Update Notice #1

February 1987

VAX TDMS

Reference Manual
AD-HU17A-T1

Copyright © 1987 by Digital Equipment Corporation.
All Rights Reserved.

NEW AND CHANGED INFORMATION

This update contains changes and additions made to the VAX TDMS
Reference Manual for Version 1.7.

INSTRUCTIONS

Place the enclosed pages in the VAX TDMS Reference Manual
Version 1.7 as replacements for or additions to current pages.
Change bars on replacement pages indicate changed text. For new
pages and pages where most of the text has been substantially
revised, no change bars are used. Instead, only the Version 1.7
release date is shown on the bottom corner of the page.

Old Page New Page
Title Page/Copyright Title Page/Copyright
iii tovi iii to vii
vii to x ix to xii
xi/xii xiii/Blank
1-6.1/Blank
1-41to1-43
2-1t02-6 2-1t02-6
2-79/2-80 2-79 to 2-80
3-3t03-6 3-3t03-6
3-13/3-14 3-13to3-14
3-31/3-32 3-31/3-32
3-35t03-38 3-35t03-38
3-41t03-46 3-41t0 3-46
3-51t03-58 3-51t03-58
3-63/3-64 3-63/3-64
3-67/3-68 3-67/3-68
4-15/4-16 4-15/4-16

4-27/4-28 4-27/4-28

Page 2

Update Notice #1
VAX TDMS
Reference Manual

AD-HU17A-T1
Oid Page New Page
5-15/5-16 5-15/5-16
5-27/5-28 5-27/5-28
Chapter 7 Chapter 7
B-11toB-14 B-11to B-14
Index Index

Reader’s Comments/Mailer Reader’s Comments/Mailer

VAX TDMS
Reference Manual

Order No. AA-HU17A-TE
Including AD-HU17A-T1

February 1987

This manual describes the commands, instructions, and
synchronous and asynchronous routine calls of VAX
TDMS.

OPERATING SYSTEM: VMS
MicroVMS
SOFTWARE VERSION: VAX TDMS V1.7

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1986, 1987 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER’'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS MicroVMS VAX

CDD PDP VAXcluster

DATATRIEVE Rdb/ELN VAXinfo

DEC Rdb/VMS VAX Information Architecture
DECnet ReGIS VIDA

DECUS TDMS VMS

MicroVAX UNIBUS vT

mﬂaﬂnan)

How to Use This Manual
Technical Changes and New Features

1 Form Definition Utility (FDU) Commands

1.1 Common FDU Qualifier, AUDIT
1.2 @filesspecCommand.
1.2A ATTACHCommand.t ennn
1.3 COPYFORMCommandcceeeeuoos
1.4 CREATEFORMCommand
1.5 CTRL/ICCommand. vt ettt ennneneens
1.6 CTRL/YCommand. eeeeunneeneas
1.7 CTRL/ZCommand.ttt ennnnan
1.8 DELETEFORMCommand
1.9 EDITCommand ooteeeennnnnenons
1.10 EXITCommand.0tieeeenennennn.
1.11 HELPCommandttt neenen
1.12 LISTFORMCommand ¢ uuuenunensn
1.13 MODIFYFORMCommand.
1.14 REPLACEFORMCommand.
1.15 SAVECommandot tuwennnnnnas
1.16 SETDEFAULTCommand.................
1.17 SET[NOJLOGCommand.co....
1.18 SET[NOJVERIFYCommand
1.19 SHOWDEFAULTCommand
1.20 SHOWLOGCommando vuvveuuennan
1.21 SHOWVERSIONCommand.
1.22 SPAWNCommand.cooeueeuenonn

2 Request Definition Utility (RDU) Commands

2.1 Common RDU Qualifier,/AUDIT
2.1A Validate Mode and StoreMode.
2.2 @filespecCommand.o....
22A ATTACHCommand.cooeeeunenn.
2.3 BUILDLIBRARYCommand
24 COPYLIBRARYCommand.................
2.5 COPYREQUESTCommand
2.6 CREATE LIBRARYCommand...............
2.7 CREATEREQUESTCommand

February 1987

Contents

iii

v

2.8 CTRL/ICCommand.t vuuuumnmaann.. 2-29

29 CTRL/YCommand. euennnnnn. 2-30
210 CTRL/ZCommand vt v ittt et e, 2-31
2.11 DELETELIBRARYCommandou..... 2-33
2.12 DELETEREQUESTCommand. 2-35
2.13 EDITCommand.t 2-37
2.14 EXITCommand.t 2-40
215 HELPCommand umnnmnnnna.. 2-41
2.16 LISTLIBRARYCommand.uuuuuuuuune... 2-43
2.17 LISTREQUESTCommanduuuvuuunuunn.. 2-45
2.18 MODIFYLIBRARYCommand v e, 2-47
2.19 MODIFYREQUESTCommand.o..u..... 2-51
2.20 REPLACELIBRARYCommandou..... 2-56
2.21 REPLACEREQUESTCommand.u.uuuueu... 2-61
222 SAVECommandttt 2-67
2.23 SETDEFAULTCommand. v v e, 2-69
2.24 SET[NOJLOGCommand.ouuvuurunmunn.. 2-71
2.25 SET[NOJVALIDATECommand uuuuuun... 2-73
2.26 SET[NOJVERIFYCommandouuuuuuuono.. 2-76
2.27 SHOWDEFAULTCommando v mnennn. 2-717
2.28 SHOWLOGCommand uuununmnni.. 2-78
2.29 SHOWVERSIONCommand. runnuno.. 2-79
2.29A SPAWNCommand.t uwemennnnan.. 2-79.1
2.30 VALIDATELIBRARYCommand.o uuunun.. 2-80
231 VALIDATEREQUESTCommand 2-84
Request and Request Library Instructions
3.1 [NO]BLINKFIELDInstruction. uu.u.no.... 3-2
3.2 [NO]BOLDFIELDInstruction uuuune.... 3-4
3.3 [NOJCLEARSCREENInstruction. v 3-6
3.4 CONTROLFIELDISInstruction.o...... 3-7
3.5 [NO]DEFAULTFIELDInstruction 3-12
3.6A DEFINEKEYASInstruction.uuu..... 3-13.1
3.6 DESCRIPTIONInstructiono v v v v, 3-14
3.7 DISPLAYFORMInstruction, 3-16
3.8 ENDDEFINITIONInstruction. ot o v v e, 3-18
3.9 FILEISInstruction uunuunueno.. 3-19
3.10 FORMISInstruction.o v i i 3-21
3.11 %INCLUDEInstruction00 'uuuiu.n... 3-25
3.12 INPUTTOInstruction., 3-27
3.13 KEYPAD[MODE]ISInstruction v oo, 3-31
3.14 [NOJLIGHTLISTInstructionouu...... 3-33

February 1987

3.15 MESSAGELINEISInstruction. c .t ' onnnn 3-34

3.16 OUTPUTTOInstructiont nenennnn 3-36
3.17 PROGRAMKEYISInstruction.0o.... 3-41
3.18 RECORDISInstruction. nn. 3-46
3.19 REQUESTISInstruction.t iv i enennnn 3-48
3.20 [NOJRESETFIELDInstruction.o 3-50
3.21 RETURNTOInstructionttt eenennn 3-52
3.22 [NOJREVERSEFIELDInstruction. 3-57
3.23 [NOJRINGBELLInstruction 3-59
3.24 SIGNAL[MODE]ISInstruction. 3-60
3.25 [NO]SIGNALOPERATORInstruction 3-62
3.26 [NO]JUNDERLINE FIELD Instruction. 3-63
3.27 USEFORMInstruction., 3-65
3.28 [NOJWAITInstruction0 nnn 3-67
4 TDMS Synchronous Programming Calls
4.1 NotationUsedinThisChapter. 4-2
4.2 TSS$CANCELCallottt it ittt e e 4-3
4.3 TSSSCLOSECallttt ittt 4-5
4.4 TSS$CLOSE_RLBCall., 4-8
4.5 TSS$COPY_SCREENCall, 4-10
4.6 TSS$DECL_AFKCall. 4-13
477 TSSBOPENCall i i e eaen 4-19
48 TSSSOPEN_RLBCall. 4-22
4.9 TSS$READ MSG_LINECall. 4-25
4.10 TSSSREQUESTCall e, 4-29
4.11 TSS$SIGNALCall.ttt iienen.. 4-34
412 TSS$TRACE OFFCall......... 4-36
413 TSSS$TRACE_ONCall.t ittt ii i, 4-38
4.14 TSSSUNDECL_AFKCall. 4-40
4.15 TSSSWRITE_BRKTHRUG Call. 4-42
4.16 TSSSWRITE_MSG_LINECall 4-45
5 TDMS Asynchronous Programming Calls
5.1 NotationUsedinThisChapter. 5-2
5.2 TSSSCLOSE_ACall. it i ii e 5-4
5.3 TSS$COPY_SCREEN_ACall......... 5-8
5.4 TSS$DECL_AFK_ ACall....... 5-13
5.5 TSSSOPEN_ACall 5-20
5.6 TSSSREAD_MSG_LINE ACall 5-24
5.7 TSSSREQUEST_ACall e, 5-29
5.8 TSSSUNDECL_AFK ACall. 5-36

February 1987 v

vi

5.9 TSSSWRITE_BRKTHRU_ACall. 5-40

5.10 TSS$SWRITE_MSG_LINE_ACall. 5-44
Rules for Resolving Ambiguous Field References
6.1 How to Make Field ReferencesUnique 6-1
6.1.1 UsingGroupFieldNames 6-2
6.1.2 UsingtheRecordName 6-3

6.1.3 Changing the Record Definition to Make References Unique . . 6-5
Instruction Execution Order

VAX TDMS Input and Output Mapping Tables

8.1 DeterminingDataTypest en... 8-1
8.2 DeterminingFieldLengths. 8-1
83 HowtoUseTheseTables, 8-2

FDU and Field Validator Error Messages
A.l FDU-Level ErrorMessageso iiteuenennenn. A-l
A.2 Field Validator ErrorMessages+ v v v v vt v v v v v e e A-10
RDU Error Messages

TDMS Run-Time Error Messages

TDMS/DATATRIEVE Error Messages

Index

Figures
6-1 Referring to Record Fields withthe SameName 6-2
6-2 Using Record Names to Make Field References Unique 6-4
Tables
4-1 Parameter PassingNotation 4-2
4-2 Error Severity Codes for ReturnStatus 4-2
4-3 TDMS Application Function Keys(AFKs). 4-14
4-4 TDMS Synchronous Programming Callsin VAXBASIC 4-48
4-5 TDMS Synchronous Programming Callsin VAXCOBOL 4-50
4-6 TDMS Synchronous Programming Callsin VAX FORTRAN 4-52
5-1 Parameter PassingNotation 5-2
5-2 Error Severity Codes for Return Status and Completion Status 5-3
5-3 TDMS Application FunctionKeys(AFKs). 5-15

February 1987

5-4 TDMS Asynchronous Programming Callsin VAX BASIC 5-49

5-5 TDMS Asynchronous Programming Callsin VAX COBOL. 5-51
5-6 TDMS Asynchronous Programming Calls in VAX FORTRAN. 5-53
8-1 TDMS Input Mappings (Form Fields to Record Fields) 8-3
8-2 TDMS Output Mappings (Record Fields to Form Fields) 8-4

February 1987 vii

How to Use This Manual

This manual describes the commands, instructions, and routine calls for the VAX
Terminal Data Management System (VAX TDMS). The VAX TDMS software is
also referred to as TDMS in this manual. The VAX DATATRIEVE software is
referred to as DATATRIEVE in this manual.

All programming languages referred to in this manual are VAX programming

languages.

Intended Audience

This manual is intended for experienced TDMS users who need specific informa-
tion on a particular command, instruction, or programming call. It is not intended
as a learning tool.

If you are new to TDMS, you should read Chapters 1 and 2 of the VAX TDMS
Forms Manual for an introduction to the product and its components.

Similarly, if you want to learn how to perform a particular task using TDMS, you
should read the other manuals in this documentation set:

* For creating forms - VAX TDMS Forms Manual

e For creating requests - VAX TDMS Request and Programming Manual

¢ For writing application programs - VAX TDMS Request and Programming
Manual

February 1987 ix

Operating System Information

To verify which verions of your operating system are compatible with this version
of VAX TDMS, check the most recent copy of the VAX System Software Order
Table/Optional Software Cross Reference Table, SPD 28.98.xx.

Structure

This manual has eight chapters, four appendixes, and an index:

Chapter 1 Describes the commands for the Form Definition Utility
(FDU).

Chapter 2 Describes the commands for the Request Definition Utility
(RDU).

Chapter 3 Describes the instructions used for defining requests and

request libraries in RDU.

Chapter 4 Describes the synchronous calls used for invoking TDMS from
an application program.

Chapter 5 Describes the asynchronous calls used for invoking TDMS
from an application program.

Chapter 6 Describes the rules for resolving ambiguous field references in
a TDMS request.

Chapter 7 Describes the order in which request instructions are
processed at run time.

Chapter 8 Describes the rules for converting data types in TDMS input
and output mapping instructions.

Appendix A Lists FDU error messages, an explanation of the error, and
the action the user should take to correct the error.

Appendix B Lists RDU error messages, an explanation of the error, and
the action the user should take to correct the error.

Appendix C Lists TDMS run-time error messages, an explanation of the
error, and the action the user should take to correct the error.

Appendix D Lists TDMS error message codes that can be issued in a VAX
DATATRIEVE application that uses TDMS.

X February 1987

Related Manuals

As you use this book, you may find the following manuals helpful:

VAX TDMS Forms Manual

VAX TDMS Request and Programming Manual

VAX Common Data Dictionary Data Definition Language Reference Manual
VAX Common Data Dictionary Utilities Reference Manual

VAX Run-Time Library Routines Reference Manual

For information on using VAX TDMS with other VAX Information Architecture
products, see the Introduction to Application Development. This book provides
many useful examples and information about creating applications that use VAX
TDMS.

Conventions

This section explains the special symbols used in this book:

[] Square brackets in syntax diagrams enclose optional items from
which you can choose one or none. Square brackets are also used
in Request Definition Utility examples to indicate subscripts in
an array.

{} Braces enclose items from which you must choose one and only
one alternative.

HEN Bars in braces indicate that you must choose one or more of the
items enclosed.

() In RDU syntax, matching parentheses enclose lists of receiving
fields in mapping instructions and CDD passwords.

WORD An uppercase word indicates a command or instruction keyword.
Keywords are required unless otherwise indicated. Do not use
keywords as variable names.

FDU> The FDU > prompt indicates the utility is at command level and
ready to accept FDU commands.

RDU > The RDU > prompt indicates the utility is at command level and
ready to accept RDU commands.

February 1987 Xi

RDUDFN >

CTRL/x

<RET>

Color

Xii

The RDUDFN > prompt indicates that the RDU utility is at the
instruction level and ready to accept request or request library
instructions.

The dollar sign prompt indicates that you are at DIGITAL
Command Language (DCL) level and can enter the RDU or FDU
utilities. From the DCL prompt, you can also enter RDU or FDU
commands if you precede them with the RDU or FDU symbol. (It
is possible to change the DCL prompt. However, in this manual
the examples use the default prompt, the dollar sign.)

This key combination indicates that you press both the CTRL
(control) key and the specified key simultaneously.

This key symbol indicates the RETURN key. Unless otherwise
stated, end all example lines by pressing the RETURN key.

Colored text in examples shows what you enter.

Horizontal ellipsis means you can repeat the previous item.

Vertical ellipsis in an example means that information not
directly related to the example has been omitted.

February 1987

Technical Changes and New Features

This section summarizes the changes to VAX TDMS that are described in this
manual:

. Several new commands and instructions have been added to TDMS for this
version:
- ATTACH command (FDU and RDU)

DEFINE KEY AS instruction (RDU)

SPAWN command (FDU and RDU)

Descriptions of these commands and instructions are in this manual. In addi-
tion, the DEFINE KEY AS instruction is covered in Chapter 11 of the VAX
TDMS Request and Programming Manual.

e The PROGRAM KEY IS instruction has been extended to support additional
keys.

. The %TOD function has been added to the OUTPUT TO and RETURN TO
instructions.

° The %MODIFIED function has been added to the RETURN TO instruction.

February 1987 Xiii

ATTACH

1.2A ATTACH Command

Transfers control from your process to another process in your job.

Format

ATTACH process-name

Prompts

FDU>

$

Command Parameter

process-name
The name of the process to which control is transferred.

Note

The ATTACH command transfers control from your process to another process in
your job. The ATTACH command does not terminate the process from which you
issue it. To terminate the process, you can either log out of the process or log out
of the parent process.

Example

FDU> ATTACH TOMLIN

Assume you are in a subprocess and that the parent process name is TOMLIN.
This command returns control of your job to the process TOMLIN.

February 1987 Form Definition Utility (FDU) Commands 1-6.1

SPAWN

1.22 SPAWN Command

Creates a subprocess of the current process and transfers control of your job to
the subprocess.

Format

SPAWN [command]
Command Qualifiers Defaults

/INPUT =file-spec

/[NOJLOGICAL _NAMES /LOGICAL _NAMES
/OUTPUT][=file-spec] /OUTPUT =SYS$OUTPUT
/PROCESS = subprocess-name /PROCESS = subprocess-name
/[NOISYMBOLS /SYMBOLS
/[NOJWAIT /WAIT

Prompts

FDU>

$

Command Parameter

command

The DCL command executed in the subprocess created by the SPAWN
command. When the DCL command completes, the subprocess terminates
and control is returned to the parent process. If you do not specify a
command, TDMS creates a subprocess transferring control to DCL level.

Command Qualifiers

/INPUT =file-spec

Specifies an input file containing one or more DCL command strings to be
executed by the spawned subprocess. If you specify a command along with an
input file, the command is processed before the commands in the input file.
Once processing is complete, the subprocess terminates.

February 1987 Form Definition Utility (FDU) Commands 1-41

SPAWN

/LOGICAL _NAMES
Specifies that the logical names of the parent process should be copied to the
subprocess. The default is /LOGICAL_NAMES.

/NOLOGICAL _NAMES
Specifies that the logical names of the parent process should not be copied to
the subprocess. The default is /[LOGICAL _NAMES.

/OUTPUT =file-spec

Identifies the file to which the results of the SPAWN operation are written. If
you omit the /OQUTPUT qualifier, output is written to SYS$OUTPUT.

You should specify output other than SYS$OUTPUT whenever you use the
/NOWAIT qualifier. Otherwise, output might be displayed while you are
entering new commands.

/PROCESS = subprocess-name

Specifies the name of the subprocess to be created. By default, if you omit the
/PROCESS qualifier, a unique process name is assigned with the same user
name as the parent process and a unique number. The default subprocess
name format is username _ n.

/SYMBOLS
Specifies that the DCL global and local symbols should be passed to the
subprocess. The default is /SYMBOLS.

/NOSYMBOLS
Specifies that the DCL global and local symbols should not be passed to the
subprocess. The default is /SYMBOLS.

/WAIT

Ensures that the system waits until the subprocess is completed before
allowing more commands to be issued in the parent process. The default
is /WAIT.

/NOWAIT

Allows you to issue new commands while the specified subprocess is running.
The default is /WAIT.

When you use the /NOWAIT qualifier interactively, be sure to use the
/OUTPUT qualifier as well so that output from the subprocess is directed to
a file rather than to your terminal.

1-42 Form Definition Utility (FDU) Commands February 1987

SPAWN

Note

If you return to your FDU session by logging out of the subprocess, the
subprocess is terminated. To return to your FDU session without terminating the
subprocess, use the DCL. ATTACH command. You can then return from FDU to
the subprocess with the FDU ATTACH command.

Examples

These examples assume that you have defined DMU and RDU as symbols for the
commands that invoke these utilities.

FDU> SPAWN RDU LIST REQUEST TEST_REQUEST

The SPAWN command creates a subprocess that runs RDU to list the request
TEST _REQUEST. When RDU completes execution of the LIST command, it
returns control to FDU.

FDU> SPAWN

¢ DMU LIST/TYPE=CDD$RECORD/LIST=LIST_OF_RECORDS.LIS
¢ PRINT LIST_OF_RECORDS.LIS

¢ LOGOUT

FDU>

The SPAWN command creates a DCL subprocess. You can then issue DCL
commands. In this example, you list all the records in the CDD default directory
and print the listing. Then you log out of the subprocess to return to FDU.

FDU> SPAWN/OUTPUT=FORMLISTING.X
¢ DIRECTORY _FORM

¢ LOGOUT

FDU>

The SPAWN command creates a DCL subprocess and directs future output to the
file FORMLISTING.X. The DIRECTORY command lists all files that end with
“_FORM” in the FORMLISTING X file. Then you log out of the subprocess to
return to FDU.

February 1987 Form Definition Utility (FDU) Commands 1-43

Request Definition Utility (RDU) Commands 2

This chapter provides complete information for all the commands in the Request
Definition Utility (RDU). The command keywords are listed at the top of each
page and are in alphabetical order.

Each section contains the following categories, as applicable:

Format Provides the syntax for the command.

Prompts Shows the prompts for each command.
Command Parameters Explains each parameter.

Command Qualifiers Explains each qualifier and how to use it. Always

specify a qualifier following a command and its
parameters (at the end of a command line) unless
otherwise indicated.

Note Provides information about using the command.

Examples Gives examples on using the command.

2.1 Common RDU Qualifier, /AUDIT

Many RDU commands allow you to use the optional qualifier /AUDIT. To avoid
repetition, the qualifier is explained fully here and then mentioned in the
description of each command that uses it.

The /AUDIT qualifier stores audit text with the request or request library
definition. The forms of the qualifier are:

/AUDIT

The standard default audit text includes the date and time you perform the

specified operation on the request or request library definition and the name
of the utility (RDU). /AUDIT is the default.

/NOAUDIT

Does not store audit text with the request or request library definition.
/AUDIT is the default.

/AUDIT = audit-string

2-2

Stores, with the request or request library definition, an audit string that
consists of one or more single words, one or more quoted strings, text from a
file, or a combination of these three items. The optional audit string can
indicate, among other things, when the request or request library definition
is created, accessed, or changed.

Each item in the audit string (and each line of text in a file) creates one line
of audit text. If the audit string is longer than one line, you must specify the
hyphen (-) continuation character as the last character on each line you are
continuing. When you include more than one item, enclose the list of items in
parentheses.

If you specify more than 64 lines of audit text, RDU issues a warning
message and truncates the audit text to 64 lines.

/AUDIT is the default.
/AUDIT = single-word

Stores a single word with the request or request library definition. The word
need not be enclosed in quotation marks. If you specify a series of single
words, enclose the words in parentheses and separate them with commas, for
example, /AUDIT =(WORD1, WORD2, WORD3).

/AUDIT = quoted-string

Stores the string with the request or request library definition. The string
can be a single line of text between quotation marks. If you specify a series
(up to 64 lines) of quoted strings, enclose the strings in parentheses and

separate them by commas, for example, /AUDIT = (“first string”,“second
string”,“third string”).

/AUDIT = @file-spec

Stores, with the request or request library definition, the text from the
specified file or files. If you specify more than one file, enclose each @file-spec
parameter in parentheses and separate by commas. The audit text in the
files need not be enclosed in quotation marks. You can specify a total of up to
64 lines of text.

Use the standard VMS file specification. The default file type is .DAT.

Request Definition Utility (RDU) Commands February 1987

/AUDIT ={ | single-word, quoted-string, @file-spec, ... | }

Stores, with the request or request library definition, a combination of one or
more of the following items: a single word, text from a file, or a quoted string.
The list of items must be enclosed in parentheses and separated by commas.

RDU stores up to 64 lines of audit text. Each item (and each line of text in a
file) creates one line in the audit text.

2.1A Validate Mode and Store Mode

[No]Validate mode

You use the SET VALIDATE command to set RDU to Validate mode. You use
the SET NOVALIDATE command to set RDU to Novalidate mode. Validate mode
is the default.

With Validate mode set, when you use the CREATE, MODIFY, or REPLACE
command, RDU checks requests and request library definitions for valid
references to form definitions and record definitions, and checks request library
definitions for requests. RDU also validates form fields and record fields in
mappings. If the requests or request library definitions are valid, RDU stores the
new requests or request library definitions in the CDD.

In Novalidate mode, RDU does not check requests and request library definitions
for valid references. When RDU is set to Novalidate mode, you can create a
request before creating the form and/or record(s).

[No]Store mode

Store mode causes certain RDU commands to store the request binary structure
along with the request in the CDD. Nostore mode means that the request binary
structure is not stored in the CDD with the request.

If the request binary structure is stored with the request, the BUILD LIBRARY
command revalidates the request only when an associated form or record has
changed since the request binary structure was created. Otherwise, in Nostore
mode, the request is revalidated every time you issue a BUILD LIBRARY
command.

You can set RDU to Store mode by specifying the /STORE qualifier with the
CREATE REQUEST, MODIFY REQUEST, REPLACE REQUEST, VALIDATE
LIBRARY, and VALIDATE REQUEST commands. To set RDU to Nostore mode,
you specify the /NOSTORE qualifier with those commands.

When RDU is set to Validate mode, Store mode is the default. However, when
RDU is set to Novalidate mode, Nostore is the default.

February 1987 Request Definition Utility (RDU) Commands 2-3

@file-spec

2.2 @file-spec Command

Executes the specified indirect command file that contains RDU commands and
associated request or request library definition instructions.

Format

(@file-spec

Prompts
RDU >

%

Command Parameter

file-spec

The name of a command file for RDU to execute. Use the standard VMS file
specification format. If you do not specify a file type, RDU looks for a file
with a .COM file type, which is the default.

Notes

The file can contain commands to process a request or request library definition
(CREATE, REPLACE, COPY, MODIFY) as well as other RDU commands.

When RDU executes an indirect command file, it displays any output on
SYS$OUTPUT. RDU also displays error messages on SYS$ERROR if
SYS$ERROR is different from SYS$OUTPUT.

RDU does not display the RDU commands it is executing from a command file
unless the RDU command SET VERIFY is in effect.

2-4 Request Definition Utility (RDU) Commands

@file-spec

Note

When you start RDU, it executes a command file pointed to by the
logical name RDUINI (if such a file is present in your current default
VMS directory).

By default, the logical name RDUINI points to the command file
named RDUINI.COM. You create this file and can place in it startup
commands that you wish RDU to execute each time you call the utility.
You can define RDUINI to point to any file you wish. If you name the
file something other than RDUINI.COM, define the logical name
RDUINI to point to the new file.

Examples

RDU> BACCTAPP

RDU executes the file ACCTAPP.COM, which can contain, for instance, the
commands and request text to create several requests associated with a TDMS
accounting application.

¢ RDU E@ACCTAPP

You can type the @file-spec command at DCL level.

¢ RDU
RDU*

RDU automatically executes RDUINI.COM if it is present in your current default
directory. The file may contain commands such as:

SET NOVALIDATE
SET LOG
SET VERIFY

Request Definition Utility (RDU) Commands 2-5

ATTACH

2.2A ATTACH Command

Transfers control from your process to another process in your job.

Format

ATTACH process-name

Prompts

RDU >

%

Command Parameter

process-name

The name of the process to which control is transferred.

Note

The ATTACH command transfers control from your process to another process in
your job. The ATTACH command does not terminate the process from which you
issue it. To terminate the process, you can either log out of the process or log out
of the parent process.

Example

RDU> ATTACH TOMLIN

Assume you are in a subprocess and that the parent process name is TOMLIN.
This command returns control of your job to the process TOMLIN.

February 1987 Request Definition Utility (RDU) Commands 2-5.1

BUILD LIBRARY

2.3 BUILD LIBRARY Command

Creates a request library file that contains the requests and the form and record

information necessary to execute these requests.

Format

BUILD LIBRARY request-library-path-name [request-library-file]

Command Qualifiers Defaults
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NO]JLIST /NOLIST
/LIST =file-spec /NOLIST
/[NOILOG /NOLOG
/[NOJPRINT /NOPRINT
Prompts

RDU

$

Command Parameters

request-library-path-name

The CDD path name (given, relative, or full) of the request library definition
that contains the names of the requests to be included in the request library

file.

request-library-file

The VMS file that RDU builds to contain the requests and the form and
record information necessary to execute these requests. Use the standard
VMS file specification format. If you assign no file type, RDU supplies the

.RLB file type.

2-6 Request Definition Utility (RDU) Commands

SHOW VERSION

2.29 SHOW VERSION Command

Displays information about the current version of RDU to SYS$OUTPUT.

Format

SHOW VERSION

Prompt

RDU =
Example

RDU>» SHOW VERSION
UAX RDU V1.6-0

RDU shows the version of the utility you are running.

Request Definition Utility (RDU) Commands 2-79

SPAWN

2.29A SPAWN Command

Creates a subprocess of the current process and transfers control of your job to
the subprocess.

Format

SPAWN [command]
Command Qualifiers Defaults

/INPUT =file-spec

/[NOJLOGICAL _NAMES /LOGICAL _NAMES
/OUTPUT] = file-spec] /OUTPUT = SYS$OUTPUT
/PROCESS = subprocess-name /PROCESS = subprocess-name
/[NOJSYMBOLS /SYMBOLS
/[NO]WAIT /WAIT

Prompts

RDU»

%

Command Parameter

command

The DCL command executed in the subprocess created by the SPAWN
command. When the DCL command completes, the subprocess terminates
and control is returned to the parent process. If you do not specify a
command, TDMS creates a subprocess transferring control to DCL level.

Command Qualifiers

/INPUT =file-spec

Specifies an input file containing one or more DCL command strings to be
executed by the spawned subprocess. If you specify a command along with an
input file, the command is processed before the commands in the input file.
Once processing is complete, the subprocess terminates.

February 1987 Request Definition Utility (RDU) Commands 2-79.1

SPAWN

/LOGICAL _NAMES

Specifies that the logical names of the parent process should be copied to the
subprocess. The default is /LOGICAL_NAMES.

/NOLOGICAL _ NAMES

Specifies that the logical names of the parent process should not be copied to
the subprocess. The default is /LOGICAL _NAMES.

/OUTPUT =file-spec

Identifies the file to which the results of the SPAWN operation are written. If
you omit the /OUTPUT qualifier, output is written to SYS§OUTPUT.

You should specify output other than SYS$SOUTPUT whenever you use the
/NOWAIT qualifier. Otherwise, output might be displayed while you are
entering new commands.

/PROCESS = subprocess-name

Specifies the name of the subprocess to be created. By default, if you omit the
/PROCESS qualifier, a unique process name is assigned with the same user
name as the parent process and a unique number. The default subprocess
name format is username __n.

/SYMBOLS

Specifies that the DCL global and local symbols should be passed to the
subprocess. The default is /SYMBOLS.

/NOSYMBOLS

Specifies that the DCL global and local symbols should not be passed to the
subprocess. The default is /SYMBOLS.

/WAIT

Ensures that the system waits until the subprocess is completed before

allowing more commands to be issued in the parent process. The default is
/WAIT.

/NOWAIT

Allows you to issue new commands while the specified subprocess is running.
The default is /WAIT.

When you use the /NOWAIT qualifier interactively, be sure to use the
/OUTPUT qualifier as well so that output from the subprocess is directed to
a file rather than to your terminal.

2-79.2 Request Definition Utility (RDU) Commands February 1987

SPAWN

Note

If you return to your RDU session by logging out of the subprocess, the
subprocess is terminated. To return to your RDU session without terminating the
subprocess, use the DCL ATTACH command. You can then return from RDU to
the subprocess with the RDU ATTACH command.

Examples

These examples assume that you have defined FDU as a symbol for the
command that invokes this utility:

RDU> SPAWN FDU LIST FORM TEST_FORM

The SPAWN command creates a subprocess that runs FDU to list the form
TEST_FORM. When FDU completes execution of the LIST command, it returns
control to RDU.

RDU> SPAWN FDU LIST FORM TEST_FORM/OUTPUT=TEST_FORM.LIST/NOWAIT

This SPAWN command performs the same function as the previous example.
However, the output from the FDU LIST command is sent to the file

TEST _FORM.LIST, rather than to the terminal. The /NOWAIT qualifier allows
the user to continue working in RDU while the subprocess is creating the
TEST_FORM.LIST file.

February 1987 Request Definition Utility (RDU) Commands 2-79.3

VALIDATE LIBRARY

2.30 VALIDATE LIBRARY Command

Determines whether a request library definition in the CDD is valid. If RDU is in
Store mode, the VALIDATE LIBRARY command also creates a request binary
structure in the CDD for each request in the request library definition.

Format
VALIDATE LIBRARY request-library-path-name
Command Qualifiers Defaults
/[NOJAUDIT /AUDIT
/AUDIT = audit-string /AUDIT
/[NOILOG /NOLOG
/[NO]JSTORE /STORE
Prompts

RDU

$

Command Parameter

request-library-path-name
The CDD path name (given, relative, or full) of the request library definition
that you want to validate.

Command Qualifiers

/AUDIT

Stores audit text with the request library definition. The standard default
audit text includes the date and time you validate the request library
definition and the name of the utility (RDU). /AUDIT is the default.

2-80 Request Definition Utility (RDU) Commands

[NO] BLINK FIELD

If a field has been defined with input highlighting in FDU, the [NO] BLINK
instruction will override the input highlighting video attribute for that field. Any
other video attributes assigned to the field will be unaffected by the [NO] BLINK
instruction.

The BLINK instruction is ignored if you run a TDMS application on a VT52
terminal.

Examples

RDUDFN: NO BLINK FIELD DEPARTMENT3

Sets the form field DEPARTMENT to no blinking.

RDUDFN: BLINK FIELD NAMEs BADGE, SEX3

Sets the form fields NAME, BADGE, and SEX to blinking.

RDUDFN» BLINK FIELD Z%ZALL3

Sets all the fields on the active form to blinking.

February 1987 Request and Request Library Instructions 3-3

[NO] BOLD FIELD

3.2 [NO] BOLD FIELD Instruction
Sets or clears the bolding video attribute of a field in an active form.

Format

form-field[,...] .
[NO] BOLD FIELD { %ALL } ;

Prompt

RDUDFN

Instruction Parameters

form-field

The name assigned to the form field. The field must be on the active form.
You can specify one form field or a list of form fields separated by commas.

%ALL
All the fields on the active form.

Notes
If you specify the BOLD or NO BOLD instruction in a request, it overrides:
e A Bold or No Bold attribute assigned in a form definition.

e A BOLD or NO BOLD instruction that is still active from a previous request
call. A video instruction is still active when:

- A form is still on the screen from a previous request call

— The current call to a request uses that same form with a USE FORM
instruction

At run time, a BOLD or NO BOLD instruction used within a conditional
instruction supersedes one in a base request or any outer conditional instruction.

3-4 Request and Request Library Instructions

[NO] BOLD FIELD

If a field has been defined with input highlighting in FDU, the [NO] BOLD
instruction will override the input highlighting video attribute for that field. Any
other video attributes assigned to the field will be unaffected by the [NO] BOLD
instruction.

The BOLD instruction is ignored if you run a TDMS application on a VT52
terminal.

Examples

RDUDFN:> BOLD FIELD NAME. BADGE: SEXJ

Bolds the form fields NAME, BADGE, and SEX.

RDUDFN:> NO BOLD FIELD NAME];

Clears the Bold attribute for the form field NAME.

RDUDFN> BOLD FIELD %ALL:

Bolds all the fields on the active form.

February 1987 Request and Request Library Instructions 3-5

[NO] CLEAR SCREEN

3.3 [NO] CLEAR SCREEN Instruction

Clears or does not clear the terminal screen before displaying a form.

Format

[NO] CLEAR SCREEN;

Prompt

RDUDFN -

Notes

The CLEAR SCREEN instruction ensures that the screen is clear of system
messages or other information before TDMS displays a form on the screen. NO
CLEAR SCREEN is the default.

TDMS executes a CLEAR SCREEN or NO CLEAR SCREEN instruction before
executing any form usage or mapping instructions.

You might want to use this instruction at the beginning of every request, before
TDMS displays a form specified in the USE FORM or DISPLAY FORM
instruction. Note that the CLEAR SCREEN instruction repaints the entire screen
and can be very slow.

At run time, a CLEAR SCREEN or NO CLEAR SCREEN instruction used within
a conditional instruction supersedes one in a base request or any outer
conditional instruction.

Examples

RDUDFN* CLEAR SCREEN;:

Clears the terminal screen.

RDUDFN.: NO CLEAR SCREEN3

Does not clear the terminal screen.

3-6 Request and Request Library Instructions February 1987

[NO] DEFAULT FIELD

Examples

RDUDFN: USE FORM EMPLOYEE_FORM;
RDUDFN: DEFAULT FIELD EMPLOYEE:S

Displays EMPLOYEE _FORM with the contents from the immediately previous
request call, except for the field EMPLOYEE. Resets the contents of the form
field EMPLOYEE to display the contents in the form definition for the field
EMPLOYEE.

RDUDFN* NO DEFAULT FIELD EMPLOYEE, BADGE. DEPT:

Specifies that the contents of the form fields EMPLOYEE, BADGE, and DEPT
not be the defaults specified in the form definition.

Request and Request Library Instructions 3-13

DEFINE KEY AS

3.5A DEFINE KEY AS Instruction

Specifies an alternate definition for a key or key sequence.

Format

DEFINE KEY key-name AS key-function;

Prompt

RDUDFN >

Instruction Parameters

key-name

The name of the key you want to define to perform the key-function you are
specifying. There are several categories of key names.

o The KEYPAD keys are those on the numeric keypad at the right edge of
the keyboard. There is a numeric keypad on VI'100- and VT200-series
terminals. Remember that the KEYPAD keyword is not enclosed in
quotation marks but the remaining part of the key-name is.

Note that the keypad must be set to Application mode when KEYPAD keys
are used in a request. You use the KEYPAD MODE IS instruction to set
the keypad to Application mode.

The following numeric keypad key names can be specified with the
KEYPAD keyword:

4 8

5 9

6 (period)
7 , (comma)
- (hyphen)

0
1
2
3

o PF keys are located on the numeric keypad on VI'100- and VT200-series
terminals. You do not include the KEYPAD keyword as part of the
key-name parameter. The PF keys that you can specify are:

PF1 PF3
PF2 PF4

February 1987 Request and Request Library Instructions 3-13.1

DEFINE KEY AS

e The F (function) keys are located across the top row of VI200-series
keyboards. Keys F1 through F5 are local function keys that cannot be
redefined. You can specify the other F keys with the DEFINE KEY AS
instruction. When specifying an F key name, do not separate the F from
the digit. You can specify the following F keys:

Feé . F10 F14 F18
F7 F11 F15 F19
F8 F12 F16 F20
F9 F13 F17

e Only VT200-series terminals have E keys. These six keys are located on
the “editing” keypad, above the arrow keys. The E keys that you can
specify are:

E1 E4
E2 E5
E3 E6

e You use the keywords listed below to specify the arrow keys. In addition,
you can specify the GOLD keyword with arrow key names.

DOWNARROW GOLD DOWNARROW
LEFTARROW GOLD LEFTARROW
RIGHTARROW GOLD RIGHTARROW
UPARROW GOLD UPARROW

e There are other key names that you can use for the key-name parameter.
The keys are:

BACKSPACE (VT100 mode)
ENTER

LINEFEED (VT100 mode)
RETURN

TAB

Note that you should specify BACKSPACE and LINEFEED only for
terminals in VT100 mode. When using VT200-mode, you specify the F12
and F13 keys instead of BACKSPACE and LINEFEED as the key-name.

If you plan to redefine the ENTER key, be sure to set the keypad to
Application mode. When the keypad is in Numeric mode, the ENTER key
has the same definition as the RETURN key. When the keypad is in
Application mode, you can define the ENTER key to have a different
function from the RETURN key.

3-13.2 Request and Request Library Instructions February 1987

key-function

DEFINE KEY AS

The operation you want the defined key to perform. The key function can be

one of the following:

Function

DONE
ERASE
ERROR

EXIT_SCROLL_DOWN
EXIT _SCROLL_UP
GOLD

HARDCOPY

HELP
LEFT

NEXT
PREVIOUS
REFRESH
RIGHT

SCROLL_DOWN

SCROLL_UP

February 1987

Description

Completes data entry and exits from the request.
Deletes the contents of the current field.

Signals the operator that an error has been made
and leaves the cursor where it was.

Moves the cursor out of a scrolled region to the
next field.

Moves the cursor out of a scrolled region to the
previous field.

Combines with another key to perform a specific
operation.

Copies the current state of the active form into
the file assigned to the logical TSSSHARDCOPY.

Provides help text and/or a help form.

Moves the cursor one position to the left within
the current field.

Moves the cursor to the next field.
Moves the cursor to the previous field.
Clears and repaints the screen.

Moves the cursor one position to the right within
the current field.

Moves the cursor to the next line of a scrolled
region.

Moves the cursor to the previous line of a scrolled
region.

Request and Request Library Instructions 3-13.3

DEFINE KEY AS

Keys have the following functions by default:

Key Name Key Function
BACKSPACE PREVIOUS
DOWNARROW SCROLL_DOWN
ENTER DONE

F12 PREVIOUS

F13 ERASE

F15 HELP

GOLD DOWNARROW EXIT_SCROLL_DOWN
GOLD UPARROW EXIT _SCROLL_UP
LEFTARROW LEFT

LINEFEED ERASE

PF1 GOLD

PF2 HELP

PF4 HARDCOPY
RETURN DONE
RIGHTARROW RIGHT

TAB NEXT

UPARROW SCROLL__UP

Any key that can be defined, but is not in this list, maps to the ERROR
function by default.

Note that CTRL/R and CTRL/W are assigned the REFRESH function by
default. You cannot redefine these key sequences, but you can assign the
REFRESH function to other keys or key sequences.

Notes
You can specify only one operation per key.

If TDMS cannot move to a field according to the specified operation, TDMS
signals the operator and leaves the cursor in the current field.

RDU cannot determine the keypad mode at run time, so RDU does not check the
mode when it validates the request. (See the KEYPAD MODE IS instruction.)

When keys or key sequences have more than one definition, you need to be aware
that TDMS processes only one of the key definitions. The following are the
rules that TDMS uses to resolve multiple definitions.

3-13.4 Request and Request Library Instructions February 1987

DEFINE KEY AS

e If a key or key sequence is defined as an application function key (AFK), only
the AFK function is ever executed. TDMS ignores any key definition
instructions (PROGRAM KEY IS or DEFINE KEY AS) for that key or key
sequence.

e If there is no AFK definition for a key or key sequence, a key definition
instruction within a conditional instruction takes precedence and is executed. A
key definition instruction in the base request is ignored.

e If no key definition instruction occurs within a conditional instruction, a key
definition instruction in the base request is executed.

o If two or more key definition instructions occur in the base request or in
conditional instructions defined at the same level within a request, one of the
instructions takes precedence and is executed. However, there are no rules to
determine which key definition instruction prevails in this instance.

For example, if you redefine BACKSPACE using the DEFINE KEY AS
instruction and also have an AFK for CTRL/H, the AFK definition is the one
that is processed when the operator presses CTRL/H or BACKSPACE.

Redefining a key with a default function means that the key no longer has that
default function. In most instances, you lose access to the original function. When
redefining keys, be sure that:

e At least one key is defined as a request termination key

e The operator knows which key it is

Examples

RDUDFN> DEFINE KEY TAB AS DONE}S
RDUDFN* DEFINE KEY RETURN AS NEXTS

Redefines the TAB key as the TDMS DONE function and the RETURN key as
the TDMS NEXT function. Now the operator can use the RETURN key to move
from one field to the next and the TAB key to indicate that there is no more data
to enter.

RDUDFN> DEFINE KEY F20 AS REFRESH;
Redefines the F20 key on a VT200-series terminal to perform the REFRESH

function. Now, the operator can press CTRL/R, CTRL/W, or F20 to clear and
repaint the screen.

February 1987 Request and Request Library Instructions 3-13.5

DESCRIPTION

3.6 DESCRIPTION Instruction

Specifies comment text that is stored with the source text of the request in the
CDD.

Format
/* descriptive-text */...
DESCRIPTION /* descriptive-text ;
descriptive-text
LY
Prompt
RDUDFN »

Instruction Parameter

descriptive-text

Text you wish to store with the request or request library definition in the
CDD. The text must be enclosed between each slash and asterisk
combination:

/* and */

Notes

You can use the DESCRIPTION instruction anywhere in the body of the request
or request library definition except embedded in a request instruction or a
request library definition instruction. The text may describe the purpose of a
request or request library definition or some special feature you wish to
document.

You must use a semicolon (;) at the end of a DESCRIPTION instruction.

The text is printed out if you use the LIST command to list a request or request
library definition.

You can also use an exclamation mark (!) anywhere within the request to
indicate a comment.

3-14 Request and Request Library Instructions

KEYPAD [MODE] IS

3.13 KEYPAD [MODE] IS Instruction

Specifies whether the terminal keypad is in Application mode or Numeric mode.
This instruction is used in conjunction with the DEFINE KEY AS and the
PROGRAM KEY IS instructions.

Format

KEYPAD [MODE] IS {NUMER'C } ;

APPLICATION

Prompt

RDUDFN

Instruction Parameters

NUMERIC

When you specify the KEYPAD MODE IS NUMERIC instruction in a
request, the keypad is set to Numeric. When an operator presses a key on the
keypad, an application program receives the data from that key as either
digits (0-9) or a punctuation mark (period, comma, and hyphen keys).

APPLICATION

In Application mode, you can use the keypad keys in key definition
instructions. For a list of the keys that you can define in Application mode,
see the DEFINE KEY AS and PROGRAM KEY IS instructions.

Notes

Once a keypad mode is set by a call to a request, it remains in that mode for the
life of the TDMS application or until another KEYPAD MODE IS instruction is
executed.

February 1987 Request and Request Library Instructions 3-31

KEYPAD [MODE] IS

When you specify a KEYPAD key name with the DEFINE KEY AS or
PROGRAM KEY IS instruction, the key name can be enabled only if you place
the terminal keypad in Application mode with a KEYPAD IS APPLICATION
instruction.

When the keypad mode is Numeric, the keypad keys are not recognized as the
key functions specified in the key definition instructions. When a keypad key is
pressed under Numeric mode, TDMS translates the key stroke as numeric data;
no warning message is issued.

Examples

RDUDFN™ KEYPAD IS5 NUMERICS

Places the keypad in Numeric mode for the duration of the application or until
TDMS executes another KEYPAD IS instruction.

RDUDFN> KEYPAD MODE IS APPLICATIONS

Places the keypad in Application mode for the duration of the application or until
TDMS executes another KEYPAD IS instruction.

3-32 Request and Request Library Instructions February 1987

MESSAGE LINE IS

If you embed single or double quotation marks within a quoted string, obey
the following rules:

e If the string is enclosed within single quotation marks, use either:
- Double quotation marks within the string:
‘system “down” at 5:00 p.m.
- Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
o If the string is enclosed within double quotation marks, use either:
- Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
- Two sets of double quotation marks within the string:

“system ““down”” at 5:00 p.m.”

Notes

You can use this instruction within the body of a request to display error
information or inform the operator of events (system shutdown and so on).

TDMS displays the data on line 24 (or line 14 if the terminal is currently set in
132-column mode and has no Advanced Video Option).

See the PROGRAM KEY IS instruction for how to use the MESSAGE LINE IS
instruction within a PRK.

Examples

RDUDFN» MESSAGE LINE IS "Svstem shutdown at 5 P.m.,"3

A system message is displayed on the message line of the terminal.

RDUDFN: MESSAGE LINE IS "Emplovee number does not exist"3

An application-specific message is displayed on the message line of the terminal.

Request and Request Library Instructions 3-35

OUTPUT TO

3.1

6 OUTPUT TO Instruction

Displays the specified data in one or more form fields.

Format

record-field form-field

OUTPUT quoted-string TO { P }
%TOD (form-field[,...])
L..1;
record-field

OUTPUT quoted-string TO form-field WITH video-attribute[,...];
%TOD

OUTPUT %ALL;

Prompt

RDUDFN

Instruction Parameters

reco

3-36

rd-field

The name of a record field from which TDMS copies data. You must specify
preceding group field names only if they are necessary to make the reference
unique.

In RDU, the record name is treated as the top-level group field name. Any
record name you use must be specified in the RECORD IS instruction. If a
unique name is specified in the WITH NAME modifier of the RECORD IS
instruction, you must use the unique name.

RDU always searches all the records you specify in the RECORD IS
instruction for a record field, whether or not you specify the record name.

Even when you use a record name, you cannot always access a record field
name. For more information, see Chapter 6, Rules for Resolving Ambiguous
Field References.

Request and Request Library Instructions February 1987

OUTPUT TO

quoted-string

Any string of characters enclosed in either single or double quotation marks.
The length of the string cannot be greater than the size of the receiving

form field or extend beyond a single line. Therefore, it cannot be over

80 characters long. You must use matching punctuation at the beginning and
end of the string (“text” or ‘text’ but not “text’ or ‘text”).

If you embed single or double quotation marks within a quoted string, obey
the following rules:

e If the string is enclosed within single quotation marks, use either:
- Double quotation marks within the string:
‘system “down” at 5:00 p.m.
— Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
e If the string is enclosed within double quotation marks, use either:
— Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
- Two sets of double quotation marks within the string:

“system ““down”” at 5:00 p.m.”

form-field

The name of a field on the active form. If you specify a list of form fields, you

must enclose them in matching parentheses and separate the field names
with commas.

%TOD

The current time or date. The format of the value TDMS returns depends on
the format you give the field. If you map %TOD to a time field, TDMS gives a

value in time format. If you map %TOD to a date field, TDMS gives a value
in date format.

%ALL

All the record fields that have identically named form fields on the active
form.

February 1987 Request and Request Library Instructions 3-37

OUTPUT TO

Instruction Modifier

WITH video-attribute

The keyword WITH and one or more video attributes that you can specify for
the form field, including:

¢ [NO] BLINK

e [NO] BOLD

e [NO] REVERSE

e [NO] UNDERLINE

You can specify video attributes only when you use the simplest format of the
OUTPUT TO instruction. For example:

RDUDFN> OUTPUT EMPLOYEE TO EMPLOYEE WITH UNDERLINES

If you specify more than one video attribute, they must be separated by
commas.

The video modifier is ignored if you run a TDMS application on a VT52
terminal.

Notes

OUTPUT TO is one of three request instructions that move data between a form
and record; the others are INPUT TO and RETURN TO.

TDMS executes all OUTPUT TO instructions before it executes any other
mapping instructions.

In an explicit mapping, RDU checks (in the default Validate mode) the record
and form fields you specify to see that:

e All the fields exist in the record and form definitions in the CDD
e The fields do not exist more than once in the records or form used by a request

e The mappings defined are valid (field data types, structures, lengths, sign
conditions, and so on, are compatible)

If RDU finds errors (in the default Validate mode), it returns an error level
message and does not create (or replace, modify, or validate) a request.

3-38 Request and Request Library Instructions

PROGRAM KEY IS

3.17 PROGRAM KEY IS Instruction

Specifies a program request key (PRK) and the resulting instructions for TDMS
to execute when the operator presses the PRK.

Format

PROGRAM KEY IS prk-key [[NO] CHECK;]

OUTPUT quoted-string TO form-field [WITH video-attribute,...];
MESSAGE LINE IS quoted-string;

RETURN quoted-string TO record-field,;

END PROGRAM KEY;

Prompt

RDUDFN>

Instruction Parameters

prk-key

The name of the program request key that you specify. There are several
categories of key names.

e The KEYPAD keys are those on the numeric keypad at the right edge of
the keyboard. There is a numeric keypad on VT100- and VT200-series
terminals. Remember that the KEYPAD keyword is not enclosed in
quotation marks but the remaining part of the prk-key parameter is.

Note that the keypad must be set to Application mode when KEYPAD keys
are used in a request. You use the KEYPAD MODE IS instruction to set
the keypad to Application mode.

February 1987 Request and Request Library Instructions 3-41

PROGRAM KEY IS

The following numeric keypad key names can be specified with the

KEYPAD keyword:

0 4 8

1 5 9

2 6 (period)

3 7 , (comma)
- (hyphen)

o PF keys are located on the numeric keypad on VT100- and VT200-series
terminals. You do not include the KEYPAD keyword as part of the prk-key
parameter. The PF keys that you can specify are:

PF1
PF2
PF3
PF4

e The F (function) keys are located across the top row of VI200-series
keyboards. Keys F1 through F5 are local function keys that cannot be
redefined. You can specify the other F keys with the PROGRAM KEY IS
instruction. When specifying an F key name, do not separate the F from
the digit. You can specify the following F keys:

Fé F10 F14 F18
F7 F11 F15 F19
F8 F12 F16 F20
F9 F13 F17

e Only VT200-series terminals have E keys. These six keys are located on
the “editing” keypad, above the arrow keys. The E keys that you can
specify are:

E1 E4
E2 E5
E3 E6

3-42 Request and Request Library Instructions February 1987

PROGRAM KEY IS

e You can use the keywords listed below to specify the arrow keys. In
addition, you can specify the GOLD keyword with arrow key names. (Note
that when you use GOLD in combination with an arrow keyword, you do
not enclose the keyword in quotation marks.)

DOWNARROW GOLD DOWNARROW
LEFTARROW GOLD LEFTARROW
RIGHTARROW GOLD RIGHTARROW
UPARROW GOLD UPARROW

e There are other key names that you can use for the prk-key parameter.
The keys are:

BACKSPACE (VT100 mode)
ENTER

LINEFEED (VT100 mode)
RETURN

TAB

Note that you should specify BACKSPACE and LINEFEED only for
terminals in VT100 mode. When using VT200-mode, you specify the F12
and F13 keys instead of BACKSPACE and LINEFEED as the prk-key.

If you plan to redefine the ENTER key, be sure to set the keypad to
Application mode. When the keypad is in Numeric mode, the ENTER key
has the same definition as the RETURN key. When the keypad is in
Application mode, you can define the ENTER key to have a different
function from the RETURN key.

o The keyword GOLD can be used with many key names. The GOLD
keyword is not enclosed in quotation marks in the prk-key parameter, but
the key name is, for example, GOLD “&” (GOLD ampersand) and GOLD
“ ” (GOLD space). The default GOLD key is the PF1 key on the numeric
keypad.

The GOLD keyword can be used with alphanumeric keys as well as many
character keys. Note that uppercase and lowercase letters are interpreted
as the same key.

The alphanumeric keys include:

A-Z
a-z
0-9

February 1987 Request and Request Library Instructions 3-43

PROGRAM KEY IS

You can specify the following characters with GOLD:

(ampersand)
(asterisk)

(at sign)
(backslash)
(circumflex)

(colon)

(comma)

(dollar sign)

(equal sign)
(exclamation point)
(grave accent)
(hyphen)

(left angle bracket)
(left brace)

(left parenthesis)
(left square bracket)
(number sign)

)/@ *ge

) o I S

*r—-l/'\;-“q/\ 1

OUTPUT quoted-string TO form-field

%

a.\;+.

\-o.|—:v'~.~v

(percent)

(period)

(plus sign)

(question mark)
(quotation mark)
(right angle bracket)
(right brace)

(right parenthesis)
(right square bracket)
(semicolon)

(single quotation mark)
(slash)

(space)

(tilde)

(underscore)

(vertical line)

Specifies a text string to be written to a form field when the operator presses
the named PRK. You cannot specify both an OUTPUT quoted-string and a
MESSAGE LINE IS quoted-string in the same PROGRAM KEY IS

instruction.

WITH video-attribute

The keyword WITH and one or more video attributes you can specify for the

form field, including:

[NO] BOLD

[NO] REVERSE
[NO] UNDERLINE
[NO] BLINK

Use a comma to separate each video attribute in a list.

MESSAGE LINE IS quoted-string

A text string to be written to the message line of the terminal when the
operator presses the named PRK. You cannot specify both a MESSAGE LINE
IS quoted-string and an OUTPUT quoted-string. If you do, RDU will signal

an error.

3-44 Request and Request Library Instructions

February 1987

PROGRAM KEY IS

RETURN quoted-string TO record-field

A text string written to a program record field when an operator enters the
program request key named in the PROGRAM KEY IS instruction.

quoted-string

Any string of characters enclosed in either single or double quotation marks.
The string cannot be larger than the field to which it is mapped. In addition,
it cannot extend beyond a single line within your request. Therefore, it
cannot be over 80 characters long. You must use matching punctuation at the
beginning and end of the string (“text” or ‘text’ but not ‘text” or “text’).

If you embed single or double quotation marks within a quoted string, obey
the following rules:

e If the string is enclosed within single quotation marks, use either:
- Double quotation marks within the string:
‘system “down” at 5:00 p.m.
- Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
o If the string is enclosed within double quotation marks, use either:
- Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
- Two sets of double quotation marks within the string:

“system ““down”” at 5:00 p.m.”

form-field

The name of one form field in which the text string is displayed when the
operator presses the PRK. Only one form field or form field element in an
array can be specified. The form field must be large enough to contain the
text string it is to receive.

February 1987 Request and Request Library Instructions 3-44.1

PROGRAM KEY IS

record-field

The name of one field in a program record. Only one record field or record
field element in an array can be specified. It must be large enough to contain
the text string it is to receive.

Instruction Modifiers

CHECK

You can specify the modifier CHECK or NO CHECK to the PROGRAM KEY
IS instruction. The default is CHECK.

When the operator enters a PRK, TDMS checks to see that all fields defined
as Response Required in the form definition (that are also mapped for input)

do indeed have data entered in them. If a Response Required field does not
have data in it, TDMS ignores the PRK.

If the PRK is pressed while the cursor is in a field, TDMS checks that, if the
field is a Must Fill field, the operator has filled the field. TDMS also checks
any field validators associated with the field.

When TDMS terminates the request, it returns data from all the form fields
that are mapped for input and return to the record. That data may be either:

e Data entered in the form fields during the current call to the request

e Data mapped to the form fields by the current or previous call to the
request

e Data associated with the form fields by form definition defaults (if no other
data is in the fields)

NO CHECK

Allows you to specify that TDMS terminate a request call without checking if
Response Required fields have data in them.

If you assign the NO CHECK modifier, TDMS executes only the instructions
within the PROGRAM KEY IS instruction and terminates the request. The
only data TDMS returns, therefore, is the data specified in a RETURN TO
instruction within the PROGRAM KEY IS instruction. It does not return any
data from other INPUT TO or RETURN TO instructions in the request.

3-44.2 Request and Request Library Instructions February 1987

PROGRAM KEY IS

Notes
You can use a PRK to:
e Qutput a text string to a form field on an active form

e Modify the video attributes of the form field to which you output data on an
active form

e Return a fixed string to a field in the program record

e Write a fixed string to the message line of a terminal

The OUTPUT TO, MESSAGE LINE IS, and RETURN TO instructions within a
PROGRAM KEY IS instruction are referred to as PRK instructions.

You cannot specify both an OUTPUT TO instruction and a MESSAGE LINE IS
instruction in a single PROGRAM KEY IS instruction. When an application
program runs and when the operator enters a key defined as a program request
key, TDMS executes the program request key instructions and terminates the
request call.

You do not specify a semicolon at the end of the PROGRAM KEY IS prk-key
instruction line except when you use the [NO] CHECK modifier.

RDU cannot determine the keypad mode at run time, so RDU does not check the
mode when it validates the request. (See the KEYPAD MODE IS instruction.)

When keys or key sequences have more than one definition, you need to be aware
that TDMS processes only one of the key definitions. These are the precedence
rules that TDMS uses to resolve multiple definitions:

o If a key or key sequence is defined as an application function key (AFK), only
the AFK function is ever executed. TDMS ignores any key definition
instructions (PROGRAM KEY IS or DEFINE KEY AS) for that key or key
sequence.

o If there is no AFK definition for a key or key sequence, a key definition
instruction within a conditional instruction takes precedence and is executed. A
key definition instruction in the base request is ignored.

e If no key definition instruction occurs within a conditional instruction, a key
definition instruction in the base request is executed.

February 1987 Request and Request Library Instructions 3-44.3

PROGRAM KEY IS

e If two or more key definition instructions occur in the base request or in
conditional instructions defined at the same level within a request, one of the
instructions takes precedence and is executed. However, there are no rules to
determine which key definition instruction prevails in this instance.

For example, if you define BACKSPACE as a PRK using the PROGRAM KEY IS
instruction and also have an AFK for CTRL/H, the AFK definition is the one
that is processed when the operator presses CTRL/H or BACKSPACE.

Examples

RDUDFN:> PROGRAM KEY IS GOLD "C" NO CHECK]3
RDUDFN > MESSAGE LINE IS "Cancel Operation"si
RDUDFN> END PROGRAM KEY3

When the operator presses the key sequence GOLD-C, TDMS displays the text
string Cancel Operation on line 24 of the screen and terminates the call to the
request.

RDUDFN> KEYPAD MODE IS APPLICATIONS

RDUDFN> PROGRAM KEY IS KEYPAD "9"

RDUDFN OUTPUT "Cancelind Update" TO MESSAGE_FIELD WITH BOLDsBLINKS
RDUDFN > RETURN "Cancel" TO RECORD1.ACTIONS

RDUDFN> END PROGRAM KEY3

When the operator presses the keypad key 9 at run time, TDMS checks that all
Response Required fields on the active form have data entered in them. If they
do, TDMS outputs a message to the form field MESSAGE _FIELD and bolds and
blinks that field. It also returns the message Cancel to the record field ACTION
in the record RECORD1 and then terminates the request.

Note that you can specify a list of video field attributes in the OUTPUT TO
instruction within a PROGRAM KEY IS instruction.

RDUDFN> PROGRAM KEY IS FZ20

RDUDFN > NO CHECK 3
RDUDFN MESSAGE LINE IS "Operator pressed Kev F20.,"3§
RDUDFN X RETURN "FZO0" TO ACTIONS

RDUDFN> END PROGRAM KEY3

3-444 Request and Request Library Instructions February 1987

PROGRAM KEY IS

When the operator presses the F20 key, TDMS displays the text string “Operator
pressed key F20” on line 24 of the screen. The text string F20 is returned to the
record field ACTION. Then TDMS terminates the request.

February 1987 Request and Request Library Instructions 3-45

RECORD IS

3.18 RECORD IS Instruction

Identifies the CDD record or records to and from which you map data.

Format
RECORD IS .)
{ RECORDS ARE } record-path-name [WITH NAME unique-record-namel,...;
Prompt
RDUDFN >

Instruction Parameter

record-path-name

The CDD path name (given, relative, or full) of an existing record definition.
Note that the name you use in a request is usually the same as the path
name stored in the CDD directory. You can, however, use a logical name
different from the CDD path name.

Two records, or a record and a form, cannot use the same name within the
body of a request. If two record given names, or a record given name and a
form given name, are the same, you must specify a unique name using the
WITH NAME modifier. Otherwise, RDU displays an error message and does
not process the request.

Instruction Modifier

WITH NAME unique-record-name

The keywords WITH NAME and a name which no other record or form can
have within the request. You must use the WITH NAME clause to specify a
unique record name if two records, or a record and a form, in your request
have the same given name. The unique record name must conform to the
rules for a CDD given name.

The unique record name, if specified, is the one you must use in subsequent
mapping instructions within the body of a request. If the unique name is not
specified, you use the given name.

3-46 Request and Request Library Instructions

[NO] RESET FIELD

Example

RDUDFN> RESET FIELD NAME: BADGE: SEX3

Resets form fields NAME, BADGE, and SEX to their form-defined video defaults.

Request and Request Library Instructions 3-51

RETURN TO

3.21 RETURN TO Instruction

Returns data to one or more record fields. TDMS does not place the cursor in the
form field named or allow the operator to enter data in that field.

Format
form-field
quoted-string target-record-field
RETURN) o 10D T0 { (target-record-field[...])

%MODIFIED (form-field)

L...];

RETURN %ALL;

Prompt

RDUDFN

Instruction Parameters

form-field

The name of the field on the active form.

quoted-string

The string is identified within the body of a request and is returned to the
record field. It cannot be larger than the size of the record fields to which it
is returned. A quoted string cannot extend beyond a single line. Therefore, it
cannot be over 80 characters long. You must use matching punctuation at the
beginning and end of the string (“text” or ‘text’ but not ‘text” or “text’).

3-52 Request and Request Library Instructions February 1987

RETURN TO

If you embed single or double quotations marks within a quoted string, obey
the following rules:

o If the string is enclosed within single quotation marks, use either:
— Double quotation marks within the string:
‘system “down” at 5:00 p.m.’
- Two sets of single quotation marks within the string:
‘system ‘‘down’’ at 5:00 p.m.’
e If the string is enclosed within double quotation marks, use either:
— Single quotation marks within the string:
“system ‘down’ at 5:00 p.m.”
— Two sets of double quotation marks within the string:
“system ““down”” at 5:00 p.m.”

target-record-field

The name of one or more record fields to which TDMS returns data. If you
specify a list of record fields, you must enclose the list in matching
parentheses and separate the fields with commas.

In RDU, the record name is treated as the top-level group field name. Any
record name you use must be specified in the RECORD IS instruction. If a
unique name is specified in the WITH NAME modifier of the RECORD IS
instruction, you must use the unique name.

RDU always searches all the records you specify in the RECORD IS
instruction for a record field, whether or not you specify the record name.

Even when you use a record name, you cannot always access a record field
name. For more information, see Chapter 6, Rules for Resolving Ambiguous
Field References.

%TOD

The current system time in 64-bit format. TDMS returns the system time to
the specified record field. The record field must have a data type of ADT.

February 1987 Request and Request Library Instructions 3-53

RETURN TO

%MODIFIED (form-field)

A value indicating whether an operator has modified a field. When the
specified form field has been modified, TDMS returns a 1 to the target record
field. When the specified form field has not been modified, TDMS returns a 0
to the target record field.

TDMS uses the following criteria to determine whether a form field is
modified or not during a request call:
o At the start of a request instance, no fields are considered to be modified.

e Neither an OUTPUT TO or DEFAULT FIELD instruction causes a form
field to be set to modified.

e As soon as an operator enters a character into a form field that changes
the original form field contents, the modified flag is set. The flag remains
set even if the operator then restores the original contents of the field. Note
that changing a form field’s contents from uppercase to lowercase
constitutes modifying the field.

o If an operator presses the LINE FEED key while in a form field, TDMS
considers the field to be modified.

%ALL
All the fields on the active form that have identically named record fields.
Notes

RETURN TO is one of three request instructions that move data between a form
and record; the others are OUTPUT TO and INPUT TO.

Unlike the INPUT TO instruction, the RETURN TO instruction does not open
the field for input by the operator. If you specify a form field, the RETURN TO
instruction returns one of the following:

e The data output to the field in the current call to a request
e The form field contents from the immediately previous request call

e The form field default assigned in the form definition (if no other data is in the
field)

If a form field is mapped by both a RETURN TO and INPUT TO instruction in

the same request, the data returned to the program is the result of the INPUT
TO instruction.

3-54 Request and Request Library Instructions February 1987

RETURN TO

TDMS executes all other instructions in the request before it executes the
RETURN TO instruction.

In an explicit mapping, RDU checks (in the default Validate mode) that:

e The form and record fields you specify exist in the record and form definitions
in the CDD

o The fields do not exist more than once in the records used by a request

e The mappings defined are valid (field data types, structures, lengths, sign
conditions, scale factors, and so on are compatible)

If RDU finds errors (in the default Validate mode), it returns an error level
message and does not create (or replace, modify, or validate) a request.

You can use the RETURN %ALL instruction if you want to return data from all
the fields on an active form to identically named record fields.

In a %ALL mapping, RDU does not create the individual mapping if:

e A form field does not have an identically named record field in the records used
by a request

e An identically named record field exists more than once in the records used by
a request

e The mappings defined are not valid (field data types, structures, lengths, sign
conditions are not compatible)

RDU does, however, create the request, unless all the mappings implied by the
%ALL syntax are incorrect.

If /LOG is specified, %ALL mappings will appear:

e In the listing file (if any)
e In the output file or device defined as SYS$OUTPUT

%ALL mappings will appear in the log file if the SET LOG command and the
/LOG qualifier are specified.

February 1987 Request and Request Library Instructions 3-55

RETURN TO

Examples

RDUDFN> RETURN "Gone" TO WK_MSG_RECORD.MESSAGE_FIELDS

Copies the contents of the quoted string to the record field MESSAGE _FIELD in
the record or group field WK_MSG _RECORD after completing all other
instructions in the request.

RDUDFN> RETURN NAME TO EMP_NAME
RDUDFN BADGE TO (EMP_BADGEs EMP_NUMBER) 3

Returns the contents of the form field NAME to the record field EMP_NAME
and the contents of the form field BADGE to two record fields, EMP_ BADGE
and EMP__NUMBER. The contents will be either the form-defined default or the
data collected from the immediately previous request call.

RDUDFN> FORM IS PERSONNEL_FORM;

RDUDFN> RECORD IS PERSONNEL_RECORD3
RDUDFN DISPLAY FORM PERSONNEL_FORM;
RDUDFN RETURN ZALLS

Returns the data in all the form fields on the PERSONNEL_ FORM that have
identically named record fields in the record PERSONNEL_RECORD to those
record fields.

3-56 Request and Request Library Instructions February 1987

[NO] REVERSE FIELD

3.22 [NO] REVERSE FIELD Instruction

Sets or clears the reverse video attribute of a field on an active form.

Format

form-field|,...] .
[NO] REVERSE FIELD { %ALL } ;

Prompt

RDUDFN

Instruction Parameters

form-field

The name assigned to the form field. The field must be on the active form.
You can specify a single field or a list of form fields separated by commas.

%ALL
All the fields on the active form.
Notes

Reverse affects the video screen background of a form field and changes it to the
opposite of the previous setting. If the field is dark, TDMS reverses it to light. If
it is light, TDMS reverses it to dark.

If you specify the REVERSE FIELD or NO REVERSE FIELD instruction in a
request, it overrides:

e A Reverse or No Reverse attribute assigned in a form definition.

e A REVERSE FIELD or NO REVERSE FIELD instruction that is still active
from a previous request call. A video instruction is still active when:

- A form is still on the screen from a previous request call

- The current call to a request uses that same form with a USE FORM
instruction

Request and Request Library Instructions 3-57

[NO] REVERSE FIELD

At run time, a REVERSE or NO REVERSE instruction used within a conditional
instruction supersedes one in a base request or any outer conditional instruction.

If a field has been defined with input highlighting in FDU, the [NO] REVERSE
instruction will override the input highlighting video attribute for that field. Any
other video attributes assigned to the field will be unaffected by the [NO]
REVERSE instruction.

The REVERSE instruction is ignored if you run a TDMS application on a VT52
terminal.

Example

RDUDFN> REVERSE FIELD EMPLOYEE_NAME]

Reverses the screen background of the form field EMPLOYEE _NAME.

3-58 Request and Request Library Instructions February 1987

[NO] UNDERLINE FIELD

3.26 [NO] UNDERLINE FIELD Instruction

Sets or clears the underline video attribute of a field on an active form.

Format

form-field[,...]
[NO] UNDERLINE FIELD { %ALL }

Prompt

RDUDFN>

Instruction Parameters

form-field

The name assigned to the form field. The field must be on the active form.
You can specify one form field or a list of form fields separated by commas.

%ALL
All the fields on the active form.

Notes

If you specify the UNDERLINE FIELD or NO UNDERLINE FIELD instruction
in a request, it overrides:)

e An Underline or No Underline attribute assigned in a form definition.

e An UNDERLINE FIELD or NO UNDERLINE FIELD instruction that is still
active from a previous request call. A video instruction is still active when:

— A form is still on the screen from a previous request call

— The current call to a request uses that same form with a USE FORM
instruction

At run time, an UNDERLINE or NO UNDERLINE instruction used within a
conditional instruction supersedes one in a base request or any outer conditional
instruction.

Request and Request Library Instructions 3-63

[NO] UNDERLINE FIELD

If a field has been defined with input highlighting in FDU, the [NO]
UNDERLINE instruction will override the input highlighting video attribute
for that field. Any other video attributes assigned to the field will be unaffected
by the [NO] UNDERLINE instruction.

The UNDERLINE instruction is ignored if you run a TDMS application on a
VT52 terminal.

Examples

RDUDFN> UNDERLINE FIELD NAME, SEX, BADGES

Underlines the form fields NAME, SEX, and BADGE.

RDUDFN> UNDERLINE FIELD %ALLS

Underlines all the form fields on the active form.

3-64 Request and Request Library Instructions February 1987

[NO] WAIT

3.28 [NO] WAIT Instruction

Displays a form until the operator presses any request termination key.

Format

[NO] WAIT;

Prompt

RDUDFN

Notes

TDMS does not complete the request and return to the program until the
operator presses a request termination key. The request termination key can be
any key defined to perform the following functions:

Key functions Default keys

DONE RETURN, ENTER, PRKs
NEXT TAB

PREVIOUS BACKSPACE
EXIT_SCROLL_DOWN GOLD DOWNARROW
EXIT_SCROLL_UP GOLD UPARROW
SCROLL_DOWN DOWNARROW
SCROLL__UP UPARROW

Use the WAIT instruction if the request contains no input mappings. If you do
not use the WAIT instruction, TDMS may display the output mappings so
quickly that the operator does not see the data displayed on the form.

The WAIT instruction is not necessary if a request contains an INPUT
instruction. If you use a WAIT instruction in a request containing this
instruction, TDMS ignores the WAIT instruction.

February 1987 Request and Request Library Instructions 3-67

[NO] WAIT

Example

RDUDFN> DISPLAY FORM EMPLOYEES
RDUDFN: OUTPUT ZALL3
RDUDFN: WAITS

TDMS displays all the data to the fields on the EMPLOYEE form and waits until
the operator presses a request termination key.

3-68 Request and Request Library Instructions February 1987

TSS$SDECL _ AFK

key-astadr

The address of a routine in the application program; you pass this parameter
by reference. When the operator presses a declared AFK, TDMS will call this
routine at AST level. The user routine must have the following calling

sequence:

status.wlc.v. = ROUTADR (key-astprm.riu.v
,channel.rlu.r
,key-id.rlu.r)

You can use the AST service routine with or without an AST parameter. You
can also use the AST service routine with an event flag. Note that the
key-astprm parameter is passed to the AST routine by value.

key-astprm

The longword that contains the AST parameter to be passed to the AFK
service routine; you pass this optional parameter by reference. If the AST
parameter is not present, and a service routine is, TDMS will pass an AST
parameter of 0 to the service routine.

You can pass any type of parameter you would like your AST routine to
receive, including addresses.
Return Status

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call. The codes that can be returned on this call are:

TSS$_BUGCHECK

Fatal internal software error (F)

TSS$_INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)
TSS$ _INVCHN

Invalid channel (F)

February 1987 TDMS Synchronous Programming Calls 4-15

TSS$SDECL _AFK

TSS$_INVKEYID
Invalid key id (F)
TSS$ _NORMAL
Normal successful completion (S)
TSS$ _SYNASTLVL
Synchronous calls may not be called at AST level (F)

Notes

Application function keys (AFKs) provide exception notification services for
terminal-related events. During execution of a TDMS application, the operator
can press AFK keys in order to initiate actions outside the context of the current
input to the active form.

AFKs are asynchronous function keys; that is, they operate independently of
requests. As asynchronous function keys, AFKs initiate asynchronous processing
in the user’s application program.

You can enable and disable the operator’s use of AFKs by issuing

TSS$DECL _AFK and TSS$UNDECL _AFK calls in the application program.
The TSS$DECL _AFXK call specifies the AFK by the key-id parameter and
associates that key with a service routine, an event flag, or both. After the
program has made a TSS$DECL _AFK call, the operator can press the enabled
AFK whenever he wishes to invoke a special function, until the key is disabled:

e When the application program issues a matching TSS§UNDECL _ AFK or
TSS$UNDECL_AFK _A call

e When the application program closes the channel with a TSS$CLOSE or
TSS$CLOSE _A call

e Automatically, when the application program ends

4-16 TDMS Synchronous Programming Calls

TSSSREAD _MSG _LINE

TSS$ _NORMAL

Normal successful completion (S)
TSS$_SYNASTLVL

Synchronous calls may not be called at AST level (F)

Notes
The reserved message line is usually the last line on the screen.

If you are displaying a 132-column form on a terminal without the AVO option,
the reserved message line is line 14.

Messages are limited to 80 characters unless a form with 132 columns is cur-
rently displayed. The message can then have up to 132 characters. The message
remains on the screen until the operator presses a terminator key, such as one
that signals the completion of input to a field or completion of a wait.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN __ A with TSS$CLOSE or TSS$DECL_AFK_A with
TSS$UNDECL _AFK.

Examples
BASIC

Return-status = TSS$READ_MSG_LINE(Channels &
Response_text:s &
Messade_promprts &
Response_lendth)

CcoBOL

CALL "TSS$READ_MSG_LINE"
USING BY REFERENCE Channel:
BY DESCRIPTOR Response-text:
BY DESCRIPTOR Messade-Prompt
BY REFERENCE Resronse-lendth:
GIVING Return-status.,

February 1987 TDMS Synchronous Programming Calls 4-27

TSSSREAD _MSG _LINE

FORTRAN

Return_status = TSS$READ_MSG_LINE(Z%REF(Channel)
ZDESCR(ResPonse_text) s
4#DESCR(Messade_prompt) s
AREF(Response_lendth))

[A A

4-28 TDMS Synchronous Programming Calls

TSS$DECL _AFK_A

Table 5-3: TDMS Application Function Keys (AFKS)

Key Id Control Key Key Id Control Key
0 CTRL/space bar 15 CTRL/O
1 CTRL/A 16 CTRL/P
2 CTRL/B 18 CTRL/R
3 CTRL/C 20 CTRL/T
4 CTRL/D 21 CTRL/U
5 CTRL/E 22 CTRL/V
6 CTRL/F 23 CTRL/W
7 CTRL/G 24 CTRL/X
8 CTRL/H 25 CTRL/Y
9 CTRL/I 26 CTRL/Z
10 CTRL/J 27 CTRL/[
11 CTRL/K 28 CTRL/backslash
12 CTRL/L 29 CTRL/]
13 CTRL/M 30 CTRL/~
14 CTRL/N 31 CTRL/?

key-efn

The address of a longword containing the number of the event flag that is to
be set when the AFK is pressed; you pass this parameter by reference. If the
parameter is not present, TDMS does not set an event flag when the operator
presses the key.

You may use the event flag by itself or together with an AST service routine.

TDMS Asynchronous Programming Calls 5-15

TSSSDECL _AFK_A

key-astadr

The routine in the application program; you pass this parameter by
reference. When the operator presses a declared AFK, VAX TDMS calls this
routine at AST level. The user routine must have the following calling

sequence:

status.wlc.v. = ROUTADR (key-astprm.rlu.v
,channel.rlu.r
key-id.rlu.r)

You can use the AST service routine with or without an AST parameter. You
can also use the AST service routine with an event flag. Note that the
key-astprm parameter is passed to the AST routine by value.

key-astprm

The longword that contains the AST parameter to be passed to the AFK
service routine; you pass this optional parameter by reference. If the AST
parameter is not present, and a service routine is, TDMS will pass an AST
parameter of 0 to the service routine.

You can pass any type of parameter you would like your AST routine to
receive, including addresses.

Return Status and/or Completion Code (RSB)

Ret-status is the standard VAX/VMS return status indicating the success or
failure of the call.

The return status for an asynchronous call, if successful, indicates only that the
call was initiated, not that it was completed.

The codes that can be returned on this call are:
TSS$_BUGCHECK

Fatal internal software error (F)

TSS$ _INSVIRMEM

Insufficient virtual memory (F)
TSS$ _INVARG

Invalid arguments (F)

5-16 TDMS Asynchronous Programming Calls February 1987

TSS$READ _MSG_LINE_A

Notes

The reserved message line is usually the last line on the screen. If you are
displaying a 132-column form on a terminal without the AVO option, the
reserved message line is line 14. Messages are limited to 80 characters unless a
form with 132 columns is currently displayed. The message can then be 132
characters. When the operator presses the RETURN key or any other request
processing key, the message line is cleared.

Messages are limited to 80 characters unless a form with 132 columns is cur-
rently displayed. The message can then have up to 132 characters. The message
remains on the screen until the operator presses a terminator key, such as one
that signals the completion of input to a field or completion of a wait.

An asynchronous call initiates a TDMS operation and then returns control
immediately to the application program. When the operation is finished, TDMS
notifies the application program by:

e Declaring the user’s asynchronous system trap (AST) routine
e Setting an event flag specified by the user

e Both declaring the user’s AST routine and setting the event flag specified by
the user

Asynchronous calls can be made from AST level as well as non-AST level.

Except for TSS$CANCEL, synchronous calls cannot be made from AST level.
Making a synchronous call to TDMS from an AST routine will cause an error to
be returned.

Note that you can mix synchronous and asynchronous calls. For example, you
can use TSS$OPEN _ A with TSS$CLOSE, or TSS$DECL _AFK__A with
TSS$UNDECL_AFK.

February 1987 TDMS Asynchronous Programming Calls 5-27

TSSSREAD_MSG_LINE_A

Examples
BASIC

EXTERNAL LONG Ast_routine

+

Reutrn_status = TSS$READ_MSG_LINE_A(ZREF(Channel) &
Return_status_blocKs &
Event_flad_number, &
Ast_routines &
Ast_Parameter BY VALUE, &
Response_texts &
Messade_Prompts &
Response_lendth)

coBOL

CALL "TSS$READ_MSG_LINE_A"
USING BY REFERENCE Channel s
BY REFERENCE Return-status-blockK:
BY REFERENCE Event-flad-number:
BY REFERENCE Ast-routine:
Y UALUE Ast-parameter;:
BY DESCRIPTOR ResPponse-text:
BY DESCRIPTOR Messade-Prompt s
BY REFERENCE Response-lendth:
GIVING Return-status.

FORTRAN

Return_status = TSS$READ_MSG_LINE_A(ZREF(Channel)
AREF(Return_status_blocK)
AREF(Event_flag_number) s
AREF(Ast_routine) s
Ast_Parameter:
ZDESCR(ResPponse_text) s
4ZDESCR(Messagde_prompPt) s
AREF(Response_length))

NGO R WM e

5-28 TDMS Asynchronous Programming Calls

Instruction Execution Order 7

For the most part, request instructions can appear in any order. However, there
are a few rules to follow:

e Form header instructions must come before other instructions.

e The END DEFINITION instruction must be the last instruction.

Regardless of the order in which you specify the request instructions, TDMS
executes instructions in the following order:

o First, TSS$REQUEST evaluates all CONTROL FIELD IS instructions. It
attempts to match all control values with the case values specified under the
CONTROL FIELD IS instruction. It then gathers all request instructions that
are to be executed during a request call.

o Next, TDMS evaluates, but does not execute, any DEFINE KEY AS and
PROGRAM KEY IS instructions.

e Then TDMS evaluates and executes all OUTPUT operations:

- Request-wide operations (CLEAR SCREEN, SIGNAL MODE IS, KEYPAD
MODE IS, and so on)

— Form field setup operations (output mappings, DEFAULT FIELD, RESET
FIELD, video change operations such as Bold field)

- DISPLAY FORM or USE FORM

February 1987 7-1

e Next, TDMS evaluates and executes all INPUT operations:

- All form fields mapped for input are opened for operator input.

Note that any program request key can be pressed during any input
operation. The request instructions associated with any program request
keys (except RETURN) will be executed when the program request key is
pressed.

— WAIT instruction.
¢ Finally, TDMS evaluates and executes all RETURN operations.

7-2 Instruction Execution Order February 1987

ILLDSTLEN

Severity:

Explanation:

User Action:

ILLFLDDAT

Severity:

Explanation:

User Action:

ILLKBDKEY
Severity:

Explanation:

User Action:

ILLKEYFNC
Severity:

Explanation:

User Action:

February 1987

destination length must be greater than 8

Explicit: Error (E)
% ALL: Information (I)

A mapping error. A data type conversion error occurred
because the length of a receiving field is less than 8 (too
short for the mapping to be valid).

Make the length of the receiving field greater than 8.

illegal field datatype

Explicit: Error (E)
% ALL: Information (I)

A mapping message. The data type of the field is not sup-
ported by TDMS.

Define the field to have a valid TDMS data type.

program key <key-name > is not alegal keyboard key
Error (E)

A syntax message. APROGRAM KEY IS instruction
specifies a program request key that is not one of the valid
keys.

Specify one of the valid keys as the program request key in
the PROGRAM KEY IS instruction.

illegal key function for DEFINE KEY AS
Error (E)

A syntax message. You specified a key function that is not
valid in a DEFINE KEY AS instruction.

Specify a key function that is valid ina DEFINE KEY AS
instruction.

RDU Error Messages B-11

ILLKPDKEY
Severity:

Explanation:

User Action:

ILLLEDNO
Severity:

Explanation:

User Action:

ILLLITNUM
Severity:

Explanation:

User Action:

ILLMSGLIN
Severity:

Explanation:

User Action:

program key <key-name > is not a legal keypad key
Error (E)

A syntax message. A PROGRAM KEY IS KEYPAD
instruction specifies as the program request key a keypad
key that is not one of the valid keys on the keypad.

Specify one of the digits 0 - 9, comma, period, or hyphen as
the program request key in the PROGRAM KEY IS
KEYPAD instruction.

LED number must be between 1 and 4
Error (E)

A syntax message. You specified a LED number in a
LIGHT LIST instruction that is less than 1 or greater
than 4.

Specify a LED number that is between 1 and 4 in the
LIGHT LIST instruction.

light number <number > is invalid
Error (E)

A mapping message. You specified a LED number in a
LIGHT LIST instruction that is less than 1 or greater
than 4.

Specify a LED number that is between 1 and 4 in the
LIGHT LIST instruction.

multiple message lines declared
Error (E)

A syntax message. More than one MESSAGE LINE IS
instruction appears in the base part of a request or within a
single case value in a CONTROL FIELD IS instruction.

Specify only one MESSAGE LINE IS instruction.

B-12 RDU Error Messages

ILLNAME
Severity:

Explanation:

User Action:

ILLOFFSET
Severity:

Explanation:

User Action:

ILLPASSCHR
Severity:

Explanation:

User Action:

ILLPERCENT
Severity:

Explanation:

User Action:

Form name or field name <text> is not valid CDD name
Error (E)

A mapping message. The name of the form or form field is
not in the CDD.

Check that the form definition is in the CDD and/or con-
tains the field name you use in the mapping reference.

display offset number must be between 0 and +22
Error (E)

A syntax message. An offset ina USE FORM WITH
OFFSET or DISPLAY FORM WITH OFFSET instruction
is less than 0 or greater than +22.

Specify an offset number in the USE FORM or DISPLAY
FORM instruction that is between 0 and +22.

illegal character in CDD password
Error (E)

A syntax message. An illegal character or escape sequence
is in a password associated with a path name in a FORM
IS, RECORD IS, or REQUEST IS instruction.

Remove the illegal character from the password.

illegal percent character in text
Error (E)

A syntax message. The first character in an item is a
percent sign, and the item is not a %ZINCLUDE,
%ENTRY, or %LINE instruction.

Remove the illegal percent character from the instruction.

RDU Error Messages B-13

ILLPTHNAM
Severity:

Explanation:

User Action:

ILLPRKNAM
Severity:

Explanation:

User Action:

ILLSLSHCHR
Severity:

Explanation:

User Action:

ILLSRCDAT

Severity:

B-14 RDU Error Messages

path name <text> is not alegal CDD name
Error (E)

A syntax message. The relative path name specified in the
message is not a legal CDD name. For example:

. The name has more than 31 characters
e The first character is not alphabetic

e The remaining characters are not alphanumeric char-
acters or a dollar sign ($) or an underscore (_)

e The last character is a dollar sign ($) or an
underscore (_)

Make the relative path name conform to the rules for a
legal CDD name.

illegal key name for PROGRAM KEY IS or DEFINE KEY
AS

Error (E)

A mapping message. You specified a key ina PROGRAM
KEY IS or DEFINE KEY AS instruction that is not one of
the valid keys for the instruction.

Specify a key that is valid for the PROGRAM KEY IS or
DEFINE KEY AS instruction.

illegal slash character in text
Error (E)

A syntax message. A slash character appears as part of an
instruction on the instruction line.

Remove the illegal slash character.

unsupported data type in source of mapping

Explicit: Error (E)
% ALL: Information (I)

February 1987

In this index, a page number followed
by a “t” indicates a table reference.
A page number followed by an "f”
indicates a figure reference.

* (asterisk)

See Asterisk (¥)
@ (at sign)

See @file-spec command
! (exclamation point)

See Exclamation point (!)
- (hyphen)

See Hyphen (-)
; (semicolon)

See Semicolon (;)

A

@file-spec command (FDU), 1-4
@file-spec command (RDU), 2-4
Access control lists
form definitions, 1-7, 1-11, 1-28
request definitions, 2-15, 2-24, 2-62
request library definitions, 2-13,
2-19, 2-57

February 1987

Index

IACL qualifier
in COPY FORM command, 1-7
in COPY LIBRARY command,
2-13
in COPY REQUEST command,
2-15
in CREATE FORM command, 1-11
in CREATE LIBRARY command,
2-19
in CREATE REQUEST command,
2-24
in REPLACE FORM command,
1-28
restrictions, 1-29
in REPLACE LIBRARY command,
2-57
restrictions, 2-57
in REPLACE REQUEST com-
mand, 2-62
restrictions, 2-62
AFKs
See Application function keys
J%ALL syntax
BUILD LIBRARY command
errors, 2-10
in Validate mode, 2-74
INPUT TO instruction
errors, 3-29
/LOG qualifier, 3-29
OUTPUT TO instruction, 3-37

Index-1

errors, 3-39
ILOG qualifier, 3-39
RETURN TO instruction, 3-54
errors, 3-55
ILOG qualifier, 3-55
validating, 2-73
Ambiguous names, 3-27, 3-34, 3-36,
3-53
ANYMATCH case value, colons with,
3-8
Application function keys
AST routines, 4-15, 5-16
control keys as, 5-18
deassigning, 4-40, 5-36
declaring, 4-13, 5-13
event flags, 4-14, 5-15
execution of, 4-17, 5-18
key-id values, 4-14t, 5-15t
using, 4-16, 5-17
Application keypad mode
PROGRAM KEY IS instruction,
3-44.3
program request keys in, 3-32
setting, 3-31
Application programs
canceling 1/0 operations, 4-4
closing
I/O channels, 4-5, 5-4
request library files, 4-8, 4-9
copying current form, 4-10, 5-8
declaring AFKs, 4-13, 5-13
enabling Trace facility, 4-39
opening
1/O channels, 4-19, 5-20
request library files, 4-22
request mappings, 4-29, 5-30
signalling status, 4-34, 4-35
specifying record names in, 3-47
using application function keys,
4-16, 5-17
video attributes, resetting, 4-6, 5-6
Arrays
as control values, 3-7
in nested conditional requests,
3-10

Index-2

OUTPUT TO instruction, 3-40
AST routines
TDMS$DECL_AFK_A, 5-14, 5-18
TSS$CANCEL, 4-4
TSS$CLOSE_A, 5-5, 5-6
TSS$COPY_SCREEN_A, 5-9, 5-11
TSS$OPEN_A, 5-20, 5-22
TSSSREAD_MSG_LINE_A, 5-25,
5-27
TSS$SREQUEST_A, 5-30, 5-33
TSS$UNDECL_AFK_A, 5-37, 5-38
TSS$WRITE_BRKTHRU_A, 5-41,
5-42
TSSSWRITE_MSG_LINE_A, 5-45,
5-47
with application function keys,
4-15, 5-16
At sign (@)
/AUDIT qualifier, 1-2, 2-2
FDU, 1-4
RDU, 24
ATTACH command (FDU), 1-6.1, 1-43
ATTACH command (RDU), 2-5.1,
2-79.3
Attributes
field
Must Fill, 3-44.2
Response Required, 3-44.2
video
See also Video attributes
resetting, 3-50, 4-6, 5-6
[AUDIT qualifier, 1-1 to 1-3, 2-1 to 2-3
defaults, 1-2, 2-2
in BUILD LIBRARY command, 2-7
in COPY FORM command, 1-8
in COPY LIBRARY command,
2-13
in COPY REQUEST command,
2-16
in CREATE FORM command, 1-11
in CREATE LIBRARY command,
2-19
in CREATE REQUEST command,
2-24
in MODIFY FORM command, 1-26

February 1987

in MODIFY LIBRARY command,
2-47

in MODIFY REQUEST command,
2-52

in REPLACE FORM command,
1-29

in REPLACE LIBRARY command,
2-57

in REPLACE REQUEST com-
mand, 2-62

in VALIDATE LIBRARY com-
mand, 2-80

in VALIDATE REQUEST com-
mand, 2-84

Audit text

default, 1-2
RDU, 2-2

file specifications, 1-2, 2-2

form definitions, 1-2, 1-8, 1-11, 1-26,
1-29

request definitions, 2-16, 2-24, 2-52,
2-62, 2-84

request library definitions, 2-7,
2-13, 2-19, 2-47, 2-57, 2-80

specifying, 2-2

storing, 2-2

BASIC syntax

of asynchronous calls, 5-49t
of synchronous calls, 4-48t

Batch mode

CREATE FORM command, 1-12

CREATE LIBRARY command,
2-19

CTRL/Z command, 1-16, 2-31

defaults

/LIST qualifier, 2-58

MODIFY FORM command, 1-27

REPLACE FORM command, 1-30

REPLACE LIBRARY command,
2-57

SET VERIFY command, 1-37

Bell, ringing

February 1987

TSS$SWRITE_BRKTHRU, 4-42
TSS$WRITE_BRKTHRU_A, 5-41
Binary structures
creating, 2-9, 2-26, 2-80
deleting, 2-36
MODIFY REQUEST command,
2-53
INOSTORE qualifier, 2-26
rebuilding, 2-27, 2-55, 2-87
replacing, 2-64, 2-65, 2-66
storing, 2-54, 2-86
in the CDD, 2-74
VALIDATE LIBRARY command,
2-81, 2-82
VALIDATE REQUEST command,
2-84, 2-85
BLINK FIELD instruction, 3-2
in conditional requests, 3-2
VT52 terminal, 3-3
BOLD FIELD instruction, 3-4
in conditional requests, 3-4
VT52 terminal, 3-5
BUILD LIBRARY command (RDU),
2-6
after VALIDATE REQUEST com-
mand, 2-87
and FILE IS instruction, 2-7
[AUDIT qualifier, 2-7
errors, 2-10
/LIST qualifier, 2-7
/ILOG qualifier, 2-8
offset errors, 3-16, 3-65
path names in, 2-6
[PRINT qualifier, 2-9
Building request libraries, 2-6

Cc

Calls

See TDMS programming calls
Canceling

FDU, 1-15

FDU commands, 1-14

form editor, 1-15

I/O operations, 4-3

Index-3

RDU, 2-30
RDU commands, 2-29
TDMS calls, 4-3

CDD

access control lists, 1-7, 1-11, 1-28,
2-13, 2-15, 2-19, 2-24, 2-57,
2-62
copying
form definitions, 1-7
request library definitions, 2-12
requests, 2-15
default directory, 2-69
CDDS$DEFAULT, 2-69
showing, 1-38, 2-77
deleting requests, 2-35
extracting record definitions, 4-31,
5-32
modifying
request library definitions, 2-47
requests, 2-51
path names
duplicate name errors, 3-21, 3-46,
3-48
in BUILD LIBRARY command,
2-6
in COPY FORM command, 1-7
in COPY LIBRARY command,
2-12
in COPY REQUEST command,
2-15
in CREATE FORM command,
1-10
in CREATE LIBRARY com-
mand, 2-18
in CREATE REQUEST com-
mand, 2-23
in DELETE FORM command,
1-17
in DELETE LIBRARY com-
mand, 2-33
in DELETE REQUEST com-
mand, 2-35
in FORM IS instruction, 3-21
in LIST FORM command, 1-24
in LIST LIBRARY command,

Index-4

2-43

in LIST REQUEST command,
2-45

in MODIFY FORM command,
1-26

in MODIFY LIBRARY com-
mand, 2-47

in MODIFY REQUEST com-
mand, 2-51

in RECORD IS instruction, 3-46

in REPLACE FORM command,
1-28

in REPLACE LIBRARY com-
mand, 2-56

in REPLACE REQUEST com-
mand, 2-61

in REQUEST IS instruction,
3-48

in SET DEFAULT command,
1-33, 2-69

in VALIDATE LIBRARY com-
mand, 2-80

in VALIDATE REQUEST com-
mand, 2-84

replacing
request library definitions, 2-56
requests, 2-61
storing

audit text, 2-2

binary structures, 2-54, 2-74,
2-80, 2-82, 2-84, 2-86, 2-87

comment text, 3-14

FMS forms, 1-11, 1-29

%INCLUDE text, 3-26

request library definitions, 2-18

requests, 2-26

CDD$DEFAULT logical name

defining
in FDU, 1-33
in RDU, 2-69
showing, 1-38

Channels

canceling 1/0 operations, 4-3
closing, 4-5, 5-4
clearing screen, 4-5, 5-5

February 1987

opening, 4-19, 5-20
CHECK modifier
PROGRAM KEY IS instruction,
3-44.2
field validators, 3-44.2
returned values, 3-44.2
CLEAR SCREEN instruction, 3-6
in conditional requests, 3-6
order of execution, 3-6
Clearing screen when closing channel,
4-5, 5-5
Closing
1/O channels, 4-5
asynchronously, 5-4
clearing screen, 4-5, 5-5
log files, 2-72
request library files, 4-8, 4-9
COBOL syntax
of asynchronous calls, 5-51t
of synchronous calls, 4-50t
Colon ()
ANYMATCH case value, 3-8
in CONTROL FIELD IS instruc-
tion, 3-8
NOMATCH case value, 3-9
Command
in SPAWN command (FDU), 1-41
in SPAWN command (RDU), 2-79.1
Command files
CTRL/Z command, 1-16, 2-31
displaying commands in, 2-76
editing, 1-21
EXIT command, 2-40
exiting, 2-40
FDU, 1-4
default file type, 1-4
startup, 1-5, 1-33, 1-36
indirect
RDU, 2-4
RDU, 2-4
default file type, 2-4
startup, 2-4, 2-5, 2-69, 2-72
RDUSEDIT, 2-49
TDMSEDIT.COM, 2-38, 2-49, 2-53
Verify mode, 2-76

February 1987

Commas
separating form fields, 3-2, 3-4,
3-12, 3-37, 3-50, 3-57, 3-63
separating video attributes, 3-44
Comment characters, 3-14
in log files, 1-35, 2-71
Comments
CDD audit text, 2-1
descriptive text, 3-14
exclamation point, 3-14
printing, 3-14
Common Data Dictionary
See CDD
Conditional requests
See also CONTROL FIELD IS
instruction
BLINK FIELD instruction in, 3-2
BOLD FIELD instruction in, 3-4
CLEAR SCREEN instruction in,
3-6
DEFAULT FIELD instruction in,
3-12
order of execution, 3-10
RESET FIELD instruction in, 3-50
REVERSE FIELD instruction in,
3-58
UNDERLINE FIELD instruction
in, 3-63
ICONFIRM qualifier
in DELETE FORM command, 1-17
in DELETE LIBRARY command,
2-33
in DELETE REQUEST command,
2-35
CONTROL C
See CTRL/C command
CONTROL FIELD IS instruction, 3-7
colons in, 3-9
evaluation of, 3-9
match instructions in, 3-9
multiple, 3-9
nested, 3-9
order of execution, 3-10
semicolons in, 3-7
Control fields

Index-5

order of execution, 4-32, 5-33
Control keys
as application function keys, 4-17,
5-18
Control values
arrays, 3-7
case of, 3-8
data type of, 3-7
multiple forms with, 3-23
quoted strings, 3-8
specifying in CONTROL FIELD IS
instruction, 3-7
CONTROL Y
See CTRL/Y command
CONTROL Z
See CTRL/Z command
COPY FORM command (FDU), 1-7
/ACL qualifier, 1-7
{AUDIT qualifier, 1-8
/LOG qualifier, 1-8
path names in, 1-7
COPY LIBRARY command (RDU),
2-12
IACL qualifier, 2-13
/AUDIT qualifier, 2-13
ILOG qualifier, 2-13
path names in, 2-12
COPY REQUEST command (RDU),
2-15
IACL qualifier, 2-15
IAUDIT qualifier, 2-16
/LOG qualifier, 2-16
path names in, 2-15
Copying
form contents, 4-10, 5-8
form definitions, 1-7
request library definitions, 2-12
requests, 2-15
Correcting
FDU commands, 1-19
RDU commands, 2-37
CREATE FORM command (FDU),
1-10
/ACL qualifier, 1-11
/AUDIT qualifier, 1-11

Index-6

errors, 1-12
/[FORM_FILE qualifier, 1-11
in batch mode, 1-12
ILOG qualifier, 1-11
path names in, 1-10
CREATE LIBRARY command
(RDU), 2-18
{ACL qualifier, 2-19
IAUDIT qualifier, 2-19
errors, 2-21
in batch mode, 2-19
/LIST qualifier, 2-19
ILOG qualifier, 2-20
path names in, 2-18
/[PRINT qualifier, 2-20
ICREATE qualifier
in REPLACE FORM command,
1-29
REPLACE LIBRARY command,
2-58
REPLACE REQUEST command,
2-63
CREATE REQUEST command
(RDU), 2-23
IACL qualifier, 2-24
{AUDIT qualifier, 2-24
errors, 2-26
[LIST qualifier, 2-24
ILOG qualifier, 2-25
Novalidate mode, 2-27
path names in, 2-23
IPRINT qualifier, 2-26
ISTORE qualifier, 2-26
Creating
binary structures, 2-26, 2-53, 2-64,
2-81, 2-85
form definitions
audit text, 1-11
from FMS files, 1-11, 1-29
REPLACE FORM command,
1-29
forms, 1-10
log files, 2-71
request libraries, 2-6
request library definitions, 2-18

February 1987

REPLACE LIBRARY command,

2-58

requests, 2-23
CTRL/C command (FDU), 1-14
CTRL/C command (RDU), 2-29
CTRL/Y command (FDU), 1-15

effect on log files, 1-15
CTRL/Y command (RDU), 2-30

effect on log files, 2-30
CTRL/Z command (FDU), 1-16

in batch mode, 1-16

in command files, 1-16
CTRL/Z command (RDU), 2-31

in batch mode, 2-31

in command files, 2-31

D

Data type
effect on field length, 8-1
Data types
determining, 8-1
input mapping, 8-3t
of control values, 3-7
output mapping, 8-4t
scale factor, 8-1
TDMS programming calls, 4-2t
notation, 5-2t
Date
See %TOD syntax
DBG$OUTPUT logical name, 4-39
DCL commands
DEFINE, 1-33, 1-38, 2-69
CDDS$DEFAULT, 2-77
Declaring application function keys,
4-13, 5-13
DEFAULT FIELD instruction, 3-12
in conditional requests, 3-12
USE FORM instruction, 3-12
Defaults
audit text, 2-2
CDD directory
displaying, 1-38
setting, 1-33, 2-69
showing, 2-77

February 1987

field contents, 3-12
file names
BUILD LIBRARY listing file,
2-7
CREATE LIBRARY listing file,
2-20
CREATE REQUEST listing file,
2-25
log files, 1-35, 2-72
MODIFY LIBRARY listing file,
2-48
MODIFY REQUEST listing file,
2-52
REPLACE LIBRARY listing
file, 2-568
REPLACE REQUEST listing
file, 2-63
file types
audit text, 1-2, 2-2
command files, 1-4, 2-4
FMS form files, 1-11, 1-29
include files, 3-25
LIST FORM command output
file, 1-24
LIST LIBRARY command out-
put file, 2-43
LIST REQUEST command out-
put file, 2-45
log files, 1-36
request library definitions, 2-18,
2-56
request library files, 2-6, 3-19,
4-22
requests, 2-24, 2-62
SAVE command, 1-32, 2-67
trace file, 4-38
I/O channels, 4-19
asynchronous calls, 5-21
LIST FORM command output file,
1-25
LIST LIBRARY command output
file, 2-44
/LIST qualifier, 2-58
LIST REQUEST command output
file, 2-45

Index-7

MODIFY REQUEST command
store mode, 2-54
REPLACE FORM command, 1-29
REPLACE REQUEST command
store mode, 2-66
RING BELL instruction, 3-59
SET LOG command, 1-35, 2-72
startup files, 1-5, 2-4, 2-5
store mode, 2-54
text editor, 1-19, 2-38, 2-49, 2-54
TSS$COPY_SCREEN output, 4-10
TSS$COPY_SCREEN_A output,
5-9
Validate mode, 2-73
Verify mode, 1-37, 2-76
video attributes
overriding, 3-38, 3-63
resetting, 3-17, 3-50, 4-6, 5-6
DEFINE command (DCL), 1-38
CDD$DEFAULT, 1-33, 2-69, 2-77
DEFINE KEY AS instruction, 3-13.1
key functions in, 3-13.3
key names in, 3-13.1
with KEYPAD MODE IS
APPLICATION, 3-32
Defining
CDD directory, 2-69
CDD$DEFAULT
in FDU, 1-33
in RDU, 2-69
default editor, 1-19, 2-38, 2-49, 2-54
keys
See DEFINE KEY AS
instruction
See PROGRAM KEY IS
instruction
See Program request keys
RDUINI logical name, 2-5
request libraries, 2-18
requests, 2-23
SYS$OUTPUT, 1-23, 2-42
TSS$TRACE_OUTPUT, 4-39
DELETE FORM command (FDU),
1-17
/CONFIRM qualifier, 1-17

Index-8

errors, 1-18
ILOG qualifier, 1-17
path names in, 1-17
DELETE LIBRARY command
(RDU), 2-33
/[CONFIRM qualifier, 2-33
errors, 2-34
ILOG qualifier, 2-33
path names in, 2-33
DELETE REQUEST command
(RDU), 2-35
ICONFIRM qualifier, 2-35
errors, 2-36
ILOG qualifier, 2-35
path names in, 2-35
Deleting
binary structures, 2-36
form definitions, 1-17
request library definitions, 2-33
requests, 2-35
Dependent ranges
control values, 3-7
in nested conditional requests, 3-10
DESCRIPTION instruction, 3-14
semicolons in, 3-14
Disabling
logging, 2-72
trace facility, 4-36
DISPLAY FORM instruction, 3-16
clearing the screen before, 3-6
offset errors, 3-16
overriding default video attributes,
3-17
WITH NAME clause of FORM IS
instruction, 3-16
Displaying
CDD directory
default, 1-38, 2-77
commands in command files, 1-4,
1-37, 2-4, 2-76
in log files, 1-35, 2-71
current version
FDU, 1-40
RDU, 2-79
default field contents, 3-12

February 1987

error messages, 4-46, 5-46
forms, 3-16, 3-65

order of execution, 4-32, 5-33
logging status

FDU, 1-39

RDU, 2-78
messages

ILOG qualifier, 2-53

MESSAGE LINE IS instruction,

3-34, 3-35

on screen, 2-85
request library definitions, 2-43
requests, 2-45

E

EDIT command (FDU), 1-19
EDIT command (RDU), 2-37
Editing
FDU commands, 1-19
RDU commands, 2-37
request library definitions, 2-47
requests, 2-51
Editor
default, 2-38, 2-54
defining, 2-38
EDT, 2-38, 2-49, 2-54
EDTINILEDT file, 1-19
EDTINI.EDT file, 2-38
Enabling
logging, 2-71
trace facility, 4-38
Validate mode, 2-73
Verify mode, 2-76
END DEFINITION instruction, 3-18
execution of, 3-18
in request library definitions, 3-18
in requests, 3-18
semicolons in, 3-18
%ENTRY lexical function
in CONTROL FIELD IS instruc-
tion, 3-7
Error messages
displaying, 3-35, 5-46
FDU

February 1987

prefixes, A-2
severity, A-1
field validator, A-13 to A-14
information level, A-2
RDU
prefixes, B-3
severity, B-1
run-time
format of, C-2
Errors
building request library files, 2-9
building request library files com-
mand, 2-10
building requests, 2-26
by operator
clearing reserved message line,
4-46, 5-46
signalling, 3-60
CREATE FORM command, 1-12
CREATE LIBRARY command,
2-21
CREATE REQUEST command,
2-27
CTRL/Z command, 1-16
DELETE FORM command, 1-18
DELETE LIBRARY command,
2-34
DELETE REQUEST command,
2-36
displaying, 4-46, 5-46
messages, 3-35
FILE IS instruction, 3-19
FORM IS instruction, 3-21
in FDU command files, 1-4
in Novalidate mode, 2-74
in RDU command files, 2-4
input mappings, 3-28
INPUT TO instruction
%ALL syntax, 3-29
Validate mode, 3-28
logging, 2-71
MODIFY LIBRARY command,
2-49, 2-50
modifying requests, 2-54
OUTPUT TO instruction, 3-38

Index-9

%ALL syntax, 3-39 EXIT command (FDU), 1-21

Validate mode, 3-38 EXIT command (RDU), 2-40
RECORD IS instruction, 3-46 Exiting
REPLACE FORM command, 1-30 command files, 1-21
REPLACE LIBRARY command, FDU, 1-21
2-59, 2-60 RDU, 2-30, 2-31, 2-40
replacing requests, 2-65 Explicit mappings
REQUEST IS instruction, 3-48, errors, 3-28, 3-38, 3-55
3-49 validating, 2-73
RETURN TO instruction, 3-55
%ALL syntax, 3-55 F
Validate mode, 3-55
RING BELL instruction, 3-59 FDU
run-time canceling, 1-15
listed, C-1 displaying logging status of, 1-39
VT52 terminal, 4-32, 5-33 error messages
SET LOG command, 1-36, 2-72 See Error messages
severity, 4-2t, 5-3t, A-1, B-1, C-1, exiting, 1-21
D-1 showing version, 1-40
signalling, 4-34, 4-35 startup files, 1-33
VALIDATE LIBRARY command, FDU commands
2-82 ATTACH, 1-6.1
Validate mode, 2-73 canceling, 1-14
WITH OFFSET modifier, 3-16, COPY FORM, 1-7
3-65 CREATE FORM, 1-10
Event flags CTRL/C, 1-14
TDMS$DECL_AFK_A, 5-13, 5-18 CTRL/Y, 1-15
TSS$CLOSE_A, 5-4, 5-6 CTRL/Z, 1-16
TSSSCOPY_SCREEN_A, 5-8, 5-11 DELETE FORM, 1-17
TSS$SOPEN_A, 5-20, 5-22 EDIT, 1-19
TSSSREAD_MSG_LINE_A, 5-24, editing, 1-19
5-27 EXIT, 1-21
TSSSREQUEST_A, 5-29, 5-33 HELP, 1-22
TSS$UNDECL_AFK_A, 5-36, 5-38 LIST FORM, 1-24
TSS$SWRITE_BRKTHRU_A, 5-40, MODIFY FORM, 1-26
5-42 REPLACE FORM, 1-28
TSS$WRITE_MSG_LINE_A, 5-44, SAVE, 1-32
5-47 SET DEFAULT, 1-33
with application function keys, SET LOG, 1-35
4-14, 5-15 SET VERIFY, 1-37
Exclamation point (!) comment SHOW DEFAULT, 1-38
character SHOW LOG, 1-39
in log files, 1-35, 2-71 SHOW VERSION, 1-40
in requests, 3-14 SPAWN, 1-41
Executing a request, 4-29, 5-29 FDUSEDIT logical name, 1-19

Index-10 February 1987

FDUINI logical name, 1-5
FDUINI.COM file, 1-5
enabling logging in, 1-36
setting default CDD directory in,
1-33
FDULIS.LIS file, 1-24
FDULOG logical name, 1-35
Field attributes
checking with PRKs, 3-44.2
Field validators
checking with PRKs, 3-44.2
error messages, A-13 to A-14
size, 8-1
Fields
data types of, 8-1
length of
determining, 8-1
PACKED DECIMAL data type,
8-1
UNSIGNED NUMERIC data
type, 8-1
Must Fill in PRKs, 3-44.2
referencing, 6-1
Response Required in PRKs, 3-44.2
FILE IS instruction, 3-19
BUILD LIBRARY command, 2-7
errors, 3-19
file names in, 3-19
File specifications
audit text files, 1-2, 2-2
BUILD LIBRARY listing file, 2-7
command files, 1-4, 1-5, 2-4, 2-5
CREATE LIBRARY listing file,
2-20
CREATE REQUEST listing file,
2-25
FMS form files, 1-11, 1-29
in %INCLUDE instruction, 3-25
in FILE IS instruction, 3-19
LIST FORM command output, 1-24
LIST LIBRARY command output,
2-43
LIST REQUEST command output,
2-45
log files

February 1987

FDU, 1-35
RDU, 2-71
MODIFY LIBRARY listing file,
2-48
MODIFY REQUEST listing file,
2-52
REPLACE LIBRARY listing file,
2-58
REPLACE REQUEST listing file,
2-63
request library files, 2-6, 4-22
SAVE command, 1-32, 2-67
trace facility output file, 4-38
TSS$COPY_SCREEN output, 4-10
TSS$COPY_SCREEN_A output,
5-9
@file-spec command, 1-4
@file-spec command (FDU), 1-4
errors, 1-4
@file-spec command (RDU), 2-4
errors, 2-4
Files
defaults
audit text, 1-2, 2-2
command files, 1-4, 2-4
FMS form files, 1-11, 1-29
SAVE command, 1-32, 2-67
startup, 1-5, 2-5
%INCLUDE, 3-25
naming conventions, 3-25
nesting, 3-26
syntax of, 3-26
indirect command, 2-4
LIST FORM command, 1-24
LIST LIBRARY command, 2-43
LIST REQUEST command, 2-45
listing
BUILD LIBRARY command, 2-7
CREATE LIBRARY command,
2-19
CREATE REQUEST command,
2-24
MODIFY LIBRARY command,
2-48
MODIFY REQUEST command,

Index-11

2-52

REPLACE LIBRARY command,

2-58
REPLACE REQUEST com-
mand, 2-63
log, 2-71
contents of, 1-35, 2-71
defaults, 1-35, 1-36, 2-72
specifications, 1-35, 2-71
request definitions, 2-24, 2-62
request library, 2-6
request library definitions, 2-18,
2-56
requests, 2-62
SPAWN command (FDU), 1-41
SPAWN command (RDU), 2-79.1
trace facility, 4-37
FMS forms
file specifications, 1-11, 1-29
storing in CDD, 1-11, 1-29
Form definitions
access control lists for, 1-7, 1-11,
1-28
audit text for, 1-2, 1-8, 1-11, 1-26,
1-29
copying, 1-7
creating, 1-10
from FMS files, 1-11, 1-29
REPLACE FORM command,
1-29
deleting, 1-17
displaying
default field contents, 3-12
LIST FORM command, 1-24
listing, 1-24
modifying, 1-26
overriding video attributes, 3-57
replacing, 1-28
VALIDATE REQUEST command,
2-84
VT52 limitations, 4-32, 5-33
Form editor
canceling, 1-15
CREATE FORM command, 1-12
CTRL/Z command, 1-16

Index-12

FMS, 1-11, 1-29

help for, 1-23

MODIFY FORM command, 1-27
modifying form definitions, 1-26
REPLACE FORM command, 1-30

Form fields

INPUT TO instruction, 3-27
names
BLINK FIELD, 3-2
BOLD FIELD, 3-4
DEFAULT FIELD, 3-12
in PRK instructions, 3-44.1
INPUT TO instruction, 3-27
OUTPUT TO, 3-37
PROGRAM KEY IS, 3-44.1
RESET FIELD, 3-50
RETURN TO, 3-52
REVERSE FIELD, 3-57
UNDERLINE FIELD, 3-63
validating, 2-73

FORM IS instruction, 3-21

forms for VAX DATATRIEVE,
3-23

in Validate mode, 3-22

making names unique, 3-21

multiple, 3-22

path names in, 3-21

/FORM_FILE qualifier

in CREATE FORM command, 1-11
batch mode, 1-12
in REPLACE FORM command,
1-29
in batch mode, 1-30

Forms

active
DISPLAY FORM instruction,
3-17
field names, 3-2, 3-4, 3-12, 3-27,
3-37, 3-44.1, 3-50, 3-52,
3-57, 3-63
FORM IS instruction, 3-22
resetting video attributes, 3-50
setting, 3-16
copying, 4-10, 5-8
definitions, 1-7

February 1987

creating definitions, 1-10
deleting definitions, 1-17
displaying

offset, 3-16, 3-65

order of execution, 4-32, 5-33

listing definition, 1-24
modifying definitions, 1-26
names
specifying, 3-16, 3-65
uniqueness, 3-21
replacing definitions, 1-28
specifying in request, 3-21
validating, 2-73
VAX DATATRIEVE, 3-23
Forms Definition Utility
See FDU
FORTRAN syntax
of asynchronous calls, 5-53t
of synchronous, 4-52t

H

Header instructions
FORM IS, 3-22
in CONTROL FIELD IS, 3-9
RECORD IS, 3-47
Help
at DCL level, 1-23, 2-42
in FDU, 1-22
in form editor, 1-23
in RDU, 2-41, 2-42
obtaining hardcopy, 1-23, 2-42
HELP command (FDU), 1-22
obtaining hardcopy, 1-23
IPROMPT qualifier, 1-22
HELP command (RDU), 2-41
obtaining hardcopy, 2-42
/IPROMPT qualifier, 2-41
HELP key, 1-23, 2-42
Hyphen (-)
in audit text, 1-2, 2-2

I/O channels
canceling operations, 4-3

February 1987

channel numbers, 4-20, 5-22
closing, 4-5
opening, 4-19, 5-20
default, 4-19, 5-21
Implicit mappings
See % ALL syntax
%INCLUDE instruction, 3-25
execution of, 3-26
file names in, 3-25
in CDD, 3-26
nesting, 3-26
semicolons, 3-25
SET LOG command, 3-26
Indirect command files
exiting, 2-40
RDU, 2-4
Information level messages
definition of, A-1, B-2, C-1
Initialization files, 2-4
Input mappings
checking
Must Fill fields, 3-44.2
Response Required fields, 3-44.2
order of execution, 4-32, 5-33
table, 8-3t
[INPUT qualifier
in SPAWN command (FDU), 1-41
in SPAWN command (RDU), 2-79.1
INPUT TO instruction, 3-27
%ALL syntax
errors, 3-29
logging, 3-29
errors
in Validate mode, 3-28
mapping, 3-28
execution of, 3-28
form fields in, 3-27
RETURN TO instruction, 3-54
returned values, 3-28
specifying record fields, 3-27
WITH NAME modifier of
RECORD IS instruction, 3-27
Invoking
log files, 2-71
text editor, 1-19, 2-37

Index-13

K

Key functions
in DEFINE KEY AS instruction,
3-13.3
Keyboard lights
controlling, 3-33
Keypad mode
resetting
TSS$CLOSE, 4-6
TSS$CLOSE_A, 5-6
setting
Application, 3-31
Numeric, 3-31
KEYPAD MODE IS instruction,
3-13.1, 3-31
APPLICATION parameter, 3-31
NUMERIC parameter, 3-31
Keys
See also Application function keys
control, 5-18
HELP, 1-23, 2-42
in DEFINE KEY AS instruction,
3-13.1
program request keys, 3-41

L

Lexical functions
%ENTRY
in CONTROL FIELD IS instruc-
tion, 3-7
%LINE
in CONTROL FIELD IS instruc-
tion, 3-7
LIGHT LIST instruction, 3-33
%LINE lexical function
in CONTROL FIELD IS instruc-
tion, 3-7
LIST FORM command (FDU), 1-24
IOUTPUT qualifier, 1-24
path names in, 1-24
[PRINT qualifier, 1-25
LIST LIBRARY command (RDU),
2-43
comment text in, 3-14

Index-14

IOUTPUT qualifier, 2-43
path names in, 2-43
[PRINT qualifier, 2-44
[LIST qualifier
in BUILD LIBRARY command, 2-7
file name for, 2-7
ILOG qualifier, 2-7
in CREATE LIBRARY command,
2-19
file name for, 2-20
ILOG qualifier, 2-20
in CREATE REQUEST command,
2-24
file name for, 2-25
ILOG qualifier, 2-25
in MODIFY LIBRARY command,
2-48
file name for, 2-48
/LOG qualifier, 2-48
in MODIFY REQUEST command,
2-52
file name for, 2-52
ILOG qualifier, 2-52
in REPLACE LIBRARY command,
2-58
defaults, 2-58
file name for, 2-58
/LOG qualifier, 2-58
in REPLACE REQUEST com-
mand, 2-63
file name for, 2-63
ILOG qualifier, 2-63
LIST REQUEST command (RDU),
2-45
comment text in, 3-14
/{OUTPUT qualifier, 2-45
path names in, 2-45
[PRINT qualifier, 2-46
Listing
form definitions, 1-24
request library definitions, 2-43
requests, 2-45
Listing files
in BUILD LIBRARY command
contents of, 2-7

February 1987

in CREATE LIBRARY command

in MODIFY LIBRARY command,

contents of, 2-20 2-48
in CREATE REQUEST command in MODIFY REQUEST command,
contents of, 2-25 2-53
in MODIFY LIBRARY command in REPLACE FORM command,
contents of, 2-48 1-30
in MODIFY REQUEST command in REPLACE LIBRARY command,
contents of, 2-52 2-58
in REPLACE LIBRARY command in REPLACE REQUEST com-
contents of, 2-58 mand, 2-64
in REPLACE REQUEST in VALIDATE LIBRARY com-
command mand, 2-81
contents of, 2-63 in VALIDATE REQUEST com-
Log files mand, 2-85
after CTRL/Y command, 1-15, 2-30 Logging

contents of, 1-35, 2-71 commands in command files, 1-37
defaults Logical names

file names, 2-72

file types, 1-36
disabling, 1-35, 2-71, 2-72
enabling, 1-35, 2-71

in FDU startup file, 1-36

in RDU startup file, 2-72
mappings in, 3-29, 3-39, 3-55
showing status, 1-39, 2-78
specifications, 1-35, 2-71

defaults, 1-35, 2-72

ILOG qualifier

in BUILD LIBRARY command, 2-8

in COPY FORM command, 1-8

in COPY LIBRARY command,
2-13

in COPY REQUEST command,
2-16

in CREATE FORM command, 1-11

in CREATE LIBRARY command,
2-20

in CREATE REQUEST command,
2-25

in DELETE FORM command, 1-17

in DELETE LIBRARY command,
2-33

in DELETE REQUEST command,
2-35

in MODIFY FORM command, 1-27

February 1987

CDD$DEFAULT
setting, 1-33, 2-69
showing, 1-38
FDUSEDIT, 1-19
FDUINI, 1-5
FDULOG, 1-35
RDUSEDIT, 2-38, 2-49, 2-54
RDUINI, 2-4, 2-5
RDULOG, 2-72
SYSSINPUT
entering request definitions,
2-24, 2-62
entering request library defini-
tions, 2-19, 2-21, 2-57
TSS$OPEN, 4-19
TSS$OPEN_A call, 5-21
SYS$OUTPUT
LIST LIBRARY command, 2-44
LIST REQUEST command, 2-45
to get hardcopy help text, 1-23,
2-42
TSS$OPEN, 4-20
TSSSOPEN_A, 5-22
TDMSS$EDIT, 2-49, 2-53
TSS$HARDCOPY, 4-10, 5-9
TSS$TRACE_OUTPUT, 4-38

ILOGICAL_NAMES qualifier

in SPAWN command (FDU), 1-42

Index-15

in SPAWN command (RDU), 2-79.2

Mapping tables
input, 8-3t
output, 8-4t
Mappings, 3-55
errors
CREATE REQUEST command,
2-27
in BUILD LIBRARY command,
2-10
reporting, 2-73
VALIDATE LIBRARY com-
mand, 2-82
order of execution, 3-28, 3-38, 5-33
validating, 2-73
Match instructions, 3-9
Message line
See also Reserved message line
reading, 4-25, 5-24
displaying prompt, 4-25, 5-25
writing, 4-42, 4-45, 5-40, 5-44
MESSAGE LINE IS instruction, 3-34
PRK instructions, 3-44
specifying record fields, 3-34
WITH NAME modifier of
RECORD IS instruction, 3-34
Messages
displaying, 3-34, 3-35
errors, 4-46, 5-46
ILOG qualifier, 2-53
on screen, 2-85
in log files, 1-35, 2-71
in trace output file, 4-37
maximum length, 4-27
TSS$WRITE_BRKTHRU, 4-43
TSS$SWRITE_BRKTHRU_A,
5-42
reading reserved message line,
4-25, 5-24
writing
MESSAGE LINE IS instruction,
3-35

Index-16

reserved message line, 4-45
%MODIFIED syntax
RETURN TO instruction, 3-54
MODIFY FORM command (FDU),
1-26
IAUDIT qualifier, 1-26
in batch mode, 1-27
/LOG qualifier, 1-27
path names in, 1-26
MODIFY LIBRARY command
(RDU), 2-47
IAUDIT qualifier, 2-47
errors, 2-49, 2-50
/LIST qualifier, 2-48
/LOG qualifier, 2-48
Novalidate mode, 2-50
path names in, 2-47
/PRINT qualifier, 2-49
MODIFY REQUEST command
(RDU), 2-51
JAUDIT qualifier, 2-52
/LIST qualifier, 2-52
ILOG qualifier, 2-53
Novalidate mode, 2-54
path names in, 2-51
/PRINT qualifier, 2-53
ISTORE qualifier, 2-53
Validate mode, 2-54
Modifying
form definitions, 1-26
request library definitions, 2-47
requests, 2-51
See also %2MODIFIED syntax,
3-54
Must Fill fields
PRKs, 3-44.2

N

Names
ambiguous
resolving, 3-27, 3-34, 3-36, 3-63
of form fields, 6-1
in PRK instructions, 3-44.1
in request instructions, 3-2, 3-4,

February 1987

3-12, 3-217, 3-317, 3-50, 3-52,
3-57, 3-63
of forms, 3-16, 3-21, 3-65
of include files, 3-25
of keys to define, 3-13.1
of program request keys, 3-41
of record definitions, 3-46
of record fields, 3-27, 3-34, 3-36,
3-53, 6-1
of records, 3-46
of request definitions, 3-48
of request library files, 3-19
of requests, 3-48
INOLOGICALNAMES qualifier
in SPAWN command (FDU), 1-42
in SPAWN command (RDU), 2-79.2
NOMATCH case value
colons with, 3-9
example, 3-11
Nostore mode, 2-3
INOSTORE qualifier
in MODIFY REQUEST command
defaults, 2-54
Validate mode, 2-54
Nostore mode, 2-3
INOSYMBOLS qualifier
in SPAWN command (FDU), 1-42
in SPAWN command (RDU), 2-79.2
Notation for TDMS calls, 4-2t, 5-2t
Novalidate mode, 2-3, 2-74
creating
request library definitions, 2-21
requests, 2-27
effect of END DEFINITION
instruction, 3-18
errors, 2-74
FORM IS instruction, 3-22
MODIFY LIBRARY command,
2-50
MODIFY REQUEST command,
2-54
RECORD IS instruction, 3-47
REPLACE LIBRARY command,
2-60

February 1987

REPLACE REQUEST command,
2-65
REQUEST IS instruction, 3-49
setting, 2-74
ISTORE qualifier, 2-74
VALIDATE LIBRARY command
in, 2-82
VALIDATE REQUEST command,
2-86
INOWALIT qualifier
in SPAWN command (FDU), 1-42
in SPAWN command (RDU), 2-79.2
Numeric keypad mode, 3-31
program request keys in, 3-32

o

Opening
channels, 4-19, 5-20
log files, 2-71
request library files, 4-22
Output mappings
order of execution, 4-32, 5-33
table, 8-4t
USE FORM instruction, 3-66
/IOUTPUT qualifier
in LIST FORM command, 1-24
in LIST LIBRARY command, 2-43
in LIST REQUEST command, 2-45
in SPAWN command (FDU), 1-42
in SPAWN command (RDU), 2-79.2
OUTPUT TO instruction, 3-36
%ALL syntax
errors, 3-39
logging, 3-39
errors, 3-38
in Validate mode, 3-38
execution of, 3-38
PROGRAM KEY IS instruction,
3-44
returned values, 3-38
specifying record fields, 3-36
%TOD, 3-37
WITH modifier, 3-38

Index-17

WITH NAME modifier of
RECORD IS instruction, 3-36

P

PACKED DECIMAL data type
length of fields, 8-1
Parameter passing notation, 4-2t, 5-2t
Passing mechanisms
notation for, 4-2t, 5-2t
Path names
in BUILD LIBRARY command, 2-6
in COPY FORM command, 1-7
in COPY LIBRARY command,
2-12
in COPY REQUEST command,
2-15
in CREATE FORM command, 1-10
in CREATE LIBRARY command,
2-18
in CREATE REQUEST command,
2-23
in DELETE FORM command, 1-17
in DELETE LIBRARY command,
2-33
in DELETE REQUEST command,
2-35
in FORM IS instruction, 3-21
in LIST FORM command, 1-24
in LIST LIBRARY command, 2-43
in LIST REQUEST command, 2-45
in MODIFY FORM command, 1-26
in MODIFY LIBRARY command,
2-47
in MODIFY REQUEST command,
2-51
in RECORD IS instruction, 3-46
in REPLACE FORM command,
1-28
in REPLACE LIBRARY command,
2-56
in REPLACE REQUEST com-
mand, 2-61
in REQUEST IS instruction, 3-48
in SET DEFAULT command, 1-33,
2-69

Index-18

in VALIDATE LIBRARY com-
mand, 2-80
in VALIDATE REQUEST com-
mand, 2-84
Picture characters, 8-1
Precedence
rules for resolving multiple key
definitions, 3-13.4 to 3-13.5
/PRINT qualifier
in BUILD LIBRARY command, 2-9
in CREATE LIBRARY command,
2-20
in CREATE REQUEST command,
2-26
in LIST FORM command, 1-25
in LIST LIBRARY command, 2-44
in LIST REQUEST command, 2-46
in MODIFY LIBRARY command,
2-49
in MODIFY REQUEST command,
2-53
in REPLACE LIBRARY command,
2-59
in REPLACE REQUEST com-
mand, 2-64
Printing
form definitions, 1-25
help text, 1-23, 2-42
request definitions, 2-26, 2-46, 2-53,
2-64
request library definitions, 2-9,
2-20, 2-44, 2-49, 2-59
PRK instructions, 3-44.3
form field names in, 3-44.1
MESSAGE LINE IS, 3-44
OUTPUT TO, 3-44
quoted strings in, 3-44.1
RETURN TO, 3-44.1
/PROCESS qualifier
in SPAWN command (FDU), 1-42
in SPAWN command (RDU), 2-79.2
PROGRAM KEY IS instruction, 3-41
CHECK modifier, 3-44.2
keypad mode with, 3-44.3
OUTPUT TO instruction, 3-44
program request keys, 3-41

February 1987

quoted strings in, 3-44.1
returned values, 3-44.2
semicolons in, 3-44.3
specifying record fields, 3-44.2
with KEYPAD MODE IS
APPLICATION, 3-32
WITH modifier, 3-44
Program request keys
Application mode, 3-31
case of, 3-43
KEYPAD MODE IS instruction,
3-32
Must Fill fields, 3-44.2
names of, 3-41
Numeric mode, 3-31
output mappings, 3-67
PROGRAM KEY IS instruction,
3-41
Response Required fields, 3-44.2
Programming calls
See TDMS programming calls
{PROMPT qualifier
in HELP command, 1-22, 2-41

Q

Quotation marks
audit text, 2-2
embedded, 3-8, 3-34, 3-37, 3-44.1,
3-52
in audit text, 1-2
Quoted strings
as control values, 3-8
audit text, 1-2, 2-2
punctuation of, 3-8, 3-34, 3-37,
3-44.1, 3-52

R

RDU

command files, 2-4

default CDD directory, 2-69

error messages
See also Error messages
format of, B-1
mnemonics for, B-1

exiting, 2-30, 2-31, 2-40

February 1987

getting help on, 2-41
logging commands, 2-71
showing
current version, 2-79
logging status, 2-78
startup files, 2-4, 2-69
Verify mode, 2-76

RDU commands

ATTACH, 2-5.1

IAUDIT qualifier, 2-1

BUILD LIBRARY, 2-6

canceling, 2-29

COPY LIBRARY, 2-12

COPY REQUEST, 2-15

CREATE LIBRARY, 2-18

CREATE REQUEST, 2-23

CTRLI/C, 2-29

CTRLYY, 2-30

CTRL/Z, 2-31

DELETE LIBRARY, 2-33

DELETE REQUEST, 2-35

EDIT, 2-37

ending the current, 2-31

EXIT, 2-40

@file-spec, 2-4

HELP, 2-41

LIST LIBRARY, 2-43

LIST REQUEST, 2-45

MODIFY LIBRARY, 2-47

MODIFY REQUEST, 2-51

REPLACE LIBRARY, 2-56

REPLACE REQUEST, 2-61

SAVE, 2-67

SET DEFAULT, 2-69

SET LOG, 2-71

SET VALIDATE, 2-73

SET VERIFY, 2-76

SHOW DEFAULT, 2-77

SHOW LOG, 2-78

SHOW VERSION, 2-79

SPAWN, 2-79.1

using command files, 2-4
startup, 2-4

VALIDATE LIBRARY, 2-80

VALIDATE REQUEST, 2-84

Index-19

RDUSEDIT logical name, 2-38, 2-49,
2-54
RDUINI logical name, 2-4, 2-5
RDUINIL.COM file, 2-5
enabling logging, 2-72
setting default CDD directory in,
2-69
RDULIS.LIS file, 2-43, 2-45
RDULOG logical name, 2-72
RDULOG.LOG file, 2-72
Reading
reserved message line, 4-25, 5-24
Record definitions
CDD, 4-31, 5-32
VALIDATE REQUEST command,
2-84
validating, 2-73
Record fields
See also Control values
ambiguous references, 3-27, 3-34,
3-36, 3-53
INPUT TO instruction, 3-27
MESSAGE LINE IS instruction,
3-34
OUTPUT TO instruction, 3-36
PROGRAM KEY IS instruction,
3-44.2
RETURN TO instruction, 3-53
RECORD IS instruction, 3-46
making names unique, 3-46
path names in, 3-46
TSSSREQUEST, 3-47, 4-31
TSS$SREQUEST_A, 5-32
Validate mode, 3-47
with TSSSREQUEST, 4-29
with TSSSREQUEST_A, 5-30
Record names
uniqueness, 3-46, 6-3, 6-4f, 6-5
Records
in TSS$SREQUEST, 4-29
in TSSSREQUEST_A, 5-30
Referencing
form fields, 6-1
record fields
when field names are the same,

Index-20

6-2
when field names are unique, 6-1

Removing

binary structures, 2-36
request library definitions, 2-33
requests, 2-35

REPLACE FORM command (FDU),

1-28
IACL qualifier, 1-28
restrictions, 1-29
IAUDIT qualifier, 1-29
ICREATE qualifier, 1-29
errors, 1-30
[FORM_FILE qualifier, 1-29
in batch mode, 1-30
ILOG qualifier, 1-30
path names in, 1-28

REPLACE LIBRARY command

(RDU), 2-56
IACL qualifier, 2-57
{AUDIT qualifier, 2-57
ICREATE qualifier, 2-58
entering request library definition,

2-59

errors, 2-59, 2-60
in batch mode, 2-57
/LIST qualifier, 2-58
ILOG qualifier, 2-58
path names in, 2-56
[PRINT qualifier, 2-59
Validate mode, 2-59

REPLACE REQUEST command

(RDU), 2-61
IACL qualifier, 2-62
JIAUDIT qualifier, 2-62
ICREATE qualifier, 2-63
ILIST qualifier, 2-63
ILOG qualifier, 2-64
Novalidate mode, 2-65
path names in, 2-61
/PRINT qualifier, 2-64
ISTORE qualifier, 2-64, 2-66

Replacing

form definitions, 1-28
request library definitions, 2-56

February 1987

requests, 2-61
Request Definition Utility
See RDU
Request definitions
access control lists for, 2-15, 2-24,
2-62
audit text for, 2-52
default file type, 2-24, 2-62
entering, 2-24, 2-62
printing, 2-26, 2-46, 2-53, 2-64
Request instructions
BLINK FIELD, 3-2
BOLD FIELD, 3-4
CLEAR SCREEN, 3-6
CONTROL FIELD IS, 3-7
DEFAULT FIELD, 3-12
DEFINE KEY AS, 3-13.1
DESCRIPTION, 3-14
DISPLAY FORM, 3-16
END DEFINITION, 3-18
FILE IS, 3-19
form field names in, 3-2, 3-4, 3-12,
3-217, 3-317, 3-50, 3-52, 3-57,
3-63
FORM IS, 3-21
%INCLUDE, 3-25
INPUT TO, 3-27
KEYPAD MODKE IS, 3-31
LIGHT LIST, 3-33
MESSAGE LINE IS, 3-34
order of execution, 3-6, 3-10, 3-28,
3-38, 3-54, 3-55, 4-32, 5-33
OUTPUT TO, 3-36
PROGRAM KEY IS, 3-41
RECORD IS, 3-46
REQUEST IS, 3-48
RESET FIELD, 3-50
RETURN TO, 3-52
REVERSE FIELD, 3-57
RING BELL, 3-59
SIGNAL MODE I8, 3-60
SIGNAL OPERATOR, 3-62
UNDERLINE FIELD, 3-63
USE FORM, 3-65
WAIT, 3-67

February 1987

REQUEST IS instruction, 3-48

in request library definition, 3-49
making names unique, 3-48
path names in, 3-48
Validate mode
errors, 3-49
WITH NAME modifier
TSSSREQUEST call, 3-48

Request libraries

audit text for, 2-7, 2-13, 2-19, 2-47,
2-57, 2-80

building, 2-6

defining, 2-18

listing files for, 2-7, 2-20, 2-48, 2-58

validating, 2-80

Request library definitions

access control lists for, 2-13, 2-19,
2-57
audit text, 2-2
building, 2-6
command files, 2-18, 2-56
copying, 2-12
creating, 2-18
REPLACE LIBRARY command,
2-58
default file type, 2-18, 2-56
deleting, 2-33
END DEFINITION instruction,
3-18
entering, 2-19, 2-21, 2-57, 2-59
FORM IS instruction, 3-22
including forms, 3-21
including text, 3-25
listing, 2-43
modifying, 2-47
errors, 2-49, 2-50
Validate mode, 2-49
Novalidate mode, 2-21
printing, 2-9, 2-20, 2-44, 2-49, 2-59
replacing, 2-56
Novalidate mode, 2-60
REQUEST IS instruction, 3-49
Validate mode, 2-21, 2-59
disabling, 2-74
enabling, 2-73

Index-21

validating, 2-74, 2-80
Request library files
building, 2-6
closing, 4-8, 4-9
creating binary structures, 2-9
default file type, 2-6
errors, 2-9
file specification, 4-22
multiple, 4-23
names
errors, 3-19
in FILE IS instruction, 3-19
offset errors, 3-16, 3-65
opening, 4-22
specifying, 2-6
specifying requests, 3-48, 3-49
Requests

audit text for, 2-2, 2-16, 2-24, 2-52,

2-62, 2-84

binary structures, 2-26, 2-53, 2-64,

2-81, 2-85

storing, 2-74
copying, 2-15
creating, 2-23

binary structures, 2-26

listing files for, 2-25
deleting, 2-35

binary structure, 2-36
editing, 2-51
END DEFINITION instruction,

3-18

entering, 2-26, 2-65
errors, 2-26, 2-54, 2-65
executing

See TSSSREQUEST

See TSSSREQUEST_A
FORM IS instruction, 3-22

multiple, 3-22
in request libraries, 2-9
including forms, 3-21
including text, 3-25
listing, 2-45
mappings, 4-29, 5-30
modifying, 2-51

errors, 2-54

Index-22

listing files for, 2-52
names
uniqueness, 3-48
order of execution, 4-32, 5-33
printing definitions, 2-26, 2-46,
2-53, 2-64
replacing, 2-61, 2-65
errors in validate mode, 2-65
listing files for, 2-63
revalidating, 2-87
source files, 2-62
specifying, 3-48
Validate mode, 2-27
disabling, 2-74
enabling, 2-73
errors, 2-54
validating, 2-73, 2-84
Reserved message line
clearing, 4-27, 5-46
displaying errors, 4-46, 5-46
location, 4-27, 5-27
maximum length, 4-27
reading, 4-25, 5-24
displaying prompt, 5-25
writing, 4-42, 4-45, 5-40, 5-44
ringing bell, 4-42, 5-41
RESET FIELD instruction, 3-50
in conditional requests, 3-50
Response Required fields
PRKs, 3-44.2
Return operations
order of execution, 4-32, 5-33
Return status
severity, 4-2t, 5-3t
RETURN TO instruction, 3-52
%ALL syntax
errors, 3-55
logging, 3-55
errors
in Validate mode, 3-55
mapping, 3-55
execution of, 3-54, 3-55
INPUT TO instruction, 3-54
%MODIFIED syntax, 3-54
PRK instructions, 3-44.1

February 1987

returned values, 3-54, 3-55
specifying record fields, 3-53
%TOD, 3-53
WITH NAME modifier of
RECORD IS instruction, 3-53
REVERSE FIELD instruction, 3-57
in conditional requests, 3-58
VT52 terminal, 3-58
RING BELL instruction, 3-59
defaults, 3-59
errors, 3-59
RLB files
See Request library files
Run-time library parameter passing
notation
See Parameter passing notation

S

SAVE command (FDU), 1-32
SAVE command (RDU), 2-67
Saving
FDU commands, 1-32
RDU commands, 2-67
Scale factor, 8-1
Screens
clearing, 4-5, 5-5
copying contents, 4-10, 5-8
reversing background, 3-57
Semicolon (;)
END DEFINITION instruction,
3-18
in %INCLUDE instruction, 3-25
in CONTROL FIELD IS instruc-
tion, 3-7
in DESCRIPTION instruction, 3-14
in PROGRAM KEY IS instruction,
3-44.3
SET DEFAULT command (FDU),
1-33
path names in, 1-33
SET DEFAULT command (RDU),
2-69
path names in, 2-69
SET LOG command (FDU), 1-35

February 1987

defaults, 1-35
file type, 1-36
errors, 1-36
SET LOG command (RDU), 2-71
defaults, 2-72
errors, 2-72
included text, 3-26
input mappings, 3-29
output mappings, 3-39
return mappings, 3-55
SET NOVALIDATE command
(RDU), 2-3
SET VALIDATE command (RDU),
2-3, 2-73
defaults, 2-73
errors, 2-73
SET VERIFY command (FDU), 1-37
defaults, 1-37
FDU command files, 1-4
in batch mode, 1-37
SET VERIFY command (RDU), 2-76
included text, 3-26
RDU command files, 2-4
Setting
CDD directory, 1-33, 2-69
default editor, 2-38, 2-54
log files, 1-35
Validate mode, 2-73
Verify mode, 1-37
SHOW DEFAULT command (FDU),
1-38
SHOW DEFAULT command (RDU),
2-77
SHOW LOG command (FDU), 1-39
SHOW LOG command (RDU), 2-78
SHOW VERSION command (FDU),
1-40
SHOW VERSION command (RDU),
2-79
Showing
CDD directory
default, 1-38, 2-77
current version
FDU, 1-40
RDU, 2-79

Index-23

logging status, 1-39
RDU, 2-78
SIGNAL MODE IS instruction, 3-60
SIGNAL OPERATOR instruction,
3-60
VT52 terminal, 3-60
SIGNAL OPERATOR instruction,
3-62
SIGNAL MODE IS instruction,
3-60
VT52 terminal, 3-62
Signalling errors, 4-34, 4-35
Source files for request library defini-
tions, 2-57
SPAWN command (FDU), 1-41
/INPUT qualifier, 1-41
ILOGICAL_NAMES qualifier, 1-42
INOLOGICAL_NAMES qualifier,
1-42
INOSYMBOLS qualifier, 1-42
INOWAIT qualifier, 1-42
IOUTPUT qualifier, 1-42
/PROCESS qualifier, 1-42
ISYMBOLS qualifier, 1-42
IWAIT qualifier, 1-42
SPAWN command (RDU), 2-79.1
[INPUT qualifier, 2-79.1
ILOGICAL_NAMES qualifier,
2-79.2
INOLOGICAL_NAMES qualifier,
2-79.2
INOSYMBOLS qualifier, 2-79.2
INOWAIT qualifier, 2-79.2
/IOUTPUT qualifier, 2-79.2
[PROCESS qualifier, 2-79.2
ISYMBOLS qualifier, 2-79.2
IWAIT qualifier, 2-79.2
Startup files
EDT, 2-38
FDU, 1-5, 1-19
enabling logging, 1-36
setting default CDD directory,
1-33
RDU, 2-4, 2-5
enabling logging, 2-72

Index-24

setting default CDD directory,
2-69
Status codes
severity, 4-2t, 5-3t
Store mode, 2-3
CREATE REQUEST command,
2-26, 2-27
defaults
MODIFY REQUEST command,
2-54
VALIDATE LIBRARY command,
2-82
ISTORE qualifier
CREATE REQUEST command,
2-26
defaults, 2-64
REPLACE REQUEST com-
mand, 2-66
errors, 2-74
MODIFY REQUEST command,
2-53
Novalidate mode, 2-74
REPLACE REQUEST command,
2-64
Store mode, 2-3
VALIDATE LIBRARY command,
2-81
defaults for, 2-82
Validate mode, 2-26, 2-53, 2-64,
2-65, 2-74, 2-81, 2-85
VALIDATE REQUEST command,
2-85
Storing
audit text in the CDD, 2-2
binary structures, 2-9, 2-26, 2-54,
2-65, 2-74
request library definitions, 2-18
Subprocess name
in SPAWN command (FDU), 1-42
in SPAWN command (RDU), 2-79.2
ISYMBOLS qualifier
in SPAWN command (FDU), 1-42
in SPAWN command (RDU), 2-79.2
SYSS$INPUT logical name

February 1987

CREATE LIBRARY command,
2-19, 2-21, 2-57
CREATE REQUEST command,
2-24, 2-62
TSS$OPEN, 4-19
TSS$OPEN_A call, 5-21
SYS$OUTPUT
SPAWN command (FDU), 1-42
SPAWN command (RDU), 2-79.2
SYS$OUTPUT logical name
assigning I/O channels, 4-20, 5-22
defining, 1-23, 2-42
in trace facility, 4-39
LIST FORM command, 1-25
LIST LIBRARY command, 2-44
LIST REQUEST command, 2-45

T

TDMS programming calls
asynchronous
in BASIC syntax, 5-49t
in COBOL syntax, 5-51t
in FORTRAN syntax, 5-53t
TSS$CLOSE_A, 5-4
TSS$COPY_SCREEN_A, 5-8
TSS$DECL_AFK_A, 5-13
TSS$OPEN_A, 5-20
TSS$SREAD_MSG_LINE_A,
5-24
TSS$REQUEST_A, 5-29
TSS$UNDECL_AFK_A, 5-36
TSS$WRITE_BRKTHRU_A,
5-40
TSS$WRITE_MSG_LINE_A,
5-44
canceling, 4-3
data type notation, 5-2t
data types used, 4-2t
notation, 4-2t, 5-2t
passing mechanisms, 4-2t, 5-2t
return status
severity, 4-2t, 5-3t
synchronous
in BASIC syntax, 4-48t

February 1987

in COBOL syntax, 4-50t
in FORTRAN syntax, 4-52t
TSS$CANCEL, 4-3
TSS$CLOSE, 4-5
TSS$CLOSE_RLB, 4-8
TSS$COPY_SCREEN, 4-10
TSS$DECL_AFK, 4-13
TSS$OPEN, 4-19
TSS$OPEN_RLB, 4-22
TSSSREAD_MSG_LINE, 4-25
TSS$SREQUEST, 4-29
TSS$SIGNAL, 4-34, 4-35
TSS$TRACE_OFF, 4-36
TSS$TRACE_ON, 4-38
TSSSUNDECL_AFK, 4-40
TSSSWRITE_BRKTHRU, 4-42
TSS$WRITE_MSG_LINE, 4-45
TDMS$DECL_AFK_A, 5-13
AST routines, 5-14, 5-18
event flags, 5-13, 5-18
key-id values, 5-15
TDMSS$EDIT logical name, 2-49, 2-53
TDMSEDIT.COM file, 2-38, 2-49,
2-53
Terminals
clearing screen, 3-6
TSS$CLOSE, 4-5
TSS$CLOSE_A, 5-5
displaying messages on, 3-34
reserved message line
location, 4-27, 5-27
reading, 4-25, 5-24
resetting attributes, 5-6
reversing screen, 3-57
ringing bell, 3-59
TSS$WRITE_BRKTHRU, 4-42
TSSSWRITE_BRKTHRU_A,
5-41
VT52
BLINK FIELD instruction, 3-3
BOLD FIELD instruction, 3-5
invalid features, 4-32, 5-33
REVERSE FIELD instruction,
3-58
SIGNAL MODE IS instruction,

Index-25

3-60
SIGNAL OPERATOR instruc-
tion, 3-62
UNDERLINE FIELD instruc-
tion, 3-64
video instructions on, 3-38
Text editors
EDT, 1-19
invoking
from FDU, 1-19
from RDU, 2-37
RDU default, 2-38
Time
See %TOD syntax
%TOD syntax
OUTPUT TO instruction, 3-37
RETURN TO instruction, 3-53
Trace facility
default output file, 4-38
defining SYS$OUTPUT, 4-39
defining TSS$TRACE_OUTPUT,
4-39
disabling, 4-36
enabling, 4-38
TSS$CANCEL, 4-3
completion, 4-4
examples of, 4-4
TSS$CLOSE
clearing screen, 4-5
examples of, 4-7
execution of, 4-6
TSS$CLOSE_A
AST routines, 5-5, 5-6
clearing screen, 5-5
event flags, 5-4, 5-6
examples of, 5-7
execution of, 5-6
resetting keypad mode, 5-6
TSS$CLOSE_RLB, 4-8, 4-9
TSS$COPY_SCREEN, 4-10
examples of, 4-12
output file
default name, 4-10
versions, 4-10
TSS$COPY_SCREEN_A, 5-8

Index-26

AST routines, 5-9, 5-11
event flags, 5-8, 5-11
examples of, 5-12
output file
default name, 5-9
versions, 5-9
TSS$DECL_AFK, 4-13
examples of, 4-18
execution of, 4-17
return status codes, 4-16
TSS$DECL_AFK_A
examples of, 5-19
execution of, 5-18
TSS$HARDCOPY logical name, 4-10,
5-9
TSS$OPEN, 4-19
examples of, 4-21
format, 4-19
TSS$OPEN_A, 5-20
AST routines, 5-20, 5-22
event flags, 5-20, 5-22
examples of, 5-23
TSS$OPEN_RLB, 4-22
examples of, 4-23, 4-24
file specifications, 4-22
TSS$READ_MSG_LINE, 4-25
examples of, 4-27, 4-28
TSSSREAD_MSG_LINE_A, 5-24
AST routines, 5-25, 5-27
event flags, 5-24, 5-27
examples of, 5-28
TSS$REQUEST, 4-29
examples of, 4-33
format, 4-29
record definitions, 4-31
RECORD IS instruction, 4-31
order of parameters, 3-47
specifying request names, 3-48
with RECORD IS instruction, 4-29
TSS$SREQUEST_A, 5-29
AST routines, 5-30, 5-33
event flags, 5-29, 5-33
examples of, 5-35
record definitions, 5-32
RECORD IS instruction, 5-32

February 1987

with RECORD IS instruction, 5-30
TSS$SIGNAL, 4-34, 4-35

examples of, 4-35
TSS$TRACE_OFF, 4-36

examples of, 4-37
TSS$TRACE_ON, 4-38

examples of, 4-39

TSS$TRACE_OUTPUT logical name,

4-38
TSS$UNDECL_AFK, 4-40
examples of, 4-41
TSS$UNDECL_AFK_A, 5-36
AST routines, 5-37, 5-38
event flags, 5-36, 5-38
examples of, 5-39
TSS$WRITE_BRKTHRU, 4-42
examples of, 4-43, 4-44
maximum message length, 4-43
TSS$SWRITE_BRKTHRU_A, 5-40
AST routines, 5-41, 5-42
event flags, 5-40, 5-42
examples of, 5-43
maximum message length, 5-42
TSS$WRITE_MSG_LINE, 4-45
examples of, 4-47
TSS$SWRITE_MSG_LINE_A, 5-44
AST routines, 5-45, 5-47
event flags, 5-44, 5-47
examples of, 5-48
Turning Trace off, 4-36
Turning Trace on, 4-38

U

UNDERLINE FIELD instruction,
3-63

in conditional requests, 3-63
VT52 terminal, 3-64

UNSIGNED NUMERIC data type
scale factor, 8-1

USE FORM instruction, 3-65
clearing the screen before, 3-6
offset errors, 3-65
WITH NAME clause of FORM IS

instruction, 3-65

February 1987

V'

V1 qualifier
in CREATE FORM/FORM_FILE
command, 1-11
in REPLACE FORM/FORM_FILE
command, 1-29
VALIDATE LIBRARY command
(RDU), 2-80
JAUDIT qualifier, 2-80
errors, 2-82
ILOG qualifier, 2-81
path names in, 2-80
ISTORE qualifier, 2-81, 2-82
storing binary structures, 2-82
Validate mode, 2-3, 2-21
%ALL syntax, 2-74
CREATE REQUEST command
errors, 2-27
defaults, 2-73
ISTORE qualifier, 2-64
disabling, 2-74
FORM IS instruction, 3-22
INPUT TO instruction, 3-28
MODIFY LIBRARY command,
2-49
MODIFY REQUEST command
errors, 2-54
INOSTORE qualifier, 2-54
OUTPUT TO instruction, 3-38
RECORD IS instruction, 3-47
REPLACE LIBRARY command,
2-59
REPLACE REQUEST command
errors, 2-65
REQUEST IS instruction, 3-49
RETURN TO instruction, 3-55
SET VALIDATE command
errors, 2-73
setting, 2-73
ISTORE qualifier, 2-26, 2-53, 2-64,
2-65, 2-74, 2-81, 2-85
VALIDATE REQUEST command
(RDU), 2-84
JAUDIT qualifier, 2-84

Index-27

/LOG qualifier, 2-85
offset errors, 3-16, 3-65
path names in, 2-84
/ISTORE qualifier, 2-85
Validate mode in, 2-86
Validating
request library definitions, 2-74,
2-80
requests, 2-73, 2-84
Verify mode, 1-37, 2-76
defaults, 1-37
FDU command files, 1-4
in batch mode, 1-37
RDU command files, 2-4
Version number
showing current
FDU, 1-40
RDU, 2-79
Video attributes
active, 3-2, 3-4, 3-567
blinking field, 3-2
defaults
overriding, 3-38, 3-63
resetting, 3-17
output mappings
WITH modifier, 3-38
overriding, 3-57
USE FORM instruction, 3-66
PROGRAM KEY IS instruction,
3-44
resetting, 3-12, 3-50, 4-6, 5-6
reversing background, 3-57
underlining field, 3-63
Video instructions
active, 3-50

Index-28

in conditional requests, 3-2, 3-4,
3-58, 3-63
interaction of, 3-3, 3-5, 3-38, 3-58,
3-62, 3-64
VT52 terminal, 3-38
VT100 terminal, 3-13.1, 3-13.2
VT200 terminal, 3-13.1, 3-13.2

w

WAIT instruction, 3-67
INPUT TO instruction, 3-67
IWAIT qualifier
in SPAWN command (FDU), 1-42
in SPAWN command (RDU), 2-79.2
WITH modifier
OUTPUT TO instruction, 3-38
PROGRAM KEY IS instruction,
3-44
WITH NAME modifier
FORM IS instruction, 3-21
DISPLAY FORM instruction,
3-16
USE FORM instruction, 3-65
making names unique, 3-21, 3-46,
3-48
RECORD IS instruction, 3-27,
3-34, 3-36, 3-46, 3-53
REQUEST IS instruction, 3-48
WITH OFFSET modifier
DISPLAY FORM instruction, 3-16
errors, 3-16, 3-65
USE FORM instruction, 3-65
Writing
reserved message line, 4-45, 5-40,
5-44

February 1987

VAX TDMS
Reference Manual
AA-HU17A-TE
Including: AD-HU17A-T1
Reader’s Comments

Note: This form is for document comments only. DIGITAL will use comments
submitted on this form at the company’s discretion. If you require a writ-
ten reply and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please
make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[0 Assembly language programmer
0 Higher-level language programmer
[0 Occasional programmer (experienced)
[0 User with little programming experience
(0 Student programmer
O Other (please specify)
Name Date
Organization
Street
City State leor(': ode -

Country

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO 33 MAYNARD MASS

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: DISG Documentation
ZK02-2/N53

Digital Equipment Corporation
110 Spit Brook Road

Nashua, NH 03062-2698

limnirm i mamamimall

Cut Along Dotted Line

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

