
Guide to Creating OpenVMS
ModularProcedures
Order Number: AA–PV6AD–TK

April 2001

This manual describes how to create a complex application program
by dividing it into modules and coding each module as a separate
procedure.

Revision/Update Information: This manual supersedes the Guide
to Creating OpenVMS Modular
Procedures, Version 7.1

Software Version: OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas



© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo Registered in U.S. Patent and Trademark Office.

OpenVMS is a trademark of Compaq Information Technologies Group, L.P. in the United States and
other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK4518

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction to Modular Procedures

1.1 Why Bother with Modular Procedures? . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1.2 Invoking a Modular Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.3 Using Procedure Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1.4 Existing System Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.5 Using Translated Images (Alpha Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–4

2 Designing Modular Procedures

2.1 Organizing New Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.1 Organizing Files and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.2 Organizing Procedures into Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.2 Defining a Modular Procedure Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.2.1 Explicit Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.2.2 Implicit Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.2.2.1 Implicit Arguments Allocated by the Calling Program . . . . . . . . . . 2–4
2.2.2.2 Implicit Arguments Allocated by the Called Procedure . . . . . . . . . 2–5
2.2.3 How to Avoid Using Implicit Arguments . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.2.3.1 Combining Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.2.3.2 User-Action Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6
2.2.3.3 Designating Responsibility to the Calling Program . . . . . . . . . . . . 2–7
2.2.4 Order of Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.2.5 Using Optional Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.3 JSB Entry Points (VAX Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–10
2.4 Using System Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.4.1 Choosing a Storage Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.4.1.1 Stack Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.4.1.2 Heap Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–11
2.4.1.3 Static Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.4.1.4 Avoiding Use of Static Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
2.4.1.5 Summary of Storage Use by Language . . . . . . . . . . . . . . . . . . . . . 2–13
2.4.2 Using Event Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2.4.3 Using Logical Unit Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2.5 Using Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–14
2.5.1 Terminal Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–15
2.5.2 File Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–16
2.6 Documenting Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
2.6.1 Writing a Module Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–17
2.6.2 Writing a Procedure Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18
2.7 Planning for Signaling and Condition Handling . . . . . . . . . . . . . . . . . . . . 2–20
2.7.1 Guidelines for Signaling Error Conditions . . . . . . . . . . . . . . . . . . . . . . 2–20

iii



2.7.2 Guidelines for Returning Condition Values . . . . . . . . . . . . . . . . . . . . . 2–21
2.7.3 When to Signal or Return Condition Values . . . . . . . . . . . . . . . . . . . . . 2–21

3 Coding Modular Procedures

3.1 Coding Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–1
3.1.1 Adhering to the Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 3–1
3.1.1.1 Facility Naming Conventions (Recommended) . . . . . . . . . . . . . . . . 3–1
3.1.1.2 Procedure Naming Conventions (Recommended) . . . . . . . . . . . . . . 3–3
3.1.1.3 File Naming Conventions (Recommended) . . . . . . . . . . . . . . . . . . . 3–4
3.1.1.4 Module Naming Conventions (Required) . . . . . . . . . . . . . . . . . . . . 3–4
3.1.1.5 PSECT Naming Conventions (Required) . . . . . . . . . . . . . . . . . . . . 3–4
3.1.1.6 Lock Resource Naming Conventions (Recommended) . . . . . . . . . . . 3–5
3.1.1.7 Global Variable Naming Conventions (Recommended) . . . . . . . . . . 3–5
3.1.1.8 Status Code and Condition Value Naming Conventions

(Required) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–6
3.1.2 Using Common Source Files (Recommended) . . . . . . . . . . . . . . . . . . . . 3–6
3.1.3 Using OpenVMS System Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–7
3.1.4 Invoking Optional User-Action Routines . . . . . . . . . . . . . . . . . . . . . . . 3–7
3.1.4.1 Bound Procedure Value (VAX Only) . . . . . . . . . . . . . . . . . . . . . . . . 3–8
3.2 Initializing Modular Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–8
3.2.1 Initializing Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
3.2.2 Testing and Setting a First-Time Flag . . . . . . . . . . . . . . . . . . . . . . . . . 3–10
3.2.3 Using LIB$INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–13
3.3 Writing AST-Reentrant Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15
3.3.1 What Is an AST? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–15
3.3.2 AST Reentrancy Versus Full Reentrancy . . . . . . . . . . . . . . . . . . . . . . . 3–15
3.3.3 Writing AST-Reentrant Modular Procedures . . . . . . . . . . . . . . . . . . . . 3–16
3.3.4 How to Eliminate Race Conditions During Concurrent Access . . . . . . . 3–17
3.3.4.1 Performing All Accesses in One Instruction . . . . . . . . . . . . . . . . . . 3–17
3.3.4.2 Using Test and Set Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18
3.3.4.3 Keeping a Call-in-Progress Count . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
3.3.4.4 Disabling AST Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–19
3.3.5 Performing Input/Output at AST Level . . . . . . . . . . . . . . . . . . . . . . . . 3–20
3.3.6 Condition Handling at AST Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–21

4 Testing Modular Procedures

4.1 Unit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–1
4.1.1 Black Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–2
4.1.2 White Box Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
4.2 Language-Independence Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
4.3 Integration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–5
4.3.1 All-at-Once Approach to Integration Testing . . . . . . . . . . . . . . . . . . . . 4–5
4.3.2 Incremental Approach to Integration Testing . . . . . . . . . . . . . . . . . . . . 4–5
4.4 Testing for Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6
4.4.1 Checking for AST Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–6
4.4.1.1 Using the Debugger to Check for AST Reentrancy . . . . . . . . . . . . 4–6
4.4.1.2 Using Desk Checking to Check for AST Reentrancy . . . . . . . . . . . 4–7
4.4.2 Checking for Full Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–7
4.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4.5.1 SHOW Entry Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4.5.2 STAT Entry Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–8
4.6 Monitoring Procedures in the Run-Time Library . . . . . . . . . . . . . . . . . . . . 4–9

iv



5 Integrating Modular Procedures

5.1 Creating Facility Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–1
5.2 Creating Object Module Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2
5.3 Creating Shareable Image Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5–2

6 Maintaining Modular Procedures

6.1 Making Your Procedures Upwardly Compatible . . . . . . . . . . . . . . . . . . . . . 6–1
6.2 Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–1
6.3 Adding Arguments to Existing Routines . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
6.3.1 Adding New Arguments to the Procedure . . . . . . . . . . . . . . . . . . . . . . 6–3
6.3.2 Using Argument Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–3
6.4 Updating Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4
6.4.1 Updating Object Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–4
6.4.2 Updating Shareable Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–5

A Summary of Modular Programming Guidelines

A.1 Coding Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1
A.1.1 Calling Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–1
A.1.2 Initializing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3
A.1.3 Reporting Exception Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3
A.1.4 AST Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–3
A.1.5 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–4
A.1.6 Format and Content of Coded Modules . . . . . . . . . . . . . . . . . . . . . . . . A–4
A.1.7 Upward Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A–5

Index

Examples

2–1 FORTRAN Program Showing the Improper Use of Implicit
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–6

2–2 FORTRAN Program Combining Procedures to Avoid Implicit
Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7

2–3 Static Storage and AST Reentrancy . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–13
2–4 Sample Module Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–18
2–5 Sample Procedure Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–19
3–1 Pascal Program That Uses a First-Time Flag . . . . . . . . . . . . . . . . . . . 3–12
3–2 BASIC Initialization Procedure for LIB$INITIALIZE . . . . . . . . . . . . . 3–14
3–3 Program to Add Address to PSECT LIB$INITIALIZE . . . . . . . . . . . . . 3–14
3–4 BASIC Main Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–14
3–5 VAX MACRO Program Showing Use of Queue Instructions to Perform

All Accesses in a Single Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–18
3–6 MACRO Program Showing Use of Test and Set Instructions . . . . . . . . 3–19
3–7 FORTRAN Program Disabling and Restoring ASTs . . . . . . . . . . . . . . . 3–20

v



Figures

1–1 Developing a Program That Calls Library Procedures . . . . . . . . . . . . . 1–3
2–1 Levels of Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–2
2–2 Possible Procedure Groupings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–3
2–3 Designating Storage Responsibility to the Caller . . . . . . . . . . . . . . . . . 2–8
2–4 Use of Storage Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–12
3–1 Examples of Facility Prefixes As Used in Procedure Names . . . . . . . . 3–2
3–2 Methods of Initializing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–9
3–3 How to Initialize Static Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–11
4–1 Black Box Testing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–3
4–2 White Box Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4–4
4–3 Sample Procedure for Integration Testing . . . . . . . . . . . . . . . . . . . . . . 4–5
6–1 Regression Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6–2
6–2 One Type of Argument Block, the Signal Argument Vector . . . . . . . . . 6–4

Tables

2–1 Summary of Storage Use by Language . . . . . . . . . . . . . . . . . . . . . . . . 2–13
3–1 Common Library Facilities — Prefixes and Content . . . . . . . . . . . . . . 3–2
3–2 Naming Procedure Entry Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3–4
3–3 Code for the Content and Usage of Global Variables . . . . . . . . . . . . . . 3–5
3–4 How to Declare Common Source Files . . . . . . . . . . . . . . . . . . . . . . . . . 3–6

vi



Preface

Intended Audience
This manual contains guidelines for developing, integrating, and maintaining
modular procedures. It is intended for advanced system and applications
programmers who are already familiar with OpenVMS operating system
concepts. Readers should also be proficient in at least one supported language.

Document Structure
This book contains the following chapters and appendix:

• Chapter 1 defines modular procedures and discusses the benefits of modular
programming.

• Chapter 2 covers design topics, such as organizing new applications, designing
a modular procedure interface, using system resources, using input/output,
writing internal documentation, and planning for signaling and condition
handling.

• Chapter 3 presents general coding guidelines and information about
initializing modular procedures. It also discusses guidelines for invoking
optional user-supplied action routines, and writing AST-reentrant code.

• Chapter 4 describes methods for testing procedures for modularity, language-
independence, and reentrancy. This chapter also provides general information
about performance testing and monitoring procedures.

• Chapter 5 shows you how to create object module libraries, shareable images,
and shareable image libraries from your completed procedures.

• Chapter 6 covers maintenance topics, such as upward compatibility,
regression testing, updating procedures and procedure libraries, and changing
the transfer vector or linker options file.

• Appendix A summarizes the modular programming guidelines presented in
this manual.

Related Documents
The following manuals provide additional details and the most current
information about the programming tasks described in this book:

• OpenVMS Programming Concepts Manual

• OpenVMS Programming Interfaces: Calling a System Routine1

• OpenVMS Calling Standard

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.

vii



• OpenVMS System Services Reference Manual: A–GETUAI

• OpenVMS System Services Reference Manual: GETUTC–Z

• OpenVMS Linker Utility Manual

• The documentation set for your language processor

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

viii



.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

( ) In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[ ] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

ix





1
Introduction to Modular Procedures

A procedure is a set of related instructions that performs a task. A module is a
single body of code and text that can be assembled and compiled as a unit.

A procedure is modular if it contains all the definitions and calls it needs to
perform a task. A modular procedure must also follow rules and principles that
permit it to be successfully linked with other procedures that follow the same
rules and principles.

This chapter briefly discusses:

• Programming benefits of modular procedures

• The way to invoke modular procedures

• The use of procedure libraries

• Existing OpenVMS system procedures

• The use of translated images

1.1 Why Bother with Modular Procedures?
Procedures can be combined to form programs in the following ways:

• Your procedure calls other procedures.

• Other procedures call your procedure.

• A calling program calls either your procedure or other procedures.

For procedures to execute successfully when they are combined to form a
program, they must follow general guidelines. Modular procedures that do not
follow these guidelines can cause other procedures in the program image to
execute incorrectly.

The modular programming guidelines in this manual are designed to give
programmers a common environment in which to write code. If all programmers
follow these guidelines, then any modular procedure can be added to a procedure
library without conflicting with procedures already in the library or with any that
are added later.

Modular programming offers the following advantages:

• You can use any modular procedure in any program.

• You can add a modular procedure to a library at any time.

• You do not need to rewrite common algorithms for a new program.

• You can reduce development time and complexity, and increase reliability.

Introduction to Modular Procedures 1–1



Introduction to Modular Procedures
1.1 Why Bother with Modular Procedures?

• You can modify or replace a procedure without modifying the calling
program, provided that you adhere to the guidelines for maintaining upward
compatibility.

• You can control processwide resource allocation.

• You can use different programming languages to write different procedures
for a program.

Many of the guidelines in this manual are recommendations, not requirements.
By following all the guidelines, however, you can realize the following additional
advantages:

• Shareable library procedures can save memory space, disk space, and link
time.

• AST-reentrant procedures can be called by AST-level procedures.

• Modular procedures that conform to all coding recommendations are similar
in format; therefore, they are easier to use and maintain.

1.2 Invoking a Modular Procedure
Typically, you invoke a procedure by executing a VAX CALLS or CALLG
instruction (on VAX systems) or JSR instruction (on Alpha systems). If you
are using a high-level language, the compiler generates the appropriate transfer
instruction when you use the conventions required by your language to implement
a procedure.

For more information about calling sequences, refer to OpenVMS Programming
Interfaces: Calling a System Routine. To find out how specific languages
implement procedures, refer to the documentation set for your language
processor.

1.3 Using Procedure Libraries
You can use modular procedures for general programming, or you can group them
in procedure libraries. Grouping procedures into libraries is a way of collecting
procedures so that calling programs can access them easily. When you link your
program to a library, the OpenVMS Linker utility (linker) automatically searches
that library to resolve any references that your program makes to procedures in
the library. Because the linker searches the specified library automatically, your
program can call many modular procedures without including the name of each
procedure explicitly in the LINK command. The program’s executable image and
the procedures that it calls are executed in the proper sequence at run time.

Figure 1–1 shows the development of a program that calls one or more procedures
in a library. Depending on the options you select when writing modular
procedures, you can control the way the linker accesses your procedures, and
therefore, the way procedures are invoked at run time. For example, if you place
commonly used procedures within a shareable procedure library or shareable
image library, you can save memory and disk space because all user processes
can access a single copy of the shared procedures.

1–2 Introduction to Modular Procedures



Introduction to Modular Procedures
1.3 Using Procedure Libraries

Figure 1–1 Developing a Program That Calls Library Procedures

Run  FILENAM.EXE

Module(s)
Object

Module(s)
Source

Library
Module
Object

Image
Shareable

FILENAM.XXX

FILENAM.OBJ

Image(s)
Executable

FILENAM.EXE

Assembler
or

Translator
Language

Editor

FILENAM.MAP

FILENAM.LIS

Linker

Output
Program

ZK−4068−GE

Image(s)
Executable

Modules
Object
Called

Image
Shareable

shareable images.
object module library and
The linker searches

Link Time

executable image.
module to form an
known to the object
entry points are made
The appropriate library

an object file.
edited program into
Compiler translates

Compile Time

the program.
You edit and enter

Edit Time

procedures at run time.
The image can call library
its virtual address space.
library procedures in
addresses of the relevant
is now aware of the
The executable image

Run Time

Interactive Input

1.4 Existing System Procedures
The OpenVMS operating system includes many system routines that perform
advanced applications. These procedures are designed to perform various general
functions and can be useful building blocks for your own procedures. Before
you write a new procedure, make sure the application does not already exist.
You should call an existing procedure from a system library whenever possible,
instead of duplicating code.

Introduction to Modular Procedures 1–3



Introduction to Modular Procedures
1.4 Existing System Procedures

The following types of callable system procedures are available as part of the
OpenVMS operating system:

• Run-Time Library (RTL) Procedures

• System Services

• Utility Routines

• Record Management Services (RMS)

For more information about how to use callable system procedures, refer to
OpenVMS Programming Concepts Manual.

1.5 Using Translated Images (Alpha Only)
Programs that run on VAX systems can be converted to run on Alpha systems by
recompiling and relinking or by translating. A single application can include both
native images (those that were recompiled and relinked) and translated images.

The most effective way to convert a program that runs on a VAX system to one
that runs on an Alpha system is to recompile the source code using a native
Alpha compiler, and then to relink the object files and shareable images using the
linker.

The alternative method, translation, involves using DECmigrate for OpenVMS
Alpha, which supports the migration of VAX applications to Alpha applications
by translating images. DECmigrate converts VAX images into functionally
equivalent images that can run on Alpha systems. DECmigrate includes the
VAX Environment Software Translator (VEST) utility, which analyzes a VAX
executable or shareable image and creates a functionally equivalent translated
image.

The Translated Image Environment (TIE), which is part of the OpenVMS
Alpha operating system, provides the run-time support for translated images
on OpenVMS Alpha. The TIE includes an Alpha shareable image that provides
each translated image with an environment similar to OpenVMS VAX, interprets
untranslated VAX instructions, and processes all interactions with the native
Alpha system. The TIE also includes a translated image that executes complex
VAX instructions.

For more information about VEST and TIE, refer to DECmigrate for OpenVMS
AXP Systems Translating Images. For more information about mixing native
Alpha and translated VAX modules in a single application, see Migrating an
Application from OpenVMS VAX to OpenVMS Alpha.

1–4 Introduction to Modular Procedures



2
Designing Modular Procedures

Well-designed procedures are more likely to be modular, well-written, and easy to
maintain. Any time that you save by skimping at the design stage will be lost as
you fix problems stemming from a poor design.

This chapter discusses the following aspects of designing a new application:

• Organizing new applications

• Defining a modular procedure interface

• Using JSB entry points

• Using system resources

• Using input/output

• Documenting modules

• Planning for signaling and condition handling

2.1 Organizing New Applications
Before designing a new application, look at the overall organization. An
application should be made up of one or more files, each containing one or more
procedures. When linked, the procedures are organized into program sections
(PSECTs). Each procedure, as well as the interface between the procedures,
should conform to the modular guidelines described in this manual.

2.1.1 Organizing Files and Modules
Each application contains one or more files. Each file contains exactly one
module. For information about naming files, refer to Section 3.1.1.3. For
information about naming modules, refer to Section 3.1.1.4.

2.1.2 Organizing Procedures into Modules
Each module should contain a single procedure or a group of related procedures.
The linker always brings the entire module containing a called procedure into the
image if any of its entry points are referenced. Therefore, placing each procedure
in a separate module reduces image size and allows more flexibility when using a
procedure library. You can supply your own version of one procedure while using
other procedures from the library. If many procedures have been grouped in a
single module, the linker must link all or none of them.

Group procedures into a module if they share the same static storage or if they
have a similar calling sequence, perform similar functions, or share a significant
amount of code.

Designing Modular Procedures 2–1



Designing Modular Procedures
2.1 Organizing New Applications

If you are writing a large number of related procedures that either call one
another or access common data blocks, make the relationship among those
procedures as clear as possible. To do this, use the following guidelines to
minimize the interaction between procedures, and between procedures and data
structures:

• Organize procedures into levels of abstraction.

• Make sure each level calls only the next lower level.

• Restrict read/write access to data structures and system components to as few
procedures as possible.

Figure 2–1 shows the BASIC and FORTRAN record I/O processing procedures,
which are implemented in the following three levels of abstraction:

1. User program interface (UPI)

2. User program data formatting (UDF)

3. Record processing and OpenVMS RMS interface (REC)

Figure 2–1 Levels of Abstraction

Main Program

Level C:  RMS Interface

ZK−4006−GE

Data Formatting
Level B:  User Program

Interface
Level A:  User Program

Type C
Procedure

Type C
Procedure

Type C
Procedure

Type B
Procedure

Type B
Procedure

Type A
Procedure

Type A
Procedure

Type A
Procedure

 All Calls

Interface
Modular

2–2 Designing Modular Procedures



Designing Modular Procedures
2.1 Organizing New Applications

All calls are made in one direction, to the next innermost level. Procedures
at different levels should be in different modules. Figure 2–2 shows possible
groupings of procedures.

Figure 2–2 Possible Procedure Groupings

Read/Write

Main
Call

Main

Interface

Main

Module

RET

(Optional)
Procedure
Modular

 

Call

Read/Write

 

(Optional)
Storage
Static

Procedure
Modular

RET

Read/Write

Interface

Procedure
Modular

RET

Read/Write

(Optional)
Storage
Static

Module

Call

Interface

RET

Procedure
Modular

RET

(Optional)
Storage
Static

modular across the interface.
not be modular, the module is
Although these procedures may

RET

(Optional)
Procedure

RET

(Optional)
Procedure

Procedure
Modular

Call

RET

Read/Write

RET

(Optional)
Storage
Static

RET

(Optional)
Procedure
Modular

Call

Call

Call

Interface

Module

ZK−4007−GE

Call

Designing Modular Procedures 2–3



Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

2.2 Defining a Modular Procedure Interface
Procedures communicate with one another by passing arguments. To clarify the
interactions between procedures and programs, you must define each argument
when you are designing a procedure. There are two types of arguments: explicit
arguments and implicit arguments. The following sections define explicit and
implicit arguments and describe how to use them.

2.2.1 Explicit Arguments
Explicit arguments are a procedure’s primary interface with other programs.
Therefore, to maintain a modular interface, you must follow the rules for
argument order, data types, and passing mechanisms. The following format is
used to describe each argument:

argument-name

OpenVMS usage: argument-data-structure
type: argument-data-type
access: argument-access
mechanism: argument-passing-mechanism

For descriptions of each of these four argument attributes, see the OpenVMS
Programming Interfaces: Calling a System Routine1.

To make your procedures easier to call, be sure that the passing mechanism
used for particular data types is consistent throughout all procedures in a
facility. Passing all atomic data by reference and all string data by descriptor is
recommended.

2.2.2 Implicit Arguments
An implicit argument is one that is not specified in the argument list. Implicit
arguments provide additional information to your procedure from static storage
locations. Two types of implicit arguments are:

• Arguments allocated by the calling program

• Arguments allocated by your procedure

Using implicit arguments is discouraged because they make the relationship
across procedures less clear and tend to increase the interaction between
procedures in a way that might go undetected. If your procedure must retain
information from previous activations, see Section 2.2.3 for ways to avoid using
implicit arguments.

2.2.2.1 Implicit Arguments Allocated by the Calling Program
The calling program can allocate implicit arguments as statically allocated
variables in a named PSECT (for example, COMMON and MAP in BASIC,
COMMON in FORTRAN, or variables declared in the outer block of a procedure
or program in Pascal). The calling program can also allocate implicit arguments
as statically allocated global variables (for example, symbols defined with a
double colon [::] in MACRO and GLOBAL variables in BLISS).

Allocation of implicit arguments by the calling program is not recommended for
the following reasons:

• Two programs could use the same PSECT name or global variable for different
values. This error would be undetected.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.

2–4 Designing Modular Procedures



Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

• The calling program is no longer independent of the called procedure.
Consequently, a change in one could inadvertently affect the other.

• In FORTRAN, the calling program declares all variables as COMMON
regardless of the number of implicit inputs actually needed. All COMMON
variables should also be declared by all modules that use the COMMON
storage, further decreasing independence.

2.2.2.2 Implicit Arguments Allocated by the Called Procedure
Implicit arguments allocated by the called procedure are kept in local static
storage.

These implicit arguments are usually used to keep track of resources (using
resource allocating procedures) and shorten the explicit argument list. However,
the use of implicit inputs by non-resource-allocating procedures can lead to
unexpected results. For example, assume that procedure A is to leave information
for a companion procedure B. This would result in B having both explicit inputs
(from its caller) and implicit inputs (from A’s storage). Next, consider that a
calling program calls A, then calls procedure X, and finally calls B. For the calling
program to get correct results from B, it must know that X (and any procedure
that X calls) did not make a call to A, because such a call would change the
implicit inputs A leaves for B.

Because one of the objectives of modular programming is to permit procedures
to be combined arbitrarily without needing to understand each other’s internal
workings, Compaq does not recommend using implicit arguments. The same
problems can occur with any non-resource-allocating procedure that leaves results
for itself as future implicit arguments.

2.2.3 How to Avoid Using Implicit Arguments
Procedures that do not allocate resources can be written in the following three
ways to avoid the implicit argument problems described in Section 2.2.2:

• When one procedure obtains results from another, combine the two procedures
into a single call. (See Section 2.2.3.1.)

• Provide a single call to an action routine that is supplied by the calling
program part way through the procedure’s execution. (See Section 2.2.3.2.)

• Give the calling program responsibility for retaining information from
a procedure activation. This is done with an explicit argument. (See
Section 2.2.3.3.)

2.2.3.1 Combining Procedures
Often, non-resource-allocating procedures can be combined into a single procedure
that returns all information explicitly in a single call.

Compare Example 2–1 with Example 2–2 to see the effects of combining
procedures to avoid the use of implicit arguments.

Designing Modular Procedures 2–5



Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Example 2–1 FORTRAN Program Showing the Improper Use of Implicit
Arguments

!+
! This program demonstrates a situation where
! the input of a procedure depends on the output
! of a previously called procedure.
!-

REAL*4 X, Y, RESULT
X = 1
Y = 1

!+
! Call the procedure that writes into a common data area.
!-

CALL SUM_SQUARES (X, Y)
!+
! Call the procedure that reads from the common data area.
!-

CALL GET_SQRT (RESULT)
!+
! Print the result obtained.
!-

WRITE (6,10) X, Y, RESULT
10 FORMAT(1X, ’SQRT(’, F6.2, ’**2 + ’, F6.2, ’**2) =’,F6.2)

STOP
END

!+
! This procedure sums the squares of its two inputs and
! places the result in a common area, for use by some
! other procedure.
!-

SUBROUTINE SUM_SQUARES (A, B)
COMMON /INTERNAL_STORAGE/ TEMP_RESULT
TEMP_RESULT = (A ** 2) + (B ** 2)
RETURN
END

!+
! This procedure calculates the square root of whatever
! number is in the common area.
!-

SUBROUTINE GET_SQRT (C)
COMMON /INTERNAL_STORAGE/ TEMP_RESULT
C = SQRT (TEMP_RESULT)
RETURN
END

2.2.3.2 User-Action Routine
Another way to combine several procedures into one call is to let the calling
program gain control at a critical point in your procedure’s execution. For this to
happen, your procedure must specify an action routine argument that is called
during execution. Therefore, your procedure can execute twice, before and after
the action routine, with no implicit inputs. The OPEN statements in BASIC,
FORTRAN, and Pascal use this technique by permitting the user to supply a
user-action routine.

To keep the calling program from having to provide implicit inputs for its action
routine, your procedure should also provide another argument that is passed to
the action routine. The calling program uses the following calling sequence to
invoke your procedure:

CALL my-proc (... ,action-routine ,user-arg)

2–6 Designing Modular Procedures



Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Then your procedure invokes the action routine as follows:

CALL action-routine (... ,user-arg)

For information on writing user-action routines, see Section 3.1.4.

Example 2–2 FORTRAN Program Combining Procedures to Avoid Implicit
Arguments

!+
! This procedure shows the subroutines called in
! the previous example combined into a single subroutine
! that eliminates the use of COMMON.
!-

REAL*4 X, Y, RESULT
X = 1
Y = 1

!+
! Call the new procedure.
!-

CALL DO_IT_ALL (X, Y, RESULT)
WRITE (6,10) X, Y, RESULT

10 FORMAT (1X, ’SQRT (’, F6.2, ’**2 + ’, F6.2, ’**2) = ’,F6.2)

STOP
END

!+
! This procedure calculates the square root of the sum of
! the squares of its first two arguments, and returns the
! result in the third argument. It combines the functions
! provided by the SUM_SQUARES and GET_SQRT
! procedures and eliminates the use of COMMON.
!-

SUBROUTINE DO_IT_ALL (A, B, C)
C = SQRT ((A ** 2) + (B ** 2))
RETURN
END

2.2.3.3 Designating Responsibility to the Calling Program
You can make the calling program responsible for retaining information from one
procedure activation to another. There are three ways to do this:

• Require the calling program to allocate the storage your procedure needs.
Then have the calling program pass the address of the storage location as
an explicit argument on all calls to your procedure. The disadvantage of this
method is that you cannot increase the amount of storage needed by your
procedure without requiring all calling programs to be rewritten. Thus, you
should use this method only when you are confident that your procedure will
not be revised to use additional storage in the future.

• Require the calling program to allocate a longword pointer to the stored
data and pass its address to your procedure as an explicit argument. On
the first call, your called procedure will dynamically allocate storage (by
calling LIB$GET_VM) and store its address in the caller’s longword. On
subsequent calls, your procedure will use information left in the storage area
from previous calls.

Designing Modular Procedures 2–7



Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

• Require the calling program to pass a processwide identifying value to your
procedure on all calls. The processwide identifier indicates which information
from previous procedure activations is to be used as implicit inputs.

Figure 2–3 shows a calling program that has responsibility for explicitly
indicating the storage to be used by the called procedure.

Figure 2–3 Designating Storage Responsibility to the Caller

Procedure X

Interface

Calling Program

Call Read (K)

Call X

Call Get (K)

ZK−4004−GE

and prevent undetected conflicts.
stored on each procedure activation
storage, you can separate information
By giving the caller responsibility for

Read
Procedure

Get
Procedure

RET
storage.

calling program
is read from
Argument K

storage.
calling program

is written to
Argument K

RET

RET

Call Read (L)

L

Procedure X

Storage for

K

Program
Calling

for
Storage

Interface

 

Path
Data

Path
Control

Calling Program Allocates Procedure Storage
This method causes the calling program to allocate all storage needed and pass
the address of the storage as an explicit argument on each call.

For example, the library procedure MTH$RANDOM requires that the calling
program allocate storage for the longword seed and pass its address on each call.
MTH$RANDOM takes the seed as input and computes the next random number
sequence from the current seed value. MTH$RANDOM returns a random number
between 0 and 1 and updates the longword seed passed by the calling program.
This ensures that the procedure will generate a different value on the next call.

The next two sections describe interface techniques that permit storage size to
change without affecting the interface with the calling program.

2–8 Designing Modular Procedures



Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

Calling Program Passes Pointer
In this method, the calling program allocates only a longword pointer to the
dynamic heap storage to be allocated by your procedure. It then passes the
address of the longword as an explicit argument. The following two interface
techniques can be used to indicate that storage is to be initialized:

• Provide a single entry point. If your called procedure finds the value zero in
the longword that the calling program has allocated, the procedure allocates
and initializes dynamic heap storage.

• Provide a second entry point. This entry point stores the address of the
allocated storage in the longword. On subsequent calls, your procedure uses
that value as the storage address of information from previous calls.

Regardless of the method used to indicate storage allocation and initialization,
you must also provide a way to indicate storage deallocation. You can do this by
using either a separate argument or separate entry point.

For example, the procedure LIB$INIT_TIMER, which gets times and counts from
the operating system, uses a single optional argument handle-adr to determine
where these values are to be stored. The handle-adr argument is the address of
a longword pointing to a block of storage that contains the values of times and
counts:

• If handle-adr is missing, the values are stored in static storage, making this
call non-AST-reentrant.

• If handle-adr is zero, LIB$INIT_TIMER allocates a block of dynamic heap
storage by calling LIB$GET_VM. The values are placed in that block, and the
address of the block is returned in handle-adr.

• If handle-adr is nonzero, it is considered to be the address of a storage block
previously allocated by a call to LIB$INIT_TIMER. The block is then used
again, and new times and counts are stored in it.

LIB$FREE_TIMER deallocates the block of dynamic heap storage allocated by a
previous call to LIB$INIT_TIMER. The handle-adr argument to
LIB$FREE_TIMER is the address of a longword that points to a block of dynamic
heap storage where times and counts have been stored. That storage is returned
to free storage by calling LIB$FREE_VM.

Calling Program Passes a Processwide Identifier
In this method, the calling program passes a processwide identifying value to
identify implicit results produced on previous calls, which will be implicit inputs
on this call. Any calling program can use the processwide identifier. Examples
include BASIC or FORTRAN logical unit numbers and OpenVMS system services
I/O channel numbers.

Processwide identifiers are a resource. Modular programming techniques require
that all resources allocated by a procedure be allocated by calling a resource-
allocating procedure. This prevents conflicts because a single procedure can keep
track of multiple allocations to more than one procedure or procedure activation.
Therefore, if you use the method described in this section, you will also have
to write a resource-allocating procedure to control the resource. If you write a
resource-allocating procedure, it is recommended that you place it in an object
module library so that other programmers can use it.

The library procedures LIB$GET_LUN and LIB$FREE_LUN allocate and
deallocate FORTRAN and BASIC logical unit numbers outside the range normally
specified in user programs, that is, outside the range 0 to 99.

Designing Modular Procedures 2–9



Designing Modular Procedures
2.2 Defining a Modular Procedure Interface

2.2.4 Order of Arguments
Procedures in the RTL follow a consistent pattern for positioning arguments. You
should follow the same guidelines. Group procedure arguments from left to right
in the following order:

1. Required input arguments (read access)

2. Required input/output arguments (modify access)

3. Required output arguments (write access)

4. Optional input arguments (read access)

5. Optional input/output arguments (modify access)

6. Optional output arguments (write access)

Note that optional arguments follow required arguments. Therefore, when the
calling program omits the optional arguments, the actual argument list passed to
the procedure is shortened.

The called procedure accesses the required arguments from left to right,
beginning with the first argument. The only exceptions are procedures that
return a large function value of known size. In this case, the calling program
uses the first argument to specify where the function value is to be stored, and
the other arguments are shifted right one position. (For more information, refer
to the OpenVMS Calling Standard.)

2.2.5 Using Optional Arguments
An optional argument is one that the calling program can omit. The calling
program indicates the omission by passing argument list entries containing zero.
For a trailing optional argument, the calling program can pass a shortened list or
a zero argument list entry.

A zero argument list entry is simply a zero passed to the procedure by value. For
example, if we call a procedure called GRA_CUBE and omit an optional argument
C, the calling sequence from BASIC would be as follows:

15 CALL GRA_CUBE(A, B, 0 BY VALUE)

In this call, 0 BY VALUE is the zero argument list entry.

Note

Most OpenVMS system services, unlike the run-time library procedures,
cannot accept a shortened argument list. Omitted arguments must
always be indicated with a zero argument list entry. For arguments
passed by value, there is no distinction between passing a zero value and
passing a zero argument list entry.

2.3 JSB Entry Points (VAX Only)
On VAX systems, Compaq recommends that you do not use JSB2 entry points
in procedures that will be contained in a procedure library. Procedures that can
be invoked only by JSB instructions are not callable by high-level languages. If
a procedure does use a JSB entry point, it must also provide an equivalent call
entry point to maintain language independence. The call entry point must be

2 JSB is a MACRO instruction that means jump to subroutine.

2–10 Designing Modular Procedures



Designing Modular Procedures
2.3 JSB Entry Points (VAX Only)

provided because JSB instructions are only available in VAX MACRO and VAX
BLISS-32.

If you provide a JSB entry point for your procedure, the name of the JSB entry
point is the same as the name of the procedure, except that it ends in _Rn. The n
indicates the highest register modified or used as an input argument.

For example, the JSB entry point of the run-time library procedure
LIB$ANALYZE_SDESC is LIB$ANALYZE_SDESC_R2.

2.4 Using System Resources
The system resources available to you are limited by your account quotas and
by the amount of available resources on the system. Efficient use of system
resources makes more resources available for all processes.

2.4.1 Choosing a Storage Type
There are three types of storage: stack, heap, and static. The three forms of
storage differ in the method and duration of allocation, that is, how long that
storage is in use.

2.4.1.1 Stack Storage
A procedure dynamically allocates stack storage on the process stack at run time,
as needed. To allocate stack storage, the procedure moves the stack pointer up by
decreasing its value. Note that stack storage is not initialized to zero because the
stack is created once and reused many times for subsequent stack frames.

The procedure deallocates stack storage by moving the stack pointer down
(increasing its value) when that procedure returns control to the calling program.
Stack storage exists only for the duration of the procedure activation that creates
it.

2.4.1.2 Heap Storage
Dynamic heap storage is allocated at run time from a processwide pool, as the
procedure activation needs it and as the account quotas and virtual address space
of your process permits.

To allocate heap storage, your procedure calls a system routine such as the Run-
Time Library procedure LIB$GET_VM or the system service $EXPREG. The call
to the system routine can be within the procedure itself, or you can use a general
resource-allocating procedure to centralize your resource allocations.

Heap storage is deallocated—that is, returned to the processwide pool—by calling
LIB$FREE_VM. The system service $CNTREG cannot be used to deallocate heap
storage.

Figure 2–4 shows how the different types of storage are used.

Note

The type of storage to be used can be determined by the duration or
quantity of the storage. Any storage that is of long duration and unknown
quantity (at compile time) should be heap storage. Storage of short
duration (during the current invocation of the procedure) should be stack
storage. Storage of long duration that is needed in only one instance
should be static storage.

Designing Modular Procedures 2–11



Designing Modular Procedures
2.4 Using System Resources

Figure 2–4 Use of Storage Types

Read/Write

RETRET

Procedure

CALLCALL

RETRET

Procedure

CALLCALL

RETRET

Procedure

CALLCALL

RETRET

Procedure

CALLCALL

Read/Write Read/Write Read/Write

Storage
Stack

Storage
Heap

Storage
Static

Storage
Static

activation.
a future procedure
be retained for 
when a result must
Static storage is used

returns to its caller.
when the procedure
It is deallocated

activation.
the current procedure
needed only for
when results are
Stack storage is used

LIB$FREE_VM).
caller (by calling
returns to the
before control
Storage is deallocated

to call.
varies from call
amount of storage
used when the 
Heap storage is

ZK−4005−GE

calling LIB$FREE_VM.
It is deallocated by

activation.
future procedure
retained for a
when results must be
needed varies and
amount of storage
also used when the
Heap storage is

Storage
HeapPointer

2.4.1.3 Static Storage
At link time, the linker collects storage in similar PSECTs into a single image
section. The initial contents of this storage are specified in the source program.
The OpenVMS operating system initializes any noninitialized static storage to
zero. On calls to a procedure after initialization, the static storage has the same
allocation and the contents left from the previous call.

2.4.1.4 Avoiding Use of Static Storage
The following are several disadvantages to using static storage:

• It is an inefficient use of memory. When using static storage, you must
provide for the largest possible memory use.

• An image size is larger because of the inefficient use of memory.

• It can easily lead to problems with AST reentrancy, as seen in Example 2–3.
This example circumvents the problem of an AST corrupting data by setting a
first-time flag. Another method of preventing this problem is to use test and
set instructions. For more information, see Section 3.3.4.2.

2–12 Designing Modular Procedures



Designing Modular Procedures
2.4 Using System Resources

Example 2–3 Static Storage and AST Reentrancy

10 !+
! Program to demonstrate corruption
! of static storage due to ASTs.
!-
DECLARE LONG CURRENT_NUMBER

!+
! Enable CTRL/C AST handling.
!-
ON ERROR GOTO 19000
X% = CTRLC

!+
! Increment the number and print the
! current value. When the number
! reaches 1000, exit.
!-
FOR CURRENT_NUMBER = 1% TO 1000%

100 PRINT CURRENT_NUMBER;
NEXT CURRENT_NUMBER
GOTO 32767

19000 !+
! Error-handling routine. If this routine is
! entered due to a CTRL/C
! AST, corrupt CURRENT_NUMBER by setting it to -1.
!-
IF ERR = 28 THEN CURRENT_NUMBER = -1%
RESUME 100

32767 END

2.4.1.5 Summary of Storage Use by Language
Table 2–1 summarizes storage available to the programmer in various language
procedures.

Table 2–1 Summary of Storage Use by Language

Language
Storage Type

Static Stack Heap

Ada Constants and fixed-
size objects contained
in library packages

Local subprogram
and task variables

Dynamically sized objects in library
packages and objects created by
allocators

BASIC All COMMON and
MAP data storage

Local variables Dynamic strings

Most arrays Executable
DIMENSION
statement

BLISS OWN and GLOBAL STACK LOCAL By calling LIB$GET_VM

C Objects declared with
external or static
internal linkage

Objects declared
inside a function
with "automatic"
linkage

By calling malloc, calloc, or realloc

COBOL All data storage Not applicable By calling LIB$GET_VM

(continued on next page)

Designing Modular Procedures 2–13



Designing Modular Procedures
2.4 Using System Resources

Table 2–1 (Cont.) Summary of Storage Use by Language

Language
Storage Type

Static Stack Heap

DIBOL All RECORD,
COMMON, and
LITERAL data
storage

Not applicable Not applicable

VAX FORTRAN All data storage Not applicable By calling LIB$GET_VM1

Assembly
language

Block storage Decrementing stack
pointer

By calling LIB$GET_VM

Pascal All program or
module level storage

PROCEDURE and
FUNCTION local

By calling NEW2

PL/I STATIC AUTOMATIC ALLOCATE statement (BASED)3

RPG II All data storage Not applicable By calling LIB$GET_VM

1Storage for DEC Fortran for OpenVMS Alpha is the same as for VAX FORTRAN, except that stack storage is available
as a compile time option for some variables.
2Although this is true most of the time, there are other rules that can also determine STATIC versus STACK allocation.
For more information, see the Pascal user documentation.
3BASED is the storage class used to allocate heap storage in PL/I. The ALLOCATE statement does the actual allocation.

2.4.2 Using Event Flags
Event flags allow modular procedures to communicate with each other and to
synchronize their operations. Because they can be allocated at run time, event
flags allow one procedure to run independently of other procedures existing in the
same process.

Event flags are allocated and deallocated by the run-time library procedures
LIB$GET_EF and LIB$FREE_EF. (For more information, see the descriptions of
the LIB$GET_EF and LIB$FREE_EF procedures in the OpenVMS Programming
Concepts Manual and the OpenVMS RTL Library (LIB$) Manual.)

2.4.3 Using Logical Unit Numbers
A logical unit number is used to define either the device or file a program uses
to perform input and output. Modular procedures do not need to know the unit
numbers of other procedures running at the same time.

Logical unit numbers are used only in BASIC and FORTRAN.

Logical unit numbers should be allocated and deallocated using the
LIB$GET_LUN and LIB$FREE_LUN RTL procedures. (For more information
about using logical unit numbers, see the descriptions of the LIB$GET_LUN and
LIB$FREE_LUN procedures in the OpenVMS Programming Concepts Manual
and the OpenVMS RTL Library (LIB$) Manual.)

2.5 Using Input/Output
In general, your procedure’s input/output (I/O) is directed to either the terminal or
a file. (In some cases, you may need to use mailbox I/O and network operations.
For information about these areas, see the DECnet for OpenVMS Networking
Manual.) Regardless of whether you are directing input/output to the terminal
screen or to a file, you must follow two rules to maintain modularity:

2–14 Designing Modular Procedures



Designing Modular Procedures
2.5 Using Input/Output

1. A procedure must not print error or informational messages either directly or
by calling the $PUTMSG system service. It must either return a condition
value in R0 as a function value, or call LIB$SIGNAL or LIB$STOP to output
all messages. (LIB$SIGNAL and LIB$STOP can be called either directly or
indirectly.)

2. A procedure should use device-independent services and procedures for
input/output.

2.5.1 Terminal Input/Output
The methods available for performing input/output to the terminal include the
following:

• Queue I/O Request system service ($QIO)

Using a $QIO to perform terminal I/O is very efficient. However, $QIOs
use device-dependent services and are the most difficult to use from high-
level languages of all methods discussed here, because there are more steps
involved and because the calling interface requires more knowledge from
the caller than RMS services. Using a $QIO in your procedure may require
additional steps, such as constructing item lists, writing AST routines,
assigning an I/O channel, queueing an I/O request, testing to ensure that
the request was successfully queued and completed, and deassigning the
I/O channel. (For more information about $QIOs, see the OpenVMS System
Services Reference Manual.)

• OpenVMS Record Management Services (RMS)

The RMS facility provides device-independent and general-purpose services
that are easier to call than $QIOs. However, it is often not convenient to
construct the access control blocks (FAB, RAB, and so forth) required by
RMS from a high-level language. (For more information about RMS, see the
OpenVMS Record Management Services Reference Manual.)

• Language I/O statements

Language I/O statements are provided for all high-level languages. These
statements are easy to use and provide simple I/O and data formatting
for the high-level language user. Native language I/O statements make it
unnecessary for the high-level language user to call $QIO or RMS directly;
these calls are made by the compiled code on your behalf. However, low-level
and medium-level languages (VAX MACRO and BLISS-32) have no built-in
language I/O statements and must use $QIO and RMS for terminal and file
I/O. (For more information, see the appropriate language reference manual.)

• Screen Management Procedures in the run-time library (SMG$)

SMG$ procedures provide an easy-to-call interface for high-level languages.
They are device independent and aid in the composition of complex
screen images. The SMG$ facility in the run-time library provides screen
composition operations; that is, SMG$ makes it easy for an application to
divide its screen into multiple regions and provides functions for manipulating
those regions. Other features provided by SMG$ procedures are as follows:

– Output to virtual displays

– Input from a virtual keyboard or locator device

– The ability to perform asynchronous input

– Built-in minimal screen updating

Designing Modular Procedures 2–15



Designing Modular Procedures
2.5 Using Input/Output

– Optional buffering and batching to optimize performance

– The ability to trap broadcast messages

– The option of performing output to a file or a hardcopy device

– Support for foreign (not Compaq) terminals

– Subprocess manipulation

For more information about SMG$ procedures, see the OpenVMS RTL Screen
Management (SMG$) Manual and the OpenVMS Programming Concepts
Manual.

During I/O to the terminal, it is important that the procedure and the main
program cooperate in controlling the terminal screen. For example, an I/O
procedure may write something to the terminal screen that the calling program
wants to erase. To erase it, the calling program must know both what and
where that information is. The calling program and the called procedure must
communicate by passing arguments that define which part of the screen will be
accessed by each. The run-time library contains Screen Management (SMG$)
procedures for this purpose.

Do not combine different methods of I/O within your application. Problems
can arise if the calling program and the called procedure use different methods
of I/O. Each method of performing input/output maintains some knowledge of
what is on the terminal screen. At the very least, the current cursor position is
remembered. If another type of I/O is performed, that information is not updated
and, therefore, becomes incorrect. The results of any subsequent I/O would be
unpredictable. If you must combine other methods with uses of SMG$ procedures,
use the SMG$ procedures that aid such an integration.

2.5.2 File Input/Output
File I/O can be performed by the following methods:

• Block I/O

Uses system services to map a section of the file to the process virtual address
space. No notion of records.

• OpenVMS Record Management Services (RMS)

RMS provides a variety of file organizations and access modes from which
you can select the processing techniques best suited to your application. RMS
supports the sequential, relative, and indexed-sequential file organizations.
These modes allow you to access records within these files sequentially,
randomly by key value or relative record number, or randomly by the records
file address (RFA). It is not usually necessary to call RMS directly from
high-level languages. For specific information about performing record
management operations in the language you are using, consult your language
reference manual. (For more information about RMS, see the OpenVMS
Record Management Services Reference Manual.)

• Language I/O

The compiled code in most high-level languages calls a run-time library
language support procedure for file operations. The run-time library
procedures normally call RMS. Therefore, most RMS features are available
to the high-level language user without calling RMS directly. Language
I/O statements are suitable for either data files or output files. Low- and
medium-level languages (VAX MACRO and BLISS-32) do not have any

2–16 Designing Modular Procedures



Designing Modular Procedures
2.5 Using Input/Output

language I/O statements and must call RMS directly. (For more information,
see the appropriate language reference manual.)

2.6 Documenting Modules
You should document every module you create so that you and others know what
the procedure does. Each module should include:

• A preface that identifies the procedure

• A description of the procedure

In most cases, a module should contain only one procedure.

2.6.1 Writing a Module Preface
At the beginning of every module, include a preface that contains the following
information:

Title: Module name followed by a one-line functional description.

Version: Version and a three-digit edit number. Generally 1-001 is the
original version.

Facility: Description of the library facility, such as general utility library
(LIB).

Abstract: Short (three to six lines) functional description of the module.

Environment: Describe any special environmental assumptions that the module
can make. These include assumptions made at both compilation
and execution time that could affect either the hardware or software
environments.

Describes situations that the module assumes during execution time
and optional modular programming elements that your module does
not follow.

Indicates the reentrancy characteristics of the procedures in this
module. Each procedure is either fully reentrant, AST reentrant, or
nonreentrant.

Author: Your name and date the module was created.

Modified by: Modification number, name of modifying programmer, modification
date, and a list of the modifications.

End the preface with a page delimiter. After the preface, include the code for the
procedure.

Example 2–4 shows a sample module description.

Designing Modular Procedures 2–17



Designing Modular Procedures
2.6 Documenting Modules

Example 2–4 Sample Module Description

PROGRAM GRA_CUBE ! Create representation of a cube

!+
! VERSION: 1-002
!
! FACILITY: User Graphics Computation Library
!
! ABSTRACT: This module contains a procedure to create a mathematical
! representation of a cube, GRA_CUBE.
!
! ENVIRONMENT: User Mode, AST-reentrant
!
! AUTHOR: John Smith CREATION DATE: 14-Sep-1993
!
! MODIFIED BY:
! 1-001 - Original. DWS 14-Sep-1993
! 1-002 - Fix a minor bug in cube volume computation. MDL 15-Mar-1993
!-

2.6.2 Writing a Procedure Description
At the beginning of every procedure in a module, describe the procedure by
including the information in this section. Include all the description elements,
even if they are not in the procedure. For example, if a procedure has no implicit
inputs, write the following:

!
! Implicit Inputs:
!
! NONE
!

Every procedure description should include the following information:

Functional description: Describes a procedure’s purpose and completely documents
its interfaces.

Includes the basis for any critical algorithms used,
including literature references where applicable, and
explains why a particular algorithm was chosen.

Indicates the reentrancy characteristics of this procedure if
they differ from those given in the module description.

Calling sequence: Includes these elements in the following order:

1. A return status, value argument, or CALL statement

2. The procedure name

3. The argument list (typically a list of registers or
arguments)

In VAX MACRO, each argument is symbolically defined as
the offset relative to the argument pointer (AP).

Lists the arguments in the order they will appear in a
high-level language. Each argument characteristic should
also be included, using the procedure argument notation
described in OpenVMS Programming Interfaces: Calling a
System Routine. Note that this manual has been archived
but is available on the OpenVMS Documentation CD–ROM.

2–18 Designing Modular Procedures



Designing Modular Procedures
2.6 Documenting Modules

Formal arguments: Lists any explicit input, input/output, or output arguments.
Includes a qualifying description with each argument. The
arguments should be listed in the order they are listed in
the calling sequence.

Implicit inputs: Lists any inputs from storage, internal or external to the
module, that are not specified in the argument list. Usually
all that will appear here is NONE. See Section 2.2.2.

Implicit outputs: Lists any outputs to internal or external storage that are
not specified in the argument list.

Completion status or
routine value:

Lists the success or failure condition value symbols that
could be returned. If your procedure returns a function
value other than a condition value, change the heading to
‘‘Routine value.’’

Side effects: Describes any functional side effects not evident from
a procedure’s calling sequence. This includes changes
in storage allocation, process status, file operations,
and possible signaled conditions. In general, you should
document anything out of the ordinary that the procedure
does to the environment. If a side effect modifies local or
global storage locations, document it in the implicit output
description instead.

Example 2–5 shows a sample procedure description.

Example 2–5 Sample Procedure Description

!++
! FUNCTIONAL DESCRIPTION:
!
! Return the system date and time, using the caller’s
! semantics for his/her string.
!
! Non-reentrant; uses static storage.
!
! FORMAL ARGUMENT(S):
!
! RESULT_ADDR
! VMS USAGE : char_string
! TYPE : character string
! ACCESS : write only
! MECHANISM : by descriptor
!
! Address of the descriptor into which the
! system date and time is written.
!
! IMPLICIT INPUTS:
!
! NONE
!
! IMPLICIT OUTPUTS:
!
! NONE
!

(continued on next page)

Designing Modular Procedures 2–19



Designing Modular Procedures
2.6 Documenting Modules

Example 2–5 (Cont.) Sample Procedure Description

! COMPLETION CODES:
!
! SS$_NORMAL Procedure successfully completed
! LIB$_STRTRU Success, but source string truncated
!
! SIDE EFFECTS:
!
! Requests the current date and time from OpenVMS.
!
!--

2.7 Planning for Signaling and Condition Handling
Two methods are available to a procedure for indicating to its caller whether it
completed successfully. One method is to return a condition value. The other
method is to signal an error condition.

To provide a better user interface, all procedures in a facility should either return
condition values or signal error conditions. Regardless of which method you
choose, you should be consistent within the facility to make the procedures easier
for the user to call.

2.7.1 Guidelines for Signaling Error Conditions
The signaling of an error condition is, in some instances, mandatory.

Procedures that return a function value cannot also return a condition value and
therefore must signal any error conditions encountered.

However, to maintain efficiency, you might want other procedures to signal error
conditions also. Checking the return status of a called procedure for repetitive
calls can be time consuming and adversely affect the performance of the calling
program. For example, if you are going to call a procedure 100 times within a
loop and the chances of that procedure’s failure are small, you may not want to
take the time to check the return status after each call to make sure that the
condition value returned was SS$_NORMAL. Signaling error conditions is far
more efficient in this type of application.

From the point of view of the calling program, handling a signaled condition
is slightly more difficult than checking a returned condition value because it
involves writing a condition handler to be invoked in the event that an error
condition is signaled. However, handling a signaled condition allows the calling
program to execute more efficiently.

To signal an error condition, your procedure uses either a condition-handling
mechanism provided by the source language, or it calls the Run-Time Library
procedure LIB$SIGNAL. To use LIB$SIGNAL, your procedure calls LIB$SIGNAL
and specifies the condition code and zero or more arguments specifying the
environment of the condition. For more information about using LIB$SIGNAL,
see the OpenVMS RTL Library (LIB$) Manual.

2–20 Designing Modular Procedures



Designing Modular Procedures
2.7 Planning for Signaling and Condition Handling

2.7.2 Guidelines for Returning Condition Values
From the point of view of the calling program, it is much easier to check returned
condition values than to handle signaled error conditions. When the condition
value is being returned, the calling program does not need to include a condition
handler. The calling program needs only to check the status of the returned
value.

However, if you return condition values rather than signal error conditions, you
return less information about the error condition to the calling program. Compaq
recommends that you return condition values when the explanation of the error
condition is simple and self-contained. For example, LIB$GET_VM returns a
condition value, because the possible status conditions are self-contained and
simple (for example, insufficient virtual memory).

According to the OpenVMS Calling Standard, the status returned must be a
condition value. (For more information, see OpenVMS Programming Interfaces:
Calling a System Routine1.

2.7.3 When to Signal or Return Condition Values
To some degree, whether you decide to signal an error condition or return a
condition value depends on the language you are using for your procedure.
In some high-level languages, it is difficult to write a condition handler to be
invoked in the event that an error condition is signaled. (For more information
about condition handling in your language, consult the appropriate language
reference manual.)

Regardless of which language you are using, there are general guidelines for
when to return a condition value and when to signal an error condition.

You should signal an error condition in the following situations:

• Your procedure returns a value in R0 and cannot return a condition value.

• Your procedure must execute quickly, and checking the return status of a
condition value would be inefficient.

• Your procedure will be executed repetitively; therefore, checking the condition
value returned would adversely affect your procedure’s performance.

• The amount of information you want to return about the error condition
cannot be contained in a condition value.

• A useful error message requires information that cannot be determined until
run time. For example, the FDL$PARSE procedure must tell you which line
of the FDL file was the cause of an error. Because the line number of the
line containing the error cannot be determined until run time, the signal
mechanism is preferred.

• You want to execute a specific condition handler in the event that an error
condition is signaled.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.

Designing Modular Procedures 2–21



Designing Modular Procedures
2.7 Planning for Signaling and Condition Handling

You should return a condition value in the following situations:

• You want to keep the error-handling mechanism simple.

• The speed of the error-checking mechanism is not of great concern.

• The total possible errors that may be returned is a small number, and
sufficient information about those errors can be contained in the condition
value returned.

• The functions provided by the procedure are so general that the procedure
will be used in various levels and environments.

2–22 Designing Modular Procedures



3
Coding Modular Procedures

This chapter describes how to code modular procedures. Specifically, it covers the
following topics:

• Coding guidelines

• Initializing modular procedures

• Writing AST-reentrant code

Appendix A summarizes many of these guidelines. Refer to the appendix to
review the guidelines, or use it as a checklist.

3.1 Coding Guidelines
The coding guidelines discussed in this section are of two types: required and
recommended. You must follow the sections marked required to ensure that
your application is modular. Compaq highly recommends that you adhere to
the guidelines presented in the sections marked recommended. Following these
additional rules will help you produce consistent, uniform applications.

3.1.1 Adhering to the Naming Conventions
The following guidelines apply to the naming of facilities, procedures, files,
modules, and program sections. You must follow these conventions when choosing
names for modules, PSECTs, and status codes.

3.1.1.1 Facility Naming Conventions (Recommended)
To make it easy to locate a set of related procedures, Compaq recommends that
you group your procedures into facilities. Providing related procedures with a
common facility prefix is a convenient method for organizing procedures. The
facility prefix is the first part of any procedure name.

As shown in Figure 3–1, the first three (or sometimes four) characters of a
procedure name are used to indicate the facility of a run-time library (RTL)
procedure.

Coding Modular Procedures 3–1



Coding Modular Procedures
3.1 Coding Guidelines

Figure 3–1 Examples of Facility Prefixes As Used in Procedure Names

ZK−3084−GE

STR$APPEND

Procedures
for String Manipulation
Facility Prefix

BAS$STRING

Procedures
for BASIC−Specific Support
Facility Prefix

Facility names represent library facilities. A procedure is characterized as
belonging to a particular facility according to the types of operations it performs.
Facilities may differ in the conventions they use for handling errors and receiving
arguments, as well as in primary function. Table 3–1 lists some common Compaq
facility prefixes.

Table 3–1 Common Library Facilities — Prefixes and Content

Prefix Content

ADA Ada Run-Time Library procedures

APL APL Run-Time Library procedures

BAS BASIC Run-Time Library procedures

B32 BLISS-32 Run-Time Library procedures

CDU Command Definition Utility

CLI Command language interpreter

COB COBOL Run-Time Library procedures

COR CORAL Run-Time Library procedures

C74 COBOL-74 Run-Time Library procedures

DBG Debugger

DBL DIBOL Run-Time Library procedures

DECC C RTL

ERF Error Log Report Formatter

FDV FMS Forms Driver Library procedures

FOR FORTRAN Run-Time Library procedures

LBR Librarian utility procedures

LIB RTL General-Purpose procedures

MATH Portable Math Library

MTH RTL Mathematics procedures

OTS RTL language-independent procedures

PAS PASCAL Run-Time Library procedures

PLI PL/I Run-Time Library procedures

RMS Record Management Services

RPG RPG II Run-Time Library procedures

(continued on next page)

3–2 Coding Modular Procedures



Coding Modular Procedures
3.1 Coding Guidelines

Table 3–1 (Cont.) Common Library Facilities — Prefixes and Content

Prefix Content

SMG RTL screen management procedures

SOR Sort utility procedures

STR RTL string manipulation procedures

VAX VAX Architecture Emulation

You can create your own facilities by defining a unique facility name and facility
number. The name for your facility should be a unique name between 1 and 27
characters. Facility names supplied by Compaq all contain a dollar sign ( $ ) after
the prefix. User-supplied facility names should use an underscore ( _ ) rather than
a dollar sign ( $ ) to avoid any name conflicts.

The facility number is used in defining condition values for the facility. Bit 27
(STS$V_CUST_DEF) of a condition value indicates whether the value is supplied
by Compaq or by the user. This bit must be 1 if the facility number is created
by the user. For more information, use the Help Message utility (MSGHLP) to
access online descriptions of system messages from the DCL ($) prompt. For
more information about using MSGHLP, refer to the OpenVMS System Messages:
Companion Guide for Help Message Users.

3.1.1.2 Procedure Naming Conventions (Recommended)
When you create a procedure and make its name global, you allow other
procedures in the same image to call that procedure. The common RTL
procedures are examples of procedures with global names. In such an
environment, a naming convention is required to prevent any name conflict
between global procedures in the same image.

The rules for naming entry points to procedures have the following general form:

• fac$symbol (Compaq supplied)

• fac_symbol (user-supplied)

where:

fac is a two- to four-character facility name.
symbol is a symbol from 1 to 27 characters long. (The entire procedure name may
not exceed 31 characters in length.)

The facility name and symbol name are separated by a dollar sign ( $ ) if the
procedure is supplied by Compaq and by an underscore ( _ ) if the procedure is
supplied by the user. This convention should be used to avoid conflict between
Compaq and user procedure names.

The procedure name usually consists of a verb and an object that together
describe the action of the procedure. For example, the Run-Time Library
procedure intended to get virtual memory is called LIB$GET_VM.

Some procedures, even though they have global names, are not intended to be
called from outside the facility in which they are located. These procedures are
only available internally, within a set of procedures, and do not by themselves
provide any functionality for the facility. The names for these procedures contain
a double dollar sign ( $$ ) if they are supplied by Compaq or a triple underscore
( _ __ __ ) if they are supplied by the user. (Three underscores are necessary

Coding Modular Procedures 3–3



Coding Modular Procedures
3.1 Coding Guidelines

to avoid conflict with user-defined condition value symbols, which use two
underscores.)

Table 3–2 shows examples of procedure entry point names.

Table 3–2 Naming Procedure Entry Points

Procedure Name Description

LIB$GET_VM Compaq supplied global procedure

LIB_PRINT_REPORT User-supplied global procedure

OTS$$INTERNAL Compaq supplied internal procedure

LIB_ __ __ADD_TAX User-supplied internal procedure

3.1.1.3 File Naming Conventions (Recommended)
You should derive your file name from the names of the procedures contained in
the module that comprises the file.

If a module contains a single procedure, the file name consists of the procedure
name. You can remove dollar signs and underscores, but this is not required. File
types are the standard default file types for the source language. For example,
the file containing the RTL procedure MTH$EXP is named MTHEXP.MAR.
This name makes it obvious that the file MTHEXP.MAR contains the procedure
MTH$EXP and is written in VAX MACRO.

Sometimes, the module comprising the file will contain more than one procedure.
For example, the RTL procedures LIB$GET_VM and LIB$FREE_VM are
contained in the same module and thus in the same file. In this case, a more
general file name is used, composed of the facility prefix (LIB) and the first nouns
common to all procedure names in the module ( VM ). Thus, the name for the file
containing procedures LIB$GET_VM and LIB$FREE_VM is LIBVM.B32. (The
file type B32 indicates that the module is written in VAX BLISS-32.)

3.1.1.4 Module Naming Conventions (Required)
Module names are identical to file names except that module names do not have
extensions, and the dollar sign ( $ ) or underscore ( _ ), which separates the facility
prefix and symbol name, is not removed.

For example, the MTH$EXP procedure is contained in module MTH$EXP and
the file MTHEXP.MAR. The LIB$GET_VM and LIB$FREE_VM procedures are
contained in the module LIB$VM and the file LIBVM.B32.

3.1.1.5 PSECT Naming Conventions (Required)
The code and data sections of a customer library procedure have two separate
program sections (PSECTs), named _fac_CODE and _fac_DATA, where fac is the
facility name. Compaq uses _fac$CODE and _fac$DATA as PSECT names.

Position-independent constant data is in the PSECT named _fac_CODE
(_fac$CODE for Compaq) to shorten the references. For example,
_LIB$CODE and _LIB$DATA are the only two PSECT names used by LIB$
procedures.

The collating sequence for leading underscores causes the linker to place all
library procedures after the user program in the executable image. This prevents
a library procedure from being placed between two user modules and adversely
affecting any byte or word displacement addressing contained in the user
programs.

3–4 Coding Modular Procedures



Coding Modular Procedures
3.1 Coding Guidelines

Not all languages give you control over PSECT names. In VAX BASIC and
VAX Pascal, it is not possible to control PSECT names except through use of
COMMON. However, using COMMON is not recommended.

For additional information about declaring PSECTs, see the appropriate language
reference manual.

3.1.1.6 Lock Resource Naming Conventions (Recommended)
When using the lock manager, the resource names of root-level locks (locks
without a parent) should be derived from the facility name. The naming
convention used is:

• fac$name (Compaq supplied)

• fac_name (user-supplied)

Following this convention will prevent unintended resource conflicts.

3.1.1.7 Global Variable Naming Conventions (Recommended)
Global variables should be named using the following format:

• fac$Gt_variablename (Compaq supplied)

• fac_Gt_variablename (user-supplied)

where:

The letter t indicates the contents and usage of the global variable. The possible
values of t are listed in Table 3–3.

Likewise, the format for addressable global arrays is as follows:

• fac$At_variablename (Compaq supplied)

• fac_At_variablename (user-supplied)

where:

The letter t indicates the contents and usage of the addressable global array. The
possible values of t are listed in Table 3–3.

Table 3–3 Code for the Content and Usage of Global Variables

Value of t Content and Usage of Global Variable

A Address

B Byte integer

C Single character

D D_floating

E Reserved for Compaq

F F_floating

FS S_floating

FT T_floating

G G_floating

H1 H_floating

1VAX specific

(continued on next page)

Coding Modular Procedures 3–5



Coding Modular Procedures
3.1 Coding Guidelines

Table 3–3 (Cont.) Code for the Content and Usage of Global Variables

Value of t Content and Usage of Global Variable

I Reserved for integer extensions

J Reserved for customers for escape to other codes

K Constant

L Longword integer

M Field mask

N Numeric string (all byte forms)

O Octaword

P Packed string

Q Quadword integer

R Records (structure)

S Field size

T Text (character) string

U Smallest unit of addressable storage

V Bit field

W Word integer

X Context dependent (generic)

Y Context dependent (generic)

Z Unspecified or nonstandard

3.1.1.8 Status Code and Condition Value Naming Conventions (Required)
The format of status codes and condition values is as follows:

• fac$_status (Compaq supplied)

• fac_ _status (user-supplied)

3.1.2 Using Common Source Files (Recommended)
For some applications, you may need to make identical argument declarations in
several modules. Languages supported by the OpenVMS operating system let you
centralize these declarations in one place by using common source files. Table 3–4
summarizes the common source file declarations for languages supported by the
OpenVMS operating system.

Table 3–4 How to Declare Common Source Files

Language Common Source File Declaration

Compaq Ada To share common declarations among DEC Ada programs,
you include the declarations in a package (as a separate
compilation unit) and provide visibility to the package by
using a WITH clause in programs you want to share the
common declarations.

BASIC You can use the BASIC directive %INCLUDE in your
program to include the common source file, or a Common
Data Dictionary (CDD) record.

(continued on next page)

3–6 Coding Modular Procedures



Coding Modular Procedures
3.1 Coding Guidelines

Table 3–4 (Cont.) How to Declare Common Source Files

Language Common Source File Declaration

BLISS-32 Your source program can contain a REQUIRE or LIBRARY
list option that specifies a file to be included at the point of
the declaration.

C Include a preprocessor directive to include a file or a
dictionary.

COBOL The COPY statement specifies source text from a COBOL
library file, a Librarian file, or a CDD record description that
is to be included in the source program.

DIBOL The INCLUDE directive includes a common source from a
separate file, text library, or CDD record.

FORTRAN The INCLUDE statement specifies a file or library module to
be included at the point of the statement. You can also use a
CDD record.

Assembly language An auxiliary source file or macro library can be specified in
the command line or by using a CDD record.

Pascal The %INCLUDE directive and INHERIT attribute specify
files to be included at the point of the declarations. You can
also use a CDD record.

PL/I The %INCLUDE preprocessor statement specifies a file to be
inserted as source. You can also use a CDD record.

RPG II An auxiliary source file can be specified in the command line.

3.1.3 Using OpenVMS System Services
Not all OpenVMS system services are modular, according to the definitions in
this manual. Procedures that call nonmodular system services are nonmodular
themselves. If your procedure uses a nonmodular system service, you should
list the system service in the Side Effects section of the procedure description.
(For information about the procedure description, see Section 2.6.2.) For more
information about specific system services and modularity, see the OpenVMS
System Services Reference Manual.

3.1.4 Invoking Optional User-Action Routines
An optional user-action routine is a useful way to let the calling program gain
control at a critical point in your procedure’s algorithm. Success routines and
error routines are the most common user-action routines. Control is passed from
your procedure to the optional error routine if the specified error is encountered
within your procedure. To transfer control, the calling program must pass the
user-action routine as an argument to the called procedure. To make it easy
for the calling program to pass information to its action routine, your procedure
should supply an optional user-arg argument that the calling program can pass
to its action routine. Your procedure merely copies the argument list entry of the
user argument, if present, to the argument list it passes to the action routine.
This achieves the same effect as up-level addressing.

Coding Modular Procedures 3–7



Coding Modular Procedures
3.1 Coding Guidelines

3.1.4.1 Bound Procedure Value (VAX Only)
On VAX systems, the bound procedure value (DSC$K_DTYPE_BPV) is used by
Compaq Pascal and other languages where context of the procedure must be
known. The procedure might do up-level addressing of a variable defined in a
syntactically outer block and allocated in another frame. (If you use a procedure
entry mask, this context is specified in the user-arg argument.)

For a bound procedure value passed by reference, the argument list entry
contains the address of two longwords. The first longword contains the address
of the procedure, and the second contains the environment pointer to be loaded
into R1 before the procedure is called. This environment pointer allows you to
specify the context of your action routine enabling you to do up-level addressing.
To provide a user-action routine using the bound procedure value passed by
reference, the calling sequence is as follows:

CALL myproc [action-routine [,user-arg]]

In this example, action-routine is a function call of the bound procedure value
type that is passed by reference, and user-arg is unspecified.

If you want to use the bound procedure value data type to pass access to a user
routine specified as a procedure entry mask, you must pass the first longword by
value and omit the second longword. Then, the user-action routine would have
this calling sequence:

status = action-routine (...[,user-arg])

In this example, status is a longword condition value that is passed by value,
and user-arg is unspecified. Your procedure copies the 32-bit argument list entry
passed by the calling program to the argument list provided to the action routine.
Therefore, the calling program and its action routine can communicate using any
data type, access type, passing mechanism, or OpenVMS usage.

3.2 Initializing Modular Procedures
Some modular procedures must initialize themselves before they can execute
correctly. Examples of initialization include the following:

• Storing in static storage a value that can only be determined at run time

• Declaring an exit handler using the $DCLEXH system service

• Allocating a processwide resource once

• Opening a file the first time the procedure is called

You must perform initialization carefully to maintain modularity.

Initialization must not affect the calling program. Therefore, avoid initializing
by providing an entry point that must be called before any other entry point
is called. Providing an entry point that must be called first forces the calling
program to provide an initialization entry point to its caller, and so forth. Also,
you would have to rewrite your calling programs if you needed to substitute a
procedure with an initialization call for one without an initialization call.

If your procedure uses LIB$INITIALIZE, you must preserve a modular
environment that does not conflict with the environment set by any other
procedure using LIB$INITIALIZE. (For more information, see OpenVMS
Programming Interfaces: Calling a System Routine1.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.

3–8 Coding Modular Procedures



Coding Modular Procedures
3.2 Initializing Modular Procedures

Several ways to initialize a procedure are as follows:

• Initialize at compile or link time.

• Use the mechanism provided by LIB$INITIALIZE to perform initialization
once for each image activation.

• Set a first-time flag at run time.

• Initialize storage each time it is allocated at run time.

• Initialize storage each time a procedure is called at run time.

The use of each method is explained in the following sections. Figure 3–2
summarizes these methods.

Figure 3–2 Methods of Initializing

(At Run Time)
Is Called

Time Procedure
Initialize Each

(At Run Time)
Allocated
Time It Is

Initialize Each

(At Run Time)
Time Flag
Set a First

Compile/Link Time
Initialize at

(At Run Time)
Program

Before Main
LIB$INITIALIZE

Needed
Initialization

Method

Of Static Storage:

Of Stack Storage:

Of Heap Storage:

Program:
Before the Main
To Set up a Handler

Permanent File:
To Open a Process−

$EXIT Handler:
To Set Up

Resources:
To Allocate

ZK−3085−GE

3.2.1 Initializing Storage
For a procedure to produce predictable results, all statically and dynamically
allocated areas must be initialized to known values before they are read.
Initialization of dynamically allocated stack and heap data involves writing
the data after each allocation and before reading it.

If your procedure has static storage, it is usually initialized to zero. In some
languages, you do not need to explicitly initialize static storage. These languages
automatically initialize static storage to zero. To see if the language you are
using initializes static storage implicitly, refer to your reference manual for that
language.

There are three ways to explicitly initialize storage: you can use an initialization
statement, test and set a first-time flag at run time, or use LIB$INITIALIZE. The
method of testing and setting a first-time flag is explained in Section 3.3.4.2.

Figure 3–3 shows examples of how languages supported by the OpenVMS
operating system initialize a longword, DAT, in static storage using an
initialization statement.

Coding Modular Procedures 3–9



Coding Modular Procedures
3.2 Initializing Modular Procedures

3.2.2 Testing and Setting a First-Time Flag
To do first-time initialization, your procedure can test and then set to one a
statically allocated first-time flag each time it is called. This flag is initialized to
zero at compile or link time.

Setting and testing the flag with the RTL procedure LIB$BBSSI, a Branch
on Bit Set and Set (BBSS) VAX instruction, or a Branch on Bit Set and Set
Interlocked (VAX BBSSI) instruction, ensures that initialization is executed
exactly once. (Some high-level languages provide semantics for accessing these
VAX instructions: for instance, the _BBSSI built-in for C.)

However, if your implementation language does not have access to VAX
instructions and the procedure is to be AST (Asynchronous System Trap)
reentrant, it must follow these steps:

1. Test the first-time flag.

2. If the first-time flag is set, initialization is complete.

3. If the first-time flag is not set, disable ASTs. Remember the previous state of
AST enable, and retest the flag.

4. If the first-time flag is now set, initialization was performed by an AST
that occurred between the first test and the AST disable; enable ASTs if
remembered state of ASTs was enable. Initialization is now complete.

5. If the first-time flag is not set, perform the initialization.

6. Set the flag.

7. Enable ASTs if remembered state of ASTs was enable. Initialization is
complete.

For additional information, see Section 3.3.

Note

ASTs should be enabled in Step 4 or Step 7 only if they were enabled
before Step 3. The $SETAST system service, used to disable ASTs,
indicates whether ASTs were enabled when the procedure was called.

3–10 Coding Modular Procedures



Coding Modular Procedures
3.2 Initializing Modular Procedures

Figure 3–3 How to Initialize Static Storage

INTEGER*4 DAT
INTEGER*4 DAT/0/
DATA DAT /0/
DATA DAT /100/

DAT: 
DAT:
DAT:

DAT :[STATIC] INTEGER;
DAT :[STATIC] INTEGER :=0;
DAT :INTEGER : = 100;

STATIC
EXTERNAL
GLOBALDEF
GLOBALREF

RPG II has static storage at the module level only.  Numeric variables are initialized
to zero and alphanumeric variables are initialized to spaces at compile time.

0
0
0

100

0
0

100

0
0

100

2
3
4
5

1 You cannot initialize a variable declared with an external attribute.

FORTRAN

MACRO

PASCAL VAR

PL/I

RPG

01 NUM PIC 9(3) VALUE 100.
01 NUM PIC 9 VALUE 0.
01 NUM PIC

DIBOL

100
0
0

1
0
1
0

Defined externally
1

1
0

100
0
0

BASIC does not permit static storage within a module, only common static storage.

X : INTEGER :=1Ada

BASIC

BLISS

C

OWN DAT;
OWN DAT INITIAL(0);
OWN DAT INITIAL(100);

static int  x;
static int  x = 1;
extern int  x;
int  x;
int  x = 1;
globaldef int  x;
globaldef int  x = 1;

COBOL

At compile time, fields within records, commons, and/or groups are initialized to
spaces or zeros (depending on data type).

Compile time
Compile time

Compile time
Compile time
Compile time

Compile time
Compile time
Compile time

Compile time
Compile time
Compile time

Compile time

Compile time

Compile time
Compile time

Compile time
Compile time
Compile time
Compile time

Compile time
Compile time
Compile time

Compile time
Compile time
Compile time

Compile time

Compile time

Language Statement Initialized
Value

Time of
Initialization

1 Elaboration time

.BLKL 1

.LONG 0

.LONG 100

INIT(2)
INIT(3)
INIT(4)
INIT(5)

ZK−6507−GE

Coding Modular Procedures 3–11



Coding Modular Procedures
3.2 Initializing Modular Procedures

Example 3–1 illustrates the use of a first-time flag in a Pascal program to allocate
a resource.

Example 3–1 Pascal Program That Uses a First-Time Flag

{+}
{ Program to demonstrate the use of a first-time flag when allocating
{ a resource. This technique is AST reentrant, but is NOT multithread
{ reentrant.
{-}

PROGRAM ALLOCATE;

CONST
VM_SIZE = 512;

VAR
INITIALIZED : BOOLEAN := FALSE;
VM_ADDRESS : INTEGER := 0;
AST_STATUS : INTEGER := 0;
VM_STATUS : INTEGER := 0;
DISABLE : INTEGER := 0;

FUNCTION LIB$GET_VM (SIZE : INTEGER; VAR ADDR : INTEGER) : INTEGER; EXTERNAL;
FUNCTION SYS$SETAST (VAR STATUS : INTEGER) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Check the first-time flag. If set, initialization has been
{ performed already.
{-}

IF NOT (INITIALIZED)
THEN

BEGIN

{+}
{ Disable ASTs, and remember the previous state.
{-}

AST_STATUS := SYS$SETAST (DISABLE);

{+}
{ Now, recheck the flag. If it is now set, initialization was
{ performed by another invocation of this procedure between when
{ the flag was first tested and now. Otherwise, initialization
{ is performed here.
{-}

IF NOT (INITIALIZED)
THEN

BEGIN

{+}
{ Perform the initialization.
{-}

VM_STATUS := LIB$GET_VM (VM_SIZE, VM_ADDRESS);

{+}
{ Set the first-time flag, indicating initialization complete.
{-}
INITIALIZED := TRUE;
END;

(continued on next page)

3–12 Coding Modular Procedures



Coding Modular Procedures
3.2 Initializing Modular Procedures

Example 3–1 (Cont.) Pascal Program That Uses a First-Time Flag

{+}
{ Restore ASTs to the previous state.
{-}

AST_STATUS := SYS$SETAST (AST_STATUS);
END;

END.

3.2.3 Using LIB$INITIALIZE
One way to initialize a value at run time is by using the PSECT
LIB$INITIALIZE. An example of a value that you may need to initialize at
run time is a seed for a random number generator.

To use LIB$INITIALIZE to initialize a value at run time, you must do the
following:

1. Write the main program.

2. Write an initialization procedure.

3. Write a MACRO or BLISS program to add the address of that initialization
procedure to PSECT LIB$INITIALIZE.

4. Compile the initialization procedure, main program, and MACRO program.

5. Link the initialization procedure, main program, and MACRO program.

6. Run the main program.

Assuming that you have completed the main program, first you must write an
initialization procedure. If, for example, you are going to use LIB$INITIALIZE
to initialize a value for a random number generator, you might write an
initialization procedure to set the seed equal to the current time. This would
generate a different seed for each initialization because the time is constantly
changing. One possible initialization procedure is shown in Example 3–2.

Once you have defined the initialization procedure, you must write the
MACRO program to add the address of that initialization procedure to PSECT
LIB$INITIALIZE. The format for this MACRO program is simple, as seen in
Example 3–3.

To modify this MACRO program for use in your own procedures, substitute the
name of your initialization procedure for MY_INIT_ROUTINE.

Coding Modular Procedures 3–13



Coding Modular Procedures
3.2 Initializing Modular Procedures

Example 3–2 BASIC Initialization Procedure for LIB$INITIALIZE

100 !+
! Initialization routine. A common piece of data, called SEED,
! is initialized based on the number of CPU seconds used by
! this process so far.
!-
SUB MY_INIT_ROUTINE(ONE,TWO,THREE,FOUR,FIVE,SIX)
COMMON (MY_DATA) LONG SEED
PRINT "Now in initialization routine."
CURRENT_TIME = TIME(1)
SEED = CURRENT_TIME
END SUB

Example 3–3 Program to Add Address to PSECT LIB$INITIALIZE

;+
; Make references to external routines used.
;-

.EXTRN LIB$INITIALIZE

.EXTRN MY_INIT_ROUTINE
;+
; Make a contribution to the PSECT LIB$INITIALIZE.
;-

.PSECT LIB$INITIALIZE USR,GBL,NOEXE,NOWRT,LONG

.ADDRESS MY_INIT_ROUTINE

.END

Once you have written the initialization procedure and the MACRO program
to add the dispatch address to PSECT LIB$INITIALIZE, you can link and run
your program. The sample program in Example 3–4 can be initialized in this
manner.

Example 3–4 BASIC Main Program

10 !+
! Mainline. The value of SEED is printed.
! The linker initializes this value to zero, but because
! LIB$INITIALIZE is used, an initialization routine is run
! before control is transferred
! here, and the value of SEED is changed to a
! somewhat random value.
!-
COMMON (MY_DATA) LONG SEED
PRINT "Now in mainline. The seed is initialized to: ";SEED

32767 END

To run LIB$INITIALIZE on the program in Example 3–4 and initialize the value
of SEED at run time, enter the following commands:

$ BASIC MAIN
$ BASIC INIT
$ MACRO INIT_SECTION
$ LINK MAIN,INIT,LIBRARY
$ RUN MAIN

The following is an example of the output generated by these steps:

Now in initialization routine.
Now in mainline. The seed is initialized to: 4099

3–14 Coding Modular Procedures



Coding Modular Procedures
3.2 Initializing Modular Procedures

If your procedure establishes a condition handler by calling LIB$INITIALIZE
before a main program, the action of this handler might conflict with other
condition handlers established by other procedures before the main program.

3.3 Writing AST-Reentrant Code
This section describes coding techniques for modular procedures that use the
asynchronous system trap (AST) interrupt mechanism or that permit calling
programs to use it.

All modular procedures should be AST reentrant so they can be called from any
program. If your procedure is not AST reentrant or calls any procedure that is
not, your program documentation should specify this to warn others against using
your procedure.

3.3.1 What Is an AST?
An asynchronous system trap (AST) is an OpenVMS mechanism for providing
a software interrupt when an external event occurs. One example of this type
of interrupt occurs when a user presses Ctrl/C. When the external event occurs,
the OpenVMS operating system interrupts the execution of the current process
and calls a procedure that you supply. This procedure is referred to as the AST
handler.

Some OpenVMS system services let an external event interrupt a process.
Because the interrupt occurs out of sequence with respect to process execution,
the interrupt mechanism is called an asynchronous system trap. The AST
interrupt transfers control to the AST handler that services the event. This AST
handler can call other procedures, including library procedures.

The AST handler you provide and any procedures it calls are said to be executing
at AST level. While at AST level, a process cannot be interrupted a second time
at the same access mode. The process runs to completion at the AST level before
the non-AST level procedure resumes.

A process is executing either at AST level or at non-AST level and thus consists
of two threads of execution, one thread at each level. Keep in mind that these
levels are threads of the same process and not separate processes.

When your AST handler finishes servicing the event, it returns control to
its caller. The interrupted procedure continues execution from the point of
interruption.

For example, you could call the Set Timer system service ($SETIMR) to specify
the address of an AST-level procedure to be executed after a specified amount of
time has elapsed. At the specified time, the system generates an AST interrupt
by stopping the procedure that is currently executing and calling the specified
AST handler.

For information about implementing AST interrupts with system services, see the
OpenVMS System Services Reference Manual.

3.3.2 AST Reentrancy Versus Full Reentrancy
A procedure is AST reentrant if it meets the following conditions:

• It can be interrupted at any point, permitting itself or any related procedure
to be called (reentered).

• It executes correctly when it continues from the point of interruption.

Coding Modular Procedures 3–15



Coding Modular Procedures
3.3 Writing AST-Reentrant Code

Do not confuse the term AST-reentrant with the term fully reentrant. Full
reentrancy refers to a more restrictive set of conditions.

In an AST-reentrant environment, the AST thread is expected to complete
regardless of whether it encounters a locked resource. When the AST thread
encounters a locked resource in an AST-reentrant environment, it expects to be
given a new resource, or else it is expected to return an error message. It is never
expected to wait for the resource that the non-AST level has locked.

In a fully reentrant environment, all threads are treated equally when they
encounter a locked resource; they wait for the resource to be freed. In a fully
reentrant environment, AST threads are not given any special treatment. The
Compaq Ada environment is an example of a fully reentrant environment. In
such a situation, there can be more than two threads of concurrent execution, and
each thread can alternately progress toward an end.

Note

It is highly desirable that future code satisfy the more stringent
requirement of being fully reentrant. Full reentrancy is important
for procedures that will be called from multithread environments, such as
Ada tasks. For more information, refer to the Ada documentation.

Compaq POSIX Threads Library, the Compaq multithreading run-time library,
provides a portable interface for creating and controlling multiple threads of
execution within the address space provided by a single process on Alpha or VAX
processors.

3.3.3 Writing AST-Reentrant Modular Procedures
To use AST interrupts, you must write an AST handler to take control at AST
level. An AST handler can be written in any language. Because the particulars
of writing an AST handler differ from one language to the next, see the reference
manual for the language you are working in for more details.

In general, an AST handler must follow these guidelines:

• It must be separate from the procedure that is currently executing.

• It must not modify data or instructions used by the interrupted procedure or
its callers.

• If it calls any other procedures, they must all be AST reentrant.

• The AST handler cannot stall or use busy wait to avoid being called before the
non-AST level is out of a critical section of code. Once the AST handler has
begun executing, it cannot be interrupted by anything at a non-AST level. In
fact, the only thing that can interrupt the AST handler is another procedure
running at AST level in a more privileged access mode.

If you attempt to use a busy wait and expect to change the condition from
the non-AST level, the AST level circles the busy wait in an infinite loop.
The process continues to loop because the non-AST level does not continue
executing until the AST thread has finished and thus is never able to change
the value in the busy wait condition.

3–16 Coding Modular Procedures



Coding Modular Procedures
3.3 Writing AST-Reentrant Code

• You cannot use the lock manager to protect a resource being accessed at non-
AST level from being accessed at AST level. The lock manager is designed
to lock resources between separate processes, not different threads (AST and
non-AST) of the same process.

• Avoid using static storage. A procedure that does not use static storage,
calls only AST-reentrant procedures, and does no up-level addressing is
automatically AST reentrant.

3.3.4 How to Eliminate Race Conditions During Concurrent Access
When using AST interrupts, you might encounter two problems: race conditions
and deadlocks. A race condition occurs when your AST handler attempts to use a
nonshareable resource already in use by the non-AST thread of execution.

If you allow the AST handler to wait for the resource (for example, by waiting
for an event flag to be set by the non-AST level code of the same access mode),
you have caused a form of deadlock. A deadlock occurs because the non-AST level
code cannot execute to free the resource until the AST-level code has finished
executing. The AST level code cannot continue either, because the non-AST level
code has effectively locked the resource.

A race condition occurs when you attempt to access or modify the same data in
static storage by both the AST and non-AST levels of a process. For example,
if an AST begins executing while the non-AST level is modifying data in static
storage, that data may be left in a nonstable state while the AST handler
executes. To prevent a race condition, you should allow only one thread at a
time to modify data. Use atomic modify operations provided by your HLL, which
correctly interlock such access.

If a procedure does not modify any static storage, it is both AST reentrant
and fully reentrant. Your procedure can eliminate conflict when accessing and
modifying data in static storage by:

• Detecting concurrency of access to data using test and set instructions at
entry to and exit from data storage. The procedure may then report an error,
or retry the operation (when appropriate) if concurrency is detected.

• Keeping a call-in-progress count that is incremented when your procedure is
called and decremented when it returns. The count is used as an index into
separate allocated areas.

• Disabling AST interrupts upon entry and restoring the enable state upon
exiting.

3.3.4.1 Performing All Accesses in One Instruction
All data modification in static storage can be performed in a single
uninterruptible instruction for some applications. However, this method applies
only to the VAX MACRO assembly language, and even then does not apply to
emulated instructions.

For example, you can use queue instructions to maintain a linked list in a single
instruction instead of modifying the forward and backward fields of the list in
several instructions. You can use a single queue instruction at the beginning of
your procedure to remove one section, and another queue instruction at the end
to insert the section back in the queue.

While a section is removed from the queue, your procedure can modify data in
it. If an AST interrupt occurs while the section is removed, a different section of
data is used instead, thus avoiding conflicts with the interrupted procedure.

Coding Modular Procedures 3–17



Coding Modular Procedures
3.3 Writing AST-Reentrant Code

Example 3–5 shows an AST-reentrant procedure that uses queue instructions to
control allocation of quadword blocks.

Example 3–5 VAX MACRO Program Showing Use of Queue Instructions to
Perform All Accesses in a Single Instruction

.PSECT _LIB_DATA PIC,USR,CON,REL,LCL,NOSHR,NOEXE,RD,WRT
FLAG: .LONG 0 ; First-time flag !
Q_HED .LONG 0,0

.PSECT _LIB_CODE PIC,USR,CON,REL,LCL,SHR,EXE,RD,NOWRT

.ENTRY LIB_GET_X,^M<>
BBC FLAG, FIRST ; Branch on 1st call only

TRY: REMQUE @Q_HED, R0 ; R0 = address of queue
BVS 10$ ; Branch if empty and fill
RET

10$: BSBB FILL ; Fill queues
BRB TRY ; Try again

;+
; Here on first call only
;-
FIRST: $SETAST #0 ; Disable ASTs, R0=old setting

BBSS FLAG, 20$ ; Branch if already set
MOVAL Q_HED, Q_HED ; Make queue empty
MOVAL Q_HED, Q_HED+4 ; Back pointer too
BSBB FILL ; Fill queues

20$: CMPL #SS$_WASSET, R0 ; were ASTs enabled before?
BNEQ TRY ; No, leave disabled, retry
$SETAST 1 ; Yes, enable ASTs
BRB TRY ; Try again

FILL: get space for 10 quadwords by calling LIB$GET_VM
and insert in queue using INSQUE
RSB

! This example could be recoded using REMQHI and INSQHI to avoid the need
for a first-time flag.

3.3.4.2 Using Test and Set Instructions
One method of eliminating the possibility of a race condition or deadlock is to use
test and set instructions to detect concurrent access. You can detect concurrent
access of static storage at both AST and non-AST levels by adding the following
steps to your procedures:

1. Place a Branch on Bit Set and Set (BBSS or BBSSI) instruction immediately
before your procedure accesses static storage. Or, use LIB$BBSSI or
semantics provided by your compiler.

2. Access or modify static storage, or both.

3. Place a Branch on Bit Clear and Clear (BBCC or BBCCI) instruction
immediately after your procedure has completed access to static storage.
Or, use LIB$BBSSI or semantics provided by your compiler.

The BBSS instruction detects that a concurrency conflict is about to take place
before static storage has been accessed. If the storage is being accessed by
multiple processors, you must use BBSSI and BBCCI.

There are two alternate techniques for resolving concurrency conflicts detected by
the BBSS and BBCC instructions:

• Use separate, statically allocated areas for storage at the AST and
non-AST levels. When the BBSS instruction detects concurrency at the

3–18 Coding Modular Procedures



Coding Modular Procedures
3.3 Writing AST-Reentrant Code

beginning, use the second allocated area. Note that this technique does
not work if an exception condition occurs between execution of the BBSS
instruction and the BBCC instruction, or if your procedure has not established
a condition handler. This is because a condition handler established by the
calling program might also simultaneously call your procedure.

• Reexecute your procedure if concurrency is detected. When the BBCC
instruction detects this concurrency, branch back to the beginning of your
procedure and try again.

Example 3–6 shows the latter technique. This MACRO procedure,
LIB_GET_INUM, allocates and deallocates identifying numbers.

Example 3–6 MACRO Program Showing Use of Test and Set Instructions

.TITLE LIB_GET_INUM -- Allocate and deallocate id. nos. 1 - 10
TAB: .WORD 0 ; Bitmap for flags

.ENTRY LIB_GET_INUM, ^M<>
10$: FFC #1, #10,TAB, R0 ; Find first free id, no.

BEQ 20$ ; Branch if none free
BBSS R0, TAB, 10$ ; Indicate id. no. in use
MOVL R0, @4(AP) ; Return id. no. found
MOVL #1, R0 ; Indicate success
RET

20$: CLRL @4(AP) ; Return 0
CLRL R0 ; Indicate failure
RET
.END

3.3.4.3 Keeping a Call-in-Progress Count
If the database is to be kept separate between calls, you can keep track of when
your procedure is called by using a call-in-progress count. Before database
access, the count is incremented and used as an index for an address table of the
separate databases. You should check for a count that exceeds the table length.
After the database has been accessed, the count is decremented.

This technique has an advantage over the BBxx technique because it can handle
more than two levels of reentrance. However, it is less reliable because an
exception can cause the count never to be decremented, leading to an eventual
procedure malfunction. You can avoid this by establishing a condition handler in
your procedure.

3.3.4.4 Disabling AST Interrupts
A procedure is also considered AST reentrant if AST interrupts are disabled
while critical sections of code execute. However, Compaq does not recommend
this method of maintaining AST reentrancy.

Sometimes the only way to avoid race conditions is to disable AST interrupts
during the access to static storage, and restore the state of the AST enable once
the critical section of code has finished executing. However, this technique could
adversely affect performance of real-time programs using AST interrupts. The
$SETAST system service, which is used to enable and disable AST interrupts, is
time consuming. Therefore, you should avoid disabling AST interrupts whenever
you can by using the techniques described in Section 3.3.4.1 to Section 3.3.4.3.

Coding Modular Procedures 3–19



Coding Modular Procedures
3.3 Writing AST-Reentrant Code

Try to minimize the number of instructions during which the AST interrupts
are disabled. Before disabling AST interrupts, establish a condition handler to
restore the AST level in case an exception or stack unwind occurs.

Example 3–7 shows how you can use $SETAST to disable ASTs and then restore
the previous state of the enable.

Example 3–7 FORTRAN Program Disabling and Restoring ASTs

!+
! This program demonstrates using the System
! Service SYS$SETAST to disable and then
! reenable AST interrupts.
!-

INCLUDE ’($SSDEF)’
INTEGER*4 SYS$SETAST

!+
! Turn off ASTs and remember the previous setting.
!-

ISTAT = SYS$SETAST (%VAL(0))
!+
! The statements in the program during whose
! execution you want ASTs disabled.
!
! If ASTs were previously enabled,
! reenable them.
!-

IF (ISTAT .EQ. SS$_WASSET) CALL SYS$SETAST( %VAL(1))
END

3.3.5 Performing Input/Output at AST Level
If your procedure performs I/O using OpenVMS RMS (RMS), you must use the
following coding techniques for your procedure to be AST reentrant:

• When opening process-permanent files — such as SYS$INPUT,
SYS$OUTPUT, SYS$COMMAND, or SYS$ERROR — check for the RMS
error status RMS$_ACT (active) after each $CREATE or $OPEN service.
This error indicates that a record operation has already started for the
process-permanent file. The error does not occur for files that are not process
permanent, and the $OPEN service follows the constraints of shared access
to the file that may have been imposed by a previous $OPEN service. If the
error occurs, perform a $WAIT using the same file access block (FAB). When
control returns to your procedure, try the $CREATE or $OPEN service again.
Repeat this sequence until it succeeds.

• When performing record I/O to any type of file, check for the RMS error status
RMS$_RSA (record stream active) or RMS$_BUSY (structure in use) after
each $GET and $PUT service. This error indicates that a record operation
has already been started for the file. If the error occurs, perform a $WAIT
using the same record access block (RAB). When control returns to your
procedure, try the $GET or $PUT service again. Repeat this procedure until
it succeeds.

3–20 Coding Modular Procedures



Coding Modular Procedures
3.3 Writing AST-Reentrant Code

• Avoid storing data in an RAB that RMS could still be accessing. You can
avoid this situation by doing either of the following:

Allocate the RAB on the stack so the AST and non-AST level have
separate RABs.

Allocate RAB in heap or static storage along with a busy bit. The busy
bit is tested and set using a BBSS instruction before the RAB is accessed.
If the RAB is already busy, your procedure executes a $WAIT using that
RAB.

For synchronous I/O (always completed before returning control to your
procedure), you can allocate the RAB in either of these ways. However,
the first method is more reliable, because it does not use static storage and
therefore does not become corrupted if an exception is signaled.

For asynchronous I/O (when control is returned to your procedure before I/O
is completed), you must use the second technique.

3.3.6 Condition Handling at AST Level
You should not allow an exception to propagate out of an AST handler because
the exception might be caught by any procedure that is active at the time of
the AST. Condition handlers for other active procedures might react as if the
exception was caused by a procedure that they had called.

Another reason for not allowing exceptions to propagate out of an AST handler
is that, for run-time environments that use multiple threads in a process such as
Ada, it cannot be determined which stack of the threads of execution is used to
deliver the AST. (The AST is delivered on the stack of whichever thread is active
at the time of the AST interrupt.)

It is best to catch all exceptions in the AST handler and not allow them to
propagate.

Coding Modular Procedures 3–21





4
Testing Modular Procedures

A successful test system is one that uncovers errors. To ensure successful testing,
plan how to test your procedures while you are designing them, and begin testing
while you are coding. You should test for the following:

• Ensure that the procedure you developed fulfills your requirements or
specifications.

Carefully test the functionality to ensure that the procedure does everything
that it is supposed to do. The methods you use to test this aspect of your
procedure depend upon the functions your procedure performs.

• Ensure that the procedure is modular and executes without error.

This chapter focuses on testing procedures for modularity. Modularity is
especially important to procedures that will be included in a library facility. A
procedure that is not modular can adversely affect the results and performance of
other procedures that call it.

To ensure modularity within procedures, perform at least the following tests:

• Unit testing

• Language-independence testing

• Integration testing

This chapter discusses methods for designing and administering these types of
tests. It also describes reentrancy, performance analysis, and RTL procedures for
time and resource monitoring.

4.1 Unit Testing
Before you begin combining units of code (such as subprograms, subroutines, and
internal procedures) to form your new procedure, it is essential to ensure that
each of these units works separately. Thorough unit testing is important for the
following reasons:

• Testing small units separately decreases the level of complexity within the
tests.

• It is easier and faster to debug a small unit of code than it is to find an error
within several units and their interfaces.

• It makes the integration stage that follows much easier if each of the separate
units has been thoroughly tested and the problems corrected.

• The earlier an error is found in development, the less expensive it is to fix.

Unit testing includes the following steps:

1. Review the goals of your procedure.

2. Choose test cases.

Testing Modular Procedures 4–1



Testing Modular Procedures
4.1 Unit Testing

3. Run the tests.

You determine the goals of your procedure at the requirements or specifications
stage. As mentioned earlier, this topic is not discussed in this manual because
it does not have a significant effect on modularity. However, it does have a
significant effect upon whether your final product can be considered successful.
If your product does not perform the functions or meet the requirements decided
upon at the requirements or specifications stage, it is not a successful project. You
should have at least one test for each of the requirements that your procedure
was designed to fulfill.

You can use the following two types of tests:

• Black box tests

• White box tests

Black box tests assume that you know nothing about the internal workings of the
procedure that you are testing. All that you are interested in is the output that
you receive for given sets of input.

White box tests (also called clear box tests) are more complicated because they
are designed to step through particular sections of code or algorithms internal to
the procedure. They assume that you know, in great detail, the internal workings
of the procedure being tested.

4.1.1 Black Box Testing
When you perform black box testing, you are interested only in the output you
receive for particular input values. Execute the procedure repetitively using input
from different classes. The best way to do this is to write a command procedure
or test driver program to execute the procedure a given number of times using
test data that you supply. (For information about writing command procedures,
see the OpenVMS User’s Manual.)

You should execute your procedure with test cases from each of the following
categories:

• Expected inputs

These include the values that you expect your procedure to receive most of
the time.

• Boundary values

If your procedure expects an input value from 1 to 999, use 1 and 999 as test
cases to make sure that your procedure returns the expected results for the
boundary cases.

• Illegal values

Using the boundary values example, what happens if your procedure receives
as input a value that is less than 1 or greater than 999? Does the user receive
a useful error message? Does the procedure simply stop, or does it attempt to
use values outside its limitations and simply return an incorrect answer? It
is essential that you run the procedure using illegal input values to determine
the answers to these questions.

4–2 Testing Modular Procedures



Testing Modular Procedures
4.1 Unit Testing

Figure 4–1 summarizes the methods of black box testing.

Figure 4–1 Black Box Testing Methods

ZK−4071−GE

Testing
Box
Black

Values
Illegal

Values

Inputs

Boundary

Expected

4.1.2 White Box Testing
When performing white box testing, unlike black box testing, you must
understand the internal workings of the procedure. Keep in mind that you
are testing internal workings—the specific lines of code.

To perform white box testing, do the following:

1. Test each statement.

You provide sets of test values to ensure that every statement in the
procedure is executed at least once. This includes all statements — even
those executed only when optional arguments, user-supplied arguments,
subroutines, user-action routines, or specific error codes are present.

2. Test each decision.

You provide test cases to ensure that each branch of a decision is executed at
least once. In the case of a standard Boolean decision, this typically requires
providing two values; however, this number may be much greater in the case
of compound or nested decisions.

3. Test each condition.

Condition testing requires writing test cases that ensure each condition in a
decision takes all possible outcomes at least once, and each point of entry to
the program or subroutine is invoked at least once. You must supply multiple
test values in cases of compound and nested loops. In testing the entry points,
remember to invoke any optional routines (either internal or external), as
well as error handlers. If your procedure contains a JSB entry point, that
entry point should also be tested.

Testing Modular Procedures 4–3



Testing Modular Procedures
4.1 Unit Testing

Figure 4–2 summarizes white box testing.

Figure 4–2 White Box Tests

ZK−4069−GE

Testing
Statement

Testing
Decision

Testing
Condition

Testing
Box
White

Note that each white box test finds a specific type of error. For example,
statement testing does not find an error on a negative value for a condition
if the statement is given a positive input the only time it is executed. Therefore,
you must perform all three white box tests.

4.2 Language-Independence Testing
For your procedures to be as useful as possible, they must be able to be called by
programs in any language. Providing for language independence is essential to
producing a useful procedure.

Testing for language independence is a specific type of unit testing. It ensures
that your program executes correctly, regardless of the language from which it is
called.

To test your procedures for language independence, write several driver programs
in languages you have chosen randomly. The driver program need only contain a
call to the procedure being tested.

If you do find that your procedures are not language independent, make sure that
they conform to the following rules:

• All atomic data must be passed by reference, and all strings must be passed
by descriptor.

Adherence to this single guideline is the most important factor in achieving
language independence.

• Statements that assume a specific language environment are not allowed.

For example, the statement ON ERROR GO BACK in a BASIC procedure
assumes that the calling program is also written in BASIC.

4–4 Testing Modular Procedures



Testing Modular Procedures
4.3 Integration Testing

4.3 Integration Testing
Integration testing is the next logical step following unit testing. Unit testing is
designed to test each separate component. Depending on your procedure, that
component might be a module, a subprogram, a subroutine, an internal procedure
(fac_ __ __ name), or an intrinsic piece of code. Once you have determined that
each unit works separately, you need to determine that the units also work
together to form the complete procedure.

Integration testing can be completed by either of the two methods described in
Section 4.3.1 and Section 4.3.2.

4.3.1 All-at-Once Approach to Integration Testing
One method of integration testing is the all-at-once approach. In this method,
you finish all the units, link them, and test the completed structure all at once.
Compaq strongly discourages use of this method, because it makes it difficult to
find the location of errors. For example, look at the organization of the units in
the sample procedure shown in Figure 4–3. Assume that this procedure used the
all-at-once approach and found an error; the procedure did not work. There is no
way of knowing whether the error was in unit A, unit B, unit C, or unit D.

Figure 4–3 Sample Procedure for Integration Testing

Level 1

Level 2

Level 3

ZK−4070−GE

Unit B Unit C

Unit D

Unit A

4.3.2 Incremental Approach to Integration Testing
The recommended approach to integration testing is called incremental testing.
Incremental testing involves testing the procedure by starting with one unit
and building on it one unit at a time. Each unit should always be subjected to
thorough unit testing before it is included in the integration tests.

Incremental integration testing is especially useful for finding the following types
of error:

• Problems with the calling interface between units (for example, inconsistent
ordering of arguments between the calling and called unit)

• Incorrect assumptions about what values are returned and the units to which
they are returned

Testing Modular Procedures 4–5



Testing Modular Procedures
4.3 Integration Testing

• Unexpected transfer of control between units

Using the sample procedure in Figure 4–3, complete the test of unit A on
level 1 before proceeding to level 2, where you test units A and B in combination.
At each level, you correct any errors before proceeding to the next level. When
you have completed the last step, you know that the entire procedure works
correctly.

Because you started at the top of the sample procedure and added units
incrementally from lower levels, you were using the top-down approach to
integration testing. You could just as easily have started at Level 3 and used the
bottom-up approach.

As you can see from the example, there are several distinct advantages to
incremental integration testing:

• It is not necessary to wait until the procedure is complete to begin integration
testing.

• Debugging is simplified by incremental testing because the modules and
interfaces can be tested as the system grows.

• Programming errors in the interfaces and incorrect assumptions between
units are discovered at an early stage.

• Because previously tested units are retested when new units are added, the
probability of discovering less obvious errors is increased substantially.

4.4 Testing for Reentrancy
It is important to test your procedures for reentrancy before placing them into
a library facility. Because ASTs can occur at any time, procedures that are not
AST reentrant may exhibit unexpected behavior. In particular, an AST occurring
during storage modification in a procedure that is not AST reentrant can corrupt
the contents of the procedure’s storage. (For further information about AST
reentrancy, see Section 3.3.)

Full reentrancy is important to multithread tasking environments, such as the
environment used by Ada.

To avoid problems with reentrancy, carefully read and follow the coding guidelines
described in Section 3.3.

4.4.1 Checking for AST Reentrancy
There are two methods of checking a procedure for AST reentrancy. You can use
the OpenVMS Debugger or perform a manual desk check.

4.4.1.1 Using the Debugger to Check for AST Reentrancy
When using the debugger to check for AST reentrancy, do the following:

1. Create an activation of the procedure.

2. Set watchpoints on all storage used by the procedure.

3. Create a second activation of the procedure using the CALL command. Allow
this second activation to run to completion. (The second activation represents
the AST-level thread.)

4–6 Testing Modular Procedures



Testing Modular Procedures
4.4 Testing for Reentrancy

Check to be sure that the AST-level thread of execution does not modify the
storage accessed by the non-AST level thread of execution. If the AST-level
thread of execution does modify any of that storage, check to ensure that
it does not cause any unwanted side effects for the non-AST level thread of
execution.

4. Execute one instruction in the first activation using the debugger STEP
command.

5. Repeat Steps 3 and 4 until the end of the procedure for the first activation.

For more information about the debugger, refer to the OpenVMS Debugger
Manual.

4.4.1.2 Using Desk Checking to Check for AST Reentrancy
Desk checking is the term for tracing through a procedure’s execution manually.
Performing a desk check for AST reentrancy consists of the following four steps:

1. Create an activation of the procedure being tested and its data using the
method you normally use for manually tracing through a procedure.

This activation represents the non-AST level of your procedure’s execution.

2. Create a second activation of the procedure using the process you used in step
1. This second activation represents the AST-level thread of your procedure’s
activation.

Trace through the AST-level thread’s execution to completion, one statement
at a time.

Remember to update the contents of all storage locations and variables for
each instruction of the procedure.

Check to be sure that the AST-level thread of execution does not modify the
storage accessed by the non-AST level thread of execution. If the AST-level
thread of execution does modify any of that storage, check to ensure that
it does not cause any unwanted side effects for the non-AST level thread of
execution.

3. Step through a single statement of the non-AST-level thread of execution,
remembering to update the contents of all storage locations.

4. Repeat steps 2 and 3 until you have stepped through every statement in
the non-AST level thread of execution. (Note that every statement of the
AST-level thread is stepped through in each pass through step 2.)

What you are actually doing in the process is testing between the execution of
every two statements in the procedure. The most rigorous method of applying this
type of desk checking for AST reentrancy is to step through the procedure at the
assembly language level and test between each assembly language instruction.

4.4.2 Checking for Full Reentrancy
Full reentrancy differs from AST reentrancy in the number of threads of
execution. An AST-reentrant environment can support only two threads of
execution: the AST-level thread and the non-AST-level thread. Full reentrancy is
important in environments that can support many threads of execution, such as
Ada.

A procedure is fully reentrant if any number of threads of execution can execute
to completion without affecting any of the other threads of execution.

Testing Modular Procedures 4–7



Testing Modular Procedures
4.4 Testing for Reentrancy

Typically, a procedure that is AST reentrant is also fully reentrant. For further
information on full reentrancy and environments supporting multiple threads of
execution, refer to the documentation for Compaq Ada.

4.5 Performance Analysis
All timer and resource allocation procedures should make statistics available
for performance evaluation and debugging. You should code timer and resource
allocation procedures with the following two entry points:

LIB_SHOW_name LIB_STAT_name

4.5.1 SHOW Entry Point
A SHOW entry point provides formatted strings containing the information you
need. The calling sequence for a SHOW entry point is as follows:

LIB_SHOW_name [code [,action-routine [,user-arg]]]

code
An optional code (in the form LIB_K_code) designating the statistic you need.
Define a separate code for each statistic available; the codes should be the same
for the SHOW and STAT entry points. The values associated with the codes
start at one for each procedure. The functional specification in the procedure’s
documentation should list the codes used. If the code is omitted, or zero, the
procedure provides all statistics.

action-routine
The address of an action routine. This is an optional argument. If omitted,
statistics are written to SYS$OUTPUT.

user-arg
An optional user argument to be passed to the action routine. If omitted, a
shortened list is passed to the action routine. The user-arg argument, if present,
is copied to the argument list passed to the action routine. That is, the argument
list entry passed by the calling program is copied to the argument list entry
passed to the action routine. The access type, data type, argument form, and
passing mechanism can be arbitrary, as agreed between the calling program and
the action routine.

The optional-action routine should have the following form:

ACTION-ROUTINE (string [,user-arg])

See Section 3.1.4 for an example of the code to invoke a user-action routine.

4.5.2 STAT Entry Point
A STAT procedure returns the information you want as binary results. The
calling sequence is as follows:

LIB_STAT_name (code ,value)

code
A code designating the statistic you want. A separate code is defined for each
statistic available; the codes are the same for the SHOW and STAT entry points.
Codes start at one.

value
The value of the returned statistic.

4–8 Testing Modular Procedures



Testing Modular Procedures
4.6 Monitoring Procedures in the Run-Time Library

4.6 Monitoring Procedures in the Run-Time Library
The run-time library (RTL) contains several procedures for time and resource
monitoring. These RTL procedures and their functions are as follows:

• LIB$SHOW_VM

LIB$SHOW_VM is a resource monitoring procedure that returns the statistics
accumulated from calls to LIB$GET_VM and LIB$FREE_VM.

The following three statistics are returned by default:

Number of successful calls to LIB$GET_VM

Number of successful calls to LIB$FREE_VM

Number of bytes allocated by LIB$GET_VM but not yet deallocated by
LIB$FREE_VM

LIB$SHOW_VM returns these statistics in the formatted form, nnnn.

• LIB$STAT_VM

LIB$STAT_VM is a resource monitoring procedure that returns to its
caller one of the three statistics available from calls to LIB$GET_VM
and LIB$FREE_VM. These are the same statistics that are returned by
LIB$SHOW_VM. Unlike LIB$SHOW_VM, which returns the statistics in
formatted form to SYS$OUTPUT, LIB$STAT_VM returns the specified
statistic in a signed longword integer.

• LIB$SHOW_TIMER

LIB$SHOW_TIMER is a time monitoring procedure that returns the times
and counts accumulated since the last call to LIB$INIT_TIMER and displays
them on SYS$OUTPUT. A user-supplied action routine may alter this default
behavior.

The following statistics are provided by default:

Elapsed real time

Elapsed CPU time

Count of buffered I/O operations

Count of direct I/O operations

Count of page faults

• LIB$STAT_TIMER

LIB$STAT_TIMER is a time monitoring procedure that returns the same
information as LIB$SHOW_TIMER. The difference is that LIB$STAT_TIMER
returns the information as an unsigned longword or quadword, whereas
LIB$SHOW_TIMER returns the information in the format hhhh:mm:ss:cc
for times and the format nnnn for counts. In addition, LIB$STAT_TIMER
returns only one of the five available statistics per call.

For more information about these time and resource monitoring procedures, see
the OpenVMS RTL Library (LIB$) Manual.

Testing Modular Procedures 4–9





5
Integrating Modular Procedures

Modular procedure libraries consist of compiled and assembled object code
intended to be associated with a calling program at link time. The linker resolves
references to procedures in these libraries when it searches user libraries
specified in the LINK command, or when it searches the default system libraries.
The program can then call library procedures at run time.

Compaq supplies several procedure libraries, such as the Run-Time Library,
that support components of the OpenVMS operating system. You can use
procedures in the Run-Time Library to perform frequently used operations by
including calls to Run-Time Library procedures in your program. The linker
automatically searches the default libraries to resolve references to Run-Time
Library procedures. (For information about the procedures available in the
Run-Time Library, see the OpenVMS Programming Concepts Manual.)

This chapter briefly describes how you can create your own procedure libraries
and shareable images. For more information about creating libraries and
shareable images, use the guidelines in the OpenVMS Linker Utility Manual.

5.1 Creating Facility Prefixes
A facility prefix is the group identifier for a set of related procedures contained
in a library facility. The facility prefix appears in the procedure name of every
procedure in that library facility. An example of a library facility is the Screen
Management facility in the Run-Time Library. The names of all the procedures
in the Screen Management facility begin with SMG, for example, SMG$ERASE_
CHARS.

To create your own facility prefix, follow these steps:

1. Choose a facility prefix. This prefix can be from 1 to 27 characters in length.
However, Compaq recommends that you choose facility prefixes between 2
and 4 characters.

2. If your facility will be generating messages, you must specify a unique facility
number in the message source file. This number can range from 0 to 4095.
Any number within this range, and not being used by someone else on your
system, is acceptable. This facility number is used by the message utility in
generating the condition value for the message.

Bit 27 (STS$V_CUST_DEF) of a condition value indicates whether that
value is supplied by the user or by Compaq. This bit must be 1 if the facility
number is user created. For more information, see the OpenVMS System
Messages and Recovery Procedures Reference Manual1.

3. Use the facility prefix when naming all procedures within the new facility.
Remember to follow the naming conventions described in Section 3.1.1.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.

Integrating Modular Procedures 5–1



Integrating Modular Procedures
5.2 Creating Object Module Libraries

5.2 Creating Object Module Libraries
In addition to using the system default object module libraries, you can create
your own object module libraries. An object module library that you create
can contain object files produced by any language compiler supported by the
OpenVMS operating system.

For more information about creating object module libraries, see the OpenVMS
Linker Utility Manual.

5.3 Creating Shareable Image Libraries
If you have a collection of procedures you expect a number of users to use, you
can group these procedures into a shareable image library. A shareable image
library is similar to an object library, except that it has been prelinked so that all
references between procedures in the library have already been resolved.

A shareable image has the following advantages:

• Conserves memory space

Several processes can share a single copy of a shareable image rather than
each process retrieving its own copy from the disk.

• Conserves disk storage space

Programs linked to a shareable image share a single disk copy of the library
code rather than each program including the code in its own executable
image.

• Shortens link time

Because the internal references in the library have already been resolved,
there is less work for the linker.

• Allows for updates without relinking

You can supply a new version of a shareable image that can automatically
be used by all programs linked to it without the need for the users to relink
their programs.

For more information about creating shareable image libraries, see the OpenVMS
Linker Utility Manual.

5–2 Integrating Modular Procedures



6
Maintaining Modular Procedures

This chapter describes important aspects of maintaining modular procedures.
Specifically, it covers the following topics:

• Making your procedures upwardly compatible

• Performing regression testing

• Adding arguments to existing routines

• Updating libraries

6.1 Making Your Procedures Upwardly Compatible
Upward compatibility is very important when maintaining procedures. If a
procedure is upwardly compatible, changes and updates to the procedure do not
affect executing and using previous versions of that procedure.

For example, imagine a user-written procedure named LIB_TOTAL_BILL. The
calling sequence for this procedure is as follows:

CALL LIB_TOTAL_BILL (sale, tax)

Assume that the user who wrote this procedure decided to update the procedure
so that it could be used to calculate the total bill for credit-card customers. To
do this, a third argument, interest, must be added. To be upwardly compatible,
adding the argument interest must not conflict with the way the procedure was
previously run. The new calling sequence would be as follows:

CALL LIB_TOTAL_BILL (sale, tax [,interest])

The procedure should be written so that the user can still call the procedure as it
was called before, simply omitting the interest argument.

If, in the updated version of this procedure, the user can still follow the
calling sequence of the previous versions, the procedure is said to be upwardly
compatible.

To ensure that your procedures are compatible with future versions of a shareable
image, see the OpenVMS Linker Utility Manual.

6.2 Regression Testing
Regression testing is a method of ensuring that new features added to a procedure
do not affect the correct execution of previously tested features. In regression
testing, you run established software tests and compare test results with expected
results. If the actual results do not agree with what you expected, the software
being tested may have errors. If errors do exist, the software being tested is said
to have regressed.

Maintaining Modular Procedures 6–1



Maintaining Modular Procedures
6.2 Regression Testing

Regression testing includes the following steps, as shown in Figure 6–1:

1. Create tests by writing command files to test your software.

2. Organize files to allow easy access to tests as they are needed.

3. Run tests as follows:

• To run a single test, submit its command file to the batch queue.

• To run multiple tests, create a command file that submits each test to the
batch queue.

4. Calculate the expected test results either by hand or by using previously
tested software.

5. Compare actual test results to the results you expected. If there are
inconsistencies, repeat your calculation in step 4. If the inconsistency still
exists, examine the changes you have made to the software to discover the
error.

Figure 6–1 Regression Testing

ZK−4061−GE

Results
Test

Calculate

Tests
Create

Tests
Organize

Tests
Run

Results
Compare

It is important to write new tests and repeat the regression testing steps every
time you add new functionality to the procedure. If you do not do so, the
procedure may regress while the errors go undetected.

6.3 Adding Arguments to Existing Routines
During the normal course of maintenance, it sometimes becomes necessary to
pass new or additional information to an existing procedure rather than create a
new procedure. This new information can be passed to the procedure in one of
the following two ways:

• Directly, by adding new arguments to the procedure

• Indirectly, using an argument block

6–2 Maintaining Modular Procedures



Maintaining Modular Procedures
6.3 Adding Arguments to Existing Routines

6.3.1 Adding New Arguments to the Procedure
There are two rules you must follow when directly adding new arguments to a
procedure:

• New arguments must be added at the end of the existing argument list.

• New arguments must be optional.

It is important that new arguments be added at the end of the existing argument
list to maintain upward compatibility. If you change the order of the existing
arguments by placing the new argument at the beginning or middle of the list,
all applications written with the previous version of the procedure will no longer
work.

Your procedure should also treat the new argument as an optional argument. If
the new argument is required, applications that used the previous version of the
procedure are invalidated.

Because you cannot assume that all previously written applications will be
rewritten to include the procedure’s new argument, the procedure must test for
the argument’s presence before attempting to access it. If the procedure does not
verify the presence of the new argument and attempts to access that argument
when it is not present, the results will be unpredictable.

The passing mechanism of the new argument must conform to the guidelines in
Section 2.2.1.

6.3.2 Using Argument Blocks
By using an argument block, you can avoid adding multiple arguments to your
procedure. When an argument block is used, the calling program passes a single
argument to the called procedure. This argument is the address of an argument
block. The argument block is a block of information containing any information
agreed on by the calling and called procedures. This information is required by
the called procedure to perform its task.

The argument block is simply a contiguous piece of virtual memory. The
information contained in the argument block can be numeric or scalar data,
descriptors, bit vectors, and so on. The format is agreed on by the users of the
procedure and its writer.

The first longword in the argument block contains the length of the block. The
length can be in bytes or longwords, but it must be agreed on by both the calling
program and the called process, and be implemented and documented as such.

One example of an argument block is the signal argument vector used in
condition handling. A condition handler is called with a signal argument vector
and a mechanism argument vector. Each vector is an example of an argument
block. The signal argument vector in Figure 6–2 is an example of an argument
block.

Maintaining Modular Procedures 6–3



Maintaining Modular Procedures
6.3 Adding Arguments to Existing Routines

Figure 6–2 One Type of Argument Block, the Signal Argument Vector

Number of longwords of information following

Condition Value

Program Counter (PC) at exception

Program Status Longword (PSL) at exception

ZK−4030−GE

the Exception
Additional Information About
Optional Arguments Providing

The signal argument vector contains the number of longwords of actual
information in its first longword. What information actually follows depends
on the condition value of the signal.

Note that if you lengthen an argument block to provide new information to a
called procedure, your procedure should check the length of the argument block
for validity before attempting to access the information. As with adding new
arguments directly to a procedure, the calling program may have been written to
pass the previous, shorter argument block. If your procedure does not check and
attempts to access information past the end of the actual argument block, the
results will be unpredictable.

6.4 Updating Libraries
Any time you make modifications or enhancements to modular procedures that
are a part of a library, you must update the library containing the procedures to
reflect the new or changed procedures.

6.4.1 Updating Object Libraries
If the updated procedures are in an object library, the library must be updated
so that subsequent access to that library by LINK or other commands will access
the object modules for the new or changed procedures.

To update an object library, use the LIBRARY command with the REPLACE
qualifier, as follows:

$ LIBRARY /REPLACE library-name filespec[,...]

In this example, library-name is the name you have given the library. The default
file type for library-name is OLB. The name of an object module is filespec. The
default file type for filespec is OBJ.

6–4 Maintaining Modular Procedures



Maintaining Modular Procedures
6.4 Updating Libraries

6.4.2 Updating Shareable Images
If the updated procedures are part of a shareable image, you must relink the
shareable image so that it contains the new or changed versions of any updated
object modules. If you add new procedures, you must update and recompile the
transfer vector (on VAX systems) or symbol vector (on Alpha systems) before
relinking the shareable image. If you add new modules, you must update the
linker options file before relinking. If you add new procedures and new modules,
you must update the transfer vector (on VAX systems) or symbol vector (on Alpha
systems) and the linker options file. If you change the transfer vector (on VAX
systems) or symbol vector (on Alpha systems), you must increment the minor
identification value of the GSMATCH by one. You can then relink the shareable
image.

For more information about updating shareable images, see the OpenVMS Linker
Utility Manual.

Maintaining Modular Procedures 6–5





A
Summary of Modular Programming Guidelines

This appendix summarizes the modular programming guidelines that are
described in this manual. References to the appropriate sections appear after
each guideline. The word Optional appears before the section reference if the
guideline is not required to maintain modularity.

A.1 Coding Rules
The coding rules in this section pertain to all procedures. These rules are grouped
in the following categories:

• Calling interface

• Initialization

• Exception conditions

• AST reentrancy

• Resource allocation

• Format and content of coded modules

• Upward compatibility

Detailed descriptions of the rules for each of these categories are presented in the
sections that follow.

A.1.1 Calling Interface

• Calls to procedures must follow the OpenVMS Calling Standard. Some
elements of this standard restrict procedures to a subset of the OpenVMS
Calling Standard to increase the ability of procedures to call each other. (See
OpenVMS Programming Interfaces: Calling a System Routine1.)

• A procedure makes no assumptions about its environment other than those
of this standard. In particular, to operate as specified, a procedure neither
makes assumptions about, or places requirements on, the calling program.

• A procedure should not call other procedures or system services if the
resulting combination violates this standard from the calling program’s
viewpoint. A procedure can call other procedures or system services that
do not follow optional elements of this standard. However, if the resulting
combination (as seen from the calling program) does not follow the optional
elements, the calling procedure must indicate such nonconformance in its
documentation. (See Section 3.1.3.)

• A modular procedure must provide to its callers an interface that allows the
callers to follow all required elements of this standard.

1 This manual has been archived but is available on the OpenVMS Documentation
CD–ROM.

Summary of Modular Programming Guidelines A–1



Summary of Modular Programming Guidelines
A.1 Coding Rules

• Each module should only contain a single public entry point. (Optional.)

• On VAX systems, when a procedure uses a JSB entry point, it should also
provide an equivalent call entry point to maintain language independence.
Although JSB calling sequences may execute faster than procedure calls,
an explicit JSB linkage to an external routine may not be provided in some
high-level languages. (Optional. See Section 2.3.)

• The order of required arguments should be the same as that of the hardware
instructions; namely, read, modify, and write. Optional arguments follow in
the same order. However, if a function value is large or is of type string,
the first argument specifies where to store the function value, and all other
arguments are shifted one position to the right. (See Section 2.2.4.)

• A procedure’s caller should indicate omitted trailing optional arguments either
by passing argument list entries that contain zero or by passing a shortened
argument list. However, system services require trailing arguments and do
not adhere to this guideline. (Optional. See Section 2.2.5.)

• String arguments should always be passed by descriptor. (See Section 4.2.)

• Procedures must not accept data from, nor return data to, their calling
programs by using implicit overlaid PSECTs or implicit global data areas. All
arguments accepted from or returned to the calling program must use the
argument list and function value registers. (See Section 2.2.2.)

• A procedure cannot assume that the implicit outputs of procedures it calls will
remain unchanged if subsequently used as implicit inputs to those procedures
or to companion procedures. (See Section 2.2.2.)

• On VAX systems, position-independent references (in a module) to another
PSECT must use longword relative addressing so the linker can correctly
allocate the data PSECT anywhere with respect to the code PSECT, no matter
how many code modules are included.

• On VAX systems, external references must use general-mode addressing
to allow the referenced procedures to be put in a shareable image without
requiring changes to the calling program.

• Procedures cannot require their callers to pass dynamic string descriptors.
(See Section 4.2.)

• Some procedure interface specifications retain state information from one
call to the next, even though the procedures are not resource allocating.
The interface specification uses one of the following techniques (in order of
decreasing preference) to permit sequences of calls from independent parts of
a program by either eliminating the use of static storage or overcoming its
limitations:

The interface specification consists of a sequence of calls to a set of one or
more procedures — the first procedure allocates and returns (as an output
argument to the calling program) one of the following:

* The address of heap storage

* Another processwide identifying value

This argument is passed to the other procedures explicitly by the
calling program, and the last procedure deallocates any heap storage
or processwide identifying value.

A–2 Summary of Modular Programming Guidelines



Summary of Modular Programming Guidelines
A.1 Coding Rules

The procedure’s caller allocates all storage and passes the address on each
call.

The interface specification consists of a single call, where the calling
program passes the address of one or more action routines and arguments
to be passed to them. The procedure calls the action routines during its
execution. Results are retained by the procedure across calls to the action
routines. (No static storage used.)

The interface specification consists of a sequence of calls to a set of one
or more procedures. The first procedure saves the contents of any still-
active static storage on a push-down stack in heap storage, and the last
procedure restores the old contents of static storage. Static storage is
made available for implicit arguments to be passed from one procedure
to the next in the sequence of calls (unknown to the calling program).
However, if an exception can occur anywhere in the sequence, the calling
program must establish a condition handler that calls the last procedure
in the event of a stack unwind (to restore the old contents of static
storage).

A.1.2 Initializing

• If a procedure requires initialization once for each image activation, it is done
without the caller’s knowledge by one of the following:

Initializing at compile time

Initializing at link time

Adding a dispatch address to PSECT LIB$INITIALIZE

Testing and setting a statically allocated, first-time flag on each call

• A procedure must not use LIB$INITIALIZE to establish a condition handler
before the main program is called if its action can conflict with that of
other condition handlers established before the main program. For more
information about initializing modular procedures, see Section 3.2.

A.1.3 Reporting Exception Conditions
A procedure must not print error or informational messages either directly or by
calling the $PUTMSG system service. It must either return a condition value in
R0 as a function value or call LIB$SIGNAL or LIB$STOP to output all messages.
(LIB$SIGNAL and LIB$STOP can be called either directly or indirectly.) (See
Section 2.5.)

A.1.4 AST Reentrancy

• To be AST reentrant, a procedure must execute correctly while allowing
any procedure (including itself) to be called between any two instructions.
The other procedure can be an AST-level procedure, a condition handler, or
another AST-reentrant procedure. (See Section 3.3.)

• A procedure that uses no static storage and calls only AST-reentrant
procedures is automatically AST reentrant. (See Section 3.3.3.)

• If a procedure uses static storage, it must use one of the following methods to
be called from AST and non-AST levels:

Perform access and modification of the database in a single
uninterruptible instruction. This can be done only from

Summary of Modular Programming Guidelines A–3



Summary of Modular Programming Guidelines
A.1 Coding Rules

VAX MACRO, and emulated instructions are not allowed. (See
Section 3.3.4.1.)

Detect concurrency of database access with test and set instructions at
each access of the database. (See Section 3.3.4.2.)

Keep a call-in-progress count incremented upon entry to the procedure
and decremented upon return. (See Section 3.3.4.3.)

Disable AST interrupts on entry to the procedure and restore the state of
the AST enables on return. (See Section 3.3.4.4.)

• If a procedure performs I/O from the AST level by calling RMS $GET and
$PUT system services, it must check for the record stream active error status
(RMS$_RSA). If this error is encountered, the procedure issues the $WAIT
system service and then retries the $GET or $PUT system service. (See
Section 3.3.5.)

• A procedure should not depend on AST interrupts being disabled to execute
correctly if there are other coding methods available. For example, RMS
completion routines are implemented via ASTs and will not work if ASTs are
disabled. (See Section 3.3.)

A.1.5 Resource Allocation

• A procedure should not allocate static storage unless it is a processwide,
resource-allocating procedure, or unless it must retain results for implicit
inputs on subsequent invocations.

• Timing procedures and resource allocation procedures should make statistics
available for performance evaluation and debugging by providing the entry
points fac_SHOW_name and fac_STAT_name. (Optional. See Section 4.3.)

• If a procedure uses a processwide resource, it calls the appropriate resource
allocating library procedure or system service to allocate the resource to avoid
conflict with allocations made to other procedures. To conserve resources, a
procedure that requests resource allocation does one of the following:

Calls the deallocation procedure before returning to the calling program

Remembers the allocation in static storage and calls the deallocation
procedure later

Passes the responsibility for deallocation back to the calling program

Allocates a fixed number of the resources, independent of the number of
times it is called (See Section 2.4 and Section 3.1.3.)

A.1.6 Format and Content of Coded Modules

• Each module must be documented with a module description. (See
Section 2.5.1.)

• Each procedure must be documented with a procedure description. (See
Section 2.5.2.)

• When symbol definitions are to be coordinated between more than one module
(such as control blocks, procedure argument values, and completion status
codes), the definitions should be centralized in a common source file. Note,
however, that the modules must be written in the same language. (See
Section 3.1.2.)

A–4 Summary of Modular Programming Guidelines



Summary of Modular Programming Guidelines
A.1 Coding Rules

• Procedure entry point names, module names, and PSECT names must
conform to the naming conventions. (See Section 3.1.1.2, Section 3.1.1.4, and
Section 3.1.1.5.)

• Compaq recommends that you also adhere to the naming conventions in
choosing names for facilities and files. (Optional. See Section 3.1.1.1 and
Section 3.1.1.3.)

A.1.7 Upward Compatibility
When a new version of a procedure replaces an existing library procedure, all new
arguments should be added at the end of the call sequence and made optional to
maintain upward compatibility. (Optional. See Section 2.2.5 and Chapter 6.)

Summary of Modular Programming Guidelines A–5





Index

A
Argument blocks, 6–3
Arguments

adding new, 6–2
explicit, 2–4
implicit, 2–4
optional, 2–10, A–2
order, 2–10, A–2

ASTs (asynchronous system traps)
condition handling at AST level, 3–21
definition, 3–15
disabling interrupts, 3–19
handler, 3–15, 3–16
I/O at AST level, 3–20, A–4
interrupt, 3–15
reentrancy, 3–15, A–3
routine, 3–15
thread, 3–15
writing AST-reentrant procedures, 3–16

Asynchronous system traps
See ASTs

B
Black box testing, 4–2
Bound procedures, values, 3–8
Busy wait, 3–16

C
Call-in-progress count, 3–19
Code

AST-reentrant, 3–15
fully reentrant, 3–15
writing AST-reentrant procedures, 3–16

Coding guidelines, 3–1
Common source files, A–4

declarations, 3–6
Condition handling

at AST level, 3–21
Condition values, 3–3

D
Deadlocks, 3–17
DECthreads, 3–16
Designing procedures, 2–1
Documenting modules

module description, 2–17, A–4
procedure description, 2–18, A–4

DSC$K_DTYPE_BPV, 3–8
See User-action routines

DSC$K_DTYPE_ZEM
See User-action routines

E
Event flags, 2–14

F
Facilities

creation, 5–1
library, 3–2
naming, 5–1
naming conventions, 3–1
number, 3–3
prefix, 3–1, 5–1

First-time flags, testing and setting, 3–10
Full reentrancy, 3–15

I
I/O (input/output), 2–14, A–3

asynchronous, 3–21
at AST level, 3–20
file, 2–16
synchronous, 3–21

Initialization
at run time, 3–13
using LIB$INITIALIZE, 3–13

Initializing
modular procedures, 3–8
storage, 3–9
using LIB$INITIALIZE, A–3

Input/output
See I/O

Index–1



Integrating procedures, 5–1
Integration testing, 4–1, 4–5

J
JSB entry points, 2–10, A–2

L
Language independence, testing for, 4–1, 4–4
Levels of abstraction, 2–2
LIB$INITIALIZE, 3–13

See also Initializing
Libraries

updating, 6–4
Library facility, 3–2
Lock manager, 3–17
Logical unit numbers, 2–14

M
Monitoring procedures, A–4

in the run-time library, 4–9
timer, 4–8

N
Naming conventions, A–4

for facilities, 3–1
for files, 3–4
for modules, 3–4
for procedures, 3–3
for PSECTs, 3–4
guidelines, 3–1

O
Object module libraries

creating, 5–2
updating, 6–4

Organizing
files and modules, 2–1
procedures, 2–1

P
Performance analysis, 4–8
Procedures

entry point names, 3–3
grouping, 5–1
interface, 2–4, A–1
libraries, 5–1

Program sections
See also PSECTs

PSECT
Compaq written, 3–4
LIB$INITIALIZE, 3–13
user-written, 3–4

PSECTs, 2–12, A–2

R
Race conditions

avoiding at AST level, 3–17
elimination of, 3–17

Reentrancy
AST, 3–15
full, 3–15

Regression testing, 6–1
Returning condition values, 2–21

S
Screen management resources, 2–15
Shareable images

updating, 6–5
SHOW entry point, 4–8
Signaling and condition handling, 2–20
Signaling error conditions, 2–20
Single instruction access, 3–17
STAT entry point, 4–8
Storage

heap, 2–11
initializing, 3–9
stack, 2–11
static, 2–12, A–4
summary, 2–13
types, 2–11

Symbol definitions, A–4
System resources, 2–11
System services, 3–7, A–1

T
Terminal I/O, 2–15
Test and set instructions, 3–18
Testing new procedures

black box, 4–2
integration, 4–1, 4–5
language independence, 4–1, 4–4
modularity, 4–1
reentrancy, 4–6
regression, 6–1
unit, 4–1
white box, 4–3

Threads of execution, 3–15

U
Unit testing, 4–1

black box, 4–2
white box, 4–3

Upward compatibility, 6–1, A–5
User-action routines, 2–6

optional, 3–7
passing, 3–7

Index–2



W
White box testing, 4–3

Index–3




	Guide to Creating OpenVMS Modular Procedures
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How to Order Additional Documentation
	Conventions

	1 Introduction to Modular Procedures
	1.1 Why Bother with Modular Procedures?
	1.2 Invoking a Modular Procedure
	1.3 Using Procedure Libraries
	1.4 Existing System Procedures
	1.5 Using Translated Images (Alpha Only)

	2 Designing Modular Procedures
	2.1 Organizing New Applications
	2.1.1 Organizing Files and Modules
	2.1.2 Organizing Procedures into Modules

	2.2 Defining a Modular Procedure Interface
	2.2.1 Explicit Arguments
	2.2.2 Implicit Arguments
	2.2.3 How to Avoid Using Implicit Arguments
	2.2.4 Order of Arguments
	2.2.5 Using Optional Arguments

	2.3 JSB Entry Points (VAX Only)
	2.4 Using System Resources
	2.4.1 Choosing a Storage Type
	2.4.2 Using Event Flags
	2.4.3 Using Logical Unit Numbers

	2.5 Using Input/Output
	2.5.1 Terminal Input/Output
	2.5.2 File Input/Output

	2.6 Documenting Modules
	2.6.1 Writing a Module Preface
	2.6.2 Writing a Procedure Description

	2.7 Planning for Signaling and Condition Handling
	2.7.1 Guidelines for Signaling Error Conditions
	2.7.2 Guidelines for Returning Condition Values
	2.7.3 When to Signal or Return Condition Values


	3 Coding Modular Procedures
	3.1 Coding Guidelines
	3.1.1 Adhering to the Naming Conventions
	3.1.2 Using Common Source Files (Recommended)
	3.1.3 Using OpenVMS System Services
	3.1.4 Invoking Optional User-Action Routines

	3.2 Initializing Modular Procedures
	3.2.1 Initializing Storage
	3.2.2 Testing and Setting a First-Time Flag
	3.2.3 Using LIB$INITIALIZE

	3.3 Writing AST-Reentrant Code
	3.3.1 What Is an AST?
	3.3.2 AST Reentrancy Versus Full Reentrancy
	3.3.3 Writing AST-Reentrant Modular Procedures
	3.3.4 How to Eliminate Race Conditions During Concurrent Access
	3.3.5 Performing Input/Output at AST Level
	3.3.6 Condition Handling at AST Level


	4 Testing Modular Procedures
	4.1 Unit Testing
	4.1.1 Black Box Testing
	4.1.2 White Box Testing

	4.2 Language-Independence Testing
	4.3 Integration Testing
	4.3.1 All-at-Once Approach to Integration Testing
	4.3.2 Incremental Approach to Integration Testing

	4.4 Testing for Reentrancy
	4.4.1 Checking for AST Reentrancy
	4.4.2 Checking for Full Reentrancy

	4.5 Performance Analysis
	4.5.1 SHOW Entry Point
	4.5.2 STAT Entry Point

	4.6 Monitoring Procedures in the Run-Time Library

	5 Integrating Modular Procedures
	5.1 Creating Facility Prefixes
	5.2 Creating Object Module Libraries
	5.3 Creating Shareable Image Libraries

	6 Maintaining Modular Procedures
	6.1 Making Your Procedures Upwardly Compatible
	6.2 Regression Testing
	6.3 Adding Arguments to Existing Routines
	6.3.1 Adding New Arguments to the Procedure
	6.3.2 Using Argument Blocks

	6.4 Updating Libraries
	6.4.1 Updating Object Libraries
	6.4.2 Updating Shareable Images


	A Summary of Modular Programming Guidelines
	A.1 Coding Rules
	A.1.1 Calling Interface
	A.1.2 Initializing
	A.1.3 Reporting Exception Conditions
	A.1.4 AST Reentrancy
	A.1.5 Resource Allocation
	A.1.6 Format and Content of Coded Modules
	A.1.7 Upward Compatibility


	Index
	Examples
	Example 2–1 FORTRAN Program Showing the Improper Use of Implicit Arguments
	Example 2–2 FORTRAN Program Combining Procedures to Avoid Implicit Arguments
	Example 2–3 Static Storage and AST Reentrancy
	Example 2–4 Sample Module Description
	Example 2–5 Sample Procedure Description
	Example 3–1 Pascal Program That Uses a First-Time Flag
	Example 3–2 BASIC Initialization Procedure for LIB$INITIALIZE
	Example 3–3 Program to Add Address to PSECT LIB$INITIALIZE
	Example 3–4 BASIC Main Program
	Example 3–5 VAX MACRO Program Showing Use of Queue Instructions to Perform All Accesses in a Single Instruction
	Example 3–6 MACRO Program Showing Use of Test and Set Instructions
	Example 3–7 FORTRAN Program Disabling and Restoring ASTs

	Figures
	Figure 1–1 Developing a Program That Calls Library Procedures
	Figure 2–1 Levels of Abstraction
	Figure 2–2 Possible Procedure Groupings
	Figure 2–3 Designating Storage Responsibility to the Caller
	Figure 2–4 Use of Storage Types
	Figure 3–1 Examples of Facility Prefixes As Used in Procedure Names
	Figure 3–2 Methods of Initializing
	Figure 3–3 How to Initialize Static Storage
	Figure 4–1 Black Box Testing Methods
	Figure 4–2 White Box Tests
	Figure 4–3 Sample Procedure for Integration Testing
	Figure 6–1 Regression Testing
	Figure 6–2 One Type of Argument Block, the Signal Argument Vector

	Tables
	Table 2–1 Summary of Storage Use by Language
	Table 3–1 Common Library Facilities — Prefixes and Content
	Table 3–2 Naming Procedure Entry Points
	Table 3–3 Code for the Content and Usage of Global Variables
	Table 3–4 How to Declare Common Source Files




