
HP Pascal for OpenVMS
Language Reference Manual
Order Number: AA–PWVSD–TK

January 2005

This manual contains the complete description of the HP Pascal
programming language.

Revision/Update Information: This revised manual supersedes the
Compaq Pascal Language Reference
Manual, Version 5.7.

Operating System: OpenVMS I64 Version 8.2 or higher
OpenVMS Alpha Version 6.1 or higher
OpenVMS VAX Version 5.5 or higher

Software Version: HP Pascal for OpenVMS I64 Systems
Version 5.9
HP Pascal for OpenVMS Alpha Systems
Version 5.9
HP Pascal for OpenVMS VAX Systems
Version 5.8

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

ZK6083

This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xvii

1 Language Elements

1.1 Pascal Language Standards . 1–1
1.1.1 Unextended Pascal Standards . 1–1
1.1.2 Extended Pascal Standard . 1–2
1.2 Lexical Elements . 1–2
1.2.1 Character Set . 1–3
1.2.2 Special Symbols . 1–4
1.2.3 String Delimiters . 1–4
1.2.4 Embedded String Constants . 1–4
1.2.5 Reserved Words . 1–5
1.2.6 Identifiers . 1–6
1.3 Comments . 1–9
1.4 Page Breaks and Form Feeds in Programs 1–10

2 Data Types and Values

2.1 Ordinal Types . 2–2
2.1.1 Integer Types . 2–2
2.1.1.1 INTEGER and INTEGER64 Types 2–2
2.1.1.2 UNSIGNED and UNSIGNED64 Types 2–3
2.1.1.3 Integer Literals . 2–4
2.1.1.4 INTEGER_ADDRESS Type . 2–6
2.1.2 CHAR Type . 2–7
2.1.3 BOOLEAN Type . 2–8
2.1.4 Enumerated Types . 2–8
2.1.5 Subrange Types . 2–9
2.2 Real Types . 2–11
2.3 Pointer Types . 2–16
2.3.1 POINTER Type . 2–18
2.4 Structured Types . 2–18

iii

2.4.1 ARRAY Types . 2–19
2.4.1.1 ARRAY Components . 2–20
2.4.1.2 ARRAY Constructors . 2–21
2.4.2 RECORD Types . 2–22
2.4.2.1 Records with Variants . 2–24
2.4.2.2 Record Constructors . 2–27
2.4.3 SET Type . 2–30
2.4.3.1 Set Constructors . 2–31
2.4.4 FILE Type . 2–32
2.4.5 TEXT Type . 2–33
2.4.6 Nonstandard Constructors . 2–34
2.4.6.1 Nonstandard Array Constructors 2–34
2.4.6.2 Nonstandard Record Constructors 2–35
2.5 Schema Types . 2–37
2.6 String Types . 2–41
2.6.1 PACKED ARRAY OF CHAR Types . 2–43
2.6.2 VARYING OF CHAR Types . 2–44
2.6.3 STRING Schema Type . 2–45
2.7 Null-Terminated Strings . 2–47
2.8 TIMESTAMP Type . 2–48
2.9 Static and Nonstatic Types . 2–48
2.10 Type Compatibility . 2–49
2.10.1 Structural Compatibility . 2–49
2.10.2 Assignment Compatibility . 2–51

3 Declaration Section

3.1 CONST Section . 3–2
3.2 LABEL Section . 3–2
3.3 TO BEGIN DO Section . 3–3
3.4 TO END DO Section . 3–6
3.5 TYPE Section . 3–7
3.6 VALUE Section . 3–9
3.7 VAR Section . 3–9

4 Expressions and Operators

4.1 Expressions . 4–1
4.2 Operators . 4–2
4.2.1 Arithmetic Operators . 4–2
4.2.2 Relational Operators . 4–5
4.2.3 Logical Operators . 4–6
4.2.4 String Operators . 4–8

iv

4.2.5 Set Operators . 4–10
4.2.6 Type Cast Operator . 4–11
4.2.7 Precedence of Operators . 4–12
4.3 Structured Function-Return Values . 4–15
4.4 Type Conversions . 4–15

5 Statements

5.1 Assignment Statement . 5–2
5.2 BREAK Statement . 5–2
5.3 CASE Statement . 5–3
5.4 Compound Statement . 5–4
5.5 CONTINUE Statement . 5–5
5.6 Empty Statement . 5–5
5.7 FOR Statement . 5–6
5.8 GOTO Statement . 5–7
5.9 IF Statement . 5–8
5.10 Procedure Call . 5–9
5.11 REPEAT Statement . 5–10
5.12 RETURN Statement . 5–10
5.13 WHILE Statement . 5–12
5.14 WITH Statement . 5–13

6 Procedures and Functions

6.1 Routine Declarations . 6–1
6.2 Routine Calls . 6–4
6.3 Parameters . 6–6
6.3.1 Value Parameters . 6–8
6.3.2 Variable Parameters . 6–10
6.3.3 Routine Parameters . 6–12
6.3.4 Passing Predeclared Functions to Formal Function

Parameters . 6–15
6.3.5 Foreign Parameters . 6–15
6.3.6 Schema Parameters . 6–18
6.3.7 Conformant Parameters . 6–20
6.3.7.1 Conformant Array Parameters . 6–21
6.3.7.2 Conformant VARYING Parameter 6–22
6.3.7.3 Conformant Parameter Sections 6–24
6.3.8 Parameter Association . 6–25
6.3.9 Default Formal Parameters . 6–26

v

7 Program Structure and Scope

7.1 Blocks . 7–1
7.2 Scope of Identifiers . 7–2
7.3 Redeclaring Routine Names . 7–2
7.4 Modules and Programs . 7–5
7.5 Compilation Units and Data Sharing . 7–7
7.5.1 Environment Files . 7–7
7.5.2 Global and External Identifiers . 7–9

8 Predeclared Functions and Procedures

8.1 ABS Function . 8–3
8.2 ADD_ATOMIC Function (OpenVMS I64 and OpenVMS Alpha

systems only) . 8–3
8.3 ADD_INTERLOCKED Function . 8–4
8.4 ADDRESS Function . 8–4
8.5 AND_ATOMIC Function (OpenVMS I64 and OpenVMS Alpha

systems only) . 8–5
8.6 ARCTAN Function . 8–5
8.7 ARGUMENT Function . 8–6
8.8 ARGUMENT_LIST_LENGTH Function 8–6
8.9 ASSERT Procedure . 8–7
8.10 BARRIER Function (OpenVMS I64 and OpenVMS Alpha

systems only) . 8–7
8.11 BIN Function . 8–8
8.12 BIT_OFFSET Function . 8–9
8.13 BITNEXT Function . 8–9
8.14 BITSIZE Function . 8–9
8.15 BYTE_OFFSET Function . 8–10
8.16 C_STR Function . 8–10
8.17 CARD Function . 8–11
8.18 CHR Function . 8–11
8.19 CLEAR_INTERLOCKED Function . 8–11
8.20 CLOCK Function . 8–12
8.21 COS Function . 8–12
8.22 CREATE_DIRECTORY Procedure . 8–12
8.23 DATE and TIME Functions . 8–12
8.24 DATE and TIME Procedures . 8–13
8.25 DBLE Function . 8–13
8.26 DEC Function . 8–14
8.27 DELETE_FILE Procedure . 8–15
8.28 DISPOSE Procedure . 8–15

vi

8.29 EQ Function . 8–16
8.30 ESTABLISH Procedure . 8–16
8.31 EXP Function . 8–16
8.32 EXPO Function . 8–17
8.33 FIND_FIRST_BIT_CLEAR Function . 8–17
8.34 FIND_FIRST_BIT_SET Function . 8–17
8.35 FIND_MEMBER Function . 8–18
8.36 FIND_NONMEMBER Function . 8–18
8.37 GE Function . 8–19
8.38 GETTIMESTAMP Procedure . 8–19
8.39 GT Function . 8–20
8.40 HALT Procedure . 8–21
8.41 HEX Function . 8–21
8.42 IADDRESS Function . 8–22
8.43 IADDRESS64 Function . 8–23
8.44 IN_RANGE Function . 8–23
8.45 INDEX Function . 8–23
8.46 INT Function . 8–24
8.47 INT64 Function . 8–24
8.48 LE Function . 8–24
8.49 LENGTH Function . 8–25
8.50 LN Function . 8–25
8.51 LOWER Function . 8–25
8.52 LSHIFT Function . 8–26
8.53 LT Function . 8–26
8.54 MALLOC_C_STR Function . 8–27
8.55 MAX Function . 8–27
8.56 MFPR Function (OpenVMS VAX systems only) 8–27
8.57 MIN Function . 8–28
8.58 MTPR Procedure (OpenVMS VAX systems only) 8–28
8.59 NE Function . 8–29
8.60 NEW Procedure . 8–29
8.61 NEXT Function . 8–31
8.62 OCT Function . 8–32
8.63 ODD Function . 8–32
8.64 OR_ATOMIC Function (OpenVMS I64 and OpenVMS Alpha

systems only) . 8–32
8.65 ORD Function . 8–33
8.66 PACK Procedure . 8–33
8.67 PAD Function . 8–34
8.68 PAS_STR Function . 8–35
8.69 PAS_STRCPY Function . 8–35
8.70 PRED Function . 8–35

vii

8.71 PRESENT Function . 8–35
8.72 QUAD Function . 8–36
8.73 RANDOM Function . 8–36
8.74 READV Procedure . 8–37
8.75 RENAME_FILE Procedure . 8–38
8.76 REVERT Procedure . 8–38
8.77 ROUND Function . 8–38
8.78 ROUND64 Function . 8–39
8.79 RSHIFT Function . 8–39
8.80 SEED Function . 8–39
8.81 SET_INTERLOCKED Function . 8–40
8.82 SIN Function . 8–40
8.83 SIZE Function . 8–40
8.84 SNGL Function . 8–41
8.85 SQR Function . 8–42
8.86 SQRT Function . 8–42
8.87 STATUSV Function . 8–42
8.88 SUBSTR Function . 8–43
8.89 SUCC Function . 8–43
8.90 SYSCLOCK Function . 8–44
8.91 TIME Procedure . 8–44
8.92 TRUNC Function . 8–44
8.93 TRUNC64 Function . 8–44
8.94 UAND Function . 8–44
8.95 UDEC Function . 8–45
8.96 UINT Function . 8–46
8.97 UINT64 Function . 8–46
8.98 UNDEFINED Function . 8–46
8.99 UNOT Function . 8–47
8.100 UNPACK Procedure . 8–47
8.101 UOR Function . 8–48
8.102 UPPER Function . 8–49
8.103 UROUND Function . 8–49
8.104 UROUND64 Function . 8–50
8.105 UTRUNC Function . 8–50
8.106 UTRUNC64 Function . 8–50
8.107 UXOR Function . 8–51
8.108 WALLCLOCK Function . 8–51
8.109 WRITEV Procedure . 8–51
8.110 XOR Function . 8–52
8.111 ZERO Function . 8–53

viii

9 Input and Output Processing

9.1 Files and File Organizations . 9–1
9.1.1 Sequential File Organization . 9–2
9.1.2 Relative File Organization . 9–3
9.1.3 Indexed File Organization . 9–4
9.2 Component Formats . 9–7
9.2.1 Fixed-Length Component Format . 9–10
9.2.2 Variable-Length Component Format 9–10
9.2.3 Stream Component Format . 9–10
9.3 Component Access Modes . 9–11
9.3.1 Sequential Access . 9–12
9.3.1.1 Sequential Access to Sequential Files 9–13
9.3.1.2 Sequential Access to Relative Files 9–13
9.3.1.3 Sequential Access to Indexed Files 9–15
9.3.2 Random Access . 9–15
9.3.2.1 Random Access by Relative Component Numbers (Direct

Access) . 9–16
9.3.2.2 Random Access to Indexed Files (Keyed Access) 9–17
9.4 File Locking . 9–17
9.5 TEXT Files . 9–18
9.5.1 Carriage Control . 9–19
9.5.2 Prompting on a Terminal . 9–20
9.5.3 Delayed Device Access to Text Files . 9–20
9.5.4 Writing Partial Lines to Terminals . 9–23
9.6 Formatting Output . 9–23
9.6.1 Specifying the Field Width . 9–24
9.6.2 Writing Real Numbers . 9–25
9.6.3 Explicitly Specifying the Base . 9–26
9.6.4 Specifying the Base with Predeclared Conversion

Functions . 9–26
9.6.5 Writing Nonnumeric Types . 9–28
9.7 Error-Processing Parameter . 9–29
9.8 I/O Routines . 9–29
9.8.1 CLOSE Procedure . 9–31
9.8.2 DELETE Procedure . 9–32
9.8.3 EOF Function . 9–33
9.8.4 EOLN Function . 9–34
9.8.5 EXTEND Procedure . 9–35
9.8.6 FIND Procedure . 9–36
9.8.7 FINDK Procedure . 9–37
9.8.8 GET Procedure . 9–39
9.8.9 LINELIMIT Procedure . 9–42

ix

9.8.10 LOCATE Procedure . 9–43
9.8.11 MESSAGE Procedure . 9–44
9.8.12 OPEN Procedure . 9–44
9.8.13 PAGE Procedure . 9–49
9.8.14 PUT Procedure . 9–50
9.8.15 READ Procedure . 9–52
9.8.16 READLN Procedure . 9–56
9.8.17 RESET Procedure . 9–58
9.8.18 RESETK Procedure . 9–59
9.8.19 REWRITE Procedure . 9–60
9.8.20 STATUS Function . 9–61
9.8.21 TRUNCATE Procedure . 9–63
9.8.22 UFB Function . 9–63
9.8.23 UNLOCK Procedure . 9–64
9.8.24 UPDATE Procedure . 9–65
9.8.25 WRITE Procedure . 9–66
9.8.26 WRITELN Procedure . 9–67

10 Attributes

10.1 Attribute Syntax . 10–1
10.2 Attributes . 10–4
10.2.1 ALIGN . 10–4
10.2.2 ALIGNED . 10–5
10.2.3 ASYNCHRONOUS . 10–7
10.2.4 AT . 10–8
10.2.5 AUTOMATIC . 10–9
10.2.6 BIT . 10–10
10.2.7 BYTE . 10–11
10.2.8 CHECK . 10–11
10.2.9 CLASS_A . 10–13
10.2.10 CLASS_NCA . 10–13
10.2.11 CLASS_S . 10–14
10.2.12 COMMON . 10–15
10.2.13 ENUMERATION_SIZE . 10–16
10.2.14 ENVIRONMENT . 10–16
10.2.15 EXTERNAL . 10–18
10.2.16 FLOAT . 10–19
10.2.17 GLOBAL . 10–19
10.2.18 HIDDEN . 10–20
10.2.19 IDENT . 10–20
10.2.20 IMMEDIATE . 10–21
10.2.21 INHERIT . 10–21

x

10.2.22 INITIALIZE . 10–22
10.2.23 KEY . 10–23
10.2.24 LIST . 10–25
10.2.25 LOCAL . 10–27
10.2.26 LONG . 10–28
10.2.27 NOOPTIMIZE . 10–28
10.2.28 OCTA . 10–29
10.2.29 OPTIMIZE . 10–29
10.2.30 PEN_CHECKING_STYLE Attribute 10–31
10.2.31 POS . 10–32
10.2.32 PSECT . 10–33
10.2.33 QUAD . 10–34
10.2.34 READONLY . 10–34
10.2.35 REFERENCE . 10–36
10.2.36 STATIC . 10–36
10.2.37 TRUNCATE . 10–37
10.2.38 UNALIGNED . 10–41
10.2.39 UNBOUND . 10–41
10.2.40 UNSAFE . 10–42
10.2.41 VALUE . 10–45
10.2.42 VOLATILE . 10–46
10.2.43 WEAK_EXTERNAL . 10–50
10.2.44 WEAK_GLOBAL . 10–51
10.2.45 WORD . 10–51
10.2.46 WRITEONLY . 10–51
10.3 Attribute Classes . 10–52

11 Directives

11.1 %INCLUDE . 11–1
11.2 %DICTIONARY . 11–5
11.3 %TITLE and %SUBTITLE . 11–6
11.4 %IF, %ELSE, %ELIF, and %ENDIF . 11–6
11.5 %DEFINED . 11–8
11.6 %ERROR, %WARN, %INFO, and %MESSAGE 11–8
11.7 %ARCH_NAME, %SYSTEM_NAME, and

%SYSTEM_VERSION . 11–9
11.8 %DATE, %TIME, and %COMPILER_VERSION 11–10
11.9 %LINE, %FILE, %ROUTINE, %MODULE, and %IDENT 11–10

xi

A Data Storage and Representation

A.1 Program Sections . A–1
A.1.1 Establishing Program Sections . A–2
A.1.2 Establishing Program Section Properties A–6
A.2 Storage Allocation . A–7
A.2.1 Allocation of Variables . A–7
A.2.2 Allocation of Symbolic Constants and Executable Blocks A–9
A.2.3 Allocation Example . A–9
A.2.4 Allocation Sizes of Variables . A–10
A.2.5 Storage Allocation of Types . A–11
A.2.6 Allocation Size Examples . A–15
A.2.7 Alignment Boundaries . A–16
A.3 Internal Representation of Data Types . A–19
A.3.1 Representation of Varying Data . A–19
A.3.2 Representation of Floating-Point Data A–20
A.3.2.1 F_floating-Point Numbers . A–21
A.3.2.2 S_floating-Point Numbers . A–21
A.3.2.3 D_floating-Point Numbers . A–22
A.3.2.4 G_floating-Point Numbers . A–23
A.3.2.5 T_floating-Point Numbers . A–24
A.3.2.6 H_floating-Point Numbers . A–24
A.3.2.7 X_floating-Point Numbers . A–26
A.3.3 Representation of Nonstatic Types and Variables A–27
A.3.3.1 Representation of Nonstatic Types A–27
A.3.3.2 Representation of Variables of Nonstatic Types A–28
A.3.3.3 Representation of Nonstatic Record Fields A–30

B Summary of HP Pascal Extensions

B.1 HP Pascal Extensions to Unextended Pascal B–1
B.2 HP Pascal Extensions to Extended Pascal B–5

C Description of Implementation Features

C.1 Implementation-Defined Features . C–1
C.2 Implementation-Dependent Features . C–2

xii

D Compiler and Run-Time System Error Detection

D.1 Error Message Information . D–1

Glossary

Index

Examples

10–1 Using the TRUNCATE Attribute . 10–40
A–1 Using Program Sections to Allocate Storage A–9

Figures

3–1 Order of Execution for TO BEGIN DO and TO END DO
Sections . 3–5

7–1 Scope of Identifiers . 7–4
9–1 Sequential File Organization . 9–3
9–2 Relative File Organization . 9–4
9–3 Indexed File Organization . 9–5
9–4 A First Alternate Key . 9–6
9–5 File Buffer Contents . 9–8
9–6 Sequential Access to a Sequential File 9–13
9–7 Using Sequential Access to Read from a Relative File 9–14
9–8 Using Sequential Access to Write to a Relative File 9–15
9–9 Using Random Access on Sequential and Relative Files 9–17
9–10 File Position After GET Procedure . 9–41
11–1 %INCLUDE File Levels . 11–4
A–1 Storage of Varying Data . A–20
A–2 F_floating-Point Data Representation A–21
A–3 S_floating-Point Data Representation A–22
A–4 D_floating-Point Data Representation A–22
A–5 G_floating-Point Data Representation A–23
A–6 T_floating-Point Data Representation A–24
A–7 H_floating-Point Data Representation A–25
A–8 X_floating-Point Data Representation A–26
A–9 Storage of Nonstatic Data Types . A–27

xiii

A–10 Storage of Variables of Nonstatic Types A–29
A–11 Storage of Pointer Variables to Undiscriminated Schema

Types . A–29

Tables

1–1 Special Symbols . 1–4
1–2 Embedded String Constants . 1–5
1–3 Reserved Words . 1–5
1–4 Redefinable Reserved Words . 1–6
1–5 Predeclared Identifiers . 1–7
2–1 Range of Values of Integer Ordinal Types 2–2
2–2 Values of MAXINT and MAXINT64 Predeclared

Constants . 2–3
2–3 Range of Values of Unsigned Ordinal Types 2–4
2–4 Values of MAXUNSIGNED and MAXUNSIGNED64 2–4
2–5 Data Types for Integer Constants for OpenVMS I64 and

OpenVMS Alpha Systems . 2–6
2–6 Data Types for Integer Constants for OpenVMS VAX

Systems . 2–6
2–7 Supported Floating-Point Formats . 2–12
2–8 Floating Data Types . 2–13
2–9 Precision in Exponential Notation . 2–14
2–10 Predefined Identifiers for Real Data Types 2–14
2–11 Assignment Compatibility . 2–52
4–1 Arithmetic Operators . 4–3
4–2 Results of Negative Exponents . 4–3
4–3 Result Types of Arithmetic Operators 4–5
4–4 Relational Operators . 4–6
4–5 Logical Operators . 4–6
4–6 String Operators . 4–8
4–7 Set Operators . 4–10
4–8 Precedence of Operators . 4–12
6–1 Formal Parameter Semantics . 6–7
6–2 Parameter-Passing Mechanisms . 6–7
6–3 Specifiers and Attributes for Passing Mechanisms 6–15
6–4 Default Values on Formal Parameters 6–26
8–1 Predeclared Routine Categories . 8–1

xiv

8–2 Return Values of Alignment Predeclared Routines 8–41
8–3 Value of ZERO . 8–53
9–1 Characteristics of the KEY Attribute 9–7
9–2 File Organization Support for Component Formats 9–10
9–3 Acceptable Types of Stream Component Formats 9–11
9–4 File Organization Support for Component Access Modes 9–12
9–5 Carriage-Control Characters . 9–19
9–6 Default Field Widths . 9–24
9–7 File Mode During I/O Processing . 9–30
10–1 ALIGN Attribute Keywords . 10–5
10–2 Summary of Checking Options . 10–12
10–3 ENUMERATION_SIZE Attribute Keywords 10–16
10–4 KEY Attribute Options . 10–24
10–5 OPTIMIZE Attribute Options . 10–30
10–6 Allowed Combinations of Volatile and Nonvolatile

Parameters . 10–48
10–7 Attribute Classes . 10–53
10–8 Attributes on Routines and Compilation Units 10–55
10–9 Attributes on Data Items . 10–56
A–1 Program Section Properties . A–2
A–2 Program Section Data on OpenVMS I64 Systems A–3
A–3 Program Section Data on OpenVMS Alpha Systems A–4
A–4 Program Section Data on OpenVMS VAX Systems A–4
A–5 Required Program Section Properties A–6
A–6 Storage Allocation of Types . A–11
A–7 Conditions Determining Boundary Alignment A–17
B–1 HP Pascal Extensions to Unextended Pascal B–1
B–2 HP Pascal Extensions to Extended Pascal B–5

xv

Preface

This manual describes the HP Pascal programming language. It contains
information on:

• HP Pascal language syntax and semantics

• HP Pascal adherence to Pascal standards

• HP Pascal extensions to standards.

All references to OpenVMS systems refer to the OpenVMS I64, OpenVMS
Alpha, and OpenVMS VAX operating systems unless otherwise specified.

Intended Audience
This manual is for experienced applications programmers with a basic
understanding of the Pascal language. Some familiarity with your operating
system is helpful. This is not a tutorial manual.

Document Structure
This manual consists of the following chapters and appendixes:

• Chapter 1 describes Pascal language standards and lexical elements.

• Chapter 2 describes data types and values.

• Chapter 3 describes declaration sections.

• Chapter 4 describes expressions and operators.

• Chapter 5 describes statements.

• Chapter 6 describes user-written procedures and functions.

• Chapter 7 describes program structure and scope.

• Chapter 8 describes predeclared procedures and functions, except those
that perform input and output.

xvii

• Chapter 9 describes the predeclared procedures and functions that perform
input and output.

• Chapter 10 describes attributes.

• Chapter 11 describes directives.

• Appendix A describes the storage allocation and alignment for data types
and the internal representation of each data type.

• Appendix B describes the HP Pascal extensions to the Pascal
standards.

• Appendix C describes the HP Pascal implementation features that the
Pascal standards allow each implementation to define.

• Appendix D describes how the HP Pascal compiler detects errors defined
by the Pascal standard.

• The Glossary provides a glossary of HP Pascal terminology.

Related Documents
The following documents might also be useful when programming in
HP Pascal:

• HP Pascal for OpenVMS User Manual—Provides information about
programming tasks, about using features in conjunction with one another,
and about increasing the efficiency of program execution.

• HP Pascal for OpenVMS Installation Guide—Provides information on how
to install HP Pascal on your OpenVMS system.

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

xviii

HP Pascal Home Page
You can access the HP Pascal home page at:

http://h71000.www7.hp.com/commercial/pascal/pascal_index.html

Conventions
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity Servers

• OpenVMS I64

• I64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following typographic conventions might be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention
appears as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the
following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one or
more times.

• Additional parameters, values, or other information can
be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

xix

() In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify more
than one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

| In command format descriptions, vertical bars separate
choices within brackets or braces. Within brackets, the
choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code
for the device type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xx

1
Language Elements

HP Pascal is a general-purpose programming language. This chapter describes
the following information and components of the HP Pascal language:

• Section 1.1, Pascal Language Standards

• Section 1.2, Lexical Elements

• Section 1.3, Comments

• Section 1.4, Page Breaks and Form Feeds in Programs

1.1 Pascal Language Standards
The HP Pascal compiler accepts programs that comply with two standards
and a subset of programs that comply with a third. HP Pascal also provides
features (called extensions) that are not part of any standard. For portable
code, limit your use of these extensions or isolate the extensions in separate
modules.

1.1.1 Unextended Pascal Standards
The unextended Pascal standards are as follows:

• American National Standard ANSI/IEEE770X3.97-1989 (ANSI)

• International Standard ISO 7185-1989 (ISO)

HP Pascal accepts programs that comply to either standard. In the HP Pascal
documentation set, the term ‘‘unextended Pascal’’ applies to both the ANSI and
ISO standards.

HP Pascal contains FIPS-109 (Federal Information Processing Standard)
validation support.

The standards are divided into two levels of standardization: Level 0 and Level
1. An example of a technical difference between the Level 0 standard and the
Level 1 standard is that Level 0 does not include conformant arrays, while
Level 1 does.

Language Elements 1–1

HP Pascal has passed the validation suite for Pascal compilers. It received a
CLASS A certificate for both levels of the ISO standard as well as the ANSI
standard. CLASS A certificates are given to compilers with a fully conforming
implementation.

For More Information:

• On HP Pascal extensions to unextended Pascal (Appendix B)

• On HP Pascal implementation-dependent features (Appendix C)

• On HP Pascal error processing as defined by the standards (Appendix D)

• On flagging nonstandard constructs during compilation (HP Pascal for
OpenVMS User Manual)

1.1.2 Extended Pascal Standard
The Extended Pascal standard is a superset of the unextended Pascal
standards. The Extended Pascal standards are as follows:

• American National Standard ANSI/IEEE770X3.160-1989

• International Standard ISO 10206-1989

In the HP Pascal documentation set, the term Pascal standard refers to these
standards. Because HP Pascal supports most Extended Pascal standard
features, it cannot compile all programs that comply with Extended Pascal.

For your convenience, the HP Pascal extensions to the Extended Pascal
standard are printed in blue in this manual.

For More Information:

• On HP Pascal support for Extended Pascal features (Appendix B)

• On flagging nonstandard constructs during compilation (HP Pascal for
OpenVMS User Manual)

1.2 Lexical Elements
This section discusses lexical elements of the HP Pascal language.

1–2 Language Elements

1.2.1 Character Set
HP Pascal uses the extended American Standard Code for Information
Interchange (ASCII) character set. This extended ASCII character set contains
256 characters, which include the following:

• Uppercase letters A through Z and lowercase letters a through z

• Integers 0 through 9

• Special characters, such as the ampersand (&), question mark (?), and
equal sign (=)

• Nonprinting characters, such as the space, tab, line feed, carriage return,
and form feed (use of these characters can improve the legibility of your
programs)

• Extended, unspecified characters with numeric codes from 128 to 255

Each ASCII character corresponds to a numeric value.

Each element of the character set is a constant of the predefined HP Pascal
type CHAR. An ASCII decimal number is the same as the ordinal value (as
returned by the Pascal ORD function) of the associated character in the type
CHAR.

HP Pascal allows full use of eight-bit characters.

The HP Pascal compiler does not distinguish between uppercase and lowercase
characters except when they appear inside single or double quotation marks.
For example, the word PROGRAM has the same meaning when written as any
of the following:

PROGRAM
PRogrAm
program

The characters in each pair of characters, however, represent different values:

’b’ ’B’
"c" "C"

Language Elements 1–3

1.2.2 Special Symbols
Special symbols represent operators, delimiters, and other syntactic elements.
Some symbols are composed of more than one character; you cannot place a
space between the characters of these special symbols. Table 1–1 lists the HP
Pascal special symbols.

Table 1–1 Special Symbols

Symbol Name Symbol Name

’ Apostrophe <= Less than or equal to

:= Assignment operator – Minus sign

[] or (. .) Brackets * Multiplication

: Colon <> Not equal

, Comma () Parentheses

(* *) or { } Comments % Percent

/ Division . Period

" Double quote + Plus sign

= Equal sign ^ or @ Pointer

** Exponentiation ; Semicolon

> Greater than .. Subrange operator

>= Greater than or equal to :: Type cast operator

< Less than

1.2.3 String Delimiters
HP Pascal accepts single-quote and double-quote characters as string and
character delimiters.

1.2.4 Embedded String Constants
Within double quotation marks, HP Pascal supports constant characters
specified with a backslash, in a syntax similar to that of the C programming
language. Table 1–2 lists the constants supported by HP Pascal.

1–4 Language Elements

Table 1–2 Embedded String Constants

Constant Definition ASCII Value

\a Bell character 16#7

\b Backspace character 16#8

\f Form-feed character 16#C

\n Line-feed character 16#A

\r Carriage-return character 16#D

\t Horizontal tab character 16#9

\v Vertical character 16#B

\\ Backslash character 16#5C

\" Double-quotation character 16#22

\’ Single-quotation character 16#27

\nnn Character whose value is nnn nnn is an octal number from 000 to
377. Leading zeros can be omitted.

\xnn Character whose value is nn nn is a hexadecimal number from 00 to
FF. Leading zeros can be omitted.

1.2.5 Reserved Words
Reserved words are used to designate data types, directives, identifiers,
specifiers, statements, and operators. You cannot redefine these identifiers.
Table 1–3 presents the HP Pascal reserved words.

Table 1–3 Reserved Words

%DESCR %DICTIONARY %IMMED %INCLUDE

%REF %STDESCR %SUBTITLE %TITLE

AND ARRAY BEGIN CASE

CONST DIV DO DOWNTO

ELSE END FILE FOR

FUNCTION GOTO IF IN

LABEL MOD NIL NOT

OF OR PACKED PROCEDURE

PROGRAM RECORD REPEAT SET

THEN TO TYPE UNTIL

VAR WHILE WITH

Language Elements 1–5

The manuals in the HP Pascal documentation set show these reserved words
in uppercase letters. If you choose, you can express them in mixed case or
lowercase in your programs.

Table 1–4 presents the redefinable reserved words that are used to name
operators and identifiers. You can redeclare these words, but, if you do, the
language feature becomes unavailable within the block in which you redeclare
the word.

Table 1–4 Redefinable Reserved Words

AND_THEN BREAK CONTINUE MODULE

OR_ELSE OTHERWISE REM RETURN

VALUE VARYING

Note

This table does not include statements that are only provided by HP
Pascal for compatibility with other Pascal compilers.

This manual shows redefinable reserved words in uppercase letters. If you
choose, you can express them in mixed case or lowercase in your programs.

1.2.6 Identifiers
An identifier is a combination of letters, digits, dollar signs ($), and
underscores (_) that conforms to the following restrictions:

• An identifier cannot start with a digit.

• An identifier cannot contain spaces or special symbols.

• The first 31 characters of an identifier must denote a unique name within
the block in which the identifier is declared. An identifier longer than 31
characters generates a warning message. The compiler ignores characters
beyond the thirty-first character.

• The Pascal standard dictates that an identifier cannot start or end with an
underscore, nor can two adjacent underscores be used within an identifier.
However, HP Pascal allows both cases of underscore use and generates an
informational message if you compile with the standard switch.

On OpenVMS systems, HP Pascal uses uppercase characters for all external
user symbols.

1–6 Language Elements

You can provide a string argument to the GLOBAL, WEAK_GLOBAL,
EXTERNAL, and WEAK_EXTERNAL attributes to override this case usage.
HP Pascal passes the string unmodified to the linker.

This manual shows predeclared identifiers in uppercase letters. If you choose,
you can express them in mixed case or lowercase in your programs. The
following examples show valid and invalid identifiers:

Valid:
For2n8
MAX_WORDS
upto
LOGICAL_NAME_TABLE {Unique in first}
Logical_Name_Scanner { 31 characters}
SYS$CREMBX

Invalid:
4Awhile {Starts with a digit}
up&to {Contains an ampersand}
YEAR_END_87_MASTER_FILE_TOTAL_DISCOUNT {Not unique in first}
Year_End_87_Master_File_Total_Dollars { 31 characters}

Table 1–5 presents the HP Pascal predeclared identifiers that name data
types, symbolic constants, file variables, procedures, and functions. You can
redefine a predeclared identifier, but if you do, the original declaration becomes
unavailable within the block in which you redeclared the word.

Table 1–5 Predeclared Identifiers

ABS ADD_ATOMIC ADD_INTERLOCKED ADDRESS

AND_ATOMIC ARCTAN ARGC ARGUMENT

ARGUMENT_LIST_
LENGTH

ARGV ASSERT

BARRIER BIN BIT_OFFSET BITNEXT

BITSIZE BOOLEAN BYTE_OFFSET

CARD CARDINAL CARDINAL16 CARDINAL32

CHAR CHR CLEAR_INTERLOCKED CLOCK

C_STR C_STR_T CLOSE COS

CREATE_DIRECTORY

D_FLOAT DATE DBLE DEC

(continued on next page)

Language Elements 1–7

Table 1–5 (Cont.) Predeclared Identifiers

DELETE DELETE_FILE DISPOSE DOUBLE

EOF EOLN EPSDOUBLE EPSQUADRUPLE

EPSREAL EQ ESTABLISH EXP

EXPO EXTEND

F_FLOAT FALSE FIND FIND_FIRST_
BIT_CLEAR

FIND_FIRST_BIT_SET FIND_MEMBER FIND_NONMEMBER FINDK

G_FLOAT GE GET GETTIMESTAMP

GT

H_FLOAT HALT HEX

IADDRESS IADDRESS64 INDEX INPUT

INT INTEGER INTEGER8 INTEGER16

INTEGER32 INTEGER64 INTEGER_ADDRESS

LE LENGTH LINELIMIT LN

LOCATE LOWER LSHIFT LT

MALLOC_C_STR MAX MAXCHAR MAXDOUBLE

MAXINT MAXQUADRUPLE MAXREAL MAXUNSIGNED

MIN MINDOUBLE MINQUADRUPLE MINREAL

NE NEW NEXT NIL

OCT ODD OPEN OR_ATOMIC

ORD OUTPUT

PACK PAD PAGE PAS_STR

PAS_STRCPY POINTER PRED PRESENT

PUT

QUAD QUADRUPLE

RANDOM READ READLN READV

REAL RENAME_FILE RESET RESETK

REVERT REWRITE ROUND ROUND64

RSHIFT

S_FLOAT SEED SET_INTERLOCKED SIN

(continued on next page)

1–8 Language Elements

Table 1–5 (Cont.) Predeclared Identifiers

SINGLE SIZE SNGL SQR

SQRT STATUS STATUSV STRING

SUBSTR SUCC SYSCLOCK

T_FLOAT TEXT TIME TIMESTAMP

TRUE TRUNC TRUNC64 TRUNCATE

UAND UDEC UFB UINT

UNDEFINED UNLOCK UNOT UNPACK

UNSIGNED UNSIGNED8 UNSIGNED16 UNSIGNED32

UNSIGNED64 UOR UPDATE UPPER

UROUND UROUND64 UTRUNC UTRUNC64

UXOR

WALLCLOCK WRITE WRITELN WRITEV

X_FLOAT XOR

ZERO

Note

This table does not include predefined identifiers that are only provided
by HP Pascal for compatibility with other Pascal compilers.

For More Information:

• On attributes (Chapter 10)

1.3 Comments
Comments document the actions or elements of a program. The text of a
comment can contain any ASCII character except a nonprinting control
character, such as an ESCAPE character. You can place comments anywhere
in a program that white space can appear.

You signify a comment with braces or with a parenthesis and asterisk pair, as
follows:

{ This is a comment. }
(* This is a comment, too. *)

Language Elements 1–9

HP Pascal allows you to mix the two symbol pairs in one comment, as follows:

{ The delimiters of this comment do not match. *)
(* HP Pascal allows you to mix delimiters in this way. }

HP Pascal does not allow you to nest comments. The following example causes
a compile-time error because the comment ends at the first closing delimiter
(}).

(* Cannot { nest comments inside } of comments like this *)

The %IF directive can be used to essentially comment out large sections of code
as follows:

%IF FALSE
%THEN
...code to disable...
%ENDIF

For more information on %IF, see Section 11.4.

HP Pascal allows for an end-of-line comment using an exclamation point (!).
If an exclamation point is encountered on a line in the source program, the
remainder of that line will be treated as a comment.

This comment syntax is not recognized by SCA for report generation.

1.4 Page Breaks and Form Feeds in Programs
A page break or form-feed character can appear anywhere in your program
except on a line with text surrounding the form feed. For example, the
following lines are legal:

FF %TITLE ’Variable Declarations’
end; FF

FF

FF VAR FF

However, the following line generates an error:

BEGIN FF END

The page break does not affect the meaning of the program, but causes a page
to eject at the corresponding line in a listing file.

1–10 Language Elements

2
Data Types and Values

Every piece of data that is created or manipulated by an HP Pascal program
has a data type. The data type determines the range of values, set of valid
operations, and maximum storage allocation for each piece of data.

This chapter describes the following topics:

• Section 2.1, Ordinal Types

• Section 2.2, Real Types

• Section 2.3, Pointer Types

• Section 2.4, Structured Types

• Section 2.5, Schema Types

• Section 2.6, String Types

• Section 2.7, Null-Terminated Strings

• Section 2.8, TIMESTAMP Type

• Section 2.9, Static and Nonstatic Types

• Section 2.10, Type Compatibility

For More Information:

• On user-defined types and the TYPE section (Section 3.5)

• On variable declarations and the VAR section (Section 3.7)

• On automatic type conversions (Section 4.4)

• On type conversion functions (Chapter 8)

• Internal representation of data types (Section A.3)

Data Types and Values 2–1

2.1 Ordinal Types
This section describes the ordinal types that are predefined by HP Pascal and
user-defined ordinal types (types that require you to provide identifiers or
boundary values to completely define the data type).

The ranges of values for these types are ordinal in nature; the values are
ordered so that each has a unique ordinal value indicating its position in a list
of all the values of that type. There is a one-to-one correspondence between
the values in an ordinal type and the set of positive integers.

2.1.1 Integer Types
HP Pascal makes available the INTEGER, INTEGER64, UNSIGNED,
UNSIGNED64, and INTEGER_ADDRESS predeclared types. These data
types are described in Section 2.1.1.1, Section 2.1.1.2, and Section 2.1.1.4,
respectively.

2.1.1.1 INTEGER and INTEGER64 Types
HP Pascal provides the INTEGER and INTEGER64 (not available on all
systems) integer types. Also provided are the INTEGER8, INTEGER16,
and INTEGER32 types, which are used as synonyms for subranges of the
INTEGER type.

The range of the integer values consists of positive and negative integer values,
and of the value 0. The range boundaries depend on the architecture of the
machine you are using.

Table 2–1 lists the storage sizes and ranges of values for these signed ordinal
types.

Table 2–1 Range of Values of Integer Ordinal Types

Data Type Size Range

INTEGER8 8 bits -128..127
16#80..16#7F

INTEGER16 16 bits -32768..32767
16#8000..16#7FFF

INTEGER32 32 bits -2147483648..2147483647
16#80000000..16#7FFFFFFF

INTEGER64 64 bits -9223372036854775808..9223372036854775807
16#8000000000000000..16#7FFFFFFFFFFFFFFF

2–2 Data Types and Values

The largest possible value of the INTEGER64 type is represented by
the predefined constant MAXINT64. The smallest possible value of the
INTEGER64 type is represented by the value of the expression -MAXINT64.
While the value of -MAXINT64-1 can also be represented, correct results may
not be produced in certain expressions.

The largest possible value of the INTEGER type is represented by the
predefined constant MAXINT. The smallest possible value of the INTEGER
type is represented by the value of the expression -MAXINT. While the value
-MAXINT-1 can also be represented, it may not produce correct results in
certain expressions.

Table 2–2 lists the sizes and the corresponding values of MAXINT and
MAXINT64.

Table 2–2 Values of MAXINT and MAXINT64 Predeclared Constants

Constant Size Value

MAXINT 32 bits ��31�� � 16#7FFFFFFF

MAXINT64 64 bits ��63�� � 16#7FFFFFFFFFFFFFFF

2.1.1.2 UNSIGNED and UNSIGNED64 Types
HP Pascal provides the UNSIGNED and UNSIGNED64 types (not available on
all systems). Also provided are the UNSIGNED32, CARDINAL, CARDINAL16,
and CARDINAL32 types, which are used as synonyms for subranges of
the UNSIGNED type. UNSIGNED8 and UNSIGNED16 are provided as
synonyms for subranges of INTEGER with positive values that correspond
to an UNSIGNED subrange of the same size. The range of unsigned values
consists of nonnegative integer values.

The unsigned data types are HP Pascal extensions that are provided to
facilitate systems programming using certain operating systems. Given
that these data types are not standard, you should not use them for every
application involving nonnegative integers.

Table 2–3 lists the range of values for unsigned numbers.

Data Types and Values 2–3

Table 2–3 Range of Values of Unsigned Ordinal Types

Data Type Size Range

UNSIGNED8 8 bits 0..255
0..16#FF

UNSIGNED16,
CARDINAL16

16 bits 0..65535 (�16-1)
0..16#FFFF

UNSIGNED32,
CARDINAL32

32 bits 0..4294967295 ��32�� �
0..16#FFFFFFFF

UNSIGNED64 64 bits 0..18446744073709551615 (�64-1)
0..16#FFFFFFFFFFFFFFFF

The largest possible value of the UNSIGNED type is represented by the
predefined constant MAXUNSIGNED. The smallest possible value of the
UNSIGNED type is 0.

The largest possible value of the UNSIGNED64 type is represented by the
predefined constant MAXUNSIGNED64. The smallest possible value of the
UNSIGNED64 type is 0.

Table 2–4 lists the sizes and the corresponding values of MAXUNSIGNED and
MAXUNSIGNED64.

Table 2–4 Values of MAXUNSIGNED and MAXUNSIGNED64

Constant Size Value

MAXUNSIGNED 32 bits ��32�� � 16#FFFFFFFF

MAXUNSIGNED64 64 bits ��64�� � 16#FFFFFFFFFFFFFFFF

2.1.1.3 Integer Literals
Literal values of the INTEGER type have the following form:

[[
� -

+

�
]]

������
�����

decimal-number
base-number#[[’]]extended-digit[[’]]

%

� b
o
x

�
[[’]]extended-digit[[’]]

�����	
����

2–4 Data Types and Values

decimal-number
Specifies an integer in conventional Pascal integer notation. You cannot specify
commas or decimal points. Examples of decimal notation are as follows:

17 0 89324

base-number
Specifies the base, or radix, of the number. HP Pascal accepts numbers in
bases 2 through 36.

extended-digit
Specifies the notation that is appropriate for the specified base.

b
o
x
Specifies an integer in either binary (base 2), octal (base 8), or hexadecimal
(base 16) notation. In HP Pascal you can use either uppercase or lowercase
letters to specify the extended-digit notation.

You can use extended-digit notation in the same way you use the
conventional integer notation. The one restriction is that you cannot use
extended-digit values as labels.

HP Pascal allows the use of spaces and tabs to make the extended-digit
notation easier to read. To use spaces and tabs, enclose the extended digit
in single quotation marks (’ ’). The following are integer values in the
extended-digit notation:

2#10000011
2#’1000 0011’
32#1J
-16#’7FFF FFFF’

HP Pascal provides another extended-integer convention only for the sake
of compatibility with previous versions of the language. The following are
extended-integer values in the HP Pascal specific notation:

%b’1000 0011’
%O’7712’
-%x’DEC’

When HP Pascal processes an integer constant, its type is based on its
apparent value. Table 2–5 and Table 2–6 describe the type that is chosen
for the integer constant.

Data Types and Values 2–5

Table 2–5 Data Types for Integer Constants for OpenVMS I64 and OpenVMS
Alpha Systems

Range of Integer Values Data Type

�MAXINT64...(�MAXINT) �� INTEGER64

�MAXINT...MAXINT INTEGER

MAXINT+1...MAXINT64 INTEGER64

MAXINT64+1...MAXUNSIGNED64 UNSIGNED64

Table 2–6 Data Types for Integer Constants for OpenVMS VAX Systems

Range of Integer Values Data Type

�MAXINT...MAXINT INTEGER

MAXINT+1...MAXUNSIGNED UNSIGNED

To force an INTEGER constant to become UNSIGNED, INTEGER64, or
UNSIGNED64, you can use the UINT, INT64, or the UINT64 predeclared
routines, respectively.

To force an UNSIGNED constant to become INTEGER64 or UNSIGNED64,
you can use the INT64 or UINT64 predeclared routines, respectively.

To force an INTEGER64 constant to become UNSIGNED64, you can use the
UINT64 predeclared routine.

For More Information:

• On unary operators (Section 4.2)

• On built-in routines (Chapter 8)

2.1.1.4 INTEGER_ADDRESS Type
The INTEGER_ADDRESS data type has the same underlying size as a pointer.
INTEGER_ADDRESS is equivalent to the INTEGER data type.

For More Information:

• On INTEGER notations (Section 2.1.1.1)

• On the IADDRESS function (Chapter 8)

2–6 Data Types and Values

2.1.2 CHAR Type
The CHAR data type consists of single character values from the ASCII
character set. The largest possible value of the CHAR type is the predefined
constant MAXCHAR.

To specify a character constant, enclose a printable ASCII character in single
quotation marks. To specify the single-quote character, enclose two single
quotation marks in single quotation marks. Each of the following is a valid
character constant.

’A’
’z’
’0’ { This is the character 0, not the integer value 0 }
’’’’ { The apostrophe or single quotation mark }
’?’

You can also specify a character constant by enclosing printable ASCII
characters in double quotation marks. To specify the double-quote character
when using double quotation marks as delimiters, use the \" escape sequence.
Each of the following is a valid character constant:

"A"
"z"
"\"" { The double quotation mark }
"?"

The ORD function accepts parameters of type CHAR. The function return
value is the ordinal value of the character in the ASCII character set.

You can specify a nonprinting character, such as a control character, by writing
an empty string followed immediately by the ordinal value of the character in
the ASCII character set, or by using the CHR function followed by the ordinal
value of the character in the ASCII character set. The following examples
show the two ways to specify the bell control character:

’’(7)
CHR(7)

Data Types and Values 2–7

You can also specify certain nonprinting characters with syntax like that of
the C programming language. Enter the predefined constant for the character
within double quotation marks. For example, to specify the line-feed character,
enter:

"\n"

For More Information:

• On the ORD function (Section 8.65)

• On the CHR function (Section 8.18)

• On the ASCII character set (Section 1.2.1)

• On character strings (Section 2.6)

• On using escape sequences within double quotation marks for nonprinting
characters (Section 1.2.4)

2.1.3 BOOLEAN Type
Boolean values are the result of testing relationships for truth or validity. The
BOOLEAN data type consists of the two predeclared identifiers FALSE and
TRUE. The expression ORD(FALSE) results in the value 0; ORD(TRUE)
returns the integer 1.

The relational operators operate on the ordinal, real, string, or set expressions,
and produce a Boolean result.

For More Information:

• On the ORD function (Section 8.65)

• On relational operators (Section 4.2.2)

2.1.4 Enumerated Types
An enumerated type is a user-defined ordered set of constant values specified
by identifiers. It has the following form:

({enumerated-identifier},...)

enumerated-identifier
The identifier of the enumerated type being defined. HP Pascal allows a
maximum of 65,535 identifiers in an enumerated type.

The values of an enumerated type begin with the value 0 and follow a left-to-
right order. Subsequent identifiers have a value one greater than the identifier
preceding it. Consider the following:

2–8 Data Types and Values

TYPE
Seasons = (Spring, Summer, Fall, Winter);

VAR
Some_Seasons : Seasons VALUE Winter; {Initialized}

In this enumerated type, Spring (value 0) and Summer (value 1) are less than
Fall (value 2) because they precede Fall in the list of constant values. Winter
(value 3) is greater than Fall because it follows Fall.

The ORD function accepts expressions of an enumerated type.

An identifier in an enumerated type cannot be defined for any other purpose in
the same block. Consider the following:

TYPE
Seasons2 = (Fall, Winter, Spring);

This enumerated type cannot be defined in the same block as the previous
type, because the identifiers Spring, Fall, and Winter would not be unique.

For More Information:
On the ORD function (Section 8.65)

2.1.5 Subrange Types
A subrange type is user-defined and specifies a limited portion of another
ordinal type (called the base type). It has the following form:

lower-bound..upper-bound

lower-bound
A constant expression or a formal discriminant identifier that establishes the
lower limit of the subrange.

upper-bound
A constant expression or formal discriminant identifier that establishes the
upper limit of the subrange. The value of the upper bound must be greater
than or equal to the value of the lower bound.

The base type can be any enumerated or predefined ordinal type. The values
in the subrange type appear in the same order as they are in the base type.
For example, the result of the ORD function applied to a value of a subrange
type is the ordinal value that is associated with the relative position of the
value in the base type, not in the subrange type.

You can use a subrange type anywhere in a program that its base type is legal.
A value of a subrange type is converted to a value of its base type before it is
used in an operation. All rules that govern the operations performed on an
ordinal type pertain to subranges of that type.

Data Types and Values 2–9

Consider the following:

TYPE
Day = (Mon, Tues, Wed, Thur, Fri, Sat, Sun);
Weekday = Mon..Fri; {subrange of base type Day}
Weekend = Sat..Sun; {subrange of base type Day}
Digit = ’0’..’9’; {subrange of base type CHAR}
Month = 1..31; {subrange of base type INTEGER}
National Debt = 1..92233720368 {subrange of base type INTEGER64}
5477580;

Using size attributes with subrange types might lead to confusion when
combined with subrange checking. Consider the following:

type word = [word] 0..65535;

procedure take_a_word(p : word);
begin
writeln(p);
end;

begin
take_a_word(90000);
end.

When HP Pascal passes value parameters of a subrange type, the actual
parameter is evaluated as an expression of the base type (INTEGER in the
above case). This allows the actual parameter to be larger than the size
attribute in the subrange. This is done to allow the subrange check in the
called routine to function properly. For value parameters, HP Pascal allocates
a local variable of the parameter’s type and then assigns the parameter into
the local variable. That local variable is then used throughout the body of the
routine wherever the parameter is referenced. Subrange checking is performed
when an expression of the base type is assigned into a subrange variable.
Therefore the above routine is similar to the following:

procedure take_a_word(p_ : integer);
var p : word; { Local copy }
begin
p := p_; { Make local copy and do range check from longword

integer expression into word subrange on assignment }
writeln(p);
end;

This means that HP Pascal will fetch an entire longword from P_ when making
the local copy. If you call Pascal functions from non-Pascal routines with value
parameters that are subranges, you must pass the address of a value with
the size of the base type. If subrange checking is disabled, the compiler can

2–10 Data Types and Values

assume that the actual parameter is in range and can only fetch a word since
that is sufficient to represent all valid values.

If the parameter was a VAR parameter, then the compiler would indeed only
fetch a word since the formal parameter is an alias for the actual parameter
and you are not allowed to pass expressions to a VAR parameter. The compiler
assumes that the VAR parameter contains a valid value of the subrange. In
other words, subranges are checked at assignment time and are considered
valid when fetched.

For More Information:

• On ordinal types (Section 2.1)

• On compile-time and run-time expressions (Section 4.1)

• On attributes (Chapter 10)

• On predeclared routines (Chapter 8)

• On using schema types (HP Pascal for OpenVMS User Manual)

• On the ORD function (Section 8.65)

• On the TYPE section (Section 3.5)

• On discriminant identifiers in subranges (Section 2.5)

• On using the CHECK attribute for subrange checking (Section 10.2.8)

2.2 Real Types
HP Pascal predefines the REAL, SINGLE, DOUBLE, and QUADRUPLE data
types in the floating-point formats listed in Table 2–7.

In this manual, the term REAL type refers to both the REAL and SINGLE
types.

Data Types and Values 2–11

Table 2–7 Supported Floating-Point Formats

Data Type Format Precision Default on

Single-precision
REAL types1

VAX F_floating-point
format3

1 part in 223 =
7 decimal digits

OpenVMS VAX,
OpenVMS Alpha

IEEE S_floating-point
format

1 part in 223 =
7 decimal digits

OpenVMS I64

Double-precision
DOUBLE
types1�2

VAX D_floating-point23 1 part 255 =
16 decimal digits

OpenVMS VAX

VAX G_floating-point
format3

1 part in 252 =
15 decimal digits

OpenVMS Alpha

IEEE T_floating-point
format

1 part in 252 =
15 decimal digits

OpenVMS I64

QUADRUPLE VAX H_floating-point
format

1 part in 2112 =
33 decimal digits

OpenVMS VAX

IEEE X_floating-point
format

1 part in 2112 =
33 decimal digits

OpenVMS I64,
OpenVMS Alpha

1Use the /FLOAT qualifier to specify the default floating-point format. The IEEE data types are
not supported on VAX systems.
2On OpenVMS Alpha systems, D_floating is not a fully supported data type; no D_floating
arithmetic operations are provided in the architecture. For backward compatibility, D_floating
binary data can be processed but without the last three bits of precision by automatically
converting to G_floating format, performing G_floating operations, and converting back to D_
floating format.
3On OpenVMS I64 systems, F_floating, D_floating, and G_floating formats are implemented by
transparently converting them to an appropriate IEEE floating format before performing any
necessary operation and then transparently converting them back. This conversion to/from IEEE
format might result in slightly different answers and precision than on OpenVMS Alpha and
OpenVMS VAX systems.

HP Pascal also provides data types to allow the selection of floating types
independent of the setting of the FLOAT qualifier or attribute. Table 2–8
identifies the built-in types available by system.

2–12 Data Types and Values

Table 2–8 Floating Data Types

Data Type System

F_FLOAT OpenVMS I64, OpenVMS Alpha, OpenVMS VAX

D_FLOAT OpenVMS I64, OpenVMS Alpha, OpenVMS VAX

G_FLOAT OpenVMS I64, OpenVMS Alpha, OpenVMS VAX

H_FLOAT OpenVMS VAX

S_FLOAT OpenVMS I64, OpenVMS Alpha, OpenVMS VAX

T_FLOAT OpenVMS I64 and OpenVMS Alpha

X_FLOAT OpenVMS I64 and OpenVMS Alpha

To express REAL numbers, you can use either decimal or exponential notation.
To express DOUBLE or QUADRUPLE numbers, you must use exponential
notation.

To express REAL numbers in decimal notation, use the set of decimal digits
and a decimal point. At least one digit must appear on either side of the
decimal point. The following are valid real numbers in decimal notation:

2.4
893.2497
8.0
0.0

To express real numbers in exponential notation, you include a real number or
an integer, an uppercase or lowercase letter indicating the type of precision,
and an integer exponent with its minus sign or optional plus sign. For
example:

2.3E2
10.0E-1

9.14159e0

Table 2–9 presents the letters that indicate precision in exponential notation.

Data Types and Values 2–13

Table 2–9 Precision in Exponential Notation

Letters Meaning

E or e Single-precision real number. The integer exponent following this letter
specifies the power of 10.

D or d Double-precision real number. All double-precision numbers in your
program must appear in this exponential format; otherwise, the compiler
reverts to single-precision representation.

Q or q Quadruple-precision real number. All quadruple-precision numbers in your
program must appear in this exponential format; otherwise, the compiler
reverts to single-precision format. On systems that do not support the
quadruple data type, the letters Q and q are treated as double-precision
numbers (D).

To express negative real numbers in exponential notation, use the negation
operator (–). Remember that a negative real number such as –4.5E+3 is not
a constant, but is actually an expression consisting of the negation operator
(–) and the real number 4.5E+3. Use caution when expressing negative real
numbers in complex expressions.

Table 2–10 presents the identifiers that are predefined by HP Pascal for use
with the real data types.

Table 2–10 Predefined Identifiers for Real Data Types

Identifier Value

Single-Precision F_floating

MINREAL 2.938736E-39

MAXREAL 1.701412E+38

EPSREAL1 1.192093E-07

IEEE Single-Precision S_floating

MINREAL 1.175494E-38

MAXREAL 3.402823E+38

EPSREAL 1.192093E-07

1Smallest value of the REAL, DOUBLE, and QUADRUPLE data types, such that ((1.0 +
EPSREAL) > 1.0), ((1.0D0 + EPSDOUBLE) > 1.0D),and ((1.0Q0 + EPSQUADRUPLE) > 1.0Q0).

(continued on next page)

2–14 Data Types and Values

Table 2–10 (Cont.) Predefined Identifiers for Real Data Types

Identifier Value

Double-Precision D_floating

MINDOUBLE 2.938735877055719E-39

MAXDOUBLE 1.701411834604692E+38

EPSDOUBLE 2.77557561562891E-17 (OpenVMS VAX)

2.22044604925031E-16 (OpenVMS I64 and OpenVMS Alpha)

Double-Precision G_floating

MINDOUBLE 5.56268464626800E-309

MAXDOUBLE 8.98846567431158E+307

EPSDOUBLE 2.22044604925031E-016

IEEE Double-Precision T_floating

MINDOUBLE 2.2250738585072014E-308

MAXDOUBLE 1.7976931348623157E+308

EPSDOUBLE 2.2204460492503131E-016

Quadruple-Precision H_floating

MINQUADRUPLE 8.40525785778023376565669454330438E-4933

MAXQUADRUPLE 5.94865747678615882542879663314004E+4931

EPSQUADRUPLE 1.92592994438723585305597794258493E-0034

IEEE Quadruple-Precision X_floating

MINQUADRUPLE 3.36210314311209350626267781732175E-4932

MAXQUADRUPLE 1.18973149535723176508575932662801E+4932

EPSQUADRUPLE 9.62964972193617926527988971292464E-0035

For More Information:

• On operators (Section 4.2)

• On the internal representation of real numbers (Section A.3.2)

• On compilation switches (HP Pascal for OpenVMS User Manual)

Data Types and Values 2–15

2.3 Pointer Types
A pointer type allows you to refer to a dynamic variable. Dynamic variables
do not have lifetimes that are strictly related to the scope of a routine, module,
or program; you can create and eliminate them at various times during
program execution. Also, pointer types clearly define the type of an object, but
you can create or eliminate objects during program execution.

The syntax of a pointer type is as follows:

[[attribute-list]] ^ [[attribute-list]] base-type-identifier

attribute-list
One or more identifiers that provide additional information about the base
type.

base-type-identifier
The type identifier of the dynamic variable to which the pointer refers. The
base type can be any type name or schema name. (If the base type is an
undiscriminated schema type, you need to supply actual discriminants when
you call the NEW function.)

Unlike other variables, dynamic variables do not have identifiers. You can
access them indirectly with pointers.

When you use pointers, you call the procedure NEW to allocate storage for
dynamic variables. You call the procedure DISPOSE to deallocate this storage.

A variable of a pointer type refers to a dynamic variable of the base type and is
said to be associated with that type. In the following example, the variable Ptr
is associated with a record of type My_Rec:

TYPE
My_Rec = RECORD

Name : STRING(30);
Age : INTEGER;

END VALUE [Name: ’Chris Lee’; Age: 29]; {Initialized}
VAR

Ptr : ^My_Rec;

{In executable section:}
NEW(Ptr);

To reference the dynamic variable to which a pointer refers, write the pointer
variable name followed by a circumflex (^). The following example assigns
values to the record variable Ptr^:

Ptr^ := My_Rec[Name: ’Kim Jones’; age: 65];

2–16 Data Types and Values

Pointers assume values through initialization, assignment, and the READ
and NEW procedures. The value of a pointer is either the storage address of
a dynamic variable or the predeclared identifier NIL. NIL indicates that the
pointer does not currently refer to a dynamic variable.

A file referenced by a pointer is not closed until the execution of the program
terminates or until the dynamic variable is deallocated with the DISPOSE
procedure. If you do not want the file to remain open throughout program
execution, you must use the CLOSE procedure to close it.

The following example declares the pointer variable Ptr as a pointer to an
integer and initializes Ptr to NIL:

VAR
Ptr : ^INTEGER VALUE NIL;

For performance reasons on OpenVMS I64 systems, the HP Pascal compiler
assumes that all pointers point to objects that are aligned on at least octaword
boundaries. The NEW predeclared routine always returns memory that is
aligned on octaword boundaries.

For performance reasons on OpenVMS Alpha systems, the HP Pascal compiler
assumes that all pointers point to objects that are aligned on at least quadword
boundaries. The NEW predeclared routine always returns memory that is
aligned on quadword boundaries.

For pointers holding addresses which are not quadword aligned, you can
explicitly specify the expected alignment of the pointer base type. For example:

var
p : ^ [aligned(0)] integer; { Pointer to a byte-aligned integer }

By default, all pointer types on OpenVMS I64 and OpenVMS Alpha systems
are 32 bits. You can declare a 64-bit pointer by using the [QUAD] attribute in
a pointer declaration. For example:

var
long_ptr : ^integer;
quad_ptr : [quad] ^integer;

begin
new(long_ptr);
quad_ptr := long_ptr;
quad_ptr^ := 5;
if quad_ptr <> long_ptr then quad_ptr := long_ptr;
end;

Data Types and Values 2–17

When comparing a 32-bit and a 64-bit pointer, the 32-bit pointer will be sign-
extended before the comparison. Also, when assigning a 32-bit pointer value
into a 64-bit pointer variable, the value will be sign-extended. You cannot
assign a 64-bit pointer value into a 32-bit pointer variable.

For More Information:

• On the NEW procedure (Section 8.60)

• On the DISPOSE procedure (Section 8.28)

• On records (Section 2.4.2)

• On pointers to schema types (Section 2.5)

• On linked lists (HP Pascal for OpenVMS User Manual)

• On compiler switches for selecting alignment, packing, and allocation rules
for each platform (HP Pascal for OpenVMS User Manual)

2.3.1 POINTER Type
The POINTER predefined type is compatible with all pointer types. Variables
or functions of type POINTER cannot be dereferenced or used with the NEW
and DISPOSE procedures. In order to access the data, you must assign the
pointer value into a variable of a particular pointer type or typecast the pointer
to a particular pointer type. For example, you can use the POINTER type in
the following ways:

• To assign to or from any other type of pointer, including function result
variables

• To compare equality with any other type of pointer

• To pass actual parameters of type POINTER to VAR and value parameters
of any other type of pointer

• To accept parameters of any other type of pointer with formal parameters
of type POINTER

2.4 Structured Types
The structured data types are user defined and consist of components. Each
component of a structured data type has its own data type; components can be
any type.

2–18 Data Types and Values

To express values of structured objects (arrays, records, and sets), you can
use a list of values called constructors. Constructors are valid in the TYPE,
CONST, VAR, and executable sections of your program. Examples of valid
constructors are provided throughout the following sections. The following
sections also contain examples that show how to assign values to individual
components of structured objects.

To save storage space, you can specify PACKED before any structured type
identifier except VARYING OF CHAR (for example, PACKED ARRAY,
PACKED RECORD, and PACKED SET). Defining PACKED structured types
causes the compiler to economize storage by storing the structure in as few
bits as possible. Keep in mind, however, that a packed data item is not
compatible with a data item that is not packed. Also, accessing components of
some packed structures can be slower than accessing components of unpacked
structures.

HP Pascal also provides the predefined structured type TIMESTAMP for more
easily manipulating date and time information.

For More Information:

• On string data types (Section 2.6)

• On VARYING OF CHAR (Section 2.6.2)

• On array constructors (Section 2.4.1.2)

• On record constructors (Section 2.4.2.2)

• On set constructors (Section 2.4.3.1)

• On the TIMESTAMP type (Section 2.8)

2.4.1 ARRAY Types
An array is a group of components (called elements) that all have the same
data type and share a common identifier. An individual element of an array
is referred to by an ordinal index (or subscript) that designates the element’s
position (or order) in the array.

An array type has the following form:

[[PACKED]] ARRAY [{ [[attribute-list]] index-type},...] OF [[attribute-list]] component-type

Data Types and Values 2–19

attribute-list
One or more identifiers that provide additional information about the
component type.

index-type
The type of the index, which can be any ordinal type or discriminated ordinal
schema type.

component-type
The type of the array components, which can be any type. The components of
an array can be another array.

The indexes of an array must be of an ordinal type. However, specifying large
types, such as INTEGER, as the index type can cause the memory request to
exceed available memory space. To use integer values as indexes, you must
specify an integer subrange in the data type definition (unless you are using a
conformant-array parameter).

You can use an array component anywhere in a program that a variable of the
component type is allowed. Also, the only operation defined for entire array
objects is the assignment operation (:=) (unless your array components are of
a FILE type).

2.4.1.1 ARRAY Components
To refer to an array component, you specify the name of the array variable
(or the name of an object whose result, when used as an expression, is of an
array type), followed by an index value enclosed in brackets ([]). Consider the
following:

TYPE
Count = ARRAY[1..10] OF INTEGER; {Array type of 10 integers}

VAR
Numbers : Count; {Array variable}

{In the executable section:}
Numbers[5] := 18; {Assigns the value 18 to the fifth element}

HP Pascal also allows array components to be arrays. These types of arrays
are called multidimensional arrays. The following example shows two ways
of declaring the same multidimensional array:

2–20 Data Types and Values

VAR
Tic_Tac_Toe : ARRAY[1..3] OF ARRAY[’a’..’c’] OF CHAR;

{Or equivalently:}
Tic_Tac_Toe : ARRAY[1..3, ’a’..’c’] OF CHAR; {3x3 matrix}

{In the executable section:}
Tic_Tac_Toe[1, ’a’] := ’X’; {Or equivalently:}
Tic_Tac_Toe[1][’a’] := ’X’;

For More Information:

• On character-string types (Section 2.6)

• On conformant-array parameters (Section 6.3.7.1)

• On attributes (Chapter 10)

• On the TEXT predefined data type (Section 2.4.5)

2.4.1.2 ARRAY Constructors
Array constructors are lists of values that you can use to specify an array
value; they have the following form:

[[data-type]] [[[{{
� component

component-subrange

�
},... : component-value};...]]

[[OTHERWISE component-value [[;]]]]]

data-type
Specifies the constructor’s data type. If you use the constructor in the
executable section or in the CONST section, a data-type identifier is required.
Do not use a type identifier in initial-state specifiers elsewhere in the
declaration section or in nested constructors.

component
component-subrange
Specifies an element number to which the component-value applies. You can
specify a subrange of components. Array elements do not have to be specified
in order. The component must be a compile-time value or constant.

component-value
Specifies the value to be assigned to the array elements in the component list;
the value must be of the same data type as the array-component type. This
value is a compile-time value; if you use the constructor in the executable
section, you can also use a run-time value.

OTHERWISE
Specifies a value to be assigned to all array elements that have not already
been assigned values.

Data Types and Values 2–21

When using array constructors, you must initialize all elements of the array;
you cannot partially initialize the array.

For example, you can use either of these constructors to assign values to the
array variable:

VAR
Numbers : Count VALUE [1..3,5 : 1; 4,6 : 2; 7..9 : 3; 10 : 6];

{In the executable section, constructor type is required:}
Numbers := Count[1..3,5 : 1; 4,6 : 2; 7..9 : 3; 10 : x+3];

These constructors give the first, second, third, and fifth component the value
1; the fourth and sixth component the value 2; and the seventh, eighth, and
ninth components the value 3. The first constructor gives the tenth component
the value 6; the second constructor, since it is in the executable section, can
assign the run-time value x+3 to the tenth component.

To specify values for all remaining elements, you can use the OTHERWISE
clause, as follows:

Numbers := Count[4,6 : 2; 7..9 : 3; 10 : x+3; OTHERWISE 1];

When you specify constructors for multidimensional arrays in the executable
section, only specify the type of the outermost array. Consider the following
example:

TYPE
One_Dimension = ARRAY[1..3] OF CHAR;
Matrix = ARRAY[’a’..’b’] OF One_Dimension;

VAR
Tic_Tac_Toe : Matrix;

{In the executable section:}
Tic_Tac_Toe := Matrix[1,3 : [OTHERWISE ’ ’];

2 : [1,3 : ’ ’; 2 : ’X’]];

For More Information:

• On nonstandard array constructors (Section 2.4.6.1)

2.4.2 RECORD Types
A record is a group of components (called fields) that can be of various data
types. Each record component can contain one or more data items, including
embedded records. The record type has the following from:

[[PACKED]] RECORD [[field-list]] END

2–22 Data Types and Values

If field-list is not specified, an empty record is created. The syntax of field-list
is as follows:� {{field-identifier},... : [[attribute-list]]type};... [[; variant-clause]] [[;]]

variant-clause [[;]]

�

field-identifier
The name of a field.

attribute-list
One or more identifiers that provide additional information about the field.

type
The type of the corresponding field. A field can be of any type.

variant-clause
The variant part of the record.

The names of the fields must be unique within one record type, but can be
repeated in different record types. You can specify the fields by specifying
the record variable name (or the name of an object whose result, when used
as an expression, is of a record type), followed by a period (.), and followed
by the field name. If the record is unpacked, you can use a field anywhere
in a program that a variable of the field type is allowed. (This manual flags
circumstances in which components of packed records cannot appear where
a variable of the field type is allowed.) The only operation defined for entire
records is the assignment operation (:=).

The following example shows how to assign a value to a record component:

TYPE
Player_Rec = RECORD

Wins : INTEGER;
Losses : INTEGER;
Percentage : REAL;
END;

VAR
Player1, Player2 : Player_Rec;

{In the executable section:}
Player1.Wins := 18; {Assigns the value 18 to the Wins field.}

You can partially initialize a record using the VALUE predeclared identifier on
individual fields, as follows:

Data Types and Values 2–23

VAR
Player : RECORD

Wins : INTEGER VALUE 18; {Initial value for one field}
Losses : INTEGER;
Percentage : REAL;
END;

A record type can include fields that are themselves records. In this case, the
name of the field includes the name of every record within which it is nested.
Consider the following:

TYPE
Team_Rec = RECORD

Total_Wins : INTEGER;
Total_Losses : INTEGER;
Total_Percentage : REAL;
Player1 : Player_Rec; {Defined in previous example}
Player2 : Player_Rec;
Player3 : Player_Rec;
END;

VAR
Team : Team_Rec;

You can calculate the team’s wins with the following code:

Team.Total_Wins := Team.Player1.Wins +
Team.Player2.Wins +
Team.Player3.Wins;

For More Information:

• On variant clauses (Section 2.4.2.1)

• On record constructors (Section 2.4.2.2)

• On specifying record fields using the WITH statement (Section 5.14)

• On attributes (Chapter 10)

2.4.2.1 Records with Variants
A record can include one or more fields or groups of fields called variants,
which can contain different types or amounts of data at different times during
program execution. When you use a record with variants, two variables of
the same record type can represent different data. You can define a variant
clause only for the last field in the record. The syntax for record variants is as
follows:

CASE
� [[tag-identifier :]] [[attribute-list]]tag-type-identifier

discriminant-identifier

�
OF

{case-label-list : (field-list)};...
[[[[;]] OTHERWISE (field-list)]]

2–24 Data Types and Values

tag-identifier
The name of the tag field.

attribute-list
One or more identifiers that provide additional information about the variant.

tag-type-identifier
The type identifier for the tag field.

discriminant-identifier
The name of the formal discriminant of a schema type. The value of the
corresponding actual discriminant selects the active variant. Once you select
the variant by discrimination, you cannot change it again. Consider the
following:

TYPE
Record_Template(a : INTEGER) = RECORD

Field_1 : REAL;
CASE a OF

0 : (x : INTEGER);
1 : (y : REAL);

END;

case-label-list
One or more case constant values of the tag field type separated by commas.
A case constant is either a single constant value (for example, 1) or a range
of values (for example, 5..10). You must enumerate one label for each possible
value in the tag-type-identifier.

field-list
The names, types, and attributes of one or more fields. At the end of a field
list, you can specify another variant clause. The field list can be empty.

The tag field consists of the elements between the reserved words CASE and
OF. The tag field is common to all variants in the record type. The tag field
data type corresponds to the case label values and determines the current
variant.

As the syntax description shows, the tag field can be a discriminant-identifier
or can be specified in one of the following ways:

• tag-identifier : [[attribute-list]]tag-type-identifier

The tag-identifier and tag-type-identifier define the name and type of the
tag field. The tag-type-identifier must denote an ordinal type. You refer to
the tag field in the same way that you refer to any other field in the record
(with the record.field-identifier syntax).

Data Types and Values 2–25

The following example shows the use of the tag-identifier form:

TYPE
Orders = RECORD
Part : 1..9999;
CASE On_Order : BOOLEAN OF

TRUE : (Order_Quantity : INTEGER;
Price : REAL);

FALSE : (Rec_Quantity : INTEGER;
Cost : REAL);

END;

In this example, the last two fields in the record vary depending on whether
the part is on order. Records for which the value of the tag-identifier On_
Order is TRUE will contain information about the current order; those for
which it is FALSE, about the previous shipment.

• [[attribute-list]]tag-type-identifier

In the second form, there is no tag-identifier you can evaluate to determine
the current variant. If you use this form, you must keep track of the
current variant yourself. The tag-type-identifier must denote an ordinal
type.

The following example shows the specification of a tag field without a
tag-identifier:

TYPE
Characters = RECORD
CASE CHAR OF

’A’..’Z’ : (Capital : INTEGER);
’0’..’9’ : (Number : INTEGER);
OTHERWISE (Misc : BOOLEAN);

END;

In this example, the last field in this record will be one of the following:

• The integer field Capital if the range ’A’..’Z’ is the variant most
recently referred to

• The integer field Number if the range ’0’..’9’ is the variant most
recently referred to

• The Boolean field Misc if the character value falls outside the previous
two variants

You can refer only to the fields in the current variant. You should not change
the variant while a reference exists to any field in the current variant.

2–26 Data Types and Values

You can include an OTHERWISE clause as the last case label list. OTHERWISE
is equivalent to a case label list that contains tag values (if any) not previously
used in the record. The variant labeled with OTHERWISE is the current
variant when the tag-identifier has a value that does not occur in any of the
case label lists.

The variant can contain a nested variant, as follows:

VAR
Hospital : RECORD
Patient : Name;
Birthdate : Date;
Age : INTEGER;
CASE Pat_Sex : Sex OF

Male : ();
Female : (CASE Births : BOOLEAN OF

FALSE : ();
TRUE : (Num_Kids : INTEGER));

END;

This record includes a variant field for each woman based on whether she has
children. A second variant, which contains the number of children, is defined
for women who have children.

For More Information:

• On the syntax of a field list (Section 2.4.2)

• On conditions that establish a variable reference (Section 3.7)

• On attributes (Chapter 10)

2.4.2.2 Record Constructors
Record constructors are lists of values that you can use to initialize a record;
they have the following form:

[[data-type]] [[[{{component},... : component-value};...]]
[[CASE [[tag-identifier :]] tag-value OF

[{{component},... : component-value};...]]]
[[OTHERWISE ZERO [[;]]]]

data-type
Specifies the constructor’s data type. If you use the constructor in the
executable section or in the CONST section, a data-type identifier is required.
Do not use a type identifier in initial-state specifiers elsewhere in the
declaration section or in nested constructors.

Data Types and Values 2–27

component
Specifies a field in the fixed-part of the record. Fields in the constructor do not
have to appear in the same order as they do in the type definition. (If you
choose, you can specify fields from the variant-part as long as the fields do not
overlap.)

component-value
Specifies a value of the same data type as the component. The value is a
compile-time value; if you use the constructor in the executable section, you
can also use run-time values.

CASE
Provides a constructor for the variant portion of a record. If the record contains
a variant, its constructor must be the last component in the constructor list.

tag-identifier
Specifies the tag-identifier of the variant portion of the record. This is only
required if the variant part contained a tag-identifier.

tag-value
Determines which component list is applicable according to the variant portion
of the record.

OTHERWISE ZERO
Sets all remaining components to their binary zero value. If you use
OTHERWISE ZERO, it must be the the last component in the constructor.
You can use either of the following constructors to assign values to the record
variable:

VAR
Player1 : Player_Rec VALUE [Wins: 18; Losses: 3;

Percentage: 21/18];
{In executable section, constructor type is required
and run-time expressions are legal:}
Player1 := Player_Rec[Wins: 18; Losses: y; Percentage: y+18/18];

When you specify constructors for records that nest records, specify the type
of the outermost record, but do not specify the type of the constructors for any
nested records. Consider the following example.

2–28 Data Types and Values

TYPE
Team_Rec = RECORD

Total_Wins : INTEGER;
Total_Losses : INTEGER;
Total_Percentage : REAL;
Player1 : Player_Rec;
Player2 : Player_Rec;
Player3 : Player_Rec;
END;

VAR
Team : Team_Rec;

{In the executable section: }
Team :=
Team_Rec[Total_Wins: 18; Total_Losses: 3; Total_Percentage: 21/18;

Player1: [Wins: 6; Losses: 0; Percentage: 1.0];
Player2: [Wins: 5; Losses: 2; Percentage: 7/5];
Player3: [Wins: 7; Losses: 1; Percentage: 8/7]];

You can call the ZERO function within record constructors to initialize all
nonspecified components to their binary zero values, which are determined by
the data type of each component. Consider the following examples:

VAR
Team : Team_Rec VALUE ZERO ;
Team : Team_Rec VALUE

[Total_Wins: 5; Total_Losses: 2; Total_Percentage: 7/5;
Player2: [Wins: 5; Losses: 2; Percentage: 7/5];
OTHERWISE ZERO]; {Initializes Player1 and Player3}

To create a constructor for a record that contains a variant, use the reserved
word CASE, followed by one of the following:

• A tag-identifier and a colon (:), followed by a constant expression (if you
use both a tag-identifier and a tag-type-identifier in the declaration)

• A constant expression (if you use only a discriminant-identifier or a tag-
type-identifier in the declaration)

To complete the constructor, use the reserved word OF followed by component-
list values contained in a nested constructor. Consider the following valid
constructors.

Data Types and Values 2–29

TYPE
Orders = RECORD
Part : 1..9999;
CASE On_Order : BOOLEAN OF

TRUE : (Order_Quantity : INTEGER;
Price : REAL);

FALSE : (Rec_Quantity : INTEGER;
Cost : REAL);

END;
VAR

An_Order : Orders VALUE
[Part: 2358;
CASE On_Order : FALSE OF
[Rec_Quantity: 10; Cost: 293.99]];

{In the executable section, constructor type is required:}
An_Order := Orders

[Part: 2358;
CASE On_Order : FALSE OF [Rec_Quantity: 10; Cost: 293.99]];

Note that if you use a constructor in the type definition, you can specify an
initial state for only one variant in the type. To specify an initial state for more
than one variant, you must put initial state specifiers on the fields themselves.
For example:

TYPE
Orders = RECORD
Part : 1..9999 VALUE 25;
CASE On_Order : BOOLEAN OF

TRUE : (Order_Quantity : INTEGER VALUE 18;
Price : REAL VALUE 4.65);

FALSE : (Rec_Quantity : INTEGER VALUE 10;
Cost : REAL VALUE 46.50);

END;

For More Information:

• On the ZERO function (Section 8.111)

• On nonstandard record constructors (Section 2.4.6.2)

2.4.3 SET Type
A set is a collection of data items of the same ordinal type (called the base
type). The SET type definition specifies the values that can be elements of a
variable of that type. The SET type has the following form:

[[PACKED]] SET OF [[attribute-list]] base-type

2–30 Data Types and Values

attribute-list
One or more identifiers that provide additional information about the base-
type.

base-type
The ordinal type identifier or type definition, or discriminated schema type,
from which the set elements are selected. Real numbers cannot be elements of
a set type.
You define a set by listing all the values that can be its elements. A set whose
base type is integer or unsigned has two restrictions. First, the set can not
contain more than 256 elements. Second, the ordinal value of the elements in
a set must be within the range of 0 and 255.

For sets of other ordinal base types, elements can include the full range of the
type.

The INTSET predefined type is equivalent to:

TYPE INTSET = SET OF 0 .. 255;

For More Information:

• On the INTEGER type (Section 2.1.1.1)

• On the UNSIGNED type (Section 2.1.1.2)

• On the subrange type (Section 2.1.5)

• On attributes (Chapter 10)

• On schema discriminants in sets (Section 2.5)

2.4.3.1 Set Constructors
Set constructors are lists of values that you can use to initialize a set; they
have the following form:

[[data-type]] [[[{component-value},...]]]

data-type
The data type of the constructor. This identifier is optional when used in the
CONST and executable sections; do not use this identifier in the TYPE and
VAR sections or in nested constructors.

component-value
Specifies values within the range of the defined data type. Component values
can be subranges (..) to indicate consecutive values that appear in the set
definition. These values are compile-time values; if you use the constructor in
the executable section, you can also use run-time values.

Data Types and Values 2–31

A set having no elements is called an empty set and is written as empty
brackets ([]).

A possible constructor for a variable of type SET OF 35..115 is the following:

VAR
Numbers : SET OF 35..115 VALUE [39, 67, 110..115];

{In the executable section, run-time expressions are legal:}
Numbers := [39, 67, x+95, 110..115];

The set constructors contain up to nine values: 39, 67, x+95 (in the executable
section only), and all the integers between 110 and 115, inclusive. If the
expression x+95 evaluates to an integer outside of the range 35..115, then
Pascal includes no set element for that expression.

To initialize a set to the empty set, do the following:

VAR
Day : SET OF 1..31 VALUE [];

2.4.4 FILE Type
A file is a sequence of components of the same type. The number of
components is not fixed; a file can be of any length. The FILE type definition
identifies the component type and has the following form:

[[PACKED]] FILE OF [[attribute-list]] component-type

attribute-list
One or more identifiers that provide additional information about the file
components.

component-type
The type of the file components. This type can be any ordinal, real, pointer, or
structured type except for the following:

• A nonstatic type

• A structured type with a nonstatic component

• A file type

• A structured type with a file component

The arithmetic, relational, Boolean, and assignment operators cannot be used
with file variables or structures containing file components. You cannot form
constructors of file types.

2–32 Data Types and Values

When you declare a file variable in your program, HP Pascal automatically
creates a file buffer variable of the component type. This variable takes on the
value of one file component at a time.

To reference the file buffer variable, write the name of the associated file
variable, followed by a circumflex (^). No operations can be performed on the
file while a reference to the file buffer variable exists.

The following example shows two ways to declare files:

VAR
True_False_File : FILE OF BOOLEAN; {File of TRUE and FALSE values}
Experiment_Records : FILE OF RECORD {File of records}

Trial : INTEGER; {To access, Experiment_Records^.Trial}
Temp, Pressure : INTEGER;
Yield, Purity : REAL;
END;

For More Information:

• On file organization (Section 9.1)

• On component formats (Section 9.2)

• On conditions that establish a variable reference (Section 3.7)

• On attributes (Chapter 10)

2.4.5 TEXT Type
The TEXT predefined type is a file containing sequences of characters with
special markers (end-of-line and end-of-file) added to the file. Although each
character of a TEXT file is one file component, the end-of-line marker allows
you to process the file line by line, if you choose. The TEXT type has the
following form:

[[attribute-list]]TEXT

attribute-list
One or more identifiers that provide additional information about the file
components.

For More Information:

• On the FILE type (Section 2.4.4)

• On TEXT files (Section 9.5)

• On INPUT, OUTPUT, and ERR identifiers (Section 9.5)

Data Types and Values 2–33

2.4.6 Nonstandard Constructors
As an option, you can use another format for constructors that is provided as
an HP Pascal extension. HP Pascal retains this format only for compatibility
with programs written for use with previous versions of this product. Also, you
cannot use nonstandard constructors for variables of nonstatic types.

For all nonstandard constructors, you place constant values, of the same
type as the corresponding component, in a comma list within parentheses.
The compiler matches the values with the components using positional
syntax; you must provide a value for each component in the variable. Nested
structured components are designated by another comma list inside of another
set of parentheses. Nonstandard constructors are legal in the VAR and
VALUE initialization sections, and in the executable section. Specifying a
type identifier as part of a constructor is optional for constructors used in the
VAR and VALUE initialization sections, are required for constructors in the
executable section, and cannot be used for nested constructors.

For More Information:

• On Pascal standards (Section 1.1)

• On standard constructors (Section 2.4)

2.4.6.1 Nonstandard Array Constructors
The format for nonstandard array constructors is as follows:

[[data-type]] ([[{component-value},...]] [[REPEAT component-value]])

data-type
Specifies the constructor’s data type. If you use the constructor in the
executable section, a data-type identifier is required. Do not use a type
identifier in the VAR or VALUE sections or for a nested constructor.

component-value
Specifies the compile-time value to be assigned to the corresponding array
element. The compiler assigns the first value to the first element, the second
value to the second element, and so forth. If you want to assign more than one
value to more than one consecutive element, you can use the following syntax
for a component-value:

n OF value

2–34 Data Types and Values

For example, the following component value assigns the value of 15 to the first
three components of an array:

VAR
Array1 : ARRAY[1..4] OF INTEGER;

VALUE
Array1 := (3 OF 15, 78);

You cannot use the OF reserved word in a REPEAT clause.

REPEAT
Specifies a value to be assigned to all array elements that have not already
been assigned values.

An example of an array constructor is as follows:

TYPE
Count = ARRAY[1..10] OF INTEGER;

VAR
Numbers : Count;

VALUE
Count := (3 OF 1, 2, 1, 2, 3 OF 3, 3);

{In the executable section, constructor type is required:}
Numbers := Count(3 OF 1, 2, 1, 2, REPEAT 3);

An example of a constructor for a multidimensional array is as follows:

TYPE
One_Dimension = ARRAY[1..3] OF CHAR;
Matrix = ARRAY[’a’..’b’] OF One_Dimension;

VAR
Tic_Tac_Toe : Matrix;
{ In the executable section: }

Tic_Tac_Toe := Matrix((3 OF ’ ’), (’ ’, ’X’, ’ ’), (3 OF ’ ’));

For More Information:
On standard array constructors (Section 2.4.1.2)

2.4.6.2 Nonstandard Record Constructors
The format for a nonstandard record constructor is as follows:

[[data-type]] ([[{component-value},...]] [[tag-value, {component-value};...]])

data-type
Specifies the constructor’s data type. If you use the constructor in the
executable section, a data-type identifier is required. Do not use a type
identifier in the VAR or VALUE sections or for a nested constructor.

Data Types and Values 2–35

component-value
Specifies a compile-time value of the same data type as the component. The
compiler assigns the first value to the first record component, the second value
to the second record component, and so forth.

tag-value
Specifies a value for the tag-identifier of a variant record component. The value
that you specify as this component of the constructor determines the types and
positions of the remaining component values (according to the variant portion
of the type definition).

An example of a record constructor is as follows:

TYPE
Player_Rec = RECORD

Wins : INTEGER;
Losses : INTEGER;
Percentage : REAL;

VAR
Player1 : Player_Rec := (18, 6, 24/18);

{In the executable section, constructor type is required:}
Player1 := Player_Rec(18, 6, 24/18);

The following is an example of a nested record constructor:

TYPE
Team_Rec = RECORD

Total_Wins : INTEGER;
Total_Losses : INTEGER;
Total_Percentage : REAL;
Player1 : Player_Rec;
Player2 : Player_Rec;
Player3 : Player_Rec;
END;

VAR
Team : Team_Rec;

{In the executable section: }
Team := Team_Rec (18, 3, 18/21,

(6, 0, 1.0),
(5, 2, 5/7),
(7, 1, 7/8));

The following is an example of a variant record constructor:

2–36 Data Types and Values

TYPE
Orders = RECORD
Part : 1..9999;
CASE On_Order : BOOLEAN OF

TRUE : (Order_Quantity : INTEGER;
Price : REAL);

FALSE : (Rec_Quantity : INTEGER;
Cost : REAL);

END;
VAR

An_order : Orders := (2358, FALSE, 10, 293.99);

For More Information:

• On standard record constructors (Section 2.4.2.2)

• On record variants (Section 2.4.2.1)

2.5 Schema Types
A schema type is a user-defined construct that provides a template for a
family of distinct data types. A schema type definition contains one or more
formal discriminants that take the place of specific boundary values or
variant-record selectors. By specifying boundary or selector values to a schema
type, you form a valid data type; the provided boundary or selector values are
called actual discriminants. Schema types have the following form:

schema-identifier ({{discriminant-identifier},... : [[attribute-list]]ordinal-type-name};...)
= [[attribute-list]]type-denoter;

schema-identifier
The name of the schema.

discriminant-identifier
The name of a formal discriminant.

attribute-list
One or more identifiers that provide additional information about the type-
denoter.

ordinal-type-name
The type of the formal discriminant, which must be an ordinal type (except
those types that have INTEGER64 or UNSIGNED64 base types).

type-denoter
The type definition of the components of the schema. This must define a new
record, array, set, or subrange type.

Data Types and Values 2–37

Each schema type definition requires at least one discriminant identifier. A
discriminant identifier does not have to be used in the type-denoter definition,
but Pascal still uses the discriminant identifier to determine type compatibility.
Discriminant-identifiers can appear anywhere a value is required in this
definition. Consider the following example:

TYPE
Array_Template(Upper_Bound : INTEGER)

= ARRAY[1..Upper_Bound] OF INTEGER;

The identifier Upper_Bound is the formal discriminant of the Array_Template
schema. The Array_Template schema is not a complete description of data.
It is not a valid data type until you provide an actual discriminant that
designates the upper boundary of the array template. Schema types that have
not been provided actual discriminants are called undiscriminated schema;
in the previous example, Array_Template is an undiscriminated schema. You
can use an undiscriminated schema in the following instances:

• As the domain type of a pointer

• As the type of a formal parameter

In an undiscriminated schema declaration, you can use a combination of formal
discriminants, compile-time values, and nested discriminants to form subrange
bounds. These types of expressions are called nonvarying expressions.
Consider the following:

TYPE
Vector(d : INTEGER) = ARRAY[0..d-1] OF BOOLEAN;
Number_Line(Starting, Distance : INTEGER) =

Starting..Starting+Distance;
My_Subrange(l,u : INTEGER) = l..u;
Shift_Array_Index(l2, u2, Length : INTEGER) =

ARRAY[My_Subrange(l2+10, u2+10)] OF STRING(Length);

The following example provides the Array_Template schema with actual
discriminants to form complete data types (the remaining examples in this
section use the Array_Template declaration).

TYPE
Array_Template(Upper_Bound : INTEGER)

= ARRAY[1..Upper_Bound] OF INTEGER;
VAR

Array1 : Array_Template(10); {ARRAY[1..10] OF INTEGER;}
Array2 : Array_Template(x); {Upper boundary determined at

run time by variable or
function call}

2–38 Data Types and Values

In the previous example, the actual discriminants 10 and x complete the
boundaries for Array_Template, forming two complete data types within the
same schema type family. A schema type that has been provided actual
discriminants is called a discriminated schema; discriminated schema
can appear in either the TYPE or VAR sections. The type specifiers Array_
Template(10) and Array_Template(x) are examples of discriminated schema.

Actual discriminants can be compile- or run-time expressions. This expression
must be assignment compatible with the ordinal type specified for the formal
discriminant. Also, the actual discriminant value must be inside the range
specified for the formal discriminant; in the case of subranges, the upper value
must be greater than or equal to the lower value. In the previous example, 10
and x must be within the range –MAXINT..MAXINT.

If you want to use a discriminated schema type as the domain type of a pointer
or as the type of a formal parameter, give the discriminated schema type a
name by declaring it in the TYPE section. Consider the following:

TYPE
Array_Type1 = Array_Template(10);

PROCEDURE Example(Param : Array_Type1); {Procedure body...}

For any undiscriminated schema, there is a range of possible data types that
you can form by discrimination. A schema family is the undiscriminated
schema type and the range of data types that can be formed from it. Also,
two separate discriminations that provide the same actual discriminant value
specify the same data type. Consider the following.

TYPE
My_Subrange(a, b : INTEGER) = a..b;
Sub_A = My_Subrange(1, 5);
Sub_B = My_Subrange(1, 5);
Sub_C = My_Subrange(-50, 50);

The types Sub_A, Sub_B, and Sub_C are all of the My_Subrange schema-type
family. Sub_A and Sub_B are of the same data type. Consider the following.

TYPE
My_Subrange(a, b : INTEGER) = a..b;
My_Array(Upper : INTEGER) = ARRAY[1..Upper] OF INTEGER;

VAR
i : My_Array(10);
j : My_Array(10);
k : My_Array(15);
l : ARRAY[My_Subrange(1, 10)] OF INTEGER;
m : ARRAY[My_Subrange(1, 10)] OF INTEGER;

Data Types and Values 2–39

{In the executable section:}
i := j; {Legal; same schema family, same actual discriminant}
i := k; {Illegal; same schema family, different actual}
i := l; {Illegal; different types}
l := m; {Illegal; different types}

Types l and m are not assignment compatible despite having the same
subrange values specified by the same schema type; the two distinct type
declarations create two distinct types, regardless of the ranges of the two
types.

Once you create a discriminated schema, you can access the value of an actual
discriminant. Consider the following example:

VAR
Array1 : Array_Template(10);

{In the executable section:}
WRITELN(Array1.Upper_Bound); {Writes 10 to the default device}

Discriminant values can appear in all expressions except constant expressions.
The following example shows a valid use of the discriminant-value expression:

FOR i := 1 TO Array1.Upper_Bound DO
Array1[i] := i;

You can use discriminated schema in the type-denoter of a schema definition.
You can also discriminate a schema in the type-denoter of a schema definition,
but the actual discriminants must be expressions whose values are nonvarying;
the actual discriminants cannot be variables or function calls.

Consider the following valid schema definitions:

TYPE
{ Legal schema types: }
Range1(a, b : INTEGER) = SET OF a..b+1; {Run-time bounds checking}

My_Record(Number_Size, Status_Size : INTEGER) = RECORD
Part_Number : PACKED ARRAY[1..Number_Size] OF INTEGER;
Status : STRING(Status_Size); {Nested schema}
END;

Range2(Low, Span : INTEGER) = Low..Low + Span;
My_Integer(Dummy : INTEGER) = -MAXINT-1..MAXINT;
Matrix(Bound : INTEGER) = ARRAY[1..Bound, 1..Bound] OF REAL;

{ Illegal schema types (they do not form "new" types): }
My_String(Len : INTEGER) = VARYING[Len] OF CHAR;
My_Integer(Dummy : INTEGER) = INTEGER;

2–40 Data Types and Values

2.6 String Types
You can use schema and data types to store and to manipulate character
strings. These types have the following order of complexity:

1. CHAR type

2. PACKED ARRAY OF CHAR user-defined types

3. VARYING OF CHAR user-defined types

4. STRING predefined schema

Objects of the CHAR data type are character strings with a length of 1 and are
lowest in the order of character string complexity. You can assign CHAR data
to variables of the other string types.

The PACKED ARRAY OF CHAR types allow you to specify fixed-length
character strings. The VARYING OF CHAR types are a HP Pascal extension
that allows you to specify varying-length character strings with a constant
maximum length. The STRING types provide a standard way for you to specify
storage for varying-length character strings with a maximum length that can
be specified at run time.

To provide values for variables of these types, you should use a character-string
constant (or an expression that evaluates to a character string) instead of an
array constructor. Using array constructors with STRING and VARYING
OF CHAR types generates an error; to use array constructors with PACKED
ARRAY OF CHAR types, you must specify component values for every element
in the array (otherwise, you generate an error).

Consider the following example:

VAR
String1 : VARYING[10] OF CHAR VALUE ’abc’;

Generally, you can use any member of the ASCII character set in character-
string constants and expressions. However, some members of the ASCII
character set, including the bell, the backspace, and the carriage return, are
nonprinting characters. The extended string format for character strings
with nonprinting characters is as follows:

{’printing-string’({ordinal-value},...)}...

Data Types and Values 2–41

printing-string
A character-string constant.

Consider the following example:

’Two bells’(7,7)’ in a null-terminated ASCII string.’(0)

HP Pascal provides the substring access notation to denote a piece of a string
variable, string constant, or string function. The lower-bound and upper-bound
are index-expressions. Consider the following:

string-access "[" lower-bound ".." upper-bound "]"

The following is an example:

var s : packed array [1..10] of char;

s[1..5] :=’hello’;
s[6..10] := ’world’;

In the executable-section of a block, these lower and upper bound expressions
can be run-time expressions and are checked for validity if compiled with
checking code enabled. You can also pass these string pieces to VAR
parameters. For example:

procedure do_buf(var p : packed array [1..u:integer] of char);
begin p := ’12345’; end;

var buff : packed array [1..10] of char;

do_buff(buff[1..5]);
do_buff(buff[6..10);

writeln(buff);

To avoid compile-time warning messages about passing components of
PACKED structures to VAR parameters, use /USAGE=NOPACKED_ACTUALS
to compile.

In expressions, substring access behaves much like the SUBSTR built-in.

HP Pascal also provides features for handling null-terminated strings. These
are useful for communicating with routines written in the C language and on
UNIX systems.

2–42 Data Types and Values

For More Information:

• On the CHAR data type (Section 2.1.2)

• On the ASCII character set (Section 1.2.1)

• On null-terminated strings (Section 2.7)

2.6.1 PACKED ARRAY OF CHAR Types
User-defined packed arrays of characters with specific lower and upper bounds
provide a method of specifying fixed-length character strings. The string’s
lower bound must equal 1. The upper bound establishes the fixed length of the
string.

The following example shows a declaration of a character string variable of
twenty characters:

VAR
My_String : PACKED ARRAY[1..20] OF CHAR;

Note

If the upper bound of the array exceeds 65,535, if the PACKED
reserved word is not used, or if the array’s components are not byte-
sized characters, the compiler does not treat the array as a character
string.

To assign values to fixed-length character strings, you can use a character-
string constant (or an expression that evaluates to a character string). When
assigning into fixed-length strings, the compiler adds blanks to extend a string
shorter than the maximum characters declared. If you specify a string longer
than the maximum characters declared, an error occurs. You can also use an
array constructor as long as you specify characters for every component of the
array as specified in the declaration. Consider the following example:

VAR
States : PACKED ARRAY[1..20] OF CHAR

VALUE ’Hello’; {Is legal}
States : PACKED ARRAY[1..20] OF CHAR

VALUE [1:’H’;2:’e’;3:’l’;4:’l’;5:’o’] {Generates
an error}

States : PACKED ARRAY[1..20] OF CHAR
VALUE [1:’H’;2:’e’;3:’l’;4:’l’;5:’o’;

OTHERWISE ’ ’] {Is legal,
but awkward}

Data Types and Values 2–43

For More Information:

• On arrays (Section 2.4.1)

2.6.2 VARYING OF CHAR Types
The VARYING OF CHAR user-defined types are an HP Pascal extension that
provides a way of declaring variable-length character strings with a constant
maximum length. If you require portable code, use the STRING predefined
schema types to specify variable-length character strings. VARYING OF CHAR
types have the following form:

VARYING [upper-bound] OF [[attribute-list]] CHAR

upper-bound
An integer in the range from 1 through 65,535 that indicates the length of the
longest possible string.

attribute-list
One or more identifiers that provide additional information about the
VARYING OF CHAR string component.

You can assign string constants to VARYING OF CHAR variables from length
0 to the specified upper-bound. The compiler allocates enough storage space
to hold a string of the maximum length. A VARYING OF CHAR variable with
length 0 is the empty string (’’). You can only use character-string constants
(or expressions that evaluate to character strings) to assign values to variables
of these types; you cannot use standard array constructors. Also, you can
initialize a character string to the empty string (’’), as follows:

VAR
String1 : VARYING[10] OF CHAR VALUE ’’;

The VARYING OF CHAR variable is stored as though it were a record with
two fields, as follows:

RECORD
LENGTH : [WORD] 0..upper-bound; {Length of current string}
BODY : PACKED ARRAY[1..upper-bound] OF CHAR; {Current string}
END;

You can access the LENGTH and BODY predeclared identifiers as you would
access fields of a record. For example, to determine the maximum length of
a VARYING OF CHAR variable, use the SIZE predeclared function and the
BODY predeclared identifier, as follows:

2–44 Data Types and Values

VAR
String1 : VARYING[10] OF CHAR VALUE ’Wolf’;

{In the executable section: }
Max_Length := SIZE(string1.BODY);
WRITELN(Max_Length); {writes ’10’}

To determine the current length of a VARYING OF CHAR variable, use the
LENGTH predeclared function. From the previous example, the result of
LENGTH(String1) is the same as String1.LENGTH.

You can refer to individual array components as you would individual
components of any array, as follows:

String1[8] := ’L’;

You cannot specify an index value that is greater than the length of the current
string. HP Pascal does not pad remaining characters in the current string with
blanks (’ ’). If you specify an index that is greater than the current length of
the string, an error occurs.

For More Information:

• On arrays (Section 2.4.1)

• On attributes (Chapter 10)

• On the SIZE predeclared function (Section 8.83)

• On the LENGTH predeclared function (Section 8.49)

2.6.3 STRING Schema Type
The STRING predefined schema provides a way of declaring variable-length
character strings. The compiler stores STRING data as though it were stored
in the following schema definition:

TYPE
STRING(capacity : INTEGER) = VARYING[capacity] OF CHAR;

The syntax of the discriminated schema is as follows:

STRING(capacity)

capacity
An integer in the range 1..65,535 that indicates the length of the longest
possible string.

Data Types and Values 2–45

To use the predefined STRING schema, you provide an upper bound as the
actual discriminant, as in the following example:

VAR
Short_String : STRING(5); {Maximum length of 5 characters}
Long_String : STRING(100); {Maximum length of 100 characters}

You can assign string constants to STRING variables from length 0 to the
specified upper bound. The compiler allocates enough storage space to hold
a string of the maximum length. A STRING variable with length 0 is the
empty string (’’). To provide values for variables of this type, you must use
character-string constants (or expressions that evaluate to character strings);
you cannot use array constructors. Also, you can initialize a character string to
the empty string (’’), as follows:

VAR
Short_String : STRING(5) VALUE ’’;

You can access the CAPACITY predeclared identifier as you would a schema
discriminant, and you can access the LENGTH and BODY predeclared
identifiers as you would access fields of a record.The CAPACITY identifier
allows you to access the actual discriminant of the STRING schema; the
LENGTH identifier allows you to access the current length of the string object;
and the BODY identifier contains the current string object, including whatever
is in memory up to the capacity of the discriminated schema, as shown in the
following example:

VAR
String1 : STRING(10) VALUE ’Wolf’;

{In the executable section: }
WRITELN(String1.CAPACITY); {prints ’10’}
WRITELN(String1.LENGTH); {prints ’4’}

The value String1.BODY contains the four-character string ’Wolf ’ followed by
whatever is currently stored in memory for the remaining six characters.

To determine the current length of a STRING variable, you can use the
LENGTH predeclared function. The result of LENGTH(String1) is the same
as String1.LENGTH.

You can refer to individual STRING components as you would individual
components of any array, as follows:

String1[5] := ’t’;

2–46 Data Types and Values

The compiler does not pad remaining characters in the current string with
blanks (’ ’). If you specify an index that is greater than the current length of
the string an error occurs. Consider the following example:

VAR
String1 : STRING(10) VALUE ’Wombat’;
x : CHAR;

{In the executable section:}
x := String1[9]; {Generates an error}
x := String1.BODY[9]; {Provides whatever is in memory there}
x := String1[5]; {Is legal}
String1[9] := ’X’; {Generates an error}

For More Information:

• On schema types (Section 2.5)

• On arrays (Section 2.4.1)

• On the SIZE predeclared function (Section 8.83)

2.7 Null-Terminated Strings
HP Pascal includes routines and a built-in type to better coexist with
null-terminated strings in the C language.

The C_STR_T datatype is equivalent to:

C_STR_T = ^ ARRAY [0..0] OF CHAR;

C_STR_T is a pointer to an ARRAY OF CHARs. It does not allocate memory
for any character data. C_STR_T behaves like a normal pointer type in that
you can assign NIL into it and the optional pointer checking code will check
for dereferencing of a NIL pointer. The individual characters can be used by
dereferencing the pointer and using an array index.

In these cases, no bounds checking will be performed even if array bounds
checking is enabled. However, you cannot dereference a C_STR_T pointer
without also indexing a single character. If you want to access an entire
null-terminated string, see the PAS_STR function.

For More Information:

• On the MALLOC_C_STR function (Section 8.54)

• On the C_STR function (Section 8.16)

• On the PAS_STRCPY function (Section 8.68)

• On the PAS_STR function (Section 8.69)

Data Types and Values 2–47

2.8 TIMESTAMP Type
The TIMESTAMP predefined type is used in conjunction with the
GETTIMESTAMP procedure and with the DATE or TIME functions.
GETTIMESTAMP initializes a variable of type TIMESTAMP; DATE and
TIME function parameters are of type TIMESTAMP.

The TIMESTAMP data type is similar to the following record definition:

TIMESTAMP = PACKED RECORD
DATEVALID, TIMEVALID : BOOLEAN;
YEAR : INTEGER;
MONTH : 1..12;
DAY : 1..31;
HOUR : 0..23;
MINUTE : 0..59;
SECOND : 0..59;

{ The last 3 fields are OpenVMS systems only. }
HUNDREDTH : 0..99;
BINARY_TIME : [QUAD] RECORD L1,L2:INTEGER END;

{64-bit VMS binary time:}
DAY_OF_WEEK : 1..7; {1 is Monday and 7 is Sunday}

END;

For More Information:

• On the GETTIMESTAMP procedure (Section 8.38)

• On the DATE and TIME functions (Section 8.23)

2.9 Static and Nonstatic Types
Static types are types whose objects can be fully described at compile time.
For example, the variables a and b are derived from static types in the
following example:

VAR
a : INTEGER;
b : ARRAY[1..10] OF INTEGER;

Nonstatic types are types whose objects potentially cannot be fully described
at compile time (the type has a component that can be a run-time value).
Nonstatic types include the following types:

• Discriminated and undiscriminated schema types

• Any type that contains a nonstatic component or index type

2–48 Data Types and Values

Nonstatic types require storage allocation to hold information about the type
at run time. This storage, called the control part, includes information that
cannot be determined until execution time; HP Pascal needs this information
to allocate and to access variables and record fields of this type.

Consider the following nonstatic types:

TYPE
{Template is nonstatic:}

Template(Upper : INTEGER) = ARRAY[1..Upper] OF INTEGER;
a = ^Template; {a’s base type is nonstatic}
b = Template(5); {b is nonstatic}
My_Subrange(x, y : INTEGER) = x..y;

{c is nonstatic:}
c = ARRAY[My_Subrange(j, k), My_Subrange(l, m)] OF INTEGER;
d = ARRAY[1..10] OF Template(5); {d is nonstatic}
e = RECORD {e is nonstatic}

f1 : TEMPLATE(5);
END;

f = SET OF My_Subrange(10, 20); {f is nonstatic}

Do not confuse static and nonstatic types with automatic and static variable
allocation.

For More Information:

• On automatic variable allocation (Section 10.2.5)

• On static variable allocation (Section 10.2.36)

• On storage representation of nonstatic types (Section A.3.3)

2.10 Type Compatibility
The following sections discuss the two forms of type compatibility: structural
and assignment compatibility.

2.10.1 Structural Compatibility
Two types are structurally compatible only if they have the same allocation size
and the same type structure. HP Pascal requires that the type of a variable
passed to a routine as an actual parameter be structurally compatible with the
type of the corresponding formal variable parameter. HP Pascal also checks
the structural compatibility of the base types when a pointer expression is
assigned to a pointer variable. Structural compatibility does not apply to
nonstatic types (schema types and types derived from schema types).

Two ordinal types are structurally compatible only if they have the same base
type and the same allocation size.

Data Types and Values 2–49

If two ordinal types are components of packed structured types, they are
structurally compatible only if the ranges of values they describe have identical
upper and lower bounds.

In general, each real type is structurally compatible only with itself. However,
because REAL and SINGLE are synonymous, they are structurally compatible
with each other.

For two structured types to be structurally compatible, they must have the
same allocation size, and both must be packed or both unpacked. The following
conditions also affect structural compatibility:

• If both types are record types, they must have the same number of fields,
and the types of corresponding fields must be structurally compatible
and identically positioned. If the record types have variant parts, the
corresponding variants must have identical case labels written in the
same order. The types of the fields within corresponding variants must be
structurally compatible.

• If both types are array types, the types of their components must be
structurally compatible. The index types must have identical base types
and identical upper and lower bounds.

• If both types are VARYING OF CHAR types, their maximum lengths must
be equal. The lengths of the current values of the VARYING OF CHAR
strings do not affect structural compatibility.

• If two components of packed structured types are set types, their base
types must have identical upper and lower bounds.

• If both types are set types, file types, or pointer types, their base types
must be structurally compatible. Because of the possibility that a pointer
type can be defined in terms of itself, the HP Pascal compiler begins the
test for the structural compatibility of two pointer types by assuming
that they are compatible. Next, the compiler tests the two base types for
structural compatibility. If within the base type, the compiler encounters
the same pointer types it is testing, it still follows the original assumption
that the pointer types are compatible. If the base types prove to be
structurally compatible, then the two pointer types are judged to be
structurally compatible.

2–50 Data Types and Values

For More Information:

• On attributes that affect size and structure: ALIGNED, POS, READONLY,
UNALIGNED, UNSAFE, VOLATILE, and WRITEONLY
(Chapter 10)

• On ordinal types (Section 2.1)

• On real types (Section 2.2)

• On pointer types (Section 2.3)

• On structured types (Section 2.4)

• On allocation sizes of objects (Section A.2.4)

2.10.2 Assignment Compatibility
Assignment compatibility rules apply to the types of values used to initialize
variables, the types of expressions assigned to variables with the assignment
operator (:=), and the types of actual parameters passed to formal value
parameters. A variable or formal parameter is always compatible with
expressions of its type.

Table 2–11 shows the contexts in which the type of an expression is assignment
compatible with the type of a variable or a formal parameter when the types
are not the same.

Data Types and Values 2–51

Table 2–11 Assignment Compatibility

Type of Variable
Type of Assignment-Compatible Expression
or Parameter

INTEGER INTEGER, UNSIGNED, INTEGER64, UNSIGNED64

UNSIGNED INTEGER, UNSIGNED, INTEGER64, UNSIGNED64

INTEGER64 INTEGER, UNSIGNED, INTEGER64, UNSIGNED64

UNSIGNED64 INTEGER, UNSIGNED, INTEGER64, UNSIGNED64

Subrange Base type of the subrange

REAL, SINGLE REAL, SINGLE, UNSIGNED, INTEGER, INTEGER64,
UNSIGNED64

DOUBLE DOUBLE, REAL, SINGLE, UNSIGNED, INTEGER,
INTEGER64, UNSIGNED64

QUADRUPLE QUADRUPLE, DOUBLE, REAL, SINGLE, UNSIGNED,
INTEGER

PACKED ARRAY OF
CHAR

CHAR, unpacked array of CHAR, PACKED ARRAY OF
CHAR with the same or smaller length, VARYING or
STRING string whose current length is equal to or less than
the packed array

VARYING OF CHAR CHAR, unpacked array of CHAR, PACKED ARRAY OF
CHAR, VARYING, STRING, string whose current value
does not exceed the maximum length of the variable or
parameter

STRING CHAR, unpacked array of CHAR, PACKED ARRAY OF
CHAR, VARYING, STRING, string whose current value
does not exceed the maximum length of the variable or
parameter

Pointer Pointer to a structurally compatible type

Two record types or two array types are assignment compatible if they are
structurally compatible. When you assign one record variable to another, or
one array variable to another, the HP Pascal compiler does not check for out-of-
range assignments to record fields or array components; such assignments do
not result in an error message, even if subrange checking is enabled at compile
time.

A set expression is assignment compatible with a set variable if the set’s base
types are compatible. In addition, all elements of the set expression must be
included in the range of the variable’s base type.

Note that assignment operations are not allowed on objects of file types or
structured types that have file components.

2–52 Data Types and Values

Two discriminated schema types are assignment compatible if they are of
the same type family and if their actual discriminant values are identical. A
dereferenced pointer to an undiscriminated schema type is actually referencing
a discriminated schema object whose discriminants were specified in a call to
the NEW function. Although STRING is a schema, the rules in Table 2–11
take precedence.

For More Information:

• On ordinal types (Section 2.1)

• On real types (Section 2.2)

• On pointer types (Section 2.3)

• On structured types (Section 2.4)

• On schema types (Section 2.5)

• On string types (Section 2.6)

• On attributes that affect assignment compatibility: POS, READONLY, and
UNSAFE (Chapter 10)

Data Types and Values 2–53

3
Declaration Section

The declaration section contains declarations or definitions of constants, labels,
user-defined data types, variables, and user-defined functions and procedures.
In addition, only modules can contain initialization and finalization sections.
Each appears in a subsection introduced by Pascal reserved words.

This chapter discusses the following topics:

• Section 3.1, CONST Section

• Section 3.2, LABEL Section

• Section 3.3, TO BEGIN DO Section

• Section 3.4, TO END DO Section

• Section 3.5, TYPE Section

• Section 3.6, VALUE Section

• Section 3.7, VAR Section

These sections appear after the header and before the executable section
(if any). The TO BEGIN DO and TO END DO sections can appear only in
modules and only once within a module.

The remaining sections can appear in programs, modules, functions, or
procedures; they can appear more than once and in any order in a single
declaration section. If you use one kind of section more than once in a
declaration section, be sure to declare types, variables, and constants before
you use them in subsequent sections.

For More Information:

• On user-defined procedures and functions (Chapter 6)

• On program structure (Chapter 7)

• On modules (Section 7.4)

Declaration Section 3–1

3.1 CONST Section
The CONST section defines symbolic constants by associating identifiers with
compile-time expressions; it has the following form:

CONST
{constant-identifier = constant-expression};...

constant-identifier
The identifier of the symbolic constant being defined.

constant-expression
Any legal compile-time expression.

Once a constant identifier is associated with an expression, the identifier
retains the value of that expression throughout the scope in which it was
declared. You can change the value only by changing the definition in the
CONST section.

Consider the following example:

TYPE
array_type1 = ARRAY[1..10] OF INTEGER;

CONST
Year = 1984;
Tiny = 1.7253;
Month = ’November’;
Initial = ’P’;
Lie = FALSE;
Untruth = Lie;
Almost_Pi = 22.0/7.0;
array_const =

array_type1[1..3,5 : 1; 4,6 : 2; 7..9 : 3; 10 : 7];

For More Information:

• On expressions (Section 4.1)

• On constructors (Section 2.4)

3.2 LABEL Section
A label is a tag that makes an executable statement accessible to a GOTO
statement. The LABEL section declares labels and has the following form:

LABEL
{label},...;

3–2 Declaration Section

label
A decimal integer between 0 and 9999 (as an extension, between 0 and
MAXINT), or a symbolic name. When declaring several labels, you can specify
them in any order. The declaration and the occurrence of the label must be at
the same level in the program.

A label can appear only once within the scope of the label declaration. It can
precede any executable statement in the program. Use a colon (:) to separate
the label from the statement it precedes. Labels can be accessed only by GOTO
statements.

Consider the following example:

LABEL
marker, 5;

{In the executable section: }
IF a <= 150 THEN GOTO 5
ELSE GOTO marker ;

.

.

.
5: a := a + 1;

.

.

.
marker: WHILE x < 20 DO {Statement...}

For More Information:

• For information on the GOTO statement, see Section 5.8.

3.3 TO BEGIN DO Section
The TO BEGIN DO section allows you to specify a statement, in a module that
is to be executed before the executable section of the main program; it has the
following form:

TO BEGIN DO statement;

statement
A Pascal statement.

The TO BEGIN DO section can only appear in modules, can only appear once
in a module, and must appear as the last section in the declaration section. (If
appearing together, the TO BEGIN DO section must precede the TO END DO
section at the end of the declaration section.)

Declaration Section 3–3

Consider the following example:

MODULE x(INPUT, OUTPUT);
VAR

Debug : BOOLEAN;
PROCEDURE Test(...); {Executable section...}

TO BEGIN DO
BEGIN
WRITE(’Debug Module x? ’);
READLN(Debug);
END;

END.

As a general rule, if a program or module inherits an environment file, the
compiler executes the initialization section in the inherited module before the
initialization section in the program or module that inherited it. If a module or
program inherits more than one module that contains an initialization section,
the order of execution of the inherited modules is undefined.

Consider the following example:

[ENVIRONMENT(’Mod1’)] MODULE Mod1;
VAR

i : INTEGER;
TO BEGIN DO

i := 5;

{In a separate compilation unit:}
[INHERIT(’Mod1’)] MODULE Mod2;
VAR

j : INTEGER;
TO BEGIN DO

j := i + 1; {First execute code in Mod1 for correct results}

Figure 3–1 shows the order of execution of initialization and finalization
sections. Each circle is a module that contains both a TO BEGIN DO and a
TO END DO section, and each arrow indicates the order of inheritance for the
environment files.

3–4 Declaration Section

Figure 3–1 Order of Execution for TO BEGIN DO and TO END DO Sections

TO BEGIN DO TO END DO

First

ThirdModule 4

Module 1 Third

Second

First

Module 3

Order of Execution:

ZK-1321A-AI

SecondModule 2

The execution order for initialization and finalization sections in Modules 2
and 3 cannot be determined. The headers for the modules in Figure 3–1 are as
follows:

[ENVIRONMENT] MODULE Mod1; ...

[ENVIRONMENT, INHERIT(’Mod1’)] MODULE Mod2; ...

[ENVIRONMENT, INHERIT(’ Mod1’)] MODULE Mod3; ...

[INHERIT(’Mod2’, ’Mod3’)] MODULE Mod4; ...

The name of the compiler-generated initialization routine is formed by taking
the module name and appending %INIT. If you wish to provide a different
name, you can use the [GLOBAL] attribute on the top of the module to specify
a different name. For example:

[ENVIRONMENT,GLOBAL(MYINIT)] MODULE Mod1; ...

This alternate name is encoded in the resulting environment file so all modules
that inherit this environment will automatically call the initializaton routine
by its new alternate name.

For More Information:

• On modules (Section 7.4)

• On environment files (Section 7.5.1)

Declaration Section 3–5

3.4 TO END DO Section
The TO END DO section allows you to specify a statement in a module that
is to be executed after the executable section of the main program; it has the
following form:

TO END DO statement;

statement
A Pascal statement.

The TO END DO section can only appear in modules, can only appear once in
a module, and must appear as the last section in the declaration section. (If
appearing together, the TO END DO section must come after the TO BEGIN
DO section at the end of the declaration section.)

As a general rule, if a compilation unit inherits an environment file, the
finalization section in the inheriting compilation unit must be executed before
the finalization section in the inherited compilation unit. Also, if more than
one module with a finalization section inherits a single module, the order of
finalization of the inheriting modules cannot be determined. Figure 3–1 shows
an example of the order of execution of TO END DO sections.

The compiler implements a TO END DO section by creating an invisible TO
BEGIN DO section if TO BEGIN DO wasn’t used or by augmenting an existing
TO BEGIN DO section with a call to the Pascal Run-Time Library to register
the finalization routine.

Here is an example using both TO BEGIN DO and TO END DO:

MODULE File_Output;
VAR

Out_File : TEXT;
t : TIMESTAMP;

PROCEDURE Test(...); {Executable section...}

TO BEGIN DO
OPEN(Out_File, ’foo.dat’);

TO END DO
BEGIN
GETTIMESTAMP(t);
WRITELN(’foo.dat closed at’, TIME(t));
CLOSE(Out_File)
END;

END.

3–6 Declaration Section

For More Information:

• On modules (Section 7.4)

• On environment files (Section 7.5.1)

3.5 TYPE Section
The TYPE section introduces the name and set of values for a user-defined
type or schema declaration.

It has the following form:

[[type-attribute-list]]

TYPE

{
� type-identifier = [[attribute-list]]type-denoter

schema-declaration

�
[[VALUE initial-state-specifier]]};...

type-attribute-list
One or more attributes that apply to the entire TYPE section. Only the
ALIGN, ENUMERATION_SIZE, or HIDDEN attributes can be specified here.

type-identifier
The identifier of the type being defined.

attribute-list
One or more identifiers that provide additional information about the type-
denoter.

type-denoter
Any legal Pascal type syntax.

schema-declaration
The declaration of a schema type.

initial-state-specifier
A compile-time expression that is assignment compatible with a variable of the
TYPE identifier being defined. HP Pascal initializes all variables declared to
be of this type with the constant value or values provided (unless there is an
overriding initial-state-specifier in the variable declaration).

Declaration Section 3–7

The following rules apply to the use of initial-state-specifiers on data types:

• You must initialize a type with a compile-time expression of an assignment-
compatible type. Scalar types require scalar constants; structured types
require constant constructors.

• You cannot initialize file types or types containing file components.

• The predeclared function ZERO can be used to initialize an entire type
(except file types and TIMESTAMP types) to binary zero.

• The constant identifier NIL or a call to the ZERO function are the only
values with which you can initialize a pointer type.

This example declares variables of user-defined types. Note that in the
declaration of variable week5, the VALUE Sun overrides the initial state
specified in the TYPE declaration by VALUE Mon.

TYPE
Days_of_Week = (Sun, Mon, Tues, Wed, Thurs, Fri, Sat)

VALUE Mon;
Array_Template(Upper_Bound : INTEGER) =

ARRAY [1..Upper_Bound] OF INTEGER;
VAR {Declaring variables of user-defined types:}

week1, week2, week3, week4 : Days_of_Week; {Initial value: Mon}
week5 : Days_of_Week VALUE Sun; {Initial value: Sun}
array_type2 : array_template(x); {x is a run-time expression}

HP Pascal requires that all user-defined type identifiers (except base types of
pointers) be defined before they are used in the definitions of other types. A
base type must be defined before the end of the TYPE section in which it is
first mentioned, as shown in the this example:

TYPE
Ptr_to_Movie = ^Movie; {Movie is defined later}
Name = PACKED ARRAY[1..20] OF CHAR; {Defined before used}
Movie = RECORD

Title, Director : Name;
Year : INTEGER;
Stars : FILE OF Name;
Next : Ptr_to_Movie;
END;

For More Information

• On data types (Chapter 2)

• On schema types (Section 2.5)

• On pointers (Section 2.3)

• On attributes (Chapter 10)

3–8 Declaration Section

3.6 VALUE Section
If you choose, you can use the VALUE section as an HP Pascal extension that
initializes ordinal, real, array, record, set, and string variables. (If you require
portable code, use the VALUE reserved word in either TYPE definitions or VAR
declarations.) The exact format of an initialization depends on the type of the
variable being initialized. The VALUE section has the following form:

VALUE
{variable-identifier := constant-expression};...

variable-identifier
The name of the variable to be initialized. You cannot specify a list of variable
identifiers. You can initialize a variable or variable component only once in the
VALUE section. Any variables appearing in the VALUE section must appear in
a previous VAR section.

constant-expression
Any constant expression that is assignment compatible with the variable
identifier.

Unlike other declaration sections, the VALUE section can appear only in a
program or module declaration section. You cannot use the VALUE declaration
section in procedures or functions. If you wish to initialize variables in
procedures and functions, use an initial-state specifier (by using the VALUE
reserved word in either the TYPE or VAR section).

You can assign values to complete structured variables or to a single component
of that variable.

For More Information:

• On data types (Chapter 2)

• On expressions (Section 4.1)

3.7 VAR Section
The VAR section declares variables and associates each variable with an
identifier, a type, and an optional initial value.

It has the following form:

[[var-attribute-list]]

VAR
{{variable-identifier},... : [[attribute-list]]type-denoter

Declaration Section 3–9

[[
� :=

VALUE

�
initial-state-specifier]] };...

var-attribute-list
One or more attributes that apply to the entire VAR section. Only the ALIGN,
ENUMERATION_SIZE or HIDDEN attributes can be specified here.

variable-identifier
The identifier of the variable being declared.

attribute-list
One or more identifiers that provide additional information about the variable.

type-denoter
Any legal Pascal type syntax.

initial-state-specifier
Any constant expression that is assignment compatible with the variable
identifier. The variable is initialized to this expression.

You can combine several identifiers in the same variable declaration if the
variables are of the same type and are being initialized either with the same
value or not at all.

Consider the following example:

TYPE
Hours_Worked = ARRAY[1..10] OF INTEGER;

VAR
Answer, Rumor : BOOLEAN;
Temp : INTEGER VALUE 60;
Grade : ’A’..’D’;
Weekly_Hours : Hours_Worked VALUE [1..3 : 7; OTHERWISE 5];

The following rules apply to the use of initial-state specifiers on variables:

• You must initialize a variable with a constant expression of an assignment-
compatible type. Scalar variables require scalar constants; structured
variables require constant constructors.

• You cannot initialize file variables or variables containing file components.

• You can use the predeclared function ZERO to initialize all or part of a
variable (except file variables and components) to binary zero.

• The constant identifier NIL or a call to the ZERO function are the only
values with which you can initialize a pointer variable.

3–10 Declaration Section

A reference to a variable consists of the variable’s use in one of the following
situations:

• The variable or one of its components is passed as a VAR, %REF, or
%DESCR parameter. The reference lasts throughout the call to the
corresponding routine.

• The variable or one of its components is used on the left side of an
assignment statement. The reference lasts throughout the execution of
the statement.

• The variable or one of its components is accessed by a WITH statement.
The reference lasts throughout the execution of the statement.

The existence of a variable reference sometimes prohibits certain operations
from being performed on the variable. Such restrictions are noted throughout
this manual.

For More Information:

• On constructors (Section 2.4)

• On data types (Chapter 2)

• On attributes (Chapter 10)

• On the ZERO function (Section 8.111)

• On pointers and NIL (Section 2.3)

• On the assignment and WITH statements (Chapter 5)

Declaration Section 3–11

4
Expressions and Operators

This chapter discusses the following topics:

• Section 4.1, Expressions

• Section 4.2, Operators

• Section 4.3, Structured Function-Return Values

• Section 4.4, Type Conversions

4.1 Expressions
Pascal expressions consist of one or more operands that result in a single value.
If the expression contains more than one operand, the operands are separated
by operators. Operands include numbers, strings, constants, variables, and
function designators. Operators include arithmetic, relational, logical, string,
set, and typecast operators.

Pascal recognizes two forms of expressions: constant expressions and
run-time expressions. Constant expressions result in a value at the time
you compile your program. These expressions can contain constants, constant
identifiers, operators, and some predeclared functions. Constant expressions
cannot contain the following:

• Variable references

• Schema discriminants

• Bound identifiers from conformant parameters

• Calls to user-defined functions

• Calls to EOF and EOLN predeclared functions

• Constructors of schema types or of types containing schema components

Run-time expressions result in a value at the time you execute your program.
These expressions can contain variables, predeclared functions, user-declared
functions, and everything that a constant expression cannot contain.

Expressions and Operators 4–1

When you form an expression, the operands must be of the same data type.
Under some circumstances, the compiler performs data type conversions and
allows you to form an expression with operands of different types.

Pascal does not evaluate expressions contained within a single statement
in a predictable order. Also, the compiler does not always evaluate all
expressions in a single statement if the correct execution of the statement
can be determined by evaluation of fewer expressions. For example, some IF
statement conditions can be determined TRUE or FALSE by only evaluating
one of the Boolean expressions in the condition. Do not write code that depends
on the evaluation order of expressions, and, in some cases, on the evaluation
of all expressions in a single statement. If you require a predictable order of
evaluation, you can use the AND_THEN and OR_ELSE operators.

For More Information:

• On data type conversion (Section 4.4)

• On data types (Chapter 2)

• On evaluation of IF statement conditions (Section 5.9)

• On the AND_THEN and OR_ELSE logical operators (Section 4.2.3)

4.2 Operators
Pascal provides several classes of operators. You can form complex expressions
by using operators to combine constants, constant identifiers, variables, and
function designators.

Pascal also provides the assignment operator (:=) for use in assignment
statements.

For More Information:

• On precedence of operators (Section 4.2.7)

• On assignment statements (Section 5.1)

4.2.1 Arithmetic Operators
An arithmetic operator provides a formula for calculating a value.

4–2 Expressions and Operators

Table 4–1 lists the arithmetic operators that you can use, in combination with
numeric operands, to perform an arithmetic operation.

Table 4–1 Arithmetic Operators

Operator Example Result

+ A+B Sum of A and B

– A–B B subtracted from A

* A*B Product of A and B

** A**B A raised to the power of B

/ A/B A divided by B

DIV A DIV B Result of A divided by B
truncated toward zero

REM A REM B Remainder of A divided by B

MOD A MOD B MOD function of A with respect to B

The +, –, *, ** Operators
You can use addition, subtraction, multiplication, and exponentiation operators
on integer, unsigned, real, DOUBLE, and QUADRUPLE operands. These
operators produce a result of the same type as the values. In exponentiation
operations, if the data types of the operands are not the same, the operand of
the less-precise type is converted and the result is of the more-precise type.

When you use a negative integer as an exponent, the exponentiation operation
can yield unexpected results. Table 4–2 shows the defined results of integers
raised to the power of negative integers.

Table 4–2 Results of Negative Exponents

Base Exponent Result

0 Negative or 0 Error

1 Negative 1

–1 Negative and odd –1

–1 Negative and even 1

Any other integer Negative 0

For example, the expression 1(�3) equals 1; (–1)(�3) equals –1; (–1)(�4) equals
1; and 3(�3) equals 0.

Expressions and Operators 4–3

The / Operator
You can use the division operator (/) on integer, unsigned, real, DOUBLE, and
QUADRUPLE operands. The division operator always produces a real result.
This result can reflect in some loss of precision as the compiler converts integer
and unsigned operands to their real equivalents. With one or more operands
of higher precision, the result is of the higher-precision type.

The DIV, REM, MOD Operators
You can use the DIV, REM, and MOD operators only on integer and unsigned
operands. DIV divides one integer or unsigned operand by the other, producing
an integer or unsigned result. DIV truncates toward zero any remaining
fraction and does not round the result. For example, the expression 23 DIV 12
equals 1, and (–5) DIV 3 equals –1.

REM returns the remainder after dividing the first operand by the second.
Thus, 5 REM 3 evaluates to 2. Similarly, 3 REM 3 evaluates to 0 and (–4)
REM 3 evaluates to –1.

MOD returns the remainder of A MODULO B. The result of the operation
A MOD B is defined only when B is a positive integer. This result is always an
integer between 0 and B–1. The modulus of A with respect to B is computed as
follows:

• If A is greater than B, then B is subtracted repeatedly from A until the
result is a nonnegative integer less than B.

• If A is less than B and not negative, the result is A.

• If A is less than zero, B is added repeatedly to A until the result is a
nonnegative integer less than B.

For example, 5 MOD 3 equals 2, (–4) MOD 3 equals 2, and 2 MOD 5
equals 2.

When both operands are positive, the REM and MOD operators return the
same result. For example, 28 REM 5 equals 3 and 28 MOD 5 equals 3.
However, when the first operand is negative, REM produces a negative or
zero result, while MOD produces a positive or zero result. For example, (–42)
REM 8 equals –2 and (–42) MOD 8 equals 6.

Enabling subrange checking ensures that a MOD operation is legal by verifying
at run time that B is a positive integer.

Note that the use of negative integer and real number constants as operands
in MOD and exponentiation operations can not produce the results you expect
because the minus sign (–) is actually a negation operator. For example, the
expression –2.0**2 is equivalent to the expression –(2.0**2) and produces the
result –4.0. Therefore, you should enclose a negative constant in parentheses

4–4 Expressions and Operators

to make sure that it is interpreted as you intend. The expression (–2.0)**2
produces the result 4.0.

Table 4–3 lists the result types of arithmetic operations with operands of
various types.

Table 4–3 Result Types of Arithmetic Operators

Operator Type of Operands Result Type

+
-
*
**

INTEGER, INTEGER64,
UNSIGNED, UNSIGNED64
REAL, DOUBLE,
QUADRUPLE

Same as the operands if both are
of the same type; otherwise, the
operand of the lower-ranked type is
converted and the result is of the
higher-ranked type.

/ INTEGER, INTEGER64,
UNSIGNED, UNSIGNED64,
REAL, DOUBLE, QUADRUPLE

One of the real types—REAL if
the operands are of type REAL (or
SINGLE) or a lower-ranked type;
otherwise, the operand of the lower-
ranked type is converted and the
result is of the higher-ranked type.

DIV
REM
MOD

INTEGER, INTEGER64,
UNSIGNED, UNSIGNED64

Same as the operands if both are
of the same type; otherwise, the
operand of the lower-ranked type is
converted and the result is of the
higher-ranked type.

For More Information:

• On integers (Section 2.1.1.1)

• On real numbers (Section 2.2)

• On more precise and less precise operands, and on type conversions
(Section 4.4)

• On using the CHECK attribute and SUBRANGE option for MOD run-time
checking (Section 10.2.8)

4.2.2 Relational Operators
A relational operator tests the relationship between two ordinal, real,
DOUBLE, or QUADRUPLE expressions and returns a Boolean result. If
the relationship holds, the result is TRUE; otherwise, the result is FALSE.
Table 4–4 lists the relational operators that you can apply to arithmetic
operands. You can also apply some of the relational operators to string
operands and to set operands.

Expressions and Operators 4–5

Table 4–4 Relational Operators

Operator Example Result

= A = B TRUE if A is equal to B

<> A <> B TRUE if A is not equal to B

< A < B TRUE if A is less than B

<= A <= B TRUE if A is less than or equal to B

> A > B TRUE if A is greater than B

>= A >= B TRUE if A is greater than or equal to B

Note that operators designated with two characters must appear in the order
specified and cannot be separated by a space.

For More Information:

• On relational operators in string expressions (Section 4.2.4)

• On relational operators in set expressions (Section 4.2.5)

• On the BOOLEAN data type (Section 2.1.3)

4.2.3 Logical Operators
A logical operator evaluates one or more Boolean expressions and returns a
Boolean value. The logical operators are listed in Table 4–5.

Table 4–5 Logical Operators

Operator Example Result

AND A AND B TRUE if both A and B are TRUE

OR A OR B TRUE if either A or B is TRUE, or if both are
TRUE

NOT NOT A TRUE if A is FALSE, and FALSE if A is TRUE

AND_THEN A AND_THEN B TRUE if both A and B are TRUE; forces left-to-
right evaluation order with short circuiting

OR_ELSE A OR_ELSE B TRUE if either A or B is TRUE, or if both are
TRUE; forces left-to-right evaluation order with
short circuiting

The AND, AND_THEN, OR, and OR_ELSE operators combine two conditions
to form a compound condition. The NOT operator reverses the value of a single
condition so that if A is TRUE, NOT A is FALSE, and vice versa.

4–6 Expressions and Operators

The following examples show logical expressions and their Boolean results:

{ Expressions: Results: }
(4 > 3) AND (18 = 3 * 6) {TRUE}
(3 > 4) OR (18 = 3 * 6) {TRUE}
NOT (4 <> 5) {FALSE}
(i < 11) AND_THEN (Array_A[i] = 0) {Not known}
p = NIL OR_ELSE p^ = 0 {Not known}

You can use Boolean variables and functions as operands in logical expressions.
Consider the following example:

Flag AND ODD(i)

Suppose that Flag is a Boolean variable and ODD(i) is a function that returns
TRUE if the value of the integer variable i is odd and FALSE if the value of i
is even. Both operands, Flag and ODD(i), must be TRUE for the expression
to be TRUE.

Normally, the compiler does not guarantee the evaluation order for logical
operations. The AND_THEN and OR_ELSE operators force the compiler to
evaluate an expression from left to right, stopping when the overall result can
be determined (also called short circuiting). The following example forces
the compiler to verify that an array element is within index bounds before
evaluating the element’s contents:

IF (i < 11) AND_THEN (Array_A[i] = 0) THEN
WRITELN(’Index bounds are legal and element contained 0’);

The precedence of AND_THEN and OR_ELSE is the same as AND and OR,
respectively. Because the Pascal language associates parameters of operands
at the same precedence level from left to right, you might not get the answer
you expect. For example, in this code you might expect the AND_THEN to
guard all the expressions to its right:

IF (PTR <> NIL) AND_THEN (P^.DATA1 = 0) AND (P^.DATA2 = 1) THEN ...

However, AND_THEN is at the same precedence level as AND, so the previous
expression is equivalent to:

IF ((PTR <> NIL) AND_THEN (P^.DATA1 = 0)) AND (P^.DATA2 = 1) THEN ...

Given this assocation and the fact that the two operands of the AND operator
can be evaluated in any order, the compiler might evaluate P^.DATA2 = 1
without it being guarded by the PTR <> NIL test.

To guard both dereferences to P, you must use parentheses as shown in this
example:

IF (PTR <> NIL) AND_THEN ((P^.DATA1 = 0) AND (P^.DATA2 = 1)) THEN ...

Expressions and Operators 4–7

Alternatively, you can replace all the occurrences of AND and OR with AND_
THEN and OR_ELSE, repectively. For example,

IF (PTR <> NIL) AND_THEN (P^.DATA1 = 0) AND_THEN (P^.DATA2 = 1) THEN ...

For More Information:

• On precedence of operators (Section 4.2.7)

• On the BOOLEAN data type (Section 2.1.3)

4.2.4 String Operators
A string operator concatenates or compares character-string expressions. The
result of the operation is either a string or a Boolean value. Table 4–6 lists the
string operators.

Table 4–6 String Operators

Operator Example Result

+ A+B String that is the concatenation of strings
A and B

= A=B TRUE if strings A and B have equal ASCII
values

<> A<>B TRUE if strings A and B have unequal ASCII
values

< A<B TRUE if ASCII value of string A is less than that
of string B

<= A<=B TRUE if ASCII value of string A is less than or
equal to that of string B

> A>B TRUE if ASCII value of string A is greater than
that of string B

>= A>=B TRUE if ASCII value of string A is greater than
or equal to that of string B

With the plus sign (+), you can concatenate any combination of STRING
and VARYING character strings, packed arrays of characters, and single
characters.

The result of a string comparison depends on the ordinal value in the ASCII
character set of the corresponding characters in the strings. For example:

’motherhood’ > ’cherry pie’

4–8 Expressions and Operators

This relational expression is TRUE because lowercase ’m’ comes after lowercase
’c’ in the ASCII character set. If the first characters in the strings are the
same, Pascal searches for differing characters, as in the following example:

’string1’ < ’string2’

This expression is TRUE because the digit 1 precedes the digit 2 in the ASCII
character set.

The relational operators are legal for testing character strings of different
lengths as well as for testing character strings of the same lengths. The
shorter of the two character strings is padded with blanks for the comparison.
The following two strings, for instance, result in a value of TRUE:

’John’ < ’Johnny’
’abc’ = ’abc ’

The EQ, NE, GE, GT, LE, and LT predeclared routines make string
comparisons that are similar to the relational operators, but these routines
do not pad strings of unequal length with blanks. Instead, they halt string
comparison when they detect unequal lengths.

If you are comparing the equality or inequality of very large strings, it is
sometimes more efficient to use the EQ and NE functions instead of the = and
<> operators. When using the operators, HP Pascal compares each string,
character by character, until detecting either a difference or the end of one
string. When you use the functions, HP Pascal sometimes detects different
string lengths without comparing the strings character by character.

When trying to determine the length of a string, you can use either the
LENGTH function, or the .LENGTH component of a STRING (or VARYING
OF CHAR) type . The LENGTH routine and .LENGTHprovide the same value.
Consider the following example:

VAR
One_String : STRING(25) VALUE ’Harvey Fierstein’;

{In the executable section:}
WRITELN(One_String.LENGTH , LENGTH(One_String));

The WRITELN call writes 16 and 16 to the predeclared file OUTPUT (by
default, to your terminal).

Enabling bounds checking causes the length of all character strings to be
checked at run time for illegal operations.

Expressions and Operators 4–9

For More Information:

• On the BOOLEAN data types (Section 2.1.3)

• On string data types (Section 2.6)

• On the CHECK attribute and the BOUNDS option for run-time character-
string checking (Section 10.2.8)

• On the EQ, NE, GE, GT, LE, and LT routines (Chapter 8)

4.2.5 Set Operators
A set operator forms the union, intersection, difference, or exclusive-OR of two
sets, compares two sets, or tests an ordinal value for inclusion in a set. Its
result is either a set or a Boolean value. Table 4–7 lists the set operators.

Table 4–7 Set Operators

Operator Example Result

+ A+B Set that is the union of sets A and B

* A*B Set that is the intersection of sets A and B

– A–B Set of those elements of set A that are not also
in set B

= A=B TRUE if set A is equal to set B

<> A<>B TRUE if set A is not equal to set B

<= A<=B TRUE if set A is a subset of set B

>= A>=B TRUE if set B is a subset of set A

IN C IN B TRUE if C is an element of set B

NOT IN C NOT IN B TRUE if C is not an element of B

Most set operators require both operands to be set expressions. The IN and
NOT IN operators, however, require an ordinal expression as the first operand
and a set expression as the second operand. The ordinal expression must be of
the same type as the set’s base type. For example:

2*3 IN [1..10]

5*3 NOT IN [1..10]

The result of this IN operation is TRUE because 2 * 3 evaluates to 6, which
is a member of the set [1..10], and the NOT IN operation also returns TRUE
because 5 * 3 evaluates to 15, which is not a member of the set [1..10].

4–10 Expressions and Operators

The XOR predeclared routine can return the set of elements that do not appear
in both sets.

For More Information:

• On the SET data type (Section 2.4.3)

• On the BOOLEAN data type (Section 2.1.3)

• On the XOR function (Section 8.110)

4.2.6 Type Cast Operator
Normally, HP Pascal associates each variable with one type: the type with
which the variable was declared. In some systems’ programming applications,
you can perform operations more efficiently by relaxing HP Pascal’s strict type-
checking rules. HP Pascal provides the type cast operator for this purpose.

The type cast operator changes the context in which you can use a variable or
an expression of a certain data type. The actual representation of the object
being cast is not altered by the type cast operator. HP Pascal overrides the
type only for the duration of one operation. It has one of the following forms:� variable-identifier

(expression)

�
:: type-identifier

The type cast operator (::) separates the name of a variable or an expression
in parentheses from its target type, the type to which it is being cast. The
operator alters the type of the cast object at that point only.

Once you cast a variable or an expression, the object has all the properties
of its target type during the execution of the operation in which the type
cast operator appears. A variable and its target type must have the same
allocation size. Therefore, you cannot cast a conformant-array parameter,
but you can cast a fixed-size component of a conformant-array parameter. A
schema variable or parameter cannot be type cast since it does not have a size
that is known at compile-time.

When you cast an expression in parentheses, the value of that expression can
be either truncated on the left or padded on the left with zeros, so that the
allocation size of the expression’s value and its target type become the same.
The type of a cast expression cannot be VARYING OF CHAR, a conformant-
array parameter, or a discriminated schema. In addition, the target type of a
cast expression cannot be VARYING OF CHAR or a discriminated schema.

Expressions and Operators 4–11

Consider the following example:

TYPE
F_float = PACKED RECORD

Frac1 : 0..127;
Expo : 0..255;
Sign : BOOLEAN;
Frac2 : 0..65535;
END;

VAR
A : REAL;

{In the executable section:}
A::F_float.Expo := A::F_float.Expo + 1;

In this example, the record type F_float shows the layout of an
F_floating real number. The real variable A is cast as a record of this type,
allowing you to access the fields containing the mantissa, exponent, sign, and
fraction of A. Adding 1 to the field containing the exponent gives the same
result as multiplying A by 2.0.

For More Information:

• On data types (Chapter 2)

• On the VOLATILE attribute (Section 10.2.42)

• On conformant-array parameters (Section 6.3.7.1)

4.2.7 Precedence of Operators
The operators in an expression establish the order in which HP Pascal
combines the operands. The compiler performs operations with higher-
precedence operators before operations with lower-precedence operators.
Table 4–8 lists the order of operator precedence, from highest to lowest
(operators on the same line are of equal precedence).

Table 4–8 Precedence of Operators

Operators Precedence

:: Highest

NOT

**

*, /, DIV, REM, MOD, AND, AND_THEN

(continued on next page)

4–12 Expressions and Operators

Table 4–8 (Cont.) Precedence of Operators

Operators Precedence

+, –, OR, OR_ELSE, unary +, unary –

=, <>, <, <=, >, >=, IN Lowest

In Pascal, operators of equal precedence (such as plus and minus) are combined
from left to right within the expression.

You must use parentheses for correct evaluation of an expression that combines
relational operators. Consider the following expression:

a<=x AND b<=y

Without parentheses, this expression is interpreted as A<= (X AND B) <=Y.
The logical operator AND requires its operands X and B to be Boolean
expressions and returns a Boolean result, which is then used as an operand in
evaluating one of the relational operators (<=). This operation causes an error
because you cannot use relational operators with Boolean operands. You can
modify the expression with parentheses as follows:

(a<=x) AND (b<=y)

In the rewritten expression, the compiler combines the Boolean values of the
two relational expressions with the AND operator.

You can use parentheses in an expression to force a particular order for
combining the operands. For example:

Expression Result

8 * 5 DIV 2–4 16

8 * 5 DIV (2–4) –20

The compiler evaluates the first expression according to normal precedence
rules.

First, 8 is multiplied by 5 and the result (40) is divided by 2. Then 4 is
subtracted to get 16. The parentheses in the second expression, however, force
the subtraction of 4 from 2 (yielding –2) to be performed before the division of
40 by –2. The result is –20.

Parentheses can help to clarify an expression. For instance, you could write
the first example as follows:

((8 * 5) DIV 2) -4

Expressions and Operators 4–13

The parentheses eliminate any confusion about how the compiler associates
the operands in the expression.

The desired results of your program should not depend on the order of
subexpression evaluation. Unless you use the AND_THEN or
OR_ELSE operators, the compiler does not guarantee the order in which
subexpressions and complex expressions are evaluated. In fact, if the result of
an expression can be determined without complete evaluation, HP Pascal can
partially evaluate some logical operations.

Usually the order of evaluation does not prevent the correct result from being
produced. However, order of evaluation is very important when you write
logical operations involving function designators that have side effects. (A side
effect is an assignment to a nonlocal variable or to a variable parameter within
a function block.)

For example, the following IF statement contains two function designators for
function f:

IF f(a) AND f(b) THEN {Statement...}

The compiler can evaluate these two function designators in any order.
Regardless of which function designator the compiler evaluates first, if the
result is FALSE the other function designator does not have to be evaluated.

Suppose that function f assigns the value of its parameter to a nonlocal
variable. Because you cannot know which function designator was evaluated
first, you cannot be sure of the value of the nonlocal variable after the IF
statement is performed.

For More Information:

• On expressions (Section 4.1)

• On the AND_THEN or OR_ELSE logical operators (Section 4.2.3)

• On user-defined functions (Chapter 6)

• On optimization, compiler switches, and order of evaluation (HP Pascal for
OpenVMS User Manual)

4–14 Expressions and Operators

4.3 Structured Function-Return Values
Syntactically, a function call is an expression since it returns a value. If a
function returns a pointer, an array, or a record, you can directly dereference,
index, or select the returned value. For example:

WRITELN(Make_Node(10)^.Data[1]);
WRITELN(Make_Vector(15)[2]);
Make_Node(10)^.Data[1] := 42;

4.4 Type Conversions
Because HP Pascal is a strongly typed language, you cannot normally treat
a value of one type as though it were of a different type, as you can in many
languages. For example, you cannot assign the character ’1’ to a variable
of type INTEGER, because ’1’ is not an integer constant but a character
constant. However, there are times when it makes sense to combine values
of two different types because the values have some aspect in common.
For example, suppose you wish to add a value of type REAL to a value of
type INTEGER. This operation is legal because the value of type INTEGER
is converted to its equivalent value of type REAL before the operation is
performed. The result of the operation is of type REAL.

In HP Pascal, values are converted from one type to another when the
conversion is required for an operation, an assignment, or a formal/actual
parameter association. Before any type conversion, the arithmetic types are
ranked as follows, from lowest to highest:

• INTEGER

• UNSIGNED

• INTEGER64

• UNSIGNED64

• REAL or SINGLE

• DOUBLE

• QUADRUPLE

Expressions and Operators 4–15

Similarly, the character types are also ranked as follows, from lowest to
highest:

• CHAR

• PACKED ARRAY OF CHAR

• STRING or VARYING OF CHAR strings

When values of two different arithmetic or character types are combined in
an expression, the lower-ranked operand is converted to its equivalent in the
higher-ranked type. The result of an operation in which conversion occurs is
always of the higher-ranked type.

All conversions or assignments to values of type UNSIGNED or UNSIGNED64
are never checked for overflow. When combined with other unsigned values,
negative integer values are converted to large unsigned values by the
calculation of the modulus with respect to 2**32 or 2**64.

Conversions or assignments to values of type INTEGER or INTEGER64 can
overflow. Overflow will be detected at runtime if overflow checking is enabled.
Overflow will occur if the value is outside the range -MAXINT to MAXINT for
converting to INTEGER, or outside the range -MAXINT64 to MAXINT64 for
converting to INTEGER64.

A special case of conversion can occur when you attempt to assign an
expression of type VARYING OF CHAR or STRING strings to a variable of
type PACKED ARRAY OF CHAR or if you try to pass a string expression to
a formal value parameter of type PACKED ARRAY OF CHAR. If the varying-
length string has less than or exactly the same number of components as
the packed array, the varying-length string is converted to a packed array of
characters before the assignment is made and padded with blanks as necessary.
If you attempt to perform this assignment with a varying-length string that
has more components than the packed array, a run-time error occurs.

For More Information:

• On data types (Chapter 2)

4–16 Expressions and Operators

5
Statements

HP Pascal statements specify actions to be performed and appear in executable
sections. This chapter discusses the following statements:

• Assignment statement (Section 5.1)

• BREAK statement (Section 5.2)

• CASE statement (Section 5.3)

• Compound statement (Section 5.4)

• CONTINUE statement (Section 5.5)

• Empty statement (Section 5.6)

• FOR statement (Section 5.7)

• GOTO statement (Section 5.8)

• IF statement (Section 5.9)

• Procedure call (Section 5.10)

• REPEAT statement (Section 5.11)

• RETURN statement (Section 5.12)

• WHILE statement (Section 5.13)

• WITH statement (Section 5.14)

When coding, separate statements with a semicolon (;). The semicolon is not
syntactically part of a statement, so it is not included in the syntax examples
in this chapter.

Statements 5–1

5.1 Assignment Statement
The assignment statement uses an assignment operator (:=) to assign a value
to a variable or to a function identifier. An assignment statement has the
following form:

variable-access := expression

variable-access
An identifier, array component, record component, pointer dereference,
pointer-function dereference, or file buffer.

expression
A run-time expression whose type is assignment compatible with the type of
the variable. The value of the expression is the value assigned to the variable.

You cannot assign values to a variable of a record type with variants if you
allocated this variable using the NEW procedure. You can assign values to a
field of such a record variable.

Consider the following example:

VAR
x : INTEGER;
y, z : RECORD

f1 : real;
f2 : integer
END;

{In the executable section:}
x := 1; {type of expression is same type as the variable}
y := z; {variables are assignment compatible}
Func_Return_Ptr_To_Integer(3)^ := 19;

For More Information:

• On the NEW procedure (Section 8.60)

• On assigning constructor values to structured variables (Section 2.4)

• On assignment compatibility (Section 2.10.2)

5.2 BREAK Statement
The BREAK statement immediately transfers control to the first statement
past the end of the FOR, WHILE, or REPEAT statement that contains the
BREAK statement. The BREAK statement appears as a single word:

BREAK

5–2 Statements

BREAK is equivalent to a GOTO to a label placed just past the end of the
closest FOR, WHILE, or REPEAT statement. The following example shows the
usage of the BREAK statement:

REPEAT
name := GetInput(’Your name?’);
IF ExitKeyPressed THEN BREAK;
address := GetInput(’Your address?’);
IF ExitKeyPressed THEN BREAK;
Person[Num].Name := name;
Person[Num].Addr := address;
Num := SUCC(Num);

UNTIL Num > 50;

In the example, a user-defined function GetInput interacts with the user and
sets a global Boolean variable ExitKeyPressed if the user presses an Exit key.
The BREAK statement exits the loop here, without storing data in the array.

Use caution when using the BREAK statement because future additions to
the code can result in the BREAK statement leaving a different loop than was
originally intended.

5.3 CASE Statement
The CASE statement causes one of several statements to be executed.
Execution depends on the value of an ordinal expression called the case
selector. A CASE statement has the following form:

CASE case-selector OF
[[{{case-label-list};...: statement};...]]
[[[[;]] OTHERWISE {statement};...]]
[[;]]

END

case-selector
An expression of an ordinal type.

case-label-list
One or more case labels of the same ordinal type as the case selector, separated
by commas. A case label can be a single constant expression, such as 1, or a
range of expressions, such as 5..10.

statement
Any statement to be executed depending on the values of both the case-selector
and the case-label.

Statements 5–3

You can specify case labels in any order within the case-label-list. Each case
label can appear only once within a given CASE statement.

At run time, the system evaluates the case selector expression and chooses
which statement to execute. If the value of the case selector does not appear
in the case-label-list, the system executes the statement in the OTHERWISE
clause. If you omit the OTHERWISE clause, the value of the case selector must
be equal to one of the case labels. If the value is not equal to a label, the CASE
statement result is undefined.

Consider the following example:

CASE Age OF
1..4 : School := ’preschool’; {Subranges}
5..8 : School := ’elementary’;
9..13 : School := ’middle’;
14..18 : BEGIN

School := ’high’;
WRITELN(’Difficult years!’);
END; {Compound statements}

19 : School := ’reform’; {Single ordinal value}
OTHERWISE School := ’graduated’; {If 1 > Age > 18 ...}
END;

For More Information:

• On ordinal values (Section 2.1)

• On using the CHECK attribute to check selectors at run time (Section 10.2.8)

5.4 Compound Statement
A compound statement groups a series of statements so that they can appear
anywhere that language syntax calls for a single statement. A compound
statement has the following form:

BEGIN
{statement};...
END

statement
Any Pascal statement, including other compound statements.

The statements that make up the compound statement must be separated with
semicolons (;), although the semicolon before the END delimiter is optional.

5–4 Statements

Consider the following example:

IF a < 10 THEN
BEGIN {A compound statement}
x := 10;
y := 20;
z := x + y;
END {No semicolon in THEN clause before an ELSE}

ELSE z := 29; {A single statement}

For More Information:

• On program executable sections (Section 7.4)

• On function and procedure executable sections (Section 6.1)

5.5 CONTINUE Statement
The body of a FOR, WHILE, or REPEAT loop can include the CONTINUE
statement. The CONTINUE statement is equivalent to a GOTO to a label
placed at the end of the statements in the body of the FOR, WHILE, or
REPEAT statement. The CONTINUE statement appears as a single word:

CONTINUE

In a loop that processes a series of data items, you can use the CONTINUE
statement to indicate that the rest of the loop does not apply to the current
item, and that the program should continue to the next statement.

Use caution when using the CONTINUE statement because future additions to
the code can result in the CONTINUE statement continuing with a different
loop than was originally intended.

5.6 Empty Statement
The empty statement causes no other action to occur than the advancement
of program flow to the next statement. To use the empty statement, place a
semicolon where the language syntax calls for a statement.

Consider the following example:

CASE Alphabetic OF
’A’,’E’,’I’,’O’,’U’ : Alpha_Flag := Vowel;

’Y’ : ; {Empty statement as selector; no action}
OTHERWISE Alpha_Flag := Consonant;
END;

Statements 5–5

5.7 FOR Statement
The FOR statement is a looping statement that repeats execution of a
statement according to the value of a control variable. The control variable
assumes a value within a specified range or set. A FOR statement has one of
the following forms:

FOR control-variable := initial-value
� TO

DOWNTO

�
final-value DO

statement

FOR control-variable IN set-expression DO
statement

control-variable
The name of a previously declared variable of an ordinal type.

initial-value
final-value
Expressions that form a range and whose type is assignment compatible with
the type of the control variable.

set-expression
An expression resulting in a value of SET type. The base type of the set must
be assignment compatible with the control variable.

statement
Any Pascal statement that does not change the value of the control variable.

At run time, the initial- and final-values or the set-expression is evaluated
before the loop body is executed. Execution or termination of the statement
occurs in the following cases:

• In the TO form, Pascal checks to see if the value of the control variable is
less than or equal to the final-value. If this condition is met, the control-
variable takes on the value of the initial-value for the first loop iteration.
During iterations, the control variable increments according to its data
type. Looping ceases when the control-variable is greater than the final-
value.

• In the DOWNTO form, Pascal checks to see if the value of the control-
variable is greater than or equal to the final-value. If this condition is met,
the control variable takes on the value of the initial-value for the first loop
iteration. During iterations, the control-variable decrements according to
its data type. Looping ceases when the control-variable is less than the
final-value.

5–6 Statements

• In the set-expression form, Pascal checks to see if the set-expression is not
the empty set. If this condition is met, the control-variable takes on the
value of one of the members of the set. Iterations occur for each member
of the set; the selection order of members of the set is undefined. Looping
stops after the loop body executes for each member of the set.

In both the TO and the DOWNTO forms, how the control-variable increments
or decrements depends on its type. For example, values expressed in type
INTEGER increment or decrement in units of 1. Values expressed in type
CHAR increment or decrement in accordance with the ASCII collating
sequence.

After normal termination of the FOR statement, the control-variable does not
retain a value. You must assign a new value to this variable before you use it
elsewhere in the program. If the FOR loop terminates with a GOTO statement,
the control-variable retains the last assigned value. In this case, you can use
the variable again without assigning a new value.

Consider the following examples:

FOR Year := 1899 DOWNTO 1801 DO {Print leap years in 1800’s}
IF (Year MOD 4) = 0 THEN

WRITELN(Year:4, ’ is a leap year’);

FOR I IN Set1 DO {Set2 members are successors of Set1 members}
Set2 := Set2 + [I + 1];

For More Information:

• On ordinal values (Section 2.1)

• On sets (Section 2.4.3)

5.8 GOTO Statement
The GOTO statement causes an unconditional branch to a statement prefixed
by a label. A GOTO statement has the following form:

GOTO label

label
An unsigned decimal integer or symbolic name that represents a statement
label.

The GOTO statement must be within the scope of the label declaration. A
GOTO statement that is outside a structured statement cannot jump to a
label within that structured statement. A GOTO statement within a routine
can branch to a labeled statement in an enclosing block only if the labeled

Statements 5–7

statement appears in the block’s outermost level. Consider the following
example:

FOR I := 1 TO 10 DO
BEGIN
IF Real_Array[I] = 0.0 THEN

BEGIN
Result := 0.0;
GOTO 10; {Use GOTO to exit from loop}
END;

Result := Result + 1.0/Real_Array[I]; {Compute sum of inverses}
END;

10: Invertsum := Result;

For More Information:

• On label declarations (Section 3.2)

• On exiting FOR loops using GOTO (Section 5.7)

5.9 IF Statement
The IF statement tests a Boolean expression and performs a specified action
if the result of the test is TRUE. The ELSE clause, when it appears, executes
only if the test condition results to FALSE. An IF statement has the following
form:

IF boolean-expression THEN statement1 [[ELSE statement2]]

boolean-expression
Any Boolean expression.

statement1
The statement to be executed if the value of the Boolean expression is TRUE.

statement2
The statement to be executed if the value of the Boolean expression is FALSE.

If an IF statement contains an ELSE clause, the statement in the THEN clause
cannot be followed with a semicolon (;), since that completes the IF statement
and separates it from the following statement. The following examples contain
correct code:

IF x > 10 THEN y := 4 IF x > 10 THEN BEGIN y := 4;
ELSE y := 5; z := 5;

END
ELSE y := 5;

5–8 Statements

The ELSE clause always modifies the closest IF-THEN statement. Use caution
to avoid logic errors in nested IF statements, as in the following:

IF A = 1 THEN {First IF}
IF B<>1 THEN {Second IF}

C := 1
ELSE {Appears to modify first IF}

C := 0; {Actually modifies second IF}

HP Pascal can not always evaluate all the terms of a Boolean expression if
it can evaluate the entire expression based on the value of one term. Either
do not write code that depends on actual evaluation (or evaluation order) of
Boolean expressions, or use the AND_THEN and OR_ELSE operators for a
predictable order of evaluation.

For More Information:

• On Boolean expressions (Section 2.1.3)

• On forming and evaluating expressions (Section 4.1)

• On the AND_THEN and OR_ELSE logical operators (Section 4.2.3)

5.10 Procedure Call
Syntactically, a procedure call is a statement. A procedure call has the
following form:

routine-identifier [[({actual-parameter},...)]]

routine-identifier
The name of a procedure or function.

actual-parameter
An expression that is of a type that is compatible with the type of the formal
parameter, or the name of a procedure or function.

In HP Pascal, you can use procedure-call syntax to call a function, even though
function calls are usually considered to be expressions. If you do this, the
compiler invokes the function but ignores the return value.

For More Information:
On procedures and functions (Chapter 6)

Statements 5–9

5.11 REPEAT Statement
The REPEAT statement is a looping statement and executes one or more
statements until a specified condition is true. A REPEAT statement has the
following form:

REPEAT
{statement};...

UNTIL expression

statement
Any Pascal statement.

expression
Any Boolean expression.

Pascal always executes a REPEAT statement for one iteration; iterations
continue as long as the Boolean expression is FALSE. When specifying more
than one statement as the loop body to a REPEAT statement, do not enclose
the statements with the BEGIN and END reserved words. Multiple statements
are legal in the REPEAT loop body.

Consider the following example:

REPEAT
READ(x); {Attempts to read at least one character}
IF (x IN [’0’..’9’]) THEN

BEGIN {Keep count of numbers and increase total}
Digit_Count := Digit_Count + 1;
Digit_Sum := Digit_Sum + ORD(x) - ORD(’0’);
END

ELSE
Char_Count := Char_Count+1; {Count characters}

UNTIL EOLN(INPUT); {Reads from default device until end of line}

For More Information:

• On Boolean expressions (Section 2.1.3)

5.12 RETURN Statement
The RETURN statement passes control back to the caller of a PROCEDURE,
FUNCTION, PROGRAM, or module initialization or finalization section. A
RETURN statement is equivalent to a GOTO to a label placed just before the
END of the body, and in a PROGRAM, has the effect of stopping the program.
A RETURN statement has the following form:

RETURN [return-value]

5–10 Statements

return-value
Inside a FUNCTION, return-value specifies an ending value for the
FUNCTION. If no return-value is provided, the last value assigned to the
function identifier is used as the function result. The return-value type and
function type must be the same.

Inside a PROGRAM, the return-value specifies an ending value for the
PROGRAM. If you do not provide a return-value, HP Pascal uses the value 1.

A function returns a result to its caller. A function can specify its result by
assigning a value to the function identifier. This does not cause a return
to the caller, and can occur many times per call. When the function finally
returns, the last assignment becomes the result of the function. If a function
uses the RETURN statement and includes a value, then the function returns
immediately and returns the specified value. This value overrides any previous
values specified by an assignment.

If a function uses the RETURN statement but does not specify a value, the
return value is the last value that the function specified by assignment. If the
function has not assigned a value to the function identifier during a given call
to the function, HP Pascal does not define the function result.

The following example shows the usage of RETURN. Here, a function
searches through the array called Data for an element that matches Suitable.
When it finds one, it assigns values to two global variables and executes a
RETURN. Omitting the RETURN statement would make the function continue
processing; it would assign values for the last suitable element instead of the
first.

FUNCTION FindFirst(StartingPoint: INTEGER) : INTEGER;
VAR i: INTEGER;
BEGIN
FOR i := StartingPoint TO MaximumNumber DO
BEGIN
IF Data[i] = Suitable THEN
BEGIN
AttributesOfDesiredData = Attributes[i];
Subscript := i;
RETURN i;
END;

END;
END;

For More Information:

• On the GOTO statement (Section 5.8)

Statements 5–11

5.13 WHILE Statement
The WHILE statement is a loop that executes a statement while a specified
condition is true. A WHILE statement has the following form:

WHILE expression DO
statement

expression
Any Boolean expression.

statement
Any Pascal statement.

Pascal checks the value of the Boolean expression before executing the loop
body for the first time; if the expression is FALSE, the loop body is not
executed. If the initial value is TRUE, loop iterations continue until the
condition is FALSE. When specifying more than one statement as the loop
body to a WHILE statement, enclose the statements with the BEGIN and END
reserved words, since the syntax calls for a single statement to follow the DO
reserved word. If you do not use a compound statement for the loop body,
Pascal executes the first statement following the DO reserved word as the loop
body.

Consider the following examples:

WHILE NOT EOF(File1) DO {If EOF from the start, the loop}
READLN(File1); { body is not executed. }

WHILE NOT EOLN(INPUT) DO
BEGIN {Use compound statement:}
READ(x);
IF NOT (x IN [’A’..’Z’, ’a’..’z’, ’0’..’9’])
THEN

Err := Err + 1; {Count odd characters as errors}
END;

For More Information:

• On Boolean expressions (Section 2.1.3)

• On compound statements (Section 5.4)

5–12 Statements

5.14 WITH Statement
The WITH statement provides an abbreviated notation for references to the
fields of a record variable or to the formal discriminants of a discriminated
schema type. A WITH statement has the following form:

WITH {
� record-variable

schema-variable

�
},... DO statement

record-variable
The name of the record variable being referenced.

schema-variable
The name of the variable being referenced whose type is a discriminated
schema type. This underlying type of the schema can be a record.

statement
Any Pascal statement.

The WITH statement allows you to refer to the fields of a record or to a formal
discriminant of a schema by their names alone, rather than by the record.field-
identifier or schema-variable.formal-discriminant syntax. In effect, the WITH
statement opens the scope so that references to field identifiers or to formal
discriminants alone are unambiguous. When you access a variable or one of its
components using a WITH statement, the reference syntax lasts throughout
the execution of the statement.

Specifying more than one variable has the same effect as nesting WITH
statements. Consider the following example:

{The record Dog is nested in the record Cat:}
WITH Cat, Dog DO {Specify Cat before Dog}

Bills := Bills + Cat_Vet + Dog_Vet;

WITH Cat DO {This is equivalent to the previous WITH}
WITH Dog DO

Bills := Bills + Cat_Vet + Dog_Vet;

Statements 5–13

If you are specifying nested records, their variable names must appear in
the order in which they were nested in the record type definition. If you are
working with record and schema variables that are not nested, you can specify
variable names in any order. If you specify record or schema variables whose
field names or formal discriminants conflict with one another, Pascal uses the
last record or schema in the comma list. Consider the following example.

VAR
x : STRING(10);
y : STRING(15);

{In the executable section:}
WITH x, y DO

WRITELN(CAPACITY); {y.CAPACITY is used}

{The following is equivalent:}
WITH x DO

WITH y DO
WRITELN(CAPACITY);

For More Information:

• On records (Section 2.4.2)

• On schema types (Section 2.5)

5–14 Statements

6
Procedures and Functions

This chapter discusses the following information about user-defined routines:

• Section 6.1, Routine Declarations

• Section 6.2, Routine Calls

• Section 6.3, Parameters

Procedures and functions are subprograms. A procedure contains one or
more statements to be executed once the procedure is called. A function
contains one or more statements to be executed once the function is called; in
addition, functions return a single value. This manual refers to functions and
procedures collectively as routines.

In addition to user-defined routines, HP Pascal also allows you to access
external routines (routines that are globally available on your system and that
may or may not be written in HP Pascal) and routines that are predeclared by
the compiler.

For More Information:

• On predeclared routines (Chapter 8)

• On calling external routines (HP Pascal for OpenVMS User Manual)

6.1 Routine Declarations
You must declare a routine before you call it. Routine declarations have the
following formats:

Procedures and Functions 6–1

[[attribute-list]] PROCEDURE routine-identifier [[(formal-parameter-list)]];������
�����

[[declaration-section]] BEGIN {statement};... END���
��

EXTERN
EXTERNAL
FORTRAN
FORWARD

��	
�

�����	
����

;

[[attribute-list]] FUNCTION routine-identifier [[(formal-parameter-list)]]
: [[attribute-list]] result-type-id;������
�����

[[declaration-section]] BEGIN {statement};... END���
��

EXTERN
EXTERNAL
FORTRAN
FORWARD

��	
�

�����	
����

;

attribute-list
One or more identifiers that provide additional information about the type-
denoter.

routine-identifier
The name of the routine. If you use the routine-identifier within the routine
body (with the exception of assigning a value to the routine-identifier of a
function), the result is a recursive call to the routine. The routine-identifier
of a procedure can be redeclared in the procedure’s declaration-section.
The routine-identifier of a function cannot be redeclared in the function’s
declaration-section; however, it can be redeclared in any nested routines within
the function’s declaration-section.

formal-parameter-list
A comma list of the routine’s formal parameters. A procedure can have as
many as 255 formal parameters. A function can also have as many as 255
formal parameters unless returning a structured type, in which case a function
is limited to 254 formal parameters. Optionally, you can specify a mechanism
specifier and an attribute list for each parameter.

declaration-section
A routine declaration section can include all sections except TO BEGIN DO,
TO END DO, and VALUE sections. Data specified in this declaration section
is local to the routine and to any nested routines; you can redeclare identifiers
that are declared in an outer block. You cannot redeclare a formal parameter
identifier to be a local variable in the routine.

6–2 Procedures and Functions

By default, the system does not retain the values of local variables after it exits
from a routine. Each call to a routine creates copies of the local variables. This
means you can call a routine recursively without affecting the values held by
the local variables at each activation of the routine. To preserve the value of
a local variable (not the copy) from one call to the next, you must declare the
local variable with the STATIC attribute.

statement
Any Pascal statement. In a function executable section, there must be either
a RETURN statement containing a value, or at least one statement of the
following form:

routine-identifier := result

The routine-identifier is the name of the function. The result is a value of
either an ordinal, real, structured, or pointer type that HP Pascal returns
when the function is called. (This value cannot be a file type or a structured
type with a file component.) This value must be of the same type as the result-
type-id.

EXTERN
EXTERNAL
FORTRAN
FORWARD
Predeclared identifiers that direct HP Pascal to find the body of the routine
elsewhere. The EXTERN, EXTERNAL, and FORTRAN identifiers declare
routines that are independently compiled by HP Pascal or that are written in
other languages. In HP Pascal, these identifiers are equivalent. Although not
part of the Pascal standard, many Pascal compilers only accept the FORTRAN
identifier for external routines actually written in FORTRAN; if portability is a
concern, you may wish to use FORTRAN only for external FORTRAN routines.

The FORWARD identifier declares a routine whose block is specified in a
subsequent part of the same procedure and function section, allowing you
to call a routine before you specify its routine body. As an extension, HP
Pascal will allow the body to be in a different declaration part. If the body and
heading are specified in different procedure and function sections, a FORWARD
declared function should not be used as an actual discriminant to a schema
type.

When you specify the body of the routine in subsequent code, include only the
FUNCTION or PROCEDURE predeclared identifier, the routine-identifier, and
the body of the routine. Do not repeat the formal-parameter, the attribute-list,
or the result-type-id.

Procedures and Functions 6–3

result-type-id
The type specification of the function return value. The function’s result must
be of this data type. This type cannot be a file type or a structured type with a
file component.

Consider the following example:

{Function body contained in subsequent code:}
FUNCTION Adder(Op1, Op2, Op3 : REAL) : REAL; FORWARD;

PROCEDURE Introduction;
VAR

a, b, c, z : REAL; {Variables local to the procedure}
BEGIN
WRITELN(’This is the Inventory Program Version 5.6.’);
WRITELN;
WRITELN(’Press Ctrl/H for help. Press Return to continue.’);
a := 4.6; b := 12.1; c := 201.45;
z := Adder(a, b, c); {Call the function Adder}
END;

{System_Routine_Tanh available with the operating system:}
FUNCTION System_Routine_Tanh(Angle : REAL) : REAL; EXTERNAL;

FUNCTION Adder; {Do not repeat attributes or parameters}
BEGIN
Adder := Op1 + Op2 + Op3; {Assign a function return value}
END;

For More Information:

• On attributes (Chapter 10)

• On declaration sections (Chapter 3)

• On the scope of identifiers (Section 7.2)

• On parameters and passing mechanisms (Section 6.3)

• On recursive function calls (HP Pascal for OpenVMS User Manual)

• On calling external routines (HP Pascal for OpenVMS User Manual)

6.2 Routine Calls
A routine call executes all statements in the body of the declared routine. You
must declare a routine before you can call it. Syntactically, procedure calls are
statements, and function calls, which return a single value, are expressions.
You can call a function anywhere that an expression of the declared result type
is legal. If the result of a function is irrelevant, you can call the function as a
statement in the same way that you call a procedure. You can call routines in

6–4 Procedures and Functions

the executable section of a program or in the body of another routine. Routine
calls have the following forms:

procedure-identifier [[({

�
�

%IMMED
%REF
%DESCR
%STDESCR

�
�� actual-parameter},...)]]

function-identifier [[({

�
�

%IMMED
%REF
%DESCR
%STDESCR

�
�� actual-parameter},...)]]

procedure-identifier
function-identifier
The declared routine identifier. The scope of a routine identifier is the block
in which it is declared, excluding any nested blocks that redeclare the same
identifier.

actual-parameter
The actual parameter whose data type matches the type of the corresponding
formal parameter. Optionally, you can specify a passing mechanism for each
parameter. When a mechanism specifier appears in a call, it overrides the
type, semantics, mechanism specified, and even the number of parameters in
the formal parameter declaration. Thus, type checking is suspended for the
parameter association to which the specifier applies.

Consider the following example, which includes a procedure that takes no
parameters and a function used as an expression:

VAR
a, b, c, z : REAL;

PROCEDURE Introduction;
BEGIN
WRITELN(’This is the Inventory Program Version 5.6.’);
WRITELN;
WRITELN(’ Press Ctrl/H for help. Press Return to continue.’);
END;

FUNCTION Adder(Op1, Op2, Op3 : REAL) : REAL;
BEGIN
Adder := Op1 + Op2 + Op3; {Assign a function return value}
END;

Procedures and Functions 6–5

{In the executable section:}
Introduction; {No parameters necessary in the call}
a := 3.14; b := 14.78; c := 112.456;
z := Adder(a, b, c); {Function used as an expression

evaluating to a REAL value}

If a function returns a value of an array, record, or pointer type, you can index,
select, or dereference the object at the time of the function call, without first
assigning the function result to a variable, as shown in this example:

TYPE
Player_Rec = RECORD

Wins : INTEGER;
Losses : INTEGER;
Percentage : REAL;
END;

VAR
Number : INTEGER;

FUNCTION Return_Player_Info(Player_Num : INTEGER) : Player_Rec;
{In the function body:}
Return_Player_Info := Player_Rec[Wins: 3; Losses: 18;

Percentage: 21/3];
{In the executable section:}
WRITELN(Return_Player_Info(Number).Losses, ’losses is poor!’);

For More Information:

• On expressions (Section 4.1)

• On structured function-return values (Section 4.3)

• On parameters and passing mechanisms (Section 6.3)

6.3 Parameters
In HP Pascal, there are two types of parameters: formal and actual
parameters. A formal parameter (also called an argument) is located in
the header of the routine declaration. You cannot redeclare a formal parameter
in a routine’s declaration section, but you can redeclare it in nested routines
within the routine’s declaration section.

The formal parameter establishes the semantics, the data type, and the
required passing mechanism of the parameter. The general format of the
formal parameter list is as follows.

[[({

���
��

value-parameter-spec
variable-parameter-spec
routine-parameter-spec
foreign-parameter-spec

��	
�
 };...)]]

6–6 Procedures and Functions

The specific format of a formal parameter specification depends on the
semantics (value, variable, routine, foreign) of the formal parameter you are
declaring (conformant parameters also have a unique syntax).

Table 6–1 presents the HP Pascal semantics for formal parameters.

Table 6–1 Formal Parameter Semantics

Parameter Type Description

Value Used only to provide input to the routine. After calling the
routine, the value of the actual parameter remains unchanged.

Variable Used to allow access to the actual parameter. If the rou-
tine makes changes to the value of the formal parameter, the
value of the actual parameter changes accordingly.

Routine Used to call another routine.

Foreign Used to call a routine written in another language.

At run time, the formal parameter receives a value from the corresponding
actual parameter, which is located in the routine call. The passing
mechanism is the way in which the compiler passes the actual parameter
value to the corresponding formal parameter. Table 6–2 presents the
parameter-passing mechanisms supported by HP Pascal.

Table 6–2 Parameter-Passing Mechanisms

Mechanism Description

By immediate value The information passed to the formal parameter is the data.

By reference The information passed to the formal parameter is the address of
the data.

By descriptor The information passed to the formal parameter is the address of
a descriptor of the data.

Note

Depending on the environment in which you are programming, not all
passing mechanisms may be supported on your system.

Procedures and Functions 6–7

The actual parameter must be of the same data type and passing mechanism
as the corresponding formal parameter. HP Pascal uses the default passing
mechanism for each actual parameter depending on its data type and formal
definition. If the called routine is external to HP Pascal, you can specify an
explicit passing mechanism on the actual parameter that overrides the type
and number of formal parameters.

For More Information:

• On undiscriminated schema types (Section 2.5)

• On external routines (Section 6.3.5)

6.3.1 Value Parameters
By the rules of value semantics defined by the Pascal standard, a formal value
parameter represents a local variable within the called routine. When you
specify value semantics, the address of the actual parameter is passed to the
called routine, which then copies the value from the specified address to its
own local storage. The routine then uses this copy. The copy is not retained
when control returns to the calling block. Therefore, if the called routine
assigns a new value to the formal parameter, the change is not reflected in the
value of the actual parameter.

When you do not include a reserved word before the name of a formal
parameter, you automatically cause HP Pascal to use value semantics to
pass data to that parameter. A formal value parameter has the following
form:

{identifier},... : [[attribute-list]]

� type-identifier
undiscriminated-schema-name
conformant-parameter-syntax

�

[[:= [[mechanism-specifier]] default-value]]

identifier
The name of the formal parameter. Multiple identifiers must be separated with
commas.

attribute-list
One or more identifiers that provide additional information about the formal
parameter.

type-identifier
The type identifier of the parameters in this section.

undiscriminated-schema-name
The name of an undiscriminated schema type.

6–8 Procedures and Functions

conformant-parameter-syntax
The type syntax of a conformant array or a conformant VARYING parameter.

mechanism-specifier
The mechanism by which a default value is to be associated with the formal
parameter.

default-value
A compile-time expression representing the default value for the formal
parameter.

Any attributes associated with a formal parameter become attributes of
the local variable. They do not affect the values that can be passed to the
parameter; they affect the behavior of the formal parameter only within the
routine block. When a formal parameter has the UNSAFE attribute, the types
of the actual parameters passed to it are not checked for compatibility.

An actual value parameter must be an expression whose type is assignment
compatible with the type of the corresponding formal parameter. Because there
is no assignment compatibility for file variables, undiscriminated schema sets,
and undiscriminated schema subranges, they can never be passed as value
parameters. Also, the names of routines are not allowed as value parameters.

If necessary, the type of an actual parameter is converted to the type of the
formal parameter to which it is being passed. In this case, HP Pascal follows
the same type conversion rules that it uses to perform any other assignment.
You may, for example, pass an integer expression to a formal parameter of a
real type. If an actual parameter has the UNSAFE attribute, no conversion
occurs.

If you have a user-defined, formal parameter of an undiscriminated schema
type, the corresponding actual parameter must be discriminated from the same
schema type as that of the formal parameter.

When you pass a string expression to a formal value parameter of type
STRING, the actual parameter’s current length (not its declared maximum
length) becomes both the maximum length and the current length of the formal
parameter.

You can also use the attributes [CLASS_S], [CLASS_A], and [CLASS_NCA]
on value parameters if a routine requires a specific type of descriptor for HP
Pascal to build. A [CLASS_A], [CLASS_NCA] or [CLASS_S] formal value
parameter requires the actual value parameters to be passed with the by
descriptor mechanism.

Procedures and Functions 6–9

The following examples show the use of value parameters:

VAR
Old_Number, x, y : INTEGER;

FUNCTION Random(Seed : INTEGER): INTEGER;
{Function body...}

PROCEDURE Alpha(a, b : INTEGER; c : CHAR);
{Procedure body...}

{In the executable section:}
New_Number := Random(Old_Number);
Alpha (x+y, 11, ’G’); {Actual parameters are integer

and character expressions}

For More Information:

• On blocks and scope (Section 7.2)

• On conformant parameters (Section 6.3.7)

• On default values for formal parameters (Section 6.3.9)

• On mechanism specifiers (Section 6.3.5)

• On the UNSAFE attribute (Section 10.2.40)

• On type conversions (Section 4.4)

6.3.2 Variable Parameters
By the rules of variable semantics defined by the Pascal standard, a formal
variable parameter represents another name for a variable in the calling block.
It is preceded by the reserved word VAR. When you specify variable semantics,
the address of the actual parameter is passed to the called routine. In contrast
to value semantics, the called routine directly accesses the actual parameter.
Thus, the routine can assign a new value to the formal parameter during
execution and the changed value is reflected immediately in the calling block
(the value of the actual parameter changes).

HP Pascal uses variable semantics to pass data to a formal parameter, often
called a formal VAR parameter, and has the following form:

VAR {identifier},... : [[attribute-list]]

� type-identifier
undiscriminated-schema-name
conformant-parameter-syntax

�

[[:= [[mechanism-specifier]] default-value]]

6–10 Procedures and Functions

identifier
The name of the formal parameter. Multiple identifiers must be separated with
commas.

attribute-list
One or more identifiers that provide additional information about the formal
parameter.

type-identifier
The type identifier of the parameters in this parameter section.

undiscriminated-schema-name
The name of an undiscriminated schema type.

conformant-parameter-syntax
The type syntax of a conformant array or a conformant VARYING parameter.

mechanism-specifier
The mechanism by which a default value is to be associated with the formal
parameter. A mechanism specifier can be used only on a declaration for an
external routine.

default-value
A compile-time expression representing the default value for the parameter. A
default value can be used only on an external routine.

When you use variable semantics, the actual parameter must be a variable
or a component of an unpacked structured variable (you can pass an entire
packed structure); no expressions are allowed unless the formal parameter
has the READONLY attribute. The type of a variable passed to a routine
must be structurally compatible with the type of the corresponding formal
parameter, except for schema parameters. For a formal parameter that is an
undiscriminated schema type, the type of the variable must be discriminated
from the same type as that of the formal parameter (they must be of the same
schema type family). For a formal parameter that is a discriminated schema
type, the type of the variable must be of the same type family and must have
equivalent actual discriminants.

The names of routines are never allowed as variable parameters. In addition,
you must use variable semantics when passing a file variable as an actual
parameter. Also, you cannot pass the tag field of a variant record to a formal
VAR parameter.

Procedures and Functions 6–11

Consider the following example:

VAR My_String : VARYING [20] OF CHAR VALUE ’Harry Hayes’;
PROCEDURE Name(VAR A_String : VARYING [String_Size] OF CHAR); {Body}

{In the executable section:}
Name(My_String);
WRITELN(’The new name is ’, My_String);

This example declares a procedure, Name, which returns a new name through
the formal parameter A_String. Procedure Name modifies the value of
A_String; since My_String is passed by variable semantics, upon completion
of the routine the modified value is reflected in the variable My_String.

In HP Pascal, certain attributes in a routine declaration or a routine call affect
the rules of compatibility between actual and formal VAR parameters. These
rules also apply to the corresponding components of structured types and to
the base types of pointer types used as formal parameters. The attributes that
result in rule changes are the alignment, POS, READONLY, size, UNSAFE,
VOLATILE, and WRITEONLY attributes.

You can also use the attributes [CLASS_S], [CLASS_A], and [CLASS_NCA] on
variable parameters if a routine requires a specific type of descriptor for HP
Pascal to build. A [CLASS_A], [CLASS_NCA] or [CLASS_S] formal variable
parameter requires the actual variable parameters to be passed with the by
descriptor mechanism.

For More Information:

• On blocks and scope (Section 7.2)

• On conformant parameters (Section 6.3.7)

• On default values for formal parameters (Section 6.3.9)

• On mechanism specifiers (Section 6.3.5)

• On attributes and parameter compatibility (Chapter 10)

• On type conversions (Section 4.4)

6.3.3 Routine Parameters
To write a routine that invokes another routine whose effect is not determined
until the program is executed, use routine parameters. To declare a procedure
or a function as a formal parameter to another routine, you must include a
complete routine heading in the formal parameter list. You can also associate
a foreign mechanism specifier and a default value with a formal procedure or
function parameter.

6–12 Procedures and Functions

The following examples show formal routine parameter sections in procedure
and function declarations:

PROCEDURE Apply(FUNCTION Operation(Left, Right : REAL) : REAL;
VAR Result : REAL);

FUNCTION Copy(PROCEDURE Get_Char(VAR c : CHAR);
PROCEDURE Put_Char(i : CHAR)) : BOOLEAN;

The identifiers listed as formal parameters to a formal procedure or function
parameter are not accessible outside the routine declaration; they indicate
the number and kind of actual parameters necessary. You refer to these
identifiers only when you use nonpositional syntax to call a routine parameter.

In the previous example, the formal parameter list of Get_Char informs the
compiler that Copy must pass one character parameter to Get_Char using
variable semantics. Copy does not refer explicitly to the formal parameter c
unless it calls Get_Char using nonpositional syntax.

To pass a routine as an actual parameter, the formal parameter list of the
routine being passed and the routine specified as the formal parameter must
be congruent. Two formal parameter lists are congruent if they have the same
number of sections and if the sections in corresponding positions meet any of
the following conditions:

• Both are value parameter sections containing the same number of
parameters. The types of parameters must either be compatible or be
equivalent conformant parameters.

• Both are variable parameter sections containing the same number of
parameters. The types of the parameters must either be compatible or
be equivalent conformant parameters. Any attributes associated with a
formal variable parameter affect the kinds of actual parameters that can
be passed to it.

• Both are procedure parameter sections having either congruent formal
parameter lists or no formal parameters.

• Both are function parameter sections having either congruent formal
parameter lists or no formal parameters, and having compatible result
types.

• Both are foreign parameter sections having the same mechanism specifier
and the same number of parameters, and whose types must be compatible.

• If one formal parameter list has a LIST attribute on its last parameter
section, the other formal parameter list must also have this attribute.

Procedures and Functions 6–13

The following example shows a function declaration that includes two functions
as formal parameters:

VAR
Costs, Pay, Fedtax, Food : REAL;
Housing : INTEGER;

FUNCTION Income(Salary, Tax : REAL) : REAL;
{Function body...}

FUNCTION Expenses(Rent : INTEGER; Grocery : REAL) : REAL;
{Function body...}

FUNCTION Budget(FUNCTION Credit(Earnings, UStax : REAL) : REAL;
FUNCTION Debit(Housing : INTEGER; Eat : REAL) : REAL) : REAL;
VAR Deduct : REAL;
BEGIN {FUNCTION Budget}
Deduct := Debit(Eat := Food, Housing := Housing);
Budget := Credit(Pay, Fedtax) - Deduct;
END;

{In the executable section:}
Costs := Budget(Income, Expenses);

When the function Budget is called, the function Income is passed to the formal
function parameter Credit, and the function Expenses is passed to the formal
function parameter Debit. When Credit is called, the program-level variables
Pay and Fedtax are substituted for Credit’s formal parameters, Earnings and
UStax. In the call to Debit, nonpositional syntax is used to associate Debit’s
formal parameters Housing and Eat with the program-level variables Housing
and Food. The names of program-level variables do not conflict with formal
parameters of routine parameters.

The presence of the ASYNCHRONOUS and UNBOUND attributes in routine
declarations causes additional requirements to be imposed on the routines that
can legally be passed as actual parameters.

For More Information:

• On routine headings (Section 6.1)

• On positional syntax (Section 6.3.8)

• On default values for formal parameters (Section 6.3.9)

• On mechanism specifiers (Section 6.3.5)

• On conformant parameters (Section 6.3.7)

• On attributes (Chapter 10)

6–14 Procedures and Functions

6.3.4 Passing Predeclared Functions to Formal Function Parameters
The following predeclared functions can be passed directly to formal function
parameters:

ABS ARCTAN CHR CLOCK

COS DBLE EOF EOLN

EXP EXPO INT LN

ODD ORD QUAD ROUND

SIN SNGL SQR SQRT

STATUS STATUSV TRUNC UAND

UFB UINT UNDEFINED UNOT

UOR UROUND UTRUNC UXOR

For example:

program math(output);

procedure a(function f(r:real):real);
begin
writeln(f(1.0));
end;

begin
a(sin);
a(cos);
end.

6.3.5 Foreign Parameters
When declaring an external routine (one written in a language other than
Pascal) that is called by an HP Pascal routine, you must specify not only the
correct semantics but the correct mechanism as well. To allow you to obtain
these passing mechanisms, HP Pascal provides foreign mechanism specifiers
and the passing mechanism attributes. Table 6–3 gives the method specifier or
attribute used for each passing mechanism.

Table 6–3 Specifiers and Attributes for Passing Mechanisms

Passing Mechanism Specifiers and Attributes

By immediate value %IMMED or [IMMEDIATE]

By reference %REF or [REFERENCE]

By descriptor %DESCR or %STDESCR

Procedures and Functions 6–15

Note

Depending on the environment in which you are programming, not all
passing-mechanism specifiers may be supported on your system.

The foreign mechanism specifier %IMMED, %REF, %DESCR or %STDESCR
precedes a formal parameter in the declaration of an external routine. If the
formal parameter does not represent a routine, the mechanism specifier must
precede the parameter name. If the formal parameter represents a routine, the
specifier must precede the reserved word PROCEDURE or FUNCTION in the
parameter declaration.

In addition, it is possible to use the passing-mechanism attributes
[IMMEDIATE] or [REFERENCE] in a formal parameter’s attribute list to
obtain the same behavior as %IMMED or %REF, respectively.

When calling an external routine, you must make sure that you pass actual
parameters by the mechanism stated or implied in the routine declaration.
HP Pascal allows you to use the foreign mechanism specifiers %IMMED,
%REF, %DESCR, and %STDESCR before an actual parameter in a routine
call. (Passing-mechanism attributes are valid only on formal parameters.)
When a mechanism specifier appears in a call, it overrides the type, semantics,
mechanism specified, and even the number of parameters in the formal
parameter declaration. Type checking is suspended for the parameter
association to which the specifier applies.

The passing of an expression to a foreign mechanism parameter implies foreign
value semantics: the calling block makes a copy of the actual parameter’s
value and passes this copy to the called routine. The copy is not retained when
control returns to the calling block. Foreign value semantics differs from value
semantics in that the calling block, not the called routine, makes the copy.

The passing of a variable to a foreign mechanism parameter (except a
parameter with the %IMMED or [IMMEDIATE] specifier) implies foreign
variable semantics: the variable itself is passed.

A compile-time warning occurs if the compiler must convert the value of an
actual parameter variable to make it match the type of a foreign mechanism
parameter. In that case, the compiler passes a copy of the converted value by
foreign value semantics, using the specified mechanism. You can eliminate
this warning by enclosing the actual parameter variable in parentheses; by
doing so, you prevent the compiler from interpreting the actual parameter as
a variable. The compiler takes the same action, whether or not it produces a
warning message.

6–16 Procedures and Functions

Mechanism specifiers on formal parameters produce the following results:

• A %REF or [REFERENCE] formal parameter requires actual parameters
to be passed by reference. %REF or [REFERENCE] implies variable
semantics unless the actual parameter is an expression; in that case, it
implies foreign value semantics.

• An %IMMED or [IMMEDIATE] formal parameter requires actual
parameters to be passed with the by immediate value mechanism and
always implies value semantics. %IMMED or [IMMEDIATE] cannot be
used on formal parameters of type VARYING, or on conformant array and
conformant VARYING parameters.

• A %DESCR formal parameter requires actual parameters to be passed
with the by descriptor mechanism and interprets the semantics as %REF
or [REFERENCE] does.

• A %STDESCR formal parameter requires actual parameters to be passed
with the by string descriptor mechanism. An actual parameter variable of
type PACKED ARRAY OF CHAR implies variable semantics. An actual
parameter expression of either type PACKED ARRAY OF CHAR or type
VARYING OF CHAR implies foreign value semantics. You cannot use
%STDESCR on formal procedure and function parameters.

Because the semantics are implicit in the mechanism, a formal parameter
cannot be declared with both the reserved word VAR and a mechanism
specifier.

Also, when passing an actual parameter to a formal foreign parameter, the
HP Pascal compiler checks for type compatibility when an external routine
is called. However, at the time of the declaration, a formal parameter passed
by immediate value that does not represent a routine is checked to ensure
that it can be stored in 64 or fewer bits, or 32 or fewer bits, depending on the
platform. A formal parameter passed by immediate value that does represent
a routine must be declared with the UNBOUND attribute.

Special considerations arise when a function that has no formal parameters of
its own (or that has defaults that are being used for all its formal parameters)
is passed as a formal parameter to another routine. The appearance of the
function identifier in an actual parameter list could indicate the passing of
either the address of the function or the function result. In HP Pascal, the
address of the function is passed by default, as shown in this example.

p(%IMMED f); {Address of function f is passed}

Procedures and Functions 6–17

To cause the function result to be passed, you must enclose the function
identifier in parentheses, as shown in this example:

p(%IMMED (f)); {Result of function f is passed}

For More Information:

• On conformant parameters (Section 6.3.7)

• On type conversions (Section 4.4)

• On attributes (Chapter 10)

• On calling external routines (HP Pascal for OpenVMS User Manual)

• On compiler messages (HP Pascal for OpenVMS User Manual)

6.3.6 Schema Parameters
HP Pascal provides a method of processing schematic arrays, records, sets,
subranges, and STRINGs with potentially different actual discriminants. To do
this, you can use undiscriminated schema parameters.

An undiscriminated schema formal parameter is a type name that
represents a specific schema family. The actual discriminants are determined
each time you pass a corresponding actual parameter. The actual discriminants
are available within the routine through the formal parameter.

You can use undiscriminated schema formal parameters when declaring value
and variable parameters. When you use a formal, undiscriminated schema
parameter instead of a conformant parameter or a type identifier, a call to
the routine provides actual parameters that are discriminated from the same
schema type family. However, when using value semantics, there are two
exceptions:

• You cannot pass schema sets and schema subranges as value parameters,
since there is no assignment compatibility for undiscriminated sets and for
undiscriminated subranges.

• You can pass a varying-length string expression to a formal STRING
parameter (the actual parameter does not have to be of the STRING type).

Consider the following example:

TYPE
Array_Template(lbnd, hbnd : INTEGER) =

ARRAY[lbnd..hbnd] OF INTEGER;
VAR

Even_Numbers : Array_Template(1, 30);
Odd_Numbers : Array_Template(1, 60);

6–18 Procedures and Functions

PROCEDURE Print_Array(Array_To_Print : Array_Template);
VAR

i : INTEGER;
BEGIN
WRITELN(’The maximum number of elements is ’,

Array_To_Print.hbnd);
WRITELN;
FOR I := LOWER(Array_To_Print) TO UPPER(Array_To_Print) DO

WRITELN(Array_To_Print[i]);
END;

{In the executable section:}
Print_Array(Even_Numbers);
Print_Array(Odd_Numbers);

All passing-mechanism specifiers and attributes (%REF, %IMMED, %DESCR,
%STDSCR, [REFERENCE], [IMMEDIATE], [CLASS_S], [CLASS_A], [CLASS_
NCA]) are illegal on parameters of nonstatic types.

When you specify more than one formal schema parameter of the same
schema type in a single parameter section, there are additional programming
considerations.

If you specify more than one formal parameter (separated by commas) of a
single, user-defined undiscriminated schema type, the corresponding actual
parameters must be discriminated from the same type as the formal parameter
(they must be of the same schema type family), and the actual schema
parameters must have equivalent actual discriminant values. Consider the
following example.

TYPE
Array_Template(Upper_Bound : INTEGER)

= ARRAY[1..Upper_Bound] OF INTEGER;
VAR

Actual_1, Actual_2 : Array_Template(10);
Actual_3 : Array_Template(20);

PROCEDURE Schema_Proc1(Only_One : Array_Template);
{Body...}

PROCEDURE Schema_Proc2(One, Two : Array_Template);
{Body...}

{In the executable section:}
Schema_Proc1(Actual_1); {Legal}
Schema_Proc1(Actual_3); {Legal}
Schema_Proc2(Actual_1, Actual_2); {Legal}
Schema_Proc2(Actual_1, Actual_3); {Illegal}

Procedures and Functions 6–19

When using value semantics, if you specify more than one formal parameter
(separated by commas) of an undiscriminated STRING type, the corresponding
actual parameters must have equivalent current lengths (not necessarily
equivalent maximum lengths). Consider the following example.

VAR
One_String, Two_String : STRING(15);
Three_String : STRING(20);

PROCEDURE Test_Strings(One, Two : STRING);
{Body...}

{In the executable section:}
Test_Strings(’a’, ’b’); {Legal}
Test_Strings(’a’, ’bb’); {Illegal}
One_String := ’Hello’;
Two_String := ’Hello there’;
Three_String := ’olleH’;
Test_Strings(One_String, Two_String); {Illegal}
Test_Strings(One_String, Three_String); {Legal}

When using variable semantics, if you specify more than one formal parameter
(separated by commas) of an undiscriminated STRING type, the corresponding
discriminated STRING actual parameters must have an equivalent maximum
length.

For More Information:

• On user-defined schema types (Section 2.5)

• On the STRING predefined schema type (Section 2.6.3)

6.3.7 Conformant Parameters
HP Pascal provides a method of processing arrays and character strings with
potentially different maximum lengths. To do this, you can use conformant
array parameters or conformant varying parameters.

A conformant parameter is a syntax that represents a set of types that are
identical except for their bounds. The bounds of a conformant parameter are
determined each time a corresponding actual parameter is passed. The bounds
of an actual parameter are available within the routine through identifiers
declared in the conformant parameter. A conformant parameter can appear
only within a formal parameter list.

You can use conformant parameters when declaring value, variable, and
foreign mechanism parameters. When you use a conformant parameter instead
of a type identifier in a formal parameter declaration, a call to the routine
can provide static and nonstatic arrays, VARYING OF CHAR strings, and
discriminated strings (of the STRING schema family) of any size.

6–20 Procedures and Functions

In addition, two conformant parameters are equivalent if they have indexes
of the same ordinal type and components that either are compatible or are
equivalent conformant parameters. They must also have the same number of
dimensions and both must be packed or unpacked.

6.3.7.1 Conformant Array Parameters
The syntax for a conformant array has the following form:

ARRAY[{lower-bound-identifier..upper-bound-identifier :
[[attribute-list]]index-type-identifier};...] OF [[attribute-list]]� type-identifier

conformant-parameter-syntax

�
PACKED ARRAY[lower-bound-identifier..upper-bound-identifier :

[[attribute-list]]index-type-identifier] OF [[attribute-list]]type-identifier

lower-bound-identifier
An identifier that represents the lower bound of the conformant array’s index.

upper-bound-identifier
An identifier that represents the upper bound of the conformant array’s index.

attribute-list
One or more identifiers that provide additional information about the
conformant array.

index-type-identifier
The type identifier of the index, which must denote an ordinal type.

type-identifier
The type identifier of the array components, which can denote any type.

To specify the range and type of the index, you must use type identifiers
that represent predefined or user-defined ordinal types. The identifiers
that represent the index bounds can be thought of as READONLY value
parameters, implicitly declared in the procedure declaration.

Unless the conformant array is packed, the component can be either a type
identifier or another conformant parameter; therefore, only the last dimension
of a conformant parameter can be packed. The following example is illegal
because the component of the packed array is another conformant parameter:

PACKED ARRAY[l1..u1: INTEGER; l2..u2: INTEGER] OF CHAR

Procedures and Functions 6–21

However, the following is allowed because only the last component is packed:

ARRAY[l1..u1: INTEGER] OF PACKED ARRAY[l2..u2: INTEGER] OF CHAR

Consider the following example:

TYPE
Workdays = 1..31;
Feb_Days = 1..28;
Mar_Days = 1..31;

VAR
Feb_Arr : ARRAY[Feb_Days] OF INTEGER;
Mar_Arr : ARRAY[Mar_Days] OF INTEGER;
Feb_Total, Mar_Total : INTEGER;

FUNCTION Inventory(VAR Amt_Sold :
ARRAY[First_Day..Last_Day : Workdays] OF INTEGER) : INTEGER;

{In executable section:}
{Amt_Sold : ARRAY[1..28] OF INTEGER...}
Feb_Total := Inventory(Feb_Arr);

{Amt_Sold : ARRAY[1..31] OF INTEGER...}
Mar_Total := Inventory(Mar_Arr);

The formal parameter Amt_Sold can have index values from 1 to 31 to indicate
the number of workdays in each month. Thus, an actual parameter passed
to Amt_Sold could be an array whose index type is either Feb_Days or Mar_
Days. Using a conformant parameter in this example allows you to write a
general-purpose routine that sums the components of Amt_Sold and returns
the monthly inventory total to the calling block.

For More Information:

• On ordinal types (Section 2.1)

• On arrays (Section 2.4.1)

• On attributes (Chapter 10)

6.3.7.2 Conformant VARYING Parameter
The syntax for a conformant VARYING string has the following form:

VARYING [upper-bound-identifier] OF [[attribute-list]] CHAR

attribute-list
One or more identifiers that provide additional information about the
conformant VARYING string.

6–22 Procedures and Functions

upper-bound-identifier
An identifier that represents the upper bound of the conformant VARYING
OF CHAR string’s index. The type of the upper-bound-identifier is always an
integer.

The upper-bound-identifier specifies the maximum length of the VARYING
OF CHAR string and must denote an integer. The upper-bound-identifier that
represents the maximum length can be thought of as a READONLY value
parameter, implicitly declared in the procedure declaration.

When you pass a string expression to a value conformant varying-length
parameter, the length of the actual parameter’s current value parameter
(not its declared maximum length) becomes both the current length and the
maximum length of the formal parameter. When you pass either a conformant
VARYING OF CHAR string variable or a discriminated STRING variable to a
VAR conformant varying-length parameter, the declared maximum length of
the actual parameter becomes the maximum length of the formal parameter.

The following example shows how to declare and use a VARYING OF CHAR
conformant parameter:

VAR
Short_String : VARYING[40] OF CHAR := PAD(’’, ’-’, 40);
Long_String : VARYING[80] OF CHAR := PAD(’’, ’-’, 80);

PROCEDURE Dashed_Line(VAR String : VARYING[Len] OF CHAR); {Body...}

{In the executable section:}
Dashed_Line(Short_String);
Dashed_Line(Long_String);

In this example, note that Len is not a previously declared identifier but is
instead an additional implicit parameter defined by the procedure declaration.
The upper bound of the conformant parameter String is established by the
declared maximum length of the actual parameter passed to it when the
procedure Dashed_Line is called. The first call to Dashed_Line passes a
40-character string, so Len has the value 40. The second call passes an 80-
character string, so Len has the value 80.

For More Information:

• On VARYING OF CHAR data types (Section 2.6.2)

• On attributes (Chapter 10)

Procedures and Functions 6–23

6.3.7.3 Conformant Parameter Sections
When you specify more than one conformant parameter of the same type in a
single parameter section, there are additional programming considerations.

When using value semantics, if you specify more that one formal parameter
(separated by commas) of a single user-defined conformant parameter,
the corresponding actual parameters must have either of the following
characteristics:

• Equivalent current lengths (in the case of passing a string expression to a
conformant PACKED array parameter of type CHAR or to a conformant
VARYING OF CHAR)

• Indexes that are equivalent and of the same ordinal type, the same number
of dimensions, and components that are compatible (in the case of passing
a static or nonstatic array to a conformant array parameter)

Consider the following example:

VAR
Actual_1, Actual_2 : ARRAY[1..10] OF INTEGER;
Actual_3 : ARRAY[5..10] OF INTEGER;

PROCEDURE TestArr(One, Two : ARRAY [L1..U1 : INTEGER] OF INTEGER);
{Procedure body...}

PROCEDURE TestStr(One, Two : PACKED [L2..U2 : INTEGER] OF CHAR);
{Procedure body...}

{In the executable section:}
TestArr(Actual_1, Actual_2); {Legal}
TestArr(Actual_2, Actual_3); {Illegal}
TestStr(’ABC’, ’XYZ’); {Legal}
TestStr(’HELLO’, ’GOODBYE’); {Illegal}

When using variable semantics, if you specify more than one formal parameter
(separated by commas) of a single, user-defined, conformant parameter, the
corresponding actual variable parameters must be of the same type.

For More Information:

• On ordinal types (Section 2.1)

• On static and nonstatic types (Section 2.9)

6–24 Procedures and Functions

6.3.8 Parameter Association
In most cases, a routine call must pass exactly one actual parameter for
each formal parameter. The actual parameter is either listed explicitly in the
routine call or supplied by means of a default value in the routine declaration.

One way of establishing the correspondence between actual and formal
parameters is to give the parameters in each list the same position. That is,
the association of actual and formal parameters proceeds from left to right,
item by item, through both lists. This form of association is called positional
syntax.

Another way of establishing correspondence is to specify the formal parameter
name and the actual parameter being passed to it. In HP Pascal, you can
associate an actual parameter with a formal parameter using the assignment
operator (:=). The actual parameters in the call do not have to appear in the
same order as the formal parameters appeared in the declaration. This form of
association is called nonpositional syntax.

You can use both positional and nonpositional actual parameters in the same
call. However, after you specify one parameter in nonpositional syntax, all
remaining parameters must be in nonpositional syntax (all parameters in
positional syntax must be at the front of the list).

Consider the following example:

PROCEDURE Compute_Sum(x, y : INTEGER; VAR z : INTEGER); {Body...}

{In the executable section:}
{Positional syntax:}
Compute_Sum(Quantity + 6, 15, Total);

{Nonpositional syntax:}
Compute_Sum(z := Total, x := Quantity + 6, y := 15);

{Both syntaxes:}
Compute_Sum(Quantity + 6, z := Total, y := 15);

For More Information:

• On using the LIST and TRUNCATE attributes to specify variable-length
parameter lists (Sections 10.2.24 and 10.2.37)

• On scope (Section 7.2)

Procedures and Functions 6–25

6.3.9 Default Formal Parameters
HP Pascal allows you to supply default values for formal parameters. Using
default parameter values, you do not need to pass actual parameters. Also, you
can specify an actual parameter in the position of a formal parameter whose
default value you want to override. To specify a default value, use the following
format:

parameter-spec := [[mechanism-specifier]] constant-expression;

parameter-spec
The parameter specification. The syntax for a parameter specification depends
on its semantics.

mechanism-specifier
The mechanism by which HP Pascal associates a default value with a formal
parameter. You can only specify a mechanism-specifier on a foreign routine.

constant-expression
A constant expression representing the default value for the formal parameter.

This default value, plus the optional mechanism specifier, must be a legal
actual parameter for the kind of formal parameter with which the default is
associated. Table 6–4 shows when HP Pascal allows a default value.

Table 6–4 Default Values on Formal Parameters

Formal Parameter Type External Routine HP Pascal Routine

Variable Requires foreign
mechanism specifier

Error

Value Allowed Allowed

Routine Requires foreign
mechanism specifier

Error

When you declare a formal parameter with a default value, you can either omit
it from the routine call or, if you use positional syntax, you can indicate its
position with a comma.

Consider the following example:

6–26 Procedures and Functions

FUNCTION Net_Pay(Hours : INTEGER;
Tax : REAL := 0.05;
Rate : REAL;
Fica : REAL := 0.07;
Overtime : INTEGER) : REAL; {Body...}

{In the executable section:}
{Nonpositional syntax:}
Take_Home_Year := Take_Home_Year +

Net_Pay (Overtime := Overtime_Week,
Rate := Pay_Rate,
Hours := Hours_Week);

{Positional syntax:}
Take_Home_Year := Take_Home_Year +

Net_Pay(Hours_Week, , Pay_Rate, ,
Overtime_Week);

The formal parameters Tax and Fica are given the default values 0.05 and
0.07, respectively.

You can override a formal parameter’s default value by associating the formal
parameter with an actual parameter in a routine call. For example, if you
want to replace the default value of the formal parameter Tax in the previous
example for one call, you can call Net_Pay as follows:

Take_Home_Year:= Take_Home_Year +
Net_Pay(Hours_Week, 0.06, Pay_Rate, , Overtime_Week);

As a result of this routine call, the default value of Tax will be replaced by the
value 0.06 supplied in the actual parameter list.

For More Information:

• On specifying passing mechanisms (Section 6.3.5)

• On positional and nonpositional syntax of parameters (Section 6.3.8)

Procedures and Functions 6–27

7
Program Structure and Scope

This chapter describes the following topics:

• Section 7.1, Blocks

• Section 7.2, Scope of Identifiers

• Section 7.3, Redeclaring Routine Names

• Section 7.4, Modules and Programs

• Section 7.5, Compilation Units and Data Sharing

7.1 Blocks
A block is a declaration section and an executable section. Programs, modules,
and routines are structured in blocks. A declaration section can contain routine
blocks nested within the outer program or module block; routine blocks can
also be nested within other routines.

The declaration section contains data definitions and declarations, and nested
routine declarations that are local to the enclosing block. The executable
section contains the statements that specify the block’s actions. You can cause
an exit from a block with the last executable statement of the block, which
causes normal termination, or with a GOTO statement, which transfers control
to an outer block.

For More Information:

• On declaration sections (Chapter 3)

• On routine declarations (Section 6.1)

• On the GOTO statement (Section 5.8)

Program Structure and Scope 7–1

7.2 Scope of Identifiers
The scope of an identifier is the part of the program in which the identifier
has a particular meaning. In Pascal, the scope of an identifier is the block
in which it is defined or declared, including nested blocks (but excluding
any nested blocks that redeclare the same identifier). Outside its scope and
assuming that it is not declared elsewhere, an identifier has no meaning; in
this case, attempts to use the identifier generate an error.

All Pascal identifiers observe the following scope rules:

• An identifier can be declared only once within a particular scope.

• A previously declared identifier can be redeclared in a nested block.

• An identifier declared in the main program or module block is accessible in
all nested blocks (except where it is redeclared).

Some Pascal identifiers observe additional scope rules:

• A procedure identifier can be redeclared within its own declaration section.

• A function identifier can also be redeclared, but not in a declaration section
of the function’s outermost block. The identifier can be redeclared only in
a nested block because you need to be able to assign a value to it in the
outermost block unless a RETURN statement is used.

• A formal parameter name follows the same rules of scope as a function
identifier and can be redeclared only in a nested block.

• A label declaration must respect GOTO statement restrictions. These
restrictions prevent control passing from an outer to an inner block.

7.3 Redeclaring Routine Names
Routine names can be redeclared like any other identifier. A block, in its
declaration section, can specify routines with the same names as those outside
the block. This changes the meaning of function and procedure calls when they
occur within the block.

A procedure can redeclare its own identifier. For example, the declaration
section of the procedure Sum can declare a different procedure called Sum.
The scope of this second declaration is only within the first block; calls to Sum
within the block are not recursive but are calls to the locally declared routine.

7–2 Program Structure and Scope

You can also redeclare a function identifier within its own declaration.
However, the function then cannot use the function identifier in an assignment
to return a value to the caller. A function that redeclares its own identifier
must use the RETURN statement (see Section 5.12) to specify a return value.

In the declaration section you cannot redeclare an identifier used in the formal
parameter list of the routine. However, a block nested in the declaration
section can do so. The following example shows the scope of identifiers that
appear in several blocks in a program.

Figure 7–1 shows the scope of identifiers that appear in several blocks in a
program. Pascal scope rules make the following statements about Figure 7–1
true:

• Variable identifiers a and b are declared at the outer level of the example.
Scope rules make them accessible throughout the example. In the main
program, Level1a, and Level1b, identifiers a and b represent integers. In
Level2, variable identifer a still represents an integer variable, but b is
redeclared as a Boolean variable.

• Type identifier c and variable identifiers d and e are declared at the next
lower level, Level1a. Scope rules make them accessible only in this block.
They cannot be accessed from the higher-level main program. They cannot
be accessed from a lower-level block because Level1a contains no nested
routine.

• Formal parameter identifiers v, u, and t are declared at the same level,
Level1b. They cannot be redeclared within this block. They can be
redeclared as local identifiers in the nested block of FUNCTION Level2.

• Procedure identifier Level1a is declared in the outermost block of the
example. This identifier can be redeclared within its own declaration
section.

• Function identifier Level2 is declared in the next-highest level, Level1b. It
cannot be declared within this block. Level2 can be redeclared as a local
identifier within a nested block.

Program Structure and Scope 7–3

Figure 7–1 Scope of Identifiers

PROCEDURE Level1a (z, y : INTEGER);

 VAR
 b : BOOLEAN;
 .
 .
 .

{Executable section of program Scope:}

ZK−1112A−GE

 TYPE

 VAR

 .
 .
 .

PROGRAM Scope (INPUT, OUTPUT);

VAR
 a, b : INTEGER;

 .
 .
 .

 .
 .
 .

FUNCTION Level2: CHAR;

END; {End procedure Level1b}

PROCEDURE Level 1b (v, u : CHAR; VAR t : INTEGER);

 .
 .
 .

END; {End procedure Level1a}

 .
 .
 .

d, e : c ;

END; {End function Level2}

c = ARRAY[1 . . 35] OF CHAR;

7–4 Program Structure and Scope

For More Information:

• On scope of routine identifiers (Section 6.1)

• On scope of formal parameters (Section 6.3)

• On scope of labels and GOTO statements (Section 5.8)

7.4 Modules and Programs
A module is a set of instructions that can be compiled, but not executed, by
itself. Module blocks contain only a declaration section and TO BEGIN DO
and TO END DO sections. A program is a set of instructions that can be
compiled and executed by itself. Program blocks contain a declaration and
an executable section. A compilation unit is a unit of HP Pascal code that
can be compiled independently; the term compilation unit refers to either a
program or a module.

Each module and program must be in a separate file; you cannot place multiple
modules (or a module and a program) in the same file. You can compile
modules and a program together or separately (the syntax of compilation
depends on the operating system you are using).

The formats for compilation units are as follows:

[[attribute-list]] PROGRAM comp-unit-identifier [[({file-identifier},...)]];
[[declaration-section]]
BEGIN
{statement};...
END.

[[attribute-list]] MODULE comp-unit-identifier [[({file-identifier},...)]];
[[declaration-section]]
[[TO BEGIN DO statement;]]
[[TO END DO statement;]]
END.

The module syntax of HP Pascal is slightly different than that of Extended
Pascal. However, the concepts in both languages are the same.

attribute-list
One or more identifiers that provide additional information about the
compilation unit.

Program Structure and Scope 7–5

comp-unit-identifier
Specifies the name of the program or module. The identifier appears only in
the heading and has no other purpose within the compilation unit.

file-identifier
Specifies the names of any file variables associated with the external files used
by the compilation unit.

declaration-section
A Pascal declaration section.

statement
A Pascal statement.

The program or module heading includes all information preceding the
program or module block. If your program contains any input or output
routines, you must list all the external file variables that you are using in
the compilation unit’s heading. File variables listed in a heading must also be
declared locally in the block, except for the predeclared file variables INPUT
and OUTPUT. The INPUT identifier corresponds to a predefined external
file that accepts input from the default device (usually, your terminal). The
OUTPUT identifier corresponds to a predefined external file that sends output
to the default device (usually, your terminal). the ERR identifier corresponds
If you redeclare INPUT and OUTPUT in a nested block, you lose access to the
default input and output devices.

Consider the following example:

PROGRAM Write_Var(OUTPUT); {Header}
VAR {Declaration section}

Number : INTEGER VALUE 3;
BEGIN {Executable section}
WRITELN(Number); {Writes 3 to the default device}
END.

For More Information:

• On INPUT and OUTPUT (Section 9.5)

• On compilation and command-line syntax (HP Pascal for OpenVMS User
Manual)

• On the TO BEGIN DO section (Section 3.3)

• On the TO END DO section (Section 3.4)

7–6 Program Structure and Scope

7.5 Compilation Units and Data Sharing
When dividing code into programs and modules, you may want to share
declarations among compilation units. The following sections discuss ways of
sharing data.

7.5.1 Environment Files
Environment files contain the definitions and declarations, from the outermost
level of declaration section of a compilation unit, that can be shared with other
compilation units that inherit the environment file. Environment files exist in
a form that the compiler can process more easily. The following example shows
how to use environment files:

{Contained in one file:}
[INHERIT (’file_name’)]
PROGRAM a(INPUT, OUTPUT);
BEGIN
READ(Amount);
Calc;
WRITELN(’Purchase Amount: ’, Amount:10:2)
WRITELN(’ + ’, Tax:10:2)
WRITELN(’Pay This Total: ’, Total:10:2)
END.

{Contained in a separate file:}
[ENVIRONMENT(’file_name’)]
MODULE B; {Keep all global data in one module}
CONST {Compile this unit first to create file}

Rate = 0.06;
VAR

Amount, Total, Tax: REAL;
PROCEDURE Glf; BEGIN...END;
PROCEDURE Calc;

BEGIN
Tax := Amount * Rate;
Total := Tax + Amount;
Glf;
END;

END.

Since the declarations in module b compose the environment file to be inherited
by another compilation unit, you must compile module b first to create the
environment file. When compiling module b, HP Pascal creates an environment
file by the name of file_name. HP Pascal adds a file type of .PEN (for Pascal
Environment).

Program Structure and Scope 7–7

The environment file contains declaration information about the constant Rate;
about the variables Amount, Total, and Tax; and about the procedures Glf and
Calc. If there are identifiers in a compilation unit that you do not want to be
included in an environment file, use the HIDDEN attribute.

When you compile program a, which contains the INHERIT attribute, HP
Pascal uses the specified environment file to allow the program access to the
data and routines declared in the module. Variables that are inherited from an
environment file are not newly created variables, but are the same variables
that were allocated storage by the declaring compilation unit.

A compilation unit may create only one environment file, but may inherit
multiple files that must have been created by earlier compilations.
Declarations from inherited files are not included in any environment files
created by the compilation unit. An environment file must have been created
by a version of the compiler that is compatible with the version that is
compiling the compilation unit.

The identifiers in the outermost level of the declaration section of a compilation
unit and all inherited identifiers must be unique. However, HP Pascal allows
the following exceptions to the redeclaration rules:

• A variable identifier can be multiply declared if all declarations of the
variable have the same type, and all but one declaration at most are
external.

• A procedure identifier can be multiply declared if all declarations of the
procedure have congruent parameter lists, and all but one declaration at
most are external.

• A function identifier can be multiply declared if all declarations of the
function have congruent parameter lists and identical result types, and all
but one declaration at most are external.

Consider the following example:

{In one compilation unit:}
[ENVIRONMENT(’extern.pen’)] MODULE Mod1;
[EXTERNAL] PROCEDURE Inst; EXTERN;
END.

{In another compilation unit:}
[INHERIT(’extern.pen’)] MODULE Mod2;
[GLOBAL] PROCEDURE Inst; {Body...}
END.

7–8 Program Structure and Scope

For More Information:

• On the ENVIRONMENT attribute (Section 10.2.14)

• On the INHERIT attribute (Section 10.2.21)

• On the HIDDEN attribute (Section 10.2.18)

• On declaration sections (Chapter 3)

7.5.2 Global and External Identifiers
Global and external identifiers are accessible to other compilation units (even
to compilation units written in other languages) that make up one executable
unit. The GLOBAL attribute allows a declared identifier to be globally
accessible by other compilation units; the EXTERNAL attribute specifies
that another compilation unit allocates storage for the data or routine. The
compiler does not check to make sure that global and external identifiers are
declared as being of the same data type; you must ensure that the data types
are compatible.

You cannot use global and external names to share the declarations of user-
defined types. However, you can use the VALUE attribute to share global and
external literals.

The following example shows how to use global and external identifiers:

{Contained in one file:}
PROGRAM a(INPUT, OUTPUT);
VAR

Amount, Total, Tax : [EXTERNAL] REAL; {Defined elsewhere}
[EXTERNAL] PROCEDURE Calc; EXTERNAL; {Defined elsewhere}
[GLOBAL] PROCEDURE Glf; {Body...} {Available outside}
BEGIN
READ(Amount);
Calc;
WRITELN(’Purchase Amount: ’, Amount:10:2)
WRITELN(’ + ’, Tax:10:2)
WRITELN(’Pay This Total: ’, Total:10:2)
END.

Program Structure and Scope 7–9

{Contained in a separate file:}
MODULE B;
CONST

Rate = 0.06;
VAR

Amount, Total, Tax: [GLOBAL] REAL; {Available outside}
[EXTERNAL] PROCEDURE Glf; EXTERNAL; {Defined elsewhere}
[GLOBAL] PROCEDURE Calc; {Available outside}

BEGIN
Tax := Amount * Rate;
Total := Tax + Amount;
Glf;
END;

END.

The file containing the module can be compiled separately from the file
containing the program.

For More Information:

• On the GLOBAL attribute (Section 10.2.17)

• On the EXTERNAL attribute (Section 10.2.15)

7–10 Program Structure and Scope

8
Predeclared Functions and Procedures

HP Pascal supplies predeclared procedures and functions that perform various
commonly used operations. You do not have to declare these routines in order
to call them from your code.

In this chapter, the routines are presented in alphabetical order.

Also in this chapter, the term arithmetic types refers to those data types you
can use in arithmetic operations: the integer, unsigned, and real types.

In some sections of this manual, reference is made to entire categories of
routines. Table 8–1 lists the routines in each category.

Table 8–1 Predeclared Routine Categories

Category Category Description and Routines

Allocation size Routines that provide information about the amount of storage
allocated for variables and for components of various types: BITNEXT,
BITSIZE, NEXT, and SIZE

Arithmetic Routines that perform mathematical computations: ABS, ARCTAN,
CARD, COS, EXP, EXPO, LN, LSHIFT, RSHIFT, MAX, MIN,
RANDOM, SEED, SIN, SQR, SQRT, UNDEFINED, UAND, UNOT,
UOR, UXOR, and XOR

Character-string Routines that manipulate character strings: BIN, DEC, EQ, FIND_
MEMBER, FIND_NONMEMBER, GE, GT, HEX, INDEX, LE,
LENGTH, LT, NE, OCT, PAD, READV, STATUSV, SUBSTR, UDEC,
and WRITEV

Component position Routines that provide information about the offset of record
components: BIT_OFFSET and BYTE_OFFSET

Condition handling ASSERT, ESTABLISH, HALT, REVERT

(continued on next page)

Predeclared Functions and Procedures 8–1

Table 8–1 (Cont.) Predeclared Routine Categories

Category Category Description and Routines

Date-time Routines that provide information on the calendar date and
time: CLOCK, DATE, GETTIMESTAMP, SYSCLOCK, TIME, and
WALLCLOCK

Dynamic allocation Routines that provide for the creation and use of pointer variables:
ADDRESS, DISPOSE, IADDRESS, IADDRESS64, and NEW

File operations Routines that create, rename, and remove files and directories:
CREATE_DIRECTORY, DELETE_FILE, RENAME_FILE

Input and Output Routines that you use for I/O; these routines are not described in this
chapter

Low-level Routines that allow for parallel processes and for asynchronous
routines to operate in a real-time or multitasking environment: ADD_
ATOMIC, AND_ATOMIC, ADD_INTERLOCKED, BARRIER, CLEAR_
INTERLOCKED, OR_ATOMIC and SET_INTERLOCKED

Null-terminated strings Routines that operate on null-terminated strings: C_STR, MALLOC_
C_STR, PAS_STRCPY, PAS_STR

Ordinal Routines that provide information on the ordered sequence of values:
PRED, SUCC, LOWER and UPPER, ODD

Parameter Routines that give information about parameter lists: ARGC, ARGV,
ARGUMENT, ARGUMENT_LIST_LENGTH, and PRESENT

Privileged (OpenVMS
VAX systems only)

Routines that manipulate privileged hardware registers: MFPR and
MTPR

Type conversion Routines that convert an actual parameter to data of another type:
CHR, DBLE, INT, INT64, ORD, PACK, QUAD, ROUND, ROUND64,
SNGL, TRUNC, TRUNC64, UINT, UINT64, UNPACK, UROUND,
UROUND64, UTRUNC, and UTRUNC64

Miscellaneous FIND_FIRST_BIT_CLEAR, FIND_FIRST_BIT_SET, UNDEFINED,
and ZERO

Note

Not all routines are supported on all operating system and machine
architecture environments. If a routine is not supported on all
environments, the routine description includes any limitations.

8–2 Predeclared Functions and Procedures

For More Information:

• On data types (Chapter 2)

• On ordinal types (Section 2.1)

• On pointers (Section 2.3)

• On arrays and records (Section 2.4)

• On parameter lists (Section 6.3)

• On input and output routines (Section 9.8)

• On data storage (Appendix A)

8.1 ABS Function
The ABS function returns a value (of the same data type as the specified
parameter) that is the absolute value of the parameter.

ABS(x)

The parameter x can be of any arithmetic type.

8.2 ADD_ATOMIC Function (OpenVMS I64 and OpenVMS
Alpha systems only)

The ADD_ATOMIC function adds the value of an expression to the value of
a variable, stores the newly computed value in the variable, and returns the
previous value of the variable.

ADD_ATOMIC(e, v)

The type of the expression e must be assignment compatible with that of the
variable v. The variable v must be an INTEGER, UNSIGNED, INTEGER64,
or UNSIGNED variable and must be allocated on a natural boundary, such as
longword for INTEGER and UNSIGNED and quadword for INTEGER64 and
UNSIGNED64. The result of ADD_ATOMIC is the same type as the variable
v.

Overflow and subrange checking are never performed on the ADD_ATOMIC
operation, even if these options are in effect for the rest of the function or
compilation unit.

The ADD_ATOMIC function does not provide memory synchronization between
multiple processors. The BARRIER predeclared routine must be used for that
purpose.

Predeclared Functions and Procedures 8–3

This function is used to access data that is shared between two or more threads
of execution.

For More Information

• On atomic operations (HP Pascal for OpenVMS User Manual)

8.3 ADD_INTERLOCKED Function
The ADD_INTERLOCKED function adds the value of an expression to the
value of a variable, stores the newly computed value in the variable, and
returns an integer value: –1 if the new value is negative, 0 if it is zero, and 1
if it is positive.

ADD_INTERLOCKED(e, v)

The type of the expression e must be assignment compatible with that of the
variable v. The variable v must be an integer or an unsigned subrange; v must
have an allocation size of two bytes and must be aligned on a word boundary.
The type of e must be assignment compatible with that of v.

Note that unless the type of v is an integer subrange that includes negative
values, the result of the ADD_INTERLOCKED function is never –1.

Overflow and subrange checking are never performed on the ADD_
INTERLOCKED operation, even if these options are in effect for the rest
of the function or compilation unit.

This function is used to access data that is shared between two or more threads
of execution.

For More Information

• On atomic operations (HP Pascal for OpenVMS User Manual)

8.4 ADDRESS Function
The ADDRESS function returns a pointer value that is the address of the
parameter.

ADDRESS(x)

The parameter x can be a variable of any type except a component of a
packed structured type. A compile-time warning results if x is a formal VAR
parameter, a component of a formal VAR parameter, or a variable that does not
have the READONLY or VOLATILE attribute.

8–4 Predeclared Functions and Procedures

A pointer can only refer to a VOLATILE variable or a variable allocated by the
NEW procedure.

For More Information:

• Pointer data types (Section 2.3)

• On the VOLATILE attribute (Section 10.2.42)

• On the NEW procedure (Section 8.60)

8.5 AND_ATOMIC Function (OpenVMS I64 and OpenVMS
Alpha systems only)

The AND_ATOMIC function logically ANDs the value of an expression to
the value of a variable, stores the newly computed value in the variable, and
returns the previous value of the variable.

AND_ATOMIC(e, v)

The type of the expression e must be assignment compatible with that of the
variable v. The variable v must be an INTEGER, UNSIGNED, INTEGER64, or
UNSIGNED64 variable and must be allocated on a natural boundary, such as
longword for INTEGER and UNSIGNED and quadword for INTERGER64 and
UNSIGNED64. The result of AND_ATOMIC is the same type as the variable
v.

The AND_ATOMIC function does not provide memory synchronization between
multiple processors. The BARRIER predeclared routine must be used for that
purpose.

This function is used to access data that is shared between two or more threads
of execution.

For More Information

• On atomic operations (HP Pascal for OpenVMS User Manual)

8.6 ARCTAN Function
The ARCTAN function returns a real value that expresses in radians the
arctangent of the specified parameter.

ARCTAN(x)

The parameter x can be an integer or REAL type.

Predeclared Functions and Procedures 8–5

8.7 ARGUMENT Function
The ARGUMENT function specifies an argument in a variable-length
parameter list that was created using the LIST attribute.

ARGUMENT(parameter-name, n)

The parameter-name argument specifies the name of a parameter declared
with the LIST attribute. The parameter n specifies a positive integer value
that identifies the argument. The first argument in a list is always 1. An error
occurs if the value supplied for n is less than 1, or exceeds the ARGUMENT_
LIST_LENGTH parameter (which indicates the total number of arguments).

If the LIST parameter is a value parameter, ARGUMENT indicates the
corresponding value in the argument list. If the LIST parameter is a VAR
parameter, ARGUMENT is a reference to the corresponding variable in the
argument list.

Also, you can use the IADDRESS function with the ARGUMENT function to
return the address of a selected argument.

For More Information:

• On variable-length parameter lists (the example in Section 8.8)

• On parameters (Section 6.3)

• On the LIST attribute (Section 10.2.24)

• On the IADDRESS function (Section 8.42)

8.8 ARGUMENT_LIST_LENGTH Function
The ARGUMENT_LIST_LENGTH function returns an integer value
representing the number of arguments in a variable-length parameter list
that was created using the LIST attribute.

ARGUMENT_LIST_LENGTH(parameter-name)

The parameter-name argument specifies the name of the parameter declared
with the LIST attribute.

When creating a variable-length parameter list, you can place the LIST
attribute on only the last formal parameter. When you call the routine, you
can specify any number of actual parameters, or arguments, that correspond to
the last formal parameter declared with LIST. Consider the following example.

8–6 Predeclared Functions and Procedures

PROGRAM Show_Arg(OUTPUT);
{Ax corresponds to any number of char. arguments}

PROCEDURE Variable_Write(Fl : VARYING[len] OF CHAR;
Ax : [LIST] CHAR);

VAR
i : INTEGER;

BEGIN
WRITE(Fl, ’, ’);
{For however many arguments there are:}
FOR i := 1 TO ARGUMENT_LIST_LENGTH(Ax) DO

WRITE(ARGUMENT(Ax, i)); {Write an argument}
WRITELN;
END;

{In the executable section:}
Variable_Write(’ hello’, ’*’); {One argument: Writes ’ hello, *’}
Variable_Write(’ hello’,’s’,’a’,’i’,’l’,’o’,’r’,’!’);

{Seven arguments: Writes ’ hello, sailor!’}

For More Information:

• On parameters (Section 6.3)

• On the LIST attribute (Section 10.2.24)

8.9 ASSERT Procedure
The ASSERT procedure signals a run-time error if the value of its parameter
is FALSE. ASSERT takes this form:

ASSERT(expression [[, string]])

The parameter expression is a Boolean expression that is normally true.
If ASSERT evaluates the expression as false, it signals a run-time error
indicating that the assertion failed.

The optional string parameter is output as part of the error message.

8.10 BARRIER Function (OpenVMS I64 and OpenVMS Alpha
systems only)

The BARRIER procedure causes a memory barrier instruction to be emitted to
synchronize pending memory updates in a multi-processor environment.

BARRIER

The BARRIER procedure has no parameters.

This routine is used to serialize memory writes on OpenVMS I64 and
OpenVMS Alpha systems.

Predeclared Functions and Procedures 8–7

For More Information

• On memory granularity (HP Pascal for OpenVMS User Manual)

8.11 BIN Function
The BIN function returns a character-string value that is the binary equivalent
of the specified parameter. The return value is compatible with all other string
types.

BIN(x[[, length[[, digits]]]])

The parameter x is the expression to be converted. This parameter must have
a size that is known at compile time; it cannot be VARYING OF CHAR, a
conformant parameter, or a schema type.

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you specify
a length that is too short to hold the converted value, the resulting string is
truncated on the left.

If you omit the optional parameters, the bit width of the converted parameter
value determines the string length and the number of significant digits. By
default, the number of significant digits is the minimum number of characters
necessary to express all the bits of the converted parameter. This default
length is one character more than the default number of digits, which causes a
leading blank to be included in the resulting string when both parameters are
omitted. Consider the following example:

TYPE
Month_Dates = SET OF 0..31;

VAR
Days_Of_Rain : Month_Dates;

{In the executable section:}
Days_Of_Rain := [1, 2, 6, 10, 12, 14, 18, 22, 25, 30];
Result := BIN (Days_Of_Rain, 32);
{Returns ’01000010010001000101010001000110’, 32 characters}

The binary representation is from right to left, with the leftmost bit being bit
31 and the rightmost bit being bit 0.

For More Information:

• On character strings (Section 2.6)

• On conformant parameters (Section 6.3.7)

8–8 Predeclared Functions and Procedures

8.12 BIT_OFFSET Function
The BIT_OFFSET function returns an integer value that represents the bit
position of a field in a record.

BIT_OFFSET(t, f)

The parameter t can be of any record type or variable, and the parameter f can
be any field contained in that record.

For More Information:
On records (Section 2.4.2)

8.13 BITNEXT Function
The BITNEXT function returns an integer value that indicates the number of
bits that would be allocated for one component of the specified type in a packed
array or if the specified variable appeared as a cell in a packed array.

BITNEXT(x)

The parameter x can be a variable or any type identifier.

Cells in a packed array are affected by any alignment attributes placed on
them. Therefore, the size returned includes the actual size of the type or
variable in addition to trailing space required to ensure proper alignment.

The BITNEXT and BITSIZE functions return the same bit size for a given type
or variable, except where the components of the packed array are padded to
ensure proper alignment.

For More Information:

• On examples of return values for this function (Table 8–2)

• On packed arrays (Section 2.4)

8.14 BITSIZE Function
The BITSIZE function returns an integer value that indicates the number
of bits that would be allocated for one field of the specified type in a packed
record or if the specified variable appeared as a field in a packed record.

BITSIZE(x)

The parameter x can be a variable or any type identifier.

Predeclared Functions and Procedures 8–9

Fields in a packed record are not affected by any alignment attributes placed
on subsequent fields. Therefore, the size returned indicates the actual size of
the type or variable.

The BITNEXT and BITSIZE functions return the same bit size for a given type
or variable, except where the components of the packed array are padded to
ensure proper alignment.

For More Information:

• On possible return values for this function (Table 8–2)

• On packed arrays (Section 2.4)

8.15 BYTE_OFFSET Function
The BYTE_OFFSET function returns an integer value that represents the byte
position of a field in a record.

BYTE_OFFSET(t, f)

The parameter t can be of any record type or variable, and the parameter f can
be any field contained in that record.

For More Information:

• On records (Section 2.4.2)

8.16 C_STR Function
The C_STR function takes a compile-time string expression and returns a
C_STR_T pointer to a static string literal with a terminating null character.

C_STR(e)

The C_STR function can also accept a Pascal variable of either PACKED
ARRAY OF CHAR, VARYING OF CHAR, or STRING.

C_STR(v)

In this form, it will return a C_STR_T value that represents the first character
in the string variable. It does not ensure a terminating null byte. The
programmer must handle the null-termination to treat a Pascal string variable
as a null-terminated string.

8–10 Predeclared Functions and Procedures

8.17 CARD Function
The CARD function returns an integer value indicating the number of
components that are currently elements of the set expression.

CARD(s)

The parameter s must be a set expression.

For More Information:

• On sets (Section 2.4.3)

8.18 CHR Function
The CHR function returns a char value whose ordinal value in the ASCII
character set is the parameter, provided such a character exists.

CHR(x)

The parameter x must be integer or unsigned and have a value from 0 to 255.

For More Information:

• On the ASCII character set (Section 1.2.1)

8.19 CLEAR_INTERLOCKED Function
The CLEAR_INTERLOCKED function assigns the value FALSE to the
parameter and returns the original Boolean value of the parameter.

CLEAR_INTERLOCKED(b)

The parameter b must be a variable of type BOOLEAN. The variable does not
have to be aligned; therefore, it can be a field of a packed record.

This function is used to access data that is shared between two or more threads
of execution.

For More Information

• On atomic operations (HP Pascal for OpenVMS User Manual)

Predeclared Functions and Procedures 8–11

8.20 CLOCK Function
The CLOCK function returns an integer value indicating the amount of central
processor time (in milliseconds) used by the current process. This function does
not have a parameter list. The result of CLOCK includes the amount of central
processor time allocated to all previously executed images.

8.21 COS Function
The COS function returns a real value that represents the cosine of the
specified parameter.

COS(x)

The parameter x can be an integer or REAL type, and is expressed in radians.

8.22 CREATE_DIRECTORY Procedure
The CREATE_DIRECTORY procedure creates a new directory or
subdirectory.

CREATE_DIRECTORY(file-name [[, error-return]])

The file-name parameter must be a directory name, and optionally can contain
a device name. The error-return parameter is optional, and will return an
error recovery code if specified.

For More Information:

• On error recovery codes (HP Pascal for OpenVMS User Manual)

8.23 DATE and TIME Functions
The DATE and TIME functions provide a standard way of returning a
character-string value that indicates the calendar date and time. The return
value is compatible with all string types.

DATE(t)
TIME(t)

The parameter t is a variable of the predeclared type TIMESTAMP. You can
either call the GETTIMESTAMP procedure to initialize parameter t before you
pass t to either DATE or TIME, or you can construct your own TIMESTAMP
object.

8–12 Predeclared Functions and Procedures

The size of the function’s return value depends on the string length that is
normally returned by your system for either date or time data. Consider the
following example:

VAR
Time_Var : TIMESTAMP;
The_Time, The_Date : STRING(23);

{In the executable section:}
GETTIMESTAMP(Time_Var);
The_Date := DATE(Time_Var);
The_Time := TIME(Time_Var);
WRITELN(The_Date, The_Time); {Writes: 15-JUL-1992 14:20:25.98}

For More Information:

• On the GETTIMESTAMP predeclared procedure (Section 8.38)

• On the layout of the TIMESTAMP type (Section 2.8)

8.24 DATE and TIME Procedures
The DATE and TIME procedures write the date and the time to their
parameters.

DATE(str)
TIME(str)

The parameter str must be of type PACKED ARRAY[1..11] OF CHAR. After
execution of the procedure, the parameter str contains either the date or the
time. If the day of the month is a 1-digit number, the leading zero does not
appear in the result; that is, a space appears before the date string. The time
is returned in 24-hour format.

For More Information:

• On standard ways to obtain the date and the time (Section 8.23)

8.25 DBLE Function
The DBLE function converts the parameter and returns its DOUBLE
equivalent.

DBLE(x)

The parameter x must be of an arithmetic type. The value of x must not be too
large to be represented by a double-precision number.

Predeclared Functions and Procedures 8–13

For More Information:

• On precision and support for the DOUBLE data type (Chapter 2)

8.26 DEC Function
The DEC function returns a character-string value that is the decimal
equivalent of the specified parameter. The return value is compatible with all
other string types.

DEC(x[[, length[[, digits]]]])

The parameter x is the expression to be converted. The DEC function can take
a parameter of any type except VARYING OF CHAR, conformant parameters,
or schema types. The DEC function requires the size of x to be less than or
equal to the size of INTEGER64 (if supported), or less than or equal to the size
of INTEGER32.

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you specify
a length that is too short to hold the converted value, the resulting string is
truncated on the left. If you do not specify values for the optional parameters,
a default length and a default minimum number of significant digits is used.

If the size of x is greater than 32, the defaults are 20 characters for the length
and 19 characters for the minimum number of digits. Otherwise, the defaults
are 11 characters for the length and 10 characters for the minimum number of
digits. Because the default length is 1 greater than the number of significant
digits, positive numbers will be preceded by a blank and negative numbers will
be preceded by a minus sign. Consider the following example.

VAR
Account : INTEGER;

{In the executable section:}
Account := 16#F;
WRITELN(DEC(Account, 8, 7));

The value of the integer variable Account is converted to its decimal equivalent
(15) and, in this example, printed in eight columns: seven digits, and one
leading blank (0000015).

For More Information:

• On character strings (Section 2.6)

• On conformant parameters (Section 6.3.7)

8–14 Predeclared Functions and Procedures

8.27 DELETE_FILE Procedure
The DELETE_FILE procedure deletes one or more files.

DELETE_FILE(file-name [[, error-return]])

The file-name specification can contain an explicit device and directory name,
plus it must contain a file name, a file type or extension, and a version number.
If you omit either the directory or device name, HP Pascal uses the directory
you are working in at the time of program execution.

The error return parameter returns an error recovery code if specified.

For More Information:

• On error recovery codes (HP Pascal for OpenVMS User Manual)

8.28 DISPOSE Procedure
The DISPOSE procedure deallocates memory for a dynamic variable.

DISPOSE(p [[, t1,...,tn]])

The parameter p is a pointer expression. The t parameters are constant
expressions that match the corresponding t parameter used in the call to the
NEW procedure that allocated the memory. If you use t parameters in a call to
NEW, you must specify the same t parameters in the call to DISPOSE. If you
allocated memory using d parameters, just specify the pointer variable to the
corresponding DISPOSE call.

The DISPOSE procedure deallocates the object to which the pointer variable
points. You cannot call DISPOSE more than once for the same dynamic
variable. Consider the following example:

DISPOSE(Ptr); {Ptr^ is distroyed; Ptr becomes undefined}

For More Information:

• On the pointer data types (Section 2.3)

• On the NEW procedure (Section 8.60)

Predeclared Functions and Procedures 8–15

8.29 EQ Function
The EQ function returns a Boolean value that specifies if the parameters are
equal according to the ASCII values of the strings’ characters.

EQ(str1, str2)

The parameters str1 and str2 must be character-string expressions. If the
EQ function detects unequal string lengths, it stops comparison and returns
FALSE. Consider the following example:

VAR
Match : BOOLEAN;

{In the executable section:}
Match := EQ(’exit ’, ’exit’); {Returns FALSE; unequal lengths}
Match := EQ(’exit’, ’exit’); {Returns TRUE}

For More Information:

• On string data types (Section 2.6)

8.30 ESTABLISH Procedure
The ESTABLISH procedure specifies a condition handler that executes if your
program generates operating-system events.

ESTABLISH(function-identifier)

The function-identifier parameter must be the name of a function that has the
ASYNCHRONOUS attribute and must return an integer value.

For More Information:

• On the ASYNCHRONOUS attribute (Section 10.2.3)

• On error and report processing (HP Pascal for OpenVMS User Manual)

8.31 EXP Function
The EXP function returns a real value that represents the exponent of the
specified parameter (it represents ex).

EXP(x)

The parameter x can be an integer or REAL type.

8–16 Predeclared Functions and Procedures

8.32 EXPO Function
The EXPO function returns the integer exponent of the floating-point
representation of the parameter.

EXPO(x)

The parameter x can be of any real type.

For More Information:

• On precision and support for real numbers (Chapter 2)

8.33 FIND_FIRST_BIT_CLEAR Function
The FIND_FIRST_BIT_CLEAR function locates the first bit in a Boolean array
whose value is 0 and returns an integer value that specifies the index into the
array.

FIND_FIRST_BIT_CLEAR(vector [[, start-index]])

The vector parameter is a variable of type PACKED ARRAY OF BOOLEAN
with an integer index type. The optional start-index parameter must be an
integer expression that indexes the element at the point at which the search
starts. The starting index must be greater than or equal to the vector’s lower
bound, and less than or equal to 1 plus the vector’s upper bound; otherwise, a
range violation occurs. If omitted, the starting index defaults to the vector’s
first element.

This function returns a value indexing the first element containing the value 0.
If no bit is 0, the result is 1 plus the vector’s upper bound. If the vector or the
indexed part of the vector has a size of 0, the result is start-index.

8.34 FIND_FIRST_BIT_SET Function
The FIND_FIRST_BIT_SET function locates the first bit in a Boolean array
whose value is 1 and returns an integer value that specifies the index into the
array.

FIND_FIRST_BIT_SET(vector [[, start-index]])

The vector parameter is a variable of type PACKED ARRAY OF BOOLEAN
with an integer index type. The optional start-index parameter must be an
expression of an integer type that indexes the element at the point at which
the search starts. The starting index must be greater than or equal to the
vector’s lower bound, and less than or equal to 1 plus the vector’s upper bound;

Predeclared Functions and Procedures 8–17

otherwise, a range violation occurs. If omitted, the starting index defaults to
the vector’s first element.

The FIND_FIRST_BIT_SET function returns an integer value indexing the
first element containing the value 1. If no bit is 1, the result is 1 plus the
vector’s upper bound. If the vector or the indexed part of the vector has a size
of 0, the result is start-index. Consider the following example:

VAR
Boo : PACKED ARRAY [0..31] OF BOOLEAN;

{In the executable section:}
Boo::INTEGER := 128;
WRITELN(FIND_FIRST_BIT_SET(BOO));

For More Information:

• On the type cast operator (::) (Section 4.2.6)

8.35 FIND_MEMBER Function
The FIND_MEMBER function locates the first character in a string that is a
member of a specified set and returns an integer value indicating the position
of the character in the string; the function returns 0 if the characters in the
string were not members of the set.

FIND_MEMBER(string, char-set)

The string parameter is a string value, and char-set is a value of type SET OF
CHAR.

For More Information:

• On string types (Section 2.6)

• On sets (Section 2.4.3)

8.36 FIND_NONMEMBER Function
The FIND_NONMEMBER function locates the first character in a string that
is not a member of a specified set and returns an integer value indicating the
position of the character in the string; the function returns 0 if the characters
in the string were all members of the set.

FIND_NONMEMBER(string, char-set)

The string parameter is a string value, and char-set is a value of type SET OF
CHAR.

8–18 Predeclared Functions and Procedures

For More Information:

• On string types (Section 2.6)

• On sets (Section 2.4.3)

8.37 GE Function
The GE function returns a Boolean value that specifies if the first parameter is
greater than or equal to the second parameter, according to the ASCII values
of the strings’ characters.

GE(str1, str2)

The parameters str1 and str2 must be character-string expressions. HP Pascal
does not pad shorter strings with blanks. Consider the following example:

VAR
Match : BOOLEAN;
Test : STRING(8) VALUE ’ENTRANCE’;

{In the executable section:}
Match := GE(’exit’, ’exit’); {Returns TRUE}
Match := GE(Test, ’EXIT’); {’N’ less-than ’X’: Returns FALSE}

For More Information:

• On string data types (Section 2.6)

8.38 GETTIMESTAMP Procedure
The GETTIMESTAMP procedure initializes its parameter for use with the
DATE and TIME functions.

GETTIMESTAMP(t [[, str]])

The parameter t is a variable of the TIMESTAMP type, which is a predeclared
record type.

The parameter str is a string type that represents a date or both a date and
time. The following rules apply to the specification of the str parameter:

• If you do not specify the parameter str, the GETTIMESTAMP procedure
initializes the variable to be the date and time at execution of the
procedure.

• If you specify an invalid date, the GETTIMESTAMP procedure sets the
date to be January 1, 1. If you omit the date, this procedure uses the
current date. If you specify an invalid time or if you omit the time, it sets
the time to be midnight.

Predeclared Functions and Procedures 8–19

Consider the following example:

VAR
Time_Var : TIMESTAMP;
The_Time, The_Date : STRING(23);

{In the executable section:}
GETTIMESTAMP(Time_Var); {Get current date and time}
GETTIMESTAMP(Time_Var, ’22-Nov-1988 12:30:15.15’);
GETTIMESTAMP(Time_Var, ’22-Nov-1988’); {Midnight at that date}
GETTIMESTAMP(Time_Var, ’41-Nov-1988 999:999:999.99’);
{Invalid date; sets TIME_VAR to midnight on January 1, 1}

You can also use predefined values like TOMORROW, as shown in this
example:

GETTIMESTAMP(Time_Var, ’TOMORROW’); {Midnight tomorrow}

For More Information:

• On the DATE and TIME functions (Section 8.23)

• On the layout of the TIMESTAMP type (Section 2.8)

8.39 GT Function
The GT function returns a Boolean value that specifies if the first parameter
is greater than the second parameter, according to the ASCII values of the
strings’ characters.

GT(str1, str2)

The parameters str1 and str2 must be character-string expressions. HP Pascal
does not pad shorter strings with blanks. Consider the following example:

VAR
Match : BOOLEAN;
Test : STRING(8) VALUE ’ENTRANCE’;

{In the executable section:}
Match := GT(’exit’, ’exit’); {Returns FALSE}
Match := GT(Test, ’EXIT’); {’N’ less-than ’X’: Returns FALSE}

For More Information:

• On string data types (Section 2.6)

8–20 Predeclared Functions and Procedures

8.40 HALT Procedure
The HALT procedure uses operating system resources to stop execution of your
program unless you have written a condition handler (using the ESTABLISH
procedure) that enables continued execution.

For More Information:

• On the ESTABLISH procedure (Section 8.30)

8.41 HEX Function
The HEX function returns a character-string value that is the hexadecimal
equivalent of the specified parameter. The return value is compatible with all
other string types.

HEX(x[[, length[[, digits]]]])

The parameter x is the expression to be converted. This parameter must have
a size that is known at compile time; it cannot be VARYING OF CHAR, a
conformant parameter, or a schema type.

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you specify
a length that is too short to hold the converted value, the resulting string is
truncated on the left. If you do not specify values for the optional parameters,
a default length and a default number of significant digits is used. By
default, the number of significant digits is the minimum number of characters
necessary to express all the bits of the converted parameter. This default
length is one character more than the default number of digits, which causes a
leading blank to be included in the resulting string when both parameters are
omitted. Consider the following example:

VAR
p : ^Rec;

{In the executable section:}
Digits := 8;
NEW(p);
Result := HEX(p, 10, Digits);

In this example, the HEX function returns a string of 10 characters containing
the hexadecimal equivalent of the value of the pointer variable p. The string
has eight significant digits, as specified by the value of the actual parameter
Digits.

Predeclared Functions and Procedures 8–21

8.42 IADDRESS Function
The IADDRESS function returns an INTEGER_ADDRESS value that refers
to the address of either a constant or VOLATILE variable, or parameter, or a
routine. IADDRESS does not generate compile-time warnings about volatility
(as does the ADDRESS function). The IADDRESS function is commonly used
for constructing arguments for system services of the OpenVMS operating
system.

IADDRESS(x)

The parameter x can be of any type except a component of a packed structured
type.

Note

The HP Pascal compiler automatically assumes that all pointers refer
either to dynamic variables allocated by the NEW procedure or to
variables that have the VOLATILE attribute. You, therefore, should
use utmost caution when using the IADDRESS function. This function
does not generate compile-time warnings about volatility.

Consider the following example:

VAR
Real_Addr : INTEGER_ADDRESS;
Real_Var : [VOLATILE] REAL;

{In the executable section:}
Real_Addr := IADDRESS(Real_Var); {Returns address of Real_Var}
WRITELN(’The address of Real_Var is’, Real_Addr);

For More Information:

• On the VOLATILE attribute (Section 10.2.42)

• On the ADDRESS function (Section 8.4)

• On the NEW procedure (Section 8.60)

8–22 Predeclared Functions and Procedures

8.43 IADDRESS64 Function
The IADDRESS64 function returns an INTEGER64 value that refers to the
address of either a constant or VOLATILE variable, or parameter, or a routine.
The IADDRESS64 function is otherwise identical to the IADDRESS function.

IADDRESS64(x)

The parameter x can be of any type except a component of a packed structured
type.

For More Information:

• On the IADDRESS function (Section 8.42)

8.44 IN_RANGE Function
The IN_RANGE function determines if a value is in the defined subrange.

IN_RANGE(expression,lower-expression,upper-expression)

The parameters must be expressions of the same ordinal type. The function
returns TRUE if x has a value that is in the range specified by lower-expression
and upper_expression; otherwise, the function returns FALSE.

8.45 INDEX Function
The INDEX function searches a string for a specified substring and returns an
integer value that either indicates the location of the substring or the status of
the search.

INDEX(string, substring)

INDEX requires two character-string expressions as parameters: a string to be
searched and a substring to be found.

The search ends as soon as the first occurrence of the substring is located:

• If the substring is found, INDEX returns the string component that
contains the first letter of the substring.

• If the substring is not found, INDEX returns the value 0.

• If the substring is an empty string, INDEX returns the value 1.

• If the string to be searched is an empty string, INDEX returns the value 0
unless the substring is also empty, in which case, INDEX returns the value
1.

Predeclared Functions and Procedures 8–23

• If the substring is found, it does not return the string component but the
index (such as subscript) of the component.

Consider the following example:

The_String := ’The Pilgrims landed at Plymouth Rock’;
Substring := ’Plymouth Rock’;
Position := INDEX(The_String, Substring); {Returns 24}
Substring := ’Mayflower’;
Position := INDEX(The_String, Substring); {Returns 0}

For More Information:

• On character strings (Section 2.6)

8.46 INT Function
The INT function converts the parameter and returns its INTEGER equivalent.

INT(x)

The parameter x must be of an ordinal type.

Overflow can occur and is detected at runtime if overflow checking is enabled
and the value of x is outside the range of INTEGER.

8.47 INT64 Function
The INT64 function converts the parameter and returns its INTEGER64
equivalent.

INT64(x)

The parameter x must be of an ordinal type.

Overflow can occur and is detected at run time if overflow checking is enabled
and the value of x is outside the range of INTEGER64.

8.48 LE Function
The LE function returns a Boolean value that specifies if the first parameter is
less than or equal to the second parameter, according to the ASCII values of
the strings’ characters.

LE(str1, str2)

The parameters str1 and str2 must be character-string expressions. HP Pascal
does not pad shorter strings with blanks.

8–24 Predeclared Functions and Procedures

The expression LE(Str1, Str2) is equivalent to the following:

(LENGTH(Str1) < LENGTH(Str2)) OR (Str1 <= Str2)

Consider the following example:

VAR
Match : BOOLEAN;
Test : STRING(8) VALUE ’ENTRANCE’;

{In the executable section:}
Match := LE(’exit’, ’exit’); {Returns TRUE}
Match := LE(Test, ’EXIT’); {’N’ less-than ’X’: Returns TRUE}

For More Information:

• On string data types (Section 2.6)

8.49 LENGTH Function
The LENGTH function returns an integer value that is the length of a specified
string expression.

LENGTH(str)

The str parameter must be a character-string expression.

For More Information:

• On character strings (Section 2.6)

8.50 LN Function
The LN function returns a real value that represents the natural logarithm of
the specified parameter.

LN(x)

The parameter x can be an integer or REAL type. The value of x must be
greater than zero.

8.51 LOWER Function
The LOWER function returns the lower bound for ordinal types, SET base
types, and array indexes.

LOWER(x [[, n]])

Predeclared Functions and Procedures 8–25

The parameter x is a type identifier or variable of an ordinal, SET, or ARRAY
type. The parameter n is an integer constant that denotes a dimension of x, if
x is an array. If x is an array and if you omit the parameter n, HP Pascal uses
the default value 1. If x is an array, LOWER returns the lower bound of the
nth dimension of x. If x is an ordinal type, LOWER returns the lower bound or
smallest value. If x is a SET, LOWER returns the lower bound of the SET base
type.

For More Information:

• On the LOWER function (Section 8.102)

8.52 LSHIFT Function
The LSHIFT predeclared function returns a value of the same type as its first
parameter. The return value represents the value of the first parameter after
the bits have been shifted to the left.

LSHIFT(expression,expression)

The parameters are two integer or unsigned values. The first parameter
represents a value to shift; the second represents the number of bits to shift
the first value to the left. LSHIFT inserts zero bits on the right as the bits
shift left.

Note that shifting integers is not equivalent to multiplying or dividing by a
power of two when the value of the integer is negative.

If the number of bits shifted is larger than the natural integer size of the
target platform, the result is undefined.

For More Information:

• On the RSHIFT function (Section 8.79)

8.53 LT Function
The LT function returns a Boolean value that specifies if the first parameter is
less than the second parameter, according to the ASCII values of the strings’
characters.

LT(str1, str2)

8–26 Predeclared Functions and Procedures

The parameters str1 and str2 must be character-string expressions. HP Pascal
does not pad shorter strings with blanks. Consider the following example:

VAR
Match : BOOLEAN;
Test : STRING(8) VALUE ’ENTRANCE’;

{In the executable section:}
Match := LT(’exit’, ’exit’); {Returns FALSE}
Match := LT(Test, ’EXIT’); {’N’ less than ’X’: Returns TRUE}

For More Information:

• On string data types (Section 2.6)

8.54 MALLOC_C_STR Function
The MALLOC_C_STR function takes a Pascal string expression, calls the C
routine malloc() to allocate memory, initializes the memory with the string
expression, and then terminates the string with a null-character.

MALLOC_C_STR(e)

The type of the expression e must be a Pascal string expression. The function
result is a C_STR_T pointer to the null-terminted string. The amount of
memory allocated with malloc() is equal to the length of the string expression
plus one. The memory allocated with MALLOC_C_STR must be deallocated
with the C free() routine. The compiler will not allow C_STR_T parameters
with the NEW and DISPOSE routines.

8.55 MAX Function
The MAX function returns a value (the same type as that of the parameters)
that is the maximum value of a specified list of parameters.

MAX(x1,...,xn)

The parameters can be any arithmetic type, but they must all be of the same
type.

8.56 MFPR Function (OpenVMS VAX systems only)
The MFPR function returns an unsigned value that is the value of a
VAX internal processor register.

MFPR(ipr-register-expression)

Predeclared Functions and Procedures 8–27

The ipr-register-expression parameter is an expression compatible with the
UNSIGNED type.

When you call this function, the value of the internal processor register is
retrieved with the MFPR privileged VAX instruction.

Note

The HP Pascal compiler generates user-mode code. HP Pascal does
not explicitly support the running of HP Pascal generated code in
kernel mode. However, if the following rules are observed, then the
generated code has a good chance of working as expected in elevated
access modes:

• All code must be compiled with the /NOCHECK qualifier or
[CHECK(NONE)] attribute. The HP Pascal run-time signaling
method relies on trying to execute the HALT instruction. In user-
mode, this causes an exception that is a signal to the HP Pascal
Run-Time Library. In kernel mode, this HALTs the machine.

• Avoid all routine calls that translate into run-time library calls.
These include all I/O routines, several arithmetic routines, several
string routines, and so forth.

8.57 MIN Function
The MIN function returns a value (of the same type as that of the parameters)
that is the minimum value of a specified list of parameters.

MIN(x1,...,xn)

The parameters can be any arithmetic type, but must all be of the same type.

8.58 MTPR Procedure (OpenVMS VAX systems only)
The MTPR procedure assigns a value into a VAX internal processor register.

MTPR(ipr-register-expression, source-expression);

The ipr-register-expression and source-expression parameters are expressions
compatible with the unsigned type. HP Pascal stores the value specified
by source-expression into the internal processor register specified by the
ipr-register-expression.

8–28 Predeclared Functions and Procedures

For More Information:

• On running in kernel mode or on using the MFPR procedure (Section 8.56)

8.59 NE Function
The NE function returns a Boolean value that specifies if the parameters are
not equal according to the ASCII values of the strings’ characters.

NE(str1, str2)

The parameters str1 and str2 must be character-string expressions. HP Pascal
does not pad shorter strings with blanks. Consider the following example:

VAR
Match : BOOLEAN;

{In the executable section:}
Match := NE(’exit ’, ’exit’); {Returns TRUE}
Match := NE(’exit’, ’exit’); {Returns FALSE}

For More Information:

• On string data types (Section 2.6)

8.60 NEW Procedure
The NEW procedure allocates memory for the dynamic variable to which a
pointer variable refers. The value of the newly allocated variable is set to the
initial value of the base type if defined; otherwise, the value of the variable is
undefined.

NEW(p [[,
� t1,...,tn

d1,...,dn

�
]])

The parameter p is a pointer variable. On OpenVMS I64 and OpenVMS Alpha
systems, if the pointer type was declared with the [QUAD] attribute, the NEW
procedure allocates memory from the 64-bit process address space (p2 space).

The parameters t1,...,tn are constant expressions of an ordinal type that
represent nested tag-field values, where t1 is the outermost variant.

If the object of the pointer is a non schema record type with variants, then
you have two ways of allocating memory. If you do not specify t parameters,
HP Pascal allocates enough memory to hold any of the variants of the record.
If you do specify t parameters, then HP Pascal allocates enough memory to
hold only the variant or variants that you specify.

Predeclared Functions and Procedures 8–29

Since the t parameters cause HP Pascal to allocate memory for the variant
alone and not for the whole record, you cannot assign or evaluate the record as
a whole; you can assign and evaluate only the individual fields. Also, a call to
NEW sets the tag fields of a variant record.

The parameters d1,...,dn are compile-time or run-time ordinal values that must
be the same type as the formal discriminants of the object.

If the object of the pointer is of an undiscriminated schema type, you must
specify a d parameter for each of the formal discriminants of the schema type.
The d parameters discriminate the schema type in much the same way as
actual discriminants in a discriminated schema. The size of the allocation is
based on the value of the d parameters.

If the object is a schema record type, then you must use d parameters; you
cannot use t parameters or a combination of the syntaxes. If the schema record
type contains a variant (which depends on one of the formal discriminants)
then the d parameter discriminates the schema, determines the variant, and
allows HP Pascal to compute the necessary size of the allocation.

Note

If you specify t parameters to the NEW procedure, you must specify the
same t parameters to the DISPOSE procedure that deallocates memory
for the corresponding variable.

Consider the following examples:

TYPE
Meat_Type = (Fish, Fowl, Beef);
Beef_Portion = (Oz_10, Oz_16, Oz_32);
Var_Record = RECORD

CASE Entree : Meat_Type OF
Fish : (Fish_Type : (Salmon, Cod, Perch, Trout);

Lemon : BOOLEAN);
Fowl : (Fowl_Type : (Chicken, Duck, Goose);

Sauce : (Orange, Cherry, Raisin));
Beef : (Beef_Type : (Steak, Roast, Prime_Rib);
CASE size : Beef_Portion OF

Oz_10, Oz_16 : (Beef_Veg : (Pea, Mixed));
Oz_32 : (Stomach_Cure :

(Bicarb, Antacid, None)));
END;

The_Schema(Upper_Bound : INTEGER)
= ARRAY [1..Upper_Bound] OF INTEGER;

8–30 Predeclared Functions and Procedures

VAR
To_Int : ^INTEGER;
To_Var_Record : ^Var_Record;
To_Schema : ^The_Schema;
Bound : INTEGER VALUE 32;

{In the executable section:}
NEW(To_Int); {Memory for To_Int^ allocated but not initialized}

NEW(To_Var_Record, Fish); {Memory allocated only for Fish variant}
DISPOSE(To_Var_Record, Fish); {Specify Fish to DISPOSE}
NEW(To_Var_Record, Beef, Oz_32); {Allocates more memory this time}
DISPOSE(To_Var_Record, Beef, Oz_32);

NEW(To_Schema, Bound); {Allocation for undisc. schema object}
DISPOSE(To_Schema);

For More Information:

• On variant records (Section 2.4.2.1)

• On schema types (Section 2.5)

• On the DISPOSE procedure (Section 8.28)

8.61 NEXT Function
The NEXT function returns an integer value that indicates the number of
bytes that would be allocated for one component of the specified type in an
unpacked array, or if the specified variable appeared as the cell in an unpacked
array.

NEXT(x)

The parameter x can be a type identifier or variable.

Cells in an unpacked array are affected by alignment attributes and, by
default, are byte aligned. Therefore, the size returned includes the actual size
of the type or variable, in addition to trailing space required to ensure proper
alignment.

If a variable that is not allocated to an integral number of bytes is passed to
NEXT, the number of bits are rounded down to the nearest byte and then the
number of bytes are returned.

For More Information:

• On examples of return values for this function (Section 8.83)

• On arrays (Section 2.4.1)

Predeclared Functions and Procedures 8–31

8.62 OCT Function
The OCT function returns a character-string value that is the octal equivalent
of the specified parameter. The return value is compatible with all other string
types.

OCT(x[[, length[[, digits]]]])

The parameter x is the expression to be converted. This parameter must have
a size that is known at compile time; it cannot be VARYING OF CHAR, a
conformant parameter, or a schema type.

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you specify
a length that is too short to hold the converted value, the resulting string
is truncated on the left. By default, the number of significant digits is the
minimum number of characters necessary to express all the bits of the
converted parameter. This default length is one character more than the
default number of digits, which causes a leading blank to be included in the
resulting string when both parameters are omitted. Consider the following
example:

Int_Var := 427;
Result := OCT(Int_Var, 10, 3); {Returns ’ 653’}

For More Information:

• On character strings (Section 2.6)

8.63 ODD Function
The ODD function returns a Boolean value that indicates if the parameter
is odd.

ODD(x)

The parameter x must be integer or unsigned. This function returns TRUE if
the value of x is odd and FALSE if the value of x is even.

8.64 OR_ATOMIC Function (OpenVMS I64 and OpenVMS
Alpha systems only)

The OR_ATOMIC function logically ORs the value of an expression to the value
of a variable, stores the newly computed value in the variable, and returns the
previous value of the variable.

OR_ATOMIC(e, v)

8–32 Predeclared Functions and Procedures

The type of the expression e must be assignment compatible with that of the
variable v. The variable v must be an INTEGER, UNSIGNED, INTEGER64, or
UNSIGNED64 variable and must be allocated on a natural boundary (such as,
longword for INTEGER and UNSIGNED and quadword for INTEGER64 and
UNSIGNED64). The result of OR_ATOMIC is the same type as the variable v.

The OR_ATOMIC function does not provide memory synchronization between
multiple processors. The BARRIER predeclared routine must be used for that
purpose.

This function is used to access data that is shared between two or more threads
of execution.

For More Information

• On atomic operations (HP Pascal for OpenVMS User Manual)

8.65 ORD Function
The ORD function returns an integer value that is the position of the
parameter in the ordered sequence of values of the parameter’s type.

ORD(x)

The parameter x must be of an ordinal type. Note that the ordinal value of
an INTEGER object is the integer itself. If x is of type UNSIGNED, its value
must not be greater than MAXINT.

8.66 PACK Procedure
The PACK procedure copies components of an unpacked array variable to a
packed array variable.

PACK(a, i, z)

The parameter a is an unpacked array. The parameter i is a value to indicate
the starting value of the index of a. The parameter z is a packed array of the
same component type as a.

The number of components in parameter a must be greater than or equal to
the number of components in z. This procedure assigns the components of
a, starting with a[i], to the array z, starting with z[low-bound], until all the
components in z are filled.

Predeclared Functions and Procedures 8–33

In general, when specifying i, keep in mind that the upper bound of a (that
is, n) must be greater than or equal to i + v � u, where v is the upper bound
of z and u is the lower bound of z. That is, ORD(n) must be greater than or
equal to ORD(i) + ORD(v) � ORD(u). Consider the following example:

VAR
a : ARRAY[1..25] OF 0..15;
p : PACKED ARRAY[1..20] OF 0..15;
i : INTEGER;

{In the executable section:}
FOR i := 1 TO 20 DO

READ (a[i]);
PACK(a, 5, p); {a[1] through a[4] are not used}
PACK(a, 1, p); {a[21] through a[25] are not used}

For More Information:

• On arrays and packed arrays (Section 2.4)

8.67 PAD Function
The PAD function returns a character-string value, of the specified size, that
contains padded fill characters. The return value is compatible with all other
string types.

PAD(str, fill, size)

The parameter str is a character-string value to be padded; the parameter fill
is a value of type CHAR to be used as the fill character; and the parameter size
is an integer value indicating the size of the final string.

This string is composed of the original string followed by the fill character,
which is repeated as many times as is necessary to extend the string to its
specified size. The final size must be greater than or equal to the length of the
string to be padded.

For More Information:

• On character strings (Section 2.6)

8–34 Predeclared Functions and Procedures

8.68 PAS_STR Function
The PAS_STR function returns a Pascal string value from a C_STR_T value.

PAS_STR(e)

The type of the expression e must be C_STR_T. It is an error if the expression
is NIL.

8.69 PAS_STRCPY Function
The PAS_STRCPY function copies a Pascal string expression into memory
pointed to by C_STR_T.

PAS_STRCPY(v, e)

The type of the variable v must be C_STR_T. The type of the expression e must
be a Pascal string expression. The Pascal string is copied into the memory
pointed to by the variable v. The memory is then terminated with a null
character. The function returns a C_STR_T value representing the destination
(such as, the same value as contained by the variable v).

The behavior of PAS_STRCPY is undefined if the length of the Pascal string
expression is greater than or equal to the amount of memory pointed to by the
variable v. It is an error if the variable v is NIL.

8.70 PRED Function
The PRED function returns the value preceding the parameter according to the
parameter’s data type.

PRED(x)

The parameter x can be of any ordinal type; however, there must be a
predecessor value for x in the type.

8.71 PRESENT Function
The PRESENT function returns a Boolean value that indicates whether the
actual argument list of a routine contains an argument that corresponds to a
formal parameter. (This function is usually used to supply a default value or to
take a default action when the argument for a parameter is omitted.)

PRESENT(parameter-name)

Predeclared Functions and Procedures 8–35

The parameter-name parameter is the name of a formal parameter with the
TRUNCATE attribute. The parameter-name must be the name of a formal
parameter of the function from which PRESENT is called, or from a subroutine
of that function. The function result indicates whether the argument list of the
containing routine specifies an actual argument corresponding to an optional
parameter.

Parameters that do not have the TRUNCATE attribute, and also do not follow
a parameter with the TRUNCATE attribute in the formal parameter list, are
allowed; in their case, the PRESENT function always returns TRUE.

Default parameters are considered to be present in the argument list, and the
PRESENT function returns TRUE when passed the name of a parameter with
a default value.

For More Information:

• On examples using PRESENT and TRUNCATE (Section 10.2.37)

• On parameters (Section 6.3)

8.72 QUAD Function
The QUAD function converts the parameter and returns its QUADRUPLE
equivalent.

QUAD(x)

The parameter x must be an arithmetic type.

For More Information:

• On precision and support for the QUADRUPLE data type (Chapter 2)

8.73 RANDOM Function
The RANDOM function returns a randomly computed real value in the range
[0.0,1.0) based on a seed that is initially set to the value 7774755. The seed
used by the RANDOM function can be modified with the SEED function.

RANDOM[[(expression)]]

If present, the optional expression parameter is ignored.

For More Information:

• On the SEED function (Section 8.80)

8–36 Predeclared Functions and Procedures

8.74 READV Procedure
The READV procedure reads characters from a character-string expression and
assigns them to parameters in the READV call. The behavior of READV is
similar to that of READLN; the character string is similar to a one-line file.

READV(str, {variable-identifier[[: radix-specifier]]},... [[, ERROR := error-recovery]])

str
The str parameter is the string to be read.

variable_identifier
The variable-identifier is the name of the variable to be assigned a value from
str.

radix-specifier
The radix-specifier parameter is one of the format values BIN, OCT, or HEX.
These values, when used on a variable-identifier, read the variable in binary,
octal, or hexadecimal, respectively. You can read a variable of any type by
using a radix-specifier except a type that contains a file component.

error-recovery
The error-recovery parameter is the action to be taken if an error occurs during
execution of the routine.

An error occurs at run time if values have not been assigned to all the
parameters listed in the READV procedure call before the end of the character
string is reached, as shown in this example:

TYPE
Color = (Yellow, Red, Blue);

VAR
Paint, Paint2 : Color;
Month : VARYING[5] OF CHAR;
Real_Var : REAL;
Read_String : VARYING[17] OF CHAR;

{In the executable section:}
Read_String := ’Red July 26.33805’;

READV(Read_String, Paint, Month, Real_Var);
{Paint contains Red, Month contains ’July’, and Real_Var contains 26.33805}

READV(Read_String, Paint, Month, Real_Var, Paint2);
{Error: end of string reached after assigning to Real_Var}

READV(Read_String, Paint, Month); {Legal: ’26.33805’ is not used}
READV(Read_String, Real_Var, Paint, Month); {Error: Red is not REAL}

Predeclared Functions and Procedures 8–37

For More Information:

• On input and output (Chapter 9)

• On character strings (Section 2.6)

• On error recovery codes (HP Pascal for OpenVMS User Manual)

8.75 RENAME_FILE Procedure
The RENAME_FILE procedure renames a file.

RENAME_FILE(old-file-name, new-file-name [[, error-return]])

The parameter old-file-name specifies the names of one or more files whose
specifications are to be changed. The new-file-name parameter provides the
new file specification to be applied. The error-return parameter contains an
error recovery code if specified.

For More Information:

• On error processing (HP Pascal for OpenVMS User Manual)

8.76 REVERT Procedure
The REVERT procedure cancels a condition handler activated by the
ESTABLISH procedure. This procedure does not have a parameter list.

For More Information:

• On error processing (HP Pascal for OpenVMS User Manual)

8.77 ROUND Function
The ROUND function converts the value of the parameter by rounding the
fractional part of the value, and returns its integer equivalent.

ROUND(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE.
The value of x must not be too large to be represented by an integer.

8–38 Predeclared Functions and Procedures

8.78 ROUND64 Function
The ROUND64 function converts the value of the parameter by rounding the
fractional part of the value, and returns its INTEGER64 equivalent.

ROUND64(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE.
The value of x must not be too large to be represented by an INTEGER64.

8.79 RSHIFT Function
The RSHIFT predeclared function returns a value of the same type as its first
parameter. The value represents the value of the first parameter after the bits
have been shifted to the right.

RSHIFT(expression, expression)

The expression parameters are two integer or unsigned values. The first
parameter represents a value to shift; the second represents the number of bits
to shift the first value. The RSHIFT function inserts zero bits on the left as
the bits shift right.

Note that shifting integers is not equivalent to multiplying or dividing by a
power of two when the value of the integer is negative.

If the number of bits shifted is larger than the natural integer size of the
target platform, the result is undefined.

For More Information:

• On the LSHIFT function (Section 8.52)

8.80 SEED Function
The SEED function has a single integer parameter that sets the random
number generator seed for the RANDOM function. The function returns an
integer that represents the previous seed value.

SEED(expression)

The expression parameter is an integer.

For More Information:

• On the RANDOM function (Section 8.73)

Predeclared Functions and Procedures 8–39

8.81 SET_INTERLOCKED Function
The SET_INTERLOCKED function assigns the value TRUE to the parameter
and returns its original Boolean value.

SET_INTERLOCKED(b)

The parameter b must be a variable of type BOOLEAN. The variable does not
have to be aligned; therefore, it can be a field of a packed record.

8.82 SIN Function
The SIN function returns a real value that represents the sine of the specified
parameter.

SIN(x)

The parameter x can be an integer or REAL type, and is expressed in radians.

8.83 SIZE Function
The SIZE function returns an integer value that indicates the possible or
actual number of bytes that are allocated for a specified data type or variable.

SIZE(x[[,t1,...,tn]])

The parameter x can be a type identifier or variable. If x is a type identifier,
then the functions return an integer value that indicates the number of bytes
that would be allocated for a variable or record field of type x. If x is a variable,
then the functions return an integer value that indicates the number of bytes
that are allocated for that variable.

In the case where the parameter x is a variant record variable or variant type
identifier, SIZE returns an integer value that indicates the number of bytes
that are allocated (for a variant record variable) or would be allocated (for a
variant type identifier) for both the fixed portion of the record and the largest
variant. In addition, you can supply additional parameters t1 through tn that
correspond to the case labels of the record. The function returns an integer
value that indicates the number of bytes that would be allocated by the NEW
procedure for a dynamic variable of the specified variant.

If a variable that is not allocated to an integral number of bytes is passed to
SIZE, the number of bits will be rounded up to the nearest byte and then the
number of bytes will be returned.

8–40 Predeclared Functions and Procedures

Table 8–2 presents values returned by the alignment routines if the routines
accepted objects of the specified data types.

Table 8–2 Return Values of Alignment Predeclared Routines

Type or Variable
Size in Bits Size in Bytes

BITNEXT BITSIZE NEXT SIZE

[BIT(1)] BOOLEAN 11 1 12 13

0..25 (subrange) 51 5 44 4 4

[BYTE] 0..255
(byte)

8 8 1 1

[BYTE, ALIGNED(2)] 0..225 325 8 45 1

First element of:
PACKED ARRAY [1..10] OF
0..25

5 5 06 13

PACKED ARRAY [1..10] OF
0..25

567 567 7 7

1 By default, the variable is unaligned in a packed context.
2 By default, the variable is byte aligned in an unpacked context.
3 SIZE rounds up to the nearest byte for the bit-sized objects.
4 Subranges assume the size of their base types in an unpacked context.
5 Extra space is needed to fulfill alignment requirements.
6 NEXT rounds down to the nearest byte for bit-sized objects.
7 Items larger than 32 bits must be allocated in an integral number of bytes.

For More Information:

• On storage allocation and alignment for data types (Appendix A)

8.84 SNGL Function
The SNGL function converts the parameter and returns its real equivalent.

SNGL(x)

The parameter x must be an arithmetic type. The value of x must not be too
large to be represented by a single-precision number.

Predeclared Functions and Procedures 8–41

8.85 SQR Function
The SQR function returns a value (of the same type of the parameter) that
represents the square of the specified parameter.

SQR(x)

The parameter x can be any arithmetic type.

8.86 SQRT Function
The SQRT function returns a real value that represents the square root of the
specified parameter.

SQRT(x)

The parameter x can be an INTEGER, UNSIGNED,or REAL type. If the
value of x is less than zero, an error occurs.

8.87 STATUSV Function
The STATUSV function returns an integer value that specifies the status of the
last READV or WRITEV procedure completed. STATUSV does not have any
parameters.

This example shows the use of the STATUSV function:

VAR
Vary_Src : VARYING [20] OF CHAR;
Int_Result : INTEGER;

{In the executable section:}
Vary_Src := ’255’;
READV(Vary_Src, Int_Result, ERROR := CONTINUE);
IF STATUSV <> 0 THEN {0 means READV executed successfully}

WRITELN(’Error in READV’);

If, however, you have an asynchronous system trap (AST) routine condition
handler in your program that uses READV and WRITEV, the call of STATUSV
in your main program may not return the results you expected if an AST
occurred between the READV/WRITEV procedure and the STATUSV
procedure.

For More Information:

• On the READV procedure (Section 8.74)

• On the WRITEV procedure (Section 8.109)

• On character strings (Section 2.6)

8–42 Predeclared Functions and Procedures

8.88 SUBSTR Function
The SUBSTR function returns a substring (from a string specified as a
parameter) that is of the specified starting point and length. The return value
is compatible with all other string types.

SUBSTR(str, start, length)

The parameter str is a character-string value; the parameter start is an integer
value indicating the starting position of the substring. The parameter length is
an integer value that indicates the length of the substring.

The following rules apply to the use of the SUBSTR function:

• The value of the starting position must be greater than 0.

• The value of the length must be greater than or equal to 0.

• There must be enough characters following the starting position to
construct a substring of the specified length.

Consider the following example:

Original_String := ’This is the original string’;
Start_Position := 13;
Substring_Length := 15;
New_String := SUBSTR(Original_String, Start_Position,

Substring_Length);
{New_String contains ’original string’}

For More Information:

• On character strings (Section 2.6)

8.89 SUCC Function
The SUCC function returns the value that succeeds the parameter according to
the parameter’s data type.

SUCC(x)

The parameter x can be of any ordinal type; however, there must be a successor
value for x in the type.

Predeclared Functions and Procedures 8–43

8.90 SYSCLOCK Function
The SYSCLOCK function returns an integer value for the number of
milliseconds of system time used by the current process. The result is the
same as that returned by the CLOCK function.

SYSCLOCK

For More Information:

• On the WALLCLOCK function (Section 8.108)

• On the CLOCK function (Section 8.20)

8.91 TIME Procedure
See Section 8.24.

8.92 TRUNC Function
The TRUNC function converts the value of the parameter by truncating the
fractional part of the value and returns its integer equivalent.

TRUNC(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or
QUADRUPLE.The value of x must not be too large to be represented by
an integer.

8.93 TRUNC64 Function
The TRUNC64 function converts the value of the parameter by truncating the
fractional part of the value and returns its INTEGER64 equivalent.

TRUNC64(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE.
The value of x must not be too large to be represented by an INTEGER64.

8.94 UAND Function
The UAND function returns an unsigned value that represents a binary logical
AND operation on each corresponding pair of bits of the specified parameters.

UAND(u1, u2)

8–44 Predeclared Functions and Procedures

The parameters u1 and u2 must be of type UNSIGNED. Consider the following
example:

Result := UAND(16#FF9, 16#703); {Returns 1793, which is 16#701}

For More Information:

• On specifying extended-digit notation (Section 2.1.1.1)

8.95 UDEC Function
The UDEC function returns a character-string value that is the unsigned
decimal equivalent of the specified parameter. The return value is compatible
with all other string types.

UDEC(x[[, length[[, digits]]]])

The parameter x is the expression to be converted. The UDEC function
can take a parameter of any type except VARYING of CHAR, conformant
parameters, or schema types. This function requires the size of the parameter
x to be less than or equal to the size of INTEGER64 (if supported) on your
system. If your system does not support INTEGER64, then the UDEC function
requires that the parameter x be less than or equal to the size of INTEGER32.

Two optional integer parameters specify the length of the resulting string
and the minimum number of significant digits to be returned. If you specify
a length that is too short to hold the converted value, the resulting string is
truncated on the left.

If you do not specify values for the optional parameters, a default length and
a default minimum number of significant digits is used. If the size of the
parameter x is greater than 32, the defaults are 21 characters for the length
and 20 characters for the minimum number of digits. Otherwise, the defaults
are 11 characters for the length and 10 characters for the minimum number of
digits.

Consider the following example:

VAR
Account : INTEGER;

{In the executable section:}
Account := 3;
WRITELN(UDEC(Account));

Predeclared Functions and Procedures 8–45

For More Information:

• On conformant parameters (Section 6.3.7)

• On VARYING OF CHAR (Section 2.6.2)

8.96 UINT Function
The UINT function converts the value of the parameter and returns its
unsigned equivalent.

UINT(x)

The parameter x must be of an ordinal type.

No error results if x is an integer and has a negative value. The value returned
is x MOD 2��32.

For More Information:

• On range and support for the UNSIGNED data type (Chapter 2)

8.97 UINT64 Function
The UINT64 function converts the value of the parameter and returns its
UNSIGNED64 equivalent.

UINT64(x)

The parameter x must be of an ordinal type.

No error results if x is an integer and has a negative value. The value returned
is x MOD 2��64.

For More Information:

• On the UNSIGNED64 data type (Chapter 2)

8.98 UNDEFINED Function
The UNDEFINED function returns a Boolean value that specifies whether the
parameter contains an undefined (invalid) operand.

UNDEFINED(x)

The parameter x must be a variable of type REAL, SINGLE, DOUBLE, or
QUADRUPLE.

8–46 Predeclared Functions and Procedures

On OpenVMS I64 and OpenVMS Alpha systems, the UNDEFINED routine
returns FALSE if the floating-point value is finite and returns TRUE if the
value is not finite.

A finite number is a floating-point value with a definite, in-range value.
Specifically, all numbers in the inclusive ranges -MAX through -MIN, zero, and
+MIN through +MAX, where MAX is the largest non-infinite representable
floating-point number for the variable’s type and MIN is the smallest non-zero
representable normalized floating-point number for the variable’s type. These
correspond to the MINREAL, MAXREAL, MINDOUBLE, MAXDOUBLE,
MINQUADRUPLE, and MAXQUADRULE predeclared constants.

For F_Float, D_Float, and G_Float, finites do not include reserved operands
and dirty zeros (this differs from the VAX interpretation of dirty zeros as
finite). For S_Float, T_Float, and X_Float, finites do not include infinites,
NaNs, or denormals, but do include minus zero.

On OpenVMS VAX systems, the UNDEFINED routine returns TRUE if
the floating-point value has an exponent of 0 together with a sign bit of 1;
otherwise, it returns FALSE.

8.99 UNOT Function
The UNOT function returns an unsigned value that represents a binary logical
NOT operation on each bit of the specified parameter.

UNOT(u)

The u parameter must be an unsigned expression. Consider the following
example:

Result := UNOT(16#FF9); {Returns 16#FFFFF006}

For More Information:

• On specifying extended-digit notation (Section 2.1.1.1)

8.100 UNPACK Procedure
The UNPACK procedure copies components of a packed array to an unpacked
array variable.

UNPACK(z, a, i)

The parameter z is a packed array. The parameter a is an unpacked array
variable. The parameter i is the starting value of the index of a.

Predeclared Functions and Procedures 8–47

The number of components in parameter a must be greater than or equal to the
number of components in z. The UNPACK procedure assigns the components
of z, starting with z[low-bound], to the array a, starting with a[i], until all the
components in z are used.

In general, when specifying i, keep in mind that the upper bound of a (that
is, n) must be greater than or equal to i + v � u, where v is the upper bound
of z and u is the lower bound of z. That is, ORD(n) must be greater than or
equal to ORD(i) + ORD(v) � ORD(u).

Normally, you cannot pass the individual components of a packed array
to formal VAR parameters; you must unpack the array first. Consider the
following example:

VAR
p : PACKED ARRAY[1..10] OF CHAR;
a : ARRAY[1..10] OF CHAR;
i : INTEGER;

PROCEDURE Process_Components(VAR Ch : CHAR); {Body...}

{In the executable section:}
READ(p);
UNPACK(p, a, 1);
FOR i := 1 TO 10 DO

Process_Components(a[i]); {Pass each component to procedure}

For More Information:

• On arrays and packed arrays (Section 2.4.1)

8.101 UOR Function
The UOR function returns an unsigned value of a binary logical OR operation
on the corresponding pair of bits of two specified parameters.

UOR(u1, u2)

The u1 and u2 parameters must be unsigned. Consider the following example:

Result := UOR(16#FF9, 16#703); {Returns 16#FFB}

For More Information:

• On specifying extended-digit notation (Section 2.1.1.1)

8–48 Predeclared Functions and Procedures

8.102 UPPER Function
The UPPER function returns the upper bound for ordinal types, SET base
types, and array indexes.

UPPER(x [[, n]])

The parameter x is a type identifier or variable of an ordinal, SET, or ARRAY
type. The parameter n is an integer constant that denotes a dimension of x, if
x is an array. If x is an array and if you omit the parameter n, HP Pascal uses
the default value 1. If x is an array, UPPER returns the upper bound of the
nth dimension of x. If x is an ordinal type, UPPER returns the upper bound or
largest value. If x is a SET, UPPER returns the upper bound of the SET base
type. Consider the following example:

TYPE
A_Schema(a, b : INTEGER) = a..a+b;

VAR
x : A_Schema(5, 10);

{In the executable section:}
WRITELN(UPPER(BOOLEAN)); {Writes TRUE}
WRITELN(LOWER(x)); {Writes 5}
WRITELN(UPPER(x)); {Writes 15}

8.103 UROUND Function
The UROUND function converts the value of the parameter by rounding the
fractional part of the value and returns its unsigned equivalent.

UROUND(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE.

No error results if the value of x is negative or greater than 4,294,967,295.
In that case, the unsigned result is the rounded parameter value MOD
4,294,967,296.

For More Information:

• On range and support of the UNSIGNED data type (Chapter 2)

Predeclared Functions and Procedures 8–49

8.104 UROUND64 Function
The UROUND64 function converts the value of the parameter by rounding the
fractional part of the value and returns its UNSIGNED64 equivalent.

UROUND64(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE.

No error results if the value of x is negative or greater than MAXUNSIGNED64.
In that case, the UNSIGNED64 result is the rounded parameter value MOD
MAXUNSIGNED64.

For More Information:

• On range and support of the UNSIGNED64 data type (Chapter 2)

8.105 UTRUNC Function
The UTRUNC function converts the value of the parameter by truncating the
fractional part of the value and returns its unsigned equivalent.

UTRUNC(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE.

No error results if the value of x is negative or greater than 4,294,967,295.
In that case, the unsigned result is the truncated parameter value MOD
4,294,967,296.

For More Information:

• On range and support of the UNSIGNED data type (Chapter 2)

8.106 UTRUNC64 Function
The UTRUNC64 function converts the value of the parameter by truncating
the fractional part of the value and returns its UNSIGNED64 equivalent.

UTRUNC64(x)

The parameter x must be of type REAL, SINGLE, DOUBLE, or QUADRUPLE.

No error results if the value of x is negative or greater than MAXUNSIGNED64.
In that case, the unsigned result is the truncated parameter value MOD
MAXUNSIGNED64.

8–50 Predeclared Functions and Procedures

For More Information:

• On range and support of the UNSIGNED64 data type (Chapter 2)

8.107 UXOR Function
The UXOR function returns an unsigned value of a binary logical exclusive-OR
operation on the corresponding pair of bits of two specified parameters.

UXOR(u1, u2)

The u1 and u2 parameters must be unsigned.

Result := UXOR(16#FF9, 16#703); {Returns 16#8FA}

For More Information:

• On specifying extended-digit notation (Section 2.1.1.1)

8.108 WALLCLOCK Function
The WALLCLOCK function returns an integer value representing the number
of seconds since the boot time for the system.

WALLCLOCK

For More Information:

• On the SYSCLOCK function (Section 8.90)

• On the CLOCK function (Section 8.20)

8.109 WRITEV Procedure
The WRITEV procedure writes characters to a character-string variable of type
VARYING OF CHAR or discriminated STRING, by converting the values of
the parameters in the procedure call to textual representations. The behavior
of WRITEV is similar to that of the WRITELN function; the character-string
parameter is similar to a one-line file.

WRITEV(str, parameter-list [[, ERROR := error-recovery]])

The str parameter is the string to be written to.

The parameter-list parameter is the variables to be assigned to str.

Predeclared Functions and Procedures 8–51

The error-recovery parameter is the action to be taken if an error occurs during
execution of the routine.

The str parameter cannot appear within the parameter-list; if you attempt to
do this, unexpected results may occur. An error occurs if WRITEV reaches
the maximum length of the character string before the values of all the
parameters in the procedure call have been written into the string. The
error-recovery parameter indicates the action to be taken if an error occurs
while the WRITEV procedure is executing. Consider the following example:

TYPE
Flower = (Daisy, Lily, Orchid, Tulip);

VAR
Real_Var : REAL VALUE 232.705;
Write_String : VARYING[21] OF CHAR;
Bouquet : Flower VALUE Orchid;

{In the executable section:}
WRITEV(Write_String, Daisy, Real_Var:7:3, PRED(Bouquet));
{Write_String contains ’ DAISY232.705 LILY’}

WRITEV(Write_String, Daisy, Real_Var:7:3, PRED(Bouquet),
Bouquet);

{Error: there is no more room in the string parameter}

For More Information:

• On VARYING OF CHAR strings (Section 2.6.2)

• On formatting output (Section 9.6)

• On error recovery codes (HP Pascal for OpenVMS User Manual)

8.110 XOR Function
The XOR function returns a value (of the same type as the parameters) of a
binary logical exclusive-OR operation on two specified parameters.

XOR(p1, p2)

The p1 and p2 parameters must be of the same type and must be of either the
BOOLEAN or SET types.

Result := XOR([’A’,’B’,’C’],[’B’,’C’,’D’]); {Returns [’A’,’D’]}

For More Information:

• On Boolean types (Section 2.1.3)

• On SET types (Section 2.4.3)

8–52 Predeclared Functions and Procedures

8.111 ZERO Function
The ZERO function returns data, whose type depends on the context of the
function call, that sets any variable (except a file variable) to its binary zero.

ZERO

If you attempt to use the ZERO function to initialize a file variable, an error
occurs. Do not specify a parameter list when you call the ZERO function.

Table 8–3 shows the value that ZERO assigns for each data type.

Table 8–3 Value of ZERO

Data Type Value

All INTEGER types 0

All UNSIGNED types 0

CHAR The character NUL

BOOLEAN FALSE

Enumerated The enumerated element
with ORD(element) = 0

Subrange 01

REAL 0.0

DOUBLE 0.0

QUADRUPLE 0.0

ARRAY ZERO applied to each component

RECORD ZERO applied to each field

VARYING OF CHAR, STRING The null string

SET The empty set

Pointer NIL

1 Note that an ordinal target with a subrange type can be initialized outside of the subrange. The
compiler treats this as an error if used in a compile-time expression.

The ZERO function is used in two ways. You can use it as a compile-time
expression to initialize a variable in the TYPE, VAR, CONST, or VALUE
sections. You can also use it on the right side of an assignment statement
that appears in the executable section where the target is either a variable, or,
within the body of a function, the function identifier.

Predeclared Functions and Procedures 8–53

This example shows both uses:

TYPE
Pre_Zeroed_Record = RECORD

A: INTEGER;
B: Array [1..3] of Real
END VALUE ZERO;

VAR
An_Array : Array [1..10] of Real;
Pre_Zeroed : Pre_Zeroed_Record;

BEGIN
An_Array :=ZERO; {Initializes all of An_Array to zeroes}
.
.
.

For More Information:

• On data initialization (Chapter 2)

• Using the ZERO function with records (Section 2.4.2.2)

8–54 Predeclared Functions and Procedures

9
Input and Output Processing

The HP Pascal I/O model provides an extensive set of predeclared routines.
When programming with I/O, remember that the routines and their effects
depend on the capabilities available in your environment; not all routines or
organizations are available across environments.

This chapter discusses the following topics:

• Section 9.1, Files and File Organizations

• Section 9.2, Component Formats

• Section 9.3, Component Access Modes

• Section 9.4, File Locking

• Section 9.5, TEXT Files

• Section 9.6, Formatting Output

• Section 9.7, Error-Processing Parameter

• Section 9.8, I/O Routines

For More Information:

• On environment-specific I/O details (HP Pascal for OpenVMS User Manual
and Appendix C).

9.1 Files and File Organizations
A file is an organized collection of logically related data items. Data items
within files are called file components. The file organization defines the
physical arrangement of the components within the physical file, what types of
access information are present in each component, and how components may
be accessed by a program.

The HP Pascal I/O model includes three file organizations: sequential, relative,
and indexed.

Input and Output Processing 9–1

To open a file, you can call the OPEN procedure. Also, you usually call one
of the EXTEND, RESET, and REWRITE procedures to establish a starting
position for reading from or writing to a file. (For relative and indexed file
organizations, you can use procedures to locate a specific component to access.)

HP Pascal makes distinctions between permanent external files and temporary
internal files. An external file has a name in a directory and exists outside
the context of an HP Pascal program. An internal file has no name and is
deleted after the program finishes execution.

A file declared in the program heading is external by default. A file declared in
a nested block is internal by default. To change the default for internal files,
call the OPEN procedure or specify a file name in the EXTEND, RESET, or
REWRITE procedures.

The file is then considered external and is retained with the specified name
after the program has finished execution. If you open an internal file with
the EXTEND, RESET, or REWRITE procedure without a file name, the file
remains an internal file.

Default Information:
If you do not specify a file organization at the time of file creation (using the
OPEN procedure), HP Pascal creates a file with sequential organization.

The following sections describe file organizations.

9.1.1 Sequential File Organization
Sequential file organization specifies that file components are stored one
after the other, in the order in which they were entered into the file. HP Pascal
supports this organization for files on disk. This is the only organization
supported for files on magnetic tape, on terminals, on card readers, and on line
printers. Figure 9–1 shows this file organization.

9–2 Input and Output Processing

Figure 9–1 Sequential File Organization

Fourth component is
located between

third and fifth components

First
component

Second
component

Fifth
component

Sixth
component

Third
component

Fourth
component

ZK−1332A−GE

You cannot insert components between any two existing components, because
no physical space separates them. You can only add records to the end of the
file (the most recently added component), truncate the file from a specified
component to the end of the file, or rewrite the file.

For More Information:

• On component formats in sequential files (Section 9.2)

• On access methods for sequential files (Section 9.3)

9.1.2 Relative File Organization
Relative file organization consists of a series of fixed-length component
positions (called cells) numbered consecutively from 1 to n. The numbered,
fixed-length cells enable HP Pascal to calculate the component’s physical
position in the file. The cell numbers are called relative component
numbers. HP Pascal supports this organization on disk files only. Figure 9–2
shows this file organization.

Input and Output Processing 9–3

Figure 9–2 Relative File Organization

Relative Cells

ZK−1333A−GE

1 2 3 4 5 6

First
component

written

Second
component

written

Third
component

written

Fourth
component

written

Fifth
component

written

Empty
cell

Each component in the file may be randomly assigned to a specific cell. You
can place components in unused cells and in cells from which components have
been deleted. You cannot replace a component in a cell, but you can modify an
existing component.

The length of the actual component may vary even though the cell containing
the component is of a fixed length. If the component is smaller than the cell,
the remaining space in the cell is unused.

For More Information:

• On component formats in relative files (Section 9.2)

• On access methods for relative files (Section 9.3)

9.1.3 Indexed File Organization
Indexed file organization specifies that, in addition to the stored
components, there exists at least a primary key and possibly alternate keys
(first alternate key, second alternate key, and so forth). HP Pascal uses the
primary key to store components and uses a program-specified key or keys to
retrieve data. HP Pascal supports this organization on disk files only.

To define a key and certain characteristics of keys, use the KEY attribute. You
can define up to 254 alternate keys.

9–4 Input and Output Processing

An index is a structure that provides a component collating sequence for
the file, that is, a mechanism for accessing components in different orders
depending on the specified index (name, address, telephone number, and so
forth).

Figure 9–3 shows an indexed file organization that uses only a primary key.

Figure 9–3 Indexed File Organization

Primary Index (Employee Name)

ADAMS BAKER

CLARK

JONES SMITH TAYLOR WYMAN

ADAMS PINE ST 35112

CLARK

ELM AVE 24379 JONES MAIN ST 19724

KEY DEFINITION

Data Records

WYMAN MAIN ST 225411733HOLT RDSMITH

ZK−1335A−GE

In Figure 9–3 the components are logically stored in an order that is
determined by the primary index. (The actual physical location of components
is transparent to your program.) Figure 9–4 shows the presence of a first
alternate index (determined by the presence of first alternate keys in the
components) that points to components stored in order by the primary key.

Input and Output Processing 9–5

Figure 9–4 A First Alternate Key

CLARK ELM AVEADAMS PINE ST 35112

KEY DEFINITION

Primary Key
and Pointers

2254

WYMAN MAIN ST 2254

ZK−1336A−GE

24379 HOLT RD 11733

3511224379

SMITH

DATA

JONES MAIN ST 19724

19724 2100011733

For More Information:

• On component formats in indexed files (Section 9.2)

• On access methods for indexed files (Section 9.3)

• On the KEY attribute (Section 10.2.23)

In an indexed file, each component includes one or more key fields (or simply
keys) that HP Pascal uses to build the specified indexes. Each key is identified
by its location within the component, its length, and its data type.

A key may be one of the following data types:

• A single, contiguous character string

• A 2- or 4-byte unsigned binary number

• A 1-, 2-, or 4-byte signed integer

You can use the KEY attribute to specify certain characteristics about the index
and about the keys themselves. Table 9–1 describes these characteristics.

9–6 Input and Output Processing

Table 9–1 Characteristics of the KEY Attribute

Keys Description

Sort order This characteristic determines how HP Pascal creates an
index, and determines the order in which HP Pascal accesses
components. The order can either be ascending or descending. If
you specify ascending order, HP Pascal considers the component
with an equal or greater key value to be the next component
for access. If you specify descending order, HP Pascal considers
the component with an equal or lesser key value to be the
next component for access. Using different indexes and both
ascending or descending order, you can use different collating
sequences for a file’s components according to the needs of your
application.

Duplicate keys This characteristic permits you to use the key value in more than
one component. However, only the first component having the
key value can be accessed randomly; other components having
the same key value can only be accessed sequentially.

Changeable keys This characteristic applies to alternate keys only. When you
specify changeable keys, you can change the alternate keys
in a component when you update the component. When an
alternate key value changes, HP Pascal automatically adjusts
the appropriate index to reflect the new key value.

If you do not allow duplicate keys, HP Pascal rejects any attempt to place a
component into a file if it contains a key value that is a duplicate of an existing
component. If you do not explicitly create the file to accept alternate key
values, then attempts to change key values generate an error.

For More Information:

• On the KEY attribute (Section 10.2.23)

• On additional key characteristics (HP Pascal for OpenVMS User Manual)

9.2 Component Formats
When you declare a file variable in your program, HP Pascal automatically
creates a file buffer variable of the component type. This variable takes on the
value of one file component at a time. You can access only one file component,
called the current component, at a given time.

You cannot perform operations on a file while a reference to the file buffer
variable exists. To dereference the file buffer variable, write the name of the
file buffer variable followed by a circumflex (^), the dereferencing character.

Input and Output Processing 9–7

Predeclared I/O procedures move the file position. As the file position changes,
the variable in the file buffer changes. Figure 9–5 shows how this change
occurs.

Figure 9–5 File Buffer Contents

one file component

90 65 70 73

file position

70 File buffer Math_Scores^

81 89

ZK−0101−GE

Suppose you declare a file variable Math_Scores of type FILE OF INTEGER.
You might call a procedure to move the file position to the first component of
this file. At this point, the file buffer variable Math_Scores^ equals the value
of the first component (here, 90). If you then called a procedure to advance the
file position by two components, Math_Scores^ would equal the value of the
third component (here, 70).

Consider the following example:

VAR
f : FILE OF INTEGER;
{In the executable section:}

OPEN(File_Variable := f,
File_Name := ’sample.dat’,
History := OLD,
Organization := Sequential,
Access_Method := Direct;);

EXTEND(f);
F^ := 20;
PUT(f);

9–8 Input and Output Processing

The OPEN procedure opens the existing file, sample.dat. The EXTEND
procedure positions the file after its last component. The assignment statement
places the value 20 into the file buffer variable (F^). The PUT procedure writes
the value of the file buffer variable at the end of the file, f.

When you declare a variable of type FILE, you indicate the type of all of its
components. For example:

TYPE DataRecord = RECORD {A DataRecord is a component of this}
Field1: INTEGER; {file; each component contains an }
Field2: REAL; {integer and a real value. }
END {RECORD};

VAR DataFile = FILE OF DataRecord; {VAR gains access to the file}

After calling RESET, REWRITE, or EXTEND, you use file variables to refer to
the selected component. The following code continues the previous example:

RESET(DataFile); {Read component into the file buffer}
MyInt := DataFile^.Field1; {Copy the integer field into MyInt}
MyReal := DataFile^.Field2; {Copy the real field into MyReal}

The assignments use the FILE variable to refer to components of the file buffer.

In each file, all components are of the same file component format.
Component format defines the size (or maximum size) of each component
and any processing information needed in addition to the data portion of the
component. The HP Pascal I/O model supports the following formats for file
components:

• Fixed-length format (Section 9.2.1)

• Variable-length format (Section 9.2.2)

• Stream format (Section 9.2.3)

Default Information:
For new TEXT and VARYING OF CHAR files, HP Pascal creates variable-
length components by default. For other types of new files, HP Pascal
creates fixed-length components. If you access an existing file, your specified
component type must match the component type specified at the creation of the
file; if it does not, you generate an error.

Table 9–2 shows which of the file organizations support which of the component
formats.

Input and Output Processing 9–9

Table 9–2 File Organization Support for Component Formats

Organization Supported Component Format

Sequential All component formats

Relative1 Fixed length

Variable length

Indexed Fixed length

Variable length

1Although the relative file organization allows variable-length components, those variable-length
components are contained in a fixed-length cell that must be large enough to contain the largest
stored component.

For More Information:

• On TEXT files (Section 9.5)

9.2.1 Fixed-Length Component Format
Fixed-length components are all the same length. The fixed-length
component format is supported in all file organizations. HP Pascal
determines the length of a component at the time of file creation. You cannot
change the length of the components after you create the file.

9.2.2 Variable-Length Component Format
The variable-length component format enables components to be only as
long as the data requires. The variable-length format is supported in all file
organizations.

When you use OPEN to create a file of variable-length components, you can
specify the value (in bytes) of the largest component permitted in the file. Any
attempt to store a component containing more bytes than the specified value
results in an error.

9.2.3 Stream Component Format
The stream component format is a continuous stream of bytes that
contains special delimiting characters (called terminators) that separate
components. In addition to being recognized as delimiters, HP Pascal considers
the terminators to be a valid part of the component data. The stream format is
supported only in sequential files on disk.

9–10 Input and Output Processing

Table 9–3 contains the acceptable types of stream component formats:

Table 9–3 Acceptable Types of Stream Component Formats

Type Description

STREAM_CR This type recognizes a carriage-return character as the component
terminator.

STREAM_LF This type recognizes a line feed as the component terminator.

STREAM This type uses a terminator from a limited set of special characters:
the carriage return (CR); the carriage-return/line-feed combination
(CR/LF); or the form feed (FF).

9.3 Component Access Modes
A component access mode is a method by which HP Pascal retrieves
components from a file. You cannot change the file organization or component
format after file creation, but you can change the component access mode
each time you access a file. The HP Pascal I/O model defines two component
access modes: sequential and random access. Random access can be further
broken down into the categories of random access by number (also called
direct access) and random access by key value (also called keyed access). The
following sections describe these access methods in further detail.

You specify the access method using the OPEN procedure when you open a file.
You cannot change the access method unless you first use the CLOSE routine,
and then reopen the file specifying a new access method.

Before trying to use any of the access methods on a file, HP Pascal determines
the organization of the file. The organization determines how the specified
access method works. For instance, sequential access on a sequentially
organized file works differently than sequential access on an indexed file.

Default Information:

• The default is the sequential access method.

• You can always process a file using sequential access, even when the
currently specified access method is one of the direct access methods.

• By default, HP Pascal does not designate a component as a starting point
for access; you must do this explicitly using one of the RESET, REWRITE,
or REWIND procedures, or using an access-specific procedure to locate a
specified component.

Input and Output Processing 9–11

Table 9–4 shows which file organizations support which component access
modes.

Table 9–4 File Organization Support for Component Access Modes

Access Mode
Sequential
Organization

Relative
Organization

Indexed
Organization

Sequential Yes Yes Yes

Random by relative
component number
(direct access)

Yes1 Yes No

Random by key
value
(keyed access)

No No Yes

1This access is permitted with a fixed-length component format on disk only.

For More Information:

• On file organizations (Section 9.1)

• On component formats (Section 9.2)

9.3.1 Sequential Access
Using the sequential access method, storage or retrieval begins at a
designated position in the file and continues through the file according to
the component’s position in storage. You can specify two starting points for
sequential access: the beginning of the file (using REWRITE, or RESET) or the
end of the file (using EXTEND).

The following are the HP Pascal I/O routines that are used for sequential
access:

EOF EXTEND GET PUT

READ RESET REWRITE STATUS

TRUNCATE UFB UNLOCK WRITE

For More Information:

• On file organization (Section 9.1)

• On component format (Section 9.2)

9–12 Input and Output Processing

9.3.1.1 Sequential Access to Sequential Files
To retrieve a component in a sequential file, you must retrieve all components
from the time you establish a current position (using either EXTEND, RESET,
or REWRITE) to the desired component. After an operation to the file,
HP Pascal positions the file pointer to the next file component in anticipation
of the next operation on the file.

To access a previous component, you must reopen (implicitly or explicitly)
and reread the previous components; or, you can reopen the file, switching to
random access mode.

You cannot add components in between any two components. You can add
components only to the current end of the file.

Figure 9–6 shows sequential access to sequential files.

Figure 9–6 Sequential Access to a Sequential File

A

C
B

System software

ZK−1338A−GE

User Program

Read
next component

Read
next component

Read
next component

9.3.1.2 Sequential Access to Relative Files
HP Pascal can use sequential access for relative files as long as the components
are fixed length. HP Pascal tries to store or retrieve from the cell whose
relative component number is one higher than the most recently accessed cell.

You cannot overwrite a component, but you can modify the contents of the
current component. If the cell with the next highest relative component
number contains a component and if you are trying to store data in that cell,
you generate an error.

Input and Output Processing 9–13

Figure 9–7 shows the use of sequential access to read from a relative file.

Figure 9–7 Using Sequential Access to Read from a Relative File

A

C

B

Empty

Empty
Empty

System software

ZK−1339A−GE

User Program

Read
next component

Read
next component

Read
next component

Figure 9–8 shows the use of sequential access to write to a relative file. In
this figure, HP Pascal writes the component to the current cell. If the program
requests that another component be stored sequentially, then HP Pascal places
that component in cell 3. If the program places another request to store a
component sequentially, an error occurs because cell 4 contains component B.

9–14 Input and Output Processing

Figure 9–8 Using Sequential Access to Write to a Relative File

User Program Cell 1, start
of file

A
Empty

Empty
B

now contains
Cell 2,

record F

A

Empty
B

F

write operation

File after

System software

Write component
F to cell 2

ZK−1340A−GE

9.3.1.3 Sequential Access to Indexed Files
When sequentially accessing an indexed file, HP Pascal uses a specified index
to determine the order in which to sequentially process the file components.
The specified keys are called the keys of reference.

If you specify ACCESS_METHOD := SEQUENTIAL when you open an indexed
file, you can only access components sequentially according to the primary
key. If you specify ACCESS := KEYED when you open an indexed file, you can
access components sequentially according to any key.

When sequentially writing components to an indexed file, HP Pascal stores the
component according to the primary key. If your program uses secondary keys,
HP Pascal updates the secondary key pointers to include the newly stored
component.

9.3.2 Random Access
Random access allows you to access file components in an order that is not
dependent on the file organization or on the order in which the components
are stored. Random access is available for all relative and indexed files, and
for sequential files composed of fixed-length components (the fixed-length
components allow HP Pascal to count component positions in the sequential
file without having to worry about variations in the lengths of the components).

Input and Output Processing 9–15

HP Pascal supports the following types of random access:

• Random access by relative component number (direct access)

• Random access by key value (keyed access)

The following are the HP Pascal I/O routines that are used for random access:

Random access by relative component number:

DELETE EOF FIND LOCATE

UFB UNLOCK UPDATE

Random access by key:

EOF FINDK RESETK UFB

UNLOCK UPDATE

For More Information:

• On file organization (Section 9.1)

• On component format (Section 9.2)

9.3.2.1 Random Access by Relative Component Numbers (Direct Access)
HP Pascal supports random access by relative component numbers for relative
files and for sequential files with fixed-length components on disk. To access
the desired component, you need to specify the relative component number
of the corresponding cell; relative component numbers are relative to the
beginning of the file.

Figure 9–9 shows the process of randomly accessing cells in a file. For random
access of sequential files, the cells must be of a fixed length.

9–16 Input and Output Processing

Figure 9–9 Using Random Access on Sequential and Relative Files

2

1

User Program

1. Read sixth
 cell

2. Read second
 cell CEmpty

Empty
B

F
A

Start of File

1

2

ZK−1354A−GE

System software

9.3.2.2 Random Access to Indexed Files (Keyed Access)
HP Pascal supports random access to indexed files. To retrieve a component,
you must specify an index (primary index, first alternate index, second
alternate index, and so forth) and a key value. To store a component,
HP Pascal determines existing keys from the file organization and stores
the record (and alternate key information) according to information as it exists
in the data portion of the component.

Your program can use several methods to randomly access a record by key:

• Exact match of key values.

• Approximate match of key values. When accessing an index in ascending
sort order, HP Pascal returns the component that has the next higher key
value (in descending order, the component with next lower key value).

• Generic match of key values. Generic matching is applicable to string data-
type keys only (PACKED ARRAY OF CHAR record fields). For a generic
match, the program need specify only a match of some specified number of
leading characters in the key.

• Combination of approximate and generic match.

9.4 File Locking
Under some circumstances, if a file component is in the process of being read
or written to by one program, HP Pascal locks the component, preventing
other programs from accessing the component. This prevents programs from
accessing outdated or inaccurate data.

If you OPEN a file and specify that the file is not to be shared, or that reading
or writing sharing is allowed, HP Pascal may not lock the record.

Input and Output Processing 9–17

Record locking occurs most often when accessing relative and indexed files,
but it can happen when accessing sequential files as well. Successful calls to
FIND, FINDK, GET, RESET, and RESETK lock the current component. If
you want to make a locked file component available to other programs on the
system, you can call the UNLOCK procedure.

For More Information:

• On enabling other programs to access new files created with OPEN
(Section 9.8.12)

• On unlocking components (Section 9.8.23)

9.5 TEXT Files
Files of type TEXT are sequences of characters with special markers (end-of-
line and end-of-file) added to the file. Although each character of a TEXT file is
one file component, the end-of-line marker allows you to process the file line by
line (using READLN, WRITELN, or EOLN), if you choose.

The predeclared file variables INPUT, OUTPUT, and ERR are files of type
TEXT. They refer to the standard input, output, and error files. (When
executing programs at a terminal, INPUT, OUTPUT, and ERR default to the
terminal you are using.)

The file type FILE OF CHAR differs from TEXT files in that FILE OF CHAR
allows a single character to be the unit of transfer between a program and
its associated I/O devices, and that FILE OF CHAR files do not include
special markers. FILE OF CHAR components are always read with the
READ procedure, and must be read exclusively into variables of type CHAR,
including CHAR components of structured variables. You cannot use the
EOLN, READLN, and WRITELN routines on FILE OF CHAR files.

Default Information:

• A new file of type TEXT or FILE OF VARYING OF CHAR is a sequential
file with variable-length components.

• All TEXT file routines use the predefined files INPUT and OUTPUT by
default.

• HP Pascal performs an implicit call to RESET on the predeclared file
INPUT and an implicit call to REWRITE on the predeclared file OUTPUT.

• The default size for the output buffer is 255 characters for TEXT files.

The following are the HP Pascal I/O routines that are used only with TEXT
files: EOLN, LINELIMIT, PAGE, READLN, and WRITELN.

9–18 Input and Output Processing

9.5.1 Carriage Control
Some devices, such as printers and terminals, are carriage-control devices
and require characters to provide information regarding output. HP Pascal
supports the following carriage-control options:

OPEN Parameter
Option Description

LIST Single spacing between components. This is the default
carriage-control option for all TEXT files (including
OUTPUT) and VARYING OF CHAR files.

CARRIAGE, FORTRAN The first character of every output line is a carriage-control
character.

NONE, NOCARRIAGE No carriage control. This is the default for all files other
than TEXT and VARYING OF CHAR files.

For FORTRAN carriage control, if output is directed to devices that do not
use carriage-control characters, the character is written into the file as a
component and is read back when the file is opened for input. If output is
directed to devices that do use carriage control, then the OPEN parameter
options described previously determine the action taken by HP Pascal.

Table 9–5 summarizes carriage-control characters and their effects. For
purposes of carriage control, HP Pascal ignores any characters other than
those listed in the table.

Table 9–5 Carriage-Control Characters

Character Meaning

’+’ Overprinting: starts output at the beginning of the current line.

’ ’ Single spacing: starts output at the beginning of the next line.

’0’ Double spacing: skips a line before starting output.

’1’ Paging: starts output at the top of a new page.

’$’ Prompting: starts output at the beginning of the next line and
suppresses carriage return at the end of the line.

’’(0) Prompting with overprinting: suppresses line feed at the beginning
of the line and carriage return at the end of the line; note that this
character is the ASCII character NUL.

Input and Output Processing 9–19

9.5.2 Prompting on a Terminal
Normally, when you call the WRITE procedure to access a TEXT file connected
to a terminal, HP Pascal accumulates the characters in a line buffer until a
subsequent WRITELN procedure is executed. In effect, WRITELN generates
an end-of-line marker. When you complete a line or close a file, HP Pascal
writes a full line of characters to the specified TEXT file.

HP Pascal can manipulate partial lines in a TEXT file; however, when
characters are being written to a terminal output file opened with the LIST
carriage-control option (LIST is the default), partial lines are written to the
terminal before input is transferred from any terminal to the line buffer of a
TEXT file. In this situation, HP Pascal searches for all TEXT files opened for
output on terminals; it then writes to those files any partial lines contained in
the files’ respective line buffers. These partial lines, called prompts, appear on
the screen. You respond to a prompt by typing a line of input data terminated
by pressing Return.

Consider the following example:

WRITE(’Name three presidents:’);
READ(Pres1, Pres2, Pres3);

HP Pascal stores the string ’Name three presidents:’ in the output buffer;
when executing the READ procedure, HP Pascal locates the TEXT file opened
for output to the appropriate terminal and the partial output buffer is written,
causing the string ’Name three presidents:’ to appear on the terminal screen.
The user can then begin typing on the same line as the prompt, providing the
names of three presidents. Note that prompting works only for files associated
with interactive terminals. For any other files, HP Pascal does not write
output until you start the new line with a WRITELN procedure.

9.5.3 Delayed Device Access to Text Files
The Pascal standard requires that the file buffer always contain the next file
component that will be processed by the program. This definition can cause
problems when the input to the program depends on the output most recently
generated. To alleviate such problems in the processing of the TEXT files,
HP Pascal uses a technique called delayed device access, also known as
lazy lookahead.

As a result of delayed device access, HP Pascal does not retrieve an item of
data from a physical file device and does not insert it in the file buffer until the
program is ready to process it. HP Pascal fills the file buffer when the program
makes the next reference to the file. A reference to the file consists of any use
of the file buffer variable, including its implicit use in the GET, READ, and

9–20 Input and Output Processing

READLN procedures, or any test for the status of the file, namely, the EOF,
EOLN, STATUS, and UFB functions.

The RESET procedure, which is required when any TEXT file is opened for
input, initiates the process of delayed device access. (Note that RESET is done
automatically on the predeclared file INPUT.) RESET expects to fill the file
buffer with the first component of the file. However, because of delayed device
access, an item of data is not supplied from the input device to fill the file
buffer until the next reference to the file.

When writing a program for which the input will be supplied by a TEXT
file, you should be aware that delayed device access occurs. Because RESET
initiates delayed device access, and because EOF and EOLN cause the file
buffer to be filled, you should place the first prompt for input before any
tests for EOF or EOLN. The information you enter in response to the prompt
supplies data that is retained by the file device until you make another
reference to the input file.

Consider the following example:

VAR
i : INTEGER;
{In the executable section:}
WRITE(’Enter an integer or an empty line: ’);
WHILE NOT EOLN DO

BEGIN
READLN(i);
WRITELN(’The integer was: ’, i:1);
WRITE(’Enter an integer or an empty line: ’);
END;

WRITELN(’Done’);

The first reference to the file INPUT is the EOLN test in the WHILE
statement. When the test is performed, HP Pascal attempts to read a line
of input from the TEXT file. Therefore, it is very important to prompt for the
integer or empty line before testing for EOLN.

Suppose you respond to the first prompt by supplying an integer as input.
Access to the input device is delayed until the EOLN function makes the first
reference to the file INPUT. The EOLN function causes a line of text to be
read into the internal line buffer. The subsequent READLN procedure reads
the input value from the line of text and assigns it to the variable i. The
WRITELN procedure writes the input value to the text file OUTPUT. The final
statement in the WHILE loop is the request for another input value. The loop
terminates when EOLN detects the end-of-line marker.

Input and Output Processing 9–21

A sample run of a program containing this loop might be as follows:

Enter an integer or an empty line: 10
The integer was: 10
Enter an integer or an empty line: 99
The integer was: 99
Enter an integer or an empty line: Return

Done

The following program fragment shows a method of writing the same loop
that does not take into account delayed device access so it produces incorrect
results:

WHILE NOT EOLN DO
BEGIN
WRITE(’Enter an integer or an empty line: ’);
READLN(i);
WRITELN(’The integer was: ’, i:1);
END;

The EOLN test at the beginning of the loop causes the file buffer to be filled.
However, because no input has been supplied yet, the prompt does not appear
on the screen until you have supplied input to fill the INPUT file buffer.

A sample run of a program containing this loop might be as follows:

10
Enter an integer or an empty line: The integer was: 10
99
Enter an integer or an empty line: The integer was: 99

Return

The prompt always appears after you type a value for i.

Delayed device access can produce unexpected results if you try to use the
STATUS function to test the status of a TEXT file after you have performed
a READLN procedure on the file. Remember that a READLN procedure call
actually performs a READ procedure on each variable listed as a parameter,
then performs a READLN procedure to position the file at the beginning of the
next line. Therefore, a call to STATUS after a READLN procedure actually
tests whether the file was successfully positioned. To test the status of the file,
STATUS causes delayed device access to occur, which fills the file buffer with
the next component. If you want to test the successful reading of data from the
input file, read the data with the READ procedure, call the STATUS function,
and then perform a READLN procedure to advance the file to the beginning of
the next line.

9–22 Input and Output Processing

9.5.4 Writing Partial Lines to Terminals
The WRITE procedure buffers output to the terminal until the WRITELN
procedure is called. If too many characters are buffered, it can cause the
HP Pascal buffer to overflow. The default size for this buffer is 255 characters
for TEXT files. If you want to increase the internal buffer size, you can
explicitly open the predeclared file OUTPUT with a larger record length.
Consider the following example:

OPEN(OUTPUT, RECORD_LENGTH := 512);

If you want each record to go directly to the terminal without buffering until
the next WRITELN, you can explicitly open the predeclared file variable
OUTPUT without carriage control. In this mode, the WRITELN procedure
will write the information to the file without adding any carriage control.
However, you need to include the carriage return and the line-feed characters
in the output strings; the WRITELN procedure no longer provides these
automatically. Consider the following example:

CONST
LF = 10; {ASCII control characters}
CR = 13;
{In the executable section:}
OPEN(OUTPUT, CARRIAGE_CONTROL := NONE);
WRITELN(’’(LF)’Output this’);
WRITELN(’string directly’);
WRITELN(’to the terminal’(CR));

This is useful when you are writing escape sequences or other graphics
characters to terminal devices.

9.6 Formatting Output
The output values of a WRITE, WRITELN, or WRITEV procedure can be
compile-time or run-time expressions, with values of any ordinal, real, or
string type. Each value is written with a default field width, which specifies
the minimum number of characters to be written for the value. You can,
however, override the default as described in in Section 9.6.1, Section 9.6.2,
and Section 9.6.3. Table 9–6 lists the default field widths.

Input and Output Processing 9–23

Table 9–6 Default Field Widths

Type of Item Printed Number of Characters

INTEGER 10

UNSIGNED 10

INTEGER64 19

UNSIGNED64 20

CHAR 1

BOOLEAN 6

Enumerated Size of the longest identifier plus 1, up to 32

REAL 12

DOUBLE 20

QUADRUPLE 40

Character string Length of string

9.6.1 Specifying the Field Width
When you write any value, you can specify a field width to override the default.
The format is identical for the WRITE, WRITELN, and WRITEV procedures.
The formats are:

REAL format
output[[:minimum[[:fraction]]]]

INTEGER format
output[[:minimum [[:radix]]]]

String, Boolean, and enumeration format
output:minimum

output
The expression to be written, as you would write it without specifying the field
width.

minimum
A nonnegative integer expression for the minimum number of characters to
be written for the value. Pascal uses a greater field width if required by the
magnitude of the number to be printed.

fraction
The fraction, which is permitted only for values of real types, indicates the
number of digits to be written to the right of the decimal point.

9–24 Input and Output Processing

radix
The radix, which is permitted only for values of integer types, specifies the use
of a base notation other than decimal.

If you try to write a number is too large to fit in the field that you specify,
Pascal extends the field instead of removing digits and writing an incorrect
number. If you specify a field width that is larger than necessary, Pascal prints
blanks to the left of the number, right-justifying it.

If you try to write a value of an enumerated type, a Boolean value, a character,
or a string value in a field that is too narrow, the value is truncated on the
right. The truncated identifier is not checked for uniqueness.

9.6.2 Writing Real Numbers
By default, real numbers are written in exponential format. Regardless of the
real number’s type, output procedures always prefix the exponent with the
letter E. Each real number in exponential format is preceded by a blank or
a minus sign, and the value of the rightmost digit is rounded. Consider the
following example:

WRITELN(Shoe_Size);

If the value of Shoe_Size is 12.5, this procedure produces the following output:

1.25000E+01

To write the value in decimal format, you must specify a field width as in this
example:

WRITELN(Shoe_Size:5:1);

The first integer indicates that a minimum of five characters will be written.
The minimum includes the minus sign, if needed, and the decimal point.
The second integer specifies one digit to the right of the decimal point. The
resulting output is as follows:

12.5

If the field specified is wider than necessary, the value is written with leading
blanks.

If you try to write a real value in a field that is too narrow, the field width is
expanded to the minimum necessary to write the value.

Input and Output Processing 9–25

9.6.3 Explicitly Specifying the Base
To write integers in a base other than decimal, supply the second run-time
expression, which specifies the base, or radix.

integer-expression : fieldwidth : radix

radix
Any run-time integer expression with a value from 2 through 36 inclusive. If
you specify a base greater than 10, letters A through Z denote the extra digits.
For example, when you output in hexadecimal (base 16), the characters A
through F are the extra six digits.

If the integer-expression denotes a negative number, a leading minus sign is
printed and the absolute value of the expression is converted into the selected
radix.

9.6.4 Specifying the Base with Predeclared Conversion Functions
You can use the predeclared conversion functions BIN, DEC, UDEC, HEX, and
OCT in combination with the WRITE, WRITELN, and WRITEV procedures to
write binary, decimal, unsigned decimal, hexadecimal, and octal values. The
DEC and UDEC functions return values with leading zeros; by default, the
I/O routines use leading blank with decimal numbers, not leading zeros. The
syntax is:

WRITE([[file_variable,]]

�����
����

BIN
DEC
UDEC
HEX
OCT

����	
���

(expression[[, length[[, digits]]]]) ,...)

The predeclared conversion functions convert the value of the first expression
in the list to its equivalent as a binary, decimal, unsigned decimal,
hexadecimal, or octal number. The resulting digits are returned in a VARYING
OF CHAR string.

For every expression whose binary, decimal, unsigned decimal, hexadecimal,
or octal value you wish to write, you must call the appropriate conversion
function separately with an actual parameter list. You can call more than one
conversion function in the same output procedure call. You can write variables
of any type (including pointers) to text files in binary, decimal, unsigned
decimal, hexadecimal, or octal notation.

9–26 Input and Output Processing

You can specify field widths with the conversion functions; however, the results
are not likely to be what you expect. For example, if you want to convert the
value of i to its hexadecimal equivalent and you want the converted value
to be written in a field three characters wide, you might write the following
procedure call:

WRITELN(HEX(i):3);

However, because the converted value is longer than the field width
specification, the value is truncated on the right rather than on the left.
Therefore, the output generated by this procedure would be as follows:

00

Be careful about specifying field widths with BIN, DEC, UDEC, HEX, and OCT
when the converted value could exceed the field width given.

Consider the following example:

WRITE(HEX(Payroll, 10), HEX(Salary, 12));

The values of the variables Payroll and Salary are converted to their
hexadecimal equivalents. Payroll is printed with 10 characters and Salary
is printed with 12 characters. The output values, preceded by two initial
blanks, could look like this:

000031F2 000058AB

Consider the following example:

WRITELN(OCT(Social_Security, 14), BIN(Survey, 8));

The value of the variable Social_Security is converted to its octal equivalent
and printed with 14 characters. The value of the variable Survey is then
converted to its binary equivalent and printed with eight characters. A sample
line of output, preceded by three blanks, could look like this:

0271137762500101110

Consider the following example:

WRITEV(Final_Balance, OCT(Debits, 16), OCT(Credits, 16));

Input and Output Processing 9–27

The values of the variables Debits and Credits are converted to their
octal equivalents and written to the string variable Final_Balance with
16 characters each. The output string, preceded by five blanks, could look like
this:

’ 77777770342 00000033766’

9.6.5 Writing Nonnumeric Types
For an expression of an enumerated type, the constant identifier denoting the
expression’s value is written. Consider the following example:

VAR
Color : (Blue, Yellow, Black, Fire_Engine_Green);
{In the executable section:}
WRITE(’My favorite color is ’, Color:15);

When the value of Color is Yellow, the following is written:

My favorite color is YELLOW

When the value of Color is Fire_Engine_Green, the following appears:

My favorite color is FIRE_ENGINE_GRE

Because the field width specified in these cases is not wide enough for all 17
characters in the identifier, the identifier is truncated after the field is filled.

For More Information:

• On the WRITE procedure (Section 9.8.25)

• On the WRITELN procedure (Section 9.8.26)

• On the WRITEV procedure (Section 8.109)

• On the BIN function (Section 8.11)

• On the DEC function (Section 8.26)

• On the UDEC function (Section 8.95)

• On the HEX function (Section 8.41)

• On the OCT function (Section 8.62)

9–28 Input and Output Processing

9.7 Error-Processing Parameter
For I/O procedures, the last parameter (which is optional) specifies the action
to be taken should the procedure fail to execute successfully. You must use
nonpositional syntax in order to pass the error-recovery parameter to the
called procedure. This parameter is called ERROR and can accept two values:
CONTINUE and MESSAGE.

If you specify ERROR := CONTINUE, the program continues to execute
regardless of any error conditions encountered during execution of the
procedure. If you specify this value, you should use the STATUS function to be
certain that the I/O routine worked as expected.

If you specify ERROR := MESSAGE and if an error occurs, HP Pascal
generates an appropriate error message and program execution stops. By
default, HP Pascal displays an error message and program execution stops
after the first error in an I/O operation.

You cannot use the error-recovery parameter with the I/O functions EOF, UFB,
and EOLN, nor with any reference to the file buffer.

9.8 I/O Routines
HP Pascal provides predeclared procedures and functions to perform input and
output operations on file variables. These routines may operate differently
depending on a file’s organization and the currently defined access method.

The I/O routines in the following sections appear in alphabetical order.

At any time during the execution of a process, a file variable is considered to be
in one of three modes: inspection, generation, or undefined. When a file is
reading input, it is in inspection mode. When output is being written to a file,
the file is in generation mode. A file in an undefined state of processing is in
undefined mode. The mode often determines the valid operations for the file.

Table 9–7 shows the mode required before execution of each I/O routine and
shows the mode in which the file is left after each routine has executed.

Input and Output Processing 9–29

Table 9–7 File Mode During I/O Processing

I/O Routine
Mode Before
Execution

Mode After
Execution I/O Routine

Mode Before
Execution

Mode After
Execution

CLOSE Any Undefined READ Inspection Inspection

DELETE Inspection Inspection READLN Inspection Inspection

EOF Inspection or
generation

No change RESET Any Inspection

EOLN Inspection Inspection RESETK Any Inspection

EXTEND Any Generation REWRITE Any Generation

FIND Any Inspection if
successful;
undefined if
unsuccessful

STATUS Any No change,
unless error

FINDK Any Inspection
if successful;
undefined
if unsuccessful

TRUNCATE Inspection Generation

GET Inspection Inspection UFB Any No change

LINELIMIT Any No change UNLOCK Inspection Inspection

LOCATE Any Generation UPDATE Inspection Inspection

OPEN Undefined Undefined WRITE Generation,
unless keyed
access, which
may be any
mode

Generation

PAGE Generation No change WRITELN Generation Generation

PUT Generation Generation

9–30 Input and Output Processing

9.8.1 CLOSE Procedure
The CLOSE procedure closes an open file. You can use either positional or
nonpositional syntax in the call.

1. CLOSE (file_variable
,[[disposition]]
,[[user_action]]
,[[ERROR := error_recovery]])

2. CLOSE (FILE_VARIABLE := file_variable
[[,DISPOSITION := disposition]]
[[,USER_ACTION := user_action]]
[[,ERROR := error_recovery]] ...)

file_variable
no default
The name of the file variable associated with the file that HP Pascal is to close.

disposition
same as for OPEN procedure
A value that determines what HP Pascal is to do with the file after closing it.
The disposition values are the same as those used for the OPEN procedure.
The disposition value in the CLOSE procedure supersedes a disposition value
specified in the OPEN procedure.

user_action
no default
A routine name that HP Pascal calls to close the file. You can use a user-action
routine to close the file using environment-specific capabilities.

error_recovery
stops execution after first error (default)
The action to be taken if an error occurs during execution of the routine.

Execution of the CLOSE procedure causes the system to close the file and, if
the file is internal, to delete it. Each file is automatically closed when control
passes from the block in which it is declared.

You cannot close a file that has not been opened (either explicitly by the OPEN
procedure, or implicitly by the EXTEND, RESET, or REWRITE procedure). If
you try to close a file that was never opened, an error occurs.

Input and Output Processing 9–31

The file can be in any mode (inspection, generation, or undefined) before the
CLOSE procedure is called. Execution of CLOSE sets the mode to undefined.

For More Information:

• On positional and nonpositional syntax (Section 6.3.8)

• On the OPEN procedure and parameters (Section 9.8.12)

• On the error-processing parameter (Section 9.7)

9.8.2 DELETE Procedure
The DELETE procedure deletes the current file component. DELETE can
be used only on files with relative or indexed organization that have been
opened for direct or keyed access; it cannot be used on files with sequential
organization.

DELETE(file_variable[[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the file from which a component
is to be deleted.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before DELETE is called; the mode does
not change after the procedure’s execution.

When the DELETE procedure is called, the current component, as indicated by
the file buffer, must already have been locked by a successful FIND, FINDK,
GET, RESET, or RESETK procedure before it can be deleted. After deletion,
the component is unlocked and the UFB function returns TRUE.

Consider the following example:

DELETE(Accounts_Payable);

This procedure call deletes the current component. When the component has
been deleted, it is unlocked and UFB(Accounts_Payable) returns TRUE. A
run-time error occurs if the current component of Accounts_Payable is not
locked.

9–32 Input and Output Processing

For More Information:

• On file organizations (Section 9.1)

• On component access (Section 9.3)

• On the UFB function (Section 9.8.22)

• On the error-processing parameter (Section 9.7)

9.8.3 EOF Function
The EOF function indicates whether the file pointer is positioned after the last
component in a file by returning a Boolean value.

EOF[[(file_variable)]]

file_variable
The name of the file variable associated with the input file. If you omit the
name of the file, the default is INPUT.

The file can be in either inspection or generation mode before EOF is called;
however, end-of-file must be defined. The input operations GET, RESET, and
FINDK are guaranteed to leave end-of-file defined. The file mode does not
change after EOF has been executed.

EOF returns TRUE when the file pointer is positioned after the last component
in the file, and returns FALSE up to and including the time when the last
component of the input file is read into the file buffer. You must try to retrieve
another file component after the last to determine whether the file is positioned
at end-of-file.

When EOF is tested for a file with relative organization opened for direct
access, the result is TRUE if the file is in inspection mode and the last GET or
RESET operation positioned the file beyond the last existing component. If the
file is in generation or undefined mode, the result of EOF is undefined.

When EOF is tested for a file with indexed organization opened for keyed
access, the result is TRUE if the file is in inspection mode and the last
FINDK, GET, RESET, or RESETK operation positioned the file beyond the
last component with the current key number. Successful attempts at FINDK,
GET, RESET, and RESETK cause EOF to be FALSE. If the file is not in
inspection mode, EOF is undefined.

If you try to read a file after EOF becomes TRUE, an error results.

Input and Output Processing 9–33

Consider the following example:

Coupons := 0;
WHILE NOT EOF DO

BEGIN
READLN(Coupon_Amount);
Coupons := Coupons + Coupon_Amount;
END;

This example calculates the total value of the coupons contained in the file
INPUT. The loop is performed while the EOF function returns FALSE.

For More Information:

• On component access (Section 9.3)

• On the error-processing parameter (Section 9.7)

• On retrieval of file components (Section 9.5.3)

9.8.4 EOLN Function
The EOLN function tests for the end-of-line marker within a text file and
returns a Boolean value.

EOLN [[(file_variable)]]

file_variable
The name of a file variable associated with a text file. If you omit the name of
the file, the default is INPUT.

The file must be in inspection mode and EOF must return FALSE before EOLN
is called. EOLN leaves the file in inspection mode.

The Boolean EOLN function returns TRUE when the file pointer is positioned
after the last character in a line. When the EOLN function returns TRUE, the
file buffer contains a blank character.

The EOLN function returns FALSE when the last component in the line is
read into the file buffer. Another character must be read to cause EOLN to
return TRUE and to cause the file buffer to be positioned at the end-of-line
marker following the last character of the line. If you use the EOLN function
on a nontext file, an error occurs.

9–34 Input and Output Processing

Consider the following example:

WHILE NOT EOF(Master_File) DO
BEGIN
WHILE NOT EOLN(Master_File) DO

BEGIN
READ(Master_File, x);
IF NOT (x IN [’A’..’Z’,’a’..’z’,’0’..’9’])
THEN

Err := Err + 1;
END;

READLN(Master_File);
END;

This example scans the characters on each line of a TEXT file called Master_
File and checks for characters that are neither digits nor letters. If a
nonnumeric or nonalphabetic character is encountered in the file, the counter
Err is incremented by 1. The loop is executed until the last component in the
file is read.

For More Information:
On TEXT files (Section 9.5)

9.8.5 EXTEND Procedure
The EXTEND procedure opens an existing file, positions the file buffer after
the last component, and prepares it for writing. It is commonly used to append
to a file.

EXTEND(file_variable [[, file_name]] [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the output file.

file_name
String expression for the file name to be associated with the file_variable. If
the file is already open, an error is signaled.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before EXTEND is called to set the mode to
generation. If the file is an external file and is not already open, EXTEND
opens it using the defaults for the OPEN procedure.

After execution of EXTEND, the file is positioned after the last component
and EOF and UFB return TRUE. If the file does not exist, EXTEND does not
create it but returns an error at run time.

Input and Output Processing 9–35

A call to EXTEND on a relative file opened for direct access positions the file
after its last existing component.

A call to EXTEND on an indexed file opened for random access by key positions
the file after the last component relative to the primary key.

Consider the following example:

VAR
f : FILE OF INTEGER;

{In the executable section:}
OPEN(File_Variable := f,

File_Name := ’sample.dat’,
History := OLD,
Organization := Relative,
Access_Method := Direct;);

EXTEND(f);
F^ := 20;
PUT(f);

These statements open an existing relative file named sample.dat. The file
will be positioned after the last record in the file. Subsequent PUT statements
will append new components to the end of the file.

For More Information:

• On component access (Section 9.3)

• On default values for the OPEN procedure (Section 9.8.12)

• On the error-processing parameter (Section 9.7)

9.8.6 FIND Procedure
The FIND procedure positions a file at a specified component. The file must be
open for direct access and must contain fixed-length components.

FIND(file_variable, component-number [[, ERROR := error-recovery]]);

file_variable
The name of a file variable associated with a file that is open for direct access.

component-number
A positive integer expression that indicates the component at which the file is
to be positioned. If the component number is zero or negative, a run-time error
occurs.

9–36 Input and Output Processing

error-recovery
The action to be taken if an error occurs during execution of the routine.

The FIND procedure allows direct access to the components of a file. You can
use the FIND procedure to move forward or backward in a file.

After execution of the FIND procedure, the file is positioned at the specified
component. The file buffer variable assumes the value of the component, and
the file mode is set to inspection. If the file has relative organization, the
current file component is locked. If there is no file component at the selected
position, the file buffer is undefined (UFB becomes TRUE) and the mode
becomes undefined. After any call to FIND, the value of EOF is undefined.

You can use the FIND procedure only when reading a file that was opened by
the OPEN procedure. If the file is open because of a default open (that is, with
EXTEND, RESET, or REWRITE), a call to FIND results in a run-time error
because the default access method is sequential.

Consider the following example:

FIND(Albums, Current + 2);

If the value of Current is 6, this procedure causes the file position to move to
the eighth component; the file buffer variable Albums^ assumes the value of
the component. If no eighth component exists, Albums^ is undefined and UFB
(Albums) returns TRUE.

For More Information:

• On component access (Section 9.3)

• On the UFB function (Section 9.8.22)

• On the error-processing parameter (Section 9.7)

9.8.7 FINDK Procedure
The FINDK procedure searches the index of an indexed file opened for keyed
access and locates a specific component.

FINDK(file_variable, key-number, key-value[[, match-type]]
[[, ERROR := error-recovery]]);

Input and Output Processing 9–37

file_variable
The name of the file variable associated with the file to be searched.

key-number
A positive integer expression that indicates the key position.

key-value
An expression that indicates the key to be found; it must be assignment
compatible with the key field in the specified key position.

match-type
An identifier that indicates the relationship between the key value in the
FINDK procedure call and the key value of a component.

error-recovery
The action to be taken if an error occurs during execution of the routine.

When you establish key fields with the KEY attribute, you assign each one a
key number from 0 to 254. Key number 0 represents the mandatory primary
key of the file. Separate indexes are built for each key number in the file.

The key value and the match type provide information about the key to be
found. The key value must be assignment compatible with the key fields of
the key number being searched. The match type must be one of the following
identifiers:

• EQL—equal to the key value

• NXT—the next key in the collating sequence after the key value

• NXTEQL—the next or equal key in the collating sequence after the key
value

If the FINDK procedure was used on an ascending collating sequence, NXT
and NXTEQL would be equivalent to GTR and GEQ. If a descending collating
sequence was used, it would be the same as LSS and LEQ. The match type is
optional; if omitted, it defaults to EQL.

The FINDK procedure can be called for any indexed file opened for keyed
access, regardless of the file’s mode. If the component described exists, the
file buffer is filled with that component; UFB and EOF both become FALSE.
The mode is set to inspection and the component is automatically locked. If no
component is found to match the description, UFB becomes TRUE and EOF is
undefined. The mode is set to undefined.

9–38 Input and Output Processing

Consider the following example:

FINDK(Book_Index, 1, 35, NXTEQL);

Assuming key number 1 is ascending, this procedure searches the index for key
number 1 in the file Book_Index until it finds the first component whose key
value is greater than or equal to 35. If the component matching the description
in the FINDK statement is found, UFB(Book_Index) and EOF(Book_Index)
return FALSE, and the component is locked. If the component cannot be found,
UFB(Book_Index) returns TRUE, and EOF(Book_Index) is undefined. Book_
Index must be an indexed file opened for keyed access.

For More Information:

• On indexed files (Section 9.1.3)

• On random access by key (Section 9.3.2)

• On the UFB function (Section 9.8.22)

• On the error-processing parameter (Section 9.7)

9.8.8 GET Procedure
The GET procedure advances the file position and reads the next component
of the file into the file buffer variable. If the file has relative or indexed
organization, the component is also locked to prevent access by other processes.

GET(file_variable [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the input file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

Before the GET procedure is used for the first time to read one or more file
components, the file must be in inspection mode and prepared for reading
input. Depending on the access method specified when the file was opened, you
can prepare the file for input in the following ways:

• If the file is open for sequential access, call the RESET procedure.
RESET sets the mode to inspection, advances the file position to the
first component, and assigns the component’s value to the file buffer
variable.

• If the file is open for direct access, call either the RESET or the FIND
procedure to position the file.

Input and Output Processing 9–39

• If the file is open for keyed access, call the FINDK, RESET, or RESETK
procedure to position the file.

As a result of the GET procedure, the file remains in inspection mode, and the
file position advances to the next component. If a component is found other
than the end-of-file marker, the component is locked, EOF is set to FALSE,
the file buffer variable takes on the value of the component, and UFB is set
to FALSE. If a component is not found or the end of the file is reached, EOF
and UFB are set to TRUE. If the GET procedure fails, UFB is set to TRUE
and EOF becomes undefined. The following example shows the use of the GET
procedure:

RESET(Books);
New_Rec := Books^;
GET(Books);

After execution of the RESET procedure, the value of the file buffer variable
Books^ is equal to the value of the first component of the file. The assignment
statement assigns this value to the variable New_Rec. The GET procedure
then assigns the value of the second component to Books^, advancing the file
position to the second component. Another GET procedure advances the file
position to the Third component. Figure 9–10 shows this sequence of events.

9–40 Input and Output Processing

Figure 9–10 File Position After GET Procedure

RESET
(Books)

RESET
(Books)

Beginning
of File

Beginning
of File

EOF

EOFEOF

GET
(Books)

GET
(Books)

GET
(Books)

ZK−0103−GE

By using the GET procedure repeatedly, you can read sequentially through
a file. When called for a file with relative organization, GET skips any
nonexistent components to find the next component.

When you reach the end of the file and EOF returns TRUE, a GET procedure
results in a run-time error.

Consider the following example:

GET(Phones);

This example reads the next component of the file Phones into the file buffer
variable Phones^. Prior to executing GET, the value of EOF (Phones) must be
FALSE; if it is TRUE, an error occurs.

For More Information:

• On component access (Section 9.3)

• On the UFB function (Section 9.8.22)

• On the error-processing parameter (Section 9.7)

Input and Output Processing 9–41

9.8.9 LINELIMIT Procedure
The LINELIMIT procedure stops execution of the program after a specified
number of lines has been written into a TEXT file.

LINELIMIT(file_variable, n [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the TEXT file to which this limit
applies.

n
A positive integer expression that indicates the number of lines that can be
written to the file before execution terminates.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before LINELIMIT is called; the file mode does not
change after LINELIMIT has been executed.

HP Pascal first uses environment-specific means to determine if there is a
default line limit. If there is no environment-specific default, there is no
default line limit. You can use a call to LINELIMIT to override the default.

After the number of lines written into the file has reached the line limit,
program execution terminates unless the WRITELN procedure that exceeded
the line limit includes the ERROR := CONTINUE parameter.

Consider the following example:

LINELIMIT(Debts, 100);

Execution of the program terminates after 100 lines have been written into the
text file Debts.

HP Pascal determines the default line limit by translating an environment
variable or logical name as a string of decimal digits. If the environment
variable or logical name has not been defined, there is no default line limit.
You can override the default by calling the LINELIMIT procedure.

For More Information:

• On TEXT files (Section 9.5)

• On the error-processing parameter (Section 9.7)

9–42 Input and Output Processing

9.8.10 LOCATE Procedure
The LOCATE procedure positions a random-access file at a particular
component so that the next PUT procedure can modify that component.

LOCATE(file_variable, component-number [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the file to be positioned.

component-number
A positive integer expression that indicates the relative component number of
the component to be found.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before LOCATE is called. The mode is set to
generation after the procedure’s execution.

The LOCATE procedure positions the file so that the next PUT procedure
writes the contents of the file buffer into the selected component. After
LOCATE has been performed, UFB returns TRUE and EOF is undefined.
Because the LOCATE procedure does not perform an I/O operation, the value
returned by the STATUS procedure is unaffected by LOCATE.

Consider the following example:

LOCATE(Accounts_Receivable, 63);
Accounts_Receivable^ := Next_Account;
PUT(Accounts_Receivable);

The LOCATE procedure positions the file Accounts_Receivable before relative
component number 63. The call UFB(Accounts_Receivable) now returns
TRUE and EOF(Accounts_Receivable) is undefined. The assignment
statement loads the file buffer with the contents of file position 63. The
PUT operation writes the file buffer into file component number 63.
UFB(Accounts_Receivable) remains TRUE.

For More Information:

• On relative files (Section 9.1.2)

• On random access by relative component number (Section 9.3.2)

• On the UFB function (Section 9.8.22)

Input and Output Processing 9–43

• On the error-processing parameter (Section 9.7)

9.8.11 MESSAGE Procedure
The MESSAGE routine takes a list of expressions and writes them to the
standard error file, ERR. By default, the standard error file is bound to
standard error. The MESSAGE routine has the same result as WRITELN
without a file_variable argument.

MESSAGE(expression,...)

For More Information:

• On text files and standard input and output (Section 9.5)

9.8.12 OPEN Procedure
The OPEN procedure opens a file and allows you to specify file characteristics
using either positional or nonpositional syntax.

1. OPEN(file_variable
,[[file_name]]
,[[history]]
,[[record_length]]
,[[access_method]]
,[[record_type]]
,[[carriage_control]]
,[[organization]]
,[[disposition]]
,[[file_sharing]]
,[[user_action]]
,[[default_file_name]]
,[[ERROR := error_recovery]])

2. OPEN(FILE_VARIABLE := file_variable
[[,FILE_NAME := file_name]]
[[,HISTORY := history]]
[[,RECORD_LENGTH := record_length]]
[[,ACCESS_METHOD := access_method]]
[[,RECORD_TYPE := record_type]]
[[,CARRIAGE_CONTROL := carriage_control]]
[[,ORGANIZATION := organization]]
[[,DISPOSITION := disposition]]
[[,SHARING := file_sharing]]
[[,USER_ACTION := user_action]]
[[,DEFAULT := default_file_name]]

9–44 Input and Output Processing

[[,ERROR := error_recovery]] ...)

file_variable
no default
The name of the file variable associated with the file that HP Pascal is to open.

file_name
environment specific (default)
A character-string expression containing the external file name. HP Pascal
determines the default file name according to the environment in which you
are programming.

history
NEW (default for OPEN/REWRITE openings)
OLD (default for EXTEND/RESET openings)
A value that indicates whether the file exists or if HP Pascal must create the
file. If you specify OLD and if HP Pascal cannot find the file, an error occurs.

Other values are READONLY and UNKNOWN. If you specify READONLY, you
can only read from the file; if you attempt to write to the file, an error occurs.
If you specify UNKNOWN, HP Pascal looks for an existing file but creates a
new file if an existing file does not exist. If you specify OLD or UNKNOWN
and if the attempt to open the file generates a file protection error, HP Pascal
tries again using READONLY.

record_length
255 bytes (default for TEXT and FILE OF VARYING)
ignored (default for other file types)
A positive integer that specifies the maximum size in bytes for a line in a
TEXT file or a file of type FILE OF VARYING. (Record length is equivalent
to component length.) The default is 255 bytes. For all other types of files,
HP Pascal ignores this parameter.

If you do not specify a length for an existing file, HP Pascal uses the length
specified at the file’s creation.

If you use OPEN to create a sequentially organized file with variable-length
components, HP Pascal records the maximum length of each component in the
file only if you specify a value for the record_type field.

access_method
SEQUENTIAL (default)
A value that specifies the component access method to use. The possible values
include SEQUENTIAL, DIRECT, and KEYED. The DIRECT access method

Input and Output Processing 9–45

is equivalent to random access by relative component number. The KEYED
access method is equivalent to random access by key.

record_type
VARIABLE (default for new TEXT and VARYING OF CHAR
FIXED (default for other new files)
A value that indicates the component format. (Record format and component
format are equivalent.) The available values are FIXED (fixed-length
components), VARIABLE (variable-length components), STREAM (stream
component format with either carriage return, combination carriage return and
line feed, or form-feed delimiters), STREAM_CR (stream component format
with carriage-return delimiters), and STREAM_LF (stream component format
with line-feed delimiters).

carriage_control
LIST (default for TEXT and VARYING OF CHAR files)
NONE (default for all other file types)
A value that indicates the carriage-control format for the file. The value LIST
indicates single spacing between components. The values CARRIAGE and
FORTRAN are equivalent and indicate that the first character of every output
line is a carriage-control character. The values NONE and NOCARRIAGE
indicate that the file has no carriage control.

organization
SEQUENTIAL (default for new files)
A value that specifies the file organization. If you are accessing an existing file,
the specified organization must match the organization of the existing file; if it
does not, an error occurs. The choices for this parameter are SEQUENTIAL,
RELATIVE, and INDEXED.

disposition
SAVE (default for external files)
DELETE (default for internal files)
A value that indicates what HP Pascal should do with the file after you close
the file. The dispositions are as follows:

9–46 Input and Output Processing

Disposition Description

SAVE HP Pascal retains the file.

DELETE HP Pascal deletes the file.

PRINT HP Pascal prints the file on a line printer and
retains the file.

PRINT_DELETE HP Pascal prints the file on a line printer and then
deletes the file.

SUBMIT HP Pascal submits to a queue or places the print
job in a background process and retains the file.

SUBMIT_DELETE HP Pascal submits to a queue or places the print
job in a background process and deletes the file.

file_sharing
READONLY (default for HISTORY := READONLY)
NONE (default for other histories)
A value that specifies whether another program can access the file while it is
open. A value of READONLY indicates that other programs can read but not
write to the file. A value of READWRITE indicates that a program can both
read and write to the file while it is open. A value of NONE indicates that a
program cannot read or write from the open file.

default_file_name
no default
A string expression containing default file specification information. For
instance, you can use this value to set a default directory specification.

user_action
no default
A name of a user-written routine that HP Pascal calls to open the file (instead
of allowing HP Pascal to open the file with the OPEN procedure). You can use
a user-action routine to open the file using environment-specific capabilities of
the I/O system underlying HP Pascal.

error_recovery
stops execution after first error (default)
The action to be taken if an error occurs during execution of the routine.

Input and Output Processing 9–47

Using the OPEN procedure:
Before the OPEN procedure is called, the file is in undefined mode; its mode
does not change after OPEN has been executed.

You cannot use OPEN on a file variable that is already open.

If you use INPUT or OUTPUT, HP Pascal implicitly opens them just
before their first use. HP Pascal implicitly opens INPUT with a history of
READONLY. If you choose, you can explicitly open INPUT or OUTPUT. To do
this, call the OPEN procedure at any point in your compilation unit before you
use the first I/O routine on that file.

Because the RESET, REWRITE, and EXTEND procedures implicitly open
files, you need not always use the OPEN procedure. RESET, REWRITE, and
EXTEND impose the same defaults as OPEN, except where noted (in the
HISTORY parameter).

You must use the OPEN procedure to do the following:

• Create a TEXT file with fixed-length components

• Create a file with relative or indexed organization

• Open a file for direct or keyed access

• Specify a line length other than the default for a line in a TEXT file

Consider the following example:

PROGRAM Main(User_Guide);
VAR
User_Guide : TEXT;
{In the executable section:}
OPEN(User_Guide);

When the OPEN procedure is executed, the system first attempts to find
an environment-specific translation for User_Guide. If no such translation
happens, the file USER_GUIDE.DAT is created in the default device and
directory on the local computer.

If User_Guide had not been specified as an external file in the program header,
the OPEN procedure would have created an internal file. By default, the file is
created with a record length of 255 bytes and components of variable length.
The system then opens the file for sequential access.

9–48 Input and Output Processing

Consider the following example:

OPEN(Journal_Accounts,
’JOURNAL.DAT’,
HISTORY := UNKNOWN,
ACCESS_METHOD := KEYED,
ORGANIZATION := INDEXED);

If the file JOURNAL.DAT already exists, this procedure opens it; otherwise,
HP Pascal creates a new file named JOURNAL.DAT with the specified
characteristics. If the file does exist, it must have the same characteristics
as those in the parameter list of the OPEN procedure. HP Pascal opens the file
with indexed organization for keyed access.

For More Information:

• On positional and nonpositional syntax (Section 6.3.8)

• On file organizations (Section 9.1)

• On component format (Section 9.2)

• On component access (Section 9.3)

• On carriage control (Section 9.5.1)

• On the error-processing parameter (Section 9.7)

9.8.13 PAGE Procedure
The PAGE procedure skips from the current page to the next page of a TEXT
file.

PAGE(file_variable [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with a TEXT file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in generation mode before the PAGE procedure is called; the
mode does not change as a result of the procedure’s execution.

Execution of the PAGE procedure clears the record buffer, if it contains data,
by performing a WRITELN procedure, and then advances the output to a new
page of the specified TEXT file. The next component written to the file begins
on the first line of a new page. You can use this procedure only on TEXT files.
If you specify a file of any other type, an error occurs.

Input and Output Processing 9–49

The value of the page eject component that is output to the file depends on
the carriage-control format for that file. When CARRIAGE or FORTRAN is
enabled, the page eject record is equivalent to the carriage-control character
’1’. When LIST, NOCARRIAGE, or NONE is enabled, the page eject record is
a single form feed character.

Consider the following example:

PAGE(User_Guide);

This PAGE procedure causes a page eject record to be written in the text file
User_Guide.

For More Information:

• On TEXT files (Section 9.5)

• On the error-processing parameter (Section 9.7)

9.8.14 PUT Procedure
The PUT procedure adds a new component to a file.

PUT(file_variable [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the output file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

Before executing the first PUT procedure on a file opened for sequential access,
you must execute an EXTEND, REWRITE, or TRUNCATE procedure to set
the file to generation mode. EXTEND, REWRITE, and TRUNCATE set EOF
to TRUE, thus preparing the file for output. ((TRUNCATE is legal only on
files with sequential organization.)) If the file has indexed organization, the
components to be written must be ordered by the primary key.

Before executing the first PUT statement on a file opened for direct access, you
must execute an EXTEND, REWRITE, or LOCATE procedure to position the
file.

The PUT procedure writes the value of the file buffer variable at the end of
the specified sequential-file or direct-access file. You can use LOCATE to
position a direct-access file and then use PUT to write the value of the file
buffer variable at that position. After execution of the PUT procedure, the
value of the file buffer variable becomes undefined (UFB returns TRUE). EOF
remains TRUE and the file remains in generation mode.

9–50 Input and Output Processing

You can call the PUT procedure for a keyed-access file, regardless of the file’s
mode (inspection, generation, or undefined). PUT causes the file buffer variable
to be written to the file at the position indicated by the key. If the component
has more than one key, the file buffer variable is inserted in each index at
the appropriate location. After execution of PUT, a keyed-access file is in
generation mode.

Consider the following example:

PROGRAM Book_File(INPUT, OUTPUT, Books);
TYPE

My_String = PACKED ARRAY[1..40] OF CHAR;
Book_Rec = RECORD

Author : My_String;
Title : My_String;
END;

VAR
New_Book : Book_Rec;
Books : FILE OF Book_Rec;
n : INTEGER;

{In the executable section:}
REWRITE(Books);
FOR n := 1 TO 10 DO

BEGIN
WITH New_Book DO

BEGIN
WRITE(’Title:’);
READLN(Title);
WRITE(’Author:’);
READLN(Author);
END;

Books^ := New_Book;
PUT(Books);
END;

CLOSE(Books);

This program writes the first 10 components read from the terminal into the
file Books. The component data items are typed at the terminal and assigned
to the record variable New_Book. They consist of two 40-character strings
denoting a book’s author and title. The FOR loop accepts 10 values for New_
Book, assigning each new record to the file buffer variable Books^. The PUT
statement writes the value of Books^ into the file for each input record.

For More Information:

• On component access (Section 9.3)

• On the UFB function (Section 9.8.22)

• On the error-processing parameter (Section 9.7)

Input and Output Processing 9–51

9.8.15 READ Procedure
The READ procedure reads one or more file components into a variable.

READ([[file_variable,]] {variable-identifier [[:radix-specifier]]},...
[[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the input file. If you omit the
name of the file, the default is INPUT.

variable-identifier
The name of the variable into which a file component will be read; multiple
identifiers must be separated with commas.

radix-specifier
One of the format values BIN, OCT, or HEX. These values, when used on a
variable identifier, will read the variable in binary, octal, or hexadecimal radix
respectively. You can use a radix specifier only when reading from a TEXT file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before READ is called. The file remains in
inspection mode after execution of a READ procedure.

The READ procedure for a nontext file performs an assignment statement, a
GET procedure, and an UNLOCKprocedure for each variable.

Consider the following example:

{This call to READ...}
READ(file_variable, variable-identifier);

{...is equivalent to the following code:}
variable-identifier := file_variable^;
GET(file_variable);
UNLOCK(file_variable);

The READ procedure reads from the file until it has found a value for each
variable in the list. The first value read is assigned to the first variable in the
list, the second value read is assigned to the second variable, and so on. The
values and the variables must be of assignment-compatible types. Reading
stops if an error occurs.

9–52 Input and Output Processing

For a TEXT file, more than one component (character) can be read into a single
variable. For example, many characters can be read into a string or converted
into a numeric variable. The READ procedure repeats the assignment, GET,
and UNLOCK process until it has read a sequence of characters that represent
a legal value for the next variable in the parameter list. The procedure
continues to read components from the file until it has assigned a value to
each variable in the list.

After the last character has been read from a line of a TEXT file, EOLN returns
TRUE and the file buffer variable contains a space. Unless you are reading
into a character or string variable, a call to READ at this point skips over the
end-of-line marker and positions the file at the beginning of the next line. If
you are reading into a variable of type CHAR when EOLN returns TRUE, the
space is read and assigned to the variable, and the file position advances. If
you are reading into a string variable when EOLN becomes TRUE, the file
position does not change. In the latter case, you should use the READLN
procedure to advance the file position past the end-of-line marker.

Values from a TEXT file can be read into variables of integer, real, Boolean,
character, string, and enumerated types. TEXT file values to be read into
integer, real, Boolean, and enumerated variables can be preceded in the file
by any number of spaces, tabs, and end-of-line markers. Values to be read into
character variables, however, must not be separated because they are read and
assigned character by character.

In a TEXT file, when HP Pascal encounters a character that forms an object of
a data type that does not match the data type of the parameter, reading stops.
Consider the following example:

VAR
i : INTEGER;

{In the executable section:}
READ(i);

If the object in the input file is 123ABC, the read stops at the character ’A’, and
i contains the value 123.

When reading constant identifiers of an enumerated type from a TEXT file,
HP Pascal reads all characters in the identifier, but recognizes only the first
31 characters. You need input only enough characters to make the identifier
unique among the other constant identifiers of its type; text input data for
enumerated types can consist of both lowercase and uppercase characters.

Boolean input data in TEXT files follow the same rules as other enumerated
types. For example, the following character combinations, all of which could
appear in a TEXT file, are equivalent: TRUE, True, T, t, tr.

Input and Output Processing 9–53

When using a radix specifier, values from a TEXT file can be read into a
variable of any type, except a type containing a file component. If the input
stream does not provide sufficient data, the high-order bits are set to zero.
When reading structured types, the input stream must account for any padding
required for alignment.

You can use the READ procedure to read a sequence of characters from a TEXT
file into a variable of type PACKED ARRAY OF CHAR. Successive characters
from the file are assigned to components of the array, in order, until each
component has been assigned a value. If any characters remain on the line
after the array is full, the next READ procedure begins with the next character
on that line. If the end of the line is encountered before the array is full, spaces
are assigned to the remaining components.

You can also read TEXT file characters into a variable of types STRING or
VARYING OF CHAR. Characters are assigned to a STRING or VARYING
OF CHAR variable in a manner similar to that in which they are assigned
to a packed array. However, if the end-of-line marker is encountered before
the STRING or VARYING OF CHAR variable has been filled to its maximum
length, the STRING or VARYING OF CHAR value is not padded with spaces.
Instead, its current length is set equal to the number of characters that have
been read into it. If you call the READ procedure with a parameter of type
STRING or VARYING OF CHAR, and EOLN returns TRUE, no characters are
read into the STRING or VARYING OF CHAR variable; its current length is
set to zero.

Every nonempty TEXT file ends with an end-of-line marker and an end-of-file
marker. Therefore, EOF never becomes TRUE when you are reading strings
with the READ procedure. To test EOF when reading strings, use a READLN
procedure to advance the file beyond the end-of-line marker.

Consider the following example:

READ(Temp, Age, Weight);

Assume that Temp, Age, and Weight are real variables, and that the following
values have been entered at the terminal:

98.6 11 75

The variable Temp is assigned the value 98.6, Age is assigned the value 11.0,
and Weight is assigned the value 75.0. You need not type all three values on
the same line.

9–54 Input and Output Processing

Consider the following example:

TYPE
A_String = PACKED ARRAY[1..20] OF CHAR;

VAR
Names : TEXT;
Pres, Veep : A_String;

{In the executable section:}
READ(Names, Pres, Veep);

This program fragment declares and reads the file Names, which contains the
following character strings:

John F. Kennedy Lyndon B. Johnson Lyndon B. Johnson <EOLN>
Hubert H. Humphrey <EOLN>
Richard M. Nixon Spiro T. Agnew <EOLN>

The first call to the READ procedure sets Pres equal to the 20-character string
’John F. Kennedy ’ and Veep equal to ’Lyndon B. Johnson ’. The
second call to the procedure assigns the value ’Lyndon B. Johnson ’ to Pres
and, after encountering the end-of-line marker, fills the array Veep with spaces.
The file position does not advance to the beginning of the next line until a
READLN is performed.

You can abbreviate values to be read into enumerated variables, as shown in
the next example:

TYPE
Color = (Red, Fire_Engine_Green, Blue, Black);

VAR
Light : Color;

{In the executable section:}
READ(Light);

In this example, if the letter R is read, the variable Light is assigned the value
Red. However, if the letters Redx are read, an error occurs. If the letters Bl
are read, an error also occurs because Bl is not unique. However, the letters
Blu are unique and would be interpreted as the constant identifier Blue.

For More Information:

• On TEXT files (Section 9.5)

• On the error-processing parameter (Section 9.7)

• On specifying radixes for output (Section 9.6.3 and Section 9.6.4)

Input and Output Processing 9–55

9.8.16 READLN Procedure
The READLN procedure reads lines of data from a TEXT file.

READLN [[([[file_variable,]] {variable-identifier [[:radix-specifier]]},...
[[, ERROR := error-recovery]])]];

file_variable
The name of the file variable associated with the TEXT file to be read. If you
omit the name of the file, the default is INPUT.

variable-identifier
The name of the variable into which a value will be read; multiple identifiers
must be separated with commas. If you do not specify any variable names,
READLN skips a line in the specified file.

radix-specifier
One of the format values BIN, OCT, or HEX. These values, when used on
a variable identifier, read the variable in binary, octal, or hexadecimal,
respectively. You can use a radix-specifier only when reading from a TEXT
file.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before READLN is called; it remains in
that mode after the procedure’s execution.

The READLN procedure reads values from a TEXT file. After reading values
for all the listed variables, the READLN procedure skips over any characters
remaining on the current line and positions the file at the beginning of the
next line. The values need not all be on a single line; READLN continues until
values have been assigned to all the specified variables, even if this process
results in the reading of several lines of the input file.

When applied to several variables, READLN performs the following
sequence:

READ(file_variable, {variable-identifier},...);
READLN(file_variable);

EOLN returns TRUE after a READLN procedure only if the new line is empty.

You can use the READLN procedure to read integers, real numbers, Booleans,
characters, strings, and constants of enumerated types. The values in the
file must be separated as for the READ procedure. The rules governing the
reading of values from text files are presented with the READ procedure.

9–56 Input and Output Processing

Consider the following example:

TYPE
String = PACKED ARRAY[1..20] OF CHAR;
VAR
Names : TEXT;
Pres, Veep : String;
{In the executable section:}
READLN(Names, Pres, Veep);

This program fragment declares and reads the file Names, which contains the
following characters:

John F. Kennedy Lyndon B. Johnson Lyndon B. Johnson <EOLN>
Hubert H. Humphrey <EOLN>
Richard M. Nixon Spiro T. Agnew <EOLN>
<EOLN>
<EOF>

The READLN procedure reads the values ’John F. Kennedy ’ for Pres
and ’Lyndon B. Johnson ’ for Veep. It then skips to the next line, ignoring
the remaining characters on the first line. Subsequent execution of the
procedure assigns the value ’Hubert H. Humphrey ’ to Pres and the space
detected as the end-of-line marker to Veep. A third call to the procedure reads
’Richard M. Nixon ’ into Pres and ’Spiro T. Agnew ’ into Veep.
The procedure then skips past the end-of-line marker to the beginning of the
next line. If you call READLN again, EOF becomes TRUE, and EOLN becomes
undefined.

The READLN procedure is implemented as one or more READ calls followed
by a READLN call. A STATUS call after a READLN procedure tests if the
file was properly positioned, not whether the last READ was successful. To
test if READLN successfully read data, replace the call to READLN with an
explicit call to READ to read the line, then call STATUS to test the results of
the READ, and finally call READLN to advance the file buffer variable for the
next READLN.

For More Information:

• On the effect of delayed device access on tests of STATUS after a READLN
procedure call (Section 9.5.3)

• On the READ procedure (Section 9.8.15)

• On the error-processing parameter (Section 9.7)

• On the radix specifiers (Section 9.6.3 and Section 9.6.4)

Input and Output Processing 9–57

9.8.17 RESET Procedure
The RESET procedure puts a file into inspection mode, in which it can be read.

RESET(file_variable [[, file_name]] [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the input file.

file_name
String expression for the file name to be associated with the file_variable. If
the file is already open, an error is signaled.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before you call RESET; a call to RESET sets the
file to inspection mode. If the file is an external file and is not already open,
RESET opens it using the same defaults as the OPEN procedure. You cannot
use RESET to create a file.

A call to RESET on a sequential file positions the file at the first component,
and the file buffer variable contains the value of this component. If the file is
not empty, EOF and UFB return FALSE and the first component is locked to
prevent access by other processes. If the file is empty, EOF and UFB return
TRUE. If the file does not exist, RESET does not create it, but returns an error
at run time.

You must call RESET before reading any file with sequential organization
except the predeclared file INPUT. The RESET procedure removes the end-of-
file marker from any file connected to a terminal device (including INPUT),
which allows reading from the file to continue. If you call RESET for the
predeclared files OUTPUT or ERR, an error occurs.

A call to RESET on a relative file opened for direct access positions the file at
its first existing component.

A call to RESET on an indexed file opened for keyed access positions the file at
the first component relative to the primary key.

Consider the following example:

VAR
f : FILE OF INTEGER;
{In the executable section:}
OPEN(f , ’file.dat’, ACCESS_METHOD := DIRECT);
RESET(f);

9–58 Input and Output Processing

The OPEN call opens the file variable f for direct access. The RESET call
positions the file at the first component and is necessary whether the file is
new or old. After execution of the OPEN and RESET procedures, you can
use the FIND procedure for direct access to the components of the file. For
example:

RESET(Weights);

If the file variable Weights is already open, this procedure call prepares it for
reading and assigns the value of the first file component to Weights^. If the file
is not open, RESET causes HP Pascal to open the file by default. If Weights is
an external file, its file history will be OLD. If Weights does not exist, an error
occurs.

For More Information:

• On component access (Section 9.3)

• On the default parameter values for OPEN (Section 9.8.12)

• On the error-processing parameter (Section 9.7)

9.8.18 RESETK Procedure
The RESETK procedure puts an indexed file into inspection mode, in which it
can be read. RESETK can be applied only to indexed files opened for random
access by key.

RESETK(file_variable, key-number[[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the input file.

key-number
A nonnegative integer expression that indicates the key position.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before RESETK is called to set the mode to
inspection.

You assign a key number from 0 to 254 to each key field of a file component
with the KEY attribute. The file is searched for the component with the
lowest value in the specified key number. This component becomes the current
component in the file and is locked. The value of the current component is
copied into the file buffer; EOF and UFB are set to FALSE. If the component

Input and Output Processing 9–59

does not exist, EOF and UFB become TRUE. Note that a RESETK procedure
on key number 0 is equivalent to a RESET procedure.

Consider the following example:

RESETK(Book_Index, 0);

This procedure searches the file Book_Index for the component with the lowest
value in the primary key. If this component exists, it becomes the current
file component and is locked. The function calls UFB(Book_Index) and
EOF(Book_Index) returns FALSE. If the procedure was unable to find the
component, UFB(Book_Index) and EOF(Book_Index) return TRUE.

For More Information:

• On indexed files (Section 9.1.3)

• On random access by key (Section 9.3.2)

• On the UFB function (Section 9.8.22)

• On the error-processing parameter (Section 9.7)

9.8.19 REWRITE Procedure
The REWRITE procedure puts a file into generation mode in which it can be
written.

REWRITE(file_variable [[, file_name]] [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the output file.

file_name
String expression for the file name to be associated with the file_variable. If
the file is already open, an error is signaled.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file can be in any mode before REWRITE is called to set the mode to
generation. If the file variable has not been opened, REWRITE creates and
opens it using the same defaults as the OPEN procedure.

The REWRITE procedure truncates sequential files to length zero and sets
EOF and UFB to TRUE. You can then write new components into the file with
the PUT, WRITE, and WRITELN procedures (WRITELN is defined only for
text files). After the file is open, successive calls to REWRITE truncate the
existing file to a length of zero.

9–60 Input and Output Processing

To update an existing file with sequential organization, you must either use
the EXTEND procedure, use the TRUNCATE procedure, or copy the contents
to another file, specifying new values for the components you need to update.

When applied to a file with relative or indexed organization, REWRITE deletes
the contents of the file and sets the file position to the beginning of an empty
file.

Consider the following example:

REWRITE(Storms);

If the file variable Storms is already open, this REWRITE procedure prepares
the file for writing, clears it of old data, and sets the file position to the
beginning of the file. If Storms is not open, a new version is created with the
same defaults as for the OPEN procedure.

Consider the following example:

VAR
Ratings : FILE OF INTEGER;
{In the executable section:}
OPEN(Ratings, ’cars.dat’, HISTORY := OLD, RECORD_TYPE := FIXED);
REWRITE(Ratings);

The OPEN procedure opens the file variable Ratings, which is associated with
the file cars.dat. The REWRITE procedure discards the current contents of the
file f and sets the file position to the beginning of the file. After execution of
this procedure, EOF(Ratings) returns TRUE.

For More Information:

• On component access (Section 9.3)

• On the default parameters for OPEN (Section 9.8.12)

• On the error-processing parameter (Section 9.7)

9.8.20 STATUS Function
The STATUS function indicates the status of a file following the last operation
performed on it. The LOCATE procedure does not perform an operation,
but sets internal data in the run-time library for use by future operations.
Therefore, this procedure does not affect the result of the STATUS function.

STATUS(file_variable)

Input and Output Processing 9–61

file_variable
The name of the file variable associated with the file to be tested.

The file can be in any mode before STATUS is called; unless an error occurs,
STATUS does not change the file mode upon execution.

The STATUS function returns one of the following integer codes that indicate
the previous operation’s effect on the file:

Code Description

0 Successful operation

–1 End-of-file encountered

Positive integer 1 Error encountered

1 The actual number is environment-specific and indicates the exact error that occurred.

A test by the STATUS function on a TEXT file causes delayed device access to
occur, which fills the file buffer with the next file component. Therefore, EOF,
EOLN, UFB, and STATUS never return an error code following a successful
STATUS function call.

Consider the following example:

RESET(File1, ERROR := CONTINUE);
IF STATUS(File1) > 0 THEN WRITELN(’Cannot access first record’)
ELSE
IF STATUS(File1) < 0 THEN WRITELN(’File is empty’)
ELSE READ(File1);

If the RESET procedure encounters either an error condition or an end-of-file,
an appropriate error message is displayed. If the STATUS function indicates
that the RESET procedure was successful, the first record is read from the file.

For More Information:

• On TEXT files (Section 9.5)

• On the error-processing parameter (Section 9.7)

• On delayed device access (Section 9.5.3)

• On status code translations (HP Pascal for OpenVMS User Manual)

9–62 Input and Output Processing

9.8.21 TRUNCATE Procedure
The TRUNCATE procedure indicates that the current file component and all
components following it are to be deleted. You can only use TRUNCATE on a
file that has sequential organization.

TRUNCATE(file_variable [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the file to be truncated.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before TRUNCATE is called. After the
procedure has been executed, the mode is set to generation so that you can
write to the file.

After the appropriate components have been deleted, the file remains
positioned at the new end-of-file, but the file buffer itself is undefined. Thus,
EOF and UFB are both set to TRUE.

Consider the following example:

TRUNCATE(Master_File);

This procedure deletes components from Master_File, beginning with the
current component and continuing until EOF returns TRUE. When the
operation is complete, EOF(Master_File) and UFB(Master_File) are TRUE,
and new data can be written at the end of Master_File.

For More Information:

• On sequential files (Section 9.1.1)

• On the error-processing parameter (Section 9.7)

9.8.22 UFB Function
The UFB (Undefined File Buffer) function returns a Boolean value to indicate
whether the last file operation gave the file buffer an undefined status.

UFB(file_variable)

Input and Output Processing 9–63

file_variable
The name of the file variable associated with the file whose buffer is being
tested.

The file can be in any mode before UFB is called, the execution of UFB does
not change the file mode.

UFB tests the effect of the last I/O operation on the file. UFB returns FALSE
if a successful GET, FIND, FINDK, RESET, or RESETK operation has filled
the file buffer. GET, FIND, FINDK, RESET, and RESETK procedure calls
that do not fill the file buffer due to the data not being present in the file set
UFB to TRUE. GET, FIND, FINDK, RESET, and RESETK procedure calls that
could not examine the file leave UFB in an unknown state. You must use the
STATUS builtin to determine if the GET, FIND, FINDK, RESET, and RESETK
procedure calls were able to examine the contents of the file. UFB also returns
TRUE after DELETE, EXTEND, LOCATE, PUT, REWRITE, TRUNCATE, and
UPDATE procedures have left the contents of the file buffer unknown.

Assigning a new value to the file buffer with an assignment statement does not
change the value of UFB. Consider the following example:

FIND(Supplies, December);
IF NOT UFB(Supplies) THEN
Inventory := Inventory - Supplies^;

If the variable December has a value of 12, the FIND procedure attempts
to find the twelfth component of the file Supplies. If the FIND procedure is
successful, Supplies^ assumes the value of this component and
UFB(Supplies) is FALSE. If, however, the FIND procedure is unable to find
the twelfth component of the file, UFB(Supplies) returns TRUE. In this
example, the value of Supplies^ is subtracted from the value of Inventory only
if the FIND procedure is successful.

9.8.23 UNLOCK Procedure
The UNLOCK procedure releases the current file component for access by
other processes.

UNLOCK(file_variable [[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the file whose component is to be
unlocked.

error-recovery
The action to be taken if an error occurs during execution of the routine.

9–64 Input and Output Processing

The file must be in inspection mode before UNLOCK is called; it remains in
inspection mode after UNLOCK has executed.

If the component at which the file pointer is positioned has been locked, the
UNLOCK procedure releases it.

Consider the following example:

UNLOCK(Sales_File);

The UNLOCK procedure releases the contents of the current component.

For More Information:
On the error-processing parameter (Section 9.7)

9.8.24 UPDATE Procedure
The UPDATE procedure writes the contents of the file buffer into the current
component.

UPDATE(file_variable[[, ERROR := error-recovery]]);

file_variable
The name of the file variable associated with the file whose component is to be
updated.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in inspection mode before UPDATE is called; it remains in
that mode after the procedure’s execution.

The UPDATE procedure is legal for files that have been opened for random
access (direct or keyed). The current component must already have been locked
by a successful FIND, FINDK, GET, RESET, or RESETK procedure before the
contents of the file buffer can be rewritten into it. After the update has taken
place, the component is unlocked and UFB returns TRUE.

Consider the following example:

UPDATE(October_Sales);

This procedure writes the file buffer contents (October_Sales^) back into the
current file component October_Sales. The component is then unlocked and
UFB(October_Sales) returns TRUE.

Input and Output Processing 9–65

For More Information:

• On component access (Section 9.3)

• On the error-processing parameter (Section 9.7)

9.8.25 WRITE Procedure
The WRITE procedure assigns data to an output file.

WRITE([[file_variable,]]{expression},... [[, ERROR := error-recovery]])

file_variable
The name of the file variable associated with the output file. If you omit the
name of the file, the default is OUTPUT.

expression
An expression whose value is to be written; multiple output values must be
separated with commas. An output value must have the same type as the file
components; however, values written to a TEXT file can also be expressions
of any ordinal, real, or string type. You can specify the output format of the
expression as described in Section 9.6.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file (unless it is a random-access by key file) must be in generation mode
before WRITE is called; it remains in that mode after WRITE has executed.

By definition, a WRITE statement to a nontext file performs an assignment
to the file buffer variable and a PUT statement for each output value. For
nontext files, the types of the output values must be assignment compatible
with the component type of the file. For example:

WRITE(file_variable, expression);

This procedure call is similar to the following example:

file_variable^ := expression;
PUT(file_variable);

For TEXT files, the WRITE procedure converts the value of each expression to
a sequence of characters. It repeats the assignment and PUT process until all
the values have been written to the file.

9–66 Input and Output Processing

Consider the following example:

TYPE
String = PACKED ARRAY[1..20] OF CHAR;

VAR
Names : FILE OF String;
Pres : String;

{In the executable section:}
WRITE (Names, ’Millard Fillmore ’, Pres);

This example writes two components in the file Names. The first is the
20-character string constant ’Millard Fillmore ’. The second is the value
of the string variable Pres.

For More Information:

• On TEXT files (Section 9.5)

• On component format (Section 9.2)

• On output format (Section 9.6)

• On prompting from the terminal (Section 9.5.2)

• On the error-processing parameter (Section 9.7)

9.8.26 WRITELN Procedure
The WRITELN procedure writes a line of data to a text file.

WRITELN [[([[file_variable,]] {expression,...
[[, ERROR := error-recovery]])]]

file_variable
The name of the file variable associated with the text file to be written. If you
omit the name of the file, the default is OUTPUT.

expression
An expression whose value is to be written; multiple output values must be
separated by commas. The expressions can be of any ordinal, real, or string
type and are written with a default field width, which you can override as
described in Section 9.6.

error-recovery
The action to be taken if an error occurs during execution of the routine.

The file must be in generation mode before WRITELN is called; it remains in
that mode after WRITELN has been executed.

Input and Output Processing 9–67

The WRITELN procedure writes the specified values into the TEXT file, inserts
an end-of-line marker after the end of the current line, and then positions the
file at the beginning of the next line. When applied to several expressions,
WRITELN performs the following sequence:

WRITE (file_variable, {expression},...);
WRITELN (file_variable);

Consider the following example:

WRITELN(User_Guide, ’This manual describes how to interact’);

This procedure writes the string to the TEXT file User_Guide, follows it with
an end-of-line marker, and skips to the next line.

You can specify a carriage-control character as the first item in an output line.
When you use carriage-control characters, make sure that the file is open with
either the CARRIAGE or FORTRAN option. Consider the following example:

WRITELN(Tree, ’ ’, String1, String2);

The first item in the list is a space character. The space indicates that the
values of String1 and String2 are printed on a new line when the file is written
to a terminal, line printer, or similar carriage-control device.

If you specify a carriage format but use an invalid carriage-control character,
the first character in the line is ignored and the output appears with the first
character truncated. Consider the following example:

TYPE
A_String = PACKED ARRAY[1..25] OF CHAR;

VAR
New_Hires : TEXT;
n : INTEGER;
New_Rec : RECORD

Id : INTEGER;
Name,
Address : A_String;
END;

{In the executable section:}
OPEN(New_Hires, ’new_hires.dat’, CARRIAGE_CONTROL := FORTRAN);
REWRITE(New_Hires);
WITH New_Rec DO

BEGIN
WRITELN(New_Hires, ’1New hire # ’, ID:1, ’ is ’, Name);
WRITELN(New_Hires, ’ ’, Name, ’lives at:’);
WRITELN(New_Hires, ’ ’);
WRITELN(New_Hires, ’ ’, Address);
END;

9–68 Input and Output Processing

In this example, four lines are written to the TEXT file New_Hires. The output
starts at the top of a new page, as directed by the carriage-control character
’1’, and appears in the following format:

New hire # 73 is Irving Washington
Irving Washington lives at:

22 Chestnut St, Seattle

For More Information:

• On TEXT files (Section 9.5)

• On carriage-control characters in new files (Section 9.8.12)

• On the error-processing parameter (Section 9.7)

• On formatting output (Section 9.6)

Input and Output Processing 9–69

10
Attributes

An attribute is an identifier that directs the HP Pascal compiler to change its
behavior in some way. This chapter discusses the following information about
attributes:

• Attribute syntax (Section 10.1)

• Attributes (Section 10.2)

• Attribute classes (Section 10.3)

When an attribute is not explicitly stated, the compiler follows the default
rules to assign properties to program elements. However, using attributes
to override the defaults allows additional control over the properties of data
items, routines, and compilation units.

For convenience in description, the attributes are grouped in attribute
classes. All attributes in a given class share common characteristics
(sometimes there is only one attribute to a class).

For More Information:

• For information on environment-specific issues about attributes
(Appendix A)

10.1 Attribute Syntax
The following syntax applies to all HP Pascal attributes:

[{identifier1 [[(
� constant-expression

identifier2

�
,...)]] },...]

Attributes 10–1

identifier1
The name of the attribute.

constant-expression
A compile-time integer expression, represented in this chapter by n, that
qualifies several of the HP Pascal attributes.

identifier2
The name of an option available in one of the following instances:

• With the CHECK, OPTIMIZE, or KEY attributes.

• With COMMON and PSECT attributes, indicating the name of a storage
area.

• With the GLOBAL, EXTERNAL, WEAK_GLOBAL, and WEAK_
EXTERNAL attributes, indicating an external name. If entered as a
quoted string, passed to the linker with case unmodified.

A list of attributes can appear anywhere in the VAR, TYPE, and CONST
declaration sections, and anywhere in a program that a type, a type identifier,
or the heading of a routine or compilation unit is legal. However, only one
attribute from a particular class can appear in a given attribute list. The use
of attribute lists is shown in examples throughout this chapter. The names
of attributes, when used in a suitable context, cannot conflict with other
identifiers with the same name in the program.

Syntactically, an attribute list can appear before a VAR, TYPE, and CONST
section in the declaration section. In this case, the attributes would apply to
all elements in that particular section. However, HP Pascal only allows you to
use the ALIGN, ENUMERATION_SIZE, and HIDDEN attribute in this way.

Some attributes require a special form of constant expression called a name
string. The syntax of a name string differs from that of other strings in
HP Pascal only in that a name string cannot use the extended-string syntax.

Every program element must be associated with one property for each
applicable attribute class. The HP Pascal compiler automatically supplies the
defaults for the unspecified classes at the time of the element’s declaration. In
some classes, as described in the following sections, the default property is not
available through an explicit attribute.

Attributes can be associated with data items in the following ways:

• By appearing in a type definition in a TYPE section; the item is later
declared to be of that type.

• By appearing in the declaration of an item preceding its type.

10–2 Attributes

• By appearing before the current declaration section.

Note

In HP Pascal, the presence of constant expressions and attribute lists
leads to a minor ambiguity in the language syntax. If the compiler
finds a left bracket ([) symbol when it expects to find a type or type
identifier, it always assumes that the bracket indicates the beginning
of an attribute list. The ambiguity arises because the left bracket could
also represent the beginning of a set constructor that denotes the low
bound of a subrange type. If the latter case is in fact what you intend,
enclose the set constructor in parentheses; the compiler will interpret
the expression correctly. For example:

TYPE X = ([1] <= [2])..True;

When a type definition includes a list of attributes, the type has only those
attributes specified. The compiler does not supply the defaults for the
unspecified classes until a data item is declared to be of that type. Two rules
govern the use of attributes in a TYPE section:

• The attributes of the type can neither conflict with nor duplicate any
attributes explicitly stated in the data item’s declaration.

• The type cannot be used anyplace where its accompanying attributes are
illegal.

The following example shows both legal and illegal use of attributes in type
definitions:

TYPE
A = [GLOBAL] INTEGER;
B = [UNALIGNED] INTEGER;

VAR
A1 : [GLOBAL] A; { Illegal; duplicates GLOBAL

attribute of type A }
A2 : [EXTERNAL] A; { Illegal; conflicts with

GLOBAL attribute of type A }
B1 : ^B; { Illegal; pointer base type

cannot be UNALIGNED }
C : A; { Legal }

Attributes 10–3

The first three variable declarations are illegal for the reasons shown in the
comments. The declaration of C is legal; C is declared as a global INTEGER
because of the characteristics of its type. The compiler supplies defaults for all
other classes applicable to the variable C.

Attributes associated with data items usually modify type compatibility
rules. These modifications are explained in the sections describing individual
attributes.

For More Information:

• On extended-string syntax (Section 2.6)

• On program elements and attribute properties (Section 10.3)

• On type compatibility (Section 2.10)

10.2 Attributes
The following sections describe each attribute in alphabetical order.

10.2.1 ALIGN
The ALIGN attribute controls the default alignment, packing, and allocation
rules in a compilation unit, TYPE section, or VAR section. For example:

[ALIGN(keyword)]

The ALIGN attribute takes a single keyword parameter that has the same
name and meaning as the keywords for the /ALIGN qualifier. However,
specifying the ALIGN attribute overrides any value that you previously
specified using the /ALIGN qualifier.

The ALIGN attribute can appear at the beginning of the compilation unit and
before a TYPE or VAR section. When used before a TYPE or VAR section,
the default alignment, packing, and allocation rules are modified only for the
duration of the TYPE or VAR section. For example:

[ALIGN(VAX)]
TYPE

vax_type = Array [1..10] of char;

TYPE
alpha_type = Array [1..10] of char;

10–4 Attributes

Usage and Default Information:
Table 10–1 lists the keywords for the ALIGN attribute. See Section A.2.7 for a
complete description of the alignment rules for each platform and Section A.2.4
for a complete description of the allocated sizes for objects for each platform.

Table 10–1 ALIGN Attribute Keywords

Keyword Action Default on System

NATURAL1 Uses natural alignment when positioning
record fields or array components.
Natural alignment is when a field or
component is positioned on a boundary
based on its size. For example, 32-bit
integers would be aligned on the nearest
32-bit boundary.

OpenVMS I64 and
OpenVMS Alpha

VAX Uses byte alignment when positioning
record fields or array components. Field
or components larger than 32 bits are
positioned on the nearest byte boundary.

OpenVMS VAX

1Previous versions of HP Pascal used ALPHA_AXP for this keyword. The NATURAL keyword is
now the recommended spelling for the same behavior. The ALPHA_AXP keyword will continue to
be recognized for compatibility with old source files.

On OpenVMS VAX systems, when you specify a value of NATURAL, automatic
variables are aligned on longword boundaries instead of quadword boundaries.
This occurs because the largest allowable alignment for the stack is longword
alignment.

For More Information:

• On allocation sizes of objects (Section A.2.4)

• On storage allocation (Section A.2.5)

10.2.2 ALIGNED
The ALIGNED attribute indicates the object is to be aligned on a specific
memory boundary.

ALIGNED [[(n)]]

Attributes 10–5

An aligned object is aligned on the memory boundary indicated by n.
The constant expression n indicates that the address of the object
must end in at least n zeros. ALIGNED(0) specifies byte alignment,
ALIGNED(1) specifies word alignment, ALIGNED(2) specifies longword
alignment, ALIGNED(3) specifies quadword alignment, ALIGNED(4)
specifies octaword alignment, and ALIGNED(9) specifies alignment on a
512-byte boundary.

Usage and Default Information:

• The default alignment of an object depends on its size.

• The constant expression n must denote an integer. If you omit n, the
default is 0, indicating byte alignment.

• If the expression provided to the ALIGNED attribute is greater than the
largest supported alignment on the target platform, the compiler will
print a warning message and default to the largest supported value. (Note
that ALIGNED(13) is the largest alignment allowed on OpenVMS I64
and OpenVMS Alpha systems and ALIGNED(9) is the largest alignment
allowed on OpenVMS VAX systems).

• An automatic variable cannot have alignment greater than an octaword on
OpenVMS I64 systems, or a quadword on OpenVMS Alpha systems, or a
longword on OpenVMS VAX systems.

• The minimum alignment for an object of a structured type is the greatest
alignment specified for any of its components.

• Alignment attributes are illegal on nonstatic types, components of files, and
on VARYING OF CHAR strings.

• The alignment of a formal VAR parameter cannot be greater than the
alignment of a corresponding actual parameter, either by default or
by means of an alignment attribute. In an array variable passed to a
conformant formal parameter, alignment and size attributes are illegal on
all dimensions of the actual parameter, except the first, that correspond to
the dimensions of the formal parameter.

• On OpenVMS I64 systems, the base type of a pointer variable passed to
the NEW procedure cannot have alignment greater than an octaword. On
OpenVMS Alpha and OpenVMS VAX systems, the base type of a pointer
variable passed to the NEW procedure cannot have alignment greater than
a quadword.

• If the base type of a pointer variable has a specified alignment, then the
base type of a pointer expression assigned to it must have an alignment
equal to that of the variable.

10–6 Attributes

• Pointer types are structurally compatible only if their base types have
identical alignment.

The following is an example of the ALIGNED attribute:

VAR
Free_Buffers : [ALIGNED(1), WORD] -2**15..2**15-1;
{In the executable section:}
IF ADD_INTERLOCKED(-1, Free_Buffers) <= 0 THEN
{Statement:}

The predeclared function ADD_INTERLOCKED requires that the second
parameter passed to it have word alignment and an allocation size of one word.
In this example, the variable Free_Buffers is declared with alignment and size
attributes to meet these restrictions.

For More Information:

• On automatic and size attribute classes (Section 10.3)

• On static and nonstatic types (Section 2.9)

• On default alignments (HP Pascal for OpenVMS User Manual)

10.2.3 ASYNCHRONOUS
The ASYNCHRONOUS attribute indicates that a routine can be called
asynchronously to the main program execution. For example, AST routines
or condition handlers are asynchronous routines because they are called
without an explicit procedure call in your program. Routines with the
ASYNCHRONOUS attribute can only access local variables and up-level
VOLATILE variables. Additionally, asynchronous routines can only call other
asynchronous routines.

Usage and Default Information:

• This attribute can be applied to routines and to routine parameters
declared in external routines.

• In the absence of the ASYNCHRONOUS attribute, the compiler assumes
that the routine can be activated only by actual calls within the program.

• All predeclared routines are asynchronous by default.

• Any routines called from within the block of an asynchronous routine must
be local to the asynchronous routine or must themselves be asynchronous,
either by default or by an explicit attribute.

Attributes 10–7

• All nonlocal variables accessed from within the block of an asynchronous
routine must be declared VOLATILE or READONLY.

• If a formal routine parameter is asynchronous, all actual parameters
passed to it must also be asynchronous.

• An asynchronous routine can be passed as an actual parameter to a formal
routine parameter that does not have this attribute.

Consider the following example:

PROCEDURE Do_Something;
VAR

i : [VOLATILE] INTEGER;
j : INTEGER

[ASYNCHRONOUS] FUNCTION Handler {Two array parameters} : BOOLEAN;
BEGIN
i := i + 1;
{Remaining function body...}

{In the executable section of the procedure:}
ESTABLISH(Handler);

This example shows the declaration of the asynchronous function Handler. The
executable section of Handler cannot access variables declared in the enclosing
block of the procedure Do_Something unless those variables are declared
VOLATILE. Handler can access the variable i, which has the VOLATILE
attribute, but cannot access the variable j.

For More Information:

• On the VOLATILE attribute (Section 10.2.42)

• On the READONLY attribute (Section 10.2.34)

• On the ESTABLISH procedure (Section 8.30)

10.2.4 AT
The AT attribute specifies that HP Pascal allocates no storage for the object
(storage has already been allocated) and that it resides at the exact, specified
address.

AT(n)

The exact address is specified by the constant expression n. Variables
representing machine-dependent entities are frequently given the AT attribute.

10–8 Attributes

Usage and Default Information:

• A variable having the AT, COMMON, or PSECT attribute is implicitly
static.

• AT cannot be applied to routines or to compilation units.

• AT cannot be applied to variables of nonstatic types.

For More Information:

• On default allocation for variables declared in the outermost block of a
program or in nested blocks (Section 10.2.5)

• On default allocation for variables declared in the outermost block of a
module (Section 10.2.36)

• On static and nonstatic types (Section 2.9)

10.2.5 AUTOMATIC
The AUTOMATIC attribute specifies that storage for the variable be allocated
each time the program enters the routine in which the variable is declared.
The storage is deallocated each time the program exits from that routine. An
automatic variable exists as long as the declaring routine remains active.

Usage and Default Information:

• By default, variables declared in nested blocks are automatic.

• By default, variables declared at the outermost level of a program are
automatic, though for efficiency they can be made static.

• By default, the control part of the nonstatic types and the pointer part
of variables of nonstatic types follow the same rules as regular variables:
they are static or automatic depending on the location of the declaration
and the usage of the data.

• Global and external variables are implicitly static. Thus, they conflict with
the AUTOMATIC attribute.

• Program-level variables with the AUTOMATIC attribute are not recorded
in environment files.

• AUTOMATIC cannot be applied to routines and compilation units.

• AUTOMATIC cannot be applied to nonstatic types.

Attributes 10–9

For More Information:

• On an example of the STATIC attribute (Section 10.2.36)

• On the GLOBAL attribute (Section 10.2.17)

• On the EXTERNAL attribute (Section 10.2.15)

• On static and nonstatic types (Section 2.9)

10.2.6 BIT
The BIT attribute specifies the amount of storage in bits to be received by the
object.

BIT[[(n)]]

The optional constant n indicates the number of bit storage units.

Usage and Default Information:
The following size attribute restrictions apply to BIT, BYTE, LONG, WORD,
QUAD and OCTA.

• The default size of an object depends on its type.

• The constant expression n must denote a positive integer. If you omit n,
the default value is 1.

• Objects of floating-point or pointer types must have a size equal to their
allocation size.

• Ordinal types cannot exceed their maximum size, which is determined by
the platform and the value of the data switch for the compile command.

• The amount of storage described must be large enough to contain an object
of the specified type; otherwise, a compile-time error occurs.

• Assignment to variables with a size attribute are zero-extended (if
necessary) and all bits are written.

• When you fetch from variables with a size attribute, the compiler need only
reference sufficient bits to access the legal value of the type. The contents
of a variable are undefined if it does not contain a zero-extended legal value
of the variable’s type.

• A size attribute is illegal on a conformant parameter, on a component of a
VARYING string, on an object of a structured type having a file component,
or on a nonstatic type. In an array variable passed to a conformant formal
parameter, size and alignment attributes are illegal on all dimensions of

10–10 Attributes

the actual parameter, except the first, that correspond to the dimensions of
the formal parameter.

• Two variables of the same type that have different allocation sizes are
assignment compatible but are not structurally compatible.

For More Information:

• On alignment attributes (Section 10.3)

• On type compatibility (Section 2.10)

• On size attributes and return values of size functions (Section 8.83)

• On allocation sizes of objects (Section A.2.4)

10.2.7 BYTE
The BYTE attribute specifies the amount of storage in bytes to be received by
the object.

BYTE [[(n)]]

The optional constant n indicates the number of byte storage units.

For More Information:

• On allocation sizes of objects (Section A.2.4)

• On size allocation restriction (Section 10.2.6)

10.2.8 CHECK
The CHECK attribute specifies error-checking options that are to be enabled
during program execution.

CHECK [[({identifier},...)]]

An identifier specifies an option to be enabled. If you omit the list of options,
all available positive options are enabled.

Table 10–2 presents the options that allow you to choose which aspects of a
program should be checked. The negations of an option disable checking for
that option.

Attributes 10–11

Table 10–2 Summary of Checking Options

Option Action Negation

ALL Enables all forms of checking. NONE

BOUNDS Verifies that an index expression is
within the bounds of an array’s index
type and that character-string sizes are
compatible with the operations being
performed and that schema types are
compatible.

NOBOUNDS

CASE_SELECTORS Verifies that the value of a case selector
is contained in the corresponding case
label list.

NOCASE_SELECTORS

DECLARATIONS Verifies that schema definitions yield
valid types and that uses of GOTO
from one block to an enclosing block
are correct.

NODECLARATIONS

OVERFLOW Verifies that the result of an integer
computation does not exceed the
machine representation.

NOOVERFLOW

POINTERS Verifies that the value of a pointer
variable is not NIL.

NOPOINTERS

SUBRANGE Verifies that values assigned to
variables of subrange types are within
the subrange; verifies that a set
expression is assignment compatible
with a set variable.

NOSUBRANGE

Usage and Default Information:

• This attribute can be applied to routines and compilation units.

• If not specified on a routine, or compilation unit, the CHECK qualifier or
switch value is used as the default. If you specify options for CHECK, HP
Pascal enables only the specified options. Consider the following example:

[CHECK] { is equivalent to } [CHECK(ALL)]
[CHECK(option)] { is equivalent to } [CHECK(NONE, option)]

Consider the following example:

10–12 Attributes

PROGRAM Check_Features;

[CHECK(POINTERS, CASE_SELECTORS)] PROCEDURE Linked_List
(VAR Client : Info_Rec); {Body of the procedure...}

[CHECK(OVERFLOW)] FUNCTION Integer_Compute
(VAR Int1, Int2, Int3 : INTEGER) : INTEGER;
{Body of the function...}

PROCEDURE Bounds_Check (VAR A_String : VARYING[30] OF CHAR;
VAR Char_Array : ARRAY[1..25] OF CHAR;
VAR Half_Alpha : ’A’..’M’); {Body...}

For the routines Linked_List and Integer_Compute, HP Pascal enables only
the specified options. The procedure Bounds_Check has only the BOUNDS,
and DECLARATIONS options enabled by default (unless you use a compilation
switch to override the default).

For More Information:
On type compatibility (Section 2.10)

10.2.9 CLASS_A
The CLASS_A attribute causes a formal parameter to be passed by an array
descriptor that describes contiguous arrays of atomic data types or contiguous
arrays of fixed-length strings. This attribute is illegal on parameters of schema
types.

Consider the following example:

PROCEDURE Test2(P3 : [CLASS_S] PACKED ARRAY[L..U : INTEGER] OF CHAR;
P4 : [CLASS_A] ARRAY[L2..U2 : INTEGER] OF REAL); EXTERN;

This example defines a procedure Test2, which has two parameters. The first
parameter, P3, is passed by descriptor of CLASS_S. The second parameter, P4,
is passed by a CLASS_A descriptor.

For More Information:

• On HP Pascal parameter defaults (Section 6.3)

• On CLASS_A descriptors (HP OpenVMS Calling Standard)

10.2.10 CLASS_NCA
The CLASS_NCA attribute causes a formal parameter to be passed by a
noncontiguous array descriptor. This attribute is illegal on parameters of
schema types.

Attributes 10–13

For More Information:

• On HP Pascal parameter defaults (Section 6.3)

• On CLASS_NCA descriptors (HP OpenVMS Calling Standard)

10.2.11 CLASS_S
The CLASS_S attribute causes a formal parameter to be passed by a single
descriptor form that is used for scalar data and fixed-length strings. On
OpenVMS systems, this attribute allows routines written in HP Pascal to
accept actual parameters from languages such as FORTRAN that generate
CLASS_S descriptors.

Usage and Default Information:

• In order to pass a CLASS_S string descriptor, you must use a packed
conformant array of characters.

• This attribute is illegal on parameters of schema types.

• When the packed conformant array is passed by CLASS_S descriptor, the
lower bound of the conformant schema is always 1 and the upper bound of
the conformant schema is the length of the string being passed.

Consider the following example:

PROCEDURE Print_String(String_Parm :
[CLASS_S] PACKED ARRAY[LOW..HIGH : INTEGER] OF CHAR);

BEGIN
WRITELN(’The CLASS_S string is’, String_Parm);
WRITELN(’The lowerbound is’, Low);
WRITELN(’The upperbound is’, High);

END;

The previous example defines the procedure Print_String, which has one
parameter. The CLASS_S attribute on the HP Pascal routine specifies that the
calling routine passes the String_Parm parameter by a CLASS_S descriptor.

For More Information:

• On HP Pascal parameter defaults (Section 6.3)

• On mixed-language programming (HP Pascal for OpenVMS User Manual)

• On CLASS_A and CLASS_S descriptors (HP OpenVMS Calling Standard)

10–14 Attributes

10.2.12 COMMON
The COMMON attribute specifies that storage for a variable be allocated in an
overlaid program section called a common block.

[COMMON [[(� identifier �)]]]

identifier
An identifier that indicates the name of the common block. If you omit the
identifier, the name of the variable is used as the name of the common block.

This attribute allows you to share variables with other HP languages, such as
HP Fortran.

Usage and Default Information:

• A variable having the AT, COMMON, or PSECT attribute is implicitly
static.

• The COMMON attribute can be applied only to variables.

• Only one variable can be allocated in a particular common block.
Therefore, the name of the common block cannot be used as the name
of another common block or program section.

• If an HP Pascal program shares a record variable with a FORTRAN
program, the fields must be laid out identically in both common blocks.

• Variables declared with the COMMON attribute are longword aligned by
default for compatibility with other HP languages.

For More Information:

• On default allocation for variables declared in the outermost block of a
program or in nested blocks (Section 10.2.5)

• On default allocation for variables declared in the outermost block of a
module (Section 10.2.36)

• On environment-specific information on common blocks (Appendix A)

Attributes 10–15

10.2.13 ENUMERATION_SIZE
The ENUMERATION_SIZE attribute controls the allocation size of unpacked
enumerated types and Booleans, which are considered enumerated types
containing two elements. The ENUMERATION_SIZE attribute can be used
on compilation units, TYPE sections, and VAR sections. When used before
a TYPE or VAR section, the allocation size for enumerated types is modified
only for the duration of the TYPE or VAR section. Note that specifying the
ENUMERATION_SIZE attribute overrides any value that you previously
specified with the /ENUMERATION_SIZE qualifier.

The ENUMERATION_SIZE attribute has the following format:

[ENUMERATION_SIZE(keyword)]

For example:

[ENUMERATION_SIZE(Byte))]
TYPE

enum = (red, blue, green)
enum2 = (circle, square, triangle);

Table 10–3 lists the keywords for the ENUMERATION_SIZE attributes.

Table 10–3 ENUMERATION_SIZE Attribute Keywords

Keyword Description Default on

BYTE Allocates unpacked enumerated types with
fewer than 255 elements and Booleans in
a 8-bit byte. Otherwise, the enumerated
types are allocated in a 16-bit word.

OpenVMS VAX systems

.

LONG Allocates all unpacked enumerated types
and Booleans in a 32-bit longword.

OpenVMS I64 and
OpenVMS Alpha systems

10.2.14 ENVIRONMENT
You can apply the ENVIRONMENT attribute to compilation units, which
causes the unit’s program or module-level declarations and definitions to be
saved.

ENVIRONMENT [[(name-string)]]

If the name string is omitted, the name of the source file is used as the
environment file name.

10–16 Attributes

The declarations and definitions made at the outermost level of the compilation
unit (provided they do not have the AUTOMATIC or HIDDEN attribute) are
saved in a newly created environment file. If the name string is specified, you
must include a legal file specification.

Usage and Default Information:

• There is a default file type of .PEN for environment files if a file name is
specified.

• If you do not specify a file name with the [ENVIRONMENT] attribute, then
the file name of the source file is used with a .PEN extension for the name
of the environment file. For example:

{
Module share_data.pas

}
[ENVIRONMENT]
Module Share_Data;
CONST

Rate_For_Q1 = 0.1211;
Rate_For_Q2 = 0.1156;

END.

The above module, when compiled, would result in the creation of an
environment file named "share_data.pen".

• The ENVIRONMENT attribute can not be specified on a program that
declares nonstatic types or variables of nonstatic types at the outermost
level.

• The ENVIRONMENT attribute can be specified on a module that declares
nonstatic types or variables of nonstatic types at the outermost level.

• Programs and modules can access definitions and declarations in a created
environment file by using the INHERIT attribute.

For More Information:

• On name-string syntax (Section 10.1)

• On static and nonstatic types (Section 2.9)

• On programs and modules (Section 7.4)

• On examples of separate compilation (HP Pascal for OpenVMS User
Manual)

Attributes 10–17

10.2.15 EXTERNAL
The EXTERNAL attribute indicates a variable or routine that is assumed to be
global in another independently compiled unit.

[EXTERNAL [[(
� identifier

’string-literal’

�
)]]]

identifier
Identifier passed to the linker. It is passed in uppercase. If you omit the
identifier, the name of the variable is used as the name of the common block.

string-literal
Passes the specified string-literal to the linker unmodified.

If you specify an identifier with EXTERNAL, HP Pascal supplies that name,
rather than the identifier being declared, to the linker.

Usage and Default Information:

• The names available to the linker for corresponding global and external
variables and routines must be identical.

• Global and external variables are implicitly static. Thus, they conflict with
the AUTOMATIC attribute.

• Compilation units cannot have the EXTERNAL or WEAK_EXTERNAL
attribute.

• By default, global and external routines have the characteristics of
unbound routines.

• External routines must be followed by the directive EXTERN, EXTERNAL,
or FORTRAN when they are declared.

Consider the following example:

PROGRAM Freshman_Class;

[GLOBAL(Sort_Students)]
PROCEDURE Class_List(VAR Register_List, Sorted_List : Student_Rec);
{Procedure body...}

{In another compilation unit:}
MODULE Senior_Class;

[EXTERNAL(Sort_Students)]
PROCEDURE Roll_Call(VAR Start_List, End_List : Senior_Rec); EXTERNAL;

10–18 Attributes

This example shows the global declaration of a procedure with the name
Sort_Students and an external reference to the same procedure in a different
compilation unit.

For More Information:

• On default visibility attribute information (Section 10.2.25)

• On the GLOBAL attribute (Section 10.2.17)

• On the AUTOMATIC attribute (Section 10.2.5)

• On the UNBOUND attribute (Section 10.2.39)

• On compiling and linking (HP Pascal for OpenVMS User Manual)

10.2.16 FLOAT
The FLOAT attribute selects the default format for REAL and DOUBLE data
types. The FLOAT attribute has the following format:

[FLOAT(keyword)]

You can specify the following keywords for this attribute:

• D_FLOAT yields REAL=F_FLOATING, DOUBLE=D_FLOATING

• G_FLOAT yields REAL=F_FLOATING, DOUBLE=G_FLOATING

• IEEE_FLOAT yields REAL=S_FLOATING, DOUBLE=T_FLOATING

For More Information:

• On floating-point numbers (Section 2.2)

10.2.17 GLOBAL
The GLOBAL attribute provides a strong definition of a variable or routine so
that other independently compiled units can refer to it.

[GLOBAL [[(
� identifier

’string-literal’

�
)]]]

identifier
Identifier passed to the linker. It is passed in uppercase. If you omit the
identifier, the name of the variable is used as the name of the common block.

string-literal
Literal passed, unmodified, to the linker.

Attributes 10–19

Usage and Default Information:

• You can apply the GLOBAL attribute to variables, routines, and
compilation units. When used on a MODULE, the GLOBAL attribute
changes the name of the compiler-generated TO BEGIN DO section if
present.

• Global and external variables are implicitly static. Thus, they conflict with
the AUTOMATIC attribute.

• By default, global and external routines have the characteristics of
unbound routines.

• You cannot apply the GLOBAL attribute to variables of nonstatic types.

For More Information:

• On default visibility attribute information (Section 10.2.25)

• On an example of GLOBAL and on the EXTERNAL attribute
(Section 10.2.15)

• On compiling and linking (HP Pascal for OpenVMS User Manual)

10.2.18 HIDDEN
The HIDDEN attribute prevents information concerning a constant definition
or a type, variable, procedure, or function declaration from being included in a
generated environment file. You can only use the HIDDEN attribute on objects
at the outermost level of the compilation unit.

It is possible to prevent all declarations within a declaration section from
being included in the environment file by preceding the reserved word CONST,
TYPE, or VAR with the HIDDEN attribute.

For More Information:

• On environment files (Section 10.2.14)

10.2.19 IDENT
You can use the IDENT attribute to qualify the name of a compilation unit. In
the absence of an IDENT attribute, the string ’01’ is supplied to the linker.

IDENT(name-string)

The name-string can contain additional information whose use is
implementation specific. The HP Pascal compiler uses this string to supply
identification information to the linker.

10–20 Attributes

Consider the following example:

[IDENT(’100.5’),ENVIRONMENT(’sample.pen’)] MODULE SAMPLE;

In this example, the IDENT string ’100.5’ is supplied to the linker.

For More Information:

• On name-string syntax (Section 10.1)

• On compiling and linking (HP Pascal for OpenVMS User Manual)

10.2.20 IMMEDIATE
The IMMEDIATE attribute causes a formal parameter value in a routine
declaration to be passed by immediate value. This attribute can be used on
scalar and floating-point parameters that are passed by immediate value. On
OpenVMS I64 and OpenVMS Alpha systems, the parameter must be 64 bits or
smaller. On OpenVMS VAX systems, the parameter must be 32 bits or smaller.

Note

The IMMEDIATE attribute is not allowed on formal parameters of
schema types.

For More Information:

• On default parameter passing (Section 6.3)

• On an example of IMMEDIATE and on the REFERENCE attribute
(Section 10.2.35)

10.2.21 INHERIT
The INHERIT attribute indicates the environment file or files to be inherited
by a compilation unit. The environment files specified by the INHERIT
attribute must already have been created in compilation units (by either the
ENVIRONMENT attribute or a compilation switch).

The compilation unit inherits one or more environment files named by the file
specifications in the name strings.

INHERIT({name-string},...)

Attributes 10–21

Usage and Default Information:
There is a default file type of .PEN for inherited environment files.

For example:

{
Program inherit_example.pas

}
[INHERIT (’share_data’)]
Program inherit_example(output);
CONST

My_Rate = Rate_For_Q1*2.0;
BEGIN

Writeln(My_Rate)
END.

When the preceding program is compiled, the compiler first attempts to open
the file ’share_data’ as an environment file. If ’share_data’ is not found the
compiler attempts to open ’share_data.pen’ as an environment file. If ’share_
data.pen’ is not found an error message is issued and the compilation is
stopped.

For More Information:

• On programs and modules (Section 7.4)

• On compilation switches and separate compilation (HP Pascal for
OpenVMS User Manual)

10.2.22 INITIALIZE
You can apply the INITIALIZE attribute to procedures to indicate that the
procedure is to be called before the main program is entered. A compilation
unit might include any number of INITIALIZE procedures, all of which are
called in an unspecified order before the main program is entered.

Usage and Default Information:

• In the absence of the INITIALIZE attribute, the compiler assumes that a
routine can be activated only by actual calls within the program.

• Within modules, you should use the TO BEGIN DO section instead of the
INITIALIZE attribute. All TO BEGIN DO clauses are executed before
INITIALIZE routines.

• By default, INITIALIZE procedures have the characteristics of unbound
routines.

• An INITIALIZE procedure cannot have a formal parameter list.

10–22 Attributes

• An INITIALIZE procedure cannot be external.

Consider the following example:

PROGRAM Routine_Activate;

[INITIALIZE] PROCEDURE Check_Open; {Procedure body...}

{In the executable section:}
BEGIN {HP Pascal activates Check_Open}

{Body of program...}

In this example, the body of the INITIALIZE procedure Check_Open is
executed before the main program is activated.

For More Information:

• On procedures (Section 6.1)

• On the UNBOUND attribute (Section 10.2.39)

10.2.23 KEY
You can apply the KEY attribute to record fields to indicate that the field is to
be used as a key field when the record is part of an indexed file.

KEY [[(
� n [[, {options},...]]

{options},...

�
)]]

n
The parameter n represents the key number. A key number of 0 indicates
that the field is the primary key of the record. All other key numbers indicate
alternate keys. The key number must be a constant expression that denotes an
integer value in the range from 0 through 254.

options
The options parameter lets you specify certain characteristics of the record key
by listing the desired options on the KEY attribute.

Table 10–4 lists the possible KEY attribute options.

Attributes 10–23

Table 10–4 KEY Attribute Options

Option Action Negation

ASCENDING Specifies an ascending collating
sequence

DESCENDING

CHANGES Specifies that changes can be
performed on the key

NOCHANGES

DUPLICATES Specifies that duplicates of the key
are allowed

NODUPLICATES

Usage and Default Information:

• If you omit the key number, the default value is 0.

• By default, the primary key is ASCENDING, NOCHANGES, and
NODUPLICATES. It is possible to override these defaults, with the
exception of the NOCHANGES option. It is illegal to specify CHANGES on
the primary key.

• The default for an alternate key is ASCENDING, CHANGES, and
DUPLICATES.

• When you create a new indexed file with more than one key field, you
cannot omit any key numbers in the range from 0 through the highest key
number specified.

• The KEY attribute is ignored except when the record is a component of a
file.

• A key field can be of any ordinal type or of type PACKED ARRAY OF
CHAR. If the key field is of type PACKED ARRAY OF CHAR, its length
cannot exceed 255 characters.

• The KEY attribute does not affect type compatibility rules.

• A key field cannot be unaligned.

• A key field of an ordinal type must be allocated in exactly one byte, one
word, one longword, or one quadword. (Key fields can be allocated in a
quadword only on OpenVMS I64 and Alpha systems.)

• An integer key field that is allocated one byte cannot have negative values.

10–24 Attributes

Consider the following example:

TYPE
Register = RECORD

Student_No : [KEY(0, DESCENDING)] INTEGER;
Student_Name : RECORD

Last_Name : PACKED ARRAY[1..20] OF CHAR;
First_Name : PACKED ARRAY[1..15] OF CHAR;
Initial : CHAR;
END;

Course_Load : INTEGER;
Grade_Average : REAL;
Class : [KEY(1)] PACKED ARRAY[1..9] OF CHAR;
END;

This example defines the identifier Register to denote a record type. The first
field, Student_No is the primary key of the record. It has been defined as a
DESCENDING, NOCHANGES, and NODUPLICATES key. Register contains
another field, Class, which is established as the alternate ASCENDING,
CHANGES, and DUPLICATES key.

For More Information:

• On indexed files (Section 9.1.3)

• On the UNALIGNED attribute (Section 10.2.38)

10.2.24 LIST
You can apply the LIST attribute to a formal parameter of a routine and
indicates that the routine can be called with multiple actual parameters that
correspond to the last formal parameter named in the routine heading.

You can also use the ARGUMENT and ARGUMENT_LIST_LENGTH
predeclared routines when writing procedures and functions that use the
LIST attribute.

Usage and Default Information:

• In the absence of a LIST attribute, an error results if the number of actual
parameters exceeds the number of formal parameters.

• You can apply the LIST attribute only to the last formal parameter in a
parameter list.

• You can supply zero, one, or more than one actual parameter to correspond
to a LIST formal parameter, but you must use positional syntax when
supplying them. The number of actual parameters you can supply is
limited to 255.

Attributes 10–25

• You can use the LIST attribute on the parameter list of a routine
parameter, but you must use positional syntax when specifying them.
Using the LIST attribute on routine parameters is allowed only on external
routines.

• You can use the LIST attribute on conformant parameters to indicate
that an external routine can take an arbitrary number of arrays or
VARYING OF CHAR parameters, respectively. Using the LIST attribute on
conformant parameters is allowed only on external routines.

• All actual parameters that correspond to a LIST formal parameter must be
compatible or congruent with the type of the formal parameter.

• For formal and actual parameter lists of routine parameters to be
congruent, the actual routine parameter and the corresponding formal
routine parameter must either both have the LIST attribute or both lack
the LIST attribute. Consider the following example:

PROCEDURE Foo(PROCEDURE q(x : [LIST] CHAR));

This defines the routine Foo with the formal routine parameter q that
defines the formal list parameter x. Consider the following example:

PROCEDURE Bar(x : [LIST] CHAR);

This defines Bar to have a formal list parameter x. Consider this call to
Foo:

Foo(Bar);

This calls Foo passing the actual routine parameter Bar. The formal
parameters of q and Bar contain the LIST attribute, so this is a legal call.

For example, the function Average demonstrates the use of the LIST attribute,
which allows any number of like expressions to be passed to a function:

10–26 Attributes

PROGRAM Use_List(OUTPUT);
FUNCTION Average (P: [list] INTEGER): REAL;

VAR
SUM: REAL VALUE 0.0;
I: INTEGER;

BEGIN
FOR I:= 1 TO ARGUMENT_LIST_LENGTH(P) DO
SUM:= SUM + ARGUMENT (P,I);

AVERAGE:= SUM/ARGUMENT_LIST_LENGTH(P);
END;

BEGIN
WRITELN(AVERAGE(3,6,9),AVERAGE(10,3,4,17));
END.

For More Information:

• On the ARGUMENT function (Section 8.7)

• On the ARGUMENT_LIST_LENGTH function (Section 8.8)

• On type compatibility (Section 2.10)

10.2.25 LOCAL
The LOCAL attribute indicates that an object is unavailable to other
independently compiled units.

Usage and Default Information:

• By default, all variables and routines are local.

• Variables with any visibility attribute other than LOCAL are implicitly
static.

• Routines with any visibility attribute other than LOCAL cannot refer to
automatic variables declared in enclosing blocks and can call only those
routines that are local, predeclared, or unbound. (By default, routines
declared at program or module level have the characteristics of unbound
routines.)

For More Information:

• On the AUTOMATIC attribute (Section 10.2.5)

• On static and nonstatic types (Section 10.2.36)

• On the UNBOUND attribute (Section 10.2.39)

Attributes 10–27

10.2.26 LONG
The LONG attribute specifies the amount of storage in longwords to be received
by the object.

LONG [[(n)]]

The optional constant n indicates the number of longword storage units.

Consider the following example:

PROGRAM Size;
TYPE

Status = [LONG] BOOLEAN;
VAR

Return_Status : Status;

FUNCTION Example(Param1, Param2 : INTEGER) : Status; EXTERNAL;
{Function body...}

The program Size defines a BOOLEAN type Status and declares a variable
Return_Status of this type. So, the result type of the function is declared to
have a size of one longword. The machine code that references the result type
can not copy the entire longword, however, if the default size for a Boolean is
less than a longword.

For More Information:

• On allocation sizes of objects (Section A.2.4)

• On size allocation restriction (Section 10.2.6)

• ACCURATE (Default)

• FAST

10.2.27 NOOPTIMIZE
The NOOPTIMIZE attribute prohibits the compiler from optimizing code for
the compilation unit or routine. The NOOPTIMIZE attribute can only be
applied to routines on OpenVMS VAX systems.

On OpenVMS VAX systems, the NOOPTIMIZE attribute guarantees left-
to-right evaluation order with full evaluation of both operands of the AND
and OR Boolean operators to aid in diagnosing all potential programming
errors. On OpenVMS I64 and OpenVMS Alpha systems, NOOPTIMIZE only
guarantees full evaluation.

If you wish to have short circuit evaluation even with the NOOPTIMIZE
attribute, then use the AND_THEN and OR_ELSE Boolean operators.

10–28 Attributes

For More Information:

• On the OPTIMIZE attribute (Section 10.2.29)

• On the AND_THEN and OR_ELSE logical operators (Section 4.2.3)

10.2.28 OCTA
The OCTA attribute specifies the amount of storage in octawords to be received
by the object.

OCTA [[(n)]]

The optional constant n indicates the number of octaword storage units.

For More Information:

• On allocation sizes of objects (Section A.2.4)

• On size allocation restriction (Section 10.2.6)

10.2.29 OPTIMIZE
The OPTIMIZE attribute specifies optimization options that are to be enabled
during compilation of a compilation unit or routine.

OPTIMIZE [[({identifier},...)]]

The options listed with the OPTIMIZE attribute are enabled. The negation
of an option disables that optimization. The valid options are ALL, NONE,
INLINE, NOINLINE. Table 10–5 lists the options.

Attributes 10–29

Table 10–5 OPTIMIZE Attribute Options

Option Action

[OPTIMIZE],
[OPTIMIZE(ALL)]

Enables all optimization components. Inline
expansion of user-defined routines is enabled
in automatic selection mode.

[OPTIMIZE(NOINLINE)] Disables inline expansion for user-defined
routines. All other optimization components
are enabled or disabled according to
the command line or the setting of the
OPTIMIZE attribute on an enclosing scope
routine.

[OPTIMIZE(INLINE)] Enables preferential inline expansion of
user-defined routines. All other optimization
components are enabled/disabled according
to the command line on an enclosing scope
routine.

[OPTIMIZE(ALL,NOINLINE)] Enables all optimization components,
disables inline expansion for user-defined
routines.

[OPTIMIZE(NONE,INLINE)] Disables all optimization components,
enables inline expansion of user-defined
routines.

[NOOPTIMIZE],[OPTIMIZE(NONE)] Disables all optimization components,
disables inline expansion of user-defined
routines.

Usage and Default Information:

• This attribute can be applied to routines and compilation units.

• Optimization features specified with the OPTIMIZE attribute override
command-line settings and settings inherited from outer scopes.

• The INLINE option specifies that a routine should be inlined preferentially,
regardless of the results of heuristics that are normally used to
automatically determine if a routine is to be inlined. There are cases
where a routine that is marked as INLINE preferred will not be inline
expanded, such as routines that have formal parameters of nonstatic types,
or that declare or access nonstatic types.

• If no OPTIMIZE attribute is specified for a routine in a nested scope, the
OPTIMIZE attribute settings from the enclosing routine are used.

10–30 Attributes

Usage and Default Information on OpenVMS I64 and OpenVMS Alpha
systems only:

• If the OPTIMIZE attribute is used on a routine on OpenVMS I64 or
OpenVMS Alpha systems, only the INLINE and NOINLINE keywords
are processed. The other forms of the OPTIMIZE attribute are parsed,
but perform no function. You cannot modifiy the optimization settings of
individual routines on these systems.

Usage and Default Information on OpenVMS VAX systems only:

• On OpenVMS VAX systems, if an explicit OPTIMIZE(INLINE) attribute
exists on a routine declaration, the compiler checks for anything that
prohibits inline expansion of the routine, such as it being an external
routine. However, the compiler does not check the call environment, such
as the size of the calling and called routine. Instead, if it is legal to expand
the routine, it always expands the code regardless of the call environment.
This gives you more control over the decision to inline a routine.

• On OpenVMS VAX systems, HP Pascal does not inline routines that have
formal parameters of nonstatic types, or that declare or access objects of
nonstatic types.

For More Information:

• On the NOOPTIMIZE attribute (Section 10.2.27)

• On the rules for routine inlining (HP Pascal for OpenVMS User Manual)

10.2.30 PEN_CHECKING_STYLE Attribute
HP Pascal in cooperation with the OpenVMS Linker performs compile-time
and link-time checks to ensure that all compilations that inherit environment
files actually used the same environment file definition. Information is placed
in the object file such that the OpenVMS Linker will perform the same check
between each object file that inherited environment files.

By default, compilation units that inherit an environment file compare the
embedded compilation time inside the environment file against uses found in
any other environment files that are also inherited. If the times are different,
a compile-time message is displayed. This happens on all systems.

This checking can be disabled or modified by using the PEN_CHECKING_
STYLE attribute in the Pascal source file that created the environment file.
Once the environment file exists, its selected checking style will be performed
at each use.

Attributes 10–31

The PEN_CHECKING_STYLE attribute is valid at the beginning of a
MODULE that creates an environment. The syntax is:

PEN_CHECKING_STYLE(keyword)

In this syntax, keyword is:

• COMPILATION_TIME

Uses the compilation time of the environment file in all subsequent
compile-time checking for users of this environment file. This is the
default.

• IDENT_STRING

Uses the [IDENT()] string of the environment file in all subsequent
compile-time checking for users of this environment file.

• NONE

Disables all compile-time checking for users of this environment file.

10.2.31 POS
The POS attribute forces the field to a specific bit position within the record.

POS(n)

n
The constant expression n specifies the bit location, relative to the beginning of
the record, at which the field begins.

Usage and Default Information:

• You can apply the POS attribute to a field of a packed or an unpacked
record.

• The constant expression n cannot denote a negative integer.

• The beginning position of a field must be greater than the ending position
of the field preceding it.

• The POS attribute cannot be used on a field that follows (not necessarily
immediately) a field whose type has run-time size and is nonstatic.

• Inside a record variant, the beginning position of a field must be greater
than the ending position of the preceding field within the same variant.
The variants themselves can overlap.

• A field whose allocation size is greater than 32 bits must be positioned
according to the allocation size rules for the platform.

10–32 Attributes

• A record variable containing a field of a file type cannot include a POS
attribute for any field.

• The specified bit position must not conflict with the alignment explicitly
required by an alignment attribute.

• Two record types in which corresponding fields are not identically
positioned are neither assignment compatible nor structurally compatible.

Consider the following example:

TYPE
Control = RECORD

Flag_1 : [BIT, POS(0)] BOOLEAN;
Flag_2 : [BIT, POS(1)] BOOLEAN;
Count : [BYTE, ALIGNED] 0..100;
Error : [BIT, POS(31)] BOOLEAN;
END;

This example uses the POS attribute to position the fields of an unpacked
record such that Flag_1 occupies bit 0, Flag_2 occupies bit 1, and Error
occupies bit 31. Because the Count field has size and alignment attributes,
it is allocated one byte of storage and is aligned on the byte boundary following
Flag_2; that is, storage for Count occupies bits 8 through 15. Bits 2 through 7
and 16 through 30 are left empty; you cannot refer to them.

For More Information:

• On allocation sizes of objects (Section A.2.4)

• On alignment boundaries in packed and unpacked records (Section A.2.7)

• On static and nonstatic types (Section 2.9)

• On type compatibility (Section 2.10)

10.2.32 PSECT
The PSECT attribute is useful for placing static variables and executable
blocks in program sections that are shared among executable images.

[PSECT [[(� identifier �)]]]

Attributes 10–33

identifier
Identifier passed designating the program section in which storage for a
variable, routine, or compilation is to be allocated. If you omit the identifier,
the name of the variable is used as the name of the program section.

Usage and Default Information:

• A variable having the AT, COMMON, or PSECT attribute is implicitly
static.

• PSECT is the only allocation attribute that can be applied to routines and
compilation units.

For More Information:

• On default allocation for variables declared in the outermost block of a
program or in nested blocks (Section 10.2.5)

• On default allocation for variables declared in the outermost block of a
module (Section 10.2.36)

• On program sections (Appendix A)

10.2.33 QUAD
The QUAD attribute specifies the amount of storage in quadwords to be
received by the object.

QUAD [[(n)]]

The optional constant n indicates the number of quadword storage units.

For More Information:

• On storage allocation for objects (Section A.2.5)

• On default sizes of objects (Section A.2.4)

• On size allocation restriction (Section 10.2.6)

10.2.34 READONLY
The READONLY attribute specifies that an object can be read by a program
but it cannot have values assigned to it.

10–34 Attributes

Usage and Default Information:

• You can apply this attribute to variables, formal parameters, the base types
of pointer variables, and components of structured variables.

• By default, an object can be both read and written.

• No value of any type is assignment compatible with a read-only object.

• The presence of a read-only component in an object of a structured type
prohibits the object from having values assigned to it.

• You can only pass a read-only actual VAR parameter to a read-only formal
VAR parameter.

• A pointer expression whose base type is read-only is assignment compatible
only with a pointer variable whose base type is also read-only.

Consider the following example:

TYPE
t = RECORD

i : INTEGER;
END;

P_Read_Only = ^ [READONLY] t;
VAR

Pro : P_Read_Only;
Prw : ^ T;

PROCEDURE q(p : P_Read_Only);
VAR

x : INTEGER;
BEGIN
x := p^.i;
{More statements...}
END;

{In the executable section:}
NEW(Pro):
NEW(Prw);
Q(Pro);
Q(Prw);
Prw^.I := 0;

This example shows the declaration of two pointer variables, Pro and Prw, and
the calls to NEW that create the dynamic variables Pro^ and Prw^. The type
of the formal parameter p requires that a corresponding actual parameter have
read access; therefore, both Pro and Prw can legally be passed to Q as actual
parameters. Because P is a READONLY parameter, the value of the dynamic
variable P^ (which corresponds to either Pro^ or Prw^) can be assigned to a

Attributes 10–35

variable, as shown in the assignment statement in the body of Q. However,
only Prw^ can have values assigned to it, as shown in the last statement.

For More Information:

• On the NEW procedure (Section 8.60)

• On parameters (Section 6.3)

• On type compatibility (Section 2.10)

10.2.35 REFERENCE
The REFERENCE attribute causes the formal parameter value in a routine to
be passed by reference using foreign semantics.

Usage and Default Information:

• The REFERENCE attribute is not allowed on formal parameters of schema
types.

Consider the following example:

PROCEDURE Test1(P1 : [REFERENCE] INTEGER;
P2 : [IMMEDIATE] INTEGER); EXTERNAL;

This example defines a procedure, Test1, which has two parameters. The first
parameter, P1, is passed by reference. The second parameter, P2, is passed by
immediate value.

For More Information:

• On default parameter passing (Section 6.3)

• On the IMMEDIATE attribute (Section 10.2.20)

10.2.36 STATIC
The STATIC attribute causes HP Pascal to create a static object, which is
allocated only once and exists as long as the executable image in which it is
allocated remains active.

Usage and Default Information:

• You can override the default (automatic) for variables declared in nested
blocks or in the outermost level of compilation units by specifying the
STATIC attribute on the variable.

• By default, variables declared at the outermost level of a module are static.

10–36 Attributes

• Global and external variables are implicitly static so they conflict with the
AUTOMATIC attribute.

• A variable having the AT, COMMON, or PSECT attribute is implicitly
static.

• Allocation attributes can not be applied to nonstatic types.

Consider the following example:

PROGRAM Print_Random(OUTPUT);

VAR
i : [AUTOMATIC] INTEGER;

FUNCTION Random : INTEGER;
VAR

x : [STATIC] INTEGER VALUE 15;
BEGIN
x := ((9 * x) + 7) MOD 11;
Random := x;
END;

{In the executable section:}
FOR i := 1 TO 20 DO

WRITELN(Random);
END.

The program Print_Random includes a function that generates a random
integer. Because the variable x is declared STATIC, its value is preserved from
one activation of the function to the next. By default, the storage for x would
have been deallocated when control returned to the main program. Because
x is static, it retains the value it had when Random ended and assumes this
value the next time Random is called. In the program Print_Random, the
program-level variable i is declared AUTOMATIC.

For More Information:

• On the AUTOMATIC attribute (Section 10.2.5)

• On allocation attributes (Section 10.3)

• On default storage of objects (Section A.3)

10.2.37 TRUNCATE
The TRUNCATE attribute indicates that an actual parameter list for a routine
can be truncated at the point that the attribute was specified. You can use
TRUNCATE with the PRESENT function.

Attributes 10–37

Usage and Default Information:
The examples in this list are based on this PROCEDURE declaration from
Example 10–1, which shows the use of the TRUNCATE attribute with default
values:

PROCEDURE p(a : [TRUNCATE] CHAR := ’a’;
b : CHAR := ’b’;
c : [TRUNCATE] CHAR := ’c’;
d : CHAR := ’d’);

• You can specify the TRUNCATE attribute on a formal parameter in a
routine declaration.

• If a parameter with the TRUNCATE attribute is present in the actual
parameter list (explicitly with a null actual parameter, or by being
skipped over by a nonpositional actual parameter), then the list is not
truncated at the TRUNCATE parameter. All parameters (including the
current TRUNCATE parameter) up to the next parameter that specifies
TRUNCATE must be present or have a default value. The first parameter
is present in this call from Example 10–1 so the list is not truncated at the
first parameter. The second parameter has a default value so it is included
in the result. The third parameter, however, is not present in the actual
parameter list so the parameter list is truncated:

p(); { DEFAULT a AND b--TRUNCATE AT c "ab" }

• If a parameter with the TRUNCATE attribute is present by default, the
list is not truncated at that point. In this line of code from Example 10–1,
the first, second, and third parameters are present by default. Because the
third parameter is present, the parameter list is not truncated and all four
parameters are present in the result.

p(,,); { DEFAULT a, b, c AND d "abcd" }

• You can specify actual parameters either positionally or nonpositionally; it
is the order in the formal parameter list that is used to determine where
the list has been truncated and which parameters are required. Because c,
the third parameter, is present in the actual list, the parameter list is not
truncated.

p(c := y); { DEFAULT a, b AND d "abyd" }

• If a parameter is positioned after the TRUNCATE parameter in the formal
parameter list and is present (explicitly with a null actual parameter or
by being skipped over by a nonpositional actual parameter), then the list
is not truncated at the TRUNCATE parameter. Any parameters after the
TRUNCATE parameter must be present or have a default value.

10–38 Attributes

In Example 10–1, each call to procedure p in the main body of the program has
a comment that shows the expected parameter list behavior and the expected
output. The parameter list is truncated at either parameter a or parameter c.

If parameters b and d did not have default values, the call p(w) or p(w, x, y)
would be illegal because the list cannot be truncated at the second or fourth
positions.

Attributes 10–39

Example 10–1 Using the TRUNCATE Attribute

PROGRAM Trunc(OUTPUT);
VAR

w : CHAR VALUE ’w’;
x : CHAR VALUE ’x’;
y : CHAR VALUE ’y’;
z : CHAR VALUE ’z’;

PROCEDURE p(a : [TRUNCATE] CHAR := ’a’;
b : CHAR := ’b’;
c : [TRUNCATE] CHAR := ’c’;
d : CHAR := ’d’);

BEGIN
IF PRESENT(a) THEN WRITE(a);
IF PRESENT(b) THEN WRITE(b);
IF PRESENT(c) THEN WRITE(c);
IF PRESENT(d) THEN WRITE(d);
WRITELN;
END;

{In the executable section:}
{ CALL LIST RESULT }
p; { NO PARAMETERS--TRUNCATE AT a "" }
p(); { DEFAULT a AND b--TRUNCATE AT c "ab" }
p(,); { DEFAULT a AND b--TRUNCATE AT c "ab" }
p(,,); { DEFAULT a, b, c AND d "abcd" }
p(,,,); { DEFAULT a, b, c AND d "abcd" }
p(w); { DEFAULT b--TRUNCATE AT c "wb" }
p(w, x); { TRUNCATE AT c "wx" }
p(w, x, y); { DEFAULT d "wxyd" }
p(w, x, y, z); { NO DEFAULTS "wxyz" }
p(a := w); { DEFAULT b--TRUNCATE AT c "wb" }
p(b := x); { DEFAULT a--TRUNCATE AT c "ax" }
p(c := y); { DEFAULT a, b AND d "abyd" }
p(d := z); { DEFAULT a, b AND c "abcz" }

For More Information:

• On the PRESENT function (Section 8.71)

• On parameters (Section 6.3)

10–40 Attributes

10.2.38 UNALIGNED
The UNALIGNED attribute specifies that an object can be aligned on any bit
boundary.

Usage and Default Information:

• Alignment attributes are illegal on nonstatic types, components of files, and
on VARYING OF CHAR strings.

• An unaligned variable must have an allocation size that conforms to the
rules for the platform.

• A formal parameter cannot be unaligned so an unaligned variable cannot
be passed to a formal variable parameter.

• The base type of a pointer variable passed to the NEW procedure cannot
have alignment greater than a quadword, nor can it be unaligned.

For More Information:

• On allocation size attributes (Section 10.3)

• On HP Pascal alignment rules (Section A.2.7)

• On allocation sizes of objects (Section A.2.4)

10.2.39 UNBOUND
The UNBOUND attribute specifies that a routine does not access automatic
variables outside the scope in which it is declared. That is, the bound
procedure value of an unbound routine does not include the static scope
pointer.

Usage and Default Information:

• You can apply this attribute to routines and formal routine parameters.

• In the absence of an UNBOUND attribute, the compiler assumes that the
bound procedure value of a routine includes the static scope pointer.

• By default, all predeclared routines and all routines declared at program or
module level have the characteristics of unbound routines. All routines
declared in nested blocks are considered bound unless they have an
UNBOUND, GLOBAL, WEAK_GLOBAL, or INITIALIZE attribute.

• All routines called from within the block of an unbound routine must be
local to the unbound routine, or be unbound, whether by default or by an
explicit attribute.

Attributes 10–41

• Nonlocal variables accessed from within the block of an unbound routine
cannot have automatic allocation.

• If a formal routine parameter is unbound, all actual routine parameters
passed to it must also be unbound.

• You can pass an unbound routine as an actual parameter to a formal
routine parameter that is not unbound.

Consider the following example:

[EXTERNAL] FUNCTION f([IMMEDIATE, UNBOUND] PROCEDURE Count)
: BOOLEAN; EXTERNAL;

PROCEDURE a;
VAR

i : [STATIC] INTEGER;
b : BOOLEAN;

[UNBOUND] PROCEDURE p;
BEGIN
i := i + 1;
{Additional statements...}
END;

b := f(p);
END;

This example shows the declaration of the unbound procedure p and the
unbound formal procedure parameter Count. The executable section of p
cannot access variables declared in the enclosing block of procedure a unless
those variables are statically allocated. Procedure p can access the variable i,
which is declared with the STATIC attribute, but it cannot access the variable
b that is automatically allocated. Because the formal parameter Count is
unbound, only other unbound routines (such as p) can be passed to function f
as actual parameters. Count must be declared UNBOUND because it is passed
by immediate value.

For More Information:

• On the AUTOMATIC attribute (Section 10.2.5)

• On parameters (Section 6.3)

10.2.40 UNSAFE
The UNSAFE attribute indicates that an object can accept values of any type
without type checking. The exact properties of an unsafe object depend on the
object’s machine representation.

10–42 Attributes

Usage and Default Information:

• You can apply this attribute to variables, formal parameters, formal
discriminants, the base types of pointer variables, components of structured
variables, function results, and the types of other data items listed in
Table 10–9.

• A conformant VARYING parameter or a formal schema parameter cannot
be declared UNSAFE.

• UNSAFE is the only attribute allowed on schema formal discriminants.

• An expression of any type is assignment compatible with an unsafe
object. However, neither the expression nor the object can contain a
file component. If the machine representations of the expression and the
unsafe object differ, the compiler forces them to have the same number of
bits by modifying the value of the expression as follows:

Assignment to a variable with the UNSAFE attribute causes the value
of the right-hand side to be truncated or zero-extended to the bit size of
the left-hand variable. Note this can not always be its natural bit size;
for example, if the variable you are assigning a value to was declared
with an explicit size attribute. If that value is the legal value of the
left-hand type, then the assignment occurs; otherwise, the variable is
undefined.

The UNSAFE attribute has no effect on variable fetches.

Consider the following example:

v : [LONG, UNSAFE] (aa, bb, cc);

As an enumeration of less than 256 elements, its natural size can be
less than a longword. Because of the LONG attribute, it is allocated
a longword in memory. However, fetches from the variable might be
smaller because the explicit size attribute has no effect on any fetches.
Assignments correctly assign the natural size portion of V, but the contents
of the extra bits are zero-extended at the assignment.

• A pointer expression is assignment compatible with a pointer variable
whose base type is unsafe only if the base types have the same allocation
size and if they have compatible alignment, READONLY, VOLATILE, and
WRITEONLY attributes.

• You can pass an actual parameter variable to an unsafe formal VAR
parameter if the types have the same allocation size and if they have
compatible alignment, READONLY, VOLATILE, and WRITEONLY
attributes.

Attributes 10–43

• When a formal parameter is an unsafe conformant array, the HP Pascal
compiler must be able to establish bounds for the corresponding actual
parameter that exactly describe the amount of storage the parameter
occupies. If the conformant array is one-dimensional, the actual parameter
need not be an array. The compiler constructs the bounds of the formal
array so that the actual parameter and the formal array have the same
size.

For this construction to be possible, the size of the actual parameter
must be an exact multiple of the size of the formal array component. The
compiler chooses the low bound of the formal parameter’s index to be
the smallest possible value of the index type. If the formal conformant
parameter is a multidimensional array with n dimensions, the actual
parameter must be an array having no fewer than n �1 dimensions. The
first n �1 dimensions of the two arrays will have identical array bounds.
The compiler chooses bounds for the last dimension of the conformant
array so that the conformant as a whole describes the exact size of the
actual parameter.

HP Pascal allows you to pass an actual parameter of a schema type to the
an unsafe conformant array; however, because HP Pascal cannot determine
the size of the actual parameter until run time, you must be sure that
the actual parameter is an exact multiple of the size of the formal array
component.

Consider the following example:

PROGRAM Output_Buffer(Data_File);
TYPE

Natural = 0..MAXINT;
VAR

Data_File : FILE OF ARRAY[0..511] OF CHAR;
Int_Array : ARRAY[0..1023] OF INTEGER;
A_String : VARYING[2048] OF CHAR;
Chr_Array : ARRAY[0..4095] OF CHAR;
Status : BOOLEAN;

10–44 Attributes

FUNCTION Put_Buf(VAR Buffer :
[UNSAFE] ARRAY[a..b : Natural] OF CHAR)

: BOOLEAN;
VAR

Cur : [STATIC] INTEGER VALUE 0;
i : INTEGER;

BEGIN
FOR i := a TO b DO

BEGIN
Data_File^[Cur] := Buffer[i];
Cur := Cur + 1;
IF Cur > 511 THEN

BEGIN
PUT(Data_File);
Cur := 0;
END;

END;
Put_Buf := (Cur = 0);
END;

{In the executable section:}
Status := Put_Buf(Int_Array);
Status := Put_Buf(A_String);
Status := Put_Buf(Chr_Array);

The function Put_Buf assigns successive components of the conformant array
parameter to the file buffer variable of Data_File. If Data_File^ is filled, the
function returns TRUE; otherwise, it returns FALSE.

The program issues three calls to Put_Buf. In the first and second calls, the
actual parameters are not of the same type as the formal parameter Buffer.
However, because Buffer has the UNSAFE attribute, it accepts an actual
parameter of any type and treats it as though it were an array of characters.
The third call to Put_Buf passes an actual parameter of the same type as the
formal parameter.

For More Information:

• On type compatibility (Section 2.10)

• On machine representation of data (Section A.3)

10.2.41 VALUE
The VALUE attribute causes the variable to be a reference to an external
constant or to be the defining point of a global constant.

Attributes 10–45

Usage and Default Information:

• You can only use the VALUE attribute on a variable that has the
EXTERNAL or GLOBAL attribute.

• A value variable with global visibility must be initialized in the VAR,
TYPE, or VALUE declaration sections.

• You cannot apply the VALUE attribute to variables larger than 64 bits on
OpenVMS I64 and OpenVMS Alpha systems or 32 bits on OpenVMS VAX
systems.

• The VALUE attribute is legal only on ordinal or real types.

• The VALUE attribute causes the READONLY attribute to be placed on the
variable.

In this example, the linker resolves the reference to CLI$_PRESENT; the
example writes the decimal value to OUTPUT. The example also defines a
global symbol with the name My_Global and with a value of 1985.

PROGRAM Value_Test(OUTPUT);
VAR

CLI$_PRESENT : [VALUE, EXTERNAL] INTEGER;
My_Global : [VALUE, GLOBAL] INTEGER VALUE 1985;

{In the executable section:}
WRITELN(’The value is’, CLI$_PRESENT);

For More Information:

• On the EXTERNAL attribute (Section 10.2.15)

• On the GLOBAL attribute (Section 10.2.17)

• On the READONLY attribute (Section 10.2.34)

10.2.42 VOLATILE
The VOLATILE attribute indicates to the compiler that the value of an object
is subject to change at unusual points in program execution. Normally, during
execution, an object’s value changes only under the following circumstances:

• When another value is assigned to it

• When it is passed as a writable VAR parameter

• When it is read into by a READ, READLN, or READV procedure

• When it is used as the control variable of a FOR loop

10–46 Attributes

In addition, the compiler expects to evaluate the object only when it appears in
an expression.

The value of a volatile object can change as the result of an action not
directly specified in the program. Thus, the compiler assumes that the
value of a volatile object can be changed or evaluated at any time during
program execution. Consequently, a volatile object does not participate in any
optimization based on assumptions about its value.

The behavior of many device registers, and modifications by asynchronous
processes and exception handlers, are two examples that demonstrate volatile
behavior.

Usage and Default Information:
See Table 10–6, which also summarizes combinations of volatile and
nonvolatile parameters and variables accepted by the compiler.

• You can apply this attribute to variables, formal parameters, the base
types of pointer variables, components of structured variables, and function
results.

• By default, objects are not volatile.

• An object of a structured type that has a volatile component is volatile as a
whole. However, the presence of a volatile component does not make other
components of the same variable volatile.

• The presence of the VOLATILE attribute guarantees that operations are
performed on scalar objects in an atomic fashion. Because operations on
structured objects can require many more instructions, the use of the
VOLATILE attribute on an object of a structured type can not produce the
expected results, if the data is accessed asynchronously.

• A volatile variable is structurally compatible only with a formal variable
parameter that is volatile. The compiler does not allow a volatile variable
to be passed to a nonvolatile formal VAR parameter because the called
routine did not guarantee that it could handle volatile parameters.

• Formal VAR parameters with the VOLATILE attribute can accept both
volatile and nonvolatile actual parameters; treating a nonvolatile variable
as volatile never produces the wrong answer.

• A pointer expression whose base type is volatile is assignment compatible
only with a pointer variable whose base type is volatile.

• Two pointer types are structurally compatible only if their base types have
identical volatility.

Attributes 10–47

• On OpenVMS I64 and OpenVMS Alpha systems, the VOLATILE attribute
ensures true atomic accesses for bytes, aligned words, aligned longwords,
and aligned quadwords. For unaligned words, unaligned longwords, or
unaligned quadwords that are marked VOLATILE, the compiler will issue
a warning message indicating that the resulting code sequence is not an
atomic sequence and contains a timing window where incorrect results can
occur if an asychronous thread writes to the unaligned volatile storage.

See the HP Pascal for OpenVMS User Manual for information on how to
enable/disable the message.

VOLATILE accesses of items larger than 64 bits (strings, entire records,
entire arrays, and other such items) have never been atomic in nature and
are not flagged by the compiler. The VOLATILE attribute ensures atomic
access for all objects 32 bits or less.

Table 10–6 Allowed Combinations of Volatile and Nonvolatile Parameters

Actual
Formal Parameter

Parameter VAR VAR [VOLATILE] [VOLATILE]

Volatile No Yes Yes

Nonvolatile Yes Yes Yes

Consider the following example:

VAR
x : CHAR;
a : [VOLATILE] RECORD

CASE BOOLEAN OF
FALSE : (i : INTEGER);
TRUE : (c : CHAR);

END;
{In the executable section:}
a.c := ’A’; {TRUE becomes the current variant}
a.i := 66; {Assignment makes FALSE the current variant}
x := a.c; {TRUE is again the current variant;

X is assigned the value ’B’, which
has an ordinal value of 66}

As the comments in this example show, a reference to one field identifier
causes the corresponding variant to become the current variant. In addition,
each reference immediately causes the other variant to become undefined. So,
when the assignment a.i := 66 is made, the reference to a.i causes FALSE to
become the current variant and a.c to become undefined. As a result of the
statement x := a.c, the value last assigned to the variant is assigned to x.

10–48 Attributes

Ordinarily the compiler could assume that a.c had retained the value ’A’,
because no further assignments had been made directly to a.c. However, the
value of a.c changed unexpectedly through the assignment to a.i. Therefore,
unless the record a is declared VOLATILE, the result of the assignment
x := a.c would be undefined because the compiler’s legitimate assumptions had
been incorrect.

Consider the following example:

PROGRAM Volatility(OUTPUT);
VAR

Pint : ^[VOLATILE] INTEGER;
i : INTEGER;
j : [VOLATILE] INTEGER;
a : ARRAY[0..10] OF INTEGER;

{In the executable section:}
NEW(Pint);
i := 0;
j := 0;
Pint^ := 0;

{Compiler may assume i = 0, makes no assumptions about j}
WRITELN(i, j, Pint^, a[i]); {Values are 0, 0, 0, a[0] }
Pint := ADDRESS(j); {Pint^ now = j}
Pint^ := 1; {Therefore j now = 1}

{Compiler may assume i = 0, makes no assumptions about j}
WRITELN(i, j, Pint^, a[i]); {Values are 0, 1, 1, a[0]}
Pint := ADDRESS(i); {Causes a warning message

because i is not VOLATILE}
Pint^ := 2;

{Compiler may assume i = 0 and a[I] = a[0],
May make no assumptions about j}
WRITELN(i, j, Pint^, a[i]); {Actual values are 2, 1, 2, a[2]}

This example assigns values to the variables i and j and to the newly created
variable Pint^. The comments show the difference between the assumptions
the compiler can legally make about the values of the variables and the values
actually contained in the variables. The compiler’s assumption about the
value of i was incorrect because the value of i changed unexpectedly. The
ADDRESS(i) call caused Pint to point to i (that is, Pint^ and i became the
same variable). When Pint^ was assigned the value 2, the variable i also
received the value 2. Since i had been initialized to 0 and was not directly
referred to in the rest of the program, the compiler assumed that a reference to
i at this point would be equivalent to a reference to 0. Likewise, the compiler
also assumed that a reference to a[i] would be equivalent to a reference to a[0].
However, when execution ceases, the value of i is 2 and the value of a[i] is the
value of a[2].

Attributes 10–49

Depending on the optimizations the compiler made based on the value of i,
any operations performed after the unanticipated assignment to i could yield
unexpected results. Because j was declared VOLATILE, the compiler did not
optimize code based on the value of j. Therefore, any reference to j yields the
expected results.

The ADDRESS(i) call in this program causes a warning message. The
HP Pascal compiler assumes that pointer variables point only to variables in
heap-allocated storage and not to statically allocated, nonvolatile variables
such as i. So, ADDRESS(i) in this case differs from the expected usage.

For More Information:

• On use of VOLATILE with the ASYNCHRONOUS attribute (Section 10.2.3)

• On exception handlers (HP Pascal for OpenVMS User Manual)

• On Volatility (HP Pascal for OpenVMS User Manual)

10.2.43 WEAK_EXTERNAL
The WEAK_EXTERNAL attribute specifies that a variable or routine is not
critical to the linking operation. To resolve a weak reference, the linker
searches only the named input modules. You can specify an identifier with this
attribute to indicate the name by which the corresponding object is known to
the linker.

[WEAK_EXTERNAL [[(
� identifier

’string-literal’

�
)]]]

identifier
Identifier passed to the linker. If you omit the identifier, the name of the
variable is used as the name of the common block.

string-literal
Passes the specified string-literal to the linker unmodified.

Compilation units cannot have the EXTERNAL or WEAK_EXTERNAL
attribute.

For More Information:

• On the EXTERNAL attribute (Section 10.2.15)

• On linking (HP Pascal for OpenVMS User Manual)

10–50 Attributes

10.2.44 WEAK_GLOBAL
The WEAK_GLOBAL attribute specifies that an object is linked only when it is
specifically included in the linking operation. To resolve a weak reference, the
linker searches only the named input modules. You can specify an identifier to
indicate the name by which the corresponding object is known to the linker.

[WEAK_GLOBAL [[(
� identifier

’string-literal’

�
)]]]

identifier
Identifier passed to the linker. If you omit the identifier, the name of the
variable is used as the name of the common block.

string-literal
Passes the specified string-literal to the linker unmodified.

For More Information:

• On the GLOBAL attribute (Section 10.2.17)

• On linking (HP Pascal for OpenVMS User Manual)

10.2.45 WORD
The WORD attribute specifies the amount of storage in words to be received by
the object.

WORD [[(n)]]

The optional constant n indicates the number of word storage units.

For More Information:

• On allocation sizes of objects (Section A.2.4)

• On size attribute restriction (Section 10.2.6)

10.2.46 WRITEONLY
The WRITEONLY attribute specifies that an object can have values assigned
to it but cannot be read by a program.

Attributes 10–51

Usage and Default Information:

• You can apply this attribute to variables, formal parameters, the base types
of pointer variables, and components of structured variables.

• By default, objects can be both read and written.

• A write-only object cannot be used in expressions.

• A write-only component in an object of a structured type prohibits the
object from being read.

• A write-only actual variable parameter can be passed only to a formal
variable parameter that is write-only.

• A pointer expression whose base type is write-only is assignment
compatible only with a pointer variable whose base type is write-only.

Consider the following example:

PROGRAM SAMPLE;
TYPE

W_Only = [WRITEONLY] INTEGER;
VAR

Writ_Int : W_Only;
Norm_Int : INTEGER;

PROCEDURE Try_Access(VAR Write_Param : W_Only); EXTERNAL;

{In the executable section:}
Writ_Int := SQR(Norm_Int);
Try_Access(Writ_Int);

This example shows legal statements involving write-only variables. The write-
only variable Writ_Int is assigned the result of the square root operation, and
is then passed as an actual parameter to a write-only formal parameter.

For More Information:

• For information on the READONLY attribute (Section 10.2.34)

10.3 Attribute Classes
An attribute class can consist of a single attribute or of several attributes with
a common characteristic. Table 10–7 lists the classes and their attributes.

10–52 Attributes

Table 10–7 Attribute Classes

Class Attributes Description of Attributes

Alignment ALIGN, ALIGNED,
UNALIGNED

Indicate whether the object should be
aligned on a specific address boundary
in memory.

Allocation AT, AUTOMATIC,
COMMON, STATIC,
PSECT

Indicate the form of storage that the
object should occupy.

Asynchronous ASYNCHRONOUS Indicates that the routine can be called
by an asynchronous event, such as a
condition handler.

Check CHECK Indicates error-checking options to be
enabled or disabled.

Double
precision

FLOAT Indicates the type of precision to use for
objects of type DOUBLE.

Enumeration ENUMERATION_SIZE Indicates the sizes used for enumerated
types and Boolean types.

Environment ENVIRONMENT,
PEN_CHECKING_STYLE

Indicate that HP Pascal creates
an environment file, which allows
compilation units to share data
definitions and declarations.

Hidden HIDDEN Indicates exclusion of a declaration or
definition from a created environment
file.

Ident IDENT Indicates the identification of a
compilation unit to be passed to the
linker.

Inherit INHERIT Indicates that the compilation unit can
use the definitions and declarations
specified in the inherited environment
file.

Initialize INITIALIZE Indicates that the procedure is to be
called before execution of the main
program.

Key KEY Indicates key information for a record
field that is used when accessing data in
an indexed file.

(continued on next page)

Attributes 10–53

Table 10–7 (Cont.) Attribute Classes

Class Attributes Description of Attributes

List LIST Indicates that the routine can be called
with actual parameter lists of various
lengths.

Optimization OPTIMIZE, NOOPTIMIZE Indicate whether HP Pascal should
optimize code.

Parameter
passing

CLASS_A, CLASS_NCA,
CLASS_S, IMMEDIATE,
REFERENCE

Indicate the passing mechanism to be
used for a parameter.

Position POS Indicates that a record field should be
forced to a specific bit position.

Read-only READONLY Indicates that the object can be read but
cannot be written to.

Size BIT, BYTE, WORD,
LONG, QUAD,
OCTA

Indicate the amount of storage to be
reserved for the object.

Truncate TRUNCATE Indicates that the actual parameter list
can be truncated at the position of this
attribute in the formal parameter list.

Unbound UNBOUND Indicates that the routine does not
access automatic variables outside its
scope.

Unsafe UNSAFE Indicates that an object can accept
values of any type without type
checking.

Value VALUE Indicates that the variable is a reference
to an external constant or is the defining
point of a global constant.

Visibility LOCAL, EXTERNAL,
GLOBAL,
WEAK_EXTERNAL,
WEAK_GLOBAL

Indicate the ability of an object to be
shared by compilation units.

Volatile VOLATILE Indicates that the value of an object can
change at unusual points in program
execution.

Write-only WRITEONLY Indicates that the object can be written
to but cannot be read.

10–54 Attributes

Some attributes are allowed to appear on routine declarations, routine
parameters, and compilation units. Table 10–8 lists these attribute classes.

Table 10–8 Attributes on Routines and Compilation Units

Class
Program Element

Routine
Parameter Routine

Compilation
Unit

Allocation No Yes1 Yes1

Asynchronous Yes Yes No

Check No Yes Yes

Double precision No No Yes

Enumeration No No Yes

Environment No No Yes

Ident No No Yes

Inherit No No Yes

Initialize No Yes No

List Yes2 No No

Optimization No Yes Yes

Truncate Yes No No

Unbound Yes Yes No

Visibility No Yes Yes3

1 PSECT is the only allocation attribute allowed.
2 Allowed only on EXTERNAL routine definitions.
3 EXTERNAL and WEAK_EXTERNAL are not allowed.

Attribute classes are allowed on various data items. Table 10–9 lists the
classes that can be applied to various data items.

Attributes 10–55

Table 10–9 Attributes on Data Items

Class
Data Item

Variable
Formal
Parameter

Pointer
Base
Type Component1

Function
Result

Various
Items2

Alignment Yes3 Yes4 Yes4 Yes5 Yes No

Allocation Yes 6 No No No No No

Hidden Yes No Yes No No No

Key No No No Yes7 No No

List No Yes8 No No No No

Parameter
passing

No Yes9 No No No No

Pos No No No Yes7 No No

Read-only Yes Yes Yes Yes No No

Size Yes6 Yes 10 Yes Yes 11 Yes No

Truncate No Yes No No No No

Unsafe6 Yes Yes9 Yes Yes Yes Yes

Value Yes 12 No No No No No

Visibility6 Yes No No No No No

Volatile Yes Yes Yes Yes Yes No

Write-only Yes Yes Yes Yes No No

1 Component of a record, array, VARYING OF CHAR string, or file (includes conformant parameters).
2 Index of an array, tag field of a variant record (when no tag identifier is present), base type of a set, formal
discriminant.
3 Variables of nonstatic types must be at least byte aligned.
4 UNALIGNED not allowed.
5 Not allowed on components of files or VARYING OF CHAR strings.
6 Not allowed on variables of nonstatic types.
7 Allowed only on record fields (including the tag field of a variant record).
8 Procedure parameters and conformant parameters are allowed only on EXTERNAL routines.
9 Not allowed on conformant VARYING parameters; not allowed on schematic parameters.
10 Not allowed on conformant parameters; not allowed on schematic parameters.
11 Not allowed on components of files or VARYING OF CHAR strings, or on structured types with file
components.
12 Not allowed on variables larger than INTEGER or structured variables.

10–56 Attributes

11
Directives

Your source code can contain embedded directives, which will be evaluated at
compile time. These directives can appear in any column and do not have to
be on a line by themselves. You can use directives to control your compilation,
and to extract immediate information at compile time.

The directives implemented in HP Pascal are shown in the following table:

Directives Section

%INCLUDE 11.1

%DICTIONARY 11.2

%TITLE and %SUBTITLE 11.3

%IF, %ELSE, %ELIF, and %ENDIF 11.4

%DEFINED 11.5

%ERROR, %WARN, %INFO, and %MESSAGE 11.6

%ARCH_NAME, %SYSTEM_NAME, and %SYSTEM_VERSION 11.7

%DATE, %TIME, and %COMPILER_VERSION 11.8

%LINE, %FILE, %ROUTINE, %MODULE, and %IDENT 11.9

11.1 %INCLUDE
%INCLUDE inserts the contents of a file at the location of the directive in the
code and has the following form:

%INCLUDE ’file-spec [[/[[NO]]LIST]]’

Directives 11–1

file-spec
environment specific (default)
The name of the file to be included.

/[[NO]]LIST
/LIST (default)
The /LIST qualifier indicates that the included file should be printed in the
listing of the program if a listing is being generated.

If you do not specify the /LIST qualifier, the default is determined by the use of
compilation switches. Use of this parameter overrides compilation switches.

This directive can appear anywhere that a comment is legal.

In the following example, the %INCLUDE directive specifies the file
CONDEF.PAS, which contains constant definitions:

In the Program:
PROGRAM Student_Courses(INPUT, OUTPUT, Sched);
CONST

%INCLUDE ’CONDEF.PAS/LIST’
TYPE

Schedules = RECORD
Year : (Fr, So, Jr, Sr);
Name : PACKED ARRAY[1..30] OF CHAR;
Parents : PACKED ARRAY[1..40] OF CHAR;
College : (Arts, Engineering, Architecture,

Agriculture, Hotel);
END;

File CONDEF.PAS:
Max_Class = 300;
N_Profs = 140;
Frosh = 3000;

The main program Student_Courses is compiled as though it were written as
follows:

11–2 Directives

PROGRAM Student_Courses(INPUT, OUTPUT, Sched);
CONST

Max_Class = 300;
N_Profs = 140;
Frosh = 3000;

TYPE
Schedules = RECORD

Year : (Fr, So, Jr, Sr);
Name : PACKED ARRAY[1..30] OF CHAR;
Parents : PACKED ARRAY[1..40] OF CHAR;
College : (Arts, Engineering, Architecture,

Agriculture, Hotel);
END;

You can use the %INCLUDE directive in another included file; however, two
files cannot attempt to include each other.

A file included at the outermost level of a program is said to be included at
the first level. A file included by a first-level file is said to be included at the
second level, and so on. In general, a program may not include any files beyond
the fifth level; it may not include any files beyond the fourth level if you have
included a %DICTIONARY directive in the fourth level. Nesting levels may be
further restricted by the number of files you are allowed to have open at one
time. Figure 11–1 shows the legal levels of included files.

Directives 11–3

Figure 11–1 %INCLUDE File Levels

PROGRAM P

f.pas

E.PAS
{ FUNCTION declaration }

d.pas
{ VAR declarations }

c.pas
{ CONST definitions }

b.pas
{ VAR declarations }

ZK−0285−GE

a.pas
{ TYPE definitions }
%INCLUDE ’b.pas’ { level 2 }

%INCLUDE ’d.pas’ { level 3 }

%INCLUDE ’e.pas’ { level 4 }

%INCLUDE ’f.pas’ { level 5 }

{ Included files not
 allowed at level 6 }

%INCLUDE ’a.pas’ { level 1}

%INCLUDE ’c.pas’ { level 2 }

11–4 Directives

For More Information:

• On the Oracle CDD/Repository (CDD) (Section 11.2)

• On default file specifications and on including text libraries (HP Pascal for
OpenVMS User Manual)

11.2 %DICTIONARY
%DICTIONARY allows access to data definitions stored in the Oracle
CDD/Repository (CDD), which is a product that must be purchased separately
and may not be available on your environment; the directive has the following
form:

%DICTIONARY ’cdd-path-name [[/[[NO]]LIST]] ’

cdd-path-name
A character string that represents the full or relative path name of a CDD
record description to be extracted. The resulting path name must conform to
the rules for forming CDD path names.

A full path name is one that begins with CDD$TOP and specifies the names of
all its descendants; it is a complete path to the record definition. Descendant
names are separated from each other by a period.

A relative path name begins with any generation other than CDD$TOP, and
specifies the names of the descendants after that point. You can create a
relative path by establishing a default directory with a logical name.

/[[NO]]LIST
/LIST (default)
Indicates that the included declarations should be printed in the listing
of the program if a listing is being generated. If not specified, the default
is determined by compilation switches. Use of this parameter overrides
compilation switches.

For More Information:

• On using the Oracle CDD/Repository with HP Pascal (HP Pascal for
OpenVMS User Manual)

Directives 11–5

11.3 %TITLE and %SUBTITLE
%TITLE and %SUBTITLE allow you to specify a compile-time string
expression for the listing title and subtitle lines; they have the following
form:

%TITLE ’character string’
%SUBTITLE ’character string’

The compiler listing header includes the %TITLE and %SUBTITLE strings in
the title and subtitle sections. If you do not specify these directives,
HP Pascal fills the %TITLE field with blanks and the first %SUBTITLE field
with ’source listing’. If a specified character string is too long to fit in the
predefined title and subtitle sections, the string will be truncated on the right
without warning.

If a %TITLE directive appears on the first line of a page, it sets the title area
for the current page and any following pages until the compiler encounters
another %TITLE directive. If the %TITLE directive does not appear on the
first line of a page, then the title area is not set until the next page.

The %SUBTITLE directive affects only the subtitle area in the source listing
section. If a %SUBTITLE directive appears on the first or second line of a
page, then the subtitle area is set for the current page. If the %SUBTITLE
directive does not appear in the first two lines of a page, then the subtitle area
is not set until the next page.

On OpenVMS VAX systems, if either of these directives is used and if a listing
is being generated, HP Pascal generates a table of contents page by default. It
appears first in the listing, preceding the source listing section. To disable the
table of contents option, you must use a compilation switch.

For More Information:

• On creating listings and on using compilation switches (HP Pascal for
OpenVMS User Manual)

11.4 %IF, %ELSE, %ELIF, and %ENDIF
The %IF family of directives is used to conditionally compile specified sections
of source code. These directives are useful if you need to compile the same
source code for various configurations or environments.

11–6 Directives

The %IF directive family has the following syntax:

%IF compile-time-expression
%THEN

Pascal tokens . . .
[%ELIF compile-time-expression
%THEN

Pascal tokens . . .] . . .
[%ELSE

Pascal tokens . . .]
%ENDIF

A %IF directive can have zero or more %ELIF parts and zero or one %ELSE
parts.

%IF directives can be nested up to 32 deep.

Note that skipped sections of source code must still be valid HP Pascal tokens.
The skipped tokens are not processed semantically by the compiler except
for control expressions of nested %IF directives. All control expressions are
semantically processed to ensure they result in a Boolean result. %INCLUDE
and %DICTIONARY directives encountered while skipping tokens do not
attempt to open the file name or access the dictionary path. Instead, they
return the token TRUE.

In the following example, the state of a flag (Debug_Flag) is checked for true
or false. The value of an integer variable (I) will then be set to either 12 or 1,
depending on the state of the flag:

CONST
Debug_Flag := true; { or false }

VAR
I : integer;

I := %IF Debug_Flag %THEN 12 %ELSE 1 %ENDIF;
%IF Debug_Flag
%THEN

writeln(’Debug: the value of I is ’,i:2);
%ENDIF

In the following example selected code will be compiled only if the specific
configuration is selected.

TYPE
Configs = (Config1, Config2, Config3);

CONST
Config = Config1; { or Config2 or Config3 }

Directives 11–7

%IF Config = Config1
%THEN

{ Code for Config1... }

%ELIF Config = Config2
%THEN

{ Code for Config2... }

%ELSE Config = Config3
{ Code for Config3...}

%ENDIF

Note that the compile-time expression for the %IF statement is the same
compile-time expression that can be used anywhere in HP Pascal. You can
use any operator or builtin routine in a %IF control expression, as you can in
any constant expression.

One use of %IF is to compile for various configurations or environments (as
shown in the preceding example).

Rather than defining a constant in the Pascal source as shown in the examples
here, you might want to define the constant from the command line with the
/CONSTANT qualifier. See the description of the /CONSTANT qualifier for
more information.

11.5 %DEFINED
%DEFINED takes a name and returns TRUE if a name has a meaning in the
current scope; otherwise, it returns FALSE. This is shown in the following
example:

%IF %DEFINED(X)
%THEN

writeln(x);
%ENDIF

11.6 %ERROR, %WARN, %INFO, and %MESSAGE
These directives will accept one or more string expressions, and at compile
time will produce an error message, warning message, informational message,
or terminal-only output (respectively).

The syntax is as follows:

%ERROR (string-expression, . . .)
%WARN (string-expression, . . .)
%INFO (string-expression, . . .)
%MESSAGE (string-expression, . . .)

11–8 Directives

The following is an example of %ERROR:

TYPE
Some_Type = . . . ;

%IF SIZE(Some_Type) > 8
%THEN

%ERROR (’We do not handle types greater than 8 bytes’)
%ENDIF

The following is an example of %WARN:

%IF Config = Config1
%THEN

{ Code for Config1... }

%ELIF (Config = Config2) or (Config = Config3)
%THEN

{ Code for Config2/Config3... }

%ELSE
%WARN (’Config not supported, defaulting to generic’)
{ Code for generic config... }

%ENDIF

The following is an example of %INFO:

%IF Debug_Mode
%THEN

%INFO(’Building application with debug code inserted’)
%ENDIF

The following is an example of %MESSAGE:

%IF DEBUG_MODE %THEN %MESSAGE (’Debug-mode is enabled’) %ENDIF

11.7 %ARCH_NAME, %SYSTEM_NAME, and
%SYSTEM_VERSION

%ARCH_NAME returns a string containing ‘‘IA64’’, ‘‘Alpha’’, or ‘‘VAX’’
depending on the architecture of the system on which the compilation is taking
place.

%SYSTEM_NAME returns a string containing ‘‘OpenVMS.’’

%SYSTEM_VERSION returns a string containing the value of SYI$_VERSION
from the $GETSYI system-service.

Directives 11–9

For example:

program example(output);
begin
writeln(’Program running on ’,%system_name,

’ ’,%arch_name,
’ ’,%system_version);

end.

This example uses the %IF directive to selectively provide declarations or code
based on the architecture:

%if %arch_name = "Alpha"
%then

var handle : integer := 0;
%elif %arch_name = "IA64"
%then

var handle : integer64 := 0;
%endif

11.8 %DATE, %TIME, and %COMPILER_VERSION
%DATE returns a string containing the date at the beginning point of the
compilation.

%TIME returns a string containing the time at the beginning point of the
compilation.

%COMPILER_VERSION returns a string containing the version string of the
HP Pascal compiler performing the compilation.

11.9 %LINE, %FILE, %ROUTINE, %MODULE, and %IDENT
%LINE returns an integer that denotes the current line number in the source
file.

%FILE returns a string containing the file name that is currently being
compiled. The string contains a full OpenVMS file specification including the
disk, directory, file name, file type, and version fields.

%ROUTINE returns a string with the name of the routine that is currently
being compiled. If used in the executable portion of a program, the program’s
name is returned. If used in the declaration section of a MODULE/PROGRAM,
the name of the MODULE/PROGRAM is returned.

%MODULE returns a string containing the name of the module/program that
is currently being compiled.

%IDENT returns a string that contains the ident string of the compilation that
is set with the [IDENT()] attribute.

11–10 Directives

A
Data Storage and Representation

This chapter describes how the HP Pascal compiler allocates and represents
program components. It discusses the following topics:

• Program sections (Section A.1)

• Storage allocation and alignment for variables (Section A.2)

• Internal representation of data types (Section A.3)

A.1 Program Sections
This chapter describes how to establish program sections and program section
properties. The HP Pascal compiler uses contiguous areas of memory, called
program sections, to store information about a program.

The compiler writes these program sections to the object file. When
constructing an executable image, the OpenVMS Linker divides the image into
sections. Each image section contains program sections that have the same
properties. The linker controls memory allocation by arranging image sections
according to program section properties. You can use special linker options to
change program section properties and to influence the memory allocation in
the image. You include these options in a linker options file, which is input to
the linker.

The OpenVMS Linker refers to the various characteristics of program sections
as attributes. This chapter uses the term properties to avoid confusion with
the HP Pascal attribute classes.

Table A–1 lists the possible program section properties on OpenVMS systems.

Data Storage and Representation A–1

Table A–1 Program Section Properties

Property Description

PIC/NOPIC Position independent or position dependent

CON/OVR Concatenated or overlaid

REL/ABS Relocatable or absolute

GBL/LCL Global or local scope

EXE/NOEXE Executable or nonexecutable

RD/NORD Readable or nonreadable

WRT/NOWRT Writable or nonwritable

SHR/NOSHR Shareable or nonshareable

For More Information:

• On program sections and linker options (HP OpenVMS Linker Utility
Manual)

A.1.1 Establishing Program Sections
Table A–2, Table A–3, and Table A–4 list the program sections that HP Pascal
can establish, if necessary, on OpenVMS I64, OpenVMS Alpha, and OpenVMS
VAX systems, respectively.

A–2 Data Storage and Representation

Table A–2 Program Section Data on OpenVMS I64 Systems

Program Section Data

ABS No data is allocated in this program section. It is used for
defining global literals (variables declared with the GLOBAL
and VALUE attributes).

BSS Zeroed static storage.

$CODE$1 Machine instructions.

$DATA$ Nonexternal static types; writable variables declared with
the STATIC attribute; writable variables that use default
allocation and are declared at program or module level of
a nonoverlaid compilation unit. All such variables must be
larger than 64 bits in size.

LIB$INITIALIZE Addresses of routines declared with the INITIALIZE
attribute and compiler-generated routines to perform module
initialization.

$LINK$ Small literals.

$LITERAL$1 Constants needing storage; nonvolatile, readonly, static
variables.

$SDATA$ Nonexternal static types; writable variables declared with
the STATIC attribute; writable variables that use default
allocation and are declared at program or module level of a
nonoverlaid compilation unit. All such variables must be 64
bits or smaller in size.

1Executable code and read-only data are compiled into two separate program sections.

Data Storage and Representation A–3

Table A–3 Program Section Data on OpenVMS Alpha Systems

Program Section Data

ABS No data is allocated in this program section. It is used for
defining global literals (variables declared with the GLOBAL
and VALUE attributes).

BSS Zeroed static storage.

$CODE$1 Machine instructions.

$DATA$ Nonexternal static types; writable variables declared with
the STATIC attribute; writable variables that use default
allocation and are declared at program or module level of a
nonoverlaid compilation unit.

LIB$INITIALIZE Addresses of routines declared with the INITIALIZE
attribute and compiler-generated routines to perform module
initialization.

$LINK$ Procedure descriptors and small literals.

$LITERAL$1 Constants needing storage; nonvolatile, readonly, static
variables.

1Executable code and read-only data are compiled into two separate program sections.

Table A–4 Program Section Data on OpenVMS VAX Systems

Program Section Data

. ABS . No data is allocated in this program section. It is used for
defining global literals (variables declared with the GLOBAL
and VALUE attributes).

$CODE1 Machine instructions; constants needing storage; nonvolatile,
readonly, static variables.

LIB$INITIALIZE Addresses of routines declared with the INITIALIZE
attribute and compiler-generated routines to perform module
initialization.

$LOCAL Nonexternal static types; writable variables declared with
the STATIC attribute; writable variables that use default
allocation and are declared at program or module level of a
nonoverlaid compilation unit.

PAS$GLOBAL Writable variables that use default allocation and are
declared at program or module level of an overlaid
compilation unit.

1On OpenVMS VAX systems, executable code and read-only data can exist in the same program
section.

A–4 Data Storage and Representation

You can also establish user-defined program sections with the HP Pascal
PSECT and COMMON attributes. The PSECT attribute directs the compiler
to establish a separate program section for static variables or executable
blocks. In this way, you can ensure particular program section properties for
these objects. You can also choose to group them with related static variables
and blocks to reduce the amount of paging overhead.

The COMMON attribute directs the compiler to establish a particular program
section called a common block. A common block is an overlaid program section
that contains one variable. By storing variables in common blocks, a
HP Pascal program can share variables with programs written in other
Hewlett-Packard languages.

The following example uses a common block to pass information between HP
Pascal and HP Fortran:

HP Pascal Program:
PROGRAM Common_Example (OUTPUT);
VAR

Myrec : [COMMON(Example)] RECORD
Intfld : INTEGER;
Strfld : PACKED ARRAY [1..10] OF CHAR;

END;
[EXTERNAL] PROCEDURE Call_Fort; EXTERNAL;

BEGIN
Myrec := ZERO;
Call_Fort;
WRITELN(’Intfld = ’,Myrec.Intfld);
WRITELN(’Strfld = ’,Myrec.Strfld);
END.

HPFortran Subroutine:
SUBROUTINE CALL_FORT

C
STRUCTURE /TEST/

INTEGER*4 ITEM
CHARACTER * 10 ITEM_NAME

END STRUCTURE
C
RECORD /TEST/ VAR
COMMON /EXAMPLE/ VAR

C
VAR.ITEM = 10
VAR.ITEM_NAME = ’0123456789’
END

Data Storage and Representation A–5

The HP Pascal program initializes the common record, Myrec, to zero, then
calls the HP Fortran routine, Call_Fort, to assign the desired values to the
elements within the common record. The HP Pascal program then writes the
assigned values to your terminal.

Only one variable can be allocated in a particular HP Pascal common block. To
share more than one data item in the same common block, the record variable
containing all shareable items is declared and used.

For More Information:

• On the PSECT and COMMON attributes (Chapter 10)

A.1.2 Establishing Program Section Properties
Whether the compiler establishes a program section, or you create one, the
program section is assigned one property from each class listed in Table A–1.
These properties are assigned to satisfy the requirements of the types,
variables, and executable blocks that have been allocated in the same program
section. Table A–5 lists the minimal properties required by various objects.

Table A–5 Required Program Section Properties

Object
Properties

EXE RD WRT NOSHR

Read-only variable X

Write-only variable X X X1

Read/write variable X X X1

Executable block2 (OpenVMS I64
and OpenVMS Alpha systems
only)

X

Executable block2 (OpenVMS
VAX systems only)

X X

1This property is not assigned on OpenVMS VAX systems if the variable has the COMMON
attribute.
2On OpenVMS I64 and OpenVMS Alpha systems, executable code and read-only data are compiled
into two separate program sections; on OpenVMS VAX systems, executable code and read-only data
can exist in the same program section.

The . ABS . and ABS program section properties are ABS, NOEXE, NORD,
NOWRT, and NOSHR. All other program sections except LIB$INITIALIZE
are position independent and relocatable; all except those established by the
COMMON attribute are concatenated and local. Program sections established

A–6 Data Storage and Representation

by COMMON are overlaid and global. The remaining properties are assigned
as follows:

• The first time the compiler encounters the name of a particular program
section (including a common block), it initializes the program section to be
readable, nonwritable, shareable, and nonexecutable. Thus, the program
section’s initial properties are LCL, NOEXE, NOWRT, CON, PIC, RD, REL,
and SHR.

• If storage for any writable object (except common blocks on OpenVMS VAX)
is allocated in the same program section, the program section instantly
becomes writable and nonshareable. Thus, the program section’s write
property changes from NOWRT to WRT, and its share property changes
from SHR to NOSHR.

• On OpenVMS VAX, if storage for a writable object in a common block
is allocated in the same program section, the program section becomes
writable and retains the shareable property. Thus, the program section’s
write property changes from NOWRT to WRT, and its share property
remains SHR.

If you want to guarantee that read-only variables can never be modified, you
can allocate storage exclusively for them in a separate program section that
will always remain nonwritable.

A.2 Storage Allocation
The following sections discuss storage allocation of variables, symbolic
constants, and executable blocks. Static types require no allocation. Nonstatic
data types require allocation to store possible run-time values. Section A.2.3
gives an example.

For More Information:

• On allocation for nonstatic data types (Section A.2.1)

A.2.1 Allocation of Variables
When allocating storage for a variable, the compiler first determines an
allocation attribute for the variable. If the allocation attribute is STATIC or
COMMON, the compiler then chooses a program section in which to allocate
storage. The compiler applies the following rules sequentially to determine the
allocation attribute:

• If the variable is declared with an allocation attribute, the attribute
specifies the variable’s allocation.

Data Storage and Representation A–7

• If the variable is declared with a visibility attribute other than LOCAL, its
allocation is static.

• If the variable is declared in a routine, its allocation is automatic.

• If the variable is declared at the outermost level of a module, its allocation
is static.

• If the variable is declared at the outermost level of a program, the compiler
must choose between static and automatic allocation. Whenever possible,
the compiler uses automatic allocation for variables that are referred to
only in the body of the main program because automatic allocation is more
efficient. The compiler uses static allocation if the variable is declared
with the VOLATILE attribute, initialized at its declaration, referred to in a
nested block, or if the program has an ENVIRONMENT attribute. Because
program-level variables can be statically allocated, HP Pascal does not
support recursive calls on the main program block.

The compiler applies the following rules sequentially to choose the program
section in which to allocate storage for nonexternal common and static
variables:

• If the variable has the COMMON attribute, storage is allocated in a
common block that has either the same name as the variable, or the name
specified by the identifier that accompanies the attribute.

• If the variable has the PSECT attribute, the identifier that accompanies
the attribute supplies the name of the program section in which storage is
to be allocated.

• If the variable does not have the COMMON, PSECT, or STATIC attribute,
but is declared at the outermost level of an overlaid compilation unit,
storage is allocated in the program section PAS$GLOBAL.

• If the variable has the READONLY attribute but does not have the PSECT,
COMMON, or VOLATILE attributes:

On OpenVMS VAX systems, its storage is allocated in the program
section in which storage for executable code is currently being allocated,
by default, $CODE.

On all other systems, its storage is allocated in the program section
$LITERAL.

• All other static variables are allocated in the program section $LOCAL.

For More Information:

• On attributes (Chapter 10)

A–8 Data Storage and Representation

A.2.2 Allocation of Symbolic Constants and Executable Blocks
When allocating storage for symbolic constants and executable blocks, the
compiler determines the appropriate program section by applying the same
rules of scope to program section names that it applies to identifiers. The
compiler always allocates storage in the program section whose name appeared
in the most recent heading of a routine or compilation unit.

Table A–3 and Table A–4 describe the program sections established for each
kind of data in a program unless a PSECT attribute appears in the heading
of routine or compilation unit and directs that storage to be allocated in a
different program section.

For More Information:

• On the scope of HP Pascal identifiers (Section 7.2)

• On the PSECT attribute (Section 10.2.32)

• On the INITIALIZE attribute (Section 10.2.22)

• On LIB$INITIALIZE (HP OpenVMS Programming Concepts Manual)

A.2.3 Allocation Example
Example A–1 shows how the compiler establishes program sections to allocate
storage for symbolic constants, variables, and executable blocks. The comments
in the programs indicate the names of the program sections used.

Example A–1 Using Program Sections to Allocate Storage

PROGRAM Allocate_Variables (INPUT,OUTPUT);

CONST
Message_String = ’Random String Literal’; { $LITERAL on OpenVMS I64 }

{ $LITERAL on OpenVMS Alpha }
{ $CODE on OpenVMS VAX }

VAR
Magic_Number : [READONLY,PSECT(Magic)] INTEGER VALUE 42; { Magic }
Local_Variable : INTEGER; { $SDATA$ on OpenVMS I64 }

{ $DATA$ on OpenVMS Alpha }
{ $LOCAL on OpenVMS VAX }

[PSECT(Error_Routines)] PROCEDURE User_Error;

CONST
User_Error_Message = ’Internal Error’; { Error_Routines }

(continued on next page)

Data Storage and Representation A–9

Example A–1 (Cont.) Using Program Sections to Allocate Storage

VAR
Error_Count : [STATIC] INTEGER VALUE 0; { $SDATA$ on OpenVMS I64 }

{ $DATA$ on OpenVMS Alpha }
{ $LOCAL on OpenVMS VAX }

Message_Buffer : VARYING [132] OF CHAR; { Automatic Storage }
BEGIN { Error_Routines }
Error_Count := Error_Count + 1;
Local_Variable := Error_Count;
END;

BEGIN { $CODE or $CODE$ }
.
.
.

END.

Storage for all variables with static allocation is allocated in $SDATA$,
$DATA$, or $LOCAL. Storage for the executable block of the main program is
allocated in $CODE or $CODE$. Storage for the symbolic constant Message_
String is allocated in $LITERAL on OpenVMS I64 and OpenVMS Alpha
systems and in $CODE on OpenVMS VAX systems. Storage is allocated in the
user-created program section, Error_Routines, for the symbolic constant User_
Error_Message and the executable block of User_Error. Storage for Local_
Variable is in $SDATA$ on OpenVMS I64 systems, $DATA$ on OpenVMS
Alpha systems, and $LOCAL on OpenVMS VAX systems because it was
referred to in a nested block. Storage for Magic_Number is in the user-
created program section, Magic. Since Magic_Number was declared with the
READONLY attribute, the program section has the NOEXE, NOWRT, RD, and
SHR properties.

A.2.4 Allocation Sizes of Variables
For every HP Pascal data type, the compiler calculates the allocation size
required when a variable of the type occurs in either an unpacked or a packed
context. The unpacked size is always represented in bytes, while the packed
size is represented in bits.

The packed size of a variable is the minimum number of bits required to
represent all values of the variable’s type. In general, the compiler uses the
following 32–bit rules to determine the allocation size for a component of a
packed structured variable:

• A component whose length is 32 bits or fewer is packed into as few bits as
possible and can be unaligned.

A–10 Data Storage and Representation

• A component whose length is greater than 32 bits is allocated the smallest
number of bytes possible and must be at least byte aligned.

If one of the size attributes (BIT, BYTE, WORD, LONG, QUAD, or OCTA)
is applied to the variable, the size specified by the attribute represents the
variable’s packed size. Objects of floating point or pointer types must have a
size equal to their allocation size. Ordinal types cannot exceed their maximum
size, which is determined by the platform and the value of the data switch
for the compile command. If no size attribute is applied to the variable, the
compiler calculates the unpacked size so that it is structurally compatible with
the base type of the variable’s type.

Storage for variables of type VARYING OF CHAR is allocated as one byte per
character, with an initial field of two bytes to indicate the total length. Storage
allocation for a variable of type VARYING OF CHAR whose maximum length is
less than or equal to 32 bits follows the 32-bit rules in that the variable can be
unaligned. On OpenVMS I64 and OpenVMS Alpha systems, variables of type
VARYING OF CHAR that need alignment are aligned on a word boundary.

On OpenVMS VAX systems, variables of type VARYING OF CHAR that need
alignment are aligned on a byte boundary.

Structured objects (ARRAY and RECORD) take their maximum alignment from
their components, for example, if the largest object is a word, the structure is
aligned on a word boundary.

The maximum size for any variable is 231�1 bits.

A.2.5 Storage Allocation of Types
Table A–6 shows the allocation size for variables of each type when the
variables occur in either a packed or an unpacked context.

Table A–6 Storage Allocation of Types

Data Type
Unpacked
Size in Bytes

Packed
Size in Bits

INTEGER
INTEGER32
UNSIGNED
UNSIGNED32

4 32

INTEGER64
UNSIGNED64

8 64

(continued on next page)

Data Storage and Representation A–11

Table A–6 (Cont.) Storage Allocation of Types

Data Type
Unpacked
Size in Bytes

Packed
Size in Bits

CHAR 1 8

BOOLEAN 1 or 41 1

Enumerated2 1, if 256 elements or
fewer; 2, if more than
256 elements, or 41

log2(number of elements)3 + 1

Subrange The size of the base type If either the upper or lower
bounds contain a reference to a
formal discriminant, then the
size of the base type, otherwise
the minimum number in which
the upper and lower bounds can
be expressed4

REAL or SINGLE 4 32

DOUBLE 8 64

QUADRUPLE 16 128

Pointer (OpenVMS
I64 and OpenVMS
Alpha systems
only)

4 or 85 32 or 645

Pointer (OpenVMS
VAX systems only)

4 32

Unpacked
ARRAY

The sum of the unpacked
sizes in bytes of all
components, plus the sum of
the sizes in bytes of any holes
created to meet alignment
requirements

Unpacked size in bytes * 8

1It depends on the value specified for the /ENUMERATION_SIZE qualifier.
2The maximum number of elements is 65,535.
3This is known as the ceiling function, where the smallest integer is greater than or equal to X.
4Sets of type INTEGER and UNSIGNED are limited to 256 bits.
5By default, pointers on OpenVMS I64 and OpenVMS Alpha systems are 32 bits in size. However,
the QUAD attribute can be used on pointer declarations to specify 64-bit pointers. See the HP
Pascal for OpenVMS User Manual for more information.

(continued on next page)

A–12 Data Storage and Representation

Table A–6 (Cont.) Storage Allocation of Types

Data Type
Unpacked
Size in Bytes

Packed
Size in Bits

Unpacked
RECORD

The sum of the unpacked
sizes in bytes of the fields in
the fixed part and the largest
variant, plus the sum of the
sizes in bytes of any holes
created to meet alignment
requirements

Unpacked size in bytes * 8

PACKED
ARRAY

The sum of the packed sizes
in bits of all components,
plus the sum of sizes in bits
of any holes created to meet
alignment requirements;
this sum is rounded up to
a multiple of 8 and then
divided by 8

The sum of the packed sizes
in bits of all components, plus
the sum of sizes in bits of any
holes created to meet alignment
requirements; if the sum is
greater than 32, the sum is
rounded up to the next multiple
of 8

PACKED
RECORD

The sum of the packed sizes
in bits of all fields in the fixed
part and the largest variant,
plus the sum of sizes in bits
of any holes created to meet
alignment requirements;
this sum is rounded up to
a multiple of 8 and then
divided by 8

The sum of the packed sizes in
bits of all fields in the fixed part
and the largest variant, plus
the sum of sizes in bits of any
holes created to meet alignment
requirements; if the sum is
greater than 32, the sum is
rounded up to the next multiple
of 8

STRING,
VARYING OF

CHAR

Maximum length + 2 (Maximum length + 2) * 8

Nonstatic
PACKED
SET,

Unpacked
SET3

32, if the set base type is a
subrange of INTEGER or
UNSIGNED; else, compute
(ORD(upper-bound of ordinal
type that is base type of set’s
base type) + 8) DIV 8, and
if this result is less than
or equal to 8, the result is
rounded up to 1, 2, 4, or 8

Compute (ORD (upper-bound)
+ 1); if the result is less than
or equal to 64, the result is
rounded up to 8, 16, 32, or 64,
and if the result is greater than
64, the result is rounded to next
higher multiple of 8

3This is known as the ceiling function, where the smallest integer is greater than or equal to X.

(continued on next page)

Data Storage and Representation A–13

Table A–6 (Cont.) Storage Allocation of Types

Data Type
Unpacked
Size in Bytes

Packed
Size in Bits

PACKED SET3 The result of (ORD(upper-
bound) + 8) DIV 8

Compute (ORD (upper-bound) +
1); if the result is greater than
32, the result is rounded to next
higher multiple of 8

FILE Not specified Not specified

3This is known as the ceiling function, where the smallest integer is greater than or equal to X.

The formula to compute the size of a packed subrange is MAX (X,Y) + Z where
X, Y, and Z are computed as follows (LOW represents the low bound of the
subrange; HIGH represents the upper bound):

IF LOW < -1 IF HIGH> 0
THEN THEN

X := log2(-LOW - 1) + 1 Y := log2(HIGH) + 1
ELSE ELSE

X := 0; Y := 0;

IF LOW >= 0
THEN

Z := 0
ELSE

Z := 1;

You can discover both the unpacked and packed sizes for variables of any type
by using the predeclared functions BITNEXT, BITSIZE, NEXT, and SIZE,
which require a parameter that is the name of either a type or a variable.
These functions return the following integer values:

• BITNEXT returns an integer value that indicates what the packed size
would be for an array component of the type.

• BITSIZE returns an integer value that indicates what the packed size
would be for a record field of the type.

• NEXT returns an integer value that indicates what the unpacked size
would be for an array component of the type.

• SIZE returns an integer value that indicates what the unpacked size would
be for a variable or record field of the type.

The maximum size for any variable is 231�1 bits.

A–14 Data Storage and Representation

For More Information:

• On size attributes (Chapter 10)

• On predeclared functions (Chapter 8)

A.2.6 Allocation Size Examples
The following examples show the effects of packing records and multidimen-
sional arrays at various levels.

Note

Although packing records and arrays does save storage space and can
be necessary for compatibility with other code, note that accessing
unaligned variables on an OpenVMS I64 or OpenVMS Alpha system
takes many more instructions than accessing variables with natural
alignment, such as those in unpacked records and arrays.

Example 1
TYPE

Internal_Arr = ARRAY[1..5] of 0..6;

VAR
Samp1_Arr : PACKED ARRAY[1..5] OF Internal_Arr;

Each component of an array of type Internal_Arr is stored in a longword. Each
component of Samp1_Arr, in turn, requires five longwords, which is enough
storage space for five components of type Internal_Arr. The entire array
Samp1_Arr occupies 25 longwords (800 bits).

Example 2
VAR

Samp1_Arr : ARRAY[1..5] OF PACKED ARRAY[1..5] OF 0..6;

Each PACKED ARRAY[1..5] of 0..6 requires 15 bits (the range 0..6 requires 3
bits; five 3-bit components requires 15 bits). Because the packed arrays are
components of an unpacked array, their size is rounded up to an even 16 bits.
The total size of Samp1_Arr is 80 bits.

Example 3
TYPE

Internal_Arr = PACKED ARRAY[1..5] OF 0..6;

VAR
Samp2_Arr : PACKED ARRAY[1..5] OF Internal_Arr;
Samp3_Arr : PACKED ARRAY[1..5,1..5] OF 0..6;

Data Storage and Representation A–15

In this example, every component of Internal_Arr requires only three bits
because the array is packed. Each component of Samp2_Arr and Samp3_Arr
can be stored in 15 bits, and each array occupies 75 bits. The specification of
PACKED for an array with multiple indexes results in packing at every level.
The two arrays in this example are equivalent.

Example 4
VAR

Sample : PACKED ARRAY[1..5,1..5,1..5] OF 0..6;

This example shows space savings for arrays of more than two dimensions
when PACKED is specified at every level. The subrange 0..6 requires 3
bits; five 3-bit components require 15 bits. This size describes the innermost
dimension of Sample. Next, five 15-bit components require 75 bits. Because
of the 32-bit rules, each 75-bit component is rounded up to 80 bits. This size
describes the middle and inner dimensions of Sample. Finally, five
80-bit components require 400 bits (50 bytes). The entire array Sample then
requires 400 bits.

Example 5
VAR

Sample_Rec : PACKED RECORD
Field_1 : BOOLEAN;
Field_2 : INTEGER32;
Field_3 : DOUBLE;

END;

In this example, Field_1 requires only 1 bit of storage. Field_2 is 32 bits in size
(declared as INTEGER32) and starts immediately following Field_1. Because
Field_3 is larger than 32 bits, it will start on the next byte boundary. The
entire record Sample_Rec, therefore, requires 104 bits.

A.2.7 Alignment Boundaries
The memory-addressing boundary on which a variable or a component is
aligned depends on the variable’s or the component’s allocation size. You can
change the alignment by using the ALIGNED and UNALIGNED attributes.
Table A–7 lists the conditions that determine boundary alignment.

A–16 Data Storage and Representation

Table A–7 Conditions Determining Boundary Alignment

Object Arguments to the Alignment Switch

NATURAL1 VAX

Variable declared with
an alignment attribute

Specified alignment Specified alignment

Variable declared
without an alignment
attribute

Natural alignment Byte alignment2

Component of an
unpacked array or
record variable

Natural alignment Byte alignment

Component of a packed
array or record variable

Follows the 32-bit rules3 Follows the 32-bit rules4

Dynamic variables
allocated by the NEW
procedure

Octaword alignment on
OpenVMS I64; quadword
alignment on OpenVMS
Alpha

Quadword alignment

1Previous versions of HP Pascal used ALPHA_AXP for this keyword. The NATURAL keyword is
now the recommended spelling for the same behavior. The ALPHA_AXP keyword will continue to
be recognized for compatibility with old source files.
2The compiler can align such variables on a larger storage boundary if it can access them more
efficiently by doing so.
3If a variable of type VARYING OF CHAR on an OpenVMS I64 or OpenVMS Alpha system
requires alignment, it is aligned on a word boundary.
4If a variable of type VARYING OF CHAR on an OpenVMS VAX system requires alignment, it is
aligned on a byte boundary.

You can save storage space by packing variables of structured types, but you
must be careful to pack at the proper level. Except for its alignment, a record
field whose type is an unpacked array, set, or record occupies the same amount
of space in a packed or an unpacked record variable. To pack such a field, you
must explicitly declare its type to be packed.

When packing multidimensional arrays, you must specify packing at the
innermost level to gain any significant space advantage. For example, there
is no advantage in packing an array of an unpacked structured type; the
unpacked components will still be aligned on byte boundaries, which leaves
holes in the storage space. To gain storage space, you must specify a packed
array of a packed structured type.

Data Storage and Representation A–17

The following examples show the use of alignment boundaries.

Note

Although packing records and arrays does save storage space and can
be necessary for compatibility with other code, note that accessing
unaligned variables on an OpenVMS I64 or OpenVMS Alpha system
takes many more instructions than accessing variables with natural
alignment, such as those in unpacked records and arrays.

Example 1
VAR

X : [STATIC, ALIGNED(3)] INTEGER; { QUADWORD ALIGNED }
{ $SDATA$ on OpenVMS I64 }
{ $DATA$ on OpenVMS Alpha }
{ $LOCAL on OpenVMS VAX }

In this example, X is declared a static variable that is aligned on a
QUADWORD boundary.

Example 2
VAR

X : PACKED RECORD { AUTOMATIC }
Field1 : BOOLEAN;
Field2 : REAL;
Field3 : BOOLEAN;
Field4 : DOUBLE;

END;

In this example, Field1 begins at bit position 0 and is 1 bit long. Field2 begins
at bit position 1 and is 32 bits long. Field3 begins at bit position 33 and is
1 bit long. However, because Field4 is greater than 32 bits long (DOUBLE
requires 64 bits) Field4 must be byte aligned. For this reason, Field4 begins on
bit position 40 and is 64 bits long.

Example 3
VAR

X : RECORD { AUTOMATIC }
Field1 : [BIT(3)] 0..7;
Field2 : [UNALIGNED] INTEGER32;

END;

In this example, Field1 of record X is declared to begin on bit position 0 and
is 3 bits long. Due to the use of the UNALIGNED attribute on Field2, Field2
begins on bit position 3 and is 32 bits long. You can obtain the same behavior
by packing record X.

A–18 Data Storage and Representation

Without using the UNALIGNED attribute, or without X being a PACKED
record, Field2 would have been longword aligned; that is, it would have
started on bit position 32. You cannot use the UNALIGNED attribute with
INTEGER64 because of the 32-bit rules, which states that variables greater
than 32 bits must be at least byte-aligned.

For More Information:

• On ranges and precision of integer and real types (Chapter 2)

• On the representation of data types (Section A.3)

• On the 32-bit rules (Section A.2.4)

• On the ALIGNED and UNALIGNED attributes (Chapter 10)

A.3 Internal Representation of Data Types
The following sections summarize the internal representation of the
HP Pascal data types.

A.3.1 Representation of Varying Data
This section summarizes the internal representation of VARYING OF CHAR
types. A variable of type VARYING OF CHAR is stored as though it were an
HP Pascal record type of the following form:

RECORD
Length : [WORD] 0..Maxlength;
Body : PACKED ARRAY[1..Maxlength] OF CHAR;

END;

Figure A–1 shows the storage allocated for a variable of type VARYING[8] OF
CHAR.

Data Storage and Representation A–19

Figure A–1 Storage of Varying Data

15 0

LENGTH

79 64

[2] [1]

[4] [3]

[6] [5]

[8] [7]

ZK−1038−GE

The predefined schema type STRING uses VARYING OF CHAR as its
underlying data type, so Figure A–1 also represents the STRING type.

For More Information:

• On HP Pascal varying data types (Section 2.6.2)

• On the UNALIGNED attribute (Section 10.2.38)

• On HP Pascal string data types (Section 2.6)

A.3.2 Representation of Floating-Point Data
The following sections summarize the internal representation of single-
precision (F_floating and S_floating), double-precision (D_floating, G_floating,
and T_floating), and quadruple-precision (H_floating and X_floating) floating-
point numbers.

For More Information:

• On HP Pascal floating-point data types (Section 2.2)

A–20 Data Storage and Representation

A.3.2.1 F_floating-Point Numbers
An F_floating-point value is represented by four contiguous bytes. The bits are
numbered from the right, 0 through 31, as shown in Figure A–2.

Figure A–2 F_floating-Point Data Representation

EXPONENTS FRACTION

FRACTION

15 14 7 6 0

:A

1631

ZK−1039−GE

An F_floating-point value is specified by its address A, the address of the byte
containing bit 0. The form of this value is sign magnitude as follows:

• Bit 15 is the sign bit.

• Bits 14 through 7 are an excess 128 binary exponent.

• Bits 6 through 0 and 31 through 16 are a normalized 24-bit fraction with
the redundant most significant fraction bit not represented. Within the
fraction, bits of increasing significance go from 16 through 31 and from
0 through 6.

For More Information:

• On F_floating-point range and precision (Section 2.2)

A.3.2.2 S_floating-Point Numbers
An S_floating-point value is represented by four contiguous bytes. The bits are
numbered from the right, 0 through 31, as shown in Figure A–3.

Data Storage and Representation A–21

Figure A–3 S_floating-Point Data Representation

15 0

ZK−4977A−GE

FRACTION

FRACTIONEXPONENTS

31 1630 23 22

:A

An S_floating-point value is specified by its address A, the address of the byte
containing bit 0. The form of this value is sign magnitude as follows:

• Bit 31 is the sign bit (0 for positive numbers, 1 for negative numbers).

• Bits 30 through 23 are an excess 127 exponent.

• Bits 22 through 0 are a normalized 24-bit fraction with the redundant most
significant fraction bit not represented.

For More Information:

• On S_floating-point range and precision (Section 2.2)

A.3.2.3 D_floating-Point Numbers
A D_floating-point value is represented by eight contiguous bytes. The bits are
numbered from the right, 0 through 63, as shown in Figure A–4.

Figure A–4 D_floating-Point Data Representation

EXPONENTS FRACTION

FRACTION

15 14 7 6 0

:A

FRACTION

FRACTION

63

48

ZK−1040−GE

A–22 Data Storage and Representation

A D_floating-point value is specified by its address A, the address of the byte
containing bit 0. The form of this value is identical to that of a F_floating-
point value except for an additional 32 low-significance fraction bits. Within
the fraction, bits of increasing significance are numbered 48 through 63, 32
through 47, 16 through 31, and 0 through 6.

For More Information:

• On D_floating-point range and precision (Section 2.2)

A.3.2.4 G_floating-Point Numbers
A G_floating-point value is represented by eight contiguous bytes. The bits are
numbered from the right, 0 through 63, as shown in Figure A–5.

Figure A–5 G_floating-Point Data Representation

EXPONENTS FRACTION

FRACTION

15 14 0

:A

FRACTION

FRACTION

63

48

4 3

ZK−1041−GE

A G_floating-point value is specified by its address A, the address of the byte
containing bit 0. The form of this value is sign magnitude as follows:

• Bit 15 is the sign bit.

• Bits 14 through 4 are an excess 1024 binary exponent.

• Bits 3 through 0 and 63 through 16 represent a normalized 53-bit fraction
without the redundant most significant fraction bit. Within the fraction,
bits of increasing significance go from 48 through 63, 32 through 47, 16
through 31, and 0 through 3.

For More Information:

• On G_floating-point range and precision (Section 2.2)

Data Storage and Representation A–23

A.3.2.5 T_floating-Point Numbers
A T_floating-point value is represented by 8 contiguous bytes. The bits are
numbered from the right 0 through 63, as shown in Figure A–6.

Figure A–6 T_floating-Point Data Representation

ZK−4976A−GE

15 0

FRACTIONEXPONENTS

63 4862 52 51

FRACTION

FRACTION

FRACTION :A

A T_floating-point value is specified by its address A, the address of the byte
containing bit 0. The form of this value is sign magnitude as follows:

• Bit 63 is the sign bit (0 for positive numbers, 1 for negative numbers).

• Bits 62 through 52 are an excess 127 exponent.

• Bits 51 through 0 are a normalized 53-bit fraction with the redundant most
significant fraction bit not represented.

For More Information:

• On T_floating-point range and precision (Section 2.2)

A.3.2.6 H_floating-Point Numbers
An H_floating-point value is represented by 16 contiguous bytes. The bits are
numbered from the right 0 through 127, as shown in Figure A–7.

A–24 Data Storage and Representation

Figure A–7 H_floating-Point Data Representation

EXPONENTS

FRACTION

15 14 0

:A

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

127 112

ZK−1042−GE

An H_floating-point value is specified by its address A, the address of the byte
containing bit 0. The form of this value is sign magnitude as follows:

• Bit 15 is the sign bit.

• Bits 14 through 0 are an excess 16,384 binary exponent.

• Bits 127 through 16 are a normalized 113-bit fraction with the redundant
most significant fraction bit not represented. Within the fraction, bits
of increasing significance go from 112 through 127, 96 through 111, 80
through 95, 64 through 79, 48 through 63, 32 through 47, and 16 through
31.

For More Information:

• On H_floating-point range and precision (Section 2.2)

Data Storage and Representation A–25

A.3.2.7 X_floating-Point Numbers
An X_floating-point value is represented by 16 contiguous bytes. The bits are
numbered from the right 0 through 127, as shown in Figure A–8.

Figure A–8 X_floating-Point Data Representation

EXPONENTS

FRACTION

15 0

:A

FRACTION

FRACTION

FRACTION

FRACTION

FRACTION

127

FRACTION

112

ZK−8078A−GE

126

An X_floating-point value is specified by its address A, the address of the byte
containing bit 0. The form of this value is sign magnitude as follows:

• Bit 127 is the sign bit.

• Bits 112 through 126 are an excess 16,383 binary exponent.

• Bits 0 through 111 are a normalized 112-bit fraction with the redundant
most significant fraction bit not represented.

For More Information:

• On X_floating-point range and precision (Section 2.2)

A–26 Data Storage and Representation

A.3.3 Representation of Nonstatic Types and Variables
This section describes the representation of nonstatic types and variables.

A.3.3.1 Representation of Nonstatic Types
Each nonstatic data type has some storage associated with it, called the control
part. Figure A–9 shows the layout of a control part of a nonstatic data type.

Figure A–9 Storage of Nonstatic Data Types

Actual
Discriminant 1

Actual
Discriminant n

Additional Information

0

ZK−1406A−GE

In the top portion of the control part, HP Pascal stores each actual
discriminant of the schema type in a longword of storage. The additional
information piece of the control part varies in content and size depending on
the type specification, and can contain any of the following:

• No information (if the schema type is simple), as follows:

TYPE
A_Char(x,y : CHAR) = x..y;

• Control parts of nested discriminated schema types, as follows:

TYPE
My_Record(a, b : INTEGER) = RECORD

f1 : STRING(a);
f2 : STRING(b);
END;

Data Storage and Representation A–27

• Values for all expressions appearing in the type definition, as follows:

TYPE
My_Subrange(a, b : INTEGER) = a..a+b;

HP Pascal evaluates the expression a+b when the schema type is
discriminated and saves the result in the control part.

• The total size of the data part, if it can vary based on actual discriminants,
as follows:

TYPE
Arr(a, b : INTEGER) = ARRAY[a..b] OF REAL;

Note

The order of information and the content of the additional information
section of the control part cannot be guaranteed.

If you declare more than one variable of a discriminated schema type, each
variable shares the information in the control part for that type.

A.3.3.2 Representation of Variables of Nonstatic Types
When allocating storage for a variable of a nonstatic type, HP Pascal allocates
a pointer part and a data part. HP Pascal allocates and initializes the pointer
part (to point to the data part); you cannot access the pointer part in your
program. HP Pascal associates each object with a control part according to its
data type.

If the type of the object involves more than one nonstatic type, HP Pascal
associates that object with all applicable control parts. Consider the following
example:

TYPE
Sub_Range(a, b : INTEGER) = a..b;

VAR {x requires information in two control parts:}
x : ARRAY[Sub_Range(i, j), Sub_Range(k, l)] OF INTEGER;

Figure A–10 shows the layout for an object of a nonstatic type.

A–28 Data Storage and Representation

Figure A–10 Storage of Variables of Nonstatic Types

Data Part

ZK−1407A−GE

Pointer Part

In Figure A–10, the pointer part is directly accessible by your program. The
data part is allocated in heap when you use the NEW procedure. For example:

TYPE
dstr = STRING(I);

VAR
ptr : ^dstr;

{In the executable section:}
NEW(ptr);

You cannot create variables of undiscriminated types, but you can also show
the representation for pointers to nonstatic types (except undiscriminated
schema).

Figure A–11 shows the layout for a pointer to an undiscriminated
schema type.

Figure A–11 Storage of Pointer Variables to Undiscriminated Schema Types

Data Part

Control Part

ZK−1408A−GE

Pointer Part

Data Storage and Representation A–29

In Figure A–11, the control part and data part are allocated together by a
call to the NEW procedure. Each object allocated this way has its own control
part since the base type of the pointer is undiscriminated and does not have a
control part. Consider the following example:

VAR
x, y, z : ^STRING;

{In the executable section:}
NEW(x, 10); {x has a control and data part}
y := x; {y points to same control and data part as x}
NEW(z, 10); {z has separate control and data parts}

Each variable created by NEW contains a unique control part attached to the
data part.

A.3.3.3 Representation of Nonstatic Record Fields
If a record object contains a field of a nonstatic type, HP Pascal stores the field
in one piece of storage within the record’s storage (HP Pascal does not create
a pointer part and a data part). HP Pascal determines the offset of the object
by accessing the information in the control part of the field’s data type and
information in the control part of the record.

A–30 Data Storage and Representation

B
Summary of HP Pascal Extensions

If you need to write portable code, you should not use the language features
that are HP Pascal extensions. The following sections provide information on
HP Pascal extensions:

• Extensions to the unextended Pascal standards (Section B.1)

• Extensions to the Extended Pascal standard (Section B.2)

For More Information:

• On Pascal standards (Section 1.1)

B.1 HP Pascal Extensions to Unextended Pascal
Table B–1 summarizes the language features provided in HP Pascal that are
not part of the unextended Pascal language definitions.

Table B–1 HP Pascal Extensions to Unextended Pascal

Category Extension

Lexical and
syntactical
extensions

Reserved words: BREAK, CONTINUE, ERR, EXIT, MODULE, NEXT,
OTHERWISE, REM, RETURN, VALUE, VARYING, %DESCR, %STDESCR,
%IMMED, %REF, %INCLUDE, %TITLE, %SUBTITLE, %DICTIONARY, %IF,
%ELIF, %ENDIF, %DEFINED, %ERROR, %WARN, %INFO, %MESSAGE,
%ARCH_NAME, %SYSTEM_NAME, %SYSTEM_VERSION, %DATE,
%TIME, %COMPILER_VERSION, %LINE, %FILE, %ROUTINE, %MODULE,
%IDENT

Exponentiation operator (**)

REM operator

AND_THEN and OR_ELSE operators

NOT IN operator

(continued on next page)

Summary of HP Pascal Extensions B–1

Table B–1 (Cont.) HP Pascal Extensions to Unextended Pascal

Category Extension

Type cast operator (::) for variables and expressions

Double quotation marks as string and character delimiters

Escape sequences within double quotation marks

%radix-specifier for binary, hexadecimal, and octal notation for integers, (#)
radix-specifier for integers in bases 2 to 36 inclusive

Double- and quadruple-precision real numbers

Dollar sign ($) and underscore (_) characters in
identifiers

Identifiers that can begin with the dollar sign or underscore characters

Alphanumeric strings for labels

Extended syntax for inclusion of nonprinting characters in single-quoted
character strings

Compile-time constant expressions allowed anywhere a constant is allowed

Constructors of structured types used anywhere in place of a constant of the
structured type

Attributes used with data items, routines, and compilation units

Relaxed rules for assignment compatibility

Structural compatibility enforced between actual and formal parameters

! for end-of-line comments

Predefined types ALFA, CARDINAL, CARDINAL16, C_STR_T, INTEGER_ADDRESS,
CARDINAL32, INTEGER8, INTEGER16, INTEGER32, INTEGER64,
INTSET, POINTER, UNIV_PTR, UNSIGNED8, UNSIGNED16, UNSIGNED32,
UNSIGNED64, SINGLE (F_floating and S_floating), DOUBLE (D_floating, G_
floating, and T_floating), QUADRUPLE (H_floating and X_floating), STRING,
TIMESTAMP

VARYING OF CHAR structured type and concatenation operator for all strings

Predeclared
procedures

ARGV, ASSERT, BARRIER, CLOSE, CREATE_DIRECTORY, DATE, DELETE,
DELETE_FILE, ESTABLISH, EXTEND, FIND, FINDK, HALT, LINELIMIT,
LOCATE, MESSAGE, OPEN, READV, REMOVE, RENAME_FILE, RESETK,
REVERT, STLIMIT, TIME, TRUNCATE, UNLOCK, UPDATE, WRITEV,
GETTIMESTAMP

Predeclared
functions

Transfer functions: DBLE, INT, INT64, QUAD, ROUND64, SNGL, TRUNC,
TRUNC64, UINT, UINT64, UROUND, UROUND64, UTRUNC, UTRUNC64

(continued on next page)

B–2 Summary of HP Pascal Extensions

Table B–1 (Cont.) HP Pascal Extensions to Unextended Pascal

Category Extension

Implicitly declared type-conversion and type-casting routines for predefined
data types

Dynamic allocation function: ADDR, ADDRESS, IADDRESS, IADDRESS64

Character-string functions: BIN, DEC, HEX, INDEX, LENGTH, OCT, PAD,
STATUSV, SUBSTR, UDEC, GT, GE, LT, LG, EQ, NE

Parameter functions: ARGUMENT, ARGUMENT_LIST_LENGTH, PRESENT

Privileged routines: MFPR, MTPR

Arithmetic functions: BITAND, BITNOT, BITOR, BITXOR, LSHFT, LSHIFT,
MIN, MAX, RANDOM, RSHFT, RSHIFT, SEED, UAND, UNOT, UOR, UXOR,
XOR

Allocation size functions: SIZE, SIZEOF, NEXT, BITSIZE, BITNEXT

Ordered sequence of values functions: FIRST, FIRSTOF, HBOUND, IN_
RANGE, LAST, LASTOF, LBOUND

Low-level interlocked functions: ADD_ATOMIC, ADD_INTERLOCKED,
AND_ATOMIC, CLEAR_INTERLOCKED, FIND_FIRST_BIT_CLEAR, FIND_
FIRST_BIT_SET, FIND_MEMBER, FIND_NONMEMBER, OR_ATOMIC,
SET_INTERLOCKED

Null-terminated string functions: C_STR, MALLOC_C_STR, PAS_STR, PAS_
STRCPY

I/O functions: STATUS, UFB

Field position functions: BIT_OFFSET, BYTE_OFFSET

Additional functions: ARGC, CARD, CLOCK, EXPO, UNDEFINED, ZERO,
DATE, TIME, UPPER, LOWER, SYSCLOCK, WALLCLOCK

READ,
READLN,
WRITE,
WRITELN
extensions

Parameters of character-string and enumerated types for READ and READLN

Parameters of enumerated types for WRITE and WRITELN

Prompting at the terminal with a WRITE/READ or
WRITE/READLN sequence

Optional carriage-control specification for text files with WRITE and
WRITELN

Optional radix specification for READ and READLN

Optional radix specification for WRITE and WRITELN

(continued on next page)

Summary of HP Pascal Extensions B–3

Table B–1 (Cont.) HP Pascal Extensions to Unextended Pascal

Category Extension

Extended I/O
capabilities

Direct access and relative file organization

Keyed access and indexed file organization

Optional second parameter to RESET, REWRITE, and EXTEND for specifying
a file name

Declarations Declaration and definition sections that can appear more than once and in any
order

Initialization of variables, types, and record fields in VAR and TYPE sections
of any program, module, procedure, or function

Schema types

VALUE initialization section

OTHERWISE clause in variant records

Ranges in variant label lists

Statements OTHERWISE clause in CASE statement

Ranges in CASE label lists

BREAK, CONTINUE, EXIT, NEXT, and RETURN statements

FOR statement with SET iterations

Procedures and
functions

Functions that return values of structured types (other than file types)

Functions called as procedures

External procedure and function declarations

Default values for formal parameters

Nonpositional parameter passing

Extended mechanism specifiers and parameter-passing attributes for passing
parameters to external procedures and functions: %IMMED, %REF, %DESCR,
%STDESCR, IMMEDIATE, REFERENCE, CLASS_S, CLASS_A, CLASS_NCA

Compilation MODULE capability for combining declarations and definitions to be compiled
independently from the main program

ENVIRONMENT and INHERIT attributes to control independent compilation

Module initialization and finalization

B–4 Summary of HP Pascal Extensions

B.2 HP Pascal Extensions to Extended Pascal
Table B–2 summarizes the language features provided in HP Pascal that are
not part of the Extended Pascal language definitions.

Table B–2 HP Pascal Extensions to Extended Pascal

Category Extension

Lexical and
syntactical
extensions

Reserved words: BREAK, CONTINUE, ERR, EXIT, NEXT,
REM, RETURN, VARYING, %DESCR, %STDESCR, %IMMED,
%REF, %INCLUDE, %TITLE, %SUBTITLE, %DICTIONARY,
%DICTIONARY, %IF, %ELIF, %ENDIF, %DEFINED, %ERROR,
%WARN, %INFO, %MESSAGE, %ARCH_NAME, %SYSTEM_
NAME, %SYSTEM_VERSION, %DATE, %TIME, %COMPILER_
VERSION, %LINE, %FILE, %ROUTINE, %MODULE, %IDENT

REM operator

NOT IN operator

Type cast operator (::) for variables and expressions

"%radix-specifier number" form for binary, hexadecimal, and octal
notation for integers

Alphanumeric strings for labels

Double- and quadruple-precision real numbers

Identifiers can contain the dollar sign ($) character

Identifiers can begin with the dollar sign character and the
underscore character

Double quotation marks as string and character delimiters

Escape sequences within double quotation marks

Labels can be alphanumeric strings

Extended syntax for inclusion of nonprinting characters in single-
quoted character strings

Parenthetical form ((constructor)) for constructors of structured
types, used anywhere in place of a constant of the structured type

Attributes

Relaxed rules for assignment compatibility

Structural compatibility enforced between actual and formal
parameters

! for end-of-line comments

(continued on next page)

Summary of HP Pascal Extensions B–5

Table B–2 (Cont.) HP Pascal Extensions to Extended Pascal

Category Extension

Predefined types ALFA, C_STR_T, CARDINAL, CARDINAL16, CARDINAL32,
INTEGER8, INTEGER16, INTEGER32, INTEGER64, INTSET,
POINTER, UNIV_PTR, UNSIGNED8, UNSIGNED16, UNSIGNED32,
UNSIGNED64, SINGLE (F_floating and S_floating), DOUBLE (D_
floating, G_floating, and T_floating), QUADRUPLE (H_floating and
X_floating)

VARYING OF CHAR structured type and concatenation operator for
all strings

Predeclared
procedures

ARGV, ASSERT, BARRIER, CLOSE, CREATE_DIRECTORY,
DATE, DELETE, DELETE_FILE, ESTABLISH, FIND, FINDK,
LINELIMIT, LOCATE, MESSAGE, NULL, OPEN, READV,
REMOVE, RENAME_FILE, RESETK, REVERT, STLIMIT, TIME,
TRUNCATE, UNLOCK, UPDATE, WRITEV

Predeclared
functions

Transfer functions: DBLE, INT, INT64, QUAD, ROUND64, SNGL,
TRUNC, TRUNC64, UINT, UINT64, UROUND, UROUND64,
UTRUNC, UTRUNC64

Implicitly declared type-conversion and type-casting routines for
predefined data types

Dynamic allocation function: ADDR, ADDRESS, IADDRESS,
IADDRESS64

Character-string functions: BIN, DEC, HEX, OCT, PAD, STATUSV,
UDEC

Parameter functions: ARGUMENT, ARGUMENT_LIST_LENGTH,
PRESENT

Arithmetic functions: BITAND, BITNOT, BITOR, BITXOR, LSHFT,
LSHIFT, RANDOM, RSHFT, RSHIFT, SEED, UAND, UNOT, UOR,
UXOR, XOR, MIN, MAX

Allocation size functions: SIZE, SIZEOF, NEXT, BITSIZE, BITNEXT

Ordered sequence of values functions: FIRST, FIRSTOF, HBOUND,
IN_RANGE, LAST, LASTOF, LBOUND

Low-level interlocked functions: ADD_ATOMIC, ADD_INTERLOCKED,
AND_ATOMIC, CLEAR_INTERLOCKED, FIND_FIRST_BIT_
CLEAR, FIND_FIRST_BIT_SET, FIND_MEMBER, FIND_
NONMEMBER, OR_ATOMIC, SET_INTERLOCKED

Privileged routines: MTPR, MFPR

I/O functions: STATUS, UFB

(continued on next page)

B–6 Summary of HP Pascal Extensions

Table B–2 (Cont.) HP Pascal Extensions to Extended Pascal

Category Extension

Null-terminated string functions: C_STR, MALLOC_C_STR, PAS_
STR, PAS_STRCPY

Field position functions: BIT_OFFSET, BYTE_OFFSET

Additional predeclared functions: ARGC, CLOCK, EXPO, LOWER,
SYSCLOCK, UNDEFINED, UPPER, WALLCLOCK, ZERO

READ,
READLN,
WRITE,
WRITELN
extensions

Parameters of enumerated types for READ and READLN

Parameters of enumerated types for WRITE and WRITELN

Prompting at the terminal with a WRITE/READ or
WRITE/READLN sequence

Optional carriage-control specification for text files with WRITE and
WRITELN

Optional radix specification for READ and READLN

Optional radix specification for WRITE and WRITELN

Extended I/O
capabilities

Direct access and relative file organization

Keyed access and indexed file organization

Optional second parameter to RESET, REWRITE, and EXTEND for
specifying a file name

Declarations VALUE initialization section

Statements BREAK, CONTINUE, EXIT, NEXT, and RETURN statements

Procedures and
functions

Functions called as procedures

External procedure and function declarations

Default values for formal parameters

Nonpositional parameter passing

Extended mechanism specifiers and parameter-passing attributes for
passing parameters to external procedures and functions: %IMMED,
%REF, %DESCR, %STDESCR, IMMEDIATE, REFERENCE,
CLASS_S, CLASS_A, CLASS_NCA

Compilation MODULE syntax differs from the syntax provided by Extended
Pascal

ENVIRONMENT and INHERIT attributes to control independent
compilation

Summary of HP Pascal Extensions B–7

C
Description of Implementation Features

The standards for Pascal allow some features of the language to be defined by
a particular implementation or to be dependent on an implementation.

This appendix describes the HP Pascal treatment of the following features:

• Section C.1, Implementation-Defined Features

• Section C.2, Implementation-Dependent Features

For More Information:
On Pascal standards (Section 1.1)

C.1 Implementation-Defined Features
The value of each character allowed in a character string

Treatment: See Section 1.2.1.

The range of real number values represented by the type REAL
Treatment: See Section 2.2.

The characters represented by the type CHAR and their ordinal values
Treatment: See Section 1.2.1.

The point at which the REWRITE, PUT, RESET, and GET procedures are
performed on a file
Treatment: Performed immediately unless the file is a terminal file, in
which case delayed device access occurs (see Section 9.5.3).

The value of MAXINT
Treatment: See Table 2–2

The accuracy to which the results of real-number operations are calculated
Treatment: See Table 2–7.

Description of Implementation Features C–1

Default field widths
Treatment: See Section 9.6.

The number of digits used to represent the exponent of a floating-point
number

Treatment:

REAL, SINGLE (F_floating and IEEE S floating-
point format)

2

DOUBLE (D_floating) 2

DOUBLE (G_floating and IEEE T floating point-
format)

3

QUADRUPLE (H_floating and X_floating) 4

The value of the exponent character
Explanation: ’E’.

The case (upper or lower) in which the Boolean values TRUE and FALSE are
printed as output
Explanation: Uppercase; that is, TRUE and FALSE.

The effect of the PAGE procedure
Treatment: PAGE writes a line containing only the form-feed character
(ASCII value 12).

C.2 Implementation-Dependent Features
The unextended Pascal standard and the Extended Pascal standard list
features that can vary from implementation to implementation. It is illegal
for a program to depend on these features. HP Pascal does not detect when
a program depends on any of these features. Relying on them may yield
incorrect results or unexpected program terminations.

Any or all of these implementation-dependent features may change without
notice.

For those items in this section that pertain to order of evaluation, HP Pascal
does not specify the order of evaluation. Depending on several heuristics in the
compiler, the order of evaluation can be left-to-right, right-to-left, or random
with complete or short-circuit evaluation. The order of evaluation is allowed to
vary between invocations of the compiler and even between individual uses of
source language features.

C–2 Description of Implementation Features

The order of evaluation of the following items:

• Expressions used as discriminant values

• Index expressions and access to the array or string variable in a
indexed variable

• Index values of an array variable

• Expressions d1,...,dn in new(p,d1,...,dn)

• Expressions of a set member designator

• Set member designators in a set constructor

• Operands of a dyadic (binary) operator, except for AND_THEN and
OR_ELSE

• Component values of a structured value constructor

• Index expressions in an indexed constant

• Expressions in a set constructor

Treatment: Random order.

Order of selecting members of the set value in the FOR IN statement
Treatment: Random order.

Whether the first character read when reading an integer or real from a text
file is the value of the buffer variable or the value of the next character
from the input record
Treatment: HP Pascal uses the next character in the input record and
ignores the contents of the file buffer.

Order of evaluating, and accessing of actual parameters of a function call
Treatment: Random order.

Order of evaluating, and accessing of actual parameters of a procedure call
Treatment: Random order.

Order of accessing the variable and evaluating the expression in an assignment
statement
Treatment: Random order.

The effect of reading a text file for which the PAGE procedure was called
Treatment: Reads a line containing only the form-feed character (ASCII
value 12).

Description of Implementation Features C–3

The binding of a nonfile variable whose name is listed in the program heading
to entities that are external to the program
Treatment: Reported as an error at compile time.

The binding of a file variable whose name is listed in the program heading
Explanation: The file name (unless it is INPUT or OUTPUT) is equated
to a logical name if a translation for the file name exists. If there is no
corresponding translation, the file type DAT is appended to the name listed
in the heading, as in INFILE.DAT. If the file name is INPUT, the file is
equated to PAS$INPUT, if PAS$INPUT is defined; otherwise, the file is
equated to SYS$INPUT. Similarly, if the file name is OUTPUT, the file is
equated to PAS$OUTPUT, if PAS$OUTPUT is defined; otherwise, the file is
equated to SYS$OUTPUT.

C–4 Description of Implementation Features

D
Compiler and Run-Time System Error

Detection

This appendix describes how the HP Pascal compiler and run-time system
detect violations of the Pascal language standards. Errors detected at run-time
cause a program to terminate and return appropriate error messages. Errors
described here as not detected cause a program to produce unexpected results.

For More Information:

• On Pascal standards (Section 1.1)

• On HP Pascal error messages (HP Pascal for OpenVMS User Manual)

D.1 Error Message Information
The type of an index value is not assignment compatible with the index type of

an array.
Explanation: Detected at run time if bounds checking was enabled during
compilation.

The current variant changes while a reference to it exists.
Explanation: Not detected. An example of a reference to a variant is the
passing of the variant to a formal VAR parameter.

The value of a variable to which a pointer refers (p^) is NIL.
Explanation: Usually detected at run time. Always detected if pointers
checking was enabled during compilation.

The value of a variable to which a pointer refers (p^) is undefined.
Explanation: Not detected.

Compiler and Run-Time System Error Detection D–1

The DISPOSE procedure is called to dispose of a heap-allocated variable while
a reference to the variable exists.
Explanation: Not detected. Examples of such references are passing the
variable, or a component of it, to a formal VAR parameter, or using the
variable in a WITH statement (if the variable is a record).

The value of file f changes while a reference to f^ exists.
Explanation: Not detected. An example of a reference to f^ is the passing
of f^ by reference to a routine; until the routine has ceased execution, you
cannot perform any operation on file f.

The ordinal type of an actual parameter is not assignment compatible with the
type of the corresponding formal parameter.
Explanation: Detected at run time if subrange checking was enabled
during compilation of the called routine.

The set type of an actual parameter is not assignment compatible with the type
of the corresponding formal parameter.
Explanation: Detected at run time if subrange checking was enabled
during compilation of the called routine.

A file is not in generation mode when a PUT, WRITE, WRITELN, or PAGE
procedure is attempted.
Explanation: Detected at run time.

A file is in undefined mode when a PUT, WRITE, WRITELN, or PAGE
procedure is attempted.
Explanation: Not detected.

The result of an EOF function is not TRUE when a PUT, WRITE, WRITELN,
or PAGE procedure is attempted.
Explanation: Detected at run time. The operation is illegal only when the
file is accessed sequentially.

The value of the file buffer variable is undefined when a PUT procedure is
attempted.
Explanation: Not detected.

A file is in undefined mode when a RESET procedure is attempted.
Explanation: Not detected.

D–2 Compiler and Run-Time System Error Detection

A file is not in inspection mode when a GET, READ, or READLN procedure is
attempted.
Explanation: Detected at run time.

A file is in undefined mode when a GET, READ, or READLN procedure is
attempted.
Explanation: Not detected.

The result of an EOF function is TRUE when a GET, READ, or READLN
procedure is attempted.
Explanation: Detected at run time.

The type of the file buffer variable is not assignment compatible with the type
of the variable that is a parameter to a READ or READLN procedure.
Explanation: Detected at run time.

The type of the expression being written by a WRITE or WRITELN procedure
is not assignment compatible with the type of the file buffer variable.
Explanation: Detected at run time.

The current variant does not exist in the list of variants specified with the
NEW procedure.
Explanation: Not detected.

The DISPOSE(p) procedure is called to deallocate a pointer variable that was
created using the variant form of the NEW procedure.
Explanation: Not detected.

The variant form of the DISPOSE procedure does not specify the disposal of
the same number of variants that were created by the variant form of the
NEW procedure.
Explanation: Not detected.

The variant form of the DISPOSE procedure does not specify the disposal
of the same variants that were created by the variant form of the NEW
procedure.
Explanation: Not detected.

The value of the parameter to the DISPOSE procedure is NIL.
Explanation: Detected at run time.

Compiler and Run-Time System Error Detection D–3

The value of the parameter to the DISPOSE procedure is undefined.
Explanation: Not detected.

A variant record created by the NEW procedure is accessed as a whole, rather
than one component at a time.
Explanation: Not detected.

In the PACK(a,i,z) procedure, the type of the index value i is not assignment
compatible with the index type of a.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

The PACK procedure is attempted when the value of at least one component of
a is undefined.
Explanation: Not detected.

The index value i in the PACK procedure is greater than the upper bound of
the index type of a.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

In the UNPACK(z,i,a) procedure, the type of the index value i is not
assignment compatible with the index type of a.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

The UNPACK procedure is attempted when the value of at least one component
of z is undefined.
Explanation: Not detected.

The index value i in the UNPACK procedure is greater than the upper bound
of the index type of a.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

The resulting value of SQR(x) does not exist.
Explanation: Detected at run time for integers if overflow checking was
enabled during compilation; always detected at run time for real numbers.

In the expression LN(x), the value of x is negative.
Explanation: Detected at run time.

D–4 Compiler and Run-Time System Error Detection

In the expression SQRT(x), the value of x is negative.
Explanation: Detected at run time.

The resulting value of TRUNC(x) does not exist after the following
calculations have been done: if the value of x is positive or zero, then
0 <= x–TRUNC(x) < 1; otherwise, –1 < x–TRUNC(x) <=0.
Explanation: Detected at run time if overflow checking was enabled
during compilation.

The resulting value of ROUND(x) does not exist after the following
calculations have been done: if the value of x is positive or zero, then
ROUND(x) is equivalent to TRUNC(x + 0.5); otherwise,
ROUND(x) is equivalent to TRUNC(x—0.5).
Explanation: Detected at run time if overflow checking was enabled
during compilation.

The resulting value of CHR(x) does not exist.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

The resulting value of SUCC(x) does not exist.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

The resulting value of PRED(x) does not exist.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

The function EOF(f) is called when the file f is undefined.
Explanation: Not detected.

The function EOLN(f) is called when the file f is undefined.
Explanation: Not detected.

The function EOLN(f) is called when the result of EOF(f) is TRUE.
Explanation: Not detected.

A variable is not initialized before it is first used.
Explanation: Not detected.

In the expression x/y, the value of y is zero.
Explanation: Detected at run time.

Compiler and Run-Time System Error Detection D–5

In the expression i DIV j, the value of j is zero.
Explanation: Detected at run time.

In the expression i MOD j, the value of j is zero or negative.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

An operation or function involving integers does not conform to the
mathematical rules for integer arithmetic.
Explanation: Detected at run time if overflow checking was enabled
during compilation.

A function result is undefined when the function returns control to the calling
block.
Explanation: Not detected.

The ordinal type of an expression is not assignment compatible with the type
of the variable or function identifier to which it is assigned.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

The set type of an expression is not assignment compatible with the type of the
variable or function identifier to which it is assigned.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

None of the case labels is equal in value to the case selector in a CASE
statement.
Explanation: Detected at run time if case selector checking was enabled
during compilation.

In a FOR statement, the type of the initial value is not assignment compatible
with the type of the control variable, and the statement in the loop body is
executed.
Explanation: Detected at run time if subrange checking was enabled
during compilation. Assignment compatibility is not enforced if the
statement in the loop body can never be executed.

D–6 Compiler and Run-Time System Error Detection

In a FOR statement, the type of the final value is not assignment compatible
with the type of the control variable and the statement in the loop body is
executed.
Explanation: Detected at run time if subrange checking was enabled
during compilation. Assignment compatibility is not enforced if the
statement in the loop body can never be executed.

When an integer is being read from a text file, the digits read do not constitute
a valid integer value. (Initial spaces and end-of-line markers are skipped.)
Explanation: Detected at run time.

When an integer is being read from a text file, the type of the value read is not
assignment compatible with the type of the variable.
Explanation: Detected at run time if subrange checking was enabled
during compilation.

When reading a real number from a text file, the digits read do not constitute
a valid real number. (Initial spaces and end-of-line markers are skipped.)
Explanation: Detected at run time.

The value of the file buffer variable is undefined when a READ or READLN
procedure is performed.
Explanation: Not detected.

A WRITE or WRITELN procedure specifies a field width in which the integers
representing the total width and the number of fractional digits are less
than 1.
Explanation: Not detected.

The bounds of an array passed to a conformant array parameter are outside
the range specified by the conformant array’s index type.
Explanation: Detected at run time if bounds checking was enabled during
compilation.

Compiler and Run-Time System Error Detection D–7

Glossary

actual discriminant

The boundary or selector value that you specify in a schema type to form a
valid data type.

actual parameter

A value passed to a routine in the routine call.

alternate key

A key value in components of a file of indexed organization from which
HP Pascal provides an index into the file. Your program can use an alternate
key to provide another collating sequence (order of access) for the file
components.

argument

A name in the routine header that specifies information about the type, size,
and passing mechanism of data that is expected to be passed to the routine
as an actual parameter. This term is synonymous with the term formal
parameter.

array

A group of components, called elements, that all have the same data type and
share a common identifier.

atomic instruction

An instruction that consists of one or more discrete operations that are handled
by the hardware as a single operation, without interruption.

Glossary–1

atomic operation

An operation that cannot be interrupted by other system events, such as an
AST (asynchronous system trap) service routine; an atomic operation appears
to other processes to be a single operation. Once an atomic operation starts,
it will either complete without interruption or will restart itself from the
beginning.

Read-modify-write operations are typically not atomic at an instruction level
on a RISC machine.

attribute

An identifier that directs the HP Pascal compiler to change its behavior in
some way.

attribute class

A category that indicates a common affect that a group of attributes has on
programming, such as data alignment, storage allocation, and optimization
classes.

automatic variable allocation

An attribute of a variable that indicates that the variable be allocated each
time the program enters the routine in which the variable is declared and is
deallocated each time the program exits from that routine.

base type

The data type of the data items in a set or of the object of a pointer. See also
set.

cascade

An environment-file inheritance path that involves a compilation unit
inheriting another compilation unit that inherits another compilation unit (and
so forth). See also compilation unit and environment file.

case selector

An ordinal expression whose value at run time determines which statement in
a CASE statement executes.

cells

A fixed-length file component in a file of relative file organization. Each cell is
numbered consecutively from 1 to n.

Glossary–2

compilation unit

A unit of code that can be compiled independently; the term compilation unit
refers to either a program or a module.

compiler optimization

A set of processes or algorithms the compiler applies to your program to make
it execute faster or use less memory.)

component

A single data item in a file.

component access mode

A method by which HP Pascal retrieves components from a file.

component format

A file characteristic that determines the size (or maximum size) of each
component and any processing information needed in addition to the data
portion of the component.

condition handler

A routine that is used to resolve an event, usually an error, that occurs during
program execution and is detected by system hardware or software, or by the
logic in a user application program.

constant expression

An expression that results in a value at the time you compile your program.
See also run-time expression.

constructor

A list of values, surrounded by brackets ([]), used to assign values to
structured objects, such as arrays, records, and sets.

control part

A data structure, internal to HP Pascal, that contains information used by the
compiler to create and to access the data part of nonstatic types at run time.
See also data part and nonstatic type.

current component

The file component that is currently located in the file buffer variable; this is
the only file component accessible to the program at a given time.

Glossary–3

data part

A data structure that contains an object of a variable whose type is nonstatic.
HP Pascal usually accesses the data in the data part by accessing a pointer
part that points to the object.

data type

A property of data that determines the range of values, set of valid operations,
and maximum storage allocation for the data object.

HP Pascal extension

A language element that is not part of the unextended Pascal standard or
the Extended Pascal standard. In the HP Pascal for OpenVMS Language
Reference Manual, the term extension refers to language elements that are not
part of the Extended Pascal standard. See also Extended Pascal standard and
unextended Pascal standard.

declaration section

A part of a program, module, or routine that includes constant, label, type,
variable, and routine declarations. A module can also contain an initialization
(TO BEGIN DO) and a finalization (TO END DO) section. See also executable
section, heading, and module.

delayed device access

An HP Pascal technique used to fill the file buffer. HP Pascal reads and inserts
a file component into the file buffer only when the program is ready to process
it (when the program makes the next reference to the file).

direct access

A component access method that locates a file component according to either
the random access number or the key value. See also random access and key.

discriminated schema type

The data type resulting from applying actual discriminants to a schema type.

element

A component of an array. See also array.

Glossary–4

environment file

A file, created using the ENVIRONMENT attribute, that contains descriptions
of the constant, type, variable, procedure, and function identifiers contained
in the outermost level of a compilation unit. Compilation units that inherit
this file, using the INHERIT attribute, have access to the data items declared
in the other compilation unit. See also attribute, compilation unit, and
declaration section.

executable section

A part of a program or routine containing statements to execute. See also
declaration section and heading.

expression

A group of identifiers and operators that result in a value. See also constant
expression and run-time expression.

extended-digit notation

A standard format for integers that includes the specification of a base value
(bases 2 to 32 are allowed), followed by the number sign (#), and followed by
the extended-digit value.

Extended Pascal standard

The International Standard ISO 10206-1989. HP Pascal supports many
features of this standard, but not all of them.

extended-string format

A format for character-string constants that allows you to place nonprinting
ASCII characters, such as the bell and the backspace, into the character string.

extensions

See HP Pascal extension.

external file

A physical file that has a name and exists outside the context of a Pascal
program. See also file.

field

A component of a record. The component can be of various data types.

file

An organized collection of logically related data items.

Glossary–5

file component

See component.

fixed-length component format

A component format that specifies that all file components are the same length.
See also component and component format.

formal discriminant

An identifier in a schema-type declaration that takes the place of specific
boundary values or variant-record selectors. See also schema type.

formal parameter

A name in the routine header that specifies information about the type, size,
and passing mechanism of data that is expected to be passed to the routine as
an actual parameter. This term is synonymous with the term argument.

function

A subprogram that contains one or more statements to be executed once the
function is called and that returns a single value.

generation mode

A file state that indicates when output is being written to a file. See also
inspection mode and undefined mode.

heading

A part of a program, module, or routine that includes an identifier, a list of
external files used (for programs and modules), a list of formal parameters
(for routines), and a return value (for functions). See also declaration section,
executable section, and formal parameter.

implementation module

A module that contains data to which you want to restrict access and that
inherits an environment file from an interface module. See also environment
file and interface module.

index

A internal data structure that provides pointers, based on key values, to file
components in an indexed file.

Glossary–6

indexed file organization

A file organization in which each file component must contain a primary
key and, optionally, alternate keys. HP Pascal uses the primary key to store
components, and uses program-specified keys to build indexes and to retrieve
data. See also key.

initial-state specifier

A constant expression, used with the reserved word VALUE, that initializes
a variable, a constant, or a data type in the declaration section. See also
constant expression.

inspection mode

A file state that indicates when input is being read from a file.

interface module

A module that produces an environment file, that contains data that is
not likely to change, and that provides access to more restricted data in
an implementation module. See also environment file and implementation
module.

internal file

A file temporarily contained in memory that has no name and is not retained
after the program finishes execution.

item list

A data structure that contains a sequence of control structures that provide
input to a OpenVMS system service and that describes where the service
should place its output. An item list can have an arbitrary number of cells and
is terminated with a longword of value 0.

key (or, key field)

A value in a component of a file of indexed organization that HP Pascal uses
to build indexes into the file. Each key is identified by its location within the
component, its length, and its data type. See also alternate key, index, and
primary key.

keyed access

Random file access by key value. See also random access.

Glossary–7

key of reference

A key used by HP Pascal to determine the index to use when sequentially
accessing components of an indexed file. See also key, indexed file organization,
and sequential access method.

label

A tag, declared in the LABEL declarations section, that makes an executable
statement accessible to a GOTO statement.

language extensions

See HP Pascal extension.

lazy lookahead

See delayed device access.

lexical elements

Characters and identifiers that have meaning to a compiler, such as the legal
character set, special symbols, predeclared identifiers, and reserved words.

lock

Action taken by HP Pascal that prevents other programs from accessing a file
component while your program reads or writes that same component.

module

A set of instructions that can be compiled, but not executed, by itself. Module
blocks contain only a declaration section, which can include an initialization
(TO BEGIN DO) and a finalization (TO END DO) section.

module heading

See module.

multidimensional array

An array whose components are also arrays.

name string

A special form of constant expression required by some attributes. The name
string is equivalent to a Pascal character-string constant with one exception:
name strings cannot use the extended-string syntax. See also attribute and
extended-string format.

Glossary–8

natural alignment

An attribute of certain data items that refers to the placement of the data,
such that the lowest addressed byte has an address that is a multiple of the
size of the data in bytes. Natural alignment for a byte is any byte address,
natural alignment for a word is any byte address that is a multiple of 2,
natural alignment for a longword is any byte address that is a multiple of 4,
and so on.

nonpositional syntax

A syntax for passing actual parameters that allows you to specify parameters
in any order you want. The syntax requires that you specify the name of the
formal parameter, followed by the assignment operator (:=), followed by the
actual parameter.

nonstatic type

A type whose objects contain a run-time component; a type is nonstatic if it is
a schema type or if its type is derived from a schema type.

optimization

See compiler optimization.

parameter-passing mechanism

The method by which Pascal passes the actual parameter to the formal
parameter. HP Pascal passing mechanisms include passing by immediate
value, by reference, and by descriptor.

parameter-passing semantics

The characteristics of a parameter expected by a routine declaration, as
specified by the formal parameter. HP Pascal parameter-passing semantics
include value, variable, routine, and foreign parameters.

passing mechanism

See parameter-passing mechanism.

position independent code

Machine code that operates successfully wherever it is positioned in memory.

positional syntax

A syntax for passing actual parameters that specifies that the parameters in
the actual and formal lists must correspond exactly from left to right, item by
item, through both lists.

Glossary–9

predeclared identifier

A character string that is predeclared by the compiler to have a given meaning
but that can be redefined in a program. HP Pascal predeclared identifiers
include names of data types, symbolic constants, file variables, procedures, and
functions.

primary key

A key value in components of a file of indexed organization that indicates the
order in which HP Pascal stores the file components.

procedure

A subprogram that contains one or more statements to be executed once the
procedure is called.

program

A set of instructions that can be compiled and executed by itself. Program
blocks contain a declaration and an executable section.

program heading

See heading.

property

A characteristic of a program section (PSECT) that determines memory
allocation and sharing. The term property is synonymous with the OpenVMS
term attribute.

random access

An access method that allows you to access a specified component in a relative
or indexed file (and also in sequential files with fixed-length components). The
order of access is not dependent on the order in which the components are
stored.

record

A group of components, called fields, which can be of various data types.

recursion

The act of a routine directly or indirectly calling itself.

Glossary–10

redefinable reserved word

An identifier that HP Pascal reserves for its own use but that you can redefine
if you choose. If you redefine these words, the original function of the reserved
word becomes unavailable within the block in which you redeclare the word.

relative component number

A cell number in a file of relative organization.

relative file organization

A file organization that consists of a series of component positions, called cells,
numbered consecutively from 1 to n. The numbered, fixed-length cells enable
HP Pascal to calculate the component’s physical position in the file.

reserved word

An identifier that HP Pascal reserves for its use to designate data types,
statements, and operators. You cannot redefine these identifiers.

routine

A subprogram; a function or procedure. See also function and procedure.

routine heading

See heading.

run-time expression

An expression that results in a value at the time you run your program. See
also constant expression.

schema family

All types that are derived only from discriminating the same schema type,
though the actual-discriminant values may vary. See also actual discriminant.

schema type

A user-defined construct that provides a template for a family of distinct data
types. By discriminating a schema type, you create a valid data type. See also
data type, discriminated schema type, and undiscriminated schema type.

semantics

See parameter-passing semantics.

Glossary–11

sequential access method

A component access method in which storage or retrieval begins at a
designated position in the file and continues through the file according to the
component’s position in storage.

sequential file organization

A file organization in which file components are stored one after the other, in
the order in which they were written to the file.

set

A collection of data items of the same ordinal type. See also base type.

short circuiting

Compiler evaluation of an expression from left to right that stops as soon as
the overall result can be determined. See also expression.

static type

A type whose object can be fully described at compile time, a type that is not
derived from a schema type.

static variable allocation

Allocation for a variable that occurs only once and that exists for the duration
of the executable image’s execution.

stream component format

A component format that is a continuous stream of bytes and that is delimited
by a character called a terminator.

subscript

An ordinal index, or subscript, that designates an individual array element’s
position in the array. See also array.

terminator

A delimiting character for a stream component that HP Pascal also recognizes
as a valid part of the component data.

TIE

See Translated Image Environment.

Glossary–12

translated code

OpenVMS Alpha code created by the VAX Environment Software Translator to
run on OpenVMS Alpha systems. See also Translated Image Environment and
VAX Environment Software Translator.

Translated Image Environment

An OpenVMS Alpha systems shareable image that is applied to a translated
image at run time. TIE provides an environment similar to OpenVMS VAX for
the translated image and processes all interactions with the native OpenVMS
Alpha system. TIE is selected with a switch at compile time.

undefined mode

A file state that indicates when the file is in an undefined state of processing.

undiscriminated schema type

A schema type that has not been provided actual discriminants. These types
are used as the domain type of a pointer or as a formal parameter.

unextended Pascal standard

The International Standard ISO 7185-1989. See also Extended Pascal
standard.

user-action function

A function that you write and provide to HP Pascal to use Record Management
Services (RMS) features to open or close a file.

variable-length component format

A component format that specifies that file components have lengths that vary.
See also component and component format.

VAX Environment Software Translator (VEST)

A software application that analyzes a VAX system binary image and creates
a functionally equivalent translated image that runs on OpenVMS Alpha
systems.

Glossary–13

Index

A
ABS program section, A–2
ABS function, 8–3
Absolute value

of a parameter, 8–3
Access methods, 9–11 to 9–17
Actual discriminant, 2–37

definition, Glossary–1
Actual parameter

associated with formal, 6–25
definition, Glossary–1
description of, 6–8
effect of UNSAFE attribute, 6–9
foreign mechanism, 6–17
function, 6–13
passing mechanisms, 6–8
procedure, 6–13
routine, 6–13
value semantics, 6–1, 6–8
variable semantics, 6–1, 6–10

Addition operator, 4–3
ADDRESS function, 8–4
ADD_ATOMIC function, 8–3
ADD_INTERLOCKED function, 8–4
ALIGN attribute, 10–4
ALIGNED attribute, 10–5

effect on alignment boundary, A–16
Alignment

conditions determining boundary, A–16
of key fields, 10–24
of variables, A–16

Alignment attributes, A–16
Alignment boundary, A–16

examples of, A–17
Alignment routines

return values of, 8–41
Allocation

automatic, 10–9
example of, A–9
in common block, 10–15
in program section, 10–33, A–2
of executable blocks, A–9
of symbolic constants, A–9
of variables

automatic and static, A–7
size

examples of, A–15
size of variable, A–10
static, 10–36

Allocation attributes
determining for variables, A–7

Alternate key
default options for, 10–24
definition, Glossary–1
in indexed file, 9–4

AND operator, 4–6
AND_ATOMIC function, 8–5
AND_THEN operator, 4–6
ANSI standard, 1–1
Architecture detection, 11–9
%ARCH_NAME directive, 11–9
ARCTAN function, 8–5
Arctangent of parameter, 8–5

Index–1

Argument
definition, Glossary–1

ARGUMENT function, 8–6
Argument in parameter list, 8–6
ARGUMENT_LIST_LENGTH function, 8–6
Arithmetic operators, 4–2 to 4–5
Array, 2–19

conformant, 6–21
copying, 8–33, 8–47
definition, Glossary–1
indexing when returned from a function,

4–15
multidimensional, 2–20

ARRAY components, 2–16, 2–20
ARRAY constructor, 2–21
ARRAY type, 2–19

allocation size of, A–11
bounds checking, 10–11
character strings, 2–43
component of, 2–19
index of, 2–19
packed, 2–43
packing, A–17

examples of, A–15
use of multidimensional array, 2–20

ASCII character set, 1–3, 2–7
nonprinting characters in, 2–7

ASSERT procedure, 8–7
Assignment compatibility, 2–51

effect of POS, 10–33
effect of read-only, 10–35
effect of UNSAFE, 10–43

Assignment operator, 5–2
Assignment statement, 5–2
Asynchronous attribute, 10–7
AT attribute, 10–8
Atomic instruction

definition, Glossary–1
Atomic operation

definition, Glossary–2
Attribute

definition, Glossary–2
Attribute class, 10–1

default for, 10–2
definition, Glossary–2

Attribute class (cont’d)
list of, 10–52

Attributes, 10–1 to 10–56
See also individual attributes by name
associating with data, 10–2
effect on compatibility, 10–4
effect on formal parameter, 6–9
effect on structural compatibility, 6–12
specified in TYPE section, 10–3
syntax of, 10–1

Automatic allocation
of variables, A–8

AUTOMATIC attribute, 10–9
Automatic variable allocation, 10–9

definition, Glossary–2

B
Backslash character, 1–4
Backspace character, 1–4
BARRIER function, 8–7
Base

specifying in output, 9–26
Base type

definition, Glossary–2
of set, 2–30
of subrange, 2–9

BEGIN (compound statement), 5–4
Bell character, 1–4
Binary

nondecimal output of WRITE, WRITELN,
and WRITEV, 9–26

Binary notation, 2–2
in output procedure, 9–26

BIN function, 8–8
in output procedure, 9–26

BIT attribute, 10–10
BITNEXT function, 8–9, A–14
32-bit rules for storage allocation, A–11
BITSIZE function, 8–9, A–14
BIT_OFFSET function, 8–9
Block

allocation of, A–9
contents of, 7–1

Index–2

BOOLEAN type, 2–8
allocation size of, A–11
default field width of, 9–23
reading from text file, 9–53

Bound procedure value, 10–41
BREAK statement, 5–2
BSS program section, A–2
Buffer

increasing internal size, 9–23
Buffers

file buffers, 9–9
Buffer variable, 9–7
Built-ins

See Predeclared routines
BYTE attribute, 10–11
BYTE_OFFSET function, 8–10

C
CARD function, 8–11
Cardinality of set, 8–11
CARDINAL type

See UNSIGNED type
Carriage control

characters, 9–19
OPEN parameter options, 9–19

Carriage return character, 1–4
Cascade

definition, Glossary–2
Case label, 5–3
Case selector, 5–3

checking, 5–4
definition, Glossary–2

CASE statement, 5–3
case label, 5–3
case selector, 5–3

checking, 10–11
examples, 5–4
in records with variants, 2–25
with OTHERWISE clause, 5–4

CDD, 11–5
Cells

definition, Glossary–2
definition of, 9–3

Character
form feed, 1–10
nonprinting, 2–7
of type CHAR, 2–7
ordinal value of, 2–7
page break, 1–10

Character set
See ASCII character set

Character string, 2–43
comparing for equality, 8–16, 8–19, 8–24
comparing for inequality, 8–19, 8–20,

8–24, 8–26, 8–29
comparing with predeclared routines, 4–9
comparing with relational operators, 4–9
default field width of, 9–23
extracting substring from, 8–43
finding length of, 8–25
fixed-length, 2–43
locating pattern in, 8–23
nonpadded for comparison, 4–9
operators, 4–8
padding, 8–34
padding for comparison, 4–9
reading from, 8–37
reading from text file, 9–53
varying-length, 2–44
writing to, 8–51

CHAR type, 2–7
allocation size of, A–11
default field width of, 9–23
reading from text file, 9–53

CHECK attribute, 10–11
summary of options, 10–11

CHR function, 8–11
Classes of attributes, 10–52 to 10–54
CLASS_A attribute, 10–13

used to specify descriptor in parameter,
6–16

CLASS_NCA attribute, 10–13
used to specify descriptor in parameter,

6–16
CLASS_S attribute, 10–14

used to specify descriptor in parameter,
6–16

Index–3

CLEAR_INTERLOCKED function, 8–11
CLOCK function, 8–12
CLOSE procedure, 9–31
$CODE and $CODE$ program section, A–2
$CODE program section, A–10
Comments, 1–9

nested, 1–10
COMMON attribute, 10–15

effect on allocation of variables, A–7
program section properties, A–6
use in allocating storage, A–8
use when defining program sections, A–5

Common block
definition of, 10–15
description of, A–5
properties of, A–6
variable allocation, A–6

Compatibility
assignment, 2–51
structural, 2–49

Compilation identification, 11–10
Compilation unit

attributes, 10–55
definition, 7–5, Glossary–3
sharing data, 7–7

Compiler optimization
definition, Glossary–3

%COMPILER_VERSION directive, 11–10
Compile-time directives

%DEFINED, 11–8
%ELIF, 11–6
%ELSE, 11–6
%ENDIF, 11–6
%ERROR, 11–8
%FILE, 11–10
%IDENT, 11–10
%IF, 11–6
%INFO, 11–8
%LINE, 11–10
%MESSAGE, 11–8
%MODULE, 11–10
%ROUTINE, 11–10
%SYSTEM_NAME, 11–9
%SYSTEM_VERSION, 11–9
%WARN, 11–8

Compile-time expressions, 4–1
Component

access mode, 9–11
definition, Glossary–3
format of, 9–7
in a file, 9–1
length of, 9–4
of structured type, 2–18

Component access mode
definition, Glossary–3

Component format, 9–9
definition, Glossary–3
fixed-length, 9–10
stream, 9–10
variable-length, 9–10

Components
of array, 2–20

Compound statement, 5–4
Concatenation

of string operators, 4–8
Conditional compilation

%ELIF, 11–6
%ELSE, 11–6
%ENDIFIF, 11–6
%IF, 11–6

Conditional statements
CASE, 5–3
IF, 5–8

Condition handler
canceling, 8–38
definition, Glossary–3
establishing, 8–16

Conformant array
effect of UNSAFE attribute, 10–43

Conformant parameter
array, 6–21
description of, 6–20
VARYING string, 6–22

Congruence of formal routine parameters,
6–13, 10–26

Constant
definition, 3–2
expressions, 4–1
identifier, 2–8
symbolic, 3–2

Index–4

Constant expression
definition, Glossary–3

Constants
allocation of, A–9

Constructor
array, 2–21
definition, Glossary–3
nonstandard array, 2–34
nonstandard record, 2–35
pointer, 2–17
record, 2–27
set, 2–31
to decimal value, 8–14
variant record, 2–29

CONST section, 3–2
CONTINUE statement, 5–5
Control part

definition, Glossary–3
in a nonstatic type, A–27

Control variable, 5–6
Conversion

of actual parameter type, 6–9
of type, 4–15
to ASCII binary value, 8–8
to ASCII decimal value, 8–14
to ASCII hexadecimal value, 8–21
to ASCII octal value, 8–32
to double-precision, 8–13
to integer, 8–24

by rounding, 8–38
by truncation, 8–44

to INTEGER64
by rounding, 8–39
by truncation, 8–44

to quadruple-precision, 8–36
to single-precision, 8–41
to UNSIGNED64

by rounding, 8–50
by truncation, 8–50

to unsigned ASCII decimal value, 8–45
to unsigned integer, 8–46

by rounding, 8–49
by truncation, 8–50

COS function, 8–12
Cosine of parameter, 8–12
Count-controlled loop

See FOR statement
CREATE_DIRECTORY procedure, 8–12
Current compilation, 11–10
Current component, 9–7

definition, Glossary–3
Current module, 11–10
Current routine, 11–10
C_STR function, 8–10
C_STR_T type, 2–47

D
$DATA$, A–10
$DATA$ program section, A–2
Data part

definition, Glossary–4
of a nonstatic type, A–28

Data type, 2–1 to A–30
arithmetic, 8–1
ARRAY, 2–19 to 2–22
BOOLEAN, 2–8
CARDINAL, 2–3
CHAR, 2–7
definition, Glossary–4
DOUBLE, 2–11
enumerated, 2–8
FILE, 2–32
floating-point formats, 2–11
initial-state-specifier for, 3–7
INTEGER, 2–2
INTEGER16, 2–2
INTEGER32, 2–2
INTEGER64, 2–2
INTEGER8, 2–2
INTEGER_ADDRESS, 2–6
internal representation of, A–19
nonstatic, 2–48
ordinal, 2–2 to 2–11
pointer, 2–16
POINTER type, 2–18
QUADRUPLE, 2–11
REAL, 2–11 to 2–15

Index–5

Data type (cont’d)
RECORD, 2–22
SET, 2–30
SINGLE, 2–11
size in bytes, 8–40
static, 2–48
STRING, 2–41
structured, 2–18
subrange, 2–9
UNSIGNED, 2–3
UNSIGNED16, 2–3
UNSIGNED32, 2–3
UNSIGNED64, 2–3
UNSIGNED8, 2–3
values assigned by ZERO function, 8–53
VARYING OF CHAR, 2–44

Date checking, 11–10
%DATE directive, 11–10
DATE function, 8–12
DATE procedure, 8–13
DBLE function, 8–13
DEC function, 8–14
Decimal notation

in output procedure, 9–25
integer, 2–2
real number, 2–13

Declaration
See also Definition
function, 6–1
label, 3–2
procedure, 6–1
variable, 3–9

Declaration section, 3–1 to 3–11
CONST, 3–2
contents of, 3–1
definition, Glossary–4
FUNCTION, 6–1
LABEL, 3–2
PROCEDURE, 6–1
TYPE, 3–7
VALUE, 3–9
VAR, 3–9

Default parameter
values, 6–26

%DEFINED directive, 11–8
Definition

See also Declaration
constant, 3–2
label, 3–2
type, 3–7

Delayed device access
definition, Glossary–4
to TEXT files, 9–20

DELETE procedure, 9–32
DELETE_FILE procedure, 8–15
Dereferencing

file buffers, 9–9
%DESCR foreign mechanism

on actual parameter, 6–17
Descriptor mechanism, 6–7

for strings, 6–17
%DICTIONARY directive, 11–5
Direct access

definition, Glossary–4
Directive

%ARCH_NAME, 11–9
%COMPILER_VERSION, 11–10
%DATE, 11–10
%DEFINED, 11–8
%DICTIONARY, 11–5
%ELIF, 11–6
%ELSE, 11–6
%ENDIF, 11–6
%ERROR, 11–8
%FILE, 11–10
%IDENT, 11–10
%IF, 11–6
%INCLUDE, 11–1
%INFO, 11–8
%LINE, 11–10
%MESSAGE, 11–8
%MODULE, 11–10
%ROUTINE, 11–10
%SUBTITLE, 11–6
%SYSTEM_NAME, 11–9
%SYSTEM_VERSION, 11–9
%TIME, 11–10
%TITLE, 11–6
%WARN, 11–8

Index–6

Discriminants
actual and formal, 2–37

Discriminated schema, 2–39
definition, Glossary–4

DISPOSE procedure, 8–15
Division operator, 4–4
DIV operator, 4–4
Double-precision data

representation of, A–22, A–23, A–24
Double-precision real number, 2–11
Double-quotation character, 1–4
DOUBLE type, 2–11

allocation size of, A–11
default field width of, 9–23
representation of, A–22

Dynamic variable, 2–16
allocating, 8–29
disposing of, 8–15

D_FLOAT, 2–13
D_floating-point data

representation of, A–22

E
Element

definition, Glossary–4
%ELIF directive, 11–6
ELSE clause

in IF statement, 5–8
%ELSE directive, 11–6
Embedded string values, 1–4
Empty set, 2–32
Empty statement, 5–5
END (compound statement), 5–4
%ENDIF directive, 11–6
End-of-file condition, 9–33
End-of-line condition, 9–34
Enumerated type, 2–8

allocation size of, A–11
default field width of, 9–23
reading from text file, 9–53

Enumerated types
output of, 9–28

ENUMERATION_SIZE attribute, 10–16
ENVIRONMENT attribute, 10–16

effect on allocation, A–8
Environment file

creation of, 10–17
definition, Glossary–5
example of, 7–7
inheriting, 10–21
rules for creating, 7–8

EOF function, 9–33
EOLN function, 9–34
EPSDOUBLE, 2–14
EPSQUADRUPLE, 2–15
EPSREAL, 2–14
EQ function, 8–16
ERR file variable

description of, 9–18
Error

detection, D–1 to D–7
processing, 9–29

%ERROR directive, 11–8
Error messages

violating language standard, D–1 to D–7
ERROR parameter, 9–29
ESTABLISH procedure, 8–16
Executable image

memory allocation by linker, A–1
Executable section

definition, Glossary–5
EXP function, 8–16
EXPO function, 8–17
Exponent

of real number, 8–17
value returned, 8–16

Exponential notation, 2–13
in output procedure, 9–25

Exponentiation operator, 4–3
Expression

definition, Glossary–5
function call, 4–15

Expressions, 4–1 to 4–14
compile-time, 4–1
order of evaluation, 4–2, 4–12 to 4–14
run-time, 4–1
use of parentheses in, 4–13

Index–7

Extended-digit notation, 2–5
definition, Glossary–5

Extended Pascal
extensions to, B–5 to B–7

Extended Pascal standard, 1–2
definition, Glossary–5

Extended-string format, 2–41
definition, Glossary–5

Extending field width, 9–25
EXTEND procedure, 9–35
Extensions

effect on portable code, 1–1
summary of, B–1 to B–7

Extension to HP Pascal language
definition, Glossary–4

EXTERNAL attribute, 10–18
External definitions

LIST attribute, 10–26
External file

definition, 9–2, Glossary–5
listed in heading, 7–6

EXTERNAL identifier, 6–3
External identifiers

sharing of, 7–9
External routine

passing mechanisms for, 6–15 to 6–18
EXTERN identifier, 6–3

F
Field

definition, Glossary–5
of record, 2–22
position of in record, 10–32
width of, 9–23

Field width
overflow, 9–25
specifying in output, 9–25

File
access, 9–11
carriage control in, 9–19
closing, 9–31
component format, 9–7, 9–9
components in, 9–1

File (cont’d)
default organization in OPEN procedure,

9–2
definition, 9–1, Glossary–5
external, 9–2
internal, 9–2
listed in heading, 7–6
locking, 9–17
mode, 9–29
opening, 9–44
preparing for input, 9–39
procedure for deleting, 8–15
procedure for renaming, 8–38
TEXT, 9–18

File buffer
dereferencing the variable, 9–7
undefined, 9–63
variable, 9–7

File component
adding to sequential file, 9–3
definition of, 9–1

%FILE directive, 11–10
File levels

nesting in %INCLUDE, 11–3
File locking, 9–17
File organization

definition, 9–1
indexed, 9–4
relative, 9–3
sequential, 9–2

Files
file buffers, 9–9

File type
allocation size of, A–11

FILE type, 2–32
examples, 2–33

FINDK procedure, 9–37
FIND procedure, 9–36
FIND_FIRST_BIT_CLEAR function, 8–17
FIND_FIRST_BIT_SET function, 8–17
FIND_MEMBER function, 8–18
FIND_NONMEMBER function, 8–18
Fixed-length component format, 9–10

definition, Glossary–6

Index–8

FLOAT attribute, 10–19
Floating data types, 2–13
Floating-point data

representation of, A–20
Floating-point notation

See Exponential notation
Foreign mechanism parameter

actual, 6–17
formal, 6–15

Foreign semantics
value, 6–16
variable, 6–16

Formal discriminant, 2–37
definition, Glossary–6

Formal parameter
associated with actual, 6–25
congruence of, 6–13, 10–26
default value for, 6–26
definition, Glossary–6
description of, 6–6
effect of attributes, 6–9
effect of LIST, 6–13
effect of READONLY, 6–11, 10–35
effect of UNSAFE, 6–9
foreign mechanism, 6–15
function, 6–12
passing mechanisms, 6–9
procedure, 6–12
routine, 6–12
semantics of, 6–7
value semantics, 6–8
variable, 6–10

Form-feed character, 1–4, 1–10
FOR statement, 5–6

CONTINUE in, 5–5
examples, 5–7
execution and termination of, 5–6

FORTRAN identifier, 6–3
FORWARD identifier, 6–3
Function, 6–1

calling of, 6–4
declaration of, 6–1
definition, Glossary–6
heading, 6–1
predeclared

Function
predeclared (cont’d)

See Predeclared routines, or
individual functions by name

used as actual parameter, 6–13
used as formal parameter, 6–12

Function call, 6–4
accessing structured return values, 4–15

Function designators
side effects, 4–14

functions
RETURN statement, 5–11

F_FLOAT, 2–13
F_floating-point data

representation of, A–21

G
GE function, 8–19
Generation file mode

description of, 9–29
Generation mode

definition, Glossary–6
GET procedure, 9–39

file position after, 9–40
GETTIMESTAMP procedure, 8–19
GLOBAL attribute, 10–19
Global identifiers

sharing of, 7–9
GOTO statement, 5–7

as alternative to CONTINUE, 5–5
terminating a FOR loop, 5–7
using to access labels, 3–3

GT function, 8–20
G_FLOAT, 2–13
G_floating double-precision

representation of, A–23

H
HALT procedure, 8–21
Heading

definition, Glossary–6
of function, 6–1
of procedure, 6–1

Index–9

Hexadecimal
nondecimal output of WRITE, WRITELN,

and WRITE, 9–26
Hexadecimal notation, 2–2

in output procedure, 9–26
Hexadecimal number representation, 1–4
HEX function, 8–21

in output procedure, 9–26
HIDDEN attribute, 10–20
Horizontal tab character, 1–4
H_FLOAT, 2–13
H_floating-point data

representation of, A–24

I
I/O procedures

additional error-recovery parameter,
9–29

I/O processing, 9–1 to 9–69
file modes during, 9–29

I/O routines, 9–29 to 9–69
random access, 9–16
sequential access, 9–12
used with TEXT files, 9–18

IADDRESS64 function, 8–23
IADDRESS function, 8–22
IDENT attribute, 10–20
%IDENT directive, 11–10
Identifier

constant, 2–8, 3–2
description of, 1–6
external, 7–9
global, 7–9
predeclared, 1–7
scope of, 7–2 to 7–5
type, 3–7

%IF directive, 11–6
IF statement, 5–8

examples, 5–8
with ELSE clause, 5–8

%IMMED foreign mechanism
on actual parameter, 6–17
with UNBOUND attribute, 6–17

IMMEDIATE attribute, 10–21
Immediate value mechanism, 6–7
Implementation features, C–1 to C–4
Implementation module

definition of, Glossary–6
%INCLUDE directive, 11–1

example of, 11–2
nesting file levels, 11–3

Index
definition, Glossary–6
of array, 2–19

Indexed file
index structure of, 9–5
key fields, 9–6
organization, 9–4
random access to, 9–17
sequential access to, 9–15

Indexed file organization
definition, Glossary–7

INDEX function, 8–23
Index structure

characteristics defined with KEY
attribute, 9–6

key fields, 9–6
of indexed file, 9–5

%INFO directive, 11–8
INHERIT attribute, 10–21
Initialization

in VALUE section, 3–9
of variable, 3–7, 3–10

INITIALIZE attribute, 10–22
Initial-state specifier

definition, Glossary–7
example for a record field, 2–23
example for arrays, 2–22
example for enumerated type, 2–8
example for fields of variant records,

2–30
example for PACKED ARRAY OF CHAR,

2–43
example for pointers, 2–17
example for records, 2–28
example for sets, 2–32
example for STRING, 2–46
example for variant records, 2–29

Index–10

Initial-state specifier (cont’d)
example for VARYING OF CHAR, 2–44
for STRING types (example), 4–9
on a data type, 3–7
on a variable, 3–10

IN operator, 4–10
INPUT file variable

definition of PAS$INPUT, C–4
definition of SYS$INPUT, C–4
description of, 9–18

INPUT identifier, 7–6
Inspection file mode

description of, 9–29
Inspection mode

definition, Glossary–7
INT64 function, 8–24
INTEGER16, 2–2
INTEGER32, 2–2
INTEGER64, 2–2
INTEGER8, 2–2
Integers

decimal notation for, 2–2
negative, 2–2
radix notation for, 2–2
unsigned, 2–3

INTEGER type, 2–2
allocation size of, A–11
default field width of, 9–23
reading from text file, 9–53
specifying the base, 9–26
specifying the radix, 9–24

INTEGER_ADDRESS, 2–6
Interface module

definition, Glossary–7
Internal file

definition, 9–2, Glossary–7
INT function, 8–24
IN_RANGE function, 8–23
ISO standard, 1–1
Item list

definition, Glossary–7

K
Kernel-mode code

use in HP Pascal, 8–28
Key

alternate and primary, 9–4
characteristics defined with KEY

attribute, 9–6
definition, Glossary–7
fields, 9–6

KEY attribute, 9–4, 10–23
Keyed access

definition, Glossary–7
Key field

alignment of, 10–24
allocation of, 10–24
defining in record, 10–23
description of, 9–6
type of, 10–24

Key of reference
definition, Glossary–8

L
Label

accessing, 3–3
case, 5–3
definition, 3–2, Glossary–8
in GOTO statement, 5–7

LABEL section, 3–2
Language extensions

summary of, B–1 to B–7
Language standard

violation of, D–1 to D–7
Language standards

Extended Pascal, 1–2
Pascal, 1–1
unextended Pascal, 1–1

Lazy lookahead
access to TEXT files, 9–20
definition, Glossary–8

LE function, 8–24

Index–11

LENGTH function, 8–25
.LENGTH predeclared identifier (example),

4–9
Lexical elements, 1–2

definition, Glossary–8
identifiers, 1–6
reserved words, 1–5
special symbols, 1–4

LIB$INITIALIZE
program section, A–2

%LINE directive, 11–10
Line-feed character, 1–4
LINELIMIT procedure, 9–42
Line number, 11–10
$LINK$ program section, A–2
Linker

allocation of memory for executable image,
A–1

LIST attribute, 10–25
on external definitions, 10–26
on formal parameter, 6–13

/LIST qualifier
use with %DICTIONARY directive, 11–5
use with %INCLUDE directive, 11–2

$LITERAL$ program section, A–2
LN function, 8–25
LOCAL attribute, 10–27
$LOCAL program section, A–2, A–10
LOCATE procedure, 9–43
Lock

definition, Glossary–8
Logarithm of parameter, 8–25
Logical operators, 4–6

evaluating, 4–7
LONG attribute, 10–28
Loop

in FOR statement, 5–6
in REPEAT statement, 5–10
in WHILE statement, 5–12

LOWER function, 8–25
example of, 8–49

LSHIFT function, 8–26
LT function, 8–26

M
MALLOC_C_STR function, 8–27
MAXCHAR, 2–7
MAXDOUBLE, 2–14
MAX function, 8–27
MAXINT, 2–2
MAXINT64, 2–2
MAXQUADRUPLE, 2–15
MAXREAL, 2–14
MAXUNSIGNED, 2–3
MAXUNSIGNED64

predeclared constant, 2–4
MAXUNSIGNED predeclared constant, 2–4
Mechanism specifier

on actual parameter, 6–17
on formal parameter, 6–15

%MESSAGE directive, 11–8
MESSAGE procedure, 9–44
Messages

See Error messages
MFPR function, 8–27
MINDOUBLE, 2–14
MIN function, 8–28
MINQUADRUPLE, 2–14
MINREAL, 2–14
Mode

of file, 9–29
MOD operator, 4–4

use with negative integers, 4–4
Module

definition, 7–5, Glossary–8
finalization, 3–6
heading, 7–6
initialization, 3–3

%MODULE directive, 11–10
Module heading

definition, Glossary–8
MTPR procedure, 8–28
Multidimensional array, 2–20

definition, Glossary–8
packing, A–17

examples of, A–15

Index–12

Multiplication operator, 4–3

N
Name string

definition, Glossary–8
in attribute list, 10–2

Natural alignment
definition, Glossary–9

NE function, 8–29
Negation operator, 2–14
Nesting file levels, 11–3
NEW procedure, 8–29
NEXT function, 8–31, A–14
Nondecimal notation

in WRITE, WRITELN, and WRITEV,
9–26

Nonpositional syntax, 6–25
definition, Glossary–9

Nonprinting character, 2–7
Nonstandard constructor, 2–34

array, 2–34
record, 2–35

Nonstatic type
definition, Glossary–9
description of, 2–48
example of data layout, A–28
field in record object, A–30
parts of, 2–49
representation of, A–27
representation of variables of, A–28

NOOPTIMIZE attribute, 10–28
Notation

binary, 2–2
decimal

integer, 2–2
real numbers, 2–13

exponential, 2–13
extended-digit, 2–5
hexadecimal, 2–2
octal, 2–2

NOT IN operator, 4–10
NOT operator, 4–6

Null-Terminated
STRING, 2–47

O
OCTA attribute, 10–29
Octal

nondecimal output of WRITE, WRITELN,
and WRITE, 9–26

Octal notation, 2–2
in output procedure, 9–26

Octal number representation, 1–4
OCT function, 8–32

in output procedure, 9–26
ODD function, 8–32
OPEN procedure, 9–44

carriage-control parameter, 9–19
syntax, 9–44

Operator
assignment, 5–2
negation, 2–14

Operators, 4–2 to 4–14
arithmetic, 4–2 to 4–5
logical, 4–6
precedence of, 4–12
relational, 4–5
set, 4–10
string, 4–8
type cast, 4–11

Optimization
effect of VOLATILE, 10–47

OPTIMIZE attribute, 10–29
Oracle CDD/Repository

See CDD
ORD function, 8–33
Ordinal types, 2–2 to 2–11
Ordinal value, 2–2

of Boolean values, 2–8
of case label, 5–3
of characters, 2–7
of characters in comparisons, 4–8
of enumerated type, 2–8
of parameter, 8–33
of subrange type, 2–9

Index–13

OR operator, 4–6
OR_ATOMIC function, 8–32
OR_ELSE operator, 4–6
OTHERWISE clause

in array constructor, 2–21
in CASE statement, 5–4
in record constructor, 2–28
in records, 2–27

Output
of enumerated types, 9–28
of REAL numbers, 9–25
specifying field width in, 9–25, 9–26
specifying fraction size, 9–24
specifying radix, 9–24
specifying the base in, 9–26

OUTPUT file variable
definition of PAS$OUTPUT, C–4
definition of SYS$OUTPUT, C–4
description of, 9–18

OUTPUT identifier, 7–6
Overflow

detecting at execution time, 4–3
output field, 9–25

P
Packed array

copying from unpacked array, 8–33
PACKED ARRAY OF CHAR, 2–43

reading from text file, 9–54
Packed variable

allocation size of, A–10
Packing

multidimensional arrays, A–17
examples of, A–15

of structured types, A–17
PACK procedure, 8–33
PAD function, 8–34
Page-break character, 1–10
PAGE procedure, 9–49
Parameter

absolute value of, 8–3
actual variable, 6–11
address of, 8–4
arctangent of, 8–5

Parameter (cont’d)
association of formal and actual, 6–25
conformant array, 6–21
conformant VARYING string, 6–22
congruence of, 6–13
cosine of, 8–12
default value for, 6–26
effect of attributes, 6–9
effect of UNSAFE, 6–9
error processing, 9–29
foreign mechanism, 6–15, 6–17
formal schema, 6–19
formal value, 6–8
formal variable, 6–10
function, 6–12, 6–13
ordinal value of, 8–33
passing mechanisms, 6–7
predecessor of, 8–35
procedure, 6–12, 6–13
rounding numbers in, 8–38, 8–39
routine, 6–12, 6–13
sine of, 8–40
square of, 8–42
square root of, 8–42
successor of, 8–43
truncating numbers in, 8–44

Parameter-passing mechanism
definition, Glossary–9

Parameter-passing semantics
definition, Glossary–9

PAS$GLOBAL program section, A–2
PAS$INPUT, C–4
PAS$OUTPUT, C–4
Pascal language standards, 1–1
Passing mechanisms

for parameters, 6–7
PAS_STRCPY function, 8–35
PAS_STR function, 8–35
PEN_CHECKING_STYLE attribute, 10–31
Pointer

dereferenced when returned from a
function, 4–15

part of a nonstatic type, A–28, A–29

Index–14

Pointers
64-bit, 2–17

Pointer type, 2–16
allocation size of, A–11
checking, 10–11
effect of READONLY, 10–35
effect of UNSAFE, 10–43
effect of VOLATILE, 10–47
effect of WRITEONLY, 10–52

POINTER type
description of, 2–18

Pointer variable, 8–15, 8–29
POS attribute, 10–32

effect on compatibility, 10–33
Positional syntax, 6–25

definition, Glossary–9
Precedence

of operators, 4–12
Predecessor of parameter, 8–35
Predeclared identifier

definition, Glossary–10
EPSDOUBLE, 2–14
EPSQUADRUPLE, 2–15
EPSREAL, 2–14
IEEE Quadruple, 2–15
MAXDOUBLE, 2–14
MAXQUADRUPLE, 2–15
MAXREAL, 2–14
MINDOUBLE, 2–14
MINQUADRUPLE, 2–14
MINREAL, 2–14
real data types, 2–14

Predeclared identifiers, 1–7
Predeclared routines

See also individual routines by name
categories of, 8–1
I/O processing, 9–29 to 9–69

PRED function, 8–35
PRESENT function, 8–35
Primary key

default options for, 10–24
definition, Glossary–10
in indexed file, 9–4

Procedure, 6–1
calling of, 5–9, 6–4
declaration of, 6–1
definition, Glossary–10
heading, 6–1
predeclared

See Predeclared routines, or
individual procedures by name

used as actual parameter, 6–13
used as formal parameter, 6–12

Procedure call, 5–9, 6–4
effect when calling a function, 5–9

Program
definition, 7–5
definition of, Glossary–10
heading, 7–6

Program heading
definition, Glossary–10

Program section, A–1 to A–7
allocation in, 10–33
default data, A–2
example of, A–5
properties of, A–1
required properties of, A–6

Property
definition, Glossary–10

PSECT attribute, 10–33
use in allocating storage, A–8
use when defining program sections, A–5

PUT procedure, 9–50

Q
QUAD attribute, 10–34
QUAD function, 8–36
Quadruple-precision data

representation of, A–11, A–24, A–26
Quadruple-precision real number, 2–11
QUADRUPLE type, 2–11

default field width of, 9–23

Index–15

R
Radix

specifying in output, 9–26
Random access, 9–15

definition, Glossary–10
to indexed files, 9–17
using relative component numbers, 9–16

RANDOM function, 8–36
READLN procedure, 9–56
READONLY attribute, 10–34

effect on storage allocation, A–8
on formal parameter, 6–11

READ procedure, 9–52
READV procedure, 8–37

status of, 8–42
Real number

double-precision, 2–11
floating-point formats, 2–11
negative, 2–14
quadruple-precision, 2–11
single-precision, 2–11

REAL type, 2–11
allocation size of, A–11
default field width of, 9–23
reading from text file, 9–53
representation of, A–21
specifying fraction size, 9–24

Record
definition, Glossary–10
packing

example of, A–16
selecting when returned from a function,

4–15
Record constructor, 2–27
RECORD type, 2–22 to 2–30

allocation size of, A–11
constructor with variant for, 2–29
field of, 2–22
nested, 2–28
OTHERWISE clause in, 2–27
packing, A–17
position of fields in, 10–32
representation nonstatic fields of, A–30

RECORD type (cont’d)
using WITH statement, 5–13
variant clause in, 2–24

Recursion
definition, Glossary–10

Redeclaring routine names, 7–2
Redefinable reserved word

definition, Glossary–11
Reference

to variable, 3–10
REFERENCE attribute, 10–36
Reference mechanism, 6–7
%REF foreign mechanism

on actual parameter, 6–17
Relational operators, 4–5

evaluating, 4–13
Relative component number, 9–3

definition, Glossary–11
use with random access, 9–16

Relative file
cells, 9–3
organization, 9–3
sequential access to, 9–13

Relative file organization
definition, Glossary–11

REM operator, 4–4
RENAME_FILE procedure, 8–38
REPEAT statement, 5–10

CONTINUE in, 5–5
Repetitive statements

FOR, 5–6
REPEAT, 5–10
WHILE, 5–12

Reserved word
definition, Glossary–11

Reserved words, 1–5
redefinable, 1–6

RESETK procedure, 9–59
RESET procedure, 9–58

initiating delayed device access, 9–21
Result values

returning, 5–11
Returning result values, 5–11

Index–16

RETURN statement, 5–10
in function, 5–11

REVERT procedure, 8–38
REWRITE procedure, 9–60
ROUND64 function, 8–39
ROUND function, 8–38
Rounding numbers

of a parameter, 8–38, 8–39
Routine, 6–1

attributes, 10–55
calling of, 6–4
categories, 8–1
declaration of, 6–1
definition, Glossary–11
heading, 6–1
predeclared, 8–1

See also individual routines by name
structured function return values, 4–15
used as actual parameter, 6–13
used as formal parameter, 6–12

Routine call, 6–4
%ROUTINE directive, 11–10
Routines

I/O processing, 9–29 to 9–69
redeclaring names of, 7–2

RSHIFT function, 8–39
Run-time error

from ASSERT, 8–7
Run-time expression

definition, Glossary–11
Run-time expressions, 4–1

S
Schema family

definition, Glossary–11
Schema parameters, 6–19
Schema type

definition, Glossary–11
representation of, A–27
representation of variables of, A–28

Schema types, 2–37 to 2–40
STRING, 2–45
using the NEW procedure, 8–29

Scope of identifiers, 7–2 to 7–5
example, 7–3
example of, 7–3
in a routine, 6–5
rules for, 7–2

$SDATA$, A–10
SEED function, 8–39
Semantics

value, 6–8
variable, 6–10

Sequential access, 9–12
to indexed file, 9–15
to relative file, 9–13
to sequential file, 9–13

Sequential access method
definition, Glossary–12

Sequential file
organization, 9–2
sequential access to, 9–13

Sequential file organization
definition, Glossary–12

Set
definition, Glossary–12

Set constructor, 2–31
Set operators, 4–10
SET type, 2–30

allocation size of, A–11
bounds checking, 10–11
cardinality of, 8–11
constructor for, 2–31
examples of, 2–32
operators, 4–10

SET_INTERLOCKED function, 8–40
Short circuiting

definition, Glossary–12
Side effects

of volatile objects, 10–47
with function designators, 4–14

Signaling run-time errors, 8–7
Sine of parameter, 8–40
SIN function, 8–40
Single-precision data

representation of, A–21

Index–17

Single-precision real number, 2–11
Single-quotation character, 1–4
SINGLE type, 2–11

allocation size of, A–11
default field width of, 9–23
representation of, A–21

Size
default for objects, A–11

Size attributes
effect on allocation, A–11

SIZE function, 8–40, A–14
SNGL function, 8–41
Special characters, 1–4
Special symbols, 1–4
SQR function, 8–42
SQRT function, 8–42
Square of parameter, 8–42
Square root of parameter, 8–42
Statement, 5–1 to 5–14

assignment, 5–2
BREAK, 5–2
CASE, 5–3
compound, 5–4
description of, 5–1
empty, 5–5
FOR, 5–6
GOTO, 5–7
IF, 5–8
procedure call, 5–9
REPEAT, 5–10
RETURN, 5–10
WHILE, 5–12
WITH, 5–13

Statements
CONTINUE, 5–5

Static
allocation, 10–36
type, 2–48

Static allocation
of variables, A–7

STATIC attribute, 10–36
effect on allocation of variables, A–7

Static type
definition, Glossary–12

Static variable allocation
definition, Glossary–12

STATUS function, 9–61
return value from READLN procedure,

9–22, 9–57
STATUSV function, 8–42
%STDESCR foreign mechanism

on actual parameter, 6–17
Storage allocation, A–7 to A–19

default size for objects, A–11
example of, A–9

Stream component format, 9–10
definition, Glossary–12

String
See Character string

String delimiters, 1–4
String-descriptor mechanism, 6–17
String operators, 4–8

concatenation of, 4–8
STRING schema type, 2–45
String types, 2–41 to 2–42

initial-state specifier for (example), 4–9
.LENGTH and LENGTH functions

(example), 4–9
Structural compatibility, 2–49

affected by ASYNCHRONOUS, 10–8
effect of allocation size, 10–11
effect of attributes, 6–12
effect of POS, 10–33
effect of UNBOUND, 10–42
effect of UNSAFE attribute, 10–43
effect of VOLATILE, 10–47
effect of WRITEONLY, 10–52

Structured type
allocation size of, 10–10
description of, 2–18
effect of READONLY, 10–35
effect of VOLATILE, 10–47
effect of WRITEONLY, 10–52
packing of, A–17

Subranges
determining value within, 8–23

Subrange type, 2–9
allocation size of, A–11
bounds checking for, 2–9, 10–11

Index–18

Subscript
See Index
definition, Glossary–12

SUBSTR function, 8–43
%SUBTITLE directive, 11–6
Subtraction operator, 4–3
Successor of parameter, 8–43
SUCC function, 8–43
Symbolic constant

allocation of, A–9
definition, 3–2

SYS$INPUT, C–4
SYS$OUTPUT, C–4
SYSCLOCK function, 8–44
System name, 11–9
%SYSTEM_NAME directive, 11–9
%SYSTEM_VERSION directive, 11–9
S_FLOAT, 2–13
S_floating-point data

representation of, A–21

T
Terminal

prompting, 9–20
before EOF and EOLN tests, 9–21

writing partial lines to, 9–23
Terminal output

formatting, 9–23
using conversion functions, 9–26

Terminator
definition, Glossary–12
in stream component format, 9–10

TEXT file
compared to FILE OF CHAR, 9–18
default component length, 9–9
default information, 9–18
delayed device access to, 9–20
description of, 9–18
effect of delayed device access on STATUS,

9–20
I/O routines, 9–18
reading, 9–53

TEXT type, 2–33
TIE

definition, Glossary–12
Time checking, 11–10
%TIME directive, 11–10
TIME function, 8–12
TIME procedure, 8–13
TIMESTAMP type, 2–48
%TITLE directive, 11–6
TO BEGIN DO section, 3–3

See also TO END DO section
execution order of, 3–5

TO END DO section, 3–6
See also TO BEGIN DO section
execution order of, 3–5

translated code
definition, Glossary–13

Translated Image Environment discriminant
definition, Glossary–13

TRUNC64 function, 8–44
TRUNCATE attribute, 10–37
TRUNCATE procedure, 9–63
Truncating numbers of parameter, 8–44
TRUNC function, 8–44
Type

See also Data type
cast operator, 4–11
definitions

example of, 3–8
definitions of, 3–7
storage allocation of, A–11

Type compatibility, 2–49
assignment, 2–51
based on actual discriminants (example),

2–39
of schema families (example), 2–39
structural, 2–49

Type conversion, 4–15
of actual parameter, 6–9
to packed array, 4–16

TYPE section, 3–7
T_FLOAT, 2–13

Index–19

T_floating-point data
representation of, A–24

U
UAND function, 8–44
UDEC function, 8–45
UFB function, 9–63
UINT64 function, 8–46
UINT function, 8–46
UNALIGNED attribute, 10–41

effect on alignment boundary, A–16
UNBOUND attribute, 10–41

with %IMMED routine parameter, 6–17
Undefined file mode

description of, 9–29
UNDEFINED function, 8–46
Undefined mode

definition, Glossary–13
Undiscriminated schema, 2–38

definition, Glossary–13
Unextended Pascal

extensions to, B–1 to B–4
Unextended Pascal standard, 1–1

definition, Glossary–13
UNLOCK procedure, 9–64
UNOT function, 8–47
Unpacked array

copying from packed array, 8–47
Unpacked variable

allocation size of, A–10
UNPACK procedure, 8–47
UNSAFE attribute, 10–42

effect on formal parameter, 6–9
on actual parameter, 6–9

UNSIGNED16 type, 2–3
UNSIGNED32 type, 2–3
UNSIGNED64 type, 2–3
UNSIGNED8 type, 2–3
UNSIGNED type, 2–2, 2–3

allocation size of, A–11
and overflows, 4–3
default field width of, 9–23
range of values, 2–3

UOR function, 8–48
UPDATE procedure, 9–65
UPPER function, 8–49
UROUND64 function, 8–50
UROUND function, 8–49
User-action function

definition, Glossary–13
User-mode code

compiler support of, 8–28
UTRUNC64 function, 8–50
UTRUNC function, 8–50
UXOR function, 8–51

V
VALUE attribute, 10–45
Value parameter

actual, 6–8
formal, 6–8

VALUE section, 3–9
initialization in, 3–9

Value semantics, 6–8
by foreign mechanism, 6–16
for actual parameter, 6–8

Variable
alignment of, A–16
allocation in common block, A–7
allocation in program section, A–7
allocation size, A–10
control in FOR statement, 5–6
declaring, 3–9
dynamic, 2–16
dynamic allocation of, 8–29
dynamic disposal of, 8–15
initializing, 3–7, 3–9, 3–10
initial-state specifier for, 3–10
reference to, 3–10
representation of nonstatic, A–28
sharing, 10–15
side effects on, 4–14, 10–47
size in bytes, 8–40
storage allocation, A–7, A–11

Variable-length component format, 9–10
definition, Glossary–13

Index–20

Variable parameter
actual, 6–11
formal, 6–10

Variables
use of files, 9–9

Variable semantics, 6–10
by foreign mechanism, 6–16
for actual parameter, 6–11

Variant record, 2–24
constructor, 2–29

VAR section, 3–9
initialization in, 3–7, 3–10

VARYING OF CHAR type, 2–44
allocation size of, A–11
bounds checking for, 10–11
reading from text file, 9–54
representation of, A–19

VARYING string
conformant, 6–22

Version checking, 11–10
Vertical tab character, 1–4
VEST

definition, Glossary–13
Visibility attributes

effect on allocation of variables, A–7
VOLATILE attribute, 10–46

effect on allocation, A–8

W
WALLCLOCK function, 8–51
%WARN directive, 11–8
WEAK_EXTERNAL attribute, 10–50
WEAK_GLOBAL attribute, 10–51
WHILE statement, 5–12

CONTINUE in, 5–5
WITH statement, 5–13

specifying nested records, 5–13
WORD attribute, 10–51
WRITELN procedure, 9–67

default field width for types, 9–23
nondecimal notation, 9–26
using predeclared conversion functions,

9–26

WRITEONLY attribute, 10–51
WRITE procedure, 9–66

default buffer size, 9–23
default field width for types, 9–23
nondecimal notation, 9–26
using predeclared conversion functions,

9–26
WRITEV procedure, 8–51

default field width for types, 9–23
nondecimal notation, 9–26
status of, 8–42
using predeclared conversion functions,

9–26
Writing to standard error, 9–44

X
XOR function, 8–52
X_FLOAT, 2–13
X_floating-point data

representation of, A–26

Z
ZERO function, 8–53

use within record constructor, 2–29

Index–21

