
Page 1

WBEM/WMI Provider Data Sheet
Utilization Provider

Provider overview This data sheet provides basic information about the Utilization WBEM/WMI provider. This provider is
implemented using the Pegasus C++ provider API on Unix and OpenVMS systems, and Windows
Management Instrumentation (WMI) APIs on Windows. The intended audience of this document is

client/provider developers and end-users who want to use this provider.

Description The Utilization Provider (UP) provides CPU, memory, disk and network utilization data. It is comprised of a
daemon/service (utild on Unix and OpenVMS, UPService on Windows) that wakes up every 5 minutes and

records data to either /var/adm/util (Unix) or \Documents and Settings\All Users\Application
Data\Hewlett-Packard\UtilProvider (Windows) or /SYS$SPECIFIC/WBEMPROVIDERS/util (OpenVMS). Up
to 30 days worth of data is stored on the system, and on a typical installation this will be less than 5

Megabytes worth of data.

The WBEM/WMI Provider simply provides access to this utilization data. The UP classes described in this
document are registered in the root/cimv2 namespace.

Requirements The UP is implemented and tested on the following Operating System versions:

o HP-UX 11i v1 (11.11)

o HP-UX 11i v2 (11.23)

o Microsoft Windows Server 2003

o Linux Red Hat Enterprise Linux ES Version 4 (RHEL4)

o SUSE LINUX Enterprise Server 9 (SLES9)

o HP OpenVMS IA64 V8.4 (scheduled April 2009)

Release history o HP-UX (v1&v2): AR and OEUR media (December, 2005)

o Windows: HP Integrity Smart Setup 4.5 (July, 2006)

o Linux RHEL4: HP Integrity Essentials Foundation Pack for Linux 1.01 (July, 2006)

o Linux SLES9: HP Integrity Essentials Foundation Pack for Linux 1.01 (August, 2006)

o HP I64VMS WBEMPROVIDERS V1.7-16 (May 2009)

o HP I64VMS WBEMPROVIDERS V2.0-4 (June 2010)

o HP I64VMS WBEMPROVIDERS V2.1-4 (August 2010)

o HP I64VMS WBEMPROVIDERS V2.2-3 (February 2011)

Setting up this
provider

Installing this provider o HP-UX: The bundle name for UP is UtilProvider. The shared library for UP will be installed
at /opt/util/lib/libUtilizationProvider.1, and a symbolic link to this library will be created at
/opt/wbem/providers/lib (libUtilizationProvider.sl for PA platform and

libUtilizationProvider.so for IPF platform). The data collection daemon is /usr/lbin/utild,
and is launched via an entry in /etc/inittab.

o Linux: The rpm names for UP are hp-utilprovider-<version>.sles9.ia64.rpm and hp-

utilprovider-<version>.rhel4.ia64.rpm. The shared library for UP will be installed at
/opt/util/lib/libUtilizationProvider.1, and a symbolic link to this library will be created at
/opt/tog-pegasus/providers/lib/libUtilizationProvider.so. The data collection daemon is

/usr/sbin/utild, and is launched via an entry in /etc/inittab.

Page 2

o Windows: The install package name for UP is WMIUtilProvider64.msi. The WMI provider
is implemented as a decoupled provider, and runs as a Windows service named ‘HP

UtilProvider WMI Provider’ and the executable is located at \Program Files\Hewlett-
Packard\UtilProvider\bin\WMIUtilProvider.exe. The data collection service is named ‘HP
UtilProvider Data Collector’ and the executable is located at \Program Files\Hewlett-

Packard\UtilProvider\bin\UPService.exe. Both of these services are started automatically
by the Windows Services infrastructure, and will respawn automatically if necessary.

o OpenVMS: The Utilization provider is bundled in the V1.7-16 and later versions of the HP

I64VMS WBEMPROVIDERS product. . The shareable image library is installed at
SYS$COMMON:[SYSLIB]LIBUTILIZATIONPROVIDER.EXE by the PRODUCT INSTALL. The
data collection server image is installed at SYS$COMMON:[WBEMPROVIDERS.BIN]

WBEMPROVIDERS$UTILD.EXE and is started by the procedure
WBEMPROVIDERS$RUN_OPENVMS_UTILD.COM in the same directory. The utild server
will be started automatically by the WBEMCIM services startup procedure if the logical

name WBEM_IGNORE_WBEMPROVIDERS is not defined.

Using this provider Schema supported by this provider

The UP supports 4 classes. The tables mentioned below describe the properties in each class,

intrinsic/extrinsic methods, types and units. The property tables have 3 columns. The first is the property
name including types and units. The second is the property inheritance, including which class or superclass
defines the property. The third is a description of the possible values and, where relevant, the data source

for each property. Each row describes a property. The tables of extrinsic methods (those that are explicitly
declared in each class) also have 3 columns. The first lists the method name and signature. The second
describes the action of the method and all return values and arguments. The third column lists an exception

that might be thrown by the method.

Table 1: HP_Utilization

This class contains utilization information. Each instance of this class will represent 24 hours worth of utilization data, containing 'SnapshotWidth'

granularity. The present implementation of the provider will have samplings about every 5 minutes, so snapshot width will be nominally 300

(seconds) and NumSnapshots will be 288. As such, there will be 288 elements in each attribute of this class representing each 5 minute

utilization value. The first element in each array will be the oldest. The utilization provider will maintain up to seven days worth of data.

Consumers of this class who enumerateInstances(), will receive instances of all derived classes for all 7 days worth of data (if they exist). This is an

abstract class (no defined keys), and data will only be returned for the various derived classes (which vary by granularity -- OS, User, RP, etc.)

For attributes of this class which are arrays indexed by snapshot, if snapshot information wasn't available for the timeslice represented by the

index, -1 will be returned. For these timeslices, the 'SnapshotTimeStamp' value will be a multiple of 'SnapshotWidth' seconds from the previous

midnight since no snapshot actually exists for the timeslice. These timeslices will have values defined for the LAN and disk related attributes but

the values will be zero-length arrays and the values of the 'MaxLanCards' and 'MaxDiskInterfaceCards' attributes will be zero.

If a 'getInstance' request is made specifying a period in the past when no snapshot information is available, an instance will be returned with no

snapshot information (that is, all arrays indexed by snapshot will contain -1) as long as an interval exists earlier than the specified time that

contains at least one snapshot.

A time other than midnight (GMT) may be passed to a 'getInstance' request to retrieve an instance covering the 24-hour period following the time

specified. These instances will not be available from an 'enumerateInstances' request and their names will not be returned by a

'enumerateInstanceNames' request.

If a 'getInstance' request is made specifying a period before the earliest sample gathered or beginning in the future, a

'CIMObjectNotFoundException' will be thrown and no instance will be returned.

Note that the Utilization Provider defines Kilobytes (K) as 1024 bytes wherever this denomination is used.

Property name Property inheritance Property value (and data source)

datetime DailyTimeStamp Local The timestamp of the beginning of the 24 hour snapshot

of utilization. This field will be overridden as a key in

derived classes.

sint64 GUID Local This field represents a globally unique identifier for this

class of utilization data. This attribute will be -1 until the

setGUID() method is called. As with the

DailyTimeStamp, this field will be overridden as a key in

derived classes.

uint32 SnapshotWidth Local This field defines the number of seconds between

snapshots in seconds.

Page 3

uint32 CPUClockSpeed Local This field defines the CPU clock speed in MHZ.

uint16 NumSnapshots Local Number of utilization shapshots contained in the instance

of the class.

sint8 DiskDataType Local Indicator of whether we are reporting disk utilization

data by disk interface card or by disk.

Values{"Unknown",

"Disk",

"DiskInterfaceCard" },

ValueMap {"-1", "0", "1" }

datetime SnapshotTimeStamp[] Local Timestamp of the end of the utilization snapshot.

sint8 MemoryUtilization[] Local Memory utilization in percentage form. Valid values

returned in this field are integers between 0 and 100.

This value will include User, DBC and System memory.

sint32 UserMemory[] Local Number of megabytes of user memory in use at the time

of the utilization snapshot.

sint32 DBCMemory[] Local Number of megabytes of dynamic buffer cache at the

time of the utilization snapshot.

sint32 SystemMemory[] Local Number of megabytes of system (kernel) memory in use

at the time of the utilization snapshot.

sint32 TotalMemory[] Local Total number of megabytes of physical memory available

during the utilization snapshot.

boolean MemoryBottleneckReading[] Local Indicator if the memory utilization snapshot was taken at

a time when the system was swapping memory to disk.

This is generally an indication that the memory utilization

number may be artificially low.

sint8 CPUUtilization[] Local CPU utilization in percentage form. Valid values in this

field are integers between 0 and 100.

sint16 NumActiveCPUs[] Local Number of CPU cores active during the utilization

snapshot.

sint16 NumTotalCPUs[] Local Total number of CPU cores during the utilization

snapshot. This number is the total number of CPUs

visible to the OS, which would not include CPUs in

inactive cells or deconfigured CPUs. This would include

inactive iCOD CPUs, unassigned CPUs when running

vPars, etc...

sint32 NumUsedCPUClockTicks[] Local Number of clock ticks consumed during the utilization

snapshot.

sint32 TotalCPUClockTicks[] Local Total number of clock ticks available during the

utilization snapshot.

boolean CPUBottleneckReading[] Local Indicator if the CPU utilization snapshot was taken at a

time when the system had processes in the run queue.

This is generally an indication that the CPU utilization

number may be artificially low.

sint8 NumThreadsPerCore[] Local Number of threads (logical CPUs) per core at the time

when the snapshot was taken. Since this attribute will be

delivered in various sub-classes that may have different

values, a special value of -2 will be returned at the OS

level when a hybrid of values exist at the RP level.

sint16 MaxDiskInterfaceCards Local Number of disk interface cards. This field is equivalent

to the size of the DiskInterfaceCards array. This field

may or may not represent the number of cards present

on the system at a given point in time, as adding and

Page 4

removing is allowed. For a card that is added or

removed during the time represented by an instance of

this class, incomplete data will be returned in the

utilization arrays, but the cards will still be listed in the

diskInterfaceCards array.

string DiskInterfaceCards[] Local This field returns the list of disk interface cards present

during the utilization snapshot. For each entry in this

array, there is a corresponding array of snapshots in the

disk utilization arrays, which are effectively flat two

dimensional arrays. For example, the first

'NumSnapshots' entries in the DiskUtilization array will

be specific to the first disk interface card in this array,

and so on.

On Windows and Linux, the string for a disk device is a

parseable, generated string as follows:

‘drv:1,bus:0,dev:1,fun:0,tgt:1,lun:0’.

NOTE: The special string of 'OS_LEVEL' will be used for

disk metrics for the entire operating system and will be

returned for all instances. By-disk metrics will be

available only if the request is for the present or previous

day. Earlier than this, only OS_LEVEL data will be

available.

sint8 DiskBWUtilization[] Local Disk bandwidth utilization (by interface card or disk) in

percentage form. Valid values returned in this field are

integers between 0 and 100.

sint32 NumDiskRW[] Local Disk reads and writes (in kilobytes per second, by

interface card) during the utilization snapshot.

sint32 MaxDiskRW[] Local Maximum disk reads and writes (in kilobytes per second,

by interface card) during the utilization snapshot.

boolean DiskBottleneckReading[] Local Indicator if the disk utilization snapshot was taken at a

time when the system had disk read/writes in the queue.

This is generally an indication that the disk utilization

number may be artificially low. As with other disk metric

arrays, this is a 2 dimensional array.

sint16 MaxLanCards Local Number of LAN cards represented in the lanCards

array. If a card is present or active only for a portion of

a time period, snapshot data will only be available for

the times when the card was active. In addition, some

types of utilization data instances may not contain LAN

utilization information. In that case, MaxLanCards will

be 0. Therefore, this value may not represent the current

number of active LAN cards present on the system.

string LanCards[] Local The list of LAN cards (by OS-specific identifier) present

during the utilization snapshot. On HP-UX, the identifier

is the special device file name for the card. For each

entry in this array, there will be a corresponding array

segment of snapshots in the LAN utilization arrays. See

LanUtilization, LanPayloadTransferred,

LanMaxPayloadPossible, and LanPacketsTransferred for

more information. If MaxLanCards is 0, this property

will be present, and contain an array with no elements.

On Windows and Linux, the string for a lan device is a

parseable, generated string as follows:

‘bus:128,dev:1,fun:0,desc:Broadcom NetXtreme Gigabit

Ethernet’.

Note: The special string of 'OS_LEVEL' will be used for

Page 5

lan metrics for the entire operating system and will be

returned for all instances. By-lan metrics will be

available only if the request is for the present or previous

day. Earlier than this, only OS_LEVEL data will be

available.

sint8 LanLinkAggregator[] Local Indicator if a given LAN card is a link aggregator. If this

attribute has a value of True(1), then data for this card

should not be used in summing card data to determine

the total LAN utilization for the OS instance. Otherwise,

there would redundancy between data in the link

aggregator and the real physical cards' data.

Values{"Unknown",

"False",

"True" },

ValueMap {"-1", "0", "1" }

sint8 LanUtilization[] Local Average LAN utilization (by LAN card) in percent of the

maximum transfer rate during the utilization snapshot.

Valid values are integers between 0 and 100, inclusive.

This array is a row-major order 1-d representation of a 2-

d array where row 'n' represents the snapshots for the

card with index 'n' in the LanCards array. Snapshot 's'

for card 'n' is located at index 'n*NumSnapshots+s'. If

MaxLanCards is 0, this property will be present, and

contain an array with no elements.

sint32 LanPayloadTransferred[] Local Amount of LAN data transferred (incoming and

outgoing) in kilobytes per second by LAN card during

the utilization snapshot. This array is a row-major order

1-d representation of a 2-d array where row 'n'

represents the snapshots for the card with index 'n' in the

LanCards array. Snapshot 's' for card 'n' is located at

index 'n*NumSnapshots+s'. If MaxLanCards is 0, this

property will be present, and contain an array with no

elements.

sint32 LanMaxPayloadPossible[] Local Maximum possible amount of LAN data in kilobytes (per

second) transferable by a LAN card during the utilization

snapshot, based on the maximum transfer rate of the

card, e.g a 100 base T ethernet card has a maximum

transfer rate of 100,000,000 bits per second or 12,207

kilobytes per second. If the snapshot interval were 10

seconds, then the maximum possible payload

tranferrable would be 122,070 KB. This array is a row-

major order 1-d representation of a 2-d array where row

'n' represents the snapshots for the card with index 'n' in

the LanCards array. Snapshot 's' for card 'n' is located

at index 'n*NumSnapshots+s'. If MaxLanCards is 0, this

property will be present, and contain an array with no

elements.

sint32 LanPacketsTransferred[] Local Number of packets of lan data transferred (incoming and

outgoing) by LAN card during the utilization snapshot.

This array is a row-major order 1-d representation of a 2-

d array where row 'n' represents the snapshots for the

card with index 'n' in the LanCards array. Snapshot 's'

for card 'n' is located at index 'n*NumSnapshots+s'. If

MaxLanCards is 0, this property will be present, and

contain an array with no elements.

boolean LanBottleneckReading[] Local Indicator if the LAN utilization snapshot was taken at a

time when the system had packets in the queue. This is

generally an indication that the LAN utilization number

may be artificially low. As with the other LAN metrics,

this is a 2 dimensional array.

Page 6

sint16 NumProcesses[] Local This field represents the number of processes that were

found in the process table that were used as part of the

utilization data.

sint32 UtilizationStatus[] Local This field represents the status of each utilization

snapshot. The possible status values are:

0: No destabilizing events were detected when the

snapshot was taken.

-1: The snapshot does not contain any data.

-2: The associated SG package was found to be running

Page 6

on another node when the snapshot was taken.

-3: The associated SG package was found to not exist

when the snapshot was taken.

-4: The associated SG package was found to exist but

not be running when the snapshot was taken.

-5: An online event such as an OL* change was detected

when the snapshot was taken.

-6: The associated procmap script does not exist, or we

cannot access it without error.

-7: The associated procmap script exists and we can

access it, but it failed during execution.

-8: A disk counter overflow was detected. Information

was lost.

-9: A lan counter overflow was detected. Information

was lost.

-10: Overlapping workload definitions detected.

-11: User does not exist on host.

-12: Procmap does not yeild any PIDs.

-13: Executable does not physically exist on host.

-14: Some data not collected due to WMI access

problems.

-15: Some data not collected due to PDH access

problems.

sint32 CPUClockRate[] Local The average CPU clock speed seen during the snapshot.

Under some forms of power-management, the value does

not always reflect the current state of the computer

system during the snapshot.

sint32

HPVM_NumUsedCPUClockTicks[]

Local Number of clock ticks consumed during the utilization

snapshot as reported by HPVM under HP-UX. Valid

values returned in this field are integers greater than or

equal to 0 on an HPVM guest; -1 in all other situations.

sint32 HPVM_TotalCPUClockTicks[] Local Total number of clock ticks available during the

utilization snapshot as reported by HPVM under HP-UX.

Valid values returned in this field are integers greater

than or equal to 0 on an HPVM guest; -1 in all other

situations. Note that this field may not exactly match

TotalCPUClockTicks due to HPVM interval granularity.

sint8 HPVM_CPUUtilization[] Local CPU utilization in percentage form as reported by HPVM

under HP-UX. The value is a measure of percent busy,

not percent of capacity. Percent of capacity would take

the current and maximum clock speed ratio into account.

Valid values returned in this field are integers between 0

and 100; -1 in all other situations.

datetime CurrentTime Local The current date and time.

sint32 CPUMaxClockRate[] Local This field represents the maximum CPU clock speed of

the computer system.

sint32 TrueSnapshotWidth[] Local This field defines the true length of each snapshot. The

goal for the width of each snapshot equal 300 seconds,

Page 7

however system overhead can alter the length.

sint16NumActiveCPUSockets[] Local Average number of CPU sockets active during the

snapshot. This number is useful to get the number of

physical processors on multi-core/multi-threaded systems.

Dividing the number of cores by the number of CPU

sockets can provide the number of cores per processor

Table 2: HP_Utilization extrinsic methods

This table describes the extrinsic methods of HP_Utilization class.

Method name Description Exception Thrown

sint8 setGUID([in] sint64 newGUID) Method that sets the GUID for the class of

utilization data. The old GUID (defaults

to -1) should be provided as the key, and

the new GUID as the parameter to this

method.

CIMOperationFailedException can be thrown on failure

or CIMAccessDeniedException if the user has insufficient

authority.

sint8 getCurrentUtilization(

[in] uint16 NumSecondsOfHistory,

[out] sint64 GUID,

[out] uint32 CPUClockSpeed,

[out] sint8 MemoryUtilization,

[out] sint32 UserMemory,

[out] sint32 DBCMemory,

[out] sint32 SystemMemory,

[out] sint32 TotalMemory,

[out] boolean MemoryBottleneckReading,

[out] sint8 CPUUtilization,

[out] sint16 NumActiveCPUs,

[out] sint16 NumTotalCPUs,

[out] sint32 NumUsedCPUClockTicks,

[out] sint32 TotalCPUClockTicks,

[out] boolean CPUBottleneckReading,

[out] sint8 NumThreadsPerCore,

[out] sint8 DiskDataType,

[out] sint16 MaxDiskInterfaceCards,

[out] string DiskInterfaceCards[],

[out] sint8 DiskBWUtilization[],

[out] sint32 NumDiskRW[],

[out] sint32 MaxDiskRW[],

[out] boolean DiskBottleneckReading[],

[out] sint16 MaxLanCards,

[out] string LanCards[],

[out] sint8 LanLinkAggregator[],

[out] sint8 LanUtilization[],

[out] sint32 LanMaxPayloadPossible[],

[out] sint32 LanPayloadTransferred[],

[out] sint32 LanPacketsTransferred[],

[out] boolean LanBottleneckReading[],

[out] sint16 NumProcesses,

[out] sint32 UtilizationStatus,

[out] sint32 HPVM_NumUsedCPUClockTicks,

[out] sint32 HPVM_TotalCPUClockTicks,

[out] sint8 HPVM_CPUUtilization,

[out] sint32 CPUClockRate,

[out] datetime CurrentTime,

[out] sint32 CPUMaxClockRate);

Method that returns utilization data

immediately and return an average value

per snapshot for the snapshots included

in the previous number of seconds

specified. NumSecondsOfHistory must

be in increments of SnapshotWidth. This

method returns zero in the success case.

In the failure case, an exception (of the

type suitable for the failure) will be

thrown. For the disk and LAN utilization

data, data is returned by either disk

interface or LAN card. Thus, the data for

the card listed in index I of the LanCards

array will be in index I of the other Lan

data arrays. Also, for disk and lan data,

the values returned are the average value

per snapshot for the group of snapshots

included in the requested

NumSecondsOfHistory. For example,

the value of LanPayloadTransferred[I] is

the average number of kilobytes of data

transferred by the LAN card per snapshot

over the number of snapshots included in

NumSecondsOfHistory for card index I.

It is not the sum of the payload

transferred over the snapshots included in

NumSecondsOfHistory.

Each metric (CPU, Memory, Disk and

LAN) has an associated bottleneck

reading indicator. If any of the

snapshots for a given metric used to

calculate the average contained a

bottleneck reading, this output parameter

will be set to true. Note that

CPUClockSpeed defines the current CPU

clock speed and not the average

(CPUClockRate defines the average).

Under some forms of power-

management, the value does not always

reflect the true state of the computer

system.

CIMOperationFailedException can be thrown on failure.

Page 8

Table 3: HP_OSUtilization

This class contains utilization information at the OS level. Notes for getCurrentUtilization() method (inherited from HP_Utilization): The

DailyTimeStamp key will be ignored when calling this method via invokeMethod(). A value of zero can be passed for this key

(00000000000000.000000:000).

Property name Property inheritance Property value (and data source)

datetime DailyTimeStamp; (key) Inherited from HP_Utilization See description in HP_Utilization.

sint64 GUID; (key) Inherited from HP_Utilization See description in HP_Utilization.

Table 4: Non-Standard intrinsic methods supported by HP_OSUtilization

This table describes the non-standard intrinsic methods that supported by HP_OSUtilization.

Method name Inherited from

getCurrentUtilization() HP_Utilization

setGUID() HP_Utilization

Table 5: HP_RPUtilization (not supported on Windows or OpenVMS)

This class contains utilization information at the resource partition level.

Notes for getCurrentUtilization() method (inherited from HP_Utilization): The DailyTimeStamp key will be ignored when calling this method via

invokeMethod(). A value of zero can be passed for this key (00000000000000.000000:000), and only the rpID key will be used.

Property name Property inheritance Property value (and data source)

datetime DailyTimeStamp; (key) Inherited from HP_Utilization See description in HP_Utilization.

sint64 GUID; (key) Inherited from HP_Utilization See description in HP_Utilization.

string RpID; (key) Local This field represents the identifier for the resource

partition. This is in string form, and will identify the type
of resource partition as well. Fair share scheduler (FSS)
resource partitions will have an RpID of FSS_#, and

processor sets (PSET) resource partitions will have an
RpID of PSET_#.

Table 6: Non-Standard intrinsic methods supported by HP_RPUtilization (not supported on OpenVMS)

This table describes the non-standard intrinsic methods that supported by HP_RPUtilization.

Method name Inherited from

getCurrentUtilization() HP_Utilization

Page 9

Table 7: HP_WorkloadUtilization (not supported on Windows or OpenVMS)

This class contains utilization information at the workload level. In order to begin tracking utilization for a given workload, the watchWorkload()

method should be called. Once a workload is being tracked, an additional instance of this class will be returned with a special WorkloadName

of 'OTHER'. This instance will represent the remainder of utilization data not being explicitly tracked.

Notes for getCurrentUtilization() method (inherited from HP_Utilization):

1) The DailyTimeStamp key will be ignored when calling this method via invokeMethod(). A value of zero can be passed for this key

(00000000000000.000000:000), and only the WorkloadName key will be used.

2) The watchWorkLoad() method must have been called and data collected for some period of time (as specified by the NumSecondsOfHistory

parameter) in order for getCurrentUtilization() to return utilization data.

Property name Property inheritance Property value (and data source)

datetime DailyTimeStamp; (key) HP_Utilization See description in HP_Utilization.

sint64 GUID; (key) HP_Utilization See description in HP_Utilization.

string WorkloadName; (key) Local This field represents the name of the group of processes
(workload) whose system utilization will be tracked.

string WorkloadDescription; Local This field represents the user specified description of the
workload.

string SGPackageName; Local This field represents the Service Guard package name

that this workload is associated with. This attribute can
be set with the setSGPackageName() method. When this
value is set, the workload will be dynamically activated

and deactivated depending on the state of the Service
Guard package.

boolean ActiveWorkload; Local This field is true if the workload is presently being

watched. If a user calls the stopWatchingWorkload()
method the data will not be deleted for the workload.
Instead, the data will still be accessible until the normal

housekeeping mechanism prunes the data directory.

uint8 CriteriaType[];

Values{Unknown,

User,

Executable,

Group,

Process },

ValueMap {0, 1, 2, 3, 4 }

Local This field represents the type of criteria being watched for
this workload (user, executable...). The indexes of the

values in this array relate to the indexes of the values in
the CriteriaName and AlternateCriteriaName arrays.
This array will be empty for the OTHER instance.

string CriteriaName[]; Local This field represents the value of criteria being watched

for this workload (user's name, executable's path). See
note for AlternateCriteriaName for info on processes with
script-style process table signatures. This array will be

empty for the OTHER instance.

string AlternateCriteriaName[]; Local This field represents an alternate name for the criteria.
This is used when an executable appears in the process

table as '/usr/bin/perl script_name'. The CriteriaName
in this case would be '/usr/bin/perl' and the

Page 10

AlternateCriteriaName would be 'script_name'. Since
this is an optional field, some indexes will be null if an

AlternateCriteriaName was not specified. This array will
be empty for the OTHER instance.

Table 8: Non-Standard intrinsic methods supported by HP_WorkloadUtilization (not supported on OpenVMS)

This table describes the non-standard intrinsic methods that supported by HP_WorkloadUtilization.

Method name Inherited from

getCurrentUtilization() HP_Utilization

setGUID() HP_Utilization

Table 9: HP_WorkloadUtilization extrinsic methods (not supported on OpenVMS)

This table describes the extrinsic methods of HP_WorkloadUtilization class.

Method name Description Exception thrown

sint8 watchWorkload(

[in] string WorkloadDescription,

[in] uint8 CriteriaType[],

[in] string CriteriaName[],

[in] string AlternateCriteriaName[],

[in] string SGPackageName);

Method that will cause the utilization
provider to begin watching a workload's

utilization. The utilization will be
watched until the
stopWatchingWorkload() method is

called. The type, value, and altername
name arrays should have correlated
indexes. Meaning, the CriteriaType in

the first index should have its value in
the first index of the CriteriaValue array
(and so on).

For more details about the values that
can be passed for these input

parameters, refer to their attribute
descriptions earlier in this file.

CIMOperationFailedException can be thrown on failure,
or CIMAccessDeniedException if the user has insufficient

authority.

sint8 modifyWorkload(

[in] string newWorkloadName,

[in] sint64 newGUID,

[in] string WorkloadDescription,

[in] uint8 CriteriaType[],

[in] string CriteriaName[],

[in] string AlternateCriteriaName[],

[in] string SGPackageName);

Method that will modify a workload

definition. This method will use the
workload name and guid passed in as
part of the key as 'old' values, and the

input parameters below will be 'new'
values.

For more details about the values that
can be passed for these input
parameters, refer to their attribute

descriptions earlier in this file.

CIMOperationFailedException can be thrown on failure,

or CIMAccessDeniedException if the user has insufficient
authority.

sint8 stopWatchingWorkload(); Method that will cause the utilization
provider to stop watching a workload's

utilization. The historic data that was
recorded for this process group (up to
seven days) will not be deleted when this

method is called, but will over time be
cleaned up by the utilization provider.

CIMOperationFailedException can be thrown on failure,
or CIMAccessDeniedException if the user has insufficient

authority.

Page 11

sint8 getDescription(

[out] string WorkloadDescription);

Method that will return the description
for a given workload. Note that the

workload name is extracted from the
WorkloadName key value and the
DailyTimeStamp is ignored (as with the

getCurrentUtilization() method).

CIMOperationFailedException can be thrown on failure.

sint8 getSGPackageName(

[out] string SGPackageName);

Method that will return the Service

Guard package name for the workload.
This method allows consumers to access
the SG package name without getting

an instance of historic data.

CIMOperationFailedException can be thrown on failure.

Table 10: Standard intrinsic methods.

This table describes the supported intrinsic methods of all the classes in this schema.

Method name Supported by

createInstance None

deleteInstance None

modifyInstance None

GetInstance All classes

enumerateInstances All classes

enumerateInstanceNames All classes

Indications and Queries generated by this provider

This provider does not support indications or queries.

Associations provided by this provider

The Utilization Provider does not support any associations.

More Information
 Unix:

o Schema (mof) files are delivered in /opt/util/mof.

o utild manpage.

 Windows:

o Schema (mof) files are delivered in \Program Files\Hewlett-Packard\UtilProvider\mof.

o UPService.exe manpage is delivered in \Program Files\Hewlett-Packard\UtilProvider\doc.

 OpenVMS:

o Schema (mof) files are delivered in /SYS$COMMON/WBEMPROVIDERS/MOF

 WBEM Information:

o For a CIM tutorial, go to http://www.dmtf.org/education/cimtutorial.php.

o For information about the Pegasus WBEM infrastructure, see http://www.opengroup.org/pegasus.

o For information about WBEM and a list of providers/clients available, see the Pegasus Home Page.

o For information about the WBEM infrastructure and administration information, see the WBEM manual or the man pages.

Known Defects and Performance Considerations

None.

Page 12

For additional information on HP products and services, visit us at
http://www.hp.com.

For the location of the nearest sales office, call:

United States: +1 800 637 7740

Canada: +1 905 206 4725

Japan: +81 3 3331 6111

Latin America: +1 305 267 4220

Australia/New Zealand: +61 3 9272 2895

Asia Pacific: +8522 599 7777

Europe/Africa/Middle East: +41 22 780 81 11

For more information, contact any of our worldwide sales offices or HP

Channel Partners (in the U.S., call 1 800 637 7740).

Technical information contained in this document is subject to change without notice.

© Copyright Hewlett-Packard Company 2011

02/2011

http://www.hp.com/

