
HP OpenVMS RTL General
Purpose (OTS$) Manual
Order Number: AA–PV6HE–TK

January 2005

This manual documents the general-purpose routines contained in the
OTS$ facility of the OpenVMS Run-Time Library.

Revision/Update Information: This manual supersedes the HP
OpenVMS RTL General Purpose
(OTS$) Manual for OpenVMS Alpha
Version 7.3.

Software Version: OpenVMS I64 Version 8.2
OpenVMS Alpha Version 8.2

Hewlett-Packard Company
Palo Alto, California

PS Conditioner
Processed on 9/20/2004

Black and white submission.

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the US

ZK5933

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . v

Part I OTS$ Overview

1 Run-Time Library General Purpose (OTS$) Facility

1.1 Overview . 1–1
1.2 Linking OTS$ Routines on Alpha and I64 Systems 1–4
1.2.1 64-Bit Addressing Support (Alpha and I64 Only) 1–5

Part II OTS$ Reference Section

OTS$CALL_PROC (Alpha and I64 Only) . OTS–3
OTS$CNVOUT . OTS–5
OTS$CVT_L_TB . OTS–7
OTS$CVT_L_TI . OTS–9
OTS$CVT_L_TL . OTS–11
OTS$CVT_L_TO . OTS–13
OTS$CVT_L_TU . OTS–15
OTS$CVT_L_TZ . OTS–17
OTS$CVT_T_x . OTS–19
OTS$CVT_TB_L . OTS–24
OTS$CVT_TI_L . OTS–27
OTS$CVT_TL_L . OTS–29
OTS$CVT_TO_L . OTS–31
OTS$CVT_TU_L . OTS–34
OTS$CVT_TZ_L . OTS–36
OTS$DIVCx . OTS–39
OTS$DIV_PK_LONG . OTS–42
OTS$DIV_PK_SHORT . OTS–46
OTS$JUMP_TO_BPV (I64 Only) . OTS–48
OTS$MOVE3 . OTS–50
OTS$MOVE5 . OTS–52
OTS$MULCx . OTS–54
OTS$POWCxCx . OTS–57
OTS$POWCxJ . OTS–60
OTS$POWDD . OTS–63
OTS$POWDJ . OTS–65
OTS$POWDR . OTS–67

iii

OTS$POWGG . OTS–69
OTS$POWGJ . OTS–72
OTS$POWHH_R3 (VAX Only) . OTS–74
OTS$POWHJ_R3 (VAX Only) . OTS–76
OTS$POWII . OTS–78
OTS$POWJJ . OTS–80
OTS$POWLULU . OTS–82
OTS$POWRD . OTS–84
OTS$POWRJ . OTS–86
OTS$POWRR . OTS–88
OTS$POWSJ . OTS–90
OTS$POWSS . OTS–92
OTS$POWTJ . OTS–95
OTS$POWTT . OTS–97
OTS$POWxLU . OTS–100
OTS$SCOPY_DXDX . OTS–102
OTS$SCOPY_R_DX . OTS–104
OTS$SFREE1_DD . OTS–107
OTS$SFREEN_DD . OTS–108
OTS$SGET1_DD . OTS–109

Index

Tables

1–1 OTS$ Conversion Routines . 1–2
1–2 OTS$ Division Routines . 1–2
1–3 OTS$ Move Data Routines . 1–2
1–4 OTS$ Multiplication Routine . 1–2
1–5 OTS$ Exponentiation Routines . 1–3
1–6 OTS$ Copy Source String Routines . 1–3
1–7 OTS$ Return String Area Routines . 1–4
1–8 OTS$ Convenience Routines . 1–4
1–9 OTS$ and Equivalent Math$ Entry Points . 1–4

iv

Preface

This manual provides users of the OpenVMS operating system with detailed
usage and reference information on general-purpose routines supplied in the
OTS$ facility of the Run-Time Library.

Intended Audience
This manual is intended for system and application programmers who write
programs that call OTS$ Run-Time Library routines.

Document Structure
This manual is organized into two parts as follows:

• Part I contains a brief overview of the OTS$ routines in Chapter 1.

• Part II, the OTS$ Reference Section, provides detailed reference information
on each routine contained in the OTS$ facility of the Run-Time Library.
This information is presented using the documentation format described in
OpenVMS Programming Concepts Manual. Routine descriptions appear in
alphabetical order by routine name.

Related Documents
The Run-Time Library routines are documented in a series of reference manuals.
A description of how the Run-Time Library routines are accessed and of
OpenVMS features and functionality available through calls to the OTS$
Run-Time Library appears in the OpenVMS Programming Concepts Manual.
Descriptions of other RTL facilities and their corresponding routines and usages
are discussed in the following books:

• Compaq Portable Mathematics Library

• OpenVMS VAX RTL Mathematics (MTH$) Manual

• OpenVMS RTL DECtalk (DTK$) Manual1

• HP OpenVMS RTL Library (LIB$) Manual

• OpenVMS RTL Parallel Processing (PPL$) Manual1

• OpenVMS RTL Screen Management (SMG$) Manual

• OpenVMS RTL String Manipulation (STR$) Manual

The Guide to the POSIX Threads Library contains guidelines and reference
information for HP POSIX Threads2, the HP Multithreading Run-Time Library.

1 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

2 HP POSIX Threads was formerly called DECthreads.

v

Application programmers using any programming language can refer to the Guide
to Creating OpenVMS Modular Procedures for writing modular and reentrant
code.

High-level language programmers will find additional information on calling
Run-Time Library routines in their language reference manual. Additional
information may also be found in the language user’s guide provided with your
OpenVMS language software.

For a complete list and description of the manuals in the OpenVMS
documentation set, see the HP OpenVMS Version 8.2 New Features and
Documentation Overview.

For additional information about HP OpenVMS products and services, see the
following World Wide Web address:

http://www.hp.com/products/openvms

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information on how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

vi

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

{ } In command format descriptions, braces indicate a required
choice of options; you must choose one of the options listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

vii

Part I
OTS$ Overview

This part of the HP OpenVMS RTL General Purpose (OTS$) Manual contains a
general overview of the routines provided by the OpenVMS RTL General Purpose
(OTS$) Facility, and lists them by function.

1
Run-Time Library General Purpose (OTS$)

Facility

This chapter describes the OpenVMS Run-Time Library General Purpose (OTS$)
Facility. See the OTS$ Reference Section for a detailed description of each routine
within the OTS$ facility.

Most of the OTS$ routines were originally designed to support language
compilers. Because they perform general-purpose functions, the routines were
moved into the language-independent facility, OTS$.

1.1 Overview
The Run-Time Library General Purpose (OTS$) Facility provides routines to
perform general-purpose functions. These functions include data type conversions
as part of a compiler’s generated code, and some mathematical functions.

The OTS$ facility contains routines to perform the following main tasks:

• Convert data types (see Table 1–1)

• Divide complex and packed decimal values (see Table 1–2)

• Move data to a specified destination address (see Table 1–3)

• Multiply complex values (see Table 1–4)

• Raise a base to an exponent (see Table 1–5)

• Copy a source string to a destination string (see Table 1–6)

• Return a string area to free storage (see Table 1–7)

• Use convenience routines related to the OpenVMS Calling Standard (see
Table 1–8)

Some restrictions apply if you link certain OTS$ routines on an Alpha system
or HP OpenVMS Industry Standard 64 for Integrity Servers (I64) system. See
Section 1.2 for more information about these restrictions.

Run-Time Library General Purpose (OTS$) Facility 1–1

Run-Time Library General Purpose (OTS$) Facility
1.1 Overview

Table 1–1 OTS$ Conversion Routines

Routine Name Function

OTS$CNVOUT Convert a D-floating, G-floating, H-floating, IEEE S-floating
or IEEE T-floating value to a character string.

OTS$CVT_L_TB Convert an unsigned integer to binary text.

OTS$CVT_L_TI Convert a signed integer to signed integer text.

OTS$CVT_L_TL Convert an integer to logical text.

OTS$CVT_L_TO Convert an unsigned integer to octal text.

OTS$CVT_L_TU Convert an unsigned integer to decimal text.

OTS$CVT_L_TZ Convert an integer to hexadecimal text.

OTS$CVT_TB_L Convert binary text to an unsigned integer value.

OTS$CVT_TI_L Convert signed integer text to an integer value.

OTS$CVT_TL_L Convert logical text to an integer value.

OTS$CVT_TO_L Convert octal text to an unsigned integer value.

OTS$CVT_TU_L Convert unsigned decimal text to an integer value.

OTS$CVT_T_x Convert numeric text to a D-, F-, G-, H-, IEEE S-, or IEEE
T-floating value.

OTS$CVT_TZ_L Convert hexadecimal text to an unsigned integer value.

For more information on Run-Time Library conversion routines, see the CVT$
reference section in the HP OpenVMS RTL Library (LIB$) Manual.

Table 1–2 OTS$ Division Routines

Routine Name Function

OTS$DIVCx Perform complex division.

OTS$DIV_PK_LONG Perform packed decimal division with a long divisor.

OTS$DIV_PK_SHORT Perform packed decimal division with a short divisor.

Table 1–3 OTS$ Move Data Routines

Routine Name Function

OTS$MOVE3 Move data without fill.

OTS$MOVE5 Move data with fill.

Table 1–4 OTS$ Multiplication Routine

Routine Name Function

OTS$MULCx Perform complex multiplication.

1–2 Run-Time Library General Purpose (OTS$) Facility

Run-Time Library General Purpose (OTS$) Facility
1.1 Overview

Table 1–5 OTS$ Exponentiation Routines

Routine Name Function

OTS$POWCxCx Raise a complex base to a complex floating-point exponent.

OTS$POWCxJ Raise a complex base to a signed longword exponent.

OTS$POWDD Raise a D-floating base to a D-floating exponent.

OTS$POWDR Raise a D-floating base to an F-floating exponent.

OTS$POWDJ Raise a D-floating base to a longword integer exponent.

OTS$POWGG Raise a G-floating base to a G-floating or longword integer
exponent.

OTS$POWGJ Raise a G-floating base to a longword integer exponent.

†OTS$POWHH_R3 Raise an H-floating base to an H-floating exponent.

†OTS$POWHJ_R3 Raise an H-floating base to a longword integer exponent.

OTS$POWII Raise a word integer base to a word integer exponent.

OTS$POWJJ Raise a longword integer base to a longword integer
exponent.

OTS$POWLULU Raise an unsigned longword integer base to an unsigned
longword integer exponent.

OTS$POWxLU Raise a floating-point base to an unsigned longword integer
exponent.

OTS$POWRD Raise an F-floating base to a D-floating exponent.

OTS$POWRJ Raise an F-floating base to a longword integer exponent.

OTS$POWRR Raise an F-floating base to an F-floating exponent.

OTS$POWSJ Raise an IEEE S-floating base to a longword integer
exponent.

OTS$POWSS Raise an IEEE S-floating base to an S-floating or longword
integer exponent.

OTS$POWTJ Raise an IEEE T-floating base to a longword integer
exponent.

OTS$POWTT Raise an IEEE T-floating base to a T-floating or longword
integer exponent.

†VAX specific.

Table 1–6 OTS$ Copy Source String Routines

Routine Name Function

OTS$SCOPY_DXDX Copy a source string passed by descriptor to a destination
string.

OTS$SCOPY_R_DX Copy a source string passed by reference to a destination
string.

Run-Time Library General Purpose (OTS$) Facility 1–3

Run-Time Library General Purpose (OTS$) Facility
1.1 Overview

Table 1–7 OTS$ Return String Area Routines

Routine Name Function

OTS$SFREE1_DD Free one dynamic string.

OTS$SFREEN_DD Free n dynamic strings.

OTS$SGET1_DD Get one dynamic string.

Table 1–8 OTS$ Convenience Routines

Routine Name Function

OTS$CALL_PROC Perform a call to a procedure that may be either in native
code or in a translated image.

OTS$JUMP_TO_BPV Transfer control to a bound procedure.

1.2 Linking OTS$ Routines on Alpha and I64 Systems
On Alpha and I64 systems, if you use the OTS$ entry points for certain
mathematics routines, you must link against the DPML$SHR.EXE library.
Alternately, you can use the equivalent math$ entry point for the routine and
link against either STARLET.OLB or the DPML$SHR.EXE library. Math$ entry
points are available only on Alpha and I64 systems.

Table 1–9 lists the affected OTS$ entry points with their equivalent math$ entry
points. Refer to the Compaq Portable Mathematics Library for information about
the math$ entry points.

Table 1–9 OTS$ and Equivalent Math$ Entry Points

OTS$ Entry Point Math$ Entry Point

OTS$DIVC math$cdiv_f

OTS$DIVCG_R3 math$cdiv_g

OTS$DIVCS math$cdiv_s

OTS$DIVCT_R3 math$cdiv_t

OTS$MULCS math$cmul_s

OTS$MULCT_R3 math$cmul_t

OTS$MULCG_R3 math$cmul_g

OTS$POWCC math$cpow_f

OTS$POWCGCG_R3 math$cpow_g

OTS$POWCJ math$cpow_fq

OTS$POWCSCS math$cpow_s

OTS$POWCSJ math$cpow_sq

OTS$POWCTCT_R3 math$cpow_t

OTS$POWCTJ_R3 math$cpow_tq

OTS$POWGG math$pow_gg

OTS$POWGJ math$pow_gq

(continued on next page)

1–4 Run-Time Library General Purpose (OTS$) Facility

Run-Time Library General Purpose (OTS$) Facility
1.2 Linking OTS$ Routines on Alpha and I64 Systems

Table 1–9 (Cont.) OTS$ and Equivalent Math$ Entry Points

OTS$ Entry Point Math$ Entry Point

OTS$POWGLU math$pow_gq

OTS$POWII math$pow_qq

OTS$POWJJ math$pow_qq

OTS$POWLULU math$pow_qq

OTS$POWRJ math$pow_fq

OTS$POWRLU math$pow_fq

OTS$POWRR math$pow_ff

OTS$POWSS math$pow_ss

OTS$POWSJ math$pow_sq

OTS$POWSLU math$pow_sq

OTS$POWTJ math$pow_tq

OTS$POWTLU math$pow_tq

OTS$POWTT math$pow_tt

1.2.1 64-Bit Addressing Support (Alpha and I64 Only)
On Alpha and I64 systems, the General Purpose (OTS$) routines provide 64-bit
virtual addressing capabilities as follows:

• All OTS$ RTL routines accept 64-bit addresses for arguments passed by
reference.

• All OTS$ RTL routines also accept either 32-bit or 64-bit descriptors for
arguments passed by descriptor.

Note

The OTS$ routines declared in ots$routines.h do not include prototypes
for 64-bit data. You must provide your own generic prototypes for any
OTS$ functions you use.

See the OpenVMS Programming Concepts Manual for more information about
64-bit virtual addressing capabilities.

Run-Time Library General Purpose (OTS$) Facility 1–5

Part II
OTS$ Reference Section

This section provides detailed descriptions of the routines provided by the
OpenVMS RTL General Purpose (OTS$) Facility.

OTS$ Routines
OTS$CALL_PROC (Alpha and I64 Only)

OTS$CALL_PROC (Alpha and I64 Only)
Call Special Procedure

The Call Special Procedure routine performs a call to a procedure that may be
either in native code or in a translated image.

Format

OTS$CALL_PROC target-func-value ,target-sig-info ,standard-args ,...

Returns

None.

Arguments

target-func-value
OpenVMS usage: function value
type: quadword address
access: read only
mechanism: by value in register R23 (Alpha). by value in register R17

(I64).

Function value for the procedure to be called.

target-sig-info
OpenVMS usage: TIE signature information
type: TIE signature block
access: read only
mechanism: by reference in register R24 (Alpha). by value in register R17

(I64).

Signature information is used to transform the standard arguments into the
form required by a translated image (if needed). The representation of signature
information is described in the OpenVMS Calling Standard.

standard-args

Zero or more arguments to be passed to the called routine, passed using standard
conventions (including the AI register).

Description

When translated code support is requested, the compiled code must call the
special service routine, OTS$CALL_PROC. The actual parameters to the target
function are passed to OTS$CALL_PROC as though the target routine is native
code that is being invoked directly.

OTS$CALL_PROC first determines whether the target routine is part of a
translated image.

If the target is in native code, then OTS$CALL_PROC completes the call in a way
that makes its mediation transparent (that is, control need not pass back through
it for the return). The native parameters are used without modification.

OTS–3

OTS$ Routines
OTS$CALL_PROC (Alpha and I64 Only)

If the target is in translated code, then OTS$CALL_PROC passes control to the
Translated Image Environment (TIE). For additional information, see the HP
OpenVMS Calling Standard.

Condition Values Returned

None.

OTS–4

OTS$ Routines
OTS$CNVOUT

OTS$CNVOUT
Convert D-Floating, G-Floating, H-Floating, S-Floating or T-Floating
Number to Character String

The Convert Floating to Character String routines convert a D-floating,
G-floating, H-floating, IEEE S-floating, or IEEE T-floating number to a character
string in the Fortran E format.

Format

OTS$CNVOUT D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction

OTS$CNVOUT_G D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction

OTS$CNVOUT_H D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction (VAX only)

OTS$CNVOUT_S D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction (VAX only)

OTS$CNVOUT_T D-G-H-S-or-T-float-pt-input-val ,fixed-length-resultant-string
,digits-in-fraction (VAX only)

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

D-G-H-S-or-T-float-pt-input-val
OpenVMS usage: floating_point
type: D_floating, G_floating, H_floating, IEEE S_floating, IEEE

T_floating
access: read only
mechanism: by reference

Value that OTS$CNVOUT converts to a character string. For OTS$CNVOUT, the
D-G-H-S-or-T-float-pt-input-val argument is the address of a D-floating number
containing the value. For OTS$CNVOUT_G, the D-G-H-S-or-T-float-pt-input-
val argument is the address of a G-floating number containing the value. For
OTS$CNVOUT_S, the D-G-H-S-or-T-float-pt-input-val argument is the address
of an IEEE S-floating number containing the value. For OTS$CNVOUT_T, the
D-G-H-S-or-T-float-pt-input-val argument is the address of an IEEE T-floating
number containing the value.

fixed-length-resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor, fixed length

OTS–5

OTS$ Routines
OTS$CNVOUT

Output string into which OTS$CNVOUT writes the character string result of the
conversion. The fixed-length-resultant-string argument is the address of a
descriptor pointing to the output string.

digits-in-fraction
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of digits in the fractional portion of the result. The digits-in-fraction
argument is an unsigned longword containing the number of digits to be written
to the fractional portion of the result.

Condition Values Returned

SS$_NORMAL Normal successful completion.
SS$_ROPRAND Floating reserved operand detected.
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is filled with asterisks (*).

OTS–6

OTS$ Routines
OTS$CVT_L_TB

OTS$CVT_L_TB
Convert an Unsigned Integer to Binary Text

The Convert an Unsigned Integer to Binary Text routine converts an unsigned
integer value of arbitrary length to binary representation in an ASCII text string.
By default, a longword is converted.

Format

OTS$CVT_L_TB varying-input-value,fixed-length-resultant-string [,number-of-digits]
[,input-value-size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

varying-input-value
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

Unsigned byte, word, or longword that OTS$CVT_L_TB converts to an unsigned
decimal representation in an ASCII text string. (The value of the input-value-
size argument determines whether varying-input-value is a byte, word, or
longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor, fixed length

ASCII text string that OTS$CVT_L_TB creates when it converts the integer
value. The fixed-length-resultant-string argument is the address of a
descriptor pointing to this ASCII text string. The string is assumed to be of
fixed length (CLASS_S descriptor).

number-of-digits
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Minimum number of digits in the binary representation to be generated. The
number-of-digits argument is a signed longword containing this minimum
number. If the minimum number of digits is omitted, the default is 1. If the
actual number of significant digits is less than the minimum number of digits,
leading zeros are produced. If the minimum number of digits is zero and the

OTS–7

OTS$ Routines
OTS$CVT_L_TB

value of the integer to be converted is also zero, OTS$CVT_L_TB creates a blank
string.

input-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is
a signed longword containing the byte size. This is an optional argument. If the
size is omitted, the default is 4 (longword).

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is filled with asterisks (*).

OTS–8

OTS$ Routines
OTS$CVT_L_TI

OTS$CVT_L_TI
Convert Signed Integer to Decimal Text

The Convert Signed Integer to Decimal Text routine converts a signed integer to
its decimal representation in an ASCII text string. This routine supports Fortran
Iw and Iw.m output and BASIC output conversion.

Format

OTS$CVT_L_TI varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size] [,flags-value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

varying-input-value
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference, fixed length

A signed integer that OTS$CVT_L_TI converts to a signed decimal representation
in an ASCII text string. The varying-input-value argument is the address of
the signed integer.

On VAX systems, the integer can be a signed byte, word, or longword. The value
of the input-value-size argument determines whether varying-input-value is
a byte, word, or longword.

On Alpha and I64 systems, the integer can be a signed byte, word, longword,
or quadword. The value of the input-value-size argument determines whether
varying-input-value is a byte, word, longword, or quadword.

fixed-length-resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Decimal ASCII text string that OTS$CVT_L_TI creates when it converts the
signed integer. The fixed-length-resultant-string argument is the address of a
CLASS_S descriptor pointing to this text string. The string is assumed to be of
fixed length.

number-of-digits
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

OTS–9

OTS$ Routines
OTS$CVT_L_TI

Minimum number of digits to be generated when OTS$CVT_L_TI converts the
signed integer to a decimal ASCII text string. The number-of-digits argument
is a signed longword containing this number. If the minimum number of digits
is omitted, the default value is 1. If the actual number of significant digits is
smaller, OTS$CVT_L_TI inserts leading zeros into the output string. If number-
of-digits is zero and varying-input-value is zero, OTS$CVT_L_TI writes a
blank string to the output string.

input-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a
signed longword containing this value size. If the size is omitted, the default is 4
(longword).

On VAX systems, the value size must be 1, 2, or 4. If value size is 1 or 2, the
value is sign-extended to a longword before conversion.

On Alpha and I64 systems, the value size must be 1, 2, 4, or 8. If the value is 1,
2, or 4, the value is sign-extended to a quadword before conversion.

flags-value
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Caller-supplied flags that you can use if you want OTS$CVT_L_TI to insert a
plus sign before the converted number. The flags-value argument is an unsigned
longword containing the flags.

The caller flags are described in the following table:

Bit Action if Set Action if Clear

0 Insert a plus sign (+) before the
first nonblank character in the
output string.

Omit the plus sign.

If flags-value is omitted, all bits are clear and the plus sign is not inserted.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. Either the result would

have exceeded the fixed-length string or the
input-value-size is not a valid value. The
output string is filled with asterisks (*).

OTS–10

OTS$ Routines
OTS$CVT_L_TL

OTS$CVT_L_TL
Convert Integer to Logical Text

The Convert Integer to Logical Text routine converts an integer to an ASCII text
string representation using Fortran L (logical) format.

Format

OTS$CVT_L_TL longword-integer-value ,fixed-length-resultant-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

longword-integer-value
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Value that OTS$CVT_L_TL converts to an ASCII text string. The longword-
integer-value argument is the address of a signed longword containing this
integer value.

fixed-length-resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor, fixed length

Output string that OTS$CVT_L_TL creates when it converts the integer value
to an ASCII text string. The fixed-length-resultant-string argument is the
address of a descriptor pointing to this ASCII text string.

The output string is assumed to be of fixed length (CLASS_S descriptor).

If bit 0 of longword-integer-value is set, OTS$CVT_L_TL stores the character
T in the rightmost character of fixed-length-resultant-string. If bit 0 is clear,
it stores the character F. In either case, it fills the remaining characters of
fixed-length-resultant-string with blanks.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is of zero length (descriptor LENGTH field
contains 0).

OTS–11

OTS$ Routines
OTS$CVT_L_TL

Example

5 !+
! This is an example program
! showing the use of OTS$CVT_L_TL.
!-

VALUE% = 10
OUTSTR$ = ’ ’
CALL OTS$CVT_L_TL(VALUE%, OUTSTR$)
PRINT OUTSTR$

9 END

This BASIC example illustrates the use of OTS$CVT_L_TL. The output generated
by this program is ’F’.

OTS–12

OTS$ Routines
OTS$CVT_L_TO

OTS$CVT_L_TO
Convert Unsigned Integer to Octal Text

The Convert Unsigned Integer to Octal Text routine converts an unsigned integer
to an octal ASCII text string. OTS$CVT_L_TO supports Fortran Ow and Ow.m
output conversion formats.

Format

OTS$CVT_L_TO varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

varying-input-value
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

Unsigned byte, word, or longword that OTS$CVT_L_TO converts to an unsigned
decimal representation in an ASCII text string. (The value of the input-value-
size argument determines whether varying-input-value is a byte, word, or
longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor, fixed length

Output string that OTS$CVT_L_TO creates when it converts the integer value
to an octal ASCII text string. The fixed-length-resultant-string argument is
the address of a descriptor pointing to the octal ASCII text string. The string is
assumed to be of fixed length (CLASS_S descriptor).

number-of-digits
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Minimum number of digits that OTS$CVT_L_TO generates when it converts the
integer value to an octal ASCII text string. The number-of-digits argument
is a signed longword containing the minimum number of digits. If it is omitted,
the default is 1. If the actual number of significant digits in the octal ASCII
text string is less than the minimum number of digits, OTS$CVT_L_TO inserts

OTS–13

OTS$ Routines
OTS$CVT_L_TO

leading zeros into the output string. If number-of-digits is 0 and varying-
input-value is 0, OTS$CVT_L_TO writes a blank string to the output string.

input-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a
signed longword containing the number of bytes in the integer to be converted by
OTS$CVT_L_TO. If it is omitted, the default is 4 (longword).

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is filled with asterisks (*).

OTS–14

OTS$ Routines
OTS$CVT_L_TU

OTS$CVT_L_TU
Convert Unsigned Integer to Decimal Text

The Convert Unsigned Integer to Decimal Text routine converts an unsigned
integer value to its unsigned decimal representation in an ASCII text string.

Format

OTS$CVT_L_TU varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

varying-input-value
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

An unsigned integer that OTS$CVT_L_TU converts to an unsigned decimal
representation in an ASCII text string. The varying-input-value argument is
the address of the unsigned integer.

On VAX systems, the integer can be an unsigned byte, word, or longword. (The
value of the input-value-size argument determines whether varying-input-
value is a byte, word, or longword.)

On Alpha and I64 systems, the integer can be an unsigned byte, word, longword,
or quadword. (The value of the input-value-size argument determines whether
varying-input-value is a byte, word, longword, or quadword.)

fixed-length-resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor, fixed length

Output string that OTS$CVT_L_TU creates when it converts the integer value
to unsigned decimal representation in an ASCII text string. The fixed-length-
resultant-string argument is the address of a descriptor pointing to this ASCII
text string.

number-of-digits
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

OTS–15

OTS$ Routines
OTS$CVT_L_TU

Minimum number of digits in the ASCII text string that OTS$CVT_L_TU creates.
The number-of-digits argument is a signed longword containing the minimum
number. If the minimum number of digits is omitted, the default is 1.

If the actual number of significant digits in the output string created is less than
the minimum number, OTS$CVT_L_TU inserts leading zeros into the output
string. If the minimum number of digits is zero and the integer value to be
converted is also zero, OTS$CVT_L_TU writes a blank string to the output string.

input-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Size of the integer to be converted, in bytes. The input-value-size argument is a
signed longword containing this value size. If the size is omitted, the default is 4
(longword).

On VAX systems, the value size must be 1, 2, or 4.

On Alpha and I64 systems, the value size must be 1, 2, 4, or 8.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. Either the result would

have exceeded the fixed-length string or the
input-value-size is not a valid value. The
output string is filled with asterisks (*).

OTS–16

OTS$ Routines
OTS$CVT_L_TZ

OTS$CVT_L_TZ
Convert Integer to Hexadecimal Text

The Convert Integer to Hexadecimal Text routine converts an unsigned integer to
a hexadecimal ASCII text string. OTS$CVT_L_TZ supports Fortran Zw and Zw.m
output conversion formats.

Format

OTS$CVT_L_TZ varying-input-value ,fixed-length-resultant-string [,number-of-digits]
[,input-value-size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

varying-input-value
OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

Unsigned byte, word, or longword that OTS$CVT_L_TZ converts to an unsigned
decimal representation in an ASCII text string. (The value of the input-value-
size argument determines whether varying-input-value is a byte, word, or
longword.) The varying-input-value argument is the address of the unsigned
integer.

fixed-length-resultant-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor, fixed length

Output string that OTS$CVT_L_TZ creates when it converts the integer value to
a hexadecimal ASCII text string. The fixed-length-resultant-string argument
is the address of a descriptor pointing to this ASCII text string. The string is
assumed to be of fixed length (CLASS_S descriptor).

number-of-digits
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Minimum number of digits in the ASCII text string that OTS$CVT_L_TZ creates
when it converts the integer. The number-of-digits argument is a signed
longword containing this minimum number. If it is omitted, the default is 1. If
the actual number of significant digits in the text string that OTS$CVT_L_TZ
creates is less than this minimum number, OTS$CVT_L_TZ inserts leading zeros
in the output string. If the minimum number of digits is zero and the integer

OTS–17

OTS$ Routines
OTS$CVT_L_TZ

value to be converted is also zero, OTS$CVT_L_TZ writes a blank string to the
output string.

input-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Size of the integer that OTS$CVT_L_TZ converts, in bytes. The input-value-size
argument is a signed longword containing the value size. If the size is omitted,
the default is 4 (longword).

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_OUTCONERR Output conversion error. The result would have

exceeded the fixed-length string; the output
string is filled with asterisks (*).

Example

with TEXT_IO; use TEXT_IO;
procedure SHOW_CONVERT is

type INPUT_INT is new INTEGER range 0..INTEGER’LAST;

INTVALUE : INPUT_INT := 256;
HEXSTRING : STRING(1..11);

procedure CONVERT_TO_HEX (I : in INPUT_INT; HS : out STRING);
pragma INTERFACE (RTL, CONVERT_TO_HEX);
pragma IMPORT_routine (INTERNAL => CONVERT_TO_HEX,

EXTERNAL => "OTS$CVT_L_TZ",
MECHANISM =>(REFERENCE,

DESCRIPTOR (CLASS => S)));

begin
CONVERT_TO_HEX (INTVALUE, HEXSTRING);
PUT_LINE("This is the value of HEXSTRING");
PUT_LINE(HEXSTRING);

end;

This Ada example uses OTS$CVT_L_TZ to convert a longword integer to
hexadecimal text.

OTS–18

OTS$ Routines
OTS$CVT_T_x

OTS$CVT_T_x
Convert Numeric Text to D-, F-, G-, H-, S-, or T-Floating Value

The Convert Numeric Text to D-, F-, G-, H-, IEEE S-, or IEEE T-Floating routines
convert an ASCII text string representation of a numeric value to a D-floating,
F-floating, G-floating, H-floating, IEEE S-floating, or IEEE T-floating value.

Format

OTS$CVT_T_D fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_F fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_G fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_H fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_S fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

OTS$CVT_T_T fixed-or-dynamic-input-string ,floating-point-value [,digits-in-fraction]
[,scale-factor] [,flags-value] [,extension-bits]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fixed-or-dynamic-input-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor, fixed-length or dynamic string

Input string containing an ASCII text string representation of a numeric value
that OTS$CVT_T_x converts to a D-floating, F-floating, G-floating, H-floating,
IEEE S-floating, or IEEE T-floating value. The fixed-or-dynamic-input-string
argument is the address of a descriptor pointing to the input string.

The syntax of a valid input string is as follows:

OTS–19

OTS$ Routines
OTS$CVT_T_x

VM-0710A-AI

[<blanks>] [<digits>] [.]
+
-

+
-

E
e
D
d
Q
q

[<digits>] [<digits>]

[<blanks>]
+
-

E, e, D, d, Q, and q are the possible exponent letters. They are semantically
equivalent. Other elements in the preceding syntax are defined as follows:

Term Description

blanks One or more blanks
digits One or more decimal digits

floating-point-value
OpenVMS usage: floating_point
type: D_floating, F_floating, G_floating, H_floating, IEEE S_floating,

IEEE T_floating
access: write only
mechanism: by reference

Floating-point value that OTS$CVT_T_x creates when it converts the input
string. The floating-point-value argument is the address of the floating-point
value. The data type of floating-point-value depends on the called routine as
shown in the following table:

Routine floating-point-value Data Type

OTS$CVT_T_D D-floating
OTS$CVT_T_F F-floating
OTS$CVT_T_G G-floating
OTS$CVT_T_H H-floating
OTS$CVT_T_S IEEE S-floating
OTS$CVT_T_T IEEE T-floating

digits-in-fraction
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of digits in the fraction if no decimal point is included in the input string.
The digits-in-fraction argument contains the number of digits. If the number of
digits is omitted, the default is zero.

OTS–20

OTS$ Routines
OTS$CVT_T_x

scale-factor
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Scale factor. The scale-factor argument contains the value of the scale factor.
If bit 6 of the flags-value argument is clear, the resultant value is divided by
10scale�factor unless the exponent is present. If bit 6 of flags-value is set, the
scale factor is always applied. If the scale factor is omitted, the default is zero.

flags-value
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags. The flags-value argument contains the user-supplied flags
described in the following table:

Bit Action if Set Action if Clear

0 Ignore blanks. Interpret blanks as zeros.
1 Allow only E or e exponents.

(This is consistent with Fortran
semantics.)

Allow E, e, D, d, Q and q exponents.
(This is consistent with BASIC
semantics.)

2 Interpret an underflow as an
error.

Do not interpret an underflow as an
error.

3 Truncate the value. Round the value.
4 Ignore tabs. Interpret tabs as invalid characters.
5 An exponent must begin with a

valid exponent letter.
The exponent letter can be omitted.

6 Always apply the scale factor. Apply the scale factor only if there
is no exponent present in the string.

If you omit the flags-value argument, OTS$CVT_T_x defaults all flags to clear.

extension-bits (D-, F-floating, IEEE S-floating)
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference

extension-bits (G-, H-floating, IEEE T-floating)
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Extra precision bits. The extension-bits argument is the address of a word
containing the extra precision bits. If extension-bits is present, floating-
point-value is not rounded, and the first n bits after truncation are returned
left-justified in this argument, as follows:

OTS–21

OTS$ Routines
OTS$CVT_T_x

Routine
Number of Bits
Returned Data Type

OTS$CVT_T_D 8 Byte (unsigned)
OTS$CVT_T_F 8 Byte (unsigned)
OTS$CVT_T_G 11 Word (unsigned)
OTS$CVT_T_H 15 Word (unsigned)
OTS$CVT_T_S 8 Byte (unsigned)
OTS$CVT_T_T 11 Word (unsigned)

A value represented by extension bits is suitable for use as the extension operand
in an EMOD instruction.

The extra precision bits returned for H-floating may not be precise because
OTS$CVT_T_H carries its calculations to only 128 bits. However the error should
be small.

Description

The OTSCVT_T_D, OTSCVT_T_F, OTSCVT_T_G, OTSCVT_T_H, OTS$CVT_
T_S, and OTS$CVT_T_T routines support Fortran D, E, F, and G input type
conversion as well as similar types for other languages.

These routines provide run-time support for BASIC and Fortran input
statements.

Although Alpha and I64 systems do not generally support H-floating operations,
you can use OTS$CVT_T_H to convert a text string to an H-floating value on an
Alpha or I64 system.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error; an invalid character in

the input string, or the value is outside the range
that can be represented. The floating-point-
value and extension-bits arguments, if present,
are set to +0.0 (not reserved operand –0.0).

Example

C+
C This is a Fortran program demonstrating the use of
C OTS$CVT_T_F.
C-

REAL*4 A
CHARACTER*10 T(5)
DATA T/’1234567+23’,’8.786534+3’,’-983476E-3’,’-23.734532’,’45’/
DO 2 I = 1, 5
TYPE 1,I,T(I)

1 FORMAT(’ Input string ’,I1,’ is ’,A10)

OTS–22

OTS$ Routines
OTS$CVT_T_x

C+
C B is the return status.
C T(I) is the string to be converted to an
C F-floating point value. A is the F-floating
C point conversion of T(I). %VAL(5) means 5 digits
C are in the fraction if no decimal point is in
C the input string T(I).
C-

B = OTS$CVT_T_F(T(I),A,%VAL(5),,)
TYPE *,’ Output of OTSCVT_T_F is ’,A
TYPE *,’ ’

2 CONTINUE
END

This Fortran example demonstrates the use of OTS$CVT_T_F. The output
generated by this program is as follows:

Input string 1 is 1234567+23
Output of OTSCVT_T_F is 1.2345669E+24
Input string 2 is 8.786534+3
Output of OTSCVT_T_F is 8786.534
Input string 3 is -983476E-3
Output of OTSCVT_T_F is -9.8347599E-03
Input string 4 is -23.734532
Output of OTSCVT_T_F is -23.73453
Input string 5 is 45
Output of OTSCVT_T_F is 45000.00

OTS–23

OTS$ Routines
OTS$CVT_TB_L

OTS$CVT_TB_L
Convert Binary Text to Unsigned Integer

The Convert Binary Text to Unsigned Integer routine converts an ASCII text
string representation of an unsigned binary value to an unsigned integer value.
The integer value can be of arbitrary length but is typically a byte, word,
longword, or quadword. The default size of the result is a longword.

Format

OTS$CVT_TB_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size] [,flags-value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fixed-or-dynamic-input-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string containing the string representation of an unsigned binary value
that OTS$CVT_TB_L converts to an unsigned integer value. The fixed-or-
dynamic-input-string argument is the address of a descriptor pointing to the
input string. The valid input characters are blanks and the digits 0 and 1. No
sign is permitted.

varying-output-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Unsigned integer of specified size that OTS$CVT_TB_L creates when it converts
the ASCII text string. The varying-output-value argument is the address of
the integer. The value of the output-value-size argument determines the size in
bytes of the output value.

output-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value.
The output-value-size argument contains a value that equals the size in bytes
of the output value. If the value of output-value-size is zero or a negative
number, OTS$CVT_TB_L returns an input conversion error. If you omit the
output-value-size argument, the default is 4 (longword).

OTS–24

OTS$ Routines
OTS$CVT_TB_L

flags-value
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flag that OTS$CVT_TB_L uses to determine how to interpret
blanks within the input string. The flags-value argument contains this user-
supplied flag.

OTS$CVT_TB_L defines the flag as follows:

Bit Action if Set Action if Clear

0 Ignore blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTS$CVT_TB_L defaults all flags to clear.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TB_L

encountered an invalid character in the fixed-or-
dynamic-input-string, an overflow of varying-
output-value, or an invalid output-value-size.
In the case of an invalid character or of an
overflow, varying-output-value is set to zero.

Example

OPTION &
TYPE = EXPLICIT

!+
! This program demonstrates the use of OTS$CVT_TB_L from BASIC.
! Several binary numbers are read and then converted to their
! integer equivalents.
!-

!+
! DECLARATIONS
!-

DECLARE STRING BIN_STR
DECLARE LONG BIN_VAL, I, RET_STATUS
DECLARE LONG CONSTANT FLAGS = 17 ! 2^0 + 2^4
EXTERNAL LONG FUNCTION OTS$CVT_TB_L (STRING, LONG, &

LONG BY VALUE, LONG BY VALUE)

!+
! MAIN PROGRAM
!-

!+
! Read the data, convert it to binary, and print the result.
!-

OTS–25

OTS$ Routines
OTS$CVT_TB_L

FOR I = 1 TO 5
READ BIN_STR
RET_STATUS = OTS$CVT_TB_L(BIN_STR, BIN_VAL, ’4’L, FLAGS)
PRINT BIN_STR;" treated as a binary number equals";BIN_VAL

NEXT I

!+
! Done, end the program.
!-

GOTO 32767

999 Data "1111", "1 111", "1011011", "11111111", "00000000"

32767 END

This BASIC example program demonstrates how to call OTS$CVT_TB_L to
convert binary text to a longword integer.

The output generated by this BASIC program is as follows:

1111 treated as a binary number equals 15
1 111 treated as a binary number equals 15
1011011 treated as a binary number equals 91
11111111 treated as a binary number equals 255
00000000 treated as a binary number equals 0

OTS–26

OTS$ Routines
OTS$CVT_TI_L

OTS$CVT_TI_L
Convert Signed Integer Text to Integer

The Convert Signed Integer Text to Integer routine converts an ASCII text string
representation of a signed decimal number to a signed integer value. The default
size of the result is a longword.

Format

OTS$CVT_TI_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size] [,flags-value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fixed-or-dynamic-input-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor, fixed-length or dynamic string

Input ASCII text string that OTS$CVT_TI_L converts to a signed integer. The
fixed-or-dynamic-input-string argument is the address of a descriptor pointing
to the input string.

The syntax of a valid ASCII text input string is as follows:
�
� +

– <integer-digits>

�
�

OTS$CVT_TI_L always ignores leading blanks.

varying-output-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Signed integer that OTS$CVT_TI_L creates when it converts the ASCII text
string. The varying-output-value argument is the address of the signed
integer. The value of the output-value-size argument determines the size of
varying-output-value.

output-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

OTS–27

OTS$ Routines
OTS$CVT_TI_L

Number of bytes to be occupied by the value created when OTS$CVT_TI_L
converts the ASCII text string to an integer value. The output-value-size
argument contains the number of bytes in varying-output-value.

On VAX systems, valid values for the output-value-size argument are 1, 2, and
4. The value determines whether the integer value that OTS$CVT_TI_L creates
is a byte, word, or longword.

On Alpha and I64 systems, valid values for the output-value-size argument are
1, 2, 4, and 8. The value determines whether the integer value that OTS$CVT_
TI_L creates is a byte, word, longword, or quadword.

For VAX and Alpha systems, if you specify a 0 (zero) or omit the output-value-
size argument, the size of the output value defaults to 4 (longword). If you
specify any other value, OTS$CVT_TI_L returns an input conversion error.

flags-value
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that OTS$CVT_TI_L uses to determine how blanks and tabs
are interpreted. The flags-value argument is an unsigned longword containing
the value of the flags.

Bit Action if Set Action if Clear

0 Ignore all blanks. Ignore leading blanks but interpret blanks
after the first legal character as zeros.

4 Ignore tabs. Interpret tabs as invalid characters.

If you omit the flags-value argument, OTS$CVT_TI_L defaults all flags to clear.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TI_L

encountered an invalid character in the fixed-or-
dynamic-input-string, an overflow of varying-
output-value, or an invalid output-value-size.
In the case of an invalid character or of an
overflow, varying-output-value is set to zero.

OTS–28

OTS$ Routines
OTS$CVT_TL_L

OTS$CVT_TL_L
Convert Logical Text to Integer

The Convert Logical Text to Integer routine converts an ASCII text string
representation of a FORTRAN-77 L format to a signed integer.

Format

OTS$CVT_TL_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fixed-or-dynamic-input-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor, fixed-length or dynamic string

Input string containing an ASCII text representation of a FORTRAN-77 L format
that OTS$CVT_TL_L converts to a signed integer value. The fixed-or-dynamic-
input-string argument is the address of a descriptor pointing to the input
string.

Common ASCII text representations of a FORTRAN-77 logical are .TRUE.,
.FALSE., T, t, F, and f. In practice, an OTS$CVT_TL_L input string is valid if it
adheres to the following syntax:

VM-0711A-AI

[<blanks>]

<blanks>

[.]

T
t
F
f

[<characters>]

One of the letters T, t, F, or f is required. Other elements in the preceding syntax
are defined as follows:

Term Description

blanks One or more blanks
characters One or more of any character

OTS–29

OTS$ Routines
OTS$CVT_TL_L

varying-output-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Signed integer that OTS$CVT_TL_L creates when it converts the ASCII text
string. The varying-output-value argument is the address of the signed
integer. The value of the output-value-size argument determines the size in
bytes of the signed integer.

OTS$CVT_TL_L returns –1 as the contents of the varying-output-value
argument if the character denoted by ‘‘letter’’ is T or t. Otherwise, OTS$CVT_TL_
L sets varying-output-value to zero.

output-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Number of bytes to be occupied by the signed integer created when OTS$CVT_
TL_L converts the ASCII text string to an integer value. The output-value-size
argument contains a value that equals the size in bytes of the output value.
If output-value-size contains a zero or a negative number, OTS$CVT_TL_L
returns an input conversion error.

On VAX systems, valid values for the output-value-size argument are 1, 2, and
4. The value determines whether the integer value that OTS$CVT_TL_L creates
is a byte, word, or longword.

On Alpha and I64 systems, valid values for the output-value-size argument are
1, 2, 4, and 8. This value determines whether the integer value that OTS$CVT_
TL_L creates is a byte, word, longword, or quadword.

For VAX, Alpha, and I64 systems, if you omit the output-value-size argument,
the default is 4 (longword).

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TL_L

encountered an invalid character in the fixed-
or-dynamic-input-string or an invalid output-
value-size. In the case of an invalid character
varying-output-value is set to zero.

OTS–30

OTS$ Routines
OTS$CVT_TO_L

OTS$CVT_TO_L
Convert Octal Text to Unsigned Integer

The Convert Octal Text to Unsigned Integer routine converts an ASCII text
string representation of an unsigned octal value to an unsigned integer. The
integer value can be of arbitrary length but is typically a byte, word, longword, or
quadword. The default size of the result is a longword.

Format

OTS$CVT_TO_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size] [,flags-value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fixed-or-dynamic-input-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor, fixed-length or dynamic string

Input string containing the string representation of an unsigned octal value
that OTS$CVT_TO_L converts to an unsigned integer. The fixed-or-dynamic-
input-string argument is the address of a descriptor pointing to the input string.
The valid input characters are blanks and the digits 0 through 7. No sign is
permitted.

varying-output-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Unsigned integer of specified size that OTS$CVT_TO_L creates when it converts
the ASCII text string. The varying-output-value argument is the address of
the unsigned integer. The value of the output-value-size argument determines
the size in bytes of the output value.

output-value-size
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value.
The output-value-size argument contains a value that equals the size in bytes
of the output value. If the value of output-value-size is zero or a negative
number, OTS$CVT_TO_L returns an input conversion error. If you omit the
output-value-size argument, the default is 4 (longword).

OTS–31

OTS$ Routines
OTS$CVT_TO_L

flags-value
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flag that OTS$CVT_TO_L uses to determine how to interpret
blanks within the input string. The flags-value argument contains the user-
supplied flag described in the following table:

Bit Action if Set Action if Clear

0 Ignore all blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTS$CVT_TO_L defaults the flag to clear.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TO_L

encountered an invalid character in the fixed-or-
dynamic-input-string, an overflow of varying-
output-value, or an invalid output-value-size.
In the case of an invalid character or of an
overflow, varying-output-value is set to zero.

Example

OCTAL_CONV: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

%INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE OTS$CVT_TO_L ENTRY

(CHARACTER (*), /* Input string passed by descriptor */
FIXED BINARY (31), /* Returned value passed by reference */
FIXED BINARY VALUE, /* Size for returned value passed by value */
FIXED BINARY VALUE) /* Flags passed by value */
RETURNS (FIXED BINARY (31)) /* Return status */
OPTIONS (VARIABLE); /* Arguments may be omitted */

DECLARE INPUT CHARACTER (10);
DECLARE VALUE FIXED BINARY (31);
DECLARE SIZE FIXED BINARY(31) INITIAL(4) READONLY STATIC; /* Longword */
DECLARE FLAGS FIXED BINARY(31) INITIAL(1) READONLY STATIC; /* Ignore blanks*/

ON ENDFILE (SYSIN) STOP;

DO WHILE (’1’B); /* Loop continuously, until end of file */
PUT SKIP (2);
GET LIST (INPUT) OPTIONS (PROMPT (’Octal value: ’));
STS$VALUE = OTS$CVT_TO_L (INPUT, VALUE, SIZE, FLAGS);
IF ^STS$SUCCESS THEN RETURN (STS$VALUE);
PUT SKIP EDIT (INPUT, ’Octal equals’, VALUE, ’Decimal’)

(A,X,A,X,F(10),X,A);
END;

END OCTAL_CONV;

This PL/I program translates an octal value in ASCII into a fixed binary value.
The program is run interactively; press Ctrl/Z to quit.

OTS–32

OTS$ Routines
OTS$CVT_TO_L

$ RUN OCTAL
Octal value: 1
1 Octal equals 1 Decimal
Octal value: 11
11 Octal equals 9 Decimal
Octal value: 1017346
1017346 Octal equals 274150 Decimal
Octal value: Ctrl/Z

OTS–33

OTS$ Routines
OTS$CVT_TU_L

OTS$CVT_TU_L
Convert Unsigned Decimal Text to Integer

The Convert Unsigned Decimal Text to Integer routine converts an ASCII text
string representation of an unsigned decimal value to an unsigned integer value.
By default, the size of the result is a longword.

Format

OTS$CVT_TU_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size] [,flags-value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fixed-or-dynamic-input-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Input string containing an ASCII text string representation of an unsigned
decimal value that OTS$CVT_TU_L converts to an unsigned integer value. The
fixed-or-dynamic-input-string argument is the address of a descriptor pointing
to the input string. Valid input characters are the space and the digits 0 through
9. No sign is permitted.

varying-output-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Unsigned integer that OTS$CVT_TU_L creates when it converts the ASCII text
string. The varying-output-value argument is the address of the unsigned
integer. The value of the output-value-size argument determines the size of
varying-output-value.

output-value-size
OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Number of bytes occupied by the value created when OTS$CVT_TU_L converts
the input string. The output-value-size argument contains the number of bytes
in varying-output-value.

OTS–34

OTS$ Routines
OTS$CVT_TU_L

On VAX systems, valid values for the output-value-size argument are 1, 2, and
4. The value determines whether the integer value that OTS$CVT_TU_L creates
is a byte, word, or longword.

On Alpha and I64 systems, valid values for the output-value-size argument are
1, 2, 4, and 8. The value determines whether the integer value that OTS$CVT_
TU_L creates is a byte, word, longword, or quadword.

For VAX, Alpha, and I64 systems, if you specify a 0 (zero) or omit the output-
value-size argument, the size of the output value defaults to 4 (longword). If you
specify any other value, OTS$CVT_TU_L returns an input conversion error.

flags-value
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that OTS$CVT_TU_L uses to determine how blanks and tabs
are interpreted. The flags-value argument contains the user-supplied flags as
described in the following table:

Bit Action if Set Action if Clear

0 Ignore all blanks. Ignore leading blanks but interpret blanks
after the first legal character as zeros.

4 Ignore tabs. Interpret tabs as invalid characters.

If you omit the flags-value argument, OTS$CVT_TU_L defaults all flags to clear.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TU_L

encountered an invalid character in the fixed-
or-dynamic-input-string, overflow of varying-
output-value, or an invalid output-value-size.
In the case of an invalid character or of an
overflow, varying-output-value is set to zero.

OTS–35

OTS$ Routines
OTS$CVT_TZ_L

OTS$CVT_TZ_L
Convert Hexadecimal Text to Unsigned Integer

The Convert Hexadecimal Text to Unsigned Integer routine converts an ASCII
text string representation of an unsigned hexadecimal value to an unsigned
integer. The integer value can be of arbitrary length but is typically a byte, word,
longword, or quadword. The default size of the result is a longword.

Format

OTS$CVT_TZ_L fixed-or-dynamic-input-string ,varying-output-value
[,output-value-size] [,flags-value]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

fixed-or-dynamic-input-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor, fixed-length or dynamic string

Input string containing the string representation of an unsigned hexadecimal
value that OTS$CVT_TZ_L converts to an unsigned integer. The fixed-or-
dynamic-input-string argument is the address of a descriptor pointing to the
input string. The valid input characters are blanks, the digits 0 through 7,
and the letters A through F. Letters can be uppercase or lowercase. No sign is
permitted.

varying-output-value
OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Unsigned integer of specified size that OTS$CVT_TZ_L creates when it converts
the ASCII text string. The varying-output-value argument is the address of
the unsigned integer. The value of the output-value-size argument determines
the size in bytes of the output value.

output-value-size
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Arbitrary number of bytes to be occupied by the unsigned integer output value.
The output-value-size argument contains a value that equals the size in bytes
of the output value. If the value of output-value-size is zero or a negative

OTS–36

OTS$ Routines
OTS$CVT_TZ_L

number, OTS$CVT_TZ_L returns an input conversion error. If you omit the
output-value-size argument, the default is 4 (longword).

flags-value
OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied flags that OTS$CVT_TZ_L uses to determine how to interpret
blanks within the input string. The flags-value argument contains these
user-supplied flags as described in the following table:

Bit Action if Set Action if Clear

0 Ignore all blanks. Interpret blanks as zeros.

If you omit the flags-value argument, OTS$CVT_TZ_L defaults the flag to clear.

Condition Values Returned

SS$_NORMAL Normal successful completion.
OTS$_INPCONERR Input conversion error. OTS$CVT_TZ_L

encountered an invalid character in the fixed-
or-dynamic-input-string, overflow of varying-
output-value, or an invalid output-value-size.
In the case of an invalid character or of an
overflow, varying-output-value is set to zero.

Examples

1. 10 !+
! This BASIC program converts a character string representing
! a hexadecimal value to a longword.
!-

100 !+
! Illustrate (and test) OTS convert hex-string to longword
!-

EXTERNAL LONG FUNCTION OTS$CVT_TZ_L
EXTERNAL LONG CONSTANT OTS$_INPCONERR
INPUT "Enter hex numeric";HEXVAL$
RET_STAT% = OTS$CVT_TZ_L(HEXVAL$, HEX%)
PRINT "Conversion error " IF RET_STAT% = OTS$_INPCONERR
PRINT "Decimal value of ";HEXVAL$;" is";HEX% &

IF RET_STAT% <> OTS$_INPCONERR

This BASIC example accepts a hexadecimal numeric string, converts it to a
decimal integer, and prints the result. One sample of the output generated by
this program is as follows:

$ RUN HEX
Enter hex numeric? A
Decimal value of A is 10

OTS–37

OTS$ Routines
OTS$CVT_TZ_L

2. HEX_CONV: PROCEDURE OPTIONS (MAIN) RETURNS (FIXED BINARY (31));

%INCLUDE $STSDEF; /* Include definition of return status values */
DECLARE OTS$CVT_TZ_L ENTRY

(CHARACTER (*), /* Input string passed by descriptor */
FIXED BINARY (31), /* Returned value passed by reference */
FIXED BINARY VALUE, /* Size for returned value passed by value*/
FIXED BINARY VALUE) /* Flags passed by value */
RETURNS (FIXED BINARY (31)) /* Return status */
OPTIONS (VARIABLE); /* Arguments may be omitted */

DECLARE INPUT CHARACTER (10);
DECLARE VALUE FIXED BINARY (31);
DECLARE FLAGS FIXED BINARY(31) INITIAL(1) READONLY STATIC; /*Ignore blanks*/

ON ENDFILE (SYSIN) STOP;

DO WHILE (’1’B); /* Loop continuously, until end of file */
PUT SKIP (2);
GET LIST (INPUT) OPTIONS (PROMPT (’Hex value: ’));
STS$VALUE = OTS$CVT_TZ_L (INPUT, VALUE, , FLAGS);
IF ^STS$SUCCESS THEN RETURN (STS$VALUE);
PUT SKIP EDIT (INPUT, ’Hex equals’, VALUE, ’Decimal’)

(A,X,A,X,F(10),X,A);
END;

END HEX_CONV;

This PL/I example translates a hexadecimal value in ASCII into a fixed
binary value. This program continues to prompt for input values until the
user presses Ctrl/Z.

One sample of the output generated by this program is as follows:

$ RUN HEX
Hex value: 1A
1A Hex equals 26 Decimal

Hex value: C
C Hex equals 12 Decimal

Hex value: Ctrl/Z

OTS–38

OTS$ Routines
OTS$DIVCx

OTS$DIVCx
Complex Division

The Complex Division routines return a complex result of a division on complex
numbers.

Format

OTS$DIVC complex-dividend ,complex-divisor

OTS$DIVCD_R3 complex-dividend ,complex-divisor (VAX only)

OTS$DIVCG_R3 complex-dividend ,complex-divisor

OTS$DIVCS complex-dividend ,complex-divisor

OTS$DIVCT_R3 complex-dividend ,complex-divisor

Each of these formats corresponds to one of the floating-point complex types.

Returns

OpenVMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex,

IEEE S_floating complex, IEEE T_floating complex,
access: write only
mechanism: by value

Complex result of complex division. OTS$DIVC returns an F-floating complex
number. OTS$DIVCD_R3 returns a D-floating complex number. OTS$DIVCG_R3
returns a G-floating complex number. OST$DIVCS returns an IEEE S-floating
complex number. OTS$DIVCT_R3 returns an IEEE T-floating complex number.

Arguments

complex-dividend
OpenVMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex,

IEEE S_floating complex, IEEE T_floating complex
access: read only
mechanism: by value

Complex dividend. The complex-dividend argument contains a floating-point
complex value. For OTS$DIVC, complex-dividend is an F-floating complex
number. For OTS$DIVCD_R3, complex-dividend is a D-floating complex
number. For OTS$DIVCG_R3, complex-dividend is a G-floating complex
number. For OTS$DIVCT_R3, complex-dividend is an IEEE T-floating complex
number.

complex-divisor
OpenVMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex,

IEEE S_floating complex, IEEE T_floating complex
access: read only
mechanism: by value

Complex divisor. The complex-divisor argument contains the value of the
divisor. For OTS$DIVC, complex-divisor is an F-floating complex number.

OTS–39

OTS$ Routines
OTS$DIVCx

For OTS$DIVCD_R3, complex-divisor is a D-floating complex number. For
OTS$DIVCG_R3, complex-divisor is a G-floating complex number. For
OTS$DIVCS, complex-divisor is an IEEE S-floating complex number. For
OTS$DIVCS, complex-dividend is an IEEE S-floating complex number. For
OTS$DIVCT_R3, complex-divisor is an IEEE T-floating complex number.

Description

These routines return a complex result of a division on complex numbers.

The complex result is computed as follows:

1. Let (a,b) represent the complex dividend.

2. Let (c,d) represent the complex divisor.

3. Let (r,i) represent the complex quotient.

The results of this computation are as follows:

� � ���� ������2 � �2�

� � ���� ������2 � �2�

On Alpha and I64 systems, some restrictions apply when linking OTS$DIVC or
OTS$DIVCG_R3. See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTDIV_F Arithmetic fault. Floating-point division by zero.
SS$_FLTOVF_F Arithmetic fault. Floating-point overflow.

Examples

1. C+
C This Fortran example forms the complex
C quotient of two complex numbers using
C OTS$DIVC and the Fortran random number
C generator RAN.
C
C Declare Z1, Z2, Z_Q, and OTS$DIVC as complex values.
C OTS$DIVC will return the complex quotient of Z1 divided
C by Z2: Z_Q = OTS$DIVC(%VAL(REAL(Z1)), %VAL(AIMAG(Z1),
C %VAL(REAL(Z2)), %VAL(AIMAG(Z2))
C-

COMPLEX Z1,Z2,Z_Q,OTS$DIVC
C+
C Generate a complex number.
C-

Z1 = (8.0,4.0)
C+
C Generate another complex number.
C-

Z2 = (1.0,1.0)
C+
C Compute the complex quotient of Z1/Z2.
C-

Z_Q = OTS$DIVC(%VAL(REAL(Z1)), %VAL(AIMAG(Z1)), %VAL(REAL(Z2)),
+ %VAL(AIMAG(Z2)))

TYPE *, ’ The complex quotient of’,Z1,’ divided by ’,Z2,’ is’
TYPE *, ’ ’,Z_Q
END

OTS–40

OTS$ Routines
OTS$DIVCx

This Fortran program demonstrates how to call OTS$DIVC. The output
generated by this program is as follows:

The complex quotient of (8.000000,4.000000) divided by (1.000000,1.000000)
is (6.000000,-2.000000)

2. C+
C This Fortran example forms the complex
C quotient of two complex numbers by using
C OTS$DIVCG_R3 and the Fortran random number
C generator RAN.
C
C Declare Z1, Z2, and Z_Q as complex values. OTS$DIVCG_R3
C will return the complex quotient of Z1 divided by Z2:
C Z_Q = Z1/Z2
C-

COMPLEX*16 Z1,Z2,Z_Q
C+
C Generate a complex number.
C-

Z1 = (8.0,4.0)
C+
C Generate another complex number.
C-

Z2 = (1.0,1.0)
C+
C Compute the complex quotient of Z1/Z2.
C-

Z_Q = Z1/Z2
TYPE *, ’ The complex quotient of’,Z1,’ divided by ’,Z2,’ is’
TYPE *, ’ ’,Z_Q
END

This Fortran example uses the OTS$DIVCG_R3 entry point instead. Notice
the difference in the precision of the output generated:

The complex quotient of (8.000000000000000,4.000000000000000) divided by
(1.000000000000000,1.000000000000000) is

(6.000000000000000,-2.000000000000000)

OTS–41

OTS$ Routines
OTS$DIV_PK_LONG

OTS$DIV_PK_LONG
Packed Decimal Division with Long Divisor

The Packed Decimal Division with Long Divisor routine divides fixed-point
decimal data, which is stored in packed decimal form, when precision and scale
requirements for the quotient call for multiple precision division. The divisor
must have a precision of 30 or 31 digits.

Format

OTS$DIV_PK_LONG packed-decimal-dividend ,packed-decimal-divisor
,divisor-precision ,packed-decimal-quotient ,quotient-precision
,precision-data ,scale-data

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

packed-decimal-dividend
OpenVMS usage: varying_arg
type: packed decimal string
access: read only
mechanism: by reference

Dividend. The packed-decimal-dividend argument is the address of a packed
decimal string that contains the shifted dividend.

Before being passed as input, the packed-decimal-dividend argument is always
multiplied by 10c, where c is defined as follows:

c = 31 - prec(packed-decimal-dividend)

Multiplying packed-decimal-dividend by 10c makes packed-decimal-
dividend a 31-digit number.

packed-decimal-divisor
OpenVMS usage: varying_arg
type: packed decimal string
access: read only
mechanism: by reference

Divisor. The packed-decimal-divisor argument is the address of a packed
decimal string that contains the divisor.

divisor-precision
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Precision of the divisor. The divisor-precision argument is a signed word that
contains the precision of the divisor. The high-order bits are filled with zeros.

OTS–42

OTS$ Routines
OTS$DIV_PK_LONG

packed-decimal-quotient
OpenVMS usage: varying_arg
type: packed decimal string
access: write only
mechanism: by reference

Quotient. The packed-decimal-quotient argument is the address of the packed
decimal string into which OTS$DIV_PK_LONG writes the quotient.

quotient-precision
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Precision of the quotient. The quotient-precision argument is a signed word
that contains the precision of the quotient. The high-order bits are filled with
zeros.

precision-data
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Additional digits of precision required. The precision-data argument is a signed
word that contains the value of the additional digits of precision required.

OTS$DIV_PK_LONG computes the precision-data argument as follows:

precision-data = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
- 31 + prec(packed-decimal-dividend)

scale-data
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Scale factor of the decimal point. The scale-data argument is a signed word that
contains the scale data.

OTS$DIV_PK_LONG defines the scale-data argument as follows:

scale-data = 31 - prec(packed-decimal-divisor)

OTS–43

OTS$ Routines
OTS$DIV_PK_LONG

Description

On VAX systems, before using this routine, you should determine whether it is
best to use OTSDIV_PK_LONG, OTSDIV_PK_SHORT, or the VAX instruction
DIVP. To determine this, you must first calculate b, where b is defined as follows:

b = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
+ prec(packed-decimal-dividend)

If b is greater than 31, then OTS$DIV_PK_LONG can be used to perform the
division. If b is less than 31, you could use the instruction DIVP instead.

When using this routine on an OpenVMS Alpha system, an I64 system, or on an
OpenVMS VAX system and you have determined that you cannot use DIVP, you
need to determine whether you should use OTS$DIV_PK_LONG or OTS$DIV_
PK_SHORT. To determine this, you must examine the value of scale-data. If
scale-data is less than or equal to 1, then you should use OTS$DIV_PK_LONG.
If scale-data is greater than 1, you should use OTS$DIV_PK_SHORT instead.

Condition Value Signaled

SS$_FLTDIV Fatal error. Division by zero.

Example

1

OPTION &
TYPE = EXPLICIT

!+
! This program uses OTS$DIV_PK_LONG to perform packed decimal
! division.
!-

!+
! DECLARATIONS
!-

DECLARE DECIMAL (31, 2) NATIONAL_DEBT
DECLARE DECIMAL (30, 3) POPULATION
DECLARE DECIMAL (10, 5) PER_CAPITA_DEBT

EXTERNAL SUB OTS$DIV_PK_LONG (DECIMAL(31,2), DECIMAL (30, 3), &
WORD BY VALUE, DECIMAL(10, 5), WORD BY VALUE, WORD BY VALUE, &
WORD BY VALUE)

!+
! Prompt the user for the required input.
!-

INPUT "Enter national debt: ";NATIONAL_DEBT
INPUT "Enter current population: ";POPULATION

OTS–44

OTS$ Routines
OTS$DIV_PK_LONG

!+
! Perform the division and print the result.
!
! scale(divd) = 2
! scale(divr) = 3
! scale(quot) = 5
!
! prec(divd) = 31
! prec(divr) = 30
! prec(quot) = 10
!
! prec-data = scale(quot) + scale(divr) - scale(divd) - 31 +
! prec(divd)
! prec-data = 5 + 3 - 2 - 31 + 31
! prec-data = 6
!
! b = scale(quot) + scale(divr) - scale(divd) + prec(divd)
! b = 5 + 3 - 2 + 31
! b = 37
!
! c = 31 - prec(divd)
! c = 31 - 31
! c = 0
!
! scale-data = 31 - prec(divr)
! scale-data = 31 - 30
! scale-data = 1
!
! b is greater than 31, so either OTS$DIV_PK_LONG or
! OTS$DIV_PK_SHORT may be used to perform the division.
! If b is less than or equal to 31, then the DIVP
! instruction may be used.
!
! scale-data is less than or equal to 1, so OTS$DIV_PK_LONG
! should be used instead of OTS$DIV_PK_SHORT.
!
!-

CALL OTS$DIV_PK_LONG(NATIONAL_DEBT, POPULATION, ’30’W, PER_CAPITA_DEBT, &
’10’W, ’6’W, ’1’W)

PRINT "The per capita debt is ";PER_CAPITA_DEBT
END

This BASIC example program uses OTS$DIV_PK_LONG to perform packed
decimal division. One example of the output generated by this program is as
follows:

$ RUN DEBT
Enter national debt: ? 12345678
Enter current population: ? 1212
The per capita debt is 10186.20297

OTS–45

OTS$ Routines
OTS$DIV_PK_SHORT

OTS$DIV_PK_SHORT
Packed Decimal Division with Short Divisor

The Packed Decimal Division with Short Divisor routine divides fixed-point
decimal data when precision and scale requirements for the quotient call for
multiple-precision division.

Format

OTS$DIV_PK_SHORT packed-decimal-dividend ,packed-decimal-divisor
,divisor-precision ,packed-decimal-quotient
,quotient-precision ,precision-data

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments

packed-decimal-dividend
OpenVMS usage: varying_arg
type: packed decimal string
access: read only
mechanism: by reference

Dividend. The packed-decimal-dividend argument is the address of a packed
decimal string that contains the shifted dividend.

Before being passed as input, the packed-decimal-dividend argument is always
multiplied by 10c, where c is defined as follows:

c = 31 - prec(packed-decimal-dividend)

Multiplying packed-decimal-dividend by 10c makes packed-decimal-
dividend a 31-digit number.

packed-decimal-divisor
OpenVMS usage: varying_arg
type: packed decimal string
access: read only
mechanism: by reference

Divisor. The packed-decimal-divisor argument is the address of a packed
decimal string that contains the divisor.

divisor-precision
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Precision of the divisor. The divisor-precision argument is a signed word
integer that contains the precision of the divisor; high-order bits are filled with
zeros.

OTS–46

OTS$ Routines
OTS$DIV_PK_SHORT

packed-decimal-quotient
OpenVMS usage: varying_arg
type: packed decimal string
access: write only
mechanism: by reference

Quotient. The packed-decimal-quotient argument is the address of a packed
decimal string into which OTS$DIV_PK_SHORT writes the quotient.

quotient-precision
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Precision of the quotient. The quotient-precision argument is a signed word
that contains the precision of the quotient; high-order bits are filled with zeros.

precision-data
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Additional digits of precision required. The precision-data argument is a signed
word that contains the value of the additional digits of precision required.

OTS$DIV_PK_SHORT computes the precision-data argument as follows:

precision-data = scale(packed-decimal-quotient)
+ scale(packed-decimal-divisor)
- scale(packed-decimal-dividend)
- 31 + prec(packed-decimal-dividend)

Description

On VAX systems, before using this routine, you should determine whether it is
best to use OTSDIV_PK_LONG, OTSDIV_PK_SHORT, or the VAX instruction
DIVP. To determine this, you must first calculate b, where b is defined as follows:

b = scale(packed-decimal-quotient) + scale(packed-decimal-divisor) -
scale(packed-decimal-dividend) + prec(packed-decimal-dividend)

If b is greater than 31, then OTS$DIV_PK_SHORT can be used to perform the
division. If b is less than 31, you could use the VAX instruction DIVP instead.

When using this routine on an OpenVMS Alpha system, an I64 system, or on an
OpenVMS VAX system and you have determined that you cannot use DIVP, you
need to determine whether you should use OTS$DIV_PK_LONG or OTS$DIV_
PK_SHORT. To determine this, you must examine the value of scale-data. If
scale-data is less than or equal to 1, then you should use OTS$DIV_PK_LONG.
If scale-data is greater than 1, you should use OTS$DIV_PK_SHORT instead.

Condition Value Signaled

SS$_FLTDIV Fatal error. Division by zero.

OTS–47

OTS$ Routines
OTS$JUMP_TO_BPV (I64 Only)

OTS$JUMP_TO_BPV (I64 Only)
Jump to Bound Procedure Value

The Jump to Bound Procedure Value routine transfers control to a bound
procedure.

Format

OTS$JUMP_TO_BPV bound-func-value ,standard-args ,...

Returns

None.

Arguments

bound-func-value
OpenVMS usage: quadword address
type: address
access: read only
mechanism: by value in register R1 (GP)

Function value for the procedure being called.

standard-args

Zero or more arguments to be passed to the called routine, passed using standard
conventions (including the AI register).

Description

When a procedure value that refers to a bound procedure descriptor is used
to make a call, the routine designated in the OTS_ENTRY field (typically
OTS$JUMP_TO_BPV) receives control with the GP register pointing to the bound
procedure descriptor (instead of a global offset table). This routine performs the
following steps:

1. Load the "real" target entry address into a volatile branch register, for
example, B6.

2. Load the dynamic environment value into the appropriate uplevel-addressing
register for the target function, for example, OTS$JUMP_TO_BPV uses R9.

3. Load the "real" target GP address into the GP register

4. Transfer control (branch, not call) to the target entry address.

Control arrives at the real target procedure address with both the GP and
environment register values established appropriately.

Support routine OTS$JUMP_TO_BPV is included as a standard library routine.
The operation of OTS$JUMP_TO_BPV is logically equivalent to the following
code:

OTS–48

OTS$ Routines
OTS$JUMP_TO_BPV (I64 Only)

OTS$JUMP_TO_BPV::
add gp=gp,24 ; Adjust GP to point to entry address
ld8 r9=[gp],16 ; Load target entry address
mov b6=r9
ld8 r9=[gp],-8 ; Load target environment value
ld8 gp=[gp] ; Load target GP
br b6 ; Transfer to target

Note that there can be multiple OTS$JUMP_TO_BPV-like support routines,
corresponding to different target registers where the environment value should
be placed. The code that creates the bound function descriptor is also necessarily
compiled by the same compiler that compiles the target procedure, thus can
correctly select an appropriate support routine.

Condition Values Returned

None.

OTS–49

OTS$ Routines
OTS$MOVE3

OTS$MOVE3
Move Data Without Fill

The Move Data Without Fill routine moves up to �32 � � bytes (2,147,483,647
bytes) from a specified source address to a specified destination address.

Format

OTS$MOVE3 length-value ,source-array ,destination-array

Corresponding JSB Entry Point

OTS$MOVE3_R5

Returns

None.

Arguments

length-value
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Number of bytes of data to move. The length-value argument is a signed
longword that contains the number of bytes to move. The value of length-value
may range from 0 to 2,147,483,647 bytes.

source-array
OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Data to be moved by OTS$MOVE3. The source-array argument contains the
address of an unsigned byte array that contains this data.

destination-array
OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference, array reference

Address into which source-array will be moved. The destination-array
argument is the address of an unsigned byte array into which OTS$MOVE3
writes the source data.

OTS–50

OTS$ Routines
OTS$MOVE3

Description

OTS$MOVE3 performs the same function as the VAX MOVC3 instruction except
that the length-value is a longword integer rather than a word integer. When
called from the JSB entry point, the register outputs of OTS$MOVE3_R5 follow
the same pattern as those of the MOVC3 instruction:

R0 0
R1 Address of one byte beyond the source string
R2 0
R3 Address of one byte beyond the destination string
R4 0
R5 0

For more information, see the description of the MOVC3 instruction in the VAX
Architecture Reference Manual. See also the routine LIB$MOVC3, which is a
callable version of the MOVC3 instruction.

Condition Values Returned

None.

OTS–51

OTS$ Routines
OTS$MOVE5

OTS$MOVE5
Move Data with Fill

The Move Data with Fill routine moves up to �32 � � bytes (2,147,483,647
bytes) from a specified source address to a specified destination address, with
separate source and destination lengths, and with fill. Overlap of the source and
destination arrays does not affect the result.

Format

OTS$MOVE5 longword-int-source-length ,source-array ,fill-value
,longword-int-dest-length ,destination-array

Corresponding JSB Entry Point

OTS$MOVE5_R5

Returns

None.

Arguments

longword-int-source-length
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Number of bytes of data to move. The longword-int-source-length argument
is a signed longword that contains this number. The value of longword-int-
source-length may range from 0 to 2,147,483,647.

source-array
OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Data to be moved by OTS$MOVE5. The source-array argument contains the
address of an unsigned byte array that contains this data.

fill-value
OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by value

Character used to pad the source data if longword-int-source-length is less
than longword-int-dest-length. The fill-value argument contains the address
of an unsigned byte that is this character.

OTS–52

OTS$ Routines
OTS$MOVE5

longword-int-dest-length
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Size of the destination area in bytes. The longword-int-dest-length argument
is a signed longword containing this size. The value of longword-int-dest-
length may range from 0 through 2,147,483,647.

destination-array
OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: write only
mechanism: by reference, array reference

Address into which source-array is moved. The destination-array argument is
the address of an unsigned byte array into which OTS$MOVE5 writes the source
data.

Description

OTS$MOVE5 performs the same function as the VAX MOVC5 instruction
except that the longword-int-source-length and longword-int-dest-length
arguments are longword integers rather than word integers. When called from
the JSB entry point, the register outputs of OTS$MOVE5_R5 follow the same
pattern as those of the MOVC5 instruction:

R0 Number of unmoved bytes remaining in source string
R1 Address of one byte beyond the source string
R2 0
R3 Address of one byte beyond the destination string
R4 0
R5 0

For more information, see the description of the MOVC5 instruction in the VAX
Architecture Reference Manual. See also the routine LIB$MOVC5, which is a
callable version of the MOVC5 instruction.

Condition Values Returned

None.

OTS–53

OTS$ Routines
OTS$MULCx

OTS$MULCx
Complex Multiplication

The Complex Multiplication routines calculate the complex product of two
complex values.

Format

OTS$MULCD_R3 complex-multiplier ,complex-multiplicand (VAX only)

OTS$MULCG_R3 complex-multiplier ,complex-multiplicand

OTS$MULCT_R3 complex-multiplier ,complex-multiplicand

OTS$MULCS complex-multiplier ,complex-multiplicand

These formats correspond to the D-floating, G-floating, IEEE S-floating, and IEEE
T-floating complex types.

Returns

OpenVMS usage: complex_number
type: D_floating complex, G_floating complex, IEEE S_floating

complex, IEEE T_floating complex,
access: write only
mechanism: by value

Complex result of multiplying two complex numbers. OTS$MULCD_R3
returns a D-floating complex number. OTS$MULCG_R3 returns a G-floating
complex number. OTS$MULCS returns an IEEE S-Floating complex number.
OTS$MULCT_R3 returns an IEEE T-floating complex number.

Arguments

complex-multiplier
OpenVMS usage: complex_number
type: D_floating complex, G_floating complex, S_floating complex,

S_floating complex
access: read only
mechanism: by value

Complex multiplier. The complex-multiplier argument contains the complex
multiplier. For OTS$MULCD_R3, complex-multiplier is a D-floating complex
number. For OTS$MULCG_R3, complex-multiplier is a G-floating complex
number. For OTS$MULCS, complex-multiplier is a IEEE S-Floating complex
number. For OTS$MULCT_R3, complex-multiplier is an IEEE T-floating
complex number.

complex-multiplicand
OpenVMS usage: complex_number
type: D_floating complex, G_floating complex, IEEE S_floating

complex, IEEE T_floating complex
access: read only
mechanism: by value

Complex multiplicand. The complex-multiplicand argument contains the
complex multiplicand. For OTS$MULCD_R3, complex-multiplicand is a D-
floating complex number. For OTS$MULCG_R3, complex-multiplicand is a

OTS–54

OTS$ Routines
OTS$MULCx

G-floating complex number. For OTS$MULCS, complex-multiplicand is an
IEEE S-floating complex number. For OTS$MULCT_R3, complex-multiplicand
is an IEEE T-floating complex number.

Description

OTS$MULCx calculates the complex product of two complex values.

The complex product is computed as follows:

1. Let (a,b) represent the complex multiplier.

2. Let (c,d) represent the complex multiplicand.

3. Let (r,i) represent the complex product.

The results of this computation are as follows:

��� �� � ��� �� � ���� ��� �
�
������ ���

�	
�
���
 � � � ��� ��

�	
�
���
 � � � ��� ��

On Alpha and I64 systems, some restrictions apply when linking OTS$MULCG_
R3, OTS$MULCS, and OTS$MULCT_R3. See Chapter 1 for more information
about these restrictions.

Condition Values Signaled

SS$_FLTOVF_F Floating value overflow can occur.
SS$_ROPRAND Reserved operand. OTS$MULCx encountered

a floating-point reserved operand because of
incorrect user input. A floating-point reserved
operand is a floating-point datum with a sign bit
of 1 and a biased exponent of zero. Floating-point
reserved operands are reserved for future use by
HP.

Example

C+
C This Fortran example forms the product of
C two complex numbers using OTS$MULCD_R3
C and the Fortran random number generator RAN.
C
C Declare Z1, Z2, and Z_Q as complex values. OTS$MULCD_R3
C returns the complex product of Z1 times Z2:
C Z_Q = Z1 * Z2
C-

OTS–55

OTS$ Routines
OTS$MULCx

COMPLEX*16 Z1,Z2,Z_Q
C+
C Generate a complex number.
C-

Z1 = (8.0,4.0)
C+
C Generate another complex number.
C-

Z2 = (2.0,3.0)
C+
C Compute the complex product of Z1*Z2.
C-

Z_Q = Z1 * Z2
TYPE *, ’ The complex product of’,Z1,’ times ’,Z2,’ is’
TYPE *, ’ ’,Z_Q
END

This Fortran example uses OTS$MULCD_R3 to multiply two complex numbers.
The output generated by this program is as follows:

The complex product of (8.000000000000000,4.000000000000000) times
(2.000000000000000,3.000000000000000) is

(4.000000000000000,32.00000000000000)

OTS–56

OTS$ Routines
OTS$POWCxCx

OTS$POWCxCx
Raise a Complex Base to a Complex Floating-Point Exponent

The Raise a Complex Base to a Complex Floating-Point Exponent routines raise a
complex base to a complex exponent.

Format

OTS$POWCC complex-base ,complex-exponent-value

OTS$POWCDCD_R3 complex-base ,complex-exponent-value (VAX only)

OTS$POWCGCG_R3 complex-base ,complex-exponent-value

OTS$POWCSCS complex-base ,complex-exponent-value

OTS$POWCTCT_R3 complex-base ,complex-exponent-value

Each of these formats corresponds to one of the floating-point complex types.

Returns

OpenVMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex,

IEEE S_floating complex, IEEE T_floating complex
access: write only
mechanism: by value

Result of raising a complex base to a complex exponent. OTS$POWCC returns
an F-floating complex number. OTS$POWCDCD_R3 returns a D-floating
complex number. OTS$POWCGCG_R3 returns a G-floating complex number.
OTS$POWCSCS returns an IEEE S-floating complex number. OTS$POWCTCT_
R3 returns an IEEE T-floating complex number.

Arguments

complex-base
OpenVMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex,

IEEE S_floating complex, IEEE T_floating complex
access: read only
mechanism: by value

Complex base. The complex-base argument contains the value of the base.
For OTS$POWCC, complex-base is an F-floating complex number. For
OTS$POWCDCD_R3, complex-base is a D-floating complex number. For
OTS$POWCGCG_R3, complex-base is a G-floating complex number. For
OTS$POWCSCS, complex-base is an IEEE S-floating complex number. For
OTS$POWCTCT_R3, complex-base is an IEEE T-floating complex number.

complex-exponent-value
OpenVMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex,

IEEE S_floating complex, IEEE T_floating complex
access: read only
mechanism: by value

OTS–57

OTS$ Routines
OTS$POWCxCx

Complex exponent. The complex-exponent-value argument contains the value
of the exponent. For OTS$POWCC, complex-exponent-value is an F-floating
complex number. For OTS$POWCDCD_R3, complex-exponent-value is a
D-floating complex number. For OTS$POWCGCG_R3, complex-exponent-value
is a G-floating complex number. For OTS$POWCSCS, complex-exponent-value
is an IEEE S-floating complex number. For OTS$POWCTCT_R3, complex-
exponent-value is an IEEE T-floating complex number.

Description

OTS$POWCC, OTS$POWCDCD_R3, OTS$POWCGCG_R3, OTS$POWCSCS,
and OTS$POWCSCT_R3 raise a complex base to a complex exponent. The
American National Standard FORTRAN-77 (ANSI X3.9–1978) defines complex
exponentiation as follows:

� �

��� � ����
��

In this example, x and y are of type COMPLEX.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWCC
or OTS$POWCGCG_R3. See Chapter 1 for more information about these
restrictions.

Condition Values Signaled

MTH$_INVARGMAT Invalid argument in math library. Base is (0.,0.).
MTH$_FLOOVEMAT Floating-point overflow in math library.
SS$_ROPRAND Reserved operand.

Examples

1. C+
C This Fortran example raises a complex base to a complex
C power using OTS$POWCC.
C
C Declare Z1, Z2, Z3, and OTS$POWCC as complex values. Then OTS$POWCC
C returns the complex result of Z1**Z2: Z3 = OTS$POWCC(Z1,Z2),
C where Z1 and Z2 are passed by value.
C-

COMPLEX Z1,Z2,Z3,OTS$POWCC
C+
C Generate a complex base.
C-

Z1 = (2.0,3.0)
C+
C Generate a complex power.
C-

Z2 = (1.0,2.0)
C+
C Compute the complex value of Z1**Z2.
C-

Z3 = OTS$POWCC(%VAL(REAL(Z1)), %VAL(AIMAG(Z1)),
+ %VAL(REAL(Z2)), %VAL(AIMAG(Z2)))

TYPE *, ’ The value of’,Z1,’**’,Z2,’ is’,Z3
END

This Fortran example uses OTS$POWCC to raise an F-floating complex base
to an F-floating complex exponent.

OTS–58

OTS$ Routines
OTS$POWCxCx

The output generated by this program is as follows:

The value of (2.000000,3.000000)** (1.000000,2.000000) is
(-0.4639565,-0.1995301)

2. C+
C This Fortran example raises a complex base to a complex
C power using OTS$POWCGCG_R3.
C
C Declare Z1, Z2, and Z3 as complex values. OTS$POWCGCG_R3
C returns the complex result of Z1**Z2: Z3 = Z1**Z2.
C-

COMPLEX*16 Z1,Z2,Z3
C+
C Generate a complex base.
C-

Z1 = (2.0,3.0)
C+
C Generate a complex power.
C-

Z2 = (1.0,2.0)
C+
C Compute the complex value of Z1**Z2.
C-

Z3 = Z1**Z2
TYPE 1,Z1,Z2,Z3

1 FORMAT(’ The value of (’,F11.8,’,’,F11.8,’)**(’,F11.8,
+ ’,’,F11.8,’) is (’,F11.8,’,’,F11.8,’).’)

END

This Fortran example program shows how to use OTS$POWCGCG_R3.
Notice the high precision in the output generated by this program:

The value of (2.00000000, 3.00000000)**(1.00000000, 2.00000000) is
(-0.46395650,-0.46395650).

OTS–59

OTS$ Routines
OTS$POWCxJ

OTS$POWCxJ
Raise a Complex Base to a Signed Longword Integer Exponent

The Raise a Complex Base to a Signed Longword Integer Exponent routines
return the complex result of raising a complex base to an integer exponent.

Format

OTS$POWCJ complex-base ,longword-integer-exponent

OTS$POWCDJ_R3 complex-base ,longword-integer-exponent (VAX only)

OTS$POWCGJ_R3 complex-base ,longword-integer-exponent (VAX only)

OTS$POWCSJ complex-base ,longword-integer-exponent

OTS$POWCTJ_R3 complex-base ,longword-integer-exponent

Each of these formats corresponds to one of the floating-point complex types.

Returns

OpenVMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex,

IEEE S_floating complex, IEEE T_floating complex
access: write only
mechanism: by value

Complex result of raising a complex base to an integer exponent. OTS$POWCJ
returns an F-floating complex number. OTS$POWCDJ_R3 returns a D-floating
complex number. OTS$POWCGJ_R3 returns a G-floating complex number.
OTS$POWCGS_R3 returns an IEEE S-floating complex number. OTS$POWCGT_
R3 returns an IEEE T-floating complex number. In each format, the result and
base are of the same data type.

Arguments

complex-base
OpenVMS usage: complex_number
type: F_floating complex, D_floating complex, G_floating complex,

S_floating complex, T_floating complex,
access: read only
mechanism: by value

Complex base. The complex-base argument contains the complex base.
For OTS$POWCJ, complex-base is an F-floating complex number. For
OTS$POWCDJ_R3, complex-base is a D-floating complex number. For
OTS$POWCGJ_R3, complex-base is a G-floating complex number. For
OTS$POWCSJ, complex-base is an IEEE S-floating complex number. For
OTS$POWCTJ_R3, complex-base is an IEEE T-floating complex number.

longword-integer-exponent
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

OTS–60

OTS$ Routines
OTS$POWCxJ

Exponent. The longword-integer-exponent argument is a signed longword
containing the exponent.

Description

The OTS$POWCxJ routines return the complex result of raising a complex base
to an integer exponent. The complex result is as follows:

Base Exponent Result

Any � � The product of (base**2i), where i is each nonzero
bit in longword-integer-exponent.

(0.,0.) � 0 Undefined exponentiation.
Not (0.,0.) < 0 The product of (base**2i), where i is each nonzero

bit in longword-integer-exponent.
Not (0.,0.) 0 (1.0,0.0)

On Alpha and I64 systems, some restrictions apply when linking OTS$POWCJ,
OTS$POWCSJ, and OTS$POWCTJ_R3. See Chapter 1 for more information
about these restrictions.

Condition Values Signaled

SS$_FLTDIV Floating-point division by zero.
SS$_FLTOVF Floating-point overflow.
MTH$_UNDEXP Undefined exponentiation.

Example

C+
C This Fortran example raises a complex base to
C a NONNEGATIVE integer power using OTS$POWCJ.
C
C Declare Z1, Z2, Z3, and OTS$POWCJ as complex values.
C Then OTS$POWCJ returns the complex result of
C Z1**Z2: Z3 = OTS$POWCJ(Z1,Z2),
C where Z1 and Z2 are passed by value.
C-

COMPLEX Z1,Z3,OTS$POWCJ
INTEGER Z2

C+
C Generate a complex base.
C-

Z1 = (2.0,3.0)
C+
C Generate an integer power.
C-

Z2 = 2

C+
C Compute the complex value of Z1**Z2.
C-

Z3 = OTS$POWCJ(%VAL(REAL(Z1)), %VAL(AIMAG(Z1)), %VAL(Z2))
TYPE 1,Z1,Z2,Z3

1 FORMAT(’ The value of (’,F10.8,’,’,F11.8,’)**’,I1,’ is
+ (’,F11.8,’,’,F12.8,’).’)

END

The output generated by this Fortran program is as follows:

OTS–61

OTS$ Routines
OTS$POWCxJ

The value of (2.00000000, 3.00000000)**2 is
(-5.00000000, 12.00000000).

OTS–62

OTS$ Routines
OTS$POWDD

OTS$POWDD
Raise a D-Floating Base to a D-Floating Exponent

The Raise a D-Floating Base to a D-Floating Exponent routine raises a D-floating
base to a D-floating exponent.

Format

OTS$POWDD D-floating-point-base ,D-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by value

Result of raising a D-floating base to a D-floating exponent.

Arguments

D-floating-point-base
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing
the base.

D-floating-point-exponent
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by value

Exponent. The D-floating-point-exponent argument is a D-floating number
that contains the exponent.

Description

OTS$POWDD raises a D-floating base to a D-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The D-floating result for OTS$POWDD is given by the following:

Base Exponent Result

� � � � 0.0
� � � � Undefined exponentiation
� � � � Undefined exponentiation
� � Any Undefined exponentiation

OTS–63

OTS$ Routines
OTS$POWDD

Base Exponent Result

� � � � 2[exponent�log2(base)]

� � � � 1.0
� � � � 2[exponent�log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if D-floating-point-base is zero and D-floating-
point-exponent is zero or negative, or if the
D-floating-point-base is negative.

OTS–64

OTS$ Routines
OTS$POWDJ

OTS$POWDJ
Raise a D-Floating Base to a Longword Exponent

The Raise a D-Floating Base to a Longword Exponent routine raises a D-floating
base to a longword exponent.

Format

OTS$POWDJ D-floating-point-base ,longword-integer-exponent

Returns

OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by value

Result of raising a D-floating base to a longword exponent.

Arguments

D-floating-point-base
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing
the base.

longword-integer-exponent
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword
that contains the signed longword integer exponent.

Description

OTS$POWDJ raises a D-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base Exponent Result

Any � � Product of (base**2i), where i is each nonzero bit
position in longword-integer-exponent.

� � � � 1.0
� � � � Undefined exponentiation.

OTS–65

OTS$ Routines
OTS$POWDJ

Base Exponent Result

� � � � 1.0
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.
� � � � Undefined exponentiation.
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if D-floating-point-base is zero and longword-
integer-exponent is zero or negative, or if the
D-floating-point-base is negative.

OTS–66

OTS$ Routines
OTS$POWDR

OTS$POWDR
Raise a D-Floating Base to an F-Floating Exponent

The Raise a D-Floating Base to an F-Floating Exponent routine raises a
D-floating base to an F-floating exponent.

Format

OTS$POWDR D-floating-point-base ,F-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by value

Result of raising a D-floating base to an F-floating exponent.

Arguments

D-floating-point-base
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by value

Base. The D-floating-point-base argument is a D-floating number containing
the base.

F-floating-point-exponent
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by value

Exponent. The F-floating-point-exponent argument is an F-floating number
that contains the exponent.

Description

OTS$POWDR raises a D-floating base to an F-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

OTS$POWDR converts the F-floating exponent to a D-floating number. The
D-floating result for OTS$POWDR is given by the following:

Base Exponent Result

� � � � 0.0
� � � � Undefined exponentiation
� � � � Undefined exponentiation

OTS–67

OTS$ Routines
OTS$POWDR

Base Exponent Result

� � Any Undefined exponentiation
� � � � 2[exponent�log2(base)]

� � � � 1.0
� � � � 2[exponent�log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if D-floating-point-base is zero and F-floating-
point-exponent is zero or negative, or if the
D-floating-point-base is negative.

OTS–68

OTS$ Routines
OTS$POWGG

OTS$POWGG
Raise a G-Floating Base to a G-Floating Exponent

The Raise a G-Floating Base to a G-Floating Exponent routine raises a G-floating
base to a G-floating exponent.

Format

OTS$POWGG G-floating-point-base ,G-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: G_floating
access: write only
mechanism: by value

Result of raising a G-floating base to a G-floating exponent.

Arguments

G-floating-point-base
OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by value

Base that OTS$POWGG raises to a G-floating exponent. The G-floating-point-
base argument is a G-floating number containing the base.

G-floating-point-exponent
OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by value

Exponent to which OTS$POWGG raises the base. The G-floating-point-
exponent argument is a G-floating number containing the exponent.

Description

OTS$POWGG raises a G-floating base to a G-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The G-floating result for OTS$POWGG is as follows:

Base Exponent Result

� � � � 0.0
� � � � Undefined exponentiation
� � � � Undefined exponentiation
� � Any Undefined exponentiation

OTS–69

OTS$ Routines
OTS$POWGG

Base Exponent Result

� � � � 2[exponent�log2(base)]

� � � � 1.0
� � � � 2[exponent�log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWGG.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponent. This error is signaled if

G-floating-point-base is zero and G-floating-
point-exponent is zero or negative, or if G-
floating-point-base is negative.

Example

C+
C This example demonstrates the use of OTS$POWGG,
C which raises a G-floating point base
C to a G-floating point power.
C-

REAL*8 X,Y,RESULT,OTS$POWGG
C+
C The arguments of OTS$POWGG are passed by value. Fortran can
C only pass INTEGER and REAL*4 expressions as VALUE. Since
C INTEGER and REAL*4 values are one longword long, while REAL*8
C values are two longwords long, equate the base (and power) to
C two-dimensional INTEGER vectors. These vectors will be passed
C by VALUE.
C-

INTEGER N(2),M(2)
EQUIVALENCE (N(1),X), (M(1),Y)
X = 8.0
Y = 2.0

C+
C To pass X by value, pass N(1) and N(2) by value. Similarly for Y.
C-

RESULT = OTS$POWGG(%VAL(N(1)),%VAL(N(2)),%VAL(M(1)),%VAL(M(2)))
TYPE *,’ 8.0**2.0 IS ’,RESULT
X = 9.0
Y = -0.5

C+
C In Fortran, OTS$POWWGG is indirectly called by simply using the
C exponentiation operator.
C-

RESULT = X**Y
TYPE *,’ 9.0**-0.5 IS ’,RESULT
END

OTS–70

OTS$ Routines
OTS$POWGG

This Fortran example uses OTS$POWGG to raise a G-floating base to a G-floating
exponent.

The output generated by this example is as follows:

8.0**2.0 IS 64.0000000000000
9.0**-0.5 IS 0.333333333333333

OTS–71

OTS$ Routines
OTS$POWGJ

OTS$POWGJ
Raise a G-Floating Base to a Longword Exponent

The Raise a G-Floating Base to a Longword Exponent routine raises a G-floating
base to a longword exponent.

Format

OTS$POWGJ G-floating-point-base ,longword-integer-exponent

Returns

OpenVMS usage: floating_point
type: G_floating
access: write only
mechanism: by value

Result of raising a G-floating base to a longword exponent.

Arguments

G-floating-point-base
OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by value

Base that OTS$POWGJ raises to a longword exponent. The G-floating-point-
base argument is a G-floating number containing the base.

longword-integer-exponent
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Exponent to which OTS$POWGJ raises the base. The longword-integer-
exponent argument is a signed longword containing the exponent.

Description

OTS$POWGJ raises a G-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base Exponent Result

Any � � Product of (base**2i), where i is each nonzero bit
position in longword-integer-exponent.

� � � � 1.0
� � � � Undefined exponentiation.

OTS–72

OTS$ Routines
OTS$POWGJ

Base Exponent Result

� � � � 1.0
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.
� � � � Undefined exponentiation.
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWGJ.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponent. This error is signaled if

G-floating-point-base is zero and longword-
integer-exponent is zero or negative, or if
G-floating-point-base is negative.

OTS–73

OTS$ Routines
OTS$POWHH_R3 (VAX Only)

OTS$POWHH_R3 (VAX Only)
Raise an H-Floating Base to an H-Floating Exponent

On VAX systems, the Raise an H-Floating Base to an H-Floating Exponent
routine raises an H-floating base to an H-floating exponent.

Format

OTS$POWHH_R3 H-floating-point-base ,H-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by value

Result of raising an H-floating base to an H-floating exponent.

Arguments

H-floating-point-base
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by value

Base. The H-floating-point-base argument is an H-floating number containing
the base.

H-floating-point-exponent
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by value

Exponent. The H-floating-point-exponent argument is an H-floating number
that contains the H-floating exponent.

Description

OTS$POWHH_R3 raises an H-floating base to an H-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The H-floating result for OTS$POWHH_R3 is as follows:

Base Exponent Result

� � � � 0.0
� � � � Undefined exponentiation
� � � � Undefined exponentiation
� � Any Undefined exponentiation

OTS–74

OTS$ Routines
OTS$POWHH_R3 (VAX Only)

Base Exponent Result

� � � � 2[exponent�log2(base)]

� � � � 1.0
� � � � 2[exponent�log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if H-floating-point-base is zero and H-floating-
point-exponent is zero or negative, or if the
H-floating-point-base is negative.

Example

C+
C Example of OTS$POWHH, which raises an H_floating
C point base to an H_floating point power. In Fortran,
C it is not directly called.
C-

REAL*16 X,Y,RESULT
X = 9877356535.0
Y = -0.5837653

C+
C In Fortran, OTS$POWWHH is indirectly called by simply using the
C exponentiation operator.
C-

RESULT = X**Y
TYPE *,’ 9877356535.0**-0.5837653 IS ’,RESULT
END

This Fortran example demonstrates how to call OTS$POWHH_R3 to raise an
H-floating base to an H-floating power.

The output generated by this program is as follows:

9877356535.0**-0.5837653 IS 1.463779145994628357482343598205427E-0006

OTS–75

OTS$ Routines
OTS$POWHJ_R3 (VAX Only)

OTS$POWHJ_R3 (VAX Only)
Raise an H-Floating Base to a Longword Exponent

On VAX systems, the Raise an H-Floating Base to a Longword Exponent routine
raises an H-floating base to a longword exponent.

Format

OTS$POWHJ_R3 H-floating-point-base ,longword-integer-exponent

Returns

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by value

Result of raising an H-floating base to a longword exponent.

Arguments

H-floating-point-base
OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by value

Base. The H-floating-point-base argument is an H-floating number containing
the base.

longword-integer-exponent
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword
that contains the signed longword exponent.

Description

OTS$POWHJ_R3 raises an H-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base Exponent Result

Any � � Product of (base**2i), where i is each nonzero bit
position in longword-integer-exponent.

� � � � 1.0
� � � � Undefined exponentiation.

OTS–76

OTS$ Routines
OTS$POWHJ_R3 (VAX Only)

Base Exponent Result

� � � � 1.0
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.
� � � � Undefined exponentiation.
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if H-floating-point-base is zero and longword-
integer-exponent is zero or negative, or if the
H-floating-point-base is negative.

OTS–77

OTS$ Routines
OTS$POWII

OTS$POWII
Raise a Word Base to a Word Exponent

The Raise a Word Base to a Word Exponent routine raises a word base to a word
exponent.

Format

OTS$POWII word-integer-base ,word-integer-exponent

Returns

OpenVMS usage: word_signed
type: word (signed)
access: write only
mechanism: by value

Result of raising a word base to a word exponent.

Arguments

word-integer-base
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Base. The word-integer-base argument is a signed word containing the base.

word-integer-exponent
OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by value

Exponent. The word-integer-exponent argument is a signed word containing
the exponent.

Description

The OTS$POWII routine raises a word base to a word exponent.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWII.
See Chapter 1 for more information about these restrictions.

OTS–78

OTS$ Routines
OTS$POWII

Condition Values Signaled

SS$_FLTDIV Arithmetic trap. This error is signaled by the
hardware if a floating-point division by zero
occurs.

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_UNDEXP Undefined exponentiation. This error is signaled
if word-integer-base is zero and word-
integer-exponent is zero or negative, or if
word-integer-base is negative.

OTS–79

OTS$ Routines
OTS$POWJJ

OTS$POWJJ
Raise a Longword Base to a Longword Exponent

The Raise a Longword Base to a Longword Exponent routine raises a signed
longword base to a signed longword exponent.

Format

OTS$POWJJ longword-integer-base ,longword-integer-exponent

Returns

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by value

Result of raising a signed longword base to a signed longword exponent.

Arguments

longword-integer-base
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Base. The longword-integer-base argument is a signed longword containing
the base.

longword-integer-exponent
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword
containing the exponent.

Description

The OTS$POWJJ routine raises a signed longword base to a signed longword
exponent.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWJJ.
See Chapter 1 for more information about these restrictions.

OTS–80

OTS$ Routines
OTS$POWJJ

Condition Values Signaled

SS$_FLTDIV Arithmetic trap. This error is signaled by the
hardware if a floating-point division by zero
occurs.

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_UNDEXP Undefined exponentiation. This error is
signaled if longword-integer-base is zero
and longword-integer-exponent is zero
or negative, or if longword-integer-base is
negative.

OTS–81

OTS$ Routines
OTS$POWLULU

OTS$POWLULU
Raise an Unsigned Longword Base to an Unsigned Longword
Exponent

The Raise an Unsigned Longword Base to an Unsigned Longword Exponent
routine raises an unsigned longword integer base to an unsigned longword
integer exponent.

Format

OTS$POWLULU unsigned-lword-int-base, unsigned-lword-int-exponent

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Result of raising an unsigned longword integer base to an unsigned longword
integer exponent.

Arguments

unsigned-lword-int-base
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Unsigned longword integer base. The unsigned-lword-int-base argument
contains the value of the integer base.

unsigned-lword-int-exponent
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Unsigned longword integer exponent. The unsigned-lword-int-exponent
argument contains the value of the integer exponent.

Description

OTS$POWLULU returns the unsigned longword integer result of raising an
unsigned longword integer base to an unsigned longword integer exponent. Note
that overflow cannot occur in this routine. If the result or intermediate result is
greater than 32 bits, the low-order 32 bits are used.

On Alpha and I64 systems, some restrictions apply when linking
OTS$POWLULU. See Chapter 1 for more information about these restrictions.

OTS–82

OTS$ Routines
OTS$POWLULU

Condition Values Signaled

MTH$_UNDEXP Both the base and exponent values are zero.

OTS–83

OTS$ Routines
OTS$POWRD

OTS$POWRD
Raise an F-Floating Base to a D-Floating Exponent

The Raise an F-Floating Base to a D-Floating Exponent routine raises an
F-floating base to a D-floating exponent.

Format

OTS$POWRD F-floating-point-base ,D-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by value

Result of raising an F-floating base to a D-floating exponent.

Arguments

F-floating-point-base
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing
the base.

D-floating-point-exponent
OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by value

Exponent. The D-floating-point-exponent argument is a D-floating number
that contains the exponent.

Description

OTS$POWRD raises an F-floating base to a D-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

OTS$POWRD first converts the F-floating base to D-floating. The D-floating
result for OTS$POWRD is as follows:

Base Exponent Result

� � � � 0.0
� � � � Undefined exponentiation
� � � � Undefined exponentiation

OTS–84

OTS$ Routines
OTS$POWRD

Base Exponent Result

� � Any Undefined exponentiation
� � � � 2[exponent�LOG2(base)]

� � � � 1.0
� � � � 2[exponent�LOG2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if F-floating-point-base is zero and D-floating-
point-exponent is zero or negative, or if F-
floating-point-base is negative.

Example

C+
C This Fortran example uses OTS$POWRD, to raise an F-floating point
C base to a D-floating point exponent. The result is a D-floating value.
C-

REAL*4 X
REAL*8 Y,RESULT,OTS$POWRD
INTEGER M(2)
EQUIVALENCE (M(1),Y)
X = 9768.0
Y = 9.0

C+
C The arguments of OTS$POWRD are passed by value.
C-

RESULT = OTS$POWRD(%VAL(X),%VAL(M(1)),%VAL(M(2)))
TYPE *,’ 9768.0**9.0 IS ’,RESULT
X = 7689.0
Y = -0.587436654545

C+
C In Fortran, OTS$POWRD is indirectly called by the exponentiation operator.
C-

RESULT = X**Y
TYPE *,’ 7689.0**-0.587436654545 IS ’,RESULT
END

This Fortran example uses OTS$POWRD to raise an F-floating base to a D-
floating exponent. Notice the difference in the precision of the result produced by
this routine in comparison to the result produced by OTS$POWRR. The output
generated by this program is as follows:

9768.0**9.0 IS 8.0956338648832908E+35
7689.0**-0.587436654545 IS 5.2155199252836588E-03

OTS–85

OTS$ Routines
OTS$POWRJ

OTS$POWRJ
Raise an F-Floating Base to a Longword Exponent

The Raise an F-Floating Base to a Longword Exponent routine raises an
F-floating base to a longword exponent.

Format

OTS$POWRJ F-floating-point-base ,longword-integer-exponent

Returns

OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by value

Result of raising an F-floating base to a longword exponent.

Arguments

F-floating-point-base
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing
the base.

longword-integer-exponent
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword
that contains the longword exponent.

Description

OTS$POWRJ raises an F-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base Exponent Result

Any � � Product of (base**2i), where i is each nonzero bit
position in longword-integer-exponent.

� � � � 1.0
� � � � Undefined exponentiation.

OTS–86

OTS$ Routines
OTS$POWRJ

Base Exponent Result

� � � � 1.0
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.
� � � � Undefined exponentiation.
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWRJ.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if F-floating-point-base is zero and longword-
integer-exponent is zero or negative, or if
F-floating-point-base is negative.

OTS–87

OTS$ Routines
OTS$POWRR

OTS$POWRR
Raise an F-Floating Base to an F-Floating Exponent

The Raise an F-Floating Base to an F-Floating Exponent routine raises an
F-floating base to an F-floating exponent.

Format

OTS$POWRR F-floating-point-base ,F-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by value

Result of raising an F-floating base to an F-floating exponent.

Arguments

F-floating-point-base
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by value

Base. The F-floating-point-base argument is an F-floating number containing
the base.

F-floating-point-exponent
OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by value

Exponent. The F-floating-point-exponent argument is an F-floating number
that contains the exponent.

Description

OTS$POWRR raises an F-floating base to an F-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The F-floating result for OTS$POWRR is as follows:

Base Exponent Result

� � � � 0.0
� � � � Undefined exponentiation
� � � � Undefined exponentiation
� � Any Undefined exponentiation

OTS–88

OTS$ Routines
OTS$POWRR

Base Exponent Result

� � � � 2[exponent�log2(base)]

� � � � 1.0
� � � � 2[exponent�log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

On Alpha and i64 systems, some restrictions apply when linking OTS$POWRR.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if F-floating-point-base is zero and F-floating-
point-exponent is zero or negative, or if F-
floating-point-base is negative.

Example

C+
C This Fortran example demonstrates the use
C of OTS$POWRR, which raises an F-floating
C point base to an F-floating point power.
C-

REAL*4 X,Y,RESULT,OTS$POWRR
X = 8.0
Y = 2.0

C+
C The arguments of OTS$POWRR are passed by value.
C-

RESULT = OTS$POWRR(%VAL(X),%VAL(Y))
TYPE *,’ 8.0**2.0 IS ’,RESULT
X = 9.0
Y = -0.5

C+
C In Fortran, OTS$POWRR is indirectly called by simply
C using the exponentiation operator.
C-

RESULT = X**Y
TYPE *,’ 9.0**-0.5 IS ’,RESULT
END

This Fortran example uses OTS$POWRR to raise an F-floating point base to an
F-floating point exponent. The output generated by this program is as follows:

8.0**2.0 IS 64.00000
9.0**-0.5 IS 0.3333333

OTS–89

OTS$ Routines
OTS$POWSJ

OTS$POWSJ
Raise an S-Floating Base to a Longword Exponent

The Raise an IEEE S-Floating Base to a Longword Exponent routine raises an
IEEE S-floating base to a longword exponent.

Format

OTS$POWSJ S-floating-point-base ,longword-integer-exponent

Returns

OpenVMS usage: floating_point
type: S_floating
access: write only
mechanism: by value

Result of raising an IEEE S-floating base to a longword exponent.

Arguments

S-floating-point-base
OpenVMS usage: floating_point
type: S_floating
access: read only
mechanism: by value

Base. The S-floating-point-base argument is an IEEE S-floating number
containing the base.

longword-integer-exponent
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword
that contains the longword exponent.

Description

OTS$POWSJ raises an IEEE S-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base Exponent Result

Any � � Product of (base**2i), where i is each nonzero bit
position in longword-integer-exponent.

� � � � 1.0
� � � � Undefined exponentiation.

OTS–90

OTS$ Routines
OTS$POWSJ

Base Exponent Result

� � � � 1.0
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.
� � � � Undefined exponentiation.
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWSJ.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if S-floating-point-base is zero and longword-
integer-exponent is zero or negative, or if
S-floating-point-base is negative.

OTS–91

OTS$ Routines
OTS$POWSS

OTS$POWSS
Raise an S-Floating Base to an S-Floating Exponent

The Raise an IEEE S-Floating Base to an IEEE S-Floating Exponent routine
raises a IEEE S-floating base to an IEEE S-floating exponent.

Format

OTS$POWSS S-floating-point-base ,S-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: IEEE S_floating
access: write only
mechanism: by value

Result of raising an IEEE S-floating base to an IEEE S-floating exponent.

Arguments

S-floating-point-base
OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by value

Base that OTS$POWSS raises to an IEEE S-floating exponent. The S-floating-
point-base argument is an IEEE S-floating number containing the base.

S-floating-point-exponent
OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by value

Exponent to which OTS$POWSS raises the base. The S-floating-point-
exponent argument is an IEEE S-floating number containing the exponent.

Description

OTS$POWSS raises an IEEE S-floating base to an IEEE S-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The S-floating result for OTS$POWSS is as follows:

Base Exponent Result

� � � � 0.0
� � � � Undefined exponentiation
� � � � Undefined exponentiation
� � Any Undefined exponentiation

OTS–92

OTS$ Routines
OTS$POWSS

Base Exponent Result

� � � � 2[exponent�log2(base)]

� � � � 1.0
� � � � 2[exponent�log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWSS.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponent. This error is signaled if

S-floating-point-base is zero and S-floating-
point-exponent is zero or negative, or if S-
floating-point-base is negative.

Example

The following example demonstrates the use of OTS$POWSS.

C+
C This Fortran example demonstrates the use of
C OTS$POWSS, which raises an IEEE S-floating
C point base to an IEEE S-floating point power.
C-

OPTIONS /FLOAT=IEEE_FLOAT

REAL*4 X,Y,RESULT,OTS$POWSS
X = 10.0
Y = 3.0

C+
C The arguments of OTS$POWSS are passed by value.
C-

RESULT = OTS$POWSS(%VAL(X),%VAL(Y))
TYPE *,’ 10.0**3.0 IS ’,RESULT
X = 9.0
Y = -0.5

C+
C In Fortran, OTS$POWSS is indirectly called by
C simply using the exponentiation operator.
C-

RESULT = X**Y
TYPE *,’ 9.0**-0.5 IS ’,RESULT
END

OTS–93

OTS$ Routines
OTS$POWSS

This Fortran example uses OTS$POWSS to raise an IEEE S-floating point base
to an IEEE S-floating point exponent. The output generated by this program is
as follows:

10.0**3.0 IS 1000.000
9.0**-0.5 IS 0.3333333

OTS–94

OTS$ Routines
OTS$POWTJ

OTS$POWTJ
Raise a T-Floating Base to a Longword Exponent

The Raise a T-Floating base to a Longword Exponent routine raises an IEEE
T-floating base to a longword exponent.

Format

OTS$POWTJ T-floating-point-base ,longword-integer-exponent

Returns

OpenVMS usage: floating_point
type: IEEE T_floating
access: write only
mechanism: by value

Result of raising an IEEE T-floating base to a longword exponent.

Arguments

T-floating-point-base
OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by value

Base. The T-floating-point-base argument is an IEEE T-floating number
containing the base.

longword-integer-exponent
OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by value

Exponent. The longword-integer-exponent argument is a signed longword
that contains the longword exponent.

Description

OTS$POWTJ raises an IEEE T-floating base to a longword exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The floating-point result is as follows:

Base Exponent Result

Any � � Product of (base**2i), where i is each nonzero bit
position in longword-integer-exponent.

� � � � 1.0
� � � � Undefined exponentiation.

OTS–95

OTS$ Routines
OTS$POWTJ

Base Exponent Result

� � � � 1.0
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.
� � � � Undefined exponentiation.
� � � � 1.0/(base**2i), where i is each nonzero bit position in

longword-integer-exponent.

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWTJ.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponentiation. This error is signaled

if T-floating-point-base is zero and longword-
integer-exponent is zero or negative, or if
T-floating-point-base is negative.

OTS–96

OTS$ Routines
OTS$POWTT

OTS$POWTT
Raise a T-Floating Base to a T-Floating Exponent

The Raise an IEEE T-Floating Base to an IEEE T-Floating Exponent routine
raises an IEEE T-floating base to an IEEE T-floating exponent.

Format

OTS$POWTT T-floating-point-base ,T-floating-point-exponent

Returns

OpenVMS usage: floating_point
type: IEEE T_floating
access: write only
mechanism: by value

Result of raising an IEEE T-floating base to an IEEE T-floating exponent.

Arguments

T-floating-point-base
OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by value

Base that OTS$POWTT raises to an IEEE T-floating exponent. The T-floating-
point-base argument is an IEEE T-floating number containing the base.

T-floating-point-exponent
OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by value

Exponent to which OTS$POWTT raises the base. The T-floating-point-
exponent argument is an IEEE T-floating number containing the exponent.

Description

OTS$POWTT raises an IEEE T-floating base to an IEEE T-floating exponent.

The internal calculations and the floating-point result have the same precision as
the base value.

The T-floating result for OTS$POWTT is as follows:

Base Exponent Result

� � � � 0.0
� � � � Undefined exponentiation
� � � � Undefined exponentiation
� � Any Undefined exponentiation

OTS–97

OTS$ Routines
OTS$POWTT

Base Exponent Result

� � � � 2[exponent�log2(base)]

� � � � 1.0
� � � � 2[exponent�log2(base)]

Floating-point overflow can occur.

Undefined exponentiation occurs if the base is zero and the exponent is zero or
negative, or if the base is negative.

On Alpha and I64 systems, some restrictions apply when linking OTS$POWTT.
See Chapter 1 for more information about these restrictions.

Condition Values Signaled

SS$_FLTOVF Arithmetic trap. This error is signaled by the
hardware if a floating-point overflow occurs.

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library.
MTH$_UNDEXP Undefined exponent. This error is signaled if

T-floating-point-base is zero and T-floating-
point-exponent is zero or negative, or if T-
floating-point-base is negative.

Example

The following example demonstrates the use of OTS$POWTT.

C+
C This Fortran example demonstrates the use of
C OTS$POWTT, which raises an IEEE T-floating
C point base to an IEEE T-floating point power.
C-

OPTIONS /FLOAT=IEEE_FLOAT

REAL*8 X,Y,RESULT,OTS$POWTT
X = 10.0
Y = 3.0

C+
C The arguments of OTS$POWTT are passed by value.
C-

RESULT = OTS$POWTT(%VAL(X),%VAL(Y))
TYPE *,’ 10.0**3.0 IS ’,RESULT
X = 9.0
Y = -0.5

C+
C In Fortran, OTS$POWTT is indirectly called by
C simply using the exponentiation operator.
C-

RESULT = X**Y
TYPE *,’ 9.0**-0.5 IS ’,RESULT
END

OTS–98

OTS$ Routines
OTS$POWTT

This Fortran example uses OTS$POWTT to raise an IEEE T-floating point base
to an IEEE T-floating point exponent. The output generated by this program is
as follows:

10.0**3.0 IS 1000.00000000000
9.0**-0.5 IS 0.333333333333333

OTS–99

OTS$ Routines
OTS$POWxLU

OTS$POWxLU
Raise a Floating-Point Base to an Unsigned Longword Integer
Exponent

The Raise a Floating-Point Base to an Unsigned Longword Integer Exponent
routines raise a floating-point base to an unsigned longword integer exponent.

Format

OTS$POWRLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWDLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWGLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWSLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWTLU floating-point-base ,unsigned-lword-int-exponent

OTS$POWHLU_R3 floating-point-base ,unsigned-lword-int-exponent (VAX only)

Returns

OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating, H_floating, IEEE S_floating,

IEEE T_floating
access: write only
mechanism: by value

Result of raising a floating-point base to an unsigned longword integer exponent.
OTS$POWRLU returns an F-floating number. OTS$POWDLU returns a D-
floating number. OTS$POWGLU returns a G-floating number. OTS$POWSLU
returns an IEEE S-floating number. OTS$POWTLU returns an IEEE T-floating
number.

On VAX systems, OTS$POWHLU_R3 returns an H-floating number.

Arguments

floating-point-base
OpenVMS usage: floating_point
type: F_floating, D_floating, G_floating, H_floating, IEEE S_floating,

IEEE T_floating
access: read only
mechanism: by value

Floating-point base. The floating-point-base argument contains the value
of the base. For OTS$POWRLU, floating-point-base is an F-floating
number. For OTS$POWDLU, floating-point-base is a D-floating number.
For OTS$POWGLU, floating-point-base is a G-floating number. For
OTS$POWHLU_R3, floating-point-base is an H-floating number. For
OTS$POWSLU, floating-point-base is an IEE S-floating number. For
OTS$POWTLU, floating-point-base is an IEEE T-floating number.

unsigned-lword-int-exponent
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only

OTS–100

OTS$ Routines
OTS$POWxLU

mechanism: by value

Integer exponent. The unsigned-lword-int-exponent argument contains the
value of the unsigned longword integer exponent.

Description

The OTS$POWxLU routines return the result of raising a floating-point base to
an unsigned longword integer exponent. The floating-point result is as follows:

Base Exponent Result

Any � � Product of (base*2i), where i is each nonzero bit position
in longword-integer-exponent.

� � � � 1.0
� � � � Undefined exponentiation.
� � � � 1.0

On Alpha and I64 systems, some restrictions apply when linking OTS$POWRLU,
OTS$POWGLU, OTS$POWSLU, and OTS$POWTLU. See Chapter 1 for more
information about these restrictions.

Condition Values Signaled

MTH$_FLOOVEMAT Floating-point overflow in math library.
MTH$_FLOUNDMAT Floating-point underflow in math library. This

can only occur if the caller has floating-point
underflow enabled.

MTH$_UNDEXP Undefined exponentiation. This occurs if both the
floating-point-base and unsigned-longword-
integer-exponent arguments are zero.

OTS–101

OTS$ Routines
OTS$SCOPY_DXDX

OTS$SCOPY_DXDX
Copy a Source String Passed by Descriptor to a Destination String

The Copy a Source String Passed by Descriptor to a Destination String routine
copies a source string to a destination string. Both strings are passed by
descriptor.

Format

OTS$SCOPY_DXDX source-string ,destination-string

Corresponding JSB Entry Point

OTS$SCOPY_DXDX6

Returns

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by value

Number of bytes not moved to the destination string if the length of source-
string is greater than the length of destination-string. The value is 0 (zero)
otherwise.

Arguments

source-string
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string. The source-string argument is the address of a descriptor
pointing to the source string. The descriptor class can be unspecified, fixed
length, dynamic, scalar decimal, array, noncontiguous array, or varying.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string. The destination-string argument is the address of a
descriptor pointing to the destination string. The class field determines the
appropriate action.

See the Description section for further information.

OTS–102

OTS$ Routines
OTS$SCOPY_DXDX

Description

OTS$SCOPY_DXDX copies a source string to a destination string. It passes the
source string by descriptor. If the length of the source string is greater than the
length of the destination string, OTS$SCOPY_DXDX returns the number of bytes
not moved to the destination string. If the length of the source string is less
than or equal to the length of the destination string, it returns 0 (zero). All error
conditions except truncation are signaled; truncation is ignored.

An equivalent JSB entry point is provided, with R0 being the first argument
(the descriptor of the source string), and R1 the second (the descriptor of the
destination string). On return, R0 through R5 and the PSL are as they would be
after a VAX MOVC5 instruction. R0 through R5 contain the following:

R0 Number of bytes of source string not moved to destination string
R1 Address one byte beyond the last copied byte in the source string
R2 0
R3 Address one byte beyond the destination string
R4 0
R5 0

For further information, see the VAX Architecture Reference Manual.

The actions taken by OTS$SCOPY_DXDX depend on the descriptor class of the
destination string. The following table describes these actions for each descriptor
class:

Descriptor Class Action

S, Z, SD, A, NCA Copy the source string. If needed, space fill or truncate on
the right.

D If the area specified by the destination descriptor is large
enough to contain the source string, copy the source string
and set the new length in the destination descriptor.
If the area specified is not large enough, return the previous
space allocation if any, and then dynamically allocate the
amount of space needed. Copy the source string and set the
new length and address in the destination descriptor.

VS Copy source string to destination string up to the limit of
the destination descriptor’s MAXSTRLEN field with no
padding. Adjust the string’s current length field (CURLEN)
to the actual number of bytes copied.

Condition Values Signaled

OTS$_FATINTERR Fatal internal error.
OTS$_INVSTRDES Invalid string descriptor.
OTS$_INSVIRMEM Insufficient virtual memory.

OTS–103

OTS$ Routines
OTS$SCOPY_R_DX

OTS$SCOPY_R_DX
Copy a Source String Passed by Reference to a Destination String

The Copy a Source String Passed by Reference to a Destination String routine
copies a source string passed by reference to a destination string.

Format

OTS$SCOPY_R_DX word-int-source-length-val ,source-string-address
,destination-string

Corresponding JSB Entry Point

OTS$SCOPY_R_DX6

Returns

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by value

Number of bytes not moved to the destination string if the length of the source
string pointed to by source-string-address is greater than the length of
destination-string. Otherwise, the value is 0 (zero).

Arguments

word-int-source-length-val
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

Length of the source string. The word-int-source-length-val argument is an
unsigned word integer containing the length of the source string.

source-string-address
OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

Source string. The source-string-address argument is the address of the source
string.

destination-string
OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string. The destination-string argument is the address of a
descriptor pointing to the destination string. OTS$SCOPY_R_DX determines
the appropriate action based on the descriptor’s CLASS field. The descriptor’s
LENGTH field alone or both the POINTER and LENGTH fields can be modified if

OTS–104

OTS$ Routines
OTS$SCOPY_R_DX

the string is dynamic. For varying strings, the string’s current length (CURLEN)
is rewritten.

Description

OTS$SCOPY_R_DX copies a source string to a destination string. It passes the
source string by reference preceded by a length argument. The length argument,
word-int-source-length-val, is passed by value.

If the length of the source string is greater than the length of the destination
string, OTS$SCOPY_R_DX returns the number of bytes not moved to the
destination string. If the length of the source string is less than or equal to
the length of the destination string, it returns 0 (zero). All conditions except
truncation are signaled; truncation is ignored.

An equivalent JSB entry point is provided, with R0 being the first argument, R1
the second, and R2 the third, if any. The length argument is passed in bits 15:0
of the appropriate register. On return, R0 through R5 and the PSL are as they
would be after a VAX MOVC5 instruction. R0 through R5 contain the following:

R0 Number of bytes of source string not moved to destination string
R1 Address one byte beyond the last copied byte in the source string
R2 0
R3 Address one byte beyond the destination string
R4 0
R5 0

For additional information, see the VAX Architecture Reference Manual.

The actions taken by OTS$SCOPY_R_DX depend on the descriptor class of the
destination string. The following table describes these actions for each descriptor
class:

Descriptor Class Action

S, Z, SD, A, NCA Copy the source string. If needed, space fill or truncate on
the right.

D If the area specified by the destination descriptor is large
enough to contain the source string, copy the source string
and set the new length in the destination descriptor.
If the area specified is not large enough, return the previous
space allocation (if any) and then dynamically allocate the
amount of space needed. Copy the source string and set the
new length and address in the destination descriptor.

VS Copy source string to destination string up to the limit
of the descriptor’s MAXSTRLEN field with no padding.
Adjust the string’s current length (CURLEN) field to the
actual number of bytes copied.

OTS–105

OTS$ Routines
OTS$SCOPY_R_DX

Condition Values Signaled

OTS$_FATINTERR Fatal internal error.
OTS$_INVSTRDES Invalid string descriptor.
OTS$_INSVIRMEM Insufficient virtual memory.

Example

A Fortran example that demonstrates the manipulation of dynamic strings
appears at the end of OTS$SGET1_DD. This example uses OTS$SCOPY_R_DX,
OTS$SGET1_DD, and OTS$SFREE1_DD.

OTS–106

OTS$ Routines
OTS$SFREE1_DD

OTS$SFREE1_DD
Strings, Free One Dynamic

The Strings, Free One Dynamic routine returns one dynamic string area to free
storage.

Format

OTS$SFREE1_DD dynamic-descriptor

Corresponding JSB Entry Point

OTS$SFREE1_DD6

Returns

None.

Argument

dynamic-descriptor
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: modify
mechanism: by reference

Dynamic string descriptor. The dynamic-descriptor argument is the address of
the dynamic string descriptor. The descriptor is assumed to be dynamic and its
class field is not checked.

Description

OTS$SFREE1_DD deallocates the described string space and flags the descriptor
as describing no string at all. The descriptor’s POINTER and LENGTH fields
contain 0.

Condition Value Signaled

OTS$_FATINTERR Fatal internal error.

Example

A Fortran example that demonstrates the manipulation of dynamic strings
appears at the end of OTS$SGET1_DD. This example uses OTS$SFREE1_DD,
OTS$SGET1_DD, and OTS$SCOPY_R_DX.

OTS–107

OTS$ Routines
OTS$SFREEN_DD

OTS$SFREEN_DD
Strings, Free n Dynamic

The Free n Dynamic Strings routine takes as input a vector of one or more
dynamic string areas and returns them to free storage.

Format

OTS$SFREEN_DD descriptor-count-value ,first-descriptor

Corresponding JSB Entry Point

OTS$SFREEN_DD6

Returns

None.

Arguments

descriptor-count-value
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Number of adjacent descriptors to be flagged as having no allocated area (the
descriptor’s POINTER and LENGTH fields contain 0) and to have their allocated
areas returned to free storage by OTS$SFREEN_DD. The descriptor-count-
value argument is an unsigned longword containing this number.

first-descriptor
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: modify
mechanism: by reference

First string descriptor of an array of string descriptors. The first-descriptor
argument is the address of the first string descriptor. The descriptors are
assumed to be dynamic, and their class fields are not checked.

Description

OTS$SFREEN_DD6 deallocates the described string space and flags each
descriptor as describing no string at all. The descriptor’s POINTER and LENGTH
fields contain 0.

Condition Values Signaled

OTS$_FATINTERR Fatal internal error.

OTS–108

OTS$ Routines
OTS$SGET1_DD

OTS$SGET1_DD
Strings, Get One Dynamic

The Get One Dynamic String routine allocates a specified number of bytes of
dynamic virtual memory to a specified string descriptor.

Format

OTS$SGET1_DD word-integer-length-value ,dynamic-descriptor

Corresponding JSB Entry Point

OTS$SGET1_DD_R6

Returns

None.

Arguments

word-integer-length-value
OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

Number of bytes to be allocated. The word-integer-length-value argument
contains the number of bytes. The amount of storage allocated is automatically
rounded up. If the number of bytes is zero, a small number of bytes is allocated.

dynamic-descriptor
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: modify
mechanism: by reference

Dynamic string descriptor to which the area is to be allocated. The dyn-str
argument is the address of the dynamic string descriptor. The CLASS field is
not checked but it is set to dynamic (CLASS = 2). The LENGTH field is set to
word-integer-length-value and the POINTER field is set to the string area
allocated (first byte beyond the header).

Description

OTS$SGET1_DD allocates a specified number of bytes of dynamic virtual memory
to a specified string descriptor. This routine is identical to OTS$SCOPY_DXDX
except that no source string is copied. You can write anything you want in the
allocated area.

If the specified string descriptor already has dynamic memory allocated to it,
but the amount allocated is either greater than or less than word-integer-
length-value, that space is deallocated before OTS$SGET1_DD allocates new
space.

OTS–109

OTS$ Routines
OTS$SGET1_DD

Condition Values Signaled

OTS$_FATINTERR Fatal internal error.
OTS$_INSVIRMEM Insufficient virtual memory.

Example

PROGRAM STRING_TEST

C+
C This program demonstrates the use of some dynamic string
C manipulation routines.
C-

C+
C DECLARATIONS
C-

IMPLICIT NONE
CHARACTER*80 DATA_LINE
INTEGER*4 DATA_LEN, DSC(2), CRLF_DSC(2), TEMP_DSC(2)
CHARACTER*2 CRLF

C+
C Initialize the output descriptor. It should be empty.
C-

CALL OTS$SGET1_DD(%VAL(0), DSC)

C+
C Initialize a descriptor to the string CRLF and copy the
C character CRLF to it.
C-

CALL OTS$SGET1_DD(%VAL(2), CRLF_DSC)
CRLF = CHAR(13)//CHAR(10)
CALL OTS$SCOPY_R_DX(%VAL(2), %REF(CRLF(1:1)), CRLF_DSC)

C+
C Initialize a temporary descriptor.
C-

CALL OTS$SGET1_DD(%VAL(0), TEMP_DSC)

C+
C Prompt the user.
C-

WRITE(6, 999)
999 FORMAT(1X, ’Enter your message, end with Ctrl/Z.’)

C+
C Read lines of text from the terminal until end-of-file.
C Concatenate each line to the previous input. Include a
C CRLF between each line.
C-

DO WHILE (.TRUE.)
READ(5, 998, ERR = 10) DATA_LEN, DATA_LINE

998 FORMAT(Q,A)
CALL OTS$SCOPY_R_DX(%VAL(DATA_LEN),

1 %REF(DATA_LINE(1:1)),
2 TEMP_DSC)

CALL STR$CONCAT(DSC, DSC, TEMP_DSC, CRLF_DSC)
END DO

OTS–110

OTS$ Routines
OTS$SGET1_DD

C+
C The user has typed Ctrl/Z. Output the data we read.
C-

10 CALL LIB$PUT_OUTPUT(DSC)
C+
C Free the storage allocated to the dynamic strings.
C-

CALL OTS$SFREE1_DD(DSC)
CALL OTS$SFREE1_DD(CRLF_DSC)
CALL OTS$SFREE1_DD(TEMP_DSC)

C+
C End of program.
C-

STOP
END

This Fortran example program demonstrates the manipulation of dynamic strings
using OTS$SGET1_DD, OTS$SFREE1_DD, and OTS$SCOPY_R_DX.

OTS–111

Index

C
Complex numbers

division of, OTS–40
multiplication of, OTS–55

Conversions
binary text to unsigned integer, OTS–24
floating-point to character string, OTS–5
hexadecimal text to unsigned integer, OTS–36
integer to binary text, OTS–7, OTS–9
integer to decimal text, OTS–15
integer to Fortran L format, OTS–11
integer to hexadecimal text, OTS–17
integer to logical text, OTS–11
integer to octal text, OTS–13
logical text to integer, OTS–29
numeric text to floating-point, OTS–19
octal text to unsigned integer, OTS–31
signed integer text to integer, OTS–27
unsigned decimal to integer, OTS–34

Copying strings, OTS–102

D
Division

complex number, OTS–40
packed decimal, OTS–44, OTS–47

Dynamic length strings
allocating, OTS–109
deallocating, OTS–107, OTS–108

E
Exponentiation

complex base to complex exponent, OTS–58
complex base to signed integer exponent,

OTS–61
D-floating base, OTS–63, OTS–65, OTS–67
F-floating base, OTS–84, OTS–86, OTS–88
G-floating base, OTS–69, OTS–72
H-floating base, OTS–74, OTS–76
S-floating base, OTS–90, OTS–92
signed longword base, OTS–80
T-floating base, OTS–95, OTS–97
word base to word exponent, OTS–78

M
Memory allocation

for dynamic length strings, OTS–109
freeing dynamic length strings, OTS–107,

OTS–108
Multiplication

of complex numbers, OTS–55

O
OTS$CALL_PROC routine, OTS–3
OTS$CNVOUT routine, OTS–5
OTS$CNVOUT_D routine, OTS–5
OTS$CNVOUT_G routine, OTS–5
OTS$CNVOUT_H routine, OTS–5
OTS$CNVOUT_S routine, OTS–5
OTS$CNVOUT_T routine, OTS–5
OTS$CVT_L_TB routine, OTS–7
OTS$CVT_L_TI routine, OTS–9
OTS$CVT_L_TL routine, OTS–11
OTS$CVT_L_TO routine, OTS–13
OTS$CVT_L_TU routine, OTS–15
OTS$CVT_L_TZ routine, OTS–17
OTS$CVT_TB_L routine, OTS–24
OTS$CVT_TI_L routine, OTS–27
OTS$CVT_TL_L routine, OTS–29
OTS$CVT_TO_L routine, OTS–31
OTS$CVT_TU_L routine, OTS–34
OTS$CVT_TZ_L routine, OTS–36
OTS$CVT_T_x routine, OTS–19
OTS$DIVCD_R3 routine, OTS–39
OTS$DIVCG_R3 routine, OTS–39
OTS$DIVCT_R3 routine, OTS–39
OTS$DIVCx routine, OTS–39
OTS$DIV_PK_LONG routine, OTS–42
OTS$DIV_PK_SHORT routine, OTS–46
OTS$JUMP_TP_BPV routine, OTS–48
OTS$MOVE3 routine, OTS–50
OTS$MOVE5 routine, OTS–52
OTS$MULCD_R3 routine, OTS–54
OTS$MULCG_R3 routine, OTS–54
OTS$MULCS_R3 routine, OTS–54
OTS$MULCT_R3 routine, OTS–54

Index–1

OTS$POWCxCx routine, OTS–57
OTS$POWCxJ routine, OTS–60
OTS$POWDD routine, OTS–63
OTS$POWDJ routine, OTS–65
OTS$POWDLU routine, OTS–100
OTS$POWDR routine, OTS–67
OTS$POWGG routine, OTS–69
OTS$POWGJ routine, OTS–72
OTS$POWGLU routine, OTS–100
OTS$POWHH_R3 routine, OTS–74
OTS$POWHJ_R3 routine, OTS–76
OTS$POWHLU_R3 routine, OTS–100
OTS$POWII routine, OTS–78
OTS$POWJJ routine, OTS–80
OTS$POWLULU routine, OTS–82
OTS$POWRD routine, OTS–84
OTS$POWRJ routine, OTS–86
OTS$POWRLU routine, OTS–100
OTS$POWRR routine, OTS–88
OTS$POWSJ routine, OTS–90
OTS$POWSLU routine, OTS–100
OTS$POWSS routine, OTS–92

OTS$POWTJ routine, OTS–95
OTS$POWTLU routine, OTS–100
OTS$POWTT routine, OTS–97
OTS$SCOPY_DXDX routine, OTS–102
OTS$SCOPY_R_DX routine, OTS–104
OTS$SFREE1_DD routine, OTS–107
OTS$SFREEN_DD routine, OTS–108
OTS$SGET1_DD routine, OTS–109

R
Run-time library routines

general purpose, 1–1

S
Strings

copying by descriptor, OTS–102
copying by reference, OTS–104
dynamic length

allocating, OTS–109
deallocating, OTS–107, OTS–108

Index–2

