
Ate

Web Services Integration Toolkit for OpenVMS

Interface Definition File (IDL) Reference

June 2012

This document contains information that will help you to read or manually modify the WSIT IDL file.

Software Version
Web Services Integration Toolkit
Version 3.4-1

Hewlett-Packard Company
Palo Alto, California

 2

© Copyright 2012 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for
Commercial Items are licensed to the U.S. Government under
vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and services
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions
contained herein.

Intel and Itanium are trademarks of Intel Corporation in the U.S. and other countries.

Microsoft, Windows, Windows XP, Visual Basic, Visual C++, and Win32 are trademarks of Microsoft Corporation in the
U.S. and/or other countries.

Java and all Java-based marks are trademarks or registered trademarks of Oracle and/or its affiliates in the U.S. and/or
other countries.

About Web Services Integration Toolkit for OpenVMS Documentation

This IDL Reference describes the layout of the WSIT Interface Definition Language (IDL) file in order to
make it as easy as possible for a developer to manually read and modify it.

The Installation Guide and Release Notes includes system requirements and installation instructions for
OpenVMS, as well as release notes for the current release of the Web Services Integration Toolkit for
OpenVMS.

The Developer’s Guide contains information about how to use the tools in the Web Services Integration
Toolkit for OpenVMS, and things to consider as you prepare your legacy application.

For the latest release information, refer to the Web Services Toolkit for OpenVMS web site at
http://www.hp.com/products/openvms/webservices/.

http://www.hp.com/products/openvms/webservices/

 3

Contents

1 Overview ... 4

2 <OpenVMSInterface> Block ... 4

2.1 <Enumeration> Block ... 5

 2.1.1 <Enumerator> Block ... 6
2.2 <Typedef> Block ... 6
2.3 <Primitive> Block... 7
2.4 <Structure> Block .. 8
 2.4.1 <Field> Block .. 8

 2.4.1.1 <Array> Tag ... 9
2.5 <Routine> Block .. 10
 2.5.1 <Parameter> Block ... 10

 2.5.1.1 <Array> Tag ... 11
2.6 Valid Property Values ... 12

3 Example WSIT IDL File .. 13

4 Mapping Language Definitions to IDL .. 14

 4.1 Mapping Binary Types ... 14
 4.2 Mapping Decimal Types .. 15
 4.3 Mapping String Types .. 16
 4.4 Mapping Arrays ... 18
 4.5 Mapping Structures ... 19

5 Mapping BLOBs and Other Unformatted Data .. 20

 4

1 O V E R V I E W

The Web Services Integration Toolkit (WSIT) provides tools to expose the API of an existing non-java
application as a java based API. The first step in this process is to create an Interface Definition
Language (IDL) file which describes the API to be wrapped. This IDL is an XML formatted file which may
be created by a WSIT provided tool or it may be created by hand. In either case, it is often necessary to
modify this file during the development of the WSIT application. This document will describe the XML tags
and their relationship to each other.

A WSIT IDL file has an easy to understand nested layout that allows a developer to completely describe
their application’s interface in a language-neutral way. It does this by allowing the definition of all routines
and structures that are to be exposed by the application. Within these routine and structure definitions,
all parameter and field datatypes are mapped (translated) into their OpenVMS equivalent datatypes
(DSC$K_DTYPE_*).

In general, the mapping of parameters within routines, and fields within structures, take one of the
following two forms:

“User datatype specification” -> typedef translation[n] -> Primitive

translation -> OpenVMS primitive (datatype)

-or-

“User datatype specification” -> typedef translation[n] -> Structure

definition

Structure definitions contain an ordered set of fields which in turn go through the above translations until
all definitions have been mapped into their equivalent OpenVMS datatypes.

Note: The [n] states that zero or more typedef translations may occur before the final translation to an

OpenVMS datatype (primitive) or structure definition.

The sections below describe how each component (routine, structure, and so on), including translation
(mapping), is defined within the WSIT IDL file.

2 <OpenVMSInterface> BLOCK

The <OpenVMSInterface> block s is the main block that encapsulates all of the blocks that collectively

describe the application’s interface. It has the following format:

 <OpenVMSInterface

 xmlns="hp/openvms/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="hp/openvms/integration openvms-integration.xsd"

 ModuleName="DISK:[MYDIR.STOCK]stock.OBJ"

 Language="C89">

 .

 <Enumerations>

 </Enumerations>

 .

 <Typedefs>

 </Typedefs>

 .

 <Primitives>

 5

 </Primitives>

 .

 <Structures>

 </Structures>

 .

 <Routines>

 </Routines>

 .

 </OpenVMSInterface>

Except for the first line in the XML file, which is <?xml version="1.0" encoding="UTF-8"?>, all

lines within the WSIT IDL file reside within the <OpenVMSInterface> block.

The properties within the <OpenVMSInterface> tag (in bold above) are primarily generic header

information that is required, and is identical, for all WSIT IDL files. The two notable exceptions are the
ModuleName and Language properties, described below:

Property Name Description
ModuleName For 3GL based applications, this is the fully

qualified file specification of the OBJ module that
contains the application’s interface. For ACMS
based applications, this is the ACMS application
name.

Language This is the language in which the interface module
was written in, such as C89, BASIC, COBOL, and
ACMS, …

The blocks nested within the <OpenVMSInterface> block contain the collection of definitions

corresponding to that component or translation type. For example:

 The <Routines> block contains all of the individual <Routine> blocks that describe the exposed

routines of an application.

 The <Structures> block contains the list of <Structure> definitions.

 The <Primitives> block contains the list of <Primitive> or OpenVMS datatype translations.

 The <Typedefs> block contains the list of <Typedef> definitions.

 The <Enumerations> block contains the list of <Enumeration> definitions.

All of the individual definition blocks and tags are described in greater detail below.

2.1 <Enumeration> Block

The collection of <Enumeration> blocks contains all of the constant definitions that are defined as

enumerations within the application. An <Enumeration> is made up of a name, an OpenVMS datatype,

an optional size in bytes, and the list of Name/Value pairs. The format of the block is as follows:

<Enumerations>

 <Enumeration Name = “myenums”

 VMSDataType = “DSC$K_DTYPE_L”

 ByteSize = “4”>

 […see Enumerator block for more information…]

 </Enumeration>

</Enumerations>

 6

The properties of the <Enumeration> tag are defined as follows:

Property Name Description
Name The name given to this collection of enumerators.
VMSDataType The equivalent OpenVMS datatype of the

enumeration. The DSC$K_DTYPE_* values are

used to specify them in a language and
application independent way.

ByteSize The size, in bytes, of the specified datatype.

2.1.1 <Enumerator> Block

Each <Enumerator> within an enumerator collection (an Enumeration) specifies a name/constant value

pair. These pairs make up the set of valid values for the Enumeration. The format of an Enumerator is:

<Enumeration …>

 <Enumerator Name = “PIC$SIZE1” ConstantValue = “1”/>

 <Enumerator Name = “PIC$SIZE2” ConstantValue = “2”/>

</Enumeration>

The properties within the <Enumerator> tag are as follows:

Property Name Description
Name The name given to the specified constant value.
ConstantValue The constant value associated with the specified

name.

2.2 <Typedef> Block

The collection of <Typedef> blocks contains all of the typedef translations used within the application.

Each <Typedef> tag describes a user defined mapping of a type name to an equivalent type. In C, this

would look something like:

 typedef myint unsigned int;

Each <Typedef> tag has the following format:

 <Typedef Name = “myint”

 TargetName = “unsigned int”/>

Where each property is defined below:

Property Name Description
Name The user defined name associated with the

typedef within the application.
TargetName The equivelant datatype that this typedef maps to.

This may specify another typedef, a primitive, or a
structure definition.

 7

2.3 <Primitive> Block

The collection of <Primitive> blocks contains the datatype translations to their OpenVMS equivalents

for all datatypes used within an application. Each <Primitive> mapping contains the datatype, the

OpenVMS datatype (primitive) that it maps to, along with any other information needed to completely

describe that primitive. The <Primitive> tag has the following formats.

The following describes a Packed Decimal:

<Primitive Name = "DSC$K_DTYPE_P_5_2"

 Size = "5"

 Scale = "2"

 VMSDataType = "DSC$K_DTYPE_P" />

The following describes a simple Longword:

<Primitive Name = "int"

 Size = "4"

 VMSDataType = "DSC$K_DTYPE_L" />

The following describe different string types (a dynamic string and a varying string):

<Primitive Name = “String_Dynamic"

 Size = "0"

 FixedFlag = "0"

 NullTerminatedFlag = "1"

 VMSDataType = "DSC$K_DTYPE_T" />

<Primitive Name = “Varying_String_20"

 Size = "20"

 FixedFlag = "0"

 NullTerminatedFlag = "1"

 VMSDataType = "DSC$K_DTYPE_VT" />

The properties of the <Primitive> tag are described below:

Property Name Description
Name The application or language specific name for the

specified datatype, such as unsigned int or PIC

9(8).**

VMSDataType The equivalent OpenVMS datatype specification.

The DSC$K_DTYPE_* values are used to specify

them in a language neutral way.
Size The size of the primitive being defined.*** This is

ignored for datatypes whose size is constant, such

as DSC$K_DTYPE_L. If the datatype is a string and

the size is 0, then the string is considered
dynamically sized.

Scale Only used with scaled numeric datatypes, this
property specifies the scale factor for the primitive
being defined. Note that a positive scale factor
specifies that the decimal point moves to the left.
(The example above would represent a number
with the format of 123.45.)

 8

FixedFlag Only used with string datatypes, this property
specifies that the string being defined is of fixed
size. A value of 1 specifies fixed size, while a 0
specifies that the string is dynamically sized.

NullTerminatedFlag Only used with string datatypes, this property
specifies if a null terminator should be appended to
the end of the string. For fixed length strings, the
string will be truncated if needed in order to append
the null terminator. A value of 1 says to append a
null, while a value of 0 specifies no null.

MemoryFreeByWSIT Only used with BLOB datatypes. If set to 1, it
specifies that WSIT should deallocate the memory
that the user allocated once the call is complete.
(Refer to Section 5.)

 ** All Primitive Names must be unique. For primitives that are the same but differ in size and/or scale,
one way force uniqueness is to embed the size and scale values into the Primitive Name itself. (See the
Packed Decimal example above.)

*** The size is specified in bytes for all datatypes except Scaled Numerics, where the size specifies the
number of digits. Note that for Varying Strings, the size specifies the maximum length of the string. (The
actual length of the varying string is determined at runtime. If the varying string size is specified as 0,
then the actual length at runtime is used as the maximum size.)

2.4 <Structure> Block

Although a language may refer to them as Records, Workspaces, or Structures, all languages support the

concept of a structure. The collection of <Structure> blocks contains all of the user defined structure

definitions that will be passed in or out of the application’s interface. Each <Structure> block

represents a single user defined structure definition. All parameters and fields must eventually map to an

OpenVMS primitive, or one of these structure definitions. The format of the <Structure> block is:

<Structures>

 <Structure Name = "MyStruct"

 TotalPaddedSize = "128">

 […See Field Block below for more information…]

 </Structure>

</Structures>

The properties of the <Structure> tag are:

Property Name Description
Name The user specified name given to this structure

(record, workspace, …) definition.
TotalPaddedSize The size of the structure, including any padding

added for alignment purposes.

2.4.1 <Field> Block

Each <Field>…</Field> block describes a single field within a structure. The format of a <Field>

block is as follows:

 9

<Structure … >

 <Field Name = "Fld1"

 Type = "signed int"

 Offset = "0"/>

 <Field Name = "Fld2"

 Type = "FixedString16"

 Offset = "4"/>

 <Field Name = "AryFld3"

 Type = "signed int"

 Offset = "20"

 ArrayDimension = "1"

 RowByColumn = "0">

 <Array LowerBound = "0"

 UpperBound = "9"/>

 </Field>

</Structure>

The properties of the <Field> tag are:

Property Name Description
Name The user specified name given to this field
Type The language dependant or application specific

datatype associated with this field. (Primitive,
Typedef, Enumeration, or Structure.)

Offset The offset (within the structure) to the start of this
field.

ArrayDimension If this field is an array of elements, this property
specifies the number of dimensions within the
array.

RowByColumn If this field is a multi-dimensional array of
elements, this property specifies the ordering of
the dimensions within memory. All languages,

except FORTRAN, use a RowByColumn layout.

Use a 1 to specify RowByColumn, and a 0 to

specify ColumnByRow (FORTRAN).

<Array> Tag See below.

2.4.1.1 <Array> Tag

For fields and parameters that are arrays, the <Array> tag is used to specify dimension information for a

single dimension. The number of <Array> tags must match the number specified in the

ArrayDimension Field property above. The format of the <Array> tag is shown above.

The properties of the <Array> tag are:

Property Name Description
LowerBound The user specified lower bound of this dimension.
UpperBound The user specified upper bound of this dimension.

Note that the upper bound must be larger than the
lower bound.

Note: The size of each array dimension is UpperBound - Lowerbound + 1.

 10

2.5 <Routine> Block

The collection of <Routine> blocks contains all of the definitions for the routines being exposed by the

application. Each <Routine> block contains the complete description of a single exposed routine call,

including all parameter and return information. The format for the <Routine> block is as follows:

<Routines>

 <Routine Name = “MyRoutine”

 ReturnType = “unsigned int”

 Description = “This is the description for my routine”>

 […Refer to the Parameter block section below for more information…]

 <\Routine>

<\Routines>

The properties of the <Routine> tag are:

Property Name Description
Name The user specified name for this exposed routine.
ReturnType The language dependant or application specific

datatype associated with this routine’s return type.
(*The return type can not be a structure, string, or
scaled numeric.)

Description A user specified description to be associated with
this routine definition.

MethodID Species a value to use as the internal method ID
instead of the one automatically generated for this
routine. This is only useful in rare cases for
backwards compatibility within the generated
interface.

<Parameter> Tag See below for more information.

2.5.1 <Parameter> Block

The <Parameter> block is used to describe a single parameter within a routine’s parameter list. There

will be one <Parameter> tag for each parameter passed in or out of the routine. The <Parameter>

block has the following format:

<Routine …>

 <Parameter Name = "Param1"

 Type = "unsigned int"

 PassingMechanism = "Value"

 Usage = "IN"/>

 <Parameter Name = "AryParam2"

 Type = "__int16"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"

 ArrayDimension = "1"

 RowByColumn = "1"

 ArrayDescriptorType = "DSC$K_CLASS_A">

 <Array LowerBound = "0"

 UpperBound = "10"/>

 </Parameter>

 <Parameter Name = "AryParam3"

 Type = "__int16"

 PassingMechanism = "Descriptor"

 11

 Usage = "IN/OUT"

 ArrayDimension = "1"

 RowByColumn = "1"

 ArrayDescriptorType = "DSC$K_CLASS_A">

 </Parameter>

</Routine>

The <Parameter> tag has the following properties:

Property Name Description

Name The user specified name for this parameter.
Type The language dependant or application specific

datatype associated with this parameter type.
(Primitive, Typedef, Enumeration, or Structure.)

PassingMechanism The OpenVMS based passing mechanism used to
pass this parameter. It can be Value, Reference,
or Descriptor.

Usage This property specifies how this parameter will be

effected by the called routine. It is either IN,

which specifies that it doesn’t modify the value, or

IN/OUT which specifies that it does modify this

value.
ArrayDimension If this parameter is an array of elements, this

property specifies the number of dimensions
within the array.

RowByColumn If this parameter is a multi-dimensional array of
elements, this property specifies the ordering of
the dimensions within memory. All languages,

except FORTRAN, use a RowByColumn layout.

Use a 1 to specify RowByColumn, and a 0 to

specify ColumnByRow (FORTRAN).

ArrayDescriptorType If this parameter is an array passed by descriptor,
this property specifies the descriptor class that
should be used when passing this array. The
valid values for this property are
DSCK_CLASS_A, DSCK_CLASS_NCA,

DSC$K_CLASS_VSA.

<Array> Tag See below for more information.

2.5.1.1 <Array> Tag

For field arrays, and parameter arrays that are passed by reference, the <Array> tag is used to specify

dimension information for a single dimension. For Parameter arrays that are passed by reference, the

number of <Array> tags must match the number specified in the ArrayDimension Parameter property

above. The format of the <Array> tag is shown above.

The properties of the <Array> are:

Property Name Description
LowerBound The user specified lower bound of this dimension.
UpperBound The user specified upper bound of this dimension.

Note that the upper bound must be larger than the

 12

lower bound.

Note: The size of each array dimension is UpperBound - Lowerbound + 1. The <Array> tags are

not needed when the array parameter is being passed by descriptor. (The dimension information is
pulled from the descriptor at runtime.)

2.6 Valid Property Values

The following table lists all of the datatypes supported by WSIT, along with their associated property
values. Note that if the property box is empty, this property need not be specified for that datatype within
the IDL.

Type Description OpenVMS Datatype Size
Value

Scale
Required

Null
Terminated
Flag Value

Fixed
Flag

Value

Binary Types

Byte (8 bits) DSC$K_DTYPE_B

Unsigned Byte DSC$K_DTYPE_BU

Word (16 bits) DSC$K_DTYPE_W

Unsigned Word DSC$K_DTYPE_WU

Longword (32 bits) DSC$K_DTYPE_L

Unsigned Longword DSC$K_DTYPE_LU

Quadword (64 bits) DSC$K_DTYPE_Q

Unsigned Quadword DSC$K_DTYPE_QU

Octaword (128 bits) DSC$K_DTYPE_O

Unsigned Octaword DSC$K_DTYPE_OU

Float (32 bits) DSC$K_DTYPE_F

Double(D) Float (64 bits) DSC$K_DTYPE_D

Double(G) Float (64 bits) DSC$K_DTYPE_G

Quad Float (128 bits) DSC$K_DTYPE_H

IEEE Float (32 bits) DSC$K_DTYPE_FS

IEEE Double Float (64 bits) DSC$K_DTYPE_FT

IEEE Quad Float (128 bits) DSC$K_DTYPE_FX

String Types

Static String DSC$K_DTYPE_T length 0 1

C Style String** DSC$K_DTYPE_T 0 1 0

Dynamic String** DSC$K_DTYPE_T 0 1 0

Varying String DSC$K_DTYPE_VT length 0 0

Scaled Numeric Types

Packed Numeric DSC$K_DTYPE_P digits scale

Unsigned Numeric DSC$K_DTYPE_NU digits scale

Left Separate Sign
Numeric

DSC$K_DTYPE_NL digits scale

Left Overpunch Sign
Numeric

DSC$K_DTYPE_NLO digits scale

Right Separate Sign
Numeric

DSC$K_DTYPE_NR digits scale

Right Overpunch Sign
Numeric

DSC$K_DTYPE_NRO digits scale

Zoned Decimal Numeric DSC$K_DTYPE_NZ digits scale

 13

Special Types

Structures Structure Definition
Name

Binary Large Objects
(BLOB)

DSC$K_DTYPE_
BLOB

** Dynamic Strings differ from C Style strings in the mechanism used to pass them within a parameter.
Dynamic Strings are passed exclusively by Descriptor, while C Style Strings are passed by Reference.

*** Binary Large Objects (BLOBs) are not valid OpenVMS datatypes. This type is handled internally by
WSIT and is discussed in Section 5.

3 E X A M P L E W S I T I D L F I L E

The following code is an example of a WSIT IDL file.

<?xml version="1.0" encoding="UTF-8"?>

<OpenVMSInterface

 xmlns="hp/openvms/integration"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="hp/openvms/integration openvms-integration.xsd"

 ModuleName="disk$:[workshop.lab1]math.obj"

 Language="C89">

 <Primitives>

 <Primitive Name = "unsigned int"

 Size = "4"

 VMSDataType = "DSC$K_DTYPE_LU"/>

 <Primitive Name = "signed int"

 Size = "4"

 VMSDataType = "DSC$K_DTYPE_L"/>

 <Primitive Name = “FixedString16"

 Size = "16"

 FixedFlag = "1"

 NullTerminatedFlag = "1"

 VMSDataType = "DSC$K_DTYPE_T" />

 </Primitives>

 <Structures>

 <Structure Name = "MyStruct"

 TotalPaddedSize = "60">

 <Field Name = "Fld1"

 Type = "signed int"

 Offset = "0"/>

 <Field Name = "Fld2"

 Type = "FixedString16"

 Offset = "4"/>

 <Field Name = "AryFld3"

 Type = "signed int"

 Offset = "20"

 ArrayDimension = "1"

 RowByColumn = "0">

 <Array LowerBound = "0"

 UpperBound = "9"/>

 </Field>

 </Structure>

 </Structures>

 14

 <Routines>

 <Routine Name = "sum"

 ReturnType = "unsigned int">

 <Parameter Name = "number1"

 Type = "signed int"

 PassingMechanism = "Value"

 Usage = "IN"/>

 <Parameter Name = "number2"

 Type = "signed int"

 PassingMechanism = "Value"

 Usage = "IN"/>

 </Routine>

 <Routine Name = "product"

 ReturnType = "unsigned int">

 <Parameter Name = "number1"

 Type = "signed int"

 PassingMechanism = "Value"

 Usage = "IN"/>

 <Parameter Name = "number2"

 Type = "signed int"

 PassingMechanism = "Value"

 Usage = "IN"/>

 <Parameter Name = "structparam"

 Type = " MyStruct "

 PassingMechanism = "Reference"

 Usage = "IN"

 ArrayDimension = "1"

 RowByColumn = "1"

 ArrayDescriptorType = "DSC$K_CLASS_A">

 <Array LowerBound = "0"

 UpperBound = "9"/>

 </Parameter>

 </Routine>

 </Routines>

</OpenVMSInterface>

4 M A P P I N G L A N G U A G E D E F I N I T I O N S T O I D L

The following sections describe the various types of language interfaces in the IDL.

4.1 Mapping Binary Types

The easiest way to define an interfaces for routines is to pass simple binary datatypes. A routine with a
function prototype that looks similar to the following:

 int MyAdd (int p1, int p2);

Would be defined in the WSIT IDL as follows:

…

<Primitives>

 <Primitive Name = "signed int"

 VMSDataType = "DSC$K_DTYPE_L"/>

</Primitives>

 15

<Routines>

 <Routine Name = "MyAdd"

 ReturnType = "int">

 <Parameter Name = "p1"

 Type = "int"

 PassingMechanism = "Value"

 Usage = "IN"/>

 <Parameter Name = "p2"

 Type = "int"

 PassingMechanism = "Value"

 Usage = "IN"/>

 </Routine>

</Routines>

The function definition above simply passes in longwords by value. Since the parameters are passed in
by value, the called routine cannot modify them so that the caller can pick up the new values. However, if
you want the caller to pick up the new values, you can change the routine to have the parameters passed
in by reference, as follows:

 Int MyAdd (int *p1, int *p2);

The corresponding change to the WSIT IDL file are as follows (the modified lines are bolded):

…

<Primitives>

 <Primitive Name = "signed int"

 VMSDataType = "DSC$K_DTYPE_L"/>

</Primitives>

<Routines>

 <Routine Name = "MyAdd"

 ReturnType = "int">

 <Parameter Name = "p1"

 Type = "int"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"/>

 <Parameter Name = "p2"

 Type = "int"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"/>

 </Routine>

</Routines>

4.2 Mapping Decimal Types

For languages that support them, the second easiest datatypes to define and use within a routine are the
Scaled Decimal Numeric datatypes. For example, a BASIC subroutine that is defined as:

 SUB MYADD (DECIMAL(5,2) P1, DECIMAL(5,2) P2, DECIMAL(5,2) SUM)

 …

 END SUB

Would be defined within the WSIT IDL file as follows:

…

<Primitives>

 16

 <Primitive Name = "decimal_5_2"

 Size = “5”

 Scale = “2”

 VMSDataType = "DSC$K_DTYPE_P"/>

</Primitives>

<Routines>

 <Routine Name = "MYADD">

 <Parameter Name = "P1"

 Type = "decimal_5_2"

 PassingMechanism = "Reference"

 Usage = "IN"/>

 <Parameter Name = "P2"

 Type = "decimal_5_2"

 PassingMechanism = "Reference"

 Usage = "IN"/>

 <Parameter Name = "SUM"

 Type = "decimal_5_2"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"/>

 </Routine>

</Routines>

Note: Although all three parameters are passed by reference, the usage for P1 and P2 are defined to be

IN only. This can happen when the called routine does not modify these parameters, or when the

modified values in the client are unimportant. Specifying IN only where possible creates a cleaner

interface in the generated JavaBean interface.

Scaled Decimal Numeric datatypes have the following limitations:

 The Size (in digits) cannot be larger than 31.

4.3 Mapping String Types

Of all the primitive datatypes, the String datatypes are the most challenging to define. This is because
(depending on the language) it is their usage, and not their interface definition, that determines what kind
of string it is. For example, these function prototypes all represent different uses of the string datatype, all
of which need to be defined differently within the WSIT IDL file.

int fixedStrRoutine (char *P1); \\ P1 is a 20 character fixed string

int CStrRoutine (char *P1); \\ P1 is a null terminated C string

int varyingStrRoutine (char *P1); \\ P1 is a length prefixed varying

 string (max 20)

int charAryRoutine (char *P1); \\ P1 is an array of chars (20 elements)

The associated WSIT IDL definitions would look similar to the following:

…

<Primitives>

<Primitive Name = “Fixed_String_20"

 Size = "20"

 FixedFlag = "1"

 NullTerminatedFlag = "0"

 VMSDataType = "DSC$K_DTYPE_T" />

 17

<Primitive Name = “C_String"

 Size = "0"

 FixedFlag = "0"

 NullTerminatedFlag = "1"

 VMSDataType = "DSC$K_DTYPE_T" />

<Primitive Name = “Varying_String_20"

 Size = "20"

 FixedFlag = "0"

 NullTerminatedFlag = "1"

 VMSDataType = "DSC$K_DTYPE_VT" />

<Primitive Name = "char"

 VMSDataType = "DSC$K_DTYPE_B"/>

<Primitive Name = "int"

 VMSDataType = "DSC$K_DTYPE_L"/>

</Primitives>

<Routines>

 <Routine Name = "fixedStrRoutine"

 ReturnType = "int">

 <Parameter Name = "P1"

 Type = "Fixed_String_20"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"/>

 </Routine>

 <Routine Name = "CStrRoutine"

 ReturnType = "int">

 <Parameter Name = "P1"

 Type = "C_String"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"/>

 </Routine>

 <Routine Name = "varyingStrRoutine"

 ReturnType = "int">

 <Parameter Name = "P1"

 Type = "Fixed_String_20"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"/>

 </Routine>

 <Routine Name = "charAryRoutine"

 ReturnType = "int">

 <Parameter Name = "P1"

 Type = “char"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"

 ArrayDimension = "1"

 RowByColumn = "1"

 ArrayDescriptorType = "DSC$K_CLASS_A">

 <Array LowerBound = "0"

 UpperBound = "19"/>

 </Parameter>

 18

 </Routine>

</Routines>

String Datatypes have the following limitations:

 The Size must be 0 <= Size <= 65535

4.4 Mapping Arrays

Arrays can be easily defined within the WSIT IDL file as long as you know the following minimum
information about the arrays being passed in/out of your routines:

 What is the datatype of the array? (int, float, string, …)

 How many dimensions does the array have? (Usually 1)

However, you may also need to know more information about the array, depending on the usage of the
array.

If the array is a parameter passed by reference, or is a field within a structure, then you need to know:

 The lower and upper bounds of each dimension. (1 set of values for each dimension)

If the array parameter is passed by descriptor, then you do not need to specify lower and upper bounds,
but you must correctly specify:

 The Array Descriptor Class to use when passing the array. (DSC$K_CLASS_A, …)

If the array is multi-dimensional, you must correctly specify:

 If the multi-dimensional array is RowByColumn or not. (True for all languages except Fortran?)

For example, the following C function prototype, which defines an array of fixed length strings:

 int myAryRoutine (char P1[100][20]);

Would be defined as follows within the WSIT IDL file:

 …
<Primitives>

…

<Primitives>

<Primitive Name = “Fixed_String_20"

 Size = "20"

 FixedFlag = "1"

 NullTerminatedFlag = "0"

 VMSDataType = "DSC$K_DTYPE_T" />

<Primitive Name = "int"

 VMSDataType = "DSC$K_DTYPE_L"/>

</Primitives>

<Routines>

 <Routine Name = "myAryRoutine"

 19

 ReturnType = "int">

 <Parameter Name = "P1"

 Type = “Fixed_String_20"

 PassingMechanism = "Reference"

 Usage = "IN/OUT"

 ArrayDimension = "1"

 RowByColumn = "1"

 ArrayDescriptorType = "DSC$K_CLASS_A">

 <Array LowerBound = "0"

 UpperBound = "99"/>

 </Parameter>

 </Routine>

</Routines>

Note: Because P1 is a single dimensional array passed by Reference in this case, neither the

RowByColumn nor the ArrayDescriptorType properties are important. (However, because the WSIT

IDL Schema requires their use, you must specify them in the IDL.)

4.5 Mapping Structures

Describing the structures that are passed in and out of your routine(s) within WSIT IDL is straightforward.
The only items that you need to keep careful watch over are the field offsets. These define the starting
byte offset of each field within the structure. Note that the following items must be taken into careful
consideration in order to define these offsets correctly.

 Alignment requirements of each field (appropriate padding must be added into offsets.)

 Size differences of the different Scaled Numeric datatypes.

You must also correctly specify the structure’s overall TotalPaddedSize. This value is referenced

whenever the structure is used within an array, or nested within another structure.

Assuming natural alignment is being used, the following C structure examples:

struct Struct1 {

 char f1;

 int f2;

}

struct Struct2 {

 short f1;

 int f2;

 struct Struct1 f3;

 char f4[9];

}

Would be defined as follows within the WSIT IDL file:

<Primitives>

 <Primitive Name = "char"

 VMSDataType = "DSC$K_DTYPE_B"/>

 <Primitive Name = "short"

 VMSDataType = "DSC$K_DTYPE_W"/>

 <Primitive Name = "int"

 VMSDataType = "DSC$K_DTYPE_L"/>

 20

 <Primitive Name = “Fixed_String_9"

 Size = "9"

 FixedFlag = "1"

 NullTerminatedFlag = "0"

 VMSDataType = "DSC$K_DTYPE_T" />

</Primitives>

 <Structures>

 <Structure Name = "Struct1"

 TotalPaddedSize = "8">

 <Field Name = "f1"

 Type = "char"

 Offset = "0"/>

 <Field Name = "f2"

 Type = "int"

 Offset = "4"/>

 </Structure>

 <Structure Name = "Struct2"

 TotalPaddedSize = "28">

 <Field Name = "f1"

 Type = "short"

 Offset = "0"/>

 <Field Name = "f2"

 Type = "int"

 Offset = "4"/>

 <Field Name = "f3"

 Type = "Struct1"

 Offset = "8"/>

 <Field Name = "f4"

 Type = " Fixed_String_9"

 Offset = "16"/>

 </Structure>

 </Structures>

5 M A P P I N G B L O B S A N D O T H E R U N F O R M A T T E D D A T A

As discussed in previous sections, WSIT gives you a clean way to define almost every OpenVMS primitive
and aggregate type within WSIT’s IDL file. However, some applications may require a large non-typed
chunk of memory to be exchanged with it. This may be needed if you want to:

 Exchange a string larger than 65535 with your application

 Exchange a non-standard datatype with your application

In these cases, you treat the parameter as a Binary Large Object (BLOB) which you can describe in the
WSIT IDL as well. Conceptually, a BLOB is a large chunk of memory whose contents is in a format
unknown to the underlying runtime. WSIT will not attempt to interpret it when passed into a routine. (The
contents only have meaning to the application’s java client(s) and user routine(s).) Internally, WSIT
handles a BLOB like a resizable array of bytes passed by descriptor. Because of this, the application
routine that is to be passed a BLOB must also have the BLOB parameter defined as an array of bytes
passed by descriptor.

An example C function prototype is as follows:

 21

 int myStringRtn (struct dsc$descriptor_a *p1);

Defining the BLOB parameter within the WSIT IDL is a simple matter of creating a BLOB primitive type,
then assigning the parameter to this new type:

…

<Primitives>

 <Primitive Name = “myblob"

 MemoryFreeByWSIT = “1”

 VMSDataType = "DSC$K_DTYPE_BLOB" />

 <Primitive Name = "int"

 VMSDataType = "DSC$K_DTYPE_L"/>

</Primitives>

<Routines>

 <Routine Name = "myStringRoutine"

 ReturnType = "int">

 <Parameter Name = "p1"

 Type = “myblob"

 PassingMechanism = "Descriptor"

 Usage = "IN/OUT"/>

 </Routine>

</Routines>

Notice that there is a new property called MemoryFreeByWSIT and it is set to 1. This tells the WSIT

runtime to deallocate this memory once it has finished returning the contents to Java. Unless you plan to
explicitly deallocate the new memory in a later call, you should let WSIT deallocate this memory for you on
return. If you are planning on handling deallocation yourself at a later time, then specify 0 for

MemoryFreeByWSIT, or don’t specify this property at all.

Note that when working with BLOBs, it is the responsibility of the user’s routine to correctly modify the array
descriptor which is passed in. If the array descriptor isn’t correctly updated to reflect the new size and
memory location, the WSIT runtime will not pass the BLOB back correctly. A sample C routine that
handles this is as follows:

int myStringRoutine (struct dsc$descriptor_a *adx)

{

 char *somestring =

 "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCDEFGHIJKLMNOPQR";

 int status = 0;

 int newarysize = 50;

 char *newmem = NULL;

 // Allocate memory for the new BLOB

 newmem = malloc(newarysize);

 // Fill in the new BLOB with some information

 memcpy(newmem, somestring, newarysize-1);

 newmem[newarysize-1] = „\0‟;

 //Tell WSIT about the memory...

 adx->dsc$a_pointer = newmem;

 adx->dsc$l_arsize = newarysize;

 return status;

}

 22

One benefit of treating BLOBs as byte arrays is that in Java, the String class contains constructors and
methods that make converting from a byte array to a String and back again a straightforward process.

*Note that WSIT requires the client to always pass in a valid array for BLOB parameters. If an empty
ObjectHolder, or a null, is passed in to the routine WSIT will throw an exception.

