the examples shown in Figure 6-2, the vertically-indexed
field has an Index Count of 5 (for the five vertically-aligned elements)
and the horizontally-indexed field has an Index Count of 4. The form edi-
tor does not allow you to assign an Index Count that is less than 2 or
greater than the number of valid elements in the indexed field. If you
assign N to the Indexed attribute (indicating no indexing), any value
entered in the Index Count attribute is ignored.

When you finish assigning attributes (including a field validator, if
desired) to the first element in the indexed field, the form editor creates
the indexed field based on the information that you supplied for the
Indexed and Index Count attributes. That is, the form editor automati-
cally assigns the field name and all other field attributes to each of the
elements in the indexed field.

Any subsequent attribute changes that you make to any one element of
the indexed field apply to all of the elements of the indexed field. If, after
initially defining the indexed field, you reenter the Assign phase for the
indexed field, each of the elements in the field is shown blinking, bolded,
and underlined.

6.5 Field Validators

A TDMS field validator allows you to specify valid data for fields, in addition to
the picture string restrictions assigned during the Layout phase of the form edi-
tor. Field validators can include a range of choices, a list of choices, or certain
other requirements. You can assign only one field validator to a field. Table 6-3
shows the types of field validators that TDMS provides.

Assigning Field Attributes and Validators 6-21



Table 6-3: TDMS Field Validators

Validator Function
Range Checks operator data input against numeric or alphabetic range.
Choice Checks operator data input against list of choices.
Size (Byte,Word, Checks that numeric data is within certain ranges (to avoid data
Longword, type conversion errors).
Quadword)
Check Digit Applies a predefined algorithm to validate a numeric field.

Range field validators let you specify a numeric or alphabetic range to a field
on a form. Any operator input to that field must conform to the range that you
specify. You may specify more than one valid range for a field.

Choice field validators let you identify a list of valid choices for a field. At run
time, the operator can enter data in the field only if the data matches an entry
in the list of choices. When you use this field validator, you can also specify:

o Abbreviations

« Case sensitivity (letting the operator enter either uppercase or lowercase or
requiring exact case matches)

Size field validators let you specify predefined ranges for numeric form fields.
Size validators can be used to specify:

« UNSIGNED BYTE (BYTE logical)

« SIGNED BYTE (BYTE integer)

« UNSIGNED WORD (WORD logical)

SIGNED WORD (WORD integer)

UNSIGNED LONGWORD (LONGWORD logical)
SIGNED LONGWORD (LONGWORD integer)
SIGNED QUADWORD (QUADWORD integer)

Check Digit field validators let you apply a predefined algorithm to operator
input. You can assign a Check Digit validator only to an UNSIGNED
NUMERIC field (picture string all 9s).

6-22 Assigning Field Attributes and Validators



Characters from the DEC Multinational Character Set are valid for Range and
Choice validators. Range and choice string validation is performed using the
DEC Multinational Character Set.

6.5.1 Run-Time Effect of Field Validators

At run time, TDMS verifies that the values the operator enters are consistent
with the values defined by the field validator. If the operator attempts to enter
data that does not meet the requirements of the field validator, the terminal sig-
nals an error by ringing the bell and displaying a message on line 24 of the
operator’s terminal. When this occurs, the invalid data is not sent to the record,
and the operator cannot move to the next input field until he or she enters a
valid response into the field. (An empty field is considered to be a valid response
unless the Response Required attribute has been assigned to the field.)

6.5.2 Assigning Field Validators

You assign validators when assigning attributes to a field in the Assign phase.
The Attribute Assignment form tells you if a field validator is already assigned
to the field with this message:

[NO] Validators exist for this field; Da you want to enter F/V Edit?
[Y/N]

To assign validators to a field, type Y to this question and press RETURN. The
form editor displays the Field Validator form, as shown in Figure 6-3. In this
example, the field is a five-digit UNSIGNED NUMERIC field (picture charac-
ters: $999.99) named PRICE.

Assigning Field Attributes and Validators 6-23



Field Name:
Picture Type:
Enter the type of field validator to be applied to this field
SELECTION: [N

RANGE LIST UNSIGNED BYTE

7
CHOICE LIST 8 SIGNED WORD

CHECK DIGIT 10 9 UNSIGNED WORD
CHECK DIGIT i4 10 SIGNED LONGWORD
CHECK DIGIT 300 41 UNSIGNED LONGWORD
SIGNED BYTE 12 SIGNED QUADWORD

13 EXIT
14 DELETE EXISTING FIELD VALIDATOR
PRESS RETURN OR ENTER TO MODIFY OR DISPLAY RANGE LIST OR CHOICE LIST
\. J/

OO N -

Figure 6-3: Field Validator Form

TDMS displays the field name, the field picture type, and the corresponding
field validators that are currently assigned to the field. The cursor is positioned
at the SELECTION prompt.

To assign a validator, or to change the current field validator, type the number
of your selection and press RETURN. If you want to delete a field validator that
has already been assigned to a field, enter 14 at the SELECTION prompt.

6.5.3 Assigning the Range Validator

The Range validator allows you to define one or more ranges (up to 127 differ-
ent ranges) for valid operator input. You can include numeric ranges, alphabetic
ranges, or both.

The range list is a scrolled region that lets you see up to five lines at a time.

6-24 Assigning Field Attributes and Validators



To assign a Range validator, type 1 to the right of SELECTION on the Field
Validator form and press RETURN. The form editor displays the Range List
form, the name and picture type of the field, and any field constants that are
part of the field. For example, Figure 6-4 shows the Range List form for a field
named PRICE defined with the picture string $999.99:

( A
Field Name:
Picture Type:

RANGES

Low Range High Range

\_ J

Figure 6-4: Range List Form

The cursor is on the first line of the Low Range. Type in the Low Range, then
press TAB to move to High Range. Type in a High Range, then either:

e Press TAB to enter another Low and High Range value
e Press RETURN to exit from the Field Validator portion of the Assign phase

For example, assume that the field PRICE represents the prices of either single
pairs of shoes or cases of shoes with each case containing 10 pairs. The least
expensive pair of shoes costs $19.95, and the most expensive pair costs $39.95.
Therefore, valid entries for PRICE could be from $19.95 to $39.95 (for single
pairs) or $199.50 to $399.50 (for cases of 10).

To assign the Range validator to a field with the Left Justify or Right Justify
attribute, follow this procedure:

1. Select the Range validator on the Field Validator form (Type 1 in the
space next to SELECTION.)

Assigning Field Attributes and Validators  6-25



2.  Enter the value 01995, or press right arrow and type 1995 with the cur-
sor on the first line of Low Range. (The cursor automatically moves
across the dollar sign and period field constants.)

3.  Type 03995 (or press the right arrow key and type 3995) with the cursor
on the first line of High Range and press TAB to move to the next line.

4.  Type 19950 on the second line of Low Range, then TAB to High Range
and type 39950. The Range List form now looks like this:

( N
Field Name:
Picture Type:

RANGES

Low Range High Range

- J

5. Press RETURN when you are done. The Range validator is assigned, and
you exit from the validator portion of the Assign phase.

At run time, TDMS accepts only operator input that is between (and including)
$19.95 to $39.95 or $199.50 to $399.50.

For a field with the Fixed Decimal attribute, the procedure is slightly different.
 Select the Range validator by entering 1 on the Field Validator form.

« Enter the value 19 when the cursor is on the decimal point of the Low Range
field, then press the period (.) key and enter 95. Press TAB to go to the High
Range.

+ Enter the value 39 when the cursor is on the decimal point of the High Range
field, then press the period key and enter 95. Press TAB to go to the next
line.

6-26 Assigning Field Attributes and Validators



o Enter the value 199 when the cursor is on the decimal point of the Low
Range field, then press the period key and enter 50. Press TAB to go to the
High Range.

o Enter the value 399 when the cursor is on the decimal point of the High
Range field, then press the period key and enter 50.

At run time, TDMS accepts only operator input that is between (and including)
$19.95 to $39.95 and $199.50 to 399.50.

You can also include alphabetic ranges in a field validator. For example, to
define an alphabetic range that allows any entry up to six letters beginning
with A, B, or C, the Range validator list would read:

4 )

RANGES

Low Range High Range
CZ77717]

\_ J

Table 6-4 shows the function keys you can use on the Range List Form.

Table 6-4: Range List Form Function Keys

Key Sequence Function
TAB Moves from Low Range to High Range, or from High
Range to next line.
BACK SPACE (F12) Moves from High Range to Low Range, or from Low
Range to High Range on previous line.

(continued on next page)

Assigning Field Attributes and Validators 6-27



Table 6-4: Range List Form Function Keys (Cont.)

Key Sequence Function
LINE FEED (F13) Deletes the contents of the line.
KPO Inserts a blank line.

KP-hyphen Deletes the current line.

RETURN or ENTER Saves ranges and exits from validators.

RESTORE (GOLD-R) Restores range list to its status when you entered Range
form.

CTRL/R or CTRL/W Refresh the screen.

6.5.4 Assigning the Choice Validator

The Choice validator allows you to define a list of choices for valid operator
input. You can specify abbreviations for the choices, and you can specify
whether the operator must match the case (uppercase or lowercase) of the
choices.

To assign the Choice Validator, type 2 to the right of SELECTION on the Field
Validator form and press RETURN. The form editor displays the Choice List
form, including the name and picture type of the field. For example, assume
that you have a 12-character alphabetic field named SALES__PERSON. Figure
6-5 shows the Choice List form for this field.

6-28 Assigning Field Attributes and Validators



(" )
Field Name:
Picture Type: QRLLIIRPLE
Abbreviation Marker:
Abbreviation Length:
Exact Case Match! N
CHOICE OF:
. _

Figure 6-5: Choice List Form

To identify valid choices, type in one valid choice per line. Move to the next line

of the Choice List Form using the TAB key. Table 6-5 lists the function keys

that you can use on the Choice List Form.

Table 6-5: Choice List Form Function Keys

Key Sequence

Function

TAB

BACK SPACE (F12)
LINE FEED (F13)
KPO

KP-hyphen
GOLD-up arrow
RETURN or ENTER
RESTORE (GOLD-R)

CTRL/W or CTRL/R

Moves to next line.

Moves to previous line.

Deletes the contents of the line.

Inserts a blank line.

Deletes current line.

Moves the cursor to Abbreviation/Case area.
Saves choices and exit from validators.

Restores choices to their status when you entered the
Choice List form.

Refresh the screen.

Assigning Field Attributes and Validators

6-29



You can enter up to 255 valid choices. The choice list is a scrolled region that
lets you see up to six lines at a time.

For example, assume that the field SALES_PERSON represents the name of
the individual responsible for a sale. You have six sales people whose last
names are Cavaradossi, Germont, Grimes, Pinkerton, Tosca, and Lammermoor.
Select the Choice validator on the Field Validator form and enter each name on
the Choice List form. Type only one name per line and press TAB to move to
the next line. Figure 6-6 shows the result:

( )
Field Name: SALES_PERSON
Picture Type: GINGL)IRPCY

Abbreviation Marker:
Abbreviation Length:
Exact Case Match: N

CHOICE OF:

Cavaradossi
Germont
Grimes

Pinkerton
Tosca
L ammermoor

\_ J

Figure 6-6: Example of a Choice List

If you press RETURN, the only valid entries at run time would be one of those
six names. However, you can simplify operator input by allowing abbreviations
as described in the next section.

6.5.4.1 Abbreviation Marker — The Abbreviation Marker feature allows you to
insert a character within one or more items on the Choice list that denotes an
acceptable abbreviation.

To assign an Abbreviation Marker, identify the marker that you want to use by
typing it next to the Abbreviation Marker prompt. You can then include that
marker once in each entry in the Choice list. You cannot use an Abbreviation
Marker for a SIGNED or UNSIGNED NUMERIC field, and you cannot use an
Abbreviation Marker for a field to which the Right Justify attribute is assigned.

6-30 Assigning Field Attributes and Validators



For example, you could insert an asterisk (*) in each name on the Choice list as
shown in Figure 6-7, and then identify the asterisk as the Abbreviation Marker.

[ ~
Field Name: SALES_PERSON
Picture Type: [HNLLIIRPIY

Abbreviation Marker: %
Abbreviation Length:
Exact Case Match: N

CHOICE OF:

Ca%*varadossi

Pink*erton
Tosca
L am¥mermoor

q _

Figure 6-7: Example of Abbreviation Markers

By inserting the asterisks in some of the choices and identifying the asterisk as
the Abbreviation Marker, you define the following valid abbreviations:

Ca

Ger

Gri

Fink

Tasca (no abbreviation; marker not used)
Lam

The operator can enter the abbreviation, the full name, or a partial name that
includes at least the abbreviation. These are some valid operator entries for this
field:

Ca Cavara Cavaradossi
Ger Germo Germont
Gri Grim Grime

6.5.4.2 Abbreviation Length — As an alternative to the Abbreviation Marker,
you can specify a valid Abbreviation Length, which is applied to each item on
the Choice list.

Assigning Field Attributes and Validators 6-31



To specify an Abbreviation Length, move to the Abbreviation Length prompt
and type the appropriate number. For example, if you choose an Abbreviation
Length of 3 for the list in Figure 6-6, a valid operator entry is one that includes
at least the first three letters of each name. With an Abbreviation Length of 3,
some examples of valid responses include:

Cav Cavara Cavaradossi
Ger Germo Germont

Gri Grim Grime

Tos Tosc Tosca

You cannot specify both an Abbreviation Length and an Abbreviation Marker.

6.5.4.3 Exact Case Match — The Exact Case Match feature allows you to
require that operator input be the same case (uppercase or lowercase) as that
which appears on the Choice list. The default is No Exact Case Match, which
permits the operator to enter data in either uppercase or lowercase.

For example, if you required an exact case match for the list in Figure 6-6 (with
no abbreviations allowed), the only valid choices would be:

CAVARADOSSI
GERMONT
GRIMES
PINKERTON
TOSCA
LAMMERMOOR

However, if you accept the default and do not require an exact case match, some
examples of valid choices are:

cavaradossi
CAVARADOSSI
pinkerton
PINKerton
TOSCA

ToSchA

You can use the Exact Case Match feature with Abbreviation Markers and
Abbreviation Length.

If you require Exact Case Match for a field and all of the choices are uppercase,
you should assign the Uppercase attribute to the field. Then, all operator input
to the field is displayed, validated, and sent to the record as uppercase charac-
ters.

To require responses that match the case of the entries on the Choice list, move
the cursor to the Exact Case Match prompt and type Y.

6-32 Assigning Field Attributes and Validators



6.5.5 Size Field Validators

Size field validators are predefined ranges for numeric fields. On input, Size
validators prevent the operator from entering data that is not within the range
of the validator.

A Size validator determines the field data type. Therefore, the use of the Size
validator can affect the validity of both input and output mappings to a field.
See the VAX TDMS Reference Manual for tables showing valid input and out-
put mappings for form field data types.

Table 6-6 shows the seven types of Size validators that you can use.

Table 6-6: Numeric Ranges for Size Validators

Size Validator Range
SIGNED BYTE —128 to 127
UNSIGNED BYTE 0 to 255
SIGNED WORD —32768 to +32767
UNSIGNED WORD 0 to 65535
SIGNED LONGWORD —2**31 to (+2**31)-1
UNSIGNED LONGWORD | 0 to (2*¥*32)-1
SIGNED QUADWORD —2%%62 to (+2%*63)—1

TDMS allows you to assign a Size validator to a field only when:
o The field is numeric.

o The number of picture characters in the field picture is equal to or greater
than the number of digits in the size of the validator. (You can include any
field constants within the field picture.) Table 6-7 shows the minimum
required field picture for each Size validator.

Assigning Field Attributes and Validators 6-33



Table 6-7: Minimum Required Field Pictures for Size Validators

Size Validator Minimum Field Picture Required
SIGNED BYTE NNNN or 9999
UNSIGNED BYTE 999
SIGNED WORD NNNNNN or 999999
UNSIGNED WORD 99999
SIGNED LONGWORD 11 Ns or 11 9s
UNSIGNED LONGWORD 10 9s
SIGNED QUADWORD 20 Ns or 20 9s

The Size field validator can be very useful in avoiding data conversion errors at
run time. For example, if you identify a three-character NUMERIC input field
(999), the operator would normally be permitted to enter any value between 0
and 999. However, the programmer may only provide one byte of space for this
value in the program. In this instance, the UNSIGNED BYTE validator should
be assigned to that input field to avoid a run-time data conversion error. If the
UNSIGNED BYTE validator is assigned and the operator attempts to enter a
value greater than 255, both occur:

¢ An error message appears at the bottom of the terminal screen

« The data is not sent to the program, avoiding a run-time data conversion error

To assign a Size field validator, type in the appropriate number at the
SELECTION: prompt of the Field Validator form.

6.5.6 Check Digit Field Validators

In applications involving identification numbers, each number can be verified
for accuracy by using a Check Digit. The Check Digit is an extra digit placed at
the end of the normal number. A specific algorithm is applied to all but the
final digit of the number; operator entry is verified by comparing the result of
the algorithm to the final (check) digit. If the algorithm result and check digit
do not match, the cursor does not leave the field and the operator must reenter
a number that satisfies the Check Digit validator.

6-34 Assigning Field Attributes and Validators



There are three Check Digit field validators available with TDMS, Check Digits
10, 11, and 300. A Check Digit validator can be assigned to a field only if the
field has an UNSIGNED NUMERIC data type (picture string of all 9s) and is at
least two characters long.

The algorithm and an example of each Check Digit validator is described in the
following sections. The basic number identified in each algorithm is the number
entered by the operator excluding the final digit. For example, if the operator

enters the number 123456, the basic number is 12345 and the Check Digit is 6.

6.5.6.1 Check Digit 10 — The algorithm for Check Digit 10 is as follows:

1.  Multiply the units position and every alternate position of the basic num-
ber by 2 (moving from right to left).

2.  Add the digits in the products to the digits in the basic number that were
not multiplied.

3.  Subtract the sum from the next higher number ending in zero. The differ-
ence is the Check Digit.

For example, assume the operator enters 612481 in the field:

Basic Number 6 1 2 4 8

Step 1 Result of 12 4 16
multiplication.

Step 2 Digits in products +3 +1 +4 +4 +7 =19

added together plus
digits that were not
multiplied.

Step 3 Next highest number 20 - 19
ending in zero minus
the sum obtained from
Step 2. The difference
is the Check Digit.

The Check Digit is 1, so the entry 612481 satisfies the Check Digit 10 validator.

I
—

6.5.6.2 Check Digit 11 — The algorithm for Check Digit 11 is as follows:

1.  Assign a weighting factor of 2 to 7 to each digit position of the basic
number. The weighting factor begins with the unit position of the basic
number and moves from right to left toward the higher order digits. (The
2 through 7 weighting factors are repeated if the basic number has more
than six digits.)

Assigning Field Attributes and Validators 6-35



Multiply each digit by its weighting factor.
Add the products.
Divide the sum by 11.

Subtract the remainder from 11.

I A T

If the difference is less than 10, the difference is the Check Digit. If the
difference is greater than 9, subtract 10 from it; the resultant difference
is then treated as the Check Digit.

For example, assume the operator enters 123455 in the field:

Basic Number 1 2 3 4 5
Step 1 Weighting Factor. 6 5 4 3
Step 2 Result of 6 10 12 12 10
multiplication.
Step 3 Add the products. 6 +10 +12 +12 +10 =50
Step 4 Divide the sum by 11. 50 — 11 = 4 with a remainder of 6
Step 5 Subtract the 11 - 6 = 5
remainder from 11.
Step 6 Check Digit. 5

The Check Digit is 5, so the entry 123455 satisfies the Check Digit 11 validator.

6.5.6.3 Check Digit 300 — The algorithm for Check Digit 300 is as follows:

1.  Multiply the first (highest order) digit and every alternate digit of the
basic number by 2 (moving from left to right).

2.  Add the digits in the resulting product to the digits in the basic number
that were not multiplied.

3.  Subtract this sum from the next higher number ending in zero. The
difference is the Check Digit.

6-36 Assigning Field Attributes and Validators



For example, assume the operator enters 57645 in the field:

Basic Number 5 7 6 4

Step 1 Result of 10 12
multiplication.

Step 2 Digits in products 1 +7 +3 +4 =15

added together plus
digits that are not
multiplied.

Step 3 Next highest number 20 — 15 = 5
ending in zero minus
the sum obtained from
Step 2. The difference
is the Check Digit.

The Check Digit is 5, so the entry 57645 satisfies the Check Digit 300 validator.

Assigning Field Attributes and Validators 6-37






Assigning Field Order 7

Use the Order phase of the form editor to specify the order in which fields are
accessed for input at run time. You can use the Order phase to:

e Check the existing access order of fields. The access order is the order in
which the cursor moves from input field to input field at run time. The form
editor keeps track of the field access order on the access order list.

e Change the existing access order of fields.

The Order phase of the form editor is optional. If you do not use the Order
phase, fields mapped for input (by a request) are accessed in the default order
(that is, the order in which you created the fields). Only the form definition can
specify the access order of fields on a form; reordering of fields cannot be done
in a request.

When a form is displayed at run time, the cursor is positioned at the field that
is both:

e Mapped for input
e At the beginning of the field access order list

In the Add form of the Employee sample, for example, the Employee Number
field is first on the access order list and the First Name field is next. However,
since the Employee Number field is not mapped for input (it is a Display Only
field, and the Employee Number is mapped from the record to the form based on
previous operator input), the cursor is positioned at the First Name field when
the form is displayed.



Note that while the Order phase determines field access order for the form, the
input instructions within the request, not the order list, determine which fields
are available for input.

7.1 Default Field Access Order

When you define fields in a form definition (in the Layout phase), the form edi-
tor establishes a default field access order that is the order in which you create
the fields. The first field that you create is the first field on the access order list,
and the last field that you create is the last field on the access order list.

Any time you add a field, it is placed at the end of the access order list. Simi-
larly, a field is placed at the end of the access order list any time that you
insert the field on the form using either the UNDELETE-LINE or PASTE key.

7.2 Using the Order Phase

You can enter the Order phase of the form editor only from the Phase Selection
menu. At the Phase Choice prompt of the Phase Selection menu, type Order (or
just O) and press RETURN; the form editor displays the form layout. (The form
layout is the background text, picture characters, and video highlights that you
defined in the Layout phase.)

The form editor provides several function keys that you use in the Order phase,
as listed in Table 7-1. The remainder of this chapter discusses how to use these
function keys to reorder fields.

Table 7-1: Order Phase Function Keys

Key Function
TAB Moves cursor to the next field on the access order
list.
BACK SPACE (F12) Moves cursor to the previous field on access order
list.
SELECT (KP period) Identifies the first, then subsequent, fields on the

access order list.

STANDARD-ORDER (GOLD-C) Resets all fields to be ordered from left-to-right,
top-to-bottom. The access order of scrolled and
indexed fields is based on the first field that is
scrolled or indexed.

(continued on next page)

7-2 Assigning Field Order



Table 7-1: Order Phase Function Keys (Cont.)

Key Function

RESTORE (GOLD-R) Restores the access order list to the same status
as when you entered the Order phase.

MENU (GOLD-KP7) Saves current access order and returns you to
Phase Selection menu.

RETURN Revises the access order list and stays in the
Order phase.

GOLD-KP period Restores the access order list to its status as
when you last used the RETURN key.

7.2.1 Determining the Current Field Access Order

When the form editor displays the form layout at the beginning of the Order
phase, the cursor is positioned at the field that is currently first in the access
order list. Press TAB to move to the second field on the list; each time you press
TAB the cursor moves to the next field on the field access order list. (Press
BACK SPACE to move the cursor to the previous field on the access order list.)
The form editor signals an error if you press TAB when the cursor is at the last
field on the access order list, or if you press BACK SPACE when the cursor is
at the first field on the access order list.

Assigning Field Order 7-3




For example, examine the following form definition as it appears during the
Order phase:

4 )

Employee_Number: 9999999
Name: AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Department: X99 Job.Code; CCCCCC
Salary: 99,999

Address:
Street: CCCCCCCCCCCCCCCCCCCCCCCC
City: AAAAAAAAAAAAA
State: AA Zip: 99999

Cursor MR Line 8 Column Modes J
\

Assume that you created the fields on the form from left-to-right, top-to-bottom.
When you first enter the Order phase (after having used the Form, Layout, and
Assign phases), the cursor is at the first 9 in the Employee _Number field.
Press TAB and the cursor moves to the Name field; each time you press TAB,
the cursor moves to the next field on the access order list. When the cursor is at
the Zip field, the form editor signals an error if you press TAB, because Zip is
the final field on the access order list.

7.2.2 Creating a Left-to-Right, Top-to-Bottom Field Access Order

The Order phase includes the STANDARD-ORDER key (GOLD-C), which auto-
matically reorders the fields on a form to be left-to-right, top-to-bottom. You can
use the STANDARD-ORDER key at any time while in the Order phase. Press
the sequence GOLD-C. All fields are ordered from left-to-right, top-to-bottom,
and the cursor moves to the first field in the new access order list.

7.2.3 Changing Field Access Order

If you want a field access order other than left-to-right, top-to-bottom, follow this
procedure:

1. Enter the Order phase from the Phase Selection menu.

7-4  Assigning Field Order



Move the cursor to the field that is to be the first field in the new access
order. Press TAB to move the cursor to the next field on the current
access order list and press BACK SPACE to move the cursor to the previ-
ous field on the access order list.

Press SELECT (KP period). When you first press SELECT, you tell
TDMS that the field on which the cursor is positioned is at the beginning
of the new access order list.

Move to the field that is to be second on the access order list using TAB
or BACK SPACE. When the cursor is positioned on the second field,
press SELECT. Each time you press SELECT, you tell TDMS to insert
the field on which the cursor is positioned next on the access order list.

Continue to move the cursor to successive fields on the access order list
by pressing SELECT to add a field to the access order list.

Press MENU (GOLD-KP7) when you have gone through each field on the
form and have finished reordering fields. This tells TDMS to rewrite the
access order list and return to the Phase Selection menu.

When reordering fields, it is good practice to explicitly order each field on
the form. It is possible to reorder a subset of fields (for example, you can
reorder the first, second, and third fields on a form to be third, first, and
second, respectively). However, some combinations of subset reordering
can produce unintended results.

Check the new access order by returning to the Order phase from the
Phase Selection menu, then pressing the TAB key to move through the
fields in the new access order.

It is good practice to check the new field access order each time you reor-
der fields on a form.

Assigning Field Order 7-5



The following example demonstrates the reordering process:

4 ~
Employee_Number: 9999999
Name: AAAAAAAAAAAAAAA
Department: X99 Job_Code: CCCCCC
Cursor M Line IB Column Modes
. J

In this form, the fields were created from left-to-right, top-to-bottom. Therefore,
the original access order list is as follows:

Employee_Number
Name

Department
Job_Code

To reorder the fields so that you enter the Department first, then Job__Code,
Name, and Employee__Number, you would follow these steps:

1.
2.

Enter the Order phase from the Phase Selection menu.

Press TAB twice to move the cursor from the first character in
Employee _Number to the first character in Department.

Press SELECT (KP period) to indicate that Department is the first field
on the access order list; then press TAB to move the cursor to the field
Job_Code.

Press SELECT to indicate that Job__Code is next (second) on the access
order list; then press BACK SPACE twice to move the cursor (backwards)
to field Name.

Press SELECT to indicate that Name is next (third) on the access order
list; then press BACK SPACE once to move the cursor to field
Employee _Number.

Assigning Field Order



6. Press SELECT to indicate that Employee__ Number is next (fourth and
last) on the access order list.

7. Press MENU (GOLD-KP7) to tell TDMS to rewrite the new access order
list and return to the Phase Selection menu.

The access order list is now:

Department
Job_Code

Name
Employee_Number

7.2.4 Run-Time Cursor Movément and Access Order in Scrolled Fields

When you identify a field as scrolled (in the Layout phase), the run-time cursor
movement and access order are affected. In a scrolled region that includes only
one field, the cursor moves from top to bottom through the field at run time if
the field is mapped for input. When the operator completes the first line of the
field (by pressing TAB or filling a field to which the Autotab attribute has been
assigned), the cursor moves to the second line of the scrolled region. To leave
the scrolled region, the operator presses the sequence GOLD-down arrow to
move from the scrolled region to the next field (outside the scrolled region) or
the sequence GOLD-up arrow to move to the previous field.

In a scrolled region that contains more than one field, the cursor normally
moves from left to right on each line, then down through the scrolled region.
The following example shows a scrolled region with three fields:

( A
Job_Code Department _Name

L Cursor MR Line IE Column Modes

Assigning Field Order 7-7



If all the fields are mapped for input in the request, the cursor first moves to
the field Job__Code, then to the first row of field Department__Name, and then
to the first row of field Manager. The cursor then moves to the second line of
the scrolled region, continuing to move left-to-right, then top-to-bottom. The
operator leaves the scrolled region using the GOLD-down arrow sequence to
move to the next field outside the scrolled region, or GOLD-up arrow to move to
the previous field outside the scrolled region.

You can use the function keys in the Order phase to change the access order of
the entire scrolled region, but you cannot change the order of the individual
fields within a scrolled region. For instance, in the previous example, if
Job__Code, Department__Name, and Manager had been fields number 3, 4, and
5 on the access order list, the form editor allows you to reorder the scrolled
region so that the three fields could be 1, 2, and 3 on a new access order list.
You could not, however, reorder Job__Code, Department__Name, and Manager
to be 1, 4, and 7; you also could not reorder them within the scrolled region to
be 3, 2, and 1 (Manager, Department__Name, Job__Code).

7-8 Assigning Field Order



Saving the Form 8

Use the Exit phase of the form editor to leave the form editor and return to
FDU command level. To enter the Exit phase, type EXIT (or E) at the Phase
Selection menu and press RETURN. The form editor displays the question:

Do you want to save this form? Y

To save the form definition that you have just created or modified, press
RETURN to accept the default value Y (yes). The form definition is saved and
stored in the CDD (in the location that you specified in the CREATE, MODIFY,
or REPLACE FORM command), and you return to FDU command level FDU >
prompt).

If you want to leave the form editor without saving the edits that you made in
this session, type N (to replace the default value Y) and press RETURN. The
form definition is not saved, and you return to FDU command level. If you
entered the form editor by issuing either the MODIFY FORM or REPLACE
FORM command, the form definition that originally existed in the CDD location
is not modified or replaced.






Using VAX TDMS with VAX DATATRIEVE 9

If both VAX TDMS and VAX DATATRIEVE are installed on your system, you
can use a TDMS form for input and output with a DATATRIEVE domain. This
chapter describes how:

e To prepare TDMS form definitions for use in a DATATRIEVE application
* To convert FMS forms to TDMS forms for use in a DATATRIEVE application

The VAX DATATRIEVE User’s Guide describes how to develop a DATATRIEVE
domain that can use the forms to collect and/or display information.

Before reading this chapter you should be familiar with the concept and use of
request library definitions, request library files, and the Request Definition Util-
ity (RDU) as discussed in the VAX TDMS Request and Programming Manual.

9.1 Preparing a TDMS Form for Use in a DATATRIEVE
Application

In order to use a TDMS form definition in a DATATRIEVE application, you
must create a request library definition and build a request library file that
names the form definition(s). In a regular TDMS application, request library
definitions contain only requests and, optionally, the file specification to which
the request library file is to be written. In a TDMS/DATATRIEVE application,
however, the request library definition contains form definitions using the
FORM IS instruction; the FILE IS instruction can also be used.



For example, in order to use the form definitions PAYROLL__FORM and
SALARY_FORM in a DATATRIEVE application, you create a request library
definition in the RDU environment as follows:

RDU) CREATE LIBRARY DTR_-LIBRARY
RDUDFN) FORM IS PAYROLL-FORM;
RDUDFN) FORM IS SALARY_FORM;
RDUDFN) FILE IS "FORMLIB";
RDUDFNY END DEFINITION;

RDU)

You then build a request library file (assuming that PAYROLL _FORM and
SALARY _FORM are valid form definitions) using the BUILD command in
RDU:

RDU) BUILD LIBRARY DTR_LIBRARY

In this instance, the information from the form definitions PAYROLL__FORM
and SALARY _FORM is built into the request library file named FORMLIB.RLB
(.RLB is the default file type for request library files). VAX DATATRIEVE can
now access either of the form definitions for use in a DATATRIEVE application.

If any Help forms are identified in any of the form definitions, the Help forms
are automatically built into the request library file when the form is built, as
long as the Help forms exist in the CDD location that has been specified. You
should not include the Help forms in the request library definition.

You can include both requests and form definitions in a request library defini-
tion, using the REQUEST IS instruction for requests and the FORM IS instruc-
tion for forms. However, remember that:

e In a DATATRIEVE application, you can use a TDMS form definition if it is
specified either:

— In a FORM IS instruction in a request library definition

— In a request, which is listed in a REQUEST IS instruction in a request
library definition

After a request library file is built from the request library definition, the
form can be associated with a DATATRIEVE domain as a form in a form
library. For example:

DTR) DEFINE DOMAIN PAYROLL USING PAYROLL-RECORD ON PAYROLL.DAT-
CONY FORM IS PAYROLL-FORM IN FORMLIB.RLB;

9-2 Using VAX TDMS with VAX DATATRIEVE



e In a regular TDMS application, you can use a form definition only if it is
identified and used in a request. The request that identifies and uses the form
must then be listed in a request library definition.

9.2 Modifying a TDMS Form Used by DATATRIEVE
A TDMS form must be modified before it can be used by DATATRIEVE:

o If the form is moved from one CDD location to another by an FDU COPY
FORM command, a DMU COPY command, or a DMU BACKUP command.
(The form does not need to be changed. Simply enter the form editor and save
the form.)

e If a TDMS form is created from an FMS form file, and the FMS form has a
different name than the TDMS form.

If a TDMS form is not modified after either of these two operations, TDMS dis-
plays the following message when DATATRIEVE tries to use the form:

%TSSFDV-E-FRM, invalid form description

9.3 Converting VAX FMS Forms for Use with TDMS and
DATATRIEVE

This section shows how to convert existing VAX FMS forms to TDMS forms for
use in either a DATATRIEVE application or a TDMS application.

When VAX DATATRIEVE is installed on your system, it can be linked with
either (but not both) the VAX FMS form driver or the VAX TDMS run-time
shareable image. If DATATRIEVE is linked with the VAX TDMS run-time
image, then you cannot use existing FMS forms in your DATATRIEVE
applications.

To use existing FMS forms, convert them to TDMS forms using one of two
methods:

1. A command procedure provided by the VAX TDMS software installation
procedure that converts FMS form libraries to TDMS library files

2. A series of FMS and TDMS commands that extracts forms from the FMS
form library and places them in the CDD

Both procedures are described here. You must have the appropriate FMS V1 or
V2 utilities on your system to run the procedures.

Using VAX TDMS with VAX DATATRIEVE 9-3



9.3.1 Using a Command Procedure to Convert FMS Form Libraries

TDMS provides a command procedure that:

1.
2.
3.

Extracts the binary FMS form file from an FMS form library.
Places the FMS form file in the CDD as a TDMS form definition.

Builds the form definition into a request library file that you can refer to
in your DATATRIEVE domain definitions. This step is optional.

To execute this command procedure:

1.

Make sure that the FMS form is in an FMS form library. See the VAX
FMS documentation for information about creating a form library.

Type the following command at DCL level:

ASYS$COMMON: [SYSEXE] : FLBTORLB

The command procedure prompts you for the following five parameters:

1.

The FMS V1 or V2 form library name. Type a standard VMS file
specification:

Device:[Directorylfilename . FLB
Whether or not the form library is a V2 library. Type Y or N.

A CDD path name for the new TDMS form and request library definition.
You can supply the entire path name starting with the topmost CDD
directory (CDD$TOP), or you can enter a relative path name or given
name. TDMS converts the name you enter to a full path name using the
default CDD$DEFAULT path name.

Whether you are creating a new form in the CDD or replacing an exist-
ing TDMS form. Type C or R. The default is R.

Whether you want to create a request library file that contains only the
form you are converting. Type Y or N. The default is Y. If you type N,
the command procedure creates the new TDMS form in the CDD and
then stops executing. It does not create a request library file. If you type
Y, TDMS creates a request library file in your default VMS directory con-
taining the form.

Using VAX TDMS with VAX DATATRIEVE



The request library is stored in your CDD$DEFAULT directory and takes its
name from the form library name. For example, if the form library name is
DTRFORMS.FLB, the request library is stored as DTRFORMS in your
CDD$DEFAULT directory, and the request library file is named
DTRFORMS.RLB.

Note that the following features, which may be included on an FMS form, are
removed when you convert an FMS form and store it in the CDD:

+ Named data.

« User action routines.

« Supervisor-only attributes.
¢ Character-set information.

+ Indexed attributes of fields on VAX FMS V2 forms. TDMS stores the field as
a nonindexed field. (Indexed fields on VAX FMS V1 forms are supported.)

You can submit the command procedure in batch mode by using the following
DCL command:

$ SUBMIT,QUEUE=QUEUE-NAME/PARAM=(P1,P2,P3,F4,P5).
The parameters are those identified in the preceding paragraph.

9.3.2 Converting an FMS Form to a TDMS Form Using Specific Commands

To convert FMS forms to TDMS forms yourself, rather than using the command
procedure provided by the installation procedure, follow these steps:

1.  Extract the FMS forms from the form library.

e For V1.0 FMS forms, enter the FUT forms utility and specify the form
library file specification from which you want to extract the FMS V1.0
form:

$ FUT :== $FUT (RET)

$ FUT

FUT) FORM-LIBRARY-FILE-SPEC/FF
DBA1:[DIR1form-library-file-spec Form Name? FMSFORM
FUT) EXIT

Using VAX TDMS with VAX DATATRIEVE 9-5



Note that you do not specify an output form file. Rather, the form util-
ity displays the full form library file specification and prompts you for
the name of the form that you want to extract. The name you specify is
the name you gave the form when you created it using the FMS form
editor, (FED). The form utility uses this form name as an output file
name, adding the file type .FRM. FUT stores the extracted binary FMS
form in a file called FMSFORM.FRM.

e For V2.0 FMS forms enter the following DCL command:

$ FMS,LIBRARY/EXTRACT form-library-file-spec-
$_/FORM_NAME=fmsform/0UTPUT=Fmsfrmfile . FRM (RET>

The parameter fmsform represents the name you gave the form when
you created it in FED. Fmsfrmfile. FRM is the name of the new binary
form file you create. The .FRM file type is optional.

Invoke the TDMS Forms Definition Utility and place the form file in the
CDD using the TDMS CREATE FORM command. Note that you specify a
new name for the form using the CDD path name. The binary form file is
input to the CREATE FORM command with the /FORM_FILE qualifier.
If the form file contains a V1.0 FMS form, use the /V1 qualifier as
indicated:

$ FDU :== $FDU

$ FDU

FDU) CREATE FORM - {RET»
FDU)_ CDD-pathname FORM_FILE=Fmsform.frm/V1 <(RET)

FDU) CREATE FORM - (RET)
FDUY_ CDD-pathname/FORM_FILE=Fmsfrmfil.frm <(RET)

Note that when you store an FMS form in the CDD, the name of the
form is the CDD path name. When you reference this form in a
DATATRIEVE domain definition, you use the final name in the CDD
path name, the given name. When you assign a CDD path name to a
form in the CREATE FORM command, be sure that the last name you
enter is unique from any other definition in that CDD directory. Any
form name information that was part of the FMS form is ignored.

After the form is stored in the CDD, you can modify the form definition
as you would any other TDMS form definition.

Place the form in a request library file using the steps discussed in sec-
tion one of this chapter.

Using VAX TDMS with VAX DATATRIEVE



Note

Your FMS library may contain Help forms that you are also convert-
ing to TDMS forms. After they are stored in the CDD, they must be
associated with the main forms for which they provide help. You must
explicity make this association, whether you convert forms using the
command procedure or individual commands. To associate a Help form
with the appropriate main form, modify the main form with the
TDMS form editor. Enter the Form phase in FDU and type the full
CDD path name of the Help form following the appropriate prompt.
FDU stores the main form in the CDD with the pointer to the Help
form that it will use at run time.

Then enter RDU and build a new library file. RDU extracts both the
main form and its associated Help form and places them in the
library file.

Using VAX TDMS with VAX DATATRIEVE

9-7






In this index, a page number followed
by a “t” indicates a table reference.
A page number followed by an "f”
indicates a figure reference.

* (asterisk)

See Asterisk (*)
@ (at sign)

See @file-spec command
! (exclamation point)

See Exclamation point (!)
- (hyphen)

See Hyphen (-)
; (semicolon)

See Semicolon (;)

A

Abbreviation Length
Abbreviation Marker, 6-32
example, 6-32

Abbreviation Marker, 6-30
Abbreviation Length, 6-32
at run time, 6-31
example, 6-31f
restrictions

Index

data types, 6-30
Right Justify attribute, 6-30

Abbreviations

FDU commands, 3-2
length

See Abbreviation Length
marking, 6-30
Phase Selection menu, 2-6
video attributes, 5-25

Access order

current, 7-3
errors, 7-3
restoring, 7-3t
revising, 7-3t
saving, 7-3t
standard, 7-2t

ADJACENT FIELD key, 5-13

example of, 5-14
result of using, 5-14

ADT data type, 5-13

%ALL syntax
OUTPUT TO, 2-30

Alphabetic ranges, 6-27
Application programs

closing

channels, 2-41

request library files, 2-41
compiling, 2-45
declaring records, 2-40
design sequence, 1-7f

Index-1



identifying requests in, 1-6
linking, 2-45
opening
channels, 2-40
request library files, 2-40
running, 2-46
samples
BASIC, 2-42f
Department, 1-10
Employee, 1-8
Personnel, 1-9
steps in creating, 1-2
values from conditional requests,
2-35
writing, 2-38
Applications
See Application programs
See TDMS applications
Arrays
form field, 6-19
record, 5-28
Assign phase, 3-6
entering, 2-15, 6-2
from Layout phase, 5-37
field validators, 6-23
function keys, 6-5t
menu, 2-161, 6-3, 6-3f
MENU key, 6-6
RETURN key in, 2-15
ASSIGN-FIELD-ATTRIBUTE key,
5-37, 6-2
Attribute Assignment form, 6-4, 6-4f
132-column, 6-4
80-column, 6-4
current value, 6-5
Attributes
field
See also Field attributes
defaults, 4-5f
dummy fields, 5-37
form
assigning, 2-5
defaults, 2-7
saving, 2-6
video

Index-2

See also Video attributes
assigning, 4-7t
deassigning, 4-8
replacing, 4-6
Autotab attribute, 6-10
accepting default, 2-18
assigning, 6-10

B

B (field constant), 5-10
run-time result, 5-10
BACK SPACE key
Assign phase, 6-5
at run time
scrolled regions, 5-31
Form phase, 2-6, 4-2t
Layout phase, 5-5t, 5-7
on Choice List form, 6-29t
on Range list form, 6-27t
Order phase, 7-2t
determining access order, 7-3
Background text, 2-8
centering, 2-8
creating, 5-8
double-size, 2-8
on Help forms, 4-6
permitted characters in, 5-9
uses of, 5-8
Base instructions, 2-28f
conditional requests, 2-32f, 2-33
BASIC command (DCL), 2-45
BASIC programs
closing
channels, 2-41
request library files, 2-41
compiling, 2-45
declaring records, 2-40
%INCLUDE statement, 2-40
linking, 2-45
MAP statement, 2-40
opening
channels, 2-40
request library files, 2-40
running, 2-46



sample applications, 1-9, 1-10, 2-42f
TSS$CLOSE syntax, 2-41
TSS$CLOSE_RLB syntax, 2-41
TSS$OPEN syntax, 2-40
TSS$OPEN_RLB syntax, 2-40
TSSSREQUEST syntax, 2-41
BEGINNING-OF-LINE key, 5-7
when defining scrolled regions, 5-29
Blank lines
boxes, 5-26
Blanks in fields, 5-10
Blink attribute, 5-24
Bold attribute, 5-24
BOTTOM key, 5-8
Boxes
drawing on a form, 5-26
erasing, 5-28
removing from a form, 5-28
BUILD LIBRARY command (RDU)
building request library files, 2-38
for DATATRIEVE, 9-2
purpose of, 2-38

C

Canceling a SELECT range, 5-25
CDD
creating
directory for sample applications,
1-11
requests, 2-29
deleting form definitions, 3-9
given names, 3-3
path names, 3-3
errors, 3-4
for Help forms, 4-6
record definitions
extraction, 2-40
requirements
for field names, 6-7
storing
form definitions, 2-4, 2-23, 3-3,
3-4, 8-1
record definitions, 1-4
request library definitions, 2-37

CDD directories
CDD$DEFAULT
logical name assignments, 2-2
copying forms, 3-7
creating
for sample applications, 1-11
errors, 2-2
CDD$DEFAULT
defining, 2-2
in form definitions, 3-3
CDDL
DEFINE statement, 1-4f, 2-24
source files
compiling, 2-25
creating, 2-24
CENTER key, 5-20
Centering text, 2-8, 5-20
CHANGE-CASE key, 5-21
nonalphabetic characters, 5-21
with REPEAT key, 5-21
with SELECT key, 5-21
Channels
closing, 2-41
numbers, 2-40, 2-41
opening, 2-40
Check Digit validators, 6-22, 6-34
Check Digit 10, 6-35
Check Digit 11, 6-35
Check Digit 300, 6-36
rules, 6-35
Choice List form, 6-29f
example, 6-30f
function keys, 6-29t
Choice validator
Abbreviation Length, 6-31
Choice validators, 6-22
Abbreviation Marker, 6-30, 6-31f
assigning, 6-28
Choice List form, 6-29f
example, 6-30f
exact case match in, 6-32
function keys, 6-29t
restoring, 6-29t
saving, 6-29t
Clear Character attribute, 6-18

Index-3



accepting default, 2-19
at run time, 6-18
Fill Character attribute, 6-14
Clear characters
See Clear Character attribute
CLEAR SCREEN instruction, 2-29
Closing
channels, 2-41
request library files, 2-41
COBOL programs
sample applications, 1-9, 1-10
Column block
how to read, 5-3
Command files
creating CDD directory for sample
applications, 1-11
Comment text
DESCRIPTION instruction, 2-30
terminating, 2-30
Common Data Dictionary
See CDD
Compiling
BASIC programs, 2-45
CDDL record definitions, 2-25
errors, 2-25
Conditional instructions, 2-31
case values, 2-34
returning values to program, 2-35
Conditional requests, 2-31
base instructions, 2-32f, 2-33
CONTROL FIELD IS, 2-33
creating, 2-33
END DEFINITION instruction,
2-35
header instructions, 2-32f, 2-33
Contiguous fields
creating separate, 5-13
determining beginning and end of,
5-14
example of, 5-14
CONTROL FIELD IS instruction,
2-33
semicolon in, 2-33
CONTROL Z
See CTRL/Z command

Index-4

Conversion errors
avoiding, 6-34
COPY FORM command (FDU), 3-7
using, 3-7
Copying
files
for Department sample applica-
tion, 1-10
for Employee sample application,
1-8
for Personnel sample application,
1-9
form definitions
used by DATATRIEVE, 9-3
Correcting errors in RDU, 2-36
CREATE FORM command
using, 3-3
CREATE FORM command (FDU),
3-2
errors, 2-2
[FORM_FILE qualifier, 3-3
walkthrough, 2-4
CREATE LIBRARY command
(RDU), 2-37
CREATE REQUEST command
(RDU), 2-27
creating conditional requests, 2-33
Creating
conditional requests, 2-33
form definitions, 2-4, 3-2
form fields, 2-9, 5-9
records
compiling record definitions, 2-25
source files, 2-24
steps, 2-24
request library definitions, 2-37,
2-38
CTRL/R key
Assign phase
refreshing screen, 6-6
Layout phase, 5-5t
on Choice List form, 6-29t
on Range List form, 6-27¢t
CTRL/U key



See DELETE-TO-BEGINNING-
OF-LINE key
Layout phase, 5-5t
CTRL/W key
Assign phase
refreshing screen, 6-6
Layout phase, 5-5t
on Choice List form, 6-29t
on Range List form, 6-27t
CTRL/Z command (FDU), 3-2
Cursor status line, 2-7
Column block, 5-3
cursor blocks, 5-3
example
scrolled regions, 5-34
Field-name block, 5-4
format, 5-2
how to read, 5-2
identifying scrolled regions, 5-30
indicating Field mode, 2-10
Line block, 5-3
Modes blocks, 5-3, 5-4
Field mode, 5-9
on entry, 5-8
Cut and paste function
CUT key, 5-18
errors, 5-19
moving text, 5-17
PASTE key, 5-19, 5-20
rules, 5-17, 5-19
SELECT key, 5-18
TEST-PASTE key, 5-18, 5-19
CUT key, 5-18
ending SELECT range, 5-18
moving text, 5-17

D

Data
transferring between a form and a
program, 2-41
Data types
attributes
TIME, 5-13
form fields, 5-10, 5-10t

Size validators, 6-33
DATATRIEVE
building request library file for, 9-2
forms for, 2-37, 9-1
domains, 9-2
Help forms, 9-2
modifying, 9-3
request library definition for, 9-2
DATE data type, 2-12
date fields
creating, 5-12
formats, 5-12
mapping combined DATE and

TIME, 5-13
date formats, 5-12
errors, 5-12

Date fields, 5-12
DATE-FIELD key, 5-12
DCL commands
BASIC, 2-45
DEFINE, 2-2
LINK, 2-45
RUN
CDDL, 2-25
entering FDU, 2-4
sample program, 2-46
SET TERMINAL, 2-4
symbol definitions, 2-25, 3-2
Decimal point
Fixed Decimal attribute, 6-12
Scale Factor attribute with, 6-18
Default Value attribute, 2-18
assigning, 6-9
overriding, 6-8
Default values
assigning, 2-18
at run time, 6-8
overriding
operator input, 6-8
Defaults
access order, 7-2
attributes
form fields, 4-5f
case of input, 6-32
defining default values

Index-5



See Default values
field attributes, 2-18
field names, 2-17, 6-7
changing, 6-8
file types
object files, 2-45
record definitions, 2-24
form attributes, 2-7
order, 7-1
scale factor, 6-19
screen background, 4-3
DEFINE command (DCL)
CDD$DEFAULT, 2-2
DEFINE statement (CDDL), 1-4f
defining records, 2-24
DEL/BOL key
See DELETE-TO-BEGINNING-
OF-LINE key
DEL/EOL key
See DELETE-TO-END-OF-LINE
key
DELETE FORM command (FDU),
3-9
DELETE key, 5-17
Overstrike mode, 5-17
DELETE-CHARACTER key, 5-16
Overstrike mode, 5-16
DELETE-LINE key, 5-15
DELETE-TO-BEGINNING-OF-LINE
key, 5-15
DELETE-TO-END-OF-LINE key,
5-16
Deleting
characters between cursor and
beginning of line, 5-15
characters between cursor and end
of line, 5-16
DATE fields, 5-12
default values, 6-9
field contents, 6-5
form definitions, 3-9
lines
on Range List form, 6-27t
scrolled regions, 5-15
single character

Index-6

at the cursor position, 5-16
to the left of cursor, 5-17
time fields, 5-13
Department sample application
running, 1-10
DESCRIPTION instruction, 2-30
terminating, 2-30
Designing applications, 1-7f
DISPLAY FORM instruction, 2-29
Display Only attribute, 6-11
accepting default, 2-18
scrolled regions, 5-29, 5-35
with double-size lines, 5-23
DMU commands
BACKUP
forms used by DATATRIEVE,
9-3
COPY
forms used by DATATRIEVE,
9-3
DOUBLE-SIZE key, 5-23
restrictions, 5-24
Double-size lines, 2-8, 5-23
changing to normal-size lines, 5-24
maximum length, 5-23
restrictions, 5-23, 5-24
Double-size text
pasting, 5-19
DOUBLE-WIDE key, 5-22
Double-wide lines, 5-22
at run time, 5-22
maximum length, 5-23
scrolled regions, 5-22, 5-29
with other video attributes, 5-22
Down arrow key
at run time
scrolled regions, 5-31
defining scrolled regions
example, 5-33
Layout phase, 5-3, 5-5t, 5-7
when defining scrolled regions, 5-29
DRAW key, 5-26
erasing boxes, 5-28
restrictions, 5-28
steps, 5-26



Drawing boxes and lines
inserting, 5-26
removing, 5-28
Dummy fields
other attributes, 5-37
record definintions, 5-36
Dummy fields in a scrolled region,
5-35

E

EDIT command (RDU), 2-36
Editing
text, 5-15
Editor
form
See Form editor

END DEFINITION instruction, 2-31,

2-35
terminating, 2-31
END-OF-LINE key, 5-7
END-OF-TEXT key
Layout phase, 5-7
ENDSCROLL key
adding lines to scrolled regions,
5-35
creating scrolled region, 5-30
example, 5-33
ENTER key
Assign phase, 6-6
on Choice List form, 6-29t
on Range List form, 6-27t
Errors
CDDL definitions, 2-25
correcting
RDU, 2-36
CREATE FORM command, 2-2
DRAW key, 5-28
form names, 2-29
MODIFY FORM command, 3-4
operator
field validators, 6-23, 6-34
pasting, 6-19
request library definitions, 2-37
run time

avoiding, 6-34
default value, 6-9
Exact Case Match, 6-32
Uppercase attribute, 6-32
Executing a request
TSSSREQUEST, 2-41
EXIT command (FDU), 3-2
EXIT command (RDU), 2-36
Exit phase, 3-6, 8-1
Exiting
FDU, 3-2
form editor, 2-4
Layout phase, 2-14
Phase Selection menu, 2-23
RDU, 2-36
text editor, 2-25

F

F12 key
See BACK SPACE key
F13 key
See LINE FEED key
F15 key
See HELP key
FDU
description of, 3-1
Entering, 3-1
entering, 2-4, 3-1
exiting, 3-2
leaving, 3-2
FDU commands
abbreviating, 3-2
COPY FORM, 3-7
forms used by DATATRIEVE,
9-3
CREATE FORM, 3-2
CTRL/Z, 3-2
DELETE FORM, 3-9
EXIT, 3-2
LIST FORM, 3-8
MODIFY FORM, 3-4
REPLACE FORM, 3-4
Field access order
changing, 7-4

Index-7



example, 7-6 Layout phase, 5-8, 5-9

default, 7-2 Field mode
determining, 7-3 changing to, 5-9
saving, 7-5 Layout phase, 2-10, 5-3, 5-9
scrolled regions, 7-7 valid characters, 5-9
changing, 7-8 Field Name attribute
standard, 7-4 See also Field names
Field attributes, 6-6 changing, 2-17
ASSIGN-FIELD-ATTRIBUTE key, Field names
6-2 defaults, 6-7
assigning, 4-4, 5-37 changing, 6-8
function keys, 6-5t determining current, 5-4
to all fields, 6-3 Layout phase
to new fields, 2-14 displaying name, 5-4
assignment form, 6-4, 6-4f requirements, 6-7
Autotab, 2-18, 6-10 rules, 6-7
assigning, 6-10 Field validators, 6-21, 6-22t
Clear Character, 6-18 accepting defaults, 2-20
current value, 6-5 alphabetic ranges, 6-27
Default Value, 2-18, 6-8 assigning, 6-23
defaults, 2-18 at run time, 6-23
assigning, 2-18 Check Digit, 6-22, 6-34
Display Only, 6-11 rules, 6-35
Field Name, 2-17, 6-7 Choice, 6-22
See also Field names Abbreviation Marker, 6-30, 6-31f
Fixed Decimal, 6-12 assigning, 6-28
requirements, 6-13 exact case match, 6-32
functions of, 2-14 form, 6-29f, 6-30f
Help Text, 2-18 function keys, 6-29t
Index Count, 6-21 Choice validator
Indexed, 6-19 Abbreviation Length, 6-31
Must Fill, 6-16 data types with, 5-11
No Echo, 6-11 deleting, 6-24
Response Required, 6-17 form, 6-24f
restoring, 6-6 list of, 6-22t
Right Justify, 6-12 Must Fill attribute, 6-17
Scale Factor, 6-18 Range, 6-22, 6-24
Uppercase, 6-16 alphabetic ranges, 6-27
uses of, 6-1 example, 6-25
Zero Fill, 6-13 form, 6-25f
Zero Suppress, 6-15 function keys, 6-27t
Field constants, 2-10, 5-10t range
Field mode, 5-9 Fixed Decimal attribute, 6-26
Fixed Decimal attribute, 6-13 Response Required attribute, 6-17,
FIELD key 6-23

Index-8



Size, 6-22, 6-33
numeric equivalents, 6-33t
picture strings for, 6-34t
rules, 6-33
types, 6-33t
uses of, 6-2
Field-name block, 5-4
showing field name, 5-4
Fields
creating, 5-8
data types
determining, 1-3, 5-10
in record definitions, 1-4
Size validator, 6-33
Date field
inserting on a form, 5-12
form
See Form fields
group
See Group fields
indexed, 6-20f
Time field
inserting on a form, 5-13
validating
See Field validators
FILE IS instruction, 1-6
request library definitions, 2-37
Files
for Department sample application,
1-10
for Personnel sample application,
1-9
for sample applications, 1-8
Fill character
See Zero Fill attribute
Fill Character attribute
effect, 6-15t
Fixed Decimal attribute, 6-12
accepting default, 2-18
assigning Range validators, 6-26
at run time, 6-12
requirements, 6-13
Scale Factor attribute, 6-19
Zero Suppress attribute, 6-16
Zero Suppress attribute with, 6-13

FMS forms .
converting for use with TDMS and

DATATRIEVE, 9-3
in TDMS applications, 9-3
storing

in CDD for DATATRIEVE appli-
cations, 9-3
Form Definition Utility
See FDU
Form definitions
background text, 2-2
contents, 3-1
copying, 3-7
creating, 2-4, 3-2
deleting, 3-9
description of, 1-1
fields, 2-2
in DATATRIEVE, 9-1
inserting date fields, 5-12
listing, 3-8
in output file, 3-8
printing, 3-9
modifying, 2-5, 3-3
path names, 3-3
replacing, 3-4
saving, 2-4, 2-23, 8-1
simple, 1-3f
storing, 2-23, 3-3, 8-1
using, 1-2
Form editor
Assign phase, 2-16f
entering, 2-15
ending session, 2-4
entering, 2-4
invoking
REPLACE FORM command, 3-5
modifying form definitions, 2-5
moving text, 5-17
Phase Selection menu, 3-3
phases, 3-5
Assign, 3-6
Exit, 3-6
Form, 3-5
Layout, 3-5
Order, 3-6

Index-9



selecting, 2-5f
using, 3-2
Form field arrays, 6-19
Form fields
access order, 7-1
default, 7-2
inserted fields, 7-2
of pasted fields, 5-20
attributes
assigning, 3-6, 4-4, 5-37
default, 4-5f
creating, 2-9, 5-9
adjacent, 5-13
blanks in, 5-10
date fields, 5-12
data types, 5-10, 5-10t
date, 2-12
record field compatibility, 5-11
Size validator, 6-33
DATE data type
deleting, 5-12
errors, 5-12
for input, 5-12
default values, 2-18
Fill Character attribute, 6-15t
Fixed Decimal attribute
at run time, 6-12
help text for, 2-18
indexed, 6-19, 6-20f
creating, 5-37
rules, 5-37
steps in defining, 6-20
maximum length, 5-10
names, 2-17
defaults, 2-17
pasting, 5-20
suppressing zeros, 6-15
TIME fields
creating, 5-12
deleting, 5-13
errors, 5-13
formats, 5-12
video attributes
deassigning, 4-8
highlighting, 4-7t

Index-10

rules, 5-24
run time, 5-24
video highlighting, 4-6
Zero Fill attribute, 6-14, 6-15t
FORM IS instruction, 2-28f, 2-29
ending, 2-29
form names, 2-29
in request library definitions, 9-1
request library definitions, 2-37
Form Phase
video attributes
overriding, 4-6
Form phase, 3-5
assigning field attributes, 4-4
entering, 4-2
exiting, 4-3, 4-4
function keys, 4-2t
menu, 4-3f
screen, 2-61
uses of, 4-1
video attributes
assigning to input fields, 4-6
{FORM_FILE qualifier
CREATE FORM command, 3-3
REPLACE FORM command, 3-3
Forms
at run time, 2-3f
Attribute Assignment, 6-4, 6-4f
attributes
assigning, 2-5
defaults, 2-7
saving, 2-6
centering text, 5-20
Choice List, 6-29f
example, 6-30f
creating
Field mode, 2-10
fields, 2-9
from FMS files, 3-3
Layout phase, 2-7
screen image, 2-7
DATATRIEVE, 2-37
modifying, 9-3
deleting, 3-9
display



access order, 7-1
drawing boxes, 5-26
erasing, 5-28
restrictions, 5-28
steps, 5-26
drawing lines, 5-26
field validator, 6-24f
FMS, 9-3
converting, 9-3
Form phase menu, 2-6f
help
See Help forms ‘
in DATATRIEVE applications, 9-1
inserting blank lines, 5-20
moving cursor, 5-6, 5-7
names
assigning, 2-4
FORM IS instruction, 2-29
saving, 8-1
selecting background, 2-7
storing in the CDD, 3-6
titles, 2-8
centering, 2-8
video attributes
run time, 5-24
width
setting, 4-4
Function keys
See also name of key, e.g. BACK
SPACE key, RETURN key
Assign phase, 6-5t
Choice List form, 6-29t
creating a scrolled region with, 5-30
editing text, 5-15
Form phase, 2-6, 4-2t
Layout phase, 5-5, 5-5f, 5-5t
scrolled regions, 5-29
menu, 2-14
moving cursor, 5-6, 5-7
Order phase, 7-2t
Range List form, 6-27t
repeat key, 2-9
scrolled region
ending, 5-30
video attributes

assigning, 5-26

G

GOLD-C key
Order phase
resetting fields, 7-2t
GOLD-D key
Layout phase, 2-12, 5-5t
GOLD-down arrow key
scrolled field at run time, 7-7
GOLD-KP period key
Order phase, 7-3t
GOLD-KP3 key, 5-13
GOLD-KP7 key
See MENU key
GOLD-KPS8 key
Layout phase, 5-9
GOLD-n key
See REPEAT key
GOLD-Q key
Layout phase, 5-56t
to signal errors, 5-2
GOLD-R key
Assign phase
RESTORE, 6-6
GOLD-S key
Layout phase, 5-5t
video highlighting
double-size line, 5-23
GOLD-T key
Layout phase, 5-5t
GOLD-up arrow key
on Choice List form, 6-29t
scrolled field at run time, 7-7
GOLD-W key
Layout phase, 5-6t
video highlighting, 5-22
Group fields, 1-4f

H

Header instructions, 2-28f
conditional requests, 2-32f, 2-33
FORM IS, 2-29

Help forms, 4-6

Index-11



CDD path names, 4-6

mapping, 4-6

with DATATRIEVE, 9-2
HELP key

Assign phase, 6-6

at run time, 6-9

assigning text for, 2-18

Form phase, 4-2t

Help forms, 4-6

Layout phase, 5-2, 5-5t
Help text, 6-9

at run time, 6-9
Help Text attribute, 2-18

IMAGELIB.OLB file, 2-45
%INCLUDE statement (BASIC)

declaring record definitions, 2-40
Index Count attribute, 6-21
Indexed attribute, 5-37, 6-19

accepting default, 2-19

at run time, 6-20f

options, 6-21
Indexed fields

access order of, 7-2t

creating in Layout phase, 5-37

defining

steps, 6-20

rules, 5-37, 6-20
Input mappings

DATE fields, 5-12

definition of, 2-34

Size validator, 6-33

video highlighting, 4-6, 4-7t

deassigning, 4-8

INPUT TO instruction, 2-34
Insert mode

Layout phase, 5-4
Instructions

See Request instructions

K

Keys

Index-12

See also name of key, e.g. BACK
SPACE key, RETURN key
function
Assign phase, 6-5t
Choice List form, 6-29t
Form phase, 2-6, 4-2t
Layout phase, 5-5f
Order phase, 7-2t
Range List form, 6-27t
repeat function, 2-9
KP-hyphen key
on Choice List form, 6-29t
on Range List form, 6-27t
KPO key
moving to beginning of line, 5-7
on Choice List form, 6-29t
on Range List form, 6-27t
KP2 key
See END-OF-TEXT key
KP4 key
See END-OF-LINE key
KP9 key
scrolled regions, 5-29

L

Layout phase, 2-7, 3-5
entering, 5-1
entering Assign phase, 5-37
errors, 5-2
exiting, 2-14, 5-2
Field mode, 2-10, 5-3, 5-9
function keys, 5-5t
scrolled regions, 5-29
Insert mode, 5-4
keypad, 5-5, 5-5f
leaving, 5-2
moving cursor on form, 5-6, 5-7
Overstrike mode, 5-4
screen, 5-2
Text mode, 5-3, 5-8
uses of, 5-1
video attributes
overriding, 4-6
Left arrow key



Layout phase, 5-5t
operation of, 5-6
Line block
how to read, 5-3
Line buffer, moving contents of to
screen, 5-16
LINE FEED key
Assign phase, 2-17, 6-5
deassigning Autotab attribute,
6-10
changing field names, 6-8
defining scrolled regions
example, 5-33
Form phase, 4-2t
Layout phase, 5-5t, 5-7
on Choice List form, 6-29t
on Range List form, 6-27t
run time
deleting default value, 6-9
when defining scrolled regions, 5-29
Lines
double-size, 5-23
maximum length, 5-23
restrictions, 5-23
double-wide, 5-22
at run time, 5-22
maximum length, 5-23
scrolled regions, 5-22
with other video attributes, 5-22
inserting blanks, 5-20
scrolled regions
See Scrolled regions
Lines (solid)
drawing on a form, 5-26
removing from a form, 5-28
LINK command (DCL), 2-45
Linking
BASIC programs, 2-45
LIST FORM command (FDU), 3-7,
3-8
/IOUTPUT qualifier, 3-8
/PRINT qualifier, 3-9
printing output, 3-9
sending output to a file, 3-8
Listing

form definitions, 3-8
in output file, 3-8
printing, 3-9
Logical names
CDD$DEFAULT, 3-3
for CDD directories, 2-2
for CDD given names, 3-3
SYS$OUTPUT
LIST FORM command, 3-9

MAP statement (BASIC)
declaring record definitions, 2-40
Mappings
INPUT TO, 2-34
OUTPUT TO, 2-30
Size validator, 6-33
MENU key, 2-14
Assign phase, 6-6
Form phase, 4-2t
exiting, 4-3
Layout phase
leaving, 5-2
Order phase, 7-3t
saving access order, 7-5
Menus
Assign phase, 2-16f, 6-3, 6-3f
Form phase, 2-6f, 4-3f
Phase Selection, 2-5f
abbreviations in, 2-6
exiting, 2-23
Modes block
how to read, 5-3
MODIFY FORM command (FDU)
continuing, 2-5
errors, 3-4
using, 3-4
walkthrough, 2-4
Moving text
using CUT and PASTE keys, 5-17
Must Fill attribute, 6-16
accepting default, 2-19
field validators, 6-17
Response Required attribute, 6-17

Index-13



Zero Fill attribute, 6-14

N

Naming conventions
field names, 6-7
request library definitions, 2-37
request library files, 2-37, 2-38
No Echo attribute, 6-11
accepting default, 2-18
assigning, 6-11
for dummy fields, 5-37
Numeric fields :
Abbreviation Marker, 6-30°
Scale Factor attribute with, 6-18
NUMERIC STRING data type
fill character with, 6-14

o

OPEN-LINE key, 5-20
rules, 5-21
Opening
channels, 2-40
request library files, 2-40
Order of fields
changing current
example, 7-6
procedure, 7-4
determining, 7-3
Order phase, 3-6
defaults, 7-1
entering, 7-2
function keys, 7-2t
uses of, 7-1
Output mappings
%ALL syntax, 2-30
definition of, 2-30
Size validator, 6-33
JOUTPUT qualifier
LIST FORM command, 3-8
OUTPUT TO instruction, 2-30
Overstrike mode
DELETE key, 5-17

DELETE-CHARACTER key, 5-16

Layout phase, 5-4

Index-14

P

UNDELETE-CHARACTER, 5-17
UNDELETE-LINE key, 5-16

Paste buffer

filling, 5-18
rules, 5-19
TEST-PASTE key, 5-18, 5-19

Paste function

See Cut and paste function

PASTE key, 5-19

access order of pasted field, 7-2
double-size lines, 5-19
errors, 5-19
moving text, 5-17
pasting fields, 5-20
access order, 5-20

Path names

for Help forms, 4-6
of form definitions, 3-3

Personnel sample application

introduction, 1-9
running, 1-9

PF2 key

See HELP key

Phase Selection menu, 2-5f

Assign phase

entering, 6-2
CREATE FORM command, 3-3
Exit phase, 8-1
exiting, 2-23
Form phase, 4-2
Layout phase

entering, 5-1
Order

entering, 7-2
returning to, 6-6

Phases

Assign
entering, 6-2
menu, 2-16f

changing, 5-37

Form, 2-5
menu, 2-6f



Form phase menu, 4-3f

Layout, 2-7

of form editor, 3-5

Order

default, 7-1
uses of, 7-1

selection menu, 2-5f
Picture characters, 5-9t

9, 2-10

A, 2-10

contiguous, 5-13

definition of, 1-3 ‘

determining data type, 5-10t

Field mode, 5-9

Fixed Decimal attribute, 6-13

leaving blanks, 5-10

picture types, 5-9t

time fields, 5-13
Picture constants

leaving blanks, 5-10
Picture strings, 1-3

determining data type, 5-10

Size validators, 6-34t
/PRINT qualifer

LIST FORM command, 3-9
Printing

form definitions, 3-9
PRKs

See Program request keys

'~ PROGRAM KEY IS instruction, 2-30,

2-35
Program request keys
conditional requests, 2-35

R

Range List form
exiting, 6-27t

Range validation
See Range validators

Range validators, 6-22, 6-24
alphabetic ranges, 6-27
example, 6-25
Fixed Decimal attribute, 6-26
form, 6-25f

function keys, 6-27t
restoring, 6-27t
saving, 6-27t
RDU
correcting errors in, 2-36
entering, 2-27
exiting, 2-36
RDU commands
BUILD LIBRARY, 2-38
CREATE LIBRARY, 2-37
CREATE REQUEST, 2-27
EDIT, 2-36
EXIT, 2-36
Record definitions
CDDL
compiling, 2-25
DEFINE statement, 2-24
dummy fields, 5-36
extracting from CDD, 2-40
file types, 2-24
functions of, 2-23
simple, 1-4f
storing in the CDD, 1-4
RECORD IS instruction, 2-29
Records
creating
steps, 2-24
function of, 2-24
Refreshing screen, 6-29t
REMOVE key
See CUT key
Repeat function, 2-9
REPEAT key, 2-9
Layout phase, 5-5t
with CHANGE-CASE key, 5-21
REPLACE FORM command
using, 3-4

REPLACE FORM command (FDU),

3-4
[FORM_FILE qualifier, 3-3
Request Definition Utility
See RDU
Request definitions
modifying
after form modification, 3-4

Index-15



terminating, 2-31

Request instructions, 2-28f

CLEAR SCREEN, 2-29

CONTROL FIELD IS, 2-33

DESCRIPTION, 2-30

DISPLAY FORM, 2-29

END DEFINITION, 2-31
ending conditional requests, 2-35

FORM IS, 2-29

INPUT TO, 2-34

OUTPUT TO, 2-30

PROGRAM KEY IS, 2-30, 2-35

RECORD IS, 2-29

request library definitions, 2-37

USE FORM, 2-34

WAIT, 2-30

REQUEST IS instruction, 1-6, 2-28f

request library definitions, 2-37

Request library definitions

comment text, 2-30
creating, 2-37, 2-38
description, 1-6

errors, 2-37

for DATATRIEVE, 9-1, 9-2
instructions in, 2-37
naming, 2-37

simple, 1-6f

storing in the CDD, 2-37

Request library files

building, 1-6, 2-38
closing, 2-41
for DATATRIEVE, 9-2
identifying, 1-6
naming, 2-37, 2-38
opening, 2-40
rebuilding
after form definition changes, 3-4
using quotation marks with, 2-37

Requests

base instructions

conditional requests, 2-32f
clearing screens, 2-29
comment text, 2-30
conditional

See Conditional requests

Index-16

creating, 2-26 to 2-36
CDD, 2-29
conditional, 2-33
interactively, 2-27
default value in, 6-8
defining keys, 2-30
displaying a form, 2-41
example of
syntax, 2-32f
executing, 2-41
header instructions
conditional requests, 2-32f
identifying, 1-6
INPUT TO instruction, 2-34
names, 2-27
OUTPUT TO instruction, 2-30
parts, 2-28f
simple, 1-5f
waiting for operator input, 2-30
RESET key
assigning video attributes, 5-25
leaving Layout phase, 5-2
Response Required attribute, 6-17
assigning, 2-19
at run time, 6-17
dummy fields, 5-37
field validators, 6-17, 6-23
Must Fill attribute, 6-17
scrolled regions, 6-17
RESTORE key
Assign phase, 6-6
on Choice List form, 6-29t
on Range List form, 6-27t
Order phase, 7-3t
RETURN key
Assign phase, 2-15, 6-6
examples, 2-3
exiting form editor, 2-5
Form phase, 2-6, 4-2t, 4-4
exiting, 4-3
in EXIT phase, 8-1
on Choice List form, 6-29t
on Range List form, 6-27t
Order phase, 7-3t
saving video attributes, 5-26



Reverse Video attribute, 5-24
Right arrow key
Layout phase, 5-3, 5-5t
operation of, 5-6
Right Justify attribute, 6-12
Abbreviation Marker with, 6-30
accepting default, 2-18
Zero Fill attribute, 6-14
RLB
See Request library files
RUN command (DCL), 2-25, 2-46
Running
BASIC programs, 2-46
sample applications, 1-7

S

Sample applications
CDD directory for, 1-11
installing, 1-11
running, 1-7
Saving a form, 8-1
Scale Factor attribute, 6-18
accepting default, 2-19
effect, 6-19
Fixed Decimal attribute, 6-19
Scale factors
default, 6-19
fixed decimal fields, 6-19
Screens
background, 2-7
defaults, 4-3
setting, 4-3
refreshing, 6-27t, 6-29t
width
readability issues, 4-4
setting, 4-4
SCROLL key, 5-29
adding lines to scrolled regions,
5-35
example, 5-31, 5-33
Scrolled regions
access order, 7-7
changing, 7-8
access order of, 7-2t

adding lines to, 5-34
at run time, 7-7
access order, 7-7
BACK SPACE key, 5-31
down arrow key, 5-31
exiting, 7-7
TAB key, 5-31
up arrow key, 5-31
creating, 5-28
defining, 5-28
BEGINNING-OF-LINE key,
5-29
down arrow key, 5-29
ending, 5-30
LINE FEED key, 5-29
SCROLL key, 5-29
steps, 5-31
up arrow key, 5-29
deleting a line in, 5-15
Display Only, 5-29, 5-35
creating dummy fields, 5-35
example, 5-35, 5-36
record definitions, 5-36
steps, 5-36
double-wide lines, 5-29
example, 5-30
identifying, 5-30
maximum length, 5-28
Response Required attribute in,
6-17
restrictions, 5-29
rules, 5-28, 5-29
video attributes
rules, 5-24
SELECT key, 5-18
assigning video attributes, 5-25
canceling a SELECT range, 5-25
centering text, 5-20
cut and paste function, 5-18
drawing boxes, 5-26
steps, 5-26
Layout phase, 5-18
moving text, 5-17
Order phase, 7-2t
field access order, 7-5

Index-17



removing boxes, 5-28
with CHANGE-CASE key, 5-21
Select ranges
active
exiting during, 5-2
canceling, 5-25
drawing boxes, 5-26
removing boxes, 5-28
Semicolon (;)
CONTROL FIELD IS instruction,
2-33
ending comment text, 2-30
ending FORM IS instruction, 2-29
terminating END DEFINITION
instruction, 2-31
Separate fields, creating from contig-
uous picture characters, 5-13
SET TERMINAL/INQUIRE com-
mand (DCL), 2-4
Shareable images, 2-45
SIGNED BYTE data type
Size validator, 6-33t
SIGNED LONGWORD data type
Size validator, 6-33t
SIGNED NUMERIC data type
picture string for, 5-11
SIGNED QUADWORD data type
Size validator, 6-33t
SIGNED WORD data type
Size validator, 6-33t
Size validators, 6-22, 6-33
avoiding conversion errors, 6-34
effect on data types, 6-33
errors, 6-34
numeric equivalents, 6-33t
picture strings for, 6-34t
rules, 6-33
SIGNED BYTE, 6-33t
SIGNED LONGWORD, 6-33t
SIGNED QUADWORD, 6-33t
SIGNED WORD, 6-33t
types, 6-33t
UNSIGNED BYTE, 6-33t
UNSIGNED LONGWORD, 6-33t
UNSIGNED WORD, 6-33t

Index-18

Space bar key
Form phase
video highlighting, 4-7
STANDARD-ORDER key
Order phase, 7-2t
using, 7-4
Suggested TDMS Design Sequence,
1-7f
Suppressing zeros
Fixed Decimal attribute, 6-16
Zero Suppress attribute, 6-15
Supressing zeros
Fixed Decimal attribute, 6-13
Symbols (DCL)
for FDU, 3-2
SYS$OUTPUT logical name
LIST FORM command, 3-9

T

TAB key
Assign phase, 2-17, 6-5
at run time
accepting default value, 6-8
scrolled regions, 5-31
Form phase, 2-6, 4-2t
video highlighting, 4-7
on Choice List form, 6-29t
on Range List form, 6-27t
Order phase, 7-2t
determining access order, 7-3
TDMS applications
Assign phase
menu, 2-16f
RETURN key in, 2-15
design sequence, 1-7f
Form phase, 2-5
menu, 2-6f
Layout phase, 2-7
Phase Selection
abbreviations, 2-6
menu, 2-5f
planning, 1-6
records, 2-24
samples



Department, 1-10
Employee, 1-8
Personnel, 1-9
running, 1-8, 1-9, 1-10
steps in creating, 1-2
TDMS programming calls
TSS$CLOSE, 2-41
TSS$CLOSE_RLB, 2-41
TSS$OPEN, 2-40
TSS$OPEN_RLB, 2-40
TSS$REQUEST, 2-41
TDMS$SAMPLES directory,.1-11
TEST-PASTE key, 5-18
errors, 5-19
Text
background
See Background text
case of
changing, 5-21
matching, 6-32
centering, 2-8, 5-20
double-size, 2-8, 5-23
maximum length, 5-23
restrictions, 5-23
double-wide, 5-22
at run time, 5-22
maximum length, 5-23
scrolled regions, 5-22
with other video attributes, 5-22
editing, 5-15
uppercase, 2-21
TEXT data type
fill character with, 6-14
picture strings for, 5-11
rules, 5-11
Text editors
EDT, 2-24
exiting, 2-25
TEXT key
Layout phase, 5-8
Text mode
default, 5-8
Layout phase, 5-3, 5-8
TIME data type, 5-13
fields

creating, 5-12

deleting, 5-13

formats, 5-12, 5-13

inserting on a form, 5-13
mapping combined TIME and

DATE, 5-13
TIME-FIELD key, 5-12
TOP key, 5-8

Transferring data, 2-41
TSS$CLOSE, 2-41
syntax
BASIC, 2-41
TSS$CLOSE_RLB, 2-41
syntax
BASIC, 2-41
TSS$OPEN, 2-40
TSS$OPEN_RLB, 2-40
TSSSREQUEST, 2-41
syntax in BASIC, 2-41

u

UNDELETE-CHARACTER key, 5-17
Overstrike mode, 5-17
UNDELETE-LINE key, 5-16
access order of undeleted field, 7-2
Overstrike mode, 5-16
Undeleting
characters, 5-17
lines, 5-16
Underline attribute, 5-24
UNDRAW key, 5-28
UNSCROLL key, 5-30
adding lines to scrolled regions,
5-34
UNSIGNED BYTE data type
Size validator, 6-33t
UNSIGNED LONGWORD data type
Size validator, 6-33t
UNSIGNED NUMERIC data type
Check Digit validator, 6-22
Fixed Decimal attribute, 6-12
UNSIGNED WORD data type
Size validator, 6-33t
Up arrow key

Index-19



at run time
scrolled regions, 5-31
Layout phase, 5-5t, 5-7

when defining scrolled regions, 5-29

Uppercase attribute, 6-16
accepting default, 2-19
assigning, 2-21
at run time, 6-16
Exact Case Match, 6-32

USE FORM instruction, 2-34

\

Validating fields
See Field validators
VAX Common Data Dictionary
See CDD
VAX DATATRIEVE
See DATATRIEVE
Video attributes, 5-24
abbreviations, 5-25
assigning, 5-24
multiple, 5-26
VIDEO key, 5-25
Blink, 5-26
Bold, 5-26
clearing, 5-26
creating, 5-21
rules, 5-24
saving, 5-26
SELECT key, 5-25
Underline, 5-26
Video highlights
assigning to input fields, 4-6
VIDEO key

Index-20

assigning video attributes, 5-25

WALIT instruction, 2-30
Walkthrough

building a request library file, 2-38
creating
conditional request, 2-33
form definition, 2-2
request library definitions, 2-37
simple request, 2-27
defining CDD$DEFAULT, 2-2
getting started, 2-2
main sections, 2-1
why use forms?, 2-1
writing the application program,
2-38

Zero Fill attribute, 6-13

accepting default, 2-18

at run time, 6-14

effect, 6-15t

effect on clear character, 6-14
field definition, 6-14

Right Justify attribute, 6-14

Zero Suppress attribute, 6-15

accepting default, 2-18
Fixed Decimal attribute, 6-13, 6-16

Zeros

as fill character, 6-13
suppressing, 6-15
Fixed Decimal attribute, 6-13



How to Order Additional Documentation

If you live in: Call: or Write:

New Hampshire, 603-884-6660 Digital Equipment Corp.

Alaska ‘ P.O. Box CS2008
Nashua, NH 03061-2698

Continental USA, 1-800-258-1710 Same as above.

Puerto Rico, Hawaii

Canada 613-234-7726 Digital Equipment Corp.

(Ottawa-Hull) 940 Belfast Road

Ottawa, Ontario K1G 4C2
Attn: P&SG Business
Manager or approved

distributor

Canada 1-800-267-6146 Same as above.

(British Columbia)

Canada 112-800-267-6146 Same as above.

(All other)

All other areas — Digital Equipment Corp.
Peripherals & Supplies
Centers

P&SG Business Manager
c/o DIGITAL’s local
subsidiary

Note: Place prepaid orders from Puerto Rico with the local DIGITAL subsid-
iary (phone 809-754-7575).

Place internal orders with the Software Distribution Center, Digital Drive,
Westminster, MA 01473-0471.






VAX TDMS
Forms Manual
AA-GS13B-TE

Reader’s Comments

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company’s discretion. If you require a writ-
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[0 Assembly language programmer
(0 Higher-level language programmer
[0 Occasional programmer (experienced)
[0 User with little programming experience
O Student programmer
[0 Other (please specify)
Name Date
Organization
Street
City State lem(-; ode

Country



No Postage
Necessary
if Mailed in the

United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: DISG Documentation
ZK02-2/N53

Digital Equipment Corporation
110 Spit Brook Road

Nashua, NH 03062-2698

1 v 1Y Pt | YR 1 £ P Y P P Y T PP

Cut Along Dotted Line



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

