
HP OpenView
Performance Agent

User’s Manual

Edition: 13

for UNIX
Manufacturing Part Number: None

January 2003

© Copyright 2003 Hewlett-Packard Company.

Legal Notices
Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product can be obtained from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Copyright Notices.

©Copyright 1983-2003 Hewlett-Packard Company, all rights reserved.

No part of this document may be copied, reproduced, or translated to
another language without the prior written consent of Hewlett-Packard
Company. The information contained in this material is subject to
change without notice.

Trademark Notices.

Adobe® is a trademark of Adobe Systems Incorporated.

HP-UX Release 11.00 and later (in both 32 and 64-bit configurations) on
all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a U.S. trademark of Sun Microsystems, Inc.

UNIX® is a registered trademark of The Open Group.

All other product names are the property of their respective trademark
or service mark holders and are hereby acknowledged.
2

Contents
1. This is OpenView Performance Agent
Introduction . 22
What OV Performance Agent Does . 23
OV Performance Manager Major Components. 24

Scopeux Data Collector. 25
Collection Parameters File . 25
DSI Log Files. 26
Extract and Utility Programs . 26
Data Sources . 26
ARM Transaction Tracking Capabilities. 27

Related Performance Products . 28

2. Managing Data Collection
Introduction . 32
Scopeux Data Collector . 33

 Scopeux Status. 33
parm File . 34

Modifying the parm File. 34
parm File Parameters. 35

Parameter Descriptions . 37
Application Definition Parameters. 42

Stopping and Restarting Data Collection . 49
Stopping Data Collection . 49
Restarting Data Collection. 50
Automating Scopeux Startup and Shutdown . 50

Effective Data Collection Management . 51
Controlling Disk Space Used by Log Files . 51

Setting Mainttime . 51
Setting the Maximum Log File Size. 52
Managing Your Resizing Processes . 53

Data Archiving . 54
Managing Your Archiving Processes . 54
Hint . 55

3. Using the Utility Program
3

Contents
Introduction . 58
Running the Utility Program . 59
Using Interactive Mode . 61

Example of Using Interactive and Batch Mode . 61
Utility Command Line Interface . 63

Example of Using the Command Line Interface. 65
Utility Scan Report Details . 66
Scan Report Information . 68

Initial Values. 68
Initial Parm File Global Information . 68

Initial Parm File Application Definitions . 68
Chronological Detail . 69

parm File Global Change Notifications . 69
parm File Application Addition/Deletion Notifications. 69
Scopeux Off-Time Notifications . 70
Application-Specific Summary Report . 70

Summaries . 71
Process Log Reason Summary . 71
Scan Start and Stop . 72
Application Overall Summary . 73
Collector Coverage Summary . 73
Log File Contents Summary. 74
Log File Empty Space Summary . 75

4. Utility Commands
Introduction . 78
analyze . 81
checkdef . 83
detail . 84
exit . 85
guide . 86
help . 87
list . 88
logfile. 90
menu . 92
parmfile. 93
4

Contents
quit . 94
resize. 95
scan . 101
sh. 103
show . 104
start. 106
stop . 108

5. Using the Extract Program
Introduction . 112
Running the Extract Program. 114
Using Interactive Mode . 116
Extract Command Line Interface . 117
Overview of the Export Function . 124

How to Export Data . 124
Sample Export Tasks . 125

Generating a Printable CPU Report . 126
Producing a Customized Export File . 126

Export Data Files . 126
Export Template File Syntax . 128

Export File Title . 132
Creating a Custom Graph or Report . 132
Output of Exported Files . 134
Notes on ASCII and Datafile Formats. 134

Hints . 135
Notes on Binary Format . 135

Binary Header Record Layout . 136
Binary Title Record . 140
Binary Item Identification Record . 140
Binary Scale Factor Record. 141
Special Scale Factors. 141
Application Name Record . 141
Transaction Name Record . 142
Disk Device Name Record. 142
Logical Volume Name Record . 142
Netif Name Record . 143
5

Contents
6. Extract Commands
Introduction . 146
application . 153
class. 155
configuration . 157
cpu. 158
disk . 159
exit . 160
export . 161
extract. 164
filesystem . 167
global. 168
guide . 170
help . 171
list . 172
logfile. 174
lvolume . 176
menu . 177
monthly. 179
netif . 181
output . 182
process . 185
quit . 187
report . 188
sh. 189
shift . 190
show . 192

Examples . 192
start. 194
stop . 196
transaction . 198
weekdays . 199
weekly . 200
yearly . 203

7. Performance Alarms
6

Contents
Introduction . 208
Processing Alarms . 209

How Alarms Are Processed . 209
Alarm Generator. 210
Sending SNMP Traps to Network Node Manager . 210
Sending Messages to OpenView Operations (OVO) . 210
Executing Local Actions . 211
Errors in Processing Alarms . 212
Analyzing Historical Data for Alarms . 212

Examples of Alarm Information in Historical Data . 212
Alarm Definition Components. 214
Alarm Syntax Reference . 215

Conventions. 216
Common Elements . 216
ALARM Statement . 221
ALERT Statement . 226
EXEC Statement. 228
PRINT Statement . 230
IF Statement . 231
LOOP Statement. 233
INCLUDE Statement . 235
USE Statement . 236
VAR Statement . 239
ALIAS Statement . 240
SYMPTOM Statement . 241

Alarm Definition Examples . 243
Customizing Alarm Definitions. 246

8. Communicating Across a Firewall
Introduction . 248

Ports Used for Communication with OVPA. 249
With HTTP Proxy . 250
Without HTTP Proxy . 250

Overview of OVPA Communications Configuration . 250
Communications default.txt Configuration File . 251

Configure OVPA Server Port . 252
7

Contents
Configure Reporter and/or OVPM . 252
Configure Reporter/OVPM with HTTP Proxy . 252
Configure Reporter/OVPM without HTTP Proxy . 253

Other Considerations . 254
About Systems with Multiple IP Addresses . 254

default.txt File and Configuration Parameters. 254
default.txt Configuration File . 254
default.txt Configuration Parameters . 257

A. Appendix
Viewing MPE Log Files . 262
Viewing and Printing Documents . 263

Viewing Documents on the Web. 264
Adobe Acrobat Files . 264

Glossary . 265
8

Contents
9

Contents
10

Tables
Table 1. Typographical Conventions .15
Table 2. Changes in this Document Edition .17
Table 2-1. parm File Parameters Used by Scopeux .36
Table 3-1. Command Line Arguments .63
Table 4-1. Utility Commands: Syntax and Parameters .79
Table 4-2. Default Resizing Parameters .97
Table 5-1. Command Line Arguments .117
Table 6-1. Extract Commands: Syntax and Parameters .147
Table 6-2. Extract Commands: Extracting and Exporting Data151
Table 8-1. OVPA Default Ports .250
Table 8-2. OV Performance Agent Documentation Set .263
11

Tables
12

Publication History
New editions are complete revisions of the manual. The publication dates
for each edition are listed below. This manual is not printed. It is
published in Adobe Portable Document File (.pdf) format and can be
viewed online and printed as needed. No part numbers were assigned for
Editions 4 and 5 and will not be assigned beginning with Edition 9.

Edition 1 11/95 B4967-90001

Edition 2 12/97 B4967-90016

Edition 3 10/99 B4967-90023

Edition 4 07/00

Edition 5 12/00

Edition 6 03/01 B4967-90040

Edition 7 09/01 B4967-90049

Edition 8 09/01 B4967-90052

Edition 9 01/02

Edition 10 05/02

Edition 11 09/02

Edition 12 12/02

Edition 13 01/03
 13

14

Conventions
The following typographical conventions are used in this manual.

Table 1 Typographical Conventions

Font Type What the Font Type Represents Example

Italic Book or manual titles, and man page
names

Refer to the HP OpenView
Operations Administrator’s
Reference Volume I and the opc(1M)
manpage for more information.

Provides emphasis You must follow these steps.

Specifies a variable that you must
supply when entering a command

At the prompt type:
rlogin your_name where you
supply your login name.

Parameters to a function The oper_name parameter returns
an integer response.

Bold New terms The monitor agent observes...

Computer Text and items on the computer
screen

The system replies: Press Enter

Command names Use the grep command ...

Function names Use the opc_connect()function to
connect ...

File and directory names /opt/OV/bin/OpC/

Process names Check to see if opcmona is running.

Window/dialog box names In the Add Logfile window...

Computer
Bold

Text that you must enter At the prompt, type: ls -l

Keycap Keyboard keys Press Return.

[Button] Buttons on the user interface. Click [Operator].
Click on the [Apply] button.
 15

Menu
Items

A menu name followed by a colon (:)
means that you select the menu,
then the item. When the item is
followed by an arrow (->), a
cascading menu follows.

Select Actions:Utilities->
Reports…

Table 1 Typographical Conventions (Continued) (Continued)

Font Type What the Font Type Represents Example
16

Revisions
The edition number on the title page of this document indicates the
edition of this document. The print date on the title page changes each
time this document is updated.

You will receive updated or new editions if you subscribe to the
appropriate product support service. Contact your HP sales
representative for details.

Table 2 Changes in this Document Edition

Chapter Changes

The “Support” and this
“Revisions” prefaces

These prefaces were added.

Chapter 1, “This is
OpenView Performance
Agent,” on page 21

Figure 1-1 on page 24 was updated to
incorporate the changed data flow for
OVPA4.0 and beyond. A note was also
added to describe the changed
terminology for some of the functions.

Chapter 2, “Managing Data
Collection,” on page 31

Removed the “Starting the Scopeux
Collector” subsection from the
“Scopeux Data Collector” section.

Chapter 2, “Managing Data
Collection,” on page 31

In the section “parm File” on page 34,
1) incorporated the “Sample File”
section and information from the HP
OpenView Performance Agent
Installation and Configuration Guide.
2) Removed the “Default Values”
subsection and table 2-2 — these
values are described in the parm file.

Chapter 2, “Managing Data
Collection,” on page 31

In Table 2-1 on page 36 and
“Parameter Descriptions” on page 37,
added the subprocinterval
parameter.
 17

Chapter 2, “Managing Data
Collection,” on page 31

Added the memory option description
and more information on the
shortlived option in “Threshold” on
page 39.

Chapter 2, “Managing Data
Collection,” on page 31

In “Managing Your Archiving
Processes” on page 54, removed
references to extract summary, since
summary data can only be exported.

Chapter 5, “Using the
Extract Program,” on
page 111

Added a note in the “Introduction” on
page 112 that summary data can only
be exported, not extracted. Any
mention of extracted summary data
was removed.

Chapter 5, “Using the
Extract Program,” on
page 111

Added a similar note in Table 5-1 on
page 117 above the summary
arguments.

Chapter 6, “Extract
Commands,” on page 145

Added the same note about summary
data in the “Introduction” on page 112.

Chapter 7, “Performance
Alarms,” on page 207

1) Incorporated the new terminology
throughout the chapter.
2) Removed the “Communicating
Alarm Notification to OV Performance
Agent” section.

Chapter 8, “Communicating
Across a Firewall,” on
page 247

This chapter was added — the firewall
information was previously in the
Install Guide.

Table 2 Changes in this Document Edition (Continued)

Chapter Changes
18

Support
Please visit the HP OpenView web site at:

http://openview.hp.com/

There you will find contact information and details about the products,
services, and support that HP OpenView offers.

You can go directly to the HP OpenView eCare web site at:

http://support.openview.hp.com/

The eCare support site includes:

• Downloadable documentation

• Troubleshooting information

• Patches and updates

• Problem reporting

• Training information

• Support program information
 19

http://openview.hp.com

20

1 This is OpenView Performance
Agent
Chapter 1 21

This is OpenView Performance Agent
Introduction
Introduction
This chapter is an introductory overview of OV Performance Agent, its
components, and related products. It discusses:

• what OV Performance Agent does

• data sources

• the scopeux collector

• the parm file

• utility and extract programs

• related performance products

NOTE OV Performance Agent (OVPA) for UNIX in this document refers only to
version 4.0 and beyond, and OV Performance Manager (OVPM) refers to
version 4.0 and beyond for UNIX and Windows platforms. OVPM 3.x
(PerfView) will connect to OV Performance Agent 4.0 and beyond for all
UNIX platforms except for OVPA for Linux. In the future, connectivity to
OVPM 3.x will be discontinued.
Chapter 122

This is OpenView Performance Agent
What OV Performance Agent Does
What OV Performance Agent Does
OV Performance Agent collects, summarizes, time stamps, and detects
alarm conditions on current and historical resource data across your
system. It provides performance, resource, and end-to-end transaction
response time measurements, and supports network and database
measurement information.

Data collected outside OV Performance Agent can be integrated using
data source integration (DSI) capabilities. For example, network,
database, and your own application data can be brought in through DSI
and is treated the same as data collected by OV Performance Agent. All
DSI data is logged, time stamped, and can be alarmed on. (For details,
see the HP OpenView Performance Agent for UNIX Data Source
Integration Guide.)

All of the data collected or received by OV Performance Agent can be
analyzed using spreadsheet programs, Hewlett-Packard analysis tools
such as OV Performance Manager, or third-party analysis products.

The comprehensive data logged by OV Performance Agent allows you to:

• Characterize the workloads in the environment.

• Analyze resource usage for load balancing.

• Perform trend analysis to isolate and identify bottlenecks.

• Perform service-level management based on transaction response
time.

• Perform capacity planning.

• Respond to alarm conditions.

• Solve system management problems before they arise.

OV Performance Agent gathers comprehensive and continuous
information on system activity without imposing significant overhead on
the system. Its design offers considerable opportunity for customization.
You can accept default configurations or set parameters to collect data
for specific conditions.
Chapter 1 23

This is OpenView Performance Agent
OV Performance Manager Major Components
OV Performance Manager Major Components
The following diagram shows the relationships among the major
components of the OV Performance Agent system.

Figure 1-1 OVPA Major Components
Chapter 124

This is OpenView Performance Agent
OV Performance Manager Major Components
NOTE Substantial changes were made to the internal data flow of metric data
in OVPA 4.0 and beyond releases. The coda daemon has replaced the
function of the perflbd and rep-server daemons, the datasources file
has replaced the perflbd.rc file, and the perfalarm daemon has
replaced alarmgen. The OVPM 3.x (PerfView) monitor interface has been
obsoleted; however, the external functionality is otherwise unchanged.

• The scopeux data collector is described in Chapter 2, “Managing
Data Collection,” on page 31.

• The coda daemon and its data sources are described later in this
chapter and in the HP OpenView Performance Agent Installation &
Configuration Guide.

• The default.txt file, which is the communications configuration
file used to customize communication parameters for HP OpenView
applications, is described in Chapter 8, “Communicating Across a
Firewall,” on page 247.

• Alarm generation components are described in Chapter 7,
“Performance Alarms,” on page 207.

• Data source integration (DSI), including dsilog and other DSI
components, are described in the HP OpenView Performance Agent
for UNIX Data Source Integration Guide.

Scopeux Data Collector

The scopeux data collector collects performance data from the operating
system on which OV Performance Agent resides, summarizes it, and logs
it in raw log files, depending on the types of information desired.

For detailed information about scopeux, see Chapter 2, “Managing Data
Collection,” on page 31.

Collection Parameters File

The type of data collected is determined by parameters set in the OV
Performance Agent programs and in the collection parameters (parm)
file, an ASCII file used to customize the collection environment. This file
Chapter 1 25

This is OpenView Performance Agent
OV Performance Manager Major Components
contains instructions that tell scopeux to log specific performance
measurements. The collection parameters file is commonly referred to in
this manual as the parm file.

For detailed information about the parm file, see Chapter 2, “Managing
Data Collection,” on page 31.

DSI Log Files

DSI log files contain self-describing data that is collected outside of OV
Performance Agent. These log files are created by OV Performance
Agent's DSI programs. DSI processes and the creation of DSI log files are
described in detail in the HP OpenView Performance Agent for UNIX
Data Source Integration Guide.

Extract and Utility Programs

Two OV Performance Agent programs, extract and utility, provide
the means for managing both scopeux log files and DSI log files.

The extract program lets you extract data from raw or previously
extracted scopeux log files and write it to extracted log files. The
extracted log files contain selected performance data for specific analysis
needs. The extract program also lets you export scopeux and DSI data
for use by spreadsheet programs and other analysis products. For more
information about extract and extract commands, see Chapter 5,
“Using the Extract Program,” on page 111 and Chapter 6, “Extract
Commands,” on page 145.

The utility program lets you generate reports on raw and extracted
scopeux log files, resize raw scopeux log files, and check parm file
syntax. It also lets you check the syntax in your alarm definitions file
and analyze alarm conditions in historical scopeux and DSI log file data.
For more information about utility and utility commands, see
Chapter 3, “Using the Utility Program,” on page 57 and Chapter 4,
“Utility Commands,” on page 77.

Data Sources

OV Performance Agent uses the coda daemon to provide log file data to
the alarm generator and the OV Performance Manager analysis product.
There is one coda server for all data sources including scopeux and DSI
log files.
Chapter 126

This is OpenView Performance Agent
OV Performance Manager Major Components
You configure data sources in the datasources file that resides in the
var/opt/OV/conf/perf/ directory. This allows you to selectively make
data available for alarm processing and analysis.

NOTE Previous versions of OVPA 3.x and earlier, used a DCE-based facility to
serve data for analysis.

When you install OV Performance Agent, the datasources file contains
a single entry for a data source named SCOPE that tells coda to read the
scopeux log file set. You can add additional data sources as needed.

When you start OV Performance Agent, the coda daemon reads the
datasources file and makes the data available over datacomm linkages
to analysis tools for each data source it finds. For more information about
configuring data sources, see the "Configuring Data Sources" section in
Chapter 2 of your HP OpenView Performance Agent Installation &
Configuration Guide.

ARM Transaction Tracking Capabilities

OV Performance Agent includes transaction tracking capabilities that
allow information technology (IT) managers to measure end-to-end
response time of business application transactions. To take advantage of
this functionality, you must have a process running that is instrumented
with the Application Response Measurement (ARM) API. For more
information, see the HP OpenView Performance Agent & Glance Plus for
UNIX Tracking Your Transactions guide.
Chapter 1 27

This is OpenView Performance Agent
Related Performance Products
Related Performance Products
OV Performance Agent is one of several complimentary performance
products from Hewlett-Packard. Each of these products fulfills a
particular need within the range of resource and performance
management. This lets you purchase as much functionality as you need
and add products over time without risking incompatibilities or
overlapping product capabilities.

Related HP performance products include the following:

OV Performance Manager

OV Performance Manager provides integrated performance management
for multi-vendor distributed networks. It gives you a single interface and
a common method for centrally monitoring, analyzing, and comparing
resource measurement data supplied by OV Performance Agent running
on many systems.

GlancePlus

GlancePlus (or Glance) is an online diagnostic tool that displays current
performance data directly to a user terminal or workstation. It is
designed to assist you in identifying and troubleshooting system
performance problems as they occur.

OV Reporter

OV Reporter creates web-based reports from data of targeted systems it
"discovers." Discovery of a system can occur if the system is running
OpenView agent and subagent software such as OV Performance Agent.
Reporter can also generate reports on systems managed by OV
Operations. After Reporter has run through its discovery, it gathers data
based on pre-defined and user-specified lists of metrics, then formats the
collected data into web page reports.

OV Operations

OV Operations (OVO) also displays and analyzes alarm information sent
by OV Performance Agent. OVO is a distributed client-server software
solution designed to help system administrators detect, solve, and
prevent problems occurring in networks, systems, and applications in
any enterprise. OVO is a scalable and flexible solution that can be
configured to meet the requirements of any information technology (IT)
organization and its users..
Chapter 128

This is OpenView Performance Agent
Related Performance Products
For more information about any of these products, see the product
documentation on the HP OpenView Manuals web site at:

http://ovweb.external.hp.com/lpe/doc_serv

Select <product name> from the product list box, select the release
version, and click [Search].
Chapter 1 29

This is OpenView Performance Agent
Related Performance Products
Chapter 130

2 Managing Data Collection
Chapter 2 31

Managing Data Collection
Introduction
Introduction
This chapter tells you how to manage the following data collection
activities that are involved in using OV Performance Agent.

• using the scopeux data collector

• the collection parameters (parm) file and its parameters

• stopping and starting data collection

• controlling the amount of disk space used by log files

• archiving data
Chapter 232

Managing Data Collection
Scopeux Data Collector
Scopeux Data Collector
The scopeux daemon collects and summarizes performance
measurements of system-resource utilization and logs the data into the
following log files, depending on the data classes specified in the log line
of the parm file.

• The logglob file contains measurements of system-wide, or global,
resource utilization information. Global data is summarized and
recorded every five minutes.

• The logappl file contains aggregate measurements of processes in
each user-defined application from the parm file. Application data is
summarized every five minutes and each application that had any
activity during the five minute interval is recorded.

• The logproc file contains measurements of selected interesting
processes. Process data is summarized every minute. However, only
interesting processes are recorded. The concept of interesting
processes is a filter that helps minimize the volume of data logged
and is controlled via the parm file.

• The logdev file contains measurements of individual device (such as
disk and netif) performance. Device data is summarized every five
minutes and data from each device that had any activity during the
five minute interval is recorded.

• The logtran file contains measurements of ARM transaction data.
This data is summarized every five minutes and each transaction
that had any activity is recorded. (For more information, see the HP
OpenView Performance Agent & Glance Plus for UNIX Tracking Your
Transactions guide.)

• A sixth log file, logindx, contains information needed to access data
in the other log files.

 Scopeux Status

The /var/opt/perf/status.scope file serves as a status/error log for
the scopeux process. New information is appended to this file each time
the scopeux collector is started, stopped, or when a warning or error is
encountered. To view the most recent status and error information from
scopeux, use the perfstat -t command.
Chapter 2 33

Managing Data Collection
parm File
parm File
The parm file is a text file containing the instructions that tell scopeux to
log specific performance measurements. The latest default parm file is
installed with OV Performance Agent in the /opt/perf/newconfig/
directory (/usr/lpp/perf/newconfig/ on IBM AIX) and is copied into
the /var/opt/perf/ directory during installation if one does not
already exist from a previous installation. scopeux reads the
/var/opt/perf/parm file when it starts up.

If you haven't run the product before, you can use the
/var/opt/perf/parm file to become familiar with the type of data
collected. The default values for each parameter are explained in the
parm file.

Once you are familiar with the OV Performance Agent environment, you
should tailor the /var/opt/perf/parm file to your performance data
collection needs.

The parm file is set up to collect an average amount of log file data. The
maximum amount depends on your system. For more information, see
“Disk Space” in Chapter 1 of your HP OpenView Performance Agent
Installation & Configuration Guide. Also see the description of the size
parameter in “Parameter Descriptions” on page 37.

If you already have experience with OV Performance Agent and are
familiar with the parm file parameters, you might want to modify this file
before starting the scopeux collector.

Modifying the parm File

You can modify the parm file using any word processor or editor that can
save a file in ASCII format.

When you modify the parm file, or create a new one, the following rules
and conventions apply:

• Any parameter you specify overrides a default. See the parm file for
the default values.

• The order in which the parameters are entered into the parm file is
not important except as follows:
Chapter 234

Managing Data Collection
parm File
— If a parameter is entered more than once, the last one entered is
used.

— The file, user, group, or, and priority parameters must
follow the application statement that they define.

— Application parameters should be listed in order so that a
process will be aggregated into the application when it is first
matched.

• You can use uppercase letters, lowercase letters, or a combination of
both for all commands and parameter statements.

• You can use blanks or commas to separate key words in each
statement.

• You can comment the parm file. Any line starting with a comment
code (/*) or pound sign (#) is ignored.

After modifying the parm file, you must issue the ovpa restart
command in order for the changes to take effect. This command causes
scopeux to stop, restart, and reread the parm file.

parm File Parameters

Scopeux is controlled by specific parameters in the collection parameters
(parm) file that do the following:

• Set maximum amount of disk space for the raw scopeux log files.

• Specify which data types are logged.

• Specify attributes of processes to be logged.

• Define types of performance data to be collected and logged.

• Specify what user-definable sets of applications should be monitored.
An application can be one or more programs that are monitored as a
group.

• Specify when scopeux should perform daily log file maintenance
activities so that they do not impact system availability.

You can modify these parameters to tell scopeux to log measurements
that match the requirements of your particular system (see “Modifying
the parm File” on page 34).
Chapter 2 35

Managing Data Collection
parm File
The parm file parameters listed in Table 2-1 are used by scopeux. Some
of these parameters are for specific systems as indicated in the table. For
detailed descriptions of these parameters, see “Parameter Descriptions”
on page 37 and “Application Definition Parameters” on page 42.

NOTE The items in the following table that are applicable only to HP-UX are
described in detail in Chapter 2 of the HP OpenView Performance Agent
Installation & Configuration Guide for HP-UX.

Table 2-1 parm File Parameters Used by Scopeux

Parameter Values or Options

id system ID

log all
global
application [=prm] [=all]
([=prm] onHP-UX only)
process
device=disk,lvm,cpu,filesystem,all
(lvm on HP-UX only)
transaction=correlator,resource
(resource on HP-UX only)

threshold cpu=percent
disk=rate (not on Linux or Windows)
memory=nn (values in MBs)
nonew
nokilled
shortlived= [TRUE|FALSE]

wait cpu=percent (HP-UX only)
disk=percent (HP-UX only)
mem=percent (HP-UX only)
sem=percent (HP-UX only)
lan=percent (HP-UX only)

application application name

file = file name [, ...]
Chapter 236

Managing Data Collection
parm File
Parameter Descriptions

Following are descriptions of each of the parm file parameters.

ID The system ID value is a string of characters that identifies your
system. If you do not want to rely on the default ID assigned (the
system’s hostname), and are specifying this string explicitly, then make
sure different systems have different ID strings so as not to confuse
centralized analysis. This identifier is carried with the log files to
identify the system on which the data was collected. You can specify a
maximum of 40 characters.

Log The log parameter specifies the data types to be collected by
scopeux.

• log global writes global records to the logglob file. You must have
global data records to view and analyze performance data on your
system. Global metrics are not affected by logging options or values
of application or process data.

user = user login name [,]

group = groupname [,]

or

priority = low value-high value
(range varies by platform)

size global=nn (values are in MBs)
application=nn
process=nn
device=nn
transaction=nn

mainttime hh:mm (24 hours time)

scopetransactions on
off

subprocinterval= value in seconds (not on HP-UX)

Table 2-1 parm File Parameters Used by Scopeux (Continued)

Parameter Values or Options
Chapter 2 37

Managing Data Collection
parm File
• log application will cause scopeux to write active application
records to the logappl file. The default behavior is that only
applications that have active processes during an interval are logged.

— log application=all in the parm file to force scopeux to log all
applications to the logappl file at every interval, regardless of
whether the applications are active or not.

The application=all option may be desirable in specific
circumstances in relation to the use of application alarms. For
example, you can alarm on an application becoming inactive
(APP_ALIVE_PROC).

Enabling this option causes logappl to fill more quickly since all
applications are logged at every interval. You can use the
utility program’s scan function to monitor the utilization of the
scopeux log files.

— On HP-UX only, you may specify log application=prm to write
active Process Resource Manager (PRM) groups to the logappl
file. Selection of this log specification will cause scopeux to
ignore user-defined application sets listed in the parm file. In
addition, all application metrics collected will reflect a PRM
context and be grouped by the APP_NAME_PRM_GROUPNAME metric.

NOTE Application logging options do not affect global or process data.

• log process will write information about interesting processes to
the logproc file. A process may become interesting when it is first
created, when it ends, and when it exceeds a parm-defined threshold
for activity. Process threshold logging options have no affect on global
or application data.

• log device=disk,lvm ,cpu,filesystem will request that scopeux
log information about individual disks, logical volumes (HP-UX
only), cpus, and/or file systems to the logdev file. The default
behavior is that only disks, volumes and interfaces that had I/O
generated through them during an interval are logged. Note that
netif (logical LAN device) records are always logged regardless of
the selected log device options.

For example, to request logging of records for individual disks, logical
Chapter 238

Managing Data Collection
parm File
volumes, cpus, network interfaces, but not individual file systems,
the log parameter in the parm file would include
device=disk,lvm,cpu.

— When filesystem is specified, all mounted local file systems are
logged every interval, regardless of activity.

— log device=all in the parm file will force scopeux to log all
disk, logical volume, cpu, and network interface devices to the
logdev file at every interval, regardless of whether the devices
are active or not.

Enabling this option causes logdev to fill more quickly since all
devices are logged at every interval. Use the utility program’s
scan function to monitor logfile utilization and sizing.

• log transaction will write ARM transaction records to the
logtran file. In order for scopeux to collect the data, a process that
is instrumented with the Application Response Measurement (ARM)
API must be running on your system. (For more information, see the
HP OpenView Performance Agent & Glance Plus for UNIX Tracking
Your Transactions guide.)

The default for the log transaction parameter is no resource and
no correlator.

To turn on resource data collection (HP-UX only) or correlator data
collection, specify log transaction=resource or
log transaction=correlator. Both can be logged by specifying
log transaction=resource, correlator.

All of the log files are created automatically regardless of logging options.
If a particular type of logging is disabled, the corresponding log file is not
removed.

If you specify log without options, the default global and process data
are logged.

Threshold The threshold parameter is used to set activity levels to
specify criteria for interesting processes. It is used only if process logging
is enabled. Thresholds only affect what processes are logged and do not
affect any other class of data. For example, not logging process data at all
would not affect collection or values of application or global data.

Enter the options for thresholds on the same parameter line (separated
by commas).
Chapter 2 39

Managing Data Collection
parm File
Threshold Options:

cpu Sets the percentage of CPU utilization that a process
must exceed to become “interesting” and be logged.

The value “percent” is a real number indicating
overall CPU use. For example, cpu=7.5 indicates that a
process is logged if it exceeds 7.5 percent of CPU
utilization in a 1-minute sample.

disk (Not available on Linux or Windows). Sets the rate of
physical disk I/O per second that a process must exceed
to become “interesting” and be logged.

The value is a real number. For example, disk=8.0
indicates that a process will be logged if it exceeds
eight physical I/Os per second average in a 1-minute
sample.

memory Sets the memory threshold that a process must exceed
to become “interesting” and be logged.

The value is in megabyte units and is accurate to the
nearest 100KB. If set, the memory threshold is
compared with the value of the PROC_MEM_VIRT metric.
Each process that exceeds the memory threshold will
be logged, similarly to the disk and CPU process
logging thresholds.

nonew Turns off logging of new processes if they have not
exceeded any threshold. If not specified, all new
processes are logged. On HP-UX, if shortlived is not
specified, then only new processes that lasted more
than one second are logged.

nokilled Turns off logging of exited processes if they did not
exceed any threshold. If not specified, all killed (exited)
processes are logged. On HP-UX, if shortlived is not
specified, then only killed processes greater than one
second are logged.

shortlived Turns on logging of processes that ran for less than one
second in an interval. (This often significantly
increases the number of processes logged.) If scopeux
finds threshold shortlived in the parm file, it logs
shortlived processes, regardless of the cpu or disk
threshold, as long as the nonew and nokilled options
Chapter 240

Managing Data Collection
parm File
are removed. The default is no shortlived processes
will be logged. (Do not specify shortlived in the
threshold parameter if you do not want shortlived
processes logged.)

Scopetransactions The scopeux collector itself is instrumented with
ARM (Application Response Measurement) API calls to log its own
transactions. The scopetransactions flag determines whether or not
scopeux transactions will be logged. The default is
scopetransactions=on; scopeux will log two transactions,
Scope_Get_Process_Metrics and Scope_Get_Global_Metrics. If you
do not want these scopeux transactions to be logged, specify
scopetransactions=off. A third transaction, Scope_Log_Headers, will
always be logged; it is not affected by scopetransactions=off.

For more information about ARM, see your HP OpenView Performance
Agent & Glance Plus for UNIX Tracking Your Transactions guide.

Subprocinterval The subprocinterval parameter, if specified,
overrides the default that scopeux uses to sample process data. Most
classes of data are logged once every 5 minutes, the exception being
process data, which is logged every 1 minute. However, scopeux probes
its instrumentation every few seconds to catch short-term activities. This
instrumentation sampling interval is 5 seconds by default.

On some systems with thousands of active threads or processes, the
subprocinterval should be made longer to reduce overall scopeux
overhead. On other systems with many short-lived processes that you
may wish to log, setting the subprocinterval lower could be considered,
although the effect on scopeux overhead should be monitored closely in
this case. This setting must take values that are factors of the process
logging interval of 60 seconds. Therefore, valid settings include: 1, 2, 3, 4,
5 (the default if not specified or commented out), 6, 10, 12, 15, 20, and 30.

Size The size parameter is used to set the maximum size (in
megabytes) of any raw log file. You cannot set the size to be less than one
megabyte.

The scopeux collector reads these specifications when it is initiated. If
any of these log files achieve their maximum size during collection, they
will continue to grow until mainttime, when they will be rolled back
automatically. During a roll back, the oldest 25 percent of the data is
removed from the log file. Raw log files are designed to only hold a
Chapter 2 41

Managing Data Collection
parm File
maximum of one year's worth of data if not limited by the size
parameter. See “Log File Contents Summary” and “Log File Empty Space
Summary” in “Utility Scan Report Details” on page 66.)

If the size specification in the parm file is changed, scopeux detects it
during startup. If the maximum log file size is decreased to the point
where existing data does not fit, an automatic resize will take place at
the next mainttime. If the existing data fits within the new maximum
size specified, no action is taken.

Any changes you make to the maximum size of a log file take effect at the
time specified in the mainttime parameter.

WARNING Partial loss of old data will occur if logs are allowed to collect
more than 365 days of data. Please configure the parm file size
entry so that old data is rolled out before any of the log files
contain 365 days of data.

Mainttime Log files are rolled back if necessary by scopeux only at a
specific time each day. The default time can be changed using the
mainttime parameter. For example, setting mainttime=8:30, causes log
file maintenance to be done at 8:30 am each day.

We suggest setting mainttime to a time when the system is at its lowest
utilization.

Application Definition Parameters

The following parameters pertain to application definitions:
application, file, user, group, or, and priority.

OV Performance Agent groups logically related processes together into
an application to log the combined effect of those processes on computing
resources such as memory and CPU.

NOTE In PRM mode (for HP-UX only), active PRM groups are logged and the
user-defined application sets listed in the parm file are ignored.
Chapter 242

Managing Data Collection
parm File
An application can simply be a list of files combined with users, groups,
or priority ranges, individually or in conjunction with each other. If
user, file, and priority parameters are all specified for the same
application, a process must meet the specifications of all three, user,
file and priority, to belong to that application.

NOTE Any process on the system belongs to only one application. No process is
counted into two or more applications. Processes are collected based on
program name, not program path. Therefore, two processes with the
same program name but different paths (file system locations) would be
bucketed into the same application.

Application The application name defines an application or class that
groups together multiple processes and reports on their combined
activities.

• The application name is a string of up to 19 characters used to
identify the application.

• Application names can be lowercase or uppercase and can contain
letters, numbers, underscores, and embedded blanks. Do not use the
same application name more than once in the parm file.

• An equal sign (=) is optional between the application keyword and
the application name.

• The application parameter must precede any combination of file,
user, group, or, or priority parameters that refer to it, with all
such parameters applying against the last application workload
definition.

• Each parameter can be up to 170 characters long including the
carriage return character, with no continuation characters
permitted. If your list of files is longer than 170 characters, continue
the list on the next line after another file, user, or group
statement.

• You can define up to 128 applications. OV Performance Agent
predefines an application named other. The other application
collects all processes not captured by application statements in the
parm file.

For example:
Chapter 2 43

Managing Data Collection
parm File
application Prog_Dev
file vi,cc,ccom,pc,pascomp,dbx,xdb

application xyz
file xyz*,startxyz

You can have a maximum of 1000 file, 300 user, and 300 group
specifications for all applications combined. The previous example
includes nine file specifications. (xyz* counts as only one specification
even though it can match more than one program file.)

If a program file is included in more than one application, it is logged
in the first application that contains it.

The default /var/opt/newconfig/parm file contains some sample
applications that you can modify. The examples directory also
contains other samples (in a file called parm_apps) you can copy into
your parm file and modify as needed.

File The file parameter specifies which program files belong to an
application. All interactive or background executions of these programs
are included. It applies to the last application statement issued. An
error is generated if no application statement is found.

The file name can be any of the following:

• A single UNIX program file such as vi.

• A group of UNIX program files (indicated with a wild card) such as
xyz*. In this case, any program name that starts with the letters xyz
is included. A file specification with wild cards counts as only one
specification toward the maximum of 1000 each for all files, 300
user, and 300 group specifications.

The name in the file parameter is limited to 15 characters in length. An
equal sign (=) is optional between the file keyword and the file name.

You can enter multiple file names on the same parameter line (separated
by commas) or in separate file statements. File names cannot be
qualified by a path name. The file specifications are compared to the
specific metric PROC_PROC_NAME, which is set to a process’s argv[0]
value (typically its base name).

For example:

application = prog_dev
file = vi,vim,gvim,make,gmake,lint*,cc*,gcc,ccom*,cfront
file = cpp*,CC,cpass*,c++*
file = xdb*,adb,pxdb*,dbx,xlC,ld,as,gprof,lex,yacc,are,nm,gencat
Chapter 244

Managing Data Collection
parm File
file = javac,java,jre,aCC,ctcom*,awk,gawk

application Mail
file = sendmail,mail*,*mail,elm,xmh

If you do not specify a file parameter, all programs that satisfy the
other parameters qualify.

If you want to bucket Java or shell programs into different applications,
you may want to look at the /opt/perf/examples/tools/procarg
script, which shows a way to start programs with a unique argv[0]
value.

NOTE The asterisk (*) is the only wild card character supported by the parm
file.

User The user parameter specifies which user login names belong to an
application.

For example:

application Prog_Dev
file vi,xb,abb,ld,lint
user ted,rebecca,test*

User specifications that include wildcards count as only one specification
toward the maximum of 1000 each for all file, 300 user, and 300 group
specifications.

If you do not specify a user parameter, all programs that satisfy the
other parameters qualify.

The name in the user parameter is limited to 15 characters in length.

Group The group parameter specifies which user group names belong
to an application.

For example:

application Prog_Dev_Group2
file vi,xb,abb,ld,lint
user ted,rebecca,test*
group lab, test

If you do not specify a group parameter, all programs that satisfy the
other parameters qualify.
Chapter 2 45

Managing Data Collection
parm File
The name in the group parameter is limited to 15 characters in length.

Or Use the or parameter to allow more than one application definition
to apply to the same application. Within a single application definition, a
process must match at least one of each category of parameters.
Parameters separated by the or parameter are treated as independent
definitions. If a process matches the conditions for any definition, it will
belong to the application.

For example:

application = Prog_Dev_Group2
user julie
or
user mark
file vi, store, dmp

This defines the application (Prog_Dev_Group2) that consists of any
programs run by the user julie plus other programs (vi,store,dmp) if
they are executed by the user mark.
Chapter 246

Managing Data Collection
parm File
Priority You can restrict processes in an application to those belonging
to a specified range by specifying values in the priority parameter.

For example:

application = swapping
priority 128-131

Processes can range in priority from -511 to 255, depending on which
platform OV Performance Agent is running.

NOTE The parm file is processed in the order entered and the first match of
program name and/or user login as well as group and priority (if used)
defines the application to which a particular process belongs.

The priority can be changed over the life of a process. The scheduler
adjusts the priority of time-share processes. You can also change
priorities programmatically or while executing.

The process priority is sampled at the end of each one-minute sample
interval. If the process has changed priority, it can change applications.
All activity for a process during the one-minute interval is assumed to
have occurred at the new priority and is attributed to the application
that matches the process at the end of each one-minute sample interval.

Application Definition Examples The following examples show
application definitions.

application Prog_Dev_Group1
file vi,dbx,abb,ld,lint
user bill,debbie

application Prog_Dev_Group2
file vi,dbx,abb,ld,lint
user julie,mark
group rdlab

application Other_Editors
file ed,sed,awk

application Compilers
file cc,ccom,xlc,c++,fe,sh

application Users
user bruce,ted,julie,anna
Chapter 2 47

Managing Data Collection
parm File
The following is an example of how several of the programs would be
logged using the preceding parm file.

Program User Login Application

vi bill Prog_Dev_Group1

awk dan Other_Editors

vi mark Prog_Dev_Group2

cc gene Compilers

dbx dan other
Chapter 248

Managing Data Collection
Stopping and Restarting Data Collection
Stopping and Restarting Data Collection
The scopeux daemon and the other daemon processes that are part of
OV Performance Agent are designed to run continuously. The only time
you should stop them are when any of the following occurs:

• You are updating OV Performance Agent software to a new release.

• You are adding or deleting transactions in the transaction
configuration file, ttd.conf. (For more information, see the HP
OpenView Performance Agent & Glance Plus for UNIX Tracking Your
Transactions guide.)

• You are modifying distribution ranges or service level objectives
(SLOs) in the transaction configuration file, ttd.conf. (For more
information, see the HP OpenView Performance Agent & Glance Plus
for UNIX Tracking Your Transactions guide.)

• You are changing the parm file and want the changes to take effect.
Changes made to the parm file take effect only when scopeux is
started.

• You are using the utility program's resize command to resize a
OV Performance Agent log file.

• You are shutting down the system.

OV Performance Agent provides the ovpa script that includes options for
stopping and restarting the daemon processes. For a description of these
options, see the ovpa man page.

Stopping Data Collection

The ovpa script's stop option ensures that no data is lost when scopeux
and the other OV Performance Agent daemon processes are stopped. To
manually stop data collection, use /opt/perf/bin/ovpa stop.
Chapter 2 49

Managing Data Collection
Stopping and Restarting Data Collection
Restarting Data Collection

You have different options for restarting data collection after the OV
Performance Agent daemon processes have stopped or configuration files
have been changed and you want these changes to take effect.

To start scopeux and the other OV Performance Agent processes after
the system has been down, use /opt/perf/bin/ovpa start.

When you restart scopeux, OV Performance Agent continues to use the
same log files (logglob, logappl, logproc, logdev, logtran, and
logindx) used before stopping the program. New records are appended
to the end of the existing files.

For more information, see “Starting and Stopping OV Performance
Agent” in Chapter 2 of your HP OpenView Performance Agent
Installation & Configuration Guide.

Automating Scopeux Startup and Shutdown

OV Performance Agent's startup can be automated to ensure that
scopeux is always running while the system is operating and that any
shutdown of the system includes a shutdown of scopeux without any loss
of data. The process of starting OV Performance Agent and its processes
automatically when the system reboots is controlled by the configuration
file in the system startup directory. For more information about this file
and how to modify it, see “Starting and Stopping Automatically” in
Chapter 2 of your HP OpenView Performance Agent Installation &
Configuration Guide.
Chapter 250

Managing Data Collection
Effective Data Collection Management
Effective Data Collection Management
Efficient analysis of performance depends on how easy it is to access the
performance data you collect. This section discusses effective strategies
for activities such as managing log files, data archiving, and system
analysis to make the data collection process easier, more effective, and
more useful.

Controlling Disk Space Used by Log Files

OV Performance Agent provides for automatic management of the log
files it creates. You can configure this automatic process or use alternate
manual processes for special purposes. The automatic log file
management process works as follows:

• Each log file has a configured maximum size. Default maximum sizes
are provided when the OV Performance Agent is first installed.
However, you can reconfigure these values.

• As each log file reaches its maximum size, a “roll back” is performed
at mainttime by the scopeux data collector. During this roll back,
the oldest 25 percent of the data in the log file is removed to make
room for new data to be added.

Automatic log file maintenance is similar, but not identical, for data
collected by scopeux and by the DSI logging process. For more
information on DSI log file maintenance, see the HP OpenView
Performance Agent for UNIX Data Source Integration Guide.

Setting Mainttime

Normally, scopeux will only perform log file roll backs at a specific time
each day. This is to ensure that the operation is performed at off peak
hours and does not impact normal system usage. The time the log files
are examined for roll back is set by the mainttime parameter in the parm
file.
Chapter 2 51

Managing Data Collection
Effective Data Collection Management
Setting the Maximum Log File Size

Choosing a maximum log file size should be a balance between how much
disk space is used and how much historical data is available for
immediate analysis. Smaller log file sizes save disk space, but limit how
much time can be graphed by tools such as OV Performance Manager.
Some ways to reconfigure the scopeux log file sizes are discussed below.

Scopeux logs different types of data into their own log files. This is to
allow you to choose how much disk space you want to dedicate to each
type independently. For example, global data is fairly compact, but you
will often want to go back and graph data for a month at a time. This
allows a good statistical base for trending and capacity planning
exercises.

Process data can consume more disk space than global data because it is
possible to have many interesting processes every minute. Also, the
time-value of process data is not as high as for global data. It may be
very important to know details about which process was running today
and yesterday. You might occasionally need to know which processes
were running last week. However, it is unlikely that knowing exactly
which processes were run last month would be helpful.

A typical user might decide to keep the following data online:

• Three months of global data for trending purposes

• One week of process data for troubleshooting

• Three months of application data for trending and load balancing

• Two months of device data for disk load balancing

You can edit the parm file to set the size parameters for each different
log file. The sizes are specified in megabytes. For example:

SIZE GLOBAL=10.0 PROCESS=30.0 APPLICATION=20.0 DEVICE=5.0

The number of megabytes required to hold a given number of days of
data can vary by data type, system configuration, and system activity.
The best way to determine how big to make the log files on your system is
to collect data for a week or so, then use the utility program's resize
command to change your log file size. The resize command scans the log
files and determines how much data is being logged each day. It then
converts from days to megabytes for you. This function also updates the
parm file.
Chapter 252

Managing Data Collection
Effective Data Collection Management
Managing Your Resizing Processes

No additional activities are required once automatic log file maintenance
is set up. As log files reach their configured maximum sizes, they will
automatically be resized by scopeux.

Scopeux rolls back log files at the mainttime specified in the parm file. If
you edit the parm file and restart scopeux, the log files will not be rolled
to the new sizes until the mainttime occurs. It is important to have
scopeux running at the specified mainttime time or log files may never
be rolled back.

Log files may exceed their configured maximum size during the time
between maintenance times without causing an immediate roll back.

A log file will never be resized so that it holds less than one full day’s
data. That means that the log file will be allowed to grow to hold at least
one day's worth of data before it is rolled back. Normally this is not an
issue, but if you set the parm file parameters to collect a large volume of
process or application data or set the size to be too small, this can result
in a log file significantly exceeding its configured maximum size before it
is rolled back.

Every five minutes, scopeux checks the available disk space on the file
system where the log files reside. If the available disk space falls below
one megabyte, scopeux takes steps to ensure that it does not use any
more available space by doing the following:

• Immediately performs the log file maintenance without waiting for
the regular log file maintenance time. If any log files exceed their
maximum sizes (and have more than one day's worth of data in
them), they will be rolled back.

• If, following the log file maintenance, the available disk space is still
not greater than one megabyte, scopeux writes an appropriate error
message to its status.scope file and stops collecting data.
Chapter 2 53

Managing Data Collection
Effective Data Collection Management
Data Archiving

Automatic log file management keeps the latest log file data available for
analysis. It works on the raw log files. Process data is logged each minute
and all other data is logged every five minutes. To make room for new
data, older data is removed when the log files reach their maximum
sizes. If you want to maintain log file data for longer periods of time, you
should institute a data archiving process. The exact process you choose
depends on your needs. Here are a few possibilities:

• Size the raw log files to be very large and let automatic log file
maintenance do the rest. This is the easiest archiving method, but it
can consume large amounts of disk space after several months.

• Extract the data from the raw log files into extracted archive files
before it is removed from the raw log files. Formulate a procedure for
copying the archive files to long term storage such as tape until
needed.

• Extract only a subset of the raw log files into extracted archive files.
For example, you may not want to archive process data due to its
high volume and low time-value.

• Some combination of the preceding techniques can be used.

We recommend the following procedures for data archiving:

• Size the raw log files to accommodate the amount of detail data you
want to keep online.

• Once a week, copy the detailed raw data into files that will be moved
to offline storage.

Managing Your Archiving Processes

Resize your raw log files as described in the preceding section. Choose log
file sizes that will hold at least two week’s worth of data (assuming the
archival processing will only be done once a week).

Once a week, schedule a process that runs the extract program twice.
The first time it copies detailed data into an archive file for offline
storage. The second time, it copies summary data into an online archive
file. Here is a sample script file that would perform the weekly
processing. It uses the special archiving features of the extract
program.
Chapter 254

Managing Data Collection
Effective Data Collection Management
#Extract detailed data into monthly archive files.
extract -gapdt -xm

The first extract command will create a series of archive log files, one
per month. The log files will be named “rxmo” followed by four digits for
the year and two more digits for the month. (For example, data for
December 1999 would be in a file named “rxmo199912”.) At the
beginning of each month the previous month’s log file is completed and a
new log file is started. Therefore, whenever more than one “rxmo” log file
is present, it is safe to copy all but the latest one to offline storage until
its needed. When you need to access archived data, restore the desired
archival file and access it using the extract or utility programs.

Depending on your system configuration and activity levels, the amount
of disk space accumulated in one month may be large. If this is the case,
you can break the detail archive file into smaller files by substituting the
weekly command -xw in place of -xm as shown in the example.

Another alternative is to choose not to archive the detailed process data.

The detailed extraction discussed in the previous example preserves all
of your collected performance data. If ever you need to investigate a
situation in depth, these files can be restored to disk and analyzed.

Hint

You can use the extract program to combine data from multiple
extracted files or to make a subset of the data for easier transport and
analysis.

For example, you can combine data from several yearly extracted files in
order to do multiple-year trending analysis. (See the description of the
yearly command in Chapter 6, “Extract Commands,” on page 145.)

CAUTION Moving log files that were created on a new version of OV Performance
Agent to a system using an older version of OV Performance Agent is not
supported.
Chapter 2 55

Managing Data Collection
Effective Data Collection Management
Chapter 256

3 Using the Utility Program
Chapter 3 57

Using the Utility Program
Introduction
Introduction
The utility program is a tool for managing and reporting information
on log files, the collection parameters (parm) file, and the alarm
definitions (alarmdef) file. You can use the utility program
interactively or in batch mode to perform the following tasks.

• Scan raw or extracted log files and produce a report showing:

— dates and times covered

— times when the scopeux collector was not running

— changes in scopeux parameter settings

— changes in system configuration

— log file disk space

— effects of application and process settings in the collection
parameters (parm) file

• Resize raw log files

• Check the parm file for syntax warnings or errors

• Check the alarmdef file for syntax warnings or errors

• Process log file data against alarm definitions to detect alarm
conditions in historical data

This chapter covers the following topics:

• running the utility program

• using interactive mode

• using the command line interface

• scan report details

Detailed descriptions of the utility program’s commands are in
Chapter 4, “Utility Commands,” on page 77.
Chapter 358

Using the Utility Program
Running the Utility Program
Running the Utility Program
There are three ways to run the utility program:

• Command line mode - You control the utility program using
command options and arguments in the command line.

• Interactive mode - You supply interactive commands and parameters
while executing the program with stdin set to an interactive
terminal or workstation.
If you are an experienced user, you can quickly specify only those
commands required for a given task. If you are a new user, you may
want to use the utility program’s guide command to get some
assistance in using the commands. In guided mode, you are asked to
select from a list of options to perform a task. While in guided mode,
the interactive commands that accomplish each task are listed as
they are executed, so you can see how they are used. You can quit
and re-enter guided mode at any time.

• Batch mode - You can run the program and redirect stdin to a file
that contains interactive commands and parameters.

The syntax for the command line interface is similar to typical UNIX
command line interfaces on other programs and is described in detail in
this chapter.

For interactive and batch mode the command syntax is the same.
Commands can be entered in any order; if a command has a parameter
associated with it, the parameter must be entered immediately after the
corresponding command.

There are two types of parameters - required (for which there are no
defaults) and optional (for which defaults are provided). How utility
handles these parameters depends on the mode in which it is running.

• In interactive mode, if an optional parameter is missing, the program
displays the default argument and lets you either confirm it or
override it.
If a required parameter is missing, the program prompts you to enter
the argument.

• In batch mode, if an optional parameter is missing, the program uses
the default values.
If a required parameter is missing, the program terminates.
Chapter 3 59

Using the Utility Program
Running the Utility Program
Errors and missing data are handled differently for interactive mode
than for command line and batch mode. You can supply additional data
or correct mistakes in interactive mode, but not in command line and
batch mode.
Chapter 360

Using the Utility Program
Using Interactive Mode
Using Interactive Mode
Using the utility program’s interactive mode requires you to issue a
series of commands to execute a specific task.

For example, if you want to check a log file to see if alarm conditions exist
in data that was logged during the current day, you issue the following
commands after invoking the utility program:

checkdef /var/opt/perf/alarmdef
detail off
start today-1
analyze

The checkdef command checks the alarm definitions syntax in the
alarmdef file and then sets and saves the file name for use with the
analyze command. The detail off command causes the analyze
command to show only a summary of alarms. The start today-1
command specifies that only data logged yesterday is to be analyzed. The
analyze command analyzes the raw log files in the default SCOPE data
source against the alarmdef file.

Example of Using Interactive and Batch Mode

The following example shows the differences between how the utility
program’s resize command works in batch mode and in interactive
mode.

The resize command lets you set parameters for the following
functions:

• Type of log file to be resized.

• Size of the new file.

• Amount of empty space to be left in the file.

• An action specifying whether or not the resize is to be performed.

This example of the resize command resizes the global log file so that it
contains a maximum of 120 days of data with empty space equal to 45
days. The command and its parameters are:

resize global days=120 empty=45 yes
Chapter 3 61

Using the Utility Program
Using Interactive Mode
The results are the same whether you enter this command interactively
or from a batch job.

The first parameter–global–indicates the log file to be resized. If you do
not supply this parameter, the consequent action for interactive and
batch users would be the following:

• Batch users - the batch job would terminate because the logfile
parameter has no default.

• Interactive users - you would be prompted to choose which type of log
file to resize to complete the command.

The last parameter–yes–indicates that resizing will be performed
unconditionally.

If you do not supply the yes parameter, the consequent action for
interactive and batch users would be the following:

• Batch users - resizing would continue since yes is the default action.

• Interactive users - you would be prompted to supply the action before
resizing takes place.

NOTE Before using the resize command in either batch mode or interactive
mode, you must first stop OV Performance Agent. For details, see
“Stopping and Restarting Data Collection” on page 49 in Chapter 2.
Chapter 362

Using the Utility Program
Utility Command Line Interface
Utility Command Line Interface
In addition to the interactive and batch mode command syntax,
command options and their associated arguments can be passed to the
utility program through the command line interface. The command
line interface fits into the typical UNIX environment by allowing the
utility program to be easily invoked by shell scripts and allowing its
input and output to be redirected to UNIX pipes.

For example, to use the command line equivalent of the example shown
in the previous section "Using Interactive Mode" enter:

utility -xr global days=120 empty=45 yes

Command line options and arguments are listed in the following table.
The referenced command descriptions can be found in Chapter 4, “Utility
Commands,” on page 77.

Table 3-1 Command Line Arguments

Command
Option Argument Description

-b date time Specifies the starting date and time of an
analyze or scan function. (See “start”
command in Chapter 4.)

-e date time Specifies the ending date and time of an
analyze or scan function. (See “stop”
command in Chapter 4.)

-l logfile Specifies which log file to open. (See
“logfile” command in Chapter 4.)

-f listfile Specifies an output listing file. (See “list”
command in Chapter 4.)

-D Enables details for analyze, scan and
parm file checking. (See “detail” command
in Chapter 4.)

-d Disables details for analyze and parm file
for checking. (See “detail” command in
Chapter 4.)
Chapter 3 63

Using the Utility Program
Utility Command Line Interface
-v Echoes command line commands as they
are executed.

-xp parmfile Syntax checks a parm file. (See “parmfile”
command in Chapter 4.)

-xc alarmdef Syntax checks and sets the alarmdef file
name to use with -xa (or analyze
command). (See “checkdef” command in
Chapter 4.)

-xa Analyzes log files against the alarmdef
file. (See “analyze” command in Chapter
4.)

-xs logfile Scans a log file and produces a report.
(See “scan” command in Chapter 4.)

-xr global
application
process
device
transaction

EMPTY=nnn
SPACE=nnn

SIZE=nnn
DAYS=nnn

YES
NO
MAYBE

Resizes a log file. (See “resize” command
in Chapter 4.)

-? or ? Displays command line syntax.

Table 3-1 Command Line Arguments (Continued)

Command
Option Argument Description
Chapter 364

Using the Utility Program
Utility Command Line Interface
Example of Using the Command Line Interface

The following situation applies when you enter command options and
arguments on the command line:

Errors and missing data are handled exactly as in the corresponding
batch mode command. That is, missing data is defaulted if possible and
all errors cause the program to terminate immediately.

Echoing of commands and command results is disabled. Utility does
not read from its stdin file. It terminates following the actions in the
command line.

utility -xp -d -xs

Which translates into:

-xp Syntax checks the default
/opt/perf/newconfig/parm file.

-d Disables details in the scan report.

-xs Performs the scan operation. No log file was
specified so the default log file is scanned.
Chapter 3 65

Using the Utility Program
Utility Scan Report Details
Utility Scan Report Details
The utility program's scan command reads a log file and writes a
report on its contents. The report's contents depend on the commands
issued prior to issuing the scan command. (For more information, see the
description of the scan command in Chapter 4, “Utility Commands,” on
page 77.

The following table summarizes the information contained in all scan
reports and in reports that are produced only when the detail on
command is used (the default) with the scan command.

Information Contained in Scan Report

Initial Values

Initial parm file global
information and system
configuration information

Printed only if detail on is
specified.

Initial parm file application
definitions

Printed only if detail on is
specified.

Chronological Detail

parm file global changes Printed only if detail on is
specified.

parm file application changes Printed only if detail on is
specified.

Collector off-time notifications Printed only if detail on is
specified.

Application-specific summary
reports

Printed only if detail on is
specified.
Chapter 366

Using the Utility Program
Utility Scan Report Details
Summaries

Process summary report Always printed if process data was
scanned.

Collector coverage summary Always printed.

Log file contents summary Always printed. Includes space and
dates covered.

Log file empty space summary Always printed.
Chapter 3 67

Using the Utility Program
Scan Report Information
Scan Report Information
The information in a utility scan report is divided into three types:

• Initial values

• Chronological details

• Summaries

Initial Values

This section describes the following initial values:

• Initial parm file global information

• Initial parm file application definitions

Initial Parm File Global Information

To obtain this report, use the scan command with its default detail on.

This report lists the configuration settings of the parm file at the time of
the earliest global record in the log file. Later global information change
notifications are based on the values in this report. If no change
notification exists for a particular parameter, it means that the
parameter kept its original setting for the duration of the scan.

The date and time listed on the first line correspond to the first date and
time in the global log file and indicate when scopeux was started. Data
records may have been rolled out of the global log file so the date and
time on this report do not necessarily indicate the first global record in
the log file.

Initial Parm File Application Definitions

To obtain this report, use the scan command with its default detail on
and have application data in the log file.

This report lists the name and definition of each application at the time
the first application record is listed in the log file. Any application
addition or deletion notifications you receive are based on this initial list
of applications. For example:
Chapter 368

Using the Utility Program
Scan Report Information
06/01/99 08:39 Application(1) = "other"
Comment=all processes not in user-defined applications

06/01/99 08:39 Application(2) = "Real_TimeSystem"
 Priority range = 0-127

06/01/99 08:39 Application(3) = "Prog_Development"
 File=vi,ed,sed,xdb,ld,lint,cc,ccom,pc,pascomp

NOTE During the scan, you are notified of applications that were added or
deleted. Additions and deletions are determined by comparing the
spelling and case of the old application names to the new set of logged
application names. No attempt is made to detect a change in the
definition of an application. If an application with a new name is
detected, it is listed along with its new definition.

The date and time on this record is the last time scopeux was started
before logging the first application record currently in the log file.

Chronological Detail

This section describes the following chronological details:

• parm file global change notifications

• parm file application addition and deletion notifications

• scopeux off-time notifications

• Application-specific summary report

parm File Global Change Notifications

To obtain this report, use the scan command with its default detail on.

This report is generated any time a record is found that scopeux started.

parm File Application Addition/Deletion Notifications

To obtain this report, use the scan command with its default detail on
and have application data in the log file.
Chapter 3 69

Using the Utility Program
Scan Report Information
User-defined applications can be added or deleted each time scopeux is
started. If an application name is found that does not match the last set
of applications, an application addition, deletion, or change notification is
printed. If the name of an application has not changed, it is not printed.

NOTE Application definitions are not checked for changes. They are listed when
an application name is changed, but any change to an existing
application's definition without an accompanying name change is not
detected.

Scopeux Off-Time Notifications

To obtain this report, use the scan command with its default detail on.

Application-Specific Summary Report

To obtain this report, use the scan command with its default detail on
and have application data in the log file.

This report can help you define applications. Use the report to identify
applications that are accumulating either too many or too few system
resources and those that could be consolidated with other applications.
Applications that accumulate too many system resources might benefit
by being split into multiple applications.

You should define applications in ways that help you make decisions
about system performance tuning. It is unlikely that system resources
will accumulate evenly across applications.

The application-specific summary report is generated whenever the
application definitions change to allow you to access the data of the
application definitions before and after the change.

A final report is generated for all applications. This report covers only
the time since the last report and not the entire time covered by the log
file. For example:
Chapter 370

Using the Utility Program
Scan Report Information
 PERCENT OF TOTAL
Application Records CPU DISK TRANS
------------------- --------- ------ ------- ------
OTHER 22385 45.7% 20.9% 63.0%
Resource_Sharing 7531 6.0% 2.2% 17.1%
SPOOLING 13813 2.4% 0.3% 0.0%
ON_LINE_COMPILES 13119 2.9% 1.7% 0.1%
BATCH_COMPILES 8429 2.9% 0.1% 2.2%
ORDER_ENTRY 387 0.1% 0.0% 0.0%
ELECTRONIC_MAIL 6251 3.8% 1.3% 9.6%
PROGRAM_DEVELOPMENT 3141 9.1% 2.4% 0.6%
RESEARCH_DEPARMENT 3968 8.7% 2.0% 6.0%
BILL_OF_MATERIALS 336 0.6% 1.5% 0.1%
FINANCIALS 1080 5.0% 1.5% 0.5%
MARKETING_DEPT 2712 12.9% 67.3% 0.0%
GAMES 103 0.1% 0.0% 0.0%
-------------------- --------- ------ ------ ------
All user applications 73.1% 54.3% 79.1% 37.0%

Summaries

This section describes the following summaries:

• Process log reason summary

• Scan start and stop actual dates and times

• Application overall summary

• scopeux coverage summary

• Log file contents summary

• Log file empty space summary

Process Log Reason Summary

To obtain this report, you must have process data in the log file.

This report helps you set the interesting process thresholds for scopeux.
The report lists every reason a process might be considered interesting
and thus get logged, along with the total number of processes logged that
satisfied each condition.
Chapter 3 71

Using the Utility Program
Scan Report Information
The following example shows a process log reason summary report:

Process Summary Report: 04/13/99 3:32 PM to 05/04/99 6:36 PM
There were 93.8 hours of process data
Process records were logged for the following reasons:

Log Reason Records Percent Recs/hr
--------------- ------- ------- -------
New Processes 17619 53.9% 44.7
Killed Processes 16047 49.1% 40.7
CPU Threshold 3169 9.7% 8.0
Disk Threshold 1093 3.3% 2.8

NOTE: A process can be logged for more than one reason at a
time. Record counts and percentages will not add up to 100%
of the process records.

If the detail on command is issued, this report is generated each time a
threshold value is changed so you can evaluate the effects of that change.
Each report covers the period since the last report. A final report,
generated when the scan is finished, covers the time since the last
report.

If the detail off command is issued, only one report is generated
covering the entire scanned period.

You can reduce the amount of process data logged by scopeux by
modifying the parm file's threshold parameter and raising the
thresholds of the interest reasons that generate the most process log
records. To increase the amount of data logged, lower the threshold for
the area of interest.

In the previous example, you could decrease the amount of disk space
used for the process data (at the expense of having less information
logged) by raising the CPU threshold or setting the nonew threshold.

Scan Start and Stop

This summary report is printed if any valid data was scanned. It gives
actual dates and times that the scan was started and stopped. For
example:

Scan started on 03/03/99 12:40 PM
Scan stopped on 03/11/99 1:25 PM
Chapter 372

Using the Utility Program
Scan Report Information
Application Overall Summary

To obtain this report, you must have application data in the log file.

This report is an overall indicator of how much system activity is
accumulated in user-defined applications, rather than in the other
application. If a significant amount of a critical resource is not being
captured by user applications, you might consider scanning the process
data for processes that can be included in user applications.

For example:

OVERALL, USER DEFINED APPLICATIONS ACCOUNT FOR
 82534 OUT OF 112355 RECORDS (73.5%)
 218.2 OUT OF 619.4 CPU HOURS (35.2%)
 24.4 OUT OF 31.8 M DISC IOS (76.8%)
 0.2 OUT OF 0.6 M TRANS (27.3%)

Collector Coverage Summary

This report is printed if any valid global or application data was scanned.
It indicates how well scopeux is being used to collect system activity. If
the percentage of time scopeux was off is high, as in the example below,
you should review your operational procedures for starting and stopping
scopeux.

The total time covered was 108/16:14:51 out of 128/00:45:02
Time lost when collector was off 19/08:30:11 15.12%
The scopeux collector was started 45 times

This report will be more complete if global detail data is included in the
scan. If only summary data is available, you determine the time scopeux
was stopped and started only to the nearest hour. (An appropriate
warning message is printed with the report if this is the case.)

The total time covered is determined by accumulating all the interval
times from the logged data.The "out of" time value is calculated by
subtracting the starting date and time from the ending date and time.
This should represent the total time that could have been logged. The
"Time lost when collector was off" value is the total time less the
covered time.
Chapter 3 73

Using the Utility Program
Scan Report Information
The formats for the three times mentioned are:

ddd/hh:mm:ss

where ddd are days and hh:mm:ss are hours, minutes, and seconds.

In the previous example, the total time collected was 108 days, 16 hours,
14 minutes, and 51 seconds.

Log File Contents Summary

The log file contents summary is printed if any valid data was scanned.
It includes the log file space and the dates covered. This summary is
helpful when you are resizing your log files with the resize command.

------ Total- --- --Each Full Day-- ----Dates------- Full
Type Records MBytes Records MBytes Start Finish Days
Global 1376 0.27 288.9 0.057 05/23/99 to 05/28/99 4.8
Application 6931 0.72 1455.0 0.152 05/23/99 to 05/28/99 4.8
Process 7318 1.14 1533.6 0.239 05/23/99 to 05/28/99 4.8
Disk 2748 0.07 567.6 0.014 05/23/99 to 05/28/99 4.8
Transaction no data found
Overhead 0.29

------- -------- ------- ---------
TOTAL 18373 2.49 3845.0 0.461

The columns are described as follows:

Column Explanation

Type The general type of data being logged. One special
type, Overhead, exists:
Overhead is the amount of disk space occupied (or
reserved) by the log file versus the amount actually
used by the scanned data records.
If less than the entire log file was scanned, Overhead
includes the data records that were not scanned. If the
entire file was scanned, Overhead accounts for any
inefficiencies in blocking the data into the file plus any
file-access support structures.
It is normal for extracted log files to have a higher
overhead than raw log files since they have additional
support structures for quicker positioning.

Total The total record count and disk space scanned for each
type of data.

Each Full Day The number of records and amount of disk space used
for each 24-hour period that scopeux runs.
Chapter 374

Using the Utility Program
Scan Report Information
Dates The first and last valid dates for the data records of
each data type scanned.

Full Day The number of full (24-hour) days of data scanned for
this data type. Full Days may not be equal to the
difference between the start and stop dates if scopeux
coverage did not equal 100 percent of the scanned time.

The TOTAL line (at the bottom of the listed data) gives you an idea of
how much disk space is being used and how much data you can expect to
accumulate each day.

Log File Empty Space Summary

This summary is printed for each log file scanned. For example:

The Global file is now 13.9% full with room for 61 more full days
The Application file is now 15.1% full with room for 56 more full days
The Process file is now 23.5% full with room for 32 more full days
The Device file is now 1.4% full with room for 2896 more full days

The amount of room available for more data is calculated based on the
amount of unused space in the file and the scanned value for the number
of megabytes of data being logged each 24-hour day (see “Log File
Contents Summary”). If the megabytes-scanned-per-day values appear
unrealistically low, they are replaced with default values for this
calculation.

If you scan an extracted file, you get a single report line because all data
types share the same extracted file.
Chapter 3 75

Using the Utility Program
Scan Report Information
Chapter 376

4 Utility Commands
Chapter 4 77

Utility Commands
Introduction
Introduction
This chapter describes the utility program's commands. It includes a
syntax summary and a command reference section that lists the
commands in alphabetical order.

Utility commands and parameters can be entered with any
combination of uppercase and lowercase letters. Only the first three
letters of the command name are required. For example, the logfile
command can be entered as logfile or it can be abbreviated as log or
LOG.

Examples of how these commands are used can be found in online help
for the utility program.

The table on the next pages contains a summary of utility command
syntax and parameters.
Chapter 478

Utility Commands
Introduction
Table 4-1 Utility Commands: Syntax and Parameters

Command Parameter

analyze

checkdef alarmdef file

detail on
off

exit
e

guide

list filename or *

logfile logfile

menu
?

parmfile parmfile

quit
q

resize global
application
process
device
transaction
days=maxdays
size=max MB
empty=days
space=MB
yes
no
maybe

scan logfile
(Operation is also affected by the list,
start, stop, and detail commands.

show all
Chapter 4 79

Utility Commands
Introduction
sh
!

system command

start date [time]
today [-days] [time]
last [-days] [time]
first [+days] [time]

stop date [time]
today [-days] [time]
last [-days] [time]
first [+days] [time]

Table 4-1 Utility Commands: Syntax and Parameters (Continued)

Command Parameter
Chapter 480

Utility Commands
analyze
analyze
Use the analyze command to analyze the data in a log file against alarm
definitions in an alarm definitions (alarmdef) file and report resulting
alarm status and activity. Before issuing the analyze command, you
should run the checkdef command to check the alarm definitions
syntax. Checkdef also sets and saves the alarm definitions file name to
be used with analyze. If you do not run checkdef before analyze, you
are prompted for an alarm definitions file name.

If you are using command line mode, the default alarm definitions file
/var/opt/perf/alarmdef is used.

For detailed information about alarm definitions, see Chapter 7,
“Performance Alarms,” on page 207.

Syntax

analyze

How to Use It

When you issue the analyze command, it analyzes the log files specified
in the data sources configuration file, datasources, against the alarm
definitions in the alarmdef file.

The analyze command allows you to evaluate whether or not your alarm
definitions are a good match against the historical data collected on your
system. It also lets you decide if your alarm definitions will generate too
many or too few alarms on your analysis workstation.

Also, you can perform data analysis with definitions (IF statements) set
in the alarm definitions file because you can get information output by
PRINT statements when conditions are met. For explanations of how to
use the IF and PRINT statements in an alarm definition, see Chapter 7,
“Performance Alarms,” on page 207.
Chapter 4 81

Utility Commands
analyze
You can optionally run the start, stop, and detail commands with
analyze to customize the analyze process. You specify these commands
in the following order:

checkdef
start
stop
detail
analyze

Use the start and stop commands if you want to analyze log file data
that was collected during a specific period of time. (Descriptions of the
start and stop commands appear later in this chapter.)

While the analyze command is executing, it lists alarm events such as
alarm start, end, and repeat status plus any text in associated print
statements. Also, any text in PRINT statements is listed as conditions
(in IF statements) become true. EXEC statements are not executed but
are listed so you can see what would have been executed. An alarm
summary report shows a count of the number of alarms and the amount
of time each alarm was active (on). The count includes alarm starts and
repeats, but not alarm ends.

If you want to see the alarm summary report only, issue the detail off
command. However, if you are using command line mode, detail off is
the default so you need to specify -D to see the alarm events as well as
the alarm summary.

Example

The checkdef command checks the alarm definitions syntax in the
alarmdef file and saves the name of the alarmdef file for later use with
the analyze command. The start today command specifies that only
data logged today is to be analyzed. Lastly, the analyze command
analyzes the log file in the default SCOPE data source specified in the
datasources file against the alarm definitions in the alarmdef file.

utility>
checkdef /var/opt/perf/alarmdef
start today
analyze

To perform the above task using command line arguments, enter:

utility -xc -D -b today -xa
Chapter 482

Utility Commands
checkdef
checkdef
Use the checkdef command to check the syntax of the alarm definitions
in an alarm definitions file and report any warnings or errors that are
found. This command also sets and saves the alarm definitions file name
for use with the analyze command.

For descriptions of the alarm definitions syntax and how to specify alarm
definitions, see Chapter 7, “Performance Alarms,” on page 207.

Syntax

checkdef [/directorypath/alarmdef]

Parameters

How to Use It

When you have determined that the alarm definitions are correct, you
can process them against the data in a log file using the analyze
command.

In batch mode, if no alarm definitions file is specified, the default
alarmdef file is used.

In interactive mode, if no alarm definitions file is specified, you are
prompted to specify one.

Example

The checkdef command checks the alarm definitions syntax in the
alarmdef file and then saves the name of the alarmdef file for later use
with the analyze command.

utility>
checkdef /var/opt/perf/alarmdef

To perform the above task using command line arguments, enter:

utility -xc

alamdef The name of any alarm definitions file. This can be
a user-specified file or the default alarmdef file. If
no directory path is specified, the current directory
will be searched.
Chapter 4 83

Utility Commands
detail
detail
Use the detail command to control the level of detail printed in the
analyze, parmfile, and scan reports.

The default is detail on in interactive and batch modes and detail
off in command line mode.

Syntax

Parameters

How to Use It

For explanations of how to use the detail command with the analyze,
scan, and parmfile commands, see the analyze, parmfile, and scan
command descriptions in this chapter.

Examples

For examples of using the detail command, see the descriptions of the
analyze, parmfile, and scan commands in this chapter.

detail [on]

[off]

on Prints the effective contents of the parm file as well
as parm file errors. Prints complete analyze and
scan reports.

off In the parm file report, application definitions are
not printed. In the scan report, scopeux collection
times, initial parm file global information, and
application definitions are not printed. In the
analyze report, alarm events and alarm actions are
not printed.
Chapter 484

Utility Commands
exit
exit
Use the exit command to terminate the utility program. The exit
command is equivalent to the utility program’s quit command.

Syntax

exit
e

Chapter 4 85

Utility Commands
guide
guide
Use the guide command to enter guided commands mode. The guided
command interface leads you through the various utility commands
and prompts you to perform the most common tasks that are available.

Syntax

guide

Hot to Use It

• To enter guided commands mode from utility’s interactive mode,
type guide and press Return.

• To accept the default value for a parameter, press Return.

• To terminate guided commands mode and return to interactive mode,
type q at the guide> prompt.

This command does not provide all possible combinations of parameter
settings. It selects settings that should produce useful results for the
majority of users.
Chapter 486

Utility Commands
help
help
Use the help command to access the utility program's online help
facility.

Syntax

help [keyword]

How to Use It

You can enter parameters to obtain information on utility commands
and tasks, or on help itself. You can navigate to different topics by
entering a key word. If more than one page of information is available,
the display pauses and waits for you to press Return before continuing.
Type q or quit to exit the help system and return to the utility
program.

You can also request help on a specific topic. For example,

help tasks

or

help resize parms

When you use this form of the help command, you receive the help text
for the specified topic and remain in the utility command entry
context. Because you do not enter the help subsystem interactively, you
do not have to type quit before entering the next utility command.
Chapter 4 87

Utility Commands
list
list
Use the list command to specify the output file for all utility reports.
The contents of the report depends on which other commands are issued
after the list command. For example, using the list command before
the logfile, detail on, and scan commands produces the list file for a
detailed summary report of a log file.

Syntax

list [filename]|*

where * sets the output back to stdout.

How to Use It

There are two ways to specify the list file for reports:

• Redirect stdout when invoking the utility program by typing:

utility > utilrept

• Or, use the list command when utility is running by typing:

list utilrept

In either case, user interactions and errors are printed to stderr and
reports go to the file specified.

The filename parameter in the list command must represent a valid
filename to which you have write access. Existing files have the new
output appended to the end of existing contents. If the file does not exist,
it will be created.

To determine the current output file, issue the list command without
parameters:

If the output file is not stdout, most commands are echoed to the output
file as they are entered.

Example

The list command produces a summary report on the extracted log file
rxlog. The list utilrept command directs the scan report listing to a
disk file. Detail off specifies less than full detail in the report. The
scan command reads rxlog and produces the report.
Chapter 488

Utility Commands
list
The list * command sets the list device back to the default stdout. !lp
utilrept sends the disk file to the system printer.

utility>
logfile rxlog
list utilrept
detail off
scan
list *
!lp utilrept

To perform the above task using command line arguments, enter:

utility -l rxlog -f utilrept -d -xs print utilrept
Chapter 4 89

Utility Commands
logfile
logfile
Use the logfile command to open a log file. For many utility program
functions, a log file must be opened. You do this explicitly by issuing the
logfile command or implicitly by issuing some other command. If you
are in batch or command line mode and do not specify a log file name, the
default /var/opt/perf/datafiles/logglob file is used. If you are in
interactive mode and do not specify a log file name, you are prompted to
provide one or accept the default /var/opt/perf/datafiles/logglob
file.

Syntax

logfile [logfile]

How to Use It

You can specify the name of either a raw or extracted log file. If you
specify an extracted log file name, all information is obtained from this
single file. You do not need to specify any of the raw log files other than
the global log file, logglob. Opening logglob gives you access to all of
the data in the other logfiles.

Raw log files have the following names:

Once a log file is opened successfully, a report is printed or displayed
showing the general content of the log file (or log files).

logglob global log file

logappl application log file

logproc process log file

logdev device log file

logtran transaction log file

logindx index log file
Chapter 490

Utility Commands
logfile
You can verify the log file you opened with the show command, as
described later.

You can open another log file at any time by entering another logfile
command. Any currently opened log file is closed before the new log file is
opened.

The resize and scan commands require a log file to be open. If no log file
is currently open, an implicit logfile command is executed.

CAUTION Do not rename raw log files! Access to these files assumes that the
standard log file names are in effect.

You may have more than one set of raw log files on the same system, in
separate directories for each set of files. If you want to resize the log files
in any way, you must have read/write access to all the log files.
Chapter 4 91

Utility Commands
menu
menu
Use the menu command to print a list of the available utility
commands.

Syntax

menu

Example

utility> menu
Command Parameters Function
HELP [topic] Get information on commands and options
GUIDE Enter guided commands mode for novice
users
LOGFILE [logname] Specify a log file to be processed
LIST [filename|*] Specify the listing file

START [startdate time] Set starting date & time for SCAN or
ANALYZE
STOP [stopdate time] Set ending date & time for SCAN or
ANALYZE
DETAIL [ON|OFF] Set report detail for SCAN, PARMFILE, or
ANALYZE
SHOW [ALL] Show the current program settings

PARMFILE [parmfile] Check parsing of a parameter file

SCAN [logname] Read the log file and produce a summary report
RESIZE [GLOB|APPL|PROC|DEV|TRAN][DAYS=][EMPTY=] Resize raw log
files

CHECKDEF [alarmdef] Check parsing and set the alarmdef file
ANALYZE Analyze the log file using the alarmdef
file

! or Sh [command] Execute a system command
MENU or ? List the commands menu (This listing)
EXIT or Q Terminate the program
utility>
Chapter 492

Utility Commands
parmfile
parmfile
Use the parmfile command to view and syntax check the OV
Performance Agent parm file settings that are used for data collection.

Syntax

parmfile [/directorypath/parmfile]

How to Use It

You can use the parmfile command to do any of the following:

• Examine the parm file for syntax warnings and review the resulting
settings. All parameters are checked for correct syntax and errors are
reported. After the syntax check is completed, only the applicable
settings are reported.

• Find out how much room is left for defining applications.

• If detail on is specified, print the effective contents of the parm file
plus any default settings that were not overridden, and print
application definitions.

In batch mode, if no parm file name is specified, the
/var/opt/perf/parm file is used.

In interactive mode, if no parm file name is supplied, you are prompted to
supply one.

Example

The parmfile command checks the syntax of the current parm file and
reports any warnings or errors. Detail on lists the logging parameter
settings.

utility>
detail on
parmfile parm

To perform the above task using command line arguments, enter:

utility -xp -D
Chapter 4 93

Utility Commands
quit
quit
Use the quit command to terminate the utility program. The quit
command is equivalent to the utility program’s exit command.

Syntax

quit
q

Chapter 494

Utility Commands
resize
resize
Use the resize command to manage the space in your raw log file set.
This is the only program you should use to resize the raw log files in
order to preserve coordination between the files and their internal
control structures. If you use other tools you might remove or destroy the
validity of these control structures.

The utility program cannot be used to resize extracted files. If you
want to resize an extracted file, use the extract program to create a new
extracted log file.

Syntax

resize [global] [days=maxdays] [empty=days] [yes]
 [application] [size=maxMB] [space=MB] [no]
 [process] [maybe]
 [device]
 [transaction]

Parameters

log file type Specifies the type of raw data you want to resize:
global, application, process, device, or transaction,
which correspond to the raw log files logglob,
logappl, logproc, logdev, and logtran. If you
do not specify a data type and are running
utility in batch mode, the batch job terminates.
If you are running utility interactively, you are
prompted to supply the data type based on those
log files that currently exist.

days & size Specify the maximum size of the log file. The
actual size depends on the amount of data in the
file.

empty & space Specify the minimum amount of room required in
the file after the resizing operation is complete.
This value is used to determine if any of the data
currently in the log file must be removed in the
resizing process.
Chapter 4 95

Utility Commands
resize
You might expect that a log file would not fill up until the specified
number of days after a resizing operation. You may want to use this
feature of the resize command to minimize the number of times a log
file must be resized by the scopeux collector because resizing can occur
any time the file is filled. Using resize to force a certain amount of
empty space in a log file causes the log file to be resized when you want it
to be.

The days and empty values are entered in units of days; the size and
space values are entered in units of megabytes. Days are converted to
megabytes by using an average megabytes-per-day value for the log file.
This conversion factor varies depending on the type of data being logged
and the particular characteristics of your system.

More accurate average-megabytes-per-day conversion factors can be
obtained if you issue the scan command on the existing log file before
you issue the resize command. A scan measures the accumulation rates
for your system. If no scan is done or if the measured conversion factor
seems unreasonable, the resize command uses a default conversion
factor for each type of data.

yes Specifies that resizing should be unconditionally
performed. This is the default action if utility is not
running interactively. If no action is specified when
utility is running interactively, you are prompted to
supply the action.

no Specifies that resizing should not be performed. This
parameter can be specified as an action if you want to
see the resizing report but do not want to perform the
resizing at that time.

maybe Specifies that utility should decide whether or not to
resize the file. This parameter forces utility to make
this decision based on the current amount of empty
space in the log file (before any resizing) and the
amount of space specified in the resize command. If
the current log file contains at least as much empty
space as specified, resizing does not occur. If the
current log file contains less than the specified empty
space, resizing occurs.
Chapter 496

Utility Commands
resize
Default resizing parameters are shown in the following table.

How to Use It

Before you resize a log file, you must stop OV Performance Agent using
the steps under “Stopping and Restarting Data Collection” on page 49 in
Chapter 2, “Managing Data Collection”.

A raw log file must be opened before resizing can be performed. Open the
raw log file with the logfile command before issuing the resize
command. The files cannot be opened by any other process.

maybe
(continued)

If the resizing can be made without removing any data
from the log file (for example, increasing the maximum
log file size, or reducing the maximum log file size
without having to remove any existing data), resizing
occurs.
The maybe parameter is intended primarily for use by
periodic batch executions. See the “Examples”
subsection below for an explanation of how to use the
resize command in this manner.

Table 4-2 Default Resizing Parameters

Parameter If Executed
Interactively If Executed in Batch

log file
type

You are prompted for
each available log file
type.

No default. This is a
required parameter.

days
size

The current file size. The current file size.

empty space The current amount of
empty space or enough
empty space to retain all
data currently in the
file, whichever is
smaller.

The current amount of
empty space or enough
empty space to retain all
data currently in the file,
whichever is smaller.

yes
no
maybe

You are prompted
following the reported
disk space results.

Yes. Resizing will occur.
Chapter 4 97

Utility Commands
resize
The resize command creates the new file /tmp/scopelog before
deleting the original file. Make sure there is sufficient disk space in the
/var/tmp directory (/tmp on IBM AIX 4.1 and later) to hold the original
log file before doing the resizing procedure.

After resizing, a log file consists of data plus empty space. The data
retained is calculated as the maximum file size minus the required
empty space. Any data removed during the resizing operation is lost. To
save log file data for longer periods, use extract to copy this data to an
extracted file before doing the resize operation.

Resize Command Reports

One standard report is produced when you resize a raw log file. It shows
the three interrelated disk space categories of maximum file size, data
records, and empty space, before and after resizing. For example:

resize global days=120;empty=10
empty space raised to match file size and data records

final resizing parameters:
file: logglob megabytes / day: 0.101199
 ---currently----- --after resizing---
maximum size: 65 days (6.6 mb) 120 days (12.1 mb) 83%
 increase
data records: 61 days (6.2 mb) 61 days (6.2 mb) no data
 removed
empty space: 4 days (0.5 mb) 59 days (6.0 mb) 1225%
 increase

The megabytes per day value is used to convert between days and
megabytes. It is either the value obtained during the scan function or a
default for the type of data being resized.

The far right-hand column is a summary of the net change in each
category of log file space. Maximum size and empty space can increase,
decrease, or remain unchanged. Data records have either no data
removed or a specified amount of data removed during resizing.

If the resize is done interactively and one or more parameters are
defaults, you can get a preliminary resizing report. This report
summarizes the current log file contents and any parameters that were
provided. The report is provided to aid in answering questions on the
unspecified parameters. For example:
Chapter 498

Utility Commands
resize
resize global days=20

file resizing parameters (based on average daily
space estimates and user resizing parameters)
file: logglob megabytes / day: 0.101199
 -----currently----- --after resizing---
maximum size: 65 days (6.6 mb) 20 days (2.0 mb)
data records: 61 days (6.2 mb) ??
empty space: 4 days (0.5 mb) ??

In this example, you are prompted to supply the amount of empty space
for the file before the final resizing report is given. If no action parameter
is given for interactive resizing, you are prompted for whether or not to
resize the log file immediately following the final resizing report.

Examples

The following commands are used to resize a raw process log file. The
scan is performed before the resize to increase the accuracy of the
number-of-days calculations.

logfile /var/opt/perf/datafiles/logglob
detail off
scan
resize process days=60 empty=30 yes

days=60 specifies holding a maximum of 60 days of data. empty=30
specifies that 30 days of this file are currently empty. That is, the file is
resized with no more than 30 days of data in the file to leave room for 30
more days out of a total of 60 days of space. yes specifies that the
resizing operation should take place regardless of current empty space.

The next example shows how you might use the resize command in
batch mode to ensure that log files do not fill up during the upcoming
week (forcing scopeux to resize them). You could schedule a cron script
using the at command that specifies a minimum amount of space such as
7 days - or perhaps 10 days, just to be safe.

The following shell script accomplishes this:

echo detail off > utilin
echo scan >> utilin
echo resize global empty=10 maybe >> utilin
echo resize application empty=10 maybe >> utilin
echo resize process empty=10 maybe >> utilin
echo resize device empty=10 maybe >> utilin
echo quit >> utilin
utility < utilin > utilout 2> utilerr
Chapter 4 99

Utility Commands
resize
Specifying maybe instead of yes avoids any resizing operations if 10 or
more days of empty space currently exist in any log files. Note that the
maximum file size defaults to the current maximum file size for each file.
This allows the files to be resized to new maximum sizes without
affecting this script.

NOTE If you use the script described above, remember to stop scopeux before
running it. See the “Starting & Running OV Performance Agent” chapter
in your HP OpenView Performance Agent Installation & Configuration
Guide for information about stopping and starting scopeux.
Chapter 4100

Utility Commands
scan
scan
Use the scan command to read a log file and write a report on its
contents. (For a detailed description of the report, see “Utility Scan
Report Details” on page 66 in Chapter 3, “Using the Utility Program”.

Syntax

scan

How to Use It

The scan command requires a log file to be opened. The log file scanned
is the first of one of the following:

• The log file named in the scan command itself.

• The last log file opened by any previous command.

• The default log file.

In this case, interactive users are prompted to override the default
log file name if desired.

The following commands affect the operation of the scan function:

For more information about the detail, list, start, and stop
commands, see their descriptions in this chapter.

The scan command report consists of 12 sections. You can control which
sections are included in the report by issuing the detail command prior
to issuing scan.

detail Specifies the amount of detail in the report. The
default, detail on, specifies full detail.

list Redirects the output to another file. The default is to
list to the standard list device.

start Specifies the date and time of the first log file record
you want to scan. The default is the beginning of the
log file.

stop Specifies the date and time of the last log file record
you want to scan. The default is the end of the log
file.
Chapter 4 101

Utility Commands
scan
The following four sections are always printed (even if detail off is
specified):

• Scan start and stop actual dates and times

• Collector coverage summary

• Log file contents summary

• Log file empty space summary

The following sections are printed if detail on (the default) is specified:

• Initial parm file global information and system configuration
information

• Initial parm file application definitions

• parm file global changes

• parm file application addition/deletion notifications

• Collector off-time notifications

• Application-specific summary reports

The following section is always printed if application data was scanned
(even if detail off is specified):

• Application overall summary

The following section is always printed if process data was scanned (even
if detail off is specified):

• Process log reason summary

Example

The scan of the current default global log file starts with records logged
from June 1, 1999 at 7:00 AM until the present date and time.

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 6/1/99 7:00 am
scan

To perform the above task using command line arguments, enter:

utility -D -b 6/1/99 7:00 am -xs
Chapter 4102

Utility Commands
sh
sh
Use sh to enter a shell command without exiting utility by typing sh or
an exclamation point (!) followed by a shell command.

Syntax

sh or ! [shell command]

Parameters

How to Use It

Following the execution of the single command, you automatically return
to utility. If you want to issue multiple shell commands without
returning to utility after each one, you can start a new shell. For
example,

sh ksh

or

!ksh

sh ls Executes the ls command and returns to utility.

!ls Same as above.
Chapter 4 103

Utility Commands
show
show
Use the show command to list the names of the files that are open and
the status of the utility parameters that can be set.

Syntax

show [all]

Examples

Use show to produce a list that may look like this:

Logfile: /var/opt/perf/datafiles/logglob
List: "stdout"
Detail: ON for ANALYZE, PARMFILE and SCAN functions

The default starting date & time = 10/08/99 08:17 AM (FIRST + 0)
The default stopping date & time = 11/20/99 11:59 PM (LAST - 0)
The default shift = 12:00 AM - 12:00 AM

NOTE The default shift time is shown for information only. Shift time cannot be
changed in utility.

Use show all to produce a more detailed list that may look like this:

Logfile: /var/opt/perf/datafiles/logglob

 Global file: /var/opt/perf/datafiles/logglob
 Application file: /var/opt/perf/datafiles/logappl
 Process file: /var/opt/perf/datafiles/logproc
 Device file: /var/opt/perf/datafiles/logdev
 Transaction file: /var/opt/perf/datafiles/logtran
 Index file: /var/opt/perf/datafiles/logindx
 System ID: homer
 System Type 9000/715 S/N 66677789 OS/ HP-UX B.10.20 A
 Data Collector: SCOPE/UX C.02.30
 File created: 10/08/99
 Data Covers: 44 days to 11/20/99
 Shift is: All Day
Data records available are:
 Global Application Process Disk Volume Transaction

Maximum file sizes:
 Global=10.0 Application=10.0 Process=20.0 Device=10.0 Transaction
10.0 MB
Chapter 4104

Utility Commands
show
List "stdout"
Detail ON for ANALYZE, PARMFILE and SCAN functions

The default starting date & time = 10/08/99 11:50 AM (FIRST + 0)
The default stopping date & time = 11/20/99 11:59 PM (LAST - 0)
The default shift = 12:00 AM - 12:00 AM
Chapter 4 105

Utility Commands
start
start
Use the start command to specify the beginning of the subset of a log
file that you want to scan or analyze. Start lets you start the scan or
analyze process at data that was logged at a specific date and time.

The default starting date and time is set to the date and time of the first
record of any type in a log file that has been currently opened with the
logfile command.

Syntax

Parameters

start
[date
[today
[last
[first

[time]]
[-days]
[-days]
[+days]

[time]]
[time]]
[time]]

date The date format depends on the native language configured
on the system being used. If you do not use native
languages or have the default language set to C, the date
format is mm/dd/yy (month/day/year) or 06/30/99 for June
30, 1999.

time The time format also depends on the native language being
used. For C, the format is hh:mm am or hh:mm pm
(hour:minute in 12-hour format with the am/pm suffix) such
as 07:00 am for 7 o'clock in the morning. Twenty-four hour
time is accepted in all languages. For example, 23:30 would
be accepted for 11:30 pm.
If the date or time is entered in an unacceptable format, an
example in the correct format is shown.
If no start time is given, a midnight (12 am) is assumed. A
starting time of midnight for a given day starts at the
beginning of that day (00:00 on a 24-hour clock).

today Specifies the current day. The parameter today-days
specifies the number of days prior to today’s date. For
example, today-1 indicates yesterday’s date and today-2,
the day before yesterday.
Chapter 4106

Utility Commands
start
How to Use It

The start command is useful if you have a very large log file and do not
want to scan or analyze the entire file. You can also use it to specify a
specific time period for which data is scanned. For example, you can scan
a log file for data that was logged for a period beginning 14 days before
the present date by specifying today-14.

You can use the stop command to further limit the log file records you
want to scan.

If you are not sure whether native language support is installed on your
system, you can force utility to use the C date and time formats by
issuing the following statement before running utility:

LANG=C; export LANG

or in C Shell

setenv LANG C

Example

The scan of the default global log file starts with records logged from
August 5, 1999 at 8:00 AM until the present date and time.

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 8/5/99 8:00 AM
scan

To perform the above task using command line arguments, enter:

utility -D -b 8/5/99 8:00 am -xs

last Can be used to represent the last date contained in the log
file. The parameter last-days specifies the number of
days prior to the last date in the log file.

first Can be used to represent the first date contained in the log
file. The parameter first+days specifies the number of
days after the first date in the log file.
Chapter 4 107

Utility Commands
stop
stop
Use the stop command to specify the end of a subset of a log file that you
want to scan or analyze. Stop lets you terminate the scan or analyze
process at data that was logged at a specific date and time.

The default stopping date and time is set to the date and time of the last
record of any type in a log file that has been currently opened with the
logfile command.

Syntax

Parameters

stop
[date
[today
[last
[first

[time]]
[-days]
[-days]
[+days]

[time]]
[time]]
[time]]

date The date format depends on the native language configured
on the system being used. If you do not use native
languages or have the default language set to C, the date
format is mm/dd/yy (month/day/year) or 06/30/99 for June
30, 1999.

time The time format also depends on the native language being
used. For C, the format is hh:mm am or hh:mm pm
(hour:minute in 12-hour format with the am/pm suffix) such
as 07:00 am for 7 o'clock in the morning. Twenty-four hour
time is accepted in all languages. For example, 23:30 would
be accepted for 11:30 pm.
If the date or time is entered in an unacceptable format, an
example in the correct format is shown.
If no stop time is given, one minute before midnight (11:59
pm) is assumed. A stopping time of midnight (12 am) for a
given day stops at the end of that day (23:59 on a 24-hour
clock).
Chapter 4108

Utility Commands
stop
How to Use It

The stop command is useful if you have a very large log file and do not
want to scan the entire file. You can also use it to specify a specific time
period for which data is scanned. For example, you can scan a log file for
seven-days worth of data that was logged starting a month before the
present date.

If you are not sure whether native language support is installed on your
system, you can force utility to use the C date and time formats by
issuing the following statement before running utility:

LANG=C; export LANG

or in C Shell

setenv LANG C

Example

The scan of 14 days worth of data starts with records logged from July 5,
1999 at 8:00 AM and stops at the last record logged July 18, 1999 at
11:59 pm.

utility>
logfile /var/opt/perf/datafiles/logglob
detail on
start 7/5/99 8:00 am
stop 7/18/99 11:59 pm
scan

To perform the above task using command line arguments, enter:

utility -D -b 7/5/99 8:00 am -e 7/18/99 11:59pm -xs

today Specifies the current day. The parameter today-days
specifies the number of days prior to today’s date. For
example, today-1 indicates yesterday’s date and today-2,
the day before yesterday.

last Can be used to represent the last date contained in the log
file. The parameter last-days specifies the number of
days prior to the last date in the log file.

first Can be used to represent the first date contained in the log
file. The parameter first+days specifies the number of
days after the first date in the log file.
Chapter 4 109

Utility Commands
stop
Chapter 4110

5 Using the Extract Program
Chapter 5 111

Using the Extract Program
Introduction
Introduction
The extract program has two main functions: it lets you extract data
from raw log files and write it to extracted log files. Extract also lets you
export log file data for use by analysis products such as spreadsheets.

NOTE After the initial installation of OV Performance Agent, services must be
started for file installation to complete, before extract will function.

The extract and export functions copy data from a log file; no data is
removed.

Three types of log files are used by OV Performance Agent:

• scopeux log files, which contain data collected in OV Performance
Agent by the scopeux collector.

• extracted log files, which contain data extracted from raw scopeux
log files.

• DSI (data source integration) log files, which contain user-defined
data collected by external sources such as applications and
databases. The data is subsequently logged by OV Performance
Agents DSI programs.

Use the extract program to perform the following tasks:

• Extract subsets of data from raw scopeux log files into an extracted
log file format that is suitable for placing in archives, for transport
between systems, and for analysis by OV Performance Manager.
Data cannot be extracted from DSI log files.

• Manage archived log file data by extracting or exporting data from
extracted format files, appending data to existing extracted log files,
and subsetting data by type, date, and shift (hour of day).

• Export data from raw or extracted scopeux log files and DSI log files
into ASCII, binary, datafile, or WK1 (spreadsheet) formats suitable
for reporting and analysis or for importing into spreadsheets or
similar analysis packages.
Chapter 5112

Using the Extract Program
Introduction
NOTE The extract function cannot produce summarized data. Summary data
can only be produced by the export function.

Examples of how various tasks are performed and how extract
commands are used can be found in online help for the extract program.

This chapter covers the following topics:

• running the extract program

• using interactive mode

• command line interface

• overview of the export function
Chapter 5 113

Using the Extract Program
Running the Extract Program
Running the Extract Program
There are three ways to run the extract program:

• Command line mode - You control the extract program using
command options and arguments in the command line.

• Interactive mode - You supply interactive commands and parameters
while executing the program with stdin set to an interactive
terminal or workstation.
If you are an experienced user, you can quickly specify only those
commands required for a given task. If you are a new user, you may
want to specify guided mode to receive more assistance in using
extract. In guided mode, you are asked to select from a list of
options in order to perform a task. While in guided mode, the
interactive commands that accomplish each task are listed as they
are executed, so you can see how they are used. You can quit or
re-enter guided mode at any time.

• Batch mode - You can run the program and redirect stdin to a file
that contains interactive commands and parameters.

The syntax for the command line interface is similar to standard UNIX
command line interfaces on other programs and is described in detail in
this chapter.

For interactive and batch mode the command syntax is the same: a
command followed by one or more parameters. Commands can be
entered in any order; if a command has a parameter associated with it,
the parameter must be entered immediately after the corresponding
command.

There are two types of parameters - required (for which there are no
defaults) and optional (for which defaults are provided). How the extract
program handles these parameters depends on the mode in which it is
running.

• In interactive mode, if an optional parameter is missing, the program
displays the default parameter and lets you either confirm it or
override it.
If a required parameter is missing, the program prompts you to enter
the parameter.
Chapter 5114

Using the Extract Program
Running the Extract Program
• In batch mode, if an optional parameter is missing, the program uses
the default values.
If a required parameter is missing, the program terminates.

Errors and missing data are handled differently for interactive mode
than for command line and batch mode, because you can supply
additional data or correct mistakes in interactive mode, but not in
command line and batch mode.
Chapter 5 115

Using the Extract Program
Using Interactive Mode
Using Interactive Mode
Using the extract program’s interactive mode requires you to issue a
series of commands to execute a specific task.

For example, if you want to export application data collected starting
May 15, 2002, from the default global log file, you issue the following
commands after invoking the extract program

logfile /var/opt/perf/datafiles/logglob
application detail
start 5/15/2001
export

The logfile command opens /var/opt/perf/datafiles/logglob, the
default global log file. The start command specifies that only data
logged after 5/15/01 will be exported. The export command starts the
exporting of the data.
Chapter 5116

Using the Extract Program
Extract Command Line Interface
Extract Command Line Interface
In addition to the interactive and batch mode command syntax,
command options and arguments can be passed to the extract program
through the command line interface. The command line interface fits
into the typical UNIX environment by allowing the extract program to
be easily invoked by shell scripts and allowing its input and output to be
redirected into UNIX pipes.

For example, the command line equivalent of the example shown in the
previous section “Using Interactive Mode” on page 116 is:

extract -l -a -b 5/15/02 -xp

In command line mode, the global log file
/var/opt/perf/datafiles/logglob is the default; you do not have to
specify it.

Command line options and arguments are listed in the following table.
The referenced command descriptions can be found in Chapter 6,
“Extract Commands,” on page 145.

Table 5-1 Command Line Arguments

Command
Option Argument Description

-b date time Specifies starting date and
time of an extract or export
function. (See start
command in Chapter 6.)

-B UNIX
start
time

Specifies starting time in
UNIX format for an extract
or export function.

-e date time Specifies ending date and
time of an extract or export
function. (See stop
command in Chapter 6.)
Chapter 5 117

Using the Extract Program
Extract Command Line Interface
-E UNIX stop
time

Specifies stopping time in
UNIX format for an
extract or export function.

-s time-time noweeken
ds

Specifies start and end time
for specific periods
excluding weekends. (See
“shift” command in Chapter
6.)

-l logfile Specifies input log file. (See
“logfile” command in
Chapter 6.)
/var/opt/perf/datafiles
/logglob is the default.

-r export
template
file

Specifies an export template
file for export function.
(See “report” command in
Chapter 6.)

-C classname opt Specifies scopeux data to
extract or export, or
self-describing (DSI) data to
export. (See “class”
command in Chapter 6.)

opt =
 detail (default)
 summary
 both
 off

Table 5-1 Command Line Arguments (Continued)

Command
Option Argument Description
Chapter 5118

Using the Extract Program
Extract Command Line Interface
gapkcdzntuy
GADZNTUY

Specifies types of data to
extract/export:

g = global detail. (See
“global” command in
Chapter 6.) global detail is
off by default.

a = application detail. (See
“application” command in
Chapter 6.)

p = process detail (See
“process” command in
Chapter 6.)

k = process killed. (See
“process” command in
Chapter 6.)

c = configuration
detail (See “configuration”
command in Chapter 6.)

d = disk device detail (See
“disk” command in Chapter
6.)

z = lvolume detail (See
“lvolume” command in
Chapter 6.)

n = netif detail (See “netif”
command in Chapter 6.)

Table 5-1 Command Line Arguments (Continued)

Command
Option Argument Description
Chapter 5 119

Using the Extract Program
Extract Command Line Interface
gapkcdzntuy
GADZNTUY
(continued)

t = transaction detail (See
“transaction” command in
Chapter 6.)

u = CPU detail (See “cpu”
command in Chapter 6.)

y = filesystem detail (See
“filesystem” command in
Chapter 6.)

NOTE: The following
summary options are for
export only; the extract
function does not support
data summarization.

G = global summary (See
“global” command in
Chapter 6.) Global summary
is off by default.

A = application summary
(See “application” command
in Chapter 6.)

D = disk device summary
(See “disk” command in
Chapter 6.)

Z=lvolume summary (See
“lvolume” command in
Chapter 6.)

N = netif summary (See
“netif” command in Chapter
6.)

Table 5-1 Command Line Arguments (Continued)

Command
Option Argument Description
Chapter 5120

Using the Extract Program
Extract Command Line Interface
gapkcdzntuy
GADZNTUY
(continued)

T = transaction summary
(See “transaction” command
in Chapter 6.)

U = CPU summary (See
“cpu” command in Chapter
6.)

Y = filesystem summary
(See “filesystem” command
in Chapter 6.)

-v Generates verbose output
report formats.

-f filename ,new
,append
,purge

Sends extract or export data
to a file. If no filename,
sends data to default output
files. (See “output”
command in Chapter 6.)

-ut Shows date and time in
UNIX format in exported
DSI log file data.

-we 1.....7 Specifies days to exclude
from export; 1=Sunday. (See
“weekdays” command
description.)

-xp xopt Exports data to external
format files. (See “export”
command in Chapter 6.)

Table 5-1 Command Line Arguments (Continued)

Command
Option Argument Description
Chapter 5 121

Using the Extract Program
Extract Command Line Interface
When you are evaluating arguments and entering command options on
the command line, the following rules apply:

• Errors and missing data are handled exactly as in the corresponding
batch mode command. That is, missing data will be defaulted if
possible and all errors cause the program to terminate immediately.

• Echoing of commands and command results is disabled unless the
-v argument is used to enable verbose mode.

• If no valid action is specified (-xp, -xw, -xm, -xy, or -xt), extract
starts reading commands from its stdin file after all parameters
have been processed.

-xt xopt Extracts data in system
internal format. (See
“extract” command in
Chapter 6.)

xopt =
 dwmy (Day Week Month
 Year)
 dwmy-[offset]
 dwmy [absolute]

-xw week Extracts a calendar week's
data. (See “weekly”
command in Chapter 6.)

-xm month Extracts a calendar month's
data. (See “monthly”
command in Chapter 6.)

-xy year Extracts a calendar year's
data. (See “yearly” command
in Chapter 6.)

-? or ? Displays command line
syntax.

Table 5-1 Command Line Arguments (Continued)

Command
Option Argument Description
Chapter 5122

Using the Extract Program
Extract Command Line Interface
• If an action is specified (-xp, -xw, -xm, -xy, or -xt), the program will
execute those command options after all other parameters are
evaluated, regardless of where they were positioned in the list of
parameters.

• If an action is specified in the command line, the extract program
will not read from its stdin file; instead it will terminate following
the action:

extract -f rxdata -r /var/opt/perf/rept1 -xp d-1 -G

Which translates into:

Note that the actual exporting is not done until the end so the -G
parameter is processed before the export is done.

Also notice that the log file was not specified so it uses the default
logglob file.

Because an action was specified (-xp), once the export is finished the
extract program terminates without reading from its stdin file. In
addition, verbose mode was not set with the -v command option so all
extraneous output to stdout is eliminated.

-f rxdata Outputs to a file named rxdata in current directory

-r rept1 File /var/opt/perf/rept1 contains the desired
export format

-xp d-1 Exports data for this day minus 1 (yesterday)

-G Exports global summary data.
Chapter 5 123

Using the Extract Program
Overview of the Export Function
Overview of the Export Function
The extract program's export command converts OV Performance
Agent raw, extracted, or DSI log file data into exported files. The export
command writes files in any one of four possible formats: ASCII, datafile,
binary, and WK1 (spreadsheet). Exported files can be used in a variety of
ways, such as reports, custom graphics packages, databases, and
user-written analysis programs.

How to Export Data

In the simplest form, you can export data by:

• specifying the default global log file,
/var/opt/perf/datafiles/logglob,
from which you want to export data

• specifying the default export template file,
/var/opt/perf/reptfile, that defines the
format of the exported data

• starting the export function.

The exported data is placed in a default output file named
xfrdGLOBAL.asc in your current directory. The output file's ASCII
format is suitable for printing.

If you want to export something other than this default set of data, you
can use other commands and files in conjunction with the export
command.

You can export the following types of data:

global 5-minute and hourly summaries

application 5-minute and hourly summaries

process One-minute details

disk device 5-minute and hourly summaries

lvolume 5-minute and hourly summaries

transaction 5-minute and hourly summaries
Chapter 5124

Using the Extract Program
Overview of the Export Function
• You can specify which data items (metrics) are needed for each type
of data.

• You can specify starting and ending dates for the time period in
which the data was collected along with shift and weekend exclusion
filters.

• You can specify the desired format for the exported data in an export
template file. This file can be created using any text editor or word
processor that lets you save a file in ASCII (text) format.

• You can also use the default export template file,
/var/opt/perf/reptfile. This file specifies the
following output format settings:

— ASCII file format

— a 0 (zero) for the missing value

— a blank space as the field separator

— 60-minute summaries

— column headings are included

— a recommended set of metrics for a given data type is included in
the export

Sample Export Tasks

Two sample export template files, repthist and reptall, are furnished
with OV Performance Agent. These files are located in the
/var/opt/perf/ directory. You can use repthist and reptall to
perform common export tasks or as a starting point for custom tasks,
such as the task described next.

configuration One record containing parm file information, and
system configuration information, for each time the
data collector started.

any DSI class Intervals and summaries for DSI log files

netif 5-minute and hourly summaries

cpu 5-minute and hourly summaries

filesystem 5-minute and hourly summaries
Chapter 5 125

Using the Extract Program
Overview of the Export Function
Generating a Printable CPU Report

The repthist export template file contains the specifications to generate
a character graph of CPU and disk usage for the system over time. This
graph consists of printable characters that can be printed on any device
capable of 132 column printing. For example, you could use the following
extract program commands to generate a graph of the last seven days
and should produce approximately two pages (34 pages if 5-minute detail
is specified instead of hourly summaries).

logfile /var/opt/perf/datafiles/logglob
report /var/opt/perf/repthist
global summary
start today-7
export

The exported data is in an export file named xfrsGLOBAL.asc. To print
it, type:

lp xfrsGLOBAL.asc

Producing a Customized Export File

If you want to create a totally new export template file, copy the export
template file and customize it using the extract program's guide
command. In guided mode, you copy the reptall file from the
/var/opt/perf/ directory and read the scopeux or DSI log file specified
to dynamically create the list of data types and metric names.

The reptall file contains every possible metric for each type of scopeux
log file data so you need only uncomment those metrics that are of
interest to you. This is easier than retyping the entire export template
file.

Export Data Files

If you used the output command to specify the name of an output file
prior to issuing the export command, all exported data will be written to
this single file. If you are running the extract program interactively and
want to export data directly to your workstation (standard output file),
specify the extract command output stdout prior to issuing the
export command.

If the output file is set to the default, the exported data is separated into
as many as 14 different default output files depending on the type of data
being exported.
Chapter 5126

Using the Extract Program
Overview of the Export Function
The default export log file names are:

where ext= asc (ASCII), bin (binary), dat (datafile), or wk1
(spreadsheet).

NOTE No output file is created unless you specify the type and associated items
that match the data in the export template file prior to issuing the export
command.

xfrdGLOBAL.ext Global detail data file

xfrsGLOBAL.ext Global hourly summary data file

xfrdAPPLICATION.ext Application detail data file

xfrsAPPLICATION.ext Application hourly summary data file

xfrdPROCESS.ext Process detail data file

xfrdDISK.ext Disk device detail data file

xfrsDISK.ext Disk device hourly summary data file

xfrdVOLUME.ext Logical volume detail data file

xfrsVOLUME.ext Logical volume summary data file

xfrdNETIF.ext Netif detail data file

xfrsNETIF.ext Netif summary detail data file

xfrdCPU.ext CPU detail data file

xfrsCPU.ext CPU summary data file

xfrdFILESYSTEM.ext Filesystem detail data file

xfrsFILESYSTEM.ext Filesystem summary data file

xfrdTRANSACTION.ext Transaction detail data file

xfrsTRANSACTION.ext Transaction summary data file

xfrdCONFIGURATION.ext Configuration data file
Chapter 5 127

Using the Extract Program
Overview of the Export Function
Export Template File Syntax

The export template file can contain all or some of the following
information, depending on how you want your exported data to be
formatted and what you want the export file to contain:

report "export file title"

format [ASCII]
 [datafile]
 [binary]
 [WK1] or
 [spreadsheet]

headings [on]
 [off]
separator= "char"
summary=value
missing=value
layout=single | multiple
output=filename
data type datatype
items

Parameters

report Specifies the title for the export file. For more
information, see the following section, “Export File
Title” on page 132.

format Specifies the format for the exported data.

ASCII

ASCII (or text) format is best for copying files to a
printer or terminal. It does not enclose fields with
double quotes (").

Datafile
Chapter 5128

Using the Extract Program
Overview of the Export Function
The datafile format is similar to ASCII format except
that non-numerical fields are enclosed in double
quotes. Because double quotes prevent strict column
alignment, files in datafile format are not
recommended for direct printing. The datafile format
is the easiest format to import into most spreadsheets
and graphics packages.

Binary

The binary format is more compact because numerical
values are represented as binary integers. It is the
most suitable format for input into user-written
analysis programs because it needs the least
conversion, and it maintains the highest metric
accuracy. It is not suitable for direct printing.

WK1 (spreadsheet)

The WK1 (spreadsheet) format is compatible with
Microsoft Excel and other spreadsheet and graphics
programs.

headings Specifies whether or not to include column headings for
the metrics listed in the export file. If headings off is
specified, no column headings are written to the file.
The first record in the file is exported data. If
headings on is specified, ASCII and datafile formats
place the export title plus column headings for each
column of metrics written before the first data records.
Column headings in binary format files contain the
description of the metrics in the file. WK1 formats
always contain column headings.

separator Specifies the character that is printed between each
field in ASCII or datafile formatted data. The default
separator character is a blank space. Many programs
prefer a comma as the field separator. You can specify
the separator as any printing or nonprinting character.
Chapter 5 129

Using the Extract Program
Overview of the Export Function
summary Specifies the number of minutes for each summary
interval. The value determines how much time is
included in each record for summary records. The
default interval is 60 minutes. The summary value can
be set between 5 and 1440 minutes (1 day).

missing Specifies the data value to be used in place of missing
data. The default value for missing data is zero. You can
specify another value in order to differentiate missing
from zero data.
A data item may be missing if it was:

• not logged by a particular version of the scopeux
collector

• not logged by scopeux because the instance
(application, disk, transaction, netif) it belongs to
was not active during the interval, or

• in the case of DSI log files, no data was provided to
the dsilog program during an interval, resulting in
“missing records”.

Missing records are, by default, excluded from exported
data.

layout Specifies either single or multiple layouts (per record
output) for multi-instance data types such as
application, disk, transaction, lvolume, or netif.

Single layout writes one record for every application
(disk, transaction, etc.) that was active during the time
interval. Multiple layout writes one record for each time
interval, with part of that record reserved for each
configured application.

output Specifies where exported data is to be output. It can be
specified for each class or data type exported by placing
output filename just after the line indicating the data
type that starts the list of exported data items. Any
valid file name can be specified with output.

You can also override the default output file name by
specifying the name interactively using the output
command.
Chapter 5130

Using the Extract Program
Overview of the Export Function
The output and layout parameters can be used more than once within
an export template file. For example:

data type global
 output=myglobal
 gbl_cpu_total_util

data type application
 output=myapp
 layout=multiple
 app_cpu_total_util

You can have more than one export template file on your system. Each
one can define a set of exported file formats to suit a particular need. You
use the report command to specify the export template file to be used
with the export function.

NOTE You cannot specify different layouts within a single data type. For
example, you cannot specify data type disk once with
layout = multiple and again with layout = single within the same
export file.

data type Specifies one of the exportable data types: global,
application, process, disk, transaction, lvolume, netif,
configuration, or DSI class name. This starts a section
of the export template file that lists the data items to be
copied when this type of data is exported.

items Specifies the metrics to be included in the exported file.
Metric names are listed, one per line, in the order you
want them listed in the resulting file. You must specify
the proper data type before listing items. The same
export template file can include item lists for as many
data types as you want. Each data type will be
referenced only if you choose to export that type of data.
Chapter 5 131

Using the Extract Program
Overview of the Export Function
Export File Title

The following items can be substituted in the export file title string:

For example, the string

report "!system_id data from !logfile on !date !time"

generates an export file title similar to

barkley data from logglob on 02/02/99 08:30 AM

Creating a Custom Graph or Report

Suppose you want to create a custom graph or report containing exported
global and application data. You would do the following:

1. Determine which data items (metrics) are needed from each data
type and in what format you will access them.

For this example, you want an ASCII file without headings and with
fields separated by commas.

2. Create and save the following ASCII export template file in the
/var/opt/perf/ directory. Name the file report1.

REPORT "sample export template file (report1)"
FORMAT ASCII
HEADINGS OFF

DATA TYPE GLOBAL
 GBL_CPU_TOTAL_UTIL
 GBL_DISK_PHYS_IO_RATE

!date The date the export function was performed.

!time The time the export function was performed.

!logfile The fully qualified name of the source log file.

!class The type of data requested.

!collector The name and version of the collector program.
(Not valid with DSI log files.)

!system_id The identifier of the system that collected the
data. (Not valid with DSI log files.)
Chapter 5132

Using the Extract Program
Overview of the Export Function
DATA TYPE APPLICATION
 APP_CPU_TOTAL_UTIL
 APP_DISK_PHYS_IO_RATE
 APP_ALIVE_PROCESSES

3. Run the extract program.

4. Issue the report command to specify the export template file you
created.

report /var/opt/perf/report1

5. Specify global summary data and application summary data using
the global and application commands.

global summary
application summary

6. Issue the export command to start the export.

export

7. Because you did not specify where the program should get the
performance data from, you are prompted to do so. In this example,
since the default log file is correct, just press Enter.

8. The output looks like this:

exporting global data50%......100%
exporting application data50%......100%

The exported file contains 31 days of data from 01/01/99
to 01/31/99

 examined exported
data type records records space
----------------------- --------- --------- ---------
global summaries 736 0.20 Mb
application summaries 2560 0.71 Mb

 0.91 Mb

The two files you have just created — xfrsGLOBAL.asc and
xfrsAPPLICATION.asc — contain the global and application summary
data in the specified format.
Chapter 5 133

Using the Extract Program
Overview of the Export Function
Output of Exported Files

The contents of each exported file are:

Report title and heading lines are not repeated in the file.

Notes on ASCII and Datafile Formats

The data in these format files is printable ASCII format. ASCII and
datafile formats are identical except that in the latter, all non-numeric
fields are enclosed with double quotes. Even the datafile header
information is enclosed with double quotes.

The ASCII file format does not enclose fields with double quotes.
Therefore, the data in ASCII files will be properly aligned when printed.

Numerical values are formatted based on their range and internal
accuracy. Since all fields will not be the same length, be sure to specify
the separator you want to use to start each field.

The user-specified separator character (or the default blank space)
separates the individual fields in ASCII and datafile formats. Blank
spaces, used as separators, can be visually more attractive if you plan to
print the report. Other characters can be more useful as separators if you
plan to read the export template file with another program.

export tittle
line

If export title and headings on were
specified.

Names
(application,
netif, lvolume,
or transaction)

If headings on was specified along with a
multiple layout file.

Heading line1 If headings on was specified.

Heading line2 If headings on was specified.

first data record

second data
record

...

last data record
Chapter 5134

Using the Extract Program
Overview of the Export Function
Using the comma as a separator is acceptable to many applications, but
some data items may contain commas that are not separators. These
commas can confuse analysis programs. The date and time formats can
contain different special characters based on the native language
specified when you execute the extract program.

NOTE To use a nonprinting special character as a separator, enter it into your
export template file immediately following the first double quote in the
separator parameter.

Hints

• Most spreadsheets accept files in datafile format using
separator=",".

• Many spreadsheet packages accept a maximum of 256 columns in a
single sheet. Use care when exporting multiple layout types of data
because it is easy to generate more than 256 total items. You can use
the output of the report reportfile,show command to determine if
you are likely to see this problem.

• If you have a printer that supports underlining, you can create a
more attractive printout by specifying ASCII format and the vertical
bar character (separator=|) and then printing the file with
underlining turned on.

Notes on Binary Format

In binary format files, numerical values are written as 32-bit integers.
This can save space by reducing the overall file size, but your program
must be able to read binary files. We do not recommend copying a
binary format file to a printer or a terminal.

In binary format, non-numerical data is written the same as it was in
the ASCII format except separator characters are not used. To properly
use a binary format file, you should use the record layout report printed
by extract when you specify report reportfile,show. This report gives
you the starting byte for each item specified.
Chapter 5 135

Using the Extract Program
Overview of the Export Function
To maintain maximum precision and avoid nonstandard, binary
floating-point representations, all numerical values are written as
scaled, 32-bit integers. Some items might be multiplied by a constant
before they are truncated into integer format.

For example, the number of seconds the CPU was used is multiplied by
1000 before being truncated. To convert the value in the exported file
back to the actual number of seconds, divide it by 1000. For ease in
conversion, specify headings on to write the scale factors to the
exported file. The report title and special header records are written to
binary format files to assist in programmatic interpretation.

Binary integers are written in the format that is native to the system on
which the extract program is being run. For example, Intel systems
write “little endian” integers while HP-UX, IBM AIX, and Sun systems
write “big endian” integers. Use care when transporting binary exported
files to systems that use different “"endians”.

Binary Header Record Layout

Each record in a binary format exported file contains a special 16-byte
record header preceding any user-specified data. The report
reportfile,show command includes the following four fields that make
up this record header:

The Record ID metric uniquely identifies the type of data contained in
the record. Current Record ID values are:

 -1 Title Record
 -2 First header Record (Contains Item Numbers)
 -3 Second header Record (Contains Item Scale Factors)
-4 Application Name Record (for Multiple Instance Application
 Files)
 -5 Transaction Name Record (for Multiple Instance Transaction

Binary Record Header Metrics

Record Length Number of bytes in the record, including the
16 byte record header.

Record ID A number to identify the type of record (see
below).

Date_Seconds Time since January 1, 1970 (in seconds).

Number_of_vars Number of repeating entries in this record.
Chapter 5136

Using the Extract Program
Overview of the Export Function
 Files)
 -7 Disk Device Name Record (for Multiple Instance Disk Device
 Files)
 -8 Logical Volume Name Record (for Multiple Instance Lvolume
 Files)
-9 Netif Name Record (for Multiple Instance Netif Files)
-10 Filesystem Name Record (for Multiple Instance Netif Files)

-11 CPU Name Record (for Multiple Instance Netif Files)

 1 Global Data Record (5 minute detail record)
101 Global Data Record (60 minute summary record)
 2 Application Data Record (5 minute detail record)
102 Application Data Record (60 minute summary record)
 3 Process Data Record (1 minute detail record)
 4 Configuration Data Record
 7 Disk Device Data Record (5 minute detail record)
107 Disk Device Data Record (60 minute summary record)
 8 Logical Volume Data Record (5 minute detail record)
108 Logical Volume Data Record (60 minute summary record)

 9 Filesystem Data Record (5 minute detail record)
109 Filesystem Data Record (60 minute summary record)
11 Netif Data Record (5 minute detail record)
111 Netif Data Record (60 minute summary record)
12 Transaction Data Record (5 minute detail record)
112 Transaction Data Record (60 minute summary record)
13 CPU Data Record (5 minute detail record)
113 CPU Data Record (60 minute summary record)

ClassID +1,000,000 Class Data Record (5 minute detail record)
ClassID +1,000,000+100 Class Data Record (60 minute summary record)

The Date_Seconds metric is identical to the user selectable
Date_Seconds metric and is provided to ensure that records can be
scanned easily for desired dates and times.

The Number_of_vars metric indicates how many groups of repeating
fields are contained in the record. For single instance data types, this
value is zero.

For Multiple Instance application records, the Number_of_vars metric is
the number of applications configured. For Multiple Instance disk device
records, the Number_of_vars metric is the number of disk devices
configured. For all header records, this metric is the maximum number of
repeating groups allowed.
Chapter 5 137

Using the Extract Program
Overview of the Export Function
Binary format files have special formats for the title and header records.
These records contain the information needed to describe the contents of
the file so that a program can properly interpret it. If headings off is
specified, only data records will be in the file. If headings on is specified,
the following records will precede all data records.

Binary Header Records

Title Record This record (Record ID -1) is written
whenever headings on, regardless of
whether the user specified a report title. It
contains information about the log file and
its source.

First Header Record The first header record (Record ID -2)
contains a list of unique item identification
numbers corresponding to the items
contained in the log file. The position of the
item ID numbers can be used to determine
the position and size of each exported item
in the file.

Second Header
Record

The second header record (Record ID -3)
contains a list of scale factors which
correspond to the exported items. For more
details, see the discussion of “Scale Factors”
later in this section.

Application Name
Record

This record (Record ID -4) will only be
present in application data files that utilize
the Multiple Layout format. It lists the
names of the applications that correspond to
the groups of application metrics in the rest
of the file.

Transaction Name
Record

This record (Record ID -5) will only be
present in transaction tracking data files
that utilize the Multiple Layout format. It
lists the names of the transactions that
correspond to the groups of transaction
metrics in the rest of the file.
Chapter 5138

Using the Extract Program
Overview of the Export Function
Disk Device Name
Record

This record (Record ID -7) will only be
present in disk device data files that utilize
the Multiple Layout format. It lists the
names of disk devices that correspond to the
groups of disk device metrics in the rest of
the file.

Logical Volume Name
Record

This record (Record ID -8) will only be
present in logical volume data files that
utilize the Multiple Layout format. It lists
the names of logical volumes that
correspond to the groups of logical volume
metrics in the rest of the file.

Netif Name Record This record (Record ID -9) will only be
present in netif (LAN) data files that utilize
the Multiple Layout format. It lists the
names of netif devices that correspond to
the groups of netif device metrics in the rest
of the file.

Filesystem Name
Record

This record (Record ID -12) will only be
present in filesystem data files that utilize
the Multiple Layout format. It lists the
names of filesystems that correspond to the
groups of filesystem metrics in the rest of
the file.

Cpu Name Record This record (Record ID -13) will only be
present in CPU data files that utilize the
Multiple Layout format. It lists the names
of CPUs that correspond to the groups of
CPU metrics in the rest of the file.

Binary Header Records
Chapter 5 139

Using the Extract Program
Overview of the Export Function
Binary Title Record

The Title Record for BINARY files contains information designed to assist
programmatic interpretation of the exported file's contents. This record
will be written to the exported file whenever headings on is specified.

The contents of the Binary Title Record are:

Record Length 4 byte Int Length of Title Record
Record ID 4 byte Int -1
Date_Seconds 4 byte Int Date exported file was created
Number_of_vars 4 byte Int Maximum number of repeating
 variables
Size of Fixed Area 4 byte Int Bytes in nonvariable part of
 record
Size of Variable Entry 4 byte Int Bytes in each variable entry
GMT Time Offset 4 byte Int Seconds offset from Greenwich
 Mean Time
Daylight Savings Time 4 byte Int =1 indicates Daylight Savings
 Time
System ID 40 Characters, System Identification
Collector Version 16 Characters, Name & version of the data
 collector
Log File Name 72 Characters, Name of the source log file
Report Title 100 Characters, User specified report title

The Date_Seconds, GMT Time Offset, and Daylight Savings Time
metrics in the Binary Title Record apply to the system and time when
the export file was created. If this is not the same system that logged the
data, these fields cannot properly reflect the data in the file.

Binary Item Identification Record

The first header record (record ID -2) in the binary file contains the
unique item numbers for each item exported. Each Item ID is a 4-byte
integer number that can be cross referenced using the rxitemid file
supplied with this product. The Item ID fields are aligned with the data
fields they represent in the rest of the file. All binary exported data items
will occupy a multiple of 4 bytes in the exported file and each will start
on a 4-byte boundary. If a data item requires more then 4 bytes of space,
its corresponding item ID field will be zero filled on the left.

For example, the process metric Program requires 16 bytes. Its data and
item ID records would be:
Chapter 5140

Using the Extract Program
Overview of the Export Function
Header 1 (Item Id Record) ...| 0| 0| 0|12012|
Process Data Record |Prog|ram_|name| _aaa|

Binary Scale Factor Record

The second header record (record ID -3) in the binary file contains the
scale factors for each of the exported items. Numeric items are exported
to binary files as 32-bit (4-byte) integers in order to minimize problems
with the way in which different computer architectures implement
floating point. Before being truncated to fit into the integer format, most
items are multiplied by a fixed scale factor. This allows floating point
numbers to be expressed as a fraction, using the scale factor as a
denominator.

Each scale factor is a 32-bit (4-byte) integer to match the majority of data
items. Special values for the scale factors are used to indicate
non-numeric and other special valued metrics.

Special Scale Factors

Non-numeric metrics, such as ASCII fields, have zero scale factors. A
negative 1 scale factor should not occur, but if it does it indicates an
internal error in the extract program and should be reported.

The DATE format is MPE CALENDAR format in the least significant 16
bits of the field (the 16 bits farthest right). The scale factor for date is
512. Scaling this as a 32-bit integer (dividing by 512) isolates the year as
the integer part of the date and the day of the year (divided by 512) as
the fractional part.

TIME is a 4-byte binary field (hour, minute, second, tenths of seconds).
The scale factor for time is 65536. Dividing it by 65536 forms a number
where the integer part is the (hour * 256) + minute.

It is easier to handle a Date_Seconds value in a binary file.

Application Name Record

When application data is exported in the Multiple Layout format, a
special Application Name Record is written to identify the application
groups. For binary format files, this record has record ID -4. It consists of
the binary record 16-byte header and a 20-byte application name for each
application which was defined at the starting date of the exported data.
Chapter 5 141

Using the Extract Program
Overview of the Export Function
If applications are added or deleted during the time covered in the data
extraction, the Application Name Record is repeated with the new
application names.

Transaction Name Record

When transaction data is exported in the Multiple Layout format, a
special Transaction Name Record is written to identify the
application-transaction name. For binary format files, this record has a
record ID -5. It consists of the binary record 16-byte header and a 60-byte
truncated application-transaction name for each transaction that was
configured at the starting date of the exported data. If transactions are
added during the time covered in the data extraction, the Transaction
Name Record will be repeated with the new application-transaction
name appended to the end of the original list. Transactions that are
deleted after the start of the data extraction will not be removed from the
Multiple Layout data record. For more information, see the HP
OpenView Performance Agent & GlancePlus for UNIX: Tracking Your
Transactions guide.

Disk Device Name Record

When disk device data is exported in the Multiple Layout format, a
special Disk Device Name Record is written to identify the disk device
name. For binary format files, this record has a record ID -7. It consists of
the binary record 16-byte header and a 20-byte disk device name for each
disk device that was configured at the starting date of the exported data.

If disk devices are added during the time covered in the data extraction,
the Disk Device Name Record will be repeated with the new disk device
name appended to the end of the original list. Disk devices that are
deleted after the start of the data extraction will not be removed from the
Multiple Layout data record.

Logical Volume Name Record

When logical volume data is exported in the Multiple Layout format, a
special Logical Volume Name Record is written to identify the logical
volume name. For binary format files, this record has a record ID -8. It
consists of the binary record 16-byte header and a 20-byte disk device
name for each logical volume that was configured at the starting date of
the exported data.
Chapter 5142

Using the Extract Program
Overview of the Export Function
If logical volumes are added during the time covered in the data
extraction, the Logical Volume Name Record will be repeated with the
new logical volume name appended to the end of the original list. Logical
volumes that are deleted after the start of the data extraction will not be
removed from the Multiple Layout data record.

Netif Name Record

When netif data is exported in the Multiple Layout format, a special
Netif Name Record is written to identify the netif device name. For
binary format files, this record has a record ID -11. It consists of the
binary record 16-byte header and a 20-byte netif device name for each
netif device that was configured at the starting date of the exported data.

If netif devices are added during the time covered in the data extraction,
the Netif Name Record will be repeated with the new netif device name
appended to the end of the original list. Netif devices that are deleted
after the start of the data extraction will not be removed from the
Multiple Layout data record.
Chapter 5 143

Using the Extract Program
Overview of the Export Function
Chapter 5144

6 Extract Commands
Chapter 6 145

Extract Commands
Introduction
Introduction
This chapter describes the extract program’s commands. It includes a
table showing command syntax, a table of commands for extracting and
exporting data, and a command reference section describing the
commands in alphabetical order.

Commands and parameters for extract can be entered with any
combination of uppercase and lowercase letters. Only the first three
letters of the command's name are required, except for the weekdays and
weekly commands that require you to enter the whole name. For
example, the command application detail can be abbreviated as app
det.

Examples of how these commands are used can be found in online help
for the extract program.

The table on the following pages summarizes the syntax of the extract
commands and their parameters.

NOTE The extract function cannot produce summarized data. Summary data
can only be produced by the export function.
Chapter 6146

Extract Commands
Introduction
Table 6-1 Extract Commands: Syntax and Parameters

Command Parameter

application on
detail
summary (export only)
both (export only)
off (default)

class detail (default)
summary (export only)
both (export only)
off

cpu detail
summary (export only)
both (export only)
off (default)

configuration on
detail
off (default)

disk on
detail
summary (export only)
both (export only)
off (default)

exit
e

export day[ddd] [-days]
week [ww] [-weeks]
month[mm] [-months]
year [yy] [-years]

extract day[ddd] [-days]
week [ww] [-weeks]
month[mm] [-months]
year [yy] [-years]
Chapter 6 147

Extract Commands
Introduction
filesystem detail
summary (export only)
both (export only)
off (default)

global on
detail (default)
summary (export only)
both (export only)
off

guide

help

list filename
*

logfile logfile

lvolume on
detail
summary (export only)
both (export only)
off (default)

menu

monthly yyymm
mm

netif on
detail
summary (export only)
both (export only)
off (default)

output outputfile
,new
,purgeboth
,append

Table 6-1 Extract Commands: Syntax and Parameters (Continued)

Command Parameter
Chapter 6148

Extract Commands
Introduction
process on
detail [app#[-#],...]
off (default)
killed

quit
q

report [export template file]
,show

shift starttime - stoptime
all day
noweekends

sh
!

shell command

show all

start date[time]
today[-days][time]
last[-days][time]
first[+days][time]

stop date[time]
today[-days][time]
last[-days][time]
first[+days][time]

transaction on
detail
summary (export only)
both (export only)
off (default)

weekdays 1.....7

weekly yyww
ww

Table 6-1 Extract Commands: Syntax and Parameters (Continued)

Command Parameter
Chapter 6 149

Extract Commands
Introduction
yearly yyyy
yy

Table 6-1 Extract Commands: Syntax and Parameters (Continued)

Command Parameter
Chapter 6150

Extract Commands
Introduction
The following table lists the commands that are used for extracting and
exporting data and the types of log files used (scopeux log files or DSI log
files).

Table 6-2 Extract Commands: Extracting and Exporting Data

Command Extract
Data

Export
Data

Scopeux
Log Files

DSI
Log Files

application x x x

class x x x x

configuration x x

cpu x x x

disk x x x

export x x x

extract x x

filesystem x x x

global x x x

logfile x x x x

lvolume x x x

monthly x x

netif x x

output x x x x

process x x x

report x x x

shift x x x

start x x x x

stop x x x x
Chapter 6 151

Extract Commands
Introduction
transaction x x x

weekdays x x x

weekly x x

yearly x x

Table 6-2 Extract Commands: Extracting and Exporting Data (Continued)

Command Extract
Data

Export
Data

Scopeux
Log Files

DSI
Log Files
Chapter 6152

Extract Commands
application
application
Use the application command to specify the type of application data
that is being extracted or exported.

The default is application off

Syntax

Parameters

on or detail Specifies that raw, 5-minute detail data should be
extracted or exported.

summary
(export only) Specifies that data should be summarized by:

 • the number of minutes specified with the summary
parameter in the specified export template file
(export only)

 • the default summary interval of one hour (export
or extract)

 Summarization can significantly reduce the size of the
resulting extracted or exported data, depending on the
summarization interval used. For example, hourly
summary data is about one-tenth the size of 5-minute
detail data.

both
(export only) Specifies that detail data and summary data are to be

extracted or exported.

off Specifies that no data of this type is to be extracted or
exported.

application

[on]
[detail]
[off]
Chapter 6 153

Extract Commands
application
NOTE If you are using OV Performance Manager, detail data must be included
in an extracted file before drawing application graphs with points every
5 minutes.

Example

In this example, the application command causes detailed application
log file data to be exported: The output export file contains the
application metrics specified in the myrept export template file.

logfile /var/opt/perf/datafiles/logglob
global off
application detail
report /var/opt/perf/myrept
export

To perform the above task using command line arguments, enter:

extract -a -r /var/opt/perf/myrept -xp
Chapter 6154

Extract Commands
class
class
Use the class command to specify the class of DSI data to be exported,
or scopeux data to be extracted or exported.

The default is class detail.

Syntax

Parameters

Examples

To export summary data in a DSI log file that contains a class named
acctg_info, issue the following command:

class acctg_info summary

Once the log file is specified by the user and opened by the extract
program, the acctg_info class is verified to exist in the log file and can
subsequently be exported.

Other variations of this command are:

[detail]

class [classname] [summary]

[both]

[off]

classname Name of a group similarly classified metrics.

detail For DSI log files, specifies how much detail data is
exported according to the time set in DSI log file. (For
more information, see the HP OpenView Performance
Agent for UNIX Data Source Integration Guide.)
For scopeux log files, specifies that raw, 5-minute
detail should be extracted or exported.

summary
bothoff

See “Parameters” on page 153 in the description of the
application command at the beginning of this
chapter.
Chapter 6 155

Extract Commands
class
CLASS ACCTG_INFO SUMMARY
class ACCTG_INFO summary
class acctg_info sum

Commands can be either uppercase or lowercase. Class names are
always upshifted and then compared.

In the following example, summary data in a class named fin_info is
exported.

extract>
class fin_info summary
export

To perform the above task using command line arguments, enter:

extract -C fin_info summary -xp
Chapter 6156

Extract Commands
configuration
configuration
Use the configuration command to specify whether or not to export
system configuration information.

The default is configuration off.

Syntax

Parameters

on or detail Specifies that all configuration records should be
exported.

off Specifies that no configuration data is to be exported.

All configuration information available in the log file is exported. Any
begin, end, shift, start, stop or noweekends commands that are
used with the configuration command are ignored.

NOTE The configuration command affects only the export function. The extract
function is not affected because it always extracts system configuration
information.

Example

In this example, the configuration command causes system
configuration information to be exported. The output export file contains
the configuration metrics specified in the myrept export template file.

logfile /var/opt/perf/datafiles/logglob
configuration on
report /var/opt/perf/myrept
export

To perform the above task using command line arguments, enter:

extract -c -r /var/opt/perf/myrept -xp

configuration
[on]
[detail]
[off]
Chapter 6 157

Extract Commands
cpu
cpu
Use the cpu command to specify the summarization level of CPU.

The default is cpu off.

Syntax

Parameters

detail Extracts or exports 5-minute detail records.

summary Exports summary records.

both Exports both detail and summary records.

off Extracts or exports no CPU data.

Example

In this example, the cpu command causes CPU detail data that was
collected starting July 26, 2001 to be exported. Because no export
template file is specified, the default export template file, reptfile, is
used. All disk metrics are included in the output file as specified by
reptfile.

logfile /var/opt/perf/datafiles/logglob
global off
cpu detail
start 7/26/01
export

To perform the above task using command line arguments, enter:

extract -u -b 7/26/01 -xp

cpu
[detail]
[summary]
[both][of
f]
Chapter 6158

Extract Commands
disk
disk
Use the disk command to specify the type of disk device data that is
being extracted or exported.

The default is disk off.

Syntax

Parameters

Example

In this example, the disk command causes disk detail data that was
collected starting July 5, 1999 to be exported. Because no export
template file is specified, the default export template file, reptfile, is
used. All disk metrics are included in the output file as specified by
reptfile.

logfile /var/opt/perf/datafiles/logglob
global off
disk detail
start 7/5/99
export

To perform the above task using command line arguments, enter:

extract -D -b 7/5/99 -xp

disk

[on]
[detail]
[summary]
[both]
[off]

on or detail
summary
bothoff

See “Parameters” on page 153 in the description of
the application command at the beginning of this
chapter.
Chapter 6 159

Extract Commands
exit
exit
Use the exit command to terminate the extract program. The exit
command is equivalent to the extract program’s quit command.

Syntax

exit

e

Chapter 6160

Extract Commands
export
export
Use the export command to start the process of copying data into an
exported file format.

Syntax

Parameters

Use one of the following parameters to export data for a particular
interval.

day Represents a single day

week Represents a single week, Monday through
Sunday

month Represents a single month, first through last
calendar day

year Represents a single year, first through last
calendar day

If no parameters are used with the export command, the interval used
for the exported data is set by the start and stop commands.

How to Use It

There are four ways to specify a particular interval (day, week, month,
year).

• Current interval - Specify the parameter only. For example, month
means the current month.

• Previous interval - Specify the parameter, a minus, and the number
of intervals before the current one desired. For example, day-1 is
yesterday, week-2 is two weeks prior to the current week.

• Absolute interval - Specify the parameter and a positive number. The
number indicates the absolute interval desired in the current year.
For example, day 2 is January 2 of the current year.

export
[day
[week
[month
[year

[ddd] [yyddd] [-days]]
[ww] [yyww] [-weeks]]
[mm] [yymm] [-months]]
[yy] [yyyy] [-years]]
Chapter 6 161

Extract Commands
export
• Absolute interval plus year - Specify the parameter and a large
positive number. The number should consist of the last two digits of
the year and the absolute interval number in that year. In this
format the absolute day would have 5 digits (99002 means January
2, 1999) and all other parameters would have four digits (month
9904 means April of 1999).

If you have not previously specified a log file or an export template file,
the logfile command uses the default global log file logglob and the
report command uses the default export template file reptfile.

The settings or defaults for all other parameters are used. For details on
their actions, see descriptions of the application, configuration,
global, process, disk, lvolume, netif, CPU, filesystem,
transaction, output, shift, start, and stop commands.

The export command creates up to 16 different default output files
based on the types of data and level of summarization specified.

xfrdGLOBAL.ext Global detail data file

xfrsGLOBAL.ext Global hourly summary data file

xfrdAPPLICATION.ext Application detail data file

xfrsAPPLICATION.ext Application hourly summary data file

xfrdPROCESS.ext Process detail data file

xfrdDISK.ext Disk device detail data file

xfrsDISK.ext Disk device summary data file

xfrdVOLUME.ext Logical volume detail data file

xfrsVOLUME.ext Logical volume summary data file

xfrdNETIF.ext Netif detail data file

xfrsNETIF.ext Netif summary data file

xfrdCPU.ext CPU detail data type

xfrsCPU.ext CPU summary data type

xfrdFILESYSTEM.ext Filesystem detail data type

xfrsFILESYSTEM.ext Filesystem summary data type
Chapter 6162

Extract Commands
export
where ext = asc, dat, bin, or wk1

The default file names are created from the data type name. The prefix is
either xfrd or xfrs depending if the data is detailed or summary data.
The extension is the specified asc (ASCII), bin (binary), dat (datafile),
or wk1 (spreadsheet) data format.

For example, classname = ACCTG_INFO would have export file names of:

For more information about exporting data, see “Overview of the Export
Function” in Chapter 5, Using the Extract Program,.

Example

In this example, the export command causes log file data collected
yesterday from 8:00 am to 5 pm to be exported. Because no export
template file is specified, the default export template file, reptfile, is
used. All global metrics are included in the output file as specified by
reptfile

logfile /var/opt/perf/datafiles/logglob
start today-1 8:00 am
stop today-1 5:00 pm
global both
export

To perform the above task using command line arguments, enter:

extract -gG -b today 8:00 am -e today 5:00 pm -xp

xfrdTRANSACTION.ext Transaction detail data file

xfrsTRANSACTION.ext Transaction summary data file

xfrdCONFIGURATION.ext Configuration detail data file

xfrdACCTG_INFO.wk1 detailed spreadsheet data for ACCT_INFO

xfrsACCTG_INFO.asc summarized ASCII data for ACCT_INFO
Chapter 6 163

Extract Commands
extract
extract
Use the extract command to start the process of copying data from raw
log files into an extracted file format. Extracted files can be used for
archiving or for analysis by analyzer programs such as OV Performance
Manager. You can extract data from raw log files and from extracted
files.

The extract command cannot be used to process data from DSI log files.

Syntax

Parameters

Use one of the following parameters to extract data for a particular
interval:

day Represents a single day

week Represents a single week, Monday through
Sunday

month Represents a single month, first through last
calendar day

year Represents a single year, first through last
calendar day

If no parameters are used with the extract command, the interval used
for data extraction is set by the start and stop commands.

How to Use It

There are four ways to specify a particular interval (day, week, month,
year).

• Current interval - Specify the parameter only. For example, month
means the current month.

extract
[day
[week
[month
[year

[ddd] [yyddd] [-days]]
[ww] [yyww] [-weeks]]
[mm] [yymm] [-months]]
[yy] [yyyy] [-years]]
Chapter 6164

Extract Commands
extract
• Previous interval - Specify the parameter, a minus, and the number
of intervals before the current one desired. For example, day-1 is
yesterday, week-2 is two weeks prior to the current week.

• Absolute interval - Specify the parameter and a positive number. The
number indicates the absolute interval desired in the current year.
For example, day 2 is January 2 of the current year.

• Absolute interval plus year - Specify the parameter and a large
positive number. The number should consist of the last two digits of
the year and the absolute interval number in that year. In this
format, the absolute day would have five digits (99002 means
January 2, 1999) and all other parameters would have four digits
(month 99904 means April of 1999).

The extract command starts data extraction. If not previously specified,
the logfile and output commands assume the following defaults when
the extract command is executed:

log file = /var/opt/perf/datafiles/logglob
output file = rxlog,new

The settings or defaults for all other parameters are used. For details on
their actions, see descriptions of the application, global, process,
disk, lvolume, netif, CPU, filesystem, transaction, shift,
start, and stop commands.

The size of an extracted log file cannot exceed 64 megabytes.

Example

In the first example, data collected from March 1, 2000 to June 30, 2000
during the hours 8:00 am to 5:00 pm on weekdays is extracted. Only
global and application detail data is extracted.

logfile /var/opt/perf/datafiles/logglob
start 03/01/00
stop 06/30/00
shift 8:00 am - 5:00 pm noweekends
global detail
application detail
extract

To perform the above task using command line arguments, enter:

extract -ga -b 03/01/00 -e 6/30/00 -s 8:00 am - 5:00
noweekends -xt
Chapter 6 165

Extract Commands
extract
In the second example, a new extracted log file named rxjan00 is
created. Any existing file that has this name is purged. All raw log file
data collected from January 1, 2000 through January 31, 2000 is
extracted:

logfile /var/opt/perf/datafiles/logglob
output rxjan00,purge
start 01/01/00
stop 01/31/00
global detail
application detail
transaction detail
process detail
disk detail
lvolume detail
netif detail
filesystem detail
cpu detail
extract

To perform the above task using command line arguments, enter:

extract -f rxjan00,purge -gatpdznyu -b 01/01/00 -e 01/31/00
-xt
Chapter 6166

Extract Commands
filesystem
filesystem
Use this command to specify the summarization level of filesystem data
to extract or export.

The default is filesystem off.

Syntax

Parameters

detail Extracts or exports 5-minute detail records.

summary Exports summary records.

both Exports both detail and summary records.

off Extracts or exports no filesystem data.

Example

In this example, the filesystem command causes filesystem detail data
that was collected starting July 26, 2001 to be exported. Because no
export template file is specified, the default export template file,
reptfile, is used. All filesystem metrics are included in the output file
as specified by reptfile.

logfile /var/opt/perf/datafiles/logglob
global off
filesystem detail
start 7/26/01
export

To perform the above task using command line arguments, enter:

extract -y -b 7/26/01 -xp

filesystem
[detail]
[summary]
[both]
[off]
Chapter 6 167

Extract Commands
global
global
Use the global command to specify the amount of global data to be
extracted or exported.

The default is global detail. (In command line mode, the default is
global off.)

Syntax

Parameters

How to Use It

Detail data must be extracted if you want to draw OV Performance
Manager global graphs with points every 5 minutes.

Summarized data is graphed by OV Performance Manager more quickly
since fewer data records are needed to produce a graph. If only global
summaries are extracted, OV Performance Manager global graphs
cannot be drawn with data points every 5 minutes.

The both option maintains the access speed gained with the hourly
summary records while permitting you to draw OV Performance
Manager global graphs with points every 5 minutes.

The off parameter is not recommended if you are using OV Performance
Manager because you must have global data to properly understand
overall system behavior. OV Performance Manager global graphs cannot
be drawn unless the extracted file contains at least one type of global
data.

global

[on]
[detail]
[summary]
[both]
[off]

detail or on
summary
both
off

See “Parameters” on page 153 in the description of
the application command at the beginning of this
chapter.
Chapter 6168

Extract Commands
global
Example

The global command is used here to specify that no global data is to be
exported (global detail is the default). Only detailed transaction data
is exported. The output export file contains the transaction metrics
specified in the myrept export template file.

extract>
logfile /var/opt/perf/datafiles/logglob
global off
transaction detail
report /var/opt/perf/myrept
export

To perform the above task using command line arguments, enter:

extract -l -t -r /var/opt/perf/myrept -xp
Chapter 6 169

Extract Commands
guide
guide
Use the guide command to enter guided commands mode. The guided
command interface leads you through various extract commands and
prompts you to perform some of the most common tasks that are
available.

Syntax

guide

How to Use It

• To enter guided commands mode from extract‘s interactive mode,
type guide.

• To accept the default value for a parameter, press Return.

• To terminate guided commands mode and return to interactive mode,
type q at the guide> prompt.

This command does not provide all possible combinations of parameter
settings. It selects settings that should produce useful results for the
majority of users. You can obtain full control over extract‘s functions
through extract‘s interactive command mode.

NOTE If you are exporting DSI log file data, we recommend using guided
commands mode to create a customized export template file and export
the data.
Chapter 6170

Extract Commands
help
help
Use the help command to access online help.

Syntax

help [keyword]

How to Use It

You can enter parameters to obtain information on extract commands
and tasks, or on help itself. You can navigate to different topics by
entering a key word. If more than one page of information is available,
the display pauses and waits for you to press Return before continuing.
Type q or quit to exit the help system and return to the extract
program.

You can also request help on a specific topic. For example,

help tasks

or

help resize parms

When you use this form of the help command, you receive the help text
for the specified topic and remain in the extract command entry
context. Because you do not enter the help subsystem interactively, you
do not have to type quit before entering the next extract command.
Chapter 6 171

Extract Commands
list
list
Use the list command to specify the list file for all extract program
reports.

Syntax

How to Use It

You can use list at any time while using extract to specify the list
device. It uses a file name or list device name to output the user-specified
settings. If the list file already exists, the output is appended to it.

The data that is sent to the list device is also displayed on your screen.

While extract is running, type:

list outfilename

To return the listing device to the user terminal, type:

list stdout

OR

list *

To determine the current list device, type the list command without
parameters as follows:

list

If the list file is not stdout, most commands are echoed to the list file as
they are entered.

list [file]
[*]
Chapter 6172

Extract Commands
list
Example

The following example, the list device is set to mylist. The results of the
next commands are printed to mylist and displayed on your screen.

extract>
logfile /var/opt/perf/datafiles/logglob
list mylist
global detail
shift 8:00 AM - 5:00 PM
extract
Chapter 6 173

Extract Commands
logfile
logfile
Use the logfile command to open a log file. You must open a log file for
all extract program functions. You can do this explicitly by issuing the
logfile command, or implicitly by issuing the extract command or
export command. If you do not specify a log file name, the extract
program prompts you for a log file name and displays the default global
log file /var/opt/perf/datafiles/logglob. You can either accept the
default or specify a different log file.

Syntax

logfile [logfile]

How to Use It

To open a log file, you can specify the name of either a raw or extracted
log file. You cannot specify the name of a file created by the export
command. If you specify an extracted log file name, all information is
obtained from this single file. If you specify a raw log file name, you must
specify the name of the global log file before you can access the raw log
file. This is the only raw log file name you should specify.

If the log file is not in your current working directory, you must provide
its path.

The global log file and other raw log files must be in the same directory.
They have the following names:

The general contents of the log file are displayed when the log file is
opened.

logglob
logappl
logproc
logdev
logtran
logindx

global log file
application log file
process log file
device log file
transaction log file
index log file
Chapter 6174

Extract Commands
logfile
CAUTION Do not rename raw log files! When accessing these files, the program
assumes that the standard log file names are in effect. If you must
rename log files to place log files from multiple systems on the same
system for analysis, you should first extract the data and then rename
the extracted log files.

Example

This is a typical listing of the default global log file.

Global file: /var/opt/perf/datafiles/logglob, version D
Application file: /var/opt/perf/datafiles/logappl
Process file: /var/opt/perf/datafiles/logproc
Device file: /var/opt/perf/datafiles/logdev
Transaction file: /var/opt/perf/datafiles/logdev
Index file: /var/opt/perf/datafiles/logindx

System ID: homer
System Type 9000/715/ S/N 2223334442 O/S HP-UX B.10.20 A
Data collector: SCOPE/UX C.02.30
File Created: 10/08/99
Data Covers: 44 days to 11/20/99
Shift is: All Day

Data records available are:
Global Application Process Disk Volume Transaction

Maximum file sizes:
Global=10.0 Application=10.0 Process=20.0 Device=10.0
Transaction=10.0 MB

The first GLOBAL record is on 10/08/99 at 08:17 AM
The first NETIF record is on 10/08/99 at 08:17 AM
The first APPLICATION record is on 11/17/99 at 12:15 PM
The first PROCESS record is on 10/08/99 at 08:17 AM
The first DEVICE record is on 10/31/99 at 10:45 AM
The Transaction data file is empty
The default starting date & time = 10/08/99 11:50 AM (LAST
-30)
The default stopping date & time = 11/20/99 11:59 PM (LAST
-0)
Chapter 6 175

Extract Commands
lvolume
lvolume
Use the lvolume command to specify the type of logical volume data that
is being extracted or exported. (This command is used only on HP-UX
systems.)

The default is lvolume off.

Syntax

Parameters

Example

In this example, a new extracted log file named rx899 is created and any
existing file that has that name is purged. All logical volume data
collected from August 1 through August 31 is extracted.

logfile /var/opt/perf/datafiles/logglob
output rx899,purge
start 08/01/99
stop 08/31/99
global detail
lvolume detail
month 9908

To perform the above task using command line arguments, enter:

extract -f rx899,purge -gz -xm 9908

lvolume

[on]
[detail]
[summary]
[both]
[off]

on or detail
summary
both
off

See “Parameters” on page 153 in the description of
the application command at the beginning of this
chapter.
Chapter 6176

Extract Commands
menu
menu
Use the menu command to print a list of the available extract
commands.

Syntax

menu

Example

Command Parameters Function
HELP [topic] Get information on commands and options
GUIDE Enter guided commands mode for novice users
LOGFILE [logname] Specify a log file to be processed
LIST [filename|*] Specify the listing file
OUTPUT [filename]
 [,NEW/PURGE/APPEND] Specify a destination file
REPORT [filename][,SHOW] Specify an Export Format file for
 "EXPORT"
GLOBAL [DETAIL/SUMMARY/BOTH/OFF] Extract GLOBAL records
APPLICATION [DETAIL/SUMMARY/BOTH/OFF] Extract APPLICATION
 records
PROCESS [DETAIL/OFF/KILLED][APP=] Extract PROCESS records
DISK [DETAIL/SUMMARY/BOTH/OFF] Extract DISK DEVICE records
LVOLUME [DETAIL/SUMMARY/BOTH/OFF] Extract Logical VOLUME
 records
NETIF [DETAIL/SUMMARY/BOTH/OFF] Extract Logical NETIF
 records
CPU [DETAIL/SUMMARY/BOTH/OFF] Extract CPU records
FILESYSTEM [DETAIL/SUMMARY/BOTH/OFF] Extract FILESYSTEM
 records
CONFIG [DETAIL/OFF] Export CONFIGURATION records
CLASS classname[DETAIL/SUMMARY/BOTH/OFF] Export classname
 records
TRANSACTION [DETAIL/SUMMARY/BOTH/OFF] Extract TRANSACTION
 records
START [startdate time] Specify a starting date and time for
 SCAN
STOP [stopdate time] Specify an ending date and time for
 SCAN
SHIFT [starttime - stoptime] [NOWEEKENDS] Specify daily
 shift times
SHOW [ALL] Show the current program settings
Chapter 6 177

Extract Commands
menu
EXPORT [d/w/m/y][-offset] Copy log file records to HOST
 format files
EXTRACT [d/w/m/y][-offset] Copy selected records to output
 (or append) file
WEEKLY [ww/yyww] Extract one calendar week's data with
 auto file names
MONTHLY [mm/yymm] Extract one calendar month's data with
 auto file names
YEARLY [yy/yyyy] Extract one calendar year's data with
 auto file names

WEEKDAYS [1...7] Set days to exclude from export 1=Sunday
! or SH [command] Execute a system command
MENU or ? List the command menu (this listing)
EXIT or Q Terminate the program
Chapter 6178

Extract Commands
monthly
monthly
Use the monthly command to specify data extraction based on a calendar
month. During execution, this command sets the start and stop dates to
the proper dates, based on the month and year of the data extracted.

The name of the output file consists of the letters rxmo followed by the
four digits of the year and the two-digit number of the month being
extracted. For example, data extracted in March 1999 would be output to
a file named rxmo199903.

Syntax

Parameters

If you do not specify the log file before executing the monthly command,
the default logglob file is used.

How to Use It

Use the monthly command when you are extracting data for archiving
on a monthly basis.

The type of data extracted and summarized follows the normal rules for
the extract command and can be set before executing the monthly
command. These settings are honored unless a monthly output file
already exists. If it does, data is appended to it based on the type of data
that was originally specified.

monthly [yymm]
[mm]

monthly Extracts data from the current (default) month.

monthly mm Extracts data for a specific month from the current
year’s data (where mm is a number from 01 to 12).

monthly yymm Extracts data for a specific month and year (where
yymm is a single number consisting of the last two
digits of the year and two-digit month number).
For example, to extract data for February 1999,
specify monthly 9902.
Chapter 6 179

Extract Commands
monthly
The monthly command has a feature that opens the previous month's
extracted file and checks to see if it is filled--whether it contains data
extracted up to the last day of the month. If not, the monthly command
appends data to this file to complete the previous month's extraction.

For example, a monthly command is executed on May 7, 1999. This
creates a log file named rxmo199905 containing data from May 1
through the current date (May 7).

On June 4, 1999, another monthly command is executed. Before the
rxmo199906 file is created for the current month, the rxmo199905 file
from the previous month is opened and checked. When it is found to be
incomplete, data is appended to it to complete the extraction through
May 31, 1999. Then, the rxmo199906 file is created to hold data from
June 1, 1999 to the current date (June 4).

As long as you execute the monthly command at least once a month, this
feature will complete each month's file before creating the next month's
file. When you see two adjacent monthly files--for example, rxmo199905
(May) and rxmo199906 (June)--you can assume that the first file is
complete for that month and it can be archived and purged.

NOTE The monthly and extract month commands are similar in that they both
extract one calendar month's data. The monthly command ignores the
setting of the output command, using instead predefined output file
names. It also attempts to append missing data to the previous month's
extracted log file if it is still present on the system. The extract month
command, on the other hand, uses the settings of the output command. It
cannot append data to the previous month's extracted file since it does
not know its name.

Example

In this example, detail application data logged during May 1999 is
extracted.

logfile /var/opt/perf/datafiles/logglob
global off
application detail
monthly 9905

To perform the above task using command line arguments, enter:

extract -a -xm 9905
Chapter 6180

Extract Commands
netif
netif
Use the netif command to specify the type of logical network interface
(LAN) data to extract or export. Netif data is logged in the logdev file.

The default is netif off.

Syntax

Parameters

Example

In this example, netif detail data collected from March 1, 2000 to June
30, 2000 during the hours 8:00 am to 5:00 pm on weekdays is extracted.

logfile /var/opt/perf/datafiles/logglob
start 03/01/00
stop 06/30/00
shift 8:00 AM - 5:00 PM noweekends
netif detail
extract

To perform the above task using command line arguments, enter:

extract -n -b 03/01/00 -e 6/30/00 -s 8:00 am - 5:00
noweekends -xt

netif

[on]
[detail]
[summary]
[both]
[off]

on or detail
summary
both
off

See “Parameters” on page 153 in the description of
the application command at the beginning of this
chapter.
Chapter 6 181

Extract Commands
output
output
Use the output command to specify the name of an output file for the
extract or export functions.

The optional second parameter specifies the action to be taken if an
output file with the same name exists.

Syntax

Parameters

How to Use It

If you do not specify an action in batch mode, the default action,new is
used. In interactive mode, you are prompted to enter an action if a
duplicate file is found.

If you do not specify an output file, default output files are created. The
default output file names are:

For extract: rxlog

For export:

xfrdGLOBAL.ext
xfrsGLOBAL.ext
xfrdAPPLICATION.ext
xfrsAPPLICATION.ext
xfrdPROCESS.ext

output [filename
]

[,new]
[,purge]
[,append]

,new Specifies that the output file must be a new file. This
is the default action in batch mode. If a file with the
same name exists, the batch job terminates.

,purge Specifies that any existing file should be purged to
make room for the new output file.

,append Specifies that an existing extracted file should have
data appended to it. If no file exists with the output
file name specified, a new file is created.
Chapter 6182

Extract Commands
output
xfrdDISK.ext
xfrsDISK.ext
xfrdLVOLUME.ext
xfrsLVOLUME.ext
xfrdNETIF.ext
xfrsNETIF.ext
xfrdCPU.ext
xfrsCPU.ext
xfrdFILESYSTEM.ext
xfrsFILESYSTEM.ext
xfrdTRANSACTION.ext
xfrsTRANSACTION.ext
xfrdCONFIGURATION.ext

where ext = asc (ASCII), dat (datafile), bin (binary), or wk1
(spreadsheet).

A special file name, stdout (or *), can be used with the export operation
to direct the output to the stdout file (normally your terminal or
workstation, although this can be redirected using shell commands).

output stdout

or

output *

To return the output to its default settings, type:

output default

or

output -
Chapter 6 183

Extract Commands
output
NOTE You can override the default output file names for exported files using
the output parameter in the export template file.

You should not output extract operation files to stdout, because they are
incompatible with ASCII devices. You should also not output binary or
WK1 formats of the export operation to the stdout file for the same
reason.

Care should be taken to avoid appending extracted data to an existing
exported data file and to avoid appending exported data to an existing
extracted file. Attempts to append the wrong data type will result in an
error condition.

Example

In this example, no output file is specified so the default output file,
rxlog is used for the application summary data being extracted. The
,purge option specifies that any existing output file should be purged.

extract>
logfile /var/opt/perf/datafiles/logglob
output rxlog,purge
global off
application summary
extract month 9905

To perform the above task using command line arguments, enter:

extract -f rxlog,purge -A -xm 9905
Chapter 6184

Extract Commands
process
process
Use the process command to specify whether or not to extract or export
process data.

The default is process off.

Syntax

Parameters

on Specifies that process data should be extracted or
exported.

detail Specifying process detail is the same as specifying
process on.

off Specifies that process data should not be extracted or
exported.

killed Specifies only processes that have an interest reason
that includes killed. (Processes that terminated in the
measurement interval.)

application Specifies only processes that belong to selected
applications. An application can be entered as a single
number or as a range of application numbers (7-9
means applications 7, 8, and 9). The application
number is determined by the order of the application
definition in the parm file when the data was collected.
If you are specifying multiple applications, separate
each one with a comma.

[on]

process [detail] [application=#[-#] ,...]

[off]

[killed]
Chapter 6 185

Extract Commands
process
NOTE Process data can increase the size of an extracted log file significantly. If
you plan to copy the log file to a workstation for analysis, you might want
to limit the amount of process data extracted.

Example

In this example, the process command specifies processes that
terminated during an interval and belong to applications 1, 4, 6, 7, 8, or
10. Use the utility program’s scan command to find the application
numbers for specific applications.

process killed applications=1,4,6-8,10
Chapter 6186

Extract Commands
quit
quit
Use the quit command to terminate the extract program. The quit
command is equivalent to the extract program’s exit command.

Syntax

quit

q

Chapter 6 187

Extract Commands
report
report
Use the report command to specify the export template file to be used
by the export function. If no export template file is specified, the default
export template file, reptfile, is used. The export template file is used
to specify various output format attributes used in the export function. It
also specifies which metrics will be exported.

If you are in interactive mode and specify no export template file, all
metrics for the data types requested will be exported in ASCII format.

Syntax

report [exporttemplatefile] [,show]

Parameters

,show Specifies that the field positions and starting columns
should be listed for all metrics specified in the export
template file. This listing can be used when export files
are processed by other programs.

How to Use It

When you issue this command, you are prompted by a message that asks
whether or not you want to validate metrics in the export template with
the previously specified log file. Validation ensures that the metrics
specified in the export template file exist in the log file. This allows you
to check for possible errors in the export template file. If no validation is
performed, this action is deferred until you perform an export.

NOTE The ,show parameter of the report command discussed here is different
from the show command discussed later.
Chapter 6188

Extract Commands
sh
sh
Use sh to enter a shell command without exiting extract by typing sh
or an exclamation point(!) followed by a UNIX shell command.

Syntax

sh or ! [shell command]

Parameters

sh ls Executes the ls command and returns to extract.
The shell command is any system command.

!ls Same as above.

!ksh Starts a Korn shell. Does not return immediately to
extract. Type exit or CTRL-d Return to return to the
extract program.

How to Use It

Following the execution of the single command, you automatically return
to extract. If you want to issue multiple shell commands without
returning to extract after each one, you can start a new shell.

If you issue the sh command without the name of the shell command,
you are prompted to supply it. For example,

sh

enter SYSTEM command: ls
Chapter 6 189

Extract Commands
shift
shift
Use the shift command to limit data extraction to certain hours of the
day corresponding to work shifts and to exclude weekends (Saturday and
Sunday).

The default is shift all day to extract data for all day, every day
including weekends.

Syntax

Parameters

The starttime and stoptime parameters are entered in the same
format as the time in the start command. Shifts that span midnight are
permitted. If starttime is scheduled after the stoptime, the shift will
start at the start time and proceed past midnight, ending at the
stoptime of the next day.

all day Specifies the default shift of 12:00 am - 12:00 am (or
00:00 -00:00 on a 24-hour clock).

noweekends Specifies the exclusion of data which was logged on
Saturdays and Sundays. If noweekends is entered in
conjunction with a shift that spans midnight, the
weekend will consist of those shifts that start on
Saturday or Sunday.

Example

In this example, disk detail data collected between 10:00 am and 4:00 pm
every day starting June 15, 1999 is extracted.

extract>
logfile /var/opt/perf/datafiles/logglob
global off
disk detail
shift 10:00 am - 4:00 PM
start 6/15/99
extract

shift
[starttime-stoptime]
[all day]
[noweekends]
Chapter 6190

Extract Commands
shift
To perform the above task using command line arguments, enter:

 extract d -b 6/15/99 -s 10:00 AM-4:00 PM -xt
Chapter 6 191

Extract Commands
show
show
Use the show command to list the names of the opened files and the
status of the extract parameters that can be set.

Syntax

show [all]

NOTE The show command discussed here is different from the ,show parameter
of the report command discussed earlier.

Examples

Use show by itself to produce a list that may look like this:

Logfile: /var/opt/perf/datafiles/logglob

Output: Default
Report: Default
List: "stdout"

The default starting date & time = 10/08/99 12:00 AM (LAST -30)
The default stopping date & time = 11/20/99 11:59 PM (LAST -0)
The default shift = 12:00 AM - 12:00 PM

GLOBAL DETAIL records will be processed
APPLICATION. NO records will be processed
PROCESS NO records will be processed

DISK DEVICE. NO records will be processed

LVOLUME. NO records will be processed

TRANSACTION. NO records will be processed

NETIFNO records will be processed

CPUNO records will be processed

FILESYSTEM.NO records will be processed
ConfigurationNO records will be processed
Chapter 6192

Extract Commands
show
Use show all to produce a more detailed list that may look like this:

Logfile: /var/opt/perf/datafiles/logglob
Global file: /var/opt/perf/datafiles/logglob,version D
Application file: /var/opt/perf/datafiles/logappl
Process file: /var/opt/perf/datafiles/logproc
Device file: /var/opt/perf/datafiles/logdev
Transaction file: /var/opt/perf/datafiles/logdev
Index file: /var/opt/perf/datafiles/logindx
System ID: homer
System Type 9000/715/ S/N 2223334442 O/S HP-UX B.10.20 A
Data collector: SCOPE/UX C.02.30
File Created: 10/08/99
Data Covers: 44 days to 11/20/99
Shift is: All Day

Data records available are:
 Global Application Process Disk Volume Transaction

Maximum file sizes:
 Global=10.0 Application=10.0 Process=20.0 Device=10.0
 Transaction=10.0 MB

Output: Default
Report: Default
List: "stdout"

The default starting date & time = 10/08/99 11:50 AM (LAST -30)
The default stopping date & time = 11/20/99 11:59 PM(LAST - 0)
The default shift = 12:00 AM - 12:00 PM

GLOBAL...........DETAIL...........records will be processed
APPLICATION....................NO records will be processed
PROCESS........................NO records will be processed
DISK DEVICE....................NO records will be processed
LVOLUME........................NO records will be processed
TRANSACTION....................NO records will be processed
NETIF..........................NO records will be exported
CPU............................NO records will be processed
FILESYSTEM.....................NO records will be processed
ConfigurationNO records will be exported

Export Report Specifications:
 Interval = 3600, Separator = " "
 Missing data will not be displayed
 Headings will be displayed
 Date/time will be formatted
 Days to exclude: None
Chapter 6 193

Extract Commands
start
start
Use the start command to set a starting date and time for the extract
and export functions. The default starting date is the date 30 full days
before the last date in the log file, or if less than 30 days are present, the
date of the earliest record in the log file.

Syntax

Parameters

date The date format depends on the native language that is
configured for your system. If you do not use native
languages or you have set C as the default language,
the data format is mm/dd/yy (month/day/year) such as
09/30/99 for September 30, 1999, for the extract or
export function.

time The time format also depends on the native language
used. For the C language, the format is hh:mm am or
hh:mm pm (hour:minute in a 12-hour format with the
am or pm suffix). For example, 07:00 am is 7 o'clock in
the morning.

 Twenty-four hour time is accepted in all languages. For
example, 23:30 would be accepted for 11:30 pm.

 If the format of the date or time is unacceptable, you
are prompted with an example in the correct format.

 If no start time is given, midnight (12:00 am) is
assumed. A starting time of midnight for a given day
starts at the beginning of that day (00:00 on a 24-hour
clock).

start
[date [time]]
[today [-day][time]]
[last [-days][time]]
[first [+days][time]]
Chapter 6194

Extract Commands
start
today Specifies the current day. The qualification of the
parameter, such as today-days, specifies the number
of days prior to today's date. For example, today-1
indicates yesterday's date and today-2, the day before
yesterday.

last Can be used to represent the last date contained in the
log file. The parameter last-days specifies the
number of days prior to the last date in the log file.

first Can be used to represent the first date contained in the
log file. The parameter first+days specifies the
number of days after the first date in the log file.

How to Use It

The following commands override the starting date set by the start
command.

• weekly

• monthly

• yearly

• extract (If day, week, month, or year parameter is used)

• export (If day, week, month, or year parameter is used)

Example

In this example, the start command specifies June 5, 1999 8:00 am as
the start time of the first interval to be extracted. The output command
specifies an output file named myout.

logfile /var/opt/perf/datafiles/logglob
start 6/5/99 8:00 am
output myout
global detail
extract

To perform the above task using command line arguments, enter:

extract -g -b 06/05/99 8:00 AM -f myout -xt
Chapter 6 195

Extract Commands
stop
stop
Use the stop command to terminate an extract or export function at a
specified date and time.

The default stopping date and time is the last date and time recorded in
the log file.

Syntax

Parameters

date The date format depends on the native language that is
configured for your system. If you do not use native
languages or you have set C as the default language,
the data format is mm/dd/yy (month/day/year) such as
09/30/99 for September 30, 1999, for the extract or
export function.

time The time format also depends on the native language
used. For the C language, the format is hh:mm am or
hh:mm pm (hour:minute in a 12-hour format with the
am or pm suffix). For example, 07:00 am is 7 o'clock in
the morning.

 Twenty-four hour time is accepted in all languages. For
example, 23:30 would be accepted for 11:30 pm.

 If the format of the date of time is unacceptable, you
are prompted with an example in the correct format.

 If no stop time is given, one minute before midnight
(11:59 pm) is assumed. A stopping time of midnight
(12:00 am) for a given day stops at the end of that day
(23:59 on a 24-hour clock).

start
[date [time]]
[today [-day][time]]
[last [-days][time]]
[first [+days][time]]
Chapter 6196

Extract Commands
stop
today Specifies the current day. The qualification of the
parameter, such as today-days, specifies the number
of days prior to today's date. For example, today-1
indicates yesterday's date and today-2 the day before
yesterday.

last Can be used to represent the last date contained in the
log file. The parameter last-days specifies the
number of days prior to the last date in the log file.

first Can be used to represent the first date contained in the
log file. The parameter first+days specifies the
number of days after the first date in the log file.

How to Use It

The following commands override the stopping date set by the stop
command.

• weekly

• monthly

• yearly

• extract (If day, week, month, or year parameter is used)

• export (If day, week, month, or year parameter is used)

Example

In this example, the stop command specifies June 5, 1999 5:00 pm as
the stopping time of the last interval to be extracted. The output
command specifies an output file named myout.

extract>
logfile /var/opt/perf/datafiles/logglob
start 6/5/99 8:00 AM
stop 6/5/99 5:00 PM
output myout
global detail
extract

To perform the above task using command line arguments, enter:

extract -g -b 6/5/99 8:00 AM -e 5:00 PM -f myout -xt
Chapter 6 197

Extract Commands
transaction
transaction
Use the transaction command to specify the type of transaction data
that is being extracted or exported.

Syntax

Parameters

Example

A new extracted log file called rxmay99 is created on June 1, 1999. Any
existing file that has this name is purged. All raw transaction log file
data collected from May 1, 1999 to May 31, 1999 is extracted.

extract>
logfile /var/opt/perf/datafiles/logglob
output rxmay99,purge
global detail
transaction detail
month 9905

To perform the above task using command line arguments, enter:

extract -gt -f rxmay99,purge -xm 9905

transaction

[on]
[detail]
[summary]
[both]
[off]

on or detail
summary
both
off

See “Parameters” on page 153 in the description of
the application command at the beginning of this
chapter.
Chapter 6198

Extract Commands
weekdays
weekdays
Use the weekdays command to exclude data for specific days from being
exported (day 1 = Sunday).

Syntax

weekdays [1|2.....7]

How to Use It

If you want to export data from only certain days of the week, use this
command to exclude the days from which you do not want data. Days
have the following values:

For example, if you want to export data that was logged only on Monday
through Thursday, exclude data from Friday, Saturday, and Sunday from
your export.

Example

In this example, any detailed global data logged on Tuesdays and
Thursdays is excluded from the export. The output export file contains
the global metrics specified in the myrept export template file.

extract>
logfile /var/opt/perf/datafiles/logglob
global detail
report myrept
weekdays 35
export

Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

=1
=2
=3
=4
=5
=6
=7
Chapter 6 199

Extract Commands
weekly
weekly
Use the weekly command to specify data extraction based on a calendar
week. A week is defined as seven days starting on Monday and ending on
Sunday.

During execution, this command sets the start and stop dates to the
proper dates, based on the week and year of the extracted data.

Syntax

Parameters

weekly Extracts the current week's data (the default).

weekly ww Extracts data for a specific week from this year's data
(where ww is any number from 01 to 53).

weekly yyww Extracts data for a specific week and year (where yyww
is a single number consisting of the last two digits of
the year and the two-digit week-of-the-year number).
For example, the 20th week of 1999 would be weekly
9920.

If you do not specify the log file before executing the weekly command,
the default logglob file in the datafiles directory is used.

How to Use It

Use the weekly command when you are extracting data for archiving on
a weekly basis.

The name of the output file consists of the letters rxwe followed by the
last two digits of the year, and the two-digit week number for the week
being extracted. For example, the 12th week of 1999 (from Monday,
March 22 to Sunday, March 29) would be output to a file named
rxwe9912.

weekly [yyww]
[ww]
Chapter 6200

Extract Commands
weekly
The type of data extracted and summarized follow the normal rules for
the extract command and can be set before executing the weekly
command. These settings are honored unless a weekly output file
already exists. If it does, data is appended to it, based on the type of data
selected originally.

The weekly command has a feature that opens the previous week's
extracted file and checks to see if it is filled--whether it contains data
extracted up to the last day of the week. If not, the weekly command
appends data to this file to complete the previous week's extraction.

For example, a weekly command is executed on Thursday, May 20, 1999.
This creates a log file named rxwe199920 containing data from Monday,
May 17 through the current date (May 20).

On Wednesday, May 26, 1999, another weekly command is executed.
Before the rxwe199921 file is created for the current week, the
rxwe199920 file from the previous week is opened and checked. When it
is found to be incomplete, data is appended to it to complete the
extraction through Sunday, May 23, 1999. Then, the rxwe199921 file is
created to hold data from Monday, May 24, 1999 to the current date (May
26).

As long as you execute the weekly command at least once a week, this
feature will complete each week's file before creating the next week's file.
When you see two adjacent weekly files (for example, rxwe199920 and
rxwe199921), you can assume that the first file is complete for that week,
and it can be archived and purged.

NOTE The weeks are numbered based on their starting day. Thus, the first
week of the year (week 01) is the week starting on the first Monday of
that year. Any days before that Monday belong to the last week of the
previous year. The weekly and extract week commands are similar in
that they both extract one calendar week's data. The weekly command
ignores the setting of the output command, using instead predefined
output file names. It also attempts to append missing data to the
previous week's extracted log file if it is still present on the system. The
extract week command, on the other hand, uses the settings of the
output command. It cannot append data to the previous week's extracted
file because it does not know its name. The output file is named rxwe
followed by the current year (yyyy) and week of the year (ww).
Chapter 6 201

Extract Commands
weekly
Example

In this example, the weekly command causes the current week’s data to
be extracted and complete the previous week’s extracted file, if it is
present.

extract>
logfile /var/opt/perf/datafiles/logglob
global detail
application detail
process detail
weekly

To perform the above task using command line arguments, enter:

extract -gap -xw
Chapter 6202

Extract Commands
yearly
yearly
Use the yearly command to specify data extraction based on a calendar
year.

During execution, the command sets the start and stop dates to the
proper dates, based on the year being extracted.

Syntax

Parameters

yearly Extracts the current year's data (the default).

yearly yy Extracts a specific year's data (where yy is a number
from 00 to 99).

 The specifications 00 to 27 assume the years 2000 to
2027, whereas 71 to 99 assume the years 1971 to 1999.

yearly yyyy Extracts a specific year's data (where yyyy is the
full-year numbered 1971 to 2027).

If you do not specify the log file before executing the yearly command,
the default logglob file is used.

How to Use It

Use the yearly command when you are extracting data for archiving on
a yearly basis.

The name of the output file consists of the letters rxyr followed by the
four digits of the year being extracted. Thus, data from 1999 would be
output to a file named rxyr1999.

The type of data extracted and summarized follow the normal rules for
the extract command and can be set before executing the yearly
command. These settings are honored unless a yearly output file already
exists. If it does, data is appended to it, based upon the type of data
selected originally.

yearly [yyyy]
[yy]
Chapter 6 203

Extract Commands
yearly
The yearly command has a feature that opens the previous year's
extracted file and checks to see if it is filled--whether it contains data
extracted up to the last day of the year. If not, the yearly command
appends data to this file to complete the previous year's extraction.

For example, a yearly command was executed on December 15, 1998.
This created a log file named rxyr1998 containing data from January 1,
1998 to the current date (December 15).

On January 5, 1999, another yearly command is executed. Before the
rxyr1999 file is created for the current year, the rxyr1998 file from the
previous year is opened and checked. When it is found to be incomplete,
data is appended to it to complete its extraction until December 31, 1998.
Then, the rxyr1999 file is created to hold data from January 1, 1999 to
the current date (January 5).

As long as you execute the yearly command at least once a year, this
feature will complete each year's file before creating the next year's file.
When you see two adjacent yearly files (for example, rxyr1998 and
rxyr1999), you can assume that the first file is complete for that year,
and it can be archived and purged.

The previous paragraph is true only if the raw log files are sized large
enough to hold one full year of data. It would be more common to size the
raw log files smaller and execute the yearly command more often (such
as once a month).

NOTE The yearly and extract year commands are similar in that they both
extract one calendar year's data. The yearly command ignores the
setting of the output command, using instead predefined output file
names. It also attempts to append missing data to the previous year's
extracted log file if it is still present on the system. The extract year
command, on the other hand, will use the settings of the output
command. It cannot append data to the previous year's extracted file
since it does not know its name.
Chapter 6204

Extract Commands
yearly
Example

In this example, application and global detail data is appended to the
existing yearly summary file (or creates it, if necessary). The output file
is rxyryyyy (where yyyy represents the current year).

extract>
logfile /var/opt/perf/datafiles/logglob
global detail
application detail
process off
yearly

To perform the above task using command line arguments, enter:

extract -ga -xy
Chapter 6 205

Extract Commands
yearly
Chapter 6206

7 Performance Alarms
Chapter 7 207

Performance Alarms
Introduction
Introduction
This chapter describes what an alarm is, the syntax used to define an
alarm, how an alarm works, and how alarms can be used to monitor
performance.

You can use OV Performance Agent to define alarms. These alarms notify
you when scopeux or DSI metrics meet or exceed conditions that you
have defined.

To define alarms, you specify conditions on each OV Performance Agent
system that when met, trigger an alert or action. You define alarms in
the OV Performance Agent alarm definitions file, alarmdef.

As data is logged by scopeux or DSI, it is compared to the alarm
definitions to determine if a condition is met. When this occurs an alert
or action is triggered.

With the real time alarm generator you can configure where you want
alert notifications sent and whether you want local actions performed.
SNMP traps can be sent to HP OpenView Network Node Manager. Alert
notifications can be sent to OpenView Operations (OVO). Local actions
can be performed on your OV Performance Agent system.

You can analyze historical log file data against the alarm definitions and
report the results using the utility program's analyze command.
Chapter 7208

Performance Alarms
Processing Alarms
Processing Alarms
As performance data is collected by OV Performance Agent, it is
compared to the alarm conditions defined in the alarmdef file to
determine whether the conditions have been met. When a condition is
met, an alarm is generated and the actions defined for alarms (ALERTs,
PRINTs, and/or EXECs) are performed. You can set up how you want the
alarm information communicated once an alarm is triggered. For
example, you can:

• send SNMP traps to Network Node Manager

• send messages to OVO

• execute a UNIX command on the local system. For example, to send
yourself a message

How Alarms Are Processed

When you first start up OV Performance Agent, the coda daemon looks
for each data source configured in the datasources configuration file
and then starts the alarm generator. Every data source mentioned in
your alarm definitions must have a corresponding entry in the
datasources file. For more information about the datasources file and
starting and stopping the alarm generator, see Chapter 2 of the HP
OpenView Performance Agent Installation & Configuration Guide.

As data is collected in the log files, it is compared to the alarm definitions
in the alarmdef file. When an alarm condition is met, the actions defined
in the alarm definition are carried out. Actions can include:

• local actions performed via UNIX commands

• messages sent to Network Node Manager or OVO
Chapter 7 209

Performance Alarms
Processing Alarms
Alarm Generator

The OV Performance Agent alarm generator handles the communication
of alarm notifications. The alarm generator consists of the alarm
generator server (perfalarm), the alarm generator database server
(agdbserver), the alarm generator database (agdb), and the utility
program agsysdb.

The agdb contains a list of OV Performance Manager analysis nodes (if
any) to which you communicate alarm notifications and various on/off
flags that you set to define if and where you want the alarm notifications
sent. It also contains a list of SNMP trap destination. The agsysdb
program is used for displaying and changing the actions taken by alarm
events.

Use the following command line option to see a list showing where alert
notifications are being sent:

agsysdb -l

Sending SNMP Traps to Network Node Manager

To send SNMP traps to Network Node Manager, you must add your
system name to agdb in OV Performance Agent using the command:

agsysdb -add systemname

Every ALERT generated will cause an SNMP trap to be sent to the
system you defined. The trap text will contain the same message as the
ALERT.

To stop sending SNMP traps to a system, you must delete the system
name from agdb using the command:

agsysdb -delete systemname

Sending Messages to OpenView Operations (OVO)

You can have alert notifications sent to OVO if there is an OVO agent on
the same system as OV Performance Agent. The OVO agent
communicates with the central OVO system.

By default, if the OVO agent is running on the OV Performance Agent
system, the alarm generator does not execute local actions that are
defined in any alarms in the EXEC statement. Instead, it sends a
Chapter 7210

Performance Alarms
Processing Alarms
message to OVO's event browser. If the OVO agent is not running on the
OV Performance Agent system, the alarm generator does not try to send
alert notifications to OVO and local actions are executed.

You can change the default to stop sending information to OVO, even
though an OVO agent is running on the OV Performance Agent system,
using the command:

agsysdb -ovo OFF

Executing Local Actions

Without an OVO agent running on the OV Performance Agent system,
local actions in EXEC statements will be executed.

You can change the default to turn off local actions as follows:

agsysdb -actions off

If you want local actions to always execute even if the OVO agent is
running, type:

agsysdb -actions always

The following table lists the settings for sending information to OVO and
for executing local actions:

Flags OVO Agent
Running

OVO Agent Not
Running

OVO Flag

off No alert
notifications sent
to OVO.

No alert
notifications sent to
OVO.

on Alert notifications
sent to OVO.

No alert
notifications sent to
OVO.

Local Actions Flag

off No local actions
executed.

No local actions
executed.
Chapter 7 211

Performance Alarms
Processing Alarms
Errors in Processing Alarms

The last error that occurred when sending an alarm is logged in agdb. To
view the contents of agdb, type:

agsysdb -l

The following information is displayed:

OVPA alarming status:
OVO messages : on Last Error : <error number>

Exec Actions : on (See status.perfalarm file for errors)

Analysis system: <hostname>, Key=<ip address>
SNMP : yes Last Error : <error number>

Analyzing Historical Data for Alarms

You can use the utility program's analyze command to find alarm
conditions in log file data (see Chapter 4, “Utility Commands,” on
page 77). This is different from the processing of real-time alarms
explained earlier because you are comparing historical data in the log
file to the alarm definitions in the alarmdef file to determine what alarm
conditions would have been triggered.

Examples of Alarm Information in Historical Data

The following examples show what is reported when you analyze alarm
conditions in historical data.

For the first example, START, END, and REPEAT statements have been
defined in the alarm definition. An alarm-start event is listed every time
an alarm has met all of its conditions for the specified duration. When

always Local actions
executed even if
OVO agent is
running.

Local actions
executed.

on Local actions sent
to OVO.

Local actions
executed.

Flags OVO Agent
Running

OVO Agent Not
Running
Chapter 7212

Performance Alarms
Processing Alarms
these conditions are no longer satisfied, an alarm-end event is listed. If
an alarm condition is satisfied for a period long enough to generate
another alarm without having first ended, a repeat event is listed.

Each event listed shows the date and time, alarm number, and the alarm
event. EXEC actions are not performed, but they are listed with any
requested parameter substitutions in place.

05/10/99 11:15 ALARM [1] START
CRITICAL: CPU test 99.97%

05/10/99 11:20 ALARM [1] REPEAT
WARNING: CPU test 99.997%

05/10/99 11:25 ALARM [1] END
RESET: CPU test 22.86%
EXEC: end.script

If you are using a color workstation, the following output is highlighted:

CRITICAL statements are RED

MAJOR statements are MAGENTA

MINOR statements are YELLOW

WARNING statements are CYAN

NORMAL statements are GREEN

The next example shows an alarm summary that is displayed after
alarm events are listed. The first column lists the alarm number, the
second column lists the number of times the alarm condition occurred,
and the third column lists the total duration of the alarm condition.

Performance Alarm Summary:

 Alarm Count Minutes
 1 574 2865
 2 0 0

Analysis coverage using "alarmdef":

Start: 05/04/99 08:00 Stop: 05/06/99 23:59

Total time analyzed: Days: 2 Hours: 15 Minutes: 59
Chapter 7 213

Performance Alarms
Alarm Definition Components
Alarm Definition Components
An alarm occurs when one or more of the conditions you define continues
over a specified duration. The alarm definition can include an action to
be performed at the start or end of the alarm.

A condition is a comparison between two or more items. The compared
items can be metric names, constants, or variables. For example:

ALARM gbl_cpu_total_util > 95 FOR 5 MINUTES

An action can be specified to be performed when the alarm starts, ends,
or repeats. The action can be one of the following:

• an ALERT, which sends a message to OV Performance Manager or
OVO or an SNMP trap to Network Node Manager

• an EXEC, which performs a UNIX command, or

• a PRINT, which sends a message to stdout when processed using the
utility program.

For example:

ALARM gbl_swap_space_util > 95 FOR 5 MINUTES
 START
 RED ALERT "Global swap space is nearly full"
 END
 RESET ALERT "End of global swap space full condition"

You can create more complex actions using Boolean logic, loops through
multiple-instance data such as applications, and variables. (For more
information, see the next section, “Alarm Syntax Reference”).

You can also use the INCLUDE statement to identify additional alarm
definition files you want used. For example, you may want to break up
your alarm definitions into smaller files.
Chapter 7214

Performance Alarms
Alarm Syntax Reference
Alarm Syntax Reference
This section describes the statements that are available in the alarm
syntax. You may want to look at the alarmdef file for examples of how
the syntax is used to create useful alarm definitions.

Alarm Syntax

ALARM condition [[AND,OR]condition]
FOR duration [SECONDS, MINUTES]

[TYPE="string"]
[SERVICE="string"]
[SEVERITY=integer]
[START action]
[REPEAT EVERY duration [SECONDS, MINUTES] action]
[END action]

[RED, CRITICAL, ORANGE, MAJOR, YELLOW, MINOR, CYAN, WARNING,
GREEN, NORMAL, RESET] ALERT message

EXEC "UNIX command"

PRINT message
IF condition

THEN action
[ELSE action]

{APPLICATION, PROCESS, DISK, LVOLUME, TRANSACTION, NETIF, CPU,
FILESYSTEM} LOOP action

INCLUDE "filename"

USE "data source name"

[VAR] name = value

ALIAS name = "replaced-name"

SYMPTOM variable [TYPE = {CPU, DISK, MEMORY, NETWORK}]
RULE condition PROB probability
[RULE condition PROB probability]

.

.

Chapter 7 215

Performance Alarms
Alarm Syntax Reference
Conventions

• Braces ({ }) indicate that one of the choices is required.

• Brackets ([]) indicate an optional item.

• Items separated by commas within brackets or braces are options.
Choose only one.

• Italics indicate a variable name that you replace.

• All syntax keywords are in uppercase.

Common Elements

The following elements are used in several statements in the alarm
syntax and are described below.

• comments

• compound statements

• conditions

• constants

• expressions

• metric names

• messages

Comments

You can precede comments either by double forward slashes (//) or the
pound sign (#). In both cases, the comment ends at the end of the line.
For example:

any text or characters

or

// any text or characters
Chapter 7216

Performance Alarms
Alarm Syntax Reference
Compound Statements

Compound statements allow a list of statements to be executed as a
single statement. A compound statement is a list of statements inside
braces ({}). Use the compound statement with the IF statement, the
LOOP statement, and the START, REPEAT, and END clauses of the
ALARM statement. Compound statements cannot include ALARM and
SYMPTOM statements.

{
statement
statement
}

In the example below, highest_cpu = 0 defines a variable called
highest_cpu. The highest_cpu value is saved and notifies you only
when that highest_cpu value is exceeded by a higher highest_cpu
value.

highest_cpu = 0
IF gbl_cpu_total_util > highest_cpu THEN
 // Begin compound statement
 {
 highest_cpu = gbl_cpu_total_util
 ALERT "Our new high CPU value is ", highest_cpu, "%"
 }
 // End compound statement

Conditions

A condition is defined as a comparison between two items.

item1 {>, <, >=, <=, ==, !=}item2
 [AND, OR[item3 {>, <, >=, <=, ==, !=}item4]]

where "==" means "equal", and "!=" means "not equal".

Conditions are used in the ALARM, IF, and SYMPTOM statements. An
item can be a metric name, a numeric constant, an alphanumeric string
enclosed in quotes, an alias, or a variable. When comparing
alphanumeric items, only == or != can be used as operators.
Chapter 7 217

Performance Alarms
Alarm Syntax Reference
Constants

Constants can be either numeric or alphanumeric. An alphanumeric
constant must be enclosed in double quotes. For example:

345
345.2
"Time is"

Constants are useful in expressions and conditions. For example, you
may want to compare a metric against a constant numeric value inside a
condition to generate an alarm if it is too high, such as

gbl_cpu_total_util > 95

Expressions

Arithmetic expressions perform one or more arithmetic operations on
two or more operands. You can use an expression anywhere you would
use a numeric value. Legal arithmetic operators are:

+, -, *, /

Parentheses can be used to control which parts of an expression are
evaluated first.

For example:

Iteration + 1
gbl_cpu_total_util - gbl_cpu_user_mode_util
(100 - gbl_cpu_total_util) / 100.0

Metric Names

When you specify a metric name in an alarm definition, the current
value of the metric is substituted. Metric names must be typed exactly as
they appear in the metric definition, except for case sensitivity. Metrics
definitions can be found in the HP OpenView Performance Agent
Dictionary of Operating Systems Performance Metrics. If you are using
OV Performance Manager, choose On Metrics from the OV Performance
Manager help menu to display a list of metrics by platform.

It is recommended that you use fully-qualified metric names if the
metrics are from a data source other than the SCOPE data source (such
as DSI metrics).

The format for specifying a fully qualified metric is:

data_source:instance(class):metric_name
Chapter 7218

Performance Alarms
Alarm Syntax Reference
A global metric in the SCOPE data source requires no qualification. For
example:

metric_1

An application metric, which is available for each application defined in
the SCOPE data source, requires the application name. For example,

application_1:metric_1

For multi-instance data types such as application, process, disk,
netif, transaction, lvolume, cpu and filesystem, you must associate
the metric with the data type name, except when using the LOOP
statement. To do this, specify the data type name followed by a colon, and
then the metric name. For example, other_apps:app_cpu_total_util
specifies the total CPU utilization for the application other_apps.

NOTE When specifying fully qualified multi-instance metrics and using aliases
within aliases, if one of the aliases has a class identifier, we recommend
you use the syntax shown in this example:

alias my_fs="/dev/vg01/lvol1(LVOLUME)"
alarm my_fs:LV_SPACE_UTIL > 50 for 5 minutes

If you use an application name that has an embedded space, you must
replace the space with an underscore (_). For example, application 1
must be changed to application_1. For more information on using
names that contain special characters, or names where case is
significant, see “ALIAS Statement” on page 240.

If you had a disk named “other” and an application named “other”, you
would need to specify the class as well as the instance:

other (disk):metric_1

A global metric in an extracted log file (where scope_extract is the data
source name) would be specified this way:

scope_extract:application_1:metric_1

A DSI metric would be specified this way:

dsi_data_source:dsi_class:metric_name
Chapter 7 219

Performance Alarms
Alarm Syntax Reference
NOTE Any metric names containing special characters (such as asterisks) must
be aliased before they are specified.

Messages

A message is the information sent by a PRINT or ALERT statement. It
can consist of any combination of quoted alphanumeric strings, numeric
constants, expressions, and variables. The elements in the message are
separated by commas. For example:

RED ALERT "cpu utilization=", gbl_cpu_total_util

Numeric constants, metrics, and expressions can be formatted for width
and number of decimals. Width specifies how wide the field should be
formatted; decimals specifies how many decimal places to use. Numeric
values are right-justified. The - (minus sign) specifies left-justification.
Alphanumeric strings are always left-justified. For example:

metric names [|[-]width[|decimals]]

gbl_cpu_total_util|6|2 formats as '100.00'
(100.32 + 20)|6 formats as ' 120'
gbl_cpu_total_util|-6|0 formats as '100 '
gbl_cpu_total_util|10|2 formats as ' 99.13'
gbl_cpu_total_util|10|4 formats as ' 99.1300'
Chapter 7220

Performance Alarms
Alarm Syntax Reference
ALARM Statement

The ALARM statement defines a condition or set of conditions and a
duration for the conditions to be true. Within the ALARM statement, you
can define actions to be performed when the alarm condition starts,
repeats, and ends. Conditions or events that you might want to define as
alarms include:

• when global swap space has been nearly full for 5 minutes

• when the memory paging rate has been too high for 1 interval

• when your CPU has been running at 75 percent utilization for the
last ten minutes

Syntax

ALARM condition [[AND,OR]condition]
FOR duration{SECONDS, MINUTES}
[TYPE="string"]
[SERVICE="string"]
[SEVERITY=integer]
[START action]
[REPEAT EVERY duration {SECONDS, MINUTES} action]
[END action]

• The ALARM statement must be a top-level statement. It cannot be
nested within any other statement. However, you can include several
ALARM conditions in a single ALARM statement. If the conditions
are linked by AND, all conditions must be true to trigger the alarm.
If they are linked by OR, any one condition will trigger the alarm.

• TYPE is a quoted string of up to 38 characters. If you are sending
alarms to OV Performance Manager, you can use TYPE to categorize
alarms and to specify the name of a graph template to use. OV
Performance Manager can only accept up to eight characters, so up to
eight characters are shown.

• SERVICE is a quoted string of up to 200 characters. If you are using
OV Navigator, you can link your OV Performance Agent alarms with
the services you defined in that product.

SERVICE="Service_id"

• SEVERITY is an integer from 0 to 32767. If you are sending alarms to
OV Performance Manager, you can use this to categorize alarms.
Chapter 7 221

Performance Alarms
Alarm Syntax Reference
• START, REPEAT, and END are keywords used to specify what action
to take when alarm conditions are met, met again, or stop. You
should always have at least one of START, REPEAT, or END in an
ALARM statement. Each of these keywords is followed by an action.

• action – The action most often used with an ALARM START,
REPEAT, or END is the ALERT statement. However, you can also
use the EXEC statement to mail a message or run a batch file, or a
PRINT statement if you are analyzing historical log files with the
utility program. Any syntax statement is legal except another
ALARM.

START, REPEAT, and END actions can be compound statements. For
example, you can use compound statements to provide both an
ALERT and an EXEC.

• Conditions – A condition is defined as a comparison between two
items.

item1 {>, <, >=, <=, ==, !=}item2

 [AND, OR[item3 {>, <, >=, <=, ==, !=}item4]]

where "==" means "equal", and "!=" means "not equal"

An item can be a metric name, a numeric constant, an alphanumeric
string enclosed in quotes, an alias, or a variable. When comparing
alphanumeric items, only == or != can be used as operators.

You can use compound conditions by specifying the “OR” and “AND”
operator between subconditions. For example:

ALARM gbl_cpu_total_util > 90 AND
gbl_pri_queue > 1 for 5 minutes

• You also can use compound conditions without specifying the “OR”
and “AND” operator between subconditions. For example:

ALARM gbl_cpu_total_util > 90
gbl_cpu_sys_mode_util > 50 for 5 minutes

will cause an alarm when both conditions are true.

FOR duration SECONDS, MINUTES specifies the time period the
condition must remain true to trigger an alarm.
Chapter 7222

Performance Alarms
Alarm Syntax Reference
Use caution when specifying durations of less than one minute,
particularly when there are multiple data sources on the system.
Performance can be seriously degraded if each data source must be
polled for data at very small intervals. The duration must be a
multiple of the longest collection interval of the metrics mentioned in
the alarm condition.

For scopeux data, the duration is five minutes; however, the
duration for process data is one minute. For DSI data, the duration is
five seconds or longer

• REPEAT EVERY duration SECONDS, MINUTES specifies the time
period before the alarm is repeated.

How It Is Used

The alarm cycle begins on the first interval that all of the ANDed, or one
of the ORed alarm conditions have been true for at least the specified
duration. At that time, the alarm generator executes the START action,
and on each subsequent interval checks the REPEAT condition. If
enough time has transpired, the action for the REPEAT clause is
executed. (This continues until one or more of the alarm conditions
becomes false.) This completes the alarm cycle and the END statement is
executed if there is one.

In order for OV Performance Manager to be notified of the alarm, you
should use the ALERT statement within the START and END
statements. If you do not specify an END ALERT, the alarm generator
will automatically send one to OV Performance Manager and OVO and
send an SNMP trap to Network Node Manager.

Examples

The following ALARM example sends a red alert when the swap
utilization is high for 5 minutes. It is similar to an alarm condition in the
default alarmdef file. Do not add this example to your alarmdef file
without removing the default alarm condition, or your subsequent alert
messages may be confusing.

ALARM gbl_swap_space_util > 90 FOR 5 MINUTES
 START
 RED ALERT "swap utilization is very high "
 REPEAT EVERY 15 MINUTES
 RED ALERT "swap utilization is still very high "
 END
 RESET ALERT "End of swap utilization condition"
Chapter 7 223

Performance Alarms
Alarm Syntax Reference
This ALARM example tests the metric gbl_swap_space_util to see if it
is greater than 90. Depending on how you configured the alarm
generator, the ALERT can be sent to the Alarms window in OV
Performance Manager, to Network Node Manager via an SNMP trap, or
as a message to OVO. If you have OV Performance Manager configured
correctly, the RED ALERT statement places the “swap utilization
still very high” message in the OV Performance Manager Alarms
window.

The REPEAT statement checks for the gbl_swap_space_util condition
every 15 minutes. As long as the metric remains greater than 90, the
REPEAT statement will send the message “swap utilization is
still very high” every 15 minutes.

When the gbl_swap_space_util condition goes below 90, the RESET
ALERT statement with the “End of swap utilization condition”
message is sent.

The following example defines a compound action within the ALARM
statement. This example shows you how to cause a message to be mailed
when an event occurs.

ALARM gbl_cpu_total_util > 90 FOR 5 MINUTES
 START
 {
 RED ALERT "Your CPU is busy."
 EXEC "echo 'cpu is too high'| mailx root"
 }
 END
 RESET ALERT "CPU no longer busy."

The ALERT can trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO. The EXEC can trigger a mail
message to be sent as a local action on your OV Performance Agent
system, depending on how you configured your alarm generator. If you
set up OV Performance Manager to receive alarms from this system, the
RED ALERT statement places the “Your CPU is busy” message in the
OV Performance Manager Alarms window and causes a message to be
sent.

By default, if the OVO agent is running, the local action will not execute.
Instead, it will be sent as a message to OVO.

The following two examples show the use of multiple conditions. You can
have more than one test condition in the ALARM statement. In this case,
each statement must be true for the ALERT to be sent.
Chapter 7224

Performance Alarms
Alarm Syntax Reference
The following ALARM example tests the metric gbl_cpu_total_util
and the metric gbl_cpu_sys_mode_util. If both conditions are true, the
RED ALERT statement sends a red alert. When either test condition
becomes false, the RESET is sent.

ALARM gbl_cpu_total_util > 90
 AND gbl_cpu_sys_mode_util > 50 FOR 5 MINUTES
START
 RED ALERT "CPU busy and Sys Mode CPU util is high."
END
 RESET ALERT "The CPU alert is now over."

The next ALARM example tests the metric gbl_cpu_total_util and
the metric gbl_cpu_sys_mode_util. If either condition is true, the RED
ALERT statement sends a red alert.

ALARM gbl_cpu_total_util > 90
 OR
 gbl_cpu_sys_mode_util > 50 FOR 10 MINUTES
START
 RED ALERT "Either total CPU util or sys mode CPU high"

WARNING Do not use metrics that are logged at different intervals in the
same alarm. For example, you should not loop on a process
(logged at 1-minute intervals) based on the value of a global
metric (logged at 5-minute intervals) in a statement like this:

IF global_metric THEN
 PROCESS LOOP...

The different intervals cannot be synchronized as you might
expect, so results will not be valid.
Chapter 7 225

Performance Alarms
Alarm Syntax Reference
ALERT Statement

The ALERT statement allows a message to be sent to OV Performance
Manager, Network Node Manager, or OVO. It also allows the creation
and deletion of the alarm symbols in the Network Node Manager map
associated with OV Performance Manager and controls the color of the
alarm symbols, depending on the severity of the alarm. (For more
information, see OV Performance Manager online Help.)

The ALERT statement is most often used as an action within an
ALARM. It could also be used within an IF statement to send a message
as soon as a condition is detected instead of after the duration has
passed. If an ALERT is used outside of an ALARM or IF statement, the
message will be sent at every interval.

Syntax

[RED, CRITICAL, ORANGE, MAJOR, YELLOW, MINOR, CYAN,
WARNING, GREEN, NORMAL, RESET] ALERT message

• RED is synonymous with CRITICAL, ORANGE is synonymous with
MAJOR, YELLOW is synonymous with MINOR, CYAN is
synonymous with WARNING, and GREEN is synonymous with
NORMAL. These keywords turn the alarm symbol to the color
associated with the alarm condition in the Network Node Manager
map associated with OV Performance Manager. They also send the
message with other information to the OV Performance Manager
Alarms window. CYAN is the default. However, if you are using
version C.00.08 or earlier of OV Performance Manager, YELLOW is
the default.

• RESET records the message in the OV Performance Manager Alarms
window and deletes the alarm symbol in the Network Node Manager
map associated with OV Performance Manager. A RESET ALERT
without a message is sent automatically when an ALARM condition
ENDs if you do not define one in the alarm definition.

• message — A combination of strings and numeric values used to
create a message. Numeric values can be formatted with the
parameters [|[-]width[|decimals]]. Width specifies how wide the
field should be formatted; decimals specifies how many decimal
places to use. Numeric values are right-justified. The - (minus sign)
specifies left-justification. Alphanumeric strings are always
left-justified.
Chapter 7226

Performance Alarms
Alarm Syntax Reference
How It Is Used

The ALERT can also trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO, depending on how you
configured your alarm generator. If you configured OV Performance
Manager to receive alarms from this system, the ALERT sends a
message to the OV Performance Manager Alarms window.

If an ALERT statement is used outside of an ALARM statement, the
alert message will show up in the OV Performance Manager Alarms
window but no symbol will be created in the Network Node Manager
map.

For alert messages sent to OVO, the WARNINGS will be displayed in
blue in the message browser

Example

An typical ALERT statement is:

RED ALERT "CPU utilization = ", gbl_cpu_total_util

If you have OV Performance Manager and Network Node Manager, this
statement creates a red alarm symbol in the Network Node Manager
map associated with OV Performance Manager and sends a message to
the OV Performance Manager Alarms window that reads:

CPU utilization = 85.6
Chapter 7 227

Performance Alarms
Alarm Syntax Reference
EXEC Statement

The EXEC statement allows you to specify a UNIX command to be
performed on the local system. For example, you could use the EXEC
statement to send mail to an IT administrator each time a certain
condition is met.

EXEC should be used within an ALARM or IF statement so the UNIX
command is performed only when specified conditions are met. If an
EXEC statement is used outside of an ALARM or IF statement, the
action will be performed at unpredictable intervals.

Syntax

EXEC "UNIX command"

• UNIX command — a command to be performed on the local system.

Do not use embedded double quotes (") in EXEC statements. Doing so
causes perfalarm to fail to send the alarm to OVO. Use embedded single
(') quotes instead. For example:

EXEC "echo 'performance problem detected' "

How It Is Used

The EXEC can trigger a local action on your local system, depending on
how you configured your alarm generator. For example, you can turn
local actions on or off. If you configured your alarm generator to send
information to OVO, local actions will not usually be performed.

Examples

In the following example, the EXEC statement performs the UNIX mailx
command when the gbl_disk_util_peak metric exceeds 20.

IF gbl_disk_util_peak > 20 THEN
 EXEC "echo 'high disk utilization detected'| mailx root"

The next example shows the EXEC statement sending mail to the
system administrator when the network packet rate exceeds 1000 per
second average for 15 minutes.
Chapter 7228

Performance Alarms
Alarm Syntax Reference
ALARM gbl_net_packet_rate > 1000 for 15 minutes
 TYPE = "net busy"
 SEVERITY = 5
 START
 {
 RED ALERT "network is busy"
 EXEC "echo 'network busy condition detected'| mailx root"
 }
 END
 RESET ALERT "NETWORK OK"

NOTE Be careful when using the EXEC statement with commands or scripts
that have high overhead if it will be performed often.

The alarm generator executes the command and waits until it completes
before continuing. We recommend that you not specify commands that
take a long time to complete.
Chapter 7 229

Performance Alarms
Alarm Syntax Reference
PRINT Statement

The PRINT statement allows you to print a message from the utility
program using its analyze function. The alarm generator ignores the
PRINT statement.

Syntax

PRINT message

• message — A combination of strings and numeric values that create
a message. Numeric values can be formatted with the parameters
[|[-]width[|decimals]]. Width specifies how wide the field should
be formatted; decimals specifies how many decimal places to use.
Alphanumeric components of a message must be enclosed in quotes.
Numeric values are right-justified. The - (minus sign) specifies
left-justification. Alphanumeric strings are always left-justified.

Example

PRINT "The total time the CPU was not idle is",
 gbl_cpu_total_time |6|2, "seconds"

When executed, this statement prints a message such as the following:

The total time the CPU was not idle is 95.00 seconds
Chapter 7230

Performance Alarms
Alarm Syntax Reference
IF Statement

Use the IF statement to define a condition using IF-THEN logic. The IF
statement should be used within the ALARM statement. However, it can
be used by itself or any place in the alarmdef file where IF-THEN logic
is needed.

If you specify an IF statement outside of an ALARM statement, you do
not have control over how frequently it gets executed.

Syntax

IF condition THEN action [ELSE action]

• IF condition — A condition is defined as a comparison between two
items.

item1 {>, <, >=, <=, ==, !=}item2
 [AND, OR[item3 {>, <, >=, <=, ==, !=}item4]]

where "==" means "equal", and "!=" means "not equal".

An item can be a metric name, a numeric constant, an alphanumeric
string enclosed in quotes, an alias, or a variable. When comparing
alphanumeric strings, only == or != can be used as operators.

• action — Any action, or set a variable. (ALARM is not valid in this
case.)

How It Is Used

The IF statement tests the condition. If the condition is true, the action
after the THEN is executed. If the condition is false, the action depends
on the optional ELSE clause. If an ELSE clause has been specified, the
action following it is executed; otherwise the IF statement does nothing.

Example

In this example, a CPU bottleneck symptom is calculated and the
resulting bottleneck probability is used to define cyan or red ALERTs. If
you have OV Performance Manager configured correctly, the message
“End of CPU Bottleneck Alert” is displayed in the OV Performance
Manager Alarms window along with the percentage of CPU used.

The ALERT can also trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO, depending on how you
configured your alarm generator.
Chapter 7 231

Performance Alarms
Alarm Syntax Reference
SYMPTOM CPU_Bottleneck > type=CPU
 RULE gbl_cpu_total_util > 75 prob 25
 RULE gbl_cpu_total_util > 85 prob 25
 RULE gbl_cpu_total_util > 90 prob 25
 RULE gbl_cpu_total_util > 4 prob 25

 ALARM CPU_Bottleneck > 50 for 5 minutes
 TYPE="CPU"
 START
 IF CPU_Bottleneck > 90 then
 RED ALERT "CPU Bottleneck probability= ",
 CPU_Bottleneck, "%"
 ELSE
 CYAN ALERT "CPU Bottleneck probability= ",
 CPU_Bottleneck, "%"
 REPEAT every 10 minutes
 IF CPU_Bottleneck > 90 then
 RED ALERT "CPU Bottleneck probability= ",
 CPU_Bottleneck, "%"
 ELSE
 CYAN ALERT "CPU Bottleneck probability= ",
 CPU_Bottleneck, "%"
 END
 RESET ALERT "End of CPU Bottleneck Alert"

WARNING Do not use metrics that are logged at different intervals in the
same statement. For instance, you should not loop on a process
(logged at 1-minute intervals) based on the value of a global
metric (logged at 5-minute intervals) in a statement like this:

IF global_metric THEN
 PROCESS LOOP ...

The different intervals cannot be synchronized as you might
expect, so results will not be valid.
Chapter 7232

Performance Alarms
Alarm Syntax Reference
LOOP Statement

The LOOP statement goes through multiple-instance data types and
performs the action defined for each instance.

Syntax

{APPLICATION, PROCESS, LVOLUME, DISK, CPU, FILESYSTEM,
TRANSACTION, NETIF}
LOOP
 action

• APPLICATION, PROCESS, LVOLUME, DISK, CPU, FILESYSTEM,
TRANSACTION, NETIF — OV Performance Agent data types that
contain multi-instance data.

• action — PRINT, EXEC, ALERT, set variables.

How It Is Used

As LOOP statements iterate through each instance of the data type,
metric values change. For instance, the following LOOP statement prints
the name of each application to stdout if you are using the utility
program's analyze command.

APPLICATION LOOP
 PRINT app_name

A LOOP can be nested within another LOOP statement up to a
maximum of five levels.

In order for the LOOP to execute, the LOOP statement must refer to one
or more metrics of the same data type as the type defined in the LOOP
statement.

Example

You can use the LOOP statement to cycle through all active applications.

The following example shows how to determine which application has
the highest CPU at each interval. When the statement “highest_cpu =
highest_cpu” is executed during the first interval, highest_cpu will be
initialized to 0. During subsequent intervals, highest_cpu will be
initialized to the value from the previous interval.
Chapter 7 233

Performance Alarms
Alarm Syntax Reference
highest_cpu = 0
 APPLICATION loop
 IF app_cpu_total_util > highest_cpu THEN
 {
 highest_cpu = app_cpu_total_util
 big_app = app_name
 ALERT "Application ", app_name, " has the highest cpu
util at ",highest_cpu_util|5|2, "%"

 }

 ALARM highest_cpu > 50 for 15 minutes
 START
 RED ALERT big_app, " is the highest CPU user at ",
 highest_cpu, "%"
 REPEAT EVERY 15 minutes
 CYAN ALERT big_ap, " is the highest CPU user at ",
 highest_cpu, "%"
 END
 RESET ALERT "No applications using excessive cpu"
Chapter 7234

Performance Alarms
Alarm Syntax Reference
INCLUDE Statement

Use the INCLUDE statement to include another alarm definitions file
along with the default alarmdef file.

Syntax

INCLUDE "filename"

where filename is the name of another alarm definitions file. The file
name must always be fully qualified.

How It Is Used

The INCLUDE statement could be used to separate logically distinct sets
of alarm definitions into separate files.

Example

For example, if you have some alarm definitions in a separate file for
your transaction metrics and it is named

trans_alarmdef1

You can include it by adding the following line to the alarm definitions in
your alarmdef1 file:

INCLUDE "/var/opt/perf/trans_alarmdef1"
Chapter 7 235

Performance Alarms
Alarm Syntax Reference
USE Statement

You can add the USE statement to simplify the use of metric names in
the alarmdef file when data sources other than the default SCOPE data
source are referenced. This allows you to specify a metric name without
having to include the data source name.

The data source name must be defined in the datasources file. The
alarmdef file will fail its syntax check if an invalid or unavailable data
source name is encountered.

NOTE The appearance of a USE statement in the alarmdef file does not imply
that all metric names that follow will be from the specified data source.

Syntax

USE "datasourcename"

How It Is Used

As the alarm generator (perfalarm) checks the alarmdef file for valid
syntax, it builds an ordered search list of all data sources that are
referenced in the file. perfalarm sequentially adds entries to this data
source search list as it encounters fully-qualified metric names or USE
statements. This list is subsequently used to match metric names that
are not fully qualified with the appropriate data source name. The USE
statement provides a convenient way to add data sources to perfalarm's
search list, which then allows for shortened metric names in the
alarmdef file. For a discussion of metric name syntax, see “Metric
Names” on page 218.

perfalarm's default behavior for matching metric names to a data source
is to look first in the SCOPE data source for the metric name. This
implied USE "SCOPE" statement is executed when perfalarm encounters
the first metric name in the alarmdef file. This feature enables a default
search path to the SCOPE data source so that SCOPE metrics can be
referenced in the alarmdef file without the need to fully qualify them.
This is shown in the following example on the next page.
Chapter 7236

Performance Alarms
Alarm Syntax Reference
ALARM gbl_cpu_total_util > 80 FOR 10 MINUTES
 START RED ALERT "CPU utilization too high"

USE "ORACLE7"

ALARM ActiveTransactions >= 95 FOR 5 MINUTES
 START RED ALERT "Nearing limit of transactions for
 ORACLE7"

When perfalarm checks the syntax of the alarmdef file containing the
above statements, it encounters the metric "gbl_cpu_total_util" and
then tries to find its data source. perfalarm does not yet have any data
sources in its search list of data sources, so it executes an implied USE
"SCOPE" statement and then searches the SCOPE data source to find
the metric name. A match is found and perfalarm continues checking
the rest of the alarmdef file.

When perfalarm encounters the USE "ORACLE7" statement, it adds
the ORACLE7 data source to the search list of data sources. When the
"ActiveTransactions" metric name is encountered, perfalarm
sequentially searches the list of data sources starting with the SCOPE
data source. SCOPE does not contain that metric name, so the
ORACLE7 data source is searched next and a match is found.

If perfalarm does not find a match in any data source for a metric name,
an error message is printed and perfalarm terminates.

To change the default search behavior, a USE statement can be added to
the beginning of the alarmdef file before any references to metric names.
This will cause the data source specified in the USE statement to be
added to the search list of data sources before the SCOPE data source.
The data source(s) in the USE statement(s) will be searched before the
SCOPE data source to find matches to the metrics names. This is shown
in the following example.

Once a data source has been referenced with a USE statement, there is
no way to change its order or to remove it from the search list.

USE "ORACLE7"

ALARM gbl_cpu_total_util > 80 FOR 10 MINUTES
 START RED ALERT "CPU utilization too high"

ALARM ActiveTransactions >= 95 FOR 5 MINUTES
 START RED ALERT "Nearing limit of
 transactions for ORACLE7"
Chapter 7 237

Performance Alarms
Alarm Syntax Reference
In the example above, the order of the statements in the alarmdef file
has changed. The USE "ORACLE7" statement is defined before any
metric names are referenced, therefore the ORACLE7 data source is
added as the first data source in the search list of data sources. The
implied USE "SCOPE" statement is executed when perfalarm
encounters the first metric name "gbl_cpu_total_util." Because the
GBL_CPU_TOTAL_UTIL metric name is not fully-qualified, perfalarm
sequentially searches through the list of data sources starting with
ORACLE7. ORACLE7 does not contain that metric name so the SCOPE
data source is searched next and a match is found.

perfalarm continues checking the rest of the alarmdef file. When
perfalarm encounters the “ActiveTransactions”" metric, it
sequentially searches the list of data sources starting with ORACLE7. A
match is found and perfalarm continues searching the rest of the
alarmdef file. If perfalarm does not find a match in any data source for
a metric name (that is not fully-qualified), an error message will be
printed and perfalarm terminates.

Be careful how you use the USE statement when multiple data sources
contain the same metric names. perfalarm sequentially searches the list
of data sources. If you are defining alarm conditions from different data
sources that use the same metric names, you must qualify the metric
names with their data source names to guarantee that the metric value
is retrieved from the correct data source. This is shown in the following
example where the metric names in the alarm statements each include
their data sources.

 ALARM ORACLE7:ActiveTransactions >= 95 FOR 5 MINUTES
 START RED ALERT "Nearing limit of transactions for
 ORACLE7"

 ALARM FINANCE:ActiveTransactions >= 95 FOR 5 MINUTES
 START RED ALERT "Nearing limit of transactions for
 FINANCE"
Chapter 7238

Performance Alarms
Alarm Syntax Reference
VAR Statement

The VAR statement allows you to define a variable and assign a value to
it.

Syntax

[VAR] name = value

• name — Variable names must begin with a letter and can include
letters, digits, and the underscore character. Variable names are not
case-sensitive.

• value — If the value is an alphanumeric string, it must be enclosed
in quotes.

How It Is Used

VAR assigns a value to the user variable. If the variable did not
previously exist, it is created.

Once defined, variables can be used anywhere in the alarmdef file.

Examples

You can define a variable by assigning something to it. The following
example defines the numeric variable highest_CPU_value by assigning
it a value of zero.

highest_CPU_value = 0

The next example defines the alphanumeric variable my_name by
assigning it an empty string value.

my_name = ""
Chapter 7 239

Performance Alarms
Alarm Syntax Reference
ALIAS Statement

The ALIAS statement allows you to substitute an alias if any part of a
metric name (class, instance, or metric) has a case-sensitive name or a
name that includes special characters. These are the only circumstances
where the ALIAS statement should be used.

Syntax

ALIAS name = "replaced-name"

• name — The name must begin with a letter and can include letters,
digits, and the underscore character.

• replaced-name — The name that must be replaced by the ALIAS
statement to make it uniquely recognizable to the alarm generator.

How It Is Used

Because of the way the alarmdef file is processed, if any part of a metric
name (class, instance, or metric name) can be identified uniquely only by
recognizing uppercase and lowercase, you will need to create an alias.
You will also need to create an alias for any name that includes special
characters. For example, if you have applications called "BIG" and "big,"
you'll need to alias "big" to ensure that they are viewed as different
applications. You must define the alias somewhere in the alarmdef file
before the first instance of the name you want substituted.

Examples

Because you cannot use special characters or upper and lower case in the
syntax, using the application name "AppA" and "appa" could cause errors
because the processing would be unable to distinguish between the two.
You would alias "AppA" to give it a uniquely recognizable name. For
example:

ALIAS appa_uc = "AppA"
 ALERT "CPU alert for AppA.util is",appa_uc:app_cpu_total_util

If you are using an alias for an instance with a class identifier, include
both the instance name and the class name in the alias. The following
example shows the alias for the instance name 'other' and the class
name 'APPLICATION.'

ALIAS my_app="other(APPLICATION)"
 ALERT my_app:app_cpu_total_util > 50 for 5 minutes
Chapter 7240

Performance Alarms
Alarm Syntax Reference
SYMPTOM Statement

A symptom provides a way to set a single variable value based on a set of
conditions. Whenever any of the conditions is true, its probability value
is added to the value of the symptom variable.

Syntax

SYMPTOM variable
 RULE condition PROB probability
 [RULE condition PROB probability]
 .
 .
 .

• The keywords SYMPTOM and RULE are used exclusively in the
SYMPTOM statement and cannot be used in other syntax
statements. The SYMPTOM statement must be a top-level
statement and cannot be nested within any other statement. No
other statements can follow SYMPTOM until all its corresponding
RULE statements are finished.

• variable is a variable name that will be the name of this symptom.
Variable names defined in the SYMPTOM statement can be used in
other syntax statements, but the variable value should not be
changed in those statements.

• RULE is an option of the SYMPTOM statement and cannot be used
independently. You can use as many RULE options as needed within
the SYMPTOM statement. The SYMPTOM variable is evaluated
according to the rules at each interval.

• condition is defined as a comparison between two items.

item1 {>, <, >=, <=, ==, !=}item2
[item3 {>, <, >=, <=, ==, !=}item4]

where "==" means "equal" and "!=" means "not equal".

An item can be a metric name, a numeric constant, an alphanumeric
string enclosed in quotes, an alias, or a variable. When comparing
alphanumeric items, only == or != can be used as operators.

• probability is a numeric constant. The probabilities for each true
SYMPTOM RULE are added together to create a SYMPTOM value.
Chapter 7 241

Performance Alarms
Alarm Syntax Reference
How It Is Used

The sum of all probabilities where the condition between measurement
and value is true is the probability that the symptom is occurring.

Example

SYMPTOM CPU_Bottleneck
RULE gbl_cpu_total_util > 75 PROB 25
RULE gbl_cpu_total_util > 85 PROB 25
RULE gbl_cpu_total_util > 90 PROB 25
RULE gbl_run_queue > 3 PROB 50
IF CPU bottleneck > 50 THEN
CYAN ALERT "The CPU symptom is: ", CPU_bottleneck
Chapter 7242

Performance Alarms
Alarm Definition Examples
Alarm Definition Examples
The following examples show typical uses of alarm definitions.

Example of a CPU Problem

If you have OV Performance Manager configured correctly, this example
turns the alarm symbol CYAN in the Network Node Manager map
(whenever CPU utilization exceeds 90 percent for 5 minutes and the
CPU run queue exceeds 3 for 5 minutes), and sends a message to the OV
Performance Manager Alarms window.

ALARM gbl_cpu_total_util > 90 AND
 gbl_run_queue > 3 FOR 5 MINUTES
START
 CYAN ALERT "CPU too high at", gbl_cpu_total_util, "%"
REPEAT EVERY 20 MINUTES
{
 RED ALERT "CPU still to high at ", gbl_cpu_total_util, "%"
 EXEC "/usr/bin/pager -n 555-3456"
}
END
 RESET ALERT "CPU at ", gbl_cpu_total_util, "% - RELAX"

The ALERT could also trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO, depending on how you
configured the alarm generator.

If both conditions continue to hold true after 20 minutes, a red alert is
generated, the alarm symbol turns red in the Network Node Manager
map, and another message is sent to the OV Performance Manager
Alarms window. A program is then run to page the system administrator.

When either one of the alarm conditions fails to be true, the alarm
symbol is deleted and a message is sent to the OV Performance Manager
Alarms window showing the global CPU utilization, the time the alert
ended, and a note to RELAX.

Example of Swap Utilization

If you have OV Performance Manager configured correctly, this example
turns the alarm symbol red in the Network Node Manager map
(whenever swap space utilization exceeds 95 percent for 5 minutes) and a
message is written to the OV Performance Manager Alarms window.
Chapter 7 243

Performance Alarms
Alarm Definition Examples
ALARM gbl_swap_space_util > 95 FOR 5 MINUTES
 START
 RED ALERT "GLOBAL SWAP space is nearly full "
 END
 RESET ALERT "End of GLOBAL SWAP full condition"

The ALERT can trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO, depending on how you
configured your alarm generator.

Example of Time-Based Alarms

You can specify a time interval during which alarm conditions can be
active. For example, if you are running system maintenance jobs that are
scheduled to run at regular intervals, you can specify alarm conditions
for normal operating hours and a different set of alarm conditions for
system maintenance hours.

In this example, the alarm will only be triggered during the day from
8:00AM to 5:00PM.

 start_shift = "08:00"
 end_shift = "17:00"

 ALARM gbl_cpu_total_util > 80
 TIME > start_shift
 TIME < end_shift for 10 minutes
 TYPE = "cpu"
 START
 CYAN ALERT "cpu too high at ", gbl_cpu_total_util, "%"
 REPEAT EVERY 10 minutes
 RED ALERT"cpu still too high at ", gbl_cpu_total_util,
 "%"
 END
 IF time == end_shift then
 {
 IF gbl_cpu_total_util > 80 then
 RESET ALERT "cpu still too high, but at the end of
 shift"
 ELSE
 RESET ALERT "cpu back to normal"
 }
 ELSE
 RESET ALERT "cpu back to normal"
Chapter 7244

Performance Alarms
Alarm Definition Examples
Example of Disk Instance Alarms

Alarms can be generated for a particular disk by identifying the specific
disk instance name and corresponding metric name.

The following example of alarm syntax generates alarms for a specific
disk instance. Aliasing is required when special characters are used in
the disk instance.

 ALIAS diskname="2/0/1.5.0"
 ALARM diskname:bydsk_phys_read > 1000 for 5 minutes
 TYPE="Disk"
 START
 RED ALERT "Disk 2/0/1.50 red alert"
 REPEAT EVERY 10 MINUTES
 CYAN ALERT "Disk 2/0/1.5.0 cyan alert"
 END
 RESET ALERT "Disk 2/0/1.5.0 reset alert"
Chapter 7 245

Performance Alarms
Customizing Alarm Definitions
Customizing Alarm Definitions
You specify the conditions that generate alarms in the alarm definitions
file alarmdef. When OV Performance Agent is first installed, the
alarmdef file contains a set of default alarm definitions. You can use
these default alarm definitions or customize them to suit your needs.

You can customize your alarmdef file as follows:

1. Revise your alarm definition(s) as necessary. You can look at
examples of the alarm definition syntax elsewhere in this chapter.

2. Save the file.

3. Validate the alarm definitions using the OV Performance Agent
utility program:

a. Type utility

b. At the prompt, type

checkdef

This checks the alarm syntax and displays errors or warnings if
there any problems with the file.

4. In order for the new alarm definitions to take affect, type:

ovpa restart alarm

This causes the alarm generator to stop, restart, and read the
customized alarmdef file.

You can use a unique set of alarm definitions for each OV Performance
Agent system, or you can choose to standardize monitoring of a group of
systems by using the same set of alarm definitions across the group.

The best way to learn about performance alarms is to experiment with
adding new alarm definitions or changing the default alarm definitions.
Chapter 7246

8 Communicating Across a
Firewall
Chapter 8 247

Communicating Across a Firewall
Introduction
Introduction
OV Performance Agent (OVPA) now uses HTTP 1.1 based
communications interface for data access between client and server
applications. This interface is flexible, since it can use proxies, requires
fewer ports and is firewall friendly. This replaces the functions that were
implemented in previous versions of OVPA by the perflbd and
rep_server daemons. These daemons, and their dependency on the DCE
subsystem can still be used by all UNIX systems except for OVPA for
Linux.

In general, a firewall may be defined as a method for filtering the flow of
data communications between one network and another. There are
different ways to configure the HTTP communication in a firewall
environment. The standard recommended way is to use HTTP proxies for
OVPA datacomm through a firewall. This simplifies the configuration by
using proxies that are often already in use in your environment. The
firewall must be open for exactly one port if proxies are to be used in both
directions.

In a typical remote communication a client, using the source port,
connects to a server that is listening on the destination port on a remote
system. For firewall configuration it is important to know which system
initiates the communication client) and which receives communication
requests server), so that the firewall rules can be set up accordingly.

Figure 8-1 shows how OVPA communicates with Reporter (version 3.0 or
later) and OV Performance Manager (OVPM version 4.0 or later)
through a firewall. OVPA is an HTTP server. Reporter and OVPM are
HTTP clients. If an HTTP proxy is used, Reporter and OVPM
communicate with OVPA via the proxy.
Chapter 8248

Communicating Across a Firewall
Introduction
Figure 8-1 Communicating with OVPA in a Firewall Environment

OVPM version 3.x uses the PerfView technology. PerfView does not use
the new datacomm components, but it will connect to OV Performance
Agent 4.0 and later for all UNIX platforms except for OVPA for Linux. In
the future, OVPM 3.x will be discontinued.

NOTE For Linux users, if you cannot upgrade OVPM 3.x to OVPM 4.0 or later,
you must access the OVPA for Linux data locally via the extract
program’s export function. Likewise, OVPA for Linux will not send
alarm notifications to the PerfView monitor.

Ports Used for Communication with OVPA

To access data collected by OVPA, ports for the HTTP server (OVPA) and
the HTTP client (Reporter and OVPM) need to be opened. There are two
ways to configure HTTP clients in a firewall environment: with an HTTP
proxy and without.

Proxy

OVPA

Server

OV
Reporter

OVPM
4.0 or
later

Firewall

HTTP
Server

HTTP

Clients

inside outside

3.0 or later later
4.0 or
Chapter 8 249

Communicating Across a Firewall
Introduction
With HTTP Proxy

The recommended way is to use HTTP proxies when communicating
through a firewall. This simplifies the configuration because proxies are
often in use and the firewall needs to be opened only for the proxy system
and for a smaller number of ports. It is recommended that you do not
change the default 383 port.

Default Ports for OVPA (with proxies) are shown in Table 8-1.

Without HTTP Proxy

If HTTP proxies are not available, additional ports need to be opened for
both source and destination ports and additional configuration settings
are required on the Reporter and OVPM system.

Overview of OVPA Communications Configuration

To configure communications with OVPA in a firewall environment,
follow these guidelines:

• Understand your firewall environment including the client and
server data flow.

• For Linux systems, if an OVO agent (version 7.0 or later) is already
running on the Linux system then check to see if communications
across a firewall to Reporter and OVPM is already configured. If it is,
then you don’t need to complete the rest of the steps documented
here. Refer to the HP OpenView Operations for UNIX Firewall White
Paper on the HP OpenView Manuals web site at

http://ovweb.external.hp.com/lpe/doc_serv

Table 8-1 OVPA Default Ports

Source Destination Protocol Source
Port

Destination
Port Description

PROXY MGD NODE HTTP Defined by
the proxy

383 Local
Location
Broker

PROXY MGD NODE HTTP Defined by
the proxy

381 OVPA
Chapter 8250

Communicating Across a Firewall
Introduction
Select operations for hpux, version 7.x and click [Search].)

• Check the port usage in your environment.

• Configure the HTTP Server Port on the OVPA system using the
default.txt communications configuration file.

• If proxies are used, configure Reporter and OVPM to know the proxy
to be used to contact OVPA.

• If proxies are not used, configure the HTTP Client port or port range
for Reporter and OVPM.

• Test the communications across the firewall.

Refer to the following sections for details on configuring communications
across firewalls:

• “Configure OVPA Server Port”

• “Configure Reporter and/or OVPM”

• “Other Considerations”

• “default.txt File and Configuration Parameters”

Communications default.txt Configuration File

Enter parameters into the default.txt file to set up the OVPA
communications configuration. For more information about the
default.txt file and its parameters, see “default.txt File and
Configuration Parameters” on page 254.

• For Linux, the default.txt file is located in:

/var/opt/OV/conf/BBC/

• For Windows systems with Reporter and OVPM, the default.txt
file is located in:

<OVDataDir>/conf/BBC/

where <OVDataDir> is defined by the registry setting:

HKEY_LOCAL_MACHINE\SOFTWARE\Hewlett-Packard\HP OpenView\DataDir

• For UNIX systems with Reporter and OVPM, refer to the Reporter
and OVPM system documentation for the location of the
default.txt file.
Chapter 8 251

Communicating Across a Firewall
Introduction
Configure OVPA Server Port

If you want to override the default server port of 381 for OVPA, use the
default.txt file parameter SERVER_PORT to set a different port to be
used by the HTTP server (OVPA):

1. On the OVPA system, locate the default.txt file.

2. Locate the line, SERVER_PORT = 381, and change the port number.
For example:

SERVER_PORT = 1100

3. Restart OVPA processes:

/opt/perf/bin/ovpa stop
/opt/perf/bin/ovpa start

OR

/opt/perf/bin/ovpa restart

Configure Reporter and/or OVPM

You can configure the HTTP clients (Reporter or OVPM for Windows or
UNIX) in a firewall environment in one of two ways:

• With HTTP Proxy – This is the recommended way. See the section
“Configure Reporter/OVPM with HTTP Proxy” .

• Without HTTP Proxy – This is not the recommended way. See the
section “Configure Reporter/OVPM without HTTP Proxy” .

Configure Reporter/OVPM with HTTP Proxy

When an HTTP proxy is used, Reporter and/or OVPM for Windows and
UNIX need to be configured to specify the proxy to be used to contact
OVPA. Configure Reporter/OVPM as follows:

Edit the default.txt configuration file:

In the [DEFAULT] section of the default.txt file, locate the
lines that relate to the PROXY and set the PROXY parameter as
follows.

PROXY web-proxy.hp.com:8088- (localhost, *.hp.com) + (*)
Chapter 8252

Communicating Across a Firewall
Introduction
In this example, the proxy web-proxy will be used with port 8088 for
every server (*) except requests for the local machine (localhost) and
requests internal to HP (matching *.hp.com, for example www.hp.com.

NOTE Any settings defined in the OpenView Operations nodeinfo
communications configuration file will take precedence over the settings
defined in the default.txt file.

Configure Reporter/OVPM without HTTP Proxy

If your firewall environment does not have proxies then you may want to
specify the HTTP client ports directly if you want to filter based on both
source and destination.

If Reporter and OVPM for Windows are installed on the same system
and both access OVPA in parallel, you would specify a port range as
described in this section. If they are running on different systems, you
can instead specify a single port for each.

Edit the default.txt file as follows:

1. Locate the lines that apply to CLIENT_PORT and uncomment the line
;CLIENT_PORT =.

2. Specify the port range for the CLIENT_PORT parameter. For example:

CLIENT_PORT = <port range>

Where <port range> is the range of ports you want to use. For
example:

CLIENT_PORT = 14000-14003

NOTE If OVO is installed, any settings defined in the OVO nodeinfo
communications configuration file will take precedence over the settings
defined in the default.txt file.
Chapter 8 253

Communicating Across a Firewall
Introduction
Other Considerations

About Systems with Multiple IP Addresses

If your environment includes systems with multiple network interfaces
and IP addresses and you want to use a dedicated interface for the
HTTP-based communication, then you can use the nodeinfo (or
default.txt) parameter CLIENT_BIND_ADDR and SERVER_BIND_ADDR to
specify the IP address that should be used. See the “default.txt
Configuration Parameters” on page 257 for more information on these
parameters.

default.txt File and Configuration Parameters

default.txt Configuration File

Following is the default.txt file included with OVPA:

;
; HP OpenView communications configuration file: default.txt
;
; This file is to be used to customize communication parameters
; for HP OpenView applications.
;
; All lines beginning with a ';' character are considered comments
; and will be ignored. Leading spaces are allowed and ignored for
; all entries in this file. Trailing spaces are also ignored.
;
; Sections are denoted using '[]' characters. All applications
; loading this file will recognize the [DEFAULT] section and
; sections with their application name. All other sections are
; ignored by the application loading this file. Application names
; are case sensitive.
;
; Key/value pairs define configuration parameters recognized by the
; application. Syntax is:
; KEY = value
; The '=' sign is required. Spaces before and after the equals sign
; are ignored. Keys are case sensitive.
;
; Keys may be defined multiple times. The last definition read is
; the one that will become active. Previous entries are
; overwritten.
;

Chapter 8254

Communicating Across a Firewall
Introduction
; The key name 'INCLUDE' is reserved and has a special meaning. At
; this point the value will define a new configuration file to be
; read. The defined configuration file is read and then the
; remainder of the current configuration file is processed. The
; file to be read takes the form of a URI, e.g. file:
; /var/opt/OV/conf/BBC/CODAConfig.txt
; Protocols http:// and file:/ are currently supported.
; If no protocol is specified, file:/ is assumed.
; The filename "nodeinfo" is automatically expanded to the full
; pathname of the nodeinfo file on the local node.
;

[DEFAULT]

;;
; The PROXY parameter may be set in the DEFAULT section.
; Defines which proxy and port number to use for a given hostname.
; Format is proxy:port +(a)-(b); proxy2:port2 +(c)-(d); ...
; 'a', 'b', 'c' and 'd' are comma separated lists of hostnames,
; networks, and/or IP addresses that apply to the proxy. Multiple
; proxies may be defined for one PROXY key. '-' before the list
; denotes those entities that do not use this proxy, '+' before the
; list denotes entities that do use this proxy. The first matching
; proxy is used.
;
;PROXY = web-proxy.hp.com:8088-(localhost,*.hp.com)+(*)
;

;;
; The following are examples of parameters that may be set
; by a client application. These should be set in the client
; specific section (see below).
;
; Local port number the client will bind to.
; CLIENT_PORT = 16000
; Range of local ports the client may bind to.
; NOTE: Range syntax is only valid from BBC 2.5.2.0 or
; greater
;CLIENT_PORT = 16000-16010
; Local address the client will bind to.
;CLIENT_BIND_ADDR = 10.10.10.10
;
;
; The following are examples of parameters that may be set
; by a server application. These should be set in the server
Chapter 8 255

Communicating Across a Firewall
Introduction
; specific section (see below).
;
; Local port number the server will bind to.
;SERVER_PORT = 80
; Local address the server will bind to.
;SERVER_BIND_ADDR = 10.10.10.10

;;
;
; The following settings are for HP internal use only
; or are used for local communication.
; These settings don't have to be changed.
;
[com.hp.openview.OvAgency.OvAgencyCommand]
SERVER_PORT = 6600

[com.hp.openview.OvAgency.OvPolicyFileObject]
SERVER_PORT = 6600

;;
; reserved for future use - not used at all in OVOW 7.0
;
[com.hp.openview.bbc.FxServer]
SERVER_PORT = 6500

;;
; Local Location Broker (LLB): used by all components
;
; NOTE: The LLB 'SERVER_PORT' value must
; be the same on all nodes.
;
[com.hp.openview.bbc.LLBServer]
SERVER_PORT = 383
;SERVER_BIND_ADDR =

;;
;
; The following settings are the default settings for all HP
; components that use the HP OpenView HTTP-based communication
;
; OVO embedded performance component
;
[com.hp.openview.Coda]
SERVER_PORT = 381
;SERVER_BIND_ADDR =
Chapter 8256

Communicating Across a Firewall
Introduction
;;
; used by various clients of the embedded performance component:
; OVOW embedded reporter and grapher, OV Reporter, OV Performance
; Manager
;
[com.hp.openview.CodaClient]
;CLIENT_PORT =
;CLIENT_BIND_ADDR =

;;
; used by service discovery agent and server component
;
[com.hp.openview.OvDiscoveryCore.OvDiscoveryInstanceXML]
SERVER_PORT = 6602
;SERVER_BIND_ADDR =
;CLIENT_PORT =
;CLIENT_BIND_ADDR =

[DEFAULT]

; It's important to note that the following statement includes
; parameters defined in the nodeinfo file. Those parameters will
; take precedence over any parameters defined up to this point.
INCLUDE = nodeinfo

; EOF

default.txt Configuration Parameters

The default.txt configuration parameters are listed and described in
the following sections.

PROXY

Usage: HTTP client (Reporter and/or OVPM)

Description: Sets the proxy for any OpenView HTTP clients running on
the system. Clients can be Reporter or OV Performance Manager. The
variables are comma-separated lists of hostnames, networks, and IP
addresses that apply to the proxy. Multiple proxies may be defined for
one PROXY key. A dash (-) before the list indicates that those entities do
not use this proxy, a plus (+) before the list indicates that those entities
do use this proxy. The first matching proxy is used.

Values: proxy:port +(a) – (b) ; proxy2:port2 + (c) – (d) ; …
Chapter 8 257

Communicating Across a Firewall
Introduction
Default: not set

Examples:

PROXY web-proxy.hp.com:8088

Meaning: the proxy web-proxy will be used with port 8088 for every
server.

PROXY web-proxy.hp.com:8088 –(localhost, *.veg.com)
+(*.lettuce.veg.com)

Meaning: the proxy web-proxy will be used with port 8088 for
every server except the local host and hosts that match *.veg.com,
for example, www.veg.com. The exception is hostnames that match
*.lettuce.veg.com, for example, for romain.lettuce.veg.com the
proxy server will be used.

CLIENT_BIND_ADDR(app_name)

Usage: HTTP client (Reporter and/or OVPM)

Description: Sets the IP address for the specified application’s
OpenView HTTP client. Valid application name is
com.hp.openview.CodaClient.

Values: <IP_address>

Default: not set

Example:

[com.hp.openview.CodaClient]
CLIENT_BIND_ADDR = 10.10.10.10

CLIENT_PORT(app_name)

Usage: HTTP client (Reporter and/or OVPM)

Description: Sets the port number or a range of ports for the specified
application’s OpenView HTTP client. Valid application name is
com.hp.openview.CodaClient.

Values: <port_range>

Default: not set

Example:

[com.hp.openview.CodaClient]
CLIENT_PORT = 14000-14003
Chapter 8258

Communicating Across a Firewall
Introduction
SERVER_BIND_ADDR(app_name)

Usage: HTTP server (OVPA)

Description: Sets the IP address for the specified application’s OpenView
HTTP server. Valid application name is com.hp.openview.Coda.

Values: <IP_address>

Default: not set

Example:

[com.hp.openview.Coda]
SERVER_BIND_ADDR = 10.10.10.10

SERVER_PORT(app_name)

Usage: HTTP server (OVPA)

Description: Sets the port number or a range of ports for the specified
application’s OpenView HTTP server. Valid application name is
com.hp.openview.Coda.

Values: <port_number>

Default:

[com.hp.openview.bbc.LLBServer]
SERVER_PORT = 381

[com.hp.openview.bbc.LLBServer]
SERVER_PORT = 383

Example:

[com.hp.openview.Coda]
SERVER_PORT = 1100
Chapter 8 259

Communicating Across a Firewall
Introduction
Chapter 8260

A Appendix
Chapter A 261

Appendix
Viewing MPE Log Files
Viewing MPE Log Files
MPE log file data collected by the scopeXL collector can be viewed with
OV Performance Manager. Before viewing the data, you must first
extract it and then load the log files as a local data source on your OV
Performance Manager system.

To view your MPE log file data using OV Performance Manager, follow
these steps:

1. Login to your HP 3000 system as MANAGER.SYS,SCOPE.

2. Run the Performance Collection Software (for MPE Systems)
extract program, EXTRACT.SCOPE.SYS.

3. Extract the scopeXL log file data that you want to view. (For more
information about extracting log file data, see the HP Performance
Collection Software User's Manual (for MPE Systems) or online Help
for the extract program.)

4. Using binary mode, ftp the extracted log file to a system where OV
Performance Agent and OV Performance Manager are running.

5. Login to your OV Performance Manager system (if you have not
already done so). Make sure that you have the system name and path
to the file that you just downloaded from your MPE system. You
cannot access the data through NFS.

6. Run OV Performance Manager.

7. Add the extracted MPE log file data as a local data source. (For more
information, see “Add a Local Data Source” in OV Performance
Manager's online Help.)

8. View the data.
Chapter A262

Appendix
Viewing and Printing Documents
Viewing and Printing Documents
OV Performance Agent software includes the standard OV Performance
Agent documentation set in viewable and printable file formats. You can
view the Adobe Acrobat format (*.pdf) documents online and print as
needed. The ASCII text (*.txt) documents are printable. However, you
can view a text file on your screen using any UNIX text editor such as vi.

The documents are listed in the following table along with their file
names and online locations.

Table 8-2 OV Performance Agent Documentation Set

Document Filename Location

HP OpenView
Performance Agent
Installation &
Configuration Guide

install.pdf /opt/perf/paperdocs/ovpa/C/

HP OpenView
Performance Agent for
UNIX User’s Manual

users.pdf /opt/perf/paperdocs/ovpa/C/

HP OpenView
Performance Agent for
UNIX Data Source
Integration Guide

dsi.pdf /opt/perf/paperdocs/ovpa/C/

HP OpenView
Performance Agent for
UNIX & GlancePlus
Tracking Your
Transactions

tyt.pdf /opt/perf/paperdocs/arm/C/

Application Response
Measurement (ARM)
API Guide

armapi.pdf /opt/perf/paperdocs/arm/C/

OV Performance
Agent Metrics
Definitions for a
UNIX platform

met<platform>.txt
met<platform>.htm

/opt/perf/paperdocs/ovpa/C/
Chapter A 263

Appendix
Viewing and Printing Documents
Viewing Documents on the Web

The listed .pdf and .htm documents can be viewed on the HP OpenView
Manuals web site at:

http://ovweb.external.hp.com/lpe/doc_serv

Select performance agent for <platform> from the product list box,
select the release version and click [Search].

Adobe Acrobat Files

The Adobe Acrobat files were created with Acrobat 4.0 and are viewed
with the Adobe Acrobat Reader versions 4.0 and higher. If the Acrobat
Reader is not in your Web browser, you can download it from Adobe’s web
site:

http://www.adobe.com

While viewing a document in the Acrobat Reader, you can print a single
page, a group of pages, or the entire document.

From Linux, you can read a .pdf file by entering:

acroread filename.pdf

OVPA metrics list by
Data Class for all
operating systems

mettable.txt /opt/perf/paperdocs/ovpa/C/

Table 8-2 OV Performance Agent Documentation Set (Continued)

Document Filename Location
Chapter A264

Glossary
alarm An indication of a period of time in
which performance meets or exceeds
user-specified alarm criteria. Alarm
information can be sent to an OV
Performance Manager analysis system and
to HP OpenView Network Node Manager
and OV Operations (OVO). Alarms can also
be identified in historical log file data.

alarm generator The service that handles
the communication of alarm notification. It
consists of perfalarm (alarm generator
server), agdbserver (alarm generator
database server) and agdb (alarm generator
database) that is managed by agdbserver.
The agsysdb program uses a command line
interface for displaying and changing the
actions taken by alarm events.

alarmdef file An OV Performance Agent
text file containing the alarm definitions in
which alarm conditions are specified.

application A user-defined group of related
processes or program files. Applications are
defined so that performance software can
collect performance metrics for and report on
the combined activities of the processes and
programs.

application log file See logappl.

coda daemon A daemon that provides
collected data to the alarm generator and
analysis product data sources including
scopeux log files or DSI log files. coda reads
the data from the datasources
configuration file.

data source A data source consists of one or
more classes of data in a single scopeux or
DSI log file set. For example, the default OV
Performance Agent data source, is a scopeux
log file set consisting of global data. See
also datasources file.

datasources file A configuration file
residing in the var/opt/OV/conf/perf/
directory. Each entry in the file represents a
scopeux or DSI data source consisting of a
single log file set. See also coda and data
source.

data source integration (DSI) The
technology that enables OV Performance
Agent to receive, log, and detect alarms on
data from external sources such as
applications, databases, networks, and other
operating systems.

data type A particular category of data
collected by a data collection process.
Single-instance data types, such as global,
contain a single set of metrics that appear
only once in any data source.
Multiple-instance data types, such as
application, disk, and transaction, may have
many occurrences in a single data source,
with the same set of metrics collected for
each occurrence of the data type.

default.txt A communications configuration
file used to customize communication
parameters for HP OpenView applications.

device A device is an input and/or output
device connected to a system. Common
devices include disk drives, tape drives,
printers, and user terminals.

device log file See logdev.
Glossary 265

Glossary
DSI
DSI See data source integration.

dsilog The OV Performance Agent process
that logs self-describing data received from
stdin.

DSI log files Log files, created by the
dsilog process, that contain self-describing
data collected outside of OV Performance
Agent. See also dsilog.

empty space The difference between the
maximum size of a log file and its current
size.

extract An OV Performance Agent program
that allows you to extract (copy) data from
raw or previously extracted log files,
summarize it, and write it to extracted log
files. It also lets you export data for use by
analysis programs.

extracted log file An OV Performance
Agent log file containing a user-defined
subset of data extracted (copied) from a raw
or previously extracted log file. Extracted log
files are also used for archiving performance
data. See also rxlog.

global A qualifier that implies the whole
system. Thus, “global metrics” are metrics
that describe the activities and states of each
system. Similarly, application metrics
describe application activity; process metrics
describe process activity.

 global log file See logglob.

interesting process A process becomes
interesting when it is first created, when it
ends, and when it exceeds user-defined
thresholds for CPU use, disk use, response
time, and other resources.

logappl The raw log file that contains
summary measurements of the processes in
each user-defined application.

logdev The raw log file that contains
measurements of individual device (such as
disk) performance.

logglob The raw log file that contains
measurements of the system-wide, or global,
workload.

logindx The raw log file that contains
additional information required for
accessing data in the other log files.

logproc The raw log file that contains
measurements of selected interesting
processes. See also interesting process.

logtran The raw log file that contains
measurements of transaction data.

ovpa script The OV Performance Agent
script that has options for starting, stopping
and restarting OV Performance Agent
processes such as data collection, alarms,
and repository servers. See also the ovpa
man page.

OV Performance Manager OV
Performance Manager provides integrated
performance management for multi-vendor
distributed networks. It uses a single
Glossary266

Glossary
transaction tracking
workstation to monitor environment
performance on networks that range in size
from tens to thousands of nodes.

parm file An OV Performance Agent file
that contains the collection parameters used
by scopeux to customize data collection.

performance alarms See alarms

process Execution of a program file. It can
represent an interactive user (processes
running at normal, nice, or real-time
priorities) or an operating system process.

process log file See logproc.

process resource manager (PRM)

Stand-alone resource management tool
developed by Hewlett-Packard that is used
to control the amount of resources that
processes use during a peak system load.
PRM can guarantee both a minimum and,
depending on the resource, a maximum
amount of resources available to a group of
processes.

PRM See process resource manager.

raw log file A file containing summarized
measurements of system data. The scopeux
data collector collects and logs data into raw
log files. See also logglob, logappl, logproc,
logdev, logtran, and logindx.

real time The actual time in which an event
takes place.

repeat time An action that can be specified
for performance alarms. Repeat time
designates the amount of time that must

pass before an activated and continuing
alarm condition triggers another alarm
signal.

resize Changing the overall size of a raw log
file using the utility program's resize
command.

roll back Deleting one or more days worth
of data from a log file, oldest data deleted
first. Roll backs are performed when a raw
log file exceeds its maximum size parameter.

RUN file The file created by the scopeux
collector to indicate that the collection
process is running. Removing the RUN file
causes scopeux to terminate.

rxlog The default output file created when
data is extracted from raw log files.

scopeux The OV Performance Agent
collector program that collects performance
data and writes (logs) this raw measurement
data to raw log files for later analysis or
archiving.

scopeux log files The six log files that are
created by the scopeux collector: logglob,
logappl, logproc, logdev, logtran, and
logindx.

status.scope The file created by the
scopeux collector to record status, data
inconsistencies, or errors.

transaction tracking The OV Performance
Agent capability that allows information
technology (IT) resource managers to
measure end-to-end response time of
Glossary 267

Glossary
utility
business application transactions. To collect
transaction data, OV Performance Agent
must have a process running that is
instrumented with the Application Response
Measurement (ARM) API.

utility An OV Performance Agent program
that lets you open, scan, and generate
reports on raw and extracted log files. You
can also use it to resize raw log files, check
parm file syntax, check the alarmdef file
syntax, and obtain alarm information from
historical log file data.
Glossary268

Index
A
accessing help

extract program, 171
utility program, 87

agdb, 210
agdb database, 210
agdbserver, 210
agsysdb, 210
alarm conditions in historical log file data,

81, 212
alarm definitions, 208

application metrics, 218
components, 214
customizing, 246
examples, 243
file, 81, 208
metric names, 218
syntax checking, 83

alarm generator, 208, 210
alarm processing errors, 212
ALARM statement, alarm syntax, 221
alarm syntax, 215

ALARM statement, 221
ALERT statement, 226
ALIAS statement, 240
comments, 216
common elements, 216
compound statements, 217
conditions, 217, 222, 231
constants, 218
conventions, 216
EXEC statement, 228
expressions, 218
IF statement, 231
INCLUDE statement, 235
LOOP statement, 233
messages, 220
metric names, 218
PRINT statement, 230
reference, 215
SYMPTOM statement, 241
USE statement, 236
VAR statement, 239
variables, 239

alarmdef file, 81, 83, 208, 209, 236, 246
alarms, 208

local actions, 211
processing, 209
sending messages to OVO, 210

alert notifications, 208
ALERT statement, alarm syntax, 226
ALIAS statement, alarm syntax, 240
analyze command, utility program, 81, 212
analyzing

historical log file data, 81, 212
log files, 81, 212

application command, extract program, 153
application definition parameters, parm file,

42
application LOOP statement, alarm syntax,

233
application metrics, in alarm definitions, 218
application name parameter, parm file, 43
application name record, 141
Application Response Measurement (ARM),

39
archiving log file data, 54, 179, 200, 203
archiving processes, managing, 54
ASCII format, export file, 128
ASCII record format, 134

B
binary format, export file, 129
binary header record layout, 136
binary record format, 135

C
checkdef command, utility program, 83
class command, extract program, 155
client, firewall, 248
CLIENT_BIND_ADDR(app_name)

parameter, 258
CLIENT_PORT(app_name) parameter, 258
coda daemon, 26, 209
collection parameters, 26, 36
command abbreviations

extract, 146
utility, 78

command line arguments
extract program, 117
utility program, 63

command line interface
extract program, 114, 117
utility program, 59, 63
1

Index
commands
extract program, 146
perfstat, 33
utility program, 78

comments, using in alarm syntax, 216
compound actions in ALARM statement, 224
compound statements in alarm syntax, 217
conditions

alarm syntax, 217, 231
in alarm syntax, 222

configuration command, extract program,
157

constants, in alarm syntax, 218
controlling disk space used by log files, 51
conventions

typographical, 15
conventions, alarm syntax, 216
cpu command, extract program, 158
cpu option, 40
creating custom graphs or reports, 132
customized export template files, 126

D
daemons

coda, 209
data collection, 25, 32

management, 32, 51
stopping, 49

data source integration (DSI), 23, 26
data sources, 26, 209, 236
data type parameter, export template file,

131
data types, 124
datafile format, export file, 129
datafile record format, 134
datasources configuration file, 27
datasources file, 27, 209
default values,parm file, 34
default.txt configuration file

location, 251
parameters, 257
printout, 254

detail command, utility program, 84
disk command, extract program, 159
disk device name record, 142
disk option, 40
disk space used by log files, controlling, 51
documentation, viewing and printing, 263

DSI log files, 26, 151, 164, 170

E
errors, alarm processing, 212
EXEC statement, alarm syntax, 228
executing local actions, 211
exit command, extract program, 160
exit command, utility program, 85
export command, extract program, 124, 161
export data types, 124
export default output files, 162
export file

title, 132
export function

data files, 126
export template file syntax, 128
export template files, 125
overview, 124
process, 124
sample tasks, 125
using, 132

export template file
data type, 131
export file title, 132
format, 128
headings, 129
items, 131
layout, 130
missing, 130
output, 130
parameters, 128
report, 128
separator, 129
summary, 130
syntax, 128

exporting DSI log file data, 170
exporting log file data, 161
expressions, in alarm syntax, 218
extract command, extract program, 164
extract commands

application, 153
class, 155
configuration, 157
cpu, 158
disk, 159
exit, 160
export, 124, 161
2

Index
extract, 164
filesystem, 167
global, 168
guide, 170
help, 171
list, 172
lvolume, 176
menu, 177
monthly, 179
output, 182
process, 185
quit, 187
report, 188
sh, 189
shift, 190
show, 192
start, 194
stop, 196
weekdays, 199
weekly, 200
yearly, 203

extract program, 26, 112
command line arguments, 117
command line interface, 117
commands, 146
interactive versus batch, 114
running, 114

extracting log file data, 164

F
file parameter, parm file, 44
files

alarm definitions, 81, 208
alarmdef, 81, 83, 208, 209, 246
datasources, 27, 209
default.txt, 251
default.txt configuration file, 251, 254, 257
export template, 125
logappl, 33, 38
logdev, 33, 38, 39
logglob, 33, 37
logindx, 33
logproc, 33, 38
logtran, 33, 39
parm, 26, 36
reptall, 125, 126
reptfile, 125, 188
repthist, 126
status.scope, 33

filesystem command, extract program, 167
firewall

client, 248
communicatiing across, 248
communicating across, 248
configure OVPA server port, 252
configure Reporter/OVPM with HTTP

proxy, 252
configure Reporter/OVPM without HTTP

proxy, 253
default ports for communication with

OVPA, 250
default.txt file printout, 254
default.txt location, 251
overview of OVPA communications

configuration, 250
server, 248
systems with multiple IP addresses, 254

format parameter
export template file, 128

G
GlancePlus, 28
global command, extract program, 168
group parameter, parm file, 45
guide command, extract program, 170
guide command, utility program, 86
guided mode

extract, 170
utility, 86

H
headings parameter, export template file, 129
help command, extract command, 171
help command, utility program, 87
HTTP

client, 249
clients, 249
proxies, 248

I
ID parameter

parm file, 37
IF statement, alarm syntax, 231
INCLUDE statement, alarm syntax, 235
interactive mode

extract program, 116
utility program, 61

interesting processes, 38, 52
3

Index
items parameter, export template file, 131

L
layout parameter, export template file, 130
list command, extract program, 172
list command, utility program, 88
local actions

alarms, 228
executing, 211

log file data
analyzing for alarm conditions, 212
archiving, 179, 200, 203
exporting, 161
extracting, 164

log files
archiving data, 54
controlling disk space, 51
DSI, 26, 151, 164
MPE, 262
resizing, 95
rolling back, 51, 53
scanning, 101
scopeux, 151
setting maximum size, 41, 52

log parameter, parm file, 37
logappl file, 33, 38

PRM groups, 38
logdev file, 33, 38, 39
logfile command, utility program, 90
logglob file, 33, 37, 203
logical volume name record, 142
logindx file, 33
logproc file, 33, 38
logtran file, 33, 39
LOOP statement, alarm syntax, 233
lvolume command, extract program, 176

M
maintenance time, parm file, 42
mainttime parameter, parm file, 42, 51
managing data collection, 32
memory option, 40
menu command

extract program, 177
utility program, 92

messages in alarm syntax, 220
metric names in alarm syntax, 218, 240

missing parameter, export template file, 130
modifying

collection parameters, 34
parm file, 34

monthly command, extract program, 179
MPE log files, viewing, 262

N
netif name record, 143
nokilled option, 40

O
OpenView Operations (OVO), 208, 210
or parameter, parm file, 46
output command, extract program, 182
output parameter, export template file, 130
OV Network Node Manager, 208, 210
OV Operations, 28
OV Performance Agent

components, 24
data collection, 25
description, 23
extract program, 26, 112
utility program, 26, 58

OV Performance Manager, 23, 28
OV Reporter, 28
ovpa script, 49, 50
OVPM

configure with HTTP proxy for firewall
communication, 252

configure without HTTP proxy for firewall
communication, 253

P
parameter

subprocinterval, 41
parameters, 36

CLIENT_BIND_ADDR(app_name), 258
CLIENT_PORT(app_name), 258
PROXY, 257
SERVER_BIND_ADDR(app_name), 259
SERVER_PORT(app_name), 259

parm file, 26, 36
application definition parameters, 42
default values, 34
modifying, 34
4

Index
parameters, 36, 37
subprocinterval parameter, 41
syntax check, 93

parm file parameters
application name, 43
file, 44
group, 45
ID, 37
log, 37
mainttime, 42, 51
or, 46
priority, 47
scopeprocinterval, 41
scopetransactions, 41
size, 41
threshold, 39
user, 45

parmfile command, utility program, 93
perfalarm, 210, 236, 237
performance alarms, 208
perfstat command, 33
PRINT statement, alarm syntax, 230
printing documentation, 263
priority parameter, parm file, 47
PRM application logging mode, 42
PRM groups

APP_NAME_PRM_GROUPNAME, 38
process command, extract program, 185
processing alarms, 209
proxies, HTTP, 248
PROXY parameter, 257

Q
quit command

extract program, 187
utility program, 94

R
raw log files

managing space, 95
names, 90

record formats
ASCII, 134
binary, 135
datafile, 134

report command, extract program, 188
report parameter, export template file, 128
Reporter

configure with HTTP proxy for firewall
communication, 252, 253

reptall file, 125, 126
reptfile file, 125, 188
repthist file, 126
resize command

default resizing parameters, 97
reports, 98
utility program, 61, 95

resizing
log files, 95
tasks, 53

rolling back log files, 53
running

extract program, 114
utility program, 59

S
scan command, utility program, 101
scanning a log file, 101
SCOPE default data source, 27, 218, 236, 237
scopeprocinterval parameter, parm file, 41
scopetransactions parameter, parm file, 41
scopeux, 25, 33

log files, 26, 151
stopping, 49

sending alarm messages, 210, 226
sending SNMP traps, 208, 210
separator parameter, export template file,

129
server, firewall, 248
SERVER_BIND_ADDR(app_name)

parameter, 259
SERVER_PORT(app_name) parameter, 259
setting maximum size of log files, 52
sh command

extract program, 189
utility program, 103

shift command, extract program, 190
shortlived option, 41
show command

extract program, 192
utility program, 104

size parameter, parm file, 41
SNMP

nodes, 210
service, 209
traps, 208, 210

start command
extract program, 194
parameters, 106
utility program, 106

status.scope file, 33
5

Index
stop command
extract program, 196
parameters, 108
utility program, 108

stopping
data collection, 49
scopeux, 49

summary parameter, export template file,
130

SYMPTOM statement, alarm syntax, 241

T
terminating

extract program, 160, 187
utility command, 94
utility program, 85

threshold parameter, parm file, 39
cpu option, 40
disk option, 40
memory option, 40
nokilled option, 40
nonew option, 40
shortlived option, 41

transaction name record, 142
transaction tracking, 27

U
USE statement, alarm syntax, 236
user parameter, parm file, 45
utility commands

analyze, 81, 212
checkdef, 83
detail, 84
exit, 85
guide, 86
help, 87
list, 88
logfile, 90
menu, 92
parmfile, 93
quit, 94
resize, 61, 95
scan, 101
sh, 103
show, 104
start, 106

stop, 108
utility program, 26, 58, 78, 212

batch mode, 59
batch mode example, 61
command line arguments, 63
command line interface, 59, 63
entering shell commands, 103
interactive mode, 61
interactive program example, 61
interactive versus batch, 59
running, 59

utility scan report
application overall summary, 73
application-specific summary report, 70
collector coverage summary, 73
initial parm file application definitions, 68
initial parm file global information, 68
log file contents summary, 74
log file empty space summary, 75
parm file application addition/deletion

notifications, 69
parm file global change notifications, 69
process log reason summary, 71
scan start and stop, 72
scopeux off-time notifications, 70

V
VAR statement, alarm syntax, 239
variables, alarm syntax, 239
viewing

documentation, 263
viewing MPE log files, 262

W
weekdays command, extract program, 199
weekly command, extract program, 200
WK1 format, export file, 129

Y
yearly command, extract program, 203
6

Index
7

Index
8

	Publication History
	Conventions
	Revisions
	Support
	1 This is OpenView Performance Agent
	Introduction
	What OV Performance Agent Does
	OV Performance Manager Major Components
	Scopeux Data Collector
	Collection Parameters File
	DSI Log Files
	Extract and Utility Programs
	Data Sources
	ARM Transaction Tracking Capabilities

	Related Performance Products

	2 Managing Data Collection
	Introduction
	Scopeux Data Collector
	Scopeux Status

	parm File
	Modifying the parm File
	parm File Parameters

	Stopping and Restarting Data Collection
	Stopping Data Collection
	Restarting Data Collection
	Automating Scopeux Startup and Shutdown

	Effective Data Collection Management
	Controlling Disk Space Used by Log Files
	Data Archiving

	3 Using the Utility Program
	Introduction
	Running the Utility Program
	Using Interactive Mode
	Example of Using Interactive and Batch Mode

	Utility Command Line Interface
	Example of Using the Command Line Interface

	Utility Scan Report Details
	Scan Report Information
	Initial Values
	Initial Parm File Application Definitions
	Chronological Detail
	Summaries

	4 Utility Commands
	Introduction
	analyze
	checkdef
	detail
	exit
	guide
	help
	list
	logfile
	menu
	parmfile
	quit
	resize
	scan
	sh
	show
	start
	stop

	5 Using the Extract Program
	Introduction
	Running the Extract Program
	Using Interactive Mode
	Extract Command Line Interface
	Overview of the Export Function
	How to Export Data
	Sample Export Tasks
	Export Data Files
	Export Template File Syntax
	Creating a Custom Graph or Report
	Output of Exported Files
	Notes on ASCII and Datafile Formats
	Notes on Binary Format

	6 Extract Commands
	Introduction
	application
	class
	configuration
	cpu
	disk
	exit
	export
	extract
	filesystem
	global
	guide
	help
	list
	logfile
	lvolume
	menu
	monthly
	netif
	output
	process
	quit
	report
	sh
	shift
	show
	Examples

	start
	stop
	transaction
	weekdays
	weekly
	yearly

	7 Performance Alarms
	Introduction
	Processing Alarms
	How Alarms Are Processed
	Alarm Generator
	Sending SNMP Traps to Network Node Manager
	Sending Messages to OpenView Operations (OVO)
	Executing Local Actions
	Errors in Processing Alarms
	Analyzing Historical Data for Alarms

	Alarm Definition Components
	Alarm Syntax Reference
	Conventions
	Common Elements
	ALARM Statement
	ALERT Statement
	EXEC Statement
	PRINT Statement
	IF Statement
	LOOP Statement
	INCLUDE Statement
	USE Statement
	VAR Statement
	ALIAS Statement
	SYMPTOM Statement

	Alarm Definition Examples
	Customizing Alarm Definitions

	8 Communicating Across a Firewall
	Introduction
	Ports Used for Communication with OVPA
	Overview of OVPA Communications Configuration
	Configure OVPA Server Port
	Configure Reporter and/or OVPM
	Other Considerations
	default.txt File and Configuration Parameters

	A Appendix
	Viewing MPE Log Files
	Viewing and Printing Documents
	Viewing Documents on the Web
	Adobe Acrobat Files

	Glossary

