HP OpenView
Performance Agent

User’s Manual

Edition: 13

for UNIX

2]

Manufacturing Part Number: None
January 2003

© Copyright 2003 Hewlett-Packard Company.

Legal Notices

Warranty.

Hewlett-Packard makes no warranty of any kind with regard to this
manual, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard
shall not be held liable for errors contained herein or direct, indirect,
special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

A copy of the specific warranty terms applicable to your Hewlett-Packard
product can be obtained from your local Sales and Service Office.

Restricted Rights Legend.

Use, duplication or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause in DFARS 252.227-7013.

Hewlett-Packard Company
United States of America

Rights for non-DOD U.S. Government Departments and Agencies are as
set forth in FAR 52.227-19(c)(1,2).

Copyright Notices.
©Copyright 1983-2003 Hewlett-Packard Company, all rights reserved.

No part of this document may be copied, reproduced, or translated to
another language without the prior written consent of Hewlett-Packard
Company. The information contained in this material is subject to
change without notice.

Trademark Notices.
Adobe® is a trademark of Adobe Systems Incorporated.

HP-UX Release 11.00 and later (in both 32 and 64-bit configurations) on
all HP 9000 computers are Open Group UNIX 95 branded products.

Java™ is a U.S. trademark of Sun Microsystems, Inc.
UNIX® is a registered trademark of The Open Group.

All other product names are the property of their respective trademark
or service mark holders and are hereby acknowledged.

Contents

1. This is OpenView Performance Agent

INtroduction 22
What OV Performance Agent DOES.ot 23
OV Performance Manager Major Components., 24
Scopeux Data Collector. i e 25
Collection Parameters File. e 25
DSI Log Files.o 26
Extract and Utility Programs e 26
Data SOUICES . . . o oot e 26
ARM Transaction Tracking Capabilities. 27
Related Performance Products i e 28

2. Managing Data Collection

INtroduction 32
Scopeux Data Collector 33
SCOPBUX STAtUS. . . . ottt e 33
Parm File ... e 34
Modifying the parm File. 34
parm File Parameters. e 35
Parameter DesCriptions i e 37
Application Definition Parameters. e 42
Stopping and Restarting Data Collection. 49
Stopping Data Collection e 49
Restarting Data Collection. e 50
Automating Scopeux Startup and Shutdown 50
Effective Data Collection Management i, 51
Controlling Disk Space Used by Log Files 51
Setting Mainttime. 51
Setting the Maximum Log File Size. i .. 52
Managing Your Resizing Processes 53
Data ArChiving o e 54
Managing Your Archiving Processest 54
Hint .o 55

3. Using the Utility Program

Contents

INtroduction 58
Running the Utility Program e 59
Using Interactive Mode e e e 61
Example of Using Interactive and BatchMode 61
Utility Command Line Interface. 63
Example of Using the Command Line Interface. 65
Utility Scan Report Details 66
Scan Report Information. 68
Initial Values. 68
Initial Parm File Global Information. 68
Initial Parm File Application Definitions 68
Chronological Detail e 69
parm File Global Change Notifications 69
parm File Application Addition/Deletion Notifications. 69
Scopeux Off-Time Notifications 70
Application-Specific Summary Report. 70
SUMMAKIES . . .o ittt e e e e e e 71
Process Log Reason SUMMAKYottt e et 71
Scan Startand Stop 72
Application Overall Summary 73
Collector Coverage SUMMArYo vttt it e et 73
Log File Contents SUMMaArY. e 74
Log File Empty Space SUMMaArY e 75

4. Utility Commands

INtroduction 78
ANAlYzZe . . 81
checkdef . .. e e 83
detail. ... 84
X L 85
QUIE . 86
=1 o 87
Bt . L e 88
logfile. . .o 90
00 T=T 0 1 92
parmfile. 93

Contents

QUIT .« oo 94
FESIZE . & ot e 95
SO . o ottt e 101
SR L 103
SHOW . . 104
L] = 1 106
SHOD . o o 108

5. Using the Extract Program

INtroduction 112
Running the Extract Program.t e e e 114
Using Interactive Mode 116
Extract Command Line Interface e 117
Overview of the Export Function 124
How to ExportData 124
Sample Export Tasks 125
Generating a Printable CPU Report 126
Producing a Customized Export File 126
Export Data Files 126
Export Template File Syntax. e 128
Export File Title 132
Creating a Custom Graphor Report i 132
Outputof Exported Files e e 134
Notes on ASCII and Datafile Formats. 134
HINES .. 135
Noteson Binary Format. e 135
Binary Header Record Layout 136
Binary Title Record. e 140
Binary Item Identification Record i 140
Binary Scale Factor Record. 141
Special Scale Factors. 141
Application Name Record i e 141
Transaction Name Record 142
Disk Device Name ReCOrd. e 142
Logical Volume Name Record. 0t e 142
Netif Name Record 143

Contents

6. Extract Commands

INtroduction 146
application e 153
Class. . . o e 155
CoNfigUIratioN e 157
01 o 15 158
AISK . oo 159
XTI 160
BXPON T . e 161
EXEFACT. e 164
fileSYStemM . . e e 167
global. 168
QUIE . 170
=] o 171
) 172
logfile. . .o 174
IVOIUME . 176
INIBINU .« o« v e e e e e e e e e e e e 177
MONENIY . . o 179
eI . L 181
OUTPUL . . . 182
PrOCESS . . ittt e et 185
QUIT . e 187
1= o0 188
SN 189
STt . 190
SO . Lo 192

EXamples. 192
5] = o 194
SHO .« oo 196
TranSaCtioN 198
WEEKAAYS . ..o 199
WEEBKIY . . e 200
YEANlY o e 203

7. Performance Alarms

Contents

INtroductiono 208
Processing Alarms 209
How Alarms Are Processed e e 209
Alarm Generator. 210
Sending SNMP Traps to Network Node Manager 210
Sending Messages to OpenView Operations (OVO), 210
Executing Local ACtioNS 211
Errors in Processing Alarms 212
Analyzing Historical Datafor Alarms. 212
Examples of Alarm Information in Historical Data 212
Alarm Definition Components. e 214
Alarm Syntax Reference e 215
CONVENTIONS. . . .o 216
Common Elements e 216
ALARM Statement 221
ALERT Statement e 226
EXEC Statement. 228
PRINT Statement. e 230
IF Statement. e 231
LOOP Statement. 233
INCLUDE Statement. e e 235
USE Statement. 236
VAR Statement 239
ALIAS Statement 240
SYMPTOM Statement e 241
Alarm Definition Examples. 243
Customizing Alarm Definitions. 246

8. Communicating Across a Firewall

INtroductiono 248
Ports Used for Communication with OVPA. 249
WIth HTTP ProXyo e e 250
Without HTTP ProxXy e 250
Overview of OVPA Communications Configuration. 250
Communications default.txt Configuration File 251
Configure OVPA Server Port 252

Contents

Configure Reporter and/or OVPM e 252
Configure Reporter/OVPM with HTTP Proxy 252
Configure Reporter/OVPM without HTTP Proxy, 253

Other Considerations e 254
About Systems with Multiple IP Addresses 254

default.txt File and Configuration Parameters. 254
default.txt Configuration File 254
default.txt Configuration Parameters 257

A. Appendix

Viewing MPE Log Files e e 262
Viewing and Printing Documents. e 263
Viewing Documentsonthe Web. 264
Adobe Acrobat Files 264
GlOSSarY . .. 265

Contents

Contents

10

Tables

Table 1. Typographical Conventions 15
Table 2. Changes in this Document Edition. 17
Table 2-1. parm File Parameters Used by Scopeux 36
Table 3-1. Command Line Arguments i 63
Table 4-1. Utility Commands: Syntax and Parameters........................ 79
Table 4-2. Default Resizing Parameters e 97
Table 5-1. Command Line Arguments 117
Table 6-1. Extract Commands: Syntax and Parameters 147
Table 6-2. Extract Commands: Extracting and ExportingData................ 151
Table 8-1. OVPA Default Ports s 250
Table 8-2. OV Performance Agent Documentation Set 263

11

Tables

12

Publication History

New editions are complete revisions of the manual. The publication dates

for each edition are listed below. This manual is not printed. It is
published in Adobe Portable Document File (. pdf) format and can be

viewed online and printed as needed. No part numbers were assigned for

Editions 4 and 5 and will not be assigned beginning with Edition 9.

Edition 1
Edition 2
Edition 3
Edition 4
Edition 5
Edition 6
Edition 7
Edition 8
Edition 9
Edition 10
Edition 11
Edition 12
Edition 13

11/95
12/97
10/99
07/00
12/00
03/01
09/01
09/01
01/02
05/02
09/02
12/02
01/03

B4967-90001
B4967-90016
B4967-90023

B4967-90040
B4967-90049
B4967-90052

13

14

Conventions

The following typographical conventions are used in this manual.

Table 1 Typographical Conventions
Font Type | What the Font Type Represents Example
Italic Book or manual titles, and man page | Refer to the HP OpenView
names Operations Administrator’s
Reference Volume | and the opc(1M)
manpage for more information.
Provides emphasis You must follow these steps.
Specifies a variable that you must At the prompt type:
supply when entering a command rl ogi n your_name where you
supply your login name.
Parameters to a function The oper_name parameter returns
an integer response.
Bold New terms The monitor agent observes...
Conput er Text and items on the computer The system replies: Press Enter
screen
Command names Use the gr ep command ...
Function names Use the opc_connect () function to
connect ...
File and directory names [opt / OV bi n/ Ol
Process names Check to see if opcnona is running.
Window/dialog box names In the Add Logfi | e window...
Conput er Text that you must enter At the prompt, type: | s -1
Bol d
Keycap Keyboard keys Press Return.
[Butt on] Buttons on the user interface. Click [Operator].

Click on the [Appl y] button.

15

Table 1 Typographical Conventions (Continued) (Continued)

Font Type | What the Font Type Represents Example
Menu A menu name followed by a colon (:) Select Actions: tilities->
I tens means that you select the menu, Reports...

then the item. When the item is
followed by an arrow (- >), a
cascading menu follows.

16

Table 2

Revisions

The edition number on the title page of this document indicates the

edition of this document. The print date on the title page changes each
time this document is updated.

You will receive updated or new editions if you subscribe to the
appropriate product support service. Contact your HP sales

representative for details.

Changes in this Document Edition

Chapter

Changes

The “Support” and this
“Revisions” prefaces

These prefaces were added.

Chapter 1, “This is
OpenView Performance
Agent,” on page 21

Figure 1-1 on page 24 was updated to
incorporate the changed data flow for
OVPAA4.0 and beyond. A note was also
added to describe the changed

terminology for some of the functions.

Chapter 2, “Managing Data
Collection,” on page 31

Removed the “Starting the Scopeux
Collector” subsection from the
“Scopeux Data Collector” section.

Chapter 2, “Managing Data
Collection,” on page 31

In the section “parm File” on page 34,
1) incorporated the “Sample File”
section and information from the HP
OpenView Performance Agent
Installation and Configuration Guide.
2) Removed the “Default Values”
subsection and table 2-2 — these
values are described in the par mfile.

Chapter 2, “Managing Data
Collection,” on page 31

In Table 2-1 on page 36 and
“Parameter Descriptions” on page 37,
added the subproci nt er val
parameter.

17

Table 2

Changes in this Document Edition (Continued)

Chapter

Changes

Chapter 2, “Managing Data
Collection,” on page 31

Added the nenory option description
and more information on the
shortli ved option in “Threshold” on
page 39.

Chapter 2, “Managing Data
Collection,” on page 31

In “Managing Your Archiving
Processes” on page 54, removed
references to ext r act sunmary, since
summary data can only be exported.

Chapter 5, “Using the
Extract Program,” on
page 111

Added a note in the “Introduction” on
page 112 that summary data can only
be exported, not extracted. Any
mention of extracted summary data
was removed.

Chapter 5, “Using the
Extract Program,” on
page 111

Added a similar note in Table 5-1 on
page 117 above the summary
arguments.

Chapter 6, “Extract
Commands,” on page 145

Added the same note about summary
data in the “Introduction” on page 112.

Chapter 7, “Performance
Alarms,” on page 207

1) Incorporated the new terminology
throughout the chapter.

2) Removed the “Communicating
Alarm Notification to OV Performance
Agent” section.

Chapter 8, “Communicating
Across a Firewall,” on

page 247

This chapter was added — the firewall
information was previously in the
Install Guide.

18

Support

Please visit the HP OpenView web site at:

htt p: // openvi ew. hp. coni

There you will find contact information and details about the products,
services, and support that HP OpenView offers.

You can go directly to the HP OpenView eCare web site at:

http: //support. openvi ew. hp. coml

The eCare support site includes:

= Downloadable documentation
= Troubleshooting information
= Patches and updates

< Problem reporting

= Training information

e Support program information

19

http://openview.hp.com

20

1

This is OpenView Performance
Agent

Chapter 1

21

This is OpenView Performance Agent

Introduction

NOTE

Introduction

This chapter is an introductory overview of OV Performance Agent, its

components, and related products. It discusses:

what OV Performance Agent does
data sources

the scopeux collector

the par mfile
utilityandextract programs

related performance products

QV Performance Agent (OVPA) for UNIX in this document refers only to
version 4.0 and beyond, and OV Performance Manager (OVPM) refers to
version 4.0 and beyond for UNIX and Windows platforms. OVPM 3.x
(PerfView) will connect to OV Performance Agent 4.0 and beyond for all
UNIX platforms except for OVPA for Linux. In the future, connectivity to
OVPM 3.x will be discontinued.

22

Chapter 1

This is OpenView Performance Agent
What OV Performance Agent Does

What OV Performance Agent Does

OV Performance Agent collects, summarizes, time stamps, and detects
alarm conditions on current and historical resource data across your
system. It provides performance, resource, and end-to-end transaction
response time measurements, and supports network and database
measurement information.

Data collected outside OV Performance Agent can be integrated using
data source integration (DSI) capabilities. For example, network,
database, and your own application data can be brought in through DSI
and is treated the same as data collected by OV Performance Agent. All
DSl data is logged, time stamped, and can be alarmed on. (For details,
see the HP OpenView Performance Agent for UNIX Data Source
Integration Guide.)

All of the data collected or received by OV Performance Agent can be
analyzed using spreadsheet programs, Hewlett-Packard analysis tools
such as OV Performance Manager, or third-party analysis products.

The comprehensive data logged by OV Performance Agent allows you to:

= Characterize the workloads in the environment.
= Analyze resource usage for load balancing.
= Perform trend analysis to isolate and identify bottlenecks.

= Perform service-level management based on transaction response
time.

= Perform capacity planning.
= Respond to alarm conditions.
= Solve system management problems before they arise.

OV Performance Agent gathers comprehensive and continuous
information on system activity without imposing significant overhead on
the system. Its design offers considerable opportunity for customization.
You can accept default configurations or set parameters to collect data
for specific conditions.

Chapter 1

23

This is OpenView Performance Agent
OV Performance Manager Major Components

OV Performance Manager Major Components

The following diagram shows the relationships among the major
components of the OV Performance Agent system.

Figure 1-1 OVPA Major Components

5
ael
flle
*-h_q___h
‘E:Lﬂﬂ'lﬂ of Exp o}
i i Carla Sowet es

-Mpplic ahons
Collecions

24 Chapter 1

NOTE

This is OpenView Performance Agent
OV Performance Manager Major Components

Substantial changes were made to the internal data flow of metric data
in OVPA 4.0 and beyond releases. The coda daemon has replaced the
function of the per f | bd and r ep- ser ver daemons, the dat asour ces file
has replaced the per f | bd. r ¢ file, and the per f al ar mdaemon has
replaced al ar ngen. The OVPM 3.x (PerfView) monitor interface has been
obsoleted; however, the external functionality is otherwise unchanged.

= The scopeux data collector is described in Chapter 2, “Managing
Data Collection,” on page 31.

= The coda daemon and its data sources are described later in this
chapter and in the HP OpenView Performance Agent Installation &
Configuration Guide.

e Thedefaul t.txt file, which is the communications configuration
file used to customize communication parameters for HP OpenView
applications, is described in Chapter 8, “Communicating Across a
Firewall,” on page 247.

= Alarm generation components are described in Chapter 7,
“Performance Alarms,” on page 207.

= Data source integration (DSI), including dsi | og and other DSI
components, are described in the HP OpenView Performance Agent
for UNIX Data Source Integration Guide.

Scopeux Data Collector

The scopeux data collector collects performance data from the operating
system on which OV Performance Agent resides, summarizes it, and logs
it in raw log files, depending on the types of information desired.

For detailed information about scopeux, see Chapter 2, “Managing Data
Collection,” on page 31.

Collection Parameters File

The type of data collected is determined by parameters set in the OV
Performance Agent programs and in the collection parameters (par nj
file, an ASCII file used to customize the collection environment. This file

Chapter 1

25

This is OpenView Performance Agent
OV Performance Manager Major Components

contains instructions that tell scopeux to log specific performance
measurements. The collection parameters file is commonly referred to in
this manual as the par mfile.

For detailed information about the par mfile, see Chapter 2, “Managing
Data Collection,” on page 31.

DSI Log Files

DSl log files contain self-describing data that is collected outside of OV
Performance Agent. These log files are created by OV Performance
Agent's DSI programs. DSI processes and the creation of DSI log files are
described in detail in the HP OpenView Performance Agent for UNIX
Data Source Integration Guide.

Extract and Utility Programs

Two OV Performance Agent programs, extract and utility, provide
the means for managing both scopeux log files and DSI log files.

The ext ract program lets you extract data from raw or previously
extracted scopeux log files and write it to extracted log files. The
extracted log files contain selected performance data for specific analysis
needs. The extract program also lets you export scopeux and DSI data
for use by spreadsheet programs and other analysis products. For more
information about ext ract and extract commands, see Chapter 5,
“Using the Extract Program,” on page 111 and Chapter 6, “Extract
Commands,” on page 145.

The utility program lets you generate reports on raw and extracted
scopeux log files, resize raw scopeux log files, and check par mfile
syntax. It also lets you check the syntax in your alarm definitions file
and analyze alarm conditions in historical scopeux and DSI log file data.
For more information about utility and utility commands, see
Chapter 3, “Using the Utility Program,” on page 57 and Chapter 4,
“Utility Commands,” on page 77.

Data Sources

OV Performance Agent uses the coda daemon to provide log file data to

the alarm generator and the OV Performance Manager analysis product.
There is one coda server for all data sources including scopeux and DSI
log files.

26

Chapter 1

This is OpenView Performance Agent
OV Performance Manager Major Components

You configure data sources in the dat asour ces file that resides in the
var/ opt/ OVl conf/ perf/ directory. This allows you to selectively make
data available for alarm processing and analysis.

NOTE Previous versions of OVPA 3.x and earlier, used a DCE-based facility to
serve data for analysis.

When you install OV Performance Agent, the dat asour ces file contains
a single entry for a data source named SCCPE that tells coda to read the
scopeux log file set. You can add additional data sources as needed.

When you start OV Performance Agent, the coda daemon reads the

dat asour ces file and makes the data available over datacomm linkages
to analysis tools for each data source it finds. For more information about
configuring data sources, see the "Configuring Data Sources" section in
Chapter 2 of your HP OpenView Performance Agent Installation &
Configuration Guide.

ARM Transaction Tracking Capabilities

OV Performance Agent includes transaction tracking capabilities that
allow information technology (IT) managers to measure end-to-end
response time of business application transactions. To take advantage of
this functionality, you must have a process running that is instrumented
with the Application Response Measurement (ARM) API. For more
information, see the HP OpenView Performance Agent & Glance Plus for
UNIX Tracking Your Transactions guide.

Chapter 1 27

This is OpenView Performance Agent
Related Performance Products

Related Performance Products

OV Performance Agent is one of several complimentary performance
products from Hewlett-Packard. Each of these products fulfills a
particular need within the range of resource and performance
management. This lets you purchase as much functionality as you need
and add products over time without risking incompatibilities or
overlapping product capabilities.

Related HP performance products include the following:
OV Performance Manager

OV Performance Manager provides integrated performance management
for multi-vendor distributed networks. It gives you a single interface and
a common method for centrally monitoring, analyzing, and comparing
resource measurement data supplied by OV Performance Agent running
on many systems.

GlancePlus

GlancePlus (or Glance) is an online diagnostic tool that displays current
performance data directly to a user terminal or workstation. It is
designed to assist you in identifying and troubleshooting system
performance problems as they occur.

OV Reporter

OV Reporter creates web-based reports from data of targeted systems it
"discovers." Discovery of a system can occur if the system is running
OpenView agent and subagent software such as OV Performance Agent.
Reporter can also generate reports on systems managed by OV
Operations. After Reporter has run through its discovery, it gathers data
based on pre-defined and user-specified lists of metrics, then formats the
collected data into web page reports.

OV Operations

QV Operations (OVO) also displays and analyzes alarm information sent
by OV Performance Agent. OVO is a distributed client-server software
solution designed to help system administrators detect, solve, and
prevent problems occurring in networks, systems, and applications in
any enterprise. OVO is a scalable and flexible solution that can be
configured to meet the requirements of any information technology (1T)
organization and its users..

28

Chapter 1

This is OpenView Performance Agent
Related Performance Products

For more information about any of these products, see the product
documentation on the HP OpenView Manuals web site at:

htt p: // ovweb. ext ernal . hp. coni | pe/ doc_serv

Select <pr oduct name> from the product list box, select the release
version, and click [Sear ch] .

Chapter 1

29

This is OpenView Performance Agent
Related Performance Products

30 Chapter 1

Managing Data Collection

Chapter 2

31

Managing Data Collection

Introduction

Introduction

This chapter tells you how to manage the following data collection
activities that are involved in using OV Performance Agent.

using the scopeux data collector

the collection parameters (par nj file and its parameters
stopping and starting data collection

controlling the amount of disk space used by log files

archiving data

32

Chapter 2

Managing Data Collection
Scopeux Data Collector

Scopeux Data Collector

The scopeux daemon collects and summarizes performance
measurements of system-resource utilization and logs the data into the
following log files, depending on the data classes specified in the log line
of the par mfile.

= Thel oggl ob file contains measurements of system-wide, or global,
resource utilization information. Global data is summarized and
recorded every five minutes.

= Thel ogappl file contains aggregate measurements of processes in
each user-defined application from the par mfile. Application data is
summarized every five minutes and each application that had any
activity during the five minute interval is recorded.

= Thel ogpr oc file contains measurements of selected interesting
processes. Process data is summarized every minute. However, only
interesting processes are recorded. The concept of interesting
processes is a filter that helps minimize the volume of data logged
and is controlled via the par mfile.

= Thel ogdev file contains measurements of individual device (such as
disk and netif) performance. Device data is summarized every five
minutes and data from each device that had any activity during the
five minute interval is recorded.

< Thel ogtran file contains measurements of ARM transaction data.
This data is summarized every five minutes and each transaction
that had any activity is recorded. (For more information, see the HP
OpenView Performance Agent & Glance Plus for UNIX Tracking Your
Transactions guide.)

= Assixth log file, | ogi ndx, contains information needed to access data
in the other log files.

Scopeux Status

The /var/ opt/ perf/status. scope file serves as a status/error log for
the scopeux process. New information is appended to this file each time
the scopeux collector is started, stopped, or when a warning or error is

encountered. To view the most recent status and error information from
scopeux, use the perfstat -t command.

Chapter 2

33

Managing Data Collection
parm File

parm File

The par mfile is a text file containing the instructions that tell scopeux to
log specific performance measurements. The latest default par mfile is
installed with OV Performance Agent in the / opt/ perf/newconfi g/
directory (/ usr /| pp/ per f/ newconfi g/ on IBM AIX) and is copied into
the /var/opt/perf/ directory during installation if one does not
already exist from a previous installation. scopeux reads the

/var/ opt/ per f/ par mfile when it starts up.

If you haven't run the product before, you can use the

/var/ opt/ per f/ par mfile to become familiar with the type of data
collected. The default values for each parameter are explained in the
par mfile.

Once you are familiar with the OV Performance Agent environment, you
should tailor the / var / opt / per f/ par m file to your performance data
collection needs.

The par mfile is set up to collect an average amount of log file data. The
maximum amount depends on your system. For more information, see
“Disk Space” in Chapter 1 of your HP OpenView Performance Agent
Installation & Configuration Guide. Also see the description of the si ze
parameter in “Parameter Descriptions” on page 37.

If you already have experience with OV Performance Agent and are
familiar with the par mfile parameters, you might want to modify this file
before starting the scopeux collector.

Modifying the parm File

You can modify the par mfile using any word processor or editor that can
save a file in ASCII format.

When you modify the par mfile, or create a new one, the following rules
and conventions apply:

= Any parameter you specify overrides a default. See the par mfile for
the default values.

= The order in which the parameters are entered into the par mfile is
not important except as follows:

34

Chapter 2

Managing Data Collection
parm File

— If a parameter is entered more than once, the last one entered is
used.

— Thefil e, user, group,or,and priority parameters must
follow the appl i cati on statement that they define.

— Application parameters should be listed in order so that a
process will be aggregated into the application when it is first
matched.

You can use uppercase letters, lowercase letters, or a combination of
both for all commands and parameter statements.

You can use blanks or commas to separate key words in each
statement.

You can comment the par mfile. Any line starting with a comment
code (/*) or pound sign (#) is ignored.

After modifying the par mfile, you must issue the ovpa restart
command in order for the changes to take effect. This command causes
scopeux to stop, restart, and r er ead the par mfile.

parm File Parameters

Scopeux is controlled by specific parameters in the collection parameters
(par m file that do the following:

Set maximum amount of disk space for the raw scopeux log files.
Specify which data types are logged.

Specify attributes of processes to be logged.

Define types of performance data to be collected and logged.

Specify what user-definable sets of applications should be monitored.
An application can be one or more programs that are monitored as a
group.

Specify when scopeux should perform daily log file maintenance
activities so that they do not impact system availability.

You can modify these parameters to tell scopeux to log measurements
that match the requirements of your particular system (see “Modifying
the parm File” on page 34).

Chapter 2

35

Managing Data Collection

parm File
The par mfile parameters listed in Table 2-1 are used by scopeux. Some
of these parameters are for specific systems as indicated in the table. For
detailed descriptions of these parameters, see “Parameter Descriptions”
on page 37 and “Application Definition Parameters” on page 42.
NOTE The items in the following table that are applicable only to HP-UX are
described in detail in Chapter 2 of the HP OpenView Performance Agent
Installation & Configuration Guide for HP-UX.
Table 2-1 parm File Parameters Used by Scopeux
Parameter Values or Options
id system | D
| og all
gl obal
application [=prn] [=all]
([=pr M} onHP-UX only)
process
devi ce=di sk, | vm cpu, fil esystemal |
(1 vm on HP-UX only)
transacti on=correl ator, resource
(resour ce on HP-UX only)
threshol d cpu=per cent
di sk=rat e (not on Linux or Windows)
memory=nn (values in MBs)
nonew
noki | | ed
shortlived=[TRUE|FALSE]
wai t cpu=per cent (HP-UX only)
di sk=per cent (HP-UX only)
memeper cent (HP-UX only)
sen¥Fper cent (HP-UX only)
| an=per cent (HP-UX only)
appl i cation appl i cati on nane
file= file name [, ...]
36 Chapter 2

Table 2-1

Managing Data Collection

parm File
parm File Parameters Used by Scopeux (Continued)
Parameter Values or Options
user = user login nane [,]
group = groupnane [,]
or
priority= | ow val ue- hi gh val ue
(range varies by platforn)
si ze gl obal =nn (val ues are in MBs)
appl i cati on=nn
process=nn
devi ce=nn
transacti on=nn
mai nttime hh: mnm (24 hours time)
scopet ransact i ons on
of f
subproci nterval = val ue i n seconds (not on HP-UX)

Parameter Descriptions

Following are descriptions of each of the par mfile parameters.

ID The system ID value is a string of characters that identifies your
system. If you do not want to rely on the default ID assigned (the
system’s hostname), and are specifying this string explicitly, then make
sure different systems have different ID strings so as not to confuse
centralized analysis. This identifier is carried with the log files to
identify the system on which the data was collected. You can specify a
maximum of 40 characters.

Log Thel og parameter specifies the data types to be collected by
scopeux.

< | ogglobal writes global records to the | oggl ob file. You must have
global data records to view and analyze performance data on your
system. Global metrics are not affected by logging options or values
of application or process data.

Chapter 2

37

Managing Data Collection
parm File

< |og application will cause scopeux to write active application
records to the | ogappl file. The default behavior is that only
applications that have active processes during an interval are logged.

— log application=all in the par mfile to force scopeux to log all
applications to the | ogappl file at every interval, regardless of
whether the applications are active or not.

The appl i cati on=al | option may be desirable in specific
circumstances in relation to the use of application alarms. For
example, you can alarm on an application becoming inactive
(APP_ALI VE_PRQQ).

Enabling this option causes | ogappl to fill more quickly since all
applications are logged at every interval. You can use the
utility program’s scan function to monitor the utilization of the
scopeux log files.

— On HP-UX only, you may specify | og appl i cati on=pr mto write
active Process Resource Manager (PRM) groups to the | ogappl
file. Selection of this log specification will cause scopeux to
ignore user-defined application sets listed in the par mfile. In
addition, all application metrics collected will reflect a PRM
context and be grouped by the APP_NAME PRM GROUPNAME metric.

NOTE Application logging options do not affect global or process data.

< log process will write information about interesting processes to
the | ogpr oc file. A process may become interesting when it is first
created, when it ends, and when it exceeds a parm-defined threshold
for activity. Process threshold logging options have no affect on global
or application data.

< log device=di sk, | vm,cpu,fil esyst emwill request that scopeux
log information about individual disks, logical volumes (HP-UX
only), cpus, and/or file systems to the | ogdev file. The default
behavior is that only disks, volumes and interfaces that had 1/0
generated through them during an interval are logged. Note that
netif (logical LAN device) records are always logged regardless of
the selected log device options.

For example, to request logging of records for individual disks, logical

38 Chapter 2

Managing Data Collection
parm File

volumes, cpus, network interfaces, but not individual file systems,
the log parameter in the par mfile would include
devi ce=di sk, | vm cpu.

— When fil esyst emis specified, all mounted local file systems are
logged every interval, regardless of activity.

— log device=al | in the par mfile will force scopeux to log all
disk, logical volume, cpu, and network interface devices to the
| ogdev file at every interval, regardless of whether the devices
are active or not.

Enabling this option causes | ogdev to fill more quickly since all
devices are logged at every interval. Use the util ity program’s
scan function to monitor logfile utilization and sizing.

< log transaction will write ARM transaction records to the
| ogt r an file. In order for scopeux to collect the data, a process that
is instrumented with the Application Response Measurement (ARM)
API must be running on your system. (For more information, see the
HP OpenView Performance Agent & Glance Plus for UNIX Tracking
Your Transactions guide.)

The default for the | og t ransact i on parameter is no resour ce and
no correl ator.

To turn on resource data collection (HP-UX only) or correlator data
collection, specify | og transacti on=resour ce or

| og transaction=corr el at or. Both can be logged by specifying

| og transaction=resource, correlator.

All of the log files are created automatically regardless of logging options.
If a particular type of logging is disabled, the corresponding log file is not
removed.

If you specify | og without options, the default global and process data
are logged.

Threshold Thet hreshol d parameter is used to set activity levels to
specify criteria for interesting processes. It is used only if process logging
is enabled. Thresholds only affect what processes are logged and do not
affect any other class of data. For example, not logging process data at all
would not affect collection or values of application or global data.

Enter the options for thresholds on the same parameter line (separated
by commas).

Chapter 2

39

Managing Data Collection
parm File

Threshold Options:

cpu

di sk

menor y

nonew

nokil | ed

shortlived

Sets the percentage of CPU utilization that a process
must exceed to become “interesting” and be logged.

The value “per cent ” is a real number indicating
overall CPU use. For example, cpu=7. 5 indicates that a
process is logged if it exceeds 7.5 percent of CPU
utilization in a 1-minute sample.

(Not available on Linux or Windows). Sets the rate of
physical disk 1/0O per second that a process must exceed
to become “interesting” and be logged.

The value is a real number. For example, di sk=8. 0
indicates that a process will be logged if it exceeds
eight physical 1/0s per second average in a 1-minute
sample.

Sets the memory threshold that a process must exceed
to become “interesting” and be logged.

The value is in megabyte units and is accurate to the
nearest 100KB. If set, the memory threshold is
compared with the value of the PROC_MEM VI RT metric.
Each process that exceeds the memory threshold will
be logged, similarly to the disk and CPU process
logging thresholds.

Turns off logging of new processes if they have not
exceeded any threshold. If not specified, all new
processes are logged. On HP-UX, if short|i ved is not
specified, then only new processes that lasted more
than one second are logged.

Turns off logging of exited processes if they did not
exceed any threshold. If not specified, all killed (exited)
processes are logged. On HP-UX, if short|i ved is not
specified, then only Killed processes greater than one
second are logged.

Turns on logging of processes that ran for less than one
second in an interval. (This often significantly
increases the number of processes logged.) If scopeux
finds threshold shor t i ved in the par mfile, it logs
shortli ved processes, regardless of the cpu or di sk

t hr eshol d, as long as the nonewand noki | | ed options

40

Chapter 2

Managing Data Collection
parm File

are removed. The default is no short| i ved processes
will be logged. (Do not specify shortlived in the

t hr eshol d parameter if you do not want short|i ved
processes logged.)

Scopetransactions The scopeux collector itself is instrumented with
ARM (Application Response Measurement) API calls to log its own
transactions. The scopet r ansact i ons flag determines whether or not
scopeux transactions will be logged. The default is

scopet r ansact i ons=on; scopeux will log two transactions,

Scope_Get _Process_Metrics and Scope_Get _d obal _Metrics. Ifyou
do not want these scopeux transactions to be logged, specify

scopet ransact i ons=of f. A third transaction, Scope_Log_Header s, will
always be logged; it is not affected by scopet ransacti ons=of f.

For more information about ARM, see your HP OpenView Performance
Agent & Glance Plus for UNIX Tracking Your Transactions guide.

Subprocinterval The subproci nt erval parameter, if specified,
overrides the default that scopeux uses to sample process data. Most
classes of data are logged once every 5 minutes, the exception being
process data, which is logged every 1 minute. However, scopeux probes
its instrumentation every few seconds to catch short-term activities. This
instrumentation sampling interval is 5 seconds by default.

On some systems with thousands of active threads or processes, the
subpr oci nt er val should be made longer to reduce overall scopeux
overhead. On other systems with many short-lived processes that you
may wish to log, setting the subpr oci nt er val lower could be considered,
although the effect on scopeux overhead should be monitored closely in
this case. This setting must take values that are factors of the process
logging interval of 60 seconds. Therefore, valid settings include: 1, 2, 3, 4,
5 (the default if not specified or commented out), 6, 10, 12, 15, 20, and 30.

Size The si ze parameter is used to set the maximum size (in
megabytes) of any raw log file. You cannot set the size to be less than one
megabyte.

The scopeux collector reads these specifications when it is initiated. If
any of these log files achieve their maximum size during collection, they
will continue to grow until mai nt ti me, when they will be rolled back
automatically. During a roll back, the oldest 25 percent of the data is
removed from the log file. Raw log files are designed to only hold a

Chapter 2

41

Managing Data Collection
parm File

WARNING

NOTE

maximum of one year's worth of data if not limited by the si ze
parameter. See “Log File Contents Summary” and “Log File Empty Space
Summary” in “Utility Scan Report Details” on page 66.)

If the size specification in the par mfile is changed, scopeux detects it
during startup. If the maximum log file size is decreased to the point
where existing data does not fit, an automatic resize will take place at
the next mai nt ti ne. If the existing data fits within the new maximum
size specified, no action is taken.

Any changes you make to the maximum size of a log file take effect at the
time specified in the mai nt t i ne parameter.

Partial loss of old data will occur if logs are allowed to collect
more than 365 days of data. Please configure the par mfile size
entry so that old data is rolled out before any of the log files
contain 365 days of data.

Mainttime Log files are rolled back if necessary by scopeux only at a
specific time each day. The default time can be changed using the

nai ntti me parameter. For example, setting nmai ntti me=8: 30, causes log
file maintenance to be done at 8:30 am each day.

We suggest setting nai ntti ne to a time when the system is at its lowest
utilization.
Application Definition Parameters

The following parameters pertain to application definitions:
application,file,user,group,or,andpriority.

QV Performance Agent groups logically related processes together into
an application to log the combined effect of those processes on computing
resources such as memory and CPU.

In PRM mode (for HP-UX only), active PRM groups are logged and the
user-defined application sets listed in the par mfile are ignored.

42

Chapter 2

NOTE

Managing Data Collection
parm File

An application can simply be a list of files combined with user s, gr oups,
or priority ranges, individually or in conjunction with each other. If
user,file,and priority parameters are all specified for the same
application, a process must meet the specifications of all three, user,
fileandpriority, tobelong to that application.

Any process on the system belongs to only one application. No process is
counted into two or more applications. Processes are collected based on
program name, not program path. Therefore, two processes with the
same program name but different paths (file system locations) would be
bucketed into the same application.

Application The application name defines an application or class that
groups together multiple processes and reports on their combined
activities.

= The application name is a string of up to 19 characters used to
identify the application.

= Application names can be lowercase or uppercase and can contain
letters, numbers, underscores, and embedded blanks. Do not use the
same application name more than once in the par mfile.

= An equal sign (=) is optional between the application keyword and
the application name.

= Theapplicati on parameter must precede any combination of fil e,
user, group, or, or pri ority parameters that refer to it, with all
such parameters applying against the last application workload
definition.

= Each parameter can be up to 170 characters long including the
carriage return character, with no continuation characters
permitted. If your list of files is longer than 170 characters, continue
the list on the next line after another fi | e, user, or gr oup
statement.

= You can define up to 128 applications. OV Performance Agent
predefines an application named ot her . The ot her application
collects all processes not captured by appl i cat i on statements in the
par mfile.

For example:

Chapter 2

43

Managing Data Collection
parm File

appl i cation Prog_Dev
file vi,cc, ccom pc, pasconp, dbx, xdb

application xyz

file xyz*,startxyz
You can have a maximum of 1000 file, 300 user, and 300 group
specifications for all applications combined. The previous example
includes nine file specifications. (Xyz* counts as only one specification
even though it can match more than one program file.)

If a program file is included in more than one application, it is logged
in the first application that contains it.

The default / var/ opt / newconf i g/ par mfile contains some sample
applications that you can modify. The exanpl es directory also
contains other samples (in a file called par m apps) you can copy into
your par mfile and modify as needed.

File The fil e parameter specifies which program files belong to an
application. All interactive or background executions of these programs
are included. It applies to the last appl i cat i on statement issued. An
error is generated if no appl i cat i on statement is found.

The fil e name can be any of the following:

< Asingle UNIX program file such as vi .

= A group of UNIX program files (indicated with a wild card) such as
xyz*. In this case, any program name that starts with the letters xyz
is included. A file specification with wild cards counts as only one
specification toward the maximum of 1000 each for all fi | es, 300
user, and 300 gr oup specifications.

The name in the fi | e parameter is limited to 15 characters in length. An
equal sign (=) is optional between the file keyword and the file name.

You can enter multiple file names on the same parameter line (separated
by commas) or in separate file statements. File names cannot be
gualified by a path name. The file specifications are compared to the
specific metric PROC_PROC_NAME, which is set to a process’s ar gv[0]
value (typically its base name).

For example:

pplication = prog_dev

il vi, vi m gvi m make, gnake, | i nt*, cc*, gcc, ccont, cf ront
il cpp*, CC, cpass*, c++*

il

a
f
f
f xdb*, adb, pxdb*, dbx, x| C 1d, as, gprof , | ex, yacc, ar e, nm gencat

D@D
1T

44

Chapter 2

NOTE

Managing Data Collection
parm File

file = javac,java,jre, aCC ctcont, ank, gank

application Mail
file

i = sendnai |, mai | *, *mai | , el m xnh

If you do not specify afi |l e parameter, all programs that satisfy the
other parameters qualify.

If you want to bucket Java or shell programs into different applications,
you may want to look at the / opt / per f / exanpl es/ t ool s/ procar g
script, which shows a way to start programs with a unique ar gv[0]
value.

The asterisk (*) is the only wild card character supported by the par m
file.

User The user parameter specifies which user login names belong to an
application.

For example:

appl i cation Prog_Dev
file vi,xb,abb,d,Iint
user ted, rebecca,test*

User specifications that include wildcards count as only one specification
toward the maximum of 1000 each for all fi | e, 300 user, and 300 gr oup
specifications.

If you do not specify a user parameter, all programs that satisfy the
other parameters qualify.

The name in the user parameter is limited to 15 characters in length.
Group The group parameter specifies which user group names belong
to an application.

For example:

appl i cation Prog_Dev_Goup2
file vi,xb,abb,1d,lint

user ted, rebecca,test*
group lab, test

If you do not specify a gr oup parameter, all programs that satisfy the
other parameters qualify.

Chapter 2

45

Managing Data Collection
parm File

The name in the gr oup parameter is limited to 15 characters in length.

Or Use the or parameter to allow more than one application definition
to apply to the same application. Within a single application definition, a
process must match at least one of each category of parameters.
Parameters separated by the or parameter are treated as independent
definitions. If a process matches the conditions for any definition, it will
belong to the application.

For example:

application = Prog_Dev_QG oup2
user julie

or

user nark

file vi, store, dnp

This defines the application (Pr og_Dev_Q& oup2) that consists of any
programs run by the user j ul i e plus other programs (vi , st or e, dnp) if
they are executed by the user nar k.

46

Chapter 2

NOTE

Managing Data Collection
parm File

Priority You can restrict processes in an application to those belonging
to a specified range by specifying values in the pri ori ty parameter.

For example:

appl i cation = swappi ng
priority 128-131

Processes can range in priority from -511 to 255, depending on which
platform OV Performance Agent is running.

The par mfile is processed in the order entered and the first match of
program name and/or user login as well as gr oup and pri ori ty (if used)
defines the application to which a particular process belongs.

The priority can be changed over the life of a process. The scheduler
adjusts the priority of time-share processes. You can also change
priorities programmatically or while executing.

The process priority is sampled at the end of each one-minute sample
interval. If the process has changed priority, it can change applications.
All activity for a process during the one-minute interval is assumed to
have occurred at the new priority and is attributed to the application
that matches the process at the end of each one-minute sample interval.

Application Definition Examples The following examples show
application definitions.

appl i cation Prog_Dev_QG oupl
file vi,dbx, abb,d,!lint
user bill, debbie

appl i cation Prog_Dev_Goup2
file vi,dbx, abb,1d,lint
user julie, mark

group rdl ab

application her_Editors
file ed, sed, ank

application Conpilers
file cc,ccomxlc,c++ fe, sh

application Users
user bruce,ted,julie,anna

Chapter 2

47

Managing Data Collection
parm File

The following is an example of how several of the programs would be
logged using the preceding par mfile.

Program
vi
awnk
vi
cc

dbx

User Login
bill

dan

mark

gene

dan

Application
Prog_Dev_Groupl
Other_Editors
Prog_Dev_Group2
Compilers

other

48

Chapter 2

Managing Data Collection
Stopping and Restarting Data Collection

Stopping and Restarting Data Collection

The scopeux daemon and the other daemon processes that are part of
OV Performance Agent are designed to run continuously. The only time
you should stop them are when any of the following occurs:

= You are updating OV Performance Agent software to a new release.

= You are adding or deleting transactions in the transaction
configuration file, t t d. conf . (For more information, see the HP
OpenView Performance Agent & Glance Plus for UNIX Tracking Your
Transactions guide.)

= You are modifying distribution ranges or service level objectives
(SLOs) in the transaction configuration file, t t d. conf . (For more
information, see the HP OpenView Performance Agent & Glance Plus
for UNIX Tracking Your Transactions guide.)

= You are changing the par mfile and want the changes to take effect.
Changes made to the par mfile take effect only when scopeux is
started.

< You are using theutility program'sresi ze command to resize a
QV Performance Agent log file.

= You are shutting down the system.

OV Performance Agent provides the ovpa script that includes options for
stopping and restarting the daemon processes. For a description of these
options, see the ovpa man page.

Stopping Data Collection

The ovpa script's st op option ensures that no data is lost when scopeux
and the other OV Performance Agent daemon processes are stopped. To
manually stop data collection, use / opt/ perf/bi n/ ovpa st op.

Chapter 2 49

Managing Data Collection

Stopping and Restarting Data Collection

Restarting Data Collection

You have different options for restarting data collection after the OV
Performance Agent daemon processes have stopped or configuration files
have been changed and you want these changes to take effect.

To start scopeux and the other OV Performance Agent processes after
the system has been down, use / opt/ perf/bin/ovpastart.

When you restart scopeux, OV Performance Agent continues to use the
same log files (I oggl ob, | ogappl , | ogpr oc, | ogdev, | ogt ran, and

| ogi ndx) used before stopping the program. New records are appended
to the end of the existing files.

For more information, see “Starting and Stopping OV Performance
Agent” in Chapter 2 of your HP OpenView Performance Agent
Installation & Configuration Guide.

Automating Scopeux Startup and Shutdown

QV Performance Agent's startup can be automated to ensure that
scopeux is always running while the system is operating and that any
shutdown of the system includes a shutdown of scopeux without any loss
of data. The process of starting OV Performance Agent and its processes
automatically when the system reboots is controlled by the configuration
file in the system startup directory. For more information about this file
and how to modify it, see “Starting and Stopping Automatically” in
Chapter 2 of your HP OpenView Performance Agent Installation &
Configuration Guide.

50

Chapter 2

Managing Data Collection
Effective Data Collection Management

Effective Data Collection Management

Efficient analysis of performance depends on how easy it is to access the
performance data you collect. This section discusses effective strategies
for activities such as managing log files, data archiving, and system
analysis to make the data collection process easier, more effective, and
more useful.

Controlling Disk Space Used by Log Files

QV Performance Agent provides for automatic management of the log
files it creates. You can configure this automatic process or use alternate
manual processes for special purposes. The automatic log file
management process works as follows:

= Each log file has a configured maximum size. Default maximum sizes
are provided when the OV Performance Agent is first installed.
However, you can reconfigure these values.

= As each log file reaches its maximum size, a “roll back” is performed
at mai nt ti ne by the scopeux data collector. During this roll back,
the oldest 25 percent of the data in the log file is removed to make
room for new data to be added.

Automatic log file maintenance is similar, but not identical, for data
collected by scopeux and by the DSI logging process. For more
information on DSI log file maintenance, see the HP OpenView
Performance Agent for UNIX Data Source Integration Guide.

Setting Mainttime

Normally, scopeux will only perform log file roll backs at a specific time
each day. This is to ensure that the operation is performed at off peak
hours and does not impact normal system usage. The time the log files
are examined for roll back is set by the mai nt t i ne parameter in the parm
file.

Chapter 2 51

Managing Data Collection

Effective Data Collection Management

Setting the Maximum Log File Size

Choosing a maximum log file size should be a balance between how much
disk space is used and how much historical data is available for
immediate analysis. Smaller log file sizes save disk space, but limit how
much time can be graphed by tools such as OV Performance Manager.
Some ways to reconfigure the scopeux log file sizes are discussed below.

Scopeux logs different types of data into their own log files. This is to
allow you to choose how much disk space you want to dedicate to each
type independently. For example, global data is fairly compact, but you
will often want to go back and graph data for a month at a time. This
allows a good statistical base for trending and capacity planning
exercises.

Process data can consume more disk space than global data because it is
possible to have many interesting processes every minute. Also, the
time-value of process data is not as high as for global data. It may be
very important to know details about which process was running today
and yesterday. You might occasionally need to know which processes
were running last week. However, it is unlikely that knowing exactly
which processes were run last month would be helpful.

A typical user might decide to keep the following data online:

= Three months of global data for trending purposes

= One week of process data for troubleshooting

= Three months of application data for trending and load balancing
< Two months of device data for disk load balancing

You can edit the par mfile to set the si ze parameters for each different
log file. The sizes are specified in megabytes. For example:

Sl ZE GLCBAL=10. 0 PROCESS=30. 0 APPLI CATI ON=20. 0 DEVI CE=5.0

The number of megabytes required to hold a given number of days of
data can vary by data type, system configuration, and system activity.
The best way to determine how big to make the log files on your system is
to collect data for a week or so, then use the util ity program'sresi ze
command to change your log file size. The r esi ze command scans the log
files and determines how much data is being logged each day. It then
converts from days to megabytes for you. This function also updates the
par mfile.

52

Chapter 2

Managing Data Collection
Effective Data Collection Management

Managing Your Resizing Processes

No additional activities are required once automatic log file maintenance
is set up. As log files reach their configured maximum sizes, they will
automatically be resized by scopeux.

Scopeux rolls back log files at the rmai nt t i me specified in the par mfile. If
you edit the par mfile and restart scopeux, the log files will not be rolled
to the new sizes until the mai nt t i e occurs. It is important to have
scopeux running at the specified mai nt t i me time or log files may never
be rolled back.

Log files may exceed their configured maximum size during the time
between maintenance times without causing an immediate roll back.

A log file will never be resized so that it holds less than one full day’s
data. That means that the log file will be allowed to grow to hold at least
one day's worth of data before it is rolled back. Normally this is not an
issue, but if you set the par mfile parameters to collect a large volume of
process or application data or set the size to be too small, this can result
in a log file significantly exceeding its configured maximum size before it
is rolled back.

Every five minutes, scopeux checks the available disk space on the file
system where the log files reside. If the available disk space falls below
one megabyte, scopeux takes steps to ensure that it does not use any
more available space by doing the following:

< Immediately performs the log file maintenance without waiting for
the regular log file maintenance time. If any log files exceed their
maximum sizes (and have more than one day's worth of data in
them), they will be rolled back.

= If, following the log file maintenance, the available disk space is still
not greater than one megabyte, scopeux writes an appropriate error
message to its st at us. scope file and stops collecting data.

Chapter 2 53

Managing Data Collection

Effective Data Collection Management

Data Archiving

Automatic log file management keeps the latest log file data available for
analysis. It works on the raw log files. Process data is logged each minute
and all other data is logged every five minutes. To make room for new
data, older data is removed when the log files reach their maximum
sizes. If you want to maintain log file data for longer periods of time, you
should institute a data archiving process. The exact process you choose
depends on your needs. Here are a few possibilities:

= Size the raw log files to be very large and let automatic log file
maintenance do the rest. This is the easiest archiving method, but it
can consume large amounts of disk space after several months.

= Extract the data from the raw log files into extracted archive files
before it is removed from the raw log files. Formulate a procedure for
copying the archive files to long term storage such as tape until
needed.

= Extract only a subset of the raw log files into extracted archive files.
For example, you may not want to archive process data due to its
high volume and low time-value.

= Some combination of the preceding techniques can be used.

We recommend the following procedures for data archiving:

= Size the raw log files to accommodate the amount of detail data you
want to keep online.

= Once a week, copy the detailed raw data into files that will be moved
to offline storage.

Managing Your Archiving Processes

Resize your raw log files as described in the preceding section. Choose log
file sizes that will hold at least two week’s worth of data (assuming the
archival processing will only be done once a week).

Once a week, schedule a process that runs the ext ract program twice.
The first time it copies detailed data into an archive file for offline
storage. The second time, it copies summary data into an online archive
file. Here is a sample script file that would perform the weekly
processing. It uses the special archiving features of the ext r act
program.

54

Chapter 2

CAUTION

Managing Data Collection
Effective Data Collection Management

#Extract detailed data into monthly archive files.
extract -gapdt -xm

The first ext ract command will create a series of archive log files, one
per month. The log files will be named “r xno” followed by four digits for
the year and two more digits for the month. (For example, data for
December 1999 would be in a file named “r xnp199912".) At the
beginning of each month the previous month’s log file is completed and a
new log file is started. Therefore, whenever more than one “r xno” log file
is present, it is safe to copy all but the latest one to offline storage until
its needed. When you need to access archived data, restore the desired
archival file and access it using the extract orutility programs.

Depending on your system configuration and activity levels, the amount
of disk space accumulated in one month may be large. If this is the case,
you can break the detail archive file into smaller files by substituting the
weekly command - xwin place of - xmas shown in the example.

Another alternative is to choose not to archive the detailed process data.

The detailed extraction discussed in the previous example preserves all
of your collected performance data. If ever you need to investigate a
situation in depth, these files can be restored to disk and analyzed.

Hint

You can use the ext ract program to combine data from multiple
extracted files or to make a subset of the data for easier transport and
analysis.

For example, you can combine data from several yearly extracted files in
order to do multiple-year trending analysis. (See the description of the
year | y command in Chapter 6, “Extract Commands,” on page 145.)

Moving log files that were created on a new version of OV Performance
Agent to a system using an older version of OV Performance Agent is not
supported.

Chapter 2

55

Managing Data Collection
Effective Data Collection Management

56 Chapter 2

Using the Utility Program

Chapter 3

57

Using the Utility Program
Introduction

Introduction

Theutility program is a tool for managing and reporting information
on log files, the collection parameters (par nj file, and the alarm
definitions (al ar ndef) file. You can use the utility program
interactively or in batch mode to perform the following tasks.

Scan raw or extracted log files and produce a report showing:

dates and times covered

times when the scopeux collector was not running
changes in scopeux parameter settings

changes in system configuration

log file disk space

effects of application and process settings in the collection
parameters (par n) file

Resize raw log files

Check the par mfile for syntax warnings or errors

Check the al ar ndef file for syntax warnings or errors

Process log file data against alarm definitions to detect alarm
conditions in historical data

This chapter covers the following topics:

running the utility program

using interactive mode

using the command line interface

scan report details

Detailed descriptions of the uti | i ty program’s commands are in
Chapter 4, “Utility Commands,” on page 77.

58

Chapter 3

Using the Utility Program
Running the Utility Program

Running the Utility Program
There are three ways to run the util ity program:

< Command line mode - You control the util ity program using
command options and arguments in the command line.

= Interactive mode - You supply interactive commands and parameters
while executing the program with st di n set to an interactive
terminal or workstation.
If you are an experienced user, you can quickly specify only those
commands required for a given task. If you are a new user, you may
want to use the util ity program’s gui de command to get some
assistance in using the commands. In guided mode, you are asked to
select from a list of options to perform a task. While in guided mode,
the interactive commands that accomplish each task are listed as
they are executed, so you can see how they are used. You can quit
and re-enter guided mode at any time.

= Batch mode - You can run the program and redirect st di n to a file
that contains interactive commands and parameters.

The syntax for the command line interface is similar to typical UNIX
command line interfaces on other programs and is described in detail in
this chapter.

For interactive and batch mode the command syntax is the same.
Commands can be entered in any order; if a command has a parameter
associated with it, the parameter must be entered immediately after the
corresponding command.

There are two types of parameters - required (for which there are no
defaults) and optional (for which defaults are provided). How utility
handles these parameters depends on the mode in which it is running.

= Ininteractive mode, if an optional parameter is missing, the program
displays the default argument and lets you either confirm it or
override it.
If a required parameter is missing, the program prompts you to enter
the argument.

= Inbatch mode, if an optional parameter is missing, the program uses
the default values.
If a required parameter is missing, the program terminates.

Chapter 3

59

Using the Utility Program
Running the Utility Program

Errors and missing data are handled differently for interactive mode
than for command line and batch mode. You can supply additional data
or correct mistakes in interactive mode, but not in command line and
batch mode.

60 Chapter 3

Using the Utility Program
Using Interactive Mode

Using Interactive Mode

Using the uti | i ty program’s interactive mode requires you to issue a
series of commands to execute a specific task.

For example, if you want to check a log file to see if alarm conditions exist
in data that was logged during the current day, you issue the following
commands after invoking the util ity program:

checkdef /var/opt/perf/al arndef
detail off

start today-1

anal yze

The checkdef command checks the alarm definitions syntax in the

al ar ndef file and then sets and saves the file name for use with the
anal yze command. The det ai | of f command causes the anal yze
command to show only a summary of alarms. The start today-1
command specifies that only data logged yesterday is to be analyzed. The
anal yze command analyzes the raw log files in the default SCOPE data
source against the al ar ndef file.

Example of Using Interactive and Batch Mode

The following example shows the differences between how the utility
program’s r esi ze command works in batch mode and in interactive
mode.

The resi ze command lets you set parameters for the following
functions:

= Type of log file to be resized.

= Size of the new file.

< Amount of empty space to be left in the file.

= An action specifying whether or not the resize is to be performed.

This example of the r esi ze command resizes the global log file so that it
contains a maximum of 120 days of data with empty space equal to 45
days. The command and its parameters are:

resize gl obal days=120 enpty=45 yes

Chapter 3

61

Using the Utility Program
Using Interactive Mode

The results are the same whether you enter this command interactively
or from a batch job.

The first parameter—gl obal —indicates the log file to be resized. If you do
not supply this parameter, the consequent action for interactive and
batch users would be the following:

= Batch users - the batch job would terminate because the | ogfi |l e
parameter has no default.

= Interactive users - you would be prompted to choose which type of log
file to resize to complete the command.

The last parameter—yes—indicates that resizing will be performed
unconditionally.

If you do not supply the yes parameter, the consequent action for
interactive and batch users would be the following:

= Batch users - resizing would continue since yes is the default action.

= Interactive users - you would be prompted to supply the action before
resizing takes place.

NOTE Before using the resize command in either batch mode or interactive
mode, you must first stop OV Performance Agent. For details, see
“Stopping and Restarting Data Collection” on page 49 in Chapter 2.

62 Chapter 3

Using the Utility Program
Utility Command Line Interface

Utility Command Line Interface

In addition to the interactive and batch mode command syntax,
command options and their associated arguments can be passed to the
utility program through the command line interface. The command
line interface fits into the typical UNIX environment by allowing the
utility program to be easily invoked by shell scripts and allowing its
input and output to be redirected to UNIX pipes.

For example, to use the command line equivalent of the example shown
in the previous section "Using Interactive Mode" enter:

utility -xr gl obal

days=120 enpty=45 yes

Command line options and arguments are listed in the following table.
The referenced command descriptions can be found in Chapter 4, “Utility

Commands,” on page 77.

Table 3-1 Command Line Arguments

Command —

Option Argument Description

-b date time Specifies the starting date and time of an
analyze or scan function. (See “start”
command in Chapter 4.)

-e date tinme Specifies the ending date and time of an
analyze or scan function. (See “stop”
command in Chapter 4.)

-1 logfile Specifies which log file to open. (See
“logfile” command in Chapter 4.)

-f listfile Specifies an output listing file. (See “list”
command in Chapter 4.)

-D Enables details for anal yze, scan and
par mfile checking. (See “detail” command
in Chapter 4.)

-d Disables details for anal yze and par mfile

for checking. (See “detail” command in
Chapter 4.)

Chapter 3

63

Using the Utility Program
Utility Command Line Interface

Table 3-1 Command Line Arguments (Continued)

Command oL

Option Argument Description

-V Echoes command line commands as they
are executed.

- Xp parnfile Syntax checks a par mfile. (See “parmfile”
command in Chapter 4.)

-XC al ar ndef Syntax checks and sets the al ar ndef file
name to use with - xa (or anal yze
command). (See “checkdef” command in
Chapter 4.)

-Xa Analyzes log files against the al ar ndef
file. (See “analyze” command in Chapter
4)

- XS logfile Scans a log file and produces a report.
(See “scan” command in Chapter 4.)

- Xr gl obal Sl ZE=nnn Resizes a log file. (See “resize” command

application | DAYS=nnn in Chapter 4.)
process
devi ce
transaction
EMPTY=nnn YES
SPACE=nnn NO
VAYBE

-?o0r? Displays command line syntax.

64 Chapter 3

Using the Utility Program
Utility Command Line Interface

Example of Using the Command Line Interface

The following situation applies when you enter command options and
arguments on the command line:

Errors and missing data are handled exactly as in the corresponding
batch mode command. That is, missing data is defaulted if possible and
all errors cause the program to terminate immediately.

Echoing of commands and command results is disabled. Wil ity does
not read from its st di n file. It terminates following the actions in the
command line.

utility -xp -d -xs

Which translates into:

-Xp Syntax checks the default
[opt / per f/ newconf i g/ par m file.

-d Disables details in the scan report.

- XS Performs the scan operation. No log file was
specified so the default log file is scanned.

Chapter 3

65

Using the Utility Program
Utility Scan Report Details

Utility Scan Report Details

Theutility program's scan command reads a log file and writes a
report on its contents. The report's contents depend on the commands
issued prior to issuing the scan command. (For more information, see the
description of the scan command in Chapter 4, “Utility Commands,” on
page 77.

The following table summarizes the information contained in all scan

reports and in reports that are produced only when the det ai |

command is used (the default) with the scan command.

Information Contained in Scan Report

Initial Values

Initial par mfile global
information and system
configuration information

Initial par mfile application
definitions

Chronological Detail

par mfile global changes

par mfile application changes

Collector off-time notifications

Application-specific summary
reports

Printed only if det ai |
specified.

Printed only if det ai |
specified.

Printed only if det ai |
specified.

Printed only if det ai |
specified.

Printed only if det ai |
specified.

Printed only if det ai |
specified.

on

onis

onis

onis

onis

onis

onis

66

Chapter 3

Summaries

Process summary report

Collector coverage summary

Log file contents summary

Log file empty space summary

Using the Utility Program
Utility Scan Report Details

Always printed if process data was
scanned.

Always printed.

Always printed. Includes space and
dates covered.

Always printed.

Chapter 3

67

Using the Utility Program
Scan Report Information

Scan Report Information
The information in autil ity scan report is divided into three types:

< Initial values
= Chronological details

e Summaries

Initial Values
This section describes the following initial values:

= Initial par mfile global information

= Initial par mfile application definitions

Initial Parm File Global Information
To obtain this report, use the scan command with its default det ai | on.

This report lists the configuration settings of the par mfile at the time of
the earliest global record in the log file. Later global information change
notifications are based on the values in this report. If no change
notification exists for a particular parameter, it means that the
parameter kept its original setting for the duration of the scan.

The date and time listed on the first line correspond to the first date and
time in the global log file and indicate when scopeux was started. Data
records may have been rolled out of the global log file so the date and
time on this report do not necessarily indicate the first global record in
the log file.

Initial Parm File Application Definitions

To obtain this report, use the scan command with its default detai | on
and have application data in the log file.

This report lists the name and definition of each application at the time
the first application record is listed in the log file. Any application
addition or deletion notifications you receive are based on this initial list
of applications. For example:

68

Chapter 3

NOTE

Using the Utility Program
Scan Report Information

06/01/99 08:39 Application(l) = "other"
Comment =al | processes not in user-defined applications

06/01/99 08:39 Application(2) = "Real _Ti meSystent
Priority range = 0-127

06/01/99 08: 39 Application(3) = "Prog_Devel opnent™
Fil e=vi, ed, sed, xdb, I d, l'i nt, cc, ccom pc, pasconp

During the scan, you are notified of applications that were added or
deleted. Additions and deletions are determined by comparing the
spelling and case of the old application names to the new set of logged
application names. No attempt is made to detect a change in the
definition of an application. If an application with a new name is
detected, it is listed along with its new definition.

The date and time on this record is the last time scopeux was started
before logging the first application record currently in the log file.

Chronological Detail

This section describes the following chronological details:

=« par mfile global change notifications

= par mfile application addition and deletion notifications
= scopeux off-time notifications

= Application-specific summary report

parm File Global Change Notifications
To obtain this report, use the scan command with its default detai | on.

This report is generated any time a record is found that scopeux started.

parm File Application Addition/Deletion Notifications

To obtain this report, use the scan command with its default detai | on
and have application data in the log file.

Chapter 3

69

Using the Utility Program
Scan Report Information

NOTE

User-defined applications can be added or deleted each time scopeux is
started. If an application name is found that does not match the last set
of applications, an application addition, deletion, or change notification is
printed. If the name of an application has not changed, it is not printed.

Application definitions are not checked for changes. They are listed when
an application name is changed, but any change to an existing
application's definition without an accompanying name change is not
detected.

Scopeux Off-Time Notifications

To obtain this report, use the scan command with its default detai | on.

Application-Specific Summary Report

To obtain this report, use the scan command with its default detai | on
and have application data in the log file.

This report can help you define applications. Use the report to identify
applications that are accumulating either too many or too few system
resources and those that could be consolidated with other applications.
Applications that accumulate too many system resources might benefit
by being split into multiple applications.

You should define applications in ways that help you make decisions
about system performance tuning. It is unlikely that system resources
will accumulate evenly across applications.

The application-specific summary report is generated whenever the
application definitions change to allow you to access the data of the
application definitions before and after the change.

A final report is generated for all applications. This report covers only
the time since the last report and not the entire time covered by the log
file. For example:

70

Chapter 3

Using the Utility Program
Scan Report Information

PERCENT CF TOTAL

Application Records CPU D SK TRANS
OTHER 22385 45.7% 20.9% 63.0%
Resour ce_Shari ng 7531 6.0% 2.2% 17.1%
SPOCOLI NG 13813 2.4% 0.3% 0.0%
ON_LI NE_CQOWPI LES 13119 2.9% 1.7% 0.1%
BATCH OOWPI LES 8429 2.9% 0.1% 2.2%
CRDER_ENTRY 387 0.1% 0.0% 0.0%
ELECTRONI C_MAI L 6251 3.8% 1.3% 9.6%
PROGRAM DEVELCOPMVENT 3141 9.1% 2.4% 0.6%
RESEARCH DEPARVENT 3968 8.7% 2.0% 6.0%
Bl LL_OF_MATER ALS 336 0.6% 1.5% 0.1%
FI NANCI ALS 1080 5.0% 1.5% 0.5%
MARKETI NG_DEPT 2712 12.9% 67.3% 0.0%
GAMES 103 0.1% 0.0% 0.0%
Al user applications 73.1% 54.3% 79.1% 37.0%

Summaries
This section describes the following summaries:

= Process log reason summary

= Scan start and stop actual dates and times
= Application overall summary

e sCOpeux coverage summary

« Log file contents summary

« Log file empty space summary

Process Log Reason Summary
To obtain this report, you must have process data in the log file.

This report helps you set the interesting process thresholds for scopeux.
The report lists every reason a process might be considered interesting
and thus get logged, along with the total number of processes logged that
satisfied each condition.

Chapter 3

71

Using the Utility Program
Scan Report Information

The following example shows a process log reason summary report:

Process Summary Report: 04/13/99 3:32 PMto 05/04/99 6:36 PM
There were 93.8 hours of process data
Process records were | ogged for the foll owi ng reasons:

Log Reason Records Percent Recs/ hr
New Processes 17619 53. 9% 44. 7
Killed Processes 16047 49. 1% 40.7
CPU Threshol d 3169 9. 7% 8.0
D sk Threshol d 1093 3.3% 2.8

NOTE: A process can be | ogged for nore than one reason at a
time. Record counts and percentages will not add up to 100%
of the process records.

If the det ai | on command is issued, this report is generated each time a
threshold value is changed so you can evaluate the effects of that change.
Each report covers the period since the last report. A final report,
generated when the scan is finished, covers the time since the last
report.

If thedetail off command is issued, only one report is generated
covering the entire scanned period.

You can reduce the amount of process data logged by scopeux by
modifying the par mfile's t hr eshol d parameter and raising the
thresholds of the interest reasons that generate the most process log
records. To increase the amount of data logged, lower the threshold for
the area of interest.

In the previous example, you could decrease the amount of disk space
used for the process data (at the expense of having less information
logged) by raising the CPU threshold or setting the nonewthreshold.

Scan Start and Stop

This summary report is printed if any valid data was scanned. It gives
actual dates and times that the scan was started and stopped. For
example:

Scan started on 03/03/99 12:40 PM
Scan st opped on 03/11/99 1:25 PM

72

Chapter 3

Using the Utility Program
Scan Report Information

Application Overall Summary
To obtain this report, you must have application data in the log file.

This report is an overall indicator of how much system activity is
accumulated in user-defined applications, rather than in the other
application. If a significant amount of a critical resource is not being
captured by user applications, you might consider scanning the process
data for processes that can be included in user applications.

For example:

OVERALL, USER DEFI NED APPLI CATI ONS ACCONT FCR

82534 OJT OF 112355 RECORDS (73.5%
218.2 OJT OF 619.4 CPU HOURS (35.2%
24.4 QUT CF 31.8 MDISC 1G58 (76.8%

0.2 OJT OF 0.6 M TRANS (27.3%

Collector Coverage Summary

This report is printed if any valid global or application data was scanned.
It indicates how well scopeux is being used to collect system activity. If

the percentage of time scopeux was off is high, as in the example below,
you should review your operational procedures for starting and stopping

SCOpeux.

The total tinme covered was 108/ 16: 14: 51 out of 128/00: 45: 02
Time | ost when col |l ector was of f 19/08:30:11 15.12%

The scopeux col l ector was started 45 times

This report will be more complete if global detail data is included in the
scan. If only summary data is available, you determine the time scopeux
was stopped and started only to the nearest hour. (An appropriate
warning message is printed with the report if this is the case.)

The total time covered is determined by accumulating all the interval
times from the logged data.The "out of " time value is calculated by
subtracting the starting date and time from the ending date and time.
This should represent the total time that could have been logged. The
"Time | ost when collector was of f" value is the total time less the
covered time.

Chapter 3 73

Using the Utility Program
Scan Report Information

The formats for the three times mentioned are:
ddd/ hh: mrm ss
where ddd are days and hh:mm:ss are hours, minutes, and seconds.
In the previous example, the total time collected was 108 days, 16 hours,
14 minutes, and 51 seconds.
Log File Contents Summary

The log file contents summary is printed if any valid data was scanned.
It includes the log file space and the dates covered. This summary is
helpful when you are resizing your log files with the r esi ze command.

------ Tot al --Each Full Day-- ----Dates------- Ful |

Type Records MBytes Records Mytes Start Fi ni sh Days
d obal 1376 0.27 288.9 0.057 05/23/99 to 05/28/99 4.8
Application 6931 0.72 1455.0 0.152 05/23/99 to 05/28/99 4.8
Process 7318 1.14 1533.6 0.239 05/23/99 to 05/28/99 4.8
D sk 2748 0.07 567.6 0.014 05/23/99 to 05/28/99 4.8
Transaction no data found

Over head 0.29

TOTAL 18373 2. 49 3845.0 0.461

The columns are described as follows:

Column

Type

Explanation

The general type of data being logged. One special
type, Over head, exists:

Over head is the amount of disk space occupied (or
reserved) by the log file versus the amount actually
used by the scanned data records.

If less than the entire log file was scanned, Overhead
includes the data records that were not scanned. If the
entire file was scanned, Over head accounts for any
inefficiencies in blocking the data into the file plus any
file-access support structures.

It is normal for extracted log files to have a higher
overhead than raw log files since they have additional
support structures for quicker positioning.

Tot al The total record count and disk space scanned for each

type of data.

Each Full Day The number of records and amount of disk space used

for each 24-hour period that scopeux runs.

74

Chapter 3

Using the Utility Program
Scan Report Information

Dat es The first and last valid dates for the data records of
each data type scanned.

Ful | Day The number of full (24-hour) days of data scanned for
this data type. Ful | Days may not be equal to the
difference between the start and stop dates if scopeux
coverage did not equal 100 percent of the scanned time.

The TOTAL line (at the bottom of the listed data) gives you an idea of
how much disk space is being used and how much data you can expect to
accumulate each day.

Log File Empty Space Summary

This summary is printed for each log file scanned. For example:

The d obal

fil now 13.9%full with roomfor 61 nore full days
The Application fil

fil

fil

now 15.1%full with roomfor 56 nore full days
now 23.5%full with roomfor 32 more full days
now 1.4%full with roomfor 2896 nore full days

The Process
The Device

The amount of room available for more data is calculated based on the
amount of unused space in the file and the scanned value for the number
of megabytes of data being logged each 24-hour day (see “Log File
Contents Summary”). If the megabytes-scanned-per-day values appear
unrealistically low, they are replaced with default values for this
calculation.

If you scan an extracted file, you get a single report line because all data
types share the same extracted file.

Chapter 3

75

Using the Utility Program
Scan Report Information

76 Chapter 3

Utility Commands

Chapter 4

77

Utility Commands
Introduction

Introduction

This chapter describes the uti | i ty program's commands. It includes a
syntax summary and a command reference section that lists the
commands in alphabetical order.

Wi lity commands and parameters can be entered with any
combination of uppercase and lowercase letters. Only the first three
letters of the command name are required. For example, the | ogfi |l e
command can be entered as | ogfi | e or it can be abbreviated as | og or
LOG

Examples of how these commands are used can be found in online help
for theutility program.

The table on the next pages contains a summary of util ity command
syntax and parameters.

78

Chapter 4

Utility Commands

Introduction
Table 4-1 Utility Commands: Syntax and Parameters
Command Parameter
anal yze
checkdef al ar mdef file
det ai | on
of f
exit
e
gui de
list filenameor*
logfile logfile
nenu
?
parnfile parnfile
qui t
q
resize gl obal
application
pr ocess
devi ce
transaction
days=maxdays
si ze=max MB
enpt y=days
space=MB
yes
no
maybe
scan logfile
(Operation is also affected by the | i st
start, stop, and detai | commands.
show al |
Chapter 4 79

Utility Commands
Introduction

Table 4-1

Utility Commands: Syntax and Parameters (Continued)

Command

Parameter

sh
!

syst em command

start

date [time]

t oday [-days] [ti nme]
| ast [-days] [ti ne]
first [+days][ti me]

st op

date [time]

t oday [-days] [ti nme]
| ast [-days] [ti ne]
first [+days][ti me]

80

Chapter 4

Utility Commands
analyze

analyze

Use the anal yze command to analyze the data in a log file against alarm
definitions in an alarm definitions (al ar ndef) file and report resulting
alarm status and activity. Before issuing the anal yze command, you
should run the checkdef command to check the alarm definitions
syntax. Checkdef also sets and saves the alarm definitions file name to
be used with anal yze. If you do not run checkdef before anal yze, you
are prompted for an alarm definitions file name.

If you are using command line mode, the default alarm definitions file
/var/ opt/ perf/al arndef is used.

For detailed information about alarm definitions, see Chapter 7,
“Performance Alarms,” on page 207.

Syntax
anal yze
How to Use It

When you issue the anal yze command, it analyzes the log files specified
in the data sources configuration file, dat asour ces, against the alarm
definitions in the al ar ndef file.

The anal yze command allows you to evaluate whether or not your alarm
definitions are a good match against the historical data collected on your
system. It also lets you decide if your alarm definitions will generate too
many or too few alarms on your analysis workstation.

Also, you can perform data analysis with definitions (IF statements) set
in the alarm definitions file because you can get information output by
PRINT statements when conditions are met. For explanations of how to
use the IF and PRINT statements in an alarm definition, see Chapter 7,
“Performance Alarms,” on page 207.

Chapter 4 81

Utility Commands
analyze

You can optionally run the st art, st op, and det ai | commands with
anal yze to customize the analyze process. You specify these commands
in the following order:

checkdef
start
stop

det ai |
anal yze

Use the start and st op commands if you want to analyze log file data
that was collected during a specific period of time. (Descriptions of the
start and st op commands appear later in this chapter.)

While the anal yze command is executing, it lists alarm events such as
alarm start, end, and repeat status plus any text in associated print
statements. Also, any text in PRINT statements is listed as conditions
(in IF statements) become true. EXEC statements are not executed but
are listed so you can see what would have been executed. An alarm
summary report shows a count of the number of alarms and the amount
of time each alarm was active (on). The count includes alarm starts and
repeats, but not alarm ends.

If you want to see the alarm summary report only, issue the det ai | of f
command. However, if you are using command line mode, det ai | of f is
the default so you need to specify - Dto see the alarm events as well as
the alarm summary.

Example

The checkdef command checks the alarm definitions syntax in the

al arndef file and saves the name of the al ar ndef file for later use with
the anal yze command. The start t oday command specifies that only
data logged today is to be analyzed. Lastly, the anal yze command
analyzes the log file in the default SOOPE data source specified in the
dat asour ces file against the alarm definitions in the al ar ndef file.

utility>

checkdef /var/opt/perf/al arndef
start today

anal yze

To perform the above task using command line arguments, enter:

utility -xc -D -b today -xa

82

Chapter 4

Utility Commands
checkdef

checkdef

Use the checkdef command to check the syntax of the alarm definitions
in an alarm definitions file and report any warnings or errors that are
found. This command also sets and saves the alarm definitions file name
for use with the anal yze command.

For descriptions of the alarm definitions syntax and how to specify alarm
definitions, see Chapter 7, “Performance Alarms,” on page 207.

Syntax
checkdef [/directorypath/al arndef]
Parameters
al andef The name of any alarm definitions file. This can be

a user-specified file or the default al ar ndef file. If
no directory path is specified, the current directory
will be searched.

How to Use It

When you have determined that the alarm definitions are correct, you
can process them against the data in a log file using the anal yze
command.

In batch mode, if no alarm definitions file is specified, the default
al ar ndef file is used.

In interactive mode, if no alarm definitions file is specified, you are
prompted to specify one.

Example

The checkdef command checks the alarm definitions syntax in the
al ar ndef file and then saves the name of the al ar ndef file for later use
with the anal yze command.

utility>
checkdef /var/opt/perf/al arndef

To perform the above task using command line arguments, enter:

utility -xc

Chapter 4

83

Utility Commands
detail

detail

Use the det ai | command to control the level of detail printed in the
anal yze, parnfil e, and scan reports.

The defaultis detai | on in interactive and batch modes and det ai |
of f in command line mode.

Syntax
det ai | [on]
[of f]
Parameters
on Prints the effective contents of the par mfile as well
as par mfile errors. Prints complete anal yze and
scan reports.
of f In the par mfile report, application definitions are

not printed. In the scan report, scopeux collection
times, initial par mfile global information, and
application definitions are not printed. In the

anal yze report, alarm events and alarm actions are
not printed.

How to Use It

For explanations of how to use the det ai | command with the anal yze,
scan, and par nfi | e commands, see the anal yze, parnfil e, and scan
command descriptions in this chapter.

Examples

For examples of using the det ai | command, see the descriptions of the
anal yze, parnfil e, and scan commands in this chapter.

84 Chapter 4

Utility Commands

Chapter 4

exit
—
exit
Use the exi t command to terminate the util ity program. The exi t
command is equivalent to the util ity program’s qui t command.
Syntax
exit
e
85

Utility Commands
guide

guide

Use the gui de command to enter guided commands mode. The guided
command interface leads you through the various uti | i ty commands
and prompts you to perform the most common tasks that are available.

Syntax
gui de
Hot to Use It

= To enter guided commands mode from utility’s interactive mode,
type gui de and press Return.

= To accept the default value for a parameter, press Return.

= Toterminate guided commands mode and return to interactive mode,
type g at the gui de> prompt.

This command does not provide all possible combinations of parameter
settings. It selects settings that should produce useful results for the
majority of users.

86 Chapter 4

Utility Commands
help

help
Use the hel p command to access the util ity program's online help
facility.
Syntax
hel p [keywor d]
How to Use It

You can enter parameters to obtain information on uti | i ty commands
and tasks, or on help itself. You can navigate to different topics by
entering a key word. If more than one page of information is available,
the display pauses and waits for you to press Return before continuing.
Type q or qui t to exit the help system and returntothe utility
program.

You can also request help on a specific topic. For example,
hel p tasks

or
hel p resi ze parns

When you use this form of the hel p command, you receive the help text
for the specified topic and remain in the util i ty command entry
context. Because you do not enter the help subsystem interactively, you
do not have to type qui t before entering the next utility command.

Chapter 4

87

Utility Commands
list

list

Use the | i st command to specify the output file for all util ity reports.
The contents of the report depends on which other commands are issued
after the | i st command. For example, using the | i st command before
thel ogfil e, detail on, and scan commands produces the list file for a
detailed summary report of a log file.

Syntax

list [fil ename]]|*
where * sets the output back to st dout .
How to Use It

There are two ways to specify the list file for reports:

= Redirect st dout when invoking the util ity program by typing:
utility > utilrept
e Or, use thelist command when utility is running by typing:

list utilrept

In either case, user interactions and errors are printed to st derr and
reports go to the file specified.

The fi | ename parameter in the | i st command must represent a valid
filename to which you have write access. Existing files have the new
output appended to the end of existing contents. If the file does not exist,
it will be created.

To determine the current output file, issue the | i st command without
parameters:

If the output file is not st dout , most commands are echoed to the output
file as they are entered.

Example

The | i st command produces a summary report on the extracted log file
rxl og. Thelist utilrept command directs the scan report listing to a
disk file. Det ai | of f specifies less than full detail in the report. The
scan command reads r x| og and produces the report.

88

Chapter 4

Utility Commands
list

Thelist * command sets the list device back to the defaultstdout . !l p
util rept sends the disk file to the system printer.

utility>
logfile rxlog
list utilrept

detail off
scan

list *

'I'p utilrept

To perform the above task using command line arguments, enter:

utility -1 rxlog -f utilrept -d -xs print utilrept

Chapter 4 89

Utility Commands
logfile

logfile

Use the | ogf i | e command to open a log file. For many util ity program
functions, a log file must be opened. You do this explicitly by issuing the
I ogfi | e command or implicitly by issuing some other command. If you
are in batch or command line mode and do not specify a log file name, the
default / var/ opt/ perf/datafil es/I oggl ob file is used. If you are in
interactive mode and do not specify a log file name, you are prompted to
provide one or accept the default / var/ opt/ perf/dat afil es/| oggl ob
file.

Syntax
logfile [logfile]
How to Use It

You can specify the name of either a raw or extracted log file. If you
specify an extracted log file name, all information is obtained from this
single file. You do not need to specify any of the raw log files other than
the global log file, | oggl ob. Opening | oggl ob gives you access to all of
the data in the other logfiles.

Raw log files have the following names:

| oggl ob global log file

| ogappl application log file
| ogpr oc process log file

| ogdev device log file

| ogtran transaction log file
| ogi ndx index log file

Once a log file is opened successfully, a report is printed or displayed
showing the general content of the log file (or log files).

90

Chapter 4

CAUTION

Utility Commands
logfile

You can verify the log file you opened with the showcommand, as
described later.

You can open another log file at any time by entering another | ogfi | e
command. Any currently opened log file is closed before the new log file is
opened.

The r esi ze and scan commands require a log file to be open. If no log file
is currently open, an implicit | ogfi | e command is executed.

Do not rename raw log files! Access to these files assumes that the
standard log file names are in effect.

You may have more than one set of raw log files on the same system, in
separate directories for each set of files. If you want to resize the log files
in any way, you must have read/write access to all the log files.

Chapter 4

91

Utility Commands
menu

menu

Use the menu command to print a list of the available utility
commands.

Syntax
nenu
Example

utility> nmenu
Command Paraneters Function

HELP [topic] Get information on commands and options
GUI DE Enter gui ded commands node for novice
users

LOGFI LE [| ognane] Specify a log file to be processed

LI ST [filenane|*] Specify the listing file
START [startdate tine] Set starting date & tinme for SCAN or

ANALYZE

STOP [stopdate tine] Set ending date & tine for SCAN or
ANALYZE

DETAI L [ON| OFF] Set report detail for SCAN, PARMFILE, or
ANALYZE

SHOW [ALL] Show t he current program settings

PARMFI LE [parnfile] Check parsing of a paraneter file

SCAN [l ognane] Read the log file and produce a sunmary report
RESI ZE [GLOB| APPL| PROC| DEV| TRAN] [DAYS=] [EMPTY=] Resi ze raw | og

files

CHECKDEF [al ar ndef] Check parsing and set the al arndef file
ANALYZE Anal yze the log file using the al arndef
file

I or Sh [command] Execute a system conmand

MENU or ? Li st the commands nenu (This |isting)
EXIT or Q Term nate the program

utility>

92 Chapter 4

Utility Commands
parmfile

parmfile

Use the par nfi | e command to view and syntax check the OV
Performance Agent par mfile settings that are used for data collection.

Syntax
parnfile [/directorypath/parnfile]
How to Use It

You can use the parnfi | e command to do any of the following:

= Examine the par mfile for syntax warnings and review the resulting
settings. All parameters are checked for correct syntax and errors are
reported. After the syntax check is completed, only the applicable
settings are reported.

< Find out how much room is left for defining applications.

< Ifdetail on isspecified, print the effective contents of the par mfile
plus any default settings that were not overridden, and print
application definitions.

In batch mode, if no par mfile name is specified, the
/var/ opt/ perf/ par mfile is used.

In interactive mode, if no par mfile name is supplied, you are prompted to
supply one.

Example

The par nfi | e command checks the syntax of the current par mfile and
reports any warnings or errors. Det ai | on lists the logging parameter
settings.

utility>

detail on

parnfile parm
To perform the above task using command line arguments, enter:

utility -xp -D

Chapter 4 93

Utility Commands
quit

quit
Use the qui t command to terminate the util ity program. The qui t
command is equivalent to the util ity program’'s exi t command.
Syntax

qui t

q

94 Chapter 4

Utility Commands
resize

resize

Use the r esi ze command to manage the space in your raw log file set.
This is the only program you should use to resize the raw log files in
order to preserve coordination between the files and their internal
control structures. If you use other tools you might remove or destroy the
validity of these control structures.

The utility program cannot be used to resize extracted files. If you
want to resize an extracted file, use the ext r act program to create a new
extracted log file.

Syntax

resize [global] [days=maxdays] [enpty=days] [yes]
[application] [size=nmaxMB] [space=MB] [no]
[process] [maybe]
[devi ce]
[transaction]

Parameters

log file type Specifies the type of raw data you want to resize:
global, application, process, device, or transaction,
which correspond to the raw log files | oggl ob,
| ogappl , | ogpr oc, | ogdev, and | ogt r an. If you
do not specify a data type and are running
utility in batch mode, the batch job terminates.
If you are running ut i I i ty interactively, you are
prompted to supply the data type based on those
log files that currently exist.

days & size Specify the maximum size of the log file. The
actual size depends on the amount of data in the
file.

enpty & space Specify the minimum amount of room required in
the file after the resizing operation is complete.
This value is used to determine if any of the data
currently in the log file must be removed in the
resizing process.

Chapter 4 95

Utility Commands
resize

You might expect that a log file would not fill up until the specified
number of days after a resizing operation. You may want to use this
feature of the r esi ze command to minimize the number of times a log
file must be resized by the scopeux collector because resizing can occur
any time the file is filled. Using r esi ze to force a certain amount of
empty space in a log file causes the log file to be resized when you want it
to be.

The days and enpt y values are entered in units of days; the si ze and
space values are entered in units of megabytes. Days are converted to
megabytes by using an average megabytes-per-day value for the log file.
This conversion factor varies depending on the type of data being logged
and the particular characteristics of your system.

More accurate average-megabytes-per-day conversion factors can be
obtained if you issue the scan command on the existing log file before
you issue the r esi ze command. A scan measures the accumulation rates
for your system. If no scan is done or if the measured conversion factor
seems unreasonable, the r esi ze command uses a default conversion
factor for each type of data.

yes Specifies that resizing should be unconditionally
performed. This is the default action if util ity is not
running interactively. If no action is specified when
utility is running interactively, you are prompted to
supply the action.

no Specifies that resizing should not be performed. This
parameter can be specified as an action if you want to
see the resizing report but do not want to perform the
resizing at that time.

naybe Specifies that uti | i t y should decide whether or not to
resize the file. This parameter forces utility to make
this decision based on the current amount of empty
space in the log file (before any resizing) and the
amount of space specified in the r esi ze command. If
the current log file contains at least as much empty
space as specified, resizing does not occur. If the
current log file contains less than the specified empty
space, resizing occurs.

96

Chapter 4

Table 4-2

naybe
(continued)

Utility Commands
resize

If the resizing can be made without removing any data
from the log file (for example, increasing the maximum
log file size, or reducing the maximum log file size
without having to remove any existing data), resizing

occurs.

The maybe parameter is intended primarily for use by
periodic batch executions. See the “Examples”
subsection below for an explanation of how to use the
resize command in this manner.

Default resizing parameters are shown in the following table.

Default Resizing Parameters

Parameter

log file
type

days
si ze

enpty space

yes
no
nmaybe

How to Use It

If Executed
Interactively

You are prompted for
each available log file

type.

The current file size.

The current amount of
empty space or enough
empty space to retain all
data currently in the
file, whichever is
smaller.

You are prompted
following the reported
disk space results.

If Executed in Batch

No default. This is a
required parameter.

The current file size.

The current amount of
empty space or enough
empty space to retain all
data currently in the file,
whichever is smaller.

Yes. Resizing will occur.

Before you resize a log file, you must stop OV Performance Agent using
the steps under “Stopping and Restarting Data Collection” on page 49 in
Chapter 2, “Managing Data Collection”.

A raw log file must be opened before resizing can be performed. Open the
raw log file with the | ogf i | e command before issuing the resi ze
command. The files cannot be opened by any other process.

Chapter 4

97

Utility Commands
resize

The r esi ze command creates the new file /t np/ scopel og before
deleting the original file. Make sure there is sufficient disk space in the
/var/tnp directory (/t np on IBM AlIX 4.1 and later) to hold the original
log file before doing the resizing procedure.

After resizing, a log file consists of data plus empty space. The data
retained is calculated as the maximum file size minus the required
empty space. Any data removed during the resizing operation is lost. To
save log file data for longer periods, use ext r act to copy this data to an
extracted file before doing the resize operation.

Resize Command Reports

One standard report is produced when you resize a raw log file. It shows
the three interrelated disk space categories of maximum file size, data
records, and empty space, before and after resizing. For example:

resi ze gl obal days=120; enpt y=10
enpty space raised to natch file size and data records

final resizing paraneters:

file: |oggl ob nmegabytes / day: 0.101199
---currently----- --after resizing---
naxi mum si ze: 65 days (6.6 nb) 120 days (12.1 nb) 83%
i ncrease
dat a records: 61 days (6.2 nb) 61 days (6.2 nb) no data
r emoved
enpty space: 4 days (0.5 nb) 59 days (6.0 nb) 1225%
i ncrease

The megabytes per day value is used to convert between days and
megabytes. It is either the value obtained during the scan function or a
default for the type of data being resized.

The far right-hand column is a summary of the net change in each
category of log file space. Maximum size and empty space can increase,
decrease, or remain unchanged. Data records have either no data
removed or a specified amount of data removed during resizing.

If the resize is done interactively and one or more parameters are
defaults, you can get a preliminary resizing report. This report
summarizes the current log file contents and any parameters that were
provided. The report is provided to aid in answering questions on the
unspecified parameters. For example:

98

Chapter 4

Utility Commands
resize

resi ze gl obal days=20

file resizing paraneters (based on average daily

space estinmates and user resizing paraneters)

file: 1oggl ob megabytes / day: 0.101199

----- currently----- --after resizing---

naxi mum si ze: 65 days (6.6 nb) 20 days (2.0 nb)

dat a records: 61 days (6.2 nb) ??

enpty space: 4 days (0.5 nb) ??
In this example, you are prompted to supply the amount of empty space
for the file before the final resizing report is given. If no action parameter
is given for interactive resizing, you are prompted for whether or not to
resize the log file immediately following the final resizing report.

Examples

The following commands are used to resize a raw process log file. The
scan is performed before the resize to increase the accuracy of the
number-of-days calculations.

logfile /var/opt/perf/datafiles/|oggl ob
detail off

scan

resize process days=60 enpty=30 yes

days=60 specifies holding a maximum of 60 days of data. enpt y=30
specifies that 30 days of this file are currently empty. That is, the file is
resized with no more than 30 days of data in the file to leave room for 30
more days out of a total of 60 days of space. yes specifies that the
resizing operation should take place regardless of current empty space.

The next example shows how you might use the resi ze command in
batch mode to ensure that log files do not fill up during the upcoming
week (forcing scopeux to resize them). You could schedule a cr on script
using the at command that specifies a minimum amount of space such as
7 days - or perhaps 10 days, just to be safe.

The following shell script accomplishes this:

echo detail off > utilin
echo scan >> utilin
echo resize gl obal enpt y=10 maybe >> utilin
echo resize application enpty=10 naybe >> utilin
echo resize process enpt y=10 maybe >> utilin
echo resize device enpt y=10 nmaybe >> utilin
echo quit >> utilin

utility <wutilin > utilout 2> utilerr

Chapter 4

99

Utility Commands
resize

Specifying maybe instead of yes avoids any resizing operations if 10 or
more days of empty space currently exist in any log files. Note that the
maximum file size defaults to the current maximum file size for each file.
This allows the files to be resized to new maximum sizes without
affecting this script.

NOTE If you use the script described above, remember to stop scopeux before
running it. See the “Starting & Running OV Performance Agent” chapter
in your HP OpenView Performance Agent Installation & Configuration
Guide for information about stopping and starting scopeux.

100 Chapter 4

Utility Commands
scan

scan

Use the scan command to read a log file and write a report on its
contents. (For a detailed description of the report, see “Utility Scan
Report Details” on page 66 in Chapter 3, “Using the Utility Program”.

Syntax
scan
How to Use It

The scan command requires a log file to be opened. The log file scanned
is the first of one of the following:

= The log file named in the scan command itself.
= The last log file opened by any previous command.
= The default log file.

In this case, interactive users are prompted to override the default
log file name if desired.

The following commands affect the operation of the scan function:

det ai | Specifies the amount of detail in the report. The
default, det ai | on, specifies full detail.

l'ist Redirects the output to another file. The default is to
list to the standard list device.

start Specifies the date and time of the first log file record
you want to scan. The default is the beginning of the
log file.

stop Specifies the date and time of the last log file record
you want to scan. The default is the end of the log
file.

For more information about the detai |l ,list, start, and st op
commands, see their descriptions in this chapter.

The scan command report consists of 12 sections. You can control which
sections are included in the report by issuing the det ai | command prior
to issuing scan.

Chapter 4

101

Utility Commands
scan

The following four sections are always printed (even if detai | off is
specified):

= Scan start and stop actual dates and times
= Collector coverage summary

= Log file contents summary

= Log file empty space summary

The following sections are printed if det ai | on (the default) is specified:

= Initial parm file global information and system configuration
information

< Initial par mfile application definitions

= par mfile global changes

= par mfile application addition/deletion notifications
= Collector off-time notifications

= Application-specific summary reports

The following section is always printed if application data was scanned
(evenifdetail off is specified):

= Application overall summary

The following section is always printed if process data was scanned (even
if detai | of f is specified):

= Process log reason summary
Example

The scan of the current default global log file starts with records logged
from June 1, 1999 at 7:00 AM until the present date and time.

utility>

logfile /var/opt/perf/datafiles/loggl ob
detail on

start 6/1/99 7:00 am

scan

To perform the above task using command line arguments, enter:
utility -D-b 6/1/99 7:00 am - xs

102

Chapter 4

Utility Commands
sh

sh

Use sh to enter a shell command without exiting uti | i ty by typing sh or
an exclamation point (!) followed by a shell command.

Syntax
sh or ! [shell conmrand]

Parameters

sh Is Executes the | s command and returnstoutility.

I'l's Same as above.

How to Use It

Following the execution of the single command, you automatically return
toutility. If you want to issue multiple shell commands without
returning touti | i ty after each one, you can start a new shell. For
example,

sh ksh
or
I ksh

Chapter 4

103

Utility Commands

show
|
show
Use the showcommand to list the names of the files that are open and
the status of the uti | i ty parameters that can be set.
Syntax
show [al |]
Examples
Use showto produce a list that may look like this:
Logfile: /var/opt/perf/datafiles/|oggl ob
Li st: "stdout"
Detail: ON for ANALYZE, PARMWFI LE and SCAN functi ons
The default starting date & time = 10/08/99 08:17 AM (FI RST + 0)
The default stopping date & tine = 11/20/99 11:59 PM (LAST - 0)
The default shift = 12: 00 AM - 12: 00 AM
NOTE The default shift time is shown for information only. Shift time cannot be

changed in utility.

Use show al | to produce a more detailed list that may look like this:

Logfile: /var/opt/perf/datafiles/|oggl ob

d obal file: /var/opt/perf/datafiles/logglob
Application file: /var/opt/perf/datafiles/|ogappl
Process file: /var/opt/perf/datafiles/|ogproc
Devi ce file: [var/opt/perf/datafiles/|ogdev
Transaction file: /var/opt/perf/datafiles/logtran
| ndex file: /var/opt/perf/datafiles/|ogi ndx

System I D honer
System Type 9000/ 715 S/ N 66677789 O&/ HP-UX B.10.20 A
Data Col | ector: SOOPE UX C 02. 30
File created: 10/ 08/ 99
Data Covers: 44 days to 11/20/99
Shift is: Al Day

Data records avail able are:

A obal Application Process D sk Vol une Transaction

Maxi mum fil e sizes:
d obal =10. 0 Appl i cati on=10. 0 Process=20. 0 Devi ce=10. 0 Transacti on
10.0 MB

104 Chapter 4

Utility Commands
show

Li st "stdout"
Detail ON for ANALYZE, PARMFI LE and SCAN functi ons

The default starting date & tine = 10/08/99 11:50 AM (FI RST + 0)
The default stopping date & time = 11/20/99 11:59 PM (LAST - 0)
The default shift = 12:00 AM - 12: 00 AM

Chapter 4 105

Utility Commands
start

start

Use the st art command to specify the beginning of the subset of a log
file that you want to scan or analyze. St art lets you start the scan or
analyze process at data that was logged at a specific date and time.

The default starting date and time is set to the date and time of the first
record of any type in a log file that has been currently opened with the
| ogfi | e command.

Syntax

[date [time]]

start [t oday [- days] [tine]]
[l ast [- days] [tine]]
[first [+days] [tine]]

Parameters

date The date format depends on the native language configured
on the system being used. If you do not use native
languages or have the default language set to C, the date
format is mm/dd/yy (month/day/year) or 06/30/99 for June
30, 1999.

tinme The time format also depends on the native language being
used. For C, the format is hh:mm am or hh:mm pm
(hour:minute in 12-hour format with the am/pm suffix) such
as 07:00 am for 7 o'clock in the morning. Twenty-four hour
time is accepted in all languages. For example, 23:30 would
be accepted for 11:30 pm.
If the date or time is entered in an unacceptable format, an
example in the correct format is shown.
If no start time is given, a midnight (12 am) is assumed. A
starting time of midnight for a given day starts at the
beginning of that day (00:00 on a 24-hour clock).

t oday Specifies the current day. The parameter t oday- days
specifies the number of days prior to today’s date. For
example, t oday- 1 indicates yesterday's date and t oday- 2,
the day before yesterday.

106 Chapter 4

Utility Commands

start
| ast Can be used to represent the last date contained in the log
file. The parameter | ast - days specifies the number of
days prior to the last date in the log file.
first Can be used to represent the first date contained in the log

file. The parameter fir st +days specifies the number of
days after the first date in the log file.

How to Use It

The start command is useful if you have a very large log file and do not
want to scan or analyze the entire file. You can also use it to specify a
specific time period for which data is scanned. For example, you can scan
a log file for data that was logged for a period beginning 14 days before
the present date by specifying t oday- 14.

You can use the st op command to further limit the log file records you
want to scan.

If you are not sure whether native language support is installed on your
system, you can force uti | i ty to use the C date and time formats by
issuing the following statement before running utility:

LANG=C, export LANG
or in C Shell

setenv LANG C
Example

The scan of the default global log file starts with records logged from
August 5, 1999 at 8:00 AM until the present date and time.

utility>

logfile /var/opt/perf/datafiles/logglob
detail on

start 8/5/99 8:00 AM

scan

To perform the above task using command line arguments, enter:
utility -D-b 8/5/99 8:00 am - xs

Chapter 4 107

Utility Commands
stop

stop

Use the st op command to specify the end of a subset of a log file that you
want to scan or analyze. St op lets you terminate the scan or analyze
process at data that was logged at a specific date and time.

The default stopping date and time is set to the date and time of the last
record of any type in a log file that has been currently opened with the
| ogfi | e command.

Syntax
[date [tine]]
stop [today [- days] [tine]]
[l ast [- days] [tine]]
[first [+days] [tine]]
Parameters
date The date format depends on the native language configured
on the system being used. If you do not use native
languages or have the default language set to C, the date
format is mm/dd/yy (month/day/year) or 06/30/99 for June
30, 1999.
time The time format also depends on the native language being

used. For C, the format is hh:mm am or hh:mm pm
(hour:minute in 12-hour format with the am/pm suffix) such
as 07:00 am for 7 o'clock in the morning. Twenty-four hour
time is accepted in all languages. For example, 23:30 would
be accepted for 11:30 pm.

If the date or time is entered in an unacceptable format, an
example in the correct format is shown.

If no stop time is given, one minute before midnight (11:59
pm) is assumed. A stopping time of midnight (12 am) for a
given day stops at the end of that day (23:59 on a 24-hour
clock).

108 Chapter 4

Utility Commands
stop

t oday Specifies the current day. The parameter t oday- days
specifies the number of days prior to today’s date. For
example, t oday- 1 indicates yesterday’s date and t oday- 2,
the day before yesterday.

| ast Can be used to represent the last date contained in the log
file. The parameter | ast - days specifies the number of
days prior to the last date in the log file.

first Can be used to represent the first date contained in the log
file. The parameter fir st +days specifies the number of
days after the first date in the log file.

How to Use It

The st op command is useful if you have a very large log file and do not
want to scan the entire file. You can also use it to specify a specific time
period for which data is scanned. For example, you can scan a log file for
seven-days worth of data that was logged starting a month before the
present date.

If you are not sure whether native language support is installed on your
system, you can force uti i ty to use the C date and time formats by
issuing the following statement before running utility:

LANG=C, export LANG
or in C Shell

setenv LANG C
Example

The scan of 14 days worth of data starts with records logged from July 5,
1999 at 8:00 AM and stops at the last record logged July 18, 1999 at
11:59 pm.

utility>
logfile /var/opt/perf/datafiles/|ogglob
detail on

start 7/5/99 8:00 am
stop 7/18/99 11:59 pm
scan

To perform the above task using command line arguments, enter:
utility -D-b 7/5/99 8:00 am-e 7/18/99 11:59pm - xs

Chapter 4

109

Utility Commands
stop

110 Chapter 4

5 Using the Extract Program

Chapter 5 111

Using the Extract Program
Introduction

NOTE

Introduction

The ext ract program has two main functions: it lets you extract data
from raw log files and write it to extracted log files. Ext r act also lets you
export log file data for use by analysis products such as spreadsheets.

After the initial installation of OV Performance Agent, services must be
started for file installation to complete, before ext ract will function.

The extract and export functions copy data from a log file; no data is
removed.

Three types of log files are used by OV Performance Agent:

scopeux log files, which contain data collected in OV Performance
Agent by the scopeux collector.

extracted log files, which contain data extracted from raw scopeux
log files.

DSI (data source integration) log files, which contain user-defined
data collected by external sources such as applications and
databases. The data is subsequently logged by OV Performance
Agents DSI programs.

Use the ext ract program to perform the following tasks:

Extract subsets of data from raw scopeux log files into an extracted
log file format that is suitable for placing in archives, for transport
between systems, and for analysis by OV Performance Manager.
Data cannot be extracted from DSI log files.

Manage archived log file data by extracting or exporting data from
extracted format files, appending data to existing extracted log files,
and subsetting data by type, date, and shift (hour of day).

Export data from raw or extracted scopeux log files and DSI log files
into ASO |, bi nary, dat af i | e, or VK1 (spreadsheet) formats suitable
for reporting and analysis or for importing into spreadsheets or
similar analysis packages.

112

Chapter 5

Using the Extract Program
Introduction

NOTE The ext ract function cannot produce summarized data. Summary data
can only be produced by the export function.

Examples of how various tasks are performed and how ext r act
commands are used can be found in online help for the ext ract program.

This chapter covers the following topics:

= running the extract program
= using interactive mode
= command line interface

= overview of the export function

Chapter 5 113

Using the Extract Program

Running the Extract Program

Running the Extract Program

There are three ways to run the ext ract program:

Command line mode - You control the ext r act program using
command options and arguments in the command line.

Interactive mode - You supply interactive commands and parameters
while executing the program with st di n set to an interactive
terminal or workstation.

If you are an experienced user, you can quickly specify only those
commands required for a given task. If you are a new user, you may
want to specify guided mode to receive more assistance in using

ext ract . In guided mode, you are asked to select from a list of
options in order to perform a task. While in guided mode, the
interactive commands that accomplish each task are listed as they
are executed, so you can see how they are used. You can quit or
re-enter guided mode at any time.

Batch mode - You can run the program and redirect st di n to a file
that contains interactive commands and parameters.

The syntax for the command line interface is similar to standard UNIX
command line interfaces on other programs and is described in detail in
this chapter.

For interactive and batch mode the command syntax is the same: a
command followed by one or more parameters. Commands can be
entered in any order; if a command has a parameter associated with it,
the parameter must be entered immediately after the corresponding
command.

There are two types of parameters - required (for which there are no
defaults) and optional (for which defaults are provided). How the extract
program handles these parameters depends on the mode in which it is
running.

In interactive mode, if an optional parameter is missing, the program
displays the default parameter and lets you either confirm it or
override it.

If a required parameter is missing, the program prompts you to enter
the parameter.

114

Chapter 5

Using the Extract Program
Running the Extract Program

= Inbatch mode, if an optional parameter is missing, the program uses
the default values.
If a required parameter is missing, the program terminates.

Errors and missing data are handled differently for interactive mode
than for command line and batch mode, because you can supply
additional data or correct mistakes in interactive mode, but not in
command line and batch mode.

Chapter 5 115

Using the Extract Program
Using Interactive Mode

Using Interactive Mode

Using the ext r act program’s interactive mode requires you to issue a
series of commands to execute a specific task.

For example, if you want to export application data collected starting
May 15, 2002, from the default global log file, you issue the following
commands after invoking the ext r act program

logfile /var/opt/perf/datafiles/loggl ob
application detail

start 5/15/2001

expor t

The | ogf i | e command opens / var/ opt/ perf/datafil es/| oggl ob, the
default global log file. The st art command specifies that only data
logged after 5/15/01 will be exported. The export command starts the
exporting of the data.

116

Chapter 5

Table 5-1

Using the Extract Program
Extract Command Line Interface

Extract Command Line Interface

In addition to the interactive and batch mode command syntax,
command options and arguments can be passed to the ext r act program
through the command line interface. The command line interface fits
into the typical UNIX environment by allowing the ext r act program to
be easily invoked by shell scripts and allowing its input and output to be
redirected into UNIX pipes.

For example, the command line equivalent of the example shown in the
previous section “Using Interactive Mode” on page 116 is:

extract -1 -a -b 5/15/02 -xp

In command line mode, the global log file

/var/ opt/perf/datafiles/| oggl ob is the default; you do not have to
specify it.

Command line options and arguments are listed in the following table.
The referenced command descriptions can be found in Chapter 6,
“Extract Commands,” on page 145.

Command Line Arguments

Command L
Option Argument Description

-b date time Specifies starting date and
time of an extract or export
function. (See st art
command in Chapter 6.)

-B UN X Specifies starting time in
start UNIX format for an extract
time or export function.

-e date time Specifies ending date and
time of an extract or export
function. (See st op
command in Chapter 6.)

Chapter 5

117

Using the Extract Program
Extract Command Line Interface

Table 5-1 Command Line Arguments (Continued)
Command —
Option Argument Description
-E UN Xstop | Specifies stopping time in
time UNIX format for an

extract or export function.

-S time-time | noweeken | Specifiesstart and end time
ds for specific periods
excluding weekends. (See
“shift” command in Chapter
6.)

-1 logfile Specifies input log file. (See
“logfile” command in
Chapter 6.)
/var/opt/perf/datafiles
/1 oggl ob is the default.

-r export Specifies an export template
tenpl ate file for export function.
file (See “report” command in

Chapter 6.)
-C cl assnanme | opt Specifies scopeux data to

extract or export, or
self-describing (DSI) data to
export. (See “class”
command in Chapter 6.)

opt =
detail (default)
sunmary
bot h
of f

118 Chapter 5

Table 5-1

Command Line Arguments (Continued)

Using the Extract Program
Extract Command Line Interface

Command
Option

Argument

Description

gapkcdznt uy
GADZNTUY

Specifies types of data to
extract/export:

g = global detail. (See
“global” command in
Chapter 6.) global detail is
off by default.

a = application detail. (See
“application” command in
Chapter 6.)

p = process detail (See
“process” command in
Chapter 6.)

k = process killed. (See
“process” command in
Chapter 6.)

¢ = configuration
det ai | (See “configuration”
command in Chapter 6.)

d = disk device detail (See
“disk” command in Chapter
6.)

z = lvolume detail (See
“lvolume” command in
Chapter 6.)

n = netif detail (See “netif”
command in Chapter 6.)

Chapter 5

119

Using the Extract Program
Extract Command Line Interface

Table 5-1 Command Line Arguments (Continued)
Command —
Option Argument Description
gapkcdznt uy t = transaction detail (See
GADZNTUY “transaction” command in
(continued) Chapter 6.)

u = CPU detail (See “cpu”
command in Chapter 6.)

y = filesystem detail (See
“filesystem” command in
Chapter 6.)

NOTE: The following
summary options are for
export only; the extract
function does not support
data summarization.

G= global summary (See
“global” command in
Chapter 6.) Global summary
is off by default.

A = application summary
(See “application” command
in Chapter 6.)

D= disk device summary
(See “disk” command in
Chapter 6.)

Z=lvolume summary (See
“lvolume” command in
Chapter 6.)

N = netif summary (See
“netif” command in Chapter
6.)

120 Chapter 5

Table 5-1

Command Line Arguments (Continued)

Using the Extract Program
Extract Command Line Interface

Command
Option

Argument

Description

gapkcdznt uy
GADZNTUY
(continued)

T = transaction summary
(See “transaction” command
in Chapter 6.)

U= CPU summary (See
“cpu” command in Chapter
6.)

Y = filesystem summary
(See “filesystem” command
in Chapter 6.)

Generates verbose output
report formats.

fil ename

, hew
, append

, pur ge

Sends extract or export data
toafile. Ifnofilename,
sends data to default output
files. (See “output”
command in Chapter 6.)

-ut

Shows date and time in
UNIX format in exported
DSl log file data.

-wWe

Specifies days to exclude
from export; 1=Sunday. (See
“weekdays” command
description.)

_Xp

xopt

Exports data to external
format files. (See “export”
command in Chapter 6.)

Chapter 5

121

Using the Extract Program
Extract Command Line Interface

Table 5-1 Command Line Arguments (Continued)
Command —
Option Argument Description
- xt xopt Extracts data in system
internal format. (See
“extract” command in
Chapter 6.)
xopt =
dwry (Day Wek Month
Year)
dwny- [of f set]
dwny [absol ut €]
- XW week Extracts a calendar week's
data. (See “weekly”
command in Chapter 6.)
-Xxm nmont h Extracts a calendar month's
data. (See “monthly”
command in Chapter 6.)
- Xy year Extracts a calendar year's
data. (See “yearly” command
in Chapter 6.)
-? or ? Displays command line
syntax.
When you are evaluating arguments and entering command options on
the command line, the following rules apply:
= Errors and missing data are handled exactly as in the corresponding
batch mode command. That is, missing data will be defaulted if
possible and all errors cause the program to terminate immediately.
= Echoing of commands and command results is disabled unless the
-v argument is used to enable verbose mode.
= If no valid action is specified (- xp, - Xw, - xm - Xy, or - xt), ext r act
starts reading commands from its st di n file after all parameters
have been processed.
122 Chapter 5

Using the Extract Program
Extract Command Line Interface

= If an action is specified (- xp, - xw, - xm - Xy, or - xt), the program will
execute those command options after all other parameters are
evaluated, regardless of where they were positioned in the list of
parameters.

= If an action is specified in the command line, the extract program
will not read from its st di n file; instead it will terminate following
the action:

extract -f rxdata -r /var/opt/perf/reptl -xp d-1 -G
Which translates into:

-f rxdata Outputs to a file named r xdat a in current directory

-r reptl File / var/ opt/ perf/rept 1 contains the desired
export format

-xp d-1 Exports data for this day minus 1 (yesterday)

-G Exports global summary data.

Note that the actual exporting is not done until the end so the -G
parameter is processed before the export is done.

Also notice that the log file was not specified so it uses the default
I oggl ob file.

Because an action was specified (- xp), once the export is finished the
ext ract program terminates without reading from its st di n file. In
addition, verbose mode was not set with the - v command option so all
extraneous output to st dout is eliminated.

Chapter 5 123

Using the Extract Program

Overview of the Export Function

Overview of the Export Function

The ext ract program's export command converts OV Performance
Agent raw, extracted, or DSI log file data into exported files. The export
command writes files in any one of four possible formats: ASCII, datafile,
binary, and WK1 (spreadsheet). Exported files can be used in a variety of
ways, such as reports, custom graphics packages, databases, and
user-written analysis programs.

How to Export Data
In the simplest form, you can export data by:

= specifying the default global log file,
/var/ opt/perf/datafiles/l oggl ob,
from which you want to export data

= specifying the default export template file,
/var/opt/perf/reptfile, that defines the
format of the exported data

= starting the export function.

The exported data is placed in a default output file named
xf rd@CBAL. asc in your current directory. The output file's ASCII
format is suitable for printing.

If you want to export something other than this default set of data, you
can use other commands and files in conjunction with the export
command.

You can export the following types of data:

global 5-minute and hourly summaries
application 5-minute and hourly summaries
process One-minute details

disk device 5-minute and hourly summaries
Ivolume 5-minute and hourly summaries
transaction 5-minute and hourly summaries

124

Chapter 5

Using the Extract Program
Overview of the Export Function

configuration One record containing parm file information, and

system configuration information, for each time the
data collector started.

any DSl class Intervals and summaries for DSI log files

netif 5-minute and hourly summaries
cpu 5-minute and hourly summaries
filesystem 5-minute and hourly summaries

You can specify which data items (metrics) are needed for each type
of data.

You can specify starting and ending dates for the time period in
which the data was collected along with shift and weekend exclusion
filters.

You can specify the desired format for the exported data in an export
template file. This file can be created using any text editor or word
processor that lets you save a file in ASCII (text) format.

You can also use the default export template file,
/var/opt/perf/reptfile. This file specifies the
following output format settings:

— ASCII file format

— a0 (zero) for the missing value

— ablank space as the field separator
— 60-minute summaries

— column headings are included

— arecommended set of metrics for a given data type is included in
the export

Sample Export Tasks

Two sample export template files, r ept hi st and rept al | , are furnished
with OV Performance Agent. These files are located in the

/var/ opt/perf/ directory. You can userepthist andreptal | to
perform common export tasks or as a starting point for custom tasks,
such as the task described next.

Chapter 5

125

Using the Extract Program

Overview of the Export Function

Generating a Printable CPU Report

The r ept hi st export template file contains the specifications to generate
a character graph of CPU and disk usage for the system over time. This
graph consists of printable characters that can be printed on any device
capable of 132 column printing. For example, you could use the following
ext ract program commands to generate a graph of the last seven days
and should produce approximately two pages (34 pages if 5-minute detail
is specified instead of hourly summaries).

logfile /var/opt/perf/datafiles/loggl ob
report /var/opt/perf/repthist

gl obal summary

start today-7

export

The exported data is in an export file named xf r sG_.CBAL. asc. To print
it, type:

Ip xfrs@COBAL. asc

Producing a Customized Export File

If you want to create a totally new export template file, copy the export
template file and customize it using the ext ract program's gui de
command. In guided mode, you copy the reptal | file from the

/var/ opt/ perf/ directory and read the scopeux or DSI log file specified
to dynamically create the list of data types and metric names.

The rept al | file contains every possible metric for each type of scopeux
log file data so you need only uncomment those metrics that are of
interest to you. This is easier than retyping the entire export template
file.

Export Data Files

If you used the out put command to specify the name of an output file
prior to issuing the export command, all exported data will be written to
this single file. If you are running the ext r act program interactively and
want to export data directly to your workstation (standard output file),
specify the ext ract command out put st dout prior to issuing the
export command.

If the output file is set to the default, the exported data is separated into
as many as 14 different default output files depending on the type of data
being exported.

126

Chapter 5

NOTE

Using the Extract Program
Overview of the Export Function

The default export log file names are:

xf r dGLCBAL. ext

xfr sGLCBAL. ext

xf r dAPPLI CATI ON ext
xf r sAPPLI CATI ON ext
xf r dPROCESS. ext
xfrdDl SK. ext

xfrsDl SK. ext

xf r dVOLUVE. ext

xf r sVOLUME. ext

xf r dNETI F. ext

xfr sNETI F. ext

xf r dCPU. ext

xf rsCPU. ext

xf r dFI LESYSTEM ext
xf r skl LESYSTEM ext
xf r dTRANSACTI ON ext
xf r STRANSACTI ON ext

xf r dCONFI QURATI ON. ext

Global detail data file

Global hourly summary data file
Application detail data file
Application hourly summary data file
Process detail data file

Disk device detail data file

Disk device hourly summary data file
Logical volume detail data file
Logical volume summary data file
Netif detail data file

Netif summary detail data file

CPU detail data file

CPU summary data file

Filesystem detail data file

Filesystem summary data file
Transaction detail data file
Transaction summary data file

Configuration data file

where ext = asc (ASCII), bi n (binary), dat (datafile), or wk1

(spreadsheet).

No output file is created unless you specify the type and associated items
that match the data in the export template file prior to issuing the export

command.

Chapter 5

127

Using the Extract Program
Overview of the Export Function

Export Template File Syntax

The export template file can contain all or some of the following
information, depending on how you want your exported data to be
formatted and what you want the export file to contain:

report "export file title"

f or mat [ASO 1]
[dat afil €]
[bi nary]
[WK1] or
[spreadsheet]

headi ngs [on]

[of f]
separator= "char"
summar y=val ue
m ssi ng=val ue
layout=single | miltiple
out put =fi | enane
data type datatype
itens

Parameters

report Specifies the title for the export file. For more
information, see the following section, “Export File
Title” on page 132.

f or mat Specifies the format for the exported data.
ASC |

ASC | (or text) format is best for copying files to a
printer or terminal. It does not enclose fields with
double quotes ().

Dat afil e

128 Chapter 5

headi ngs

separ at or

Using the Extract Program
Overview of the Export Function

The dat af i | e format is similar to ASA | format except
that non-numerical fields are enclosed in double
guotes. Because double quotes prevent strict column
alignment, files in dat af i | e format are not
recommended for direct printing. The dat af i | e format
is the easiest format to import into most spreadsheets
and graphics packages.

Bi nary

The bi nary format is more compact because numerical
values are represented as binary integers. It is the
most suitable format for input into user-written
analysis programs because it needs the least
conversion, and it maintains the highest metric
accuracy. It is not suitable for direct printing.

WK1 (spreadsheet)

The WK1 (spreadsheet) format is compatible with
Microsoft Excel and other spreadsheet and graphics
programs.

Specifies whether or not to include column headings for
the metrics listed in the export file. If headi ngs of f is
specified, no column headings are written to the file.
The first record in the file is exported data. If

headi ngs on is specified, ASCl | and dat af i | e formats
place the export title plus column headings for each
column of metrics written before the first data records.
Column headings in bi nar y format files contain the
description of the metrics in the file. VK1 formats
always contain column headings.

Specifies the character that is printed between each
field in ASCI | or dat af i | e formatted data. The default
separator character is a blank space. Many programs
prefer a comma as the field separator. You can specify
the separator as any printing or nonprinting character.

Chapter 5

129

Using the Extract Program

Overview of the Export Function

sumary

m ssi ng

| ayout

out put

Specifies the number of minutes for each summary
interval. The value determines how much time is
included in each record for summary records. The
default interval is 60 minutes. The summary value can
be set between 5 and 1440 minutes (1 day).

Specifies the data value to be used in place of missing
data. The default value for missing data is zero. You can
specify another value in order to differentiate missing
from zero data.

A data item may be missing if it was:

< not logged by a particular version of the scopeux
collector

= not logged by scopeux because the instance
(application, disk, transaction, netif) it belongs to
was not active during the interval, or

= in the case of DSI log files, no data was provided to
the dsi | og program during an interval, resulting in
“missing records”.

Missing records are, by default, excluded from exported
data.

Specifies either single or multiple layouts (per record
output) for multi-instance data types such as
application, disk, transaction, lvolume, or netif.

Single layout writes one record for every application
(disk, transaction, etc.) that was active during the time
interval. Multiple layout writes one record for each time
interval, with part of that record reserved for each
configured application.

Specifies where exported data is to be output. It can be
specified for each class or data type exported by placing
out put fil enane just after the line indicating the dat a
t ype that starts the list of exported data items. Any
valid file name can be specified with out put .

You can also override the default output file name by
specifying the name interactively using the out put
command.

130

Chapter 5

Using the Extract Program
Overview of the Export Function

data type Specifies one of the exportable data types: global,
application, process, disk, transaction, Ivolume, netif,
configuration, or DSI class name. This starts a section
of the export template file that lists the data items to be
copied when this type of data is exported.

itens Specifies the metrics to be included in the exported file.
Metric names are listed, one per line, in the order you
want them listed in the resulting file. You must specify
the proper dat a t ype before listing i t ens. The same
export template file can include item lists for as many
data types as you want. Each data type will be
referenced only if you choose to export that type of data.

The out put and | ayout parameters can be used more than once within
an export template file. For example:

data type gl obal
out put =nygl obal
gbl _cpu_total util

data type application
out put =nyapp
| ayout =rmul tipl e
app_cpu_total _util

You can have more than one export template file on your system. Each
one can define a set of exported file formats to suit a particular need. You
use the report command to specify the export template file to be used
with the export function.

NOTE You cannot specify different layouts within a single data type. For
example, you cannot specify dat a type di sk once with
[ayout = nultipl e and again with | ayout = si ngl e within the same
export file.

Chapter 5 131

Using the Extract Program
Overview of the Export Function

Export File Title

The following items can be substituted in the export file title string:

Idate The date the export function was performed.
I'time The time the export function was performed.
I'logfile The fully qualified name of the source log file.
Icl ass The type of data requested.

Icoll ector The name and version of the collector program.
(Not valid with DSI log files.)

Isystemid The identifier of the system that collected the
data. (Not valid with DSI log files.)

For example, the string
report "lsystemid data from!logfile on !date !tine"
generates an export file title similar to

barkl ey data from | oggl ob on 02/02/99 08: 30 AM

Creating a Custom Graph or Report

Suppose you want to create a custom graph or report containing exported
global and application data. You would do the following:

1. Determine which data items (metrics) are needed from each data
type and in what format you will access them.

For this example, you want an ASCI|I file without headings and with
fields separated by commas.

2. Create and save the following ASCII export template file in the
/var/ opt/ perf/ directory. Name the file report 1.

REPCRT "sanpl e export tenplate file (reportl)”
FORVAT ASO |
HEADI NGS CFF

DATA TYPE GLOBAL
GBL_CPU_TOTAL_UTI L
@GBL_DI SK_PHYS_| O RATE

132

Chapter 5

Using the Extract Program
Overview of the Export Function

DATA TYPE APPLI CATI ON
APP_CPU TOTAL_UTI L
APP_Di SK_PHYS_| O RATE
APP_ALI VE_PROCESSES

3. Run the ext ract program.

4. Issue the report command to specify the export template file you
created.

report /var/opt/perf/reportl

5. Specify global summary data and application summary data using
the gl obal and appl i cati on commands.

gl obal summary
appl i cation sunmary

6. Issue the export command to start the export.
expor t

7. Because you did not specify where the program should get the
performance data from, you are prompted to do so. In this example,
since the default log file is correct, just press Enter.

8. The output looks like this:

exporting global data 50%..... 100%
exporting application data 50%. 100%

The exported file contains 31 days of data from 01/01/99
to 01/31/99

exam ned exported

data type records records space
gl obal sumari es 736 0.20 M
appl i cation sumraries 2560 0.71 M

0.91 M

The two files you have just created — xf r s@.CBAL. asc and
xf r sAPPLI CATI ON asc — contain the global and application summary
data in the specified format.

Chapter 5 133

Using the Extract Program

Overview of the Export Function

Output of Exported Files

The contents of each exported file are:

export tittle If export titleandheadi ngs on were
l'ine specified.

Nanes If headi ngs on was specified along with a
(application, multiple layout file.

netif, |vol ure,
or transacti on)

Headi ng |inel If headi ngs on was specified.
Headi ng |ine2 If headi ngs on was specified.
first data record

second dat a
record

| ast data record

Report title and heading lines are not repeated in the file.

Notes on ASCII and Datafile Formats

The data in these format files is printable ASQ | format. ASCl | and

dat af i | e formats are identical except that in the latter, all non-numeric
fields are enclosed with double quotes. Even the dat af i | e header
information is enclosed with double quotes.

The ASCl | file format does not enclose fields with double quotes.
Therefore, the data in ASO | files will be properly aligned when printed.

Numerical values are formatted based on their range and internal
accuracy. Since all fields will not be the same length, be sure to specify
the separator you want to use to start each field.

The user-specified separator character (or the default blank space)
separates the individual fields in ASCl | and dat af i | e formats. Blank
spaces, used as separators, can be visually more attractive if you plan to
print the report. Other characters can be more useful as separators if you
plan to read the export template file with another program.

134

Chapter 5

NOTE

Using the Extract Program
Overview of the Export Function

Using the comma as a separator is acceptable to many applications, but
some data items may contain commas that are not separators. These
commas can confuse analysis programs. The date and time formats can
contain different special characters based on the native language
specified when you execute the extract program.

To use a nonprinting special character as a separator, enter it into your
export template file immediately following the first double quote in the
separ at or parameter.

Hints

= Most spreadsheets accept files in dat af i | e format using
separator=",".

< Many spreadsheet packages accept a maximum of 256 columns in a
single sheet. Use care when exporting multiple layout types of data
because it is easy to generate more than 256 total items. You can use
the output of the report reportfil e, showcommand to determine if
you are likely to see this problem.

= If you have a printer that supports underlining, you can create a
more attractive printout by specifying ASO | format and the vertical
bar character (separ at or =|) and then printing the file with
underlining turned on.

Notes on Binary Format

In bi nary format files, numerical values are written as 32-bit integers.
This can save space by reducing the overall file size, but your program
must be able to read bi nary files. We do not recommend copying a

bi nary format file to a printer or a terminal.

In bi nar y format, non-numerical data is written the same as it was in
the ASCI | format except separator characters are not used. To properly
use a bi nary format file, you should use the record layout report printed
by ext ract when you specify report reportfil e,show This report gives
you the starting byte for each item specified.

Chapter 5

135

Using the Extract Program
Overview of the Export Function

To maintain maximum precision and avoid nonstandard, bi nary
floating-point representations, all numerical values are written as
scaled, 32-bit integers. Some items might be multiplied by a constant
before they are truncated into integer format.

For example, the number of seconds the CPU was used is multiplied by
1000 before being truncated. To convert the value in the exported file
back to the actual number of seconds, divide it by 1000. For ease in
conversion, specify headi ngs on to write the scale factors to the
exported file. The report title and special header records are written to
bi nar y format files to assist in programmatic interpretation.

Binary integers are written in the format that is native to the system on
which the ext ract program is being run. For example, Intel systems
write “little endian” integers while HP-UX, IBM AlX, and Sun systems
write “big endian” integers. Use care when transporting binary exported
files to systems that use different “"endians”.

Binary Header Record Layout

Each record in a bi nary format exported file contains a special 16-byte
record header preceding any user-specified data. The r eport

reportfil e, showcommand includes the following four fields that make
up this record header:

Binary Record Header Metrics

Record Length Number of bytes in the record, including the
16 byte record header.

Record I D A number to identify the type of record (see
below).

Dat e_Seconds Time since January 1, 1970 (in seconds).

Nunber _of vars Number of repeating entries in this record.

The Record ID metric uniquely identifies the type of data contained in
the record. Current Record ID values are:

-1 Title Record

-2 First header Record (Cont ai ns | tem Nunber s)

-3 Second header Record (Contains Item Scal e Fact ors)

-4 Application Name Record (for Miltiple Instance Application
Fil es)

-5 Transaction Name Record (for Miltiple Instance Transaction

136

Chapter 5

Using the Extract Program
Overview of the Export Function

Fil es)

-7 Disk Device Name Record (for Multiple Instance D sk Device
Fil es)

-8 Logical Volune Nane Record (for Miultiple Instance Lvol urre
Fil es)

-9 Netif Name Record (for Miltiple Instance Netif Files)
-10 Filesystem Name Record (for Miltiple Instance Netif Files)

-11 CPU Narme Record (for Miltiple Instance Netif Files)

1 d obal Data Record
101 dobal Data Record

(mnute detail record)
(
2 Application Data Record (
(
(

5
60 minute summary record)
5 mnute detail record)
102 Application Data Record (60

3 Process Data Record 1

4 Configuration Data Record

7 Disk Device Data Record (5 minute detail record)
107 Disk Device Data Record (60 minute summary record)

8 Logical Volune Data Record (5 mnute detail record)

108 Logi cal Vol ume Data Record (60 minute summary record)

m nut e sumrary record)
mnute detail record)

9 FilesystemData Record (5 minute detail record)

109 Filesystem Data Record (60 minute summary record)
11 Netif Data Record (5 nminute detail record)
111 Netif Data Record (60 mnute summary record)
12 Transaction Data Record (5 mnute detail record)
112 Transaction Data Record (60 minute sumrary record)
13 CPU Data Record (5 mnute detail record)

113 CPU Data Record (60 minute sunmary record)

d assl D +1, 000,000 dass Data Record (5 mnute detail record)
d assl D +1, 000, 000+100 A ass Data Record (60 mi nute summary record)

The Dat e_Seconds metric is identical to the user selectable
Dat e_Seconds metric and is provided to ensure that records can be
scanned easily for desired dates and times.

The Nunber _of _var s metric indicates how many groups of repeating
fields are contained in the record. For single instance data types, this
value is zero.

For Multiple Instance application records, the Nunber _of _var s metric is
the number of applications configured. For Multiple Instance disk device
records, the Nunber of vars metric is the number of disk devices
configured. For all header records, this metric is the maximum number of
repeating groups allowed.

Chapter 5

137

Using the Extract Program
Overview of the Export Function

Bi nary format files have special formats for the title and header records.
These records contain the information needed to describe the contents of
the file so that a program can properly interpret it. If headi ngs of f is
specified, only data records will be in the file. If headi ngs on is specified,
the following records will precede all data records.

Binary Header Records

Title Record This record (Record ID -1) is written
whenever headings on, regardless of
whether the user specified a report title. It
contains information about the log file and
its source.

First Header Record The first header record (Record ID -2)
contains a list of unique item identification
numbers corresponding to the items
contained in the log file. The position of the
item ID numbers can be used to determine
the position and size of each exported item

in the file.
Second Header The second header record (Record ID -3)
Record contains a list of scale factors which

correspond to the exported items. For more
details, see the discussion of “Scale Factors”
later in this section.

Application Name This record (Record ID -4) will only be

Record present in application data files that utilize
the Multiple Layout format. It lists the
names of the applications that correspond to
the groups of application metrics in the rest

of the file.
Transacti on Nane This record (Record ID -5) will only be
Record present in transaction tracking data files

that utilize the Multiple Layout format. It
lists the names of the transactions that
correspond to the groups of transaction
metrics in the rest of the file.

138 Chapter 5

Using the Extract Program
Overview of the Export Function

Binary Header Records

D sk Device Nane This record (Record ID -7) will only be

Record present in disk device data files that utilize
the Multiple Layout format. It lists the
names of disk devices that correspond to the
groups of disk device metrics in the rest of
the file.

Logi cal Vol une Name This record (Record ID -8) will only be

Record present in logical volume data files that
utilize the Multiple Layout format. It lists
the names of logical volumes that
correspond to the groups of logical volume
metrics in the rest of the file.

Netif Nanme Record This record (Record ID -9) will only be
present in netif (LAN) data files that utilize
the Multiple Layout format. It lists the
names of netif devices that correspond to
the groups of netif device metrics in the rest

of the file.
Fi | esyst em Namre This record (Record ID -12) will only be
Record present in filesystem data files that utilize

the Multiple Layout format. It lists the
names of filesystems that correspond to the
groups of filesystem metrics in the rest of
the file.

Cpu Name Record This record (Record ID -13) will only be
present in CPU data files that utilize the
Multiple Layout format. It lists the names
of CPUs that correspond to the groups of
CPU metrics in the rest of the file.

Chapter 5 139

Using the Extract Program

Overview of the Export Function

Binary Title Record

The Title Record for Bl NARY files contains information designed to assist
programmatic interpretation of the exported file's contents. This record
will be written to the exported file whenever headi ngs on is specified.

The contents of the Binary Title Record are:

Record Length 4 byte Int Length of Title Record

Record 1D 4 byte Int -1

Dat e_Seconds 4 byte Int Date exported file was created

Nunber _of _vars 4 byte Int Maxi mum nunber of repeating
vari abl es

Si ze of Fixed Area 4 byte Int Bytes in nonvariable part of
record

Size of Variable Entry 4 byte Int Bytes in each variable entry

GMI' Time O f set 4 byte Int Seconds of fset from G eenw ch
Mean Ti ne

Daylight Savings Time 4 byte Int =1 indi cates Daylight Savings
Ti me

System | D 40 Characters, Systemldentification

Col | ector Version 16 Characters, Nanme & version of the data
col | ector

Log File Name 72 Characters, Nane of the source log file

Report Title 100 Characters, User specified report title

The Dat e_Seconds, GV Ti me O f set, and Dayl i ght Savi ngs Ti e
metrics in the Binary Title Record apply to the system and time when
the export file was created. If this is not the same system that logged the
data, these fields cannot properly reflect the data in the file.

Binary Item ldentification Record

The first header record (record ID -2) in the binary file contains the
unique item numbers for each item exported. Each Item ID is a 4-byte
integer number that can be cross referenced using the r xi t en d file
supplied with this product. The Item ID fields are aligned with the data
fields they represent in the rest of the file. All binary exported data items
will occupy a multiple of 4 bytes in the exported file and each will start
on a 4-byte boundary. If a data item requires more then 4 bytes of space,
its corresponding item ID field will be zero filled on the left.

For example, the process metric Program requires 16 bytes. Its data and
item ID records would be:

140

Chapter 5

Using the Extract Program
Overview of the Export Function

Header 1 (Itemld Record) ...| 0] 0] 0] 12012]
Process Data Record | Prog| ram | name| _aaal

Binary Scale Factor Record

The second header record (record ID -3) in the binary file contains the
scale factors for each of the exported items. Numeric items are exported
to binary files as 32-bit (4-byte) integers in order to minimize problems
with the way in which different computer architectures implement
floating point. Before being truncated to fit into the integer format, most
items are multiplied by a fixed scale factor. This allows floating point
numbers to be expressed as a fraction, using the scale factor as a
denominator.

Each scale factor is a 32-bit (4-byte) integer to match the majority of data
items. Special values for the scale factors are used to indicate
non-numeric and other special valued metrics.

Special Scale Factors

Non-numeric metrics, such as ASCI|I fields, have zero scale factors. A
negative 1 scale factor should not occur, but if it does it indicates an
internal error in the extract program and should be reported.

The DATE format is MPE CALENDAR format in the least significant 16
bits of the field (the 16 bits farthest right). The scale factor for date is
512. Scaling this as a 32-bit integer (dividing by 512) isolates the year as
the integer part of the date and the day of the year (divided by 512) as
the fractional part.

TIME is a 4-byte binary field (hour, minute, second, tenths of seconds).
The scale factor for time is 65536. Dividing it by 65536 forms a number
where the integer part is the (hour * 256) + minute.

It is easier to handle a Dat e_Seconds value in a binary file.

Application Name Record

When application data is exported in the Multiple Layout format, a
special Application Name Record is written to identify the application
groups. For binary format files, this record has record ID -4. It consists of
the binary record 16-byte header and a 20-byte application name for each
application which was defined at the starting date of the exported data.

Chapter 5

141

Using the Extract Program

Overview of the Export Function

If applications are added or deleted during the time covered in the data
extraction, the Application Name Record is repeated with the new
application names.

Transaction Name Record

When transaction data is exported in the Multiple Layout format, a
special Transaction Name Record is written to identify the
application-transaction name. For binary format files, this record has a
record ID -5. It consists of the binary record 16-byte header and a 60-byte
truncated application-transaction name for each transaction that was
configured at the starting date of the exported data. If transactions are
added during the time covered in the data extraction, the Transaction
Name Record will be repeated with the new application-transaction
name appended to the end of the original list. Transactions that are
deleted after the start of the data extraction will not be removed from the
Multiple Layout data record. For more information, see the HP
OpenView Performance Agent & GlancePlus for UNIX: Tracking Your
Transactions guide.

Disk Device Name Record

When disk device data is exported in the Multiple Layout format, a
special Disk Device Name Record is written to identify the disk device
name. For binary format files, this record has a record ID -7. It consists of
the binary record 16-byte header and a 20-byte disk device name for each
disk device that was configured at the starting date of the exported data.

If disk devices are added during the time covered in the data extraction,
the Disk Device Name Record will be repeated with the new disk device
name appended to the end of the original list. Disk devices that are
deleted after the start of the data extraction will not be removed from the
Multiple Layout data record.

Logical Volume Name Record

When logical volume data is exported in the Multiple Layout format, a
special Logical Volume Name Record is written to identify the logical
volume name. For binary format files, this record has a record ID -8. It
consists of the binary record 16-byte header and a 20-byte disk device
name for each logical volume that was configured at the starting date of
the exported data.

142

Chapter 5

Using the Extract Program
Overview of the Export Function

If logical volumes are added during the time covered in the data
extraction, the Logical Volume Name Record will be repeated with the
new logical volume name appended to the end of the original list. Logical
volumes that are deleted after the start of the data extraction will not be
removed from the Multiple Layout data record.

Netif Name Record

When netif data is exported in the Multiple Layout format, a special
Netif Name Record is written to identify the netif device name. For
binary format files, this record has a record ID -11. It consists of the
binary record 16-byte header and a 20-byte netif device name for each
netif device that was configured at the starting date of the exported data.

If netif devices are added during the time covered in the data extraction,
the Netif Name Record will be repeated with the new netif device name
appended to the end of the original list. Netif devices that are deleted
after the start of the data extraction will not be removed from the
Multiple Layout data record.

Chapter 5

143

Using the Extract Program
Overview of the Export Function

144 Chapter 5

6 Extract Commands

Chapter 6 145

Extract Commands
Introduction

NOTE

Introduction

This chapter describes the ext ract program’s commands. It includes a
table showing command syntax, a table of commands for extracting and
exporting data, and a command reference section describing the
commands in alphabetical order.

Commands and parameters for ext ract can be entered with any
combination of uppercase and lowercase letters. Only the first three
letters of the command's name are required, except for the weekdays and
weekl y commands that require you to enter the whole name. For
example, the command appl i cati on det ai | can be abbreviated as app
det .

Examples of how these commands are used can be found in online help
for the ext ract program.

The table on the following pages summarizes the syntax of the ext r act
commands and their parameters.

The ext ract function cannot produce summarized data. Summary data
can only be produced by the export function.

146

Chapter 6

Table 6-1

Extract Commands: Syntax and Parameters

Command

Parameter

application

on

detai l

sumary (export
bot h (export
of f (default)

only)
only)

cl ass

detai |l (default)
summary (export
bot h (export
of f

only)
only)

cpu

det ai |

sumary (export
bot h (export
of f (default)

only)
only)

configuration

on
det ai |
of f (default)

di sk

on
det ai |

summary (export
bot h (export
of f (default)

only)
only)

exit

expor t

day[ddd] [-days]
week [wn [-weeks]
mont h[f mmj [- mont hs]

year [yy] [-years]

extract

day[ddd] [-days]
week [wn [-weeks]
mont h[mmj [- mont hs]

year [yy] [-years]

Extract Commands
Introduction

Chapter 6

147

Extract Commands
Introduction

Table 6-1

Extract Commands: Syntax and Parameters (Continued)

Command

Parameter

filesystem

det ai |

summary (export only)
bot h (export only)
of f (default)

gl obal

on
det ai | (default)
summary (export only)
bot h (export only)
of f

gui de

hel p

list

fil ename
*

logfile

logfile

| vol une

on
det ai |

summary (export only)
bot h (export only)
of f (default)

nmenu

nont hl y

yyynm
mm

netif

on
det ai |

summary (export only)
bot h (export only)
of f (default)

out put

outputfile
, hew

, pur gebot h
, append

148

Chapter 6

Extract Commands

Introduction
Table 6-1 Extract Commands: Syntax and Parameters (Continued)
Command Parameter
pr ocess on
detail [app#[-#],...]
off (default)
killed
qui t
q
r eport [export tenplate file]
, Show
shi ft starttinme - stoptine
al |l day
noweekends
sh shel | command
!
show al |
start date[tine]
t oday[-days] [ti ne]
| ast[-days][tinme]
first[+days][tine]
stop date[tine]
t oday[- days] [ti ne]
| ast[-days][time]
first[+days][tine]
transaction on
det ai |
summary (export only)
bot h (export only)
of f (default)
weekdays 1..... 7
weekl y yywWww
VW
Chapter 6 149

Extract Commands

Introduction
Table 6-1 Extract Commands: Syntax and Parameters (Continued)
Command Parameter
yearly yyyy
yy
150 Chapter 6

Table 6-2

Extract Commands
Introduction

The following table lists the commands that are used for extracting and
exporting data and the types of log files used (scopeux log files or DSI log

files).

Extract Commands: Extracting and Exporting Data

Command | EXtract | Export | Scopeux DS
Data Data Log Files | Log Files
application X X X
cl ass X X N N
configuration X X
cpu X X X
di sk X X N
expor t X N N
ext ract X X
fil esystem X X X
gl obal X X %
logfile X X X N
[vol ure X X %
nmont hly X %
netif X N
out put X X N N
pr ocess X X N
report X N N
shi ft X N N
start X X N N
st op X X x .

Chapter 6

151

Extract Commands

Introduction
Table 6-2 Extract Commands: Extracting and Exporting Data (Continued)
Command Extract Export Scopeux DSI
Data Data Log Files Log Files
transaction X X X
weekdays X X X
weekl y X X
yearly X X
152 Chapter 6

Extract Commands
application

application

Use the appl i cati on command to specify the type of application data
that is being extracted or exported.

The default is appl i cati on of f

Syntax

[on]
[detail]

application [off]

Parameters

onordetail

sunmar y
(export only)

bot h
(export only)

of f

Specifies that raw, 5-minute detail data should be
extracted or exported.

Specifies that data should be summarized by:

= the number of minutes specified with the summary
parameter in the specified export template file
(export only)

e the default summary interval of one hour (export
or extract)

Summarization can significantly reduce the size of the
resulting extracted or exported data, depending on the
summarization interval used. For example, hourly
summary data is about one-tenth the size of 5-minute
detail data.

Specifies that detail data and summary data are to be
extracted or exported.

Specifies that no data of this type is to be extracted or
exported.

Chapter 6

153

Extract Commands

application

NOTE If you are using OV Performance Manager, detail data must be included
in an extracted file before drawing application graphs with points every
5 minutes.
Example

In this example, the appl i cati on command causes detailed application
log file data to be exported: The output export file contains the
application metrics specified in the nyr ept export template file.

logfile /var/opt/perf/datafiles/|oggl ob
gl obal off

application detail

report /var/opt/perf/nyrept

export

To perform the above task using command line arguments, enter:

extract -a -r /var/opt/perf/nyrept -xp

154 Chapter 6

Extract Commands
class

class

Use the cl ass command to specify the class of DSI data to be exported,
or scopeux data to be extracted or exported.

The defaultis cl ass detail .

Syntax
[detail]
cl ass [cl assnare] [summary]
[bot h]
[of f]
Parameters

cl assnane Name of a group similarly classified metrics.

det ai | For DSI log files, specifies how much detail data is
exported according to the time set in DSI log file. (For
more information, see the HP OpenView Performance
Agent for UNIX Data Source Integration Guide.)
For scopeux log files, specifies that raw, 5-minute
detail should be extracted or exported.

summary See “Parameters” on page 153 in the description of the
bot hof f appl i cat i on command at the beginning of this
chapter.
Examples

To export summary data in a DSI log file that contains a class named
acct g_i nf o, issue the following command:

class acctg_info summary

Once the log file is specified by the user and opened by the extract
program, the acct g_i nf o class is verified to exist in the log file and can
subsequently be exported.

Other variations of this command are:

Chapter 6

155

Extract Commands
class

CLASS ACCTG_I NFO SUMVARY
cl ass ACCTG_ | NFO sumary
class acctg_info sum

Commands can be either uppercase or lowercase. Class names are
always upshifted and then compared.

In the following example, summary data in a class named fi n_i nfo is
exported.

extract>
class fin_info sunmary
export

To perform the above task using command line arguments, enter:

extract -C fin_info summary -xp

156 Chapter 6

NOTE

Extract Commands
configuration

configuration

Use the confi gur at i on command to specify whether or not to export
system configuration information.

The default is configuration of f.

Syntax
[on]
configuration [detail]
[of f]
Parameters
on or det ai | Specifies that all configuration records should be
exported.
of f Specifies that no configuration data is to be exported.

All configuration information available in the log file is exported. Any
begin, end, shift, start, stop or noweekends commands that are
used with the confi gurati on command are ignored.

The configuration command affects only the export function. The extract
function is not affected because it always extracts system configuration
information.

Example

In this example, the confi gur ati on command causes system
configuration information to be exported. The output export file contains
the configuration metrics specified in the nyrept export template file.

logfile /var/opt/perf/datafiles/|ogglob
configuration on

report /var/opt/perf/nyrept

export

To perform the above task using command line arguments, enter:

extract -c -r /var/opt/perf/nyrept -xp

Chapter 6

157

Extract Commands
cpu

cpu

Use the cpu command to specify the summarization level of CPU.

The default is cpu of f.

Syntax

cpu

Parameters
detai |
sunmmary

bot h

of f

Example

[detail]
[summar y]
[bot h] [of
fl]

Extracts or exports 5-minute detail records.
Exports summary records.
Exports both detail and summary records.

Extracts or exports no CPU data.

In this example, the cpu command causes CPU det ai | data that was
collected starting July 26, 2001 to be exported. Because no export
template file is specified, the default export template file, reptfil e, is
used. All disk metrics are included in the output file as specified by

reptfile.

I ogfile /var/opt/perf/datafiles/l|ogglob

gl obal

cpu detail
7/ 26/ 01

start
export

To perform the above task using command line arguments, enter:
extract -u -b 7/26/01 -xp

158

Chapter 6

Extract Commands
disk

disk

Use the di sk command to specify the type of disk device data that is
being extracted or exported.

The default is di sk of f.

Syntax
[on]
[detail]
di sk [summar y]
[bot h]
[of f]
Parameters
on or det ai | See “Parameters” on page 153 in the description of
sumrary the appl i cat i on command at the beginning of this
bot hof f chapter.
Example

In this example, the di sk command causes disk det ai | data that was
collected starting July 5, 1999 to be exported. Because no export
template file is specified, the default export template file, reptfil e, is
used. All disk metrics are included in the output file as specified by
reptfile.

logfile /var/opt/perf/datafiles/|oggl ob
gl obal off

di sk detail

start 7/5/99

export

To perform the above task using command line arguments, enter:
extract -D-b 7/5/99 -xp

Chapter 6

159

Extract Commands
exit

exit
Use the exi t command to terminate the ext ract program. The exit
command is equivalent to the ext r act program’s qui t command.
Syntax

exi t

e

160 Chapter 6

Extract Commands
export

export

Use the export command to start the process of copying data into an
exported file format.

Syntax
[day [ddd] [yyddd] [-days]]
export [week [wd [yywn] [-weeks]]
[ronth [} [yym] [-nonths]]
[year [yyl [yyyyl [-years]]
Parameters

Use one of the following parameters to export data for a particular
interval.

day Represents a single day

week Represents a single week, Monday through
Sunday

nont h Represents a single month, first through last

calendar day

year Represents a single year, first through last
calendar day

If no parameters are used with the export command, the interval used
for the exported data is set by the st art and st op commands.

How to Use It

There are four ways to specify a particular interval (day, week, mont h,
year).

= Current interval - Specify the parameter only. For example, nont h
means the current month.

= Previous interval - Specify the parameter, a minus, and the number
of intervals before the current one desired. For example, day- 1 is
yesterday, week- 2 is two weeks prior to the current week.

= Absolute interval - Specify the parameter and a positive number. The
number indicates the absolute interval desired in the current year.
For example, day 2 is January 2 of the current year.

Chapter 6

161

Extract Commands

export
= Absolute interval plus year - Specify the parameter and a large
positive number. The number should consist of the last two digits of
the year and the absolute interval number in that year. In this
format the absolute day would have 5 digits (99002 means January
2, 1999) and all other parameters would have four digits (month
9904 means April of 1999).
If you have not previously specified a log file or an export template file,
the | ogfi | e command uses the default global log file | oggl ob and the
report command uses the default export template file reptfil e.
The settings or defaults for all other parameters are used. For details on
their actions, see descriptions of the appl i cati on, configurati on,
gl obal , process, disk, Ivolunme, netif, CPU filesystem
transaction, output, shift, start, and stop commands.
The export command creates up to 16 different default output files
based on the types of data and level of summarization specified.
xfr d@CBAL. ext Global detail data file
xfrs@CBAL. ext Global hourly summary data file
xf r dAPPLI CATI ON ext Application detail data file
xf r sSAPPLI CATI ON ext Application hourly summary data file
xf r dPROCESS. ext Process detail data file
xfrdDl SK. ext Disk device detail data file
xfrsDl SK ext Disk device summary data file
xf r dVOLUVE. ext Logical volume detail data file
xf r sVOLUVE. ext Logical volume summary data file
xf r dNETI F. ext Netif detail data file
xf r sNETI F. ext Netif summary data file
xf r dCPU. ext CPU detail data type
xf r sCPU. ext CPU summary data type
xf r dFl LESYSTEM ext Filesystem detail data type
xf r sFl LESYSTEM ext Filesystem summary data type
162 Chapter 6

Extract Commands
export

xf r dTRANSACTI ON ext Transaction detail data file
xf r STRANSACTI ON ext Transaction summary data file
xf r dCONFI GURATI ON. ext Configuration detail data file

where ext = asc, dat, bin,orwkl

The default file names are created from the data type name. The prefix is
either xfrd or xf rs depending if the data is detailed or summary data.
The extension is the specified asc (ASCII), bi n (binary), dat (datafile),
or wkl (spreadsheet) data format.

For example, cl assname = ACCTG | NFOwould have export file names of:

xf r dACCTG | NFO. wk1 detailed spreadsheet data for ACCT_| NFO
xfrsACCTG | NFQ asc summarized ASCII data for ACCT_| NFO

For more information about exporting data, see “Overview of the Export
Function” in Chapter 5, Using the Extract Program,.

Example

In this example, the export command causes log file data collected
yesterday from 8:00 am to 5 pm to be exported. Because no export
template file is specified, the default export template file, reptfil e, is
used. All global metrics are included in the output file as specified by
reptfile

logfile /var/opt/perf/datafiles/|ogglob
start today-1 8:00 am

stop today-1 5:00 pm

gl obal both

export

To perform the above task using command line arguments, enter:

extract -gG -b today 8:00 am-e today 5:00 pm -xp

Chapter 6 163

Extract Commands
extract

extract

Use the extract command to start the process of copying data from raw
log files into an extracted file format. Extracted files can be used for
archiving or for analysis by analyzer programs such as OV Performance
Manager. You can extract data from raw log files and from extracted
files.

The extract command cannot be used to process data from DSI log files.

Syntax
[day [ddd] [yyddd] [-days]]
extract [week [wd [yywn] [-weeks]]
[ronth [} [yym] [-nonths]]
[year [yyl [yyyyl [-years]]
Parameters

Use one of the following parameters to extract data for a particular
interval:

day Represents a single day

week Represents a single week, Monday through
Sunday

month Represents a single month, first through last

calendar day

year Represents a single year, first through last
calendar day

If no parameters are used with the ext ract command, the interval used
for data extraction is set by the st art and st op commands.

How to Use It

There are four ways to specify a particular interval (day, week, nont h,
year).

= Current interval - Specify the parameter only. For example, nont h
means the current month.

164

Chapter 6

Extract Commands
extract

= Previous interval - Specify the parameter, a minus, and the number
of intervals before the current one desired. For example, day- 1 is
yesterday, week- 2 is two weeks prior to the current week.

= Absolute interval - Specify the parameter and a positive number. The
number indicates the absolute interval desired in the current year.
For example, day 2 is January 2 of the current year.

= Absolute interval plus year - Specify the parameter and a large
positive number. The number should consist of the last two digits of
the year and the absolute interval number in that year. In this
format, the absolute day would have five digits (99002 means
January 2, 1999) and all other parameters would have four digits
(month 99904 means April of 1999).

The ext ract command starts data extraction. If not previously specified,
the | ogfi | e and out put commands assume the following defaults when
the ext ract command is executed:

log file = /var/opt/perf/datafiles/|ogglob
output file = rxl og, new

The settings or defaults for all other parameters are used. For details on
their actions, see descriptions of the appl i cati on, gl obal, process,
di sk, Ivolune, netif, CPU, filesystem transaction, shift,
start, and st op commands.

The size of an extracted log file cannot exceed 64 megabytes.
Example

In the first example, data collected from March 1, 2000 to June 30, 2000
during the hours 8:00 am to 5:00 pm on weekdays is extracted. Only
global and application detail data is extracted.

logfile /var/opt/perf/datafiles/|ogglob
start 03/01/00

stop 06/ 30/ 00

shift 8:00 am - 5:00 pm noweekends

gl obal detail

application detail

extract

To perform the above task using command line arguments, enter:

extract -ga -b 03/01/00 -e 6/30/00 -s 8:00 am- 5:00
noweekends - xt

Chapter 6

165

Extract Commands
extract

In the second example, a new extracted log file named r xj an00 is
created. Any existing file that has this name is purged. All raw log file
data collected from January 1, 2000 through January 31, 2000 is
extracted:

logfile /var/opt/perf/datafiles/|oggl ob
out put rxj an00, purge
start 01/01/00

stop 01/31/00

gl obal detail
application detail
transaction detail
process detail

di sk detail

I vol une detai l

netif detail
filesystem detail
cpu detail

extract

To perform the above task using command line arguments, enter:
extract -f rxjan00, purge -gatpdznyu -b 01/01/00 -e 01/31/00

- xt

166

Chapter 6

Extract Commands
filesystem

filesystem

Use this command to specify the summarization level of filesystem data
to extract or export.

The defaultisfil esystem of f.

Syntax
[detail]
filesystem [sumary]
[bot h]
[of f]
Parameters
det ai | Extracts or exports 5-minute detail records.
summary Exports summary records.
bot h Exports both detail and summary records.
of f Extracts or exports no filesystem data.
Example

In this example, the f i | esyst emcommand causes filesystem detail data
that was collected starting July 26, 2001 to be exported. Because no
export template file is specified, the default export template file,
reptfil e, is used. All filesystem metrics are included in the output file
as specified by reptfil e.

logfile /var/opt/perf/datafiles/|oggl ob
gl obal off

filesystem detail

start 7/26/01

export

To perform the above task using command line arguments, enter:
extract -y -b 7/26/01 -xp

Chapter 6 167

Extract Commands
global

global

Use the gl obal command to specify the amount of global data to be
extracted or exported.

The default is gl obal det ai | . (In command line mode, the default is
gl obal off.)

Syntax
[on]
[detail]
gl obal [summar y]
[bot h]
[of f]
Parameters

detail oron See “Parameters” on page 153 in the description of

sumrary the appl i cat i on command at the beginning of this
bot h chapter.
of f

How to Use It

Detail data must be extracted if you want to draw OV Performance
Manager global graphs with points every 5 minutes.

Summarized data is graphed by OV Performance Manager more quickly
since fewer data records are needed to produce a graph. If only global
summaries are extracted, OV Performance Manager global graphs
cannot be drawn with data points every 5 minutes.

The bot h option maintains the access speed gained with the hourly
summary records while permitting you to draw OV Performance
Manager global graphs with points every 5 minutes.

The of f parameter is not recommended if you are using OV Performance
Manager because you must have global data to properly understand
overall system behavior. OV Performance Manager global graphs cannot
be drawn unless the extracted file contains at least one type of global
data.

168

Chapter 6

Extract Commands
global

Example

The gl obal command is used here to specify that no global data is to be
exported (gl obal detail is the default). Only detailed transaction data
is exported. The output export file contains the transaction metrics
specified in the nyr ept export template file.

extract >
logfile /var/opt/perf/datafiles/|oggl ob
gl obal off

transacti on detail
report /var/opt/perf/nyrept
export

To perform the above task using command line arguments, enter:

extract -1 -t -r /var/opt/perf/nyrept -xp

Chapter 6 169

Extract Commands
guide

guide

Use the gui de command to enter guided commands mode. The guided
command interface leads you through various extract commands and
prompts you to perform some of the most common tasks that are
available.

Syntax
gui de
How to Use It

= To enter guided commands mode from ext r act ‘s interactive mode,
type gui de.

= To accept the default value for a parameter, press Return.
= Toterminate guided commands mode and return to interactive mode,
type g at the gui de> prompt.

This command does not provide all possible combinations of parameter
settings. It selects settings that should produce useful results for the
majority of users. You can obtain full control over ext r act ‘s functions
through ext r act ‘s interactive command mode.

NOTE If you are exporting DSI log file data, we recommend using guided
commands mode to create a customized export template file and export
the data.

170 Chapter 6

Extract Commands
help

help

Use the hel p command to access online help.
Syntax

hel p [keywor d]
How to Use It

You can enter parameters to obtain information on ext ract commands
and tasks, or on help itself. You can navigate to different topics by
entering a key word. If more than one page of information is available,
the display pauses and waits for you to press Return before continuing.
Type q or qui t to exit the help system and return to the ext r act
program.

You can also request help on a specific topic. For example,
hel p tasks

or
hel p resi ze parns

When you use this form of the hel p command, you receive the help text
for the specified topic and remain in the ext ract command entry
context. Because you do not enter the help subsystem interactively, you
do not have to type qui t before entering the next ext ract command.

Chapter 6

171

Extract Commands
list

—
list
Use the | i st command to specify the list file for all extract program
reports.
Syntax
list [file]
[*]

How to Use It
You can use | i st at any time while using ext r act to specify the list
device. It uses a file name or list device name to output the user-specified
settings. If the list file already exists, the output is appended to it.
The data that is sent to the list device is also displayed on your screen.
While ext ract is running, type:

list outfilename
To return the listing device to the user terminal, type:

list stdout
OR

list *
To determine the current list device, type the | i st command without
parameters as follows:

list
If the list file is not st dout , most commands are echoed to the list file as
they are entered.

172 Chapter 6

Extract Commands
list

Example

The following example, the list device is set to nyl i st. The results of the
next commands are printed to nyl i st and displayed on your screen.

extract >

logfile /var/opt/perf/datafiles/|oggl ob
list mylist

gl obal detail

shift 8:00 AM- 5:00 PM

extract

Chapter 6 173

Extract Commands
logfile

logfile

Use the | ogfi | e command to open a log file. You must open a log file for
all ext ract program functions. You can do this explicitly by issuing the
I ogfi | e command, or implicitly by issuing the extract command or
export command. If you do not specify a log file name, the ext r act
program prompts you for a log file name and displays the default global
log file /var/opt/perf/datafiles/| oggl ob. You can either accept the
default or specify a different log file.

Syntax
logfile [logfile]
How to Use It

To open a log file, you can specify the name of either a raw or extracted
log file. You cannot specify the name of a file created by the expor t
command. If you specify an extracted log file name, all information is
obtained from this single file. If you specify a raw log file name, you must
specify the name of the global log file before you can access the raw log
file. This is the only raw log file name you should specify.

If the log file is not in your current working directory, you must provide
its path.

The global log file and other raw log files must be in the same directory.
They have the following names:

| oggl ob global log file

| ogappl application log file
| ogpr oc process log file

| ogdev device log file

l ogtran transaction log file
| ogi ndx index log file

The general contents of the log file are displayed when the log file is
opened.

174

Chapter 6

CAUTION

Extract Commands
logfile

Do not rename raw log files! When accessing these files, the program
assumes that the standard log file names are in effect. If you must
rename log files to place log files from multiple systems on the same
system for analysis, you should first extract the data and then rename
the extracted log files.

Example

This is a typical listing of the default global log file.

G obal file: /var/opt/perf/datafiles/logglob, version D
Application file: /var/opt/perf/datafiles/| ogappl

Process file: /var/opt/perf/datafiles/|ogproc

Devi ce file: /var/opt/perf/datafiles/|ogdev

Transaction file: /var/opt/perf/datafiles/|ogdev

| ndex file: /var/opt/perf/datafiles/|ogi ndx

System I D: honer

Syst em Type 9000/ 715/ S/ N 2223334442 Q'S HP-UX B.10.20 A
Data col l ector: SCOPE/ UX C. 02.30

File Created: 10/08/99

Dat a Covers: 44 days to 11/20/99

Shift is: Al Day

Data records avail able are:
G obal Application Process Di sk Vol ume Transaction

Maxi mum fil e sizes:
d obal =10. 0 Application=10.0 Process=20.0 Devi ce=10.0
Transacti on=10.0 MB

The first GLOBAL record is on 10/08/99 at 08:17 AM
The first NETIF record is on 10/08/99 at 08:17 AM
The first APPLICATION record is on 11/17/99 at 12:15 PM
The first PROCESS record is on 10/08/99 at 08:17 AM
The first DEVI CE record is on 10/31/99 at 10:45 AM

The Transaction data file is enpty

The default starting date & time = 10/08/99 11:50 AM (LAST
-30)

The default stopping date & tine = 11/20/99 11:59 PM (LAST
-0)

Chapter 6

175

Extract Commands
Ivolume

Ivolume

Use the | vol ume command to specify the type of logical volume data that
is being extracted or exported. (This command is used only on HP-UX
systems.)

The defaultis | vol une of f.

Syntax
[on]
[detail]
| vol une [summar y]
[bot h]
[of f]
Parameters
on or det ai | See “Parameters” on page 153 in the description of
sumrary the appl i cat i on command at the beginning of this
bot h chapter.
of f
Example

In this example, a new extracted log file named r x899 is created and any
existing file that has that name is purged. All logical volume data
collected from August 1 through August 31 is extracted.

logfile /var/opt/perf/datafiles/|oggl ob
out put rx899, purge

start 08/01/99

stop 08/31/99

gl obal detail

| vol ume detai l

nont h 9908

To perform the above task using command line arguments, enter:

extract -f rx899, purge -gz -xm 9908

176

Chapter 6

Extract Commands

menu
menu
Use the menu command to print a list of the available ext r act
commands.
Syntax
menu
Example
Conmand Par anet ers Function
HELP [topic] Get information on commands and options
GUI DE Enter gui ded conmands node for novice users
LOGFI LE [l ognane] Specify a log file to be processed
LI ST [filenane|*] Specify the listing file

QUTPUT [fil ename]
[, NEW PURGE/ APPEND] Specify a destination file
REPORT [filenane] [, SHON Specify an Export Format file for
" EXPORT"
GLOBAL [DETAI L/ SUMMARY/ BOTH OFF] Extract GLOBAL records
APPL| CATI ON [DETAI L/ SUMVARY/ BOTH OFF] Extract APPLI CATI ON

records

PROCESS [DETAI L/ OFF/ KI LLED] [APP=] Extract PROCESS records

DI SK [DETAI L/ SUMVARY/ BOTH OFF] Extract DI SK DEVI CE records

LVOLUVE [DETAI L/ SUMVARY/ BOTH OFF] Extract Logical VOLUVE
records

NETI F [DETAI L/ SUMMARY/ BOTH OFF] Extract Logical NETIF
records

CPU [DETAI L/ SUMMARY/ BOTH OFF] Extract CPU records

FI LESYSTEM [DETAI L/ SUMVARY/ BOTH OFF] Extract FI LESYSTEM
records

CONFI G [DETAI L/ OFF] Export CONFI GURATI ON records

CLASS cl assnanme[DETAI L/ SUMVARY/ BOTH OFF] Export cl assnane
records

TRANSACTI ON [DETAI L/ SUMVARY/ BOTH OFF] Extract TRANSACTI ON
records

START [startdate tinme] Specify a starting date and tinme for
SCAN

STOP [stopdate time] Specify an ending date and tine for
SCAN

SHI FT [starttime - stoptinme] [NOANEEKENDS] Specify daily
shift times

SHOW [ALL] Show the current program settings

Chapter 6

177

Extract Commands
menu

EXPORT [d/wmy][-offset] Copy log file records to HOST
format files

EXTRACT [d/wny][-offset] Copy selected records to output
(or append) file

WEEKLY [ww/ yyww] Extract one cal endar week's data with
auto file names

MONTHLY [nmyymm] Extract one cal endar nonth's data with
auto file names

YEARLY [yy/yyyy]l Extract one calendar year's data with
auto file nanes

WEEKDAYS [1...7] Set days to exclude from export 1=Sunday
I or SH [comrand] Execute a system comrand

MENU or ? List the command menu (this |isting)

EXIT or Q Term nate the program

178 Chapter 6

Extract Commands
monthly

monthly

Use the nont hl y command to specify data extraction based on a calendar
month. During execution, this command sets the start and stop dates to
the proper dates, based on the month and year of the data extracted.

The name of the output file consists of the letters r xno followed by the
four digits of the year and the two-digit number of the month being
extracted. For example, data extracted in March 1999 would be output to
a file named r xmp199903.

Syntax
nont hl'y [yym]
[]
Parameters
nont hl y Extracts data from the current (default) month.
nonthly mm Extracts data for a specific month from the current

year’s data (where mmis a number from 01 to 12).

nmonthly yymm Extracts data for a specific month and year (where
yynmmis a single number consisting of the last two
digits of the year and two-digit month number).
For example, to extract data for February 1999,
specify mont hl y 9902.

If you do not specify the log file before executing the monthly command,
the default | oggl ob file is used.

How to Use It

Use the nont hl y command when you are extracting data for archiving
on a monthly basis.

The type of data extracted and summarized follows the normal rules for
the extract command and can be set before executing the nont hl y
command. These settings are honored unless a monthly output file
already exists. If it does, data is appended to it based on the type of data
that was originally specified.

Chapter 6

179

Extract Commands
monthly

NOTE

The nont hl y command has a feature that opens the previous month's
extracted file and checks to see if it is filled--whether it contains data
extracted up to the last day of the month. If not, the nont hl y command
appends data to this file to complete the previous month's extraction.

For example, a nont hl y command is executed on May 7, 1999. This
creates a log file named r xmp199905 containing data from May 1
through the current date (May 7).

On June 4, 1999, another nont hl y command is executed. Before the

r xmol199906 file is created for the current month, the r xmo199905 file
from the previous month is opened and checked. When it is found to be
incomplete, data is appended to it to complete the extraction through
May 31, 1999. Then, the r xn0199906 file is created to hold data from
June 1, 1999 to the current date (June 4).

As long as you execute the nont hl y command at least once a month, this
feature will complete each month's file before creating the next month's
file. When you see two adjacent monthly files--for example, r xmp199905
(May) and r xmp199906 (June)--you can assume that the first file is
complete for that month and it can be archived and purged.

The monthly and extract month commands are similar in that they both
extract one calendar month's data. The monthly command ignores the
setting of the output command, using instead predefined output file
names. It also attempts to append missing data to the previous month's
extracted log file if it is still present on the system. The extract month
command, on the other hand, uses the settings of the output command. It
cannot append data to the previous month's extracted file since it does
not know its name.

Example

In this example, detail application data logged during May 1999 is
extracted.

logfile /var/opt/perf/datafiles/|oggl ob
gl obal off

application detail

nont hly 9905

To perform the above task using command line arguments, enter:

extract -a -xm 9905

180

Chapter 6

Extract Commands
netif

netif

Use the net i f command to specify the type of logical network interface
(LAN) data to extract or export. Netif data is logged in the logdev file.

The defaultisnetif off.

Syntax
[on]
[detail]
netif [summar y]
[bot h]
[of f]
Parameters
on or det ai | See “Parameters” on page 153 in the description of
sumrary the appl i cat i on command at the beginning of this
bot h chapter.
of f
Example

In this example, netif detail data collected from March 1, 2000 to June
30, 2000 during the hours 8:00 am to 5:00 pm on weekdays is extracted.

logfile /var/opt/perf/datafiles/|oggl ob
start 03/01/00

stop 06/ 30/ 00

shift 8:00 AM - 5:00 PM noweekends
netif detail

extract

To perform the above task using command line arguments, enter:

extract -n -b 03/01/00 -e 6/30/00 -s 8:00 am- 5:00
noweekends - xt

Chapter 6

181

Extract Commands
output

output

Use the out put command to specify the name of an output file for the
extract or export functions.

The optional second parameter specifies the action to be taken if an
output file with the same name exists.

Syntax
[, new
out put [filenare [, purge]
] [, append]
Parameters
, hew Specifies that the output file must be a new file. This
is the default action in batch mode. If a file with the
same name exists, the batch job terminates.
, pur ge Specifies that any existing file should be purged to
make room for the new output file.
, append Specifies that an existing extracted file should have

data appended to it. If no file exists with the output
file name specified, a new file is created.

How to Use It

If you do not specify an action in batch mode, the default action, newis
used. In interactive mode, you are prompted to enter an action if a
duplicate file is found.

If you do not specify an output file, default output files are created. The
default output file names are:

For extract : rxl og
For export :

xfr dGLOBAL. ext
xfrsGLOBAL. ext

xf r dAPPLI CATI ON. ext
xfr sAPPLI CATI ON. ext
xf r dPROCESS. ext

182

Chapter 6

Extract Commands
output

xfrdDl SK. ext

xfrsDI SK. ext

xfr dLVOLUME. ext

xfr sLVOLUME. ext

xfr dNETI F. ext

xfr sNETI F. ext

xfr dCPU. ext
xfrsCPU. ext

xfr dFl LESYSTEM ext
xfrsFI LESYSTEM ext
xf r dTRANSACTI ON. ext
xf r sSTRANSACTI ON. ext
xf r dCONFI GURATI ON. ext

where ext = asc (ASCII), dat (datafile), bi n (binary), or wk1
(spreadsheet).

A special file name, st dout (or *), can be used with the export operation
to direct the output to the st dout file (normally your terminal or
workstation, although this can be redirected using shell commands).

out put st dout

or
out put *

To return the output to its default settings, type:
out put defaul t

or

out put -

Chapter 6

183

Extract Commands
output

NOTE You can override the default output file names for exported files using
the output parameter in the export template file.

You should not output extract operation files to st dout , because they are
incompatible with ASCII devices. You should also not output binary or
WK1 formats of the export operation to the st dout file for the same
reason.

Care should be taken to avoid appending extracted data to an existing
exported data file and to avoid appending exported data to an existing
extracted file. Attempts to append the wrong data type will result in an
error condition.

Example

In this example, no output file is specified so the default output file,
r xl og is used for the application summary data being extracted. The
, pur ge option specifies that any existing output file should be purged.

extract >

logfile /var/opt/perf/datafiles/|oggl ob
out put rxl og, purge

gl obal off

application sunmary

extract nmonth 9905

To perform the above task using command line arguments, enter:

extract -f rxlog, purge -A -xm 9905

184 Chapter 6

Extract Commands
process

process

Use the process
process data.

command to specify whether or not to extract or export

The default is process of f.

Syntax

process

Parameters

on

det ai |

of f

killed

appl i cation

[on]

[detail] [application=#[-#] ,...]
[of f]

[killed]

Specifies that process data should be extracted or
exported.

Specifying process detail is the same as specifying
pr ocess on.

Specifies that process data should not be extracted or
exported.

Specifies only processes that have an interest reason
that includes ki | | ed. (Processes that terminated in the
measurement interval.)

Specifies only processes that belong to selected
applications. An application can be entered as a single
number or as a range of application numbers (7-9
means applications 7, 8, and 9). The application
number is determined by the order of the application
definition in the parm file when the data was collected.
If you are specifying multiple applications, separate
each one with a comma.

Chapter 6

185

Extract Commands
process

NOTE Process data can increase the size of an extracted log file significantly. If
you plan to copy the log file to a workstation for analysis, you might want
to limit the amount of process data extracted.

Example

In this example, the process command specifies processes that
terminated during an interval and belong to applications 1, 4, 6, 7, 8, or
10. Use the util ity program’s scan command to find the application
numbers for specific applications.

process killed applications=1,4,6-8, 10

186 Chapter 6

Extract Commands
quit

quit
Use the qui t command to terminate the extract program. The quit
command is equivalent to the extract program’s exit command.
Syntax

qui t

q

Chapter 6 187

Extract Commands
report

NOTE

report

Use the report command to specify the export template file to be used
by the export function. If no export template file is specified, the default
export template file, reptfil e, is used. The export template file is used
to specify various output format attributes used in the export function. It
also specifies which metrics will be exported.

If you are in interactive mode and specify no export template file, all
metrics for the data types requested will be exported in ASCII format.

Syntax
report [exporttenplatefile] [,show
Parameters

, Show Specifies that the field positions and starting columns
should be listed for all metrics specified in the export
template file. This listing can be used when export files
are processed by other programs.

How to Use It

When you issue this command, you are prompted by a message that asks
whether or not you want to validate metrics in the export template with
the previously specified log file. Validation ensures that the metrics
specified in the export template file exist in the log file. This allows you
to check for possible errors in the export template file. If no validation is
performed, this action is deferred until you perform an export.

The , showparameter of the report command discussed here is different
from the show command discussed later.

188

Chapter 6

Extract Commands
sh

sh

Use sh to enter a shell command without exiting ext ract by typing sh
or an exclamation point(!) followed by a UNIX shell command.

Syntax

shor! [shell conmand]

Parameters

sh |s Executes the | s command and returns to extr act .
The shel | command is any system command.

I'l's Same as above.

I'ksh Starts a Korn shell. Does not return immediately to

extract. Type exit or CTRL-d Return to return to the
extract program.

How to Use It

Following the execution of the single command, you automatically return
to ext ract . If you want to issue multiple shell commands without
returning to ext ract after each one, you can start a new shell.

If you issue the sh command without the name of the shell command,
you are prompted to supply it. For example,

sh
enter SYSTEM conmmand: |s

Chapter 6 189

Extract Commands
shift

shift

Use the shi ft command to limit data extraction to certain hours of the
day corresponding to work shifts and to exclude weekends (Saturday and
Sunday).

The defaultisshift all day to extract data for all day, every day
including weekends.

Syntax

[starttime-stoptine]
shift [all day]
[noweekends]

Parameters

The starttime and stopti me parameters are entered in the same
format as the time in the st art command. Shifts that span midnight are
permitted. If startti me is scheduled after the st opt i e, the shift will
start at the start time and proceed past midnight, ending at the

st opt i me of the next day.

all day Specifies the default shift of 12:00 am - 12:00 am (or
00:00 -00:00 on a 24-hour clock).

noweekends Specifies the exclusion of data which was logged on
Saturdays and Sundays. If noweekends is entered in
conjunction with a shift that spans midnight, the
weekend will consist of those shifts that start on
Saturday or Sunday.

Example

In this example, disk detail data collected between 10:00 am and 4:00 pm
every day starting June 15, 1999 is extracted.

extract >

logfile /var/opt/perf/datafiles/|oggl ob
gl obal off

di sk detail

shift 10:00 am- 4:00 PM

start 6/15/99

extract

190

Chapter 6

Extract Commands
shift

To perform the above task using command line arguments, enter:
extract d -b 6/15/99 -s 10: 00 AM 4: 00 PM - xt

Chapter 6 191

Extract Commands
show

show

Use the showcommand to list the names of the opened files and the
status of the ext ract parameters that can be set.

Syntax
show [al |]
NOTE The showcommand discussed here is different from the , showparameter

of the report command discussed earlier.

Examples

Use showby itself to produce a list that may look like this:
Logfile: /var/opt/perf/datafiles/logglob

Qut put : Def aul t
Report: Def aul t
Li st: "stdout"

The default starting date & tine = 10/08/99 12: 00 AM (LAST - 30)
The default stopping date & tine = 11/20/99 11:59 PM (LAST -0)
The default shift = 12:00 AM- 12: 00 PM

GLOBAL DETAI L records will be processed
APPLI CATI ON. NO records will be processed
PRCCESS . NO records will be processed
DI SK DEVI CE. NOrecords wi Il be processed
LVCOLUME. NO records will be processed
TRANSACTI ON. NO records will be processed
NETI F . .NOrecords will be processed
CPU . .NOrecords will be processed
FI LESYSTEM .NOrecords will be processed

Configuration .

.NO records will be processed

192

Chapter 6

Extract Commands
show

Use show al | to produce a more detailed list that may look like this:

Logfil e: [var/opt/perf/datafil es/| oggl ob

G obal file: /var/opt/perf/datafil es/|oggl ob, version D
Application file: /var/opt/perf/datafiles/|ogappl

Process file: /var/opt/perf/datafiles/|ogproc

Devi ce file: /var/opt/perf/datafiles/|ogdev
Transaction file: /var/opt/perf/datafiles/|ogdev

| ndex file: /var/opt/perf/datafiles/|ogi ndx

System I D: honer

System Type 9000/ 715/ S/ N 2223334442 O S HP-UX B. 10.20 A
Data col | ector: SCOPE/ UX C. 02.30

File Created: 10/ 08/ 99

Dat a Covers: 44 days to 11/20/99

Shift is: Al'l Day

Data records avail able are:
A obal Application Process Di sk Vol une Transaction

Maxi mum fil e sizes:
d obal =10. 0 Application=10.0 Process=20.0 Devi ce=10.0
Transaction=10.0 MB

Qut put: Default
Report: Default
Li st: "stdout"

The default starting date & tine = 10/08/99 11:50 AM (LAST - 30)
The default stopping date & tine = 11/20/99 11:59 PMLAST - 0)
The default shift = 12:00 AM - 12: 00 PM

GOBAL. DETAIL........... records will be processed
APPLICATION. NO records will be processed
PROCESS. NO records will be processed
DISK DEVICE. NO records will be processed
LVOLUME. e NO records will be processed
TRANSACTION. NO records will be processed
NETIF. ... NO records will be exported

CPU. . . NO records will be processed
FILESYSTEM NO records will be processed
Configuration NO records will be exported

Export Report Specifications:
Interval = 3600, Separator ="
M ssing data will not be displayed
Headi ngs wi ||l be displ ayed
Date/time will be formatted
Days to exclude: None

Chapter 6

193

Extract Commands
start

start

Use the st art command to set a starting date and time for the extract
and export functions. The default starting date is the date 30 full days
before the last date in the log file, or if less than 30 days are present, the
date of the earliest record in the log file.

Syntax

start

Parameters

dat e

time

[date [tine]]

[today [-day][time]]
[last [-days][time]]
[first [+days][time]]

The date format depends on the native language that is
configured for your system. If you do not use native
languages or you have set C as the default language,
the data format is mm/dd/yy (month/day/year) such as
09/30/99 for September 30, 1999, for the extract or
export function.

The time format also depends on the native language
used. For the C language, the format is hh:mm am or
hh:mm pm (hour:minute in a 12-hour format with the
am or pm suffix). For example, 07:00 am is 7 o'clock in
the morning.

Twenty-four hour time is accepted in all languages. For
example, 23:30 would be accepted for 11:30 pm.

If the format of the date or time is unacceptable, you
are prompted with an example in the correct format.

If no start time is given, midnight (12:00 am) is
assumed. A starting time of midnight for a given day
starts at the beginning of that day (00:00 on a 24-hour
clock).

194

Chapter 6

t oday

| ast

first

How to Use It

Extract Commands
start

Specifies the current day. The qualification of the
parameter, such as t oday- days, specifies the number
of days prior to today's date. For example, t oday- 1
indicates yesterday's date and t oday- 2, the day before
yesterday.

Can be used to represent the last date contained in the
log file. The parameter | ast - days specifies the
number of days prior to the last date in the log file.

Can be used to represent the first date contained in the
log file. The parameter fi r st +days specifies the
number of days after the first date in the log file.

The following commands override the starting date set by the st art

command.

e weekly
e nonthly
e yearly

e extract (If day, week, nont h, or year parameter is used)

< export (If day, week, nont h, or year parameter is used)

Example

In this example, the st art command specifies June 5, 1999 8:00 am as
the start time of the first interval to be extracted. The out put command
specifies an output file named nyout .

logfile /var/opt/perf/datafiles/|oggl ob
start 6/5/99 8:00 am

out put nyout

gl obal detail

extract

To perform the above task using command line arguments, enter:

extract -g -b 06/05/99 8:00 AM -f nyout -xt

Chapter 6

195

Extract Commands
stop

stop

Use the st op command to terminate an extract or export function at a
specified date and time.

The default stopping date and time is the last date and time recorded in

the log file.
Syntax

start

Parameters

dat e

[date [tine]]

[today [-day][time]]
[last [-days][time]]
[first [+days][time]]

The date format depends on the native language that is
configured for your system. If you do not use native
languages or you have set C as the default language,
the data format is mm/dd/yy (month/day/year) such as
09/30/99 for September 30, 1999, for the extract or
export function.

The time format also depends on the native language
used. For the C language, the format is hh:mm am or
hh:mm pm (hour:minute in a 12-hour format with the
am or pm suffix). For example, 07:00 am is 7 o'clock in
the morning.

Twenty-four hour time is accepted in all languages. For
example, 23:30 would be accepted for 11:30 pm.

If the format of the date of time is unacceptable, you
are prompted with an example in the correct format.

If no stop time is given, one minute before midnight
(11:59 pm) is assumed. A stopping time of midnight
(12:00 am) for a given day stops at the end of that day
(23:59 on a 24-hour clock).

196

Chapter 6

t oday

| ast

first

How to Use It

Extract Commands
stop

Specifies the current day. The qualification of the
parameter, such as t oday- days, specifies the number
of days prior to today's date. For example, t oday- 1
indicates yesterday's date and t oday- 2 the day before
yesterday.

Can be used to represent the last date contained in the
log file. The parameter | ast - days specifies the
number of days prior to the last date in the log file.

Can be used to represent the first date contained in the
log file. The parameter fi r st +days specifies the
number of days after the first date in the log file.

The following commands override the stopping date set by the st op

command.

e weekly
e nonthly
e yearly

e extract (If day, week, nont h, or year parameter is used)

< export (If day, week, nont h, or year parameter is used)

Example

In this example, the st op command specifies June 5, 1999 5:00 pm as
the stopping time of the last interval to be extracted. The out put
command specifies an output file named nyout .

extract >

logfile /var/opt/perf/datafiles/|oggl ob
start 6/5/99 8:00 AM

stop 6/5/99 5:00 PM

out put nyout

gl obal detail

extract

To perform the above task using command line arguments, enter:

extract -g -b 6/5/99 8:00 AM-e 5:00 PM-f nyout -xt

Chapter 6

197

Extract Commands
transaction

transaction

Use the t ransact i on command to specify the type of transaction data
that is being extracted or exported.

Syntax
[on]
[detail]
transaction [sumary]
[bot h]
[of f]
Parameters
on or det ai | See “Parameters” on page 153 in the description of
sumrary the appl i cat i on command at the beginning of this
bot h chapter.
of f
Example

A new extracted log file called r xmay99 is created on June 1, 1999. Any
existing file that has this name is purged. All raw transaction log file
data collected from May 1, 1999 to May 31, 1999 is extracted.

extract >

logfile /var/opt/perf/datafiles/|oggl ob
out put rxmay99, purge

gl obal detail

transaction detail

nmont h 9905

To perform the above task using command line arguments, enter:

extract -gt -f rxmay99, purge -xm 9905

198

Chapter 6

Extract Commands
weekdays

weekdays

Use the weekdays command to exclude data for specific days from being
exported (day 1 = Sunday).

Syntax
weekdays [1]2..... 7]
How to Use It

If you want to export data from only certain days of the week, use this
command to exclude the days from which you do not want data. Days
have the following values:

Sunday =1
Monday =2
Tuesday =3
Wednesday =4
Thur sday =5
Fri day =6
Sat ur day =7

For example, if you want to export data that was logged only on Monday
through Thursday, exclude data from Friday, Saturday, and Sunday from
your export.

Example

In this example, any detailed global data logged on Tuesdays and
Thursdays is excluded from the export. The output export file contains
the global metrics specified in the nyr ept export template file.

extract >

logfile /var/opt/perf/datafiles/|oggl ob
gl obal detai

report nyrept

weekdays 35

export

Chapter 6

199

Extract Commands
weekly

weekly

Use the weekl y command to specify data extraction based on a calendar
week. A week is defined as seven days starting on Monday and ending on
Sunday.

During execution, this command sets the start and stop dates to the
proper dates, based on the week and year of the extracted data.

Syntax
veekl 'y [yywn
[wif
Parameters
weekl y Extracts the current week's data (the default).
weekl y ww Extracts data for a specific week from this year's data

(where wwis any number from 01 to 53).

weekl y yyww Extracts data for a specific week and year (where yyww
is a single number consisting of the last two digits of
the year and the two-digit week-of-the-year number).
For example, the 20th week of 1999 would be weekl y
9920.

If you do not specify the log file before executing the weekl y command,
the default | oggl ob file in the dat af i | es directory is used.

How to Use It

Use the weekl y command when you are extracting data for archiving on
a weekly basis.

The name of the output file consists of the letters r xwe followed by the
last two digits of the year, and the two-digit week number for the week
being extracted. For example, the 12th week of 1999 (from Monday,
March 22 to Sunday, March 29) would be output to a file named
rxwe9912.

200

Chapter 6

NOTE

Extract Commands
weekly

The type of data extracted and summarized follow the normal rules for
the ext ract command and can be set before executing the weekl y
command. These settings are honored unless a weekly output file
already exists. If it does, data is appended to it, based on the type of data
selected originally.

The weekl y command has a feature that opens the previous week's
extracted file and checks to see if it is filled--whether it contains data
extracted up to the last day of the week. If not, the weekl y command
appends data to this file to complete the previous week's extraction.

For example, a weekl y command is executed on Thursday, May 20, 1999.
This creates a log file named r xwe199920 containing data from Monday;,
May 17 through the current date (May 20).

On Wednesday, May 26, 1999, another weekl y command is executed.
Before the r xwe199921 file is created for the current week, the
rxwel199920 file from the previous week is opened and checked. When it
is found to be incomplete, data is appended to it to complete the
extraction through Sunday, May 23, 1999. Then, the r xwe199921 file is
created to hold data from Monday, May 24, 1999 to the current date (May
26).

As long as you execute the weekl y command at least once a week, this
feature will complete each week's file before creating the next week’s file.
When you see two adjacent weekly files (for example, r xwe199920 and
rxwel99921), you can assume that the first file is complete for that week,
and it can be archived and purged.

The weeks are numbered based on their starting day. Thus, the first
week of the year (week 01) is the week starting on the first Monday of
that year. Any days before that Monday belong to the last week of the
previous year. The weekly and extract week commands are similar in
that they both extract one calendar week's data. The weekly command
ignores the setting of the output command, using instead predefined
output file names. It also attempts to append missing data to the
previous week's extracted log file if it is still present on the system. The
extract week command, on the other hand, uses the settings of the
output command. It cannot append data to the previous week's extracted
file because it does not know its name. The output file is named r xwe
followed by the current year (yyyy) and week of the year (ww).

Chapter 6

201

Extract Commands
weekly

Example

In this example, the weekl y command causes the current week’s data to
be extracted and complete the previous week’s extracted file, if it is
present.

extract >

logfile /var/opt/perf/datafiles/|oggl ob
gl obal detail

application detail

process detail

weekl y

To perform the above task using command line arguments, enter:

extract -gap -xw

202 Chapter 6

Extract Commands
yearly

yearly

Use the year | y command to specify data extraction based on a calendar
year.

During execution, the command sets the start and stop dates to the
proper dates, based on the year being extracted.

Syntax
yearly [yyyy]
[yy]
Parameters
yearly Extracts the current year's data (the default).
yearlyyy Extracts a specific year's data (where yy is a number

from 00 to 99).

The specifications 00 to 27 assume the years 2000 to
2027, whereas 71 to 99 assume the years 1971 to 1999.

yearly yyyy Extracts a specific year's data (where yyyy is the
full-year numbered 1971 to 2027).

If you do not specify the log file before executing the year |y command,
the default | oggl ob file is used.

How to Use It

Use the yearl y command when you are extracting data for archiving on
a yearly basis.

The name of the output file consists of the letters r xyr followed by the
four digits of the year being extracted. Thus, data from 1999 would be
output to a file named r xyr 1999.

The type of data extracted and summarized follow the normal rules for
the ext ract command and can be set before executing the yearly
command. These settings are honored unless a yearly output file already
exists. If it does, data is appended to it, based upon the type of data
selected originally.

Chapter 6

203

Extract Commands
yearly

NOTE

The year | y command has a feature that opens the previous year's
extracted file and checks to see if it is filled--whether it contains data
extracted up to the last day of the year. If not, the year| y command
appends data to this file to complete the previous year's extraction.

For example, a year| y command was executed on December 15, 1998.
This created a log file named r xyr 1998 containing data from January 1,
1998 to the current date (December 15).

On January 5, 1999, another year | y command is executed. Before the
rxyr1999 file is created for the current year, the r xyr 1998 file from the
previous year is opened and checked. When it is found to be incomplete,
data is appended to it to complete its extraction until December 31, 1998.
Then, the rxyr 1999 file is created to hold data from January 1, 1999 to
the current date (January 5).

As long as you execute the year | y command at least once a year, this
feature will complete each year's file before creating the next year's file.
When you see two adjacent yearly files (for example, r xyr 1998 and
rxyr 1999), you can assume that the first file is complete for that year,
and it can be archived and purged.

The previous paragraph is true only if the raw log files are sized large
enough to hold one full year of data. It would be more common to size the
raw log files smaller and execute the year| y command more often (such
as once a month).

The yearly and extract year commands are similar in that they both
extract one calendar year's data. The yearly command ignores the
setting of the output command, using instead predefined output file
names. It also attempts to append missing data to the previous year's
extracted log file if it is still present on the system. The extract year
command, on the other hand, will use the settings of the output
command. It cannot append data to the previous year's extracted file
since it does not know its name.

204

Chapter 6

Extract Commands
yearly

Example

In this example, application and global detail data is appended to the
existing yearly summary file (or creates it, if necessary). The output file
is rxyryyyy (where yyyy represents the current year).

extract >

logfile /var/opt/perf/datafiles/|oggl ob
gl obal detail

application detail

process off

yearly

To perform the above task using command line arguments, enter:

extract -ga -xy

Chapter 6

205

Extract Commands
yearly

206 Chapter 6

7 Performance Alarms

Chapter 7 207

Performance Alarms
Introduction

Introduction

This chapter describes what an alarm is, the syntax used to define an
alarm, how an alarm works, and how alarms can be used to monitor
performance.

You can use OV Performance Agent to define alarms. These alarms notify
you when scopeux or DSI metrics meet or exceed conditions that you
have defined.

To define alarms, you specify conditions on each OV Performance Agent
system that when met, trigger an alert or action. You define alarms in
the OV Performance Agent alarm definitions file, al ar ndef .

As data is logged by scopeux or DSI, it is compared to the alarm
definitions to determine if a condition is met. When this occurs an alert
or action is triggered.

With the real time alarm generator you can configure where you want
alert notifications sent and whether you want local actions performed.
SNMP traps can be sent to HP OpenView Network Node Manager. Alert
notifications can be sent to OpenView Operations (OVO). Local actions
can be performed on your OV Performance Agent system.

You can analyze historical log file data against the alarm definitions and
report the results using the util ity program's anal yze command.

208

Chapter 7

Performance Alarms
Processing Alarms

Processing Alarms

As performance data is collected by OV Performance Agent, it is
compared to the alarm conditions defined in the al ar ndef file to
determine whether the conditions have been met. When a condition is
met, an alarm is generated and the actions defined for alarms (ALERTS,
PRINTSs, and/or EXECs) are performed. You can set up how you want the
alarm information communicated once an alarm is triggered. For
example, you can:

< send SNMP traps to Network Node Manager
= send messages to OVO

= execute a UNIX command on the local system. For example, to send
yourself a message

How Alarms Are Processed

When you first start up OV Performance Agent, the coda daemon looks
for each data source configured in the dat asour ces configuration file
and then starts the alarm generator. Every data source mentioned in
your alarm definitions must have a corresponding entry in the

dat asour ces file. For more information about the dat asour ces file and
starting and stopping the alarm generator, see Chapter 2 of the HP
OpenView Performance Agent Installation & Configuration Guide.

As data is collected in the log files, it is compared to the alarm definitions
in the al ar ndef file. When an alarm condition is met, the actions defined
in the alarm definition are carried out. Actions can include:

= local actions performed via UNIX commands

= messages sent to Network Node Manager or OVO

Chapter 7 209

Performance Alarms
Processing Alarms

Alarm Generator

The OV Performance Agent alarm generator handles the communication
of alarm notifications. The alarm generator consists of the alarm
generator server (per f al ar), the alarm generator database server
(agdbser ver), the alarm generator database (agdb), and the utility
program agsysdb.

The agdb contains a list of OV Performance Manager analysis nodes (if
any) to which you communicate alarm notifications and various on/off
flags that you set to define if and where you want the alarm notifications
sent. It also contains a list of SNMP trap destination. The agsysdb
program is used for displaying and changing the actions taken by alarm
events.

Use the following command line option to see a list showing where alert
notifications are being sent:

agsysdb -1

Sending SNMP Traps to Network Node Manager

To send SNMP traps to Network Node Manager, you must add your
system name to agdb in OV Performance Agent using the command:

agsysdb -add syst emarne

Every ALERT generated will cause an SNMP trap to be sent to the
system you defined. The trap text will contain the same message as the
ALERT.

To stop sending SNMP traps to a system, you must delete the system
name from agdb using the command:

agsysdb -del et e systemname

Sending Messages to OpenView Operations (OVO)

You can have alert notifications sent to OVO if there is an OVO agent on
the same system as OV Performance Agent. The OVO agent
communicates with the central OVO system.

By default, if the OVO agent is running on the OV Performance Agent
system, the alarm generator does not execute local actions that are
defined in any alarms in the EXEC statement. Instead, it sends a

210

Chapter 7

Performance Alarms
Processing Alarms

message to OVO's event browser. If the OVO agent is not running on the
QV Performance Agent system, the alarm generator does not try to send
alert notifications to OVO and local actions are executed.

You can change the default to stop sending information to OVO, even
though an OVO agent is running on the OV Performance Agent system,
using the command:

agsysdb -ovo CFF

Executing Local Actions

Without an OVO agent running on the OV Performance Agent system,
local actions in EXEC statements will be executed.

You can change the default to turn off local actions as follows:
agsysdb -actions off

If you want local actions to always execute even if the OVO agent is
running, type:

agsysdb -actions al ways

The following table lists the settings for sending information to OVO and
for executing local actions:

OVO Agent OVO Agent Not
Flags : .
Running Running
OVO Flag
of f No alert No alert
notifications sent notifications sent to
to OVO. OVO.
on Alert notifications No alert
sent to OVO. notifications sent to
OVO.
Local Actions Flag
of f No local actions No local actions
executed. executed.

Chapter 7

211

Performance Alarms
Processing Alarms

OVO Agent OVO Agent Not
Flags : .
Running Running

al ways Local actions Local actions

executed even if executed.

OVO agent is

running.
on Local actions sent Local actions

to OVO. executed.

Errors in Processing Alarms

The last error that occurred when sending an alarm is logged in agdb. To
view the contents of agdb, type:

agsysdb -1
The following information is displayed:

OVPA al armi ng status:
OVO nessages : on Last Error : <error nunber>
Exec Actions : on (See status.perfalarmfile for errors)

Anal ysi s system <hostnane>, Key=<ip address>
SNWVP . yes Last Error : <error nunber>

Analyzing Historical Data for Alarms

You can use the util ity program's anal yze command to find alarm
conditions in log file data (see Chapter 4, “Utility Commands,” on

page 77). This is different from the processing of real-time alarms
explained earlier because you are comparing historical data in the log
file to the alarm definitions in the al ar ndef file to determine what alarm
conditions would have been triggered.

Examples of Alarm Information in Historical Data

The following examples show what is reported when you analyze alarm
conditions in historical data.

For the first example, START, END, and REPEAT statements have been
defined in the alarm definition. An alarm-start event is listed every time
an alarm has met all of its conditions for the specified duration. When

212

Chapter 7

Performance Alarms
Processing Alarms

these conditions are no longer satisfied, an alarm-end event is listed. If
an alarm condition is satisfied for a period long enough to generate
another alarm without having first ended, a repeat event is listed.

Each event listed shows the date and time, alarm number, and the alarm
event. EXEC actions are not performed, but they are listed with any
requested parameter substitutions in place.

05/10/99 11:15 ALARM[1] START
CRITICAL: CPU test 99.97%

05/10/99 11:20 ALARM [1] REPEAT
WARNI NG CPU test 99.997%

05/10/99 11:25 ALARM[1] END
RESET: CPU test 22.86%
EXEC. end. scri pt

If you are using a color workstation, the following output is highlighted:
CRITICAL statements are RED
MAJOR statements are MAGENTA
MINOR statements are YELLOW
WARNING statements are CYAN
NORMAL statements are GREEN

The next example shows an alarm summary that is displayed after
alarm events are listed. The first column lists the alarm number, the
second column lists the number of times the alarm condition occurred,
and the third column lists the total duration of the alarm condition.

Per f ormance Al arm Sumary:

Alarm Count M nut es
1 574 2865
2 0 0

Anal ysi s coverage using "al arndef":
Start: 05/04/99 08:00 St op: 05/06/99 23:59
Total time analyzed: Days: 2 Hours: 15 Mnutes: 59

Chapter 7

213

Performance Alarms
Alarm Definition Components

Alarm Definition Components

An alarm occurs when one or more of the conditions you define continues
over a specified duration. The alarm definition can include an action to
be performed at the start or end of the alarm.

A condition is a comparison between two or more items. The compared
items can be metric names, constants, or variables. For example:

ALARM gbl _cpu_total _util > 95 FCR 5 M NUTES

An action can be specified to be performed when the alarm starts, ends,
or repeats. The action can be one of the following:

< an ALERT, which sends a message to OV Performance Manager or
OVO or an SNMP trap to Network Node Manager

= an EXEC, which performs a UNIX command, or

< aPRINT, which sends a message to st dout when processed using the
utility program.

For example:

ALARM gbl _swap_space_util > 95 FOR 5 M NUTES
START
RED ALERT "d obal swap space is nearly full"”
END
RESET ALERT "End of gl obal swap space full condition"

You can create more complex actions using Boolean logic, loops through
multiple-instance data such as applications, and variables. (For more
information, see the next section, “Alarm Syntax Reference”).

You can also use the INCLUDE statement to identify additional alarm
definition files you want used. For example, you may want to break up
your alarm definitions into smaller files.

214 Chapter 7

Performance Alarms
Alarm Syntax Reference

Alarm Syntax Reference

This section describes the statements that are available in the alarm
syntax. You may want to look at the al ar ndef file for examples of how
the syntax is used to create useful alarm definitions.

Alarm Syntax

ALARM condition [[AND, OR] conditi on]
FOR duration [SECONDS, M NUTES]

[TYPE="string"]

[SERVI CE="string"]

[SEVERI TY=i nt eger]

[START acti on]

[REPEAT EVERY duration [SECONDS, M NUTES] acti on]
[END acti on]

[RED, CRITICAL, ORANGE, MAJOR, YELLOW M NOR, CYAN, WARNI NG
GREEN, NORMAL, RESET] ALERT nessage

EXEC " UNl X conmand"

PRI NT nessage

| F condition
THEN action
[ELSE acti on]

{ APPLI CATI ON, PROCESS, DI SK, LVOLUME, TRANSACTI ON, NETIF, CPU,
FI LESYSTEM LOOP acti on

I NCLUDE "fil ename"

USE "data source nane"

[VAR] nanme = val ue

ALl AS nane = "repl aced- nane"

SYMPTOM variable [TYPE = {CPU, DI SK, MEMORY, NETWORK}]
RULE condition PROB probability
[RULE conditi on PROB probability]

Chapter 7 215

Performance Alarms
Alarm Syntax Reference

Conventions

= Braces ({}) indicate that one of the choices is required.
= Brackets ([]) indicate an optional item.

= Items separated by commas within brackets or braces are options.
Choose only one.

< Italics indicate a variable name that you replace.

= All syntax keywords are in uppercase.

Common Elements

The following elements are used in several statements in the alarm
syntax and are described below.

e comments

= compound statements
- conditions

= constants

= expressions

= metric names

= messages

Comments

You can precede comments either by double forward slashes (//) or the
pound sign (#). In both cases, the comment ends at the end of the line.
For example:

any text or characters
or

/1 any text or characters

216 Chapter 7

Performance Alarms
Alarm Syntax Reference

Compound Statements

Compound statements allow a list of statements to be executed as a
single statement. A compound statement is a list of statements inside
braces ({}). Use the compound statement with the IF statement, the
LOOP statement, and the START, REPEAT, and END clauses of the
ALARM statement. Compound statements cannot include ALARM and
SYMPTOM statements.

{

st at enent
st at enent

}

In the example below, hi ghest _cpu = 0 defines a variable called
hi ghest _cpu. The hi ghest _cpu value is saved and notifies you only
when that hi ghest _cpu value is exceeded by a higher hi ghest _cpu
value.
hi ghest _cpu = 0
IF gbl_cpu_total _util > highest_cpu THEN
/1 Begin conpound st atenent

{

hi ghest _cpu = gbl _cpu_total _util

ALERT "Qur new high CPU value is ", highest_cpu, "%
}

/1 End compound st at ement
Conditions

A condition is defined as a comparison between two items.

itenl {> <, >= <=, == I=}iten?
[AND, OR[itenB {> <, >=, <=, == I=}itemd]]
where "==" means "equal”, and "! =" means "not equal".

Conditions are used in the ALARM, IF, and SYMPTOM statements. An
item can be a metric name, a numeric constant, an alphanumeric string
enclosed in quotes, an alias, or a variable. When comparing
alphanumeric items, only ==or ! = can be used as operators.

Chapter 7 217

Performance Alarms
Alarm Syntax Reference

Constants

Constants can be either numeric or alphanumeric. An alphanumeric
constant must be enclosed in double quotes. For example:

345

345. 2

"Time is"
Constants are useful in expressions and conditions. For example, you
may want to compare a metric against a constant numeric value inside a
condition to generate an alarm if it is too high, such as

gbl _cpu_total util > 95
Expressions

Arithmetic expressions perform one or more arithmetic operations on
two or more operands. You can use an expression anywhere you would
use a numeric value. Legal arithmetic operators are:

+, -, *,

Parentheses can be used to control which parts of an expression are
evaluated first.

For example:

Iteration + 1
gbl _cpu_total _util - gbl_cpu_user_node_util
(100 - gbl _cpu_total _util) / 100.0

Metric Names

When you specify a metric name in an alarm definition, the current
value of the metric is substituted. Metric names must be typed exactly as
they appear in the metric definition, except for case sensitivity. Metrics
definitions can be found in the HP OpenView Performance Agent
Dictionary of Operating Systems Performance Metrics. If you are using
QV Performance Manager, choose On Metrics from the OV Performance
Manager help menu to display a list of metrics by platform.

It is recommended that you use fully-qualified metric names if the
metrics are from a data source other than the SCOPE data source (such
as DSI metrics).

The format for specifying a fully qualified metric is:

dat a_sour ce: i nst ance(cl ass): netri c_name

218

Chapter 7

NOTE

Performance Alarms
Alarm Syntax Reference

A global metric in the SCOPE data source requires no qualification. For
example:

netric_1

An application metric, which is available for each application defined in
the SCOPE data source, requires the application name. For example,

application_l:netric_1

For multi-instance data types such as appl i cati on, pr ocess, di sk,
netif,transaction,l vol une, cpu andfil esyst em you must associate
the metric with the data type name, except when using the LOOP
statement. To do this, specify the data type name followed by a colon, and
then the metric name. For example, ot her _apps: app_cpu_total _util
specifies the total CPU utilization for the application ot her _apps.

When specifying fully qualified multi-instance metrics and using aliases
within aliases, if one of the aliases has a class identifier, we recommend
you use the syntax shown in this example:

alias ny_fs="/dev/vg0l/Ilvol 1(LVOLUVE) "
alarmny_fs:LV_SPACE UTIL > 50 for 5 mnutes

If you use an application name that has an embedded space, you must
replace the space with an underscore (). For example, appl i cation 1
must be changed to appl i cati on_1. For more information on using
names that contain special characters, or names where case is
significant, see “ALIAS Statement” on page 240.

If you had a disk named “other” and an application named “other”, you
would need to specify the class as well as the instance:

other (disk):metric_ 1

A global metric in an extracted log file (where scope_ext ract is the data
source name) would be specified this way:

scope_extract:application 1l:netric_1
A DSI metric would be specified this way:

dsi _data_source: dsi_cl ass: netric_nane

Chapter 7

219

Performance Alarms
Alarm Syntax Reference

NOTE

Any metric names containing special characters (such as asterisks) must
be aliased before they are specified.

Messages

A message is the information sent by a PRINT or ALERT statement. It
can consist of any combination of quoted alphanumeric strings, numeric
constants, expressions, and variables. The elements in the message are
separated by commas. For example:

RED ALERT "cpu utilization=", gbl _cpu_total util

Numeric constants, metrics, and expressions can be formatted for width
and number of decimals. W dt h specifies how wide the field should be
formatted; deci nal s specifies how many decimal places to use. Numeric
values are right-justified. The - (minus sign) specifies left-justification.
Alphanumeric strings are always left-justified. For example:

nmetric names [|[-]w dth[|decinmal s]]

gbl _cpu_total _util]6]2 formats as ' 100. 00
(100.32 + 20)| 6 formats as ' 120
gbl _cpu_total _util|-6]0 fornats as ' 100 '
gbl _cpu_total _util|10]2 fornats as ' 99. 13"
gbl _cpu_total _util]|10|/4 formats as ' 99.1300

220

Chapter 7

Performance Alarms
Alarm Syntax Reference

ALARM Statement

The ALARM statement defines a condition or set of conditions and a
duration for the conditions to be true. Within the ALARM statement, you
can define actions to be performed when the alarm condition starts,
repeats, and ends. Conditions or events that you might want to define as
alarms include:

when global swap space has been nearly full for 5 minutes
when the memory paging rate has been too high for 1 interval

when your CPU has been running at 75 percent utilization for the
last ten minutes

Syntax

ALARM condi ti on [[AND, OR] condi ti on]
FOR dur at i on{ SECONDS, M NUTES}
[TYPE="string"]
[SERVI CE="string"]
[SEVERI TY=i nt eger]
[START acti on]
[REPEAT EVERY duration {SECONDS, M NUTES} acti on]
[END acti on]

The ALARM statement must be a top-level statement. It cannot be
nested within any other statement. However, you can include several
ALARM conditions in a single ALARM statement. If the conditions
are linked by AND, all conditions must be true to trigger the alarm.
If they are linked by OR, any one condition will trigger the alarm.

TYPE is a quoted string of up to 38 characters. If you are sending
alarms to OV Performance Manager, you can use TYPE to categorize
alarms and to specify the name of a graph template to use. OV
Performance Manager can only accept up to eight characters, so up to
eight characters are shown.

SERVI CE is a quoted string of up to 200 characters. If you are using
OV Navigator, you can link your OV Performance Agent alarms with
the services you defined in that product.

SERVI CE=" Servi ce_i d"

SEVERI TY is an integer from 0 to 32767. If you are sending alarms to
OV Performance Manager, you can use this to categorize alarms.

Chapter 7

221

Performance Alarms
Alarm Syntax Reference

START, REPEAT, and END are keywords used to specify what action
to take when alarm conditions are met, met again, or stop. You
should always have at least one of START, REPEAT, or END in an
ALARM statement. Each of these keywords is followed by an action.

action — The action most often used with an ALARM START,
REPEAT, or END is the ALERT statement. However, you can also
use the EXEC statement to mail a message or run a batch file, or a
PRINT statement if you are analyzing historical log files with the
utility program. Any syntax statement is legal except another
ALARM.

START, REPEAT, and ENDactions can be compound statements. For
example, you can use compound statements to provide both an
ALERT and an EXEC.

Conditions — A condition is defined as a comparison between two
items.

itenl {> <, >= <=, == I=}iten?
[AND, OR[itenB {> <, >= <= == I=}itend]]
where "==" means "equal”, and "! =" means "not equal"

An item can be a metric name, a numeric constant, an alphanumeric
string enclosed in quotes, an alias, or a variable. When comparing
alphanumeric items, only == or ! = can be used as operators.

You can use compound conditions by specifying the “OR” and “AND”
operator between subconditions. For example:

ALARM gbl cpu_total _util > 90 AND
gbl _pri_queue > 1 for 5 minutes

You also can use compound conditions without specifying the “OR”
and “AND” operator between subconditions. For example:

ALARM gbl _cpu_total _util > 90
gbl _cpu_sys_node_util > 50 for 5 mnutes

will cause an alarm when both conditions are true.

FOR duration SECONDS, M NUTES specifies the time period the
condition must remain true to trigger an alarm.

222

Chapter 7

Performance Alarms
Alarm Syntax Reference

Use caution when specifying durations of less than one minute,
particularly when there are multiple data sources on the system.
Performance can be seriously degraded if each data source must be
polled for data at very small intervals. The duration must be a
multiple of the longest collection interval of the metrics mentioned in
the alarm condition.

For scopeux data, the duration is five minutes; however, the
duration for process data is one minute. For DSI data, the duration is
five seconds or longer

= REPEAT EVERY durati on SECONDS, M NUTES specifies the time
period before the alarm is repeated.

How It Is Used

The alarm cycle begins on the first interval that all of the ANDed, or one
of the ORed alarm conditions have been true for at least the specified
duration. At that time, the alarm generator executes the START action,
and on each subsequent interval checks the REPEAT condition. If
enough time has transpired, the action for the REPEAT clause is
executed. (This continues until one or more of the alarm conditions
becomes false.) This completes the alarm cycle and the END statement is
executed if there is one.

In order for OV Performance Manager to be notified of the alarm, you
should use the ALERT statement within the START and END
statements. If you do not specify an END ALERT, the alarm generator
will automatically send one to OV Performance Manager and OVO and
send an SNMP trap to Network Node Manager.

Examples

The following ALARM example sends a red alert when the swap
utilization is high for 5 minutes. It is similar to an alarm condition in the
default al ar ndef file. Do not add this example to your al ar ndef file
without removing the default alarm condition, or your subsequent alert
messages may be confusing.

ALARM gbl _swap_space_util > 90 FOR 5 M NUTES
START
RED ALERT "swap utilization is very high "
REPEAT EVERY 15 M NUTES
RED ALERT "swap utilization is still very high "
END
RESET ALERT "End of swap utilization condition"

Chapter 7 223

Performance Alarms
Alarm Syntax Reference

This ALARM example tests the metric gbl _swap_space_util to see if it
is greater than 90. Depending on how you configured the alarm
generator, the ALERT can be sent to the Alarms window in OV
Performance Manager, to Network Node Manager via an SNMP trap, or
as a message to OVO. If you have OV Performance Manager configured
correctly, the RED ALERT statement places the “swap utilization
still very hi gh” message in the OV Performance Manager Alarms
window.

The REPEAT statement checks for the gbl _swap_space_ut il condition
every 15 minutes. As long as the metric remains greater than 90, the
REPEAT statement will send the message “swap utilization is
still very high”every 15 minutes.

When the gbl _swap_space_util condition goes below 90, the RESET
ALERT statement with the “End of swap utilization condition”
message is sent.

The following example defines a compound action within the ALARM
statement. This example shows you how to cause a message to be mailed
when an event occurs.

ALARM gbl _cpu_total _util > 90 FOR 5 M NUTES
START

{
RED ALERT "Your CPU is busy."

EXEC "echo 'cpu is too high'| nmailx root"

}
END

RESET ALERT "CPU no | onger busy."

The ALERT can trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO. The EXEC can trigger a mail
message to be sent as a local action on your OV Performance Agent
system, depending on how you configured your alarm generator. If you
set up OV Performance Manager to receive alarms from this system, the
RED ALERT statement places the “Your CPU i s busy” message in the
QV Performance Manager Alarms window and causes a message to be
sent.

By default, if the OVO agent is running, the local action will not execute.
Instead, it will be sent as a message to OVO.

The following two examples show the use of multiple conditions. You can
have more than one test condition in the ALARM statement. In this case,
each statement must be true for the ALERT to be sent.

224

Chapter 7

WARNING

Performance Alarms
Alarm Syntax Reference

The following ALARM example tests the metric gbl _cpu_total util
and the metric gbl _cpu_sys node_uti | . If both conditions are true, the
RED ALERT statement sends a red alert. When either test condition
becomes false, the RESET is sent.

ALARM gbl _cpu_total _util > 90

AND gbl _cpu_sys_mode_util > 50 FOR 5 M NUTES
START

RED ALERT "CPU busy and Sys Mbde CPU util is high."
END

RESET ALERT "The CPU alert is now over."

The next ALARM example tests the metric gbl _cpu_total _util and
the metric gbl _cpu_sys_node_uti | . If either condition is true, the RED
ALERT statement sends a red alert.

ALARM gbl _cpu_total _util > 90
OoR
gbl _cpu_sys_node_util > 50 FOR 10 M NUTES
START
RED ALERT "Either total CPU util or sys node CPU hi gh"

Do not use metrics that are logged at different intervals in the
same alarm. For example, you should not loop on a process
(logged at 1-minute intervals) based on the value of a global
metric (logged at 5-minute intervals) in a statement like this:

| F global _metric THEN
PROCESS LOCP. . .

The different intervals cannot be synchronized as you might
expect, so results will not be valid.

Chapter 7

225

Performance Alarms
Alarm Syntax Reference

ALERT Statement

The ALERT statement allows a message to be sent to OV Performance
Manager, Network Node Manager, or OVO. It also allows the creation
and deletion of the alarm symbols in the Network Node Manager map
associated with OV Performance Manager and controls the color of the
alarm symbols, depending on the severity of the alarm. (For more
information, see OV Performance Manager online Help.)

The ALERT statement is most often used as an action within an
ALARM. It could also be used within an IF statement to send a message
as soon as a condition is detected instead of after the duration has
passed. If an ALERT is used outside of an ALARM or IF statement, the
message will be sent at every interval.

Syntax

[RED, CRITICAL, ORANGE, MAJOR, YELLOW M NOR, CYAN,
WARNI NG GREEN, NORMAL, RESET] ALERT nessage

e RED is synonymous with CRITICAL, ORANGE is synonymous with
MAJOR, YELLOW is synonymous with MINOR, CYAN is
synonymous with WARNING, and GREEN is synonymous with
NORMAL. These keywords turn the alarm symbol to the color
associated with the alarm condition in the Network Node Manager
map associated with OV Performance Manager. They also send the
message with other information to the OV Performance Manager
Alarms window. CYAN is the default. However, if you are using
version C.00.08 or earlier of OV Performance Manager, YELLOW is
the default.

= RESET records the message in the OV Performance Manager Alarms
window and deletes the alarm symbol in the Network Node Manager
map associated with OV Performance Manager. A RESET ALERT
without a message is sent automatically when an ALARM condition
ENDs if you do not define one in the alarm definition.

= message — A combination of strings and numeric values used to
create a message. Numeric values can be formatted with the
parameters|[|[-]w dt h[| deci mal s]].W dt h specifies how wide the
field should be formatted; deci mal s specifies how many decimal
places to use. Numeric values are right-justified. The - (minus sign)
specifies left-justification. Alphanumeric strings are always
left-justified.

226

Chapter 7

Performance Alarms
Alarm Syntax Reference

How It Is Used

The ALERT can also trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO, depending on how you
configured your alarm generator. If you configured OV Performance
Manager to receive alarms from this system, the ALERT sends a
message to the OV Performance Manager Alarms window.

If an ALERT statement is used outside of an ALARM statement, the
alert message will show up in the OV Performance Manager Alarms
window but no symbol will be created in the Network Node Manager
map.

For alert messages sent to OVO, the WARNINGS will be displayed in
blue in the message browser

Example
An typical ALERT statement is:
RED ALERT "CPU utilization =", gbl _cpu_total util

If you have OV Performance Manager and Network Node Manager, this
statement creates a red alarm symbol in the Network Node Manager
map associated with OV Performance Manager and sends a message to
the OV Performance Manager Alarms window that reads:

CPU utilization = 85.6

Chapter 7

227

Performance Alarms
Alarm Syntax Reference

EXEC Statement

The EXEC statement allows you to specify a UNIX command to be
performed on the local system. For example, you could use the EXEC
statement to send mail to an IT administrator each time a certain
condition is met.

EXEC should be used within an ALARM or IF statement so the UNIX
command is performed only when specified conditions are met. If an
EXEC statement is used outside of an ALARM or IF statement, the
action will be performed at unpredictable intervals.

Syntax
EXEC "UN X conmand”

< UNI X command — a command to be performed on the local system.

Do not use embedded double quotes (") in EXEC statements. Doing so
causes per f al ar mto fail to send the alarm to OVO. Use embedded single
(') quotes instead. For example:

EXEC "echo ' perfornmance probl em detected
How It Is Used

The EXEC can trigger a local action on your local system, depending on
how you configured your alarm generator. For example, you can turn
local actions on or off. If you configured your alarm generator to send
information to OVO, local actions will not usually be performed.

Examples

In the following example, the EXEC statement performs the UNIX mai | x
command when the gbl _di sk_uti | _peak metric exceeds 20.

I F gbl _disk_util_peak > 20 THEN
EXEC "echo 'high disk utilization detected' | mailx root"

The next example shows the EXEC statement sending mail to the
system administrator when the network packet rate exceeds 1000 per
second average for 15 minutes.

228

Chapter 7

Performance Alarms
Alarm Syntax Reference

ALARM gbl _net _packet _rate > 1000 for 15 minutes
TYPE = "net busy"
SEVERI TY = 5
START

{
RED ALERT "network is busy"

EXEC "echo 'network busy condition detected' | mailx root"
}

END
RESET ALERT " NETWORK CK"

NOTE Be careful when using the EXEC statement with commands or scripts
that have high overhead if it will be performed often.

The alarm generator executes the command and waits until it completes
before continuing. We recommend that you not specify commands that
take a long time to complete.

Chapter 7 229

Performance Alarms
Alarm Syntax Reference

PRINT Statement

The PRINT statement allows you to print a message from the utility
program using its anal yze function. The alarm generator ignores the
PRINT statement.

Syntax
PR NT message

= message — A combination of strings and numeric values that create
a message. Numeric values can be formatted with the parameters
[|[-1wi dth[| deci mal s]].W dt h specifies how wide the field should
be formatted; deci mal s specifies how many decimal places to use.
Alphanumeric components of a message must be enclosed in quotes.
Numeric values are right-justified. The - (minus sign) specifies
left-justification. Alphanumeric strings are always left-justified.

Example

PRI NT "The total tinme the CPU was not idle is",
gbl _cpu_total _tine | 6|2, "seconds"

When executed, this statement prints a message such as the following:

The total tinme the CPU was not idle is 95.00 seconds

230

Chapter 7

Performance Alarms
Alarm Syntax Reference

IF Statement

Use the IF statement to define a condition using IF-THEN logic. The IF
statement should be used within the ALARM statement. However, it can
be used by itself or any place in the al ar ndef file where IF-THEN logic
is needed.

If you specify an IF statement outside of an ALARM statement, you do
not have control over how frequently it gets executed.

Syntax
I F condition THEN acti on [ELSE acti on]

< IF condition— A condition is defined as a comparison between two

items.
itenl {> <, >= <=, == I=}iten?
[AND, OR[itemB {> <, >=, <=, == I=}itemd]]
where "==" means "equal”, and "! =" means "not equal”.

An item can be a metric name, a numeric constant, an alphanumeric
string enclosed in quotes, an alias, or a variable. When comparing
alphanumeric strings, only == or ! = can be used as operators.

= action — Any action, or set a variable. (ALARM is not valid in this
case.)

How It Is Used

The IF statement tests the condition. If the condition is true, the action
after the THEN is executed. If the condition is false, the action depends
on the optional ELSE clause. If an ELSE clause has been specified, the

action following it is executed; otherwise the IF statement does nothing.

Example

In this example, a CPU bottleneck symptom is calculated and the
resulting bottleneck probability is used to define cyan or red ALERTS. If
you have OV Performance Manager configured correctly, the message
“eEnd of CPU Bottl eneck Al ert”isdisplayed in the OV Performance
Manager Alarms window along with the percentage of CPU used.

The ALERT can also trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO, depending on how you
configured your alarm generator.

Chapter 7

231

Performance Alarms
Alarm Syntax Reference

SYMPTOM CPU_Bot t | eneck > type=CPU
RULE gbl _cpu_total _util > 75 prob 25
RULE gbl _cpu_total _util > 85 prob 25
RULE gbl _cpu_total _util > 90 prob 25
RULE gbl _cpu_total _util > 4 prob 25

ALARM CPU Bottl eneck > 50 for 5 minutes
TYPE=" CPU"
START
| F CPU Bottl eneck > 90 then
RED ALERT "CPU Bottl eneck probability=",
CPU _Bott| eneck, "%
ELSE
CYAN ALERT "CPU Bottl eneck probability= ",
CPU _Bott| eneck, "%
REPEAT every 10 mi nutes
| F CPU Bottleneck > 90 then
RED ALERT "CPU Bottl eneck probability= ",
CPU _Bott| eneck, "%
ELSE
CYAN ALERT "CPU Bottl eneck probability= ",
CPU _Bot t | eneck, "%
END
RESET ALERT "End of CPU Bottleneck Alert"

WARNING Do not use metrics that are logged at different intervals in the
same statement. For instance, you should not loop on a process
(logged at 1-minute intervals) based on the value of a global
metric (logged at 5-minute intervals) in a statement like this:

| F global _metric THEN
PROCESS LOCP ...

The different intervals cannot be synchronized as you might
expect, so results will not be valid.

232 Chapter 7

APPLI CATI ON LOOP
PRI NT app_name

Performance Alarms
Alarm Syntax Reference

LOOP Statement

The LOOP statement goes through multiple-instance data types and
performs the action defined for each instance.

Syntax

{ APPLI CATI ON, PROCESS, LVOLUME, DI SK, CPU, FILESYSTEM
TRANSACTI ON, NETI F}
LOOP

action

< APPLICATION, PROCESS, LVOLUME, DISK, CPU, FILESYSTEM,
TRANSACTION, NETIF — OV Performance Agent data types that
contain multi-instance data.

e action — PRINT, EXEC, ALERT, set variables.
How It Is Used

As LOOP statements iterate through each instance of the data type,
metric values change. For instance, the following LOOP statement prints
the name of each application to st dout if you are using theutility
program's anal yze command.

A LOOP can be nested within another LOOP statement up to a
maximum of five levels.

In order for the LOOP to execute, the LOOP statement must refer to one
or more metrics of the same data type as the type defined in the LOOP
statement.

Example
You can use the LOOP statement to cycle through all active applications.

The following example shows how to determine which application has
the highest CPU at each interval. When the statement “hi ghest _cpu =
hi ghest _cpu” is executed during the first interval, hi ghest _cpu will be
initialized to 0. During subsequent intervals, hi ghest _cpu will be
initialized to the value from the previous interval.

Chapter 7

233

Performance Alarms
Alarm Syntax Reference

hi ghest _cpu = 0
APPLI CATI ON | oop
| F app_cpu_total _util > highest_cpu THEN
{
hi ghest _cpu = app_cpu_total _util
bi g_app = app_nane
ALERT "Application ", app_nanme, " has the highest cpu
util at ", highest_cpu_util|5/2, "%

}
ALARM hi ghest _cpu > 50 for 15 mnutes
START
RED ALERT big_app, " is the highest CPU user at ",

hi ghest _cpu, "%
REPEAT EVERY 15 mi nutes
CYAN ALERT big_ap, " is the highest CPU user at ",
hi ghest _cpu, "%
END
RESET ALERT "No applications using excessive cpu"

234 Chapter 7

Performance Alarms
Alarm Syntax Reference

INCLUDE Statement

Use the INCLUDE statement to include another alarm definitions file
along with the default al ar ndef file.

Syntax
I NCLUDE "f i | enane"

where fi | enane is the name of another alarm definitions file. The file
name must always be fully qualified.

How It Is Used

The INCLUDE statement could be used to separate logically distinct sets
of alarm definitions into separate files.

Example

For example, if you have some alarm definitions in a separate file for
your transaction metrics and it is named

trans_al arndef 1

You can include it by adding the following line to the alarm definitions in
your al ar mdef 1 file:

| NCLUDE "/var/opt/perf/trans_al ar ndef 1"

Chapter 7

235

Performance Alarms
Alarm Syntax Reference

NOTE

USE Statement

You can add the USE statement to simplify the use of metric names in
the al ar mdef file when data sources other than the default SCOPE data
source are referenced. This allows you to specify a metric name without
having to include the data source name.

The data source name must be defined in the dat asour ces file. The
al ar ndef file will fail its syntax check if an invalid or unavailable data
source name is encountered.

The appearance of a USE statement in the al ar ndef file does not imply
that all metric names that follow will be from the specified data source.

Syntax
USE "dat asour cenane”
How It Is Used

As the alarm generator (per f al ar n) checks the al ar ndef file for valid
syntax, it builds an ordered search list of all data sources that are
referenced in the file. per f al ar msequentially adds entries to this data
source search list as it encounters fully-qualified metric names or USE
statements. This list is subsequently used to match metric names that
are not fully qualified with the appropriate data source name. The USE
statement provides a convenient way to add data sources to perf al ar nis
search list, which then allows for shortened metric names in the

al ar ndef file. For a discussion of metric name syntax, see “Metric
Names” on page 218.

per f al ar ms default behavior for matching metric names to a data source
is to look first in the SCOPE data source for the metric name. This
implied USE " SCOPE" statement is executed when per f al ar mencounters
the first metric name in the al ar ndef file. This feature enables a default
search path to the SCOPE data source so that SCOPE metrics can be
referenced in the al ar ndef file without the need to fully qualify them.
This is shown in the following example on the next page.

236

Chapter 7

Performance Alarms
Alarm Syntax Reference

ALARM gbl _cpu_total _util > 80 FOR 10 M NUTES
START RED ALERT "CPU utilization too high"

USE " CRACLE7"

ALARM ActiveTransactions >= 95 FOR 5 M NUTES
START RED ALERT "Nearing limt of transactions for
ORACLET"

When per f al ar mchecks the syntax of the al ar mdef file containing the
above statements, it encounters the metric "gbl _cpu_total util"and
then tries to find its data source. per f al ar mdoes not yet have any data
sources in its search list of data sources, so it executes an implied USE
"SCOPE" statement and then searches the SCOPE data source to find
the metric name. A match is found and per f al ar mcontinues checking
the rest of the al ar ndef file.

When per f al ar mencounters the USE "ORACLE7" statement, it adds
the ORACLE?7 data source to the search list of data sources. When the
"ActiveTransacti ons" metric name is encountered, perfal arm
sequentially searches the list of data sources starting with the SCOPE
data source. SCOPE does not contain that metric name, so the
ORACLE?7 data source is searched next and a match is found.

If per f al ar mdoes not find a match in any data source for a metric name,
an error message is printed and per f al ar mterminates.

To change the default search behavior, a USE statement can be added to
the beginning of the al ar ndef file before any references to metric names.
This will cause the data source specified in the USE statement to be
added to the search list of data sources before the SCOPE data source.
The data source(s) in the USE statement(s) will be searched before the
SCOPE data source to find matches to the metrics names. This is shown
in the following example.

Once a data source has been referenced with a USE statement, there is
no way to change its order or to remove it from the search list.

USE " ORACLE7"

ALARM gbl _cpu_total _util > 80 FOR 10 M NUTES
START RED ALERT "CPU utilization too high"

ALARM Acti veTransacti ons >= 95 FOR 5 M NUTES
START RED ALERT "Nearing limt of
transactions for ORACLE7"

Chapter 7 237

Performance Alarms
Alarm Syntax Reference

In the example above, the order of the statements in the al ar ndef file
has changed. The USE "ORACLET7" statement is defined before any
metric names are referenced, therefore the ORACLE7Y data source is
added as the first data source in the search list of data sources. The
implied USE "SCOPE" statement is executed when perfal arm
encounters the first metric name "gbl _cpu_total util." Because the
@BL_CPU TOTAL_UTI L metric name is not fully-qualified, perf al arm
sequentially searches through the list of data sources starting with
ORACLE7. ORACLE?7 does not contain that metric name so the SCOPE
data source is searched next and a match is found.

per f al ar mcontinues checking the rest of the al ar mrdef file. When
per f al ar mencounters the “Act i veTr ansact i ons™ metric, it
sequentially searches the list of data sources starting with CRACLE7. A
match is found and per f al ar mcontinues searching the rest of the

al ar ndef file. If per f al ar mdoes not find a match in any data source for
a metric name (that is not fully-qualified), an error message will be
printed and per f al ar mterminates.

Be careful how you use the USE statement when multiple data sources
contain the same metric names. per f al ar msequentially searches the list
of data sources. If you are defining alarm conditions from different data
sources that use the same metric names, you must qualify the metric
names with their data source names to guarantee that the metric value
is retrieved from the correct data source. This is shown in the following
example where the metric names in the alarm statements each include
their data sources.

ALARM ORACLE7: Acti veTransactions >= 95 FOR 5 M NUTES
START RED ALERT "Nearing limt of transactions for
ORACLET"

ALARM FI NANCE: Acti veTransacti ons >= 95 FOR 5 M NUTES
START RED ALERT "Nearing limt of transactions for
FI NANCE"

238

Chapter 7

Performance Alarms
Alarm Syntax Reference

VAR Statement

The VAR statement allows you to define a variable and assign a value to
it.

Syntax
[VAR nane = val ue

= name — Variable names must begin with a letter and can include
letters, digits, and the underscore character. Variable names are not
case-sensitive.

= val ue — If the value is an alphanumeric string, it must be enclosed
in quotes.

How It Is Used

VAR assigns a value to the user variable. If the variable did not
previously exist, it is created.

Once defined, variables can be used anywhere in the al ar ndef file.
Examples

You can define a variable by assigning something to it. The following
example defines the numeric variable hi ghest _CPU val ue by assigning
it a value of zero.

hi ghest _CPU value = 0

The next example defines the alphanumeric variable my_name by
assigning it an empty string value.

ny_nane =

Chapter 7

239

Performance Alarms
Alarm Syntax Reference

ALIAS Statement

The ALIAS statement allows you to substitute an alias if any part of a
metric name (class, instance, or metric) has a case-sensitive name or a
name that includes special characters. These are the only circumstances
where the ALIAS statement should be used.

Syntax

ALl AS nane = "r epl aced- nane"

= name — The name must begin with a letter and can include letters,
digits, and the underscore character.

= repl aced- name — The name that must be replaced by the ALIAS
statement to make it uniquely recognizable to the alarm generator.

How It Is Used

Because of the way the al ar ndef file is processed, if any part of a metric
name (class, instance, or metric name) can be identified uniquely only by
recognizing uppercase and lowercase, you will need to create an alias.
You will also need to create an alias for any name that includes special
characters. For example, if you have applications called "BIG" and "big,"
you'll need to alias "big" to ensure that they are viewed as different
applications. You must define the alias somewhere in the al ar ndef file
before the first instance of the name you want substituted.

Examples

Because you cannot use special characters or upper and lower case in the
syntax, using the application name "AppA" and "appa" could cause errors
because the processing would be unable to distinguish between the two.
You would alias "AppA" to give it a uniquely recognizable name. For
example:

ALI AS appa_uc = "AppA"
ALERT "CPU alert for AppA util is",appa_uc:app_cpu_total _util

If you are using an alias for an instance with a class identifier, include
both the instance name and the class name in the alias. The following
example shows the alias for the instance name ‘ot her ' and the class
name 'APPLI CATI ON

ALl AS ny_app="ot her (APPLI CATI ON) "
ALERT ny_app: app_cpu_total _util > 50 for 5 mnutes

240

Chapter 7

Performance Alarms
Alarm Syntax Reference

SYMPTOM Statement

A symptom provides a way to set a single variable value based on a set of
conditions. Whenever any of the conditions is true, its probability value
is added to the value of the symptom variable.

Syntax

SYMPTOM vari abl e
RULE condition PROB probability
[RULE conditi on PROB probability]

e The keywords SYMPTOM and RULE are used exclusively in the
SYMPTOM statement and cannot be used in other syntax
statements. The SYMPTOM statement must be a top-level
statement and cannot be nested within any other statement. No
other statements can follow SYMPTOM until all its corresponding
RULE statements are finished.

= variable is a variable name that will be the name of this symptom.
Variable names defined in the SYMPTOM statement can be used in
other syntax statements, but the variable value should not be
changed in those statements.

< RULE is an option of the SYMPTOM statement and cannot be used
independently. You can use as many RULE options as needed within
the SYMPTOM statement. The SYMPTOM variable is evaluated
according to the rules at each interval.

= condition is defined as a comparison between two items.

itenl {> <, >= <=, == I=}iten
[itenB {> <, >=, <=, ==, I=}item]
where "==" means "equal” and "! =" means "not equal".

An item can be a metric name, a numeric constant, an alphanumeric
string enclosed in quotes, an alias, or a variable. When comparing
alphanumeric items, only == or ! = can be used as operators.

= probability is a numeric constant. The probabilities for each true
SYMPTOM RULE are added together to create a SYMPTOM value.

Chapter 7

241

Performance Alarms
Alarm Syntax Reference

How It Is Used

The sum of all probabilities where the condition between measurement
and value is true is the probability that the symptom is occurring.

Example
SYMPTOM CPU _Bot t | eneck

RULE gbl _cpu_total _util > 75 PROB 25

RULE gbl _cpu_total _util > 85 PROB 25

RULE gbl _cpu_total _util > 90 PROB 25

RULE gbl _run_queue > 3 PROB 50

| F CPU bottl eneck > 50 THEN

CYAN ALERT "The CPU synmptomis: ", CPU_ bottl eneck

242

Chapter 7

Performance Alarms
Alarm Definition Examples

Alarm Definition Examples

The following examples show typical uses of alarm definitions.
Example of a CPU Problem

If you have OV Performance Manager configured correctly, this example
turns the alarm symbol CYAN in the Network Node Manager map
(whenever CPU utilization exceeds 90 percent for 5 minutes and the
CPU run queue exceeds 3 for 5 minutes), and sends a message to the OV
Performance Manager Alarms window.

ALARM gbl _cpu_total _util > 90 AND
gbl _run_queue > 3 FOR 5 M NUTES

START
CYAN ALERT "CPU too high at", gbl_cpu_total util, "%
REPEAT EVERY 20 M NUTES
{
RED ALERT "CPU still to high at ", gbl_cpu_total _util, "%
EXEC "/ usr/ bi n/ pager -n 555-3456"
}
END

RESET ALERT "CPU at ", gbl cpu_total util, "%- RELAX"

The ALERT could also trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO, depending on how you
configured the alarm generator.

If both conditions continue to hold true after 20 minutes, a red alert is
generated, the alarm symbol turns red in the Network Node Manager
map, and another message is sent to the OV Performance Manager
Alarms window. A program is then run to page the system administrator.

When either one of the alarm conditions fails to be true, the alarm
symbol is deleted and a message is sent to the OV Performance Manager
Alarms window showing the global CPU utilization, the time the alert
ended, and a note to RELAX.

Example of Swap Utilization

If you have OV Performance Manager configured correctly, this example
turns the alarm symbol red in the Network Node Manager map
(whenever swap space utilization exceeds 95 percent for 5 minutes) and a
message is written to the OV Performance Manager Alarms window.

Chapter 7

243

Performance Alarms
Alarm Definition Examples

ALARM gbl _swap_space_util > 95 FOR 5 M NUTES
START
RED ALERT "GLOBAL SWAP space is nearly full
END
RESET ALERT "End of GLOBAL SWAP full condition"

The ALERT can trigger an SNMP trap to be sent to Network Node
Manager or a message to be sent to OVO, depending on how you
configured your alarm generator.

Example of Time-Based Alarms

You can specify a time interval during which alarm conditions can be
active. For example, if you are running system maintenance jobs that are
scheduled to run at regular intervals, you can specify alarm conditions
for normal operating hours and a different set of alarm conditions for
system maintenance hours.

In this example, the alarm will only be triggered during the day from
8:00AM to 5:00PM.

start_shift = "08:00"
end_shift = "17: 00"

ALARM gbl _cpu_total _util > 80
TIME > start_shift
TIME < end_shift for 10 m nutes

TYPE = "cpu"
START
CYAN ALERT "cpu too high at ", gbl_cpu_total _util, "%

REPEAT EVERY 10 mi nutes
RED ALERT"cpu still too high at ", gbl_cpu_total _util,
"o
END
IF time == end_shift then
{
I F gbl _cpu_total _util > 80 then
RESET ALERT "cpu still too high, but at the end of

shift"
ELSE
RESET ALERT "cpu back to normal”
}
ELSE

RESET ALERT "cpu back to nornal"

244 Chapter 7

Performance Alarms
Alarm Definition Examples

Example of Disk Instance Alarms

Alarms can be generated for a particular disk by identifying the specific
disk instance name and corresponding metric name.

The following example of alarm syntax generates alarms for a specific
disk instance. Aliasing is required when special characters are used in
the disk instance.

ALI AS di skname="2/0/1.5.0"
ALARM di sknane: bydsk_phys_read > 1000 for 5 minutes
TYPE="Di sk"
START
RED ALERT "Disk 2/0/1.50 red alert”
REPEAT EVERY 10 M NUTES
CYAN ALERT "Disk 2/0/1.5.0 cyan alert"
END
RESET ALERT "Disk 2/0/1.5.0 reset alert”

Chapter 7 245

Performance Alarms

Customizing Alarm Definitions

Customizing Alarm Definitions

You specify the conditions that generate alarms in the alarm definitions
file al ar ndef . When OV Performance Agent is first installed, the

al ar ndef file contains a set of default alarm definitions. You can use
these default alarm definitions or customize them to suit your needs.

You can customize your al ar ndef file as follows:

1. Revise your alarm definition(s) as necessary. You can look at
examples of the alarm definition syntax elsewhere in this chapter.

2. Save the file.
3. Validate the alarm definitions using the OV Performance Agent
utility program:
a. Typeutility
b. At the prompt, type
checkdef

This checks the alarm syntax and displays errors or warnings if
there any problems with the file.

4. In order for the new alarm definitions to take affect, type:
ovpa restart alarm

This causes the alarm generator to stop, restart, and read the
customized al ar mdef file.

You can use a unique set of alarm definitions for each OV Performance
Agent system, or you can choose to standardize monitoring of a group of
systems by using the same set of alarm definitions across the group.

The best way to learn about performance alarms is to experiment with
adding new alarm definitions or changing the default alarm definitions.

246

Chapter 7

8 Communicating Across a
Firewall

Chapter 8 247

Communicating Across a Firewall

Introduction

Introduction

OV Performance Agent (OVPA) now uses HTTP 1.1 based
communications interface for data access between client and server
applications. This interface is flexible, since it can use proxies, requires
fewer ports and is firewall friendly. This replaces the functions that were
implemented in previous versions of OVPA by the perf| bd and
rep_server daemons. These daemons, and their dependency on the DCE
subsystem can still be used by all UNIX systems except for OVPA for
Linux.

In general, a firewall may be defined as a method for filtering the flow of
data communications between one network and another. There are
different ways to configure the HTTP communication in a firewall
environment. The standard recommended way is to use HTTP proxies for
OVPA datacomm through a firewall. This simplifies the configuration by
using proxies that are often already in use in your environment. The
firewall must be open for exactly one port if proxies are to be used in both
directions.

In a typical remote communication a client, using the source port,
connects to a server that is listening on the destination port on a remote
system. For firewall configuration it is important to know which system
initiates the communication client) and which receives communication
requests server), so that the firewall rules can be set up accordingly.

Figure 8-1 shows how OVPA communicates with Reporter (version 3.0 or
later) and OV Performance Manager (OVPM version 4.0 or later)
through a firewall. OVPA is an HTTP server. Reporter and OVPM are
HTTP clients. If an HTTP proxy is used, Reporter and OVPM
communicate with OVPA via the proxy.

248

Chapter 8

Figure 8-1

HTTP
Clients

NOTE

Communicating Across a Firewall

Introduction
Communicating with OVPA in a Firewall Environment
Firewall
inside outside
Server
HTTP
Server

ov
Reporter

OVPM version 3.x uses the PerfView technology. PerfView does not use
the new datacomm components, but it will connect to OV Performance
Agent 4.0 and later for all UNIX platforms except for OVPA for Linux. In
the future, OVPM 3.x will be discontinued.

For Linux users, if you cannot upgrade OVPM 3.x to OVPM 4.0 or later,
you must access the OVPA for Linux data locally via the ext r act
program’s export function. Likewise, OVPA for Linux will not send
alarm notifications to the PerfView monitor.

Ports Used for Communication with OVPA

To access data collected by OVPA, ports for the HTTP server (OVPA) and
the HTTP client (Reporter and OVPM) need to be opened. There are two
ways to configure HTTP clients in a firewall environment: withan HTTP
proxy and without.

Chapter 8

249

Communicating Across a Firewall

Introduction

Table 8-1

With HTTP Proxy

The recommended way is to use HTTP proxies when communicating
through a firewall. This simplifies the configuration because proxies are
often in use and the firewall needs to be opened only for the proxy system
and for a smaller number of ports. It is recommended that you do not
change the default 383 port.

Default Ports for OVPA (with proxies) are shown in Table 8-1.

OVPA Default Ports

Source

Destination

Protocol

Source
Port

Destination
Port

Description

PROXY

MGD NODE

HTTP

Defined by

383

Local

the proxy Location
Broker

PROXY

MGD NODE | HTTP

Defined by 381 OVPA
the proxy

Without HTTP Proxy

If HTTP proxies are not available, additional ports need to be opened for
both source and destination ports and additional configuration settings
are required on the Reporter and OVPM system.

Overview of OVPA Communications Configuration

To configure communications with OVPA in a firewall environment,
follow these guidelines:

= Understand your firewall environment including the client and
server data flow.

= For Linux systems, if an OVO agent (version 7.0 or later) is already
running on the Linux system then check to see if communications
across a firewall to Reporter and OVPM is already configured. If it is,
then you don’t need to complete the rest of the steps documented
here. Refer to the HP OpenView Operations for UNIX Firewall White
Paper on the HP OpenView Manuals web site at

htt p: // ovweb. ext ernal . hp. coni | pe/ doc_serv

250

Chapter 8

Communicating Across a Firewall
Introduction

Select oper ati ons for hpux, version 7. x and click [Search].)
= Check the port usage in your environment.

= Configure the HTTP Server Port on the OVPA system using the
defaul t.txt communications configuration file.

= If proxies are used, configure Reporter and OVPM to know the proxy
to be used to contact OVPA.

= If proxies are not used, configure the HTTP Client port or port range
for Reporter and OVPM.

e Test the communications across the firewall.

Refer to the following sections for details on configuring communications
across firewalls:

“Configure OVPA Server Port”

“Configure Reporter and/or OVPM”

“Other Considerations”

“default.txt File and Configuration Parameters”

Communications default.txt Configuration File

Enter parameters into the def aul t . t xt file to set up the OVPA
communications configuration. For more information about the
defaul t.txt file and its parameters, see “default.txt File and
Configuration Parameters” on page 254.

e For Linux, the defaul t. t xt file is located in:
/var/ opt/ OVl conf/ BBC

= For Windows systems with Reporter and OVPM, the def aul t . t xt
file is located in:

<OvDat aDi r >/ conf / BBC
where <OvDat aDi r > is defined by the registry setting:
HKEY_LOCAL_MACH NE\ SOFTWARE\ Hewl et t - Packar d\ HP CpenVi ewh Dat aDi r

= For UNIX systems with Reporter and OVPM, refer to the Reporter
and OVPM system documentation for the location of the
defaul t.txt file.

Chapter 8 251

Communicating Across a Firewall

Introduction

Configure OVPA Server Port

If you want to override the default server port of 381 for OVPA, use the
defaul t.txt file parameter SERVER PCRT to set a different port to be
used by the HTTP server (OVPA):

1. On the OVPA system, locate the def aul t. t xt file.

2. Locate the line, SERVER PCRT = 381, and change the port number.
For example:

SERVER PCRT = 1100

3. Restart OVPA processes:
/ opt/ perf/bin/ovpa stop
/opt/ perf/bin/ovpa start
OR

/opt/ perf/bin/ovpa restart

Configure Reporter and/or OVPM

You can configure the HTTP clients (Reporter or OVPM for Windows or
UNIX) in a firewall environment in one of two ways:

e With HTTP Proxy — This is the recommended way. See the section
“Configure Reporter/OVPM with HTTP Proxy” .

e Without HTTP Proxy — This is not the recommended way. See the
section “Configure Reporter/OVPM without HTTP Proxy” .

Configure Reporter/OVPM with HTTP Proxy

When an HTTP proxy is used, Reporter and/or OVPM for Windows and
UNIX need to be configured to specify the proxy to be used to contact
OVPA. Configure Reporter/OVPM as follows:

Edit the def aul t . t xt configuration file:

In the [DEFAULT] section of the def aul t. txt file, locate the
lines that relate to the PROXY and set the PROXY parameter as
follows.

PROXY web-proxy.hp.com:8088- (localhost, *.hp.com) + (*)

252

Chapter 8

Communicating Across a Firewall
Introduction

In this example, the proxy web- proxy will be used with port 8088 for
every server (*) except requests for the local machine (localhost) and
requests internal to HP (matching *. hp. com for example www. hp. com

NOTE Any settings defined in the OpenView Operations nodei nf o
communications configuration file will take precedence over the settings
defined in the def aul t . t xt file.

Configure Reporter/OVPM without HTTP Proxy

If your firewall environment does not have proxies then you may want to
specify the HTTP client ports directly if you want to filter based on both
source and destination.

If Reporter and OVPM for Windows are installed on the same system
and both access OVPA in parallel, you would specify a port range as
described in this section. If they are running on different systems, you
can instead specify a single port for each.

Edit the def aul t . t xt file as follows:

1. Locate the lines that apply to CLI ENT_PCORT and uncomment the line
; CLI ENT_PCRT =.

2. Specify the port range for the CLI ENT_PCRT parameter. For example:
CLI ENT_PORT = <port range>

Where <port range> is the range of ports you want to use. For
example:

CLI ENT_PCRT = 14000- 14003

NOTE If OVO is installed, any settings defined in the OVO nodei nf o
communications configuration file will take precedence over the settings
defined in the def aul t . t xt file.

Chapter 8 253

Communicating Across a Firewall

Introduction

Other Considerations

About Systems with Multiple IP Addresses

If your environment includes systems with multiple network interfaces
and IP addresses and you want to use a dedicated interface for the
HTTP-based communication, then you can use the nodei nf o (or

def aul t. t xt) parameter CLI ENT_BI ND_ADDRand SERVER Bl ND_ADDR to
specify the IP address that should be used. See the “default.txt
Configuration Parameters” on page 257 for more information on these
parameters.

default.txt File and Configuration Parameters

default.txt Configuration File

Following is the def aul t . t xt file included with OVPA:

HP OpenVi ew conmuni cations configuration file: default.txt

This file is to be used to custom ze conmuni cati on paraneters
for HP OpenVi ew applications.

Al lines beginning with a ';' character are considered conments
and will be ignored. Leading spaces are allowed and i gnored for
all entries inthis file. Trailing spaces are al so ignored.

Sections are denoted using '[]' characters. All applications
loading this file will recognize the [DEFAULT] section and
sections with their application nane. Al other sections are

i gnored by the application loading this file. Application nanes
are case sensitive.

Key/ val ue pairs define configuration paraneters recogni zed by the
application. Syntax is:

KEY = val ue

The '='" sign is required. Spaces before and after the equals sign
are ignored. Keys are case sensitive.

Keys may be defined nmultiple tinmes. The |last definition read is
the one that will becone active. Previous entries are
overwritten.

254

Chapter 8

Communicating Across a Firewall
Introduction

The key name '|I NCLUDE' is reserved and has a special neaning. At
this point the value will define a new configuration file to be
read. The defined configuration file is read and then the

remai nder of the current configuration file is processed. The
file to be read takes the formof a URI, e.g. file:

/ var/ opt/ OVl conf/ BBC CODAConfi g. t xt

Protocols http:// and file:/ are currently supported.

If no protocol is specified, file:/ is assuned.

The fil ename "nodeinfo" is automatically expanded to the full
pat hname of the nodeinfo file on the local node.

[DEFAULT]

The PROXY paraneter nay be set in the DEFAULT secti on.
Defi nes which proxy and port nunber to use for a given hostnane.
Format is proxy:port +(a)-(b); proxy2:port2 +(c)-(d);

‘a', 'b'", 'c' and 'd" are comma separated lists of hostnanes,
networks, and/or |P addresses that apply to the proxy. Miltiple
proxi es may be defined for one PROXY key. '-' before the list

denotes those entities that do not use this proxy, '+ before the
list denotes entities that do use this proxy. The first matching
proxy is used.

; PROXY = web- proxy. hp. com 8088- (| ocal host, *. hp. con) +(*)

The following are exanpl es of paraneters that may be set
by a client application. These should be set in the client
speci fic section (see bel ow).

Local port nunber the client will bind to.

CLI ENT_PORT = 16000

Range of |ocal ports the client may bind to.

NOTE: Range syntax is only valid fromBBC 2.5.2.0 or
greater

; CLI ENT_PORT = 16000- 16010

Local address the client will bind to.

; CLI ENT_BI ND_ADDR = 10.10. 10. 10

The followi ng are exanpl es of paraneters that nay be set
by a server application. These should be set in the server

Chapter 8

255

Communicating Across a Firewall
Introduction

; specific section (see bel ow).

; Local port nunber the server will bind to.
; SERVER_PORT = 80

; Local address the server will bind to.

; SERVER_BI ND_ADDR = 10. 10. 10. 10

; The followi ng settings are for HP internal use only
: or are used for |ocal communication.
; These settings don't have to be changed.

[com hp. openvi ew. OvAgency. OvAgencyCommand]
SERVER_PORT = 6600

[com hp. openvi ew. OvAgency. OvPol i cyFi | eQbj ect]
SERVER_PORT = 6600

; reserved for future use - not used at all in OVON7.0

[com hp. openvi ew. bbc. FxSer ver]
SERVER_PORT = 6500

; Local Location Broker (LLB): used by all conponents

; NOTE: The LLB ' SERVER PORT' val ue nust
; be the sanme on all nodes.

[com hp. openvi ew. bbc. LLBSer ver]
SERVER_PORT = 383
: SERVER_BI ND_ADDR =

; The followi ng settings are the default settings for all HP
; conponents that use the HP OpenVi ew HTTP- based comuni cati on

; OVO enbedded performance conponent
[com hp. openvi ew. Coda]

SERVER_PORT = 381

; SERVER_BI ND_ADDR =

256 Chapter 8

Communicating Across a Firewall
Introduction

used by various clients of the enbedded performance conponent:
OVOW enbedded reporter and grapher, OV Reporter, OV Perfornance
Manager

[com hp. openvi ew. Codad i ent]
; CLI ENT_PORT =
; CLI ENT_BI ND_ADDR =

; used by service discovery agent and server conponent

[com hp. openvi ew. OvDi scover yCor e. OvDi scoveryl nst anceXM.]
SERVER_PORT = 6602

; SERVER_BI ND_ADDR =

; CLI ENT_PORT =

; CLI ENT_BI ND_ADDR =

[DEFAULT]

It's inportant to note that the follow ng statenent includes
; parameters defined in the nodeinfo file. Those parameters will
; take precedence over any paraneters defined up to this point.
I NCLUDE = nodei nfo

EOF

default.txt Configuration Parameters

The def aul t. t xt configuration parameters are listed and described in
the following sections.

PROXY
Usage: HTTP client (Reporter and/or OVPM)

Description: Sets the proxy for any OpenView HTTP clients running on
the system. Clients can be Reporter or OV Performance Manager. The
variables are comma-separated lists of hostnames, networks, and IP
addresses that apply to the proxy. Multiple proxies may be defined for
one PROXY key. A dash (-) before the list indicates that those entities do
not use this proxy, a plus (+) before the list indicates that those entities
do use this proxy. The first matching proxy is used.

Values: proxy: port +(a) — (b) ; proxy2:port2 + (c) — (d) ;

Chapter 8

257

Communicating Across a Firewall

Introduction

Default: not set
Examples:
PROXY web- pr oxy. hp. com 8088

Meaning: the proxy web- pr oxy will be used with port 8088 for every
server.

PROXY web- proxy. hp. com 8088 —(| ocal host, *.veg.com
+(*.l ettuce. veg. con

Meaning: the proxy web- proxy will be used with port 8088 for
every server except the local host and hosts that match *. veg. com
for example, waw veg. com The exception is hostnames that match
*. | ettuce. veg. com for example, for romai n. | ett uce. veg. comthe
proxy server will be used.

CLIENT_BIND_ADDR(app_name)
Usage: HTTP client (Reporter and/or OVPM)

Description: Sets the IP address for the specified application’s
OpenView HTTP client. Valid application name is
com hp. openvi ew. Codad i ent .

Values: <I P_addr ess>
Default: not set
Example:

[com hp. openvi ew. Codad i ent]
CLI ENT_BI ND_ADDR = 10. 10. 10. 10

CLIENT_PORT (app_name)
Usage: HTTP client (Reporter and/or OVPM)

Description: Sets the port number or a range of ports for the specified
application’s OpenView HTTP client. Valid application name is
com hp. openvi ew. Codad i ent .

Values: <port _range>
Default: not set
Example:

[com hp. openvi ew. Codad i ent]
CLI ENT_PORT = 14000- 14003

258

Chapter 8

Communicating Across a Firewall
Introduction

SERVER_BIND_ADDR(app_name)
Usage: HTTP server (OVPA)

Description: Sets the IP address for the specified application’s OpenView
HTTP server. Valid application name is com hp. openvi ew. Coda.

Values: <IP_address>
Default: not set
Example:

[com hp. openvi ew. Coda]
SERVER Bl ND_ADDR = 10. 10. 10. 10

SERVER_PORT(app_name)
Usage: HTTP server (OVPA)

Description: Sets the port number or a range of ports for the specified
application’s OpenView HTTP server. Valid application name is
com hp. openvi ew. Coda.

Values: <port _nunber >
Default:

[com hp. openvi ew. bbc. LLBSer ver]
SERVER PORT = 381

[com hp. openvi ew. bbc. LLBSer ver]
SERVER PORT = 383

Example:

[com hp. openvi ew. Coda]
SERVER _PORT = 1100

Chapter 8

259

Communicating Across a Firewall
Introduction

260 Chapter 8

A Appendix

Chapter A 261

Appendix
Viewing MPE Log Files

Viewing MPE Log Files

MPE log file data collected by the scopeXL collector can be viewed with
OV Performance Manager. Before viewing the data, you must first
extract it and then load the log files as a local data source on your OV
Performance Manager system.

To view your MPE log file data using OV Performance Manager, follow
these steps:

1.
2.

Login to your HP 3000 system as MANAGER SYS, SCCPE.

Run the Performance Collection Software (for MPE Systems)
extract program, EXTRACT. SCCPE. SYS.

. Extract the scopeXL log file data that you want to view. (For more

information about extracting log file data, see the HP Performance
Collection Software User's Manual (for MPE Systems) or online Help
for the ext r act program.)

. Using binary mode, ft p the extracted log file to a system where OV

Performance Agent and OV Performance Manager are running.

. Login to your OV Performance Manager system (if you have not

already done so0). Make sure that you have the system name and path
to the file that you just downloaded from your MPE system. You
cannot access the data through NFS.

. Run OV Performance Manager.

. Add the extracted MPE log file data as a local data source. (For more

information, see “Add a Local Data Source” in OV Performance
Manager's online Help.)

. View the data.

262

Chapter A

Table 8-2

Appendix
Viewing and Printing Documents

Viewing and Printing Documents

OV Performance Agent software includes the standard OV Performance
Agent documentation set in viewable and printable file formats. You can
view the Adobe Acrobat format (*.pdf) documents online and print as
needed. The ASCII text (*.t xt) documents are printable. However, you
can view a text file on your screen using any UNIX text editor such as vi .

The documents are listed in the following table along with their file
names and online locations.

OV Performance Agent Documentation Set

Document Filename Location

HP OpenView instal | . pdf / opt / per f/ paper docs/ ovpa/ T
Performance Agent
Installation &
Configuration Guide

HP OpenView users. pdf / opt / per f / paper docs/ ovpa/ T
Performance Agent for
UNIX User's Manual

HP OpenView dsi . pdf / opt / per f / paper docs/ ovpa/ T
Performance Agent for
UNIX Data Source
Integration Guide

HP OpenView tyt. pdf / opt/ per f/ paper docs/ arnm
Performance Agent for
UNIX & GlancePlus
Tracking Your
Transactions

Application Response ar mapi . pdf / opt / per f/ paper docs/ armi C/
Measurement (ARM)

API Guide

OV Performance net <pl at f or n». t xt / opt / per f / paper docs/ ovpa/
Agent Metrics nmet <pl at f or n». ht m

Definitions for a
UNIX platform

Chapter A

263

Appendix

Viewing and Printing Documents

Table 8-2 OV Performance Agent Documentation Set (Continued)
Document Filename Location
OVPA metrics list by nettabl e. txt / opt / per f / paper docs/ ovpa/
Data Class for all
operating systems
Viewing Documents on the Web
The listed . pdf and . ht mdocuments can be viewed on the HP OpenView
Manuals web site at:
htt p: // ovweb. ext ernal . hp. coni | pe/ doc_serv
Select per f or mance agent for <pl atforn» from the product list box,
select the release version and click [Sear ch] .
Adobe Acrobat Files
The Adobe Acrobat files were created with Acrobat 4.0 and are viewed
with the Adobe Acrobat Reader versions 4.0 and higher. If the Acrobat
Reader is not in your Web browser, you can download it from Adobe’s web
site:
ht t p: / / www. adobe. com
While viewing a document in the Acrobat Reader, you can print a single
page, a group of pages, or the entire document.
From Linux, you can read a . pdf file by entering:
acroread fil enane. pdf
264 Chapter A

Glossary

alarm An indication of a period of time in
which performance meets or exceeds
user-specified alarm criteria. Alarm
information can be sent to an OV
Performance Manager analysis system and
to HP OpenView Network Node Manager
and OV Operations (OVO). Alarms can also
be identified in historical log file data.

alarm generator The service that handles
the communication of alarm notification. It
consists of per f al ar m(alarm generator
server), agdbser ver (alarm generator
database server) and agdb (alarm generator
database) that is managed by agdbser ver .
The agsysdb program uses a command line
interface for displaying and changing the
actions taken by alarm events.

alarmdef file An OV Performance Agent
text file containing the alarm definitions in
which alarm conditions are specified.

application A user-defined group of related
processes or program files. Applications are
defined so that performance software can
collect performance metrics for and report on
the combined activities of the processes and
programs.

application log file See logappl.

coda daemon A daemon that provides
collected data to the alarm generator and
analysis product data sources including
scopeux log files or DSI log files. coda reads
the data from the dat asour ces
configuration file.

data source A data source consists of one or
more classes of data in a single scopeux or
DSI log file set. For example, the default OV
Performance Agent data source, is a scopeux
log file set consisting of global data. See
also datasources file.

datasources file A configuration file
residing in the var/ opt / OV/ conf / per f/
directory. Each entry in the file represents a
scopeux or DSI data source consisting of a
single log file set. See also coda and data
source.

data source integration (DSI) The
technology that enables OV Performance
Agent to receive, log, and detect alarms on
data from external sources such as
applications, databases, networks, and other
operating systems.

data type A particular category of data
collected by a data collection process.
Single-instance data types, such as global,
contain a single set of metrics that appear
only once in any data source.
Multiple-instance data types, such as
application, disk, and transaction, may have
many occurrences in a single data source,
with the same set of metrics collected for
each occurrence of the data type.

default.txt Acommunications configuration
file used to customize communication
parameters for HP OpenView applications.

device A device is an input and/or output
device connected to a system. Common
devices include disk drives, tape drives,
printers, and user terminals.

device log file See logdev.

Glossary

265

Glossary
DSl

DSI See data source integration.

dsilog The OV Performance Agent process
that logs self-describing data received from
st di n.

DSI log files Log files, created by the

dsi | og process, that contain self-describing
data collected outside of OV Performance
Agent. See also dsilog.

empty space The difference between the
maximum size of a log file and its current
size.

extract An OV Performance Agent program
that allows you to extract (copy) data from
raw or previously extracted log files,
summarize it, and write it to extracted log
files. It also lets you export data for use by
analysis programs.

extracted log file An OV Performance
Agent log file containing a user-defined
subset of data extracted (copied) from a raw
or previously extracted log file. Extracted log
files are also used for archiving performance
data. See also rxlog.

global A qualifier that implies the whole
system. Thus, “global metrics” are metrics
that describe the activities and states of each
system. Similarly, application metrics
describe application activity; process metrics
describe process activity.

global log file See logglob.

interesting process A process becomes
interesting when it is first created, when it
ends, and when it exceeds user-defined
thresholds for CPU use, disk use, response
time, and other resources.

logappl The raw log file that contains
summary measurements of the processes in
each user-defined application.

logdev The raw log file that contains
measurements of individual device (such as
disk) performance.

logglob The raw log file that contains
measurements of the system-wide, or global,
workload.

logindx The raw log file that contains
additional information required for
accessing data in the other log files.

logproc The raw log file that contains
measurements of selected interesting
processes. See also interesting process.

logtran The raw log file that contains
measurements of transaction data.

ovpa script The OV Performance Agent
script that has options for starting, stopping
and restarting OV Performance Agent
processes such as data collection, alarms,
and repository servers. See also the ovpa
man page.

OV Performance Manager OV
Performance Manager provides integrated
performance management for multi-vendor
distributed networks. It uses a single

266

Glossary

workstation to monitor environment
performance on networks that range in size
from tens to thousands of nodes.

parm file An OV Performance Agent file
that contains the collection parameters used
by scopeux to customize data collection.

performance alarms See alarms

process Execution of a program file. It can
represent an interactive user (processes
running at normal, nice, or real-time
priorities) or an operating system process.

process log file See logproc.

process resource manager (PRM)

Stand-alone resource management tool
developed by Hewlett-Packard that is used
to control the amount of resources that
processes use during a peak system load.
PRM can guarantee both a minimum and,
depending on the resource, a maximum
amount of resources available to a group of
processes.

PRM See process resource manager.

raw log file A file containing summarized
measurements of system data. The scopeux
data collector collects and logs data into raw
log files. See also logglob, logappl, logproc,
logdev, logtran, and logindx.

real time The actual time in which an event
takes place.

repeat time An action that can be specified
for performance alarms. Repeat time
designates the amount of time that must

Glossary
transaction tracking

pass before an activated and continuing
alarm condition triggers another alarm
signal.

resize Changing the overall size of a raw log
file using the util ity program'sresi ze
command.

roll back Deleting one or more days worth
of data from a log file, oldest data deleted
first. Roll backs are performed when a raw
log file exceeds its maximum size parameter.

RUN file The file created by the scopeux
collector to indicate that the collection
process is running. Removing the RUNfile
causes scopeux to terminate.

rxlog The default output file created when
data is extracted from raw log files.

scopeux The OV Performance Agent
collector program that collects performance
data and writes (logs) this raw measurement
data to raw log files for later analysis or
archiving.

scopeux log files The six log files that are
created by the scopeux collector: | oggl ob,
| ogappl , | ogpr oc, | ogdev, | ogt ran, and

| ogi ndx.

status.scope The file created by the
scopeux collector to record status, data
inconsistencies, or errors.

transaction tracking The OV Performance
Agent capability that allows information
technology (IT) resource managers to
measure end-to-end response time of

Glossary

267

Glossary
utility

business application transactions. To collect
transaction data, OV Performance Agent
must have a process running that is
instrumented with the Application Response
Measurement (ARM) API.

utility An OV Performance Agent program
that lets you open, scan, and generate
reports on raw and extracted log files. You
can also use it to resize raw log files, check
par mfile syntax, check the al ar ndef file
syntax, and obtain alarm information from
historical log file data.

268

Glossary

A

accessing help
extract program, 171
utility program, 87
agdb, 210
agdb database, 210
agdbserver, 210
agsysdb, 210
alarm conditions in historical log file data,
81, 212
alarm definitions, 208
application metrics, 218
components, 214
customizing, 246
examples, 243
file, 81, 208
metric names, 218
syntax checking, 83
alarm generator, 208, 210
alarm processing errors, 212
ALARM statement, alarm syntax, 221
alarm syntax, 215
ALARM statement, 221
ALERT statement, 226
ALIAS statement, 240
comments, 216
common elements, 216
compound statements, 217
conditions, 217, 222, 231
constants, 218
conventions, 216
EXEC statement, 228
expressions, 218
IF statement, 231
INCLUDE statement, 235
LOOP statement, 233
messages, 220
metric names, 218
PRINT statement, 230
reference, 215
SYMPTOM statement, 241
USE statement, 236
VAR statement, 239
variables, 239
alarmdef file, 81, 83, 208, 209, 236, 246
alarms, 208

Index

local actions, 211
processing, 209
sending messages to OVO, 210
alert notifications, 208
ALERT statement, alarm syntax, 226
ALIAS statement, alarm syntax, 240
analyze command, utility program, 81, 212
analyzing
historical log file data, 81, 212
log files, 81, 212
application command, extract program, 153
application definition parameters, parm file,
42
application LOOP statement, alarm syntax,
233
application metrics, in alarm definitions, 218
application name parameter, parm file, 43
application name record, 141
Application Response Measurement (ARM),
39
archiving log file data, 54, 179, 200, 203
archiving processes, managing, 54
ASCII format, export file, 128
ASCII record format, 134

B

binary format, export file, 129
binary header record layout, 136
binary record format, 135

C

checkdef command, utility program, 83
class command, extract program, 155
client, firewall, 248
CLIENT_BIND_ADDR(app_name)
parameter, 258

CLIENT_PORT(app_name) parameter, 258
coda daemon, 26, 209
collection parameters, 26, 36
command abbreviations

extract, 146

utility, 78
command line arguments

extract program, 117

utility program, 63
command line interface

extract program, 114, 117

utility program, 59, 63

Index

commands

extract program, 146

perfstat, 33

utility program, 78
comments, using in alarm syntax, 216
compound actions in ALARM statement, 224
compound statements in alarm syntax, 217
conditions

alarm syntax, 217, 231

in alarm syntax, 222
configuration command, extract program,

157

constants, in alarm syntax, 218
controlling disk space used by log files, 51
conventions

typographical, 15
conventions, alarm syntax, 216
cpu command, extract program, 158
cpu option, 40
creating custom graphs or reports, 132
customized export template files, 126

D

daemons
coda, 209
data collection, 25, 32
management, 32, 51
stopping, 49
data source integration (DSI), 23, 26
data sources, 26, 209, 236
data type parameter, export template file,
131
data types, 124
datafile format, export file, 129
datafile record format, 134
datasources configuration file, 27
datasources file, 27, 209
default values,parm file, 34
default.txt configuration file
location, 251
parameters, 257
printout, 254
detail command, utility program, 84
disk command, extract program, 159
disk device name record, 142
disk option, 40
disk space used by log files, controlling, 51
documentation, viewing and printing, 263

DSI log files, 26, 151, 164, 170

E

errors, alarm processing, 212
EXEC statement, alarm syntax, 228
executing local actions, 211
exit command, extract program, 160
exit command, utility program, 85
export command, extract program, 124, 161
export data types, 124
export default output files, 162
export file

title, 132
export function

data files, 126

export template file syntax, 128

export template files, 125

overview, 124

process, 124

sample tasks, 125

using, 132
export template file

data type, 131

export file title, 132

format, 128

headings, 129

items, 131

layout, 130

missing, 130

output, 130

parameters, 128

report, 128

separator, 129

summary, 130

syntax, 128
exporting DSI log file data, 170
exporting log file data, 161
expressions, in alarm syntax, 218
extract command, extract program, 164
extract commands

application, 153

class, 155

configuration, 157

cpu, 158

disk, 159

exit, 160

export, 124, 161

extract, 164
filesystem, 167
global, 168
guide, 170
help, 171
list, 172
Ivolume, 176
menu, 177
monthly, 179
output, 182
process, 185
quit, 187
report, 188
sh, 189
shift, 190
show, 192
start, 194
stop, 196
weekdays, 199
weekly, 200
yearly, 203
extract program, 26, 112
command line arguments, 117
command line interface, 117
commands, 146
interactive versus batch, 114
running, 114
extracting log file data, 164

F

file parameter, parm file, 44
files
alarm definitions, 81, 208
alarmdef, 81, 83, 208, 209, 246
datasources, 27, 209
default.txt, 251
default.txt configuration file, 251, 254, 257
export template, 125
logappl, 33, 38
logdev, 33, 38, 39
logglob, 33, 37
logindx, 33
logproc, 33, 38
logtran, 33, 39
parm, 26, 36
reptall, 125, 126
reptfile, 125, 188
repthist, 126
status.scope, 33

Index

filesystem command, extract program, 167
firewall
client, 248
communicatiing across, 248
communicating across, 248
configure OVPA server port, 252
configure Reporter/OVPM with HTTP
proxy, 252
configure Reporter/OVPM without HTTP
proxy, 253
default ports for communication with
OVPA, 250
default.txt file printout, 254
default.txt location, 251
overview of OVPA communications
configuration, 250
server, 248
systems with multiple IP addresses, 254
format parameter
export template file, 128

G

GlancePlus, 28
global command, extract program, 168
group parameter, parm file, 45
guide command, extract program, 170
guide command, utility program, 86
guided mode

extract, 170

utility, 86

H

headings parameter, export template file, 129
help command, extract command, 171
help command, utility program, 87
HTTP
client, 249
clients, 249
proxies, 248

ID parameter

parm file, 37
IF statement, alarm syntax, 231
INCLUDE statement, alarm syntax, 235
interactive mode

extract program, 116

utility program, 61
interesting processes, 38, 52

Index

items parameter, export template file, 131

L

layout parameter, export template file, 130
list command, extract program, 172
list command, utility program, 88
local actions
alarms, 228
executing, 211
log file data
analyzing for alarm conditions, 212
archiving, 179, 200, 203
exporting, 161
extracting, 164
log files
archiving data, 54
controlling disk space, 51
DSI, 26, 151, 164
MPE, 262
resizing, 95
rolling back, 51, 53
scanning, 101
scopeux, 151
setting maximum size, 41, 52
log parameter, parm file, 37
logappl file, 33, 38
PRM groups, 38
logdev file, 33, 38, 39
logfile command, utility program, 90
logglob file, 33, 37, 203
logical volume name record, 142
logindx file, 33
logproc file, 33, 38
logtran file, 33, 39
LOOP statement, alarm syntax, 233
Ivolume command, extract program, 176

M

maintenance time, parm file, 42
mainttime parameter, parm file, 42, 51
managing data collection, 32
memory option, 40
menu command
extract program, 177
utility program, 92
messages in alarm syntax, 220
metric names in alarm syntax, 218, 240

missing parameter, export template file, 130
modifying

collection parameters, 34

parm file, 34
monthly command, extract program, 179
MPE log files, viewing, 262

N

netif name record, 143
nokilled option, 40

O

OpenView Operations (OVO), 208, 210
or parameter, parm file, 46
output command, extract program, 182
output parameter, export template file, 130
OV Network Node Manager, 208, 210
OV Operations, 28
OV Performance Agent
components, 24
data collection, 25
description, 23
extract program, 26, 112
utility program, 26, 58
OV Performance Manager, 23, 28
OV Reporter, 28
ovpa script, 49, 50
OVPM
configure with HTTP proxy for firewall
communication, 252
configure without HTTP proxy for firewall
communication, 253

P

parameter
subprocinterval, 41

parameters, 36
CLIENT_BIND_ADDR(app_name), 258
CLIENT_PORT(app_name), 258
PROXY, 257
SERVER_BIND_ADDR(app_name), 259
SERVER_PORT(app_name), 259

parm file, 26, 36
application definition parameters, 42
default values, 34
modifying, 34

parameters, 36, 37

subprocinterval parameter, 41

syntax check, 93
parm file parameters

application name, 43

file, 44

group, 45

ID, 37

log, 37

mainttime, 42, 51

or, 46

priority, 47

scopeprocinterval, 41

scopetransactions, 41

size, 41

threshold, 39

user, 45
parmfile command, utility program, 93
perfalarm, 210, 236, 237
performance alarms, 208
perfstat command, 33
PRINT statement, alarm syntax, 230
printing documentation, 263
priority parameter, parm file, 47
PRM application logging mode, 42
PRM groups

APP_NAME_PRM_GROUPNAME, 38
process command, extract program, 185
processing alarms, 209
proxies, HTTP, 248
PROXY parameter, 257

Q

quit command
extract program, 187
utility program, 94

R

raw log files
managing space, 95
names, 90
record formats
ASCII, 134
binary, 135
datafile, 134
report command, extract program, 188

report parameter, export template file, 128

Reporter
configure with HTTP proxy for firewall
communication, 252, 253

Index

reptall file, 125, 126
reptfile file, 125, 188
repthist file, 126
resize command
default resizing parameters, 97
reports, 98
utility program, 61, 95
resizing
log files, 95
tasks, 53
rolling back log files, 53
running
extract program, 114
utility program, 59

S

scan command, utility program, 101
scanning a log file, 101
SCOPE default data source, 27, 218, 236, 237
scopeprocinterval parameter, parm file, 41
scopetransactions parameter, parm file, 41
scopeux, 25, 33

log files, 26, 151

stopping, 49
sending alarm messages, 210, 226
sending SNMP traps, 208, 210
separator parameter, export template file,

129
server, firewall, 248
SERVER_BIND_ADDR(app_name)
parameter, 259

SERVER_PORT(app_name) parameter, 259
setting maximum size of log files, 52
sh command

extract program, 189

utility program, 103
shift command, extract program, 190
shortlived option, 41
show command

extract program, 192

utility program, 104
size parameter, parm file, 41

SNMP
nodes, 210
service, 209

traps, 208, 210

start command
extract program, 194
parameters, 106
utility program, 106

status.scope file, 33

Index

stop command
extract program, 196
parameters, 108
utility program, 108
stopping
data collection, 49
scopeux, 49
summary parameter, export template file,
130
SYMPTOM statement, alarm syntax, 241

T

terminating

extract program, 160, 187

utility command, 94

utility program, 85
threshold parameter, parm file, 39

cpu option, 40

disk option, 40

memory option, 40

nokilled option, 40

nonew option, 40

shortlived option, 41
transaction name record, 142
transaction tracking, 27

U

USE statement, alarm syntax, 236
user parameter, parm file, 45
utility commands

analyze, 81, 212

checkdef, 83

detail, 84

exit, 85

guide, 86

help, 87

list, 88

logfile, 90

menu, 92

parmfile, 93

quit, 94

resize, 61, 95

scan, 101

sh, 103

show, 104

start, 106

stop, 108

utility program, 26, 58, 78, 212
batch mode, 59
batch mode example, 61
command line arguments, 63
command line interface, 59, 63
entering shell commands, 103
interactive mode, 61
interactive program example, 61
interactive versus batch, 59
running, 59

utility scan report
application overall summary, 73
application-specific summary report, 70
collector coverage summary, 73
initial parm file application definitions, 68
initial parm file global information, 68
log file contents summary, 74
log file empty space summary, 75
parm file application addition/deletion

notifications, 69

parm file global change notifications, 69
process log reason summary, 71
scan start and stop, 72
scopeux off-time notifications, 70

\Y

VAR statement, alarm syntax, 239
variables, alarm syntax, 239
viewing

documentation, 263
viewing MPE log files, 262

W

weekdays command, extract program, 199
weekly command, extract program, 200
WK1 format, export file, 129

Y
yearly command, extract program, 203

Index

Index

	Publication History
	Conventions
	Revisions
	Support
	1 This is OpenView Performance Agent
	Introduction
	What OV Performance Agent Does
	OV Performance Manager Major Components
	Scopeux Data Collector
	Collection Parameters File
	DSI Log Files
	Extract and Utility Programs
	Data Sources
	ARM Transaction Tracking Capabilities

	Related Performance Products

	2 Managing Data Collection
	Introduction
	Scopeux Data Collector
	Scopeux Status

	parm File
	Modifying the parm File
	parm File Parameters

	Stopping and Restarting Data Collection
	Stopping Data Collection
	Restarting Data Collection
	Automating Scopeux Startup and Shutdown

	Effective Data Collection Management
	Controlling Disk Space Used by Log Files
	Data Archiving

	3 Using the Utility Program
	Introduction
	Running the Utility Program
	Using Interactive Mode
	Example of Using Interactive and Batch Mode

	Utility Command Line Interface
	Example of Using the Command Line Interface

	Utility Scan Report Details
	Scan Report Information
	Initial Values
	Initial Parm File Application Definitions
	Chronological Detail
	Summaries

	4 Utility Commands
	Introduction
	analyze
	checkdef
	detail
	exit
	guide
	help
	list
	logfile
	menu
	parmfile
	quit
	resize
	scan
	sh
	show
	start
	stop

	5 Using the Extract Program
	Introduction
	Running the Extract Program
	Using Interactive Mode
	Extract Command Line Interface
	Overview of the Export Function
	How to Export Data
	Sample Export Tasks
	Export Data Files
	Export Template File Syntax
	Creating a Custom Graph or Report
	Output of Exported Files
	Notes on ASCII and Datafile Formats
	Notes on Binary Format

	6 Extract Commands
	Introduction
	application
	class
	configuration
	cpu
	disk
	exit
	export
	extract
	filesystem
	global
	guide
	help
	list
	logfile
	lvolume
	menu
	monthly
	netif
	output
	process
	quit
	report
	sh
	shift
	show
	Examples

	start
	stop
	transaction
	weekdays
	weekly
	yearly

	7 Performance Alarms
	Introduction
	Processing Alarms
	How Alarms Are Processed
	Alarm Generator
	Sending SNMP Traps to Network Node Manager
	Sending Messages to OpenView Operations (OVO)
	Executing Local Actions
	Errors in Processing Alarms
	Analyzing Historical Data for Alarms

	Alarm Definition Components
	Alarm Syntax Reference
	Conventions
	Common Elements
	ALARM Statement
	ALERT Statement
	EXEC Statement
	PRINT Statement
	IF Statement
	LOOP Statement
	INCLUDE Statement
	USE Statement
	VAR Statement
	ALIAS Statement
	SYMPTOM Statement

	Alarm Definition Examples
	Customizing Alarm Definitions

	8 Communicating Across a Firewall
	Introduction
	Ports Used for Communication with OVPA
	Overview of OVPA Communications Configuration
	Configure OVPA Server Port
	Configure Reporter and/or OVPM
	Other Considerations
	default.txt File and Configuration Parameters

	A Appendix
	Viewing MPE Log Files
	Viewing and Printing Documents
	Viewing Documents on the Web
	Adobe Acrobat Files

	Glossary

