
OpenVMS/Hanyu RTL Chinese
Processing (HSY$) Manual
Order Number: AA-PXHEB-TE

August 2005

This manual documents the library routines contained in the HSY$
facility of the OpenVMS/Hanyu Run-Time Library.

Revision/Update Information: This document supersedes the
Introduction to the Multi-byte
Processing Run Time Library HSYSHR
manual, Version 6.0

Software Version: OpenVMS/Hanyu Alpha Version 8.2

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in Singapore

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . vii

1 INTRODUCTION

1.1 Organization of HSYSHR . 1–1
1.2 Features of HSYSHR . 1–6
1.3 Linking with HSYSHR . 1–6

2 MULTI-BYTE CHARACTER CONCEPTS

2.1 What is Multi-byte Character? . 2–1
2.2 Proper Character Boundary . 2–1
2.3 Full Form and Half Form Character . 2–1
2.4 Multi-byte Character Unsigned Longword Representation 2–2

HSY$ Reference Section

HSY$CH_MOVE . HSY/STRI–3
HSY$DX_TRIM . HSY/STRI–4
HSY$DX_TRUNC . HSY/STRI–6
HSY$TRIM . HSY/STRI–8
HSY$TRUNC . HSY/STRI–9
HSY$CH_GCHAR . HSY/READ–10
HSY$CH_GNEXT . HSY/READ–11
HSY$CH_NEXTG . HSY/READ–12
HSY$CH_PCHAR . HSY/READ–13
HSY$CH_PNEXT . HSY/READ–15
HSY$CH_RCHAR . HSY/READ–17
HSY$CH_RNEXT . HSY/READ–18
HSY$CH_RPREV . HSY/READ–19
HSY$CH_WCHAR . HSY/READ–20
HSY$CH_WNEXT . HSY/READ–21
HSY$DX_RCHAR . HSY/READ–22
HSY$DX_RNEXT . HSY/READ–23
HSY$DX_WCHAR . HSY/READ–24
HSY$DX_WNEXT . HSY/READ–25
HSY$CH_CURR . HSY/POIN–26
HSY$CH_NEXT . HSY/POIN–27
HSY$CH_PREV . HSY/POIN–28
HSY$DX_POS_CURR . HSY/POIN–29
HSY$DX_POS_NEXT . HSY/POIN–30

iii

HSY$DX_POS_PREV . HSY/POIN–31
HSY$DX_SKPC . HSY/POIN–32
HSY$POS_CURR . HSY/POIN–33
HSY$POS_NEXT . HSY/POIN–35
HSY$POS_PREV . HSY/POIN–36
HSY$SKPC . HSY/POIN–38
HSY$COMPARE . HSY/COMP–39
HSY$DX_STR_EQUAL . HSY/COMP–41
HSY$STR_EQUAL . HSY/COMP–43
HSY$DX_LOCC . HSY/SEAR–45
HSY$DX_POSITION . HSY/SEAR–46
HSY$DX_STR_SEARCH . HSY/SEAR–47
HSY$DX_STR_START . HSY/SEAR–49
HSY$LOCC . HSY/SEAR–51
HSY$POSITION . HSY/SEAR–52
HSY$STR_SEARCH . HSY/SEAR–54
HSY$STR_START . HSY/SEAR–56
HSY$CH_NBYTE . HSY/COUN–58
HSY$CH_NCHAR . HSY/COUN–59
HSY$CH_SIZE . HSY/COUN–60
HSY$DX_NOF_BYTE . HSY/COUN–61
HSY$DX_NOF_CHAR . HSY/COUN–62
HSY$IS_ALPHA . HSY/CHAR–63
HSY$IS_DESCRIPTION . HSY/CHAR–64
HSY$IS_DIGIT . HSY/CHAR–65
HSY$IS_GENERAL . HSY/CHAR–66
HSY$IS_GREEK . HSY/CHAR–67
HSY$IS_IDEOGRAPH . HSY/CHAR–68
HSY$IS_LEFT_PARENTHESIS . HSY/CHAR–69
HSY$IS_LINE_DRAWING . HSY/CHAR–70
HSY$IS_LOWER . HSY/CHAR–71
HSY$IS_NO_FIRST . HSY/CHAR–72
HSY$IS_NO_LAST . HSY/CHAR–73
HSY$IS_PARENTHESIS . HSY/CHAR–74
HSY$IS_RIGHT_PARENTHESIS . HSY/CHAR–75
HSY$IS_ROMAN . HSY/CHAR–76
HSY$IS_TECHNICAL . HSY/CHAR–77
HSY$IS_UNIT . HSY/CHAR–78
HSY$IS_UPPER . HSY/CHAR–79
HSY$IS_VALID . HSY/CHAR–80
HSY$DX_DATE_TIME . HSY/DATE–81
HSY$DX_TIME . HSY/DATE–83
HSY$CHG_GENERAL . HSY/CONV–84
HSY$CHG_KEISEN . HSY/CONV–85
HSY$CHG_ROM_CASE . HSY/CONV–86
HSY$CHG_ROM_FULL . HSY/CONV–87
HSY$CHG_ROM_HALF . HSY/CONV–88

iv

HSY$CHG_ROM_LOWER . HSY/CONV–89
HSY$CHG_ROM_SIZE . HSY/CONV–90
HSY$CHG_ROM_UPPER . HSY/CONV–91
HSY$DX_TRA_ROM_CASE . HSY/CONV–92
HSY$DX_TRA_ROM_FULL . HSY/CONV–94
HSY$DX_TRA_ROM_HALF . HSY/CONV–96
HSY$DX_TRA_ROM_LOWER . HSY/CONV–98
HSY$DX_TRA_ROM_SIZE . HSY/CONV–100
HSY$DX_TRA_ROM_UPPER . HSY/CONV–102
HSY$DX_TRA_SYMBOL . HSY/CONV–104
HSY$TRA_ROM_CASE . HSY/CONV–106
HSY$TRA_ROM_FULL . HSY/CONV–108
HSY$TRA_ROM_HALF . HSY/CONV–110
HSY$TRA_ROM_LOWER . HSY/CONV–112
HSY$TRA_ROM_SIZE . HSY/CONV–114
HSY$TRA_ROM_UPPER . HSY/CONV–116
HSY$TRA_SYMBOL . HSY/CONV–118

Tables

1–1 HSYSHR routine groups . 1–1
1–2 String Routines . 1–2
1–3 Read Write Routines . 1–2
1–4 Pointer Routines . 1–2
1–5 Comparison Routines . 1–3
1–6 Searching Routines . 1–3
1–7 Counting Routines . 1–4
1–8 Character Type Routines . 1–4
1–9 Date Time Routines . 1–5
1–10 Conversion Routines . 1–5

v

Preface

This manual provides users of the OpenVMS/Hanyu operating system with detailed usage and
reference information on library routines supplied in the HSY$ facility of the OpenVMS/Hanyu
Run-Time Library for Chinese processing.

Intended Audience
This manual is intended for application programmers who want to write
applications for Chinese processing.

Document Structure
This manual is organized into two parts as follows:

• The introductory chapters provide reference material on specific types of
HSY$ library routines and Chinese processing concepts.

Chapter 1 provides a brief overview of the HSY$ facility and lists the HSY$
routines and their functions.

Chapter 2 provides an overview of the concept of Chinese characters and their
representation in the OpenVMS/Hanyu operating system.

• The HSY$ Reference Section describes each library routine contained in
the HSY$ Run-Time Library facility in OpenVMS/Hanyu. This information
is presented using the documentation format described in OpenVMS
Programming Interfaces: Calling a System Routine.

Associated Document
A description of how the Run-Time Library routines are accessed is presented
in OpenVMS Programming Interface: Calling a System Routine. The HSY$
Run-Time Library routines can be used with other RTL facilities provided in
OpenVMS and OpenVMS/Hanyu. Descriptions of the other RTL facilities and
their corresponding routines are presented in the following books:

• OpenVMS/Hanyu RTL Chinese Screen Management (SMG$) Manual

• OpenVMS RTL Library (RTL$) Manual

• OpenVMS VAX RTL Mathematics (MTH$) Manual

• OpenVMS RTL General Purpose (OTS$) Manual

• OpenVMS RTL String Manipulation (STR$) Manual

vii

Application programmers using any programming language can refer to Guide to
Creating OpenVMS Modular Procedures for writing modular and reentrant code,
and OpenVMS/Hanyu User Guide for understanding the DEC Hanyu character
set.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manuals. Additional
information may also be found in the programming language user’s guide
provided with your OpenVMS programming language software.

For a complete list and description of the manuals in the OpenVMS
documentation set, see Overview of OpenVMS Documentation.

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Conventions
The following conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

viii

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

ix

1
INTRODUCTION

The OpenVMS/Hanyu Chinese Processing Run-Time Library (or simply HSYSHR)
is a library of prewritten, commonly-used routines that perform a wide variety
of multi-byte Chinese language processing operations. It represents the HSY$
facility of the OpenVMS/Hanyu Run-Time Library. All HSY$ routines follow the
OpenVMS Procedure Calling Standard. They are callable from any programming
languages supported in OpenVMS/Hanyu, thus increasing program flexibility.

1.1 Organization of HSYSHR
Routines in HSYSHR are grouped according to the types of tasks they perform.
Altogether, there are nine groups of routines. All routine names are prefixed
by the facility code HSY$. Those routines prefixed by HSY$DX_ pass string by
descriptor, otherwise strings are passed by the address of the starting position of
the string. Table 1–1 shows the nine groups of HSY$ routines.

Table 1–1 HSYSHR routine groups

Group Types of Tasks Performed

String Routines Perform manipulation of strings containing multi-byte
or mixed ASCII and multi-byte characters.

Read Write Routines Perform read and write of ASCII and multi-byte
characters in user buffers.

Pointer Routines Perform character pointer manipulation.

Comparison Routines Perform comparison of strings containing multi-byte or
mixed ASCII multi-byte characters.

Searching Routines Perform searching of substrings in buffer containing
multi-byte or mixed ASCII and multi-byte characters.

Counting Routines Perform counting of bytes and characters in buffer
containing multi-byte or mixed ASCII and multi-byte
characters.

Character Type Routines Perform checking of different classes of local language
symbols and characters.

Date Time Routines Provide local language date time format.

Conversion Routines Perform various multi-byte character specific
conversion.

The following tables list all routines available for each of the aforementioned
groups, followed by brief statements of the routines’ functions.

INTRODUCTION 1–1

INTRODUCTION
1.1 Organization of HSYSHR

Table 1–2 String Routines

Routine Name Function

HSY$CH_MOVE Moves a substring from a specified source buffer to a
specified destination buffer.

HSY$TRIM Trims trailing one-byte and multi-byte spaces and TAB
characters.

HSY$TRUNC Returns the position of the first character that follows
the truncated string.

HSY$DX_TRIM Trims trailing one-byte and multi-byte spaces and TAB
characters.

HSY$DX_TRUNC Truncates the input string to the specified length.

Table 1–3 Read Write Routines

Routine Name Function

HSY$CH_GCHAR Reads the current character.

HSY$CH_GNEXT Reads the current character.

HSY$CH_NEXTG Reads the next character, skipping the current
character.

HSY$CH_RCHAR Reads the current character.

HSY$CH_RNEXT Reads the current character.

HSY$CH_RPREV Reads the previous character.

HSY$DX_RCHAR Reads the current character.

HSY$DX_RNEXT Reads the current character.

HSY$CH_PCHAR Writes a specified character to the current position of
a buffer.

HSY$CH_PNEXT Writes a specified character to the current position of
a buffer.

HSY$CH_WCHAR Writes a specified character to the current position of
a buffer.

HSY$CH_WNEXT Writes a specified character to the current position of
a buffer.

HSY$DX_WCHAR Writes a specified character.

HSY$DX_WNEXT Writes a specified character.

Table 1–4 Pointer Routines

Routine Name Function

HSY$SKPC Skips a specified character.

HSY$CH_CURR Points to the first byte of the current character.

HSY$CH_NEXT Points to the first byte of the next character.

(continued on next page)

1–2 INTRODUCTION

INTRODUCTION
1.1 Organization of HSYSHR

Table 1–4 (Cont.) Pointer Routines

Routine Name Function

HSY$CH_PREV Points to the first byte of the previous character.

HSY$POS_CURR Points to the first byte of the current character.

HSY$POS_NEXT Points to the first byte of the next character.

HSY$POS_PREV Points to the first byte of the previous character.

HSY$DX_SKPC Skips a specified character.

HSY$DX_POS_CURR Points to the first byte of the current character.

HSY$DX_POS_NEXT Points to the first byte of the next character.

HSY$DX_POS_PREV Points to the first byte of the previous character.

Table 1–5 Comparison Routines

Routine Name Function

HSY$COMPARE Compares two specified strings.

HSY$STR_EQUAL Checks if two specified character strings are equal.

HSY$DX_STR_EQUAL Checks if two specified character strings are equal.

Table 1–6 Searching Routines

Routine Name Function

HSY$LOCC Locates the position of the first occurrence of the
specified character.

HSY$POSITION Searches the first occurrence of a specified substring in
the input string.

HSY$STR_SEARCH Searches the first occurrence of a specified substring
in the input string with conversion performed prior to
comparing the characters.

HSY$STR_START Checks if the specified substring is found in another
input string and starts from the first byte of the input
string.

HSY$DX_LOCC Locates the position of the first occurrence of the
specified character.

HSY$DX_POSITION Searches the first occurrence of a substring in a
specified string.

HSY$DX_STR_SEARCH Searches the first occurrence of a specified substring in
the input string.

HSY$DX_STR_START Checks if the specified substring is found in another
input string and starts from the first byte of the input
string.

INTRODUCTION 1–3

INTRODUCTION
1.1 Organization of HSYSHR

Table 1–7 Counting Routines

Routine Name Function

HSY$CH_SIZE Tells the byte length of the specified character.

HSY$CH_NCHAR Returns the number of characters in a specified string.

HSY$CH_NBYTE Counts the number of bytes of a character string.

HSY$DX_NOF_CHAR Returns the number of characters in a specified
number of bytes.

HSY$DX_NOF_BYTE Counts the number of bytes of a character string.

Table 1–8 Character Type Routines

Routine Name Function

HSY$IS_VALID Checks if the input character is a valid multi-byte
character.

HSY$IS_IDEOGRAPH Checks if the input multi-byte character is an
ideographic multi-byte character.

HSY$IS_DESCRIPTION Checks if the input character is a multi-byte local
language punctuation.

HSY$IS_TECHNICAL Checks if the input character is a scientific or
mathematical multi-byte symbol character.

HSY$IS_UNIT Checks if the input character is a multi-byte standard
unit symbol character.

HSY$IS_GENERAL Checks if the input character is a multi-byte general
symbol character.

HSY$IS_LINE_DRAWING Checks if the input character is a multi-byte line
drawing symbol character.

HSY$IS_DIGIT Checks if the input character is a one-byte or multi-
byte numeric digit.

HSY$IS_ROMAN Checks if the input character is a one-byte or multi-
byte English letter.

HSY$IS_GREEK Checks if the input character is a multi-byte Greek
letter.

HSY$IS_ALPHA Checks if the input character is a Greek or Roman
letter.

HSY$IS_UPPER Checks if the input character is an upper case Greek
or Roman letter.

HSY$IS_LOWER Checks if the input character is a lower case Greek or
Roman letter.

HSY$IS_PARENTHESIS Checks if the input character is a multi-byte
parenthesis symbol character.

HSY$IS_LEFT_PARENTHESIS Checks if the input character is a multi-byte left
parenthesis symbol character.

HSY$IS_RIGHT_
PARENTHESIS

Checks if the input character is a multi-byte right
parenthesis symbol character.

(continued on next page)

1–4 INTRODUCTION

INTRODUCTION
1.1 Organization of HSYSHR

Table 1–8 (Cont.) Character Type Routines

Routine Name Function

HSY$IS_NO_FIRST Checks if the input character is a multi-byte "NO
FIRST" character.

HSY$IS_NO_LAST Checks if the input character is a multi-byte "NO-
LAST" character.

Table 1–9 Date Time Routines

Routine Name Function

HSY$DX_DATE_TIME Returns the date and time in local language format.

HSY$DX_TIME Returns the date and time of the system time in local
language format.

Table 1–10 Conversion Routines

Routine Name Function

HSY$CHG_KEISEN Converts ’0’ to ’9’ and ’-’ to multi-byte line drawing
characters.

HSY$CHG_GENERAL Performs general multi-byte conversion.

HSY$CHG_ROM_FULL Converts half form ASCII to full form ASCII.

HSY$CHG_ROM_HALF Converts full form ASCII to half form ASCII
equivalence.

HSY$CHG_ROM_SIZE Toggles the form (full form or half form) of the input
character.

HSY$CHG_ROM_UPPER Converts one-byte and multi-byte letters to upper case.

HSY$CHG_ROM_LOWER Converts one byte and multi-byte letters to lower case.

HSY$CHG_ROM_CASE Toggles the casing of one-byte and multi-byte letters of
the input character.

HSY$TRA_ROM_FULL Converts half form ASCII to full form ASCII.

HSY$TRA_ROM_HALF Converts full form ASCII to half form ASCII
equivalence.

HSY$TRA_ROM_SIZE Toggles the form (full form or half form) of the input
string.

HSY$TRA_ROM_UPPER Converts one-byte and multi-byte letters to upper case.

HSY$TRA_ROM_LOWER Converts one-byte and multi-byte letters to lower case.

HSY$TRA_ROM_CASE Toggles the casing of one-byte and multi-byte letters
found in the string.

HSY$TRA_SYMBOL Converts the sequence of a one-byte character to a
string of multi-byte symbols.

HSY$DX_TRA_ROM_FULL Converts half form ASCII to full form ASCII.

(continued on next page)

INTRODUCTION 1–5

INTRODUCTION
1.1 Organization of HSYSHR

Table 1–10 (Cont.) Conversion Routines

Routine Name Function

HSY$DX_TRA_ROM_HALF Converts full form ASCII to half form ASCII
equivalence.

HSY$DX_TRA_ROM_SIZE Toggles the form (full form or half form) of the input
string.

HSY$DX_TRA_ROM_UPPER Converts one-byte and multi-byte letters to upper case.

HSY$DX_TRA_ROM_LOWER Converts one-byte and multi-byte letters to lower case.

HSY$DX_TRA_ROM_CASE Toggles the casing of one-byte and multi-byte letters
found in the input string.

HSY$DX_TRA_SYMBOL Converts the sequence of a one-byte character to a
string of multi-byte symbols.

1.2 Features of HSYSHR
HSYSHR provides the following features and capabilities:

• HSYSHR performs a wide range of general multi-byte processing operations.
You can call the HSY$ routines instead of writing your own code to perform
the operation.

• Routines in HSYSHR follow the OpenVMS Procedure Calling Standard.
It allows you to call any HSY$ routines from any programming language
supported in OpenVMS/Hanyu, thus increasing program flexibility.

• Because all routines are shared, they take up less virtual address space of a
process.

• When new versions of the HSYSHR are installed, you do not need to revise
your calling program, and generally do not need to relink.

1.3 Linking with HSYSHR
Routines in the HSYSHR execute entirely in the mode of the caller and are
intended to be called in the user mode. To link your application that contains
explicit calls to HSYSHR, use the following link command:

$ LINK program, SYS$LIBRARY:HSYIMGLIB.OLB/LIBRARY

1–6 INTRODUCTION

2
MULTI-BYTE CHARACTER CONCEPTS

This chapter describes some important concepts of multi-byte character that are
used throughout the documentation.

2.1 What is Multi-byte Character?
DEC Hanyu character set is implemented as a multi-byte character set containing
Chinese characters, punctuation marks and various kinds of symbols. Each
multi-byte character can either be a two-byte character or four-byte character.
In OpenVMS/Hanyu, the DEC Hanyu character set is adopted, and Chinese
characters are represented as multi-byte characters from the character
set. For detailed discussion of the DEC Hanyu character set, please refer to
OpenVMS/Hanyu User Guide.

2.2 Proper Character Boundary
In HSYSHR, most of the routines use characters as a processing entity contrary
to conventional byte by byte processing. Some routines require the input
character pointer pointing at the proper character boundary in the user buffer.
"Pointing at the proper character boundary" means the character pointer should
not point to the non-first-byte position of a multi-byte character.

2.3 Full Form and Half Form Character
In DEC Hanyu character set, there is a set of two-byte ASCII characters. To
distinguish them from the conventional one-byte 7-bit ASCII characters, the
terms "full form" and "half form" characters are used. Full form characters refer
to two-byte ASCII characters whereas half form characters refer to one-byte 7-bit
ASCII characters. Conversion services between full form and half form characters
are provided by the conversion routines in HSYSHR. In some applications where
character matching requires treating the full form and half form characters
equivalent, the user can call the searching routines in HSYSHR and specify the
conversion flag argument. Note that uppercasing and lowercasing can both be
applied to these full form characters.

MULTI-BYTE CHARACTER CONCEPTS 2–1

MULTI-BYTE CHARACTER CONCEPTS
2.4 Multi-byte Character Unsigned Longword Representation

2.4 Multi-byte Character Unsigned Longword Representation
In HSYSHR, multi-byte character representation in single character argument
is different from that found in the character string argument. Single character
argument uses unsigned longword integer representation whereas characters
in the string argument use the normal character string representation. The
following are two examples.

• The two-byte character B0A1(hex) is represented as follows:

Single character argument: (VMS Usage - longword_unsigned)

+--+--+--+--+
|00|00|B0|A1|
+--+--+--+--+
H L

In a string argument: (VMS Usage - char_string)

--+--+--+- +--+
.... |A1|B0|....| | start of string

--+--+--+- +--+
H L

• The four byte character C2CBB0A2(hex) is represented as follows:

Single character argument: (VMS Usage - longword_unsigned)

+--+--+--+--+
|C2|CB|B0|A2|
+--+--+--+--+
H L

In a string argument: (VMS Usage - char_string)

--+--+--+--+--+- +--+
.... |A2|B0|CB|C2|....| | start of string

--+--+--+--+--+- +--+
H L

The read routines in HSYSHR read the buffer with character string format and
return the character read in unsigned longword format. The write routines write
the character in unsigned longword format to the buffer. The character written
will be in character string format.

2–2 MULTI-BYTE CHARACTER CONCEPTS

HSY$ Reference Section

This section provides detailed discussions of the routines provided in the Chinese
Processing Run Time Library HSYSHR.

HSY$CH_MOVE

HSY$CH_MOVE

HSY$CH_MOVE moves a substring from a specified source buffer to a specified
destination buffer.

Format

HSY$CH_MOVE len,src,dst

Arguments

len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the substring to be moved.

src
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the source buffer.

dst
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the destination buffer.

Description

This routine is multi-byte insensitive. If len is not specifying the proper multi-
byte character boundary, e.g. it indicates the second byte of a two-byte character,
then only half of the multi-byte character is moved to the last character of the
destination string.

HSY/STRI–3

HSY$DX_TRIM

HSY$DX_TRIM

HSY$DX_TRIM trims trailing one-byte and multi-byte spaces and TAB
characters.

Format

HSY$DX_TRIM dst,src,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The destination string to store the trimmed string.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The source string that is to be converted.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the trimmed string. If this optional argument is not
supplied, no length information of the trimmed string will be returned to the
caller.

Description

dst and src can contain one-byte and multi-byte characters.

CONDITION VALUES RETURNED

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. String
truncated.

HSY/STRI–4

HSY$DX_TRIM

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/STRI–5

HSY$DX_TRUNC

HSY$DX_TRUNC

HSY$DX_TRUNC truncates the input string to the specified length.

Format

HSY$DX_TRUNC dst,src,offset,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The specified destination string to store the truncated string.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The specified source string to be truncated.

offset
VMS Usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

The offset in bytes from the starting position of the source string which indicates
the position of the first character just after the truncated string. Note that this
offset may not be on the proper character boundary, e.g. it may point to the
second byte of a two-byte character.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the truncated string. If this optional argument is not
supplied, no length information of the truncated string will be returned to the
caller.

HSY/STRI–6

HSY$DX_TRUNC

Description

The value returned in len may not necessarily be equal to the value specified in
offset since offset may not be pointing at the first byte of a multi-byte character.
In any case, the character indicated by offset will be treated as the first character
that follows the truncated string.

CONDITION VALUES RETURNED

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. Truncated
string is further truncated due to insufficient
space allocated in the destination string buffer.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/STRI–7

HSY$TRIM

HSY$TRIM

HSY$TRIM trims trailing one-byte and multi-byte spaces and TAB characters.

Format

HSY$TRIM str,len

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The offset in bytes from the starting position of the input string which
indicates the position of the terminating character of the trimmed string. If
the terminating character is a multi-byte character, the returned offset will be
pointing to the first byte of the multi-byte character.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string to be trimmed.

len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

Description

str can contain one-byte and multi-byte characters.

HSY/STRI–8

HSY$TRUNC

HSY$TRUNC

HSY$TRUNC returns the position of the first character that follows the truncated
string.

Format

HSY$TRUNC str,len,offset

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The offset in bytes which indicates the position of the first character just follows
the truncated string. If this character is a multi-byte character, the offset will be
pointing at the first byte of the multi-byte character.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string.

len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

offset
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The offset in bytes of the character just follows the truncated string. It may not
be on the proper character boundary, e.g. it can point to the second byte of a
two-byte character.

Description

str can contain one-byte and multi-byte characters. This routine helps you to
position offset to the proper character boundary. Its function is similar to routine
HSY$CH_CURR but with different parameter interface.

HSY/STRI–9

HSY$CH_GCHAR

HSY$CH_GCHAR

HSY$CH_GCHAR reads the current character.

Format

HSY$CH_GCHAR cur,end

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The current character.

Arguments

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the specified current character. Note that
this address must be on the proper character boundary, e.g. it should not point to
the second byte of a two-byte character.

end
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the string terminating position plus one as illustrated below:

+---+---+---+---+
.. | | | | |

+---+---+---+---+
string ^

end

Description

This routine reads a character with end of buffer checking. FFFF (hex) will be
returned when read past the end of buffer. If the current character is a one-byte
7-bit control character or one-byte 8-bit character (e.g. an 8-bit character followed
by a 7-bit control character), the one-byte 7-bit or 8-bit character will be returned.
No updating of current pointer is done since cur is passed by value.

HSY/READ–10

HSY$CH_GNEXT

HSY$CH_GNEXT

HSY$CH_GNEXT reads the current character.

Format

HSY$CH_GNEXT cur,end

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The current character.

Arguments

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: modify
mechanism: by reference

The address of the current position of the specified current character. Note that
this address must be on the proper character boundary, e.g. it should not point to
the second byte of a two-byte character.

end
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the string terminating position plus one as illustrated below:

+---+---+---+---+
.. | | | | |

+---+---+---+---+
string ^

end

Description

This routine reads a character with end of buffer checking. FFFF (hex) will be
returned when read past the end of buffer. If the current character is a one-
byte 7-bit control character or one-byte 8-bit character (e.g. an 8-bit character
followed by a 7-bit control character), the one-byte 7-bit or 8-bit character will
be returned. Updating of the current pointer is done. After the read action, cur
will be updated to the next character position pointing at the proper character
boundary. This routine is useful for successive character reading.

HSY/READ–11

HSY$CH_NEXTG

HSY$CH_NEXTG

HSY$CH_NEXTG reads the next character, skipping the current character.

Format

HSY$CH_NEXTG cur,end

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The next character.

Arguments

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: modify
mechanism: by reference

The address of the current position of the specified current character. Note that
this address must be on the proper character boundary, e.g. it should not point to
the second byte of a two-byte character.

end
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the string terminating position plus one as illustrated below:

+---+---+---+---+
.. | | | | |

+---+---+---+---+
string ^

end

Description

This routine reads the next character, skipping the current character. FFFF
(hex) will be returned when read past the end of buffer. If the next character is a
one-byte 7-bit control character or one-byte 8-bit character (e.g. an 8-bit character
followed by a 7-bit control character), the one-byte 7-bit or 8-bit character will
be returned. Updating of the current pointer is done. After the read action, cur
will be updated to the next character position pointing at the proper character
boundary.

HSY/READ–12

HSY$CH_PCHAR

HSY$CH_PCHAR

HSY$CH_PCHAR writes a specified character to the current position of a buffer.

Format

HSY$CH_PCHAR chr,cur,end

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Either 1 or 0 is returned as status.

1 - Input character is successfully written to the specified position of the
string.

0 - Input character is not written to the specified position of the string.

Arguments

chr
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The character to be written to the specified current position of the string.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the string where the input character is to
be written to.

end
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the string terminating position plus one as illustrated below:

+---+---+---+---+
.. | | | | |

+---+---+---+---+
string ^

end

HSY/READ–13

HSY$CH_PCHAR

Description

This routine writes a character to a specified position. End of buffer checking is
performed to make sure there is enough space in the buffer for the character to
be written since chr can be a multi-byte character.

HSY/READ–14

HSY$CH_PNEXT

HSY$CH_PNEXT

HSY$CH_PNEXT writes a specified character to the current position of a buffer.

Format

HSY$CH_PNEXT chr,cur,end

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Either 1 or 0 is returned as status.

1 - Input character is successfully written to the specified position of the
string.

0 - Input character is not written to the specified position of the string.

Arguments

chr
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The character to be written to the specified current position of the string. Note
that the input character can either be one- or two-byte character.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: modify
mechanism: by reference

The address of the current position of the string where the input character is to
be written to.

end
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the string terminating position plus one as illustrated below:

+---+---+---+---+
.. | | | | |

+---+---+---+---+
string ^

end

HSY/READ–15

HSY$CH_PNEXT

Description

This routine writes a character to a specified position. End of buffer checking is
performed to make sure there is enough space in the buffer for the character to
be written since chr can be a multi-byte character. Note that cur is updated. It
points to the next character position after the write action. This routine is useful
for successive writing of character to a buffer.

HSY/READ–16

HSY$CH_RCHAR

HSY$CH_RCHAR

HSY$CH_RCHAR reads the current character.

Format

HSY$CH_RCHAR cur

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The current character.

Arguments

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the specified current character. Note that
this address must be on the proper character boundary, e.g. it should not point to
the second byte of a two-byte character.

Description

This routine reads the current character. If the current character is a one-byte
7-bit control character or one-byte 8-bit character (e.g. an 8-bit character followed
by a 7-bit control character), the one-byte 7-bit or 8-bit character will be returned.

HSY/READ–17

HSY$CH_RNEXT

HSY$CH_RNEXT

HSY$CH_RNEXT reads the current character.

Format

HSY$CH_RNEXT cur

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The current character.

Arguments

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: modify
mechanism: by reference

The address of the current position of the specified current character. Note that
this address must be on the proper character boundary, e.g. it should not point to
the second byte of a two-byte character.

Description

This routine reads the current character. If the current character is a one-byte
7-bit control character or one-byte 8-bit character (e.g. an 8-bit character followed
by a 7-bit control character), the one-byte 7-bit or 8-bit character will be returned.
Note that the read pointer is updated to the next character position after the read
action. This routine is useful in successive reading of characters.

HSY/READ–18

HSY$CH_RPREV

HSY$CH_RPREV

HSY$CH_RPREV reads the previous character.

Format

HSY$CH_RPREV str,cur

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The previous character read.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string. Note that this address
must be on the proper character boundary, e.g. it should not point to the second
byte of a two-byte character.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: modify
mechanism: by reference

The address of the current position of the specified current character. Note that
this address must be on the proper character boundary, e.g. it should not point to
the second byte of a two-byte character.

Description

This routine reads the previous character. Note that the current character pointer
is updated. It points to the previous character position after the read action.

HSY/READ–19

HSY$CH_WCHAR

HSY$CH_WCHAR

HSY$CH_WCHAR writes a specified character to the current position of a buffer.

Format

HSY$CH_WCHAR chr,cur

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The character to be written to the specified current position of the string.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the string where the input character is to
be written to.

Description

This routine writes a specified character to the current position. It does not
perform checking of writing past the end of buffer.

HSY/READ–20

HSY$CH_WNEXT

HSY$CH_WNEXT

HSY$CH_WNEXT writes a specified character to the current position of a buffer.

Format

HSY$CH_WNEXT chr,cur

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The character to be written to the specified current position of the string.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: modify
mechanism: by reference

The address of the current position of the string where the input character is to
be written to.

Description

This routine writes a specified character to the current position. It does not
perform checking of writing past the end of buffer. Note that the write pointer
cur is updated to the next character position after the write action.

HSY/READ–21

HSY$DX_RCHAR

HSY$DX_RCHAR

HSY$DX_RCHAR reads the current character.

Format

HSY$DX_RCHAR str,[pos]

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

FFFF (hex) - Routine completed unsuccessfully.
non FFFF (hex) - The current character.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The input string to be read.

pos
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Byte position from the starting position of the specified string which is used
to indicate the current position. Note that this position must be on the proper
character boundary, e.g. it should not point to the second byte of a two-byte
character.

Description

This routine reads a character at the current character position as specified by
pos. If pos is not specified, the first character of the string will be read. FFFF
(hex) will be returned if pos is less than 1 or an invalid descriptor is specified by
str.

HSY/READ–22

HSY$DX_RNEXT

HSY$DX_RNEXT

HSY$DX_RNEXT reads the current character.

Format

HSY$DX_RNEXT str,[pos]

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

FFFF (hex) - Routine completed unsuccessfully.
non FFFF (hex) - The current character.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The input string to be read.

pos
VMS Usage: longword_signed
type: longword integer (signed)
access: modify
mechanism: by reference

Byte position from the starting position of the specified string which is used
to indicate the current position. Note that this position must be on the proper
character boundary, e.g. it should not point to the second byte of a two-byte
character.

Description

This routine reads a character at the current character position as specified by
pos. If pos is not specified, the first character of the string will be read. FFFF
(hex) will be returned if pos is less than 1 or an invalid descriptor is specified by
str. Note that pos is updated to the next character position after the read action.
This routine is useful for successive reading of characters.

HSY/READ–23

HSY$DX_WCHAR

HSY$DX_WCHAR

HSY$DX_WCHAR writes a specified character.

Format

HSY$DX_WCHAR chr,str,[pos]

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return status.

0 - Unsuccessful write caused by either invalid descriptor
specified or pos less than 1.

SS$_NORMAL - Successful write.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by reference

The character to be written.

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The specified string.

pos
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Byte position from the starting position of the specified string which indicates the
position to where the input character is written.

Description

This routine writes a specified character to the current character position in the
buffer. If pos is not specified, the character will be written to the start of the
input string.

HSY/READ–24

HSY$DX_WNEXT

HSY$DX_WNEXT

HSY$DX_WNEXT writes a specified character.

Format

HSY$DX_WNEXT chr,str,[pos]

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return status.

0 - Unsuccessful write caused by either invalid descriptor
specified or pos less than 1.

SS$_NORMAL - Successful write.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by reference

The character to be written.

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The specified string.

pos
VMS Usage: longword_signed
type: longword integer (signed)
access: modify
mechanism: by reference

Byte position from the starting position of the specified string which indicates the
position to where the input character is written.

Description

This routine writes a specified character to the current character position in the
buffer. If pos is not specified, the character will be written to the start of the
input string. Note that pos is updated after the write action. It points to the
next character position after writing. This routine is useful for successful writing
of character.

HSY/READ–25

HSY$CH_CURR

HSY$CH_CURR

HSY$CH_CURR points to the first byte of the current character.

Format

HSY$CH_CURR str,cur

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The address of the first byte of the current character.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string. Note that this address
must be on the proper character boundary, e.g. it should not point to the second
byte of a two-byte character.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the specified current character. Note
that cur may not point to the first byte of a multi-byte character if the current
character is a multi-byte character.

Description

This routine provides the function of locating a character pointer on the proper
character boundary if the current character is a multi-byte character. It checks if
cur is specifying a position before str. It also checks if the current character is a
7-bit or 8-bit control character. In both cases, cur will be returned to the caller.

str can contain one-byte and multi-byte characters.

HSY/POIN–26

HSY$CH_NEXT

HSY$CH_NEXT

HSY$CH_NEXT points to the first byte of the next character.

Format

HSY$CH_NEXT cur

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The address of the first byte of the next character.

Arguments

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the first byte of the current character. Note that this character
pointer must be on the proper character boundary, e.g. it should not point to the
second byte of a two-byte character.

Description

This routine does not check if the next character position contains garbage or if it
is passing beyond the buffer end since no buffer end position is specified.

HSY/POIN–27

HSY$CH_PREV

HSY$CH_PREV

HSY$CH_PREV points to the first byte of the previous character.

Format

HSY$CH_PREV str,cur

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The address of the first byte of the previous character.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string. Note that this address
must be on the proper character boundary, e.g. it should not point to the second
byte of a two-byte character.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the current character. Note that this
character pointer must be on the proper character boundary, e.g. it should not
point to the second byte of a two-byte character.

Description

This routine checks if the previous character position appears before the starting
position of the input string. It also checks if the previous character is a 7-bit or
8-bit control character. In both cases, cur will be returned to the caller.

str can contain one-byte and multi-byte characters.

HSY/POIN–28

HSY$DX_POS_CURR

HSY$DX_POS_CURR

HSY$DX_POS_CURR points to the first byte of the current character.

Format

HSY$DX_POS_CURR str,pos

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return byte position.

0 - Procedure completed unsuccessfully.
Non-zero - Byte position from the starting position of the input string that

points to the first byte of the current character.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

pos
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Byte position from the starting position of the input string which indicates the
position of the current character. Note that this position may not be on the proper
character boundary, e.g. it may point to the second byte of a two-byte character.

Description

HSY$DX_POS_CURR lets you position the character pointer at the first byte of
a multi-byte character. E.g. if pos is pointing to the second byte of a two-byte
character, HSY$DX_POS_CURR will return the byte position of the first byte of
the two-byte character.

str can contain one-byte and multi-byte characters.

HSY/POIN–29

HSY$DX_POS_NEXT

HSY$DX_POS_NEXT

HSY$DX_POS_NEXT points to the first byte of the next character.

Format

HSY$DX_POS_NEXT str,pos

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return byte position.

0 - Procedure completed unsuccessfully.
Non-zero - Byte position from the starting position of the input string that

points to the first byte of the next character.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

pos
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Byte position from the starting position of the input string which indicates the
position of the current character. Note that this position need not be on the
proper character boundary, e.g. it may point to the second byte of a two-byte
character.

Description

This routine allows pos to point at a non-character boundary position. If pos is
pointing to the second byte of a two-byte character, the two-byte character will be
treated as the current character and the next character will be returned to the
caller. This routine does not check if pos is beyond the end of the string.

str can contain one-byte and multi-byte characters.

HSY/POIN–30

HSY$DX_POS_PREV

HSY$DX_POS_PREV

HSY$DX_POS_PREV points to the first byte of the previous character.

Format

HSY$DX_POS_PREV str,pos

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return byte position.

0 - Procedure completed unsuccessfully.
Non-zero - Byte position from the starting position of the specified input

string that points to the first byte of the previous character.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

pos
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Byte position from the starting position of the specified input string which
indicates the position of the current character. Note that this position need not
be on the proper character boundary, e.g. it may point to the second byte of a
two-byte character.

Description

This routine allows pos to point at a non-character boundary position. If pos is
pointing to the second byte of a two-byte character, the two-byte character will be
treated as the current character and the previous character will be returned to
the caller. This routine does not check if pos is beyond the end of the string.

str can contain one-byte and multi-byte characters.

HSY/POIN–31

HSY$DX_SKPC

HSY$DX_SKPC

HSY$DX_SKPC skips a specified character.

Format

HSY$DX_SKPC chr,str

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return byte position.

0 - Procedure completed unsuccessfully. It can either be skipped
character not found or corrupted descriptor specified.

Non-zero - Byte position from the starting position of the input string that
points to the first character that does not match chr.

Arguments

chr
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The specified input character to be skipped.

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

Description

This routine skips the specified character chr at the start of the input string
str. The position of the first character that does not match with the specified
character chr will be returned to the caller.

str and chr can contain one-byte and multi-byte characters. If chr contains more
than one characters, only the first character specified by the descriptor will be
used.

HSY/POIN–32

HSY$POS_CURR

HSY$POS_CURR

HSY$POS_CURR points to the first byte of the current character.

Format

HSY$POS_CURR str,cur,end

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The address of the first byte of the current character.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string. Note that this address
must be on the proper character boundary, e.g. it should not point to the second
byte of a two-byte character.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the specified current character. Note that
this character pointer may not be on the proper character boundary, e.g. it may
point to the second byte of a two-byte character.

end
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the string terminating position plus one as illustrated below:

+---+---+ +---+---+---+
| | | | | | |
+---+---+ +---+---+---+
^ ^

str end

HSY/POIN–33

HSY$POS_CURR

Description

This routine provides the function of locating a character pointer on the proper
character boundary of a multi-byte character.

str can contain one-byte and multi-byte characters.

HSY/POIN–34

HSY$POS_NEXT

HSY$POS_NEXT

HSY$POS_NEXT points to the first byte of the next character.

Format

HSY$POS_NEXT cur,end

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The address of the first byte of the next character.

Arguments

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the specified current character. Note that
this address must be on the proper character boundary, e.g. it should not point to
the second byte of a two-byte character.

end
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the string terminating position plus one as illustrated below:

+---+---+---+---+
.. | | | | |

+---+---+---+---+
string ^

end

Description

This routine provides more checking than HSY$CH_NEXT. If cur is greater
than or equal to end, cur will be returned to the caller. If cur is pointing at
a single-byte 7-bit or 8-bit control character, cur+1 will be returned. If cur is
pointing at a 8-bit character which is at the end of the input string, end will be
returned. In general, if cur is pointing at an invalid character (e.g. a single 8-bit
followed by a control character), it will skip the invalid character and return the
next character positon.

str can contain one-byte and multi-byte characters.

HSY/POIN–35

HSY$POS_PREV

HSY$POS_PREV

HSY$POS_PREV points to the first byte of the previous character.

Format

HSY$POS_PREV str,cur,end

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The address of the previous character of the specified current character.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string. Note that this address
must be on the proper byte boundary, e.g. it should not point to the second byte
of a two-byte character.

cur
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the current position of the string. Note that this character pointer
must be on the proper character boundary, e.g. it should not point to the second
byte of a two-byte character.

end
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the string terminating position plus one as illustrated below:

+---+---+ +---+---+---+
| | | | | | |
+---+---+ +---+---+---+
^ ^

str end

HSY/POIN–36

HSY$POS_PREV

Description

This routine provides more checking than HSY$CH_PREV. If cur is outside the
range of the string as specified by str and end, no previous character position
will be returned. Instead, cur will be returned to the caller.

str can contain one-byte and multi-byte characters.

HSY/POIN–37

HSY$SKPC

HSY$SKPC

HSY$SKPC skips a specified character.

Format

HSY$SKPC chr,str,len

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The return address.

0 - The specified character is not found in the string.
Non-zero - The address of the position of the first character that does not

match chr.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The specified character to be skipped.

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string. Note that this address
must be on the proper character boundary, e.g. it should not point to the second
byte of a two-byte character.

len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

Description

This routine skips the specified character chr at the start of the input string
str. The address of the first character that does not match with the specified
character chr will be returned to the caller.

str can contain one-byte and multi-byte characters.

HSY/POIN–38

HSY$COMPARE

HSY$COMPARE

HSY$COMPARE compares two specified strings.

Format

HSY$COMPARE str1,len1,str2,len2

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return status.

-1 - str1 is less than str2.
0 - str1 is equal to str2.
1 - str1 is greater than str2.

Arguments

str1
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the first string for comparison.

len1
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of str1.

str2
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of second string for comparison.

len2
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of str2.

HSY/COMP–39

HSY$COMPARE

Description

str1 and str2 can contain one-byte and multi-byte characters.

If the two input strings have different length, the shorter one is padded with
space for comparison.

HSY/COMP–40

HSY$DX_STR_EQUAL

HSY$DX_STR_EQUAL

HSY$DX_STR_EQUAL checks if two specified character strings are equal.

Format

HSY$DX_STR_EQUAL str1,str2,[conv-flag]

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return status.

0 - The two strings are unequal.
1 - The two strings are equal.

Arguments

str1
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

First input string to be compared.

str2
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second input string to be compared.

conv-flag
VMS Usage: byte_signed
type: byte integer (signed)
access: read only
mechanism: by reference

Conversion flag indicating what conversion is done before comparing characters.
Only bit 0 to bit 1 of this flag is used.

Bit 0 = 0: Performs uppercasing conversion. Uppercasing can be done to both
full form and half form letters.

Bit 1 = 0: Performs full form to half form conversion.

No conversion will be done prior to comparing the characters if this optional
parameter is not specified.

HSY/COMP–41

HSY$DX_STR_EQUAL

Description

str1 and str2 can contain one-byte and multi-byte characters.

If the number of characters in the two input strings are not equal, the shorter
string is padded with space for comparison.

HSY/COMP–42

HSY$STR_EQUAL

HSY$STR_EQUAL

HSY$STR_EQUAL checks if two specified character strings are equal.

Format

HSY$STR_EQUAL str1,len1,str2,len2,[conv-flag]

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return status.

0 - The two strings are unequal.
1 - The two strings are equal.

Arguments

str1
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the first input string to be compared.

len1
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of str1.

str2
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the second input string to be compared.

len2
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of str2.

HSY/COMP–43

HSY$STR_EQUAL

conv-flag
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Conversion flag indicating what conversion is done before comparing characters.
Only bit 0 to bit 1 of this flag is used.

Bit 0 = 0: Performs uppercasing conversion. Uppercasing can be done to both
full form and half form letters.

Bit 1 = 0: Performs full form to half form conversion.

No conversion will be done prior to comparing the characters if this optional
parameter is not specified.

Description

str1 and str2 can contain one-byte and multi-byte characters.

If the number of characters in the two input strings are not equal, the shorter
string is padded with space for comparison.

HSY/COMP–44

HSY$DX_LOCC

HSY$DX_LOCC

HSY$DX_LOCC locates the position of the first occurrence of the specified
character.

Format

HSY$DX_LOCC chr,str

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return byte position.

0 - Cannot locate the specified character in the specified string. It
may be due to invalid descriptor specified or no such character
found in the specified string.

Non-zero - Byte position from the starting position of the specified string
which indicates the position of the first occurrence of the
specified character.

Arguments

chr
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The character to be located in the specified string.

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The specified string.

Description

chr can either be one-byte or multi-byte character. If a character string is
specified by chr, only the first character in the string will be used.

str can contain one-byte and multi-byte characters.

HSY/SEAR–45

HSY$DX_POSITION

HSY$DX_POSITION

HSY$DX_POSITION searches the first occurrence of a substring in a specified
string.

Format

HSY$DX_POSITION str,sub-str,[pos]

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return byte position.

0 - Procedure completed unsuccessfully.
Non-zero - Byte position from the starting position of the input string

which indicates the position containing the first byte of the first
character of the substring found.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

sub-str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The substring to be located in the input string.

pos
VMS Usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Byte position from the starting position of the input string which indicates the
starting position for searching the substring. If this optional argument is not
supplied, the searching will start from the beginning of the input string.

Description

str and sub-str can contain one-byte and multi-byte characters.

HSY/SEAR–46

HSY$DX_STR_SEARCH

HSY$DX_STR_SEARCH

HSY$DX_STR_SEARCH searches the first occurrence of a specified substring in
the input string.

Format

HSY$DX_STR_SEARCH str,sub-str,[pos],[conv-flag]

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return byte position.

0 - Procedure completed unsuccessfully.
Non-zero - Byte position from the starting position of the input string which

indicates the first byte of the first character of the substring
found.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

sub-str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The specified substring to be searched.

pos
VMS Usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Byte position from the starting position of the input string which indicates the
starting position for searching the substring. If this optional argument is not
supplied, the searching will start from the beginning of the input string.

conv-flag
VMS Usage: byte_signed
type: byte integer (signed)
access: read only
mechanism: by reference

HSY/SEAR–47

HSY$DX_STR_SEARCH

Conversion flag indicating what conversion is done before comparing the
characters. Only bit 0 to bit 1 of this flag are used.

Bit 0 = 0: Performs uppercasing conversion. Uppercasing can be done to both
full form and half form letters.

Bit 1 = 0: Performs full form to half form conversion.

No conversion will be done prior to comparing the characters if this optional
parameter is not specified.

Description

str and sub-str can contain one-byte and multi-byte characters.

HSY/SEAR–48

HSY$DX_STR_START

HSY$DX_STR_START

HSY$DX_STR_START checks if the specified substring is found in another input
string and starts from the first byte of the input string.

Format

HSY$DX_STR_START str,sub-str,[conv-flag]

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The return status.

0 - The two strings are equal. Cannot find the substring starting from the
start of the input string.

1 - Finds the substring starting from the start of the input string.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

sub-str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Substring to be located.

conv-flag
VMS Usage: byte_signed
type: byte integer (signed)
access: read only
mechanism: by reference

Conversion flag indicating what conversion is done before comparing the
characters. Only bit 0 to bit 1 of this flag are used.

Bit 0 = 0: Performs uppercasing conversion. Uppercasing can be done to both
full form and half form letters.

Bit 1 = 0: Performs full form to half form conversion.

No conversion will be done prior to comparing the characters if this optional
parameter is not specified.

HSY/SEAR–49

HSY$DX_STR_START

Description

str and sub-str can contain one-byte and multi-byte characters.

HSY/SEAR–50

HSY$LOCC

HSY$LOCC

HSY$LOCC locates the position of the first occurrence of the specified character.

Format

HSY$LOCC chr,str,len

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The returned character pointer.

0 - No such character found in the specified string.
Non-zero - The address of the position of the first occurrence of the specified

character found in the input string.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The specified character to be located in the input string.

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: modify
mechanism: by value

The address of the starting position of the input string.

len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

Description

chr can either be one-byte or multi-byte character.

HSY/SEAR–51

HSY$POSITION

HSY$POSITION

HSY$POSITION searches the first occurrence of a specified substring in the input
string.

Format

HSY$POSITION str,str-len,sub-str,sub-str-len

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The return address.

0 - The specified substring is not found in the input string.
Non-zero - The address of the starting position of the substring located in

the input string.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string.

str-len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of str.

sub-str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified substring to be located.

sub-str-len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of sub-str.

HSY/SEAR–52

HSY$POSITION

Description

str and sub-str can contain one-byte and multi-byte characters.

HSY/SEAR–53

HSY$STR_SEARCH

HSY$STR_SEARCH

HSY$STR_SEARCH searches the first occurrence of a specified substring in the
input string with conversion performed prior to comparing the characters.

Format

HSY$STR_SEARCH str,str-len,sub-str,sub-str-len,
conv-flag

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The return address.

0 - The specified substring is not found in the input string.
Non-zero - The address of the starting position of the substring located in

the input string.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string.

str-len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of str.

sub-str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified substring.

sub-str-len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of sub-str.

HSY/SEAR–54

HSY$STR_SEARCH

conv-flag
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Conversion flag indicating what conversion is done before comparing the
characters. Only bit 0 to bit 1 of this flag are used.

Bit 0 = 0: Performs uppercasing conversion. Uppercasing can be done to both
full form and half form letters.

Bit 1 = 0: Performs full form to half form conversion.

Description

str and sub-str can contain one-byte and multi-byte characters.

HSY/SEAR–55

HSY$STR_START

HSY$STR_START

HSY$STR_START checks if the specified substring is found in another input
string and starts from the first byte of the input string.

Format

HSY$STR_START str,str-len,sub-str,sub-str-len,
[conv-flag]

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned status.

0 - Cannot find the substring starting from the start of the input string.
1 - Finds the substring starting from the start of the input string.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the input string.

str-len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the str.

sub-str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the substring.

sub-str-len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of sub-str.

HSY/SEAR–56

HSY$STR_START

conv-flag
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Conversion flag indicating what conversion is done before comparing the
characters. Only bit 0 to bit 1 of this flag is used.

Bit 0 = 0: Performs uppercasing conversion. Uppercasing can be done to both
full form and half form letters.

Bit 1 = 0: Performs full form to half form conversion.

No conversion will be done prior to comparing the characters if this optional
parameter is not specified.

Description

str and sub-str can contain one-byte and multi-byte characters.

HSY/SEAR–57

HSY$CH_NBYTE

HSY$CH_NBYTE

HSY$CH_NBYTE counts the number of bytes of a character string.

Format

HSY$CH_NBYTE str,nof-chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The number of bytes counted in the specified number of characters.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string.

nof-chr
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The number of characters to be scanned from the starting position of the input
string for counting the number of bytes.

Description

The routine accepts the number of characters and returns the number of bytes
contained in the string of characters.

HSY/COUN–58

HSY$CH_NCHAR

HSY$CH_NCHAR

HSY$CH_NCHAR returns the number of characters in a specified string.

Format

HSY$CH_NCHAR str,len

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The number of characters in the specified string.

Arguments

str
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string. Note that this address
must be on the proper character boundary, e.g. it should not point to the second
byte of a two-byte character.

len
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in byte of the specified string.

Description

This routine returns the number of characters found in the input string up to
the position specified by len. All one-byte 7-bit control characters and one-byte
8-bit characters (e.g. an 8-bit character followed by a 7-bit control character)
are treated as a character. If the last character specified by len is a multi-byte
character with its last byte located beyond the input string terminating position
as specified by len, this multi-byte character is also counted by the routine.

HSY/COUN–59

HSY$CH_SIZE

HSY$CH_SIZE

HSY$CH_SIZE tells the byte length of the specified character.

Format

HSY$CH_SIZE chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The size in bytes of the specified character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

This routine returns the number of bytes of the specified character. If the
character is an ASCII character, 1 will be returned. If it is a multi-byte character,
the number of bytes of the character will be returned.

HSY/COUN–60

HSY$DX_NOF_BYTE

HSY$DX_NOF_BYTE

HSY$DX_NOF_BYTE counts the number of bytes of a character string.

Format

HSY$DX_NOF_BYTE str,nof-chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned number of bytes.

0 - Procedure completed unsuccessfully due to either invalid
descriptor specified or nof-chr less than 1.

Non-zero - The number of bytes.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

nof-chr
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

The number of characters to be scanned from the starting position of the input
string for counting the number of bytes.

Description

This routine accepts the number of characters and returns the number of bytes
contained in the string of characters.

HSY/COUN–61

HSY$DX_NOF_CHAR

HSY$DX_NOF_CHAR

HSY$DX_NOF_CHAR returns the number of characters in a specified number of
bytes.

Format

HSY$DX_NOF_CHAR str

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned number of characters.

0 - Procedure completed unsuccessfully due to either invalid
descriptor specified or nof-chr less than 1.

Non-zero - The number of characters.

Arguments

str
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string.

Description

This routine returns the number of characters found in the input string up to the
position specified by the length field of the descriptor. All one-byte 7-bit control
characters and one-byte 8-bit characters (e.g. an 8-bit character followed by a
7-bit control character) are treated as a character. If the last character specified
by the length field of the descriptor is a multi-byte character with its last byte
located beyond the input string terminating position, this multi-byte character is
also counted by the routine.

HSY/COUN–62

HSY$IS_ALPHA

HSY$IS_ALPHA

HSY$IS_ALPHA checks if the input character is a Greek or Roman letter.

Format

HSY$IS_ALPHA chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a letter character.
1 - The input character is a letter character.

Note that "letter character" here means one of the following:

(1) one-byte English letter
(2) multi-byte English letter
(3) multi-byte Greek letter

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–63

HSY$IS_DESCRIPTION

HSY$IS_DESCRIPTION

HSY$IS_DESCRIPTION checks if the input character is a multi-byte local
language punctuation (excluding parenthesis, bracket and quote).

Format

HSY$IS_DESCRIPTION chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte local language punctuation
(excluding parenthesis, bracket and quote).

1 - The input character is a multi-byte local language punctuation (excluding
parenthesis, bracket and quote).

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–64

HSY$IS_DIGIT

HSY$IS_DIGIT

HSY$IS_DIGIT checks if the input character is a one-byte or multi-byte numeric
digit.

Format

HSY$IS_DIGIT chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a digit symbol.
1 - The input character is a digit symbol.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer(unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–65

HSY$IS_GENERAL

HSY$IS_GENERAL

HSY$IS_GENERAL checks if the input character is a multi-byte general symbol
character (that does not belong to any of the above catagories).

Format

HSY$IS_GENERAL chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte general symbol character.
1 - The input character is a multi-byte general symbol character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–66

HSY$IS_GREEK

HSY$IS_GREEK

HSY$IS_GREEK checks if the input character is a multi-byte Greek letter.

Format

HSY$IS_GREEK chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte Greek letter.
1 - The input character is a multi-byte Greek letter.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–67

HSY$IS_IDEOGRAPH

HSY$IS_IDEOGRAPH

HSY$IS_IDEOGRAPH checks if the input multi-byte character is an ideographic
multi-byte character (excluding all multi-byte Roman and Greek letters, Japanese
characters and all multi-byte symbols).

Format

HSY$IS_IDEOGRAPH chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not an ideographic multi-byte character.
1 - The input character is an ideographic multi-byte character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–68

HSY$IS_LEFT_PARENTHESIS

HSY$IS_LEFT_PARENTHESIS

HSY$IS_LEFT_PARENTHESIS checks if the input character is a multi-byte left
parenthesis symbol character.

Format

HSY$IS_LEFT_PARENTHESIS chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte left parenthesis symbol character.
1 - The input character is a multi-byte left parenthesis symbol character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–69

HSY$IS_LINE_DRAWING

HSY$IS_LINE_DRAWING

HSY$IS_LINE_DRAWING checks if the input character is a multi-byte line
drawing symbol character.

Format

HSY$IS_LINE_DRAWING chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte line drawing symbol character.
1 - The input character is a multi-byte line drawing symbol character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–70

HSY$IS_LOWER

HSY$IS_LOWER

HSY$IS_LOWER checks if the input character is a lower case Greek or Roman
letter.

Format

HSY$IS_LOWER chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a lower case letter character.
1 - The input character is a lower case letter character.

Note that "letter character" here means one of the following:

(1) one-byte English letter
(2) multi-byte English letter
(3) multi-byte Greek letter

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–71

HSY$IS_NO_FIRST

HSY$IS_NO_FIRST

HSY$IS_NO_FIRST checks if the input character is a multi-byte "NO FIRST"
character.

Format

HSY$IS_NO_FIRST chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte "NO FIRST" character.
1 - The input character is a multi-byte "NO FIRST" character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

"NO FIRST" multi-byte characters include right parenthesis, right bracket, right
quote as well as some multi-byte punctuations that should not appear at the start
of a line.

HSY/CHAR–72

HSY$IS_NO_LAST

HSY$IS_NO_LAST

HSY$IS_NO_LAST checks if the input character is a multi-byte "NO-LAST"
character.

Format

HSY$IS_NO_LAST chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte "NO LAST" character.
1 - The input character is a multi-byte "NO LAST" character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

"NO LAST" multi-byte characters include left parenthesis, left bracket and left
quote.

HSY/CHAR–73

HSY$IS_PARENTHESIS

HSY$IS_PARENTHESIS

HSY$IS_PARENTHESIS checks if the input character is a multi-byte parenthesis
symbol character.

Format

HSY$IS_PARENTHESIS chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte parenthesis symbol character.
1 - The input character is a multi-byte parenthesis symbol character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

Multi-byte parenthesis symbols include left and right multi-byte parentheses.

HSY/CHAR–74

HSY$IS_RIGHT_PARENTHESIS

HSY$IS_RIGHT_PARENTHESIS

HSY$IS_RIGHT_PARENTHESIS checks if the input character is a multi-byte
right parenthesis symbol character.

Format

HSY$IS_RIGHT_PARENTHESIS chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte right parenthesis symbol character.
1 - The input character is a multi-byte right parenthesis symbol character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–75

HSY$IS_ROMAN

HSY$IS_ROMAN

HSY$IS_ROMAN checks if the input character is a one-byte or multi-byte English
letter.

Format

HSY$IS_ROMAN chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a one-byte or multi-byte English letter.
1 - The input character is a one-byte or multi-byte English letter.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–76

HSY$IS_TECHNICAL

HSY$IS_TECHNICAL

HSY$IS_TECHNICAL checks if the input character is a scientific or
mathematical multi-byte symbol character.

Format

HSY$IS_TECHNICAL chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

1 - The input character is a technical multi-byte symbol character.
0 - The input character is not a technical multi-byte symbol character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–77

HSY$IS_UNIT

HSY$IS_UNIT

HSY$IS_UNIT checks if the input character is a multi-byte standard unit symbol
character.

Format

HSY$IS_UNIT chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a multi-byte standard unit symbol character.
1 - The input character is a multi-byte standard unit symbol character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–78

HSY$IS_UPPER

HSY$IS_UPPER

HSY$IS_UPPER checks if the input character is an upper case Greek or Roman
letter.

Format

HSY$IS_UPPER chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not an upper case letter character.
1 - The input character is an upper case letter character.

Note that "letter character" here means one of the following:

(1) one-byte English letter
(2) multi-byte English letter
(3) multi-byte Greek letter

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

None.

HSY/CHAR–79

HSY$IS_VALID

HSY$IS_VALID

HSY$IS_VALID checks if the input character is a valid multi-byte character.

Format

HSY$IS_VALID chr

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The returned flag.

0 - The input character is not a valid multi-byte character.
1 - The input character is a valid multi-byte character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

Valid multi-byte characters are those found in the DEC supported local language
character set.

HSY/CHAR–80

HSY$DX_DATE_TIME

HSY$DX_DATE_TIME

HSY$DX_DATE_TIME returns the date and time in local language format (the
time can either be the system time or the user-specified date).

Format

HSY$DX_DATE_TIME dst,[flag],[time-addr]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The same condition value returned by the OpenVMS Run Time Library routine
LIB$SCOPY_R_DX.

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The specified destination string to store the resulting time string in local language
format.

flag
VMS Usage: byte_signed
type: byte integer (signed)
access: read only
mechanism: by reference

Bit 0: 0 - 12 hour format (default)
1 - 24 hour format

Bit 1: 0 - Full date and time (default)
1 - Time only

If this argument is not specified, 0 will be used which means 12 hour format with
full date and time display.

time-addr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the quadword that contains the user-specified date and time in
64-bit time format. If this argument is not specified, the current system time will
be used.

HSY/DATE–81

HSY$DX_DATE_TIME

Description

None.

HSY/DATE–82

HSY$DX_TIME

HSY$DX_TIME

HSY$DX_TIME returns the date and time of the system time in local language
format.

Format

HSY$DX_TIME dst,[flag]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The same condition value returned by the OpenVMS Run Time Library routine
LIB$SCOPY_R_DX.

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The specified destination string to store the resulting displaying string in local
language format.

flag
VMS Usage: byte_signed
type: byte integer (signed)
access: read only
mechanism: by reference

Bit 0: 0 - 12 hour format (default)
1 - 24 hour format

Bit 1: 0 - Full date and time (default)
1 - Time only

If this argument is not specified, 0 will be used which means 12 hour format with
full date and time display.

Description

None.

HSY/DATE–83

HSY$CHG_GENERAL

HSY$CHG_GENERAL

HSY$CHG_GENERAL converts specified characters in one of the three following
ways:

(1) From lower case letters to upper case letters (including English and Greek)
(2) From full form ASCII to half form ASCII

Format

HSY$CHG_GENERAL chr,conv-flag

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The converted character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The specified character to be converted.

conv-flag
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Conversion flag indicating what conversion is to be done. Only bit 0 to bit 1 of
this flag is used.

Bit 0 = 0: Performs uppercasing conversion. Uppercasing can be done to both
full form and half form letters.

Bit 1 = 0: Performs full form to half form conversion.

Description

If chr is not applicable to a particular conversion, e.g. chr is not a letter and
uppercasing conversion is specified by conv-flag, then no conversion will be done
and chr will be returned.

HSY/CONV–84

HSY$CHG_KEISEN

HSY$CHG_KEISEN

HSY$CHG_KEISEN converts ’0’ to ’9’ and ’-’ to multi-byte line drawing
characters.

Format

HSY$CHG_KEISEN chr

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

Returned multi-byte line drawing character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The input character code (see description).

Description

The conversion table is as follows:

If chr is not from ’0’ to ’9’ or ’-’, chr will be returned with no conversion done.

HSY/CONV–85

HSY$CHG_ROM_CASE

HSY$CHG_ROM_CASE

HSY$CHG_ROM_CASE toggles the casing of one-byte and multi-byte letters
(English letters and Greek letters) of the input character.

Format

HSY$CHG_ROM_CASE chr

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

Converted character with its case toggled.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

One-byte and multi-byte English letters and multi-byte Greek letters contain both
upper and lower case characters. This routine converts upper case characters to
lower case characters and vice versa.

If chr is not a one-byte or multi-byte letter as stated above, chr will be returned
and no conversion will be done.

HSY/CONV–86

HSY$CHG_ROM_FULL

HSY$CHG_ROM_FULL

HSY$CHG_ROM_FULL converts one-byte ASCII (half form ASCII) to multi-byte
equivalence (full form ASCII).

Format

HSY$CHG_ROM_FULL chr

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The corresponding full form ASCII character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

If chr is not a half form ASCII character, chr will be returned and no conversion
will be done.

HSY/CONV–87

HSY$CHG_ROM_HALF

HSY$CHG_ROM_HALF

HSY$CHG_ROM_HALF converts multi-byte ASCII (full form ASCII) to one-byte
(half form ASCII) equivalence.

Format

HSY$CHG_ROM_HALF chr

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The corresponding half form ASCII character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

If chr is not a full form character, chr will be returned and no conversion will be
done.

HSY/CONV–88

HSY$CHG_ROM_LOWER

HSY$CHG_ROM_LOWER

HSY$CHG_ROM_LOWER converts one-byte and multi-byte letters (English
letters and Greek letters) to lower case.

Format

HSY$CHG_ROM_LOWER chr

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The corresponding lowercase character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

If chr is not an upper case letter (English letter and Greek letter), chr will be
returned and no conversion will be done.

HSY/CONV–89

HSY$CHG_ROM_SIZE

HSY$CHG_ROM_SIZE

HSY$CHG_ROM_SIZE toggles the form (full form or half form) of the input
character.

Format

HSY$CHG_ROM_SIZE chr

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

Toggled character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

Full form and half form conversions only apply to one-byte ASCII (half form
ASCII) and multi-byte ASCII (full form ASCII). There are no half form
equivalence of other multi-byte characters such as Greek letters.

If chr is not a full form or half form character, chr will be returned and no
conversion will be done.

HSY/CONV–90

HSY$CHG_ROM_UPPER

HSY$CHG_ROM_UPPER

HSY$CHG_ROM_UPPER converts one-byte and multi-byte letters (English
letters and Greek letters) to upper case.

Format

HSY$CHG_ROM_UPPER chr

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The corresponding uppercase character.

Arguments

chr
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

Input character.

Description

If chr is not a lower case letter (English letter and Greek letter), chr will be
returned and no conversion will be done.

HSY/CONV–91

HSY$DX_TRA_ROM_CASE

HSY$DX_TRA_ROM_CASE

HSY$DX_TRA_ROM_CASE toggles the casing of one-byte and multi-byte letters
(English letters and Greek letters) found in the input string.

Format

HSY$DX_TRA_ROM_CASE dst,src,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The destination string that stores the result of the conversion.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The source string that is to be converted.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string. If this argument is not supplied, no
length information of the converted string will be returned to the caller.

Description

One-byte and multi-byte English letters and multi-byte Greek letters all contain
both upper case and lower case characters. This routine converts all upper case
characters to lower case and all lower case characters to upper case.

Characters in the input string that are not upper case or lower case characters
are copied to the corresponding position in the output string with no conversion
done.

HSY/CONV–92

HSY$DX_TRA_ROM_CASE

condition values returned

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. String
truncated.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/CONV–93

HSY$DX_TRA_ROM_FULL

HSY$DX_TRA_ROM_FULL

HSY$DX_TRA_ROM_FULL converts one-byte ASCII (half form ASCII) to multi-
byte equivalence (full form ASCII).

Format

HSY$DX_TRA_ROM_FULL dst,src,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The destination string that stores the result of the conversion.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The source string that is to be converted.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string. If this argument is not supplied, no
length information of the converted string will be returned to the caller.

Description

Characters in the input string that are not half form characters are copied to the
corresponding position in the output string with no conversion done.

condition values returned

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. String
truncated.

HSY/CONV–94

HSY$DX_TRA_ROM_FULL

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/CONV–95

HSY$DX_TRA_ROM_HALF

HSY$DX_TRA_ROM_HALF

HSY$DX_TRA_ROM_HALF converts multi-byte ASCII (full form ASCII) to
one-byte (half form ASCII) equivalence.

Format

HSY$DX_TRA_ROM_HALF dst,src,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The destination string that stores the result of the conversion.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The source string that is to be converted.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string. If this argument is not supplied, no
length information of the converted string will be returned to the caller.

Description

Characters in the input string that are not full form characters are copied to the
corresponding position in the output string with no conversion done.

CONDITION VALUES RETURNED

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. String
truncated.

HSY/CONV–96

HSY$DX_TRA_ROM_HALF

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/CONV–97

HSY$DX_TRA_ROM_LOWER

HSY$DX_TRA_ROM_LOWER

HSY$DX_TRA_ROM_LOWER converts one-byte and multi-byte letters (English
letters and Greek letters) to lower case.

Format

HSY$DX_TRA_ROM_LOWER dst,src,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The destination string that stores the result of the conversion.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The source string that is to be converted.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string. If this argument is not supplied, no
length information of the converted string will be returned to the caller.

Description

Characters in the input string that are not upper case letters are copied to the
corresponding position in the output string with no conversion done.

condition values returned

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. String
truncated.

HSY/CONV–98

HSY$DX_TRA_ROM_LOWER

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/CONV–99

HSY$DX_TRA_ROM_SIZE

HSY$DX_TRA_ROM_SIZE

HSY$DX_TRA_ROM_SIZE toggles the form (full form or half form) of the input
string.

Format

HSY$DX_TRA_ROM_SIZE dst,src,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The destination string that stores the result of the conversion.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The source string that is to be converted.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string. If this argument is not supplied, no
length information of the converted string will be returned to the caller.

Description

Full form and half form conversions only apply to one-byte ASCII (half form
ASCII) and multi-byte ASCII (full form ASCII). There is no half form equivalence
of other multi-byte characters such as multi-byte Greek letters.

Characters in the input string that are not full form or half form characters are
copied to the corresponding position in the output string with no conversion done.

HSY/CONV–100

HSY$DX_TRA_ROM_SIZE

condition values returned

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. String
truncated.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/CONV–101

HSY$DX_TRA_ROM_UPPER

HSY$DX_TRA_ROM_UPPER

HSY$DX_TRA_ROM_UPPER converts one-byte and multi-byte letters (English
letters and Greek letters) to upper case.

Format

HSY$DX_TRA_ROM_UPPER dst,src,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The destination string that stores the result of the conversion.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The source string that is to be converted.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string. If this argument is not supplied, no
length information of the converted string will be returned to the caller.

Description

Characters in the input string that are not lower case letters are copied to the
corresponding position in the output string with no conversion done.

condition values returned

LIB$INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. String
truncated.

HSY/CONV–102

HSY$DX_TRA_ROM_UPPER

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/CONV–103

HSY$DX_TRA_SYMBOL

HSY$DX_TRA_SYMBOL

HSY$DX_$TRA_SYMBOL converts the sequence of a one-byte character to a
string of multi-byte symbols.

Format

HSY$DX_$TRA_SYMBOL dst,src,[len]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The return status.

Arguments

dst
VMS Usage: char_string
type: character string
access: write only
mechanism: by descriptor

The destination string that stores the result of the conversion.

src
VMS Usage: char_string
type: character string
access: read only
mechanism: by descriptor

The source string that is to be converted.

len
VMS Usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string. If this argument is not supplied, no
length information of the converted string will be returned to the caller.

Description

This routine provides conversion of sequences of ASCII characters to
corresponding multi-byte symbols and multi-byte characters as stated in the
following table.

If the characters in the input string are not applicable for conversion, they will be
copied to the corresponding position in the output string with no conversion done.

HSY/CONV–104

HSY$DX_TRA_SYMBOL

condition values returned

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has
an invalid value in its DSC$B_CLASS field.

LIB$_STRTRU Procedure successfully completed. String
truncated.

LIB$_FATERRLIB Fatal internal error. An internal consistency
check has failed.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_NORMAL Procedure successfully completed.

HSY/CONV–105

HSY$TRA_ROM_CASE

HSY$TRA_ROM_CASE

HSY$TRA_ROM_CASE toggles the casing of one-byte and multi-byte letters
(English letters and Greek letters) found in the string.

Format

HSY$TRA_ROM_CASE ip,il,op,ol,rl

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

1 - The input string is successfully converted.
0 - A truncated input string is converted due to insufficient output space of

the output string allocated by the caller.

Arguments

ip
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which is the input for
conversion.

il
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

op
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which stores the output
of conversion.

ol
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the output string.

HSY/CONV–106

HSY$TRA_ROM_CASE

rl
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string.

Description

One-byte and multi-byte English letters and multi-byte Greek letters contain both
upper and lower case characters. This routine converts all upper case characters
to lower case and all lower case characters to upper case.

If the characters in the input string are not one-byte or multi-byte letters,
they will be copied to the corresponding position in the output string with no
conversion done.

HSY/CONV–107

HSY$TRA_ROM_FULL

HSY$TRA_ROM_FULL

HSY$TRA_ROM_FULL converts one-byte ASCII (half form ASCII) to multi-byte
equivalence (full form ASCII).

Format

HSY$TRA_ROM_FULL ip,il,op,ol,rl

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

1 - The input string is successfully converted.
0 - A truncated input string is converted due to insufficient output space of

the output string allocated by the caller.

Arguments

ip
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which is the input for
conversion.

il
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

op
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which stores the output
of conversion.

ol
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the output string.

HSY/CONV–108

HSY$TRA_ROM_FULL

rl
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string.

Description

If the characters in the input string are not half form characters, they will be
copied to the corresponding position in the output string with no conversion done.

HSY/CONV–109

HSY$TRA_ROM_HALF

HSY$TRA_ROM_HALF

HSY$TRA_ROM_HALF converts multi-byte ASCII (full form ASCII) to one-byte
(half form ASCII) equivalence.

Format

HSY$TRA_ROM_HALF ip,il,op,ol,rl

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

1 - The input string is successfully converted.
0 - A truncated input string is converted due to insufficient output space of

the output string allocated by the caller.

Arguments

ip
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which is the input for
conversion.

il
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

op
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which stores the output
of conversion.

ol
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the output string.

HSY/CONV–110

HSY$TRA_ROM_HALF

rl
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string.

Description

If the characters in the input string are not full form characters, they will be
copied to the corresponding position in the output string with no conversion done.

HSY/CONV–111

HSY$TRA_ROM_LOWER

HSY$TRA_ROM_LOWER

HSY$TRA_ROM_LOWER converts one-byte and multi-byte letters (English
letters and Greek letters) to lower case.

Format

HSY$TRA_ROM_LOWER ip,il,op,ol,rl

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

1 - The input string is successfully converted.
0 - A truncated input string is converted due to insufficient output space of

the output string allocated by the caller.

Arguments

ip
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which is the input for
conversion.

il
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

op
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which stores the output
of conversion.

ol
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the output string.

HSY/CONV–112

HSY$TRA_ROM_LOWER

rl
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string.

Description

If the characters in the input string are not upper case letters, they will be copied
to the corresponding position in the output string with no conversion done.

HSY/CONV–113

HSY$TRA_ROM_SIZE

HSY$TRA_ROM_SIZE

HSY$TRA_ROM_SIZE toggles the form (full form or half form) of the input
string.

Format

HSY$TRA_ROM_SIZE ip,il,op,ol,rl

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

1 - The input string is successfully converted.
0 - A truncated input string is converted due to insufficient output space of

the output string allocated by the caller.

Arguments

ip
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which is the input for
conversion.

il
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

op
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which stores the output
of conversion.

ol
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the output string.

HSY/CONV–114

HSY$TRA_ROM_SIZE

rl
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string.

Description

Full form and half form conversions only apply to one-byte ASCII (half form
ASCII) and multi-byte ASCII (full form ASCII). There is no half form equivalence
of other multi-byte characters such as Greek letters.

If the characters in the input string are not full form or half form characters,
they will be copied to the corresponding position in the output string with no
conversion done.

HSY/CONV–115

HSY$TRA_ROM_UPPER

HSY$TRA_ROM_UPPER

HSY$TRA_ROM_UPPER converts one-byte and multi-byte letters (English letters
and Greek letters) to upper case.

Format

HSY$TRA_ROM_UPPER ip,il,op,ol,rl

Returns

VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

1 - The input string is successfully converted.
0 - A truncated input string is converted due to insufficient output space of

the output string allocated by the caller.

Arguments

ip
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the starting position of the specified string which is the input for
conversion.

il
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the input string.

op
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read onlys
mechanism: by value

The address of the starting position of the specified string which stores the output
of conversion.

ol
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length in bytes of the output string.

HSY/CONV–116

HSY$TRA_ROM_UPPER

rl
VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The length in bytes of the converted string.

Description

If the characters in the input string are not lower case letters, they will be copied
to the corresponding positions in the output string with no conversion done.

HSY/CONV–117

HSY$TRA_SYMBOL

HSY$TRA_SYMBOL

HSY$TRA_SYMBOL converts the sequence of a one-byte character to a string of
multi-byte symbols.

Format

HSY$TRA_SYMBOL ip,il,op,ol,rl

Returns

VMS Usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

0 - The conversion completed unsuccessfully.
1 - The conversion completed successfully.

Arguments

ip
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the specified input string that is to be converted.

il
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length of the input string that is specified by the argument ip.

op
VMS Usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by value

The address of the specified output string that stores the converted string.

ol
VMS Usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

The length of the output string that is specified by the argument op.

rl
VMS Usage: longword_signed
type: longword integer (signed)
access: write only

HSY/CONV–118

HSY$TRA_SYMBOL

mechanism: by reference

The actual length of the converted string.

Description

This routine provides conversion of sequences of ASCII characters to
corresponding multi-byte symbols and multi-byte characters as stated in the
following table.

If the characters in the input string are not applicable for conversion, they will be
copied to the corresponding position in the output string with no conversion done.

HSY/CONV–119

