
HP OpenVMS Guide to
Upgrading Privileged-Code
Applications
Order Number: AA–QSBGE–TE

January 2005

Alpha and I64 privileged-code applications link against the system base
image (SYS$BASE_IMAGE.EXE) on OpenVMS. This guide explains the
changes that might affect privileged-code applications as a result of the
OpenVMS Alpha 64-bit virtual addressing and kernel threads support
provided in OpenVMS Alpha Version 7.0 and later, as well as changes to
OpenVMS infrastructure to support OpenVMS I64.

Privileged-code applications from versions prior to OpenVMS Alpha
Version 7.0 might require the source-code changes described in this
guide.

Revision/Update Information: This manual supersedes the HP
OpenVMS Guide to Upgrading
Privileged-Code Applications, Version
7.3.

Software Version: OpenVMS I64 Version 8.2

OpenVMS Alpha Version 8.2

Hewlett-Packard Company
Palo Alto, California

PS Conditioner
Processed on 10/22/2004

Black and white submission.

© 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Printed in the US

ZK6466

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . ix

1 Introduction

1.1 Quick Description of OpenVMS Alpha 64-Bit Virtual Addressing 1–1
1.2 Quick Description of OpenVMS Alpha Kernel Threads 1–2
1.3 Quick Description of OpenVMS Industry Standard 64 1–2
1.4 How to Use This Guide . 1–2

Part I Privileged-Code Changes for OpenVMS Alpha

2 Upgrading Privileged Software to OpenVMS Alpha Version 7.0

2.1 Recommendations for Upgrading Privileged-Code Applications 2–1
2.1.1 Summary of Infrastructure Changes . 2–1
2.1.2 Changes Not Identified by Warning Messages 2–2
2.2 I/O Changes . 2–2
2.2.1 Impact of IRPE Data Structure Changes . 2–3
2.2.2 Impact of MMG_STD$IOLOCK, MMG_STD$UNLOCK Changes 2–4
2.2.2.1 Direct I/O Functions . 2–4
2.2.3 Impact of MMG_STD$SVAPTECHK Changes 2–7
2.2.4 Impact of PFN Database Entry Changes . 2–7
2.2.5 Impact of IRP Changes . 2–7
2.3 General Memory Management Infrastructure Changes 2–8
2.3.1 Location of Process Page Tables . 2–8
2.3.2 Interpretation of Global and Process Section Table Index 2–8
2.3.3 Location of Process and System Working Set Lists 2–8
2.3.4 Size of a Working Set List Entry . 2–9
2.3.5 Location of Page Frame Number (PFN) Database 2–9
2.3.6 Format of PFN Database Entry . 2–9
2.3.7 Process Header WSLX and BAK Arrays . 2–9
2.3.8 Free S0/S1 System Page Table Entry List . 2–10
2.3.9 Location of the Global Page Table . 2–10
2.3.10 Free Global Page Table Entry List . 2–10
2.3.11 Region Descriptor Entries (RDEs) . 2–10
2.4 Kernel Threads Changes . 2–10
2.4.1 The CPU$L_CURKTB Field . 2–10
2.4.2 Mutex Locking . 2–11
2.4.3 Scheduling Routines . 2–11
2.4.4 New MWAIT State . 2–11
2.4.5 System Services Dispatching . 2–11
2.4.6 Asynchronous System Traps (ASTs) . 2–11
2.4.7 TB Invalidation and Macros . 2–12
2.4.8 New PCB/KTB Fields . 2–13

iii

2.4.9 CTL$AL_STACK and CTL$AL_STACKLIM . 2–14
2.4.10 Floating-Point Register and Execution Data Blocks (FREDs) 2–14
2.5 Registering Images That Have Version Dependencies 2–14
2.5.1 Version Identification (ID) Number Change to Three Subsystems 2–15

3 Replacements for Removed Privileged Symbols

3.1 Removed Date Structure Fields . 3–2
3.2 Removed Routines . 3–7
3.3 Removed Macros . 3–11
3.3.1 Removed MACRO-32 Macros Formerly in

SYS$LIBRARY:LIB.MLB . 3–11
3.3.2 C Header Files Removed From SYS$LIBRARY:SYS$LIB_C.TLB 3–11
3.4 Removed System Data Cells . 3–12

4 Modifying Device Drivers to Support 64-Bit Addressing

4.1 Recommendations for Modifying Device Drivers . 4–1
4.2 Mixed Pointer Environment in C . 4–1
4.3 $QIO Support for 64-Bit Addresses . 4–2
4.4 Declaring Support for 64-Bit Addresses in Drivers 4–4
4.4.1 Drivers Written in C . 4–4
4.4.2 Drivers Written in MACRO-32 . 4–4
4.4.3 Drivers Written in BLISS . 4–5
4.5 I/O Mechanisms . 4–5
4.5.1 Simple Buffered I/O . 4–6
4.5.2 Direct I/O . 4–7
4.5.3 Direct I/O Buffer Map (DIOBM) . 4–8
4.5.4 64-Bit AST . 4–9
4.5.5 64-Bit ACB Within the IRP . 4–10
4.5.6 I/O Function Definitions . 4–10
4.6 64-Bit Support in Example Driver . 4–12
4.6.1 Example: Declaring 64-Bit Functions . 4–12
4.6.2 Example: Declaring 64-Bit Buffered I/O Packet 4–13
4.6.3 Example: Changes to LR$WRITE . 4–13
4.6.4 Example: Changes to LR$SETMODE . 4–14
4.6.5 Example: Changes to LR$STARTIO . 4–15

5 Modifying User-Written System Services

6 Kernel Threads Process Structure

6.1 Process Control Blocks (PCBs) and Process Headers (PHDs) 6–1
6.1.1 Effect of a Multithreaded Process on the PCB and PHD 6–1
6.2 Kernel Thread Blocks (KTBs) . 6–2
6.2.1 KTB Vector . 6–2
6.2.2 Floating-Point Registers and Execution Data Blocks (FREDs) 6–3
6.2.3 Kernel Threads Region . 6–3
6.2.4 Per-Kernel Thread Stacks . 6–3
6.2.5 Per-Kernel Thread Data Cells . 6–4
6.2.6 Layout of the Per-Kernel Thread . 6–4
6.2.7 Summary of Process Data Structures . 6–4
6.3 Process Identifiers (PIDs) . 6–5
6.3.1 Multithread Effects on the PID . 6–6

iv

6.3.2 Range Checking and Sequence Vectors . 6–7
6.4 Process Status Bits . 6–8

Part II Privileged-Code Changes for OpenVMS I64

7 OpenVMS Infrastructure Changes for OpenVMS I64

7.1 C Programming . 7–1
7.1.1 PTE Field References in C . 7–1
7.1.2 PFN References in C . 7–2
7.2 Macro-32 Programming . 7–3
7.2.1 PTE Field References in Macro-32 . 7–3
7.2.2 PFN References in Macro-32 . 7–3
7.3 Bliss Programming . 7–4
7.3.1 PTE Field References in Bliss-64 . 7–4
7.3.2 PFN References in Bliss-64 . 7–5
7.4 System Services . 7–5
7.4.1 PFN-Map System Services . 7–6
7.4.2 SYI$_MAX_PFN . 7–6
7.4.3 PMM Structure . 7–7
7.4.4 SYI$_PFN_MEMORY_MAP . 7–7
7.5 OpenVMS Structure Fields . 7–8
7.6 System Data Cells . 7–9
7.6.1 Minimum and Maximum PFN Data Cells . 7–9
7.6.2 PFN List Arrays, Counts, and Limits . 7–10
7.6.3 Physical Memory Page Counts . 7–11
7.6.4 Pointer to SYI PFN Memory Map . 7–11
7.6.5 Shared L2 Page Table PFN . 7–12
7.6.6 Black Hole PFN Data Cell . 7–12
7.6.7 MMG Window PFN Pointer Data Cells . 7–12
7.7 System Routines . 7–13
7.7.1 Converting from PTE Address to PFN . 7–13
7.7.2 PFN Allocation Routines . 7–14
7.7.3 PFN Allocation and Mapping Routines . 7–19
7.8 PTE Format Changes . 7–21
7.9 50-Bit Physical Address Search Command . 7–22

A Data Structure Changes

A.1 Pointer Size Conventions . A–1
A.2 Buffer Object Descriptor (BOD) . A–2
A.3 Buffered I/O (BUFIO) . A–2
A.4 Complex Chained Buffer (CXB) . A–3
A.5 Data Chain Block (DCBE) . A–4
A.6 Direct I/O Buffer Map (DIOBM) . A–5
A.7 Function Decision Table (FDT) . A–9
A.8 I/O Request Packet (IRP) . A–9
A.9 I/O Request Packet Extension (IRPE) . A–12
A.10 Process Header (PHD) . A–14
A.11 SCSI-2 Diagnose Buffer (S2DGB) . A–15
A.12 VMS Communications Request Packet (VCRP) . A–15

v

B I/O Support Routine Changes

B.1 ACP_STD$READBLK and ACP_STD$WRITEBLK B–1
B.2 EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64 B–1
B.3 EXE_STD$ALLOC_DIAGBUF . B–2
B.4 EXE_STD$LOCK_ERR_CLEANUP . B–3
B.5 EXE_STD$MODIFY, EXE_STD$READ, EXE_STD$WRITE B–4
B.6 EXE_STD$MODIFYLOCK, EXE_STD$READLOCK,

EXE_STD$WRITELOCK . B–5
B.6.1 CALL_xLOCK and CALL_xLOCK_ERR Macros B–6
B.7 EXE_STD$READCHK and EXE_STD$WRITECHK B–6
B.7.1 CALL_xCHK and CALL_xCHKR Macros . B–6
B.8 EXE_STD$SETCHAR and EXE_STD$SETMODE B–6
B.9 IOC_STD$CREATE_DIOBM . B–7
B.10 IOC_STD$FILL_DIOBM . B–8
B.11 IOC_STD$PTETOPFN . B–9
B.12 IOC_STD$RELEASE_DIOBM . B–10
B.13 IOC_STD$SIMREQCOM, IOC$SIMREQCOM . B–10
B.13.1 CALL_SIMREQCOM Macro . B–11
B.13.2 IOC$SIMREQCOM . B–11
B.14 IOC_STD$SVAPTE_IN_BUF . B–11
B.15 IOC_STD$VA_TO_PA . B–12
B.16 MMG_STD$GET_PTE_FOR_VA . B–12
B.17 MMG_STD$IOLOCK, MMG$IOLOCK, MMG_STD$IOLOCK_BUF B–14
B.17.1 CALL_IOLOCK Macro . B–15
B.18 MMG_STD$UNLOCK, MMG$UNLOCK,

MMG_STD$IOUNLOCK_BUF . B–16
B.18.1 CALL_UNLOCK Macro . B–16
B.19 MMG_STD$SVAPTECHK, MMG$SVAPTECHK . B–17

C Kernel Threads Routines and Macros

EXE$CVT_IPID_TO_KTB Routine . C–1
EXE$CVT_EPID_TO_KTB Routine . C–2
GET_CURKTB Macro . C–3
CVT_IPID_TO_PCB_KTB Macro . C–4
CVT_IPID_TO_KTB Macro . C–5

Index

Examples

5–1 Creating a Privileged Library Vector (PLV) for C on Alpha
Systems . 5–3

vi

Figures

4–1 32-Bit Buffered I/O Packet Header . 4–6
4–2 New 64-Bit Buffered I/O Packet Header . 4–6
4–3 Direct I/O Buffer Map Data Structure . 4–8
4–4 64-Bit AST . 4–9
4–5 Embedded ACB64 . 4–10
6–1 Default Kernel Stack and User Stack Sizes . 6–4
6–2 Structure of a Multithreaded Process . 6–5
6–3 Process ID (PID) . 6–6
6–4 Extended Process ID (EPID) . 6–6
6–5 Range Checking and Sequence Vectors . 6–7

Tables

2–1 Arguments for TBI_DATA_64 and TBI_SINGLE 2–12
2–2 Arguments for TBI_ALL . 2–13
2–3 New PCB/KTB Fields . 2–13
2–4 Stack Arrays . 2–14
3–1 Removed Date Structure Fields . 3–2
3–2 Removed Routines . 3–7
3–3 Removed System Data Cells . 3–12
4–1 $QIO[W] Argument Changes . 4–2
4–2 Summary of 64-Bit Support by I/O Mechanism 4–5
4–3 Guidelines for 64-Bit Support by I/O Function 4–11
5–1 Components of the Alpha Privileged Library Vector 5–2
5–2 Flags for 64-Bit User-Written Services . 5–3
A–1 64-Bit Pointer Data Types . A–1
A–2 BOD Structure Changes . A–2
A–3 BUFIO Packet . A–3
A–4 CXB Structure Changes . A–4
A–5 DCBE Structure Changes . A–5
A–6 Primary DIOBM Structure . A–6
A–7 Secondary DIOBM Structure . A–8
A–8 FDT Structure Changes . A–9
A–9 IRP Changes . A–10
A–10 IRPE Changes . A–13
A–11 PHD Structure Changes . A–15
A–12 VCRP Structure Changes . A–15
B–1 EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64

Arguments . B–1
B–2 EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64

Implicit Outputs . B–2
B–3 EXE_STD$ALLOC_DIAGBUF Arguments . B–3
B–4 EXE_STD$ALLOC_DIAGBUF Implicit Outputs B–3
B–5 EXE_STD$LOCK_ERR_CLEANUP Arguments B–4
B–6 EXE_STD$LOCK_ERR_CLEANUP Implicit Inputs and Outputs B–4
B–7 IOC_STD$CREATE_DIOBM Arguments . B–7

vii

B–8 IOC_STD$FILL_DIOBM Arguments . B–8
B–9 IOC_STD$RELEASE_DIOBM Arguments . B–10
B–10 IOC_STD$SVAPTE_IN_BUF Arguments . B–11
B–11 IOC_STD$SVAPTE_IN_BUF Implicit Inputs . B–12
B–12 IOC_STD$VA_TO_PA Arguments . B–12
B–13 MMG_STD$GET_PTE_FOR_VA Arguments . B–13
B–14 MMG_STD$IOLOCK_BUF Arguments . B–14

viii

Preface

Alpha privileged-code applications link against the system base image
(SYS$BASE_IMAGE.EXE) on OpenVMS Alpha. This guide explains the changes
that might impact Alpha privileged-code applications as a result of the OpenVMS
Alpha 64-bit virtual addressing and kernel threads support provided in OpenVMS
Alpha Version 7.0.

This guide is intended to help developers using privileged-code interfaces
understand how the changes in OpenVMS Alpha Version 7.0 might affect their
applications and device drivers.

Nonprivileged code applications should not require any source code changes and
should run without modification on OpenVMS Alpha Versions 7.0 and 7.1.

The information in this document applies only to privileged-code applications
on OpenVMS Alpha systems; applications on OpenVMS VAX systems are not
affected.

OpenVMS Alpha 7.3 Note

Privileged-code applications and device drivers that were recompiled and
relinked to run on OpenVMS Alpha Version 7.0 do not require source-
code changes and do not have to be recompiled and relinked to run on
OpenVMS Alpha Version 7.3.

However, privileged-code applications from releases prior to OpenVMS
Alpha Version 7.0 that were not recompiled and relinked for OpenVMS
Alpha Version 7.0, might need to be recompiled and relinked to run on
OpenVMS Alpha Version 7.3 and might require source-code changes as
described in this guide.

For more information about recompiling and relinking privileged-code
applications and device drivers for OpenVMS Alpha Version 7.3, see
OpenVMS Version 7.1 Release Notes.

Intended Audience
This guide is intended for system programmers who use privileged-mode
interfaces in their applications.

Document Structure
The guide is divided into three parts:

• Part I describes the infrastructure changes that might affect privileged-code
applications and provides guidelines for upgrading them to OpenVMS Alpha
Version 7.0.

ix

• Part II describes the changes that can be made to customer-written system
services and device drivers to support 64-bit addresses and kernel threads.

• The appendixes contain descriptions of I/O routines, I/O data structures,
kernel threads routines, and kernel threads macros.

For more information about how to use this guide, see Chapter 1.

Related Documents

• OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features1

• HP OpenVMS Programming Concepts Manual

• OpenVMS Record Management Services Reference Manual

• HP OpenVMS System Services Reference Manual: A–GETUAI and HP
OpenVMS System Services Reference Manual: GETUTC–Z

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity servers

• OpenVMS I64

• I64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM. This information has also been included in the HP OpenVMS Programming
Concepts Manual, Volume I.

x

The following typographic conventions may be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

xi

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xii

1
Introduction

This manual is divided into two parts: the first, which discusses changes to
privileged code on OpenVMS Alpha to support 64-bit addressing and kernel
threads; and the second, which discusses the changes necessary to privileged
code and to OpenVMS physical infrastructure to support the OpenVMS operating
system on the Intel® Itanium® architecture.

This is not an application porting guide. If you are looking for information on how
to port applications that run on OpenVMS Alpha to OpenVMS I64, see Porting
Applications from HP OpenVMS Alpha to HP OpenVMS Industry Standard 64
for Integrity Servers.

1.1 Quick Description of OpenVMS Alpha 64-Bit Virtual Addressing
OpenVMS Alpha Version 7.0 made significant changes to OpenVMS Alpha
privileged interfaces and data structures to support 64-bit virtual addresses and
kernel threads.

For 64-bit virtual addresses, these changes were necessary infrastructure work
to enable processes to grow their virtual address space beyond the existing 1 GB
limit of P0 space and the 1 GB limit of P1 space to include P2 space, making a
total of 8TB. Likewise, S2 is the extension of system space.

Support for 64-bit virtual addresses, makes more of the 64-bit virtual address
space defined by the Alpha architecture available to the OpenVMS Alpha
operating system and to application programs. The 64-bit address features allow
processes to map and access data beyond the previous limits of 32-bit virtual
addresses. Both process-private and system virtual address space now extend to
8 TB.

In addition to the dramatic increase in virtual address space, OpenVMS Alpha
7.0 significantly increases the amount of physical memory that can be used by
individual processes.

Many tools and languages supported by OpenVMS Alpha (including the Debugger,
run-time library routines, and DEC C) are enhanced to support 64-bit virtual
addressing. Input and output operations can be performed directly to and from
the 64-bit addressable space by means of RMS services, the $QIO system service,
and most of the device drivers supplied with OpenVMS Alpha systems.

Underlying this are new system services that allow an application to allocate and
manage the 64-bit virtual address space that is available for process-private use.

For more information about OpenVMS Alpha 64-bit virtual address features, see
the OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features1.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM. This information has also been included in the HP OpenVMS Programming
Concepts Manual, Volume I.

Introduction 1–1

Introduction
1.1 Quick Description of OpenVMS Alpha 64-Bit Virtual Addressing

As a result of these changes, some privileged-code applications might need to
make source-code changes to run on OpenVMS Alpha Version 7.0 and later.

This chapter briefly describes OpenVMS Alpha Version 7.0 64-bit virtual address
and kernel threads support and suggests how you should use this guide to ensure
that your privileged-code application runs successfully on OpenVMS Alpha
Version 7.0 and later.

1.2 Quick Description of OpenVMS Alpha Kernel Threads
OpenVMS Alpha Version 7.0 provides kernel threads features, which extend
process scheduling capabilities to allow threads of a process to run concurrently
on multiple CPUs in a multiprocessor system. The only interface to kernel
threads is through the DECthreads package. Existing threaded code that uses
either the CMA API or the POSIX threads API should run without change and
gain the advantages provided by the kernel threads project.

Kernel threads support causes significant changes to the process structure
within OpenVMS (most notably to the process control block (PCB)). Although
kernel threads support does not explicitly change any application programming
interfaces (APIs) within OpenVMS, it does change the use of the PCB in such a
way that some existing privileged code may be impacted.

Kernel threads allows a multithreaded process to execute code flows
independently on more than one CPU at a time. This allows a threaded
application to make better use of multiple CPUs in an SMP system. DECthreads
uses these independent execution contexts as virtual CPUs and schedules
application threads on them. OpenVMS then schedules the execution contexts
(kernel threads) onto physical CPUs. By providing a callback mechanism
from the OpenVMS scheduler to the DECthreads thread scheduler, scheduling
latencies inherent in user-mode-only thread managers is greatly reduced.
OpenVMS informs DECthreads when a thread has blocked in the kernel. Using
this information, DECthreads can then opt to schedule some other ready thread.

For more information about kernel threads, refer to the Bookreader version of the
HP OpenVMS Programming Concepts Manual and Chapter 6 in this guide.

1.3 Quick Description of OpenVMS Industry Standard 64
OpenVMS I64 8.2EFT has a 64-bit model and basic system functions that are
similar to OpenVMS Alpha. OpenVMS Alpha and OpenVMS I64 are produced
from a single-source code base. OpenVMS I64 has the same look and feel as
OpenVMS Alpha, but runs on the HP Minor changes to the operating system
were made to accomodate the architectire, but the basic structure and capabilities
of the operating system are the same.

1.4 How to Use This Guide
Read Part I to learn about the changes that might be required for privileged-
code applications to run on OpenVMS Alpha Version 7.0 and how to enhance
customer-written system services and device drivers with OpenVMS Version 7.0
features.

Refer to Part II for information about changes that might be required for
privileged-code applications to run on OpenVMS I64. In most cases, you can
change your code so that it is common code with OpenVMS Alpha.

1–2 Introduction

Introduction
1.4 How to Use This Guide

Refer to the Appendixes for more information about some of the data structures
and routines mentioned throughout this guide.

Introduction 1–3

Part I
Privileged-Code Changes for OpenVMS Alpha

2
Upgrading Privileged Software to OpenVMS

Alpha Version 7.0

The new features provided in OpenVMS Alpha Version 7.0 have required
corresponding changes in internal system interfaces and data structures. These
internal changes might require changes in some privileged software.

This chapter contains recommendations for upgrading privileged-code applications
to ensure that they run on OpenVMS Alpha Version 7.0. Once your application is
running on OpenVMS Alpha Version 7.0, you can enhance it as described in Part
II.

2.1 Recommendations for Upgrading Privileged-Code Applications
To ensure that a privileged-code application runs on OpenVMS Alpha Version 7.0,
do the following:

1. Recompile and relink your application to identify almost all of the places
where source changes will be necessary. Some changes can be identified by
inspection.

2. If you encounter compile-time or link-time warnings or errors, you must make
the source-code changes required to resolve them.

See Section 2.1.1 for descriptions of the infrastructure changes that can affect
your applications and more information about how to handle them.

3. Refer to Chapter 3 for information about the data structure fields, routines,
macros, and system data cells obviated by OpenVMS Alpha Version 7.0 that
might affect privileged-code applications.

4. Once your application recompiles and relinks without errors, you can enhance
it to take advantage of the OpenVMS Alpha Version 7.0 features described in
Part II.

2.1.1 Summary of Infrastructure Changes
This section summarizes OpenVMS Alpha Version 7.0 changes to the kernel that
may require source changes in customer-written drivers and inner-mode software.
The recommendations in bold face type indicate how each change can be handled.

• Page tables have moved from the balance set slots to page table space.
(Compile and link the application.)

• The global page table has moved from S0/S1 space to S2 space. (Compile
and link the application.)

• The PFN database has moved from S0/S1 space to S2 space. (Compile C
applications. Inspect MACRO applications for changes that might not
cause warning messages. Link all applications.)

Upgrading Privileged Software to OpenVMS Alpha Version 7.0 2–1

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.1 Recommendations for Upgrading Privileged-Code Applications

• PFN database entry format has changed. (Compile and link the
application.)

• Routines MMG$IOLOCK and MMG$UNLOCK are obsolete and are replaced
by MMG_STD$IOLOCK_BUF and DIOBM. (Compile and link the
application.)

• A buffer locked for direct I/O is now described by SVAPTE, BOFF, BCNT, and
a DIOBM.

Be aware of code that clears IRP$L_SVAPTE to keep a buffer locked even
after the IRP is reused or deleted. (Inspect the code for changes.)

• A single IRPE can only be used to lock down a single region of pages.
(Compile and link the application.)

• Some assumptions about I/O structure field adjacencies may no longer be
true; for example, IRP$L_QIO_P1 and IRP$L_QIO_P2 are now more than 4
bytes apart. (Compile, link, inspect the code.)

• The IRPL_AST, IRPL_ASTPRM, and IRP$L_IOSB cells have been removed.
(Compile and link the application.)

• Two types of ACBs; an IRP is always in ACB64 format. (Compile, link,
inspect the code.)

• MMG$SVAPTECHK can longer be used for P0/P1 addresses. In addition,
P2/S2 are not allowed; only S0/S1 are supported. (Inspect the code.)

• Two types of buffer objects; buffer objects can be mapped into S2 space.
(Inspect the code.)

The remaining sections in this chapter contain more details about these changes.

Important

All device drivers, VCI clients, and inner-mode components must be
recompiled and relinked to run on OpenVMS Alpha Version 7.0.

2.1.2 Changes Not Identified by Warning Messages
A few necessary source changes might not always be immediately identified by
compile-time or link-time warnings. Some of these are:

• Pointers to a PFN database entry are now 64-bits wide. If you save or restore
them, you must preserve the full 64 bits of these pointers.

• The MMG[_STD]$SVAPTECHK routine can handle only S0/S1 addresses.
If you pass it an address in any other space, such as P0, it will declare a
bugcheck.

• The various SCH$ routines that put a process (now kernel thread) into a wait
state now require the KTB instead of the PCB. (This is not a 64-bit change,
but it could affect drivers OpenVMS Alpha Version 7.0 device drivers.)

2.2 I/O Changes
This section describes OpenVMS Alpha Version 7.0 changes to the I/O subsystem
that might require source changes to device drivers.

2–2 Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.2 I/O Changes

2.2.1 Impact of IRPE Data Structure Changes
As described in Section A.9, the I/O Request Packet Extension (IRPE) structure
now manages a single additional locked-down buffer instead of two. The general
approach to deal with this change is to use a chain of additional IRPE structures.

Current users of the IRPE may be depending on the fact that a buffer locked
for direct I/O could be fully described by the irpl_svapte, irpl_boff, and
irp$l_bcnt values. For example, it is not uncommon for an IRPE to be used in
this fashion:

1. The second buffer that will be eventually associated with the IRPE is locked
first by calling EXE_STD$READLOCK with the IRP.

2. The irpl_svapte, irpl_boff, and irp$l_bcnt values are copied from the
IRP into the IRPE. The irp$l_svapte cell is then cleared. The locked region
is now completely described by the IRPE.

3. The first buffer is locked by calling EXE_STD$READLOCK with the IRP
again.

4. A driver-specific error callback routine is required for the EXE_
STD$READLOCK calls. This error routine calls MMG_STD$UNLOCK to
unlock any region associated with the IRP and deallocates the IRPE.

This approach no longer works correctly. As described in Appendix A, the DIOBM
structure that is embedded in the IRP will be needed as well. Moreover, it
may not be sufficient to simply copy the DIOBM from the IRP to the IRPE. In
particular, the irp$l_svapte may need to be modified if the DIOBM is moved.

The general approach to this change is to lock the buffer using the IRPE directly.
This approach is shown in some detail in the following example:

irpe->irpe$b_type = DYN$C_IRPE; !

irpe->irpe$l_driver_p0 = (int) irp; "

status = exe_std$readlock(irp, pcb, ucb, ccb, #

buf1, buf1_len, lock_err_rtn $);
if(!$VMS_STATUS_SUCCESS(status)) return status;

irpe->irpe$b_rmod = irp->irp$b_rmod; %
status = exe_std$readlock((IRP *)irpe, pcb, ucb, ccb, &

buf2, buf2_len, lock_err_rtn);
if(!$VMS_STATUS_SUCCESS(status)) return status;

! The IRPE needs to be explicitly identified as an IRPE because the error
callback routine depends on being able to distinguish an IRP from an IRPE.

" The IRPE needs to contain a pointer to the original IRP for this I/O request
for potential use by the error callback routine. Here, a driver-specific cell in
the IRPE is used.

The first buffer is locked using the IRP.

$ If EXE_STD$READLOCK cannot lock the entire buffer into memory, the
following occurs:

a. The error callback routine, LOCK_ERR_RTN, is invoked.

b. Depending on the error status, either the I/O is aborted or backed out for
automatic retry. In any event, the IRP is deallocated.

c. EXE_STD$READLOCK returns the SS$_FDT_COMPL warning status.

Upgrading Privileged Software to OpenVMS Alpha Version 7.0 2–3

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.2 I/O Changes

% The caller’s access mode must be copied into the IRPE in preparation for
locking the second buffer using the IRPE.

& The second buffer is locked using the IRPE. If this fails, the error callback
routine LOCK_ERR_RTN is called with the IRPE.

This approach is easily generalized to more buffers and IRPEs. The only thing
omitted from this example is the code that allocates and links together the IRPEs.
The following example shows the associated error callback routine in its entirety;
it can handle an arbitrary number of IRPEs.

void lock_err_rtn (IRP *const lock_irp, !
PCB *const pcb, UCB *const ucb, CCB *const ccb,
const int errsts,
IRP **real_irp_p ")

{
IRP *irp;

if(lock_irp->irp$b_type == DYN$C_IRPE)
irp = (IRP *) ((IRPE *)lock_irp)->irpe$l_driver_p0; #

else
irp = lock_irp;

exe_std$lock_err_cleanup (irp); $

*real_irp_p = irp; %
return;

}

! The lock_irp parameter can be either an IRP or an IRPE, depending on the
data structure that was used with EXE_STD$READLOCK.

" Before returning from this error callback routine, you must provide the
original IRP via the real_irp_p parameter so that the I/O can be properly
terminated.

If this routine has been passed an IRPE, a pointer to the original IRP from
the irpe$l_driver_p0 cell is obtained because it was explicitly placed there.

$ The new EXE_STD$LOCK_ERR_CLEANUP routine does all the needed
unlocking and deallocation of IRPEs.

% Provide the address of the original IRP to the caller.

2.2.2 Impact of MMG_STD$IOLOCK, MMG_STD$UNLOCK Changes
The interface changes to the MMG_STD$IOLOCK and MMG_STD$UNLOCK
routines are described in Appendix B. The general approach to these changes is
to use the corresponding replacement routines and the new DIOBM structure.

2.2.2.1 Direct I/O Functions
OpenVMS device drivers that perform data transfers using direct I/O functions
do so by locking the buffer into memory while still in process context, that is, in
a driver FDT routine. The PTE address of the first page that maps the buffer is
obtained and the byte offset within the page to the start of the buffer is computed.
These values are saved in the IRP (irp$l_svapte and irp$l_boff). The rest of
the driver then uses values in the irp$l_svapte and irp$l_boff cells and the
byte count in irp$l_bcnt in order to perform the transfer. Eventually when
the transfer has completed and the request returns to process context for I/O
postprocessing, the buffer is unlocked using the irp$l_svapte value and not the
original process buffer address.

2–4 Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.2 I/O Changes

To support 64-bit addresses on a direct I/O function, one only needs to ensure the
proper handling of the buffer address within the FDT routine.

Almost all device drivers that perform data transfers via a direct I/O function use
OpenVMS-supplied FDT support routines to lock the buffer into memory. Because
these routines obtain the buffer address either indirectly from the IRP or directly
from a parameter that is passed by value, the interfaces for these routines can
easily be enhanced to support 64-bit wide addresses.

However, various OpenVMS Alpha memory management infrastructure changes
made to support 64-bit addressing have a potentially major impact on the use of
the 32-bit irp$l_svapte cell by device drivers prior to OpenVMS Alpha Version
7.0. In general, there are two problems:

1. It takes a full 64-bits to address a process PTE in page table space, and,

2. The 64-bit page table space address for a process PTE is only valid when in
the context of that process. (This is also known as the "cross-process PTE
problem.")

In most cases, both of these PTE access problems are solved by copying the PTEs
that map the buffer into nonpaged pool and setting irp$l_svapte to point to
the copies. This copy is done immediately after the buffer has been successfully
locked. A copy of the PTE values is acceptable because device drivers only read
the PTE values and are not allowed to modify them. These PTE copies are held
in a new nonpaged pool data structure, the Direct I/O Buffer Map (DIOBM)
structure. A standard DIOBM structure (also known as a fixed-size primary
DIOBM) contains enough room for a vector of 9 (DIOBM$K_PTECNT_FIX) PTE
values. This is sufficient for a buffer size up to 64K bytes on a system with 8 KB
pages.1 It is expected that most I/O requests are handled by this mechanism and
that the overhead to copy a small number of PTEs is acceptable, especially given
that these PTEs have been recently accessed to lock the pages.

The standard IRP contains an embedded fixed-size DIOBM structure. When the
PTEs that map a buffer fit into the embedded DIOBM, the irp$l_svapte cell
is set to point to the start of the PTE copy vector within the embedded DIOBM
structure in that IRP.

If the buffer requires more than 9 PTEs, then a separate ‘‘secondary’’ DIOBM
structure that is variably-sized is allocated to hold the PTE copies. If such
a secondary DIOBM structure is needed, it is pointed to by the original, or
‘‘primary’’ DIOBM structure. The secondary DIOBM structure is deallocated
during I/O postprocessing when the buffer pages are unlocked. In this case, the
irp$l_svapte cell is set to point into the PTE vector in the secondary DIOBM
structure. The secondary DIOBM requires only 8 bytes of nonpaged pool for
each page in the buffer. The allocation of the secondary DIOBM structure is not
charged against the process BYTLM quota, but it is controlled by the process
direct I/O limit (DIOLM). This is the same approach used for other internal data
structures that are required to support the I/O, including the kernel process
block, kernel process stack, and the IRP itself.

However, as the size of the buffer increases, the run-time overhead to copy
the PTEs into the DIOBM becomes noticeable. At some point it becomes less
expensive to create a temporary window in S0/S1 space to the process PTEs
that map the buffer. The PTE window method has a fixed cost, but the cost is

1 Eight PTEs are sufficient only if the buffer begins exactly on a page boundary, otherwise
a 9th is required.

Upgrading Privileged Software to OpenVMS Alpha Version 7.0 2–5

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.2 I/O Changes

relatively high because it requires PTE allocation and TB invalidates. For this
reason, the PTE window method is not used for moderately sized buffers.

The transition point from the PTE copy method with a secondary DIOBM
to the PTE window method is determined by a new system data cell,
ioc$gl_diobm_ptecnt_max, which contains the maximum desireable PTE count
for a secondary DIOBM. The PTE window method will be used if the buffer is
mapped by more than ioc$gl_diobm_ptecnt_max PTEs.

When a PTE window is used, irp$l_svapte is set to the S0/S1 virtual address in
the allocated PTE window that points to the first PTE that maps the buffer. This
S0/S1 address is computed by taking the S0/S1 address that is mapped by the
first PTE allocated for the window and adding the byte offset within page of the
first buffer PTE address in page table space. A PTE window created this way is
removed during I/O postprocessing.

The PTE window method is also used if the attempt to allocate the required
secondary DIOBM structure fails due to insufficient contiguous nonpaged pool.
With an 8 Kb page size, the PTE window requires a set of contiguous system page
table entries equal to the number of 8 Mb regions in the buffer plus 1. Failure
to create a PTE window as a result of insufficient SPTEs is unusual. However,
in the unlikely event of such a failure, if the process has not disabled resource
wait mode, the $QIO request is be backed out and the requesting process is
put into a resource wait state for nonpaged pool (RSN$_NPDYNMEM). When the
process is resumed, the I/O request is retried. If the process has disabled resource
wait mode, a failure to allocate the PTE window results in the failure of the I/O
request.

When the PTE window method is used, the level-3 process page table pages
that contain the PTEs that map the user buffer are locked into memory as well.
However, these level-3 page table pages are not locked when the PTEs are copied
into nonpaged pool or when the SPT window is used.

The new IOC_STD$FILL_DIOBM routine is used to set irp$l_svapte by
one of the previously described three methods. The OpenVMS-supplied FDT
support routines EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, and EXE_
STD$WRITELOCK use the IOC_STD$FILL_DIOBM routine in the following way:

1. The buffer is locked into memory by calling the new MMG_STD$IOLOCK_
BUF routine. This routine returns a 64-bit pointer to the PTEs and replaces
the obsolete MMG_STD$IOLOCK routine.

status = mmg_std$iolock_buf (buf_ptr, bufsiz, is_read, pcb, &irp->irp$pq_vapte,
&irp->irp$ps_fdt_context->fdt_context$q_qio_r1_value);

For more information about this routine, see Section B.17.

2. A value for the 32-bit irp$l_svapte cell is derived by calling the new
IOC_STD$FILL_DIOBM routine with a pointer to the embedded DIOBM
in the IRP, the 64-bit pointer to the PTEs that was returned by MMG_
STD$IOLOCK_BUF, and the address of the irp$l_svapte cell.2

status = ioc_std$fill_diobm (&irp->irp$r_diobm, irp->irp$pq_vapte, pte_count,
DIOBM$M_NORESWAIT, &irp->irp$l_svapte);

The DIOBM structure is fully described in Section A.6 and this routine is
described in Section B.10.

2 For performance reasons, the common case that can be handled by the PTE vector in
the embedded DIOBM may be duplicated in line to avoid the routine call.

2–6 Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.2 I/O Changes

Device drivers that call MMG_STD$IOLOCK directly will need to examine their
use of the returned values and might need to call the IOC_STD$FILL_DIOBM
routine.

2.2.3 Impact of MMG_STD$SVAPTECHK Changes
Prior to OpenVMS Alpha Version 7.0, the MMG_STD$SVAPTECHK and
MMG$SVAPTECHK routines compute a 32-bit svapte for either a process or
system space address. As of OpenVMS Alpha Version 7.0, these routines are
restricted to an S0/S1 system space address and no longer accept an address in
P0/P1 space. The MMG_STD$SVAPTECHK and MMG$SVAPTECHK routines
declare a bugcheck for an input address in P0/P1 space. These routines return
a 32-bit system virtual address through the SPT window for an input address in
S0/S1 space.

The MMG_STD$SVAPTECHK and MMG$SVAPTECHK routines are used by
a number of OpenVMS Alpha device drivers and privileged components. In
most instances, no source changes are required because the input address is in
nonpaged pool.

The 64-bit process-private virtual address of the level 3 PTE that maps a P0/P1
virtual address can be obtained using the new PTE_VA macro. Unfortunately,
this macro is not a general solution because it does not address the cross-process
PTE access problem. Therefore, the necessary source changes depend on the
manner in which the svapte output from MMG_STD$SVAPTECHK is used.

The INIT_CRAM routine uses the MMG$SVAPTECHK routine in its computation
of the physical address of the hardware I/O mailbox structure within a CRAM
that is in P0/P1 space. If you need to obtain a physical address, use the new
IOC_STD$VA_TO_PA routine.

If you call MMG$SVAPTECHK and IOC$SVAPTE_TO_PA, use the new IOC_
STD$VA_TO_PA routine instead.

The PTE address in dcb$l_svapte must be expressible using 32 bits and must
be valid regardless of process context. Fortunately, the caller’s address is within
the buffer that was locked down earlier in the CONV_TO_DIO routine via a call
to EXE_STD$WRITELOCK and the EXE_STD$WRITELOCK routine derived a
value for the irp$l_svapte cell using the DIOBM in the IRP. Therefore, instead
of calling the MMG$SVAPTECHK routine, the BUILD_DCB routine has been
changed to call the new routine EXE_STD$SVAPTE_IN_BUF, which computes a
value for the dcb$l_svapte cell based on the caller’s address, the original buffer
address in the irp$l_qio_p1 cell, and the address in the irp$l_svapte cell.

2.2.4 Impact of PFN Database Entry Changes
There are changes to the use of the PFN database entry cells containing the page
reference count and back link pointer.

For more information, see Section 2.3.6.

2.2.5 Impact of IRP Changes
All source code references to the irpl_ast, irpl_astprm, and irp$l_iosb cells
have been changed. These IRP cells were removed and replaced by new cells.

For more information, see Appendix A.

Upgrading Privileged Software to OpenVMS Alpha Version 7.0 2–7

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.3 General Memory Management Infrastructure Changes

2.3 General Memory Management Infrastructure Changes
This section describes OpenVMS Alpha Version 7.0 changes to the memory
management subsystem that might affect privileged-code applications.

For complete information about OpenVMS Alpha support for 64-bit addresses, see
the OpenVMS Alpha Guide to 64-Bit Addressing and VLM Features.3.

2.3.1 Location of Process Page Tables
The process page tables no longer reside in the balance slot. Each process
references its own page tables within page table space using 64-bit pointers.

Three macros (located in VMS_MACROS.H in SYS$LIBRARY:SYS$LIB_C.TLB)
are available to obtain the address of a PTE in Page Table Space:

• PTE_VA — Returns level 3 PTE address of input VA

• L2PTE_VA — Returns level 2 PTE address of input VA

• L1PTE_VA — Returns level 1 PTE address of input VA

Two macros (located in SYS$LIBRARY:LIB.MLB) are available to map and
unmap a PTE in another process’s page table space:

• MAP_PTE — Returns address PTE through system space window.

• UNMAP_PTE — Clears mapping of PTE through system space window.

Note that use of MAP_PTE and UNMAP_PTE requires the caller to hold the
MMG spinlock across the use of these macros and that UNMAP_PTE must be
invoked before another MAP_PTE can be issued.

2.3.2 Interpretation of Global and Process Section Table Index
As of OpenVMS Alpha Version 7.0, the global and process section table indexes,
stored primarily in the PHD and PTEs, have different meanings. The section
table index is now a positive index into the array of section table entries found
in the process section table or in the global section table. The first section table
index in both tables is now 1.

To obtain the address of a given section table entry, do the following:

1. Add the PHD address to the value in PHD$L_PST_BASE_OFFSET.

2. Multiply the section table index by SEC$C_LENGTH.

3. Subtract the result of Step 2 from the result of Step 1.

2.3.3 Location of Process and System Working Set Lists
The base address of the working set list can no longer be found within the process
PHD or the system PHD. To obtain the address of the process working set list,
use the 64-bit data cell CTL$GQ_WSL To obtain the address of the system
working set list, use the 64-bit data cell MMG$GQ_SYSWSL.

Note that pointers to working set list entries must be 64-bit addresses in order to
be compatible with future versions of OpenVMS Alpha after Version 7.0.

3 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM. This information has also been included in the HP OpenVMS Programming
Concepts Manual, Volume I.

2–8 Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.3 General Memory Management Infrastructure Changes

2.3.4 Size of a Working Set List Entry
Each working set list entry (WSLE) residing in the process or the system working
set list is now 64 bits in size. Thus, a working set list index must be interpreted
as an index into an array of quadwords instead of an array of longwords, and
working set list entries must be interpreted as 64 bits in size. Note that the
layout of the low bits in the WSLE is unchanged.

2.3.5 Location of Page Frame Number (PFN) Database
Due to the support for larger physical memory systems in OpenVMS Alpha
Version 7.0, the PFN database has been moved to S2 space, which can only be
accessed with 64-bit pointers. Privileged routine interfaces within OpenVMS
Alpha that pass PFN database entry addresses by reference have been renamed
to force compile-time or link-time errors.

Privileged code that references the PFN database must be inspected and possibly
modified to ensure that 64-bit pointers are used.

2.3.6 Format of PFN Database Entry
The offset PFN$L_REFCNT in the PFN database entry has been replaced with
a different-sized offset that is packed together with other fields in the PFN
database.

References to the field PFN$L_REFCNT should be modified to use the following
macros (located in PFN_MACROS.H within SYS$LIBRARY:SYS$LIB_C.TLB).

• INCREF — Increments the PFN’s reference count.

• DECREF — Decrements the PFN’s reference count.

As of OpenVMS Alpha Version 7.0, the offset PFN$L_PTE in the PFN database
entry has been replaced with a new PTE backpointer mechanism. This
mechanism can support page table entries that reside in 64-bit virtual address
space.

References to the field PFN$L_PTE should be modified to use one of the following
macros (located in PFN_MACROS.H within SYS$LIBRARY:SYS$LIB_C.TLB).

• ACCESS_BACKPOINTER — Accepts a PFN database entry address, and
returns a virtual address at which you may access the PTE that maps that
PFN.

• ESTABLISH_BACKPOINTER — Replaces a write of a PTE address to
PFN$L_PTE.

• TEST_BACKPOINTER — Replaces a test for zero in PFN$L_PTE.

Note that pointers to PFN database entries must be 64 bits.

2.3.7 Process Header WSLX and BAK Arrays
Prior to OpenVMS Alpha Version 7.0, the process header contained two internal
arrays of information that were used to help manage the balance slot contents
(specifically, page table pages) during process swapping. These two arrays, along
with the working set list index (WSLX) and backing storage (BAK) arrays, no
longer are required for page table pages.

Upgrading Privileged Software to OpenVMS Alpha Version 7.0 2–9

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.3 General Memory Management Infrastructure Changes

The swapper process now uses the upper-level page table entries and the working
set list itself to manage the swapping of page table pages. A smaller version of
the BAK array, now used only for backing storage information for balance slot
pages, is located at the end of the fixed portion of the process header at the offset
PHD$Q_BAK_ARRAY.

2.3.8 Free S0/S1 System Page Table Entry List
The format of a free page table entry in S0/S1 space has been changed to use
index values from the base of page table space instead of the base of S0/S1 space.
The free S0/S1 PTE list also uses page table space index values. The list header
has been renamed to LDR$GQ_FREE_S0S1_PT.

2.3.9 Location of the Global Page Table
In order to support larger global sections and larger numbers of global sections in
OpenVMS Alpha Version 7.0, the global page table has been moved to S2 space,
which can be accessed only with 64-bit pointers.

Privileged code that references entries within GPT must be inspected and possibly
modified to ensure that 64-bit pointers are used.

2.3.10 Free Global Page Table Entry List
The format of the free GPT entry has been changed to use index values from the
base of the global page table instead of using the free pool list structure. The free
GPT entry format is now similar to the free S0/S1 PTE format.

Note that pointers to GPT entries must be 64 bits.

2.3.11 Region Descriptor Entries (RDEs)
As of OpenVMS Alpha Version 7.0, each process virtual addressing region is
described by a region descriptor entry (RDE). The program region (P0) and
control region (P1) have region descriptor entries that contain attributes of the
region and describe the current state of the region. The program region RDE is
located at offset PHD$Q_P0_RDE within the process’s PHD. The control region
RDE is located at offset PHD$Q_P1_RDE, also within the process’s PHD.

Many internal OpenVMS Alpha memory management routines accept a pointer
to the region’s RDE associated with the virtual address also passed to the routine.

The following two functions (located in MMG_FUNCTIONS.H in
SYS$LIBRARY:SYS$LIB_C.TLB) are available to obtain the address of an
RDE:

• $lookup_rde_va — Returns the address of the RDE given a virtual address.

• $lookup_rde_id — Returns the address of the RDE given the region id.

2.4 Kernel Threads Changes
This section describes the OpenVMS Alpha kernel threads features that might
require changes to privileged-code applications.

2.4.1 The CPU$L_CURKTB Field
The CPU$L_CURKTB field in the CPU databases contains the current kernel
thread executing on that CPU. If kernel-mode codes own the SCHED spinlock,
then the current KTB address can be obtained from this field. Before kernel
threads implementation, this was the current PCB address.

2–10 Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.4 Kernel Threads Changes

2.4.2 Mutex Locking
No changes are necessary to kernel-mode code that locks mutexes. All of
SCH$LOCK*, SCH$UNLOCK*, and SCH$IOLOCK* routines determine the
correct kernel thread if it must wait because the mutex is already owned.

2.4.3 Scheduling Routines
Code that calls any of the scheduling routines that previously took the current
PCB as a parameter must be changed to pass the current KTB. These scheduling
routines are as follows:

EXE$KERNEL_WAIT SCH$WAIT_PROC

EXE$KERNEL_WAIT_PS SCH$UNWAIT

SCH$RESOURCE_WAIT RPTEVT macro

SCH$RESOURCE_WAIT_PS SCH$REPORT_EVENT

SCH$RESOURCE_WAIT_
SETUP

SCH$CHANGE_CUR_PRIORITY

SCH$CHSE SCH$REQUIRE_CAPABILITY

SCH$CHSEP SCH$RELEASE_CAPABILITY

Code that calls any of the scheduling routines that previously took the process
PID as a parameter must be changed to pass the thread’s PID. These scheduling
routines are as follows:

SCH$POSTEF SCH$WAKE

2.4.4 New MWAIT State
A thread that is waiting for ownership of the inner-mode semaphore may be put
into MWAIT. The KTB$L_EFWM field contains a process-specific MWAIT code.
The low word of the field contains RSN$_INNER_MODE, and the upper word
contains the process index from the PID.

2.4.5 System Services Dispatching
The system services dispatcher has historically passed the PCB address to the
inner-mode services. This is still true with kernel threads. The current KTB is
not passed to the services.

2.4.6 Asynchronous System Traps (ASTs)
The ACB$L_PID field in the ACB should represent the kernel thread to which
the AST is targeted. All other AST context is the same.

Inner-mode ASTs can be delivered on whichever kernel thread is currently in
inner mode. ASTs that have the ACB$V_THREAD_SAFE bit set will always be
delivered to the targeted thread, regardless of other-inner mode activity. Use
extreme care if this is used. Attempted thread-safe AST delivery to a kernel
thread that has been deleted is delivered to the initial thread.

Upgrading Privileged Software to OpenVMS Alpha Version 7.0 2–11

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.4 Kernel Threads Changes

2.4.7 TB Invalidation and Macros
With the kernel threads implementation, the address space for a process can be
active on multiple CPUs at the same time. Any privileged code that creates or
deletes process virtual address space ‘‘by hand’’ must do the proper invalidation
across all CPUs. A set of macros have been created for BLISS, C, and MACRO-32
to facilitate translation buffer invalidation. The macros are as follows:

• TBI_DATA_64

• TBI_SINGLE

• TBI_ALL

Table 2–1 describes the arguments for the TBI_DATA_64 and TBI_SINGLE
macros. Note that the difference between TBI_DATA_64 and TBI_SINGLE is
that the former invalidates an entry from the data translation buffer only, while
the latter invalidates an entry from both the data and the instruction translation
buffers.

Table 2–1 Arguments for TBI_DATA_64 and TBI_SINGLE

Keyword Value Meaning

ADDR = The virtual address
to be invalidated. The
address can be either
a 64-bit VA or a sign-
extended 32-bit VA. For
MACRO-32, the address
must be specified in a
register.

ENVIRON = THIS_CPU_ONLY Indicates that this invocation of TBIS is to
be executed strictly within the context of the
local CPU only. Thus, no attempt is made
whatsoever to extend the TBIS request to any
CPU or other ‘‘processor’’ that might exist
within the system.

= ASSUME_PRIVATE Indicates that this is a threads environment
and that the address should be treated as a
private address and not be checked. Therefore,
in an SMP environment, it is necessary to
do the invalidate to other CPUs that are
running a kernel thread from this process.
This argument is used for system space
addresses that should be treated as private
to the process.

= ASSUME_SHARED Indicates that this invocation of TBIS should
be broadcast to all other CPUs in the system.
ASSUME_SHARED is the opposite of THIS_
CPU_ONLY.

= LOCAL This is now obsolete and generates an error.

= anything other than
the above

Forces the TB invalidate to be extended to
all components of the system that may have
cached PTEs.

(continued on next page)

2–12 Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.4 Kernel Threads Changes

Table 2–1 (Cont.) Arguments for TBI_DATA_64 and TBI_SINGLE

Keyword Value Meaning

PCBADDR = Address of current
process control block.
Default is NO_PCB,
which means that a
PCB address does not
need to be specified. The
default is R31 for the
MACRO-32 macros.

This argument must be specified if the address
to be invalidated is process-private (either
ENVIRON=ASSUME_PRIVATE or no keyword
for the ENVIRON qualifier was specified).

Table 2–2 describes the arguments for the TBI_ALL macro.

Table 2–2 Arguments for TBI_ALL

Keyword Value Meaning

ENVIRON = THIS_CPU_ONLY Indicates that this invocation of TBI_ALL is to
be executed strictly within the context of the
local CPU. No attempt is made to extend the
TBIA request to any CPU or other ‘‘processor’’
that might exist within the system.

= LOCAL This is now obsolete and generates an error.

= anything other than
the above

Forces the TB invalidate to be extended to
all components of the system that may have
cached PTEs.

2.4.8 New PCB/KTB Fields
Table 2–3 shows the new PCB and KTB fields as defined by PCBDEF.

Table 2–3 New PCB/KTB Fields

Field Meaning

PCB$K_MAX_KT_COUNT Maximum number of kernel threads

PCB$L_ACTIVE_CPUS CPUs owned by this process

PCB$L_TQUANTUM Per-user thread quantum

PCB$L_MULTITHREAD Maximum thread count

PCB$L_KT_COUNT Current thread count

PCB$L_KT_HIGH Highest KTB vector entry used

PCB$L_KTBVEC KTB vector address

PCB$L_IM_ASTQFL_SPK Special kernel AST queue forward link (head)

PCB$L_IM_ASTQBL_SPK Special kernel AST queue back link (tail)

PCB$L_IM_ASTQFL_K Kernel AST queue forward link (head)

PCB$L_IM_ASTQBL_K Kernel AST queue back link (tail)

PCB$L_IM_ASTQFL_E Executive AST queue forward link (head)

PCB$L_IM_ASTQBL_E Executive AST queue back link (tail)

(continued on next page)

Upgrading Privileged Software to OpenVMS Alpha Version 7.0 2–13

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.4 Kernel Threads Changes

Table 2–3 (Cont.) New PCB/KTB Fields

Field Meaning

PCB$L_INITIAL_KTB Initital KTB, overlays KTB$L_PCB

KTB$L_PCB PCB address, overlays PCB$L_INITIAL_KTB

KTB$L_FRED Address of FRED block

KTB$L_PER_KT_AREA Address of per-kernel thread data area

KTB$L_TQUANT Remaining per-user thread quantum

KTB$L_QUANT Remaining per-kernel thread quantum

KTB$L_TM_CALLBACKS Address of thread manager callback vector

2.4.9 CTL$AL_STACK and CTL$AL_STACKLIM
The two arrays containing stack bounds information are now quadwords. The
arrays are now CTL$AQ_STACK and CTL$AQ_STACKLIM and are still indexed
by access mode. The entries are QUADWORDS.

The arrays pointed to by these two data cells represent only the stack pointers
for the initial kernel thread. For a process with multiple kernel threads, the
stack arrays are in the per-kernel thread data area. The address of this structure
can be found using the KTB$L_PER_KT_AREA field. These fields are defined
in PKTADEF. The initial thread has a permanent per-kernel thread, so no
distinction is needed between the initial thread and other threads when accessing
this data. Table 2–4 shows the stack arrays.

Table 2–4 Stack Arrays

Array Meaning

PKTA$Q_STACK STACK pointer array

PKTA$Q_STACKLIM STACK limit pointer array

2.4.10 Floating-Point Register and Execution Data Blocks (FREDs)
The FRED is defined by FREDDEF. The KTB$L_FRED field in the KTB points
to the FRED block. The section of the PHD that contains the HWPCB and
floating-point register save area for the initial thread is identical to the layout
of the FRED. Therefore, no distinction is needed between the initial thread and
other threads when accessing this data.

2.5 Registering Images That Have Version Dependencies
Note

The information in this section does not apply to device drivers, nor to
any images that reference the following data structures:

BOD
CDRP
CXB
DCBE
FDT
IRP
IRPE
PFN

2–14 Upgrading Privileged Software to OpenVMS Alpha Version 7.0

Upgrading Privileged Software to OpenVMS Alpha Version 7.0
2.5 Registering Images That Have Version Dependencies

PHD
UCB
VCRP

The need for change in any image (including device drivers, as well as privileged
applications linked against SYS$BASE_IMAGE.EXE) is normally detected by a
system version check. That check is designed to prevent an application that may
need change from producing incorrect results or causing system failures.

The version checks do not necessarily mean that the applications require any
change. Compaq recommends that you perform some analysis to determine
compatibility for privileged images before you run them on Version 7.0 systems.

OpenVMS Alpha Version 7.0 provides an Image Registry facility that may obviate
the need for relinking images when you upgrade from previous versions of
OpenVMS Alpha. The Image Registry is a central registry of images (including
layered products, customer applications, and third-party software) that have
version dependencies but have been identified as being compatible with the
OpenVMS operating system software. The products in the registry are exempted
from version checking.

The Image Registry facility has several benefits, particularly when you have only
image files, not source or object files. In addition, it eases version compatibility
problems on mixed-version clusters because the same images can be used on all
nodes. It also simplifies the addition of third-party software and device drivers to
the system.

The registry is a file that contains registered images. These images include main
images (images that you can run directly), shared libraries, and device drivers
that are identified by name, the image identification string, and the link time
of the image. The registered images bypass normal system version checking in
the INSTALL, system image loader, and image activator phases. With the Image
Registry facility, images for different versions of applications can be registered
independently.

Images linked as part of installation need not be registered because they match
the version of the running system. However, linking during installation cannot
ensure the absence of system version dependencies.

2.5.1 Version Identification (ID) Number Change to Three Subsystems
The OpenVMS executive defines 18 logical subsystems. Each of these subsystems
contains its own version identification (ID) number. This modularization makes
it possible for OpenVMS releases to include changes to a portion of the executive,
impacting only those privileged programs which use that portion of the executive.

For OpenVMS ALpha Version 7.0, the following 3 subsystems have changed, and
their version IDs have been incremented:

I/O
Memory Management
Process Scheduling

Developers should check privileged code (that is, any image linked against the
system symbol table SYS$BASE_IMAGE.EXE) to determine whether the image
is affected by the changes to the subsystems. If the code is affected, the developer
should make any necessary changes.

Upgrading Privileged Software to OpenVMS Alpha Version 7.0 2–15

3
Replacements for Removed Privileged

Symbols

This chapter describes the closest equivalent mechanism to a number of internal
routines, data structure cells, and system data cells that have been removed in
OpenVMS Alpha Version 7.0.

Each table lists the previous name, any replacements, and a brief explanation.

Important

The internal data structure fields, routines, macros, and data cells
described in this chapter should not be interpreted as being part of the
documented interfaces that drivers or other privileged software should
routinely depend on.

If you were using the removed mechanism correctly, this chapter will
assist you in using the closest equivalent in OpenVMS Alpha Version
7.0. However, you should not use this as an opportunity to start using
these mechanisms. Doing so is likely to increase the work required to
maintain compatibility of your privileged software with future releases of
OpenVMS.

Replacements for Removed Privileged Symbols 3–1

Replacements for Removed Privileged Symbols
3.1 Removed Date Structure Fields

3.1 Removed Date Structure Fields
Table 3–1 lists the data structure fields that have been removed as of OpenVMS
Alpha Version 7.0.

Table 3–1 Removed Date Structure Fields

Removed Field Replacement Comments

BOD$L_BASEPVA BOD$PQ_BASEPVA 64-bit process virtual address of
buffer mapped by the buffer object.
See Appendix A.

CDRP$L_AST cdrp$pq_acb64_ast Increased to a quadword and
renamed.

CDRP$L_ASTPRM CDRP$Q_A See Appendix A.

CDRP$L_IOSB CDRP$PQ_IOSB See Appendix A.

CPT$L_IOVA CPT$PQ_IOVA Increased to a quadword and
renamed.

DMP$M_BITS_12_15 Still have this field. Same value.

DMP$S_BITS_12_15 Still have this field. Same value.

DMP$V_BITS_12_15 Still have this field. Same value.

DYN$C_F64_F64DATA TBS—Dollar

DYN$C_NET_TIM_TEB DYN$C_NET_TIM_NTEB Renamed because the DECnet
structure it indicates (network
timer element block) was renamed
from TEB to NTEB.

FDT_CONTEXT$L_QIO_R1_
VALUE

FDT_CONTEXT$Q_QIO_R1_
VALUE

See Appendix A.

IRP$L_AST IRP$PQ_ACB64_AST Removed to ensure that any
reference to the $QIO astadr
via a 32-bit address and astprm
as a 32-bit value are detected at
compile-time or link-time.

IRP$L_ASTPRM IRP$Q_ACB64_ASTPRM Removed to ensure that any
reference to the $QIO astadr
via a 32-bit address and astprm
as a 32-bit value are detected at
compile-time or link-time.

IRP$L_IOSB IRP$PQ_IOSB Removed to ensure that any
reference to the $QIO iosb via
a 32-bit address is detected at
compile-time or link-time.

IRPE$L_BCNT1 IRPE$L_BCNT See Appendix A.

IRPE$L_BCNT2 None. Removed.

IRPE$L_BOFF1 IRPE$L_BOFF See Appendix A.

IRPE$L_BOFF2 None. Removed.

IRPE$L_SVAPTE1 IRPE$L_SVAPTE

IRPE$L_SVAPTE2 None. Removed.

LCKCTX$L_CPLADR LCKCTX$PQ_CPLADR Increased in length to quadword.

LCKCTX$L_CPLPRM LCKCTX$Q_CPLPRM Increased in length to quadword.

(continued on next page)

3–2 Replacements for Removed Privileged Symbols

Replacements for Removed Privileged Symbols
3.1 Removed Date Structure Fields

Table 3–1 (Cont.) Removed Date Structure Fields

Removed Field Replacement Comments

LCKCTX$L_CR3 LCKCTX$Q_CR3 Increased in length to quadword.

LCKCTX$L_CR4 LCKCTX$Q_CR4 Increased in length to quadword.

LCKCTX$L_CR5 LCKCTX$Q_CR5 Increased in length to quadword.

LCKCTX$L_CRETADR LCKCTX$PQ_CREADR Increased in length to quadword.

LCKCTX$L_CTX_PRM1 LCKCTX$Q_CTX_PRM1 Increased in length to quadword.

LCKCTX$L_CTX_PRM2 LCKCTX$Q_CTX_PRM2 Increased in length to quadword.

LCKCTX$L_CTX_PRM3 LCKCTX$Q_CTX_PRM3 Increased in length to quadword.

LCKCTX$L_RET1 LCKCTX$PQ_RET1 Increased in length to quadword.

LCKCTX$L_TMP1 LCKCTX$Q_TMP1 Increased in length to quadword.

LKB$C_ACBLEN Removed.

LKB$K_ACBLEN Removed.

LKB$L_AST LKB$PQ_AST Increased in length to quadword.

LKB$L_ASTPRM LKB$Q_ASTPRM Increased in length to quadword.

LKB$L_BLKASTADR LKB$PQ_CPLASTADR Increased in length to quadword.

LKB$L_CPLASTADR LKB$PQ_CPLASTADR Increased in length to quadword.

LKB$L_LKSB LKB$PQ_LKSB Increased in length to quadword.

LKB$L_OLDASTPRM LKB$Q_OLDASTPRM Increased in length to quadword.

LKB$L_OLDBLKAST LKB$PQ_OLDBLKAST Increased in length to quadword.

LMB$C_GBL No name change. Value changed from 2 to 3.

LMB$C_PROCESS No name change. Value changed from 3 to 4.

LMB$C_S0 LMB$C_S0S1 Value = 1

LMB$C_SPT LMB$C_SPTW Not guaranteed to be in a dump.

LMB$L_BAD_MEM_END LMB$PQ_BAD_MEM_END Supports a 64-bit address.

LMB$L_BAD_MEM_START LMB$PQ_BAD_MEM_START Supports a 64-bit address.

LMB$L_HOLE_START_VA LMB$PQ_BAD_MEM_START Supports a 64-bit address.

LMB$L_HOLE_TOTAL_PAGES LMB$Q_HOLE_TOTAL_PAGES Supports a 64-bit address.

MMG$C_PTSPACE_OFFSET
MMG$K_PTSPACE_OFFSET

MMG$GL_L1_INDEX Compile-time constant that defined
a fixed base address for page table
address space. This has been
replaced by a run-time mechanism
which chooses a base address for
page table address space during
bootstrap, with the index of level 1
page table entry used to map the
page tables stored in the new data
cell.

PCB$L_ADB_LINK None Supported a feature that was never
implemented.

PCB$L_PSX_ACTPRM PCB$Q_PSX_ACTPRM Increased in length to quadword.

PCB$L_TOTAL_EVTAST None Supported a feature that was never
implemented.

(continued on next page)

Replacements for Removed Privileged Symbols 3–3

Replacements for Removed Privileged Symbols
3.1 Removed Date Structure Fields

Table 3–1 (Cont.) Removed Date Structure Fields

Removed Field Replacement Comments

PFN$C_ENTRY_SHIFT_SIZE None The size of a single PFN database
entry was formerly a power of two.
As of Version 7.0, that is no longer
true and the symbol was deleted.

PFN$L_PTE This offset in the PFN database
was replaced with a new PTE
backpointer mechanism that is
capable of supporting page table
entries that reside in 64-bit virtual
address space. Any code that
formerly touched PFN$L_PTE
must be recoded to use one of
the following macros supplied in
LIB.MLB:

ACCESS_BACKPOINTER
ESTABLISH_BACKPOINTER
TEST_BACKPOINTER

ACCESS_BACKPOINTER Accepts a PFN database entry
address and returns a virtual
address at which you may access
the PTE that maps that PFN.
This replaces a fetch of a SVAPTE
from PFN$L_PTE, which would
subsequently be used as an
operand for a memory read or
write instruction.

ESTABLISH_BACKPOINTER Replaces a write of a SVAPTE to
PFN$L_PTE.

TEST_BACKPOINTER Replaces a test for zero in PFN$L_
PTE.

PFN$L_REFCNT INCREF
DECREF

This offset in the PFN database
was replaced with a differently
sized offset that is packed together
with other fields in the PFN
database. The supplied macro
INCREF should be used to replace
any existing increment of the
value in PFN$L_REFCNT, while
DECREF should be used to replace
any existing decrement.

(continued on next page)

3–4 Replacements for Removed Privileged Symbols

Replacements for Removed Privileged Symbols
3.1 Removed Date Structure Fields

Table 3–1 (Cont.) Removed Date Structure Fields

Removed Field Replacement Comments

PFN$L_WSLX PFN$L_WSLX_QW This offset was renamed to reflect a
fundamental change in working set
list indexes. Prior to Version 7.0,
the working set list index (WSLX)
was a longword index. The WSLX
has become a quadword index as
of Version 7.0, therefore the name
of the offset was changed to focus
attention on existing code that
must be changed to view the value
stored at this offset as a quadword
index rather than as a longword
index.

PHD$C_PHDPAGCTX None Supported a feature that was never
implemented.

PHD$L_BAK PHD$L_BAK_ARRAY PHD$L_BAK contained an offset
to an internally maintained
array which was used to support
swapping of the balance slot
contents. As of Version 7.0, the
implementation of this array
changed to better accommodate the
balance slot contents. PHD$L_BAK
was replaced by PHD$L_BAK_
ARRRAY which is the symbolic
offset from the start of the process
header to where this array begins.

PHD$L_L2PT_VA L2PTE_VA This process header offset formerly
contained the system space address
of the process’s level 2 page table
page that was used to map P0 and
P1 spaces. As of Version 7.0, the
page tables no longer reside in the
balance slot, and a process is no
longer limited to having only one
level 2 page table page. This offset
was used to derive addresses of
level 2 page table entries. Use the
L2PTE_VA macro to derive from a
given VA the address of the level 2
PTE that maps that VA.

PHD$L_L3PT_VA
PHD$L_L3PT_VA_P1

PTE_VA These process header offsets
formerly contained the system
space addresses of the bases of the
P0 and P1 page tables that resided
in the process’s balance slot. As
of Version 7.0, the page tables no
longer reside in the balance slot,
and the conceptual overlap of the
P0 and P1 page tables in virtual
memory no longer exists. Use the
PTE_VA macro to derive from a
given VA the address of the level 3
PTE that maps that VA.

(continued on next page)

Replacements for Removed Privileged Symbols 3–5

Replacements for Removed Privileged Symbols
3.1 Removed Date Structure Fields

Table 3–1 (Cont.) Removed Date Structure Fields

Removed Field Replacement Comments

PHD$L_P0LENGTH None Different page table layout.

PHD$L_P1LENGTH None Different page table layout.

PHD$L_PSTBASMAX PHD$L_PST_BASE_MAX Contains new-style section index.

PHD$L_PSTBASOFF PHD$L_PST_BASE_OFFSET Name changed.

PHD$L_PSTFREE PHD$L_PST_FREE Contains new-style section index.

PHD$L_PSTLAST PHD$L_PST_LAST Contains new-style section index.

PHD$L_PTWSLELCK
PHD$L_PTWSLEVAL

PFN database These process header offsets
formerly contained internal
bookkeeping information for
managing page table pages for a
process. These have been replaced
by a bookkeeping mechanism that
resides in the PFN database entries
for page table pages. It is highly
unlikely that anyone is affected by
this change.

PHD$L_QUANT KTB$L_QUANT

PHD$L_WSL CTL$GQ_WSL You can no longer count on WSL
(data cell) following PHD, use
pointer to WSL in CTL$GQ_WSL
instead.

PHD$L_WSLX None WSLX array is no longer in PHD as
a result of the new swapper design.

PTE$L_COUNT PTE$L_FREE_COUNT Offset to the number of free PTEs
in a free PTE structure.

PTE$L_LINK PTE$Q_INDEX Contains an index to the next free
element in the free PTE list. The
contents of the field is a quadword
index off the base of page table
space. Free system PTEs and free
global PTEs are linked together in
this manner.

PTE$M_SINGLE_SPTE PTE$M_SINGLE_PTE A mask or flag denoting whether a
free element describes a single PTE
or multiple PTEs.

PTE$V_SINGLE_SPTE None The contents of a free PTE element
are AND’ed with PTE$M_SINGLE_
PTE to determine whether the
element describes a single PTE.

3–6 Replacements for Removed Privileged Symbols

Replacements for Removed Privileged Symbols
3.2 Removed Routines

3.2 Removed Routines
Table 3–2 lists the routines that have been removed as of OpenVMS Alpha
Version 7.0.

Table 3–2 Removed Routines

Removed Routine Replacement Comments

MMG$ALCSTX MMG_STD$ALCSTX Returns new-style section index.

MMG$ALLOC_PFN_ALGND MMG$ALLOC_PFN_ALGND_64 MMG$ALLOC_PFN_ALGND_
64 should not be called directly.
Instead, use the ALLOCPFN
macro. Note that 64-bit virtual
addresses are required to access
PFN database entries.

MMG$ALLOC_ZERO_ALGND MMG$ALLOC_ZERO_ALGND_
64

MMG$ALLOC_ZERO_ALGND_
64 should not be called directly.
Instead, use the ALLOC_ZERO_
PFN macro. Note that 64-bit
virtual addresses are required
to access PFN database entries.

MMG$CREPAG MMG$CREPAG_64
MMG_STD$CREPAG_64

Accepts 64-bit addresses and has 3
new inputs: RDE (R12), pagefile_
cache (R13) mmg_flags (R14). See
mmg_routines.h for STD interface.

MMG$DALCSTX MMG_STD$DALCSTX Accepts new-style section index.

MMG$DECPTREF MMG_STD$DECPTREF_
PFNDB
MMG_STD$DECPTREF_GPT

MMG$DECPTREF expected a 32-
bit system space address of a PTE
as an input parameter. Page table
entries are now located in 64-bit
addressable memory. This routine
was replaced by two routines:
MMG_STD$DECPTREF_PFNDB
and MMG_STD$DECPTREF_GPT.

MMG_STD$DECPTREF_PFNDB
accepts as input a 64-bit virtual
address of a PFN database entry
for a page table, the reference count
of which is to be decremented.

MMG_STD$DECPTREF_GPT,
accepts as input a 64-bit virtual
address of a global page table
entry, which lies within a certain
global page table page, of which
a reference count must be
decremented.

MMG$DECSECREF MMG_STD$DECSECREF Accepts new-style section index.

MMG$DECSECREFL MMG_STD$DECSECREFL Accepts new-style section index.

MMG$DELPAG MMG$DELPAG_64
MMG_STD$DELPAG_64

Accepts 64-bit addresses and has 2
new inputs, RDE (R12) and mmg_
flags (R14). See mmg_routines.h for
STD interface.

(continued on next page)

Replacements for Removed Privileged Symbols 3–7

Replacements for Removed Privileged Symbols
3.2 Removed Routines

Table 3–2 (Cont.) Removed Routines

Removed Routine Replacement Comments

MMG$DELWSLEPPG MMG_STD$DELWSLEPPG_64 Replacement reflects a change in
input from a 32-bit addressable
system space address of a PTE
to a 64-bit address of a PTE in
page table space. Other argument
changes may have occurred as well.

MMG$DELWSLEX MMG_STD$DELWSLEX_64 Replacement reflects a change in
input from a 32-bit addressable
system space address of a PTE
to a 64-bit address of a PTE in
page table space. Other argument
changes may have occurred as well.

MMG$FREWSLX MMG$FREWSLX_64 Replacement reflects a change in
input from a 32-bit addressable
system space address of a PTE
to a 64-bit address of a PTE in
page table space. Other argument
changes may have occurred as well.

MMG$GETGSNAM MMG_STD$GETGSNAM Converted to STD interface. (No
prototype in mmg_routines.h.)

MMG$GSDSCAN MMG_STD$GSDSCAN Converted to STD interface. See
mmg_routines.h for interface
definition.

MMG$INCPTREF MMG_STD$INCPTREF_64 Replacement reflects a change in
input from a 32-bit addressable
system space address of a PTE
to a 64-bit address of a PTE in
page table space. Other argument
changes may have occurred as well.

MMG$INIBLDPKT None This routine was used internally
only. Its symbol has been removed
from the base image.

MMG$ININEW_PFN MMG_STD$ININEWPFN_64 Replacement reflects a change in
input from a 32-bit addressable
system space address of a PTE
to a 64-bit address of a PTE in
page table space. Other argument
changes may have occurred as well.

MMG$INIT_PGFLQUOTA MMG_STD$INIT_PGFLQUOTA
$INIT_PGFLQUOTA

Converted to STD interface. See
mmg_functions.h for interface
definition.

MMG$IN_REGION MMG_STD$IN_REGION_64
$IN_REGION_64

Converted to STD interface. See
mmg_functions.h for interface
definition.

MMG$IOLOCK MMG_STD$IOLOCK_BUF See Appendix B.

MMG$LOCKPGTB MMG_STD$LOCKPGTB_64 Replacement reflects a change in
input from a 32-bit addressable
system space address of a PTE
to a 64-bit address of a PTE in
page table space. Other argument
changes may have occurred as well.

(continued on next page)

3–8 Replacements for Removed Privileged Symbols

Replacements for Removed Privileged Symbols
3.2 Removed Routines

Table 3–2 (Cont.) Removed Routines

Removed Routine Replacement Comments

MMG$MAKE_WSLE MMG_STD$MAKE_WSLE_64 Replacement reflects a change in
input from a 32-bit addressable
system space address of a PTE
to a 64-bit address of a PTE in
page table space. Other argument
changes may have occurred as well.

MMG$MORE_PGFLQUOTA MMG_STD$MORE_
PGFLQUOTA
$MORE_PGFLQUOTA

Converted to STD interface. See
mmg_functions.h for interface
definition.

MMG$MOVPTLOCK
MMG$MOVPTLOCK1

None Page table locking redesign has
obviated these routines. No
replacement exists.

MMG$PTEINDX None Used internally only. Obviated by
design as of Version 7.0.

MMG$PTEREF MMG$PTEREF_64 This replacement reflects a change
in interface including MMG_
STD$PTEREF acceptance as input
a 64-bit virtual address.

MMG$PURGEMPL MMG$PURGE_MPL Renamed because the interface
changed slightly. This is a JSB
entry with arguments in R0-R2.
It now accepts an additional
argument in R3, the PTBR of
the process owning the PTEs,
for range-based requests. This
request type also now accepts 64-bit
PTE addresses rather than 32-bit
SVAPTE addresses.

MMG$SUBSECREF MMG_STD$DECSECREFL Accepts new-style section index.

MMG$SUBSECREFL MMG_STD$SUBSECREFL Accepts new-style section index.

MMG$TBI_SINGLE_64 TBI_SINGLE Macro MMG$TBI_SINGLE_64 should not
be called directly. Instead, use the
TBI_SINGLE macro.

MMG$TRY_ALL MMG_STD$TRY_ALL_64 Converted to STD interface. See
mmg_routines.h for interface
definition.

MMG$ULKGBLWSL None This routine was used internally
only. Its symbol has been removed
from the base image.

MMG$UNLOCK MMG_STD$IOUNLOCK_BUF See Appendix B.

MMG_STD$ALLOC_PFN MMG_STD$ALLOC_PFN_64 This routine should not be
called directly. Instead, use the
ALLOCPFN macro. Note that 64-
bit virtual addresses are required
to access PFN database entries.

MMG_STD$ALLOC_ZERO_PFN MMG_STD$ALLOC_ZERO_
PFN_64

This routine should not be called
directly. Instead, use the ALLOC_
ZERO_PFN macro. Note that 64-bit
virtual addresses are required to
access PFN database entries.

(continued on next page)

Replacements for Removed Privileged Symbols 3–9

Replacements for Removed Privileged Symbols
3.2 Removed Routines

Table 3–2 (Cont.) Removed Routines

Removed Routine Replacement Comments

MMG_STD$DALLOC_PFN MMG_STD$DALLOC_PFN_64 Note that 64-bit virtual addresses
are required to access PFN
database entries.

MMG_STD$DEL_PFNLST MMG_STD$DEL_PFNLST_64 Note that 64-bit virtual addresses
are required to access PFN
database entries.

MMG_STD$ININEW_PFN MMG_STD$ININEWPFN_64 Note that 64-bit virtual addresses
are required to access PFN
database entries.

MMG_STD$INS_PFNH MMG_STD$INS_PFNH_64 Note that the 64-bit virtual
addresses are required to access
PFN database entries.

MMG_STD$INS_PFNT MMG_STD$INS_PFNT_64 Note that the 64-bit virtual
addresses are required to access
PFN database entries.

MMG_STD$IOLOCK MMG_STD$IOLOCK_BUF See Appendix B.

MMG_STD$PTEINDX None Used internally only. Obviated
by design as of OpenVMS Alpha
Version 7.0.

MMG_STD$REL_PFN MMG_STD$REL_PFN_64 Note that the 64-bit virtual
addresses are required to access
PFN database entries.

MMG_STD$REM_PFN MMG_STD$REM_PFN_64 Note that the 64-bit virtual
addresses are required to access
PFN database entries.

MMG_STD$REM_PFNH MMG_STD$REM_PFNH_64 Note that the 64-bit virtual
addresses are required to access
PFN database entries.

MMG_STD$TBI_SINGLE_64 TBI_SINGLE Macro MMG_STD$TBI_SINGLE_64
should not be called directly.
Instead, use the TBI_SINGLE
macro.

MMG_STD$UNLOCK MMG_STD$IOUNLOCK_BUF See Appendix B.

SWP$FILL_L1L2_PT None Removed.

3–10 Replacements for Removed Privileged Symbols

Replacements for Removed Privileged Symbols
3.3 Removed Macros

3.3 Removed Macros
This section lists the macros that have been removed as of OpenVMS Alpha
Version 7.0.

3.3.1 Removed MACRO-32 Macros Formerly in SYS$LIBRARY:LIB.MLB

• $VADEF — Moved to SYS$LIBRARY:STARLET.MLB

• TBI_SINGLE_64 — MMG$TBI_SINGLE_64

3.3.2 C Header Files Removed From SYS$LIBRARY:SYS$LIB_C.TLB

• msb_codec_reg.h

• msb_reg.h

• vadef.h — Moved to SYS$LIBRARY:SYS$STARLET_C.TLB

Replacements for Removed Privileged Symbols 3–11

Replacements for Removed Privileged Symbols
3.4 Removed System Data Cells

3.4 Removed System Data Cells
Table 3–3 lists the system data cells that have been removed as of OpenVMS
Alpha Version 7.0.

Table 3–3 Removed System Data Cells

Removed Cell Replacement Comments

CTL$AL_STACK CTL$AQ_STACK Arrays are now quadwords.

CTL$AL_STACKLIM CTL$AQ_STACKLIM Arrays are now quadwords.

EXE$GL_GPT MMG$GQ_FREE_GPT As of Version 7.0, free GPTEs are
managed in the same manner as
free system PTEs. Note that 64-bit
virtual addresses are required to
access GPTEs.

LDR$GL_FREE_PT LDR$GQ_FREE_S0S1_PT Contains the address of the start of
the free S0/S1 PTE list. The format
of the free PTEs has changed for
Version 7.0.

MMG$GL_FRESVA MMG$GQ_NEXT_FREE_S0S1_
VA

MMG$GL_GPTBASE MMG$GQ_GPT_BASE As of Version 7.0, free GPTEs are
managed in the same manner as
free system PTEs. Note that 64-bit
virtual addresses are required to
access GPTEs.

MMG$GL_MAXGPTE MMG$GQ_MAX_GPTE As of Version 7.0, free GPTEs are
managed in the same manner as
free system PTEs. Note that 64-bit
virtual addresses are required to
access GPTEs.

MMG$GL_P0_PTLEN None Obviated by the removal of the
process page tables from the
balance slot.

MMG$GL_PX_VPN_LENGTH None This data cell is obviated by the
removal of the process page tables
from the balance slot.

MMG$GL_RESERVED_SVA MMG$GQ_WINDOW_VA Increased in length to quadword.

MMG$GL_RESERVED_SVA2 MMG$GQ_WINDOW2_VA Increased in length to quadword.

(continued on next page)

3–12 Replacements for Removed Privileged Symbols

Replacements for Removed Privileged Symbols
3.4 Removed System Data Cells

Table 3–3 (Cont.) Removed System Data Cells

Removed Cell Replacement Comments

MMG$GL_RESERVED_SVAPTE MMG$GQ_WINDOW_PTE_PFN 64-bit pointer to PFN field of first
reserved PTE.

MMG$GL_RESERVED_
SVAPTE2

MMG$GQ_WINDOW2_PTE_
PFN

64-bit pointer to PFN field of second
reserved PTE.

MMG$GL_SHARED_L2PT_PFN None This cell was deleted since it is
possible to have more than one
shared L2PT. That is system space
may span over multiple L2PTs.

MMG$GL_SPT_L2PTE_BIAS None This cell was deleted since it is
possible to have more than one
shared L2PT. That is system space
may span over multiple L2PTs.

MMG$GL_VA_TO_PX_VPN None This data cell has been completely
obviated by the removal of the
process page tables from the
balance slot.

MMG$GL_ZERO_SVA MMG$GQ_WINDOW_VA Increased in length to quadword.

MMG$GL_ZERO_SVAPTE_PFN MMG$GQ_WINDOW_PTE_PFN 64-bit pointer to PFN field of
reserved PTE.

MMG$GQ_PT_VA MMG$GQ_PT_BASE MMG$GQ_PT_VA was renamed
to ensure that any code that
had assumed a fixed location of
page table space as a function of
page size would be revisited. The
location of page table space is now
variable to meet the individual
bootstrap needs of supporting
Version 7.0, as well as being a
function of the page size.

MPW$GW_HILIM MPW$GL_HILIM Increased in length to a longword.

MPW$GW_LOLIM MPW$GL_LOLIM Increased in length to a longword.

PFN$GB_LENGTH None

(continued on next page)

Replacements for Removed Privileged Symbols 3–13

Replacements for Removed Privileged Symbols
3.4 Removed System Data Cells

Table 3–3 (Cont.) Removed System Data Cells

Removed Cell Replacement Comments

PFN$PL_DATABASE PFN$PQ_DATABASE The PFN database was moved to
S2 space, which is only addressable
with 64-bit pointers.

PHV$GL_REFCBAS PHV$GL_REFCBAS_LW The process header reference count
vector has been promoted from
an array of words to an array of
longwords.

SGN$GL_PHDAPCNT None This cell was deleted as a result of
moving the process page tables out
of the balance slot.

SGN$GL_PHDP1WPAG None This cell was deleted as a result of
moving the process page tables out
of the balance slot.

SGN$GL_PHDRESPAG None This cell was deleted as a result of
moving the process page tables out
of the balance slot.

SGN$GL_PTPAGCNT None This cell was deleted as a result of
moving the process page tables out
of the balance slot.

SWP$GL_L1PT_SVAPTE None L1 page table now mapped virtually
in page table space.

SWP$GL_L1PT_VA None L1 page table now mapped virtually
in page table space.

SWP$GW_BAKPTE None This cell was deleted as a result of
moving the process page tables out
of the balance slot.

3–14 Replacements for Removed Privileged Symbols

4
Modifying Device Drivers to Support 64-Bit

Addressing

This chapter describes how to modify customer-written device drivers to support
64-bit addresses.

For more information about the data structures and routines described in this
chapter, see Appendix A and Appendix B.

4.1 Recommendations for Modifying Device Drivers
Before you can modify a device driver to support 64-bit addresses, your driver
must recompile and relink without errors on OpenVMS Alpha Version 7.0. See
Chapter 2. If you are using OpenVMS-supplied FDT routines, supporting 64-bit
addresses can be automatic or easily obtained. Device drivers written in C are
usually easier to modify than drivers written in MACRO-32. Drives using direct
I/O are usually easier to modify than those using buffered I/O.

When your device driver runs successfully as a 32-bit addressable driver on
OpenVMS Alpha Version 7.0, you can modify it to support 64-bit addresses as
follows:

• Select the functions that you want to support 64-bit functions.

• Follow your IRP$L_QIO_P1 value and promote all references to 64-bit
addresses.

• Declare 64-bit support for the I/O function.

The remaining sections in this chapter provide more information about these
recommendations.

4.2 Mixed Pointer Environment in C
OpenVMS Alpha 64-bit addressing support for mixed pointers includes the
following features:

• OpenVMS Alpha 64-bit virtual address space layout that applies to all
processes. (There are no special 64-bit processes or 32-bit processes.)

• 64-bit pointer support for addressing the entire 64-bit OpenVMS Alpha
address space layout including P0, P1, and P2 address spaces and S0/S1, S2,
and page table address spaces.

• 32-bit pointer compatibility for addressing P0, P1, and S0/S1 address spaces.

• Many new 64-bit system services which support P0, P1, and P2 space
addresses.

• Many existing system services enhanced to support 64-bit addressing.

Modifying Device Drivers to Support 64-Bit Addressing 4–1

Modifying Device Drivers to Support 64-Bit Addressing
4.2 Mixed Pointer Environment in C

• 32-bit sign-extension checking for all arguments passed to 32-bit pointer only
system serivces.

• C and MACRO-32 macros for handling 64-bit addresses.

To support 64-bit addresses in device drivers, you must use the new version
(V5.2) of the DEC C compiler as follows:

• Compile your device driver using /POINTER_SIZE=32

$ CC/STANDARD=RELAXED_ANSI89 -
/INSTRUCTION=NOFLOATING_POINT -
/EXTERN=STRICT -
/POINTER_SIZE=32 -
LRDRIVER+SYS$LIBRARY:SYS$LIB_C.TLB/LIBRARY

• #pragma _ _required_pointer_size 32 | 64

• 64-bit pointer types are defined by header files; e.g.

#include <far_pointers.h>
VOID_PQ user_va; /* 64-bit "void *" */
...
#include <ptedef.h>
PTE * svapte; /* 32-bit pointer to a PTE */
PTE_PQ va_pte; /* Quadword pointer to a PTE */
PTE_PPQ vapte_p; /* Quadword pointer to a

* quadword pointer to a PTE */

• Pointer size truncation warning

p0_va = p2_va;
^
%CC-W-MAYLOSEDATA, In this statement, "p2_va" has

a larger data size than "short pointer to char"

4.3 $QIO Support for 64-Bit Addresses
The $QIO and $QIOW system services accept the following arguments:

$QIO[W] efn,chan,func,iosb,astadr,astprm,p1,p2,p3,p4,p5,p6

These services have a 64-bit friendly interface (as described in OpenVMS Alpha
Guide to 64-Bit Addressing and VLM Features)1, which allows these services to
support 64-bit addresses.

Table 4–1 summarizes the changes to the data types of the $QIO and $QIOW
system service arguments to accommodate 64-bit addresses.

Table 4–1 $QIO[W] Argument Changes

Argument Prior Type New Type Description

efn Unsigned
longword

- Event flag number. Unchanged.

chan Unsigned word - Channel number. Unchanged.

(continued on next page)

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM. This information has also been included in the HP OpenVMS Programming
Concepts Manual, Volume I.

4–2 Modifying Device Drivers to Support 64-Bit Addressing

Modifying Device Drivers to Support 64-Bit Addressing
4.3 $QIO Support for 64-Bit Addresses

Table 4–1 (Cont.) $QIO[W] Argument Changes

Argument Prior Type New Type Description

func Unsigned
longword

- I/O function code. Unchanged.

iosb 32-bit pointer1 64-bit pointer Pointer to a quadword I/O status
block (IOSB). The IOSB format is
unchanged.

astadr 32-bit pointer1 64-bit pointer Procedure value of the caller’s AST
routine. On Alpha systems, the
procedure value is a pointer to the
procedure descriptor.

astprm Unsigned
longword2

Quadword Argument value for the AST routine.

P1 Longword2 Quadword Device-dependent argument. Often P1
is a buffer address.

P2 Longword2 Quadword Device-dependent argument. Only
the low-order 32-bits will be used by
system-supplied FDT routines that use
P2 as the buffer size.

P3 Longword2 Quadword Device-dependent argument.

P4 Longword2 Quadword Device-dependent argument.

P5 Longword2 Quadword Device-dependent argument.

P6 Longword2 Quadword Device-dependent argument.
Sometimes P6 is used to contain the
address of a diagnostic buffer.

132-bit pointer was sign-extended to 64 bits as required by the HP OpenVMS Calling Standard.
232-bit longword value was sign-extended to 64 bits as required by the HP OpenVMS Calling
Standard.

Usually the $QIO P1 argument specifies a buffer address. All the system-
supplied upper-level FDT routines that support the read and write functions use
this convention. The P1 argument determines whether the caller of the $QIO
service requires 64-bit support. If the $QIO system service rejects a 64-bit I/O
request, the following fatal system error status is returned:

SS$_NOT64DEVFUNC 64-bit address not supported by device for this function

This fatal condition value is returned under the following circumstances:

• The caller has specified a 64-bit virtual address in the P1 device dependent
argument, but the device driver does not support 64-bit addresses with the
requested I/O function.

• The caller has specified a 64-bit address for a diagnostic buffer, but the device
driver does not support 64-bit addresses for diagnostic buffers.

• Some device drivers may also return this condition value when 64-bit buffer
addresses are passed using the P2 through P6 arguments and the driver does
not support a 64-bit address with the requested I/O function.

For more information about the $QIO, $QIOW, and $SYNCH system services, see
the HP OpenVMS System Services Reference Manual: GETUTC–Z.

Modifying Device Drivers to Support 64-Bit Addressing 4–3

Modifying Device Drivers to Support 64-Bit Addressing
4.4 Declaring Support for 64-Bit Addresses in Drivers

4.4 Declaring Support for 64-Bit Addresses in Drivers
Device drivers declare that they can support a 64-bit address by individual
function. The details vary depending on the language used to code the
initialization of the driver’s Function Decision Table.

4.4.1 Drivers Written in C
Drivers written in C use the ini_fdt_act macro to initialize an FDT entry for
an I/O function. This macro uses the DRIVER$INI_FDT_ACT routine. Both the
macro and the routine have been enhanced for OpenVMS Alpha Version 7.0.

The format of the macro in releases prior to OpenVMS Alpha Version 7.0 was:

ini_fdt_act (fdt, func, action, bufflag)

where the bufflag parameter must be one of the following:

BUFFERED The specified function is buffered.

NOT_BUFFERED The specified function is direct. This is a synonym for
DIRECT.

DIRECT The specified function is direct. This is a synonym for NOT_
BUFFERED.

The use of the bufflag parameter has been enhanced to include the declaration
of 64-bit support by allowing 3 additional values:

BUFFERED_64 The specified function is buffered and supports a 64-bit
address in the p1 parameter.

NOT_BUFFERED_
64

The specified function is direct and supports a 64-bit address
in the p1 parameter.

DIRECT_64 The specified function is direct and supports a 64-bit address
in the p1 parameter.

If a driver does not support a 64-bit address on any of its functions, there is no
need to change its use of the ini_fdt_act macro.

For example, the following C code segment declares that the IO$_READVBLK
and IO$_READLBLK functions support 64-bit addresses.

ini_fdt_act (&driverfdt, IO_SENSEMODE, my_sensemode_fdt, BUFFERED);
ini_fdt_act (&driverfdt, IO_SETMODE, my_setmode_fdt, BUFFERED);
ini_fdt_act (&driverfdt, IO_READVBLK, acp_std$readblk, DIRECT_64);
ini_fdt_act (&driverfdt, IO_READLBLK, acp_std$readblk, DIRECT_64);

The interpretation of the bufflag parameter to the DRIVER$INI_FDT_ACT
routine has been enhanced to support the new values and the setting of the 64-bit
support mask in the FDT data structure.

4.4.2 Drivers Written in MACRO-32
As of OpenVMS Alpha Version 7.0, drivers written in MACRO-32 use a new
FDT_64 macro to declare the set of I/O functions for which the driver supports
64-bit addresses. The use of the FDT_64 macro is similar to the use of the
existing FDT_BUF macro. If a driver does not support a 64-bit address on any of
its functions, there is no need to use the new FDT_64 macro.

For example, the following MACRO-32 code segment declares that the IO$_
READVBLK and IO$_READLBLK functions support 64-bit addresses.

4–4 Modifying Device Drivers to Support 64-Bit Addressing

Modifying Device Drivers to Support 64-Bit Addressing
4.4 Declaring Support for 64-Bit Addresses in Drivers

FDT_INI MY_FDT
FDT_BUF <SENSEMODE,SETMODE>
FDT_64 <READVBLK,READLBLK>
FDT_ACT ACP_STD$READBLK, <READVBLK,READLBLK>

4.4.3 Drivers Written in BLISS
As of OpenVMS Alpha Version 7.0, drivers written in BLISS-32 and BLISS-64
use a new optional keyword parameter, FDT_64, to the existing FDTAB macro to
declare the set of I/O functions that support 64-bit addresses. The use of the new
FDT_64 parameter is similar to the use of the existing FDT_BUF parameter. If a
driver does not support a 64-bit address on any of its functions, there is no need
to use the new FDT_64 parameter.

For example, the following BLISS code segment declares that the IO$_
READVBLK and IO$_READLBLK functions support 64-bit addresses.

FDTAB (
FDT_NAME = MY_FDT,
FDT_BUF = (SENSEMODE,SETMODE),
FDT_64 = (READVBLK,READLBLK),
FDT_ACT = (ACP_STD$READBLK, (READVBLK,READLBLK))
);

4.5 I/O Mechanisms
Table 4–2 summarizes the I/O mechanisms that support 64-bit addresses.

Table 4–2 Summary of 64-Bit Support by I/O Mechanism

Mechanism 64-Bits Comments

Simple buffered I/O Yes 32/64-bit BUFIO packet headers

Complex Buffered I/O No Used by XQP and ACPs

Complex Chained Buffered I/O Yes New cells in CXB

Direct I/O Yes Cross-process PTE problem

LAN VCI Yes Cross-process PTE problem

VMS I/O Cache Yes 64-bit support is transparent to other
components

Buffer Objects Yes Special case of direct I/O

Diagnostic buffers Yes Driver-wide attribute

Modifying Device Drivers to Support 64-Bit Addressing 4–5

Modifying Device Drivers to Support 64-Bit Addressing
4.5 I/O Mechanisms

4.5.1 Simple Buffered I/O
Figure 4–1 shows a 32-bit buffered I/O packet header.

Figure 4–1 32-Bit Buffered I/O Packet Header

ZK−8203A−GE

BUFIO$PS_PKTDATA

BUFIO$PS_UVA32

unused BUFIO$B_TYPE BUFIO$W_SIZE

Start of buffered data (offset BUFIO$K_HDRLEN32)

0

4

8

12

BUFIO$PS_PKTDATA Contains pointer to buffered data in packet

BUFIO$PS_UVA32 Contains 32-bit user virtual address

• No symbolic offsets currently defined.

• Frequent use of manifest constants; for example:

MOVAB 12(R2),(R2)

• Dependencies on the packet header layout can be anywhere in the driver code
path.

• Drivers allocate and initialize these packets.

A 64-bit buffered packet header is as shown in Figure 4–2.

Figure 4–2 New 64-Bit Buffered I/O Packet Header

ZK−8204A−GE

BUFIO$PS_PKTDATA

BUFIO$PS_UVA32 (must contain −1)

unused BUFIO$B_TYPE BUFIO$W_SIZE

Start of buffered data (offset BUFIO$K_HDRLEN32)

0

4

8

12unused

BUFIO$PQ_UVA64 16

24

4–6 Modifying Device Drivers to Support 64-Bit Addressing

Modifying Device Drivers to Support 64-Bit Addressing
4.5 I/O Mechanisms

BUFIO$PS_PKTDATA Contains pointer to buffered data in packet

BUFIO$PS_UVA32 Must contain BUFIO$K_64 (-1) value

BUFIO$PQ_UVA64 Contains 64-bit user virtual address

• BUFIO structures and offsets now defined.

• Both 32-bit and 64-bit formats supported.

• BUFIO packets are self-identifying.

• New routines are EXE_STD$ALLOC_BUFIO_64, EXE_STD$ALLOC_BUFIO_
32.

• Used for diagnostic buffers as well.

4.5.2 Direct I/O

• The caller’s virtual address for the buffer is used only in FDT context.

• Most of the driver identifies buffer start by IRP$L_SVAPTE and IRP$L_
BOFF.

• Driver ‘‘layering’’ in start I/O or fork environments.

• Most drivers use either OpenVMS-supplied upper-level FDT routines or FDT
support routines.

• The moving of the page tables has a significant impact:

1. Only the current process’s PPTEs are available at any given time.

This is called the ‘‘cross-process PTE access’’ problem.

2. A 64-bit address is required to access page table entries in page table
space: process, global, and system PTEs.

3. Because ‘‘SVAPTE, BOFF, BCNT’’ are used in many device drivers, the
impact of 1 and 2 is not insignificant.

Modifying Device Drivers to Support 64-Bit Addressing 4–7

Modifying Device Drivers to Support 64-Bit Addressing
4.5 I/O Mechanisms

4.5.3 Direct I/O Buffer Map (DIOBM)
Figure 4–3 shows the DIOBM data structure.

Figure 4–3 Direct I/O Buffer Map Data Structure

ZK−8205A−GE

0

4

8

12

16

DIOBM$PS_AUX_DIOBM

DIOBM$L_PTE_COUNT

DIOBM$B_SUBTYPE DIOBM$B_TYPE DIOBM$W_SIZE

DIOBM$L_FLAGS

DIOBM$Q_PTE_VECTOR (9 entries)

• Use PTE vector in DIOBM for buffers up to 64 Kb

• Use "secondary" DIOBM for buffers up to 5.2 Mb

• Use PTE window method with DIOBM for larger buffer

• DIOBM embedded in IRP, IRPE, VCRP, DCBE

• MMG_STD$IOLOCK_BUF replaces MMG_STD$IOLOCK

• New DIOBM routines; for example IOC_STD$FILL_DIOBM

• Also of interest to LAN VCI clients

4–8 Modifying Device Drivers to Support 64-Bit Addressing

Modifying Device Drivers to Support 64-Bit Addressing
4.5 I/O Mechanisms

4.5.4 64-Bit AST
Figure 4–4 shows a 64-Bit AST.

Figure 4–4 64-Bit AST

ZK−8206A−GE

0

4

8

12

16

ACB$L_ASTQFL

ACB$L_ASTQBL

ACB$B_RMOD ACB$B_TYPE ACB$W_SIZE

ACB$L_PID

ACBL_AST/ACBL_ACB64X

ACB$L_ASTPRM

ACB$L_FLAGS

ACB$L_THREAD_PID

ACB$L_KAST

unused

ACB64$PQ_AST

ACB64$Q_ASTPRM

20

24

28

32

36

40

48

ACB$B_RMOD New ACB$V_FLAGS_VALID bit (last spare bit)

ACB$L_FLAGS Contains ACB$V_64BITS bit (was filler space)

ACB$L_ACB64X Byte offset to ACB64X structure

• Both ACB and ACB64X formats are supported.

• ACB packets are self-identifying.

• An ACB64 is an ACB with an immediate ACB64X.

Modifying Device Drivers to Support 64-Bit Addressing 4–9

Modifying Device Drivers to Support 64-Bit Addressing
4.5 I/O Mechanisms

4.5.5 64-Bit ACB Within the IRP
An embedded ACB64 at the start of the IRP is shown in Figure 4–5.

Figure 4–5 Embedded ACB64

ZK−8207A−GE

0

4

8

12

16

20

24

28

32

36

40

48

IRP$L_IOQFL

IRP$L_IOQBL

IRP$B_RMOD IPR$B_TYPE IRP$W_SIZE

IRP$L_PID

IRP$L_ACB64X_OFFSET

(unused, formerly irp$l_astprm)

IRP$L_ACB_FLAGS

IRP$L_THREAD_PID

IRP$L_KAST

IRP$L_UCB

IRP$PQ_ACB64_AST

IRP$Q_ACB64_ASTPRM

An IRP created by the $QIO system service uses the ACB64 layout
unconditionally.

IRP$B_RMOD New ACB$V_FLAGS_VALID bit always set

IRP$L_ACB_FLAGS New ACB$V_64BITS bit always set

IRP$L_ACB64X_OFFSET Contains hex 28

4.5.6 I/O Function Definitions
I/O functions are defined as follows:

1. Direct I/O, raw data transfer

Functions in this category are implemented as direct I/O operations and
transfer raw data from the caller’s buffer to the device without significant
alteration or interpretation of the data.

2. Direct I/O, control data transfer

4–10 Modifying Device Drivers to Support 64-Bit Addressing

Modifying Device Drivers to Support 64-Bit Addressing
4.5 I/O Mechanisms

Functions in this category are implemented as direct I/O operations and
transfer control information from the caller’s buffer to the device driver. The
device driver usually interprets the data or uses it to control the operation of
the device.

Usually these functions do not support 64-bit addresses. In contrast to the
raw data transfers, control data transfers tend to be smaller and are invoked
less frequently. Thus, there is less need to be able to store such data in
a 64-bit addressable region. The only area impacted in the driver are the
corresponding FDT routines. However, control data often introduces the
problem of embedded 32-bit pointers.

3. Buffered I/O, raw data transfer

Functions in this category are implemented as buffered I/O operations by the
device driver but are otherwise the same type of raw data transfer from the
caller’s buffer as the first category.

4. Buffered I/O, control data transfer

Functions in this category are implemented as buffered I/O operations by the
device driver but are otherwise the same type of control data transfer from
the caller’s buffer as the second category.

5. Control operation, no data transfer, with parameters

Functions in this category control the device and do not transfer any data
between a caller’s buffer and the device. Since there is no caller’s buffer it
does not matter whether the function is designated as a buffered or direct
I/O function. The control operation has parameters that are specified in p1
through p6 however these parameters do not point to a buffer.

6. Control operation, no data transfer, with no parameters

Functions in this category control the device and do not transfer any data
between a caller’s buffer and the device. Since there is no caller’s buffer it
does not matter whether the function is designated as a buffered or direct I/O
function. In addition, there are no parameters for these functions.

Table 4–3 summarizes the I/O functions described in this section.

Table 4–3 Guidelines for 64-Bit Support by I/O Function

Function Type 64-Bits Area of Impact

Direct I/O, raw data transfer Yes FDT only

Direct I/O, control data transfer No FDT only

Buffered I/O, raw data transfer No/yes Entire driver, new BUFIO packet

Buffered I/O, control data transfer No Entire driver, new BUFIO packet

Control, no data transfer, param No Entire path but usually simple

(continued on next page)

Modifying Device Drivers to Support 64-Bit Addressing 4–11

Modifying Device Drivers to Support 64-Bit Addressing
4.5 I/O Mechanisms

Table 4–3 (Cont.) Guidelines for 64-Bit Support by I/O Function

Function Type 64-Bits Area of Impact

Control, no data transfer, no params Moot None

4.6 64-Bit Support in Example Driver
This section summarizes changes made to the example device driver
(LRDRIVER.C) to support 64-bit buffer addresses on all I/O functions.

This sample driver is available in the SYS$EXAMPLES directory.

1. All functions are declared as capable of supporting a 64-bit P1 parameter.

2. The 64-bit buffered I/O packet header defined by bufiodef.h is used instead
of a privately defined structure that corresponds to the 32-bit buffered I/O
packet header.

3. The pointer to the caller’s set mode buffer is defined as a 64-bit pointer.

4. IRP$Q_QIO_P1 is used instead of IRP$L_QIO_P1.

5. The EXE_STD$ALLOC_BUF_64 routine is used instead of EXE_
STD$DEBIT_BYTCNT_ALO to allocate the buffered I/O packet.

No infrastructure changes were necessary to this driver. The original version
could have been simply recompiled and relinked and it would have worked
correctly with 32-bit buffer addresses.

4.6.1 Example: Declaring 64-Bit Functions
Original:

ini_fdt_act(...,IO$_WRITELBLK,lr$write,BUFFERED);
...
ini_fdt_act(...,IO$_SENSECHAR,exe_std$sensemode,

BUFFERED);

64-Bit Version:

ini_fdt_act(...,IO$_WRITELBLK,lr$write,BUFFERED_64); !
ini_fdt_act(...,IO$_WRITEPBLK,lr$write,BUFFERED_64);
ini_fdt_act(...,IO$_WRITEVBLK,lr$write,BUFFERED_64);
ini_fdt_act(...,IO$_SETMODE,lr$setmode,BUFFERED_64); "
ini_fdt_act(...,IO$_SETCHAR,lr$setmode,BUFFERED_64);
ini_fdt_act(...,IO$_SENSEMODE,exe_std$sensemode,

BUFFERED_64); #
ini_fdt_act(...,IO$_SENSECHAR,exe_std$sensemode,

BUFFERED_64);

! Source changes required to LR$WRITE routine

" Source changes required to LR$SETMODE routine

No user buffer, no $QIO parameters

4–12 Modifying Device Drivers to Support 64-Bit Addressing

Modifying Device Drivers to Support 64-Bit Addressing
4.6 64-Bit Support in Example Driver

4.6.2 Example: Declaring 64-Bit Buffered I/O Packet
Original:

typedef struct _sysbuf_hdr { !
char *pkt_datap;
char *usr_bufp;
short pkt_size;
short :16;

SYSBUF_HDR;

64-Bit Version:

#include <bufiodef.h> "

! Locally defined type, SYSBUF_HDR, for a buffered I/O packet header was
necessary.

" The new bufiodef.h header file defines the BUFIO type, which includes both
the 32-bit and 64-bit buffered I/O packet header cells.

4.6.3 Example: Changes to LR$WRITE
Original:

char *qio_bufp; !
SYSBUF_HDR *sys_bufp;

qio_bufp = (char *) irp->irp$l_qio_p1; "

sys_buflen = qio_buflen + sizeof(SYSBUF_HDR); #

status = exe_std$debit_bytcnt_alo(sys_buflen, $
pcb,
&sys_buflen,
(void **) &sys_bufp);

irp->irp$l_svapte = (void *) sys_bufp; %
irp->irp$l_boff = sys_buflen;
sys_datap = (char *) sys_bufp + sizeof(SYSBUF_HDR); &

! Define 32-bit pointer to caller’s buffer

" Pointer is initialized using the 32-bit $QIO P1 value

Size of buffered I/O packet includes header size

$ Allocate pool for buffered I/O packet

% Connect the buffered I/O packet to IRP

& Compute pointer to data region within packet

64-Bit Version:

CHAR_PQ qio_bufp; !
BUFIO *sys_bufp;

Modifying Device Drivers to Support 64-Bit Addressing 4–13

Modifying Device Drivers to Support 64-Bit Addressing
4.6 64-Bit Support in Example Driver

qio_bufp = (CHAR_PQ) irp->irp$q_qio_p1; "

sys_buflen = qio_buflen + BUFIO$K_HDRLEN64; #

status = exe_std$alloc_bufio_64(irp, $
pcb,
(VOID_PQ) qio_bufp,
sys_buflen);

sys_bufp = irp->irp$ps_bufio_pkt; %

sys_datap = sys_bufp->bufio$ps_pktdata; &

! Define a 64-bit pointer to caller’s buffer.

" Pointer is initialized using the 64-bit $QIO P1 value. No source changes on
references, for example:

exe_std$writechk(irp,pcb,ucb,qio_bufp,qio_buflen);
memcpy (sys_datap, qio_bufp, qio_buflen);

Size of buffered I/O packet includes 64-bit header size.

$ Allocate pool for a 64-bit buffered I/O packet and connect it to the IRP.

% Get pointer to the buffered I/O packet.

& Get pointer to data region within packet.

4.6.4 Example: Changes to LR$SETMODE
Original:

SETMODE_BUF *setmode_bufp; !

setmode_bufp = (SETMODE_BUF *) irp->irp$l_qio_p1; "

64-Bit Version:

#pragma __required_pointer_size __save
#pragma __required_pointer_size __long #
typedef SETMODE_BUF *SETMODE_BUF_PQ; $
#pragma __required_pointer_size __restore %

SETMODE_BUF_PQ setmode_bufp; &
setmode_bufp = (SETMODE_BUF_PQ) irp->irp$q_qio_p1; ’

! 32-bit pointer to a SETMODE_BUF.

" Pointer is initialized using the 32-bit $QIO P1 value.

Change pointer size to 64-bits.

$ Define a type for a 64-bit pointer to a SETMODE_BUF structure.

% Restore saved pointer size, 32-bits.

& Define a 64-bit pointer to a SETMODE_BUF structure.

’ Pointer is initialized using the 64-bit $QIO P1 value.

4–14 Modifying Device Drivers to Support 64-Bit Addressing

Modifying Device Drivers to Support 64-Bit Addressing
4.6 64-Bit Support in Example Driver

4.6.5 Example: Changes to LR$STARTIO
Original:

ucb->ucb$r_ucb.ucb$l_svapte =
(char *) ucb->ucb$r_ucb.ucb$l_svapte +
sizeof(SYSBUF_HDR); !

64-Bit Version:

ucb->ucb$r_ucb.ucb$l_svapte =
(char *) ucb->ucb$r_ucb.ucb$l_svapte +
BUFIO$K_HDRLEN64; "

! Skip 32-bit buffered I/O packet header.

" Skip 64-bit buffered I/O packet header.

Modifying Device Drivers to Support 64-Bit Addressing 4–15

5
Modifying User-Written System Services

An application can contain certain routines that perform privileged functions,
called user-written system services. This chapter describes the OpenVMS
Alpha Version 7.0 changes that can affect user-written system services.

For more information about how to create user-written system services, see the
HP OpenVMS Programming Concepts Manual.

As part of the 64-bit virtual addressing support, the Alpha system service
dispatcher automatically performs a sign-extension check on service arguments
to ensure that only 32-bit sign extended virtual addresses are passed. This
sign-extension check prevents an application from passing a 64-bit virtual
address to system services that are not equipped to handle 64-bit virtual
addresses. This sign-extension check occurs for the system services (regardless of
mode) provided by Compaq as well as for user-written system services.

Although the sign-extension check occurs by default, it is possible to disable
the check for services that can properly handle 64-bit virtual addresses. A new
flag, PLV$M_64_BIT_ARGS (see Table 5–2), can be specified when creating a
user-written system service that is designed to accept 64-bit virtual addresses.
The system service dispatcher purposely omits the sign-extension check when
this flag is set for a particular service. Table 5–1 shows the components of the
Alpha Privileged Library Vector that are new or changed as of OpenVMS Alpha
Version 7.0.

Modifying User-Written System Services 5–1

Modifying User-Written System Services

Table 5–1 Components of the Alpha Privileged Library Vector

Component Symbol Description

User-supplied rundown
routine for executive
mode services

PLV$PS_EXEC_RUNDOWN_HANDLER May contain the address of a user-
supplied rundown routine that
performs image-specific cleanup
and resource deallocation. When
the image linked against the user-
written system service is run down
by the system, this run-time routine
is invoked. Unlike exit handlers,
the routine is always called when
a process or image exits. (Image
rundown code calls this routine
with a JSB instruction; it returns
with an RSB instruction called in
executive mode at IPL 0.)

Kernel Routine Flags
Vector

PLV$PS_KERNEL_ROUTINE_FLAGS Contains either the address of an
array of longwords which contain
the defined flags associated with
each kernel system service, or
a zero. Table 5–2 contains a
description of the available flags.

Executive Routine Flags
Vector

PLV$PS_EXEC_ROUTINE_FLAGS Contains either the address of an
array of longwords which contain
the defined flags associated with
each executive mode system service,
or a zero. Table 5–2 contains a
description of the available flags.

5–2 Modifying User-Written System Services

Modifying User-Written System Services

Table 5–2 Flags for 64-Bit User-Written Services

Flag Description

PLV$M_WAIT_CALLERS_MODE Informs the system service dispatcher that the service can
return the status SS$_WAIT_CALLERS_MODE. This flag can
only be specified for kernel mode services.

PLV$M_WAIT_CALLERS_NO_REEXEC Informs the system service dispatcher that the service can
return the status SS$_WAIT_CALLERS_MODE but should not
reexecute the service. This flag can only be specified for kernel
mode services.

PLV$M_CLRREG Informs the system service dispatcher to clear the scratch
integer registers before returning to the system service
requestor. A security-related service may set this flag to ensure
that sensitive information is not left in scratch registers. This
flag can be specified for both kernel and executive mode system
services.

PLV$M_RETURN_ANY Flags the system service dispatcher that the service can return
arbitrary values in R0. This flag can only be specified for
kernel mode system services.

PLV$M_WCM_NO_SAVE Informs the system service dispatcher that the service has
taken steps to save the contents of the scratch integer registers.
In this case, the dispatcher will not take the extra steps to save
and restore these registers. This flag can only be specified for
kernel mode system services.

PLV$M_STACK_ARGS Use of this flag is reserved to Compaq.

PLV$M_THREAD_SAFE Informs the system service dispatcher that the service requires
no explicit synchronization. It is assumed by the dispatcher
that the service provides its own internal data synchronization
and that muliple kernel threads can safely execute other inner
mode code in parallel. This flag can be specified for both kernel
and executive mode system services.

PLV$M_64_BIT_ARGS Informs the system service dispatcher that the service can
accept 64-bit virtual addresses. When set, the dispatcher will
not perform the sign-extension check on the service arguments.
The sign-extension check is the method used to guarantee
that only 32-bit, sign-extended virtual addreses are passed to
system services. This check is enabled by default. This flag can
be specified for both kernel and executive mode system services.

PLV$M_CHECK_UPCALL Use of this flag is reserved to Compaq.

Example 5–1 illustrates how to create a PLV on Alpha systems using C.

Example 5–1 Creating a Privileged Library Vector (PLV) for C on Alpha Systems

/* "Forward routine" declarations */
int first_service(),

second_service(),
third_service(),
fourth_service();

int rundown_handler();

(continued on next page)

Modifying User-Written System Services 5–3

Modifying User-Written System Services

Example 5–1 (Cont.) Creating a Privileged Library Vector (PLV) for C on Alpha Systems

/* Kernel and exec routine lists: */
int (*(kernel_table[]))() = {

first_service,
second_service,
fourth_service};

int (*(exec_table[]))() = {
third_service};

/*
** Kernel and exec flags. The flag settings below enable second_service
** and fourth_service to be 64-bit capable. First_service and third_service
** cannot accept a 64-bit pointer. Attempts to pass 64-bit pointers to
** these services will result in a return status of SS$_ARG_GTR_32_BITS.
** The PLV$M_64_BIT_ARGS flag instructs the system service dispatcher to
** bypass sign-extension checking of the service arguments for a particular
** service.
*/
int

kernel_flags [] = {
0,
PLV$M_64_BIT_ARGS,
0},

exec_flags [] = {
PLV$M_64_BIT_ARGS};

/*
** The next two defines allow the kernel and executive routine counts
** to be filled in automatically after lists have been declared for
** kernel and exec mode. They must be placed before the PLV
** declaration and initialization, and for this module will be
** functionally equivalent to:
**
** #define KERNEL_ROUTINE_COUNT 3
** #define EXEC_ROUTINE_COUNT 1
**
*/

#define EXEC_ROUTINE_COUNT sizeof(exec_table)/sizeof(int *)
#define KERNEL_ROUTINE_COUNT sizeof(kernel_table)/sizeof(int *)

/*
** Now build and initialize the PLV structure. Since the PLV must have
** the VEC psect attribute, and must be the first thing in that psect,
** we use the strict external ref-def model which allows us to put the
** PLV structure in its own psect. This is like the globaldef
** extension in VAX C, where you can specify in what psect a global
** symbol may be found; unlike globaldef, it allows the declaration
** itself to be ANSI-compliant. Note that the initialization here
** relies on the change-mode-specific portion (plv$r_cmod_data) of the
** PLV being declared before the portions of the PLV which are specific
** to message vector PLVs (plv$r_msg_data) and system service intercept
** PLVs (plv$r_ssi_data).
**
*/

(continued on next page)

5–4 Modifying User-Written System Services

Modifying User-Written System Services

Example 5–1 (Cont.) Creating a Privileged Library Vector (PLV) for C on Alpha Systems

#ifdef __ALPHA
#pragma extern_model save
#pragma extern_model strict_refdef "USER_SERVICES"
#endif
extern const PLV user_services = {

PLV$C_TYP_CMOD, /* type */
0, /* version */
{
{KERNEL_ROUTINE_COUNT, /* # of kernel routines */
EXEC_ROUTINE_COUNT, /* # of exec routines */
kernel_table, /* kernel routine list */
exec_table, /* exec routine list */
rundown_handler, /* kernel rundown handler */
rundown_handler, /* exec rundown handler */
0, /* no RMS dispatcher */
kernel_flags, /* kernel routine flags */
exec_flags} /* exec routine flags */
}
};

#ifdef __ALPHA
#pragma extern_model restore
#endif

Modifying User-Written System Services 5–5

6
Kernel Threads Process Structure

This chapter describes the components that make up a kernel threads process.
This chapter contains the following sections:

• Section 6.1 describes the process control block (PCB) and the process header
(PHD).

• Section 6.2 describes the kernel thread block (KTB).

• Section 6.3 describes the process identifier (PID).

• Section 6.4 describes the process status bits.

For more information about kernel threads features, see the OpenVMS Alpha
Version 7.0 Bookreader version of the HP OpenVMS Programming Concepts
Manual.

6.1 Process Control Blocks (PCBs) and Process Headers (PHDs)
Two primary data structures exist in the OpenVMS executive that describe the
context of a process:

• Software process control block (PCB)

• Process header (PHD)

The PCB contains fields that identify the process to the system. The PCB
comprises contexts that pertain to quotas and limits, scheduling state, privileges,
AST queues, and identifiers. In general, any information that must be resident at
all times is in the PCB. Therefore, the PCB is allocated from nonpaged pool.

The PHD contains fields that pertain to a process’s virtual address space. The
PHD consists of the working set list, and the process section table. The PHD
also contains the hardware process control block (HWPCB), and a floating point
register save area. The HWPCB contains the hardware execution context of
the process. The PHD is allocated as part of a balance set slot, and it can be
outswapped.

6.1.1 Effect of a Multithreaded Process on the PCB and PHD
With multiple execution contexts within the same process, the multiple threads of
execution all share the same address space but have some independent software
and hardware context. This change to a multithreaded process impacts the PCB
and PHD structures and any code that references them.

Before the implementation of kernel threads, the PCB contained much context
that was per process. With the introduction of multiple threads of execution,
much context becomes per thread. To accommodate per-thread context, a new
data structure—the kernel thread block (KTB)— is created, with the per-thread
context removed from the PCB. However, the PCB continues to contain context
common to all threads, such as quotas and limits. The new per-kernel thread
structure contains the scheduling state, priority, and the AST queues.

Kernel Threads Process Structure 6–1

Kernel Threads Process Structure
6.1 Process Control Blocks (PCBs) and Process Headers (PHDs)

The PHD contains the HWPCB, which gives a process its single execution context.
The HWPCB remains in the PHD; this HWPCB is used by a process when it is
first created. This execution context is also called the initial thread. A single
threaded process has only this one execution context. Since all threads in a
process share the same address space, the PHD continues to describe the entire
virtual memeory layout of the process.

A new structure, the floating-point registers and execution data (FRED) block,
contains the hardware context for newly created kernel threads.

6.2 Kernel Thread Blocks (KTBs)
The kernel thread block (KTB) is a new per-kernel thread data structure. The
KTB contains all per-thread context moved from the PCB. The KTB is the basic
unit of scheduling, a role previously performed by the PCB, and is the data
structure placed in the scheduling state queues. Since the KTB is the logical
extension of the PCB, the SCHED spinlock synchronizes access to the KTB and
the PCB.

Typically, the number of KTBs a multithreaded process has, matches the number
of CPUs on the system. Actually, the number of KTBs is limited by the value
of the system parameter MULTITHREAD. If MULTITHREAD is zero, the
OpenVMS kernel support is disabled. With kernel threads disabled, user-level
threading is still possible with DECthreads. The environment is identical to the
OpenVMS environment prior to this release that implements kernel threads. If
MULTITHREAD is nonzero, it represents the maximum number of execution
contexts or kernel threads that a process can own, including the initial one.

In reality the KTB is not an independent structure from the PCB. Both the PCB
and KTB are defined as sparse structures. The fields of the PCB that move to the
KTB retain their original PCB offsets in the KTB. In the PCB, these fields are
unused. In effect, if the two structures are overlaid, the result is the PCB as it
currently exists with new fields appended at the end. The PCB and KTB for the
initial thread occupy the same block of nonpaged pool; therefore, the KTB address
for the initial thread is the same as for the PCB.

6.2.1 KTB Vector
When a process becomes multithreaded, a vector similar to the PCB vector is
created in pool. This vector contains the list of pool addresses for the kernel
thread blocks in use by the process. The KTB vector entries are reused as kernel
threads are created and deleted. An unused entry contains a zero. The vector
entry number is used as a kernel thread ID. The first entry always contains the
address of the KTB for the initial thread, which is by definition kernel thread ID
zero. The kernel thread ID is used to build unique PIDs for the individual kernel
threads. Section 6.3.1 describes PID changes for kernel threads.

To implement these changes, the following four new fields have been added to the
PCB:

• PCB$L_KTBVEC

• PCB$L_INITIAL_KTB

• PCB$L_KT_COUNT

• PCB$L_KT_HIGH

6–2 Kernel Threads Process Structure

Kernel Threads Process Structure
6.2 Kernel Thread Blocks (KTBs)

The PCB$L_INITIAL_KTB field actually overlays the new KTB$L_PCB field. For
a single threaded process, PCB$L_KTBVEC is initialized to contain the address of
PCB$L_INITIAL_KTB. The PCB$L_INITIAL_KTB always contains the address
of the initial thread’s KTB. As a process transitions from being single threaded to
multithreaded and back, PCB$L_KTBVEC is updated to point to either the KTB
vector in pool or PCB$L_INITIAL_KTB.

The PCB$L_KT_COUNT field counts the valid entries in the KTB vector. The
PCB$L_KT_HIGH field gives the highest vector entry number in use.

6.2.2 Floating-Point Registers and Execution Data Blocks (FREDs)
To allow for multiple execution contexts, not only are additional KTBs required
to maintain the software context, but additional HWPCBs must be created to
maintain the hardware context. Each HWPCB has allocated with it a block of
256 bytes for preserving the contents of the floating-point registers across context
switches. Another 128 bytes is allocated for per-kernel thread data. Presently,
only a clone of the PHD$L_FLAGS2 field is defined.

The combined structure that contains the HWPCB, floating-point register
save area, and per-kernel thread data is called the floating-point registers and
execution data (FRED) block. It is 512 bytes in length. These structures reside in
the process’s balance set slot. This allows the FREDs to be outswapped with the
process header. On the first page allocated for FRED blocks, the first 512 bytes
are reserved for the inner-mode semaphore.

6.2.3 Kernel Threads Region
Much process context resides in P1 space, taking the form of data cells and the
process stacks. Some of these data cells need to be per-kernel thread, as do the
stacks. By calling the appropriate system service, a kernel thread region in P1
space is initialized to contain the per-kernel thread data cells and stacks. The
region begins at the boundary between P0 and P1 space at address 40000000x,
and it grows toward higher addresses and the initial thread’s user stack. The
region is divided into per-kernel thread areas. Each area contains pages for data
cells and the four stacks.

6.2.4 Per-Kernel Thread Stacks
A process is created with four stacks; each access mode has one stack. All four of
these stacks are located in P1 space. Stack sizes are either fixed, determined by
a SYSGEN parameter, or expandable. The parameter KSTACKPAGES controls
the size of the kernel stack. This parameter continues to control all kernel stack
sizes, including those created for new execution contexts. The executive stack is a
fixed size of two pages; with kernel threads implementation, the executive stack
for new execution contexts continues to be two pages in size. The supervisor stack
is a fixed size of four pages; with kernel threads implementation, the supervisor
stack for new execution contexts is reduced to two pages in size.

For the user stack, a more complex situation exists. OpenVMS allocates P1 space
from high to lower addresses. The user stack is placed after the lowest P1 space
address allocated. This allows the user stack to expand on demand toward P0
space. With the introduction of multiple sets of stacks, the locations of these
stacks impose a limit on the size of each area in which they can reside. With
the implementation of kernel threads, the user stack is no longer boundless. The
initial user stack remains semiboundless; it still grows toward P0 space, but the
limit is the per-kernel thread region instead of P0 space.

Kernel Threads Process Structure 6–3

Kernel Threads Process Structure
6.2 Kernel Thread Blocks (KTBs)

6.2.5 Per-Kernel Thread Data Cells
Several pages in P1 space contain process state in the form of data cells. A
number of these cells must have a per-kernel thread equivalent. These data
cells do not all reside on pages with the same protection. Because of this, the
per-kernel area reserves approximately two pages for these cells. Each page has
a different page protection; one page protection is user read, user write (URUW),
the other is user read, executive write (UREW). The top of the user stack is used
for the URUW data cells.

6.2.6 Layout of the Per-Kernel Thread
Each per-kernel thread area contains a set of stacks and two pages for data. Each
area is a fixed size. For a system using the default values for the kernel stack
and user stack size, each area has the layout shown in Figure 6–1.

Figure 6–1 Default Kernel Stack and User Stack Sizes

40000000x

data area

ZK−7926A−GE

grows toward
7FFFFFFF

Supervisor stack

Executive stack
2 pages
SREW

2 pages

Kernel stack
1 page
SRKW

URSW

guard page
1 page

null

User stack
8 pages
URUW

data cells
1 page
UREW

data cells

6.2.7 Summary of Process Data Structures
Process creation results in a PCB/KTB, a PHD/FRED, and a set of stacks. All
processes have a single kernel thread, the initial thread. A multithreaded process
always begins as a single threaded process. A multithreaded process contains a
PCB/KTB pair and a PHD/FRED pair for the initial thread; for its other threads,
it contains additional KTBs, additional FREDs, and additional sets of stacks.
When the multithreaded application exists, the process returns to its single
threaded state, and all additional KTBs, FREDs, and stacks are deleted.

6–4 Kernel Threads Process Structure

Kernel Threads Process Structure
6.2 Kernel Thread Blocks (KTBs)

Figure 6–2 Structure of a Multithreaded Process

System Space

FFFFFFFF.FFFFFFFF

P1 Space

7FFFFFFF 3FFFFFFF

P0 Space

FFFFFFF.80000000 40000000 00000000

KTB

KTB

1

2

KTB

KTB

n
FRED

vector

n

Kernel

PCB

Exec
Super

initial

User
Stacks

thread
KTB

0

user
thread

user
thread

10

user
thread

user
thread

user
thread

user
thread

user
thread

user
thread

user
thread

user
thread

user
thread

user
thread

m

data n

data 1

Kernel
Exec
Super

data 2

User
Stacks

Inner
mode

FRED

sema−
phore

1

Kernel

FRED

Exec

Kernel

Super

Exec
Super

User

User2
Stacks

Stacks

PHD

initial
thread
FRED

0

ZK−7922A−GE

data 0

Figure 6–2 shows the relationships and locations of the data structures for a
process.

6.3 Process Identifiers (PIDs)
OpenVMS qualifies much context by the process ID (PID). With the
implementation of kernel threads, much of that process context moves to the
thread level. With kernel threads, the basic unit of scheduling is no longer the
process but rather the kernel thread. Because of this, kernel threads need a
method to identify them which is similar to the PID. To satisfy this need, the
meaning of the PID is extended. The PID continues to identify a process, but

Kernel Threads Process Structure 6–5

Kernel Threads Process Structure
6.3 Process Identifiers (PIDs)

can also identify a kernel thread within that process. An overview follows that
presents the features of the PID, and the extended process ID (EPID), which is
the cluster-visible extension of the PID.

The PID in this form is typically known as the internal PID (IPID). It consists
of two pieces of information, both one word in length. Figure 6–3 shows the
layout.

Figure 6–3 Process ID (PID)

ZK−7923A−GE

31 15 0

seq # PIX

The low word is the process index (PIX). The PIX is used as an index into the
PCB vector. This is a vector of PCB addresses. Therefore the PIX gives a quick
method of determining the PCB address given a PID.

Another array, also indexed by PIX, contains a sequence number entry for each
PIX. The sequence number increments every time a PIX is reused. The high word
of the IPID is a copy of the value in the array for a particular PIX. This feature
validates a PID to ensure that the ID is not for a process which has been deleted.
The sequence number in the IPID must match the one in the sequence number
array for that PIX.

The EPID is the cluster-visible PID. It consists of five parts, as Figure 6–4
shows.

Figure 6–4 Extended Process ID (EPID)

ZK−7924A−GE

31 0

seq # PIXCSID

30

* seq #

29 28 21 20

The EPID takes its low 21 bits from the two word IPID fields seen in Figure 6–3.
The value of MAXPROCESSCNT determines the number of bits within the 21
bits used for the PIX (5 to 13 bits). The sequence number uses the remaining
bits (8 to 16 bits). The PIX cannot be larger than 8192; the sequence number no
larger than 32767. If the system is an OpenVMS cluster member, the next 10
bits of the EPID uniquely identify the PID within the cluster. They contain 8 bits
of the cluster system ID (CSID) for the system, and a 2 bit sequence number. The
system service SYS$GETJPI uses the high bit (31). If set, the bit specifies that
the PID is a wildcard context value. This allows collecting information for all
processes in the system.

6.3.1 Multithread Effects on the PID
With kernel threads implementation, the PID’s definition undergoes two changes:

• MAXPROCESSCNT’s maximum value is increased to 16,384.

To do this, the maximum PIX field width for the EPID is increased by one bit.
This results in shrinking the sequence number field by one bit.

• A redefinition of the sequence number.

6–6 Kernel Threads Process Structure

Kernel Threads Process Structure
6.3 Process Identifiers (PIDs)

The redefinition of the usage of the sequence number results in it taking on
a dual meaning. It continues to be used to validate a PID; it also becomes
the means for determining the kernel thread ID. Instead of a single sequence
number being assigned to a PIX, a range of sequence numbers are used,
one for each kernel thread. Therefore, the format of a kernel thread PID
is identical to that of the PID in either its IPID, or EPID representation.
The PIX and sequence number fields are in the same location, and they are
the same size. In the EPID, the 10 bits used to uniquely identify the PID
within the cluster remain the same; this enables kernel threads to be visible
clusterwide.

6.3.2 Range Checking and Sequence Vectors
Every process has at least one kernel thread, the initial thread, which is always
thread ID zero; therefore, given a particular PID, the PIX continues to be used
as an index into the PCB and sequence vectors. A range check validates the
sequence numbers.

Before kernel threads implementation, the sequence number vector (SCH$GL_
SEQVEC) was a vector of words. After kernel threads implementation, it is a
vector of longwords that enables range checking for sequence number validation.
The low word in each longword is the base sequence number for a particular
PIX, and the upper word is the next sequence number for that PIX. The sequence
number for a single-threaded process must be equal to the base value. Kernel
threads PID sequence numbers must fall within the base and next values.

Figure 6–5 shows the flow of range checking of sequence numbers.

Figure 6–5 Range Checking and Sequence Vectors

next base PCB Address

KTB vector

PCB

KTB address

Seq # − base

0

1

2

3

ZK−7925A−GE

0

seq #

30

0

21

SCH$GL_SEQVEC
Sequence Vector

SCH$GL_PCBVEC
PCB Vector

PIX

KTB address

KTB address

KTB address

Kernel Threads Process Structure 6–7

Kernel Threads Process Structure
6.4 Process Status Bits

6.4 Process Status Bits
Similar to the fields in the PCB that migrate to the KTB, there are several
status bits that need to be per thread. The interface for the SYS$GETJPI and
SYS$PROCESS_SCAN system services indicates that the entire longword fields
that contain the status bits can be returned. Therefore, all the status bits must
remain defined as they are. The PCB specific bits are ‘‘reserved’’ in the KTB
structure definition. Likewise, the KTB specific bits are ‘‘reserved’’ in the PCB.
Because the PCB is really an overlaid structure with the initial thread’s KTB,
just the PCB status bits need to be returned for the initial thread. The status
longword returned for other threads is built by first masking out the initial
thread’s bits, and then OR’ing the remainder with the status longword in the
appropriate KTB.

If a thread in a multithreaded process requests information about itself using
SYS$GETJPI (passes PID=0), then the status bits for the kernel thread it is
running on are returned. Since each kernel thread has its own PID, SYS$GETJPI
can be called for each of the kernel threads in a process. The return status bits
are the combination of the PCB status bits and those in the KTB associated with
the input PID.

6–8 Kernel Threads Process Structure

Part II
Privileged-Code Changes for OpenVMS I64

7
OpenVMS Infrastructure Changes for

OpenVMS I64

There are two major changes necessary to the OpenVMS infrastructure to
accommodate 50-bit physical addressing. These changes are for privileged
applications on the I64 platform only. Alpha code does not require any change.

• The Page Frame Number (PFN) field in the Page Table Entry (PTE) structure
is a 40-bits field on I64 instead of a 32-bit field on Alpha.

• All other PFNs in structures, data cells, and routine interfaces are 64 bits on
I64 instead of 32 bits on Alpha.

The following sections discuss how to change your code to accommodate these
infrastructure differences. In most cases, you can change your I64 code so it is
common code with Alpha.

To help you find which modules might require changing, we have created a
command procedure that searches for all structure fields, data cells and routines
mentioned in this document. Refer to Section 9 for more information.

7.1 C Programming
This section contains instructions for C programmers.

7.1.1 PTE Field References in C
The field PTE$V_PFN is defined in ptedef.h. This field is used to reference the
PFN stored in a valid or transition PTE. The following are examples of good C
programming:

PTE local_pte;
local_pte.pte$v_pfn = pfn;

PTE_PQ va_pte;
pfn = va_pte->pte$v_pfn;

These references work correctly as common code on Alpha and I64.

Some C code may assume that the PFN field is 32-bits at bit position 32. This is
a bad example:

unsigned __int64 pte;
pfn = pte >> 32;

This code must be changed to use the PTE structure and the field pte$v_pfn as
shown in the good programming examples above.

OpenVMS Infrastructure Changes for OpenVMS I64 7–1

OpenVMS Infrastructure Changes for OpenVMS I64
7.1 C Programming

7.1.2 PFN References in C
PFNs are often stored as 32-bit integer variables in existing C code. These are
sometimes signed and sometimes unsigned.

An example of an existing PFN:

unsigned int new_pfn;

A new type is defined in lib_types.h called PFN_T. This type is 32-bits on Alpha
and 64-bits on I64.

When modifying your code for 64-bit PFNs, you can use unsigned _ _int64 or the
PFN_T type. This is your choice.

New Code
unsigned __int64 new_pfn;

Alternate New Code
#include <lib_types.h>
PFN_T new_pfn;

When examining C code, look for casts of PFN fields and variables. Also look for
assignment to and from other 32-bit ariables.

Example of Bad Code
pfn = (int)foo;

You can eliminate the need for a cast or change the cast to unsigned _ _int64 or
PFN_T. This depends on the context of the code in question.

New Code
pfn = (unsigned __int64)foo;

Alternate New Code
pfn = (PFN_T)foo;

Using unsigned _ _int64 is sometimes preferable to PFN_T. This is because
the PFN_T typedef includes conditionals for Alpha and IA64. In general, less
conditional code is better because it insures that the same code is tested in both
cases.

Example
unsigned __int64 pfn;
unsigned __int64 pa;
int boff;
pfn = pte_contents.pte$v_pfn;
pa = (pfn << mmg$gl_bwp_width)| boff;

Code that calculates a physical address from a PFN requires 64-bit arithmetic.
The declaration of the pfn variable as unsigned _ _int64 insures this calculation
is done correctly. In the above example, if the pfn variable were switched to type
PFN_T, the line that computes the pa variable would execute differently on Alpha
and I64 because the size of the pfn variable differs.

A good ‘‘rule of thumb’’ is this: if your code already uses unsigned _ _int64 as a
PFN type, you should probably leave it alone.

7–2 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.2 Macro-32 Programming

7.2 Macro-32 Programming
This section contains instructions for Macro-32 programmers.

7.2.1 PTE Field References in Macro-32
The PTE$V_PFN field is used to reference the PFN stored in a valid or transition
PTE. The symbols PTEV_PFN, PTES_PFN and PTE$M_PFN are defined in
$PTEDEF. This table shows the symbol values on Alpha and I64.

Symbol Name Alpha Value I64 Value

PTE$V_PFN 32 24

PTE$S_PFN 32 40

PTE$M_PFN ^XFFFFFFFF00000000 ^XFFFFFFFFFF000000

In Macro-32 PFNs can be shifted or extracted from PTEs. Also, PFNs can be
shifted or inserted to PTEs.

Good Example 1
; R0 = PFN, R1 = PTE contents, R3 = PTE address
EVAX_SRL R1,#PTE$V_PFN,R0 ; Get PFN from PTE
EXTZV R1,#PTE$V_PFN,#PTE$S_PFN,R0

Good Example 2
; R0 = PFN, R1 = PTE contents, R3 = PTE address
EVAX_SLL R0,#PTE$V_PFN,R1 ; Put PFN into PTE position
INSV R0,#PTE$V_PFN,#PTE$S_PFN,(R3) ; Store PFN into PTE

These references work correctly as common code on Alpha and I64. Some Macro-
32 code may assume that the PFN field is the upper longword of the PTE.

Bad Example
ASSUME PTE$V_PFN EQ 32
MOVL R0,4(R3) ; Store PFN into PTE

This code must be changed to use the PTE structure symbols as shown above.

7.2.2 PFN References in Macro-32
PFNs are often treated as longwords in existing Macro-32 code. You must
change your code to ensure that the high order 32-bits are not truncated or sign
extended.

Existing Code
TSTL R0 ; Is there a PFN?
BNEQ 10$; If neq, yes

New Code
EVAX_BNE R0,10$; Branch if we have a PFN

Existing Code
MOVL R0,R7 ; Copy PFN

New Code
EVAX_OR R0,R31,R7 ; Copy PFN

Existing Code
INCL R0 ; Next PFN

OpenVMS Infrastructure Changes for OpenVMS I64 7–3

OpenVMS Infrastructure Changes for OpenVMS I64
7.2 Macro-32 Programming

New Code
EVAX_ADDQ R0,#1,R0 ; Next PFN

The above examples work correctly as common code on Alpha and I64. In other
cases, you must conditionalize your code because the Alpha has 32-bit storage
and I64 has 64-bit storage.

Existing Code
MOVL GSD$L_BASEPFN(R10),R0 ; Read the base PFN

New Code
.IF DF ALPHA
MOVL GSD$I_BASEPFN(R10),R0 ; Read the base PFN
.ENDC

.IF DF IA64
EVAX_LDQ R0,GSD$I_BASEPFN(R10) ; Read the base PFN
.ENDC

Notice that the new Macro-32 code is awkward. This code could have been
common between Alpha and I64 if it were written in C.

To help program conditional code referencing "I" fields in structures, several new
macros have been added to lib.mlb.

MACRO-32 Macro Alpha Code I64 Code

CLEAR$I loc CLRL loc EVAX_STQ R31, loc

LOAD$I Rx, loc MOVL loc, Rx EVAX_LDQ Rx, loc

STORE$I Rx, loc MOVL Rx, loc EVAX_STQ Rx, loc

INCR$I loc INCL loc EVAX_ADDQ loc, #1, loc

DECR$I loc DECL loc EVAX_SUBQ loc, #1, loc

The above example can be programmed with the LOAD$I macro as follows:

LOAD$I R0, GSD$I_BASEPFN(R10) ; Read the base PFN

7.3 Bliss Programming
This section contains instructions for Bliss programmers.

In general, Hewlett-Packard recommends that if your Bliss-32 code references
PTEs and/or PFNs, that you first convert the modules or routines to Bliss-64.
The rest of this section assumes your Bliss modules are compiled by the Bliss-64
compilers for Alpha and I64.

7.3.1 PTE Field References in Bliss-64
The PTE$V_PFN macro is used to reference the PFN stored in a valid or
transition PTE.

The PTEV_PFN, PTES_PFN, and PTE$M_PFN macros are defined in LIB.L64.
The following table shows the macro definitions on Alpha and I64:

7–4 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.3 Bliss Programming

Macro Name Alpha Definition I64 Definition

PTE$V_PFN 4,0,32,0 % 0,24,40,0%

PTE$S_PFN 32 40

PTE$M_PFN %X’FFFFFFFF00000000’ %X’FFFFFFFFFF000000’

In Bliss-64, PFNs can be referenced using the PTE$V_PFN macro.

Good Example
Local Pfn,

Pte: ref bblock;
Pfn = .Pte[pte$v_pfn];
Pte[pte$v_pfn] = .Pfn;

These references work as common code on Alpha and I64.

PFNs are sometimes extracted from PTEs using a hard-coded 32-bit shift.

Bad Example
Local Pfn,

Pte_quad;
Pfn = .Pte_quad ^ -32;

This code must be changed to use the PTE$V_PFN macro as shown in the Good
Example above.

7.3.2 PFN References in Bliss-64
PFNs are often treated as longwords in existing Bliss code. For I64, you must
ensure that the high order 32-bits are not truncated or sign extended.

Existing Code
Local

Pfn: long unsigned;

New Code
Local

Pfn: unsigned;

In the new code, all references to the Pfn variable in Bliss-64 are treated as 64-bit
values. If you want to use 32-bit PFNs on Alpha and 64-bit PFNs on I64, you can
use conditionals.

New Code
%if ALPHA %then
Local Pfn: long unsigned;
%fi

%if IA64 %then
Local Pfn: unsigned;
%fi

7.4 System Services
This section describes the changes to system services for 50-bit physical
addressing.

The system services used to PFN-map memory are described in Section 7.4.1.
There are two item codes to SYS$GETSYI affected by the 50-Bit physical
addressing project. These are described in Section 7.4.2 and Section 7.4.3.

OpenVMS Infrastructure Changes for OpenVMS I64 7–5

OpenVMS Infrastructure Changes for OpenVMS I64
7.4 System Services

7.4.1 PFN-Map System Services
If your code calls any of the following services, you must modify it for OpenVMS
I64 Version 8.2:

• SYS$CRMPSC with flag SEC$M_PFNMAP

• SYS$CREATE_GPFN

• SYS$CRMPSC_GPFN_64

• SYS$CRMPSC_PFN_64

Start by finding all locations that reference the PFN passed to the service. Modify
the code to reference a 64-bit PFN. See previous sections that describe language
specific changes you must make.

If your code calls SYS$CRMPSC with the flag SEC$M_PFNMAP, you must
change your code to call one of the 64-bit services. The 32-bit interface no longer
allows PFN-mapping on I64.

When calling one of the 64-bit PFN-mapping system services, set the flag
SEC$M_ARGS64 to indicate that 64-bit arguments are being passed to the
service.

Existing Code
unsigned int pfn_to_map;
/* Existing call to sys$crmpsc_gpfn_64 */
status = sys$crmpsc_gpfn_64 (&gs_name, &ident, PRT$C_UW, pfn_to_map,

page_count, ®ion_id, 0, 0, SEC$M_EXPREG, &mapped_va,
&mapped_length);

New Code
unsigned __int64 pfn_to_map;
/* Call with new flag, SEC$M_ARGS64 */
status = sys$crmpsc_gpfn_64 (&gs_name, &ident, PRT$C_UW, pfn_to_map,

page_count, ®ion_id, 0, 0, SEC$M_EXPREG | SEC$M_ARGS64,
&mapped_va, &mapped_length);

7.4.2 SYI$_MAX_PFN
If your code calls SYS$GETSYI[W] with the item code SYI$_MAX_PFN, you must
modify your code. The new item code, SYI$_MAX_PFN_64 is also available on
Alpha so you can maintain common code.

To modify your code, do the following:

1. Change your local max PFN variable to 64-bits.

2. Change the item list entry size to 8 bytes.

3. Change the item code from SYI$_MAX_PFN to SYI$_MAX_PFN_64.

4. Modify all other references to the max PFN variable so that 64 bits are
maintained.

7–6 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.4 System Services

Existing Code
ILE3 item_list[2];
unsigned int max_pfn;

item_list[0].ile3$w_length = sizeof (unsigned int);
item_list[0].ile3$w_code = SYI$_MAX_PFN;
item_list[0].ile3$ps_bufaddr = &max_pfn;

status = sys$getsyiw (EFN$C_ENF, 0, 0, &item_list, &iosb, 0, 0);

Modified Code
ILE3 item_list[2];
unsigned __int64 max_pfn; /* 64-bit max PFN */

item_list[0].ile$w_length = sizeof (unsigned __int64);
item_list[0].ile3$w_code = SYI$_MAX_PFN_64;
item_list[0].ile3$ps_bufaddr = &max_pfn;

status = sys$getsyiw (EFN$C_ENF, 0, 0, &item_list, &iosb, 0, 0);

7.4.3 PMM Structure
The PMM structure has been replaced by the PMM64 structure on I64. If your
code references any of the PMM structure fields, you must modify your code on
I64 to reference the new structure and the new field names.

The new PMM64 structure has been added to Alpha so that the 32-bit PMM
array and 64-bit PMM64 exist on Alpha. Only the 64-bit PMM64 structure exists
on I64.

PMM Field Name PMM64 Field Name Description

PMM$W_LENGTH PMM64$W_LENGTH Size of a PMM64
structure
(3 quads = 24 bytes)

PMM$W_FLAGS PMM64$W_FLAGS Console, openvms,
available,
base, galaxy_shared

PMM$L_START_PFN PMM64$Q_START_PFN First PFN in this cluster

PMM$L_PFN_COUNT PMM64$Q_PFN_COUNT Number of PFNs in this
cluster

7.4.4 SYI$_PFN_MEMORY_MAP
If your code calls SYS$GETSYI[W] with the item code SYI$_PFN_MEMORY_
MAP, you must modify your code. The new item code, SYI$_PFN_MEMORY_
MAP_64 is also available on Alpha so you can maintain common code.

To modify your code, do the following:

1. Change the PMM structure to a PMM64 structure.

2. Change all references to the PMM structure fields to the corresponding
PMM64 structure fields.

3. Change all variables and code that reference PFNs to use 64-bits.

4. Change the call to SYS$GETSYI[W] to use the SYI$_PFN_MEMORY_MAP_
64 item code.

OpenVMS Infrastructure Changes for OpenVMS I64 7–7

OpenVMS Infrastructure Changes for OpenVMS I64
7.4 System Services

Existing Code
ILE3 item_list[2];
int pmd_count;
int buflen;
PMM * pmm_ptr;
unsigned int pfn;
unsigned int pages;

buflen = sizeof(PMM)*pmd_count;
pmm_ptr = malloc (buflen);

item_list[0].ile3$w_length = buflen;
item_list[0].ile3$w_code = SYI$_PFN_MEMORY_MAP;
item_list[0].ile3$ps_bufaddr = pmm_ptr;

status = sys$getsyiw (EFN$C_ENF, 0, 0, &item_list, &iosb, 0, 0);
pfn = pmm_ptr->pmm$l_start_pfn;
pages = pmm_ptr->pmm$l_pfn_count;

Modified Code
ILE3 item_list[2];
int pmd_count;
int buflen;
PMM64 * pmm_ptr;
unsigned __int64 pfn;
unsigned __int64 pages;

buflen = sizeof(PMM64)*pmd_count;
pmm_ptr = malloc (buflen);

item_list[0].ile3$w_length = buflen;
item_list[0].ile3$w_code = SYI$_PFN_MEMORY_MAP64;
item_list[0].ile3$ps_bufaddr = pmm_ptr;

status = sys$getsyiw (EFN$C_ENF, 0, 0, &item_list, &iosb, 0, 0);
pfn = pmm_ptr->pmm64$q_start_pfn;
pages = pmm_ptr->pmm64$q_pfn_count;

7.5 OpenVMS Structure Fields
If you code references the PMM structure in the starlet libraries, please refer to
Section 5.3 for a description of the new PMM64 structure available on Alpha and
I64.

If your code references any of the following structure fields from the "lib" libraries,
you must modify your code on I64 to reference the new field names. All new fields
are added to OpenVMS on Alpha and I64 so that common code can be written.

Alpha Field Name (32 Bits) Alpha (32 Bits) and I64 (64 Bits)

gsd$l_basepfn gsd$i_basepfn

gsd$l_pages gsd$i_pages

gsd$l_refcnt gsd$i_refcnt

pmap$l_start_pfn pmap$i_start_pfn

pmap$l_pfn_count pmap$i_pfn_count

pfn$l_flink pfn$i_flink

pfn$l_blink pfn$i_blink

pfn$l_pt_pfn pfn$i_pt_pfn

7–8 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.5 OpenVMS Structure Fields

Alpha Field Name (32 Bits) Alpha (32 Bits) and I64 (64 Bits)

pfn$l_color_flink pfn$i_color_flink

pfn$l_color_blink pfn$i_color_blink

prvpfn$l_head prvpfn$i_head

prvpfn$l_tail prvpfn$i_tail

rmd$l_first_pfn rmd$i_first_pfn

rmd$l_zero_pfn rmd$i_zero_pfn

prcstr$l_p1pointer_pfn prcstr$i_p1pointer_pfn

prcstr$l_pio_pfn prcstr$i_pio_pfn

mmap$l_first_pfn mmap$i_first_pfn

plnk$l_next_pfn plnk$i_next_pfn

plnk$l_pfn_count plnk$i_pfn_count

shm_cpp$l_min_pfn shm_cpp$i_min_pfn

shm_cpp$l_max_pfn shm_cpp$l_max_pfn

shm_cpp$l_recover_pfn shm_cpp$i_recover_pfn

smci$l_pfn smci$i_pfn

You must also examine all variables and code that reference the PFNs so that
64-bit PFNs are maintained.

Existing Code
unsigned int first_pfn;
first_pfn = gsd->gsd$l_basepfn;

New Code
#include <lib_types.h> /* Include PFN_T type */
PFN_T first_pfn; /* 32-bits on Alpha, 64-bits on I64 */
first_pfn = gsd->gsd$i_basepfn;

7.6 System Data Cells
Some data cells in SYS$BASE_IMAGE.EXE describe PFNs. Data cells that
describe PFNs are removed on I64. New data cells have been added to Alpha and
I64. These data cells fall into a few categories that are described in the following
sections.

7.6.1 Minimum and Maximum PFN Data Cells
If your code references any of the data cells in the following table, you must
modify your code on I64 to reference the new cells:

Alpha Cell (32 Bits) New Alpha and I64 (64 Bit) Cell

MMG$GL_MINPFN MMG$GQ_MINPFN

MMG$GL_MAXPFN MMG$GQ_MAXPFN

MMG$GL_MAXMEM MMG$GQ_MAXMEM

MMG$GL_MIN_NODE_PFN MMG$GQ_MIN_NODE_PFN

MMG$GL_MAX_NODE_PFN MMG$GQ_MAX_NODE_PFN

MMG$GL_MIN_SHARED_PFN MMG$GQ_MIN_SHARED_PFN

MMG$GL_MAX_SHARED_PFN MMG$GQ_MAX_SHARED_PFN

OpenVMS Infrastructure Changes for OpenVMS I64 7–9

OpenVMS Infrastructure Changes for OpenVMS I64
7.6 System Data Cells

You must examine all variables and code that reference the PFNs so that 64-bit
PFNs are maintained.

Example
extern const unsigned int mmg$gl_minpfn;
extern const unsigned int mmg$gl_maxpfn;
unsigned int test_pfn;
if ((mmg$gl_minpfn <= test_pfn) && (test_pfn <= mmg$gl_maxpfn))

New code
extern const unsigned __int64 mmg$gq_minpfn;
extern const unsigned __int64 mmg$gq_maxpfn;
unsigned __int64 test_pfn;
if ((mmg$gq_minpfn <= test_pfn) && (test_pfn <= mmg$gq_maxpfn))

7.6.2 PFN List Arrays, Counts, and Limits
If your code references any of the data cells in the following tables, you must
modify your I64 code to reference the new cells:

Alpha Cell (32 Bits) New Alpha (32 Bits) and I64 (64 Bits) Cell

PFN$AL_HEAD PFN$AI_HEAD

PFN$AL_TAIL PFN$AI_TAIL

PFN$AL_COLOR_HEAD PFN$AI_COLOR_HEAD

PFN$AL_COLOR_TAIL PFN$AI_COLOR_TAIL

PFN$AL_COUNT PFN$AI_COUNT

PFN$AL_LOLIMIT PFN$AI_LOLIMIT

PFN$AL_HILIMIT PFN$AI_HILIMIT

PFN$GL_MFYLSTHD PFN$AI_HEAD[PFN$C_MFYPAGLST]

SCH$GL_FREECNT SCH$GI_FREECNT

SCH$GL_FREELIM SCH$GI_FREELIM

SCH$GL_FREEREQ SCH$GI_FREEREQ

SCH$GL_MFYCNT SCH$GI_MFYCNT

SCH$GL_MFYLIM SCH$GI_MFYLIM

SCH$GL_MFYLOLIM SCH$GI_MFYLOLIM

SCH$GL_MFYLIMSV SCH$GQ_MFYLIMSV

SCH$GL_MFYLOSV SCH$GQ_MFYLOSV

The new PFN$AI cells are arrays of 32-bit PFNs or page counts on Alpha
and 64-bit PFNs or page counts on I64. To reference the new PFN arrays,
Hewlett-Packard recommends programming in C and using the PFN_T typedef.

Existing Code
extern unsigned int pfn$al_head[];
unsigned int free_pfn;
free_pfn = pfn$al_head[PFN$C_FREPAGLST]; /* Read first free pfn */

New Code
#include <lib_types.h>
extern PFN_T pfn$ai_head[];
PFN_T free_pfn;
free_pfn = pfn$ai_head[PFN$C_FREPAGLST]; /* Read first free pfn */

7–10 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.6 System Data Cells

7.6.3 Physical Memory Page Counts
If your code references any of the data cells in the following table, you must
modify your code on I64 to reference the new cells:

Alpha cell (32 Bits) New Alpha and I64 cell (64 Bits)

PFN$GL_PHYPGCNT MMG$GQ_FLUID_PGCNT

MMG$GL_PHYPGCNT MMG$GQ_PHYPGCNT

MMG$GL_MEMSIZE MMG$GQ_MEMSIZE

Programmers often confuse the functions of these data cells.

The MMG$GQ_FLUID_PGCNT data cell specifies the number of "fluid" pages in
the system. Typically, this data cell is decremented when pages are permanently
allocated for use by the system or drivers.

The MMG$GQ_PHYPGCNT data cell specifies the number of physical pages in
the configuration. This number is derived from the PHYSICAL_MEMORY system
parameter if the parameter is not -1. Typically, this data cell is only read by
programs.

The MMG$GQ_MEMSIZE specifies the number of physical pages in the system
regardless of system parameter settings.

7.6.4 Pointer to SYI PFN Memory Map
If your code references the following data cell, you must modify your code on I64
to reference the new cell:

Alpha cell (32 Bits) New Alpha and I64 Cell

MMG$GL_SYI_PFN_MEMORY_MAP MMG$GL_SYI_PFN_MEMORY_
MAP_64

The Alpha cell is the address of an array of PMM structures that describes
physical memory. The new cell, MMG$GL_SYI_PFN_MEMORY_MAP_64, is the
address of an array of PMM64 structures that describe physical memory. See
Section 7.4.3 for a description of the PMM64 structure.

You must change your code to refer to the PMM64 array.

Existing Code
extern int *mmg$gl_syi_pfn_memory_map;
PMM * syi_pmm;
unsigned int pfn;
unsigned int count;
int pmm_count = mmg$gl_syi_pfn_memory_map[0];

syi_pmm = &mmg$gl_syi_pfn_memory_map[1];
for (i=0; i<pmm_count; i++) {

pfn = syi_pmm[i].pmm$l_start_pfn;
count = syi_pmm[i].pmm$l_pfn_count;
printf ("PFN %08X COUNT %08X \n", pfn, count);

}

OpenVMS Infrastructure Changes for OpenVMS I64 7–11

OpenVMS Infrastructure Changes for OpenVMS I64
7.6 System Data Cells

New Code
extern unsigned __int64 *mmg$gl_syi_pfn_memory_map_64;
PMM64 * syi_pmm;
unsigned __int64 pfn;
unsigned __int64 count;
int pmm_count = mmg$gl_syi_pfn_memory_map[0];

syi_pmm = &mmg$gl_syi_pfn_memory_map_64[1];
for (i=0; i<pmm_count; i++) {

pfn = syi_pmm[i].pmm64$q_start_pfn;
count = syi_pmm[i].pmm64$q_pfn_count;
printf ("PFN %016LX COUNT %016LX \n", pfn, count);

}

7.6.5 Shared L2 Page Table PFN
If your code references the following data cell, you must modify your I64 code.

Alpha cell (32 Bits) New Alpha and I64 Cell (64 Bits)

MMG$GL_SHARED_L2PT_PFN MMG$GQ_SHARED_L2PT_PFN

7.6.6 Black Hole PFN Data Cell
If your code references the following data cell, you must modify your code on I64.

Alpha cell (32 Bits) New Alpha and I64 cell (64 Bits)

EXE$GL_BLAKHOLE EXE$GQ_BLAKHOLE

You must examine all variables and code that reference the black hole PFN so
that 64-bit PFNs are maintained.

Existing Code
MOVL EXE$GL_BLAKHOLE,R0 ; Get the PFN of the black hole page
ASSUME PTE$V_PFN EQ 32
MOVLR0,4(R3) ; Map black hole page

New Code
EVAX_LDQ R0,EXE$GQ_BLAKHOLE ; Get the 64-bit PFN of the black hole page
INSV R0,- ; Map black hole page

#PTE$V_PFN,#PTE$S_PFN,(R3)

7.6.7 MMG Window PFN Pointer Data Cells
If your code references any of the following data cells, you must modify your code
on I64.

Alpha Cell New Alpha and I64 Cell

MMG$GQ_WINDOW_PTE_PFN MMG$GQ_WINDOW_PTE

MMG$GQ_WINDOW2_PTE_PFN MMG$GQ_WINDOW2_PTE

The new fields point to the entire PTE, not just to the PFN field. This is because
the PFN field in the PTE is no longer on a naturally aligned boundary. Therefore,
you must reference the PTE as a structure instead of referencing the PFN field
directly.

7–12 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.6 System Data Cells

Existing Code
extern VOID_PQ const mmg$gq_window_va;
extern INT_PQ const mmg$gq_window_pte_pfn;
int pfn;
mmg$gq_window_pte_pfn = pfn; / Store PFN into window PTE */
tbi_data_64 (mmg$gq_window_va, THIS_CPU_ONLY, ((PCB *)0));

New Code
#include <lib_types.h>
extern VOID_PQ const mmg$gq_window_va;
extern PTE_PQ const mmg$gq_window_pte;
PFN_T pfn;
mmg$gq_window_pte->pte$v_pfn = pfn; /* Store PFN into window PTE */
tbi_data_64 (mmg$gq_window_va, THIS_CPU_ONLY, ((PCB *)0));

7.7 System Routines
Some system routines in SYS$BASE_IMAGE.EXE pass PFNs by reference or as
function return values. These routines are removed on I64. New system routines
are being added to Alpha and I64. These routines are described in the following
sections.

The following new routines are available on Alpha and I64. The C prototypes are
listed here for easy reference.

PFN_T ioc$ptetopfn_64 (PTE_PQ pte);

PFN_T mmg$allocate_pfn (uint32 flags, int color, uint64 byte_align);

PFN_T mmg$allocate_contig_pfns (uint64 page_count, uint32 flags, int color,
uint64 byte_align, PFN_T low_pfn, PFN_T high_pfn, UINT64_PQ largest_chunk);

int mmg$allocate_sva_and_pfns (uint64 page_count, uint32 flags, int color,
int system_region, int proto_pte, int refcnt, VOID_PPQ ret_sva);

int mmg$allocate_pfn_map (uint64 page_count, uint32 flags, int color,
PFN_T low_pfn, PFN_T high_pfn, VOID_PQ sva, int proto_pte, int refcnt);

The following sections describe the old and new routines more completely.

7.7.1 Converting from PTE Address to PFN
If your code calls either of the following routines, you must modify your code on
I64 to call the new routines:

Alpha Routine Alpha and I64 Routine

ioc$ptetopfn (JSB routine) ioc$ptetopfn_64

ioc_std$ptetopfn ioc$ptetopfn_64

Prototype
PFN_T ioc$ptetopfn_64 (PTE_PQ pte);

This routine returns a 32-bit PFN on Alpha and a 64-bit PFN on I64. After the
function call, the resulting PFN must be handled as a 64-bit value on I64.

OpenVMS Infrastructure Changes for OpenVMS I64 7–13

OpenVMS Infrastructure Changes for OpenVMS I64
7.7 System Routines

Existing Code
.SET_REGISTERS READ=<R3>,WRITTEN=<R3>
JSB IOC$PTETOPFN ; Convert PTE to PFN
MOVL R3,R7 ; Copy PFN

New Code
$SETUP_CALL64 1
$PUSH_ARG64 R3 ; Pass PTE address
$CALL64 IOC$PTETOPFN_64 ; Convert PTE to PFN
EVAX_OR R0,R31,R7 ; Copy PFN

If your code invokes the following macro from Macro-32, you must modify your code on I64:

Alpha Macro New Alpha and I64 Macro

CALL_PTETOPFN CALL_PTETOPFN_64

This macro returns a 32-bit PFN on Alpha and a 64-bit PFN on I64. After the
macro invocation, the resulting PFN must be handled as a 64-bit value.

Existing Code
.SET_REGISTERS READ=<R3>, WRITTEN=<R0,R1,R3>
CALL_PTETOPFN SAVE_R0R1=NO ; R3 = PFN = IOC_STD$PTETOPFN (PTE IN R3)
MOVL R3,R0 ; R0 = PFN

New Code
.SET_REGISTERS READ=<R3>, WRITTEN=<R0,R1,R3>
CALL_PTETOPFN_64 SAVE_R0R1=NO ; R3 = PFN = IOC$PTETOPFN_64 (PTE IN R3)
EVAX_OR R3,R31,R0 ; R0 = PFN

7.7.2 PFN Allocation Routines
Routines and macros that allocate, map, and return PFNs are replaced with new
routines and macros. The new routines and macros are now available on Alpha
and I64.

At this time, only specific combinations of flags and parameters are supported for
the new routines. Use the tables below to map your current routine call to a call
that is supported for 64-bit PFNs. To request a specific alignment, specify a byte
alignment rather than a page number for the new routines.

Alpha Macro-32 Macro New Alpha and I64 Macro-32 Macro

allocpfn [va] [vpn] [rad]
returns pfn in R0, pfndb entry in R15

allocpfn_64 [va] [vpn] [rad]
returns pfn in R0, pfndb entry in R15

alloc_zero_pfn [va] [vpn] [rad]
returns pfn in R0, pfndb entry in R15

alloc_zero_pfn_64 [va] [vpn] [rad]
returns pfn in R0, pfndb entry in R15

7–14 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.7 System Routines

Alpha Routine
New Alpha and I64 Routine:
mmg$allocate_pfn

#include <pfn_macros.h>
pfn = allocpfn (&pfndb_entry, 0, vpn);

byte_align = vpn<<mmg$gq_bwp_width;
pfn = mmg$allocate_pfn (

0, // flags
MMG$K_NO_RAD,
byte_align); // byte_align

pfndb_entry = pfn_to_entry (pfn);

#include <pfn_macros.h>
pfn = alloc_zero_pfn (&pfndb_entry, 0, vpn);

byte_align = vpn<<mmg$gq_bwp_width;
pfn = mmg$allocate_pfn (

MMG$M_ZEROED,
MMG$K_NO_RAD,
byte_align); // byte_align

pfndb_entry = pfn_to_entry (pfn);

pfn = mmg_std$alloc_pfn_64 (
&pfndb_entry);

pfn = mmg$allocate_pfn (
0, // flags
MMG$K_NO_RAD,
0); // byte_align

pfndb_entry = pfn_to_entry (pfn);

pfn = mmg_std$alloc_zero_pfn_64 (
&pfndb_entry);

pfn = mmg$allocate_pfn (
MMG$M_ZEROED,
MMG$K_NO_RAD,
0);

pfndb_entry = pfn_to_entry (pfn);

pfn = mmg$alloc_zero_algnd_64 (
vpn,
&pfndb_entry);

byte_align = vpn<<mmg$gq_bwp_width;
pfn = mmg$allocate_pfn (

MMG$M_ZEROED,
MMG$K_NO_RAD,
byte_align);

pfndb_entry = pfn_to_entry (pfn);

pfn = mmg$alloc_pfn_color_64 (
color_flags,
vpn,
rad,
&pfndb_entry);

byte_align = vpn<<mmg$gq_bwp_width;
pfn = mmg$allocate_pfn (

color_flags,
color,
byte_align);

pfndb_entry = pfn_to_entry (pfn);

pfn = mmg$alloc_zero_color_64 (
color_flags,
vpn,
rad,
&pfndb_entry);

byte_align =vpn<<mmg$gq_bwp_width;
pfn = mmg$allocate_pfn (

color_flags | MMG$M_ZEROED,
color,
byte_align);

pfndb_entry = pfn_to_entry (pfn);

The following JSB routines are available on Alpha only. Replace the JSB calls
with the equivalent standard routine calls.

OpenVMS Infrastructure Changes for OpenVMS I64 7–15

OpenVMS Infrastructure Changes for OpenVMS I64
7.7 System Routines

Alpha JSB Routine Alpha and I64 Routine

mmg$alloc_pfn mmg$allocate_pfn

mmg$alloc_zero_pfn mmg$allocate_pfn

Prototype
PFN_T mmg$allocate_pfn (unsigned int flags,
int color

unsigned __int64 byte_align);

The following table lists MMG flags and their meanings:

MMG Flag Meaning

MMG$M_COLOR_MUST Return PFN must be of color (RAD)
specified

MMG$M_COLOR_RANDOM Return PFN should be a random color
(RAD)

MMG$M_ZEROED Allocate zeroed page

Color: RAD on systems with NUMA support enabled

Byte_align: If non-zero, the byte alignment for the physical page to be allocated.
For example, specify the virtual address of the mapping if you want the virtual
and physical pages to be aligned the same.

This routine returns a 32-bit PFN on Alpha and a 64-bit PFN on I64. After the
function call, the resulting PFN must be handled as a 64-bit value on I64.

Existing Code
unsigned int pfn;
PFN_PQ pfn_rec;
pfn = mmg_std$alloc_pfn_64 (&pfn_rec); /* Allocate a PFN */
if (pfn == 0) /* Error if no PFN allocated */

New Code
#include <lib_types.h>
PFN_T pfn;
PFN_PQ pfn_rec;
pfn = mmg$allocate_pfn (0, 0, 0); /* Allocate a PFN */
if (pfn != 0) pfn_req = pfn_to_entry(pfn);
if (pfn == 0) /* Error if no PFN allocated */

If your code calls any of the following routines, you must modify your code on I64:

7–16 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.7 System Routines

Alpha Routine
New Alpha and I64 Routine:
mmg$allocate_contig_pfns

pfn = mmg_std$allo_contig (
pfn_count);

pfn = mmg$allocate_contig_pfns (
pfn_count,
0, // flags
MMG$K_NO_RAD, // color
0, // byte_align
0, // low_pfn
0, // high_pfn,
0); // largest_chunk

pfn = mmg_std$allo_contig_pfn (
pfn_count,
high_pfn);

pfn = mmg$allocate_contig_pfns (
pfn_count,
0, // flags
MMG$K_NO_RAD, // color
0, // byte_align
0, // low_pfn
high_pfn // high_pfn,
0); // largest_chunk

pfn = mmg_std$allo_contig_a (
pfn_count,
byte_align);

pfn = mmg$allocate_contig_pfns (
pfn_count,
0, // flags
MMG$K_NO_RAD, // color
byte_align, // byte_align
0, // low_pfn
0, // high_pfn,
0); // largest_chunk

pfn = mmg_std$allo_pfn_a(
pfn_count,
byte_align,
high_pfn);

pfn = mmg$allocate_contig_pfns (
pfn_count,
0, // flags
MMG$K_NO_RAD, // color
byte_align, // byte_align
0, // low_pfn
high_pfn, // high_pfn,
0

; // largest_chunk)

pfn = mmg_std$allo_contig_color_a (
pfn_count,
flags,
byte_align,
color,
&largest_chunk);

pfn = mmg$allocate_contig_pfns (
pfn_count,
flags,
color,
byte_align,
0, // low_pfn
0, // high_pfn,
&largest_chunk); // largest_chunk

pfn = mmg_std$allo_contig_range (
low_pfn
pfn_count,
high_pfn,
byte_align,
&largest_chunk);

pfn = mmg$allocate_contig_pfns (
pfn_count,
0, // flags
0, // color
byte_align,
low_pfn,
high_pfn,
&largest_chunk);

OpenVMS Infrastructure Changes for OpenVMS I64 7–17

OpenVMS Infrastructure Changes for OpenVMS I64
7.7 System Routines

The following JSB routines are available on Alpha only. Replace the JSB calls
with the equivalent standard routine calls.

Alpha JSB Routine Alpha and I64 Routine

mmg$allo_contig mmg$allocate_contig_pfns

mmg$allo_contig_pfn mmg$allocate_contig_pfns

Prototype
PFN_T mmg$allocate_contig_pfns (unsigned __int64 pfn_count,

int flags,
int color,
unsigned __int64 byte_align,
PFN_T low_pfn,
PFN_T high_pfn,
unsigned __int64 * largest_chunk);

Page_count: Number of pages to allocate

The following table shows the MMG flags:

MMG Flag Meaning

MMG$M_COLOR_MUST Return PFN must be of color (RAD)
specified

MMG$M_COLOR_RANDOM Return PFN should be a random color
(RAD)

Color: RAD on systems with NUMA support enabled

Byte_align: the byte alignment for the PFN. For example, specify the virtual
address of the mapping if you want the virtual and physical pages to be aligned
the same.

Low_pfn: Lowest PFN in range to allocate

High_pfn: Highest PFN in range to allocate (0, if no range)

Largest_chunk: If non-zero, address to return the largest number of free PFNs
found. This number of PFNs has been allocated instead of the number specified
in the page_count argument. If zero, the requested number of PFNs must be
returned or the call fails.

This routine returns a 32-bit PFN on Alpha and a 64-bit PFN on I64. After the
function call, the resulting PFN must be handled as a 64-bit value on I64.

Existing Code
unsigned int first_pfn;
unsigned int page_count;

first_pfn = mmg_std$allo_contig (page_count);
if (first_pfn == 0) /* Error: no PFNs allocated */

7–18 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.7 System Routines

New Code
#include <lib_types.h>
PFN_T first_pfn;
unsigned int page_count;

first_pfn = mmg$allocate_contig_pfns (
page_count, 0, MMG$K_NO_RAD, 0, 0, 0, 0);

if (first_pfn == 0) /* Error if no PFNs allocated */

7.7.3 PFN Allocation and Mapping Routines
If your code calls either of the following routines, you must modify your code on
I64:

Alpha Routine New Alpha and I64 Routine

status = mmg$alloc_sva_map (
proto_pte,
page_count,
refcnt,
&ret_svapte,
&ret_sva,
&ret_pfn);

status = mmg$allocate_sva_and_pfns (
page_count,
0, // flags
MMG$K_NO_RAD,
0, // system_region
proto_pte,
refcnt,
&ret_sva);

ret_svapte = va_pte_to_svapte (pte_va (ret_sva));

status = mmg_std$alloc_system_va_
map (

proto_pte,
page_count,
refcnt,
system_region,
&ret_sva,
&ret_pfn,
rad,
rad_flags);

status = mmg$allocate_sva_and_pfns (
page_count,
rad_flags,
rad,
system_region,
proto_pte,
refcnt,
&ret_sva);

Prototype
int mmg$allocate_sva_and_pfns (

unsigned __int64 page_count,
unsigned int flags,
int color,
int system_region,
int proto_pte,
int refcnt,
VOID_PPQ ret_sva);

Page_count: Number of pages to allocate

The following table lists the MMG flags:

MMG Flag Meaning

MMG$M_COLOR_MUST Return PFN must be of color (RAD)
specified

OpenVMS Infrastructure Changes for OpenVMS I64 7–19

OpenVMS Infrastructure Changes for OpenVMS I64
7.7 System Routines

MMG Flag Meaning

MMG$M_COLOR_RANDOM Return PFN should be a random color
(RAD)

Color: RAD on systems with NUMA support enabled

System_region: 0 or 1 = 32-bit S0S1address space, 2 = 64-bit S2 address space

Proto_pte: prototype PTE with low PTE bits, such as page protection, set for
mapping

Refcnt: Reference count for PFNs allocated

Ret_sva: System virtual address of memory mapped

If your code calls any of the following routines, you must modify your code to call
the new routine.

Alpha Routine New Alpha and I64 Routine

status = mmg$alloc_pfn_map_sva (
proto_pte,
page_count,
refcnt,
svapte,
&ret_sva,
&ret_pfn);

sva = va_pte_to_va (svapte_to_va_pte (svapte));
status = mmg$allocate_pfn_map (

page_count,
0, // flags
MMG$K_NO_RAD, // color
0, // low_pfn
0, // high_pfn
sva,
proto_pte,
refcnt);

ret_pfn = svapte->pte$v_pfn;

status = mmg$alloc_pfn_map_system_va (
proto_pte,
page_count,
refcnt,

sva,
&ret_pfn,
color,
flags);

status = mmg$allocate_pfn_map (
page_count,
flags,
color,
0, // low_pfn
0, // high_pfn
sva,
proto_pte,
refcnt);

ret_pfn = pte_va (sva)->svapte>pte$v_pfn;

status = mmg$alloc_ctg_pfn_map_sva (
proto_pte,
page_count,
refcnt,
sva,
high_pfn,
&ret_pfn):

status = mmg$allocate_pfn_map (
page_count,
MMG$M_CONTIG,
MMG$K_NO_RAD, //color,
0, // low_pfn
high_pfn,
sva,
proto_pte,
refcnt);

ret_pfn = pte_va (sva)->svapte>pte$v_pfn;

7–20 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.7 System Routines

Prototype
int mmg$allocate_pfn_map (

unsigned __int64 page_count,
unsigned int flags,
int color,
PFN_T low_pfn,
PFN_T high_pfn,
VOID_PQ sva,
int proto_pte,
int refcnt);

Page_count: Number of pages to allocate

The following table lists the MMG flags.

MMG Flag Meaning

MMG$M_COLOR_MUST Return PFN must be of color (RAD)
specified

MMG$M_COLOR_RANDOM Return PFN should be a random color
(RAD)

MMG$M_CONTIG Allocate contiguous pages

Color: RAD on systems with NUMA support enabled

Low_pfn: lowest PFN to allocate

High_pfn: highest PFN to allocate (0, if no range)

Sva: System virtual address to map pages (sva was already allocated by the
caller)

Proto_pte: prototype PTE with low PTE bits, such as page protection, set for
mapping

Refcnt: Reference count for PFNs allocated

7.8 PTE Format Changes
The PFN field in the PTE is 32-bits wide on Alpha and 40-bits wide on I64. The
PFN field happens to exactly overlay other fields in the PTE such as GPTX,
BAKX and the combination of PGFLPAG and PGFLX.

The following table shows the field definitions for the upper PTE fields:

Field Name Alpha Bit Position Alpha Field Length
I64 Bit
Position

PFN 32 32 241 401

BAKX 32 32 241 401

GPTX 32 32 32 32

PGFLPAG 32 24 32 24

PGFLX 56 8 56 8

1The two fields that are different between Alpha and I64 are PFN and BAKX. The BAKX field is used
to refer to the PFN, GPTX, or PGFLPAG/PGFLX field when the code does not care which format the
PTE is in. The BAKX mask typically used to isolate the lower PTE bits.

OpenVMS Infrastructure Changes for OpenVMS I64 7–21

OpenVMS Infrastructure Changes for OpenVMS I64
7.8 PTE Format Changes

Good Example
EVAX_LDQ R0,(R3) ; Read the PTE
EVAX_BIC R0,#PTE$M_BAKX,R1 ; Isolate the lower PTE bits

Sometimes existing code uses the PFN field from the PTE when it should use the
GPTX field. This code needs to be changed.

Existing Code
pfn = pte_contents.pte$v_pfn;
if (pte_contents.pte$v_typ0 && !pte_contents.pte$v_typ1) {

pte_contents = mmg$gq_gpt_base[pfn]; // Read global PTE
if (pte_contents.pte$v_valid)

pfn = pte_contents.pte$v_pfn; // Read pfn from valid GPTE
.
.
.

}

New Code
pfn = pte_contents.pte$v_pfn;
if (pte_contents.pte$v_typ0 && !pte_contents.pte$v_typ1) {

gptx = pte_contents.pte$v_gptx;
pte_contents = mmg$gq_gpt_base[gptx]; // Read global PTE
if (pte_contents.pte$v_valid)

pfn = pte_contents.pte$v_pfn; // Read pfn from global PTE
.
.
.

}

7.9 50-Bit Physical Address Search Command
Use the following command procedure to help identify which modules require
changing for the 50-Bit PA project.

Note

This search command is so long that it only works on OpenVMS Alpha
V7.3-2 or later versions that support longer DCL commands.

If you see the following DCL error:

%DCL-W-BUFOVF, command buffer overflow - shorten expression or command line

move to a Version 7.3-2 or later system.

7–22 OpenVMS Infrastructure Changes for OpenVMS I64

OpenVMS Infrastructure Changes for OpenVMS I64
7.9 50-Bit Physical Address Search Command

$! In the SEARCH command replace xxx with the list of files in your build
$! environment where the relevant symbols might exist. For example, here is
$! the one used for the VMS build.
$!
$! search resd$:[*.lis]*.lis,-
$! resd$:[lib*.src]*.mar,-
$! resd$:[lib*.src]*.req,-
$! resd$:[starlet*.src]*.mar,-
$! resd$:[starlet*.src]*.req,-
$! resd$:[lib_h.src]*.h -
$!
$! Note that it may not be sufficient to just search .LIS files. Macros and
$! header files may also contain symbols that need to be examined.
$!
$!
$ search xxx -
! data cells

exe$gl_blakhole,-
mmg$gl_maxmem,-
mmg$gl_max_node_pfn,-
mmg$gl_max_shared_pfn,-
mmg$gl_maxpfn,-
mmg$gl_memsize,-
mmg$gl_minpfn,-
mmg$gl_min_node_pfn,-
mmg$gl_min_shared_pfn,-
mmg$gl_phypgcnt,-

mmg$gl_shared_l2pt_pfn,-
mmg$gl_syi_pfn_memory_map,-
mmg$gq_window_pte_pfn,-
mmg$gq_window2_pte_pfn,-
pfn$al_head,-
pfn$al_color_head,-
pfn$al_color_tail,-
pfn$al_count,-
pfn$al_hilimit,-
pfn$al_lolimit,-

pfn$al_mfylsthd,-
pfn$al_tail,-
pfn$gl_phypgcnt,-
sch$gl_freecnt,-
sch$gl_freelim,-
sch$gl_freereq,-
sch$gl_mfycnt,-
sch$gl_mfyl,-

! routines
ioc$ptetopfn,-
ioc_std$ptetopfn,-
mmg$allo_contig,-
mmg$allo_contig_pfn,-
mmg$alloc_contig_color_a,-
mmg$alloc_contig_range,-
mmg$alloc_pfn,-
mmg$alloc_pfn_algnd_64,-
mmg$alloc_pfn_color_64,-
mmg$alloc_pfn_map_sva,-
mmg$alloc_sva_map,-
mmg$alloc_zero_algnd_64,-
mmg$alloc_zero_color_64,-
mmg$alloc_zero_pfn,-
mmg_std$allo_contig,-
mmg_std$allo_contig_a,-
mmg_std$allo_contig_pfn,-
mmg_std$allo_contig_pfn_a,-
mmg_std$alloc_ctg_pfn_map_sva,-

OpenVMS Infrastructure Changes for OpenVMS I64 7–23

OpenVMS Infrastructure Changes for OpenVMS I64
7.9 50-Bit Physical Address Search Command

mmg_std$alloc_pfn_map_system_va,-
mmg_std$alloc_pfn_64,-
mmg_std$alloc_system_va_map,-
mmg_std$alloc_zero_pfn_64,-

! macros
allocpfn,-
alloc_zero_pfn,-
call_ptetopfn,-

! system services
sec$m_pfnmap,-

sys$create_gpfn,-
sys$crmpsc_gpfn_64,-
sys$crmpsc_pfn_64,-
syi$_max_pfn,-
syi$_pfn_memory_map,-

! data structures
gsd$l_basepfn,-
gsd$l_pages,-
gsd$l_refcnt,-
pmap$,-
pmm$, -
pfn$l_blink,-
pfn$l_flink,-
pfn$l_pt_pfn,-
prcstr$l_pio_pfn,-
prcstr$l_p1pointer_pfn,-
pte$m_pfn,-
pte$s_pfn,-
pte$v_pfn

$ exit

7–24 OpenVMS Infrastructure Changes for OpenVMS I64

A
Data Structure Changes

This appendix contains descriptions of the OpenVMS Alpha Version 7.0 I/O data
structure changes made to support 64-bit addressing.

The data structures are listed in alphabetical order. However, the individual
structure members are listed in the order in which they are defined within each
data structure. Note, however, that the following sections only describe new or
changed structure members. Existing unchanged members are not described.
In addition, unused or ‘‘fill’’ structure members that might be added to obtain
natural alignment are not listed. Thus, you can not use the following descriptions
to calculate the precise memory layout of the structures. However, you can
assume that any new or changed structure members will be naturally aligned
within the structure.

A.1 Pointer Size Conventions
Any unqualified use of the term ‘‘pointer’’ implies a 32-bit pointer. All 64-bit
pointers will be explicitly identified as either a 64-bit or quadword pointer.

As of OpenVMS Alpha Version 7.0, a new C compiler pragma controls the pointer
size. To facilitate the use of 64-bit pointers, a new header file, far_pointers.h in
SYS$STARLET_C.TLB, defines types for 64-bit pointers to the intrinsic C data
types.

Table A–1 summarizes the 64-bit pointer data types.

Table A–1 64-Bit Pointer Data Types

Type Name 32-Bit Analog Description Defined by

CHAR_PQ char * 64-bit pointer to a char far_pointers.h

CHAR_PPQ char ** 64-bit pointer to a CHAR_PQ far_pointers.h

INT_PQ int * 64-bit pointer to a 32-bit int far_pointers.h

INT64_PQ int64 * 64-bit pointer to a 64-bit int far_pointers.h

UINT64_PQ uint64 * 64-bit pointer to a 64-bit int far_pointers.h

VOID_PQ void * 64-bit pointer to arbitrary
data

far_pointers.h

VOID_PPQ void ** 64-bit pointer to a VOID_PQ far_pointers.h

IOSB_PQ IOSB * 64-bit pointer to an IOSB
structure

iosbdef.h

IOSB_PPQ IOSB ** 64-bit pointer to an IOSB_PQ iosbdef.h

PTE_PQ PTE * 64-bit pointer to a PTE ptedef.h

(continued on next page)

Data Structure Changes A–1

Data Structure Changes
A.1 Pointer Size Conventions

Table A–1 (Cont.) 64-Bit Pointer Data Types

Type Name 32-Bit Analog Description Defined by

PTE_PPQ PTE ** 64-bit pointer to a PTE_PQ ptedef.h

A.2 Buffer Object Descriptor (BOD)
This section describes the additions and changes to cells in the buffer object
descriptor (BOD) structure (see Table A–2).

Table A–2 BOD Structure Changes

Field Type Comments

bod$v_s2_window Bit A bit equal to BOD$M_S2_WINDOW in the
bod$l_flags cell.

When this bit is clear, the buffer object
is mapped into the S0/S1 portion of
system space and the bod$ps_svapte and
bod$l_basesva cells are valid.

When this bit is set, the buffer object is
mapped into the S2 portion of system
space and the bod$pq_va_pte and
bod$pq_basesva cells are valid.

bod$pq_basepva VOID_PQ Process virtual address for the start of
the buffer object. This cell replaces the
bod$l_basepva cell.

bod$l_basepva - This cell will be removed. It will be replaced
by the bod$pq_basepva cell.

bod$pq_basesva VOID_PQ System virtual address for the start of the
buffer object. This cell is overlaid on the
bod$l_basesva cell and this use is valid
only if BOD$M_S2_WINDOW is set in
bod$l_flags.

bod$pq_va_pte PTE_PQ Virtual address for the first system PTE that
maps the buffer object. This cell is overlaid
on the bod$ps_svapte cell and this use is
valid only if BOD$M_S2_WINDOW is set in
bod$l_flags.

A.3 Buffered I/O (BUFIO)
The existing 32-bit Buffered I/O (BUFIO) packet format will continue to be
supported. In addition, a new 64-bit BUFIO packet format will be supported.
These BUFIO packets are ‘‘self identifying’’. That is, it is possible to distinguish a
32-bit from a 64-bit format BUFIO packet from information in the packet.

Although the structure type code DYN$C_BUFIO is defined and there is an
expected layout for the header of buffered I/O packet, there currently is no formal
definition of a structure. Existing code in drivers and IOCIOPOST.MAR uses
numeric constants as offsets.

A–2 Data Structure Changes

Data Structure Changes
A.3 Buffered I/O (BUFIO)

The existing 32-bit BUFIO packet will be formally defined along with a new
64-bit BUFIO packet format. The 64-bit BUFIO structure format will also be
used for 64-bit diagnostic buffer packets (see Table A–3).

Table A–3 BUFIO Packet

Field Type Comments

bufio$ps_pktdata void * Pointer to the buffered data within the
packet.

bufio$ps_uva32 void * 32-bit pointer to user’s address space. On a
read function, data is transfered from that
user virtual address to the buffer packet
during FDT processing. On a write function,
data is transfered to that user virtual
address from the buffer packet during I/O
Postprocessing. If this cell contains the value
BUFIO$K_64 (-1), then the pointer to the
user buffer is in bufio$pq_uva64.

bufio$w_size unsigned short Size of the BUFIO packet in bytes.

bufio$b_type unsigned char Nonpaged pool packet type code, DYN$C_
BUFIO

BUFIO$K_HDRLEN32 constant Size in bytes of the minimal buffered I/O
packet header with a 32-bit user virtual
address (12).

bufio$pq_uva64 VOID_PQ 64-bit pointer to user’s address space. On a
read function, data is transfered from that
user virtual address to the buffer packet
during FDT processing. On a write function,
data is transfered to that user virtual
address from the buffer packet during I/O
Postprocessing. This cell contains a valid
address only if the bufio$ps_uva32 cell
contains the value BUFIO$K_64 (-1).

BUFIO$K_HDRLEN64 constant Size in bytes of the minimal buffered I/O
packet header with a 64-bit user virtual
address (24).

A.4 Complex Chained Buffer (CXB)
The CXB structure defines the format of entries that are linked together to build
a complex chained buffered I/O packet.

The CXB structure will be enhanced such that it can be used by existing code
with no source changes to support a 32-bit caller’s buffer address. However, the
same enhanced CXB structure can be used to support a 64-bit caller’s buffer
address as well (see Table A–4).

Data Structure Changes A–3

Data Structure Changes
A.4 Complex Chained Buffer (CXB)

Table A–4 CXB Structure Changes

Field Type Comments

cxb$ps_pktdata void * Pointer to the buffered data within the
packet. This cell will be overlaid on the
existing cxb$l_fl cell to reflect its current
alternate use.

cxb$ps_uva32 void * 32-bit pointer to user’s address space. If
this cell contains the value BUFIO$K_64
(-1) then the pointer to the user buffer is in
cxb$pq_uva64. This cell will be overlaid
on the existing cxb$l_bl cell to reflect its
current alternate use.

cxb$pq_uva64 VOID_PQ 64-bit pointer to user’s address space. This
cell contains a valid address only if the
cxb$ps_uva32 cell contains the value
BUFIO$K_64 (-1). This cell will be inserted
as the last aligned quadword just before the
end of the standard CXB header which is
CXB$K_LENGTH bytes long.

A.5 Data Chain Block (DCBE)
The DCBE structure is the Data Chain Block that is used by the OpenVMS LAN
driver VMS Communications Interface (VCI). A DCBE is used to connect to a
VCRP all or part of the data to be transmitted. A chain of DCBEs is used when
the data is contained in more than one discontiguous buffer in virtual memory.1

There are two mutually exclusive methods that a DCBE can use to identify the
start of the buffer:

1. When the dcbe$l_buffer_address cell contains a zero, the buffer address is
specified by the dcbe$l_svapte and dcbe$l_boff cells. A fixed-size primary
DIOBM structure will be added to the DCBE. This embedded DIOBM
structure is available for use by an upper-level VCM if it needs to derive
a 32-bit SVAPTE from a 64-bit VA_PTE for the PTEs that map the buffer.
The lower-level VCM will not alter this embedded DIOBM or make any
assumptions about it.

2. When the dcbe$l_buffer_address cell contains the a non-zero value, this
value is the system virtual address of the buffer. This method remains
unchanged.

Because a VCRP can also be used as a DCBE, the named DCBE cells must
be at the same offsets as their VCRP counterparts. Therefore, DCBE changes
are reflected in the VCRP and changes to the common portion of the VCRP are
reflected in the DCBE.

In addition, SYS$PEDRIVER overlays a DCBE with the vcrp$t_internal_stack
area within the VCRP. Therefore, an increase in the size of the DCBE must be
reflected by a corresponding increase in the size of the internal stack area within
the VCRP (see Table A–5).

1 The DCBE should not be confused with the similarly named DCB structure. The DCB
is used internally by the DECnet Phase IV NETDRIVER. As described in Section 2.2.3,
the dcb$l_svapte cell value will be derived from the irp$l_svapte cell in the associated
IRP and will rely on the DIOBM that is embedded in the IRP. For this reason there is
no need for an embedded DIOBM in the DCB structure.

A–4 Data Structure Changes

Data Structure Changes
A.5 Data Chain Block (DCBE)

Table A–5 DCBE Structure Changes

Field Type Comments

dcbe$l_reserved int32[13] This existing vector of 6 filler longwords has
been increased to 13 fill longwords to reflect
the increased size of the common portion of
the VCRP. The common portion of the VCRP
has been increased to accommodate either an
ACB64 or ACB structure.

dcbe$pq_buffer_addr64 VOID_PQ 64-bit buffer address. This cell is available
for use by upper-level VCMs only. Note
that this cell does not replace the
dcbe$l_buffer_address cell which
continues to be used by lower-level VCMs.
The dcbe$pq_buffer_addr64 cell has been
added after the dcbe$l_bcnt cell.

dcbe$r_diobm DIOBM Embedded fixed-size primary "direct I/O
buffer map" structure. This DIOBM
structure is available for use by upper-level
VCMs that need to lock down a buffer and
provide a value for the dcbe$l_svapte cell.
This structure has been added just before the
end of the DCBE header.

A.6 Direct I/O Buffer Map (DIOBM)
The Direct I/O Buffer Map (DIOBM) is a new structure that is used to solve the
‘‘cross-process PTE problem’’ for buffers that have been locked into memory for
direct I/O.

There are two variants of the DIOBM structure. The first is the primary DIOBM
structure. The primary DIOBM structure can be used in the following mutually
exclusive ways:

1. To contain copies of the actual PTEs that map the buffer.

2. To point to a larger secondary DIOBM structure if the primary DIOBM
structure has insufficient room for all the PTEs that map the user buffer.

3. To manage a PTE window in S0/S1 space onto the actual PTEs that map the
buffer if the required PTE count exceeds the capacity of the largest allowable
DIOBM structure.

Each of these methods yields a 32-bit system virtual address for the PTEs that
map the buffer. This address is valid regardless of process or system context.

The fixed-size DIOBM structure contains room for exactly DIOBM$K_PTECNT_
FIX (9) PTEs and is 88 bytes long. Most primary DIOBM structures are fixed-
sized and embedded in other structures. For example, the IRP, IRPE, VCRP, and
DCBE structures all contain an embedded fixed-sized primary DIOBM structure.

A secondary DIOBM structure can have room for up to ioc$gl_diobm_ptecnt_max
PTEs and is used only for PTE copies.

Although the offsets and types for both the primary and secondary DIOBM
structures are identical, for clarity, they are described in separate tables (see
Table A–6 and Table A–7).

Data Structure Changes A–5

Data Structure Changes
A.6 Direct I/O Buffer Map (DIOBM)

Table A–6 Primary DIOBM Structure

Field Type Comments

diobm$ps_aux_diobm DIOBM * This is a pointer to a secondary DIOBM
structure that is valid if and only if
DIOBM$M_AUX_INUSE in diobm$l_flags
is set. The secondary DIOBM structure
contains copies of the PTE that map the
buffer. When a secondary DIOBM is used,
the only use for the primary DIOBM is to
locate the secondary.

diobm$l_pte_count unsigned int If DIOBM$M_PTE_WINDOW is clear in
diobm$l_flags, this cell contains the count
of PTEs that have been copied to the PTE
vector diobm$q_pte_vector in this DIOBM
structure.

If DIOBM$M_PTE_WINDOW is set in
diobm$l_flags, this cell contains the count
of SPTEs that have been allocated for a PTE
window in S0/S1 space to the actual PTEs
that map the buffer.

diobm$w_size unsigned short Size of the DIOBM packet in bytes.

diobm$b_type unsigned char Nonpaged pool packet type code, DYN$C_
MISC

diobm$b_subtype unsigned char Nonpaged pool packet subtype code, new
DYN$C_MISC subtype code DYN$C_DIOBM

diobm$l_flags unsigned int Flag bits.

diobm$v_rel_dealloc bit A bit equal to DIOBM$M_REL_DEALLOC
in the diobm$l_flags cell. If set, routine
IOC_STD$RELEASE_DIOBM deallocates
this DIOBM structure. The routine IOC_
STD$FILL_DIOBM sets this bit on any
secondary DIOBM structure that it may
allocate. The routine IOC_STD$CREATE_
DIOBM sets this bit on the primary DIOBM
structure that it allocates.

diobm$v_pte_window bit A bit equal to DIOBM$M_PTE_WINDOW
in the diobm$l_flags cell. This bit is set
if the direct I/O buffer is too large for a
DIOBM packet (the buffer requires more
than ioc$gl_diobm_ptecnt_max PTEs) and a
window in S0 to its PTEs has been allocated.
When this bit is set, diobm$l_pte_count
contains the count of SPTEs that have been
allocated and the diobm$l_ptew_sva cell
contains the system virtual address that
is mapped by the first SPTE allocated for
the PTE window. This bit must be clear if
diobm$v_aux_inuse is set.

(continued on next page)

A–6 Data Structure Changes

Data Structure Changes
A.6 Direct I/O Buffer Map (DIOBM)

Table A–6 (Cont.) Primary DIOBM Structure

Field Type Comments

diobm$v_aux_inuse bit A bit equal to DIOBM$M_AUX_INUSE
in the diobm$l_flags cell. The
diobm$ps_aux_diobm cell contains a
pointer to a secondary DIOBM structure
if and only if the diobm$v_aux_inuse
bit is set. This bit must be clear if
diobm$v_pte_window is set.

diobm$v_inuse bit A bit equal to DIOBM$M_INUSE in the
diobm$l_flags cell. This flag is an
aid to detecting inproper use of DIOBM
structures and is used only by the full-
checking versions of the routines in the IO_
ROUTINES_MON.EXE execlet. This flag
is set by the IOC_STD$FILL_DIOBM and
IOC_STD$CREATE_DIOBM routines and is
cleared by the IOC_STD$RELEASE_DIOBM
routine. Prior to setting the flag, the IOC_
STD$FILL_DIOBM routine checks this flag if
the diobm$b_type cell contains the DYN$C_
MISC value and diobm$b_subtype contains
DYN$C_DIOBM. If the diobm$v_inuse
flag is set under these conditions, the
IOC_STD$FILL_DIOBM routine declares
a INCONSTATE bugcheck.

diobm$v_s0pte_
window

bit A bit equal to DIOBM$M_S0PTE_WINDOW
in the diobm$l_flags cell. This bit is set
if the S0/S1 PTE window was used to derive
a 32-bit PTE address for this buffer. When
this bit is set the diobm$v_pte_window and
diobm$v_aux_inuse flags must be clear and
the diobm$l_pte_count cell must contain
0.

DIOBM$K_HDRLEN constant Size in bytes of the minimal DIOBM
packet header excluding the PTE vector.
This is equal to the byte offset of the
diobm$q_pte_vector[0] cell (16).

diobm$q_pte_vector PTE[diobm$l_
pte_count]

Vector of diobm$l_pte_count quadword
PTEs that are copies of the PTEs that
map the buffer that has been locked for
direct I/O. This vector is valid only if both
DIOBM$M_AUX_INUSE and DIOBM$M_
PTE_WINDOW in diobm$l_flags are clear.

DIOBM$K_PTECNT_
FIX

constant This constant specifies the number of PTE
entries (9) that fit into the PTE vector in a
fix-sized DIOBM structure.

DIOBM$K_PTECNT_
MAX_UNI

constant This constant specifies the number of PTE
entries (94) that fit into the PTE vector in
the largest allowable DIOBM structure on an
uniprocessor system.

DIOBM$K_PTECNT_
MAX_SMP

constant This constant specifies the number of PTE
entries (430) that fit into the PTE vector in
the largest allowable DIOBM structure on an
SMP system.

(continued on next page)

Data Structure Changes A–7

Data Structure Changes
A.6 Direct I/O Buffer Map (DIOBM)

Table A–6 (Cont.) Primary DIOBM Structure

Field Type Comments

diobm$ps_ptew_sva void * The lowest S0/S1 space virtual address
that is mapped by the PTEs that have been
allocated for the window onto the direct I/O
buffer PTEs. This cell is used to deallocate
the PTE window. This cell is overlaid on a
portion of diobm$q_pte_vector since its
use is mutually exclusive. This cell is valid
if and only if DIOBM$M_PTE_WINDOW in
diobm$l_flags is set.

DIOBM$M_
NORESWAIT

constant This is an option bit mask for the flags
parameter to the IOC_STD$FILL_DIOBM
and IOC_STD$CREATE_DIOBM routines.

When this option bit is set and there are
insufficient resources for the needs of these
routines an error status is returned to their
callers instead of putting the process into a
resource wait state.

Table A–7 Secondary DIOBM Structure

Field Type Comments

diobm$ps_aux_diobm DIOBM * This cell must be zero in a secondary DIOBM
structure.

diobm$l_pte_count unsigned int Contains the number of PTEs that can
fit into the diobm$q_pte_vector in this
DIOBM structure.

diobm$w_size unsigned short Size of the DIOBM packet in bytes.

diobm$b_type unsigned char Nonpaged pool packet type code, DYN$C_
MISC

diobm$b_subtype unsigned char Nonpaged pool packet subtype code, new
DYN$C_MISC subtype code DYN$C_DIOBM

diobm$l_flags unsigned int Flag bits.

diobm$v_rel_dealloc bit A bit equal to DIOBM$M_REL_DEALLOC
in the diobm$l_flags cell. If set, routine
IOC_STD$RELEASE_DIOBM deallocates
this DIOBM structure.

diobm$v_pte_window bit A bit equal to DIOBM$M_PTE_WINDOW in
the diobm$l_flags cell. This bit must be
clear in a secondary DIOBM structure.

diobm$v_aux_inuse bit A bit equal to DIOBM$M_AUX_INUSE in
the diobm$l_flags cell. This bit must be
clear in a secondary DIOBM structure.

diobm$v_s0pte_
window

bit A bit equal to DIOBM$M_S0PTE_WINDOW
in the diobm$l_flags cell. This bit must be
clear in a secondary DIOBM structure.

(continued on next page)

A–8 Data Structure Changes

Data Structure Changes
A.6 Direct I/O Buffer Map (DIOBM)

Table A–7 (Cont.) Secondary DIOBM Structure

Field Type Comments

diobm$q_pte_vector PTE[diobm$l_
pte_count]

Vector of diobm$l_pte_count quadword
PTEs that are copies of the PTEs that map
the buffer that has been locked for direct I/O.

A.7 Function Decision Table (FDT)
This section describes the additions to the driver Function Decision Table (FDT)
structure (see Table A–8).

Table A–8 FDT Structure Changes

Field Type Comments

fdt$q_ok64bit unsigned int64 A 64-bit mask corresponding to the
64 possible I/O function codes. The
corresponding bit is set if the function
supports a 64-bit $QIO p1 parameter
value. This cell is initialized to zero by
the MACRO-32 macro FDT_INI, the BLISS
macro FDTAB, and in the prototype FDT,
DRIVER$FDT, which is used by drivers
written in C. This cell has been added to the
end of the existing FDT structure.

A.8 I/O Request Packet (IRP)
This section describes the additions and changes to cells in the I/O Request
Packet (IRP) structure. The significant IRP changes are:

1. The IRP resembles a 64-bit capable ACB64 structure instead of the existing
ACB structure.

2. A fixed-size primary DIOBM is embedded in the IRP for use in deriving a
32-bit system virtual address for the PTEs that map a buffer locked into
memory for direct I/O.

3. The IRP cells that contain copies of the 64-bit $QIO parameter values and
the caller’s IOSB address have been expanded from 32-bits to 64-bits.

4. Any cells overlaid on the irpl_ast, irpl_astprm, or irp$l_iosb cells move
to the low-order longword of their quadword replacements.

5. Alternative cell names have been defined for the ast, astprm, and iosb cells
that can be used for arbitrary parameters in internal IRPs.

The size of an IRP has increased by 160 bytes (43%), from 376 to 536 bytes (see
Table A–9).

Data Structure Changes A–9

Data Structure Changes
A.8 I/O Request Packet (IRP)

Table A–9 IRP Changes

Field Type Comments

irp$b_mode unsigned char This is an existing cell in the IRP that
contains the caller’s mode in the low-
order 2 bits. The irp$l_acb_flags cell
is considered valid by SCH$QAST if and only
if ACB$M_FLAGS_VALID mask is set in this
cell. The ACB$M_FLAGS_VALID mask is
always set in this cell by EXE$QIO when the
IRP is allocated.

irp$l_acb64x_offset int Offset to the ACB64X structure embedded
in this IRP. This cell is considered valid by
SCH$QAST if and only if ACB$M_64BITS
is set in the irp$l_acb_flags cell. This
cell is initialized to the offset value of
the irp$pq_acb64_ast field. This cell
corresponds to the acb64$l_acb64x cell.
Because this cell is at the same offset as
the acb$l_ast cell, the irp$l_ast cell has
been removed.

irp$l_acb_flags unsigned int This cell has been initialized to the mask
value ACB$M_64BITS to indicate that the
irp$l_acb64x_offset field contains an
offset to the ACB64X structure. Corresponds
to the acb$l_flags cell.

irp$l_thread_pid int Corresponds to the acb$l_thread_pid
cell. Reserved for use by the Kernel Threads
project.

irp$pq_acb64_ast VOID_FUNC_
PQ

This cell corresponds to the acb64$pq_ast
cell and replaces the irp$l_ast cell.

irp$l_ast - This cell has been removed. It has been
replaced by the irp$pq_acb64_ast cell.

irp$l_shd_iofl IRP * This is an existing cell that contains the
link to the cloned shadowing IRPs. This
cell was overlaid on irp$l_ast and is now
overlaid on the low-order longword of the
irp$pq_acb64_ast cell.

irp$l_iirp_p0 int Generic parameter cell that is available in
internal IRPs. This cell overlays the low-
order longword of the irp$pq_acb64_ast
cell and is intended for use by components
that use the irp$l_ast cell for this purpose.

irp$q_acb64_astprm int64 This cell corresponds to the
acb64$q_astprm cell and replaces the
irp$l_astprm cell.

irp$l_astprm - This cell has been removed. It is replaced by
the irp$q_acb64_astprm cell.

irp$l_shad SHAD * This is an existing cell in IRPs cloned
by shadowing that points to the SHAD
structure. This cell was overlaid on
irp$l_astprm and is now overlaid
on the low-order longword of the
irp$q_acb64_astprm cell.

(continued on next page)

A–10 Data Structure Changes

Data Structure Changes
A.8 I/O Request Packet (IRP)

Table A–9 (Cont.) IRP Changes

Field Type Comments

irp$l_hrb HRB * This is an existing cell in MSCP server
IRPs that points to a Host Request
Block structure. This cell was overlaid
on irp$l_astprm and is now overlaid
on the low-order longword of the
irp$q_acb64_astprm cell.

irp$l_mv_tmo int This cell is used in internal mount
verification IRPs to contain the timeout
value. This cell overlays the low-order
longword of the irp$q_acb64_astprm
cell and is intended for use by components
that currently use the irp$l_astprm cell for
this purpose.

irp$l_iirp_p1 int Generic parameter cell that is available in
internal IRPs. This cell overlays the low-
order longword of the irp$q_acb64_astprm
cell and is intended for use by components
that use the irp$l_astprm cell for this
purpose.

irp$q_user_thread_id uint64 Unique user thread identifier. Corresponds
to the acb64$q_user_thread_id cell.
Reserved for use by the Kernel Threads
project.

irp$pq_iosb VOID_PQ 64-bit pointer to the caller’s IOSB. This cell
replaces irp$l_iosb.

irp$l_iosb - This cell has been removed. It is replaced by
the irp$pq_iosb cell.

irp$l_cln_wle unsigned int This is an existing cell that contains
the shadowing write log state. This cell
was overlaid on irp$l_iosb and is now
overlaid on the low-order longword of the
irp$pq_iosb cell.

irp$l_iirp_p2 int Generic parameter cell that is available in
internal IRPs. This cell overlays the low-
order longword of the irp$pq_iosb cell and
is intended for use by components that use
the irp$l_iosb cell for this purpose.

irp$pq_va_pte PTE_PQ A 64-bit pointer to the actual PTEs that map
the user buffer. If the user buffer is not in
shared system space, then this PTE virtual
address is only valid in the caller’s process
context.

(continued on next page)

Data Structure Changes A–11

Data Structure Changes
A.8 I/O Request Packet (IRP)

Table A–9 (Cont.) IRP Changes

Field Type Comments

irp$l_svapte PTE * A 32-bit pointer to PTE values that map the
user buffer. The PTE values may be copies
of the actual PTEs in Page Table Space that
map the user buffer. If zero, then no PTEs
have been locked for this request. Note that
for compatibility with existing drivers, this
cell remains overlaid on irp$ps_bufio_pkt
and this use is valid only if IRP$M_BUFIO is
clear in irp$l_sts. Note also that this cell
contains a pointer into the CPT structure if
IRP$M_CACHEIO is set in irp$l_sts2.

irp$ps_bufio_pkt BUFIO * Pointer for the buffered I/O packet for this
request. If zero, then no packet has been
allocated for this request. Note that for
compatibility with existing drivers, this cell
remains overlaid on irp$l_svapte and this
use is valid only if IRP$M_BUFIO is set in
irp$l_sts.

irp$r_diobm DIOBM Embedded fixed-size primary "direct I/O
buffer map" structure. This embedded
DIOBM structure is valid if and only if
irp$l_svapte points to a set of PTEs
whose pages have been locked down for
direct I/O. Specifically, the DIOBM is in
use when both IRP$M_BUFIO and IRP$M_
CACHEIO in irp$l_sts are clear and
the irp$l_svapte cell contains a non-
zero value. See Section A.6 for a complete
description of the DIOBM structure.

irp$q_qio_p1 int64 Copy of device dependent $QIO parameter
p1. The low order 32-bits of this cell remain
accesible via irp$l_qio_p1.

irp$q_qio_p2 int64 Copy of device dependent $QIO parameter
p2. The low order 32-bits of this cell remain
accesible via irp$l_qio_p2.

irp$q_qio_p3 int64 Copy of device dependent $QIO parameter
p3. The low order 32-bits of this cell remain
accesible via irp$l_qio_p3.

irp$q_qio_p4 int64 Copy of device dependent $QIO parameter
p4. The low order 32-bits of this cell remain
accesible via irp$l_qio_p4.

irp$q_qio_p5 int64 Copy of device dependent $QIO parameter
p5. The low order 32-bits of this cell remain
accesible via irp$l_qio_p5.

irp$q_qio_p6 int64 Copy of device dependent $QIO parameter
p6. The low order 32-bits of this cell remain
accesible via irp$l_qio_p6.

A.9 I/O Request Packet Extension (IRPE)
This section describes the additions and changes to cells in the I/O Request
Packet Extension (IRPE) structure. An IRPE structure can contain additional
driver-specific information that needs to be associated with an IRP. It can also be
used to manage additional buffers that are locked down for direct I/O.

A–12 Data Structure Changes

Data Structure Changes
A.9 I/O Request Packet Extension (IRPE)

If the IRP$M_EXTEND bit is set in irp$l_sts then the irp$l_extend cell
contains a pointer to an associated IRPE structure. Similarly, if the IRPE$M_
EXTEND bit is set in the irpe$l_sts cell, then the irpe$l_extend cell contains
a pointer to another IRPE. In general, if there is an IRPE cell with the name
irpe$X and an IRP cell with the name irp$X, then the cells must be at the same
offsets such that the IRP and the IRPE can be used interchangeably in contexts
that depend only on these common cells.

Currently, a single IRPE structure can be used to keep track of two separate
regions of locked down pages. The new IRPE structure can only manage a single
region of locked down pages and contains a single fixed-size primary DIOBM
structure for that purpose (see Table A–10).

Table A–10 IRPE Changes

Field Type Comments

irpe$b_rmod unsigned char Requestor’s access mode. This corresponds
to the irp$b_rmod cell. The space for this
IRPE cell was reserved but the cell was not
previously formally defined. The addition of
this cell facilitates the usage of an IRPE with
the EXE_STD$READLOCK routines because
the irpe$b_rmod cell is one of the required
implicit inputs.

irpe$l_oboff unsigned int Original byte offset into first page for buffer
locked into memory. This corresponds to
the irp$l_oboff cell that was added to
the IRP on OpenVMS Alpha but was not
formally defined in the IRPE. This corrects
that omission.

irpe$q_driver_p0 int64 Available for use by driver. This cell is
overlaid on what was previously filler space.

irpe$l_driver_p0 int Available for use by driver. This cell
is overlaid on the low-order 32-bits of
irpe$q_driver_p0.

irpe$l_driver_p1 int Available for use by driver. This cell
is overlaid on the high-order 32-bits of
irpe$q_driver_p0.

irpe$q_driver_p2 int64 Available for use by driver. This cell is
overlaid on what was previously filler space.

irpe$l_driver_p2 int Available for use by driver. This cell
is overlaid on the low-order 32-bits of
irpe$q_driver_p2.

irpe$l_driver_p3 int Available for use by driver. This cell
is overlaid on the high-order 32-bits of
irpe$q_driver_p2.

irpe$pq_va_pte PTE_PQ A 64-bit pointer to the actual PTEs that map
the user buffer. If the user buffer is not in
shared system space, then this PTE virtual
address is only valid in the caller’s process
context.

(continued on next page)

Data Structure Changes A–13

Data Structure Changes
A.9 I/O Request Packet Extension (IRPE)

Table A–10 (Cont.) IRPE Changes

Field Type Comments

irpe$l_svapte PTE * A 32-bit pointer to a copy of the PTEs that
map the user buffer. If zero, then no PTEs
have been locked for this request. This cell
replaces the irpe$l_svapte1 cell.

irpe$l_svapte1 - This cell has been removed. It is replaced by
the irpe$l_svapte cell.

irpe$l_bcnt unsigned int Byte count for buffer locked into memory.
This cell replaces the irpe$l_bcnt1 cell.

irpe$l_bcnt1 - This cell has been removed. It is replaced by
the irpe$l_bcnt cell.

irpe$l_boff unsigned int Byte offset into first page for buffer
locked into memory. This cell replaces the
irpe$l_boff1 cell.

irpe$l_boff1 - This cell has been removed. It is replaced by
the irpe$l_boff cell.

irpe$r_diobm DIOBM Embedded fixed-size primary "direct I/O
buffer map" structure. This embedded
DIOBM structure is valid if and only if
the irpe$l_svapte cell contains a non-
zero value. See Section A.6 for a complete
description of the DIOBM structure.

irpe$l_svapte2 - This cell has been removed. It was used
to contain a pointer to the first PTE for a
second buffer that was locked into memory.
If zero, then there was no second buffer.

irpe$l_bcnt2 - This cell has been removed. It was used for
the byte count for the second buffer locked
into memory.

irpe$l_boff2 - This cell has been removed. It was used for
the byte offset for the second buffer locked
into memory.

A.10 Process Header (PHD)
This section describes the I/O-specific additions to cells in Process Header (PHD)
structure (see Table A–11).

A–14 Data Structure Changes

Data Structure Changes
A.10 Process Header (PHD)

Table A–11 PHD Structure Changes

Field Type Comments

phd$l_iorefc uint32 Number of reasons to keep the PHD resident
due to groups of pages locked for direct
I/O. This count is incremented by MMG_
STD$IOLOCK_BUF and decremented
by MMG_STD$IOUNLOCK_BUF. On
the zero-to-one transition of this cell,
the slot reference count for the process
in the PHV$GL_REFCBAS_LW vector is
incremented. On the one-to-zero transition
of this cell, the slot reference count for the
process in the PHV$GL_REFCBAS_LW
vector is decremented.

A.11 SCSI-2 Diagnose Buffer (S2DGB)
For information about S2DGB 64-bit addressing support, see the OpenVMS Alpha
Guide to 64-Bit Addressing and VLM Features2.

A.12 VMS Communications Request Packet (VCRP)
The VCRP structure is the VMS Communications Request Packet that is used by
the OpenVMS LAN driver VMS Communications Interface (VCI). A VCRP is used
to transfer data between an upper- and lower-level VCM.

The VCRP is designed so that it can be used as an ACB by an upper-level VCM.
Therefore, the VCRP has been enhanced such that it can be used either as an
ACB or ACB64 structure by an upper-level VCM. This allows upper-level VCMs
the flexibility of providing 64-bit AST support at some time in the future without
requiring another VCRP change and the forced recompilation of all VCMs (see
Table A–12).

Table A–12 VCRP Structure Changes

Field Type Comments

vcrp$v_acb_flags_valid bit This is a new bit in the vcrp$b_rmod cell
that corresponds to the acb$v_flags_valid
bit. This bit is available for the exclusive use
of upper-level VCMs.

vcrp$l_acb64x_offset int Offset to the ACB64X structure embedded
in this VCRP. This cell corresponds to the
acb$l_acb64x cell and is overlaid on
vcrp$l_ast. This cell is available for the
exclusive use of upper-level VCMs.

(continued on next page)

2 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM. This information has also been included in the HP OpenVMS Programming
Concepts Manual, Volume I.

Data Structure Changes A–15

Data Structure Changes
A.12 VMS Communications Request Packet (VCRP)

Table A–12 (Cont.) VCRP Structure Changes

Field Type Comments

vcrp$l_acb_flags unsigned int This cell corresponds to the acb$l_flags
cell and is overlaid on the first longword
of the existing fork block filler space in the
VCRP. This cell is available for the exclusive
use of upper-level VCMs.

vcrp$l_thread_id int This cell corresponds to the
acb$l_thread_pid cell and is on the second
longword of the existing fork block filler
space in the VCRP. Reserved for use by the
Kernel Threads project.

vcrp$pq_acb64_ast VOID_FUNC_
PQ

This cell corresponds to the acb64$pq_ast
cell. This cell is available for the exclusive
use of upper-level VCMs.

vcrp$q_acb64_astprm int64 This cell corresponds to the
acb64$q_astprm cell. This cell is available
for the exclusive use of upper-level VCMs.

vcrp$q_user_thread_id uint64 Unique user thread identifier. Corresponds
to the acb64$q_user_thread_id cell. This
cell is available for the exclusive use of
upper-level VCMs.

vcrp$pq_buffer_addr64 VOID_PQ 64-bit buffer address. This cell is available
for use by upper-level VCMs only. Note
that this cell does not replace the
vcrp$l_buffer_address cell which
continues to be used by lower-level VCMs.

vcrp$r_diobm DIOBM Embedded fixed-size primary "direct I/O
buffer map" structure. This DIOBM
structure is available for use by upper-level
VCMs that need to lock down a buffer and
provide a value for the vcrp$l_svapte cell.

vcrp$t_internal_stack char[220] This existing internal stack area of 92 bytes
has been increased to 220 bytes to reflect the
increased size of a DCBE. SYS$PEDRIVER
requires that it can place a DCBE within this
stack area. This space is available for the
exclusive use of upper-level VCMs.

A–16 Data Structure Changes

B
I/O Support Routine Changes

This appendix contains detailed descriptions of the changes to I/O support
routines and the new I/O support routines that are available to enhance device
drivers to support 64-bit addresses.

The routines are listed in alphabetical order.

B.1 ACP_STD$READBLK and ACP_STD$WRITEBLK
The routines ACP_STD$READBLK and ACP_STD$WRITEBLK are upper-level
FDT routines, so their interfaces remain unchanged:

int acp_std$readblk (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)
int acp_std$writeblk (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

These routines obtain the address of the caller’s buffer from irp->irp$l_qio_p1.
These routines have been modified to obtain the full 64-bit buffer address
from irp->irp$q_qio_p1 and pass it to EXE_STD$READLOCK or EXE_
STD$WRITELOCK. Note, however, that the buffer size remains a longword and
is obtained from irp->irp$l_qio_p2 without checking the upper 32-bits.

B.2 EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64
Routines EXE_STD$ALLOC_BUFIO_32 and EXE_STD$ALLOC_BUFIO_64
are new routines that device drivers can use to allocate and initialize simple
buffered I/O (BUFIO) packets. The appropriate IRP and BUFIO header cells are
initialized but it is up to the caller to copy any data into the packet.

The interfaces for these routines are:

int exe_std$alloc_bufio_32 (IRP *irp, PCB *pcb, void *uva, int pktsiz)
int exe_std$alloc_bufio_64 (IRP *irp, PCB *pcb, VOID_PQ uva, int pktsiz)

Table B–1 summarizes the use of the arguments.

Table B–1 EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64
Arguments

Argument Type Access Description

irp IRP * Input Pointer to the current IRP.

pcb PCB * Input Pointer to the process PCB.

uva VOID_PQ Input User virtual address, EXE_STD$ALLOC_
BUFIO_64

void * Input User virtual address, EXE_STD$ALLOC_
BUFIO_32

(continued on next page)

I/O Support Routine Changes B–1

I/O Support Routine Changes
B.2 EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64

Table B–1 (Cont.) EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64
Arguments

Argument Type Access Description

pktsiz int Input Required size of the packet including the
packet header.

These routines use the EXE_STD$DEBIT_BYTCNT_ALO routine to allocate
the packet and charge the process for the required BYTCNT quota. Any failure
status from this routine is returned to the caller.

Table B–2 lists all the implicit outputs that are valid on successful return from
these routines.

Table B–2 EXE_STD$ALLOC_BUFIO_32, EXE_STD$ALLOC_BUFIO_64 Implicit
Outputs

Field Value on Successful Completion

irp$ps_bufio_pkt Pointer to the allocated BUFIO packet.

irp$l_boff Number of charged bytes and size of allocated packet.

bufio$ps_pktdata Pointer to the packet data region in the allocated BUFIO
packet.

bufio$ps_uva32 For EXE_STD$ALLOC_BUFIO_32, value of uva.

For EXE_STD$ALLOC_BUFIO_64, BUFIO$K_64.

bufio$w_size Size of allocated packet.

bufio$b_type DYN$C_BUFIO.

bufio$pq_uva64 For EXE_STD$ALLOC_BUFIO_64, value of uva.

B.3 EXE_STD$ALLOC_DIAGBUF
Routine EXE_STD$ALLOC_DIAGBUF is a new routine that allocates either
a 32-bit or 64-bit diagnostic buffer packet and initializes the diagnostic buffer
packet header. Diagnostic buffer packets use the same layout as BUFIO packets.
This routine initializes the appropriate IRP and BUFIO header cells in the
diagnostic buffer packet header but it is up to the caller to copy any data into the
packet.

The allocation of a 32-bit or 64-bit format diagnostic buffer packet is controlled
by a flag bit in the packet size value that is passed to this routine. This allows
callers to simply pass in the value of the ddt$w_diagbuf cell directly to this
routine.

The interface for this routine is:

int exe_std$alloc_diagbuf (IRP *irp, VOID_PQ *uva, int pktsiz)

Table B–3 summarizes the use of the arguments.

B–2 I/O Support Routine Changes

I/O Support Routine Changes
B.3 EXE_STD$ALLOC_DIAGBUF

Table B–3 EXE_STD$ALLOC_DIAGBUF Arguments

Argument Type Access Description

irp IRP * Input Pointer to the current IRP.

uva VOID_PQ Input User virtual address.

pktsiz int Input The low-order 15-bits of this parameter
specify the required size of the packet
including the diagnostic packet header. If
bit-16 (DDT$M_DIAGBUF64) is set a 64-
bit diagnostic buffer packet is allocated.
Otherwise a 32-bit diagnostic buffer packet
is allocated.

This routine uses the EXE_STD$ALLOCBUF routine to allocate the packet. Any
failure status from this routine is returned to the caller of EXE_STD$ALLOC_
DIAGBUF. Note that the EXE_STD$ALLOCBUF routine may put the process
in a resource wait state and there is no additional process quota charge for a
diagnostic buffer packet.

Table B–4 lists all the implicit outputs that are valid on successful return from
this routine.

Table B–4 EXE_STD$ALLOC_DIAGBUF Implicit Outputs

Field Value on Successful Completion

irp$l_diagbuf Pointer to the allocated diagnostic buffer packet.

irp$l_sts Status flag IRP$M_DIAGBUF is set to indicate that the IRP
has an associated diagnostic buffer packet.

bufio$ps_pktdata Pointer to the packet data region in the allocated diagnostic
BUFIO packet.

bufio$ps_uva32 If DDT$M_DIAGBUF64 clear, value of uva.

If DDT$M_DIAGBUF64 set, BUFIO$K_64.

bufio$w_size Size of allocated diagnostic buffer packet.

bufio$b_type DYN$C_BUFIO

bufio$pq_uva64 If DDT$M_DIAGBUF64 set, value of uva.

B.4 EXE_STD$LOCK_ERR_CLEANUP
Routine EXE_STD$LOCK_ERR_CLEANUP is a new routine. This routine
unlocks any previously locked down buffers that are associated with the specified
IRP or any IRPEs that are attached to it. Additionally, all the attached IRPEs
are deallocated.

This routine is designed to be called in a driver-supplied error callback routine
that is called if any error is encountered in the EXE_STD$READLOCK, EXE_
STD$WRITELOCK, or EXE_STD$MODIFY_LOCK routines.

The interface for this routine is:

void exe_std$lock_err_cleanup (IRP *irp)

I/O Support Routine Changes B–3

I/O Support Routine Changes
B.4 EXE_STD$LOCK_ERR_CLEANUP

Table B–5 summarizes the use of the arguments.

Table B–5 EXE_STD$LOCK_ERR_CLEANUP Arguments

Argument Type Access Description

irp IRP * Input Pointer to the current IRP.

Table B–6 lists all the implicit inputs and outputs that are used by this routine.

Table B–6 EXE_STD$LOCK_ERR_CLEANUP Implicit Inputs and Outputs

Implicit Inputs from the IRP

Field Use

irp$l_svapte If non-zero, points to the first PTE for a set of pages that will
be unlocked.

irp$l_bcnt Used only if irp$l_svapte is non-zero to calculate number of
pages that will be unlocked.

irp$l_boff Used only if irp$l_svapte is non-zero to calculate number of
pages that will be unlocked.

irp$v_extend If set, the IRPE pointed to by irp$l_extend will be processed.

irp$l_extend Used only if irp$v_extend is set to find the first IRPE.

Implicit Inputs from Each IRPE

Field Use

irpe$l_svapte If non-zero, points to the first PTE for a set of pages that will
be unlocked.

irpe$l_bcnt Used only if irpe$l_svapte is non-zero to calculate number of
pages that will be unlocked.

irpe$l_boff Used only if irpe$l_svapte is non-zero to calculate number of
pages that will be unlocked.

irpe$v_extend If set, the IRPE pointed to by irpe$l_extend will be processed.

irpe$l_extend Used only if irpe$v_extend is set to find the next IRPE.

Implicit Outputs in the IRP

Field Value Written

irp$l_svapte Cleared to indicate no locked pages.

irp$v_extend Cleared to indicate no attached IRPEs.

B.5 EXE_STD$MODIFY, EXE_STD$READ, EXE_STD$WRITE
The routines EXE_STD$MODIFY, EXE_STD$READ, and EXE_STD$WRITE are
upper-level FDT routines, so their interfaces remain unchanged:

int exe_std$modify (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)
int exe_std$read (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)
int exe_std$write (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

B–4 I/O Support Routine Changes

I/O Support Routine Changes
B.5 EXE_STD$MODIFY, EXE_STD$READ, EXE_STD$WRITE

These routines obtain the address of the caller’s buffer from irp->irp$l_qio_p1.
These routines have been modified to obtain the full 64-bit buffer address
from irp->irp$q_qio_p1 and pass it to EXE_STD$READLOCK or EXE_
STD$WRITELOCK. Note, however, that the buffer size remains a longword and
is obtained from irp->irp$l_qio_p2 without checking the upper 32-bits.

B.6 EXE_STD$MODIFYLOCK, EXE_STD$READLOCK,
EXE_STD$WRITELOCK

The routines EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, and EXE_
STD$WRITELOCK are FDT support routines that:

• Probe the accessibility of a specified buffer by the mode contained in
irp->irp$b_mode

• Lock the buffer into memory if the probe succeeds

• Return the address of the first PTE that maps the buffer in
irp->irp$l_svapte

If an error is encountered, an optional error callback routine is invoked and the
I/O request is aborted. If the entire buffer is not resident then the I/O request is
backed out and a special status is returned to request a pagefault of the needed
page.

In releases prior to OpenVMS Alpha Version 7.0, the interfaces for these routines
were:

int exe_std$modifylock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb,
void *buf, int bufsiz, void (*err_rout)(...))

int exe_std$readlock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb,
void *buf, int bufsiz, void (*err_rout)(...))

int exe_std$writelock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb,
void *buf, int bufsiz, void (*err_rout)(...))

The new interfaces for these routines are:

int exe_std$modifylock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb,
VOID_PQ buf, int bufsiz [, void (*err_rout)(...)])

int exe_std$readlock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb,
VOID_PQ buf, int bufsiz [, void (*err_rout)(...)])

int exe_std$writelock (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb,
VOID_PQ buf, int bufsiz [, void (*err_rout)(...)])

There are two differences in the new OpenVMS Alpha Version 7.0 interfaces:

1. These functions now use the full 64-bits of the buffer address buf that is
passed by value.

Previously, the buffer address was a 32-bit value that was sign-extended into
a 64-bit parameter value.

2. It is possible to omit the err_rout parameter. Currently, one can pass in the
value 0 to specify that there is no error routine.

The new interface supports either method of specifying that there is no error
routine. Because many callers do not require an error routine, this allows
them to call these routines more efficiently with six parameters.

Both of these interface changes are upwardly compatible.

I/O Support Routine Changes B–5

I/O Support Routine Changes
B.6 EXE_STD$MODIFYLOCK, EXE_STD$READLOCK, EXE_STD$WRITELOCK

B.6.1 CALL_xLOCK and CALL_xLOCK_ERR Macros
There are six MACRO-32 macros that facilitate the use of the routines described
in Section B.6 by code that was originally written to use the JSB-interface
counterparts for these routines. These macros have implicit register inputs and
outputs that correspond to the register inputs and outputs of the JSB-interface
routines.

The CALL_MODIFYLOCK, CALL_READLOCK, and CALL_WRITELOCK macros
have been modified to pass the full 64-bits of R0 as the buffer address and to omit
the optional error routine parameter instead of passing the value 0.

The CALL_MODIFYLOCK_ERR, CALL_READLOCK_ERR, and CALL_
WRITELOCK_ERR macros have been modified to pass the full 64-bits of R0
as the buffer address.

This is an upwardly compatible change to the implementation of these macros.
This change is transparent to users prior to OpenVMS Alpha Version 7.0, because
R0 currently contains the 32-bit buffer address sign-extended to 64-bits.

B.7 EXE_STD$READCHK and EXE_STD$WRITECHK
The routines EXE_STD$READCHK and EXE_STD$WRITECHK probe the
accessibility of a specified buffer by the mode contained in irp->irp$b_mode.

In releases prior to OpenVMS Alpha Version 7.0, the interfaces for these routines
were:

int exe_std$readchk (IRP *irp, PCB *pcb, UCB *ucb, void *buf, int bufsiz)
int exe_std$writechk (IRP *irp, PCB *pcb, UCB *ucb, void *buf, int bufsiz)

As of OpenVMS Alpha Version 7.0, the new interfaces for these routines are:

int exe_std$readchk (IRP *irp, PCB *pcb, UCB *ucb, VOID_PQ buf, int bufsiz)
int exe_std$writechk (IRP *irp, PCB *pcb, UCB *ucb, VOID_PQ buf, int bufsiz)

The only difference in the new interface is that these functions now use the full
64-bits of the buffer address buf that is passed by value. Previously, the buffer
address was a 32-bit value sign-extended into a 64-bit parameter value. Thus,
this is an upward compatible change to the interface.

B.7.1 CALL_xCHK and CALL_xCHKR Macros
The CALL_READCHK, CALL_READCHKR, CALL_WRITECHK, and CALL_
WRITECHKR MACRO-32 macros have been modified to pass the full 64-bits of
the buffer address in a similar fashion as described in Section B.6.1.

B.8 EXE_STD$SETCHAR and EXE_STD$SETMODE
The routines EXE_STD$SETCHAR and EXE_STD$SETMODE are upper-level
FDT routines, thus their interfaces remain unchanged:

int exe_std$setchar (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)
int exe_std$setmode (IRP *irp, PCB *pcb, UCB *ucb, CCB *ccb)

Both of these routines use the local routine CHECK_SET to obtain and validate
a pointer to the caller’s buffer from irp->irp$l_qio_p1. The routine CHECK_
SET has been modified to obtain the full 64-bit buffer address from irp-
>irp$q_qio_p1. Routines EXE_STD$SETCHAR and EXE_STD$SETMODE has
been modified to use the 64-bit pointer returned by CHECK_SET when loading
the UCB characteristics from the caller’s buffer.

B–6 I/O Support Routine Changes

I/O Support Routine Changes
B.9 IOC_STD$CREATE_DIOBM

B.9 IOC_STD$CREATE_DIOBM
Routine IOC_STD$CREATE_DIOBM is a new routine that is used to derive a
32-bit system virtual address for a specific number of PTEs that are pointed to
by a 64-bit process virtual address. This routine allocates a "primary" DIOBM
structure of sufficient size for its needs and returns a pointer to it. When the
derived 32-bit system virtual address is no longer required the DIOBM must be
released by calling the IOC_STD$RELEASE_DIOBM routine.

The algorithm used by this routine is very similar to the one used by IOC_
STD$FILL_DIOBM as described in Section B.10. The significant difference is
that IOC_STD$CREATE_DIOBM allocates a sufficiently sized primary DIOBM
structure for its needs and does not depend on a preallocated fixed-size DIOBM.
This routine is designed for previous users of the MMG$IOLOCK routine that do
not have an embedded DIOBM to work with, but can maintain a single pointer to
the external DIOBM structure that is returned by IOC_STD$CREATE_DIOBM.

The interface for IOC_STD$CREATE_DIOBM is:

int ioc_std$create_diobm (const PTE_PQ va_pte, const uint32 pte_count,
const uint32 flags,
PTE **svapte_p, DIOBM **diobm_p)

Table B–7 summarizes the use of the arguments.

Table B–7 IOC_STD$CREATE_DIOBM Arguments

Argument Type Access Description

va_pte PTE_PQ Input A 64-bit pointer to the first PTE that maps
the user buffer.

pte_count uint32 Input Number of PTEs that are required to map
the entire buffer.

svapte_p PTE ** Output Pointer to a 32-bit PTE address that is
returned. The returned address is always a
32-bit system virtual address.

flags uint32 Input Option flags. The following bit mask values
can be set:

DIOBM$M_NORESWAIT - Disable resource
wait.

All other option bits must be zero.

diobm_p DIOBM ** Output Pointer to DIOBM address that is returned.

This routine requires system resources, nonpaged pool and possibly SPTEs. If
there are insufficient resources, this routine will, by default, place the process
(kernel thread) in a kernel mode wait state for nonpaged pool and try again until
it succeeds. In this case, the return value of this routine is always SS$_NORMAL
because it will not return until it can do so successfully.

However, the caller can inhibit this resource wait by setting the DIOBM$M_
NORESWAIT option in the flags parameter. When this is done an error status is
returned to the caller if there are insufficient system resources. This capability
is intended to be used in contexts where either a resource wait in kernel mode is
not acceptable or the caller can readily put the process into a wait state in the
requestor’s mode.

This routine must be called in process context and assumes that it was called at
IPL 2, or minimally, that it can lower IPL to 2.

I/O Support Routine Changes B–7

I/O Support Routine Changes
B.9 IOC_STD$CREATE_DIOBM

The use of the DIOBM structure by this routine is described in detail in
Appendix A.

This routine is coded in C and is contained in the new DIOBM.C module.

B.10 IOC_STD$FILL_DIOBM
Routine IOC_STD$FILL_DIOBM is a new routine that is used to derive a 32-bit
system virtual address for a specific number of PTEs that are pointed to by a
64-bit process virtual address. This routine employs a previously allocated or
embedded "primary" DIOBM structure that must be supplied as one of its inputs.
When the derived 32-bit system virtual address is no longer required, the DIOBM
must be released by calling the IOC_STD$RELEASE_DIOBM routine.

This routine derives a 32-bit system virtual address for the PTEs using one of the
following methods:

1. If the PTEs are in the region of the page table space that maps S0/S1 space,
a 32-bit PTE address using the SPT window is returned.

2. If less than or equal to DIOBM$K_PTECNT_FIX PTEs are required, the
PTEs are copied into the PTE vector in the DIOBM and the 32-bit system
virtual address of the PTE vector in the DIOBM is returned.

3. If more than DIOBM$K_PTECNT_FIX and less than or equal to
ioc$gl_diobm_ptecnt_max PTEs are required, a secondary DIOBM is
allocated, the PTEs are copied into the PTE vector in the secondary DIOBM,
and the 32-bit system virtual address of the PTE vector in the secondary
DIOBM is returned.

4. If more than ioc$gl_diobm_ptecnt_max PTEs are required, a temporary PTE
window in S0/S1 space is created that maps the neccessary process level-3
page table pages. These level-3 page table pages are locked into memory and
the 32-bit S0/S1 address of the PTEs through the PTE window is returned.

The interface for IOC_STD$FILL_DIOBM is:

int ioc_std$fill_diobm (DIOBM *const diobm, const PTE_PQ va_pte,
const uint32 pte_count, const uint32 flags,
PTE **svapte_p)

Table B–8 summarizes the use of the arguments.

Table B–8 IOC_STD$FILL_DIOBM Arguments

Argument Type Access Description

diobm DIOBM * Input Pointer to a previously allocated but unused
or uninitialized DIOBM structure.

va_pte PTE_PQ Input A 64-bit pointer to the first PTE that maps
the user buffer.

pte_count uint32 Input Number of PTEs that are required to map
the entire buffer.

(continued on next page)

B–8 I/O Support Routine Changes

I/O Support Routine Changes
B.10 IOC_STD$FILL_DIOBM

Table B–8 (Cont.) IOC_STD$FILL_DIOBM Arguments

Argument Type Access Description

flags uint32 Input Option flags. The following bit mask values
can be set:

DIOBM$M_NORESWAIT - Disable resource
wait.

All other option bits must be zero.

svapte_p PTE ** Output Pointer to a 32-bit PTE address that is
returned. The returned address is always a
32-bit system virtual address.

This routine may require system resources, either nonpaged pool or SPTEs,
depending on the number of PTEs that are required to map the buffer. If there
are insufficient resources this routine will, by default, place the process (kernel
thread) in a kernel mode wait state for nonpaged pool and try again until it
succeeds. In this case, the return value of this routine is always SS$_NORMAL
because it will not return until it can do so successfully.

However, the caller can inhibit this resource wait by setting the DIOBM$M_
NORESWAIT option in the flags parameter. When this is done, an error status is
returned to the caller if there are insufficient system resources. This capability
is intended to be used in contexts where either a resource wait in kernel mode is
not acceptable or the caller can readily put the process into a wait state in the
requestor’s mode.

This routine must be called in process context and assumes that it was called at
IPL 2, or minimally that it can lower IPL to 2.

The use of the DIOBM structure by this routine is described in detail in
Appendix A. The normal version of the IOC_STD$FILL_DIOBM routine makes
no assumptions about the contents of the input DIOBM structure. In contrast,
the full checking version of this routine in the IO_ROUTINES_MON.EXE execlet
performs some initial validation and declares an INCONSTATE bugcheck should
this check fail.

B.11 IOC_STD$PTETOPFN
The routine IOC_STD$PTETOPFN allows drivers or other components to obtain
the PFN for a page that has been previously locked into memory but the valid
bit in its PTE is currently clear. This routine handles transition PTEs and PTEs
that have reverted into GPTX format.

In releases prior to OpenVMS Alpha Version 7.0, the interface for this routine
was:

int ioc_std$ptetopfn (PTE *pte);

The new interface for this routine is:

int ioc_std$ptetopfn (PTE_PQ pte);

The first interface difference is that IOC_STD$PTETOPFN uses the full 64-bits of
the caller’s PTE address that is passed by value. The second interface difference
is not apparent from the above function prototype. The IOC_STD$PTETOPFN
routine has been enhanced to handle the case where the pte$v_valid bit is set in
the PTE. Therefore, drivers can use this routine without first checking the valid
bit.

I/O Support Routine Changes B–9

I/O Support Routine Changes
B.11 IOC_STD$PTETOPFN

Both of these are upwardly compatible changes to the interface.

B.12 IOC_STD$RELEASE_DIOBM
Routine IOC_STD$RELEASE_DIOBM is a new routine that is used to release
the PTE mapping resources that were set up by a prior call to either the IOC_
STD$CREATE_DIOBM or IOC_STD$FILL_DIOBM routines.

The interface for IOC_STD$RELEASE_DIOBM is:

int ioc_std$release_diobm (DIOBM *const diobm)

Table B–9 summarizes the use of the arguments.

Table B–9 IOC_STD$RELEASE_DIOBM Arguments

Argument Type Access Description

diobm DIOBM * Input Pointer to an active primary DIOBM.

This routine deallocates any secondary DIOBM that is connected to the primary
DIOBM. If this primary DIOBM has a PTE window, the resources used for
the window are deallocated. If the primary DIOBM was allocated by IOC_
STD$CREATE_DIOBM, the primary DIOBM is deallocated as well. The use of
the DIOBM structure by this routine is described in detail in Appendix A.

The returned value of this routine is always SS$_NORMAL.

This routine does not depend on process context. However, the IPL and spinlocks
of the caller must allow this routine to acquire and restore the MMG spinlock.

This routine is coded in C and is contained in the new DIOBM.C module.

B.13 IOC_STD$SIMREQCOM, IOC$SIMREQCOM
The routine IOC_STD$SIMREQCOM allows drivers or other components to
complete an I/O that does not have a normal IRP associated with it. Because
this routine does not have an IRP, the necessary information to signal an I/O
completion is passed directly in separate parameters. For example, the user’s
IOSB address, the event flag value, a pointer to an ACB, and the caller’s access
mode are among the parameters.

In releases prior to OpenVMS Alpha Version 7.0, the interface for this routine
was:

int ioc_std$simreqcom (int32 iosb[2], int pri, int efn, int32 iost[2],
ACB *acb, int acmode);

The new interface for this routine is:

int ioc_std$simreqcom (VOID_PQ iosb_p, int pri, int efn, int32 iost[2],
ACB *acb, int acmode);

The first interface difference is that IOC_STD$SIMREQCOM uses the full
64-bits of the caller’s IOSB address iosb_p that is passed by value. The second
interface difference is not apparent from the above function prototype. The
IOC_STD$SIMREQCOM routine has been enhanced to accept either a pointer to
an ACB64 or an ACB structure.

Both of these are upwardly compatible changes to the interface.

B–10 I/O Support Routine Changes

I/O Support Routine Changes
B.13 IOC_STD$SIMREQCOM, IOC$SIMREQCOM

B.13.1 CALL_SIMREQCOM Macro
The CALL_SIMREQCOM MACRO-32 macro facilitates the use of the IOC_
STD$SIMREQCOM routine by code that was originally written to use the JSB-
interface counterpart IOC$SIMREQCOM. The CALL_SIMREQCOM macro has
implicit register inputs that correspond to the register inputs of the JSB-interface
for the IOC$SIMREQCOM routine.

Because this macro uses registers for its inputs, it can be altered to use the full
64-bit value of the caller’s IOSB address which is passed in register R1.

B.13.2 IOC$SIMREQCOM
The IOC$SIMREQCOM routine is simply a JSB-to-CALL jacket routine around
IOC_STD$SIMREQCOM. Because it is implemented through the use of the
CALL_SIMREQCOM macro, IOC$SIMREQCOM transparently supports a 64-bit
caller’s IOSB address in the R1 parameter. Similarly, this routine allows R5 to
point to either an ACB or an ACB64 structure.

B.14 IOC_STD$SVAPTE_IN_BUF
Routine IOC_STD$SVAPTE_IN_BUF is a new routine that is used to calculate a
32-bit PTE address for a virtual address within a buffer that has been previously
locked for this IRP and for which a 32-bit PTE address has been derived.

It is the caller’s responsibility to ensure that the virtual address is a legal
address within a buffer that has been locked into memory prior to calling this
routine and that a 32-bit PTE address has been derived for this buffer. The
IOC_STD$SVAPTE_IN_BUF routine may declare a bugcheck if either of these
conditions have not been met.

The interface for IOC_STD$SVAPTE_IN_BUF is:

int ioc_std$svapte_in_buf (IRP *irp, VOID_PQ va, PTE **svapte_p)

Table B–10 summarizes the use of the arguments.

Table B–10 IOC_STD$SVAPTE_IN_BUF Arguments

Argument Type Access Description

irp IRP * Input Pointer to the current IRP.

va VOID_PQ Input Virtual address within the buffer that was
locked for this IRP.

svapte_p PTE ** Output Pointer to a 32-bit PTE address that is
returned. The returned address is a 32-bit
system virtual address that is derived based
on the values in irp$l_svapte and irp$q_qio_
p1.

Table B–11 lists all the implicit inputs that are used by this routine.

I/O Support Routine Changes B–11

I/O Support Routine Changes
B.14 IOC_STD$SVAPTE_IN_BUF

Table B–11 IOC_STD$SVAPTE_IN_BUF Implicit Inputs

Field Use

irp$q_qio_p1 Virtual address of the start of the buffer that has been
previously locked into memory for this IRP.

irp$l_svapte 32-bit PTE address for the PTEs that map the buffer.

The returned value of this routine is always SS$_NORMAL.

This routine is coded in C and is contained in the new SVAPTE2.C module.

B.15 IOC_STD$VA_TO_PA
Routine IOC_STD$VA_TO_PA is a new routine that is used to derive a 64-bit
physical memory address for a 64-bit virtual address. The virtual address
is interpreted in the context of the current process and may be in either
process-private or system space.

It is the caller’s responsibility to ensure that the virtual address is a legal address
and that the memory page containing the specified virtual address is locked into
memory prior to calling this routine. The IOC_STD$VA_TO_PA routine may
declare a bugcheck if either of these conditions have not been met.

The interface for IOC_STD$VA_TO_PA is:

VOID_PQ ioc_std$va_to_pa (VOID_PQ va, VOID_PPQ pa_p)

The returned value of this routine is the 64-bit physical address. Table B–12
summarizes the use of the arguments.

Table B–12 IOC_STD$VA_TO_PA Arguments

Argument Type Access Description

va VOID_PQ Input A 64-bit virtual address.

pa_p VOID_PPQ Output Pointer to a 64-bit physical address that
is returned. This parameter is optional
and may either be omitted entirely or
specified as zero. The physical address is
also returned as the value of the routine.

Currently, the physical address for a process virtual address can be derived by
calling MMG_STD$SVAPTECHK followed by IOC$SVAPTE_TO_PA. However,
as described in Section 2.2.3, the MMG_STD$SVAPTECHK routine no longer
accepts a P0/P1 address. The new IOC_STD$VA_TO_PA routine provides a direct
way of computing the physical address from a process virtual address.

B.16 MMG_STD$GET_PTE_FOR_VA
Routine MMG_STD$GET_PTE_FOR_VA is a new routine that is being added for
use in the Remote SDA SYSAP within SYS$SCS.

Routine MMG_STD$GET_PTE_FOR_VA attempts to obtain the Level-3 PTE
containing a PFN that maps the specified virtual address for a specified process.
If the requested PTE cannot be accessed either because the virtual address is not
mapped or a needed page table page is not currently in physical memory, an error
status is returned. Additionally, if the Level-3 PTE does not contain a useable
PFN, an error status is returned.

B–12 I/O Support Routine Changes

I/O Support Routine Changes
B.16 MMG_STD$GET_PTE_FOR_VA

A successful return status from this routine means that the PFN field of the
returned PTE contains the physical page number for the input virtual address.
Note that there are page states where the PTE contains a useable PFN but the
PTE$V_VALID bit is clear. Therefore, the PTE$V_VALID bit in the returned PTE
might be clear. Note also, that this routine returns a PTE from the Global Page
Table when the slave PTE has reverted to GPTX format and the master PTE in
the GPT still contains a PFN.

This routine is somewhat similar to MMG_STD$CALC_VAPTE except that it does
not assume that the virtual address is valid or that the necessary page tables are
resident in memory. Because this routine does not assume the virtual address is
valid, it uses the reserved system space window to traverse the specified process’
page tables in a top-down fashion. It uses this method for all process-private
virtual addresses even if the specified process happens to be the current process
on this CPU. This allows this routine to locate the Level-3 PTE even if some of
the intervening page table pages are in transition. However, for shared system
space virtual addresses this routine uses the currently active page tables instead
of the reserved system window to locate the corresponding Level-3 PTE. This is
possible because shared system space page table pages are not pageable and have
PTE$V_VALID set if they are mapped.

This routine acquires and restores the MMG spinlock. This routine declares a
bugcheck if the reserved system space window is already in use. This routine
releases and invalidates the window before returning.

The interface for MMG_STD$GET_PTE_FOR_VA is:

int mmg_std$get_pte_for_va (VOID_PQ const va, PHD *const phd, PTE_PQ pte_p)

Table B–13 summarizes the use of the arguments.

Table B–13 MMG_STD$GET_PTE_FOR_VA Arguments

Argument Type Access Description

va VOID_PQ Input A 64-bit virtual address.

phd PHD * Input Pointer to the PHD for the desired process
address space. If zero, the current process
on the current CPU is assumed. This
parameter is not used, and may be zero,
if the virtual address is in shared system
space.

pte_p PTE_PQ Output Address of Level-3 PTE value that is
returned. A PTE value is returned only
if the routine returns a successful condition
value.

The returned value of this routine is a system condition value:

SS$_NORMAL The PTE that maps the specified virtual address in the
address space of the specified process contains a physical page
number and was successfully returned.

SS$_ACCVIO The PTE that maps the specified virtual address in the
address space of the specified process could not be obtained,
that is, the specified virtual address is not mapped or one of
the necessary page table pages is not currently resident, or
the level-3 PTE did not contain a physical page number.

I/O Support Routine Changes B–13

I/O Support Routine Changes
B.17 MMG_STD$IOLOCK, MMG$IOLOCK, MMG_STD$IOLOCK_BUF

B.17 MMG_STD$IOLOCK, MMG$IOLOCK, MMG_STD$IOLOCK_BUF
The interface for the MMG_STD$IOLOCK routine is:

int mmg_std$iolock (void *buf, int bufsiz, int is_read, PCB *pcb, void **svapte_p)

This routine returns a 32-bit address by reference (the svapte_p parameter)
which, depending on the routine status, may specify the address of the first PTE
or the address of a location in the buffer that must be faulted in.

The new version of this routine must accept a 64-bit buffer address. In addition,
the new version must also return either a 64-bit PTE or buffer address. This
is an incompatible interface change because this return parameter is passed by
reference. Thus, MMG_STD$IOLOCK has been removed and is replaced by the
new MMG_STD$IOLOCK_BUF routine.

The interface for MMG_STD$IOLOCK_BUF is:

int mmg_std$iolock_buf (VOID_PQ const buf, const int bufsiz,
const int is_read, PCB *const pcb,
PTE_PPQ va_pte_p, VOID **fault_va_p)

Table B–14 summarizes the use of the arguments.

Table B–14 MMG_STD$IOLOCK_BUF Arguments

Argument Type Access Description

buf VOID_PQ Input 64-bit pointer to the buffer that is to be
locked.

bufsiz int Input Size of the buffer in bytes.

is_read int Input Contains the value 0 if buffer will be only
written to the device, 1 if the buffer will be
only read from device, 5 if the buffer will be
modified by the device.

pcb PCB * Input Pointer to the process PCB.

va_pte_p PTE_PPQ Output Pointer to a 64-bit PTE address that is
returned. If the returned value of the
function is successful, then the address
returned is the 64-bit virtual address of
the first PTE that maps the buffer. For
all other function return values, the value
returned in this parameter is undefined.

fault_va_p VOID_PPQ Output Pointer to a 64-bit address that is returned.
If the returned value of the function is
zero, then the address returned is the 64-
bit address within the buffer that must
be faulted in. For all other function return
values, the value returned in this parameter
is undefined.

The returned value of this routine is a system condition value or the value zero:

Success A successful VMS condition value indicates that the buffer
has been locked and that the 64-bit virtual address of the
first PTE that maps the buffer has been returned using the
va_pte_p parameter.

B–14 I/O Support Routine Changes

I/O Support Routine Changes
B.17 MMG_STD$IOLOCK, MMG$IOLOCK, MMG_STD$IOLOCK_BUF

0 This return value means that a page fault is required for
a page in the buffer. The virtual address of the page is
returned using the fault_va_p parameter. Any portion of the
buffer that may have been locked before this condition was
detected has been unlocked before returning.

Failure Standard VMS condition value that indicates the failure.

Just like MMG_STD$IOLOCK, the MMG_STD$IOLOCK_BUF routine must be
called in process context at IPL 2 and it acquires and releases the MMG spinlock.

Although the interfaces for the MMG_STD$IOLOCK_BUF and MMG_
STD$IOLOCK routines are similar, there are important differences between
these routines that go beyond the width of the address parameters.

1. The 32-bit address that is returned by MMG_STD$IOLOCK in the svapte_p
parameter is valid regardless of process context. In contrast, the 64-bit
address that is returned by MMG_STD$IOLOCK_BUF in the va_pte_p
parameter may be valid only in the context of the current process. The
new routines IOC_STD$FILL_DIOBM and IOC_STD$CREATE_DIOBM are
designed to deal with this difference.

2. The MMG_STD$IOLOCK routine locks into memory the level-3 page tables
that contain the PTEs that map the buffer as well as the buffer pages. In
contrast, MMG_STD$IOLOCK_BUF only locks the buffer pages. It does
not lock the level-3 page tables because it would be difficult to unlock them
in the absence of process context where MMG_STD$IOUNLOCK_BUF is
called. Moreover, the mechanisms used by IOC_STD$FILL_DIOBM and
IOC_STD$CREATE_DIOBM usually do not require the locking of the level-3
page tables. Only when the PTE window method is used by IOC_STD$FILL_
DIOBM or IOC_STD$CREATE_DIOBM will these routines need to lock the
level-3 page table pages into memory. When this case applies, the IOC_
STD$RELEASE_DIOBM routine has enough information to unlock the level-3
page tables regardless of process context.

The existing callers of MMG_STD$IOLOCK need to be very aware of the first
of these differences. The second difference is likely to be transparent to most
callers.

Because the routine MMG$IOLOCK is simply a JSB-to-CALL jacket routine
around MMG_STD$IOLOCK, the MMG$IOLOCK routine has also been
removed.

B.17.1 CALL_IOLOCK Macro
The CALL_IOLOCK MACRO-32 macro facilitates the use of the MMG_
STD$IOLOCK routine by code that was originally written to use the JSB-
interface counterpart MMG$IOLOCK. The CALL_IOLOCK macro has implicit
register inputs and outputs that correspond to the register inputs and outputs of
the JSB-interface for the MMG$IOLOCK routine.

Because this macro uses registers for its inputs and outputs, it can be altered
to use the full 64-bit values in these registers and it can call the MMG_
STD$IOLOCK_BUF routine instead of MMG_STD$IOLOCK. Nevertheless,
the CALL_IOLOCK macro has been modified to generate a suppressable interface
warning at compile-time, because:

• The full 64-bits of register R1 are now significant on return.

• The returned PTE address is a 64-bit process virtual address.

I/O Support Routine Changes B–15

I/O Support Routine Changes
B.17 MMG_STD$IOLOCK, MMG$IOLOCK, MMG_STD$IOLOCK_BUF

• Callers of MMG_STD$IOLOCK_BUF are very likely to need to call the new
IOC_STD$FILL_DIOBM or IOC_STD$CREATE_DIOBM routines.

The format of the macro call is:

CALL_IOLOCK [INTERFACE_WARNING=YES|NO]

By default the interface warning is enabled and generates the following warning
at compile-time:

%AMAC-W-GENWARN, generated WARNING: 0 CALL_IOLOCK interface has changed for 64-bit
virtual addressing; set INTERFACE_WARNING=NO to disable messages.
%AMAC-W-GENWARN, generated WARNING: 0 CALL_IOLOCK uses the 64-bit buffer address
in R0
%AMAC-W-GENWARN, generated WARNING: 0 CALL_IOLOCK returns a 64-bit VA_PTE or
fault VA in R1
%AMAC-W-GENWARN, generated WARNING: 0 CALL_IOLOCK does not lock the page table pages
%AMAC-W-GENWARN, generated WARNING: 0 A call to IOC_STD$FILL_DIOBM may be required
to derive a SVAPTE

The compile-time warning serves to identify the existing callers of this macro.
Once the invoking code has been modified, the warning can be suppressed by
specifying INTERFACE_WARNING=NO.

B.18 MMG_STD$UNLOCK, MMG$UNLOCK,
MMG_STD$IOUNLOCK_BUF

The interface for the MMG_STD$UNLOCK routine is:

void mmg_std$unlock (int npages, void *svapte)

The MMG$UNLOCK routine is simply a JSB-to-CALL jacket routine around
MMG_STD$UNLOCK.

Because 32-bit PTE addresses that may point to PTE copies are sufficient for
the needs of the MMG_STD$UNLOCK routine, there is no absolute requirement
to change the interface of these routines. However, it is extremely likely that
all callers of MMG_STD$UNLOCK and MMG$UNLOCK need to use the new
DIOBM structure and need to call the new routine IOC_STD$RELEASE_DIOBM
immediately after unlocking the memory buffer. Therefore, routine MMG_
STD$UNLOCK has been renamed to MMG_STD$IOUNLOCK_BUF and the
MMG$UNLOCK routine has been removed in order to make it difficult to miss
the places where this source change is needed.

The interface for MMG_STD$IOUNLOCK_BUF is:

void mmg_std$iounlock_buf (const int npages, PTE_PQ const va_pte);

Just like MMG_STD$UNLOCK, the MMG_STD$IOUNLOCK_BUF routine does
not depend on process context. However, the IPL and spinlocks of the caller must
allow this routine to acquire and restore the MMG spinlock.

B.18.1 CALL_UNLOCK Macro
The CALL_UNLOCK MACRO-32 macro facilitates the use of the MMG_
STD$UNLOCK routine by code that was originally written to use the JSB-
interface counterpart MMG$UNLOCK. The CALL_UNLOCK macro has implicit
register inputs that correspond to the register inputs and outputs of the JSB-
interface for the MMG$UNLOCK routine.

B–16 I/O Support Routine Changes

I/O Support Routine Changes
B.18 MMG_STD$UNLOCK, MMG$UNLOCK, MMG_STD$IOUNLOCK_BUF

This macro has been modified to use the full 64-bits of the R3 input which
contains the PTE address. The macro calls the new MMG_STD$IOUNLOCK_
BUF routine instead of MMG_STD$UNLOCK. In addition, the CALL_UNLOCK
macro has been modified to generate a suppressable interface warning at
compile-time. The format of the macro call is:

CALL_UNLOCK [INTERFACE_WARNING=YES|NO]

By default the interface warning is enabled and generates the following warning
at compile-time:

%AMAC-W-GENWARN, generated WARNING: 0 CALL_UNLOCK interface has changed for 64-bit
virtual addressing; set INTERFACE_WARNING=NO to disable messages.
%AMAC-W-GENWARN, generated WARNING: 0 CALL_UNLOCK uses the 64-bit PTE address in R3
%AMAC-W-GENWARN, generated WARNING: 0 CALL_UNLOCK does not unlock the page table
pages
%AMAC-W-GENWARN, generated WARNING: 0 A call to IOC_STD$RELEASE_DIOBM may be
required to derive a SVAPTE

B.19 MMG_STD$SVAPTECHK, MMG$SVAPTECHK
The current versions of the MMG_STD$SVAPTECHK and MMG$SVAPTECHK
routines compute a 32-bit svapte for either a process or system space address.
As of OpenVMS Alpha Version 7.0, these routines are be restricted to an S0/S1
system space address and no longer accept an address in P0/P1 space. The
MMG_STD$SVAPTECHK and MMG$SVAPTECHK routines check the full 64 bits
of the input address and declare a bugcheck for an input address that is not in
S0/S1 space. For S0/S1 input addresses, these routines return a 32-bit system
virtual address of the PTE through the SPT window.

In releases prior to OpenVMS Alpha Version 7.0, the interface for this routine
was:

void mmg_std$svaptechk (void *va, PCB *pcb, PHD *phd, void **svapte_p);

The new interface for this routine is:

void mmg_std$svaptechk (VOID_PQ va, PCB *pcb, PHD *phd, PTE **svapte_p);

The majority of callers of this routine use it with an S0/S1 address and do not
need to change.

I/O Support Routine Changes B–17

Kernel Threads Routines and Macros

C
Kernel Threads Routines and Macros

This appendix describes the new routines and macros available implementing for
kernel threads.

In addition to a few new routines to convert a PID to a KTB address, the
EXE$NAM_TO_PCB routine is modified to return the KTB address in R2, which
previously was a scratch register. The new routines and macros all assume the
caller is executing in kernel mode.

EXE$CVT_IPID_TO_KTB Routine

Converts an internal PID to a KTB address.

Format

EXE$CVT_IPID_TO_KTB ipid ,ktb ,pcb

Returns

OpenVMS usage cond_value
type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Arguments

ipid
OpenVMS usage process_id
type longword (unsigned)
access read
mechanism by value

This argument provides the internal PID to be converted.

ktb
OpenVMS usage address
type quadword
access write
mechanism by reference

This argument provides the KTB address.

Kernel Threads Routines and Macros C–1

Kernel Threads Routines and Macros
EXE$CVT_IPID_TO_KTB Routine

pcb
OpenVMS usage address
type quadword
access write
mechanism by reference

This argument provides the PCB address.

Description

The EXE$CVT_IPID_TO_KTB routine converts an internal PID to a KTB
address.

Return Values

SS$_NONEXPR The process does not exist.
SS$_NOSUCHTHREAD The process exists but the thread does not.

EXE$CVT_EPID_TO_KTB Routine

Converts an external PID to a KTB address.

Format

EXE$CVT_EPID_TO_KTB epid ,ktb ,pcb

Returns

OpenVMS usage cond_value
type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Arguments

epid
OpenVMS usage process_id
type longword (unsigned)
access read
mechanism by value

This argument provides the external PID to be converted.

ktb
OpenVMS usage address
type quadword
access write
mechanism by reference

This argument provides the KTB address.

C–2 Kernel Threads Routines and Macros

Kernel Threads Routines and Macros
EXE$CVT_EPID_TO_KTB Routine

pcb
OpenVMS usage address
type quadword
access write
mechanism by reference

This argument provides the PCB address.

Description

The EXE$CVT_EPID_TO_KTB routine converts an external PID to a KTB
address.

Return Values

SS$_NONEXPR The process does not exist.
SS$_NOSUCHTHREAD The process exists but the thread does not.

GET_CURKTB Macro

Obtains the current process or thread KTB address. Applicable to BLISS, C,
and MACRO-32. The following three command formats are for BLISS, C, and
MACRO-32, respectively.

Format

GET_CURKTB;

GET_CURKTB()

GET_CURKTB ktbreg , pcbreg, [preserve][test_multi=yes]

Arguments

ktbreg

This argument is the destination to return the KTB address. The default is R14.

pcbreg

This argument is the register containing the address of the PCB. The default is
R14.

preserve

This argument is optional. The default is YES to preserve R0 and R1. Otherwise,
it is NO.

test_multi

This argument is optional. The default is YES to test and validate if there is
more than one KTB. If NO, it is assumed that the process is already known to be
multithreaded.

Kernel Threads Routines and Macros C–3

Kernel Threads Routines and Macros
GET_CURKTB Macro

Description

The GET_CURKTB macro obtains the current process or thread KTB address.

CVT_IPID_TO_PCB_KTB Macro

Converts a PID to PCB and KTB addresses. Applicable to MACRO-32 only.

Format

CVT_IPID_TO_PCB_KTB ipid ,ktbreg ,pcbreg ,fail

Returns

OpenVMS usage cond_value
type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Arguments

ipid

This argument provides the internal PID to be converted.

ktbreg

This argument is the destination to return the KTB address. The default is R14.

pcbreg

This argument provides the register which returns the PCB. The default is R14.

preserve

This argument is not used by this macro but is passed to CVT_IPID_TO_KTB to
indicate whether to preserve R0 and R1.

fail

This argument provides the address to transfer control if the ipid argument is
not valid. If this transfer is taken, R0 contains one of the status values in the
Return Values section.

Description

The CVT_IPID_TO_PCB_KTB macro converts a PID to PCB and KTB addresses.
This macro applies to MACRO-32 only.

Return Values

SS$_NONEXPR The process does not exist.
SS$_NOSUCHTHREAD The process exists but the thread does not.

C–4 Kernel Threads Routines and Macros

Kernel Threads Routines and Macros
CVT_IPID_TO_KTB Macro

CVT_IPID_TO_KTB Macro

Converts a PID to a KTB address. Applies to MACRO-32 only.

Format

CVT_IPID_TO_KTB ipid ,ktbreg ,pcbreg ,perserve ,fail

Returns

OpenVMS usage cond_value
type longword (unsigned)
access write only
mechanism by value

Status indicating the success or failure of the operation.

Arguments

ipid

This argument provides the internal PID to be converted.

ktbreg

This argument provides the register that returns the KTB. The default is R14.

pcbreg

This argument provides the register which holds the PCB. The default is R14.

preserve

This argument’s default is YES to save R0 and R1.

fail

This argument provides the address to transfer control if the ipid argument is
not valid. If this transfer is taken, R0 contains one of the status values in the
Return Values section.

Description

The CVT_IPID_TO_KRB macro converts a PID to a KTB address. This macro
applies to MACRO-32 only.

Return Values

SS$_NONEXPR The process does not exist.
SS$_NOSUCHTHREAD The process exists but the thread does not.

Kernel Threads Routines and Macros C–5

Index

A
Asynchronous System Traps (ASTs), 2–11

C
CPU$L_CURKTB field, 2–10
CTL$AL_STACK array, 2–14
CTL$AL_STACKLIM array, 2–14
CVT_IPID_TO_KTB Macro, C–5
CVT_IPID_TO_PCB_KTB Macro, C–4

D
Data Cells, 6–4

E
EPIDs (extended process IDs), 6–5
EXE$CVT_EPID_TO_KTB Routine, C–2
EXE$CVT_IPID_TO_KTB Routine, C–1
Executive stack, 6–3
Extended process IDs

See EPID

F
Floating-point registers and execution data blocks

See FREDs
FREDs (floating-point registers and execution data

blocks), 2–14, 6–3

G
GET_CURKTB Macro, C–3

H
Hardware process control blocks

See HWPCBs
HWPCBs (hardware process control blocks), 6–1,

6–3

I
Image Registry facility, overview, 2–15
Images, registering for version dependencies,

2–15
Infrastructure Changes

summary, 2–1
Installation and upgrade restrictions

upgrading privileged software, 2–15
Internal PIDs

See IPIDs
IPIDs, internal PIDs, 6–6

K
Kernel stack, 6–3
Kernel thread blocks

See KTBs
Kernel thread block vector, 6–2
Kernel threads region, 6–3
KTBs (kernel thread blocks), 6–2

M
Mutex locking, 2–11
MWAIT state, 2–11

P
P0 space, 6–3
P1 space, 6–3

layout, 6–4
PCBs (process control blocks), 6–1
Per-kernel thread stacks, 6–3
PHDs (process headers), 6–1
PIDs (process identifiers), 6–5, 6–7
PIX (processs index), 6–6
Privileged shareable images

creating, 5–1
definition, 5–1

Privileged software, version dependencies, 2–15
Process control blocks

See PCBs
Process header

See PHDs

Index–1

Process identifiers
See PIDs

Process index
See PIX

Process page tables, location, 2–8
Process status bits, 6–8

R
Range checking, 6–7
Restrictions

installation and upgrade
upgrading privileged software, 2–15

S
Scheduling routines, 2–11
Sequence vectors, 6–7
Shareable images, privileged, 5–1
Subsystems, version ID changes, 2–15

Supervisor stack, 6–3
SYS$CREPRC system service, 6–7
SYS$GETJPI system service, 6–8
SYS$PROCESS_SCAN system service, 6–8
System services, dispatching, 2–11
System Working Set List, 2–8

T
TB invalidation, 2–12

U
User stack, 6–3

V
Version dependencies, registering images with,

2–15

Index–2

