
Guide to the POSIX Threads
Library
Order Number: AA–QSBPD–TE

April 2001

This guide reviews the principles of multithreaded programming, as
reflected in the IEEE POSIX 1003.1-1996 standard, and provides
implementation guidelines and reference information for the Compaq
Multithreading Run-Time Library.

Revision/Update Information: This manual supersedes the Guide to
DECthreads, January 1999.

Software Version: OpenVMS Alpha Version 7.3
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo Registered in the U.S. Patent and Trademark Office.

Tru64 and OpenVMS are trademarks of Compaq Information Technologies Group, L.P. in the United
States and other countries.

Microsoft is a trademark of Microsoft Corporation in the United States and other countries. UNIX
is a registered trademark and The Open Group is a trademark of The Open Group in the U.S. and
other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6493

The Compaq OpenVMS documentation set is available on CD–ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . xiii

Part I Compaq POSIX Threads Library Overview and Programming
Guidelines

1 Introducing Multithreaded Programming

1.1 Advantages of Using Threads . 1–1
1.2 Overview of Threads . 1–2
1.3 Thread Execution . 1–3
1.4 Functional Models for Multithreaded Programming 1–4
1.4.1 Boss/Worker Model . 1–4
1.4.2 Work Crew Model . 1–4
1.4.3 Pipelining Model . 1–5
1.4.4 Combination of Functional Models . 1–5
1.5 Programming Issues for Multithreaded Programs 1–6
1.6 POSIX Threads Libraries and Interfaces . 1–6
1.6.1 The pthread Multithreading Interface . 1–7
1.6.1.1 Optionally Implemented POSIX.1 Routines 1–16
1.6.2 Thread-Independent Services Interface . 1–16
1.6.3 Undocumented and Obsolete Interfaces . 1–19
1.6.3.1 The cma Interface . 1–19
1.6.3.2 The d4 (DCEthread) Interfaces . 1–19

2 Objects and Operations

2.1 Threads and Synchronization Objects . 2–1
2.2 Attributes Objects . 2–1
2.3 Thread Operations . 2–2
2.3.1 Creating a Thread . 2–2
2.3.2 Setting the Attributes of a New Thread . 2–3
2.3.2.1 Setting the Inherit Scheduling Attribute . 2–3
2.3.2.2 Setting the Scheduling Policy Attribute . 2–3
2.3.2.2.1 Techniques for Setting the Scheduling Policy Attribute 2–4
2.3.2.2.2 Comparing Throughput and Real-Time Policies 2–4
2.3.2.2.3 Portability of Scheduling Policy Settings 2–5
2.3.2.3 Setting the Scheduling Parameters Attribute 2–5
2.3.2.4 Setting the Stacksize Attribute . 2–6
2.3.2.5 Setting the Stack Address Attribute . 2–6
2.3.2.6 Setting the Guardsize Attribute . 2–7
2.3.2.7 Setting the Contention Scope Attribute . 2–7
2.3.3 Terminating a Thread . 2–9
2.3.3.1 Cleanup Handlers . 2–11
2.3.4 Detaching and Destroying a Thread . 2–11

iii

2.3.5 Joining With a Thread . 2–12
2.3.6 Scheduling a Thread . 2–12
2.3.6.1 Calculating the Scheduling Priority . 2–13
2.3.6.2 Effects of Scheduling Policy . 2–13
2.3.7 Canceling a Thread . 2–14
2.3.7.1 Thread Cancelation Implemented Using Exceptions 2–15
2.3.7.2 Thread Return Value After Cancelation . 2–15
2.3.7.3 Controlling Thread Cancelation . 2–15
2.3.7.4 Deferred Cancelation Points . 2–16
2.3.7.5 Cleanup from Deferred Cancelation . 2–16
2.3.7.6 Cleanup from Asynchronous Cancelation . 2–17
2.3.7.7 Example of Thread Cancelation Code . 2–18
2.4 Synchronization Objects . 2–20
2.4.1 Mutexes . 2–20
2.4.1.1 Normal Mutex . 2–20
2.4.1.2 Default Mutex . 2–21
2.4.1.3 Recursive Mutex . 2–21
2.4.1.4 Errorcheck Mutex . 2–21
2.4.1.5 Mutex Operations . 2–22
2.4.1.6 Mutex Attributes . 2–22
2.4.2 Condition Variables . 2–23
2.4.3 Condition Variable Attributes . 2–27
2.4.4 Read-Write Locks . 2–27
2.4.4.1 Thread Priority and Writer Precedence for Read-Write Locks 2–28
2.4.4.2 Initializing and Destroying a Read-Write Lock 2–28
2.4.4.3 Read-Write Lock Attributes . 2–28
2.5 Process-Shared Synchronization Objects . 2–28
2.5.1 Programming Considerations . 2–29
2.5.2 Process-Shared Mutexes . 2–29
2.5.3 Process-Shared Condition Variables . 2–29
2.5.4 Process-Shared Read-Write Locks . 2–29
2.6 Thread-Specific Data . 2–30

3 Programming with Threads

3.1 Designing Code for Asynchronous Execution . 3–1
3.1.1 Avoid Passing Stack Local Data . 3–2
3.1.2 Initialize Objects Before Thread Creation . 3–2
3.1.3 Do Not Use Scheduling As Synchronization . 3–2
3.2 Memory Synchronization Between Threads . 3–3
3.3 Sharing Memory Between Threads . 3–3
3.3.1 Using Static Memory . 3–4
3.3.2 Using Stack Memory . 3–4
3.3.3 Using Dynamic Memory . 3–4
3.4 Managing a Thread’s Stack . 3–5
3.4.1 Sizing the Stack . 3–5
3.4.2 Using Stack Overflow Warning and Stack Guard Areas 3–5
3.4.3 Diagnosing Stack Overflow Errors . 3–6
3.5 Scheduling Issues . 3–6
3.5.1 Real-Time Scheduling . 3–6
3.5.2 Priority Inversion . 3–7
3.5.3 Dependencies Among Scheduling Attributes and Contention Scope . . . 3–7
3.6 Using Synchronization Objects . 3–7
3.6.1 Distinguishing Proper Usage of Mutexes and Condition Variables 3–7

iv

3.6.2 Avoiding Race Conditions . 3–8
3.6.3 Avoiding Deadlocks . 3–8
3.6.4 Signaling a Condition Variable . 3–9
3.6.5 Static Initialization Inappropriate for Stack-Based Synchronization

Objects . 3–10
3.7 Granularity Considerations . 3–10
3.7.1 Determinants of a Program’s Granularity . 3–11
3.7.1.1 Alpha Processor Granularity . 3–11
3.7.1.2 VAX Processor Granularity . 3–12
3.7.2 Compiler Support for Determining the Program’s Actual

Granularity . 3–12
3.7.3 Word Tearing . 3–12
3.7.4 Alignments of Members of Composite Data Objects 3–13
3.7.5 Avoiding Granularity-Related Errors . 3–13
3.7.5.1 Changing the Composite Data Object’s Layout 3–14
3.7.5.2 Maintaining the Composite Data Object’s Layout 3–14
3.7.5.3 Using One Mutex Per Composite Data Object 3–14
3.7.6 Identifying Possible Word-Tearing Situations Using Visual

Threads . 3–15
3.8 One-Time Initialization . 3–15
3.9 Managing Dependencies Upon Other Libraries . 3–15
3.9.1 Thread Reentrancy . 3–16
3.9.2 Thread Safety . 3–16
3.9.3 Lacking Thread Safety . 3–16
3.9.3.1 Using Mutex Around Call to Unsafe Code 3–17
3.9.3.2 Using the Global Lock . 3–17
3.9.3.3 Using or Copying Static Data Before Releasing the Mutex 3–17
3.9.4 Use of Multiple Threads Libraries Not Supported 3–17
3.10 Detecting Error Conditions . 3–17
3.10.1 Bugcheck Information . 3–18
3.10.2 Interpreting a Bugcheck . 3–18

4 Writing Thread-Safe Libraries

4.1 Features of the tis Interface . 4–1
4.1.1 Reentrant Code Required . 4–1
4.1.2 Performance of tis Interface Routines . 4–2
4.1.3 Run-Time Linkage of tis Interface Routines . 4–2
4.1.4 Cancelation Points . 4–2
4.2 Using Mutexes . 4–2
4.3 Using Condition Variables . 4–3
4.4 Using Thread-Specific Data . 4–3
4.5 Using Read-Write Locks . 4–3

5 Using the Exceptions Package

5.1 About the Exceptions Package . 5–1
5.1.1 Supported Programming Languages . 5–1
5.1.2 Relation of Exceptions to Return Codes and Signals 5–1
5.2 Why Use Exceptions . 5–2
5.3 Exception Programming . 5–2
5.3.1 Declaring and Initializing an Exception . 5–3
5.3.2 Raising an Exception . 5–3
5.3.3 Catching an Exception . 5–4

v

5.3.4 Reraising an Exception . 5–5
5.3.5 Expressing Epilogue Actions . 5–5
5.4 Exception Objects . 5–6
5.4.1 Declaring and Initializing Exception Objects . 5–6
5.4.2 Address Exceptions and Status Exceptions . 5–7
5.4.3 How Exceptions Terminate . 5–7
5.5 Exception Scopes . 5–8
5.6 Raising Exceptions . 5–9
5.7 Exception Handling Macros . 5–9
5.7.1 Context of the Handler . 5–10
5.7.2 Handlers and Macros . 5–10
5.7.3 Catching Specific Exceptions . 5–10
5.7.4 Catching Unspecified Exceptions . 5–11
5.7.5 Reraising the Current Exception . 5–12
5.7.6 Defining Epilogue Actions . 5–12
5.8 Operations on Exceptions . 5–13
5.8.1 Referencing the Caught Exception . 5–13
5.8.2 Setting a System-Defined Error Status . 5–14
5.8.3 Obtaining a System-Defined Error Status . 5–14
5.8.4 Reporting a Caught Exception . 5–15
5.8.5 Determining Whether Two Exceptions Match 5–15
5.9 Using Exceptions . 5–16
5.9.1 Develop Naming Conventions for Exceptions . 5–16
5.9.2 Enclose Appropriate Actions in an Exception Scope 5–16
5.9.3 Raise Exceptions Prior to Performing Side-Effects 5–17
5.9.4 Exiting an Exception Scope . 5–17
5.9.5 Declare Variables Within Handler Code as Volatile 5–18
5.9.6 Reraise Caught Exceptions That Are Not Fully Handled 5–20
5.9.7 Avoid Dynamically Allocated Exception Objects 5–20
5.10 Exceptions Defined by the POSIX Threads Library 5–20
5.11 Interoperability of Language-Specific Exceptions . 5–21
5.12 Host Operating System Dependencies . 5–22
5.12.1 Tru64 UNIX Dependencies . 5–22
5.12.2 OpenVMS Conditions and Exceptions . 5–22

6 Examples

6.1 Prime Number Search Example . 6–1
6.2 Asynchronous User Interface Example . 6–8

Part II POSIX.1 (pthread) Routines Reference

pthread_atfork . pthread–3
pthread_attr_destroy . pthread–6
pthread_attr_getdetachstate . pthread–7
pthread_attr_getguardsize . pthread–9
pthread_attr_getinheritsched . pthread–11
pthread_attr_getname_np . pthread–13
pthread_attr_getschedparam . pthread–15
pthread_attr_getschedpolicy . pthread–17
pthread_attr_getscope . pthread–19
pthread_attr_getstackaddr . pthread–21
pthread_attr_getstackaddr_np . pthread–23

vi

pthread_attr_getstacksize . pthread–25
pthread_attr_init . pthread–27
pthread_attr_setdetachstate . pthread–29
pthread_attr_setguardsize . pthread–31
pthread_attr_setinheritsched . pthread–33
pthread_attr_setname_np . pthread–35
pthread_attr_setschedparam . pthread–37
pthread_attr_setschedpolicy . pthread–40
pthread_attr_setscope . pthread–42
pthread_attr_setstackaddr . pthread–44
pthread_attr_setstackaddr_np . pthread–46
pthread_attr_setstacksize . pthread–48
pthread_cancel . pthread–50
pthread_cleanup_pop . pthread–52
pthread_cleanup_push . pthread–54
pthread_condattr_destroy . pthread–56
pthread_condattr_getpshared . pthread–57
pthread_condattr_init . pthread–59
pthread_condattr_setpshared . pthread–61
pthread_cond_broadcast . pthread–63
pthread_cond_destroy . pthread–65
pthread_cond_getname_np . pthread–67
pthread_cond_init . pthread–69
pthread_cond_setname_np . pthread–71
pthread_cond_signal . pthread–73
pthread_cond_signal_int_np . pthread–75
pthread_cond_sig_preempt_int_np . pthread–77
pthread_cond_timedwait . pthread–79
pthread_cond_wait . pthread–81
pthread_create . pthread–83
pthread_delay_np . pthread–87
pthread_detach . pthread–88
pthread_equal . pthread–90
pthread_exc_get_status_np . pthread–91
pthread_exc_matches_np . pthread–93
pthread_exc_report_np . pthread–94
pthread_exc_set_status_np . pthread–95
pthread_exit . pthread–97
pthread_getconcurrency . pthread–99
pthread_getname_np . pthread–100
pthread_getschedparam . pthread–102
pthread_getsequence_np . pthread–104
pthread_getspecific . pthread–105
pthread_get_expiration_np . pthread–106
pthread_join . pthread–108
pthread_key_create . pthread–110
pthread_key_delete . pthread–112

vii

pthread_key_getname_np . pthread–114
pthread_key_setname_np . pthread–116
pthread_kill . pthread–118
pthread_lock_global_np . pthread–120
pthread_mutexattr_destroy . pthread–122
pthread_mutexattr_getpshared . pthread–123
pthread_mutexattr_gettype . pthread–125
pthread_mutexattr_init . pthread–127
pthread_mutexattr_setpshared . pthread–129
pthread_mutexattr_settype . pthread–131
pthread_mutex_destroy . pthread–133
pthread_mutex_getname_np . pthread–135
pthread_mutex_init . pthread–137
pthread_mutex_lock . pthread–139
pthread_mutex_setname_np . pthread–141
pthread_mutex_trylock . pthread–143
pthread_mutex_unlock . pthread–145
pthread_once . pthread–147
pthread_rwlockattr_destroy . pthread–149
pthread_rwlockattr_getpshared . pthread–150
pthread_rwlockattr_init . pthread–152
pthread_rwlockattr_setpshared . pthread–153
pthread_rwlock_destroy . pthread–155
pthread_rwlock_getname_np . pthread–157
pthread_rwlock_init . pthread–159
pthread_rwlock_rdlock . pthread–161
pthread_rwlock_setname_np . pthread–163
pthread_rwlock_tryrdlock . pthread–165
pthread_rwlock_trywrlock . pthread–167
pthread_rwlock_unlock . pthread–169
pthread_rwlock_wrlock . pthread–171
pthread_self . pthread–173
pthread_setcancelstate . pthread–174
pthread_setcanceltype . pthread–176
pthread_setconcurrency . pthread–178
pthread_setname_np . pthread–180
pthread_setschedparam . pthread–182
pthread_setspecific . pthread–185
pthread_sigmask . pthread–187
pthread_testcancel . pthread–189
pthread_unlock_global_np . pthread–190
pthread_yield_np . pthread–192
sched_get_priority_max . pthread–194
sched_get_priority_min . pthread–195
sched_yield . pthread–196
sigwait . pthread–197

viii

Part III Compaq Proprietary Interfaces: tis Routines Reference

tis_cond_broadcast . tis–3
tis_cond_destroy . tis–4
tis_cond_init . tis–6
tis_cond_signal . tis–8
tis_cond_timedwait . tis–9
tis_cond_wait . tis–11
tis_getspecific . tis–13
tis_get_expiration . tis–14
tis_io_complete . tis–16
tis_key_create . tis–17
tis_key_delete . tis–19
tis_lock_global . tis–21
tis_mutex_destroy . tis–22
tis_mutex_init . tis–24
tis_mutex_lock . tis–26
tis_mutex_trylock . tis–27
tis_mutex_unlock . tis–28
tis_once . tis–29
tis_read_lock . tis–31
tis_read_trylock . tis–32
tis_read_unlock . tis–34
tis_rwlock_destroy . tis–35
tis_rwlock_init . tis–37
tis_self . tis–39
tis_setcancelstate . tis–40
tis_setspecific . tis–42
tis_sync . tis–44
tis_testcancel . tis–45
tis_unlock_global . tis–46
tis_write_lock . tis–47
tis_write_trylock . tis–48
tis_write_unlock . tis–50
tis_yield . tis–51

Part IV Appendixes

A Considerations for Tru64 UNIX Systems

A.1 Overview . A–1
A.2 Building Threaded Applications . A–1
A.2.1 Including Threads Header Files . A–1
A.2.2 Building Multithreaded Applications from Threads Libraries A–1
A.2.3 Linking Multithreaded Shared Libraries . A–2
A.2.4 Compiling Applications With the tis Interface A–2
A.3 Two-Level Scheduling on Tru64 UNIX Systems . A–2
A.3.1 Use of Kernel Threads . A–3
A.3.2 Support for Realtime Scheduling . A–3

ix

A.4 Thread Cancelability of System Services . A–4
A.4.1 Cancelation Points . A–5
A.4.2 Conditional or Future Cancelation Points . A–6
A.5 Using Signals . A–7
A.5.1 POSIX sigwait Service . A–7
A.5.2 Handling Synchronous Signals as Exceptions A–8
A.6 Thread Stack Guard Areas . A–8
A.7 Thread Stack and Backing Store Allocation . A–8
A.8 Dynamic Activation . A–9
A.9 Pagefaults and Realtime Scheduling . A–9

B Considerations for OpenVMS Systems

B.1 Overview . B–1
B.2 Compiling Under OpenVMS . B–1
B.3 Linking OpenVMS Images . B–1
B.4 Using the Threads Library with AST Routines . B–2
B.5 Dynamic Activation . B–3
B.6 Default and Minimum Thread Stack Size . B–3
B.7 Requesting a Specific, Absolute Thread Stack Size B–4
B.8 Declaring an OpenVMS Condition Handler . B–4
B.9 Thread Cancelability of System Services . B–5
B.10 Using OpenVMS Alpha 64-Bit Addressing . B–5
B.11 Condition Values . B–5
B.12 Two-Level Scheduling on OpenVMS Alpha Systems B–6
B.12.1 Linker Options to Specify Image’s Use of Kernel Threads B–7
B.12.2 Setting Kernel Threads Support in Existing Images B–8
B.12.2.1 Examples . B–8
B.12.3 Querying and Setting Kernel Threads Features B–9
B.12.4 Creation of Virtual Processors . B–9
B.12.5 Delivery of ASTs . B–10
B.12.6 Blocking System Services . B–11
B.12.7 $HIBER and $WAKE . B–11
B.12.8 Event Flags . B–12
B.12.9 Interactions with OpenVMS . B–12
B.12.10 Image Exit . B–13
B.12.11 SYSGEN Parameter MULTITHREAD . B–13
B.12.12 Process Control System Services and DCL Commands B–13
B.12.12.1 Process-Level System Services . B–14
B.12.12.2 Kernel-Level System Services . B–14
B.12.12.3 DCL Commands . B–14
B.13 Interoperability with POSIX for OpenVMS . B–14

C Debugging Multithreaded Applications

C.1 Using PTHREAD_CONFIG . C–1
C.1.1 Major and Minor Keywords . C–1
C.1.2 Specifying Multiple Values . C–1
C.2 Running in Metered Mode . C–2
C.3 Visual Threads . C–2
C.4 Using Ladebug on Tru64 UNIX Systems . C–2
C.5 Debugging Threads on OpenVMS Systems . C–3
C.5.1 Display of Stack Trace from Unhandled Exception C–3

x

D Migrating from the cma Interface

D.1 Overview . D–1
D.2 cma Handles . D–1
D.3 Interface Routine Mapping . D–2
D.4 New pthread Routines . D–4

E Migrating from the d4 Interface

E.1 Overview . E–1
E.2 Error Status and Function Returns . E–1
E.3 Replaced or Renamed Routines . E–1
E.4 Routines with No Changes to Syntax . E–2
E.5 Routines with Prototype or Syntax Changes . E–3
E.6 New Routines . E–4

Glossary

Index

Examples

2–1 pthread Cancel . 2–18
5–1 Raising an Exception . 5–4
5–2 Catching an Exception Using CATCH . 5–4
5–3 Catching an Exception Using CATCH and CATCH_ALL 5–5
5–4 Defining Epilogue Actions Using FINALLY . 5–6
5–5 Defining an Exception Scope . 5–8
5–6 Raising an Exception . 5–9
5–7 Catching a Specific Exception Using CATCH . 5–11
5–8 Catching an Unspecified Exception Using CATCH_ALL 5–12
5–9 Defining Epilogue Actions Using FINALLY . 5–13
5–10 Setting an Error Status in an Exception Object 5–14
5–11 Obtaining the Error Status Value from a Status Exception Object . . . 5–15
5–12 Comparing Two Exception Objects . 5–16
5–13 Incorrect Placement of Statements That Might Raise an Exception . . 5–17
5–14 Correct Placement of Statements That Might Raise an Exception 5–17
5–15 Use of the Volatile Type Qualifier Within an Exception Scope 5–19
6–1 C Program Example (Prime Number Search) . 6–3
6–2 C Program Example (Asynchronous User Interface) 6–11

Figures

1–1 Single-Threaded Process . 1–2
1–2 Multithreaded Process . 1–3
1–3 Thread State Transitions . 1–4
1–4 Work Crew Model of Thread Operation . 1–5
1–5 Pipelining Model of Thread Operation . 1–5
2–1 Flow with FIFO Scheduling . 2–14

xi

2–2 Flow with RR Scheduling . 2–14
2–3 Flow with Default Scheduling . 2–14
2–4 Only One Thread Can Lock a Mutex . 2–20
2–5 Thread A Waits on Condition Ready . 2–24
2–6 Thread B Signals Condition Ready . 2–25
2–7 Thread A Wakes and Proceeds . 2–26
4–1 Read-Write Lock Behavior . 4–4

Tables

1–1 pthread Routines Summary . 1–9
1–2 tis Routines Summary . 1–17
2–1 Support for Thread Contention Scope . 2–8
3–1 Default and Optional Granularities . 3–12
5–1 Names of Exception Objects Defined by the Threads Library 5–20
A–1 Header Files . A–1
A–2 Tru64 UNIX Shared Libraries for Multithreaded Programs A–1
A–3 Signals Reported as Exceptions . A–8
B–1 Header Files . B–1
B–2 Threads Library Images . B–2
B–3 Condition Values . B–5
B–4 Results of Keyword Arguments to /THREADS_ENABLE Qualifier . . . B–7
B–5 Return Values from $GETJPI System Service B–9
C–1 PTHREAD_CONFIG Settings . C–1
D–1 Corresponding cma and pthread Routines . D–2
E–1 pthread Routines That Replace d4 Routines . E–1
E–2 d4 Routines With Syntax Changes as pthread Routines E–3
E–3 d4 Routines Whose pthread Counterpart Uses Standard Datatypes . . E–4

xii

Preface

This guide describes the POSIX Threads Library, Compaq’s Multithreading
Run-Time Library. In addition to introducing components for building
multithreaded applications and libraries to be called from either single-threaded
or multithreaded programs, this guide reviews the key principles of multithreaded
programming.

This guide also presents the concepts behind thread-safe and multithreaded
processing environments and provides guidelines for using the library to
implement them on various Compaq platforms. Finally, this guide describes
in detail each routine in the two recommended Compaq interfaces:

• For building portable, multithreaded applications, Compaq provides the
pthread interface. This is an implementation of the POSIX standard
1003.1c-1995 (part of 1003.1-1996). This interface adds extensions specified in
The Open Group’s Single Unix Specification, Version 2 (SUSV2), also known
as XSH5, part of the UNIX98 brand.

• For building libraries whose routines can be called in either a single-threaded
or multithreaded context, Compaq provides a proprietary thread-independent
services (or tis) interface.

The interface you select depends upon your goals and the anticipated environment
for your software.

As a complement to this guide, and for a user’s guide to multithreaded
programming using the pthreads standard, we recommend the following:

Programming with POSIX Threads by David R. Butenhof, published as part
of the Addison-Wesley Professional Computing Series (ISBN 0-201-63392-2).
The Single UNIX Specification, Version 2, The Open Group
(ISBN 85912-181-0).
Available online at http://www.opengroup.org/onlinepubs/7908799/toc.htm.

Intended Audience
This guide is for system and application programmers who use the POSIX
Threads Library either to create multithreaded applications or to create thread-
safe code libraries that can be called from either single-threaded or multithreaded
applications.

Document Structure
This guide consists of the following:

xiii

Part I

• Chapter 1 provides a brief overview of multithreaded programming.

• Chapter 2 discusses the concepts and techniques related to the POSIX
Threads Library.

• Chapter 3 describes thread disciplines and coding issues you may face when
writing a multithreaded program.

• Chapter 4 addresses writing thread-safe libraries.

• Chapter 5 introduces and provides conventions for the modular use of the
POSIX Threads Library exception package.

• Chapter 6 contains example programs demonstrating how to call library
routines from a C language program.

Part II

• This part provides detailed reference information on each pthread interface
routine. Routine descriptions appear in alphabetical order by routine name.

Part III

• This part provides detailed reference information on each tis interface
routine. Routine descriptions appear in alphabetical order by routine name.

Part IV - Appendixes

• Appendix A discusses POSIX Threads Library issues and restrictions specific
to Compaq Tru64 UNIX systems.

• Appendix B discusses POSIX Threads Library issues and restrictions specific
to OpenVMS systems.

• Appendix C discusses debugging issues for a multithreaded program that uses
the POSIX Threads Library.

• Appendix D summarizes the differences between the obsolete Compaq-
proprietary CMA (or cma) interface and the Compaq pthread interface.
Use this appendix to help you migrate your programs and applications to the
pthread interface.

• Appendix E summarizes the differences between the retired POSIX
1003.4a/Draft 4 (d4 or DCEthreads) interface and the Compaq pthread
interface. Use this appendix to help you migrate your programs and
applications to the pthread interface.

Glossary

• The Glossary contains definitions of terms used in this guide, listed
alphabetically.

Related Documents
See your system’s documentation set for more information on that system.
This manual covers the version of the POSIX Threads Library available on the
following platforms:

• Tru64 UNIX 5.0A or higher

• OpenVMS Alpha Version 7.3

• OpenVMS VAX Version 7.3

xiv

For a complete list and description of the books in the OpenVMS documentation
set, see the OpenVMS Version 7.3 New Features and Documentation Overview.

Some books in the OpenVMS or Tru64 UNIX documentation set help meet
the needs of several audiences. For example, the information in some system
manager, system administrator, or user books is also used by programmers. Keep
this in mind when searching for information on specific topics. The New Features
Manual provides information on all of the books in the OpenVMS or Tru64 UNIX
documentation set.

For additional information on the Open Systems Software Group (OSSG) products
and services, access the Compaq World Wide Web site at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this guide. Please send comments to any of
the following addresses:

Fax 603 881-0120, Attention: Core Technology Group, ZKO2-3/Q18

Mail Compaq Computer Corporation
Core Technology Group, ZKO2-3/Q18
110 Spit Brook Rd.
Nashua, NH 03062-2698

xv

Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless
otherwise specified, references to OpenVMS Clusters or clusters in this document
are synonymous with VMSclusters.

In this manual, every use of DECwindows and DECwindows Motif refers to
DECwindows Motif for OpenVMS software.

The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose one of the items listed. Do not type
the braces on the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

In the HTML version of this document, this convention appears
as italic text.

xvi

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xvii

Part I
Compaq POSIX Threads Library Overview and

Programming Guidelines

Part I contains chapters that provide an overview and concepts of the Threads
Library as well as define programming disciplines and guidelines for writing a
multithreaded program.

1
Introducing Multithreaded Programming

This chapter introduces the concepts of threads and multithreaded programming.
It describes four functional models that can be a basis for constructing
multithreaded applications. The concepts and techniques introduced here are
described in more detail in Chapter 2 and in this guide’s platform-specific
appendixes.

This chapter’s last section introduces the components of the POSIX Threads
Library package, in particular the pthread and tis interfaces, and how those
components support building multithreaded applications and thread-safe
libraries.

1.1 Advantages of Using Threads
Multithreaded programming means organizing and coding a program so
that instances of its routines, called threads, can execute concurrently in the
same process. You use threads to improve a program’s performance—that is, its
throughput, computational speed, responsiveness, or some combination.

Using threads can improve a program’s performance on uniprocessor systems
by permitting the overlap of input, output, or other slow operations with
computational operations. Threads are useful in driving slow devices such as
disks, networks, terminals, and printers. A multithreaded program can perform
other useful work while waiting for the device to produce its next event, such as
the completion of a disk transfer or the receipt of a packet from the network.

Using threads can also be advantageous when constructing an application’s user
interface. Consider the typical arrangement of a window system. Each time the
user invokes an action (for example, by clicking on a mouse button), the program
can use a separate thread to implement the action. If the user invokes multiple
actions, multiple threads can perform the actions in parallel.

Using threads is especially advantageous when building a distributed system.
These systems frequently contain a shared network server, where the server
services requests from multiple clients. Using multiple threads allows the server
to handle clients’ requests in parallel, instead of artificially serializing them or
creating (at great expense) one server process per client.

A program with multiple threads can be especially suited to run on a
multiprocessor system, where threads run concurrently on separate processors.
Threads created using the POSIX Threads Library are capable of utilizing
multiprocessors, if the target platform supports parallelism within a process.
Compaq’s Tru64 UNIX platforms and OpenVMS Alpha platforms support
parallelism; the OpenVMS VAX platform does not support parallelism.

Introducing Multithreaded Programming 1–1

Introducing Multithreaded Programming
1.2 Overview of Threads

1.2 Overview of Threads
A thread is a single, sequential flow of control within a process. Within each
thread there is a single point of execution. Most traditional programs execute as
a process with a single thread. Figure 1–1 and Figure 1–2 show the differences
between a single-threaded process and a multithreaded process.

Figure 1–1 Single-Threaded Process

Process

Memory

Heap

Static

Code

Stack

ZK−3913A−GE

Registers

In Figure 1–2, notice that multiple threads share heap storage, static storage,
and code but that each thread has its own register set and stack.

Using Compaq’s multithreading run-time library, a programmer can create
several threads within a process. The process’ threads execute concurrently.
Within a multithreaded program there are at any time multiple points of
execution.

Threads execute within (and share) a single address space; therefore, a process’
threads can read and write the same memory locations. When the threads access
the same memory locations, your program must use synchronization elements,
such as mutexes and condition variables, to ensure that the shared memory is
accessed correctly. The Threads Library provides routines that allow you to use
these and other synchronization objects. Section 2.4 describes the synchronization
objects that the Threads Library offers as well as the operations your program
can perform on them.

1–2 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.2 Overview of Threads

Figure 1–2 Multithreaded Process

Process

Memory

Heap

Static

Code

Stack

Thread Thread Thread

Registers Registers Registers

Stack Stack

ZK−3914A−GE

1.3 Thread Execution
You should design and code a multithreaded program with the assumption
that its threads execute simultaneously. That is, your program cannot make
assumptions about the relative start or finish times of its threads or the sequence
in which they execute. These are governed by the thread scheduler, part of the
run-time environment that the Threads Library establishes before your program
begins running. Nevertheless, your program can influence how threads are
scheduled by setting each thread’s scheduling policy and scheduling priority.
(Section 2.3.6 describes how thread scheduling works.)

Each thread has its own thread identifier, which distinguishes it from all
other threads in the process. In addition to the thread’s scheduling policy and
scheduling priority, each thread is associated with any thread-specific instances
of data objects and with thread-specific system resources to support a flow of
control.

A thread changes its state over the course of its execution. A thread is in one of
the following states:

• Blocked—The thread is not eligible to execute, because it is synchronizing
with another thread or with an external event, such as I/O.

• Ready—The thread is eligible to be executed by a processor.

• Running—The thread is currently being executed by a processor.

• Terminated—The thread has completed all of its work or has been canceled.

Figure 1–3 shows the transitions between states for a typical thread
implementation.

Introducing Multithreaded Programming 1–3

Introducing Multithreaded Programming
1.3 Thread Execution

Figure 1–3 Thread State Transitions

Waiting Ready Running Terminated

ZK−3786A−GE

1.4 Functional Models for Multithreaded Programming
The following sections describe four functional models of processing information
that are especially well suited for implementation in multithreaded programs:

• Boss/worker model

• Work crew model

• Pipelining model

• Combination of models

1.4.1 Boss/Worker Model
In a boss/worker model, one thread functions as the ‘‘boss’’ because it assigns
tasks for ‘‘worker’’ threads to perform. Each worker performs a distinct task
until it has finished, at which point it notifies the boss that it is ready to receive
another task. Alternatively, the boss polls workers periodically to see whether
any is ready to receive another task.

A variation of the boss/worker model is the work queue model. The boss places
tasks in a queue, and workers check the queue and take tasks to perform. When
there are multiple bosses, this is often called producer/consumer.

An example of the work queue model in an office environment is a secretarial
typing pool. The office manager boss puts documents to be typed in a basket, and
worker typists take documents from the basket to work on.

1.4.2 Work Crew Model
In the work crew model, multiple threads work together on a single task. The
task is divided into pieces that are performed in parallel, and each thread
performs one piece.

An example of a work crew is a group of people cleaning a building. Each person
cleans certain rooms or performs certain types of work (washing floors, polishing
furniture, and so forth), and each works independently.

In a multithreaded program that reflects the work crew model, each thread
executes a task that can be performed in parallel. Figure 1–4 shows a task
performed by three threads in a work crew model.

1–4 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.4 Functional Models for Multithreaded Programming

Figure 1–4 Work Crew Model of Thread Operation

Thread A

Thread B

Thread C

(Time)

TASK

Setup Cleanup

ZK−3787A−GE

1.4.3 Pipelining Model
In the pipelining model, a task is divided into steps. The steps must be performed
in sequence to produce a single instance of the desired result, and the work done
in each step (except for the first and last) is based on the previous step and is
a prerequisite for the work in the next step. However, the goal is to produce
multiple instances of the desired result, and the steps are designed to operate in
parallel: while one step is performed on one instance of the result, the preceding
step can be performed on the next instance of the result.

An example of the pipelining model is an automobile assembly line. Each step
or stage in the assembly line is continually busy receiving the product of the
previous stage’s work, performing its assigned work, and passing the product
along to the next stage.

In a multithreaded program that reflects the pipelining model, each thread
executes a step in the task. Figure 1–5 shows a task performed by three threads
in a pipelining model.

Figure 1–5 Pipelining Model of Thread Operation

(Time)

TASK

Thread A Thread B Thread C

ZK−3788A−GE

1.4.4 Combination of Functional Models
If the task that your program performs is complex, you might find it appropriate
to organize it as a combination of the functional models previously described.
For example, a program could follow the pipelining model, but with one or more
steps performed by a set of threads that follow a work crew model. In addition,
threads could be assigned to a work crew by taking a task from a work queue
and deciding (based on the task characteristics) which threads are needed for the
work crew.

Introducing Multithreaded Programming 1–5

Introducing Multithreaded Programming
1.5 Programming Issues for Multithreaded Programs

1.5 Programming Issues for Multithreaded Programs
Building your multithreaded program must produce executable code that is
reentrant. Therefore, be sure that your compiler generates reentrant code before
you design or code your multithreaded program. By default, Compaq’s C, C++,
Ada, Pascal, COBOL, FORTRAN and BLISS compilers generate reentrant code.

If you cannot build your program so that its executable code is reentrant, it might
be impossible to keep the program’s threads from interfering with each other. See
Section 3.9.1 for more information about thread-reentrant libraries.

In general, when using threads, be aware of language-based programming
practices that are inherently not thread-safe. (‘‘Thread safety’’ is explained
in Section 3.9.2.) You must address these factors when writing multithreaded
applications and thread-safe libraries. For example, FORTRAN language routines
typically rely heavily upon static storage, which can prevent those routines from
being thread safe.

When you design and code a multithreaded program, you must also accommodate
or eliminate, as appropriate, each of the following issues:

• Program complexity is the most significant issue to consider in any
multithreaded programming effort. Although using threads can simplify
the coding and designing of a program, a certain level of expertise is required
to be sure that the design of the synchronization and interplay among threads
is appropriate and correctly specified. This level of expertise is higher than
that required to design most single-threaded programs.

• Dependence upon other nonreentrant software means that your multithreaded
program calls a routine or library that is not equipped to deal with threads.
Given this dependence, your program must prevent conflicts with other
threads that use the same nonreentrant routine or library. Section 3.9
presents multithreaded programming techniques for managing dependencies
upon other nonreentrant software.

• Due to programming errors, race conditions in the program’s behavior can
cause unpredictable and erroneous program behavior, which depends on, and
varies with, the precise timing of the threads’ execution. Similarly, deadlocks
can cause two or more threads to be blocked from executing indefinitely.
Section 3.6.2 discusses race conditions in more detail, and Section 3.6.3
discusses deadlocks.

• Priority inversion prevents high-priority threads from executing when
interdependencies exist among three or more threads of different priorities.
Section 3.5.2 discusses techniques for avoiding priority inversion.

1.6 POSIX Threads Libraries and Interfaces
As a package, the POSIX Threads Library is a collection of shared code libraries
and C language header files that declare entry points into those libraries. This
guide’s platform-specific appendixes describe these libraries in more detail and
list all other libraries upon which the Threads Libraries depend.

From the programmer’s view, the Threads Libraries offer interfaces. Each
interface is a distinct set of routines that together provide a well-defined set of
related data objects and operations.

1–6 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

This version of the Threads Library supports two interfaces that are documented
in this guide:

• The pthread interface provides multithreading capability in your
applications. This interface is based on the Single UNIX Specification
(SUSV2), which incorporates the POSIX thread standard (1003.1c-1995). Use
this interface to build portable, multithreaded applications.

Section 1.6.1 introduces the pthread interface. Chapter 2 and Chapter 3
describe how to use the features and functionality of the pthread interface.
The reference descriptions in Part II describe in detail each routine in the
pthread interface.

• The Compaq proprietary tis interface offers routines that provide thread-
independent services. The routines in this interface enable your software to
perform thread-safe processing that requires synchronization, but without
requiring the use of the pthread interface.

Section 1.6.2 introduces the tis interface. Chapter 4 describes how to use the
features and functionality of the tis interface. The reference descriptions in
Part III describe in detail each routine in the tis interface.

This release of the Threads Library includes interface definitions for the C
programming language only. However, all Threads Library routines are callable
from languages other than C. Your application must provide its own declarations
for Threads Library routines in a manner appropriate for its programming
language. These definitions should be modeled after the declarations in the C
language pthread.h header file.

For backward compatibility, this version of the Threads Library also supports
other interfaces that are not documented in this guide. See Section 1.6.3.

Special note when using the Threads Library from non-C languages:

Several Threads Library features and most Threads Library identifiers are
provided as C language macros. As such, their definitions may not be available
in other languages. Developers working in other languages will have to provide
their own declarations of functions and constants. Features such as TRY/CATCH
exception handling and POSIX push/pop cleanup handlers may be completely
unavailable, although it may be possible to provide similar functionality using
native exception handling facilities. Note that in this context, C++ is a non-C
language; while the C language macros may compile successfully under C++,
TRY/CATCH and push/pop cleanup handlers are not supported for C++ code. C++
code should use object destructors and C++ exception handlers.

1.6.1 The pthread Multithreading Interface
The pthread interface routines implement the IEEE Standard 1003.1-1996,
Portable Operating System Interface (or POSIX) Application Program Interface,
also known as POSIX.1. It also supports extensions specified in SUSV2
(UNIX98).

Table 1–1 lists and summarizes functionally the pthread interface routines.

The pthread interface contains routines grouped in the following functional
categories:

• General threads routines

• Thread attributes object routines

• Thread cancelation routines

Introducing Multithreaded Programming 1–7

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

• Thread priority, concurrency, and scheduling routines

• Thread-specific data routines

• Mutex routines

• Mutex attributes object routines

• Condition variable routines

• Condition variable attributes object routines

• Read-write lock routines

• Read-write lock attributes object routines

The pthread interface also provides routines that implement nonportable
extensions to the POSIX.1 standard. These routines are grouped in these
functional categories:

• Thread execution routines

• Global mutex routines

• Mutex attributes routines

• Condition variable routines

• Object naming routines

• Exception object routines

Among the routines in the pthread interface that implement nonportable
extensions to the POSIX.1 standard, are the routines in the Threads Library
exception package. This package consists of a library and C language header file
(pthread_exceptions.h) that implement a Compaq-specific exception-handling
facility. It is designed specifically for use with the pthread interface. Chapter 5
describes the Threads Library exception package.

This guide also documents several routines that are not declared entries in the
pthread interface, but that have close affinity with its functionality. Examples
are the sched_yield() and sigwait() routines. See the end of Table 1–1 for a
list of these routines.

1–8 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 pthread Routines Summary

Routine Description

General Threads Routines

pthread_atfork() Declares fork handler routines to be called

pthread_create() Creates a thread object and thread

pthread_detach() Marks a thread object for deletion

pthread_equal() Compares one thread identifier to another
thread identifier

pthread_exit() Terminates the calling thread

pthread_join() Causes the calling thread to wait for the
termination of a specified thread and detach it

pthread_kill() Delivers a signal to a specified thread

pthread_once() Calls an initialization routine to be executed
only once

pthread_self() Obtains the identifier of the calling thread

pthread_sigmask() Examines or changes the calling thread’s
signal mask

(continued on next page)

Introducing Multithreaded Programming 1–9

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Thread Attributes Object Routines

pthread_attr_destroy() Destroys a thread attributes object

pthread_attr_getdetachstate() Obtains the detachstate attribute of the
specified thread attributes object

pthread_attr_getguardsize() Obtains the guardsize attribute of the
specified thread attributes object

pthread_attr_getinheritsched() Obtains the inherit scheduling attribute of the
specified thread attributes object

pthread_attr_getschedparam() Obtains the scheduling parameters for the
scheduling policy attribute of the specified
thread attributes object

pthread_attr_getschedpolicy() Obtains the scheduling policy attribute of the
specified thread attributes object

pthread_attr_getscope() Obtains the contention-scope attribute of the
specified thread attributes object

pthread_attr_getstackaddr() Obtains the stackaddr attribute of the
specified thread attributes object

pthread_attr_getstacksize() Obtains the stacksize attribute of the specified
thread attributes object

pthread_attr_init() Initializes a thread attributes object

pthread_attr_setdetachstate() Changes the detachstate attribute of the
specified thread attributes object

pthread_attr_setguardsize() Changes the guardsize attribute of the
specified thread attributes object

pthread_attr_setinheritsched() Changes the inherit scheduling attribute of
the specified thread attributes object

pthread_attr_setschedparam() Changes the values of the parameters
associated with the scheduling policy attribute
of the specified thread attributes object

pthread_attr_setschedpolicy() Changes the scheduling policy attribute of the
specified thread attributes object

pthread_attr_setscope() Changes the contention-scope attribute of the
specified thread attributes object

pthread_attr_setstackaddr() Changes the stackaddr attribute of the
specified thread attributes object

pthread_attr_setstacksize() Changes the stacksize attribute of the
specified thread attributes object

(continued on next page)

1–10 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Thread Cancelation Routines

pthread_cancel() Allows a thread to request that it, or another
thread, terminate execution

pthread_cleanup_pop() Removes a cleanup handler routine from
the top of the ‘‘cleanup stack’’ and optionally
executes it

pthread_cleanup_push() Establishes a cleanup handler routine to be
executed when the thread exits or is canceled
while the handler is on the ‘‘cleanup stack’’

pthread_setcancelstate() Sets the calling thread’s cancelability state to
enable or disable the delivery of cancelation
requests

pthread_setcanceltype() Sets the calling thread’s cancelability type to
enable or disable the delivery of cancelation
requests

pthread_testcancel() Requests delivery of any pending cancelation
request to the calling thread

Thread Priority, Concurrency, and Scheduling Routines

pthread_getconcurrency() Obtains the current concurrency level
parameter for the process

pthread_getschedparam() Obtains the current scheduling policy and
scheduling parameters of a thread

pthread_setconcurrency() Changes the current concurrency level
parameter for the process

pthread_setschedparam() Changes the current scheduling policy and
scheduling parameters of a thread

Thread-Specific Data Routines

pthread_getspecific() Obtains the thread-specific data value
associated with the specified key

pthread_key_create() Generates a unique thread-specific data key
for the calling thread

pthread_key_delete() Deletes a thread-specific data key

pthread_setspecific() Changes the thread-specific data value
associated with the specified key for the
calling thread

(continued on next page)

Introducing Multithreaded Programming 1–11

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Mutex Routines

pthread_mutex_destroy() Destroys a mutex

pthread_mutex_init() Initializes a mutex with attributes specified by
the attributes argument

pthread_mutex_lock() Locks an unlocked mutex; if locked, the caller
waits for the mutex to become available before
locking it

pthread_mutex_trylock() Attempts to lock a mutex; returns immediately
if mutex is already locked

pthread_mutex_unlock() Unlocks a mutex locked by the calling thread

Mutex Attributes Object Routines

pthread_mutexattr_destroy() Destroys a mutex attributes object

pthread_mutexattr_getpshared() Obtains the process-shared attribute from the
specified mutex attributes object

pthread_mutexattr_gettype() Obtains the mutex type attribute from the
specified mutex attributes object

pthread_mutexattr_init() Initializes a mutex attributes object

pthread_mutexattr_setpshared() Changes the process-shared attribute in the
specified mutex attributes object

pthread_mutexattr_settype() Changes the mutex type attribute in the
specified mutex attributes object

Condition Variable Routines

pthread_cond_broadcast() Wakes all threads currently waiting on a
condition variable

pthread_cond_destroy() Destroys a condition variable

pthread_cond_init() Initializes a condition variable

pthread_cond_signal() Wakes at least one thread that is waiting on a
condition variable

pthread_cond_timedwait() Causes a thread to wait a specified period of
time for a condition variable to be signaled or
broadcast

pthread_cond_wait() Causes a thread to wait for a condition
variable to be signaled or broadcast

(continued on next page)

1–12 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Condition Variable Attributes Object Routines

pthread_condattr_destroy() Destroys a condition variable attributes object

pthread_condattr_getpshared() Obtains the process-shared attribute from the
specified condition variable attributes object

pthread_condattr_init() Initializes a condition variable attributes
object

pthread_condattr_setpshared() Changes the process-shared attribute in the
specified condition variable attributes object

Read-Write Lock Routines

pthread_rwlock_destroy() Destroys a read-write lock object

pthread_rwlock_init() Initializes a read-write lock object

pthread_rwlock_rdlock() Acquires a read-write lock for read access; if
locked, the caller waits for the lock to become
available before locking it

pthread_rwlock_tryrdlock() Acquires a read-write lock for read access
without waiting

pthread_rwlock_trywrlock() Acquires a a read-write lock for write access
without waiting

pthread_rwlock_unlock() Releases a read-write lock previously acquired
by the calling thread

pthread_rwlock_wrlock() Acquires a read-write lock for write access; if
locked, the caller waits for the lock to become
available before locking it

Read-Write Lock Attributes Object Routines

pthread_rwlockattr_destroy() Destroys a read-write lock attributes object

pthread_rwlockattr_getpshared() Obtains the process-shared attribute from the
specified read-write lock attributes object

pthread_rwlockattr_init() Initializes a read-write lock attributes object

pthread_rwlockattr_setpshared() Changes the process-shared attribute in the
specified read-write lock attributes object

(continued on next page)

Introducing Multithreaded Programming 1–13

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Nonportable Extensions

pthread_delay_np() Pauses the calling thread’s execution for the
specified time interval

pthread_get_expiration_np() Calculates a timeout for a timed condition
variable wait

pthread_getsequence_np() Gets a small integer specific to the calling
thread

pthread_attr_getstackaddr_np() Obtains the address and size of the specified
thread attributes object

pthread_attr_setstackaddr_np() Sets the address and size of the specified
thread attributes object

pthread_lock_global_np() Locks the global mutex

pthread_unlock_global_np() Unlocks the global mutex

pthread_cond_signal_int_np() Requests condition variable signal from
software interrupt routine

pthread_cond_sig_preempt_int_np() Wakes one thread that is waiting on the
specified condition variable; called from
software interrupt routine

pthread_attr_getname_np()
pthread_attr_setname_np()
pthread_cond_getname_np()
pthread_cond_setname_np()
pthread_getname_np()
pthread_key_getname_np()
pthread_key_setname_np()
pthread_mutex_getname_np()
pthread_mutex_setname_np()
pthread_rwlock_getname_np()
pthread_rwlock_setname_np()
pthread_setname_np()

Gets/sets name associated with specific objects
for debugging

pthread_exc_get_status_np()
pthread_exc_matches_np()
pthread_exc_report_np()
pthread_exc_set_status_np()

Exception object routines (some are macros)

pthread_yield_np() Notifies the scheduler that the current thread
is willing to release its processor to other
threads of the same or higher priority (alias
for sched_yield())

(continued on next page)

1–14 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–1 (Cont.) pthread Routines Summary

Routine Description

Related Standard Routines

sched_get_priority_max() Returns the maximum priority for the
specified scheduling policy

sched_get_priority_min() Returns the minimum priority for the specified
scheduling policy

sched_yield() Notifies the scheduler that the calling thread
is willing to release its processor to other
threads of the same or higher priority

sigwait() Suspends a calling thread until a signal
arrives

Introducing Multithreaded Programming 1–15

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

1.6.1.1 Optionally Implemented POSIX.1 Routines
In this version of the Threads Library, the pthread interface does not support
the following features that are specified in the POSIX.1 standard:

• Reported by the POSIX.1 _POSIX_THREAD_PRIO_PROTECT macro:

pthread_mutex_getprioceiling()
pthread_mutex_setprioceiling()
pthread_mutexattr_getprioceiling()
pthread_mutexattr_setprioceiling()

• Reported by the POSIX.1 _POSIX_THREAD_PRIO_PROTECT and
_POSIX_THREAD_PRIO_INHERIT macros:

pthread_mutexattr_getprotocol()
pthread_mutexattr_setprotocol()

• (Not supported for OpenVMS systems) Reported by the POSIX.1
_POSIX_THREAD_PROCESS_SHARED macro:

pthread_condattr_getpshared()
pthread_condattr_setpshared()
pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_setpshared()

The POSIX.1 standard directs the Threads Library to provide the macros
named _POSIX_THREAD_PROCESS_SHARED, _POSIX_THREAD_PRIO_PROTECT, and
_POSIX_THREAD_PRIO_INHERIT to report whether optionally implemented routines
are present.

The Threads Library does provide the following macros specified in the POSIX.1
standard:

_POSIX_THREADS: threads are supported
_POSIX_THREAD_SAFE_FUNCTIONS: thread-safe libraries are supported
_POSIX_THREAD_ATTR_STACKSIZE: can specify stack size
_POSIX_THREAD_ATTR_STACKADDR: can specify stack address
_POSIX_THREAD_PRIORITY_SCHEDULING: real-time scheduling control is
supported
_POSIX_THREAD_PROCESS_SHARED: cross-process synchronization is supported
(Tru64 UNIX only)

1.6.2 Thread-Independent Services Interface
The Compaq proprietary tis interface offers a set of thread-independent services.
Use these routines to build software that performs processing that requires
synchronization, but without requiring the use of pthreads. That is, use tis
routines to build thread-safe code libraries whose routines can be called from
either a single-threaded or a multithreaded environment.

In the absence of threads, tis routines impose minimal overhead on the calling
program. For instance, tis routines avoid the use of interlocked instructions and
memory barriers.

1–16 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

When threads are present, tis routines provide full support for synchronization.
Note that there are no tis routines for creating threads or thread objects,
because these routines would have no meaning if called from a single-threaded
environment.

The tis routines can be classified into these functional categories:

• General routines

• Thread cancelation routines

• Thread-specific data key routines

• Mutex routines

• Condition variable routines

• Read-write lock routines

Note

Unlike the other tis interfaces, the read-write lock functions work on
a data type different from that used by the pthread read-write lock
functions.

Table 1–2 summarizes these groups of tis routines.

Table 1–2 tis Routines Summary

Routine Description

General Routines

tis_once() Calls an initialization routine to be executed only once

tis_self() Obtains the identifier of the calling thread

tis_yield() Notifies the scheduler that the calling thread is willing
to release its processor to other threads of the same or
higher priority

Thread Cancelation Routines

tis_setcancelstate() Sets the calling thread’s cancelability state to enable
or disable the delivery of cancelation requests

tis_testcancel() Requests delivery of any pending cancelation request
to the calling thread

Thread-Specific Data Key Routines

tis_getspecific() Obtains the thread-specific data associated with the
specified key for the calling thread

tis_key_create() Generates a unique thread-specific data key

tis_key_delete() Deletes a thread-specific data key

tis_setspecific() Changes the thread-specific data value associated with
the specified key for the calling thread

(continued on next page)

Introducing Multithreaded Programming 1–17

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–2 (Cont.) tis Routines Summary

Routine Description

Mutex Routines

tis_lock_global() Locks the global mutex

tis_mutex_destroy() Destroys the specified mutex object

tis_mutex_init() Initializes a mutex object

tis_mutex_lock() Locks the specified mutex, if unlocked

tis_mutex_trylock() Tries to lock the specified mutex

tis_mutex_unlock() Unlocks the specified mutex when locked by the calling
thread

tis_unlock_global() Unlocks the global mutex

Condition Variable Routines

tis_cond_broadcast() Wakes all threads currently waiting on the specified
condition variable

tis_cond_destroy() Destroys the specified condition variable object

tis_cond_init() Initializes a condition variable object

tis_cond_signal() Wakes at least one thread that is waiting on the
specified condition variable

tis_cond_timedwait() Causes a thread to wait a specified period of time for a
condition variable to be signaled or broadcast

tis_cond_wait() Causes the calling thread to wait for the specified
condition variable to be signaled or broadcast

tis_get_expiration() Calculates a timeout for a timed condition variable
wait

OpenVMS I/O Completion Routines

tis_io_complete() Completion AST service routine

tis_sync() Thread-synchronous replacement for $SYNC system
service

(continued on next page)

1–18 Introducing Multithreaded Programming

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

Table 1–2 (Cont.) tis Routines Summary

Routine Description

Read-Write Lock Routines

tis_read_lock() Acquires the specified read-write lock for read access

tis_read_trylock() Acquires the specified read-write lock for read access;
returns immediately if already locked

tis_read_unlock() Unlocks the specified read-write lock already acquired
for read access by the calling thread

tis_rwlock_destroy() Destroys the specified read-write lock object

tis_rwlock_init() Initializes the specified read-write lock object

tis_write_lock() Acquires the specified read-write lock for write access

tis_write_trylock() Acquires the specified read-write lock for write access;
returns immediately if already locked

tis_write_unlock() Unlocks the specified read-write lock already acquired
for write access by the calling thread

1.6.3 Undocumented and Obsolete Interfaces
Previous versions of the Threads Library offered interfaces that under this
version are no longer documented.

1.6.3.1 The cma Interface
This version of the Threads Library supports the Compaq proprietary CMA (or
cma) interface. The cma interface reports errors by raising exceptions. This
interface is layered on top of the pthread interface. This interface is usually
available only on Compaq platforms.

Compaq will continue to support existing applications that were developed
using the cma interface. Binary compatibility will be supported indefinitely.
Nonetheless, Compaq recommends that, as soon as possible, you migrate any
cma code in your existing applications to the latest pthread interface, to take
advantage of its standard features, portability, and future enhancements.

Routines of the cma interface are not documented in this guide. In this guide see
Appendix D for information to help you migrate your cma-based programs and
applications to the latest pthread interface.

1.6.3.2 The d4 (DCEthread) Interfaces
Note

These obsolete interfaces will be removed in a future Compaq POSIX
Threads release. As of that release, both source and binary code using the
d4 (DCEthread) interfaces will no longer compile or execute.

For backward compatibility only, this version of the Threads Library retains full
binary support for the d4 interfaces. These interfaces are implementations of the
IEEE POSIX 1003.4a/Draft 4 document, and are also known as ‘‘DCE threads’’.

These interfaces include both a ‘‘standard’’ interface that reports errors by setting
errno and returning a value of -1, and an ‘‘exception-returning’’ interface that,
like the cma interface, reports errors by raising exceptions.

Introducing Multithreaded Programming 1–19

Introducing Multithreaded Programming
1.6 POSIX Threads Libraries and Interfaces

The d4 interfaces will not be provided in a future release of the Threads Library.
Compaq recommends that you migrate any d4 code in your existing applications
to the latest pthread interface, to take advantage of its standard features,
portability, and future enhancements.

Routines of the d4 interfaces are not documented in this guide. In this guide
see Appendix E for information to help you migrate your d4-based programs and
applications to the latest pthread interface.

1–20 Introducing Multithreaded Programming

2
Objects and Operations

This chapter describes operations that act upon the objects supported in the
pthread interface.

2.1 Threads and Synchronization Objects
A multithreaded program typically manipulates these objects:

• A thread object describes a thread, which refers to a distinct flow of control
within a process. After a thread object is created, the Threads Library uses it
to maintain information about the thread’s state and its associated attributes.

• A mutex serves as a lock for data that is shared among the program’s
threads. To access data that is guarded by a mutex, a thread must acquire
the mutex, access the data, and then release the mutex. Each instance of
acquiring a mutex is called a lock acquisition. While a mutex is locked, if
other threads attempt to acquire that mutex, those threads must wait for the
mutex to be released.

• For data that is shared among a program’s threads but is more frequently
read than written, use a read-write lock to guard access to the data. Unlike
a mutex, more than one thread can acquire the same read-write lock for read
access at the same time.

• When associated with a shared data object and its mutex, a condition
variable provides a mechanism that allows a thread to wait until a piece of
shared data protected by a mutex is placed into a particular state.

2.2 Attributes Objects
When your program creates a thread, mutex, read-write lock or condition
variable, it can accept the default attributes for that object or specify an existing
attributes object (previously created by your program) that contains particular
attribute values. You can also change some of the attributes of a thread after it
has begun execution—for example, you can change the thread’s priority. However,
other attributes, such as stack size, are fixed at execution.

To initialize an attributes object, you can use one of the following routines,
depending on the type of object to which the attributes apply:

• pthread_attr_init() for thread attributes

• pthread_mutexattr_init() for mutex attributes

• pthread_rwlockattr_init() for read-write lock attributes

• pthread_condattr_init() for condition variable attributes

Objects and Operations 2–1

Objects and Operations
2.2 Attributes Objects

These routines initialize an attributes object with default values for the individual
attributes. To modify any attribute values in an attributes object, use one of the
‘‘attr_set’’ routines, such as pthread_attr_setinheritsched(), described in
later sections.

Initializing an attributes object (or changing the values in an attributes object)
does not affect the attributes of existing threads, mutexes, read-write locks and
condition variables.

To destroy an attributes object, use one of the following routines:

• pthread_attr_destroy() for thread attributes objects

• pthread_condattr_destroy() for condition variable attributes objects

• pthread_mutexattr_destroy() for mutex attributes objects

• pthread_rwlockattr_destroy() for read-write lock attributes objects

Deleting an attributes object does not affect the attributes of objects previously
created with that attributes object.

2.3 Thread Operations
The following sections describe these operations on threads:

• Creating a thread

• Setting the attributes for a new thread

• Terminating a thread

• Detaching and destroying a thread

• Joining with another thread

• Controlling how a thread is scheduled

• Canceling a thread

2.3.1 Creating a Thread
Your program creates a thread using the pthread_create() routine. This routine
creates a thread based on the settings of the thread attributes object if specified,
which your program must have previously initialized. If called without a specified
thread attributes object, pthread_create creates a new thread that has the
default attributes.

The Threads Library creates a thread in the ready state and prepares the thread
to begin executing its start routine, the function passed to the pthread_create()
routine. Depending on the presence of other threads and their scheduling
attributes, the new thread might preempt its creator (that is, it might start
before the call to pthread_create() returns). The caller of pthread_create()
can synchronize with the new thread using any mutually agreed upon mechanism
or await its termination using pthread_join().

The Threads Library assigns each new thread a thread identifier, which is written
into the address specified as the pthread_create() routine’s thread argument.
The new thread’s identifier is written before the new thread executes.

You can create a thread that is detached. To do so, create a thread using a
thread attributes object whose detachstate attribute has been set, using the
pthread_attr_setdetachstate() routine, to PTHREAD_CREATE_DETACHED. This is
useful for creating a thread that your program knows will not be joined by any

2–2 Objects and Operations

Objects and Operations
2.3 Thread Operations

other thread. That is, when such a thread terminates, the thread and its thread
object are automatically destroyed.

For more detailed information about thread creation, see the reference description
of the pthread_create() routine in Part II.

2.3.2 Setting the Attributes of a New Thread
When creating a thread, your program can optionally specify the attributes of the
new thread using a thread attributes object. To do so, your program must:

1. Allocate a thread attributes object and then initialize it by calling the
pthread_attr_init() routine. (Normally, you will initialize an extern or
local variable of the appropriate type.)

2. Set values for the individual attributes of the thread attributes object. (The
POSIX standard provides a separate routine for setting each attribute in the
thread attributes object.)

3. When ready to create the new thread, pass the address of the thread
attributes object as an argument to the pthread_create() routine.

After your program creates a thread attributes object, it can be reused for
each new thread that the program creates. For the details about creating
and deleting a thread attributes object, see the descriptions in Part II of the
pthread_attr_init() and pthread_attr_destroy() routines.

Using the thread attributes object, your program can specify these attributes of a
new thread:

• Scheduling inheritance

• Scheduling policy

• Scheduling parameters

• Stack size

• Stack location

• Stack guard size

• Contention scope

2.3.2.1 Setting the Inherit Scheduling Attribute
By default, a new thread is created with the scheduling attributes (policy,
parameters and contention scope) of its creator. If an attributes object is specified,
the scheduling attribute values are ignored. When you want to create a thread
with different scheduling attributes, you must set the attribute values, and also
set the value of the inheritsched attribute to PTHREAD_EXPLICIT_SCHED. You do
this by calling the pthread_attr_setinheritsched() routine. The default value
is PTHREAD_INHERIT_SCHED.

2.3.2.2 Setting the Scheduling Policy Attribute
The scheduling policy attribute describes how new threads are scheduled for
execution relative to the other threads in the process.

A thread has one of the following scheduling policies:

• SCHED_FIFO (first-in/first-out or FIFO)—The highest-priority thread runs until
it blocks. If there is more than one thread with the same priority and that
priority is the highest among other threads, the first thread to begin running
continues until it blocks. If a thread with this policy becomes ready, and it

Objects and Operations 2–3

Objects and Operations
2.3 Thread Operations

has a higher priority than the currently running thread, then the current
thread is preempted and the higher priority thread immediately begins
running.

• SCHED_RR (round-robin or RR)—The highest-priority thread runs until it
blocks; however, threads of equal priority are time sliced. If a thread with
this policy becomes ready, and it has a higher priority than the currently
running thread, then the current thread is preempted and the higher priority
thread immediately begins running.

On a multiprocessor, threads of varying policy and priority may run
simultaneously. A high priority thread is not guaranteed exclusive use of
a multiprocessor system. You must use synchronization, not scheduling
attributes, to ensure exclusive access.

• SCHED_OTHER (Foreground or ‘‘throughput’’; also known as SCHED_FG_NP)—
This is the default scheduling policy. All threads are time sliced, and no
thread with this policy will completely starve any other thread with this
policy, regardless of any thread’s priority. (Time slicing is a mechanism
that ensures that every thread is allowed time to execute by preempting
running threads at fixed intervals.) However, higher-priority threads tend to
receive more execution time than lower-priority threads, if the threads behave
similarly.

Threads with this scheduling policy can be denied execution time by first-
in/first-out (FIFO) or round-robin (RR) threads. Threads in this policy do not
preempt other threads.

Section 2.3.6 describes and shows the effect of the scheduling policy on thread
scheduling.

2.3.2.2.1 Techniques for Setting the Scheduling Policy Attribute Use either of
two techniques to set a thread attributes object’s scheduling policy attribute:

• Set the scheduling policy attribute in the attributes object, which establishes
the scheduling policy of a new thread when it is created. To do so, call the
pthread_attr_setschedpolicy() routine. This allows the creator of a thread
to establish the created thread’s initial scheduling policy. (Note that this
value is used only if the attributes object is set so that the created thread does
not inherit its priority from the creating thread as shown in Section 2.3.2.1.
Inheriting scheduling policy is the default behavior.)

• Change the scheduling policy of an existing thread (and, at the same time,
the scheduling parameters) by calling the pthread_setschedparam() routine.
This routine allows a thread to change its own scheduling policy and/or
scheduling priority, but has no effect on the corresponding settings in the
thread attributes object.

When you change the scheduling policy attribute, you must be sure the
scheduling parameter attribute is compatible with the scheduling policy attribute
before using the attributes object to create a thread.

2.3.2.2.2 Comparing Throughput and Real-Time Policies The default
throughput scheduling policy is intended to be an ‘‘adaptive’’ policy, giving each
thread an opportunity to execute based on its behavior. That is, for a thread that
does not execute often, the Threads Library tends to give it high access to the
processor because it is not greatly affecting other threads. On the other hand,
the Threads Library tends to schedule with less preference any compute-bound
threads with throughput scheduling policy.

2–4 Objects and Operations

Objects and Operations
2.3 Thread Operations

This yields a responsive system in which all threads with throughput scheduling
policy get a chance to run fairly frequently. It also has the effect of automatically
resolving priority inversions, because over time any threads that have received
less processing time (among those with throughput scheduling policy) will rise
in preference while the running thread drops, and eventually the inversion is
reversed.

The FIFO and RR scheduling policies are considered ‘‘real-time’’ policies, because
they require the Threads Library to schedule such threads strictly by the
specified priority. Because threads that use real-time scheduling policies require
additional overhead, the incautious use of the FIFO or RR policies can cause the
performance of the application to suffer.

If relative priorities of threads are important to your application—that is, if a
compute-bound thread really requires consistently predictable execution—then
create those threads using either the FIFO or RR scheduling policy. However,
use of ‘‘real-time’’ policies can expose the application to unexpected performance
problems, such as priority inversions, and therefore their use should be avoided
in most applications.

2.3.2.2.3 Portability of Scheduling Policy Settings Only the SCHED_FIFO
and SCHED_RR scheduling policies are portable across POSIX-conformant
implementations. The other scheduling policies are extensions to the POSIX
standard.

Note

The SCHED_OTHER identifier is portable, but the POSIX standard does
not specify the behavior that it signifies. For example, on non-Compaq
platforms, the SCHED_OTHER scheduling policy could be identical to either
the SCHED_FIFO or the SCHED_RR policy.

2.3.2.3 Setting the Scheduling Parameters Attribute
The scheduling parameters attribute specifies the execution priority of a thread.
(Although the terminology and format are designed to allow adding more
scheduling parameters in the future, only priority is currently defined.) The
priority is an integer value, but each policy can allow only a restricted range
of priority values. You can determine the range for any policy by calling the
sched_get_priority_min() or sched_get_priority_max() routines. The
Threads Library also supports a set of nonportable symbols designating the
priority range for each policy, as follows:

Low High

PRI_FIFO_MIN PRI_FIFO_MAX

PRI_RR_MIN PRI_RR_MAX

PRI_OTHER_MIN PRI_OTHER_MAX

PRI_FG_MIN_NP PRI_FG_MAX_NP

PRI_BG_MIN_NP PRI_BG_MAX_NP

Section 2.3.6 describes how to specify a priority between the minimum and
maximum values, and it also discusses how priority affects thread scheduling.

Objects and Operations 2–5

Objects and Operations
2.3 Thread Operations

Use either of two techniques to set a thread attributes object’s scheduling
parameters attribute:

• Set the scheduling parameters attribute in the thread attributes object, which
establishes the execution priority of a new thread when it is created. To do so,
call the pthread_attr_setschedparam() routine. This allows the creator of a
thread to establish the created thread’s initial execution priority. (Note that
this value is used only if the thread attributes object is set so that the created
thread does not inherit its priority from the creating thread. Inheriting
priority is the default behavior.)

• Change the scheduling parameters of an existing thread by calling the
pthread_setschedparam() routine and requesting the current policy with the
new parameters. This routine allows a thread to change its own scheduling
policy or scheduling priority, but has no effect on the corresponding settings
in the thread attributes object.

Note

On Tru64 UNIX Systems:
There are system security issues for threads running with system
contention scope. High priority threads may prevent other users from
accessing the system. A system contention scope thread cannot have a
priority higher than 19 (the default user priority). A system contention
scope thread with SCHED_FIFO policy, because it will prevent execution by
other threads of equal priority, cannot have a priority higher than 18.

2.3.2.4 Setting the Stacksize Attribute
The stacksize attribute represents the minimum size (in bytes) of the memory
required for a thread’s stack. To increase or decrease the size of the stack for a
new thread, call the pthread_attr_setstacksize() routine and use the specified
thread attributes object when creating the thread and stack. You must specify at
least PTHREAD_STACK_MIN bytes.

After a thread has been created, your program cannot change the size of the
thread’s stack. See Section 3.4.1 for more information about sizing a stack.

2.3.2.5 Setting the Stack Address Attribute
The stack address attribute represents the location or address of a region of
memory that your program allocates for use as a thread’s stack. The value of the
stack address attribute represents the origin of the thread’s stack (that is, the
initial value to be placed in the thread’s stack pointer register). However, please
be aware that the actual address you specify, relative to the stack memory you
have allocated, is inherently nonportable.

To set the address of the stack origin for a new thread, call the
pthread_attr_setstackaddr() routine, specifying an initialized thread attributes
object as an argument, and use the thread attributes object when creating the
new thread. Use the pthread_attr_getstackaddr() routine to obtain the value
of the stack address attribute of an initialized thread attributes object.

After a thread has been created, your program cannot change the address of the
thread’s stack.

2–6 Objects and Operations

Objects and Operations
2.3 Thread Operations

Code using this attribute is nonportable because the meaning of ‘‘stack address’’
is undefined and untestable. Generally, implementations likely assume, as does
the Threads Library, that you have specified the initial stack pointer; however,
this is not required by the standards. Even so, some machines’ stacks grow up
while others grow down, and many may modify the stack pointer either before
or after writing (or reading) data. In other words, one system may require that
you pass the base, another base - sizeof(int), another base + size, another
base + size + sizeof(long). Furthermore, the system cannot know the size of
the stack, which may restrict the ability of debuggers and other tools to help
you. As long as you are using an inherently nonportable interface, consider using
pthread_attr_setstackaddr_np().

You cannot create two concurrent threads that use the same stack address. The
amount of storage you provide must be at least PTHREAD_STACK_MIN bytes.

The system uses an unspecified (and varying) amount of the stack to ‘‘bootstrap’’
a newly created thread.

2.3.2.6 Setting the Guardsize Attribute
The guardsize attribute represents the minimum size (in bytes) of the guard area
for the stack of a thread. A guard area can help a multithreaded program detect
overflow of a thread’s stack and the stack. A guard area is a region of no-access
memory that is allocated at the overflow end of the thread’s writable stack. When
the thread attempts to access a memory location within the guard area, a memory
addressing violation occurs.

A new thread can be created using a thread attributes object with a default
guardsize attribute value. This value is platform dependent, but will always be
at least one ‘‘hardware protection unit’’ (that is, at least one page; non-zero values
are rounded up to the next integral page size). For more information, see this
guide’s platform-specific appendixes.

The Threads Library allows your program to specify the size of a thread stack
guard area for two reasons:

• For a thread that allocates large data structures on the stack, a large guard
area might be required to detect stack overflow.

• Overflow protection of a thread’s stack is otherwise a waste of system
resources. An application that creates a large number of threads that will
never overflow their stacks can conserve system resources by ‘‘turning off’’
guard areas—that is, by specifying a guardsize attribute of zero for each such
thread. In this case, no guard area or overflow warning area are allocated.

To set the guardsize attribute of a thread attributes object, call the
pthread_attr_setguardsize() routine. To obtain the value of the guardsize
attribute in a thread attributes object, call the pthread_attr_getguardsize()
routine.

2.3.2.7 Setting the Contention Scope Attribute
When creating a thread, you can specify the set of threads with which this thread
competes for processing resources. This set of threads is called the thread’s
contention scope.

A thread attributes object includes a contention scope attribute. The contention
scope attribute specifies whether the new thread competes for processing
resources only with other threads in its own process, called process contention
scope, or with all threads on the system, called system contention scope.

Objects and Operations 2–7

Objects and Operations
2.3 Thread Operations

Use the pthread_attr_setscope() routine to set an initialized thread attributes
object’s contention scope attribute. Use the pthread_attr_getscope()
routine to obtain the value of the contention scope attribute of an initialized
thread attributes object. You must also set the inheritsched attribute to
PTHREAD_EXPLICIT_SCHED to prevent a new thread from inheriting its contention
scope from the creator.

In the thread attributes object, set the contention scope attribute’s value to
PTHREAD_SCOPE_PROCESS to specify process contention scope, or set the value to
PTHREAD_SCOPE_SYSTEM to specify system contention scope.

The Threads Library selects at most one thread to execute on each processor at
any point in time. The Threads Library resolves the contention based on each
thread’s scheduling attributes (for example, priority) and scheduling policy (for
example, round-robin).

A thread created using a thread attributes object whose contention scope
attribute is set to PTHREAD_SCOPE_PROCESS contends for processing resources
with other threads within its own process that also were created with
PTHREAD_SCOPE_PROCESS. It is unspecified how such threads are scheduled relative
to threads in other processes or threads in the same process that were created
with PTHREAD_SCOPE_SYSTEM contention scope.

A thread created using a thread attributes object whose contention scope attribute
is set to PTHREAD_SCOPE_SYSTEM contends for processing resources with other
threads in any process that also were created with PTHREAD_SCOPE_SYSTEM.

Whether process contention scope and system contention scope are available for
your program’s threads depends on the host operating system. Attempting to set
the contention scope attribute to a value not supported on your system will result
in a return value of [ENOTSUP]. The following table summarizes support for
thread contention scope by operating system:

Table 2–1 Support for Thread Contention Scope

Operating System
Available Thread
Contention Scopes

Default Thread
Contention Scope

Tru64 UNIX Process
System

Process

OpenVMS Process Process

Note

On Tru64 UNIX systems:

When a thread creates a system contention scope thread, the creation can
fail with an [EPERM] error condition. This is because system contention
scope threads can only be created with priority above ‘‘default’’ priority if
the process is running with root privileges.

2–8 Objects and Operations

Objects and Operations
2.3 Thread Operations

2.3.3 Terminating a Thread
Terminating a thread means causing a thread to end its execution. This can occur
for any of the following reasons:

• The thread returns from its start routine (this is the usual case). The value
returned by the routine indicates the thread’s exit status to a thread that
joins with this thread.

• The thread calls the pthread_exit() routine. This routine accepts a status
value in its value_ptr argument. The value returned by the routine indicates
the thread’s exit status to a thread that joins with this thread.

• The thread is canceled, by being specified in a call to the pthread_cancel()
routine. This routine requests the thread’s termination if the thread permits
cancelation. See Section 2.3.7 for more information on canceling threads and
on controlling whether or not cancelation is permitted.

When a thread terminates, the Threads Library performs these actions:

1. It writes a return value into the terminated thread’s thread object:

• If the thread has been canceled, the value PTHREAD_CANCELED is written
into the thread’s thread object.

• If the thread terminated by returning from its start routine, the return
value is copied from the start routine into the thread’s thread object.
Alternatively, if the thread explicitly called pthread_exit(), the value
received in the value_ptr argument (from pthread_exit()) is stored in
the thread’s thread object.

Another thread can obtain this return value by joining with the terminated
thread (using pthread_join()). See Section 2.3.5 for a description of joining
with a thread.

Note

If the thread terminated by returning from its start routine normally and
the start routine does not provide a return value, the results obtained by
joining with that thread are unpredictable.

2. If the termination results from either a cancelation or a call to
pthread_exit(), the Threads Library calls, in turn, each cleanup handler
that this thread declared (using pthread_cleanup_push()) that had not yet
been removed (using pthread_cleanup_pop()). (It also transfers control
to any appropriate CATCH, CATCH_ALL, or FINALLY blocks, as described
in Chapter 5. You can also use Compaq C’s structured handling (SEH)
extensions.)

The Threads Library calls the terminated thread’s most recently pushed
cleanup handler first. See Section 2.3.3.1 for more information about cleanup
handlers.

For C++ programmers: At normal exit from a thread, your program will call
the appropriate destructor functions. You can also catch the exit or cancel
exception using the catch(...).

Objects and Operations 2–9

Objects and Operations
2.3 Thread Operations

To exit the terminated thread due to a call to pthread_exit(), the Threads
Library raises the pthread_exit_e exception. To exit the terminated thread
due to cancelation, the Threads Library raises the pthread_cancel_e
exception.

Your program can use the exception package to operate on the generated
exception. (Note that the practice of using CATCH handlers in place of
pthread_cleanup_push() is not portable.) Chapter 5 describes the exception
package. The name of the native system extension, or that seen by C++,
varies by platform.

3. For each of the terminated thread’s thread-specific data keys that has a
non-NULL value and a non-NULL destructor function:

• The thread’s value for the corresponding key is set to NULL.

• The thread-specific data destructor function is called.

This step is repeated until all thread-specific data values in the
thread are NULL, or for up to a number of iterations equal to
PTHREAD_DESTRUCTOR_ITERATIONS (4). This destroys all thread-specific data
associated with the terminated thread. See Section 2.6 for more information
about thread-specific data. Note that if after 4 iterations through the thread’s
thread-specific data values, there are still non-NULL values, they will be
ignored. This may result in an application memory leak, and should be
avoided.

4. The thread (if there is one) that is currently waiting to join with the
terminated thread is awakened. That is, the thread that is waiting in a
call to pthread_join() is awakened

5. If the thread is already detached or if there was a thread waiting in a call
to pthread_join(), its storage is destroyed Otherwise, the thread continues
to exist until detached or joined with. Section 2.3.4 describes detaching and
destroying a thread.

After a thread terminates, it continues to exist as long as it is not detached. This
means that storage, including stack, may remain allocated. This allows another
thread to join with the terminated thread (see Section 2.3.5).

When a terminated thread is no longer needed, your program should detach that
thread (see Section 2.3.4).

Note

For Tru64 UNIX systems:

When the initial thread in a multithreaded process returns from the main
routine, the entire process terminates, just as it does when a thread calls
exit().

For OpenVMS systems:

When the initial thread in a multithreaded image returns from the main
routine, the entire image terminates, just as it does when a thread calls
SYS$EXIT.

2–10 Objects and Operations

Objects and Operations
2.3 Thread Operations

2.3.3.1 Cleanup Handlers
A cleanup handler is a routine you provide that is associated with a particular
lexical scope within your program and that can be invoked when a thread exits
that scope. The cleanup handler’s purpose is to restore that portion of the
program’s state that has been changed within the handler’s associated lexical
scope. In particular, cleanup handlers allow a thread to react to thread-exit and
cancelation requests.

Your program declares a cleanup handler for a thread by calling the
pthread_cleanup_push() routine. Your program removes (and optionally
invokes) a cleanup handler by calling the pthread_cleanup_pop() routine.

A cleanup handler is invoked when the calling thread exits the handler’s
associated lexical scope, due to:

• Normal exit of the scope (that is, by calling pthread_cleanup_pop(TRUE))

• Thread termination (that is, via a call to the pthread_exit() routine)

• Thread cancelation

• The raising or reraising of an exception

• A thread-directed Tru64 UNIX signal (for example, SIG_SEGV) while default
signal action is in effect. (This raises an exception.)

For each call to pthread_cleanup_push(), your program must contain a
corresponding call to pthread_cleanup_pop(). The two calls form a lexical
scope within your program. One pair of calls to pthread_cleanup_push() and
pthread_cleanup_pop() cannot overlap the scope of another pair; however, pairs
of calls can be nested.

Because cleanup handlers are specified by the POSIX standard, they are a
portable mechanism. An alternative to using cleanup handlers is to define and/or
catch exceptions with the exception package. Chapter 5 describes how to use the
exception package. Cleanup handler routines, exception handling clauses (that is,
CATCH, CATCH_ALL, FINALLY), and C++ object destructors (or catch(...) clauses)
are functionally equivalent mechanisms.

2.3.4 Detaching and Destroying a Thread
Detaching a thread means to mark a thread for destruction as soon as it
terminates. Destroying a thread means to free, or make available for reuse,
the resources associated with that thread.

If a thread has terminated, then detaching that thread causes the Threads
Library to destroy it immediately. If a thread is detached before it terminates,
then the Threads Library frees the thread’s resources after it terminates.

A thread can be detached explicitly or implicitly:

• To detach a thread explicitly, use the pthread_detach() routine.

• After a target thread has joined with another thread, the Threads Library
implicitly detaches the target thread when it terminates.

• Your program can create a thread that is detached. See Section 2.3.1 for more
information about creating a thread.

Objects and Operations 2–11

Objects and Operations
2.3 Thread Operations

It is illegal for your program to attempt to join or detach a detached thread.
In general, you cannot perform any operation (for example, cancelation) on a
detached thread. This is because the thread ID might have become invalid or
might have been assigned to a new thread immediately upon termination of the
thread. The thread should not be detached until no further references to it will
be made.

2.3.5 Joining With a Thread
Joining with a thread means to suspend this thread’s execution until another
thread (the target thread) terminates. In addition, the target thread is detached
after it terminates.

Join is one form of thread synchronization. It is often useful when one thread
needs to wait for another and possibly retrieve a single return value. (The value
may be a pointer, for example to heap storage.) There is nothing special about
join, though—similar results, or infinite variations, can be achieved by use of a
mutex and condition variable.

A thread joins with another thread by calling the pthread_join() routine and
specifying the thread identifier of the thread. If the target thread has already
terminated, then this thread does not wait.

By default, the target thread of a join operation is created with the detachstate
attribute of its thread attributes object set to PTHREAD_CREATE_JOINABLE. It
should not be created with the detachstate attribute set to
PTHREAD_CREATE_DETACHED.

Keep in mind these restrictions about joining with a thread:

• If more than one thread calls pthread_join() and specifies the same thread
identifier, your program’s behavior is undefined. This is because the target
thread is detached after completing the first join.

• If a thread specifies its own thread identifier when calling pthread_join()
routine, the result is a deadlock. See Section 3.6.3 for more information about
deadlocks.

2.3.6 Scheduling a Thread
Scheduling means to evaluate and change the states of the process’ threads.
As your multithreaded program runs, the Threads Library detects whether
each thread is ready to execute, is waiting for a synchronization object, or has
terminated, and so on.

Also, for each thread, the Threads Library regularly checks whether that thread’s
scheduling priority and scheduling policy, when compared with those of the
process’ other threads, entail forcing a change in that thread’s state. Remember
that scheduling priority specifies the ‘‘precedence’’ of a thread in the application.
Scheduling policy provides a mechanism to control how the Threads Library
interprets that priority as your program runs.

To understand this section, you must be familiar with the concepts presented in
these sections:

• Section 2.3.2.1 on inheriting of scheduling attributes by created threads

• Section 2.3.2.2 on scheduling policies, including how each policy handles
thread scheduling priority

• Section 2.3.2.3 on thread scheduling priorities

2–12 Objects and Operations

Objects and Operations
2.3 Thread Operations

2.3.6.1 Calculating the Scheduling Priority
A thread’s scheduling priority falls within a range of values, depending on its
scheduling policy. To specify the minimum or maximum scheduling priority for
a thread, use the sched_get_priority_min() or sched_get_priority_max()
routines—or use the appropriate nonportable symbol such as PRI_OTHER_MIN or
PRI_OTHER_MAX. Priority values are integers, so you can specify a value between
the minimum and maximum priority using an appropriate arithmetic expression.

For example, to specify a scheduling priority value that is midway between the
minimum and maximum for the SCHED_OTHER scheduling policy, use the following
expression (coded appropriately for your programming language):

pri_other_mid = (sched_get_priority_min(SCHED_OTHER) +
sched_get_priority_max(SCHED_OTHER)) / 2

where pri_other_mid represents the priority value you want to set.

Avoid using literal numerical values to specify a scheduling priority
setting, because the range of priorities can change from implementation to
implementation. Values outside the specified range for each scheduling policy
might be invalid.

2.3.6.2 Effects of Scheduling Policy
To demonstrate the results of the different scheduling policies, consider the
following example: A program has four threads, A, B, C, and D. For each
scheduling policy, three scheduling priorities have been defined: minimum,
middle, and maximum. The threads have the following priorities:

A minimum

B middle

C middle

D maximum

On a uniprocessor system, only one thread can run at any given time. The
ordering of execution depends upon the relative scheduling policies and
priorities of the threads. Given a set of threads with fixed priorities such as
the previous list, their execution behavior is typically predictable. However,
in a symmetric multiprocessor (or SMP) system the execution behavior is
completely indeterminate. Although the four threads have differing priorities, a
multiprocessor system might execute two or more of these threads simultaneously.

When you design a multithreaded application that uses scheduling priorities, it
is critical to remember that scheduling is not a substitute for synchronization.
That is, you cannot assume that a higher-priority thread can access shared data
without interference from lower-priority threads. For example, if one thread
has a FIFO scheduling policy and the highest scheduling priority setting, while
another has default scheduling policy and the lowest scheduling priority setting,
the Threads Library might allow the two threads to run at the same time. As
a corollary, on a four-processor system you also cannot assume that the four
highest-priority threads are executing simultaneously at any particular moment.
Refer to Section 3.1.3 for more information about using thread scheduling as
thread synchronization.

The following figures demonstrate how the Threads Library schedules a set of
threads on a uniprocessor based on whether each thread has the FIFO, RR, or
throughput setting for its scheduling policy attribute. Assume that all waiting
threads are ready to execute when the current thread waits or terminates and

Objects and Operations 2–13

Objects and Operations
2.3 Thread Operations

that no higher-priority thread is awakened while a thread is executing (that is,
executing during the flow shown in each figure).

Figure 2–1 shows a flow with FIFO scheduling.

Figure 2–1 Flow with FIFO Scheduling

D B C A

ZK−3789A−GE

Thread D executes until it waits or terminates. Next, although thread B and
thread C have the same priority, thread B starts because it has been waiting
longer than thread C. Thread B executes until it waits or terminates, then thread
C executes until it waits or terminates. Finally, thread A executes.

Figure 2–2 shows a flow with RR scheduling.

Figure 2–2 Flow with RR Scheduling

D B C B C A

ZK−3790A−GE

Thread D executes until it waits or terminates. Next, thread B and thread C are
time sliced, because they both have the same priority. Finally, thread A executes.

Figure 2–3 shows a flow with Default scheduling.

Figure 2–3 Flow with Default Scheduling

D B C A B C
ZK−3791A−GE

Threads D, B, C, and A are time sliced, even though thread A has a lower priority
than the others. Thread A receives less execution time than thread D, B, or C
if any of those are ready to execute as often as Thread A. However, the default
scheduling policy protects thread A against indefinitely being blocked from
executing.

Because low-priority threads eventually run, the default scheduling policy
protects against occurrences of thread starvation and priority inversion, which
are discussed in Section 3.5.2.

2.3.7 Canceling a Thread
Canceling a thread means requesting the termination of a target thread as soon
as possible. A thread can request the cancelation of another thread or itself.

Thread cancelation is a three-stage operation:

1. A cancelation request is posted for the target thread. This occurs when some
thread calls pthread_cancel().

2. The posted cancelation request is delivered to the target thread. This occurs
when the target thread invokes a routine that is a cancelation point. (See
Section 2.3.7.4 for a discussion of routines that are cancelation points.)

2–14 Objects and Operations

Objects and Operations
2.3 Thread Operations

If the target thread’s cancelability state is disabled, the target thread does
not receive the cancelation request until the next cancelation point after the
cancelability state is set to enabled. See Section 2.3.7.3 for how to control a
thread’s cancelability.

3. The target thread might have pushed cleanup handler routines (using the
pthread_cleanup_push() routine) on its handler stack. When the target
thread receives the cancelation request, the Threads Library unwinds the
thread’s call stack. For each frame, active exception handlers are invoked.
These include cleanup handler routines, C++ object destructors, Compaq C
SEH except clauses, and C++ catch(...) clauses.

2.3.7.1 Thread Cancelation Implemented Using Exceptions
The Threads Library implements thread cancelation using exceptions. Using
the exception package, it is possible for a thread (to which a cancelation
request has been delivered) explicitly to catch the thread cancelation exception
(pthread_cancel_e) defined by the Threads Library and to perform cleanup
actions accordingly. After catching this exception, the exception handler code
should always reraise the exception, to avoid breaking the ‘‘contract’’ that
cancelation leads to thread termination.

Chapter 5 describes the exception package.

2.3.7.2 Thread Return Value After Cancelation
When a thread is terminated due to cancelation, the Threads Library writes the
return value PTHREAD_CANCELED into the thread’s thread object. This is because
cancelation prevents the thread from calling pthread_exit() or returning from
its start routine.

2.3.7.3 Controlling Thread Cancelation
Each thread controls whether it can be canceled (that is, whether it receives
requests to terminate) and how quickly it terminates after receiving the
cancelation request, as follows:

A thread’s cancelability state determines whether it receives a cancelation
request. When created, a thread’s cancelability state is enabled. If the
cancelability state is disabled, the thread does not receive cancelation requests,
instead, they remain pending.

If the thread’s cancelability state is enabled, a thread may use the
pthread_testcancel() routine to request the immediate delivery of any pending
cancelation request. This routine enables the program to permit cancelation
to occur at places where it is convenient, when it might not otherwise occur,
such as very long loops, to ensure that cancelation requests are noticed within a
reasonable time.

If its cancelability state is disabled, the thread cannot be terminated by any
cancelation request. This means that a thread could wait indefinitely if it does
not come to a normal conclusion; therefore, exercise care if your software depends
on cancelation.

A thread can use the pthread_setcancelstate() routine to change its
cancelability state.

A thread can use the pthread_setcanceltype() routine to change its
cancelability type, which determines whether it responds to a cancelation
request only at cancelation points (synchronous cancelation) or at any point in its
execution (asynchronous cancelation).

Objects and Operations 2–15

Objects and Operations
2.3 Thread Operations

Initially, a thread’s cancelability type is deferred, which means that the thread
receives a cancelation request only at cancelation points—for example, during a
call to the pthread_cond_wait() routine. If you set a thread’s cancelability type
to asynchronous, the thread can receive a cancelation request at any time.

Note

If the cancelability state is disabled, the thread cannot be canceled
regardless of the cancelability type. Setting cancelability type to deferred
or asynchronous is relevant only when the thread’s cancelability state is
enabled.

2.3.7.4 Deferred Cancelation Points
A cancelation point is a routine that delivers a posted cancelation request to
that request’s target thread.

The following routines in the pthread interface are cancelation points:

pthread_cond_timedwait()
pthread_cond_wait()
pthread_delay_np()
pthread_join()
pthread_testcancel()

The following routines in the tis interface are cancelation points:

tis_cond_wait()
tis_testcancel()

Other routines that are also cancelation points are mentioned in the operating
system-specific appendixes of this guide. Refer to the following thread
cancelability for system services topics:

• Section A.4 for Tru64 UNIX

• Section B.9 for OpenVMS

2.3.7.5 Cleanup from Deferred Cancelation
When a cancelation request is delivered to a thread, the thread could be holding
some resources, such as locked mutexes or allocated memory. Your program must
release these resources before the thread terminates.

The Threads Library provides two equivalent mechanisms that can do the cleanup
during cancelation, as follows:

• Use the pthread_cleanup_push() and pthread_cleanup_pop() routines to
establish and remove cleanup handlers for a section of code that contains
a cancelation point. When a cancelation request is delivered, the routine
specified in pthread_cleanup_push() is called. This allows the thread
to unlock mutexes or otherwise release resources held in the current
scope. Each routine can establish one or more cleanup handlers using
pthread_cleanup_push(). When the handler is no longer needed it is
removed by calling pthread_cleanup_pop(). The execute argument to
pthread_cleanup_pop() indicates whether the handler routine should be
called when it is removed.

2–16 Objects and Operations

Objects and Operations
2.3 Thread Operations

Calling the cleanup handler automatically on removal is convenient when the
thread is about to leave the scope and you must perform the cleanup actions
even though the thread was not canceled (for example, releasing the mutex
after waking up from a condition variable wait). (This usually corresponds to
a FINALLY exception handler.)

Do not use pthread cleanup handlers in C++ code. Instead, rely on C++ object
destructors.

• As described in Chapter 5, use the exceptions package TRY/CATCH/CATCH_ALL
or TRY/FINALLY macros to clean up during a cancelation request. A
cancelation request is sent to the thread by raising a special exception. Thus,
code that contains a cancelation point can be placed inside a TRY block, and a
CATCH, CATCH_ALL or FINALLY block can be used to release the resources the
thread is holding when the cancelation request is sent. Note that code should
always reraise the cancelation exception; failing to do so will result in the
thread not terminating as requested. You can also use C++ object destructors
or catch(...). Do not use the TRY macros from C++.

2.3.7.6 Cleanup from Asynchronous Cancelation
When an application sets the cancelability type to asynchronous, cancelation may
occur at any instant, even within the execution of a single instruction. Because
it is impossible to predict exactly when an asynchronous cancelation request will
be delivered, it is extremely difficult for a program to recover properly. For this
reason, an asynchronous cancelability type should be set only within regions of
code that do not need to clean up in any way, such as straight-line code or looping
code that is compute-bound and that makes no calls and allocates no resources.

While a thread’s cancelability type is asynchronous, it should not call any
routine unless that routine is explicitly documented as ‘‘safe for asynchronous
cancelation.’’ In particular, you can never use asynchronous cancelability type in
code that allocates or frees memory, or that locks or unlocks mutexes—because
the cleanup code cannot reliably determine the state of the resource.

Note

In general, you should expect that no run-time library routine is
safe for asynchronous cancelation, unless explicitly documented
to the contrary. Only three routines are safe for asynchronous
cancelation: pthread_setcanceltype(), pthread_setcancelstate()
and pthread_cancel().

For additional information about accomplishing asynchronous cancelation for
your platform, see Section A.4 and Section B.9.

Objects and Operations 2–17

Objects and Operations
2.3 Thread Operations

2.3.7.7 Example of Thread Cancelation Code
Example 2–1 shows a thread control and cancelation example.

Example 2–1 pthread Cancel

/*
* Pthread Cancel Example
*/

/*
* Outermost cancelation state
*/
{
.
.
.
int s, outer_c_s, inner_c_s;
.
.
.
/* Disable cancelation, saving the previous setting. */

s = pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &outer_c_s);
if(s == EINVAL)

printf("Invalid Argument!\n");
else if(s == 0)

.

.

.
/* Now cancelation is disabled. */

.

.

.

/* Enable cancelation. */

{
.
.
.
s = pthread_setcancelstate (PTHREAD_CANCEL_ENABLE, &inner_c_s);
if(s == 0)

.

.

.
/* Now cancelation is enabled. */
.
.
.
/* Enable asynchronous cancelation this time. */

{
.
.
.

(continued on next page)

2–18 Objects and Operations

Objects and Operations
2.3 Thread Operations

Example 2–1 (Cont.) pthread Cancel

/* Enable asynchronous cancelation. */

int outerasync_c_s, innerasync_c_s;
.
.
.
s = pthread_setcanceltype (PTHREAD_CANCEL_ASYNCHRONOUS,

&outerasync_c_s);
if(s == 0)

.

.

.
/* Now asynchronous cancelation is enabled. */
.
.
.
/* Now restore the previous cancelation state (by
* reinstating original asynchronous type cancel).
*/
s = pthread_setcanceltype (outerasync_c_s,

&innerasync_c_s);
if(s == 0)

.

.

.
/* Now asynchronous cancelation is disabled,
* but synchronous cancelation is still enabled.
*/

}
.
.
.
}

.

.

.
/* Restore to original cancelation state. */

s = pthread_setcancelstate (outer_c_s, &inner_c_s);
if(s == 0)

.

.

.
/* The original (outermost) cancelation state is now reinstated. */

}

Objects and Operations 2–19

Objects and Operations
2.4 Synchronization Objects

2.4 Synchronization Objects
In a multithreaded program, you must use synchronization objects whenever
there is a possibility of conflict in accessing shared data. The following sections
discuss three kinds of synchronization objects: mutexes, condition variables, and
read-write locks.

2.4.1 Mutexes
A mutex (or mutual exclusion) object is used by multiple threads to ensure the
integrity of a shared resource that they access, most commonly shared data, by
allowing only one thread to access it at a time.

A mutex has two states, locked and unlocked. A locked mutex has an owner—the
thread that locked the mutex. It is illegal to unlock a mutex not owned by the
calling thread.

For each piece of shared data, all threads accessing that data must use the
same mutex: each thread locks the mutex before it accesses the shared data and
unlocks the mutex when it is finished accessing that data. If the mutex is locked
by another thread, the thread requesting the lock either waits for the mutex to be
unlocked or returns, depending on the lock routine called (see Figure 2–4).

Figure 2–4 Only One Thread Can Lock a Mutex

Thread B

var

mutex_var
lock block

Thread A

access

ZK−3795A−GE

Each mutex must be initialized before use. The Threads Library supports
static initialization of static or extern mutexes at compile time, using the
PTHREAD_MUTEX_INITIALIZER macro provided in the pthread.h header file, as well
as dynamic initialization at run time by calling pthread_mutex_init(). This
routine allows you to specify an attributes object, which allows you to specify the
mutex type. The types of mutexes are described in the following sections.

2.4.1.1 Normal Mutex
A normal mutex is the most efficient type of mutex, but also the least forgiving.

A normal mutex usually does not record or check thread ownership—that is, a
deadlock will result if the owner attempts to ‘‘relock’’ the mutex. The system
usually will not report an erroneous attempt to unlock a mutex not owned by the
calling thread; this means that some potentially severe application errors may not
be detected. Normal mutexes also provide less debugging information, because
the owner cannot be identified.

2–20 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

2.4.1.2 Default Mutex
This is the name reserved by the Single UNIX Specification, Version 2, for a
vendor’s default mutex type. For the pthread interface, the ‘‘normal’’ mutex
type is the ‘‘default’’ mutex type. Be aware that other implementations could
implement ‘‘default’’ errorcheck, recursive, or even a nonportable mutex type.

2.4.1.3 Recursive Mutex
A recursive mutex can be locked more than once by a given thread without
causing a deadlock. The thread must call the pthread_mutex_unlock() routine
the same number of times that it called the pthread_mutex_lock() routine before
another thread can lock the mutex.

When a thread first successfully locks a recursive mutex, it owns that mutex and
the lock count is set to 1. Any other thread attempting to lock the mutex blocks
until the mutex becomes unlocked. If the owner of the mutex attempts to lock the
mutex again, the lock count is incremented, and the thread continues running.

When an owner unlocks a recursive mutex, the lock count is decremented. The
mutex remains locked and owned until the count reaches zero. The Threads
Library will always detect and report an attempt by any thread other than the
owner to unlock the mutex.

A recursive mutex is useful when a routine requires exclusive access to a piece of
data, and cannot tell whether its caller already owns the mutex. This is common
when converting old code to be thread-safe. However, the code must ensure that
the shared data is in a consistent state before calling another routine which
requires access to it under the lock.

This type of mutex is called ‘‘recursive’’ because it allows you a capability
not permitted by a normal (default) mutex. However, its use requires more
careful programming. For instance, if a recursively locked mutex were used
with a condition variable, the unlock performed for a pthread_cond_wait() or
pthread_cond_timedwait() would not actually release the mutex. In that case,
no other thread can satisfy the condition of the predicate, and the thread would
wait indefinitely. See Section 2.4.2 for information on the condition variable wait
and timed wait routines.

2.4.1.4 Errorcheck Mutex
An errorcheck mutex is locked exactly once by a thread, like a normal mutex.
If a thread tries to lock the mutex again without first unlocking it, the thread
receives an error. If a thread other than the owner tries to unlock an errorcheck
mutex, an error is returned. Thus, errorcheck mutexes are more informative than
normal mutexes because normal mutexes deadlock in such a case, leaving you
to determine why the thread no longer executes. Errorcheck mutexes are useful
during development and debugging. Errorcheck mutexes can be replaced with
normal mutexes when the code is put into production use, or left to provide the
additional checking.

Errorcheck mutexes may be slower than normal mutexes, because they do more
internal tracking. The debugger can always display the current owner (if any) of
an errorcheck mutex. Any correct program that works with normal mutexes will
also work with errorcheck mutexes.

Objects and Operations 2–21

Objects and Operations
2.4 Synchronization Objects

2.4.1.5 Mutex Operations
To lock a mutex, use one of the following routines, depending on what you want
to happen if the mutex is already locked by another thread:

• pthread_mutex_lock()

If the mutex is locked, the calling thread waits for the mutex to become
available.

• pthread_mutex_trylock()

This routine returns immediately with a status indicating whether or not it
was able to lock the mutex. Based on this return value, the calling thread can
take the appropriate action.

When a thread is finished accessing a piece of shared data, it unlocks the
associated mutex by calling the pthread_mutex_unlock() routine. If other
threads are waiting on the mutex, one is placed in the ready state. If more than
one thread is waiting on the mutex, the scheduling policy (see Section 2.3.2.2) and
the scheduling priority (see Section 2.3.2.3) determine which thread is readied,
and the next running thread that requests it locks the mutex.

The mutex is not automatically granted to the first waiter. If a running unlocking
thread attempts to relock the mutex before the first waiter gets a chance to run,
the running thread will succeed in relocking the mutex, and the first waiter may
be forced to reblock.

You can destroy a mutex—that is, reclaim its storage—by calling the
pthread_mutex_destroy() routine. Use this routine only after the mutex is
no longer needed by any thread. It is invalid to attempt to destroy a mutex while
it is locked or has threads waiting on it.

Warning

The Threads Library does not currently detect deadlock conditions
involving more than one mutex, but may in the future. Never write
code that depends upon the Threads Library not reporting a particular
error condition.

2.4.1.6 Mutex Attributes
A mutex attributes object allows you to specify values other than the defaults
for mutex attributes when you initialize a mutex with the pthread_mutex_init()
routine.

The mutex type attribute specifies whether a mutex is default, normal,
recursive, or errorcheck. Use the pthread_mutexattr_settype() routine to
set the mutex type attribute in an initialized mutex attributes object. Use
the pthread_mutexattr_gettype() routine to obtain the mutex type from an
initialized mutex attributes object.

If you do not use a mutex attributes object to select a mutex type, calling the
pthread_mutex_init() routine initializes a normal (default) mutex by default.

The process-shared attribute specifies whether a mutex can be operated upon by
threads in only one process or by threads in more than one process, as follows:

• If the process-shared attribute’s value is PTHREAD_PROCESS_PRIVATE (the
default), the mutex can be operated upon only by threads in the same process
as the thread that initialized that mutex.

2–22 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

• If the process-shared attribute’s value is PTHREAD_PROCESS_SHARED, the mutex
can be operated upon by any thread that has access to the memory where the
mutex is allocated, even if these threads are in different processes.

2.4.2 Condition Variables
A condition variable is a synchronization object used in conjunction with a
mutex. It allows a thread to block its own execution until some shared data
object reaches a particular state. A mutex controls access to shared data; a
condition variable allows threads to wait for that data to enter a defined state.

The state is defined by a predicate in the form of a Boolean expression. A
predicate may be a Boolean variable in the shared data or the predicate may be
indirect: for example, testing whether a counter has reached a certain value, or
whether a queue is empty.

Each predicate should have its own unique condition variable. Sharing a single
condition variable between more than one predicate can introduce inefficiency or
errors unless you use extreme care.

Cooperating threads test the predicate and wait on the condition variable while
the predicate is not in the desired state. For example, one thread in a program
produces work-to-do packets and another thread consumes these packets (does
the work). If there are no work-to-do packets when the consumer thread checks,
that thread waits on a work-to-do condition variable. When the producer thread
produces a packet, it signals the work-to-do condition variable.

You must associate a mutex with a condition variable. You may have multiple
condition variables associated with the same mutex—representing different states
of the same data—but you cannot use the same condition variable with multiple
mutexes.

A thread uses a condition variable as follows:

1. A thread locks a mutex for some shared data and then tests the relevant
predicate. If it is not in the proper state, the thread waits on a condition
variable associated with the predicate. Waiting on the condition variable
automatically unlocks the mutex. It is essential that the mutex be unlocked,
because another thread needs to acquire the mutex in order to put the data in
the state required by the waiting thread.

2. When the thread that acquires the mutex puts the data in the appropriate
state, it wakes a waiting thread by signaling or broadcasting the condition
variable.

3. One thread (for signal), or all threads (for broadcast), comes out of the
condition wait state. The threads always resume execution one at a time,
because each thread must resume with the mutex locked (the condition wait
relocks the mutex before returning from the thread). Other threads waiting
on the condition variable remain blocked. Other threads awakened by a
broadcast will block on the mutex until it is unblocked.

When a thread waits on a condition variable, it cannot assume that the predicate
for which it is waiting will be satisfied when the condition variable wait returns.
There are a number of reasons for this behavior. For instance, condition variable
waits may return spuriously, meaning that the return may not be directly due to
some other thread signaling or broadcasting the condition variable.

Objects and Operations 2–23

Objects and Operations
2.4 Synchronization Objects

There are two reasons for these rules:

1. It can be extremely expensive, especially on a symmetric multiprocessor
(SMP) system, for the implementation to ensure that a condition signal
wakes one and only one thread. It is faster and easier to avoid the extra
complication. Also, a thread awakened by the delivery of a UNIX signal
will return from the condition wait when the signal is dismissed; the wait
predicate may not have changed.

2. Spurious wakeups promote good programming practices. It may often be
difficult to guarantee that a predicate will be true; most often, it is easy to
determine that it might be true. It is often the case that, after signaling one
thread that a predicate is true, another thread may manipulate the data in
such a way that the predicate will not be true by the time the signaled thread
runs. The solution is to recheck the predicate after the wait returns.

It is important to wait on the condition variable and evaluate the predicate in a
while loop. This ensures that the program checks the predicate after it returns
from the condition wait.

For example, a thread A may need to wait for a thread B to finish a task X
before thread A proceeds to execute a task Y. Thread B can tell thread A that
it has finished task X by putting a TRUE or FALSE value in a shared variable
(the predicate). When thread A is ready to execute task Y, it looks at the shared
variable to see if thread B is finished (see Figure 2–5).

Figure 2–5 Thread A Waits on Condition Ready

mutex_ready

unlock

YES

NO

lock

Thread A

ready
(lock)
wait

(unlock)

mutex_ready

ZK−3793A−GE

First, thread A locks the mutex named mutex_ready that is associated with the
shared variable named ready. Then it reads the value in ready and compares it
against some expected value. This test is called the predicate. If the predicate
indicates that thread B has finished task X, then thread A can unlock the mutex
and proceed with task Y. However, if the predicate indicates that thread B
has not yet finished task X, then thread A waits for the predicate to change
by calling the pthread_cond_wait() routine. This automatically unlocks the
mutex, allowing thread B to lock the mutex when it has finished task X. Thread
B updates the shared data (predicate) to the state thread A is waiting for and
signals the condition variable by calling the pthread_cond_signal() routine (see
Figure 2–6).

2–24 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

Figure 2–6 Thread B Signals Condition Ready

Signal

unlock

write

mutex_ready

ready=
YES

mutex_ready

X

lock

Thread B

ZK−3792A−GE

Thread B releases its lock on the shared variable’s mutex. As a result of the
signal, thread A wakes up, implicitly regaining its lock on the condition variable’s
mutex. It then verifies that the predicate is in the correct state, and proceeds to
execute task Y (see Figure 2–7).

Objects and Operations 2–25

Objects and Operations
2.4 Synchronization Objects

Figure 2–7 Thread A Wakes and Proceeds

unlock

read

lock
mutex_ready

(wakeup)

Thread A

ready=
YES

Y

ZK−3794A−GE

Note that although the condition variable is used for communication among
threads, the communication is anonymous. Thread B does not necessarily know
that thread A is waiting on the condition variable that thread B signals, and
thread A does not know that it was thread B that awakened it from its wait on
the condition variable.

Use the pthread_cond_init() routine to initialize a condition variable. To create
condition variables as part of your program’s one-time initialization code, see
Section 3.8. You can also statically initialize extern or static condition variables
using the PTHREAD_COND_INITIALIZER macro provided in the pthread.h header
file.

Use the pthread_cond_wait() routine to cause a thread to wait until the
condition is signaled or broadcast. This routine specifies a condition variable and
a mutex that you have locked. If you have not locked the mutex, the results of
pthread_cond_wait() are unpredictable.

The pthread_cond_wait() routine automatically unlocks the mutex and causes
the calling thread to wait on the condition variable until another thread calls one
of the following routines:

• pthread_cond_signal(), to wake one thread that is waiting on the condition
variable

• pthread_cond_broadcast(), to wake all threads that are waiting on a
condition variable

• pthread_cond_signal_int_np() or pthread_cond_sig_preempt_int_np(), to
wake a thread from a signal handler (for Tru64 UNIX) or AST routine (for
OpenVMS). There are special restrictions on these functions (see Part II).

2–26 Objects and Operations

Objects and Operations
2.4 Synchronization Objects

If a thread signals or broadcasts a condition variable and there are no threads
waiting at that time, the signal or broadcast has no effect. The next thread
to wait on that condition variable blocks until the next signal or broadcast.
(Alternatively, the nonportable pthread_cond_signal_int_np() routine creates a
pending wake condition, which causes the next wait on the condition variable to
complete immediately.)

If you want to limit the time that a thread waits on a condition variable, use the
pthread_cond_timedwait() routine. This routine specifies the condition variable,
mutex, and absolute time at which the wait should expire if the condition variable
has not been signaled or broadcast.

You can destroy a condition variable and reclaim its storage by calling the
pthread_cond_destroy() routine. Use this routine only after the condition
variable is no longer needed by any thread. A condition variable cannot be
destroyed while one or more threads are waiting on it.

2.4.3 Condition Variable Attributes
A condition variable attributes object allows you to specify values other
than the defaults for condition variable attributes when you initialize a condition
variable with the pthread_cond_init() routine.

The process-shared attribute specifies whether a condition variable can be
operated upon by threads in only one process or by threads in more than one
process, as follows:

• If the process-shared attribute’s value is PTHREAD_PROCESS_PRIVATE (the
default), the condition variable can be operated upon only by threads in the
same process as the thread that initialized that condition variable.

• If the process-shared attribute’s value is PTHREAD_PROCESS_SHARED, the
condition variable can be operated upon by any thread that has access to the
memory where the condition variable is allocated, even if it those threads are
in different processes.

2.4.4 Read-Write Locks
A read-write lock is a synchronization object for protecting shared data that
can be accessed concurrently by more than one of the program’s threads. Unlike
a mutex, a read-write lock distinguishes between shared read and exclusive write
operations on the shared data object.

Use a read-write lock to protect shared data that is read frequently but less
frequently modified. For example, when you build a cache of recently accessed
information, many threads might simultaneously examine the cache without
conflict, but when a thread must update the cache it must have exclusive access.

When a thread locks a read-write lock, it must specify either shared read access
or exclusive write access. Many threads may simultaneously acquire a read-write
lock for read access, as long as there are no threads waiting for write access. A
thread that wants read access cannot acquire the read-write lock if any thread
has already acquired the read-write lock for write access; such a thread will
block (wait) on the read-write lock. A thread trying to acquire the read-write
lock for write access cannot continue if another thread has already acquired the
read-write lock for either write access or read access; such a thread will block
(wait) on the read-write lock.

Objects and Operations 2–27

Objects and Operations
2.4 Synchronization Objects

2.4.4.1 Thread Priority and Writer Precedence for Read-Write Locks
If more than one thread is waiting for read access to a read-write lock, when the
lock becomes available all of the threads will acquire the lock for read access.

If more than one thread is waiting for write access to a read-write lock, when
the lock becomes available the thread in that group with the highest priority will
acquire the lock for write access.

If both reader threads and writer threads are waiting for access to a read-write
lock at the time the lock becomes available, one of the writer threads will acquire
the lock, and the threads waiting for read access will continue to block.

The Threads Library implements ‘‘writer precedence’’ for read-write locks. A
thread cannot acquire a read-write lock for read access if at least one thread is
waiting for write access, even if other threads currently have read access. When
a read-write lock is released, a waiting writer will be released if there are any,
rather than releasing any waiting readers. Because readers usually outnumber
writers, and read access occurs more frequently, writer precedence is needed
to avoid ‘‘starvation’’. Without writer precedence, it would be possible that the
read-write lock was always locked for read access, and writers would never run.

2.4.4.2 Initializing and Destroying a Read-Write Lock
Use the pthread_rwlock_init() routine to create and initialize a new read-write
lock object.

Use the pthread_rwlock_destroy() routine to destroy a previously initialized
read-write lock object.

You can initialize an extern or static read-write lock object using the
PTHREAD_RWLOCK_INITIALIZER macro provided in the pthread.h header file.

2.4.4.3 Read-Write Lock Attributes
By default, a new read-write lock object’s attributes have default values.
To create a new read-write lock object with nondefault attributes, call the
pthread_rwlock_init() routine and specify a read-write lock attributes object.
Use the pthread_rwlockattr_init() routine to create a new read-write lock
attributes object, and use the pthread_rwlockattr_destroy() routine to destroy
a read-write lock attributes object.

There is one settable attribute for a read-write lock object, the process-shared
attribute. To set and access the value of the process-shared attribute of a read-
write lock attributes object, use the pthread_rwlockattr_getpshared() and
pthread_rwlockattr_setpshared() routines, respectively.

2.5 Process-Shared Synchronization Objects
You can create synchronization objects (that is, mutexes, condition variables,
and read-write locks) that protect data that is shared among threads running in
different processes. These are called process-shared synchronization objects.

Note

This version of the Threads Library supports process-shared
synchronization objects for Tru64 UNIX systems only.

The following routines are not supported on OpenVMS Alpha and
OpenVMS VAX systems:

pthread_condattr_getpshared()
pthread_condattr_setpshared()

2–28 Objects and Operations

Objects and Operations
2.5 Process-Shared Synchronization Objects

pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_setpshared()

2.5.1 Programming Considerations
On Tru64 UNIX systems, a process-shared synchronization object is a kernel
object. Performing any operation on such an object requires a call into the
kernel and thus is of higher cost than the same operation on a process-specific
synchronization object.

When debugging a process-shared synchronization object, the debugger cannot
currently display the mutex, nor its owner or waiting threads.

As is the case for process-specific synchronization objects, a process-shared
synchronization object must be initialized only once; you cannot initialize it
in each process that uses it. For independent processes that share a common
synchronization protocol using process-shared synchronization objects, there must
be some mechanism to determine which single process will initialize those objects.

For example, if multiple processes connect to a named memory section, all but
one will fail, and the one successful process should have the responsibility of
initializing any global process-shared synchronization objects in that memory
section. (The other processes must also use some mechanism for waiting until the
process-shared object is initialized before attempting to use the shared memory
section.)

2.5.2 Process-Shared Mutexes
You can create a mutex that protects data that is shared among threads running
in different processes. This is called a process-shared mutex.

Create a process-shared mutex by using the pthread_mutexattr_setpshared()
routine to set the process-shared attribute in an initialized mutex attributes
object and then use that attributes object in a call to pthread_mutex_init().

2.5.3 Process-Shared Condition Variables
You can create a condition variable used to communicate changes to data
that is shared among threads running in different processes. This is called a
process-shared condition variable.

Create a process-shared condition variable by using the
pthread_condattr_setpshared() routine to set the process-shared attribute in
an initialized condition variable attributes object and then use that attributes
object in a call to pthread_cond_init().

2.5.4 Process-Shared Read-Write Locks
You can create a read-write lock that protects data that is shared among threads
running in different processes. This is called a process-shared read-write lock.

Create a process-shared read-write lock by using the
pthread_rwlockattr_setpshared() routine to set the process-shared attribute in
an initialized read-write lock attributes object. Then use that attributes object in
a call to pthread_rwlock_init().

Objects and Operations 2–29

Objects and Operations
2.6 Thread-Specific Data

2.6 Thread-Specific Data
Each thread can use an area of memory private to the Threads Library where
it stores thread-specific data. Use this memory to associate arbitrary data with
a thread’s context. This allows you to add user-specified fields to the current
thread’s context or define global variables that have private values in each
thread.

A thread-specific data key is shared by all threads within the process—each
thread has its own unique value for that shared key.

Use the following routines to create and access thread-specific data:

• Use the pthread_key_create() routine to create a unique key value. One
call to pthread_key_create() creates a thread-specific data key shared by all
threads. In addition, your program can specify a destructor routine to destroy
the context value associated with this key when any thread terminates.

The process must create each key exactly once; otherwise, subsequent
creates will overwrite the first. See Section 3.8 for information about the
one-time initialization in a threaded environment, or use the operating
system’s initialization mechanisms (the Tru64 UNIX _ _init_* routines or
the OpenVMS LIB$INITIALIZE routine).

• Use pthread_setspecific() to associate thread-specific data values with a
key value. Each thread can associate its own private data with the shared
key.

For example, each thread might store a pointer to a block of dynamically
allocated memory that it has reserved. Although each thread has its own
block of memory, your code always uses the same key to get the current
thread’s block.

• Use pthread_getspecific() to obtain the data associated with a key. This
routine obtains the current thread’s thread-specific data value associated with
a specified key.

2–30 Objects and Operations

3
Programming with Threads

This chapter discusses programming disciplines that you should follow as you
use Threads Library routines in your programs. Pertinent examples include
programming for asynchronous execution, choosing a synchronization mechanism,
avoiding priority scheduling problems, making code thread-safe, and working
with code that is not thread-safe.

3.1 Designing Code for Asynchronous Execution
When programming with threads, always keep in mind that the execution of a
thread is inherently asynchronous with respect to other threads running in the
system (or in the process).

In short, there is no guarantee of when a thread will start. It can start
immediately or not for a significant period of time, depending on the priority
of the thread in relation to other threads that are currently running. When a
thread will start can also depend on the behavior of other processes, as well as on
other threaded subsystems within the current process.

You cannot depend upon any synchronization between two threads unless you
explicitly code that synchronization into your program using one of the following:

• Mutexes or read-write locks

• A properly tested application predicate loop on a condition variable

• A call to join with a thread you expect to terminate

• An operating system synchronization mechanism, such as a file system read,
an OpenVMS event flag wait, or a Tru64 UNIX semaphore wait

• An equivalent hardware construct, such as VAX interlocked instructions or
Alpha load locked/store conditional sequences and memory barriers

On a uniprocessor, the Threads Library, in most cases, will context-switch threads
in user mode, within a single operating system process. (This is true except for
system contention scope threads on Tru64 UNIX.) Context switches between
such threads occur only at relatively determinate times, such as when you
make a blocking call to the threads library or when a timeslice interrupt occurs.
This behavior might be termed ‘‘slightly asynchronous,’’ because such a library
tolerates many classes of errors in your application.

On a multiprocessor system, the Threads Library may run more than one
application thread simultaneously. Many incautious programming techniques
that will not usually cause trouble on a uniprocessor will cause trouble–often in
ways that are difficult to isolate and fix–on a multiprocessor.

The following subsections present examples of programming errors.

Programming with Threads 3–1

Programming with Threads
3.1 Designing Code for Asynchronous Execution

3.1.1 Avoid Passing Stack Local Data
Avoid creating a thread with an argument that points to stack local data, or to
global or static data that is serially reused for a sequence of threads.

Specifically, the thread started with a pointer to stack local data may not start
until the creating thread’s routine has returned, and the storage may have been
changed by other calls. The thread started with a pointer to global or static data
may not start until the storage has been reused to create another thread.

3.1.2 Initialize Objects Before Thread Creation
Initialize objects (such as mutexes) or global data that a thread uses before
creating that thread.

On ‘‘slightly asynchronous’’ uniprocessor systems this may seem safe, because
the thread will probably not run until the creator blocks. Thus, the error can
go undetected initially. On a multiprocessor, or even on a new release of the
Threads Library with different timeslicing behavior, the created thread may run
immediately, before the data has been initialized. This can lead to failures that
are difficult to detect. Note that a thread may run to completion, before the call
that created it returns to the creator. The system load may affect the timing as
well.

Before your program creates a thread, it should set up all requirements that the
new thread needs in order to execute. For example, if your program must set
the new thread’s scheduling parameters, do so with attributes objects when you
create it, rather than trying to use pthread_setschedparam() or other routines
afterwards. To set global data for the new thread or to create synchronization
objects, do so before you create the thread, else set them in a pthread_once()
initialization routine that is called from each thread.

3.1.3 Do Not Use Scheduling As Synchronization
Avoid using the scheduling policy and scheduling priority attributes of threads as
a synchronization mechanism.

In a uniprocessor system, only one thread can run at a time, and since a higher-
priority thread cannot be preempted by a lower-priority running thread, a thread
running at higher priority might erroneously be presumed not to need a mutex to
access shared data.

On a multiprocessor system, higher- and lower-priority threads are likely to run
at the same time. Situations can even arise where higher-priority threads are
waiting to run while the threads that are running have a lower priority.

Regardless of whether your code will run only on a uniprocessor implementation,
never try to use scheduling as a synchronization mechanism. Even on a
uniprocessor system, your SCHED_FIFO thread can become blocked on a mutex
(perhaps in a called library routine), on an I/O operation, or even a page fault.
Any of these might allow a lower priority thread to run.

3–2 Programming with Threads

Programming with Threads
3.2 Memory Synchronization Between Threads

3.2 Memory Synchronization Between Threads
Your multithreaded program must ensure that access to data shared between
threads is synchronized with the system’s memory subsystem. While any written
data will, eventually, be seen by other threads, it is essential for communication
that some writes appear in a particular sequence. For example, you want a
thread that follows a queue link to see the data written to the next queue entry.
This requires explicit memory synchronization.

The POSIX standard requires that, when calling the following routines, a thread
synchronizes its memory access with respect to other threads:

fork() pthread_cond_signal()

pthread_create() pthread_cond_broadcast()

pthread_join() sem_post()

pthread_mutex_lock() sem_trywait()

pthread_mutex_trylock() sem_wait()

pthread_mutex_unlock() semop()

pthread_cond_wait() wait()

pthread_cond_timedwait() waitpid()

pthread_rwlock_*()

$HIBER

$WAKE

$WAIT*

If a call to one of these routines returns an error, synchronization is not
guaranteed. For example, an unsuccessful call to pthread_mutex_trylock() does
not necessarily provide actual synchronization.

Synchronization is a ‘‘protocol’’ among cooperating threads, not a single operation.
That is, unlocking a mutex does not guarantee memory synchronization with
all other threads—only with threads that later perform some synchronization
operation themselves, such as locking a mutex.

3.3 Sharing Memory Between Threads
Most threads do not operate independently. They cooperate to accomplish a task,
and cooperation requires communication. There are many ways that threads can
communicate, and which method is most appropriate depends on the task.

Threads that cooperate only rarely (for example, a boss thread that only sends
off a request for workers to do long tasks) may be satisfied with a relatively
slow form of communication. Threads that must cooperate more closely (for
example, a set of threads performing a parallelized matrix operation) need fast
communication—maybe even to the extent of using machine-specific hardware
operations.

Most mechanisms for thread communication involve the use of memory, exploiting
the fact that all threads within a process share their full address space.
Although all addresses are shared, there are three kinds of memory that are
characteristically used for communication. The following sections describe the
scope (or, the range of locations in the program where code can access the
memory) and lifetime (or, the length of time use of the memory is invalid) of each
of the three types of memory.

Programming with Threads 3–3

Programming with Threads
3.3 Sharing Memory Between Threads

3.3.1 Using Static Memory
Static memory is allocated by the language compiler when it translates source
code, so the scope is controlled by the rules of the compiler. For example, in the C
language, a variable declared as extern is shared by all scopes where the name
is defined anywhere, and a static variable is private to the source file or routine,
depending on where it is declared.

In this discussion, static memory is not the same as the C language static
storage class. Rather, static memory refers to any variable that is permanently
allocated at a particular address for the life of the program.

It is appropriate to use static memory in your multithreaded program when you
know that only one instance of an object exists throughout the application. For
example, if you want to keep a list of active contexts or a mutex to control some
shared resource, you would not want individual threads to have their own copies
of that data.

The scope of static memory depends on your programming language’s scoping
rules. The lifetime of static memory is the life of the program.

3.3.2 Using Stack Memory
Stack memory is allocated by code generated by the language compiler at run
time, generally when a routine is initially called. When the program returns from
the routine, the storage ceases to be valid (although the addresses still exist and
might be accessible).

Generally, the storage is valid while the routine runs, and the actual address can
be calculated and passed to other threads; however, this depends on programming
language rules. If you pass the address of stack memory to another thread, you
must ensure that all other threads are finished processing that data before the
routine returns; otherwise the stack will be cleared, and values might be altered
by subsequent calls, page fault handling, or other interrupts. The other threads
will not be able to determine that this has happened, and erroneous behavior will
result.

The scope of stack memory is the routine or a block within the routine. The
lifetime is no longer than the time during which the routine or block executes.

3.3.3 Using Dynamic Memory
Dynamic memory is allocated by the program as a result of a call to some
memory management routine (for example, the C language run-time routine
malloc() or the OpenVMS common run-time routine LIB$GET_VM).

Dynamic memory is referenced through pointer variables. Although the pointer
variables are scoped depending on their declaration, the dynamic memory itself
has no intrinsic scope or lifetime. It can be accessed from any routine or thread
that is given its address and will exist until explicitly made free. In a language
supporting automatic garbage collection, it will exist until the run-time system
detects that there are no references to it. (If your language supports garbage
collection, be sure the garbage collector is thread-safe.)

The scope of dynamic memory is anywhere a pointer containing the address can
be referenced. The lifetime is from allocation to deallocation.

3–4 Programming with Threads

Programming with Threads
3.3 Sharing Memory Between Threads

Typically dynamic memory is appropriate to manage persistent context. For
example, in a reentrant routine that is called multiple times to return a stream
of information (such as to list all active connections to a server or to return a list
of users), using dynamic memory allows the program to create multiple contexts
that are independent of all the program’s threads. Thus, multiple threads could
share a given context, or a single thread could have more than one context.

3.4 Managing a Thread’s Stack
For each thread created by your program, the Threads Library sets a default
stack size that is acceptable to most applications. You can also set the stacksize
attribute in a thread attributes object, to specify the stack size needed by the
next thread created.

This section discusses the cases in which the stack size is insufficient (resulting
in stack overflow) and how to determine the optimal size of the stack.

Most compilers on Compaq VAX based systems do not probe the stack. This
makes stack overflow failure modes unpredictable and difficult to analyze. Be
especially careful to use as little stack memory as practical.

Most compilers on Compaq Alpha based systems generate code in the procedure
prologue that probes the stack, which detects if there is not enough space for the
procedure to run.

3.4.1 Sizing the Stack
To determine the required size of a thread’s stack, add the sizes of the frames,
including local variables, for the deepest call tree. Add to that number an
extra amount of memory to accommodate interrupts and context switching.
Determining this figure is difficult because stack frames vary in size and because
it might not be possible to estimate the depth of library routine call frames.

Compaq’s Visual Threads includes a number of tools and procedures to measure
and monitor stack use. See the Visual Threads product’s online help for more
information.

You can also run your program using a profiling tool that measures actual stack
use. This is commonly done by ‘‘poisoning’’ the stack before it is used by writing a
distinctive pattern, and then checking for that pattern after the thread completes.
Remember: Use of profiling or monitoring tools typically increases the amount of
stack memory that your program uses.

3.4.2 Using Stack Overflow Warning and Stack Guard Areas
By default, at the overflow end of each thread’s stack, the Threads Library
allocates an overflow warning area followed by a guard area. These two
areas can help a multithreaded program detect overflow of a thread’s stack.

Tru64 UNIX 5.0 and OpenVMS Alpha 7.3 include overflow warning support
to allow the reporting of stack overflows while a thread can still be assured
of executing code. The warning area is a page (or more) that is initially
protected to trap writes, but then becomes writable so that it can be used to
allow reporting or recovering from the overflow. (On Tru64 UNIX, the warning
area is again protected once an overflow has been handled; on OpenVMS it
remains unprotected.)

Programming with Threads 3–5

Programming with Threads
3.4 Managing a Thread’s Stack

A guard area is a region of no access memory. When the thread attempts to
access a memory location within this region, a memory addressing violation
occurs. For a thread that allocates large data structures on the stack, create that
thread using a thread attributes object in which a large guardsize attribute value
has been set. A large stack guard region can help to prevent one thread from
overflowing into another thread’s stack region.

The pages of memory that form a stack guard region are also known as guard
pages or ‘‘red zone’’; the overflow warning area is also known as a ‘‘yellow zone’’.

3.4.3 Diagnosing Stack Overflow Errors
A process can produce a memory access violation (or segmentation fault) when
it overflows its stack. As a first step in debugging this behavior, it is often
necessary to run the program under the control of your system’s debugger to
determine which thread’s stack has overflowed. However, if the debugger shares
resources with the target process (as under OpenVMS), perhaps allocating its
own data objects on the target process’ stack, the debugger might not operate
properly when the stack overflows. In this case, you might be required to analyze
the target process by means other than the debugger.

If a thread receives a memory access exception either during a routine call or
when accessing a local variable, increase the size of the thread’s stack. However,
not all memory access violations indicate a stack overflow.

For programs that you cannot run under a debugger, determining a stack
overflow is more difficult. This is especially true if the program continues to
run after receiving a memory access exception. For example, if a stack overflow
occurs while a mutex is locked, the mutex might not be released as the thread
recovers or terminates. When the program attempts to lock that mutex again, it
could hang.

To set the stacksize attribute in a thread attributes object, use the
pthread_attr_setstacksize() routine. (See Section 2.3.2.4 for more
information.)

3.5 Scheduling Issues
The scheduling attributes of threads have unique programming issues.

3.5.1 Real-Time Scheduling
Use care when writing code that uses real-time scheduling (such as FIFO and RR
policies) to control the priority of threads:

• Review Section 3.1. Scheduling of threads is not the same as synchronization
of threads.

• Giving threads higher priority does not necessarily make your code run faster.
Real-time priority adds overhead that can slow a program down, especially
when interfacing with other libraries. For example, a higher-priority thread
that polls for keyboard input may block work being done by other threads.

• Watch for pitfalls like priority inversion. It is best to avoid relying on real-
time scheduling, except where necessary to meet design goals. On the other
hand, most systems that interact with external devices have some real-time
aspect.

3–6 Programming with Threads

Programming with Threads
3.5 Scheduling Issues

• Avoiding multiple priorities and/or policies increases the complexity of the
program: this complexity may cost more in performance than the addition of
priorities provides, resulting in a performance loss over an application which
does not use priorities.

3.5.2 Priority Inversion
Priority inversion occurs when the interaction among a group of three or more
threads causes that group’s highest-priority thread to be blocked from executing.
For example, a higher-priority thread waits for a resource locked by a low-priority
thread, and the low-priority thread waits while a middle-priority thread executes.
The higher-priority thread is made to wait while a thread of lower priority (the
middle-priority thread) executes.

You can address the phenomenon of priority inversion as follows:

• To avoid priority inversion, associate a priority (at least as high as the
highest-priority thread that will use it) with each resource and force any
thread using that object to first increase its priority to that associated with
the object.

• To minimize the chance that an occurrence of priority inversion will cause
a complete blockage of higher-priority threads, use the (default) throughput
scheduling policy. The throughput scheduling policy allows even low-priority
threads to execute eventually and to release the resources they hold. The
FIFO and RR scheduling policies do not provide for resumption of the
low-priority thread if the middle-priority thread executes indefinitely.

3.5.3 Dependencies Among Scheduling Attributes and Contention Scope
On Tru64 UNIX systems, to use high (real-time) thread scheduling priorities, a
thread with system contention scope must run in a process with root privileges.
On the other hand, a thread with process contention scope has access to all levels
of priority without requiring special privileges.

Thus, if a process that is not privileged attempts to create another high priority
thread with system contention scope, the creation will fail.

3.6 Using Synchronization Objects
The following sections discuss how to determine when to use a mutex with or
without a condition variable, and how to prevent two erroneous behaviors that
are common in multithreaded programs: race conditions and deadlocks.

Also discussed is why you should signal a condition variable with the associated
mutex locked.

3.6.1 Distinguishing Proper Usage of Mutexes and Condition Variables
Use a mutex for tasks with short duration waits and fine-grained synchronization
(memory access). Examples of a ‘‘fine-grained’’ task are those that serialize access
to shared memory or make simple modifications to shared memory. This typically
corresponds to a critical section of a few program statements or less.

Mutex waits are not interruptible. Threads waiting to acquire a mutex cannot be
canceled.

Programming with Threads 3–7

Programming with Threads
3.6 Using Synchronization Objects

Use a condition variable to wait for data to assume a desired state. Condition
variables should be used for tasks with longer duration waits and coarse-grained
synchronization (routine and system calls) Always use a condition variable with
a mutex that protects the shared data being waited for. Condition variable waits
are interruptible.

See Section 2.4.1 and Section 2.4.2 for more information about mutexes and
condition variables.

3.6.2 Avoiding Race Conditions
A race condition occurs when two or more threads perform an operation and
the result of the operation depends on unpredictable timing factors, specifically,
the points at which each thread executes and waits and the point when each
thread completes the operation.

For example, if two threads execute routines and each increments the same
variable (such as x = x + 1), the variable could be incremented twice and one of
the threads could use the wrong value. For example:

1. Thread A increments variable x.

2. Thread A is interrupted (or blocked, or scheduled off), and thread B is started.

3. Thread B starts and increments variable x.

4. Thread B is interrupted (or blocked, or scheduled off), and thread A is started.

5. Thread A checks the value of x and performs an action based on that value.

The value of x differs from when thread A incremented it, and the program’s
behavior is incorrect.

Race conditions result from the lack of (or ineffectual) synchronization. To avoid
race conditions, ensure that any variable modified by more than one thread has
only one mutex associated with it, and ensure that all accesses to the variable
are made after acquiring that mutex. You can also use hardware features such as
Alpha land-locked/store-conditional instruction sequences.

See Section 3.6.4 for another example of a race condition.

3.6.3 Avoiding Deadlocks
A deadlock occurs when a thread holding a resource is waiting for a resource
held by another thread, while that thread is also waiting for the first thread’s
resource. Any number of threads can be involved in a deadlock if there is at least
one resource per thread. A thread can deadlock on itself. Other threads can also
become blocked waiting for resources involved in the deadlock.

Following are three techniques you can use to avoid deadlocks:

• Use sequence numbers with mutexes. Associate a sequence number with each
mutex and acquire mutexes in sequence. Never attempt to acquire a mutex
with a sequence number lower than that of a mutex the thread already holds.

If a thread needs to acquire a mutex with a lower sequence number, it must
first release all mutexes with a higher sequence number (after ensuring that
the protected data is in a consistent state).

• Use a ‘‘try and back off’’ algorithm when acquiring multiple mutexes. Use
pthread_mutex_trylock() to lock each additional mutex. If any call
to pthread_mutex_trylock() returns EBUSY, unlock all of the mutexes

3–8 Programming with Threads

Programming with Threads
3.6 Using Synchronization Objects

(including the first one locked with pthread_mutex_trylock()), and start
over.

• Avoid locking more than one mutex at the same time.

3.6.4 Signaling a Condition Variable
Signaling the condition variable while holding the lock allows the Threads
Library to perform certain optimizations which can result in more efficient
behaviors in the working thread. In addition, doing so resolves a race condition
which results if that signal might cause the condition variable to be deleted.

The following C code fragment is executed by a releasing thread (Thread A) to
wake a blocked thread:

pthread_mutex_lock (m);

... /* Change shared variables to allow another thread to proceed */

predicate = TRUE;
pthread_mutex_unlock (m);

!
pthread_cond_signal (cv); "

The following C code fragment is executed by a potentially blocking thread
(thread B):

pthread_mutex_lock (m);
while (!predicate)

pthread_cond_wait (cv, m);

pthread_mutex_unlock (m);
pthread_cond_destroy (cv);

! If thread B is allowed to run while thread A is at this point, it finds
the predicate true and continues without waiting on the condition
variable. Thread B might then delete the condition variable with the
pthread_cond_destroy() routine before thread A resumes execution.

" When thread A executes this statement, the condition variable does not exist
and the program fails.

These code fragments also demonstrate a race condition; that is, the routine, as
coded, depends on a sequence of events among multiple threads, but does not
enforce the desired sequence. Signaling the condition variable while still holding
the associated mutex eliminates the race condition. Doing so prevents thread B
from deleting the condition variable until after thread A has signaled it.

This problem can occur when the releasing thread is a worker thread and the
waiting thread is a boss thread, and the last worker thread tells the boss thread
to delete the variables that are being shared by boss and worker.

Code the signaling of a condition variable with the mutex locked as follows:

pthread_mutex_lock (m);
...

/* Change shared variables to allow some other thread to proceed */
pthread_cond_signal (cv);
pthread_mutex_unlock (m);

Programming with Threads 3–9

Programming with Threads
3.6 Using Synchronization Objects

3.6.5 Static Initialization Inappropriate for Stack-Based Synchronization
Objects

Although it is acceptable to the compiler, you cannot use the following standard
macros (or any other equivalent mechanism) to initialize synchronization objects
that are allocated on the stack:

PTHREAD_MUTEX_INITIALIZER
PTHREAD_COND_INITIALIZER
PTHREAD_RWLOCK_INITIALIZER

The Threads Library detects some cases of misuse of static initialization of
automatically allocated (stack-based) thread synchronization objects. For
instance, if the thread on whose stack a statically initialized mutex is allocated
attempts to access that mutex, the operation fails and returns [EINVAL]. If
the application does not check status returns from Threads Library routines,
this failure can remain unidentified. Further, if the operation was a call to
pthread_mutex_lock(), the program can encounter a thread synchronization
failure, which in turn can result in unexpected program behavior including
memory corruption. (For performance reasons, the Threads Library does not
currently detect this error when a statically initialized mutex is accessed by a
thread other than the one on whose stack the object was automatically allocated.)

If your application must allocate a thread synchronization object on the
stack, the application must initialize the object before it is used by calling
one of the routines pthread_mutex_init(), pthread_cond_init(), or
pthread_rwlock_init(), as appropriate for the object. Your application must
also destroy the thread synchronization object before it goes out of scope (for
instance, due to the routine’s returning control or raising an exception) by calling
one of the routines pthread_mutex_destroy(), pthread_cond_destroy(), or
pthread_rwlock_destroy(), as appropriate for the object.

3.7 Granularity Considerations
Granularity refers to the smallest unit of storage (that is, bytes, words,
longwords, or quadwords) that a host computer can load or store in one machine
instruction. Granularity considerations can affect the correctness of a program
in which concurrent or asynchronous access can occur to separate pieces of data
stored in the same memory granule. This can occur in a multithreaded program,
where different threads access the data, or in any program that has any of the
following characteristics:

• Accesses data in memory that is shared with other processes

• Accesses data that can be accessed by asynchronous device drivers, signal
handlers (on Tru64 UNIX), or ASTs (on OpenVMS)

• Accesses data objects that can be accessed by a continuable exception handler

The subsections that follow explain the granularity concept, the way it can affect
the correctness of a multithreaded program, and techniques the programmer can
use to prevent the granularity-related race condition known as word tearing.

3–10 Programming with Threads

Programming with Threads
3.7 Granularity Considerations

3.7.1 Determinants of a Program’s Granularity
A computer’s processor typically makes available some set of granularities
to programs, based on the processor’s architecture, cache architecture, and
instruction set. However, the computer’s natural granularity also depends on
the organization of the computer’s memory and its bus architecture. For example,
even if the processor ‘‘naturally’’ reads and writes 8-bit memory granules, a
program’s memory transfers may, in fact, occur in 32- or 64-bit memory granules.

On a computer that supports a set of granularities, the compiler determines
a given program’s actual granularity by the instructions it produces for the
program to execute. For example, a given compiler on Alpha systems might
generate code that causes every memory access to load or store a 64-bit word,
regardless of the size of the data object specified in the application’s source
code. In this case, the application has a 64-bit word actual granularity. For this
application, 8-bit, 16-bit, and 32-bit writes are not atomic with respect to other
memory operations that overlap the same 64-bit memory granule.

To provide a run-time environment for applications that is consistent and
coherent, an operating system’s services and libraries should be built so that they
provide the same actual granularity. When this is the case, an operating system
can be said to provide a system granularity to the applications that it hosts. (A
system’s system granularity is typically reflected in the default actual granularity
that the system’s compilers encode when producing an object file.)

When preparing to port a multithreaded application from one system to another,
you should determine whether there is a difference in the system granularities
between the source and target systems. If the target system has a larger system
granularity than the source system, you should become informed about the
programming techniques presented in the sections that follow.

3.7.1.1 Alpha Processor Granularity
Systems based on the Alpha processor family have a quadword (64-bit) natural
granularity.

Versions EV4 and EV5 of the Alpha processor family provide instructions for
only longword- and quadword-length atomic memory accesses. Newer Alpha
processors (EV5.6 and later) support byte- and word-length atomic memory
accesses as well as longword- and quadword-length atomic memory accesses.
(However, there is no way to ensure that a compiler uses the byte or word
memory references when generating code for your application.)

Note

On systems using Tru64 UNIX Version 4.0 and later:

If you use Compaq C or Compaq C++ to compile your application’s
modules on a system that uses the EV4 or EV5 version of the Alpha
processor, you can use the -arch56 compiler switch to request the
compiler to produce instructions available in the Alpha processor version
EV5.6 or later, including instructions for byte- and word-length atomic
memory access, as needed.

When an application compiled with the -arch56 switch runs under Tru64
UNIX Version 4.0 or later, with a newer Alpha processor (that is, EV5.6
or later), it utilizes that processor’s full instruction set. When that same
application runs under Tru64 UNIX Version 4.0 or later, with an older
Alpha processor (that is, EV4 or EV5), the operating system performs
a software emulation of each instruction that is not available to the

Programming with Threads 3–11

Programming with Threads
3.7 Granularity Considerations

older processor; however, this is considerably slower than if the same
application was run on a newer Alpha processor.

See the Compaq C and Compaq C++ compiler documentation for more
information about the -arch56 switch.

On Tru64 UNIX systems, use the /usr/sbin/psrinfo -v command to determine
the version(s) of your system’s Alpha processor(s).

3.7.1.2 VAX Processor Granularity
Systems based on the VAX processor family have longword (32-bit) natural
granularity, but all instructions can access unaligned data safely (though perhaps
with a substantial performance penalty).

For more information about the granularity considerations of porting an
application from an OpenVMS VAX system to an OpenVMS Alpha systems,
consult the document Migrating to an OpenVMS System1.

3.7.2 Compiler Support for Determining the Program’s Actual Granularity
Table 3–1 summarizes the actual granularities that are provided by the respective
compilers on the respective Compaq platforms.

Table 3–1 Default and Optional Granularities

Platform Compiler

Default
Granularity
Setting

Optional
Granularity
Settings

Tru64 UNIX Versions 4.0D and
later (Alpha only)

C/C++ quadword longword,
byte/word on
EV5.6

OpenVMS Alpha Version 7.3 C/C++ quadword byte, word

OpenVMS VAX Version 7.3 C/C++ longword None

Of course, for compilers that support an optional granularity setting, it is possible
to compile different modules in your application with different granularity
settings. You might do so either to avoid the possibility of word-tearing
race condition, as described in Section 3.7.3, or to improve the application’s
performance.

3.7.3 Word Tearing
In a multithreaded application, concurrent access by different threads to data
that occupy the same memory granule can lead to a race condition known as
word tearing. This situation occurs when two or more threads independently
read the same granule of memory, update different portions of that granule,
then independently (that is, asynchronously) store their respective copies of that
granule. Because the order of the store operations is indeterminate, it is possible
that only the last thread to write the granule continues with a correct ‘‘view’’ of
the granule’s contents, and earlier writes could be ‘‘undone’’.

1 This manual has been archived but is available on the OpenVMS Documentation
CD-ROM.

3–12 Programming with Threads

Programming with Threads
3.7 Granularity Considerations

In a multithreaded program the potential for a word-tearing race condition exists
only when both of the following conditions are met:

• Two or more threads can concurrently write distinct pieces of data that occupy
the same memory granule G, where G is a byte, word, longword, or quadword.

• The application’s actual granularity is sizeof(G) or larger.

For instance, given a multithreaded program that has been compiled to have
longword actual granularity, if any two of the program’s threads can concurrently
update different bytes or words in the same longword, then that program is,
in theory, at risk for encountering a word-tearing race condition. However, in
practice, language-defined restrictions on the alignments of data may limit the
actual number of candidates for a word-tearing scenario, as described in the next
section.

3.7.4 Alignments of Members of Composite Data Objects
The only data objects that are candidates for participating in a word-tearing race
condition are members of composite data objects—that is, C language structures,
unions, and arrays. In other words, the application’s threads might access
different data objects that are members of structures or unions, where those
members occupy the same byte, word, longword, or quadword. Similarly, the
application might access arrays whose elements occupy the same word, longword,
or quadword.

On the other hand, the C language specification allows the compiler to allocate
scalar data objects so that each is aligned on a boundary for the memory granule
that the compiler prefers, as follows:

• For Compaq C and Compaq C++ on Tru64 UNIX Version 4.0D and higher
(Alpha only), and OpenVMS Alpha Version 7.3 systems, alignment of scalars
is always on quadword boundaries.

• For Compaq C and Compaq C++ on OpenVMS VAX Version 7.3 systems,
alignment of scalars is always on longword boundaries.

For the details of the compiler’s rules for aligning scalar and composite data
objects, see the Compaq C and C++ compiler documentation for your application’s
host platforms.

3.7.5 Avoiding Granularity-Related Errors
Compaq recommends that you inspect your multithreaded application’s code to
determine whether a word-tearing race condition is possible for any two or more
of the application’s threads. That is, determine whether any two or more threads
can concurrently write contiguously defined members of the same composite data
object where those members occupy the same memory granule whose size is greater
than or equal to the application’s actual granularity.

If you find that you must change your application to avoid a word-tearing
scenario, there are several approaches available. The simplest techniques require
only that you change the definition of the target composite data object before
recompiling the application. The following sections offers some suggestions.

Programming with Threads 3–13

Programming with Threads
3.7 Granularity Considerations

3.7.5.1 Changing the Composite Data Object’s Layout
If you can change the organization or layout of the composite data object’s
definition, you should do both of the following:

• Widen the structures or union members to the granule. If that is
unacceptable, define padding storage after each structure or union member
(except the last) or add padding storage to the array’s element definition.
This forces all members/elements to be placed in separate granules by the
compiler.

• If your system’s compiler offers a choice, compile the application’s modules to
produce the preferred actual granularity for the application’s target system.

3.7.5.2 Maintaining the Composite Data Object’s Layout
If you cannot change the organization or layout of the composite data object’s
definition, you should do one of the following:

• (On OpenVMS Alpha or OpenVMS VAX) Compile all application modules for
byte actual granularity. Doing so automatically prevents word-tearing race
conditions for structure or union members and array elements of size byte or
larger that are accessed concurrently by different threads. No other program
modification is required. This may have a performance penalty on Alpha EV4
and EV5 processors.

• (On Tru64 UNIX systems) For arrays, add the C language volatile storage
qualifier to the definition of the entire array; for structures, add volatile
to the declaration of only those members that share the pertinent memory
granule. You must also compile the application’s modules using the Compaq
C or Compaq C++ compiler’s -strong-volatile switch. Doing so causes the
compiler to produce code that forces all accesses to those members to occur as
atomic operations. See the description of the -strong-volatile switch in the
Compaq C or Compaq C++ documentation and on the cc reference page. This
may also have a severe performance penalty.

If you must maintain the composite data object’s layout and cannot change the
storage qualifiers for the application’s composite objects, you can instead use the
technique described in the next section.

3.7.5.3 Using One Mutex Per Composite Data Object
Your source code inspection may identify an array or a set of contiguously defined
structure or union members that is subject to a word-tearing race condition. In
this case, your program can use a mutex that is dedicated to protect all write
accesses by all threads to those data objects, rather than change the definition of
the composite data objects.

To use this technique, create a separate mutex for each composite data object
where any members share a memory granule that is greater than or equal to the
program’s actual granularity. For example, given an application with quadword
actual granularity, if structure members M1 and M2 occupy the same longword in
structure S and those members can be written concurrently by more than one
thread, then the application must create and reserve a mutex for use only to
protect all write accesses by all threads to those two members.

In general, this is a less desirable technique due to performance considerations.
However, if the absolute number of thread accesses to the target data objects over
the application’s run-time will be small, this technique provides explicit, portable
correctness for all thread accesses to the target members.

3–14 Programming with Threads

Programming with Threads
3.7 Granularity Considerations

3.7.6 Identifying Possible Word-Tearing Situations Using Visual Threads
For Tru64 UNIX systems, the Visual Threads tool can warn the developer at
application run-time that a possible word-tearing situation has been detected.
Enable the UnguardedData rule before running the application. This rule causes
Visual Threads to track whether any memory location (that is, granule) in the
application has been accessed from two threads without proper synchronization.
This includes detection of word tearing as well as more straightforward
synchronization errors. See the Visual Threads product’s online help for more
information.

Visual Threads is available as part of the Developer’s Toolkit for Tru64 UNIX.

3.8 One-Time Initialization
Your program might have one or more routines that must be executed before
any thread executes code in your facility, but that must be executed only once,
regardless of the sequence in which threads start executing. For example, your
program can initialize mutexes, condition variables, or thread-specific data
keys—each of which must be created only once—in a one-time initialization
routine.

You can use the pthread_once() routine to ensure that your program’s
initialization routine executes only once—that is, by the first thread that
attempts to initialize your program’s resources. Multiple threads can attempt to
call the program initialization routine via the pthread_once() routine, and the
Threads Library ensures that the specified initialization routine is called only
once.

On the other hand, rather than use the pthread_once() routine, your program
could statically initialize a mutex and a flag, then simply lock the mutex and
test the flag. In many cases, this technique might be more straightforward to
implement.

Finally, you can use implicit (and nonportable) initialization mechanisms, such as
OpenVMS LIB$INITIALIZE, Tru64 UNIX dynamic loader _ _init_ code.

3.9 Managing Dependencies Upon Other Libraries
Because multithreaded programming has become common only recently, many
existing code libraries are incompatible with multithreaded uses. For example,
many traditional run-time library routines maintain state across multiple calls
using static storage. This storage can become corrupted if routines are called
from multiple threads at the same time. Even if the calls from multiple threads
are serialized, code that depends upon a sequence of return values might not
work.

For example, the UNIX getpwent(2) routine returns the entries in the password
file in sequence. If multiple threads call getpwent(2) repeatedly, even if the calls
are serialized, no thread will obtain all entries in the password file. (This is not
a problem on Tru64 UNIX, because the state is maintained using thread-specific
data.)

Different library routines are compatible with multithreaded programming to
different extents. The important distinctions are thread reentrancy and thread
safety.

Programming with Threads 3–15

Programming with Threads
3.9 Managing Dependencies Upon Other Libraries

3.9.1 Thread Reentrancy
A routine is reentrant if it can be used simultaneously when called by different
threads. For example, the standard C run-time library routine strtok() can be
made reentrant most efficiently by adding an argument that specifies a context
for the sequence of tokens. Thus, multiple threads can simultaneously parse
different strings without interfering with each other.

A reentrant routine should have no dependency on static data. Because access to
static data must be synchronized, there is always a performance penalty due to
the cost of synchronizing. There is also a loss of potential parallelism throughout
the program. A routine that does not use any data that is shared between
threads can proceed without locking.

If you are developing new interfaces, make sure that any persistent context
information (like the last-token-returned pointer in strtok()) is passed explicitly
so that multiple threads can process independent streams of information
independently. Return information to the caller through routine values or
output parameters (where the caller passes the address and length of a buffer).
You could also return information to the caller by allocating dynamic memory
and requiring the caller to free that memory when finished. Avoid using errno or
other global variables for returning error or diagnostic information; use routine
return values instead.

3.9.2 Thread Safety
A routine is thread-safe if it can be called simultaneously from multiple threads
without risk of corruption. If the routine is not actually reentrant, generally this
means that it does some level of locking to prevent simultaneously active calls in
different threads.

Thread-safe routines tend to be less efficient than reentrant routines. For
example, a package that is thread-safe might still block all threads in the process
while one thread executes the code.

Routines such as localtime() or strtok(), which traditionally rely on static
storage, can be made thread-safe by using thread-specific data instead of static
variables as is done on Tru64 UNIX. This prevents corruption and avoids
the overhead of synchronization. However, using thread-specific data is not
without its own cost, and it is not always the best solution. Using an alternate,
reentrant version of the routine, such as the POSIX strtok_r() interface, is
often preferable.

3.9.3 Lacking Thread Safety
When your program must call a routine that is not thread-safe, your program
must ensure serialization and exclusivity of the unsafe routine across all threads
in the program.

If a routine is not specifically documented as reentrant or thread-safe, you can
assume that it is not safe to use. Never assume that a routine is fully thread-safe
unless it is expressly documented as such; a routine can use static data in ways
that are not obvious from its interface. A routine carefully written to be thread-
safe but that calls some other routine that is not thread-safe without proper
protection, is itself not thread safe.

3–16 Programming with Threads

Programming with Threads
3.9 Managing Dependencies Upon Other Libraries

3.9.3.1 Using Mutex Around Call to Unsafe Code
Holding a mutex while calling any unsafe code accomplishes this. All threads
and libraries using the routine should use the same mutex. Note that even if
two libraries carefully lock a mutex around every call to a given routine, if each
library uses a different mutex, the routine is not protected against multiple
simultaneous calls from different libraries.

Note that your program might be required to protect a series of calls, rather than
a single call, to routines that are not thread safe.

3.9.3.2 Using the Global Lock
To ensure serialization and exclusivity of the unsafe code, the Threads Library
provides one global lock that can be used by all threads in a program when
calling either routines or code that are not thread-safe while already holding the
lock. Because there is only one global lock, you do not need to fully analyze all of
the dependencies in unsafe code that your program calls.

Acquire the global lock by calling pthread_lock_global_np(); release the global
lock by calling pthread_unlock_global_np().

The global lock allows a thread to acquire the lock recursively, so you do not need
to be concerned if you call a routine that also may acquire the global lock.

Use the global lock whenever calling unsafe routines. All Threads Library
routines are thread-safe.

3.9.3.3 Using or Copying Static Data Before Releasing the Mutex
In many cases your program must protect more than just the call itself to a
routine that is not thread-safe. Your program must either use or copy any static
return values before releasing the mutex that is being held.

3.9.4 Use of Multiple Threads Libraries Not Supported
The Threads Library performs user-mode execution context-switching within a
process by exchanging register sets, including the program counter and stack
pointer. If any other code within the process also performs this sort of context
switch, neither the Threads Library nor that other code can ever know the proper
identity of the context which is active at any time. This can result in, at best,
unpredictable behavior—and, at worst, severe errors.

For example, under OpenVMS VAX, the VAX Ada run-time library provides its
own tasking package that does not use Threads Library scheduling. Therefore,
VAX Ada tasking cannot be used within a process that also uses the Threads
Library. (This restriction does not exist for Compaq Ada for Tru64 UNIX, or
Compaq Ada for OpenVMS Alpha, because they use the Threads Library.)

3.10 Detecting Error Conditions
The Threads Library can detect some of the following types of errors:

• Application programming interface (API) errors can occur when the program
either specifies an invalid parameter or attempts an inappropriate operation
on some Threads Library object.

• Internal errors can occur when the Threads Library determines that internal
information has become corrupted to the point where it cannot continue
operation.

The pthread interface reports API errors by returning an integer value
indicating the type of error.

Programming with Threads 3–17

Programming with Threads
3.10 Detecting Error Conditions

The Threads Library internal errors result in a bugcheck. The Threads Library
writes a message that summarizes the problem to the process’ current error
device, and (on OpenVMS) writes a file that contains more detailed information.
(On Tru64 UNIX systems, the core file is sufficient for analysis of the process
using the Ladebug debugger.)

By default, the file is named pthread_dump.log and is created in the process’
current (or default) directory. To cause the Threads Library to write the bugcheck
information into a different file, define PTHREAD_CONFIG and set its dump= major
keyword. (See Section C.1 for more information about using PTHREAD_CONFIG.)

If the Threads Library cannot create the specified file when it performs the
bugcheck, it will try to create the default file. If it cannot create the default file,
it will write the detailed information to the error device.

3.10.1 Bugcheck Information
The header message written to the error device starts with a line reporting that
the Threads Library has detected an internal problem and that it is terminating
execution. It also includes the version of the Threads Library. The message
resembles this:

% Threads Library bugcheck (version V3.13-180), terminating execution.

The next line states the reason for the failure. On Tru64 UNIX, this is followed
by process termination with SIGABRT (SIGIOT), which causes writing of a
core dump file. On other platforms, a final line on the error device specifies
the location of the file that contains detailed state information produced by the
Threads Library, as in the following example:

% Dumping to pthread_dump.log

The detailed information file contains information that is usually necessary to
track down the problem.

3.10.2 Interpreting a Bugcheck
The fact that the Threads Library terminated the process with a bugcheck can
mean that some subtle problem in the Threads Library has been uncovered.
However, the Threads Library does not report all possible API errors, and there
are a number of ways in which incorrect code in your program can lead to a
bugcheck.

A common example is the use of any mutex operation or of certain condition
variable operations from within an interrupt routine (that is, a Tru64 UNIX
signal handler or OpenVMS AST routine). This type of programming error most
commonly results in a bugcheck that reports a ‘‘krnSpinLockPrm: deadlock
detected’’ message or a ‘‘Can’t find null thread’’ message. To prevent this type
of error, do not use Threads Library routines other than those with the _int
suffix in their names, such as pthread_cond_signal_int_np() from an interrupt
routine.

In addition, the Threads Library maintains a variety of state information in
memory which can be overwritten by your own code. Therefore, it is possible
for an application to accidentally modify the Threads Library state by writing
through invalid pointers, which can result in a bugcheck or other undesirable
behavior.

3–18 Programming with Threads

Programming with Threads
3.10 Detecting Error Conditions

If you encounter a bugcheck, first check your application for memory corruptions,
calls from AST routines, and so on, and then contact your Compaq support
representative and include this information file (or the Tru64 UNIX core file)
along with sample code and output. Always include the full name and version
of the operating system, and any patches that have been installed. If complete
version information is lacking, useful core file analysis might not be possible.

Programming with Threads 3–19

4
Writing Thread-Safe Libraries

A thread-safe library consists of routines that are coded so that they are safe
to be called from applications that use threads. The Threads Library provides
the thread-independent services (or tis) interface to help you write efficient,
thread-safe code that does not itself use threads.

When called by a single-threaded program, the tis interface provides thread-
independent synchronization services that are easy to maintain. For instance, tis
routines avoid the use of interlocked instructions and memory barriers.

When called by a multithreaded program, the tis routines also provide full
support for Threads Library synchronization.

The guidelines for using the pthread interface routines also apply to using the
corresponding tis interface routine in a multithreaded environment.

4.1 Features of the tis Interface
Among the key features of the tis interface are:

• Synchronization without linking the thread library with some unique routines
and some routines that correspond to those in the pthread interface

• Common synchronization data types (such as mutexes and condition
variables) with the pthread interface

• Unique tis synchronization objects (such as the read-write lock which is
different from the pthread read-write lock

• Support for thread-specific data objects

Implementation of the tis interface library varies by Compaq operating system.
For more information, see this guide’s operating system-specific appendixes.

It is not difficult to create thread-safe code using the tis interface, and it should
be straightforward to modify existing source code that is not thread-safe to make
it thread-safe.

4.1.1 Reentrant Code Required
Your first consideration is whether the language compiler used in translating the
source code produces reentrant code. Most Ada compilers generate inherently
reentrant code because Ada supports multithreaded programming. On OpenVMS
VAX systems, there are special restrictions on using the VAX Ada compiler
to produce code or libraries to be interfaced with the Threads Library. See
Section 3.9.4.

Although the C, C++, Pascal, BLISS, FORTRAN and COBOL programming
languages do not support multithreaded programming directly, compilers for
those languages generally create reentrant code.

Writing Thread-Safe Libraries 4–1

Writing Thread-Safe Libraries
4.1 Features of the tis Interface

4.1.2 Performance of tis Interface Routines
Routines in the tis interface are designed to impose low overhead when called
from a single-threaded environment. For example, locking a mutex is essentially
just setting a bit, and unlocking the mutex clears the bit.

4.1.3 Run-Time Linkage of tis Interface Routines
All operations of tis interface routines require a call into the tis library. During
program initialization, the Threads Library automatically revectors the program’s
run-time linkages to most tis routines. This allows subsequent calls to those
routines to use the normal multithreaded (and SMP-safe) operations.

After the revectoring of run-time linkages has occurred, for example, a call
to tis_mutex_lock() operates exactly as if pthread_mutex_lock() had been
called. Thus, the transition from tis stubs to full Threads Library operation
is transparent to library code that uses the tis interface. For instance, if the
Threads Library is dynamically activated while a tis mutex is acquired, the
mutex can be released normally.

The tis interface deliberately provides no way to determine whether the Threads
Library is active within the process. Thread-safe code should always act as if
multiple threads can be active. To do otherwise inevitably results in incorrect
program behavior, given that the Threads Library can be dynamically activated
into the process at any time.

4.1.4 Cancelation Points
The following routines in the tis interface are cancelation points:

tis_cond_wait()
tis_testcancel()

However, because the tis interface has no mechanism for requesting thread
cancelation, no cancelation requests are actually delivered in these routines
unless threads are present at run-time.

4.2 Using Mutexes
Like the mutexes available through the other pthread interface, tis mutexes
provide synchronization between multiple threads that share resources. In fact,
you can statically initialize tis mutexes using the PTHREAD_MUTEX_INITIALIZER
macro (see the Threads Library pthread.h header file).

You can assign names to your program’s tis mutexes by statically initializing
them with the PTHREAD_MUTEX_INITWITHNAME_NP macro.

Unlike static initialization, dynamic initialization of tis mutexes is limited
due to the absence of support for mutex attributes objects among tis interface
routines. Thus, for example, the tis_mutex_init() routine can create only
normal mutexes.

If the multithreading run-time environment becomes initialized dynamically,
any tis mutexes acquired by your program remain acquired. The ownership of
recursive and errorcheck mutexes remains valid.

Operations on the global lock are also supported by tis interface routines. The
global lock is a recursive mutex that is provided by the Threads Library for use
by any thread. Your program can use the global lock without calling the pthread
interface by calling tis_lock_global() and tis_unlock_global().

4–2 Writing Thread-Safe Libraries

Writing Thread-Safe Libraries
4.3 Using Condition Variables

4.3 Using Condition Variables
Tis condition variables behave like condition variables created using
the pthread interface. You can initialize them statically using the
PTHREAD_COND_INITIALIZER macro.

As for tis mutexes, dynamic initialization of tis condition variables is limited
due to the absence of support for condition variable attributes objects among tis
interface routines.

A condition variable wait is useful only when there are other threads.
Your program can have more than one thread only if the Threads Library
multithreading run-time environment is present. In a non-threaded environment,
a wait aborts and signaling or broadcasting a tis mutex does nothing.

For code in a thread-safe library that uses a condition variable, construct
its wait predicate so that the code does not actually require a block on the
condition variable when called in a single-threaded environment. Please see the
tis_io_complete() and tis_sync() reference pages.

4.4 Using Thread-Specific Data
The tis interface routines support the use of thread-specific data. If code in the
process creates keys or sets thread-specific data values before the multithreading
run-time environment is initialized, those keys and values continue to be
available to your program in the initial thread.

4.5 Using Read-Write Locks
A read-write lock is an object that allows the application to control access
to information that can be read concurrently by more than one thread and
that needs to be read frequently and written only occasionally. Routines that
manipulate the tis interface’s read-write lock objects can control access to any
shared resource.

For example, in a cache of recently accessed information, many threads can
simultaneously examine the cache without conflict. When a thread must update
the cache, it must have exclusive access.

Tis read-write locks are completely different from the newer pthread read-write
locks. Currently, the latter have no tis equivalent.

Your program can acquire a read-write lock for shared read access or for exclusive
write access. An attempt to acquire a read-write lock for read access will block
when any thread has already acquired that lock for write access. An attempt
to acquire a read-write lock for write access will block when another thread has
already acquired that lock for either read or write access.

In a multithreaded environment, when both readers and writers are waiting at
the same time for access via an already acquired read-write lock, tis read-write
locks give precedence to the readers when the lock is released. This policy of
‘‘read precedence’’ favors concurrency because it potentially allows many threads
to accomplish work simultaneously. (Note that this differs from pthread read-
write locks, which have writer precedence.) Figure 4–1 shows a read-write lock’s
behavior in response to three threads (one writer and two readers) that must
access the same memory object.

Writing Thread-Safe Libraries 4–3

Writing Thread-Safe Libraries
4.5 Using Read-Write Locks

Figure 4–1 Read-Write Lock Behavior

ZK−7929A−GE

readers/writers

unlock

lock

Time:

writer active

reader waiting

lock free

1 reader active

2 readers active writer waiting

reader active
lock free

writer active

lock free

thread 2
(reader)

thread 3
(reader)

thread 1
(writer)

The tis_rwlock_init() routine initializes a read-write lock by initializing the
supplied tis_rwlock_t structure.

Your program uses the tis_read_lock() or tis_write_lock() routine to
acquire a read-write lock when access to a shared resource is required.
tis_read_trylock() and tis_write_trylock() can also be called to acquire
a read-write lock. Note that if the lock is already acquired by another caller,
tis_read_trylock() and tis_write_trylock() immediately return [EBUSY],
rather than waiting.

If a non-threaded program manes a tis call that would block (such as a call to
tis_cond_wait(), tis_read_lock() or tis_write_lock()), it is a fatal error
that will abort the program.

Your program calls the tis_rwlock_destroy() routine when it is finished using a
read-write lock. This routine frees the lock’s resources for re-use.

For more information about each tis interface routine that manipulates a
read-write lock, see Part III.

4–4 Writing Thread-Safe Libraries

5
Using the Exceptions Package

This chapter describes how to use the exceptions package and demonstrates
conventions for the modular use of exceptions in a multithreaded program.

This chapter does the following:

• Describes the exceptions package

• Shows how to declare, initialize, and handle an exception object in your
program

• Describes the exceptions package’s macros that support exception handling

• Describes the exceptions package’s API-level routines that operate on
exception objects

• Lists the names of exception objects that the exceptions package defines for
its own use

5.1 About the Exceptions Package
The exceptions package is a part of the POSIX Threads Library. A C language
header file (pthread_exception.h) provides an interface for defining and handling
exceptions. It is designed for use with the pthreads interface routines. If you
use the exceptions package, your application must be linked with the Threads
Library.

5.1.1 Supported Programming Languages
You can use the exceptions package only when you are programming in the C
language. While the exceptions will compile under C++, they will not behave
properly. In addition, gcc lacks the Compaq C extensions that are needed to
interact with the native exception handling system, and will not interoperate
correctly with other language exception facilities.

You can use the C language exception handling mechanism (SEH) to catch
exceptions. You can catch exceptions in C++ using catch(...), and propagation
of exceptions will run C++ object destructors. Currently, C++ code cannot catch
specific exceptions. Also, CATCH, CATCH_ALL and FINALLY clauses will not run
when C++ code raises an exception. (These restrictions will be reduced or
removed in a future release.)

5.1.2 Relation of Exceptions to Return Codes and Signals
The Threads Library uses exceptions in the following cases:

• The pthread_exit() routine raises the exception pthread_exit_e defined by
the Threads Library.

• Canceling a thread causes the Threads Library to raise the exception
pthread_cancel_e defined by the Threads Library.

Using the Exceptions Package 5–1

Using the Exceptions Package
5.1 About the Exceptions Package

• On Tru64 UNIX, synchronous signals (such as SIGSEGV) are converted to
exceptions unless a signal action is declared.

5.2 Why Use Exceptions
An exception is a mechanism for reporting an error condition. An exception is
represented by an exception subject. Operations on exception objects allow
your program to report and handle errors. If your program can handle an
exception properly, the program can recover from errors. For example, while
reading a tape, a program raises an exception from a parity error. The recovery
action might be to retry reading the tape 100 times before giving up. However,
if the program does not handle the exception, then the program terminates.
Reporting errors via exceptions ensures that the error will not inadvertently go
unnoticed and cause problems later.

You use exception programming to identify a portion of a routine, called an
exception scope, where a calling thread wishes to respond to particular error
conditions or perhaps to any error condition. The thread can respond to each
exception in either of two ways:

• Catch the exception. This means that the code handles all effects of the
error condition from within the exception scope, not from the point where the
exception was raised.

• Finalize the exception scope. This means that the current scope’s context is
cleaned up and resources (such as mutexes) are released. The exception is
then passed to the next outer exception scope for further processing. The
exception package supports finalization of a scope even when no exception
was raised, so that resources are always released without duplication of code.

As a result, you can use the exceptions package to handle thread cancelation
and thread exit in a unified and modular manner. Because the Threads Library
implements both thread cancelation and thread exit by raising exceptions, your
code can respond to these events in the same modular manner as it does for error
conditions.

5.3 Exception Programming
Each exception object is of the EXCEPTION type, which is defined in the
pthread_exception.h header file.

To use exceptions, do the following:

1. Declare one exception object for each distinct error condition of interest to
your program.

2. Code your program to invoke the RAISE macro when it detects an error
condition.

3. Code an exception scope, using the TRY and ENDTRY macros, to define the
program scope within which an exception might be handled.

4. Optionally include the CATCH macro, which is associated with each exception
scope, to define a block of exception handler code for each exception that
your program wishes to handle at this point in its work. In this block your
program can perform activities to respond to the particular error condition.

5–2 Using the Exceptions Package

Using the Exceptions Package
5.3 Exception Programming

5. Optionally include the CATCH_ALL macro, which is associated with each
exception scope, to define an exception handler to catch any other exception
that might be raised, if your code needs to respond to such errors. Unless
your code can fully recover from these exceptions, your handler code must
also reraise the caught exception so that the next outer exception scope also
has the chance to respond to it.

6. Use the FINALLY macro, which is associated with each exception scope, to
define finalization code, also known as epilogue code. This code is always
executed when control leaves the TRY block, regardless of whether the code
in the associated exception scope raised an exception. If this code is reached
because of an exception being raised, the Threads Library automatically
reraises the caught exception and passes it to the next outer exception scope.

When a thread in your program raises an exception, the Threads Library
determines whether an exception scope has been defined in the current stack
frame. If so, the Threads Library checks whether there is either a specific
handler (CATCH code block) for the raised exception or an unspecified handler
(CATCH_ALL or FINALLY code block). If not, the Threads Library passes the raised
exception to the next outer exception scope that does contain the pertinent code
block. Thread execution resumes at that block. Attempting to catch a raised
exception can cause a thread’s stack to be unwound one or more call frames.

An exception can be caught only by the thread in which it is raised. An exception
does not propagate from one thread to another.

5.3.1 Declaring and Initializing an Exception
Before referring to an exception object in your code, your program must declare
and initialize the object. You must define an exception object (whether explicitly
or implicitly) to be of static storage class.

The next sample code fragment demonstrates how a program declares and
initializes an exception object.

static EXCEPTION parity_error; /* Declare the exception */

EXCEPTION_INIT (parity_error); /* Initialize the exception */

5.3.2 Raising an Exception
Raise an exception to indicate that your program has detected an error condition
in response to which the program must take some action. Your program raises
the exception by invoking the RAISE macro.

Example 5–1 demonstrates how to raise an exception.

Using the Exceptions Package 5–3

Using the Exceptions Package
5.3 Exception Programming

Example 5–1 Raising an Exception

static EXCEPTION parity_error;

int read_tape(void)
{

int ret;

EXCEPTION_INIT (parity_error); /* Initialize it */
if (tape_is_ready) {

ret = read(tape_device);
if (ret = BAD_PARITY)

RAISE (parity_error); /* Raise it */
}

}

5.3.3 Catching an Exception
After your program raises an exception, it is passed to a location within a block of
code in a containing exception scope. The exception scope defines:

• A TRY code block, a lexical scope within which an exception will be handled
if it is raised (if there is a matching CATCH block or a CATCH_ALL or FINALLY
block).

• (Optionally) A CATCH code block, where your program handles a particular
exception that was raised within the scope of this TRY block (a single TRY
block may have more than one CATCH block for different exceptions).

• (Optionally) A CATCH_ALL code block, where your program handles any
exception raised within the scope of this TRY block that is not named as an
argument in a preceding CATCH block in this TRY block. The CATCH_ALL block
must be the last block, following any CATCH blocks. (Only one CATCH_ALL block
may be associated with a TRY block.)

• (Optionally) A FINALLY code block, where your program performs finalization,
or epilogue, actions at the end of the TRY block, whether an exception was
raised or not (an exception scope with a FINALLY block cannot also have either
a CATCH or CATCH_ALL block).

Example 5–2 shows a TRY code block with a CATCH code block defined to catch the
exception object named parity_error when it is raised within the read_tape()
routine.

Example 5–2 Catching an Exception Using CATCH

TRY {
read_tape ();

}
CATCH (parity_error) {

printf ("Oops, parity error, read aborted\n");
printf ("Try cleaning the heads!\n");

}
ENDTRY

5–4 Using the Exceptions Package

Using the Exceptions Package
5.3 Exception Programming

Example 5–3 demonstrates how CATCH and CATCH_ALL code blocks work together
to handle different raised exceptions within a given TRY code block.

Example 5–3 Catching an Exception Using CATCH and CATCH_ALL

int *local_mem;

local_mem = malloc (sizeof (int));
TRY { /* An exception can be raised within this scope */

read_tape ();
free (local_mem);

}
CATCH (parity_error) {

printf ("Oops, parity error, read aborted\n");
printf ("Try cleaning the heads!\n");
free (local_mem);

}
CATCH_ALL {

free (local_mem);
RERAISE;

}
ENDTRY

5.3.4 Reraising an Exception
Reraising an exception means to pass it to the next outer exception scope for
further processing. Your program should take this step for a given exception
when it must respond to the error condition but cannot completely recover from
it.

As shown in Example 5–3, within a CATCH or CATCH_ALL code block, your program
can invoke the RERAISE macro to pass a caught exception to the next outer
exception scope in your program. If there is no next outer TRY block, the default
handler for unhandled exceptions receives the exception, produces a default error
message that identifies the unhandled exception, then terminates the process.

Reraising is particularly appropriate for an exception caught in a CATCH_ALL
block. Because this code block may catch exceptions that are unexpected by your
program’s code, it is unlikely that your code is able to fully recover from the error
condition that the exception represents. Therefore, your code should allow the
exceptions to continue to propagate, either so that it will reach a handler that can
deal with it properly or the process can be terminated safely.

5.3.5 Expressing Epilogue Actions
Example 5–4 demonstrates the use of the optional FINALLY block.

Using the Exceptions Package 5–5

Using the Exceptions Package
5.3 Exception Programming

Example 5–4 Defining Epilogue Actions Using FINALLY

int *local_mem;

local_mem = malloc (sizeof (int));
TRY { /* An exception can be raised within this scope */

operation (local_mem);
}
FINALLY {

free (local_mem);
}
ENDTRY

A FINALLY block catches an exception and implicitly reraises the exception for the
next outer exception scope to handle. The actions defined by a FINALLY block are
also performed on normal exit from the TRY block if no exception is raised. This
means that those actions need not be duplicated in your code.

Do not combine a FINALLY block with either a CATCH block or CATCH_ALL block in
the same TRY block.

5.4 Exception Objects
This section describes the attributes of exception objects (that is, the EXCEPTION
type) and the behavior of the exceptions package’s exception handling macros
(that is, RAISE and RERAISE, TRY, CATCH and CATCH_ALL, and FINALLY).

An exception object is a data object that represents an error condition that
has occurred in a particular context. The error condition can be detected by the
operating system, by the native programming language, by another programmatic
facility that your program calls, or by your own program. In the exceptions
package, it is a statically allocated variable of type EXCEPTION.

5.4.1 Declaring and Initializing Exception Objects
The EXCEPTION type is designed to be an opaque type and should only be
manipulated by the exceptions package routines. The actual definition of the
type may differ from one release to another. The EXCEPTION type is defined in the
pthread_exception.h header file.

You should declare the type as static or extern. For example:

static EXCEPTION an_error;

Because on some platforms an exception object may require dynamic
initialization, the exceptions package requires a run-time initialization call
in addition to the declaration. The initialization routine is a macro named
EXCEPTION_INIT. The name of the exception is passed as a parameter.

The following code fragment shows how a program declares and initializes an
exception object:

EXCEPTION parity_error; /* Declare it */

EXCEPTION_INIT (parity_error); /* Initialize it */

5–6 Using the Exceptions Package

Using the Exceptions Package
5.4 Exception Objects

5.4.2 Address Exceptions and Status Exceptions
By default, when your program raises an exception using an exception object that
has been properly initialized, the exception is identified by the address of the
exception object. This form of exception object is called an address exception.
Your program code that handles address exceptions is fully portable among
supported platforms because address exceptions contain nothing that is platform
dependent.

Use address exceptions if the error conditions that report in your program do
not correspond to a system status code. Address exceptions are always unique,
so using them cannot cause a ‘‘collision’’ with another facility’s status codes and
possibly lead inadvertently to handling the wrong exception.

Alternatively, after initializing an exception object and before the exception
can be raised, your program can assign a status value to it. The status
value is typically an operating system-specific status code that represents a
particular error condition. That is, your program can use the exceptions package’s
pthread_exc_set_status_np() routine to assign a C errno code on Tru64 UNIX
or a condition code on OpenVMS to the exception object. This form of exception
object is called a status exception.

Given two different exception objects that have been set with the same status
value, the exceptions package considers the two objects as representing the same
exception. For example, if one of the two objects is used to raise an exception, the
exception can be caught by specifying the other exception object that has been set
to the same status value. In contrast, the Threads Library never considers two
distinct address exception objects to match the same exception.

Using status exceptions can make sense if your program’s target platform
supports a universal definition of error status. That is, a status exception has
the advantage of having some global meaning within your program and with
respect to other libraries that your program uses. Your program can interpret,
handle, and report the values used in status exceptions in a ‘‘centralized’’ manner,
regardless of which facility in your program defines the status value.

5.4.3 How Exceptions Terminate
Threads Library exceptions are terminating exceptions. This means that after a
thread raises a particular exception, the thread never resumes execution in the
code that immediately follows the statement that invokes the RAISE macro.

Instead, raising the exception causes the thread to resume execution at the
appropriate block of handler code (that is, program statements in a CATCH,
CATCH_ALL or FINALLY block) that is declared in the current exception scope. If
the handler in the current exception scope contains a RERAISE statement, control
reverts to the appropriate handler in the next outer exception scope.

Propagation of the exception—that is, transfer of control to an outer exception
scope after executing the RERAISE statement—continues until control enters a
CATCH or CATCH_ALL block that does not end with a RERAISE statement; after
that block’s statements are executed, program execution continues at the first
statement after the ENDTRY statement that terminates that exception scope.

When any thread raises an exception, if no exception scope in that thread handles
the exception without reraising it, the Threads Library terminates the process,
regardless of the state of the process’ other threads. Termination prevents the
unhandled error from affecting other areas of the process.

Using the Exceptions Package 5–7

Using the Exceptions Package
5.5 Exception Scopes

5.5 Exception Scopes
An exception scope serves two purposes:

• It defines a lexical scope within your program where it can respond either to
a specific raised exception or to any raised exception.

• It also associates this lexical scope with a set of exception handlers. Each
of an exception scope’s handlers is a code block enclosed within a Threads
Library reserved macro, as described in Section 5.7.

Use the TRY/ENDTRY pair of macros to define an exception scope. (Throughout the
discussion, this pair of macros is referred to simply as the TRY macro.) The TRY
macro defines the beginning of an exception scope, and the ENDTRY macro defines
the scope’s end.

Example 5–5 illustrates how a program defines an exception scope that encloses
one operation, a call to the read_tape() routine.

Example 5–5 Defining an Exception Scope

EXCEPTION parity_error;

int my_function(void)
{

TRY { /* Beginning of exception scope */
read_tape (); /* Operation(s) whose execution can raise an exception */

}
ENDTRY /* End of exception scope */

}

int read_tape(void)
{

int ret;

if (tape_is_ready) {

EXCEPTION_INIT (parity_error); /* Initialize it */
ret = read(tape_device);
if (ret = BAD_PARITY)

RAISE (parity_error); /* Raise it */
}

}

Defining an exception scope identifies a block of code in which an exception
will be handled if it is raised. Any exception raised within the block, or within
any routines called directly or indirectly within the block, will pass through the
control of this scope.

Because your program can detect different error conditions at different points
in the code, your program can define more than one exception scope within its
routines.

One exception scope cannot span the boundary of another exception scope.
That is, it is invalid for one exception scope to contain only the beginning (the
invocation of the TRY macro) or end (the invocation of the ENDTRY macro) of
another exception scope. However, they may be nested–in fact, you can use TRY
blocks not only inside other TRY blocks, but inside CATCH and FINALLY blocks as
well.

5–8 Using the Exceptions Package

Using the Exceptions Package
5.6 Raising Exceptions

5.6 Raising Exceptions
After your program declares and initializes an exception object, your program
raises that exception when it detects an error condition. Use the exceptions
package’s RAISE macro to raise an exception.

When your program raises an exception, it reports an error not by returning a
value, but by propagating the exception. Propagating an exception takes place in
a series of steps, as follows:

1. The program searches in the current scope, then in the next outer scope and
so on, for an exception handler that explicitly or implicitly responds to the
error (such as a CATCH, CATCH_ALL or FINALLY block).

2. The program invokes the handler code that is found.

3. If the exception is reraised, then the process resumes with the first step and
the next outer scope.

If the exception scope within which an exception is raised does not define
a handler block, then the Threads Library simply ‘‘tears down’’ the current
execution scope as the exception propagates up the stack of exception scopes.
This is also referred to as ‘‘unwinding’’ the stack.

Example 5–6 illustrates how a program raises an exception.

Example 5–6 Raising an Exception

error = get_data();
if (error) {

EXCEPTION parity_error; /* Declare it */

/* Initialize exception object and
optionally set its status code */

EXCEPTION_INIT (parity_error);
pthread_exc_set_status_np (&parity_error, ENOMEM);
RAISE (parity_error); /* Raise it */

}

Threads Library exceptions are classified as terminating exceptions because
after an exception is raised even if it is handled, the thread does not resume its
execution at the point where the error condition was detected. Rather, execution
resumes within the innermost exception scope that defines a handler block that
either explicitly or implicitly matches that exception, or that defines an epilogue
block for finalization processing. See Section 5.4.3 for further details.

5.7 Exception Handling Macros
The exceptions package allows your program to define an exception scope and to
define and associate one or more blocks of code, each called an exception handler,
with that scope. The exception handler takes appropriate actions in response to
an error condition. ‘‘Appropriate actions’’ can mean merely cleaning up a routine’s
local context and propagating the exception to the next outer exception scope,
or it can mean fully responding to the error in such a manner that allows the
routine with the handler to continue its work.

Using the Exceptions Package 5–9

Using the Exceptions Package
5.7 Exception Handling Macros

5.7.1 Context of the Handler
An exception handler always runs within the context of the thread that generates
the exception. Exceptions are synchronous events, like an access violation or
segmentation fault, that are tied to a specified thread’s context.

Exception handlers are also closely tied to the execution context of the block that
declares the handler. Thus, in the exceptions package, exception handlers are
attached, which means that the handler code appears within the same routine
where the specified exceptions are raised (directly or indirectly). This allows
the code to access local commands when an exception occurs with that exception
scope, and allows the error handling code to be positioned ‘‘close’’ to the code with
which it is associated for readability and maintainability.

5.7.2 Handlers and Macros
Unlike a signal handler routine, an exception handler can call any pthread
routine.

Exception handler code is invoked when a matching exception propagates within
the execution scope of the associated exception scope.

Use the exceptions package’s CATCH macro to define an exception handler code
block that is invoked when an exception matching the macro’s specified exception
object is propagated within the associated exception scope. Use the exceptions
package’s CATCH_ALL macro to define an exception handler code block that is
invoked when any other exception is propagated within the associated exception
scope.

An exception handler’s code can reraise an exception. That is, the code can
propagate an exception to the next outer exception scope for further processing.
Use the exceptions package’s RERAISE macro to do so. If appropriate, a handler
may instead use the RAISE macro to raise a different exception.

Another form of exception handler code is finalization code, or epilogue code.
You can define a block of epilogue code and associate it with an exception
scope. When an exception is raised, epilogue code performs your cleanup
actions within the current exception scope (such as releasing resources), then
automatically propagates the raised exception to outer scopes for further
processing. Additionally, finalization occurs even if no exception was raised,
so that resources are always released without duplication of code.

Use the exceptions package’s FINALLY macro to define an epilogue code block.
Note that, for a given exception scope, FINALLY blocks and CATCH and CATCH_ALL
blocks are mutually exclusive.

Each of these macros is discussed in greater detail in the following sections.

5.7.3 Catching Specific Exceptions
The exception scope can express interest in catching a particular exception by
specifying a corresponding exception object as the argument in a statement that
invokes the CATCH macro. When an exception reaches the exception scope, control
is transferred to the first CATCH code block that specifies a matching exception
object. If there is more than one CATCH code block that specifies a matching object
within a single TRY/ENDTRY scope, only the first one gains control. (Thus, there is
no point in having two CATCH blocks with matching or equivalent exceptions.)

5–10 Using the Exceptions Package

Using the Exceptions Package
5.7 Exception Handling Macros

To catch an address exception, the CATCH macro must specify the name of the
exception object used in the invoked RAISE macro. However, status exceptions can
be caught using any exception object that has been set to the same status code as
the exception that was raised.

Example 5–7 shows an exception scope with one exception handler that uses the
CATCH macro to catch a specific exception (parity_error) and to specify a recovery
action (produce a message).

Example 5–7 Catching a Specific Exception Using CATCH

TRY {
read_tape ();

}
CATCH (parity_error) {

printf ("Oops, parity error, read aborted\n");
printf ("Try cleaning the heads!\n");
RERAISE;

}
ENDTRY

In this example, after catching the exception and executing the recovery action,
the handler explicitly reraises the caught exception. This causes the exception to
propagate to the next outer exception scope.

Typically, you code one exception handler for each distinct error condition that can
be raised anywhere in the program’s execution within the associated exception
scope.

If it is appropriate for the caught exception to be propagated to the next higher
exception scope, the CATCH code block can use the RERAISE macro as its last action
to explicitly raise the same exception again.

5.7.4 Catching Unspecified Exceptions
The exception scope can express interest in catching all exceptions by coding an
exception handler that uses the CATCH_ALL macro.

There must be only one CATCH_ALL code block within an exception scope. Note
that it is invalid for a CATCH macro to follow a CATCH_ALL macro within an
exception scope.

Example 5–8 demonstrates using the CATCH_ALL macro to define an exception
handler for expressing actions in response to exceptions that are not being
uniquely handled on a per-exception basis in the program’s code.

Because you cannot necessarily predict all possible exceptions that your code
might encounter, you cannot assume that your code can recover in every possible
situation. Therefore, your CATCH_ALL code block should explicitly reraise each
caught exception as its final action; this allows an outer exception scope also to
catch the same exception and to respond appropriately for its own context.

Using the Exceptions Package 5–11

Using the Exceptions Package
5.7 Exception Handling Macros

Example 5–8 Catching an Unspecified Exception Using CATCH_ALL

int *local_mem;

local_mem = malloc (sizeof (int));
TRY {

operation(local_mem);
free (local_mem);

}
CATCH (an_error) {

printf ("Oops; caught one!\n");
free (local_mem);

}
CATCH_ALL {

free (local_mem);
RERAISE;

}
ENDTRY

5.7.5 Reraising the Current Exception
Within an exception scope’s CATCH or CATCH_ALL code blocks, you can invoke the
RERAISE macro to reraise a caught exception. This allows the next outer exception
scope to handle the exception as it finds appropriate. Invoking the RERAISE macro
is valid only within a CATCH or CATCH_ALL code block.

Use the RERAISE macro in a CATCH or CATCH_ALL code block that must restore
some permanent program state (for example, releasing resources such as memory
or a mutex) but does not have enough context about the detected error condition
or sufficient reason to attempt to recover fully. For example, a CATCH_ALL code
block should always reraise the caught exception as its last action, because the
exception handler cannot recover fully from the error since it does not know what
the error specifically was.

Refer to Example 5–8 for an example of how a program invokes the RERAISE
macro as the last action in a CATCH_ALL code block.

5.7.6 Defining Epilogue Actions
Some of your program’s CATCH or CATCH_ALL code blocks may catch exceptions only
for the purpose of performing cleanup actions, such as releasing resources. In
many cases, these actions are performed when the TRY code block exits normally
or after an exception has been caught. This requires duplicating code in the
CATCH_ALL code block and following the exception scope (for the case when an
exception does not occur).

The exceptions package’s FINALLY macro defines a code block that catches an
exception and then implicitly reraises that exception for the next outer exception
scope to handle. The actions in a FINALLY code block are also performed when the
scope exits normally (that is, when no exception is raised), so that they need not
be coded more than once.

Example 5–9 demonstrates the FINALLY macro.

5–12 Using the Exceptions Package

Using the Exceptions Package
5.7 Exception Handling Macros

Example 5–9 Defining Epilogue Actions Using FINALLY

pthread_mutex_lock (&some_object.mutex);
some_object.num_waiters = some_object.num_waiters + 1;
TRY {

while (! some_object.data_available)
pthread_cond_wait (&some_object.condition, &some_object.mutex);

/* The code to act on the data_available goes here */
}
FINALLY {

some_object.num_waiters = some_object.num_waiters - 1;
pthread_mutex_unlock (&some_object.mutex);

{
ENDTRY

In this example, if the thread was canceled while it was waiting, the
pthread_cancel_e exception would propagate out of the pthread_cond_wait()
call. The operations in the FINALLY code block release the mutex, after ensuring
that the shared data associated with the lock is correct for the next thread that
acquires the mutex.

Note

Do not define a FINALLY code block if your exception scope uses a CATCH or
CATCH_ALL code block. Doing so results in unpredictable behavior.

5.8 Operations on Exceptions
In addition to raising, catching, and reraising exception objects, the exceptions
package supports the following API-level operations on exception objects:

• Determine the current exception.

• Import a system-defined error status.

• Export a system-defined error status.

• Report an exception.

• Determine whether two exception objects match.

The following sections discuss these operations.

5.8.1 Referencing the Caught Exception
Within a CATCH or CATCH_ALL code block the caught exception object can be
referenced by using the THIS_CATCH symbol. You cannot use THIS_CATCH in a
FINALLY code block because there might not be an exception.

The THIS_CATCH definition has a type of EXCEPTION *. This value can be
passed to the pthread_exc_get_status_np(), pthread_exc_report_np(), or
pthread_exc_matches_np() routines, as described in Section 5.8.3, Section 5.8.4,
and Section 5.8.5.

Note

Because of the way that the exceptions package propagates exception
objects, the address contained in THIS_CATCH might not be the actual

Using the Exceptions Package 5–13

Using the Exceptions Package
5.8 Operations on Exceptions

address of an address exception. To match THIS_CATCH against known
exceptions, use the pthread_exc_matches_np() routine, as described in
Section 5.8.5. Furthermore, the value of THIS_CATCH may become invalid
when control leaves the CATCH or CATCH_ALL block.

5.8.2 Setting a System-Defined Error Status
Use the pthread_exc_set_status_np() routine to set a status value in an
existing address exception object. This converts an address exception object into
a status exception object.

This routine’s exception object argument must already have been initialized with
the exceptions package’s EXCEPTION_INIT macro, as described in Section 5.3.1.

In a program that uses status exceptions, use this routine to associate a system-
specific status value with the specified exception object. Note that any exception
objects set to the same status value are considered equivalent by the Threads
Library.

Example 5–10 demonstrates setting an error status in an address exception
object.

Example 5–10 Setting an Error Status in an Exception Object

static EXCEPTION an_error;

unsigned long status_code = ENOMEM;
EXCEPTION_INIT (an_error);

/* Import status code into an existing, initialized,
address exception object */

pthread_exc_set_status_np (&an_error, status_code);

Note

On OpenVMS systems:

Threads Library exception status values are OpenVMS
condition codes with a SEVERE severity level. If necessary, the
pthread_exc_set_status_np() routine will modify the severity level
of the status code to SEVERE.

5.8.3 Obtaining a System-Defined Error Status
In a program that uses status exceptions, use the
pthread_exc_get_status_np() routine to obtain the status value from a status
exception object, such as after an exception is caught. If the routine’s exception
argument is a status exception object, it sets the status code argument and
returns 0 (zero); otherwise, it returns [EINVAL] and does not set the status value
argument.

5–14 Using the Exceptions Package

Using the Exceptions Package
5.8 Operations on Exceptions

Example 5–11 Obtaining the Error Status Value from a Status Exception Object

#include <pthread_exception.h>
.
.
.

TRY {
operation ();
}

CATCH_ALL {
unsigned long status_code;

if (pthread_exc_get_status_np (THIS_CATCH, &status_code) == 0
&& status_code == SOME_ERROR)

fprintf (stderr, "Exception %ld caught from system.\n", SOME_ERROR);
else

pthread_exc_report_np (THIS_CATCH);
}

ENDTRY

Example 5–11 demonstrates using the pthread_exc_get_status_np() routine to
obtain the status value associated with a caught status exception object.

5.8.4 Reporting a Caught Exception
Use the pthread_exc_report_np() routine to produce a message that reports
what a given exception object represents. Your program calls this routine within
a CATCH or CATCH_ALL code block to report on a caught exception.

An exception in your program that has not been handled by a CATCH or CATCH_ALL
causes the unhandled exception handler to report the exception and immediately
terminate the process. However, you might prefer to report a caught exception as
part of your program’s error recovery.

The pthread_exc_report_np() routine prints a message to stderr (on Tru64
UNIX systems) or SYS$ERROR (on OpenVMS systems) that describes the
exception.

Each defined exception has an associated message that describes the given
error condition. Typically, external status values can also be reported. When an
address exception is reported, the Threads Library can only report the fact that
an exception has occurred and the address of the exception object.

See Example 5–11 for an example using the pthread_exc_report_np() routine to
report an error.

5.8.5 Determining Whether Two Exceptions Match
The pthread_exc_matches_np() routine compares two exception objects, taking
into consideration whether each is an address exception or a status exception.
Whenever you must compare two exception objects, use this routine.

Example 5–12 demonstrates how to use the pthread_exc_matches_np() routine
to test for the equivalence of two exception objects.

Using the Exceptions Package 5–15

Using the Exceptions Package
5.9 Using Exceptions

Example 5–12 Comparing Two Exception Objects

#include <pthread_exception.h>
.
.
.
EXCEPTION my_status;

EXCEPTION_INIT (my_status);
pthread_exc_set_status_np (&my_status, status_code);
.
.
.
TRY {

.

.

.
}
.
.
.
CATCH_ALL {

if (pthread_exc_matches_np (THIS_CATCH, &my_status))
fprintf (stderr, "This is my exception\n");

RERAISE;
}
ENDTRY

5.9 Using Exceptions
This section presents guidelines for using exceptions in a modular way, so that
independent software components can be written without requiring knowledge of
each other, and includes tips on writing code using exceptions.

5.9.1 Develop Naming Conventions for Exceptions
Develop naming conventions for exception objects. A naming convention ensures
that the names for exceptions that are declared extern in different modules do
not conflict. The following convention is recommended:

facility-prefix_error-name_e

Example: pthread_cancel_e

5.9.2 Enclose Appropriate Actions in an Exception Scope
In a TRY code block avoid including code that more appropriately belongs outside
it (in particular, before it). That is, the TRY macro should guard only operations
for which there are appropriate handler operations in the scope’s FINALLY, CATCH,
or CATCH_ALL code blocks.

A common misuse of a TRY code block is to include code that should be executed
before the TRY macro is invoked. Example 5–13 demonstrates this misuse.

In this example, the FINALLY code block assumes that no exception is raised
by calling the open_file() routine. If calling open_file() results in raising
an exception, the FINALLY code block’s close() operation will use an invalid
identifier.

5–16 Using the Exceptions Package

Using the Exceptions Package
5.9 Using Exceptions

Example 5–13 Incorrect Placement of Statements That Might Raise an
Exception

TRY {
handle = open_file (file_name);

/* Statements that might raise an exception here */

}
FINALLY {

close (handle);
}
ENDTRY

Example 5–14 Correct Placement of Statements That Might Raise an Exception

handle = open_file (file_name);
TRY {

/* Statements that might raise an exception here */

}
FINALLY {

close (handle);
}
ENDTRY

Thus, the code in Example 5–13 should be rewritten as shown in Example 5–14.

Notice that the initialization code belongs prior to the invoking of the TRY
macro, and the matching cleanup code belongs in the FINALLY code block. In
this example, the open_file() call is moved to before the TRY macro, and the
close() call is kept in the FINALLY block.

5.9.3 Raise Exceptions Prior to Performing Side-Effects
Raise exceptions prior to performing side-effects. That is, write routines that
propagate exceptions to their callers, so that the routine does not modify any
persistent process state before raising the exception. A matching close() call
is required only if the open_file() operation is successful. (If an exception is
raised, the caller cannot access the output parameters of the function, because
the compiler may not have copied temporary values back to their home locations
from registers.)

If the open_file() routine raises an exception, the identifier will not have been
written, so this open operation must not require that a corresponding close()
routine is called when open_file() raises an exception.

5.9.4 Exiting an Exception Scope
Do not place a return or goto statement between TRY and ENDTRY. It is invalid
to return from, branch from, or leave by other means a TRY, CATCH, CATCH_ALL,
or FINALLY block, such as by using a continue or break in an exception scope
contained inside a loop or switch statement. After a given TRY macro is executed,
the exceptions package requires that the corresponding ENDTRY macro is also
executed unless an exception is raised or reraised.

Using the Exceptions Package 5–17

Using the Exceptions Package
5.9 Using Exceptions

5.9.5 Declare Variables Within Handler Code as Volatile
When declaring certain variables that are used within an exception scope, you
must use the ANSI C volatile type attribute. The volatile attribute prevents
the compiler from producing certain optimizations about such variables that
would be unsafe if an exception were raised. This ensures that such a variable’s
value is reliable in an exception handler after an exception is raised.

Use the volatile type attribute for a variable whose value is written after the
TRY macro is invoked and before the first CATCH/CATCH_ALL/FINALLY macro is
invoked and whose value must be used when an exception is caught within a
CATCH/CATCH_ALL/FINALLY block or (if the exception is caught and not reraised)
after the ENDTRY macro is invoked.

Example 5–15 demonstrates the significance of using the volatile type qualifier
for variables that are referenced within an exception scope.

5–18 Using the Exceptions Package

Using the Exceptions Package
5.9 Using Exceptions

Example 5–15 Use of the Volatile Type Qualifier Within an Exception Scope

void demonstrate_volatile_in_exception_scope (void)
{

int updated_before_try;
int updated;
static int updated_static;
volatile int updated_volatile;

updated_before_try = 1;
updated = 2;
updated_static = 3;
updated_volatile = 4;

TRY {
updated = 6;
updated_static = 7;
updated_volatile = 8;

something_that_might_result_in_an_exception();
}
CATCH (fully_handled_exception) {

/* Fully handle the exception here.
Execute the code after ENDTRY next. */

}
CATCH_ALL { !

if (updated > updated_static)
printf ("%d, %d", updated, updated_before_try);

if (updated > updated_volatile)
printf ("%d, %d", updated, updated_before_try);

RERAISE;
}
ENDTRY "

/* The following two statements use invalid
references to the variables updated and
updated_static.** */

if (updated > updated_static)
printf ("%d, %d", updated, updated_before_try);

if (updated > updated_volatile)
printf ("%d, %d", updated, updated_before_try);

} /* end demonstrate_volatile_in_exception_scope() */

! Values of updated_volatile and updated_before_try are reliable. Values of
updated and updated_static are unreliable.

" Regardless of the path to this code, the values of updated_volatile and
updated_before_try are reliable. If this code is reached after the ENDTRY
macro is invoked and no exception has been raised, the values of updated
and updated_static are reliable. If this code is reached after the exception
fully_handled_exception has been caught, the values of updated and
updated_static are unreliable.

The code in Example 5–15 demonstrates:

• For variables referenced within exception handler code blocks, it is necessary
to distinguish between those whose value is set before versus after the TRY
macro is invoked in order to declare those variables properly.

Using the Exceptions Package 5–19

Using the Exceptions Package
5.9 Using Exceptions

• The requirement to use the volatile type qualifier pertains to a variable
regardless of its C storage class—that is, for both automatic and static
variables.

Test your program after compiling it with the ‘‘optimize’’ compiler option, to
ensure that your program contains the appropriate exception handler code.

5.9.6 Reraise Caught Exceptions That Are Not Fully Handled
Reraise exceptions that are not fully handled. That is, reraise any exception that
you catch, unless your handler has performed the complete recovery action for
the error. This rule permits an unhandled exception to propagate to some final
default handler that knows how to recover fully.

A corollary of this rule is that CATCH_ALL handlers must always reraise the
exceptions they catch because they can catch any exception, including those not
explicitly known to your code.

It is important to follow this convention, so that your program does not stop the
propagation of a thread cancelation exception or thread-exit request exception.
The Threads Library maps these requests into exceptions, so that exception
handler code can have the opportunity to handle all exceptional conditions—from
access violations to thread-exit. In some applications it is important to be able to
catch these to preserve an external invariant, such as an on-disk database, but
they must always be reraised so that the thread will terminate properly.

5.9.7 Avoid Dynamically Allocated Exception Objects
Avoid dynamically allocated exception objects. Local exception objects should
be declared (explicitly or implicitly) as static, and extern exception objects are
acceptable.

5.10 Exceptions Defined by the POSIX Threads Library
Table 5–1 lists the names of exception objects that are defined by the Threads
Library and the meaning of each exception.

Exception object names that begin with the prefix pthread_ are raised within
the runtime environment itself and are not meant to be raised by your program
code. Names of exception objects that begin with pthread_exc_ are generic and
belong to the exceptions package or represent exceptions raised by the underlying
system.

Table 5–1 Names of Exception Objects Defined by the Threads Library

Exception Definition

pthread_cancel_e Thread cancelation in progress

pthread_exc_aritherr_e Unhandled floating-point exception signal (‘‘arithmetic
error’’)

pthread_exc_decovf_e Unhandled decimal overflow exception

pthread_exc_excpu_e ‘‘CPU-time limit exceeded’’

pthread_exc_exfilsiz_e ‘‘File size limit exceeded’’

pthread_exc_exquota_e Operation failed due to insufficient quota

(continued on next page)

5–20 Using the Exceptions Package

Using the Exceptions Package
5.10 Exceptions Defined by the POSIX Threads Library

Table 5–1 (Cont.) Names of Exception Objects Defined by the Threads Library

Exception Definition

pthread_exc_fltdiv_e Unhandled floating-point/decimal divide by zero exception

pthread_exc_fltovf_e Unhandled floating-point overflow exception

pthread_exc_fltund_e Unhandled floating-point underflow exception

pthread_exc_illaddr_e Data or object could not be referenced

pthread_exc_illinstr_e Unhandled illegal instruction signal (‘‘illegal instruction’’)

pthread_exc_insfmem_e Insufficient virtual memory for requested operation

pthread_exc_intdiv_e Unhandled integer divide by zero exception

pthread_exc_intovf_e Unhandled integer overflow exception

pthread_exc_noexcmem_e Out of memory while processing an exception

pthread_exc_nopriv_e Insufficient privilege for requested operation

pthread_exc_privinst_e Unhandled privileged instruction fault exception

pthread_exc_resaddr_e Unhandled reserved addressing fault exception

pthread_exc_resoper_e Unhandled reserved operand fault exception

pthread_exc_SIGABRT_e Unhandled signal ABORT

pthread_exc_SIGBUS_e Unhandled bus error signal

pthread_exc_SIGEMT_e Unhandled EMT signal

pthread_exc_SIGFPE_e Unhandled floating-point exception signal

pthread_exc_SIGILL_e Unhandled illegal instruction signal

pthread_exc_SIGIOT_e Unhandled IOT signal

pthread_exc_SIGPIPE_e Unhandled broken pipe signal

pthread_exc_SIGSEGV_e Unhandled segmentation violation signal

pthread_exc_SIGSYS_e Unhandled bad system call signal

pthread_exc_SIGTRAP_e Unhandled trace or breakpoint trap signal

pthread_exc_subrng_e Unhandled subscript out of range exception

pthread_exc_uninitexc_e Uninitialized exception raised

pthread_exit_e Thread exiting using pthread_exit()

pthread_stackovf_e Attempted stack overflow was detected

5.11 Interoperability of Language-Specific Exceptions
In general, the parts of your program that are coded in a given language (C, C++,
Ada) can use only that language’s own exception objects. This is also true for a
program that uses the Threads Library.

Currently on Tru64 UNIX systems, your program cannot use CATCH to catch a
C++ or Ada exception.

However, in a program that uses the Threads Library, C++ object destructors
will run when an exception from any facility, including the Threads Library,
reaches that frame. This includes the exceptions pthread_cancel_e (cancelation
of thread) and pthread_exit_e (thread exit).

Using the Exceptions Package 5–21

Using the Exceptions Package
5.12 Host Operating System Dependencies

5.12 Host Operating System Dependencies
This section mentions dependencies of the exceptions package on the operating
system environment.

5.12.1 Tru64 UNIX Dependencies
Tru64 UNIX has an architecturally specified exception model that is used by the
Threads Library as well as C++, Compaq Ada, and other languages that support
exceptions. The Compaq C compiler has extensions that allow ‘‘native’’ exception
handling.

5.12.2 OpenVMS Conditions and Exceptions
On OpenVMS, the Threads Library propagates exceptions within the context of
the OpenVMS Condition Handling Facility (CHF). An exception is typically raised
by calling LIB$STOP with one of the condition codes listed in Table B–3.

Like the pthread_cleanup_push() routine, the exceptions package’s TRY macro
establishes an OpenVMS condition handler that catches conditions of ‘‘fatal’’ or
‘‘severe’’ severity. Conditions with other severity values are passed through and
thus cannot be caught using exception handler code.

This requirement also pertains to status exceptions. Thus, you cannot use the
exceptions package’s CATCH, CATCH_ALL, and FINALLY macros to handle a status
exception that is not of ‘‘severe’’ or ‘‘fatal’’ severity.

When your program raises an exception, an OpenVMS condition has been
signaled. Until the exception is actually caught (that is, before passing through
any TRY blocks or cleanup handlers), the primary condition code is either CMA$_
EXCEPTION (for an address exception) or a status value (for a status exception).

When a status exception is reraised, whether performed explicitly in a CATCH
or CATCH_ALL block or implicitly at the end of a FINALLY block or a cleanup
handler, the Threads Library changes the primary condition code to either
CMA$_EXCCOP or CMA$_EXCCOPLOS (depending on whether the contents of
the exception can be reliably copied) and chains the original status code to the
new primary as a secondary condition code. The Threads Library propagates the
exception by calling LIB$STOP with the new argument array.

When a status exception is reraised, the Threads Library changes the primary
condition code to indicate, first, that the exception has been reraised and, second,
that the state of the program has been altered since the original exception was
raised—that is, some number of frames have been unwound from the stack,
which makes the values of any local variables unavailable.

This behavior also has these effects:

• The new primary condition code is not available to any CATCH blocks in call
frames further into the stack, because those blocks trigger based on the
status value in the original status exception; however, subsequent CATCHES
will function properly.

• The status code for the original status exception is available to any ‘‘native’’
OpenVMS condition handler in the argument array as a chained (secondary)
OpenVMS condition. You must code such a handler to recognize the CMA$_
EXCCOP and CMA$_EXCCOPLOS condition codes and to use the chained
condition code when those are encountered as the primary.

5–22 Using the Exceptions Package

Using the Exceptions Package
5.12 Host Operating System Dependencies

For example, output of the following form indicates that some thread incurred an
access violation that was propagated as an exception without being fully handled.

%CMA-F-EXCCOP, exception raised; VMS condition code follows
-SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
address=0000000000000000, PC=000000000002013C, PS=0000001B

After noticing the location where the access violation occurred, or by running the
failing program under the debugger with a breakpoint set on exceptions, you can
determine the location from which the exception (in this example, the ACCVIO
condition) is originating.

Using the Exceptions Package 5–23

6
Examples

This chapter presents two example programs that use routines in the pthread
interface. Example 6–1 utilizes one parent thread and a set of worker threads to
perform a prime number search. Example 6–2 implements a simple, text-based,
asynchronous user interface that reads and writes commands to the terminal.

Both examples use the pthread interface routines and rely on their default
status-returning mechanism to indicate routine completion status. Example 6–1
uses the POSIX cleanup handler mechanism to clean up from thread cancelation.
In contrast, Example 6–2 uses the exception package to capture and clean up
from thread cancelation and other synchronous fatal error conditions.

6.1 Prime Number Search Example
Example 6–1 shows the use of pthread interface routines in a C program that
performs a prime number search. The program finds a specified number of prime
numbers, then sorts and displays these numbers. Several threads participate
in the search: each thread takes a number (the next one to be checked), checks
whether it is a prime, records it if it is prime, and then takes another number,
and so on.

This program reflects the work crew functional model (see Section 1.4.2.) The
worker threads increment the integer variable current_num to obtain their next
work assignment. As a whole, the worker threads are responsible for finding a
specified number of prime numbers, at which point their work is complete.

The number of worker threads to use and the number of prime numbers to find
are defined as constants. A macro checks for an error status from each call to
the Threads Library and prints a given string and the associated error value.
Data that is accessed by all threads (mutexes, condition variables, and so on) are
declared as global items.

Each worker thread executes the prime_search() routine, which immediately
waits for permission to continue from the parent thread. The worker thread
synchronizes with the parent thread using a predicate and a condition variable.
Before and after waiting on the condition variable, each worker thread pushes
and pops, respectively, a cleanup handler routine (unlock_cond()) to allow
recovery from cancelation or other unexpected thread exit.

Notice that a predicate loop encloses the condition wait, to prevent the worker
thread from continuing if it is wrongly signaled or broadcast. The lock associated
with the condition variable must be held by the thread during the call to
condition wait. The lock is released within the call and acquired again upon
being signaled or broadcast. Note that the same mutex must be used for all
operations performed on a specific condition variable.

Examples 6–1

Examples
6.1 Prime Number Search Example

After the parent sets the predicate and broadcasts, each worker thread begins
finding prime numbers until canceled by a fellow worker who has found the last
requested prime number. Upon each iteration a given worker increments the
current number to examine and takes that new value as its next work item. Each
worker thread uses a mutex to access the next work item, to ensure that no two
threads are working on the same item. This type of locking protocol should be
performed on all global data to ensure its integrity.

Next, each worker thread determines whether its current work item is prime
by trying to divide numbers into it. If the number proves to be nondivisible, it
is put on the list of primes. The worker thread disables its own cancelability
while working with the list of primes, to control more easily any cancelation
requests that might occur. The list of primes and its current count are protected
by mutexes, which also protect the step of canceling all other worker threads
upon finding the last requested prime. While the prime list mutex’s remains
locked, the worker checks whether it has found the last requested prime, and, if
so, unsets a predicate and cancels all other worker threads. Finally, the worker
enables its own cancelability.

The canceling thread should fall out of the work loop as a result of the predicate
that it unsets.

The parent thread’s flow of execution is as follows:

• Set up the environment, which means initialize the program’s mutexes and
one condition variable.

• Create worker threads. Creation of worker threads is straightforward and
uses the default attributes.

• Broadcast to the worker threads that they can start.

• Join each thread as it finishes. As the parent joins each of the returning
worker threads, it receives an exit value from each that indicates whether
that worker thread exited normally. In this case, the exit values on all but
one of the worker threads should be –1, indicating that the thread was
canceled.

• Sort and print the list of primes.

The following pthread interface routines are used in Example 6–1:

pthread_cancel()
pthread_cleanup_pop()
pthread_cleanup_push()
pthread_cond_wait()
pthread_create()

pthread_join()

pthread_mutex_lock()
pthread_mutex_unlock()

pthread_setcancelstate()

pthread_testcancel()

6–2 Examples

Examples
6.1 Prime Number Search Example

Example 6–1 C Program Example (Prime Number Search)

/*
*
* example program conducting a prime number search
*
*/

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

/*
* Constants used by the example.
*/
#define workers 5 /* Threads to perform prime check */
#define request 110 /* Number of primes to find */

/*
* Macros
*/

#define check(status,string) if (status != 0) { \
errno = status; \
fprintf (stderr, "%s status %d: %s\n", status, string, strerror (status)); \

}

/*
* Global data
*/

pthread_mutex_t prime_list = PTHREAD_MUTEX_INITIALIZER; /* Mutex for use in
accessing the
prime */

pthread_mutex_t current_mutex = PTHREAD_MUTEX_INITIALIZER; /* Mutex associated
with current
number */

pthread_mutex_t cond_mutex = PTHREAD_MUTEX_INITIALIZER; /* Mutex used for
thread start */

pthread_cond_t cond_var = PTHREAD_COND_INITIALIZER; /* Condition variable
for thread start */

int current_num= -1;/* Next number to be checked, start odd */
int thread_hold=1; /* Number associated with condition state */
int count=0; /* Count of prime numbers - index to primes */
int primes[request];/* Store prime numbers - synchronize access */
pthread_t threads[workers]; /* Array of worker threads */

static void
unlock_cond (void* arg)
{

int status; /* Hold status from pthread calls */

status = pthread_mutex_unlock (&cond_mutex);
check (status, "Mutex_unlock");

}

(continued on next page)

Examples 6–3

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

/*
* Worker thread routine.
*
* Worker threads start with this routine, which begins with a condition wait
* designed to synchronize the workers and the parent. Each worker thread then
* takes a turn taking a number for which it will determine whether or not it
* is prime.
*/
void *
prime_search (void* arg)
{

int numerator; /* Used to determine primeness */
int denominator; /* Used to determine primeness */
int cut_off; /* Number being checked div 2 */
int notifiee; /* Used during a cancelation */
int prime; /* Flag used to indicate primeness */
int my_number; /* Worker thread identifier */
int status; /* Hold status from pthread calls */
int not_done=1; /* Work loop predicate */
int oldstate; /* Old cancel state */

my_number = (int)arg;

/*
* Synchronize threads and the parent using a condition variable, the
* predicate of which (thread_hold) will be set by the parent.
*/

status = pthread_mutex_lock (&cond_mutex);
check (status, "Mutex_lock");

pthread_cleanup_push (unlock_cond, NULL);

while (thread_hold) {
status = pthread_cond_wait (&cond_var, &cond_mutex);
check (status, "Cond_wait");

}

pthread_cleanup_pop (1);

/*
* Perform checks on ever larger integers until the requested
* number of primes is found.
*/

while (not_done) {

/* Test for cancelation request */
pthread_testcancel ();

/* Get next integer to be checked */
status = pthread_mutex_lock (¤t_mutex);
check (status, "Mutex_lock");
current_num = current_num + 2; /* Skip even numbers */
numerator = current_num;
status = pthread_mutex_unlock (¤t_mutex);
check (status, "Mutex_unlock");

/* Only need to divide in half of number to verify not prime */
cut_off = numerator/2 + 1;
prime = 1;

(continued on next page)

6–4 Examples

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

/* Check for prime; exit if something evenly divides */
for (denominator = 2;

((denominator < cut_off) && (prime));
denominator++) {
prime = numerator % denominator;

}

if (prime != 0) {

/* Explicitly turn off all cancels */
pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, &oldstate);

/*
* Lock a mutex and add this prime number to the list. Also,
* if this fulfills the request, cancel all other threads.
*/

status = pthread_mutex_lock (&prime_list);
check (status, "Mutex_lock");

if (count < request) {
primes[count] = numerator;
count++;

}
else if (count >= request) {

not_done = 0;
count++;
for (notifiee = 0; notifiee < workers; notifiee++) {

if (notifiee != my_number) {
status = pthread_cancel (threads[notifiee]);
check (status, "Cancel");

}
}

}

status = pthread_mutex_unlock (&prime_list);
check (status, "Mutex_unlock");

/* Reenable cancelation */
pthread_setcancelstate (oldstate, &oldstate);

}

pthread_testcancel ();
}

return arg;
}

main()
{

int worker_num; /* Counter used when indexing workers */
void *exit_value; /* Individual worker’s return status */
int list; /* Used to print list of found primes */
int status; /* Hold status from pthread calls */
int index1; /* Used in sorting prime numbers */
int index2; /* Used in sorting prime numbers */
int temp; /* Used in a swap; part of sort */
int line_idx; /* Column alignment for output */

/*
* Create the worker threads.
*/

(continued on next page)

Examples 6–5

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

for (worker_num = 0; worker_num < workers; worker_num++) {
status = pthread_create (

&threads[worker_num],
NULL,
prime_search,
(void*)worker_num);

check (status, "Pthread_create");
}

/*
* Set the predicate thread_hold to zero, and broadcast on the
* condition variable that the worker threads may proceed.
*/
status = pthread_mutex_lock (&cond_mutex);
check (status, "Mutex_lock");
thread_hold = 0;
status = pthread_cond_broadcast (&cond_var);
check (status, "Cond_broadcast");
status = pthread_mutex_unlock (&cond_mutex);
check (status, "Mutex_unlock");

/*
* Join each of the worker threads in order to obtain their
* summation totals, and to ensure each has completed
* successfully.
*
* Mark thread storage free to be reclaimed upon termination by
* detaching it.
*/

for (worker_num = 0; worker_num < workers; worker_num++) {
status = pthread_join (threads[worker_num], &exit_value);
check (status, "Pthread_join");

if (exit_value == (void*)worker_num)
printf ("Thread %d terminated normally\n", worker_num);

else if (exit_value == PTHREAD_CANCELED)
printf ("Thread %d was canceled\n", worker_num);

else
printf ("Thread %d terminated unexpectedly with %#lx\n",

worker_num, exit_value);

/*
* Upon normal termination the exit_value is equivalent to worker_num.
*/

}

/*
* Take the list of prime numbers found by the worker threads and
* sort them from lowest value to highest. The worker threads work
* concurrently; there is no guarantee that the prime numbers
* will be found in order. Therefore, a sort is performed.
*/
for (index1 = 1; index1 < request; index1++) {

for (index2 = 0; index2 < index1; index2++) {
if (primes[index1] < primes[index2]) {

temp = primes[index2];
primes[index2] = primes[index1];
primes[index1] = temp;

}
}

}

(continued on next page)

6–6 Examples

Examples
6.1 Prime Number Search Example

Example 6–1 (Cont.) C Program Example (Prime Number Search)

/*
* Print out the list of prime numbers that the worker threads
* found.
*/
printf ("The list of %d primes follows:\n", request);

for (list = 0, line_idx = 0; list < request; list++, line_idx++) {

if (line_idx >= 10) {
printf (",\n");
line_idx = 0;

}
else if (line_idx > 0)

printf (",\t");

printf ("%d", primes[list]);
}
printf ("\n");

}

Examples 6–7

Examples
6.2 Asynchronous User Interface Example

6.2 Asynchronous User Interface Example
Example 6–2 implements a simple, text-based, asynchronous user interface. It
allows you to use the terminal to start multiple commands that run concurrently
and that report their results at the terminal when complete. You can monitor the
status of, or cancel, commands that are already running.

This C program utilizes pthread interface routines but also uses the exception
package to capture and clean up from thread cancelations (and other synchronous
fatal errors) as exceptions.

Asynchronous Commands
The asynchronous commands are date and time.

The asynchronous commands are as follows:

• date delay_number_of_seconds

Waits the specified number of seconds before displaying today’s date

• time delay_number_of_seconds

Waits the specified number of seconds before displaying the time of day

For example, issuing the following command causes the program to wait 10
seconds before reporting the time:

Info> time 10

Housekeeping Commands
The housekeeping commands are as follows:

• status command_number

Displays the state of a command

• wait command_number

Waits for a command to finish

• cancel command_number

Stops a command

The argument command_number is the number of the command that assigned
and displayed when the asynchronous command starts.

This program is limited to four outstanding commands.

Here is a sample of the output that the program produces:

Info> help
Commands are formed by a verb and an optional numeric argument.
The following commands are available:

Cancel <COMMAND> Cancel running command
Date <DELAY> Print the date
Help Print this text
Quit Quit (same as EOF)
Status [<COMMAND>] Report on running command
Time <DELAY> Print the time
Wait <COMMAND> Wait for command to finish

<COMMAND> refers to the command number.
<DELAY> delays the command execution for some number of seconds.
This delay simulates a command task that actually takes some
period of time to execute. During this delay, commands may be
initiated, queried, and/or canceled.

6–8 Examples

Examples
6.2 Asynchronous User Interface Example

Info> time 5
This is command #0.
Info> date 15
This is command #1.

(0) At the tone the time will be, 11:19:46.

Info> status 1
Command #1: "date", 8 seconds remaining.

Info> status 1
Command #1: "date", 5 seconds remaining.

Info> time 10
This is command #0.

Info> status 0
Command #0: "time", 8 seconds remaining.

Info> status 1
Command #1: "date", waiting to print.

(1) Today is Tue, 6 Oct 1992.

Info> time 3
This is command #0.

Info> wait 0
(0) At the tone the time will be, 11:21:26.

Info> date 10
This is command #0.

Info> cancel 0
(0) Canceled.
Info> quit

The following pthread routines are used in Example 6–2:

pthread_cancel()
pthread_cond_signal()
pthread_cond_wait()
pthread_create()

pthread_delay_np()
pthread_detach()

pthread_exc_report_np()

pthread_join()

pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_unlock()

pthread_once()

sched_yield()

Examples 6–9

Examples
6.2 Asynchronous User Interface Example

In the program source, notice that:

• The main() routine uses pthread_once() to perform one-time initialization.

• The do_delay() routine specifies the preset delay interval. For a timespec
structure, initializing tv.sec = 1 and tv.nsec = 0 results in a delay of one
second.

• The do_cleanup() and find_free_thread() routines must lock two mutexes
at the same time. To avoid deadlock, each routine in the program must lock
the two mutexes in the same order.

• The find_free_thread() routine uses pthread_detach() to detach the free
thread found because no other threads will join it.

6–10 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 C Program Example (Asynchronous User Interface)

/*
*
* example program featuring an asynchronous user interface
*
*/

/*
* Include files
*/
#include <pthread.h>
#include <pthread_exception.h>
#include <stdio.h>
#include <time.h>

#define check(status,string) if (status != 0) { \
fprintf (stderr, "%s status %d: %s\n", string, status, strerror (status)); \

}

/*
* Local definitions
*/
#define PROMPT "Info> " /* Prompt string */
#define MAXLINSIZ 81 /* Command line size */
#define THDNUM 5 /* Number of server threads */

/*
* Server thread "states"
*/
#define ST_INIT 0 /* "Initial" state (no thread) */
#define ST_FINISHED 1 /* Command completed */
#define ST_CANCELED 2 /* Command was canceled */
#define ST_ERROR 3 /* Command was terminated by an error */
#define ST_RUNNING 4 /* Command is running */

#ifndef FALSE /* Just in case these are not defined */
define FALSE 0
define TRUE (!FALSE)
#endif

#ifndef NULL /* Just in case this is not defined */
define NULL ((void*)0)
#endif

/*
* Global variables
*/
struct THREAD_DATA {

pthread_t thread; /* Server thread handle */
pthread_mutex_t mutex; /* Mutex to protect fields below */
int time; /* Amount of delay remaining */
char task; /* Task being performed (’t’ or ’d’) */
int state; /* State of the server thread */

} thread_data[THDNUM];

pthread_mutex_t free_thread_mutex = /* Mutex to protect "free_thread" */
PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t free_thread_cv = /* Condition variable for same */
PTHREAD_COND_INITIALIZER;

int free_thread; /* Flag indicating a free thread */

(continued on next page)

Examples 6–11

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Local Routines
*/
static void
dispatch_task (void *(*routine)(void*), char task, int time);

static void
do_cancel (int index);

static void
do_cleanup (int index, int final_state);

static void*
do_date (void* arg);

static void
do_delay (int index);

static void
do_status (int index);

static void*
do_time (void* arg);

static void
do_wait (int index);

static int
find_free_thread (int *index);

static char *
get_cmd (char *buffer, int size);

static int
get_y_or_n (char *query, char defans);

static void
init_routine (void);

static void
print_help (void);

/*
* The main program:
*/
main()
{

int done = FALSE; /* Flag indicating user is "done" */
char cmdline[MAXLINSIZ]; /* Command line */
char cmd_wd[MAXLINSIZ]; /* Command word */
int cmd_arg; /* Command argument */
int cmd_cnt; /* Number of items on command line */
int status;
void *(*routine)(void*); /* Routine to execute in a thread */
static pthread_once_t once_block = PTHREAD_ONCE_INIT;

/*
* Perform program initialization.
*/
status = pthread_once (&once_block, init_routine);
check (status, "Pthread_once");

(continued on next page)

6–12 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Main command loop
*/
do {

/*
* Get and parse a command. Yield first so that any threads waiting
* to execute get a chance to before we take out the global lock
* and block for I/O.
*/
sched_yield ();
if (get_cmd(cmdline, sizeof (cmdline))) {

cmd_cnt = sscanf (cmdline, "%s %d", cmd_wd, &cmd_arg);
routine = NULL; /* No routine yet */

if ((cmd_cnt == 1) || (cmd_cnt == 2)) { /* Normal result */
cmd_wd[0] = tolower(cmd_wd[0]); /* Map to lower case */
switch (cmd_wd[0]) {
case ’h’: /* "Help" */
case ’?’:

print_help();
break;

case ’q’: /* "Quit" */
done = TRUE;
break;

case ’s’: /* "Status" */
do_status ((cmd_cnt == 2 ? cmd_arg : -1));
break;

/*
* These commands require an argument
*/
case ’c’: /* "Cancel" */
case ’d’: /* "Date" */
case ’t’: /* "Time" */
case ’w’: /* "Wait" */

if (cmd_cnt != 2)
printf ("Missing command argument.\n");

else {
switch (cmd_wd[0]) {
case ’c’: /* "Cancel" */

do_cancel (cmd_arg);
break;

case ’d’: /* "Date" */
routine = do_date;
break;

case ’t’: /* "Time" */
routine = do_time;
break;

case ’w’: /* "Wait" */
do_wait (cmd_arg);
break;

}
}
break;

default:
printf ("Unrecognized command.\n");
break;

}
}
else if (cmd_cnt != EOF) /* Ignore blank command line */

printf ("Unexpected parse error.\n");

(continued on next page)

Examples 6–13

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* If there is a routine to be executed in a server thread,
* create the thread.
*/
if (routine) dispatch_task (routine, cmd_wd[0], cmd_arg);

}
else

done = TRUE;
} while (!done);

}

/*
* Create a thread to handle the user’s request.
*/
static void
dispatch_task (void *(*routine)(void*), char task, int time)
{

int i; /* Index of free thread slot */
int status;

if (find_free_thread (&i)) {
/*
* Record the data for this thread where both the main thread and the
* server thread can share it. Lock the mutex to ensure exclusive
* access to the storage.
*/
status = pthread_mutex_lock (&thread_data[i].mutex);
check (status, "Mutex_lock");
thread_data[i].time = time;
thread_data[i].task = task;
thread_data[i].state = ST_RUNNING;
status = pthread_mutex_unlock (&thread_data[i].mutex);
check (status, "Mutex_unlock");

/*
* Create the thread, using the default attributes. The thread will
* execute the specified routine and get its data from array slot ’i’.
*/
status = pthread_create (

&thread_data[i].thread,
NULL,
routine,
(void*)i);

check (status, "Pthread_create");
printf ("This is command #%d.\n\n", i);

}

}

/*
* Wait for the completion of the specified command.
*/
static void
do_cancel (int index)
{

int cancelable;
int status;

(continued on next page)

6–14 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

if ((index < 0) || (index >= THDNUM))
printf ("Bad command number %d.\n", index);

else {
status = pthread_mutex_lock (&thread_data[index].mutex);
check (status, "Mutex_lock");
cancelable = (thread_data[index].state == ST_RUNNING);
status = pthread_mutex_unlock (&thread_data[index].mutex);
check (status, "Mutex_unlock");

if (cancelable) {
status = pthread_cancel (thread_data[index].thread);
check (status, "Pthread_cancel");

}
else

printf ("Command %d is not active.\n", index);
}

}

/*
* Post-task clean-up routine.
*/
static void
do_cleanup (int index, int final_state)
{

int status;

/*
* This thread is about to make the change from "running" to "finished",
* so lock a mutex to prevent a race condition in which the main thread
* sees this thread as finished before it is actually done cleaning up.
*
* Note that when attempting to lock more than one mutex at a time,
* always lock the mutexes in the same order everywhere in the code.
* The ordering here is the same as in "find_free_thread".
*/
status = pthread_mutex_lock (&free_thread_mutex);
check (status, "Mutex_lock");

/*
* Mark the thread as finished with its task.
*/
status = pthread_mutex_lock (&thread_data[index].mutex);
check (status, "Mutex_lock");
thread_data[index].state = final_state;
status = pthread_mutex_unlock (&thread_data[index].mutex);
check (status, "Mutex_unlock");

/*
* Set the flag indicating that there is a free thread, and signal the
* main thread, in case it is waiting.
*/
free_thread = TRUE;
status = pthread_cond_signal (&free_thread_cv);
check (status, "Cond_signal");
status = pthread_mutex_unlock (&free_thread_mutex);
check (status, "Mutex_unlock");

}

(continued on next page)

Examples 6–15

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Thread routine that prints out the date.
*
* Synchronize access to ctime as it is not thread-safe (it returns the address
* of a static string). Also synchronize access to stdio routines.
*/
static void*
do_date (void* arg)
{

time_t clock_time; /* Julian time */
char *date_str; /* Pointer to string returned from ctime */
char day[4], month[4], date[3], year[5]; /* Pieces of ctime string */

TRY {
/*
* Pretend that this task actually takes a long time to perform.
*/
do_delay ((int)arg);
clock_time = time ((time_t *)0);
date_str = ctime (&clock_time);
sscanf (date_str, "%s %s %s %*s %s", day, month, date, year);
printf ("%d) Today is %s, %s %s %s.\n\n", arg, day, date, month, year);

}
CATCH (pthread_cancel_e) {

printf ("%d) Canceled.\n", arg);

/*
* Perform exit actions
*/
do_cleanup ((int)arg, ST_CANCELED);
RERAISE;

}
CATCH_ALL {

printf ("%d) ", arg);
pthread_exc_report_np (THIS_CATCH);

/*
* Perform exit actions
*/
do_cleanup ((int)arg, ST_ERROR);
RERAISE;

}
ENDTRY;

/*
* Perform exit actions (thread was not canceled).
*/
do_cleanup ((int)arg, ST_FINISHED);

/*
* All thread routines return a value. This program does not check the
* value, however.
*/
return arg;

}

(continued on next page)

6–16 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Delay routine
*
* Since the actual tasks that threads do in this program take so little time
* to perform, execute a delay to make it seem like they are taking a long
* time. Also, this will give the user something of which to query the progress.
*/
static void
do_delay (int index)
{

static struct timespec interval = {1, 0};
int done; /* Loop exit condition */
int status;

while (TRUE) {
/*
* Decrement the global count, so the main thread can see how much
* progress we have made. Keep decrementing as long as the remaining
* time is greater than zero.
*
* Lock the mutex to ensure no conflict with the main thread that
* might be reading the time remaining while we are decrementing it.
*/
status = pthread_mutex_lock (&thread_data[index].mutex);
check (status, "Mutex_lock");
done = ((thread_data[index].time--) <= 0);
status = pthread_mutex_unlock (&thread_data[index].mutex);
check (status, "Mutex_unlock");

/*
* Quit if the time is up.
*/
if (done) break;

/*
* Wait for one second.
*/
pthread_delay_np (&interval);

}
}

/*
* Print the status of the specified thread.
*/
static void
do_status (int index)
{

int start, end; /* Range of commands queried */
int i; /* Loop index */
int output = FALSE; /* Flag: produced output */
int status;

if ((index < -1) || (index >= THDNUM))
printf ("Bad command number %d.\n", index);

else {
if (index == -1)

start = 0, end = THDNUM;
else

start = index, end = start + 1;

(continued on next page)

Examples 6–17

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

for (i = start; i < end; i++) {
status = pthread_mutex_lock (&thread_data[i].mutex);
check (status, "Mutex_lock");

if (thread_data[i].state != ST_INIT) {
printf ("Command #%d: ", i);

switch (thread_data[i].task) {
case ’t’:

printf ("\"time\", ");
break;

case ’d’:
printf ("\"date\", ");
break;

default:
printf ("[unknown] ");
break;

}

switch (thread_data[i].state) {
case ST_FINISHED:

printf ("completed");
break;

case ST_CANCELED:
printf ("canceled");
break;

case ST_ERROR:
printf ("terminated by error");
break;

case ST_RUNNING:
if (thread_data[i].time < 0)

printf ("waiting to print");
else

printf (
"%d seconds remaining",
thread_data[i].time);

break;
default:

printf ("Bad thread state.\n");
break;

}

printf (".\n");
output = TRUE;

}

status = pthread_mutex_unlock (&thread_data[i].mutex);
check (status, "Mutex_unlock");

}

if (!output) printf ("No such command.\n");

printf ("\n");
}

}

(continued on next page)

6–18 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Thread routine that prints out the date.
*/
static void*
do_time (void* arg)
{

time_t clock_time; /* Julian time */
char *date_str; /* Pointer to string returned from ctime */
char time_str[8]; /* Piece of ctime string */

TRY {
/*
* Pretend that this task actually takes a long time to perform.
*/
do_delay ((int)arg);
clock_time = time ((time_t *)0);
date_str = ctime (&clock_time);
sscanf (date_str, "%*s %*s %*s %s", time_str);
printf ("%d) At the tone the time will be, %s.%c\n\n",

arg,
time_str,
’\007’);

}
CATCH (pthread_cancel_e) {

printf ("%d) Canceled.\n", arg);
do_cleanup ((int)arg, ST_CANCELED);
RERAISE;

}
CATCH_ALL {

printf ("%d) ", arg);
pthread_exc_report_np (THIS_CATCH);
do_cleanup ((int)arg, ST_ERROR);
RERAISE;

}
ENDTRY;

/*
* Perform exit actions (thread was not canceled).
*/
do_cleanup ((int)arg, ST_FINISHED);

/*
* All thread routines return a value. This program does not check the
* value, however.
*/
return arg;

}

/*
* Wait for the completion of the specified command.
*/
static void
do_wait (int index)
{

int status;
void *value;

(continued on next page)

Examples 6–19

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

if ((index < 0) || (index >= THDNUM))
printf ("Bad command number %d.\n", index);

else {
status = pthread_join (thread_data[index].thread, &value);
check (status, "Pthread_join");

if (value == (void*)index)
printf ("Command %d terminated successfully.\n", index);

else if (value == PTHREAD_CANCELED)
printf ("Command %d was canceled.\n", index);

else
printf ("Command %d terminated with unexpected value %#lx",

index, value);

}

}

/*
* Find a free server thread to handle the user’s request.
*
* If a free thread is found, its index is written at the supplied address
* and the function returns true.
*/
static int
find_free_thread (int *index)
{

int i; /* Loop index */
int found; /* Free thread found */
int retry = FALSE; /* Look again for finished threads */
int status;

do {
/*
* We are about to look for a free thread, so prevent the data state
* from changing while we are looking.
*
* Note that when attempting to lock more than one mutex at a time,
* always lock the mutexes in the same order everywhere in the code.
* The ordering here is the same as in "do_cleanup".
*/
status = pthread_mutex_lock (&free_thread_mutex);
check (status, "Mutex_lock");

/*
* Find a slot that does not have a running thread in it.
*
* Before checking, lock the mutex to prevent conflict with the thread
* if it is running.
*/
for (i = 0, found = FALSE; i < THDNUM; i++) {

status = pthread_mutex_lock (&thread_data[i].mutex);
check (status, "Mutex_lock");
found = (thread_data[i].state != ST_RUNNING);
status = pthread_mutex_unlock (&thread_data[i].mutex);
check (status, "Mutex_unlock");

(continued on next page)

6–20 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Now that the mutex is unlocked, break out of the loop if the
* thread is free.
*/
if (found) break;

}

if (found)
retry = FALSE;

else {
retry = get_y_or_n (

"All threads are currently busy, do you want to wait?",
’Y’);

if (retry) {
/*
* All threads were busy when we started looking, so clear
* the "free thread" flag.
*/
free_thread = FALSE;

/*
* Now wait until some thread finishes and sets the flag
*/
while (!free_thread)

pthread_cond_wait (&free_thread_cv, &free_thread_mutex);
}

}
pthread_mutex_unlock (&free_thread_mutex);

} while (retry);

if (found) {
/*
* Request the Threads Library to reclaim its internal storage
* for this old thread before we use the handle to create a new one.
*/
status = pthread_detach (thread_data[i].thread);
check (status, "Pthread_detach");
*index = i;

}

return (found);
}

/*
* Get the next user command.
*
* Synchronize I/O with other threads to prevent conflicts if the stdio
* routines are not thread-safe.
*/
static char *
get_cmd (char *buffer, int size)
{

printf (PROMPT);
return fgets (buffer, size, stdin);

}

(continued on next page)

Examples 6–21

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Get a yes or no answer to a query. A "blank" answer uses default answer.
*
* Returns TRUE for "yes" and FALSE for "no".
*/
static int
get_y_or_n (char *query, char defans)
{

char buffer[MAXLINSIZ]; /* User’s answer */
int answer; /* Boolean equivalent */
int retry = TRUE; /* Ask again? */

do {
buffer[0] = ’\0’; /* Initialize the buffer */
flockfile (stdout);
flockfile (stdin);
printf ("%s [%c] ", query, defans);
fgets (buffer, sizeof (buffer), stdin);
funlockfile (stdin);
funlockfile (stdout);

if (buffer[0] == ’\0’) buffer[0] = defans; /* Apply default */

switch (buffer[0]) {
case ’y’:
case ’Y’:

answer = TRUE;
retry = FALSE;
break;

case ’n’:
case ’N’:

answer = FALSE;
retry = FALSE;
break;

default:
printf ("Please enter \"Y\" or \"N\".\n");
retry = TRUE;
break;

}
} while (retry);

return answer;
}

/*
* Initialization routine;
*
* Called as a one-time initialization action.
*/
static void
init_routine (void)
{

int i;

for (i = 0; i < THDNUM; i++) {
pthread_mutex_init (&thread_data[i].mutex, NULL);
thread_data[i].time = 0;
thread_data[i].task = ’\0’;
thread_data[i].state = ST_INIT;

}

}

(continued on next page)

6–22 Examples

Examples
6.2 Asynchronous User Interface Example

Example 6–2 (Cont.) C Program Example (Asynchronous User Interface)

/*
* Print help text.
*/

static void
print_help (void)
{

printf ("Commands are formed by a verb and optional numeric argument.\n");
printf ("The following commands are available:\n");
printf ("\tCancel\t[command]\tCancel running command\n");
printf ("\tDate\t[delay]\t\tPrint the date\n");
printf ("\tHelp\t\t\tPrint this text\n");
printf ("\tQuit\t\t\tQuit (same as EOF)\n");
printf ("\tStatus\t[command]\tReport on running command\n");
printf ("\tTime\t[delay]\t\tPrint the time\n");
printf ("\tWait\t[command]\tWait for command to finish\n");
printf ("\n[command] refers to the command number.\n");;
printf ("[delay] delays command execution for some number of seconds.\n");
printf ("This delay simulates a command task that actually takes some\n");
printf ("period of time to execute. During this delay, commands may be\n");
printf ("initiated, queried, and/or canceled.\n");

}

Examples 6–23

Part II
POSIX.1 (pthread) Routines Reference

Part II provides detailed descriptions of routines that constitute the pthread
interface. These routines (with the prefix pthread_) implement the IEEE
POSIX 1003.1-1996 (or POSIX.1) standard, subject to the capabilities of the host
operating system.

Note

The pthread routines described here are based on the final POSIX.1
standard approved by the IEEE.

Threads Library users should be aware that applications that use the
obsolete d4 interfaces will require significant modifications to upgrade
to the pthread interface. (The obsolete d4 interface corresponds to the
IEEE POSIX 1003.4a/Draft 4 document.)

The global errno variable is not used by the pthread interface routines. To
indicate errors, the pthread routines return integer values to indicate the error
condition.

Routine names with the _np suffix denote that the routine is not portable, with
respect to the POSIX.1 standard. That is, the routine might not be available in
implementations of the POSIX.1 standard other than the Threads Library.

The Threads Library adds the extensions specified by The Open Group’s
(formerly X/Open) Single UNIX Specification, Version 2—also known as
UNIX98. Some of the pthread interface routines that UNIX98 specifies
are not present in the IEEE POSIX 1003.1-1996 standard; these routines
include pthread_attr_getguardsize(), pthread_attr_setguardsize(),
pthread_mutexattr_gettype(), and pthread_mutexattr_settype(). The
Threads Library does not designate these routines as nonportable—that is, their
names do not use the _np suffix naming convention. While portable to other
implementations of the Single UNIX Specification, Version 2, these routines are
not portable to other implementations of the POSIX.1 standard.

pthread_atfork

pthread_atfork

Declares fork handler routines to be called when the calling thread’s process forks
a child process.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_atfork(
prepare,
parent,
child);

Argument Data Type Access

prepare Handler read

parent Handler read

child Handler read

C Binding

#include <pthread.h>
include <signal.h>

int
pthread_atfork (

void (*prepare)(void),
void (*parent)(void),
void (*child)(void));

Arguments

prepare
Address of a routine that performs the fork preparation handling. This routine is
called by the parent process before creating the child process.

parent
Address of a routine that performs the fork parent handling. This routine is
called by the parent process after creating the child process and before returning
to the caller of fork(2).

child
Address of a routine that performs the fork child handling. This routine is called
by the child process before returning to the caller of fork(2).

Description

This routine allows a main program or library to control resources during a Tru64
UNIX fork(2) operation by declaring fork handler routines, as follows:

• The fork handler routine specified in the prepare argument is called before
fork(2) executes.

• The fork handler routine specified in the parent argument is called after
fork(2) executes within the parent process.

pthread–3

pthread_atfork

• The fork handler routine specified in the child argument is called in the new
child process after fork(2) executes.

Your program (or library) can use fork handlers to ensure that program context
in the child process is consistent and meaningful. After fork(2) executes, only
the calling thread exists in the child process, and the state of all memory in
the parent process is replicated in the child process, including the states of any
mutexes, condition variables, and so on.

For example, the new child process might have locked mutexes that are copies
of mutexes that were locked in the parent process by threads that are not in the
child process. Therefore, any associated program state might be inconsistent in
the child process.

The program can avoid this problem by calling pthread_atfork() to provide
routines that acquire and release resources that are critical to the child process.
For example, the prepare handler should lock all mutexes that you want to be
usable in the child process. The parent handler just unlocks those mutexes. The
child handler will also unlock them all—and might also create threads or reset
any program state for the child process.

To illustrate, if your library uses the mutex my_mutex, you might provide
pthread_atfork() handler routines coded as follows:

void my_prepare(void)
{
pthread_mutex_lock(&my_mutex);
}

void my_parent(void)
{
pthread_mutex_unlock(&my_mutex);
}

void my_child(void)
{
pthread_mutex_unlock(&my_mutex);
/* Reinitialize state that does not apply...like heap owned */
/* by other threads */
}

{
.
.
.

pthread_atfork(my_prepare, my_parent, my_child);
.
.

fork();
}

If you do not want to use fork handlers, you can set any of this routine’s
arguments to NULL.

Note

It is illegal to call pthread_atfork() from within a fork handler routine.
Doing so could cause a deadlock.

pthread–4

pthread_atfork

Return Values

If an error occurs, this routine returns an integer indicating the type of error.
Possible return values are as follows:

Return Description

0 Successful completion.
[ENOMEM] Insufficient table space to record the fork handler routines’

addresses.

Associated Routines

pthread_create()

pthread–5

pthread_attr_destroy

pthread_attr_destroy

Destroys a thread attributes object.

Syntax

pthread_attr_destroy(
attr);

Argument Data Type Access

attr opaque pthread_attr_t modify

C Binding

#include <pthread.h>

int
pthread_attr_destroy (

pthread_attr_t *attr);

Arguments

attr
Thread attributes object to be destroyed.

Description

This routine destroys a thread attributes object. Call this routine when a thread
attributes object will no longer be referenced.

Threads that were created using this thread attributes object are not affected by
the destruction of the thread attributes object.

The results of calling this routine are unpredictable if the value specified by the
attr argument refers to a thread attributes object that does not exist.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_init()
pthread_create()

pthread–6

pthread_attr_getdetachstate

pthread_attr_getdetachstate

Obtains the detachstate attribute of the specified thread attributes object.

Syntax

pthread_attr_getdetachstate(
attr,
detachstate);

Argument Data Type Access

attr opaque pthread_attr_t read

detachstate integer write

C Binding

#include <pthread.h>

int
pthread_attr_getdetachstate (

const pthread_attr_t *attr,
int *detachstate);

Arguments

attr
Thread attributes object whose detachstate attribute is obtained.

detachstate
Receives the value of the detachstate attribute.

Description

This routine obtains the detachstate attribute of a thread attributes object. This
attribute specifies whether threads created using the specified thread attributes
object are created in a detached state.

On successful completion, this routine returns a zero and the detachstate
attribute is set in detachstate. A value of PTHREAD_CREATE_JOINABLE indicates the
thread is not detached, and a value of PTHREAD_CREATE_DETACHED indicates the
thread is detached.

See the pthread_attr_setdetachstate() description for information about the
detachstate attribute.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.

pthread–7

pthread_attr_getdetachstate

Return Description

[EINVAL] The value specified by attr does not refer to an existing
thread attributes object.

Associated Routines

pthread_attr_init()
pthread_attr_setdetachstate()

pthread–8

pthread_attr_getguardsize

pthread_attr_getguardsize

Obtains the guardsize attribute of the specified thread attributes object.

Syntax

pthread_attr_getguardsize(
attr,
guardsize);

Argument Data Type Access

attr opaque pthread_attr_t read

guardsize size_t write

C Binding

#include <pthread.h>

int
pthread_attr_getguardsize (

const pthread_attr_t *attr,
size_t *guardsize);

Arguments

attr
Address of the thread attributes object whose guardsize attribute is obtained.

guardsize
Receives the value of the guardsize attribute of the thread attributes object
specified by attr.

Description

This routine obtains the value of the guardsize attribute of the thread attributes
object specified in the attr argument and stores it in the location specified by the
guardsize argument. The specified attributes object must already be initialized at
the time this routine is called.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The guardsize attribute of a thread attributes object
specifies the minimum size (in bytes) of the guard area for the stack of a new
thread.

A guard area can help a multithreaded program detect the overflow of a thread’s
stack. A guard area is a region of no-access memory that the Threads Library
allocates at the overflow end of the thread’s stack. When any thread attempts
to access a memory location within this region, a memory addressing violation
occurs.

Note that the value of the guardsize attribute of a particular thread attributes
object does not necessarily correspond to the actual size of the guard area of any
existing thread in your multithreaded program.

pthread–9

pthread_attr_getguardsize

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr does not refer to an existing

thread attributes object.

Associated Routines

pthread_attr_init()
pthread_attr_setguardsize()
pthread_attr_setstacksize()
pthread_create()

pthread–10

pthread_attr_getinheritsched

pthread_attr_getinheritsched

Obtains the inherit scheduling attribute of the specified thread attributes object.

Syntax

pthread_attr_getinheritsched(
attr,
inheritsched);

Argument Data Type Access

attr opaque pthread_attr_t read

inheritsched integer write

C Binding

#include <pthread.h>

int
pthread_attr_getinheritsched (

const pthread_attr_t *attr,
int *inheritsched);

Arguments

attr
Thread attributes object whose inherit scheduling attribute is obtained.

inheritsched
Receives the value of the inherit scheduling attribute. Refer to the description of
the pthread_attr_setinheritsched() function for valid values.

Description

This routine obtains the value of the inherit scheduling attribute from the
specified thread attributes object. The inherit scheduling attribute specifies
whether threads created using the attributes object inherit the scheduling
attributes of the creating thread, or use the scheduling attributes stored in the
attributes object that is passed to pthread_create().

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

pthread–11

pthread_attr_getinheritsched

Associated Routines

pthread_attr_init()
pthread_attr_setinheritsched()
pthread_create()

pthread–12

pthread_attr_getname_np

pthread_attr_getname_np

Obtains the object name attribute from a thread attributes object.

Syntax

pthread_attr_getname_np(
attr,
name,
len,
mbz);

Argument Data Type Access

attr opaque pthread_attr_t read

name char write

len opaque size_t read

mbz void write

C Binding

#include <pthread.h>

int
pthread_attr_getname_np (

const pthread_attr_t *attr,
char *name,
size_t len,
void **mbz);

Arguments

attr
Address of the thread attributes object whose object name attribute is to be
obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

mbz
Reserved for future use. The value must be zero (0).

Description

This routine copies the object name attribute from the thread attributes object
specified by the attr argument to the buffer at the location specified by the name
argument. Before calling this routine, your program must allocate the buffer
indicated by name. A new thread created using the thread attributes object is
initialized with the object name that was set in that attributes object.

pthread–13

pthread_attr_getname_np

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified thread attributes object has not been previously set with an object
name, this routine copies a C language null string into the buffer at location
name.

This routine contrasts with pthread_getname_np(), which obtains the object
name from the thread object for an existing thread.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_getname_np()
pthread_attr_setname_np()
pthread_setname_np()

pthread–14

pthread_attr_getschedparam

pthread_attr_getschedparam

Obtains the scheduling parameters for an attribute of the specified thread
attributes object.

Syntax

pthread_attr_getschedparam(
attr,
param);

Argument Data Type Access

attr opaque pthread_attr_t read

param struct sched_param write

C Binding

#include <pthread.h>

int
pthread_attr_getschedparam (

const pthread_attr_t *attr,
struct sched_param *param);

Arguments

attr
Thread attributes object of the scheduling policy attribute whose parameters are
obtained.

param
Receives the values of scheduling parameters for the scheduling policy attribute
of the attributes object specified by the attr argument. Refer to the description
of the pthread_attr_setschedparam() routine for valid parameters and their
values.

Description

This routine obtains the scheduling parameters associated with the scheduling
policy attribute of the specified thread attributes object.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

pthread–15

pthread_attr_getschedparam

Associated Routines

pthread_attr_init()
pthread_attr_setschedparam()
pthread_create()

pthread–16

pthread_attr_getschedpolicy

pthread_attr_getschedpolicy

Obtains the scheduling policy attribute of the specified thread attributes object.

Syntax

pthread_attr_getschedpolicy(
attr,
policy);

Argument Data Type Access

attr opaque pthread_attr_t read

policy integer write

C Binding

#include <pthread.h>

int
pthread_attr_getschedpolicy (

const pthread_attr_t *attr,
int *policy);

Arguments

attr
Thread attributes object whose scheduling policy attribute is obtained.

policy
Receives the value of the scheduling policy attribute. Refer to the description of
the pthread_attr_setschedpolicy() routine for valid values.

Description

This routine obtains the value of the scheduling policy attribute of the specified
thread attributes object. The scheduling policy attribute defines the scheduling
policy for threads created using the attributes object.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

pthread–17

pthread_attr_getschedpolicy

Associated Routines

pthread_attr_init()
pthread_attr_setschedpolicy()
pthread_create()

pthread–18

pthread_attr_getscope

pthread_attr_getscope

Obtains the contention scope attribute of the specified thread attributes object.

Syntax

pthread_attr_getscope(
attr,
scope);

Argument Data Type Access

attr opaque pthread_attr_t read

scope int write

C Binding

#include <pthread.h>

int
pthread_attr_getscope (

const pthread_attr_t *attr,
int *scope);

Arguments

attr
Address of the thread attributes object whose contention scope attribute is
obtained.

scope
Receives the value of the contention scope attribute of the thread attributes object
specified by attr.

Description

This routine obtains the value of the contention scope attribute of the thread
attributes object specified in the attr argument and stores it in the location
specified by the scope argument. The specified attributes object must already be
initialized at the time this routine is called.

The contention scope attribute specifies the set of threads with which a thread
must compete for processing resources. The contention scope attribute specifies
whether the new thread competes for processing resources only with other
threads in its own process, called process contention scope, or with all threads
on the system, called system contention scope.

The Threads Library selects at most one thread to execute on each processor at
any point in time. The Threads Library resolves the contention based on each
thread’s scheduling attributes (for example, priority) and scheduling policy (for
example, round-robin).

A thread created using a thread attributes object whose contention scope
attribute is set to PTHREAD_SCOPE_PROCESS contends for processing resources
with other threads within its own process that also were created with
PTHREAD_SCOPE_PROCESS. It is unspecified how such threads are scheduled

pthread–19

pthread_attr_getscope

relative to threads in other processes or threads in the same process that were
created with PTHREAD_SCOPE_SYSTEM contention scope.

A thread created using a thread attributes object whose contention scope attribute
is set to PTHREAD_SCOPE_SYSTEM contends for processing resources with other
threads in any process that also were created with PTHREAD_SCOPE_SYSTEM.

Note that the value of the contention scope attribute of a particular thread
attributes object does not necessarily correspond to the actual scheduling
contention scope of any existing thread in your multithreaded program.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.
[ENOSYS] This routine is not supported by the implementation.

Associated Routines

pthread_attr_init()
pthread_attr_setscope()

pthread–20

pthread_attr_getstackaddr

pthread_attr_getstackaddr

Obtains the stack address attribute of the specified thread attributes object.

Syntax

pthread_attr_getstackaddr(
attr,
stackaddr);

Argument Data Type Access

attr opaque pthread_attr_t read

stackaddr void write

C Binding

#include <pthread.h>

int
pthread_attr_getstackaddr (

const pthread_attr_t *attr,
void **stackaddr);

Arguments

attr
Address of the thread attributes object whose stack address attribute is obtained.

stackaddr
Receives the value of the stack address attribute of the thread attributes object
specified by attr.

Description

This routine obtains the value of the stack address attribute of the thread
attributes object specified in the attr argument and stores it in the location
specified by the stackaddr argument. The specified attributes object must already
be initialized when this routine is called.

The stack address attribute of a thread attributes object points to the origin of
the stack for a new thread.

Note that the value of the stack address attribute of a particular thread attributes
object does not necessarily correspond to the actual stack origin of any existing
thread in your multithreaded program.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

pthread–21

pthread_attr_getstackaddr

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_getguardsize()
pthread_attr_getstacksize()
pthread_attr_init()
pthread_attr_setguardsize()
pthread_attr_setstackaddr()
pthread_attr_setstacksize()
pthread_create()

pthread–22

pthread_attr_getstackaddr_np

pthread_attr_getstackaddr_np

Obtains the stack address attribute of the specified thread attributes object.

Syntax

pthread_attr_getstackaddr_np(
attr,
stackaddr,
size);

Argument Data Type Access

attr opaque pthread_attr_t read

stackaddr void write

size size_t write

C Binding

#include <pthread.h>

int
pthread_attr_getstackaddr (

const pthread_attr_t *attr,
void **stackaddr,
size_t *size);

Arguments

attr
Address of the thread attributes object whose stack address attribute is obtained.

stackaddr
Receives the address of the stack region of the thread attributes object specified
by attr.

size
The size of the stack region in bytes.

Description

This routine obtains the value of the stack address attribute of the thread
attributes object specified in the attr argument and stores it in the location
specified by the stackaddr argument. The specified attributes object must already
be initialized when this routine is called.

The stack address attribute of a thread attributes object points to the origin of
the stack for a new thread.

Unlike pthread_attr_getstackaddr(), this routine is a much more reliable
portable interface. With the POSIX standard pthread_attr_getstackaddr(), a
stack is specified using a single, undefined, address. An implementation of the
standard can only assume that the specified value represents the value to which
the thread’s stack pointer should be set when beginning execution. However, this
requires the application to know how the machine uses the stack. For example,

pthread–23

pthread_attr_getstackaddr_np

a stack may ‘‘grow’’ either up (to higher addresses) or down (to lower addresses),
and may be decreased (or increased) either before or after storing a new value.

The Threads Library provides an alternative interface with
pthread_attr_getstackaddr_np(). Instead of returning a stack address, it
returns the base (lowest) address and the size.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_setstackaddr_np()

pthread–24

pthread_attr_getstacksize

pthread_attr_getstacksize

Obtains the stacksize attribute of the specified thread attributes object.

Syntax

pthread_attr_getstacksize(
attr,
stacksize);

Argument Data Type Access

attr opaque pthread_attr_t read

stacksize size_t write

C Binding

#include <pthread.h>

int
pthread_attr_getstacksize (

const pthread_attr_t *attr,
size_t *stacksize);

Arguments

attr
Thread attributes object whose stacksize attribute is obtained.

stacksize
Receives the value for the stacksize attribute of the thread attributes object
specified by the attr argument.

Description

This routine obtains the stacksize attribute of the thread attributes object
specified in the attr argument.

Return Values

On successful completion, this routine returns a zero (0) and the stacksize value
in bytes in the location specified in the stacksize argument.

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid stack attributes

object.

pthread–25

pthread_attr_getstacksize

Associated Routines

pthread_attr_init()
pthread_attr_setstacksize()
pthread_create()

pthread–26

pthread_attr_init

pthread_attr_init

Initializes a thread attributes object.

Syntax

pthread_attr_init(
attr);

Argument Data Type Access

attr opaque pthread_attr_t write

C Binding

#include <pthread.h>

int
pthread_attr_init (

pthread_attr_t *attr);

Arguments

attr
Address of a thread attributes object to be initialized.

Description

This routine initializes the thread attributes object specified by the attr argument
with a set of default attribute values. A thread attributes object is used to specify
the attributes of one or more threads when they are created. The attributes object
created by this routine is used only in calls to the pthread_create() routine.

The following routines change individual attributes of an initialized thread
attributes object:

pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_attr_setstackaddr()
pthread_attr_setstacksize()

The attributes of the thread attributes object are initialized to default values.
The default value of each attribute is discussed in the reference description for
each routine previously listed.

When a thread attributes object is used to create a thread, the object’s attribute
values determine the characteristics of the new thread. Thus, attributes objects
act as additional arguments to thread creation. Changing the attributes of a
thread attributes object does not affect any threads that were previously created
using that attributes object.

pthread–27

pthread_attr_init

You can use the same thread attributes object in successive calls to
pthread_create(), from any thread. (However, you cannot use the same
value of the stack address attribute to create multiple threads that might run
concurrently; threads cannot share a stack.) If more than one thread might
change the attributes in a shared attributes object, your program must use a
mutex to protect the integrity of the attributes object’s contents.

When you set the scheduling policy or scheduling parameters, or both,
in a thread attributes object, you must disable scheduling inheritance
if you want the scheduling attributes you set to be used at thread
creation. To disable scheduling inheritance, before creating the new thread
use the pthread_attr_setinheritsched() routine to specify the value
PTHREAD_EXPLICIT_SCHED for the inherit argument.

Return Values

If an error condition occurs, the thread attributes object cannot be used, and this
routine returns an integer value indicating the type of error. Possible return
values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.
[ENOMEM] Insufficient memory to initialize the thread attributes object.

Associated Routines

pthread_attr_destroy()
pthread_attr_setdetachstate()
pthread_attr_setguardsize()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_attr_setstackaddr()
pthread_attr_setstacksize()
pthread_create()

pthread–28

pthread_attr_setdetachstate

pthread_attr_setdetachstate

Changes the detachstate attribute in the specified thread attributes object.

Syntax

pthread_attr_setdetachstate(
attr,
detachstate);

Argument Data Type Access

attr opaque pthread_attr_t write

detachstate integer read

C Binding

#include <pthread.h>

int
pthread_attr_setdetachstate (

pthread_attr_t *attr,
int detachstate);

Arguments

attr
Thread attributes object to be modified.

detachstate
New value for the detachstate attribute. Valid values are as follows:

PTHREAD_CREATE_JOINABLE This is the default value. Threads are
created in ‘‘undetached’’ state.

PTHREAD_CREATE_DETACHED The created thread is detached immediately,
before it begins running.

Description

This routine changes the detachstate attribute in the thread attributes object
specified by the attr argument. The detachstate attribute specifies whether
the thread created using the specified thread attributes object is created in a
detached state or not. A value of PTHREAD_CREATE_JOINABLE indicates the thread
is not detached, and a value of PTHREAD_CREATE_DETACHED indicates the thread is
detached. PTHREAD_CREATE_JOINABLE is the default value.

Your program cannot use the thread handle (the value of type pthread_t returned
by the pthread_create() routine) of a detached thread because the thread
might terminate asynchronously, and a detached thread ID is not valid after
termination. In particular, it is an error to attempt to detach or join with a
detached thread.

pthread–29

pthread_attr_setdetachstate

When a thread that has not been detached completes execution, the Threads
Library retains the state of that thread to allow another thread to join with it.
If the thread is detached before it completes execution, the Threads Library is
free to immediately reclaim the thread’s storage and resources. Failing to detach
threads that have completed execution can result in wasting resources, so threads
should be detached as soon as the program is done with them. If there is no need
to use the thread’s handle after creation, such as to join with it, create the thread
initially detached.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by the attr argument is not a valid

threads attribute object or the detachstate argument is
invalid.

Associated Routines

pthread_attr_init()
pthread_attr_getdetachstate()
pthread_create()
pthread_join()

pthread–30

pthread_attr_setguardsize

pthread_attr_setguardsize

Changes the guardsize attribute of the specified thread attributes object.

Syntax

pthread_attr_setguardsize(
attr,
guardsize);

Argument Data Type Access

attr opaque pthread_attr_t write

guardsize size_t read

C Binding

#include <pthread.h>

int
pthread_attr_setguardsize (

pthread_attr_t *attr,
size_t guardsize);

Arguments

attr
Address of the thread attributes object whose guardsize attribute is to be
modified.

guardsize
New value for the guardsize attribute of the thread attributes object specified by
attr.

Description

This routine uses the value specified in the guardsize argument to set the
guardsize attribute of the thread attributes object specified in the attr argument.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The guardsize attribute of a thread attributes object
specifies the minimum size (in bytes) of the guard area for the stack of a new
thread.

A guard area, with its associated overflow warning area, can help a multithreaded
program detect overflow of a thread’s stack. A guard area is a region of no-access
memory that the Threads Library allocates at the overflow end of the thread’s
stack, following the thread’s overflow warning area. If the thread attempts to
write in the overflow warning area, a stack overflow exception occurs. Your
program can catch this exception and continue processing as long as the thread
does not attempt to write in the guard area. When any thread attempts to access
a memory location within the guard area, a memory addressing violation occurs
without the possibility of recovery.

pthread–31

pthread_attr_setguardsize

A new thread can be created with a default guardsize attribute value. This value
is platform dependent, but will always be at least one ‘‘hardware protection unit’’
(that is, at least one page). For more information, see this guide’s platform-
specific appendixes.

After this routine is called, due to platform-specific factors the Threads Library
might reserve a larger guard area for the new thread than was specified in
the guardsize argument. See this guide’s platform-specific appendixes for more
information.

The Threads Library allows your program to specify the size of a thread stack’s
guard area for two reasons:

• When a thread allocates large data structures on its stack, a guard area with
a size greater than the default size might be required to detect stack overflow.

• Overflow protection of a thread’s stack can potentially waste system resources,
such as for an application that creates a large number of threads that will
never overflow their stacks. Your multithreaded program can conserve system
resources by ‘‘turning off’’ a thread’s stack guard area—that is, by specifying a
guardsize attribute of zero.

If a thread is created using a thread attributes object whose stackaddr attribute
is set (using the pthread_attr_setstackaddr() routine), this routine ignores
the object’s guardsize attribute and provides no thread stack overflow warning or
guard area for the new thread.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The argument attr is not a valid thread attributes object, or

the argument guardsize contains an invalid value.

Associated Routines

pthread_attr_init()
pthread_attr_getguardsize()
pthread_attr_setstacksize()
pthread_create()

pthread–32

pthread_attr_setinheritsched

pthread_attr_setinheritsched

Changes the inherit scheduling attribute of the specified thread attributes object.

Syntax

pthread_attr_setinheritsched(
attr,
inheritsched);

Argument Data Type Access

attr opaque pthread_attr_t write

inheritsched integer read

C Binding

#include <pthread.h>

int
pthread_attr_setinheritsched (

pthread_attr_t *attr,
int inheritsched);

Arguments

attr
Thread attributes object whose inherit scheduling attribute is to be modified.

inheritsched
New value for the inherit scheduling attribute. Valid values are as follows:

PTHREAD_INHERIT_SCHED The created thread inherits the
scheduling policy and associated
scheduling attributes of the thread
calling pthread_create(). Any
scheduling attributes in the
attributes object specified by the
pthread_create() attr argument are
ignored during thread creation. This is
the default value.

PTHREAD_EXPLICIT_SCHED The scheduling policy and associated
scheduling attributes of the created
thread are set to the corresponding
values from the attribute object
specified by the pthread_create()
attr argument.

pthread–33

pthread_attr_setinheritsched

Description

This routine changes the inherit scheduling attribute of the thread attributes
object specified by the attr argument. The inherit scheduling attribute specifies
whether a thread created using the specified attributes object inherits the
scheduling attributes of the creating thread, or uses the scheduling attributes
stored in the attributes object specified by the pthread_create() attr argument.

The first thread in an application has a scheduling policy of SCHED_OTHER. See the
pthread_attr_setschedparam() and pthread_attr_setschedpolicy() routines
for more information on valid priority values and valid scheduling policy values.

Inheriting scheduling attributes (instead of using the scheduling attributes
stored in the attributes object) is useful when a thread is creating several
helper threads—that is, threads that are intended to work closely with the
creating thread to cooperatively solve the same problem. For example, inherited
scheduling attributes ensure that helper threads created in a sort routine execute
with the same priority as the calling thread.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by the attr argument is not a valid thread

attributes object, or the inheritsched argument contains an
invalid value.

[ENOTSUP] An attempt was made to set the attribute to an unsupported
value.

Associated Routines

pthread_attr_init()
pthread_attr_getinheritsched()
pthread_attr_setschedpolicy()
pthread_attr_setschedparam()
pthread_attr_setscope()
pthread_create()

pthread–34

pthread_attr_setname_np

pthread_attr_setname_np

Changes the object name attribute in a thread attributes object.

Syntax

pthread_attr_setname_np(
attr,
name,
mbz);

Argument Data Type Access

attr opaque pthread_attr_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_attr_setname_np (

pthread_attr_t *attr,
const char *name,
void *mbz);

Arguments

attr
Address of the thread attributes object whose object name attribute is to be
changed.

name
Object name value to copy into the thread attributes object’s object name
attribute.

mbz
Reserved for future use. The value must be zero (0).

Description

This routine changes the object name attribute in the thread attributes object
specified by the attr argument to the value specified by the name argument. A
new thread created using the thread attributes object is initialized with the object
name that was set in that attributes object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

This routine contrasts with pthread_setname_np(), which changes the object
name in the thread object for an existing thread.

pthread–35

pthread_attr_setname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object, or the length in characters of name exceeds 31.
[ENOMEM] Insufficient memory exists to create a copy of the object name

string.

Associated Routines

pthread_attr_getname_np()
pthread_getname_np()
pthread_setname_np()

pthread–36

pthread_attr_setschedparam

pthread_attr_setschedparam

Changes the values of the parameters associated with a scheduling policy of the
specified thread attributes object.

Syntax

pthread_attr_setschedparam(
attr,
param);

Argument Data Type Access

attr opaque pthread_attr_t write

param struct sched_param read

C Binding

#include <pthread.h>

int
pthread_attr_setschedparam (

pthread_attr_t *attr,
const struct sched_param *param);

Arguments

attr
Thread attributes object for the scheduling policy attribute whose parameters are
to be set.

param
A structure containing new values for scheduling parameters associated with the
scheduling policy attribute of the specified thread attributes object.

Note

The Threads Library provides only the sched_priority scheduling
parameter. See below for information about this scheduling parameter.

Description

This routine sets the scheduling parameters associated with the scheduling policy
attribute of the thread attributes object specified by the attr argument.

Scheduling Priority
Use the sched_priority field of a sched_param structure to set a thread’s
execution priority. The effect of the scheduling priority you assign depends on
the scheduling policy specified for the attributes object specified by the attr
argument.

pthread–37

pthread_attr_setschedparam

By default, a created thread inherits the priority of the thread calling
pthread_create(). To specify a priority using this routine, scheduling
inheritance must be disabled at the time the thread is created. Before calling
pthread_create(), call pthread_attr_setinheritsched() and specify the value
PTHREAD_EXPLICIT_SCHED for the inherit argument.

An application specifies priority only to express the urgency of executing the
thread relative to other threads. Do not use priority to control mutual exclusion
when you are accessing shared data. With a sufficient number of processors
present, all ready threads, regardless of priority, execute simultaneously. Even
on a uniprocessor, a lower priority thread could either execute before or be
interleaved with a higher priority thread, for example due to page fault behavior.
See Chapter 1 and Chapter 2 for more information.

Valid values of the sched_priority scheduling parameter depend on the chosen
scheduling policy. Use the POSIX routines sched_get_priority_min() or
sched_get_priority_max() to determine the low and high limits of each policy.

Additionally, the Threads Library provides nonportable priority range constants,
as follows:

Policy Low High

SCHED_FIFO PRI_FIFO_MIN PRI_FIFO_MAX

SCHED_RR PRI_RR_MIN PRI_RR_MAX

SCHED_OTHER PRI_OTHER_MIN PRI_OTHER_MAX

SCHED_FG_NP PRI_FG_MIN_NP PRI_FG_MAX_NP

SCHED_BG_NP PRI_BG_MIN_NP PRI_BG_MAX_NP

The default priority varies by platform. On Tru64 UNIX, the default is 19 (that
is, the POSIX priority of a normal timeshare process). On other platforms, the
default priority is the midpoint between PRI_FG_MIN_NP and PRI_FG_MAX_NP.
(Section 2.3.6 describes how to specify priorities between the minimum and
maximum values.)

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object, or the value specified by param is invalid.
[ENOTSUP] An attempt was made to set the attribute to an unsupported

value.

pthread–38

pthread_attr_setschedparam

Associated Routines

pthread_attr_init()
pthread_attr_getschedparam()
pthread_attr_setinheritsched()
pthread_attr_setschedpolicy()
pthread_create()
sched_yield()

pthread–39

pthread_attr_setschedpolicy

pthread_attr_setschedpolicy

Changes the scheduling policy attribute of the specified thread attributes object.

Syntax

pthread_attr_setschedpolicy(
attr,
policy);

Argument Data Type Access

attr opaque pthread_attr_t write

policy integer read

C Binding

#include <pthread.h>

int
pthread_attr_setschedpolicy (

pthread_attr_t *attr,
int policy);

Arguments

attr
Thread attributes object to be modified.

policy
New value for the scheduling policy attribute. Valid values are as follows:

SCHED_BG_NP
SCHED_FG_NP (also known as SCHED_OTHER)
SCHED_FIFO
SCHED_RR

SCHED_OTHER is the default value. See Section 2.3.2.2 for a description of the
scheduling policies.

Description

This routine sets the scheduling policy of a thread that is created using the
attributes object specified by the attr argument. The default value of the
scheduling attribute is SCHED_OTHER.

By default, a created thread inherits the policy of the thread calling
pthread_create(). To specify a policy using this routine, scheduling
inheritance must be disabled at the time the thread is created. Before calling
pthread_create(), call pthread_attr_setinheritsched() and specify the value
PTHREAD_EXPLICIT_SCHED for the inherit argument.

Preemption is caused by both scheduling and policy. Never attempt to use
scheduling as a mechanism for synchronization. (Refer to Chapter 1 and
Chapter 2.)

pthread–40

pthread_attr_setschedpolicy

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object, or the value specified by policy is invalid.

Associated Routines

pthread_attr_init()
pthread_attr_getschedpolicy()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_create()

pthread–41

pthread_attr_setscope

pthread_attr_setscope

Sets the contention scope attribute of the specified thread attributes object.

Syntax

pthread_attr_setscope(
attr,
scope);

Argument Data Type Access

attr opaque pthread_attr_t write

scope int read

C Binding

#include <pthread.h>

int
pthread_attr_setscope (

pthread_attr_t *attr,
int scope);

Arguments

attr
Address of the thread attributes object whose contention scope attribute is to be
modified.

scope
New value for the contention scope attribute of the thread attributes object
specified by attr.

Description

This routine uses the value specified in the scope argument to set the contention
scope attribute of the thread attributes object specified in the attr argument.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The contention scope attribute specifies the
set of threads with which a thread must compete for processing resources.
The contention scope attribute specifies whether the new thread competes for
processing resources only with other threads in its own process, called process
contention scope, or with all threads on the system, called system contention
scope.

Note

On Tru64 UNIX, the Threads Library supports both process contention
scope and system contention scope threads. On OpenVMS, the Threads
Library supports only process contention scope threads.

pthread–42

pthread_attr_setscope

The Threads Library selects at most one thread to execute on each processor at
any point in time. The Threads Library resolves the contention based on each
thread’s scheduling attributes (for example, priority) and scheduling policy (for
example, round-robin).

A thread created using a thread attributes object whose contention scope
attribute is set to PTHREAD_SCOPE_PROCESS contends for processing resources
with other threads within its own process that also were created with
PTHREAD_SCOPE_PROCESS. It is unspecified how such threads are scheduled
relative to either threads in other processes or threads in the same process that
were created with PTHREAD_SCOPE_SYSTEM contention scope.

A thread created using a thread attributes object whose contention scope attribute
is set to PTHREAD_SCOPE_SYSTEM contends for processing resources with other
threads in any process that also were created with PTHREAD_SCOPE_SYSTEM.

Note that the value of the contention scope attribute of a particular thread
attributes object does not necessarily correspond to the actual scheduling
contention scope of any existing thread in your multithreaded program.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

value, or the value specified by scope is not valid.
[ENOTSUP] An attempt was made to set the attribute to an unsupported

value.

Associated Routines

pthread_attr_destroy()
pthread_attr_init()
pthread_attr_getscope()
pthread_attr_setinheritsched()
pthread_create()

pthread–43

pthread_attr_setstackaddr

pthread_attr_setstackaddr

Changes the stack address attribute of the specified thread attributes object.

Syntax

pthread_attr_setstackaddr(
attr,
stackaddr);

Argument Data Type Access

attr opaque pthread_attr_t write

stackaddr void read

C Binding

#include <pthread.h>

int
pthread_attr_setstackaddr (

pthread_attr_t *attr,
void *stackaddr);

Arguments

attr
Address of the thread attributes object whose stack address attribute is to be
modified.

stackaddr
New value for the stack address attribute of the thread attributes object specified
by attr.

Description

This routine uses the value specified in the stackaddr argument to set the stack
address attribute of the thread attributes object specified in the attr argument.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The stack address attribute of a thread attributes
object points to the origin of the stack for a new thread.

The default value for the stack address attribute of an initialized thread
attributes object is NULL.

Note

Correct use of this routine depends upon details of the target platform’s
stack architecture. Thus, this routine cannot be used in a portable
manner.

The size of the stack must be at least PTHREAD_STACK_MIN bytes (see the
pthread.h header file). However, because the Threads Library must use
a portion of this stack memory to begin thread execution and to maintain

pthread–44

pthread_attr_setstackaddr

thread state, your program’s ‘‘user thread code’’ cannot rely on using all of
the stack memory allocated.

For your program to calculate a value for the stackaddr attribute, note that:

• Your program must allocate the memory that will be used for the new thread’s
stack.

• On Tru64 UNIX, to create a new thread using a thread attributes object, the
stackaddr attribute must be an address that points to the high-memory end
of the memory region allocated for the stack. This address must point to the
highest even-boundary quadword in the allocated memory region.

Also note that:

• If you use the pthread_attr_setstackaddr() routine to set a thread
attributes object’s stack address attribute and use that attributes object
to create a new thread, the Threads Library ignores the attributes object’s
guardsize attribute and provides no thread stack guard area or overflow
warning area for the new thread.

• If you use the same thread attributes object to create more than one thread
and each created thread uses a nondefault stack address, you must use
the pthread_attr_setstackaddr() routine to set a unique stack address
attribute value for each new thread created using that attributes object.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_getguardsize()
pthread_attr_getstackaddr()
pthread_attr_getstacksize()
pthread_attr_init()
pthread_attr_setguardsize()
pthread_attr_setstacksize()
pthread_create()

pthread–45

pthread_attr_setstackaddr_np

pthread_attr_setstackaddr_np

Changes the stack address and size of the specified thread attributes object.

Syntax

pthread_attr_setstackaddr_np(
attr,
stackaddr,
size);

Argument Data Type Access

attr opaque pthread_attr_t write

stackaddr void read

size size_t read

C Binding

#include <pthread.h>

int
pthread_attr_setstackaddr_np (

pthread_attr_t *attr,
void *stackaddr,
size_t size);

Arguments

attr
Address of the thread attributes object whose stack address attribute is to be
modified.

stackaddr
New value for the address of the stack region of the thread attributes object
specified by attr.

size
The size of the stack region in bytes.

Description

This routine uses the values specified in the stackaddr and size arguments to set
the base stack address and size of the thread attributes object specified in the
attr argument.

When creating a thread, use a thread attributes object to specify nondefault
values for thread attributes. The default value for the stack address attribute of
an initialized thread attributes object is NULL.

Unlike pthread_attr_setstackaddr(), this routine is a much more reliable
portable interface. With the POSIX standard pthread_attr_setstackaddr(), a
stack is specified using a single, undefined, address. An implementation of the
standard can only assume that the specified value represents the value to which
the thread’s stack pointer should be set when beginning execution. However, this
requires the application to know how the machine uses the stack. For example,

pthread–46

pthread_attr_setstackaddr_np

a stack may ‘‘grow’’ either up (to higher addresses) or down (to lower addresses),
and may be decreased (or increased) either before or after storing a new value.

The Threads Library provides an alternative interface with
pthread_attr_setstackaddr_np(). Instead of specifying a stack address, you
specify the base (lowest) address and the size.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object.

Associated Routines

pthread_attr_getstackaddr_np()

pthread–47

pthread_attr_setstacksize

pthread_attr_setstacksize

Changes the stacksize attribute in the specified thread attributes object.

Syntax

pthread_attr_setstacksize(
attr,
stacksize);

Argument Data Type Access

attr opaque pthread_attr_t write

stacksize size_t read

C Binding

#include <pthread.h>

int
pthread_attr_setstacksize (

pthread_attr_t *attr,
size_t stacksize);

Arguments

attr
Threads attributes object to be modified.

stacksize
New value for the stacksize attribute of the thread attributes object specified
by the attr argument. The stacksize argument must be greater than or equal to
PTHREAD_STACK_MIN. PTHREAD_STACK_MIN specifies the minimum size (in bytes) of
the stack needed for a thread.

Description

This routine sets the stacksize attribute in the thread attributes object specified
by the attr argument. Use this routine to adjust the size of the writable area of
the stack for a new thread.

The size of a thread’s stack is fixed at the time of thread creation. On OpenVMS
systems, only the initial thread can dynamically extend its stack. On Tru64 UNIX
systems, very large stacks can be created, but only a few pages are committed.

Many compilers do not check for stack overflow. Ensure that the new thread’s
stack is sufficient for the resources required by routines that are called from the
thread.

pthread–48

pthread_attr_setstacksize

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid thread attributes

object, or the value specified by stacksize either is less than
PTHREAD_STACK_MIN or exceeds a Threads Library-imposed
limit.

Associated Routines

pthread_attr_init()
pthread_attr_getstacksize()
pthread_create()

pthread–49

pthread_cancel

pthread_cancel

Allows a thread to request a thread to terminate execution.

Syntax

pthread_cancel(
thread);

Argument Data Type Access

thread opaque pthread_t read

C Binding

#include <pthread.h>

int
pthread_cancel (

pthread_t thread);

Arguments

thread
Thread that will receive a cancelation request.

Description

This routine sends a cancelation request to the specified target thread. A
cancelation request is a mechanism by which a calling thread requests the target
thread to terminate as quickly as possible. Issuing a cancelation request does not
guarantee that the target thread will receive or handle the request.

When the cancelation request is acted on, all active cleanup handler routines
for the target thread are called. When the last cleanup handler returns, the
thread-specific data destructor routines are called for each thread-specific data
key with a destructor and for which the target thread has a non-NULL value.
Finally, the target thread is terminated.

Note that cancelation of the target thread runs asynchronously with respect
to the calling thread’s returning from pthread_cancel(). The target thread’s
cancelability state and type determine when or if the cancelation takes place, as
follows:

1. The target thread can delay cancelation during critical operations by setting
its cancelability state to PTHREAD_CANCEL_DISABLE.

2. Because of communication delays, the calling thread can only rely on the
fact that a cancelation request will eventually become pending in the target
thread (provided that the target thread does not terminate beforehand).

3. The calling thread has no guarantee that a pending cancelation request will
be delivered because delivery is controlled by the target thread.

When a cancelation request is delivered to a thread, termination processing
is similar to that for pthread_exit(). For more information about thread
termination, see the Thread Termination section of pthread_create().

pthread–50

pthread_cancel

This routine is preferred in implementing an Ada abort statement and any other
language- or software-defined construct for requesting thread cancelation.

The results of this routine are unpredictable if the value specified in thread refers
to a thread that does not currently exist.

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified thread is invalid.
[ESRCH] The thread argument does not specify an existing thread.

Associated Routines

pthread_cleanup_pop()
pthread_cleanup_push()
pthread_create()
pthread_exit()
pthread_join()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_testcancel()

pthread–51

pthread_cleanup_pop

pthread_cleanup_pop

(Macro) Removes the cleanup handler routine from the calling thread’s cleanup
handler stack and optionally executes it.

Syntax

pthread_cleanup_pop(
execute);

Argument Data Type Access

execute integer read

C Binding

#include <pthread.h>

void
pthread_cleanup_pop(

int execute);

Arguments

execute
Integer that specifies whether the cleanup handler routine specified in the
matching call to pthread_cleanup_push() is executed. A nonzero value causes
the cleanup handler routine to be executed.

Description

This routine removes the cleanup handler routine established by the matching
call to pthread_cleanup_push() from the calling thread’s cleanup handler
stack, then executes it if the value specified in this routine’s execute argument is
nonzero.

A cleanup handler routine can be used to clean up from a block of code
whether exited by normal completion, cancelation, or the raising (or reraising)
of an exception. The routine is popped from the calling thread’s cleanup
handler stack and is called with the arg argument (see the description for
pthread_cleanup_push()) when any of the following actions occur:

• The thread calls pthread_cleanup_pop() and specifies a nonzero value for
the execute argument.

• The thread calls pthread_exit().

• The thread is canceled.

• An exception is raised and is caught when the Threads Library unwinds the
calling thread’s stack to the lexical scope of the pthread_cleanup_push() and
pthread_cleanup_pop() pair.

This routine and pthread_cleanup_push() are implemented as macros and
must appear as statements and in pairs within the same lexical scope. You can
think of the pthread_cleanup_push() macro as expanding to a string whose
first character is a left brace ({) and pthread_cleanup_pop() as expanding
to a string containing the corresponding right brace (}). This routine and

pthread–52

pthread_cleanup_pop

pthread_cleanup_push() are implemented as exceptions, and may not work
in a C++ environment. (See Chapter 5 for more information.)

Return Values

None

Associated Routines

pthread_cancel()
pthread_cleanup_push()
pthread_create()
pthread_exit()

pthread–53

pthread_cleanup_push

pthread_cleanup_push

(Macro) Establishes a cleanup handler routine to be executed when the thread
exits or is canceled.

Syntax

pthread_cleanup_push(
routine,
arg);

Argument Data Type Access

routine procedure read

arg user_arg read

C Binding

#include <phtread.h>

void
pthread_cleanup_push(

void (*routine)(void *),
void *arg);

Arguments

routine
Routine executed as the cleanup handler.

arg
Argument passed to the cleanup handler routine.

Description

This routine pushes the specified routine onto the calling thread’s cleanup handler
stack. The cleanup handler routine is popped from the stack and called with the
arg argument when any of the following actions occur:

• The thread calls pthread_cleanup_pop() and specifies a nonzero value for
the execute argument.

• The thread calls pthread_exit().

• The thread is canceled.

• An exception is raised and is caught when the Threads Library unwinds the
calling thread’s stack to the lexical scope of the pthread_cleanup_push() and
pthread_cleanup_pop() pair.

This routine and pthread_cleanup_pop() are implemented as macros and
must appear as statements and in pairs within the same lexical scope. You can
think of the pthread_cleanup_push() macro as expanding to a string whose
first character is a left brace ({) and pthread_cleanup_pop() as expanding
to a string containing the corresponding right brace (}). This routine and
pthread_cleanup_pop() are implemented as exceptions, and may not work
in a C++ environment. (See Chapter 5 for more information.)

pthread–54

pthread_cleanup_push

Return Values

None

Associated Routines

pthread_cancel()
pthread_cleanup_pop()
pthread_create()
pthread_exit()
pthread_testcancel()

pthread–55

pthread_condattr_destroy

pthread_condattr_destroy

Destroys a condition variable attributes object.

Syntax

pthread_condattr_destroy(
attr);

Argument Data Type Access

attr opaque pthread_condattr_t write

C Binding

#include <pthread.h>

int
pthread_condattr_destroy (

pthread_condattr_t *attr);

Arguments

attr
Condition variable attributes object to be destroyed.

Description

This routine destroys the specified condition variable attributes object. Call this
routine when a condition variable attributes object will no longer be referenced.

Condition variables that were created using this attributes object are not affected
by the destruction of the condition variable attributes object.

The results of calling this routine are unpredictable if the value specified by the
attr argument refers to a condition variable attributes object that does not exist.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The attributes object specified by attr is invalid.

Associated Routines

pthread_condattr_init()

pthread–56

pthread_condattr_getpshared

pthread_condattr_getpshared

Obtains the process-shared attribute of the specified condition variable attributes
object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_condattr_getpshared(
attr,
pshared);

Argument Data Type Access

attr opaque pthread_condattr_t read

pshared int write

C Binding

#include <pthread.h>

int
pthread_condattr_getpshared (

const pthread_condattr_t *attr,
int *pshared);

Arguments

attr
Address of the condition variable attributes object whose process-shared attribute
is obtained.

pshared
Receives the value of the process-shared attribute of the condition variable
attributes object specified by attr.

Description

This routine obtains the value of the process-shared attribute of the condition
variable attributes object specified by the attr argument and stores it in the
location specified by the pshared argument. The specified attributes object must
already be initialized at the time this routine is called.

Creating a condition variable whose process-shared attribute is set to
PTHREAD_PROCESS_PRIVATE permits it to be operated upon by threads created
within the same process as the thread that initialized that condition variable. If
threads in other processes attempt to operate on such a condition variable, the
behavior is undefined.

The default value of the process-shared attribute of an initialized condition
variable attributes object is PTHREAD_PROCESS_PRIVATE.

Creating a condition variable whose process-shared attribute is set to
PTHREAD_PROCESS_SHARED permits it to be operated upon by any thread that
has access to the memory where that condition variable is allocated, even if it is
allocated in memory that is shared by multiple processes.

pthread–57

pthread_condattr_getpshared

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object.

Associated Routines

pthread_condattr_destroy()
pthread_condattr_init()
pthread_condattr_setpshared()
pthread_cond_init()

pthread–58

pthread_condattr_init

pthread_condattr_init

Initializes a condition variable attributes object.

Syntax

pthread_condattr_init(
attr);

Argument Data Type Access

attr opaque pthread_condattr_t write

C Binding

#include <pthread.h>

int
pthread_condattr_init (

pthread_condattr_t *attr);

Arguments

attr
Address of the condition variable attributes object to be initialized.

Description

This routine initializes the condition variable attributes object specified by the
attr argument with a set of default attribute values.

When an attributes object is used to create a condition variable, the values of
the individual attributes determine the characteristics of the new condition
variable. Attributes objects act as additional arguments to condition variable
creation. Changing individual attributes in an attributes object does not affect
any condition variables that were previously created using that attributes object.

You can use the same condition variable attributes object in successive calls to
pthread_condattr_init(), from any thread. If multiple threads can change
attributes in a shared attributes object, your program must use a mutex to
protect the integrity of that attributes object.

Results are undefined if this routine is called and the attr argument specifies a
condition variable attributes object that is already initialized.

Currently, on OpenVMS systems, no attributes affecting condition variables are
defined; you cannot change any attributes in the condition variable attributes
object. On Tru64 UNIX systems, the PSHARED attribute is defined.

The pthread_condattr_init() and pthread_condattr_destroy() routines are
provided for future expandability of the pthread interface and to conform with
the POSIX.1 standard. These routines serve no useful function, because there are
no pthread_condattr_set*() type routines available at this time.

pthread–59

pthread_condattr_init

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid condition variable

attributes object.
[ENOMEM] Insufficient memory exists to initialize the condition variable

attributes object.

Associated Routines

pthread_condattr_destroy()
pthread_cond_init()

pthread–60

pthread_condattr_setpshared

pthread_condattr_setpshared

Changes the process-shared attribute of the specified condition variable attributes
object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_condattr_setpshared(
attr,
pshared);

Argument Data Type Access

attr opaque pthread_condattr_t write

pshared int read

C Binding

#include <pthread.h>

int
pthread_condattr_setpshared (

pthread_condattr_t *attr,
int pshared);

Arguments

attr
Address of the condition variable attributes object whose process-shared attribute
is to be modified.

pshared
New value for the process-shared attribute of the condition variable attributes
object specified by attr.

Description

This routine uses the value specified in the pshared argument to set the process-
shared attribute of the condition variable attributes object specified in the attr
argument.

Creating a condition variable whose process-shared attribute is set to
PTHREAD_PROCESS_PRIVATE, permits it to be operated upon by threads created
within the same process as the thread that initialized that condition variable. If
threads of differing processes attempt to operate on such a condition variable, the
behavior is undefined.

The default value of the process-shared attribute of an initialized condition
variable attributes object is PTHREAD_PROCESS_PRIVATE.

Creating a condition variable whose process-shared attribute is set to
PTHREAD_PROCESS_SHARED permits it to be operated upon by any thread that
has access to the memory where that condition variable is allocated, even if it is
allocated in memory that is shared by multiple processes.

pthread–61

pthread_condattr_setpshared

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object, or

the value specified by pshared is outside the range of legal
values for that attribute.

Associated Routines

pthread_condattr_destroy()
pthread_condattr_init()
pthread_condattr_getpshared()
pthread_cond_init()

pthread–62

pthread_cond_broadcast

pthread_cond_broadcast

Wakes all threads that are waiting on the specified condition variable.

Syntax

pthread_cond_broadcast(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <pthread.h>

int
pthread_cond_broadcast (

pthread_cond_t *cond);

Arguments

cond
Condition variable upon which the threads (to be awakened) are waiting.

Description

This routine unblocks all threads waiting on the specified condition variable
cond. Calling this routine implies that data guarded by the associated mutex has
changed, so that it might be possible for one or more waiting threads to proceed.
The threads that are unblocked shall contend for the mutex according to their
respective scheduling policies (if applicable).

If only one of the threads waiting on a condition variable may be able to proceed,
but one of those threads can proceed, then use pthread_cond_signal() instead.

Whether the associated mutex is locked or unlocked, you can still call this routine.
However, if predictable scheduling behavior is required, that mutex should then
be locked by the thread calling the pthread_cond_broadcast() routine.

If no threads are waiting on the specified condition variable, this routine takes no
action. The broadcast does not propagate to the next condition variable wait.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable.

pthread–63

pthread_cond_broadcast

Associated Routines

pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–64

pthread_cond_destroy

pthread_cond_destroy

Destroys a condition variable.

Syntax

pthread_cond_destroy(
cond);

Argument Data Type Access

cond opaque pthread_cond_t write

C Binding

#include <pthread.h>

int
pthread_cond_destroy (

pthread_cond_t *cond);

Arguments

cond
Condition variable to be destroyed.

Description

This routine destroys the condition variable specified by cond. This effectively
uninitializes the condition variable. Call this routine when a condition variable
will no longer be referenced. Destroying a condition variable allows the Threads
Library to reclaim internal memory associated with the condition variable.

It is safe to destroy an initialized condition variable upon which no threads are
currently blocked. Attempting to destroy a condition variable upon which other
threads are blocked results in unpredictable behavior.

The results of this routine are unpredictable if the condition variable specified in
cond either does not exist or is not initialized.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable.
[EBUSY] The object being referenced by cond is being referenced by

another thread that is currently executing
pthread_cond_wait() or pthread_cond_timedwait() on the
condition variable specified in cond.

pthread–65

pthread_cond_destroy

Associated Routines

pthread_cond_broadcast()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–66

pthread_cond_getname_np

pthread_cond_getname_np

Obtains the object name from a condition variable object.

Syntax

pthread_cond_getname_np(
cond,
name,
len);

Argument Data Type Access

cond opaque pthread_cond_t read

name char write

len opaque size_t read

C Binding

#include <pthread.h>

int
pthread_cond_getname_np (

pthread_cond_t *cond,
char *name,
size_t len);

Arguments

cond
Address of the condition variable object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

Description

This routine copies the object name from the condition variable object specified by
the cond argument to the buffer at the location specified by the name argument.
Before calling this routine, your program must allocate the buffer indicated by
name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified condition variable object has not been previously set with an
object name, this routine copies a C language null string into the buffer at
location name.

pthread–67

pthread_cond_getname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable.

Associated Routines

pthread_cond_setname_np()

pthread–68

pthread_cond_init

pthread_cond_init

Initializes a condition variable.

Syntax

pthread_cond_init(
cond,
attr);

Argument Data Type Access

cond opaque pthread_cond_t write

attr opaque pthread_condattr_t read

C Binding

#include <pthread.h>

int
pthread_cond_init (

pthread_cond_t *cond,
const pthread_condattr_t *attr);

Arguments

cond
Condition variable to be initialized.

attr
Condition variable attributes object that defines the characteristics of the
condition variable to be initialized.

Description

This routine initializes the condition variable cond with attributes specified in the
attr argument. If attr is NULL, the default condition variable attributes are used.

A condition variable is a synchronization object used in conjunction with a
mutex. A mutex controls access to data that is shared among threads; a condition
variable allows threads to wait for that data to enter a defined state.

Condition variables are not owned by a particular thread. Any associated storage
is not automatically deallocated when the creating thread terminates.

Use the macro PTHREAD_COND_INITIALIZER to initialize statically allocated
condition variables to the default condition variable attributes. To invoke this
macro, enter:

pthread_cond_t condition = PTHREAD_COND_INITIALIZER

When statically initialized, a condition variable should not also be initialized
using pthread_cond_init(). Also, a statically initialized condition variable need
not be destroyed using pthread_cond_destroy().

pthread–69

pthread_cond_init

Under certain circumstances it might be impossible to wait upon a statically
initialized condition variable when the process virtual address space (or some
other memory limit) is nearly exhausted. In such a case pthread_cond_wait()
or pthread_cond_timedwait() can return [ENOMEM]. To avoid this possibility,
initialize critical condition variables using pthread_cond_init().

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize

another condition variable, or
The system-imposed limit on the total number of condition
variables under execution by a single user is exceeded.

[EBUSY] The implementation has detected an attempt to reinitialize
the object referenced by cond, a previously initialized, but
not yet destroyed condition variable.

[EINVAL] The value specified by attr is not a valid attributes object.
[ENOMEM] Insufficient memory exists to initialize the condition variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_signal()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–70

pthread_cond_setname_np

pthread_cond_setname_np

Changes the object name for a condition variable object.

Syntax

pthread_cond_setname_np(
cond,
name,
mbz);

Argument Data Type Access

cond opaque pthread_cond_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_cond_setname_np (

pthread_cond_t *cond,
const char *name,
void *mbz);

Arguments

cond
Address of the condition variable object whose object name is to be changed.

name
Object name value to copy into the condition variable object.

mbz
Reserved for future use. The value must be zero (0).

Description

This routine changes the object name in the condition variable object specified
by the cond argument to the value specified by the name argument. To set a
new condition variable object’s object name, call this routine immediately after
initializing the condition variable object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

pthread–71

pthread_cond_setname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable

object, or the length in characters of name exceeds 31.
[ENOMEM] Insufficient memory exists to create a copy of the object name

string.

Associated Routines

pthread_cond_getname_np()

pthread–72

pthread_cond_signal

pthread_cond_signal

Wakes at least one thread that is waiting on the specified condition variable.

Syntax

pthread_cond_signal(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <pthread.h>

int
pthread_cond_signal (

pthread_cond_t *cond);

Arguments

cond
Condition variable to be signaled.

Description

This routine unblocks at least one thread waiting on the specified condition
variable cond. Calling this routine implies that data guarded by the associated
mutex has changed, thus it might be possible for one of the waiting threads to
proceed. In general, only one thread will be released.

If no threads are waiting on the specified condition variable, this routine takes no
action. The signal does not propagate to the next condition variable wait.

This routine should be called when any thread waiting on the specified condition
variable might find its predicate true, but only one thread should proceed. If
more than one thread can proceed, or if any of the threads would not be able to
proceed, then you must use pthread_cond_broadcast().

The scheduling policy determines which thread is awakened. For policies
SCHED_FIFO and SCHED_RR, a blocked thread is chosen in priority order, using
first-in/first-out (FIFO) within priorities.

If the calling thread holds the lock to the target condition variable’s associated
mutex while setting the variable’s wait predicate, that thread can call
pthread_cond_signal() to signal the variable even after releasing the lock
on that mutex. However, for more predictable scheduling behavior, call
pthread_cond_signal() before releasing the target condition variable’s associated
mutex.

pthread–73

pthread_cond_signal

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–74

pthread_cond_signal_int_np

pthread_cond_signal_int_np

Wakes one thread that is waiting on the specified condition variable (called from
interrupt level only).

Syntax

pthread_cond_signal_int_np(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <pthread.h>

int
pthread_cond_signal_int_np(

pthread_cond_t *cond);

Arguments

cond
Condition variable to be signaled.

Description

This routine wakes one thread waiting on the specified condition variable. It can
only be called from a software interrupt handler routine (such as from a Tru64
UNIX signal handler or OpenVMS AST). Calling this routine implies that it
might be possible for a single waiting thread to proceed.

The scheduling policies of the waiting threads determine which thread is
awakened. For policies SCHED_FIFO and SCHED_RR, a blocked thread is chosen
in priority order, using first-in/first-out (FIFO) within priorities.

This routine does not cause a thread blocked on a condition variable to resume
execution immediately. A thread resumes execution at some time after the
interrupt handler routine returns. If no threads are waiting on the condition
variable at the time of the call to pthread_cond_signal_int_np(), the next
future waiting thread will be automatically released (that is, it will not actually
wait). This routine establishes a ‘‘pending’’ wake if necessary.

You can call this routine regardless of whether the associated mutex is either
locked or unlocked. (Never lock a mutex from an interrupt handler routine.)

Note

This routine allows you to signal a condition variable from a software
interrupt handler. Do not call this routine from noninterrupt code. To
signal a condition variable from the normal noninterrupt level, use
pthread_cond_signal().

pthread–75

pthread_cond_signal_int_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_signal()
pthread_cond_sig_preempt_int_np()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–76

pthread_cond_sig_preempt_int_np

pthread_cond_sig_preempt_int_np

Wakes one thread that is waiting on the specified condition variable (called from
interrupt level only).

Syntax

pthread_cond_sig_preempt_int_np (cond)

Argument Data Type Access

cond opaque pthread_cond_t read

C Binding

void
pthread_cond_sig_preempt_int_np (

pthread_cond_t *cond);

Arguments

cond
Condition variable signaled.

Description

This routine wakes one thread waiting on a condition variable. It can only be
called from a software interrupt handler routine. Calling this routine implies that
it might be possible for a single waiting thread to proceed. Call this routine when
any thread waiting on the specified condition variable might find its predicate
true.

The scheduling policies of the waiting threads determine which thread is
awakened. For policies SCHED_FIFO and SCHED_RR, a blocked thread is chosen
in priority order, using first-in/first-out (FIFO) within priorities.

You can call this routine when the associated mutex is either locked or unlocked.
(Never try to lock a mutex from an interrupt handler.)

This routine allows you to signal a thread from a software interrupt handler. Do
not call this routine from noninterrupt code. If you want to signal a thread from
the normal noninterrupt level, use pthread_cond_signal.

Note

If a waiting thread has a preemptive scheduling policy and a higher
priority than the thread which was running when the interrupt occurred,
then the waiting thread will preempt the interrupt routine and begin
to run immediately. This is unlike pthread_cond_signal_int_np()
which causes the condition variable to be signaled at a safe point after
the interrupt has completed. pthread_cond_sig_preempt_int_np()
avoids the possible latency which pthread_cond_signal_int_np()
may introduce; however, a side effect of this is that during the
call to pthread_cond_sig_preempt_int_np() other threads may
run if a preemption occurs. Thus, once an interrupt routine calls
pthread_cond_sig_preempt_int_np() it can no longer rely on

pthread–77

pthread_cond_sig_preempt_int_np

any assumptions of exclusivity or atomicity which are typically
provided by interrupt routines. Furthermore, once the call to
pthread_cond_sig_preempt_int_np() is made, in addition to other
threads running, subsequent interrupts may be delivered at any
time as well (that is, they will not be blocked until the current
interrupt completes). For this reason, it is recommended that
pthread_cond_sig_preempt_int_np() be called as the last statement
in the interrupt routine.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_signal()
pthread_cond_signal_int_np()
pthread_cond_timedwait()
pthread_cond_wait()

pthread–78

pthread_cond_timedwait

pthread_cond_timedwait

Causes a thread to wait for the specified condition variable to be signaled or
broadcast, such that it will awake after a specified period of time.

Syntax

pthread_cond_timedwait(
cond,
mutex,
abstime);

Argument Data Type Access

cond opaque pthread_cond_t modify

mutex opaque pthread_mutex_t modify

abstime structure timespec read

C Binding

#include <pthread.h>
int
pthread_cond_timedwait (

pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime);

Arguments

cond
Condition variable that the calling thread waits on.

mutex
Mutex associated with the condition variable specified in cond.

abstime
Absolute time at which the wait expires, if the condition has not been signaled
or broadcast. See the pthread_get_expiration_np() routine, which is used to
obtain a value for this argument.

The abstime argument is specified in Universal Coordinated Time (UTC). In the
UTC-based model, time is represented as seconds since the Epoch. The Epoch is
defined as the time 0 hours, 0 minutes, 0 seconds, January 1st, 1970 UTC.

Description

This routine causes a thread to wait until one of the following occurs:

• The specified condition variable is signaled or broadcast.

• The current system clock time is greater than or equal to the time specified
by the abstime argument.

pthread–79

pthread_cond_timedwait

This routine is identical to pthread_cond_wait(), except that this routine can
return before a condition variable is signaled or broadcast, specifically, when
the specified time expires. For more information, see the pthread_cond_wait()
description.

This routine atomically releases the mutex and causes the calling thread
to wait on the condition. When the thread regains control after calling
pthread_cond_timedwait(), the mutex is locked and the thread is the owner.
This is true regardless of why the wait ended. If general cancelability is enabled,
the thread reacquires the mutex (blocking for it if necessary) before the cleanup
handlers are run (or before the exception is raised).

If the current time equals or exceeds the expiration time, this routine returns
immediately, releasing and reacquiring the mutex. It might cause the calling
thread to yield (see the sched_yield() description). Your code should check the
return status whenever this routine returns and take the appropriate action.
Otherwise, waiting on the condition variable can become a nonblocking loop.

Call this routine after you have locked the mutex specified in mutex. The results
of this routine are unpredictable if this routine is called without first locking
the mutex. The only routines that are supported for use with asynchronous
cancelability enabled are those that disable asynchronous cancelability.

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond, mutex, or abstime is invalid, or

Different mutexes are supplied for concurrent
pthread_cond_timedwait() operations or
pthread_cond_wait() operations on the same condition
variable, or
The mutex was not owned by the calling thread at the time
of the call.

[ETIMEDOUT] The time specified by abstime expired.
[ENOMEM] The Threads Library cannot acquire memory needed to block

using a statically initialized condition variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_wait()
pthread_get_expiration_np()

pthread–80

pthread_cond_wait

pthread_cond_wait

Causes a thread to wait for the specified condition variable to be signaled or
broadcast.

Syntax

pthread_cond_wait(
cond,
mutex);

Argument Data Type Access

cond opaque pthread_cond_t modify

mutex opaque pthread_mutex_t modify

C Binding

#include <pthread.h>

int
pthread_cond_wait (

pthread_cond_t *cond,
pthread_mutex_t *mutex);

Arguments

cond
Condition variable that the calling thread waits on.

mutex
Mutex associated with the condition variable specified in cond.

Description

This routine causes a thread to wait for the specified condition variable to
be signaled or broadcast. Each condition corresponds to one or more Boolean
relations, called a predicate, based on shared data. The calling thread waits for
the data to reach a particular state for the predicate to become true. However,
the return from this routine does not imply anything about the value of the
predicate and it should be reevaluated upon return. Condition variables are
discussed in Chapter 2 and Chapter 3.

Call this routine after you have locked the mutex specified in mutex. The results
of this routine are unpredictable if this routine is called without first locking the
mutex.

This routine atomically releases the mutex and causes the calling thread
to wait on the condition. When the thread regains control after calling
pthread_cond_wait(), the mutex is locked and the thread is the owner. This
is true regardless of why the wait ended. If general cancelability is enabled,
the thread reacquires the mutex (blocking for it if necessary) before the cleanup
handlers are run (or before the exception is raised).

pthread–81

pthread_cond_wait

A thread that changes the state of storage protected by the mutex in such a way
that a predicate associated with a condition variable might now be true, must call
either pthread_cond_signal() or pthread_cond_broadcast() for that condition
variable. If neither call is made, any thread waiting on the condition variable
continues to wait.

This routine might (with low probability) return when the condition variable has
not been signaled or broadcast. When this occurs, the mutex is reacquired before
the routine returns. To handle this type of situation, enclose each call to this
routine in a loop that checks the predicate. The loop provides documentation of
your intent and protects against these spurious wakeups, while also allowing
correct behavior even if another thread consumes the desired state before the
awakened thread runs.

It is illegal for threads to wait on the same condition variable by specifying
different mutexes.

The only routines that are supported for use with asynchronous cancelability
enabled are those that disable asynchronous cancelability.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond or mutex is invalid, or

Different mutexes are supplied for concurrent
pthread_cond_wait() or pthread_cond_timedwait()
operations on the same condition variable, or
The mutex was not owned by the calling thread at the time
of the call.

[ENOMEM] The Threads Library cannot acquire memory needed to block
using a statically initialized condition variable.

Associated Routines

pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()
pthread_cond_timedwait()

pthread–82

pthread_create

pthread_create

Creates a thread.

Syntax

pthread_create(
thread,
attr,
start_routine,
arg);

Argument Data Type Access

thread opaque pthread_t write

attr opaque pthread_attr_t read

start_routine procedure read

arg user_arg read

C Binding

#include <pthread.h>

int
pthread_create (

pthread_t *thread,
const pthread_attr_t *attr,
void * (*start_routine) (void *),
void *arg);

Arguments

thread
Location for thread object to be created.

attr
Thread attributes object that defines the characteristics of the thread being
created. If you specify NULL, default attributes are used.

start_routine
Function executed as the new thread’s start routine.

arg
Address value copied and passed to the thread’s start routine.

Description

This routine creates a thread. A thread is a single, sequential flow of control
within a program. It is the active execution of a designated routine, including
any nested routine invocations.

Successful execution of this routine includes the following actions:

• The Threads Library creates a thread object to describe and control the
thread. The thread object includes a thread environment block (TEB) that

pthread–83

pthread_create

programs can use, with care. (See the <sys/types.h> header file on Tru64
UNIX, or the pthread.h header file on other platforms.)

• The thread argument receives an identifier for the new thread.

• An executable thread is created with attributes specified by the attr argument
(or with default attributes if NULL is specified).

Thread Creation
The Threads Library creates a thread in the ready state and prepares the thread
to begin executing its start routine, the function passed to pthread_create()
as the start_routine argument. Depending on the presence of other threads
and their scheduling and priority attributes, the new thread might start
executing immediately. The new thread can also preempt its creator, depending
on the two threads’ respective scheduling and priority attributes. The
caller of pthread_create() can synchronize with the new thread using the
pthread_join() routine or using any mutually agreed upon mutexes, condition
variables or read-write locks.

For the duration of the new thread’s existence, the Threads Library maintains
and manages the thread object and other thread state overhead. A thread exists
until it is both terminated and detached. A thread is detached when created if the
detachstate attribute of its thread object is set to PTHREAD_CREATE_DETACHED.
It is also detached after any thread returns successfully from calling
pthread_detach() or pthread_join() for the thread. Termination is explained
in the next section (see Thread Termination).

The Threads Library assigns each new thread a thread identifier, which is written
into the address specified as the pthread_create() routine’s thread argument.
The new thread’s thread identifier is written before the new thread executes.

By default, the new thread’s scheduling policy and priority are inherited from the
creating thread—that is, by default, the pthread_create() routine ignores the
scheduling policy and priority set in the specified thread attributes object. Thus,
to create a thread that is subject to the scheduling policy and priority set in the
specified thread attributes object, before calling pthread_create(), your program
must use the pthread_attr_setinheritsched() routine to set the inherit thread
attributes object’s scheduling attribute to PTHREAD_EXPLICIT_SCHED.

On Tru64 UNIX, the signal state of the new thread is initialized as follows:

1. The signal mask is inherited from the creating thread.

2. The set of signals pending for the new thread is empty.

If pthread_create() fails, no new thread is created, and the contents of the
location referenced by thread are undefined.

Thread Termination
A thread terminates when one of the following events occurs:

• The thread returns from its start routine.

• The thread calls the pthread_exit() routine.

• The thread is canceled.

pthread–84

pthread_create

When a thread terminates, the following actions are performed:

1. A return value (if one is available) is written into the terminated thread’s
thread object, as follows:

• If the thread has been canceled, the value PTHREAD_CANCELED is written
into the thread’s thread object.

• If the thread terminated by returning from its start routine, the return
value is copied from the start routine (if one is available) into the
thread’s thread object. Alternatively, if the thread explicitly called
pthread_exit(), the value received in the value_ptr argument (from
pthread_exit()) is stored in the thread’s thread object.

Another thread can obtain this return value by joining with the terminated
thread (using pthread_join()). See Section 2.3.5 for a description of joining
with a thread.

Note

If the thread terminated by returning from its start routine normally and
the start routine does not provide a return value, the results obtained by
joining with that thread are unpredictable.

2. If the termination results from a cancelation request or a call to
pthread_exit(), the Threads Library calls, in turn, each cleanup handler
that this thread declared (using pthread_cleanup_push()) and that is not
yet removed (using pthread_cleanup_pop()). (The Threads Library also
transfers control to any appropriate CATCH, CATCH_ALL, or FINALLY blocks , as
described in Chapter 5 .)

The Threads Library calls the terminated thread’s most recently pushed
cleanup handler first. See Section 2.3.3.1 for more information about cleanup
handlers.

For C++ programmers: At normal exit from a thread, your program will call
the appropriate destructor functions, just as if an exception had been raised.

3. To exit the terminated thread due to a call to pthread_exit(), the Threads
Library raises the pthread_exit_e exception. To exit the terminated thread
due to cancelation, the Threads Library raises the pthread_cancel_e
exception.

Your program can use the exception package to operate on the generated
exception. (In particular, note that the practice of using CATCH handlers in
place of pthread_cleanup_push() is not portable.) Chapter 5 describes the
exception package.

4. For each of the terminated thread’s thread-specific data keys that has a
non-NULL value:

• The thread’s value for the corresponding key is set to NULL.

• Call each thread-specific data destructor function in this multithreaded
process’ list of destructors.

Repeat this step until all thread-specific data values in the thread are NULL,
or for up to a number of iterations equal to
PTHREAD_DESTRUCTOR_ITERATIONS. This destroys all thread-specific data
associated with the terminated thread. See Section 2.6 for more information
about thread-specific data.

pthread–85

pthread_create

5. Awaken the thread (if there is one) that is currently waiting to join with the
terminated thread. That is, awaken the thread that is waiting in a call to
pthread_join().

6. If the thread is already detached, destroy its thread object. Otherwise, the
thread continues to exist until detached or joined with. Section 2.3.4 describes
detaching and destroying a thread.

Return Values

If an error condition occurs, no thread is created, the contents of thread are
undefined, and this routine returns an integer value indicating the type of error.
Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to create another

thread, or the system-imposed limit on the total number of
threads under execution by a single user is exceeded.

[EINVAL] The value specified by attr is not a valid attributes block.
[ENOMEM] Insufficient memory exists to create a thread.
[EPERM] The caller does not have the appropriate permission to create

a thread with the specified attributes.

Associated Routines

pthread_atfork()
pthread_attr_destroy()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setinheritsched()
pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_attr_setstacksize()
pthread_cancel()
pthread_detach()
pthread_exit()
pthread_join()

pthread–86

pthread_delay_np

pthread_delay_np

Delays a thread’s execution.

Syntax

pthread_delay_np(
interval);

Argument Data Type Access

interval struct timespec read

C Binding

#include <pthread.h>

int
pthread_delay_np (

const struct timespec *interval);

Arguments

interval
Number of seconds and nanoseconds to delay execution. The value specified for
each must be greater than or equal to zero.

Description

This routine causes a thread to delay execution for a specific interval of time.
This interval ends at the current time plus the specified interval. The routine
will not return before the end of the interval is reached, but may return an
arbitrary amount of time after the end of the interval is reached. This can be due
to system load, thread priorities, and system timer granularity.

Specifying an interval of zero (0) seconds and zero (0) nanoseconds is allowed
and can be used to force the thread either to give up the processor or to deliver a
pending cancelation request.

The timespec structure contains the following two fields:

• tv_sec is an integral number of seconds.

• tv_nsec is an integral number of nanoseconds.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by interval is invalid.

pthread–87

pthread_detach

pthread_detach

Marks a thread object for deletion.

Syntax

pthread_detach(
thread);

Argument Data Type Access

thread opaque pthread_t read

C Binding

#include <pthread.h>

int
pthread_detach (

pthread_t thread);

Arguments

thread
Thread object being marked for deletion.

Description

This routine marks the specified thread object to indicate that storage for the
corresponding thread can be reclaimed when the thread terminates. This includes
storage for the thread argument’s return value, as well as the thread object. If
thread has not terminated when this routine is called, this routine does not cause
it to terminate.

When a thread object is no longer referenced, call this routine.

The results of this routine are unpredictable if the value of thread refers to a
thread object that does not exist.

You can create a thread already detached by setting its thread object’s detachstate
attribute.

The pthread_join() routine also detaches the target thread after
pthread_join() returns successfully.

pthread–88

pthread_detach

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by thread does not refer to a joinable

thread.
[ESRCH] The value specified by thread cannot be found.

Associated Routines

pthread_cancel()
pthread_create()
pthread_exit()
pthread_join()

pthread–89

pthread_equal

pthread_equal

Compares one thread identifier to another thread identifier.

Syntax

pthread_equal(
t1,
t2);

Argument Data Type Access

t1 opaque pthread_t read

t2 opaque pthread_t read

C Binding

#include <pthread.h>

int
pthread_equal (

pthread_t t1,
pthread_t t2);

Arguments

t1
The first thread identifier to be compared.

t2
The second thread identifier to be compared.

Description

This routine compares one thread identifier to another thread identifier.

If either t1 or t2 are not valid thread identifiers, this routine’s behavior is
undefined.

Return Values

Possible return values are as follows:

Return Description

0 Values of t1 and t2 do not designate the same object.
Non-zero Values of t1 and t2 designate the same object.

pthread–90

pthread_exc_get_status_np

pthread_exc_get_status_np

(Macro) Obtains a system-defined error status from a status exception object.

Syntax

pthread_exc_get_status_np(
exception,
code);

Argument Data Type Access

exception EXCEPTION read

code unsigned long write

C Binding

#include <pthread_exception.h>

int
pthread_exc_get_status_np (

EXCEPTION *exception,
unsigned long *code);

Arguments

exception
Threads Library status exception object whose status code is obtained.

code
Receives the system-specific status code associated with the specified status
exception object.

Description

This routine obtains and returns the system-specific status value from the
status exception object specified in the exception argument. This value
must have already been associated with the exception object using the
pthread_exc_set_status_np() routine.

In a program that uses Threads Library status exceptions, use this routine within
a CATCH or CATCH_ALL code block to obtain the status code value associated with
a caught exception. Note that any exception objects set to the same status value
are considered equivalent by the Threads Library.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. If the routine’s exception object argument is a status exception,
it sets the code argument and returns zero (0). Possible return values are as
follows:

pthread–91

pthread_exc_get_status_np

Return Description

0 Successful completion.
[EINVAL] The exception argument is not a valid status exception object.

Associated Routines

pthread_exc_set_status_np()

pthread–92

pthread_exc_matches_np

pthread_exc_matches_np

(Macro) Determines whether two Threads Library exception objects are identical.

Syntax

pthread_exc_matches_np(
exception1,
exception2);

Argument Data Type Access

exception1 EXCEPTION read

exception2 EXCEPTION read

C Binding

#include <pthread_exception.h>

int
pthread_exc_matches_np (

EXCEPTION *exception1,
EXCEPTION *exception2);

Arguments

exception1
Threads Library exception object.

exception2
Threads Library exception object.

Description

This routine compares two exception objects, taking into consideration whether
each is an address exception or status exception.

This routine returns either the C language value TRUE or the C language value
FALSE, indicating whether the two exception objects specified in the arguments
exception1 and exception2 are identical.

Return Values

The C language value TRUE if the exception objects are identical, or the C
language value FALSE if not.

Associated Routines

pthread_exc_get_status_np()
pthread_exc_report_np()
pthread_exc_set_status_np()

pthread–93

pthread_exc_report_np

pthread_exc_report_np

Produces a message that reports what a specified Threads Library status
exception object represents.

Syntax

pthread_exc_report_np(
exception);

Argument Data Type Access

exception EXCEPTION read

C Binding

#include <pthread_exception.h>

void
pthread_exc_report_np (

EXCEPTION *exception);

Arguments

exception
Threads Library exception object that has been set with a status value.

Description

This routine produces a text message on the stderr device (Tru64 UNIX systems)
or SYS$ERROR device (OpenVMS systems) that describes the exception whose
exception object is specified in the exception argument.

In a program that uses status exceptions, use this routine within a CATCH or
CATCH_ALL code block to produce the message associated with a caught exception.
Note that any exception objects set to the same status value are considered
equivalent by the Threads Library.

Return Values

None

Associated Routines

pthread_exc_get_status_np()
pthread_exc_set_status_np()

pthread–94

pthread_exc_set_status_np

pthread_exc_set_status_np

(Macro) Imports a system-defined error status into a Threads Library address
exception object.

Syntax

pthread_exc_set_status_np(
exception,
code);

Argument Data Type Access

exception EXCEPTION write

code unsigned long read

C Binding

#include <pthread_exception.h>

void
pthread_exc_set_status_np (

EXCEPTION *exception,
unsigned long code);

Arguments

exception
Threads Library address exception object into which the specified status code is
imported.

code
System-specific status code to be imported.

Description

This routine associates a system-specific status value with the specified address
exception object. This transforms the address exception object into a status
exception object.

The exception argument must already have been initialized with the exception
package’s EXCEPTION_INIT macro.

Use this routine to associate any system-specific status value with the specified
address exception object. Note that any exception objects set to the same status
value are considered equivalent by the Threads Library.

Return Values

None

pthread–95

pthread_exc_set_status_np

Associated Routines

pthread_exc_get_status_np()

pthread–96

pthread_exit

pthread_exit

Terminates the calling thread.

Syntax

pthread_exit(
value_ptr);

Argument Data Type Access

value_ptr void * read

C Binding

#include <pthread.h>

void
pthread_exit (

void *value_ptr);

Arguments

value_ptr
Value copied and returned to the caller of pthread_join(). Note that void * is
used as a universal datatype, not as a pointer. The Threads Library treats the
value_ptr as a value and stores it to be returned by pthread_join().

Description

This routine terminates the calling thread and makes a status value (value_ptr)
available to any thread that calls pthread_join() and specifies the terminating
thread.

Any cleanup handlers that have been pushed and not yet popped from the stack
are popped in the reverse order that they were pushed and then executed. After
all cleanup handlers have been executed, appropriate destructor functions are
called in an unspecified order if the thread has any thread-specific data. Thread
termination does not release any application-visible process resources, including,
but not limited to mutexes and file descriptors, nor does it perform any process-
level cleanup actions, including, but not limited to calling any atexit() routine
that may exist.

The Threads Library issues an implicit call to pthread_exit() when a thread
returns from the start routine that was used to create it. The Threads Library
writes the function’s return value as the return value in the thread’s thread
object. The process exits when the last running thread calls pthread_exit().

After a thread has terminated, the result of access to local (that is, explicitly
or implicitly declared auto) variables of the thread is undefined. So, do not use
references to local variables of the existing thread for the value_ptr argument of
the pthread_exit() routine.

pthread–97

pthread_exit

Return Values

None

Associated Routines

pthread_cancel()
pthread_create()
pthread_detach()
pthread_join()

pthread–98

pthread_getconcurrency

pthread_getconcurrency

Obtains the value of the concurrency level global variable for this process.

Syntax

pthread_getconcurrency(
);

C Binding

#include <pthread.h>

int
pthread_getconcurrency (

void);

Description

This routine obtains and returns the value of the ‘‘concurrency level’’
global setting for the calling thread’s process. Because the Threads Library
automatically manages the concurrency of all threads in a multithreaded process,
it ignores this concurrency level value.

The concurrency level value has no effect on the behavior of a multithreaded
program that uses the Threads Library. This routine is provided for Single UNIX
Specification, Version 2, source code compatibility and has no other effect when
called.

The initial concurrency level is zero (0), indicating that the Threads Library
controls the concurrency level.

The concurrency level can be set using the pthread_setconcurrency() routine.

Return Values

This routine always returns the value of this process’ concurrency level global
variable. If this process has never called the pthread_setconcurrency() routine,
this routine returns zero (0).

Associated Routines

pthread_setconcurrency()

pthread–99

pthread_getname_np

pthread_getname_np

Obtains the object name from the thread object for an existing thread.

Syntax

pthread_getname_np(
thread,
name,
len);

Argument Data Type Access

thread opaque pthread_thread_t read

name char write

len opaque size_t read

C Binding

#include <pthread.h>

int
pthread_getname_np (

pthread_thread_t thread,
char *name,
size_t len);

Arguments

thread
Thread object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

Description

This routine copies the object name from the thread object specified by the thread
argument to the buffer at the location specified by the name argument. Before
calling this routine, your program must allocate the buffer indicated by name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified thread object has not been previously set with an object name,
this routine copies a C language null string into the buffer at location name.

pthread–100

pthread_getname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ESRCH] The thread specified by thread does not exist.

Associated Routines

pthread_setname_np()

pthread–101

pthread_getschedparam

pthread_getschedparam

Obtains the current scheduling policy and scheduling parameters of a thread.

Syntax

pthread_getschedparam(
thread,
policy,
param);

Argument Data Type Access

thread opaque pthread_t read

policy integer write

param struct sched_param write

C Binding

#include <pthread.h>

int
pthread_getschedparam (

pthread_t thread,
int *policy,
struct sched_param *param);

Arguments

thread
Thread whose scheduling policy and parameters are obtained.

policy
Receives the value of the scheduling policy for the thread specified in thread.
Refer to the description of the pthread_setschedparam() routine for valid
policies and their meanings.

param
Receives the value of the scheduling parameters for the thread specified in thread.
Refer to the description of the pthread_setschedparam() routine for valid values.

Description

This routine obtains both the current scheduling policy and associated scheduling
parameters of the thread specified by the thread argument.

The priority value returned in the param structure is the value specified either
in the attr argument passed to pthread_create() or by the most recent call to
pthread_setschedparam() that affects the target thread.

This routine differs from pthread_attr_getschedpolicy() and
pthread_attr_getschedparam(), in that those routines get the scheduling policy
and parameter attributes that are used to establish the priority and scheduling
policy of a new thread when it is created. This routine, however, obtains the
scheduling policy and parameters of an existing thread.

pthread–102

pthread_getschedparam

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ESRCH] The value specified by thread does not refer to an existing

thread.

Associated Routines

pthread_attr_getschedparam()
pthread_attr_getschedpolicy()
pthread_create()
pthread_self()
pthread_setschedparam()

pthread–103

pthread_getsequence_np

pthread_getsequence_np

Obtains the unique identifier for the specified thread.

Syntax

pthread_getsequence_np(
thread);

Argument Data Type Access

thread opaque pthread_t read

C Binding

#include <pthread.h>

unsigned long
pthread_getsequence_np (

pthread_t thread);

Arguments

thread
Thread whose sequence number is to be obtained.

Description

This routine obtains and returns the thread sequence number for the thread
identified by the thread object specified in the thread argument.

The thread sequence number provides a unique identifier for each existing thread.
A thread’s thread sequence number is never reused while the thread exists, but
can be reused after the thread terminates. The debugger interfaces use this
sequence number to identify each thread in commands and in display output.

The result of calling this routine is undefined if the thread argument does not
specify a valid thread object.

Return Values

No errors are returned. This routine returns the thread sequence number for
the thread identified by the thread object specified in the thread argument. The
result of calling this routine is undefined if the thread argument does not specify
a valid thread.

Associated Routines

pthread_create()
pthread_self()

pthread–104

pthread_getspecific

pthread_getspecific

Obtains the thread-specific data associated with the specified key.

Syntax

pthread_getspecific(
key);

Argument Data Type Access

key opaque pthread_key_t read

C Binding

#include <pthread.h>

void
*pthread_getspecific (

pthread_key_t key);

Arguments

key
The context key identifies the thread-specific data to be obtained.

Description

This routine obtains the thread-specific data associated with the specified key
for the current thread. Obtain this key by calling the pthread_key_create()
routine. This routine returns the value currently bound to the specified key on
behalf of the calling thread.

This routine may be called from a thread-specific data destructor function.

Return Values

No errors are returned. This routine returns the thread-specific data value
associated with the specified key argument. If no thread-specific data value is
associated with key, or if key is not defined, then this routine returns a NULL
value.

Associated Routines

pthread_key_create()
pthread_setspecific()

pthread–105

pthread_get_expiration_np

pthread_get_expiration_np

Obtains a value representing a desired expiration time.

Syntax

pthread_get_expiration_np(
delta,
abstime);

Argument Data Type Access

delta struct timespec read

abstime struct timespec write

C Binding

#include <pthread.h>

int
pthread_get_expiration_np (

const struct timespec *delta,
struct timespec *abstime);

Arguments

delta
Number of seconds and nanoseconds to add to the current system time. (The
result is the time in the future.) This result will be placed in abstime.

abstime
Value representing the absolute expiration time. The absolute expiration time is
obtained by adding delta to the current system time. The resulting abstime is in
Universal Coordinated Time (UTC).

Description

This routine adds a specified interval to the current absolute system time and
returns a new absolute time. This new absolute time may then be used as the
expiration time in a call to pthread_cond_timedwait().

The timespec structure contains the following two fields:

• tv_sec is an integral number of seconds.

• tv_nsec is an integral number of nanoseconds.

pthread–106

pthread_get_expiration_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by delta is invalid.

Associated Routines

pthread_cond_timedwait()

pthread–107

pthread_join

pthread_join

pthread_join32(), pthread_join64()

The pthread_join32() and pthread_join64() forms are only valid in 64-
bit pointer environments for OpenVMS Alpha. For information regarding
32- and 64-bit pointers, see Appendix B. Ensure that your compiler
provides 64-bit support before you use pthread_join64().

Causes the calling thread to wait for the termination of a specified thread.

Syntax

pthread_join(
thread,
value_ptr);

Argument Data Type Access

thread opaque pthread_t read

value_ptr void * write

C Binding

#include <pthread.h>

int
pthread_join (

pthread_t thread,
void **value_ptr);

Arguments

thread
Thread whose termination is awaited by the calling routine.

value_ptr
Return value of the terminating thread (when that thread either calls
pthread_exit() or returns from its start routine).

Description

This routine suspends execution of the calling thread until the specified target
thread thread terminates.

On return from a successful pthread_join() call with a non-NULL value_ptr
argument, the value passed to pthread_exit() is returned in the location
referenced by value_ptr, and the terminating thread is detached.

If more than one thread attempts to join with the same thread, the results are
unpredictable.

pthread–108

pthread_join

A call to pthread_join() returns after the target thread terminates. The
pthread_join() routine is a deferred cancelation point; the target thread will not
be detached if the thread blocked in pthread_join() is canceled.

If a thread calls this routine and specifies its own pthread_t, a deadlock can
result.

The pthread_join() (or pthread_detach()) routine should eventually be called
for every thread that is created with the detachstate attribute of its thread object
set to PTHREAD_CREATE_JOINABLE, so that storage associated with the thread can
be reclaimed.

Note

For OpenVMS Alpha systems:
The pthread_join() routine is defined to pthread_join64() if you
compile using /pointer_size=long. If you do not specify /pointer_size,
or if you specify /pointer_size=short, then pthread_join() is
defined to be pthread_join32(). You can call pthread_join32() or
pthread_join64() instead of pthread_join(). The pthread_join32()
form returns a 32-bit void * value in the address to which value_ptr
points. The pthread_join64() form returns a 64-bit void * value. You
can call either, or you can call pthread_join(). Note that if you call
pthread_join32() and the thread with which you join returns a 64-bit
value, the high 32 bits of which are not 0 (zero), the Threads Library
discards those high bits with no warning.

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by thread does not refer to a joinable

thread.
[ESRCH] The value specified by thread does not refer to an existing

thread ID.
[EDEADLK] A deadlock was detected, or thread specifies the calling

thread.

Associated Routines

pthread_cancel()
pthread_create()
pthread_detach()
pthread_exit()

pthread–109

pthread_key_create

pthread_key_create

Generates a unique thread-specific data key.

Syntax

pthread_key_create(
key,
destructor);

Argument Data Type Access

key opaque pthread_key_t write

destructor procedure read

C Binding

#include <pthread.h>

int
pthread_key_create (

pthread_key_t *key,
void (*destructor)(void *));

Arguments

key
Location where the new thread-specific data key will be stored.

destructor
Procedure called to destroy a thread-specific data value associated with the
created key when the thread terminates. Note that the argument to the
destructor for the user-specified routine is the non-NULL value associated
with a key.

Description

This routine generates a unique, thread-specific data key that is visible to all
threads in the process. The variable key provided by this routine is an opaque
object used to locate thread-specific data. Although the same key value can be
used by different threads, the values bound to the key by pthread_setspecific()
are maintained on a per-thread basis and persist for the life of the calling thread.
The initial value of the key in all threads is NULL.

The Threads Library imposes a maximum number of thread-specific data keys,
equal to the symbolic constant PTHREAD_KEYS_MAX.

Thread-specific data allows client software to associate ‘‘static’’ information with
the current thread. For example, where a routine declares a variable static in a
single-threaded program, a multithreaded version of the program might create a
thread-specific data key to store the same variable.

This routine generates and returns a new key value. The key reserves a cell
within each thread. Each call to this routine creates a new cell that is unique
within an application invocation. Keys must be generated from initialization

pthread–110

pthread_key_create

code that is guaranteed to be called only once within each process. (See the
pthread_once() description for more information.)

When a thread terminates, its thread-specific data is automatically destroyed;
however, the key remains unless destroyed by a call to pthread_key_delete().
An optional destructor function can be associated with each key. At thread exit,
if a key has a non-NULL destructor pointer, and the thread has a non-NULL
value associated with that key, the destructor function is called with the current
associated value as its sole argument. The order in which thread-specific data
destructors are called at thread termination is undefined.

Before each destructor is called, the thread’s value for the corresponding key is
set to NULL. After the destructors have been called for all non-NULL values with
associated destructors, if there are still some non-NULL values with associated
destructors, then this sequence of actions is repeated. If there are still non-NULL
values for any key with a destructor after four repetitions of this sequence, the
thread is terminated. At this point, any key values that represent allocated heap
will be lost. Note that this occurs only when a destructor performs some action
that creates a new value for some key. Your program’s destructor code should
attempt to avoid this sort of circularity.

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacked the necessary resources to create another

thread-specific data key, or the limit on the total number of
keys per process (PTHREAD_KEYS_MAX) has been exceeded.

[ENOMEM] Insufficient memory exists to create the key.

Associated Routines

pthread_getspecific()
pthread_key_delete()
pthread_once()
pthread_setspecific()

pthread–111

pthread_key_delete

pthread_key_delete

Deletes a thread-specific data key.

Syntax

pthread_key_delete(
key);

Argument Data Type Access

key opaque pthread_key_t write

C Binding

#include <pthread.h>

int
pthread_key_delete (

pthread_key_t key);

Arguments

key
Context key to be deleted.

Description

This routine deletes the thread-specific data key specified by the key argument,
which must have been previously returned by pthread_key_create().

The thread-specific data values associated with key need not be NULL at the
time this routine is called. The application must free any application storage
or perform any cleanup actions for data structures related to the deleted key or
associated thread-specific data in any threads. This cleanup can be done either
before or after this routine is called.

Attempting to use the key after calling this routine results in unpredictable
behavior.

No destructor functions are invoked by this routine. Any destructor functions
that may have been associated with key shall no longer be called upon thread
exit. pthread_key_delete() can be called from within destructor functions.

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The key value is not a valid key.

pthread–112

pthread_key_delete

Associated Routines

pthread_exit()
pthread_getspecific()
pthread_key_create()

pthread–113

pthread_key_getname_np

pthread_key_getname_np

Obtains the object name from a thread-specific data key object.

Syntax

pthread_key_getname_np(
key,
name,
len);

Argument Data Type Access

key opaque pthread_key_t read

name char write

len opaque size_t read

C Binding

#include <pthread.h>

int
pthread_key_getname_np (

pthread_key_t *key,
char *name,
size_t len);

Arguments

key
Address of the thread-specific data key object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

Description

This routine copies the object name from the thread-specific data key object
specified by the key argument to the buffer at the location specified by the name
argument. Before calling this routine, your program must allocate the buffer
indicated by name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified thread-specific data key object has not been previously set with
an object name, this routine copies a C language null string into the buffer at
location name.

pthread–114

pthread_key_getname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by key is not a valid key.

Associated Routines

pthread_key_setname_np()

pthread–115

pthread_key_setname_np

pthread_key_setname_np

Changes the object name in a thread-specific data key object.

Syntax

pthread_key_setname_np(
key,
name,
mbz);

Argument Data Type Access

key opaque pthread_key_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_key_setname_np (

pthread_key_t *cond,
const char *name,
void *mbz);

Arguments

key
Address of the thread-specific data key object whose object name is to be changed.

name
Object name value to copy into the key object.

mbz
Reserved for future use. The value must be zero (0).

Description

This routine changes the object name in the thread-specific data key object
specified by the key argument to the value specified by the name argument.
To set a new thread-specific data key object’s object name, call this routine
immediately after initializing the key object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

pthread–116

pthread_key_setname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by key is not a valid key, or the length in

characters of name exceeds 31.
[ENOMEM] Insufficient memory exists to create a copy of the object name

string.

Associated Routines

pthread_key_getname_np()

pthread–117

pthread_kill

pthread_kill

Delivers a signal to a specified target thread.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_kill(
thread,
sig);

Argument Data Type Access

thread opaque pthread_t read

sig integer read

C Binding

#include <pthread.h>
include <signal.h>

int
pthread_kill (

pthread_t thread,
int sig);

Arguments

thread
Thread to receive a signal request.

sig
A signal request.

Description

This routine sends a signal to the specified target thread thread. Any signal
defined to stop, continue, or terminate will stop or terminate the process,
even though it can be handled by the target thread. For example, SIGTERM
terminates all threads in the process, even though it can be handled by the target
thread.

Specifying a sig argument of 0 (zero) causes this routine to validate the thread
argument but not to deliver any signal.

The name of the ‘‘kill’’ routine is sometimes misleading, because many signals do
not terminate a thread.

The various signals are as follows:

SIGHUP SIGPIPE SIGTTIN
SIGINT SIGALRM SIGTTOU
SIGQUIT SIGTERM SIGIO

pthread–118

pthread_kill

SIGTRAP SIGUSR1 SIGXCPU
SIGABRT SIGSYS SIGXFSZ
SIGEMT SIGURG SIGVTALRM
SIGFPE SIGSTOP SIGPROF
SIGKILL SIGTSTP SIGINFO
SIGBUS SIGCONT SIGUSR1
SIGSEGV SIGCHLD SIGUSR2

If this routine does not execute successfully, no signal is sent.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value of sig is invalid or an unsupported signal value.
[ESRCH] The value of thread does not specify an existing thread.

pthread–119

pthread_lock_global_np

pthread_lock_global_np

Locks the Threads Library global mutex.

Syntax

pthread_lock_global_np();

C Binding

#include <pthread.h>

int
pthread_lock_global_np (void);

Arguments

None

Description

This routine locks the Threads Library global mutex. If the global mutex is
currently held by another thread when a thread calls this routine, the calling
thread waits for the global mutex to become available and then locks it.

The thread that has locked the global mutex becomes its current owner and
remains the owner until the same thread has unlocked it. This routine returns
with the global mutex in the locked state and with the current thread as the
global mutex’s current owner.

Use the global mutex when calling a library package that is not designed to run
in a multithreaded environment. Unless the documentation for a library function
specifically states that it is thread-safe, assume that it is not compatible; in other
words, assume it is nonreentrant.

The global mutex is one lock. Any code that calls any function that is not known
to be reentrant should use the same lock. This prevents problems resulting
from dependencies among threads that call library functions and those functions’
calling other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global
mutex can relock it without deadlocking. The locking thread must call
pthread_unlock_global_np() as many times as it called this routine, to allow
another thread to lock the global mutex.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.

pthread–120

pthread_lock_global_np

Associated Routines

pthread_unlock_global_np()

pthread–121

pthread_mutexattr_destroy

pthread_mutexattr_destroy

Destroys the specified mutex attributes object.

Syntax

pthread_mutexattr_destroy(
attr);

Argument Data Type Access

attr opaque pthread_mutexattr_t write

C Binding

#include <pthread.h>

int
pthread_mutexattr_destroy (

pthread_mutexattr_t *attr);

Arguments

attr
Mutex attributes object to be destroyed.

Description

This routine destroys a mutex attributes object—that is, the object becomes
uninitialized. Call this routine when your program no longer needs the specified
mutex attributes object.

After this routine is called, the Threads Library may reclaim the storage used
by the mutex attributes object. Mutexes that were created using this attributes
object are not affected by the destruction of the mutex attributes object.

The results of calling this routine are unpredictable, if the attributes object
specified in the attr argument does not exist.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object.

Associated Routines

pthread_mutexattr_init()

pthread–122

pthread_mutexattr_getpshared

pthread_mutexattr_getpshared

Obtains the value of the process-shared attribute of the specified mutex attributes
object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_mutexattr_getpshared(
attr,
pshared);

Argument Data Type Access

attr opaque pthread_mutexattr_t read

pshared int write

C Binding

#include <pthread.h>

int
pthread_mutexattr_getpshared (

const pthread_mutexattr_t *attr,
int *pshared);

Arguments

attr
Address of the mutex attributes object whose process-shared attribute is obtained.

pshared
Value received from process-shared attribute of the mutex attributes object
specified in attr.

Description

This routine obtains the value of the process-shared attribute of the mutex
attributes object specified by the attr argument and stores it in the location
specified by the pshared argument. This attributes object must already be
initialized at the time this routine is called.

Setting the process-shared attribute to PTHREAD_PROCESS_PRIVATE permits a
mutex to be operated upon by threads created within the same process as the
thread that initialized the mutex. If threads of differing processes attempt to
operate on such a mutex, the behavior is undefined.

The default value of the process-shared attribute of a mutex attributes object is
PTHREAD_PROCESS_PRIVATE.

Setting the process-shared attribute to PTHREAD_PROCESS_SHARED permits a mutex
to be operated upon by any thread that has access to the memory where the
mutex is allocated, even if the mutex is allocated in memory that is shared by
multiple processes.

pthread–123

pthread_mutexattr_getpshared

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object.

Associated Routines

pthread_mutex_init()
pthread_mutexattr_destroy()
pthread_mutexattr_init()
pthread_mutexattr_setpshared()

pthread–124

pthread_mutexattr_gettype

pthread_mutexattr_gettype

Obtains the mutex type attribute in the specified mutex attribute object.

Syntax

pthread_mutexattr_gettype(
attr,
type);

Argument Data Type Access

attr opaque pthread_mutexattr_t read

type integer write

C Binding

#include <pthread.h>

int
pthread_mutexattr_gettype (

const pthread_mutexattr_t *attr,
int *type);

Arguments

attr
Mutex attributes object whose mutex type attribute is obtained.

type
Receives the value of the mutex type attribute. The type argument specifies the
type of mutex that can be created. Valid values are:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_DEFAULT (default)
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_ERRORCHECK

Description

This routine obtains the value of the mutex type attribute in the mutex attributes
object specified by the attr argument and stores it in the location specified by
the type argument. See the pthread_mutexattr_settype() description for
information about mutex types.

Return Values

On successful completion, this routine returns the mutex type in the location
specified by the type argument.

If an error condition occurs, this routine returns an integer value indicating the
type of the error. Possible return values are as follows:

pthread–125

pthread_mutexattr_gettype

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid mutex attributes

object.

Associated Routines

pthread_mutexattr_init()
pthread_mutexattr_settype()
pthread_mutex_init()

pthread–126

pthread_mutexattr_init

pthread_mutexattr_init

Initializes a mutex attributes object.

Syntax

pthread_mutexattr_init(
attr);

Argument Data Type Access

attr opaque pthread_mutexattr_t write

C Binding

#include <pthread.h>

int
pthread_mutexattr_init (

pthread_mutexattr_t *attr);

Arguments

attr
Address of the mutex attributes object to be initialized.

Description

This routine initializes the mutex attributes object specified by the attr argument
with a set of default values. A mutex attributes object is used to specify the
attributes of one or more mutexes when they are created. The attributes object
created by this routine is used only in calls to the pthread_mutex_init() routine.

When a mutex attributes object is used to create a mutex, the values of the
individual attributes determine the characteristics of the new mutex. Thus,
attributes objects act as additional arguments to mutex creation. Changing
individual attributes in an attributes object does not affect any mutexes that were
previously created using that attributes object.

You can use the same mutex attributes object in successive calls to
pthread_mutex_init(), from any thread. If multiple threads can change
attributes in a shared mutex attributes object, your program must use a mutex to
protect the integrity of the attributes object’s contents.

Results are undefined if this routine is called and the attr argument specifies a
mutex attributes object that is already initialized.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

pthread–127

pthread_mutexattr_init

Return Description

0 Successful completion.
[ENOMEM] Insufficient memory to create the mutex attributes object.

Associated Routines

pthread_mutexattr_destroy()
pthread_mutexattr_gettype()
pthread_mutexattr_settype()
pthread_mutex_init()

pthread–128

pthread_mutexattr_setpshared

pthread_mutexattr_setpshared

Changes the value of the process-shared attribute of the specified mutex
attributes object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_mutexattr_setpshared(
attr,
pshared);

Argument Data Type Access

attr opaque pthread_mutexattr_t write

pshared int read

C Binding

#include <pthread.h>

int
pthread_mutexattr_setpshared (

pthread_mutexattr_t *attr,
int pshared);

Arguments

attr
Address of the mutex attributes object whose process-shared attribute is to be
modified.

pshared
Value to set in the process-shared attribute of the mutex attributes object
specified by attr.

Description

This routine uses the value specified in the pshared argument to set the value of
the process-shared attribute of an initialized mutex attributes object specified in
the attr argument.

Setting the process-shared attribute to PTHREAD_PROCESS_PRIVATE permits a
mutex to be operated upon by threads created within the same process as the
thread that initialized the mutex. If threads of differing processes attempt to
operate on such a mutex, the behavior is undefined.

The default value of the process-shared attribute of a mutex attributes object is
PTHREAD_PROCESS_PRIVATE.

Setting the process-shared attribute to PTHREAD_PROCESS_SHARED permits a mutex
to be operated upon by any thread that has access to the memory where the
mutex is allocated, even if the mutex is allocated in memory that is shared by
multiple processes.

pthread–129

pthread_mutexattr_setpshared

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid mutex attributes

object, or the new value specified for the attribute is outside
the range of legal values for that attribute.

Associated Routines

pthread_mutex_init()
pthread_mutexattr_destroy()
pthread_mutexattr_init()
pthread_mutexattr_getpshared()

pthread–130

pthread_mutexattr_settype

pthread_mutexattr_settype

Specifies the mutex type attribute that is used when a mutex is created.

Syntax

pthread_mutexattr_settype(
attr,
type);

Argument Data Type Access

attr opaque pthread_mutexattr_t write

type integer read

C Binding

#include <pthread.h>

int
pthread_mutexattr_settype (

pthread_mutexattr_t *attr,
int type);

Arguments

attr
Mutex attributes object whose mutex type attribute is to be modified.

type
New value for the mutex type attribute. The type argument specifies the type of
mutex that will be created. Valid values are:

PTHREAD_MUTEX_NORMAL
PTHREAD_MUTEX_DEFAULT (default)
PTHREAD_MUTEX_RECURSIVE
PTHREAD_MUTEX_ERRORCHECK

Description

This routine sets the mutex type attribute that is used to determine which type
of mutex is created based on a subsequent call to pthread_mutex_init(). See
Section 2.4.1 for information on the types of mutexes.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

pthread–131

pthread_mutexattr_settype

Return Description

0 Successful completion.
[EINVAL] The value specified by attr or type is not a valid mutex

attributes type.
[ESRCH] The value specified by attr does not refer to an existing

mutex attributes object.

Associated Routines

pthread_mutexattr_init()
pthread_mutexattr_gettype()
pthread_mutex_init()

pthread–132

pthread_mutex_destroy

pthread_mutex_destroy

Destroys a mutex.

Syntax

pthread_mutex_destroy(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t write

C Binding

#include <pthread.h>

int
pthread_mutex_destroy (

pthread_mutex_t *mutex);

Arguments

mutex
The mutex to be destroyed.

Description

This routine destroys the specified mutex by uninitializing it, and should be
called when a mutex object is no longer referenced. After this routine is called,
the Threads Library may reclaim internal storage used by the specified mutex.

It is safe to destroy an initialized mutex that is unlocked. However, it is illegal to
destroy a locked mutex.

The results of this routine are unpredictable if the mutex object specified in the
mutex argument does not currently exist, or is not initialized.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] An attempt was made to destroy the object referenced by

mutex while it is locked.
[EINVAL] The value specified by mutex is not a valid mutex.

pthread–133

pthread_mutex_destroy

Associated Routines

pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()

pthread–134

pthread_mutex_getname_np

pthread_mutex_getname_np

Obtains the object name from a mutex object.

Syntax

pthread_mutex_getname_np(
mutex,
name,
len);

Argument Data Type Access

mutex opaque pthread_mutex_t read

name char write

len opaque size_t read

C Binding

#include <pthread.h>

int
pthread_mutex_getname_np (

pthread_mutex_t *mutex,
char *name,
size_t len);

Arguments

mutex
Address of the mutex object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

Description

This routine copies the object name from the mutex object specified by the mutex
argument to the buffer at the location specified by the name argument. Before
calling this routine, your program must allocate the buffer indicated by name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified condition variable object has not been previously set with an
object name, this routine copies a C language null string into the buffer at
location name.

pthread–135

pthread_mutex_getname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

pthread_mutex_setname_np()

pthread–136

pthread_mutex_init

pthread_mutex_init

Initializes a mutex.

Syntax

pthread_mutex_init(
mutex,
attr);

Argument Data Type Access

mutex opaque pthread_mutex_t write

attr opaque pthread_mutexattr_t read

C Binding

#include <pthread.h>

int
pthread_mutex_init (

pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

Arguments

mutex
Mutex to be initialized.

attr
Mutex attributes object that defines the characteristics of the mutex to be
initialized.

Description

This routine initializes a mutex with the attributes specified by the mutex
attributes object specified in the attr argument. A mutex is a synchronization
object that allows multiple threads to serialize their access to shared data.

The mutex is initialized and set to the unlocked state. If attr is set to NULL, the
default mutex attributes are used. The pthread_mutexattr_settype() routine
can be used to specify the type of mutex that is created (normal, recursive, or
errorcheck).

See Chapter 2 for more information about mutex usage.

Use the PTHREAD_MUTEX_INITIALIZER macro to statically initialize a mutex
without calling this routine. Statically initialized mutexes need not be destroyed
using pthread_mutex_destroy(). Use this macro as follows:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER

Only normal mutexes can be statically initialized.

A mutex is a resource of the process, not part of any particular thread. A mutex
is neither destroyed nor unlocked automatically when any thread exits. If a
mutex is allocated on a stack, static initializers cannot be used on the mutex.

pthread–137

pthread_mutex_init

Return Values

If an error condition occurs, this routine returns an integer value indicating
the type of error, the mutex is not initialized, and the contents of mutex are
undefined. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize the

mutex.
[EBUSY] The implementation has detected an attempt to reinitialize

the mutex (a previously initialized, but not yet destroyed
mutex).

[EINVAL] The value specified by mutex is not a valid mutex.
[ENOMEM] Insufficient memory exists to initialize the mutex.
[EPERM] The caller does not have privileges to perform this operation.

Associated Routines

pthread_mutexattr_init()
pthread_mutexattr_gettype()
pthread_mutexattr_settype()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()

pthread–138

pthread_mutex_lock

pthread_mutex_lock

Locks an unlocked mutex.

Syntax

pthread_mutex_lock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <pthread.h>

int
pthread_mutex_lock (

pthread_mutex_t *mutex);

Arguments

mutex
Mutex to be locked.

Description

This routine locks a mutex with behavior that depends upon the type of mutex,
as follows:

• If a normal or default mutex is specified, a deadlock can result if the current
owner of the mutex calls this routine in an attempt to lock the mutex a
second time. (The deadlock is not detected or reported.)

• If a recursive mutex is specified, the current owner of the mutex can relock
the same mutex without blocking. The lock count is incremented for each
recursive lock within the thread.

• If an errorcheck mutex is specified and the current owner tries to lock the
mutex a second time, this routine reports the [EDEADLK] error. If the mutex
is locked by another thread, the calling thread waits for the mutex to become
available.

Use the pthread_mutexattr_settype() routine to set the type of the mutex to
normal, default, recursive, or errorcheck. For more information about mutexes,
see Chapter 2.

The thread that has locked a mutex becomes its current owner and remains
its owner until the same thread has unlocked it. This routine returns with the
mutex in the locked state and with the calling thread as the mutex’s current
owner.

A recursive or errorcheck mutex records the identity of the thread that locks it,
allowing debuggers to display this information. In most cases, normal and default
mutexes do not record the owning thread’s identity.

pthread–139

pthread_mutex_lock

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EDEADLK] A deadlock condition is detected.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

pthread_mutexattr_settype()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_trylock()
pthread_mutex_unlock()

pthread–140

pthread_mutex_setname_np

pthread_mutex_setname_np

Changes the object name in a mutex object.

Syntax

pthread_mutex_setname_np(
mutex,
name,
mbz);

Argument Data Type Access

mutex opaque pthread_mutex_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_mutex_setname_np (

pthread_mutex_t *mutex,
const char *name,
void *mbz);

Arguments

mutex
Address of the mutex object whose object name is to be changed.

name
Object name value to copy into the mutex object.

mbz
Reserved for future use. The value must be zero (0).

Description

This routine changes the object name in the mutex object specified by the mutex
argument to the value specified by the name argument. To set a new mutex
object’s object name, call this routine immediately after initializing the mutex
object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

pthread–141

pthread_mutex_setname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by mutex is not a valid mutex, or the

length in characters of name exceeds 31.
[ENOMEM] Insufficient memory to create a copy of the object name

string.

Associated Routines

pthread_mutex_getname_np()

pthread–142

pthread_mutex_trylock

pthread_mutex_trylock

Attempts to lock the specified mutex. If the mutex is already locked, the calling
thread does not wait for the mutex to become available.

Syntax

pthread_mutex_trylock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <pthread.h>

int
pthread_mutex_trylock (

pthread_mutex_t *mutex);

Arguments

mutex
Mutex to be locked.

Description

This routine attempts to lock the mutex specified in the mutex argument. When
a thread calls this routine, an attempt is made to immediately lock the mutex.
If the mutex is successfully locked, this routine returns zero (0) and the calling
thread becomes the mutex’s current owner. If the specified mutex is locked when
a thread calls this routine, the calling thread does not wait for the mutex to
become available.

The behavior of this routine is as follows:

• For a normal, default, or errorcheck mutex: if the mutex is locked by any
thread (including the calling thread) when this routine is called, this routine
returns [EBUSY] and the calling thread does not wait to acquire the lock.

• For a normal or errorcheck mutex: if the mutex is not owned, this routine
returns zero (0) and the mutex becomes locked by the calling thread.

• For a recursive mutex: if the mutex is owned by the current thread, this
routine returns zero (0) and the mutex lock count is incremented. (To unlock
a recursive mutex, each call to pthread_mutex_trylock() must be matched
by a call to pthread_mutex_unlock().)

Use the pthread_mutexattr_settype() routine to set the mutex type attribute
(normal, default, recursive, or errorcheck). For information about mutex types
and their usage, see Chapter 2.

pthread–143

pthread_mutex_trylock

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] The mutex is already locked; therefore, it was not acquired.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

pthread_mutexattr_settype()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_unlock()

pthread–144

pthread_mutex_unlock

pthread_mutex_unlock

Unlocks the specified mutex.

Syntax

pthread_mutex_unlock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <pthread.h>

int
pthread_mutex_unlock (

pthread_mutex_t *mutex);

Arguments

mutex
Mutex to be unlocked.

Description

This routine unlocks the mutex specified by the mutex argument.

This routine behaves as follows, based on the type of the specified mutex:

• For a normal, default, or errorcheck mutex: if the mutex is owned by the
calling thread, it is unlocked with no current owner. Further, for a normal
or default mutex: if the mutex is not locked or is locked by another thread,
this routine can also return [EPERM], but this is not guaranteed. For an
errorcheck mutex: if the mutex is not locked or is locked by another thread,
this routine returns [EPERM].

• For a recursive mutex: if the mutex is owned by the calling thread, the lock
count is decremented. The mutex remains locked and owned until the lock
count reaches zero (0). When the lock count reaches zero, the mutex becomes
unlocked with no current owner.

If one or more threads are waiting to lock the specified mutex, and the mutex
becomes unlocked, this routine causes one thread to unblock and to try to acquire
the mutex. The scheduling policy is used to determine which thread to unblock.
For the SCHED_FIFO and SCHED_RR policies, a blocked thread is chosen in priority
order, using first-in/first-out within priorities. Note that the mutex might not be
acquired by the awakened thread, if any other running thread attempts to lock
the mutex first.

On Tru64 UNIX, if a signal is delivered to a thread waiting for a mutex, upon
return from the signal handler, the thread resumes waiting for the mutex as if it
was not interrupted.

pthread–145

pthread_mutex_unlock

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified for mutex is not a valid mutex.
[EPERM] The calling thread does not own the mutex.

Associated Routines

pthread_mutexattr_settype()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()

pthread–146

pthread_once

pthread_once

Calls a routine that is executed by a single thread, once.

Syntax

pthread_once(
once_control,
routine);

Argument Data Type Access

once_control opaque pthread_once_t modify

routine procedure read

C Binding

#include <pthread.h>

int
pthread_once (

pthread_once_t *once_control,
void (*routine) (void));

Arguments

once_control
Address of a record that controls the one-time execution code. Each one-time
execution routine must have its own unique pthread_once_t record.

routine
Address of a procedure to be executed once. This routine is called only once,
regardless of the number of times it and its associated once_control block are
passed to pthread_once().

Description

The first call to this routine by any thread in a process with a given once_
control will call the specified routine with no arguments. Subsequent calls to
pthread_once() with the same once_control will not call the routine. On return
from pthread_once(), it is guaranteed that the routine has completed.

For example, a mutex or a per-thread context key must be created exactly
once. Calling pthread_once() ensures that the initialization is serialized across
multiple threads. Other threads that reach the same point in the code would be
delayed until the first thread is finished.

Note

If you specify a routine that directly or indirectly results in a recursive
call to pthread_once() and that specifies the same routine argument, the
recursive call can result in a deadlock.

pthread–147

pthread_once

To initialize the once_control record, your program can zero out the entire
structure, or you can use the PTHREAD_ONCE_INIT macro, which is defined
in the pthread.h header file, to statically initialize that structure. If using
PTHREAD_ONCE_INIT, declare the once_control record as follows:

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Note that it is often easier to simply lock a statically initialized mutex, check
a control flag, and perform necessary initialization (in-line) rather than using
pthread_once(). For example, you can code an initialization routine that begins
with the following basic logic:

init()
{
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
static int flag = FALSE;

pthread_mutex_lock(&mutex);
if(!flag)
{
/* initialization code goes here */
flag = TRUE;

}
pthread_mutex_unlock(&mutex);

}

Return Values

If an error occurs, this routine returns an integer indicating the type of error.
Possible return values are as follows:

Return Description

0 Successful completion
[EINVAL] Invalid argument

pthread–148

pthread_rwlockattr_destroy

pthread_rwlockattr_destroy

Destroys a previously initialized read-write lock attributes object.

Syntax

pthread_rwlockattr_destroy(
attr);

Argument Data Type Access

attr opaque pthread_rwlockattr_t write

C Binding

#include <pthread.h>

int
pthread_rwlockattr_destroy (

pthread_rwlockattr_t *attr);

Arguments

attr
Address of the read-write lock attributes object to be destroyed.

Description

This routine destroys the read-write lock attributes object referenced by attr; that
is, the object becomes uninitialized.

After successful completion of this routine, the results of using attr in a call to
any routine (other than pthread_rwlockattr_init()) are unpredictable.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes block.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()

pthread–149

pthread_rwlockattr_getpshared

pthread_rwlockattr_getpshared

Obtains the value of the process-shared attribute of a read-write lock attributes
object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_rwlockattr_getpshared(attr,
pshared);

Argument Data Type Access

attr opaque pthread_rwlockattr_t read

pshared int write

C Binding

#include <pthread.h>

int
pthread_rwlockattr_getpshared (

const pthread_rwlockattr_t *attr,
int *pshared);

Arguments

attr
Address of the read-write lock attributes object whose process-shared attribute is
to be obtained.

pshared
Receives the value of the process-shared attribute of the read-write lock attributes
object specified by attr.

Description

This routine obtains the value of the process-shared attribute from the read-
write lock attributes object specified by the attr argument and stores it in the
location specified by the pshared argument. This attributes object must already
be initialized at the time this routine is called.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object.

pthread–150

pthread_rwlockattr_getpshared

Associated Routines

pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_init()
pthread_rwlockattr_setpshared()

pthread–151

pthread_rwlockattr_init

pthread_rwlockattr_init

Initializes a read-write lock attributes object.

Syntax

pthread_rwlockattr_init(
attr);

Argument Data Type Access

attr opaque pthread_rwlockattr_t write

C Binding

#include <pthread.h>

int
pthread_rwlockattr_init (

pthread_rwlockattr_t *attr);

Arguments

attr
Address of the read-write lock attributes object to be initialized.

Description

This routine initializes the read-write lock attributes object referenced by attr and
sets its attributes with default values.

The results of calling this routine are undefined if attr references an already
initialized read-write lock attributes object.

After an initialized read-write lock attributes object has been used to initialize
one or more read-write lock objects, any operation on that attributes object
(including destruction) has no effect on those read-write lock objects.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion
[ENOMEM] Insufficient memory to initialize the read-write lock

attributes object

Associated Routines

pthread_rwlockattr_destroy()
pthread_rwlock_init()

pthread–152

pthread_rwlockattr_setpshared

pthread_rwlockattr_setpshared

Sets the value of the process-shared attribute of a read-write lock attributes
object.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_rwlockattr_setpshared(attr,
pshared);

Argument Data Type Access

attr opaque pthread_rwlockattr_t write

pshared int read

C Binding

#include <pthread.h>

int
pthread_rwlockattr_setpshared (

pthread_rwlockattr_t *attr,
int pshared);

Arguments

attr
Address of the read-write lock attributes object whose process-shared attribute is
to be modified.

pshared
New value for the process-shared attribute of the read-write lock attributes object
specified by attr.

Description

This routine uses the value specified in the pshared argument to set the process-
shared attribute of the read-write lock attributes object specified by the attr
argument. This attributes object must already be initialized at the time this
routine is called.

If the process-shared attribute is set to PTHREAD_PROCESS_PRIVATE, the read-write
lock object can only be operated upon by threads created within the same process
as the thread that initialized the read-write lock object. If threads of differing
processes attempt to operate on such a read-write lock object, the behavior is
undefined.

The default value of the process-shared attribute of a read-write lock attributes
object is PTHREAD_PROCESS_PRIVATE.

If the process-shared attribute of a read-write lock attributes object is set to
PTHREAD_PROCESS_SHARED, the read-write lock object can be operated upon by any
thread that has access to the memory where that object is allocated, even if that
object is allocated in memory that is shared by multiple processes.

pthread–153

pthread_rwlockattr_setpshared

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by attr is not a valid attributes object, or

the value pshared is outside the range of legal values for that
attribute.

Associated Routines

pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_init()
pthread_rwlockattr_getpshared()

pthread–154

pthread_rwlock_destroy

pthread_rwlock_destroy

Destroys a read-write lock object.

Syntax

pthread_rwlock_destroy(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_destroy (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to be destroyed.

Description

This routine destroys the specified read-write lock object by uninitializing
it, and should be called when the object is no longer referenced in your
program. After this routine is called, the Threads Library may reclaim internal
storage used by the specified read-write lock object. The effect of subsequent
use of the lock is undefined until the lock is reinitialized by another call to
pthread_rwlock_init().

It is illegal to destroy a locked read-write lock.

The results of this routine are unpredictable if the specified read-write lock object
does not currently exist or is not initialized. This routine destroys the read-write
lock object specified by the rwlock argument and releases any resources that the
object used.

A destroyed read-write lock object can be reinitialized using the
pthread_rwlock_init() routine. The results of otherwise referencing a destroyed
read-write lock object are undefined.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

pthread–155

pthread_rwlock_destroy

Return Description

0 Successful completion.
[EBUSY] An attempt was made to destroy the object referenced by

rwlock while it is locked or referenced.

Associated Routines

pthread_rwlock_init()

pthread–156

pthread_rwlock_getname_np

pthread_rwlock_getname_np

Obtains the object name from a read-write lock object.

Syntax

pthread_rwlock_getname_np(
rwlock,
name,
len);

Argument Data Type Access

rwlock opaque pthread_rwlock_t read

name char write

len size_t read

C Binding

#include <pthread.h>

int
pthread_rwlock_getname_np (

pthread_rwlock_t *rwlock,
char *name,
size_t len);

Arguments

rwlock
Address of the read-write lock object whose object name is to be obtained.

name
Location to store the obtained object name.

len
Length in bytes of buffer at the location specified by name.

Description

This routine copies the object name from the read-write lock object specified
by rwlock to the buffer at the location name. Before calling this routine, your
program must allocate the buffer indicated by name.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

If the specified read-write lock object has not been previously set with an object
name, this routine copies a C language null string into the buffer at location
name.

pthread–157

pthread_rwlock_getname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by rwlock is not a valid read-write lock.

Associated Routines

pthread_rwlock_setname_np()

pthread–158

pthread_rwlock_init

pthread_rwlock_init

Initializes a read-write lock object.

Syntax

pthread_rwlock_init(rwlock,
attr);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

attr opaque pthread_rwlockattr_t read

C Binding

#include <pthread.h>

int
pthread_rwlock_init (

pthread_rwlock_t *rwlock,
const pthread_rwlockattr_t *attr);

Arguments

rwlock
Read-write lock object to be initialized.

attr
Read-write lock attributes object that defines the characteristics of the read-write
lock to be initialized.

Description

This routine initializes a read-write lock object with the attributes specified
by the read-write lock attributes object specified in attr. A read-write lock is a
synchronization object that serializes access to shared information that needs
to be read frequently and written only occasionally. A thread can acquire a
read-write lock for shared read access or for exclusive write access.

Upon successful completion of this routine, the read-write lock is initialized and
set to the unlocked state. If attr is set to NULL, the default read-write lock
attributes are used; the effect is the same as passing the address of a default
read-write lock attributes object. Once initialized, the lock can be used any
number of times without being reinitialized.

Results of calling this routine are undefined if attr specifies an already initialized
read-write lock or if rwlock is used without first being initialized.

If this routine returns unsuccessfully, rwlock is not initialized and the contents of
rwlock are undefined.

A read-write lock is a resource of the process, not part of any particular thread. A
read-write lock is neither destroyed not unlocked automatically when any thread
exits. Because read-write locks are shared, they may be allocated in heap or
static memory, but not on a stack.

pthread–159

pthread_rwlock_init

In cases where default read-write lock attributes are appropriate, you may use
the PTHREAD_RWLOCK_INITIALIZER macro to statically initialize the lock object
without calling this routine. The effect is equivalent to dynamic initialization
by a call to pthread_rwlock_init() with attr specified as NULL, except that no
error checks are performed. Statically initialized read-write locks need not be
destroyed using pthread_rwlock_destroy().

Use the PTHREAD_RWLOCK_INITIALIZER macro as follows:

pthread_rwlock_t rwlock= PTHREAD_RWLOCK_INITIALIZER;

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize the

read-write lock.
[EBUSY] The Threads Library has detected an attempt to reinitialize

the read-write lock (a previously initialized, but not yet
destroyed, read-write lock object).

[EINVAL] The value specified by attr is not a valid attributes block.
[ENOMEM] Insufficient memory exists to initialize the read-write lock.
[EPERM] The caller does not have privileges to perform this operation.

Associated Routines

pthread_rwlock_destroy()

pthread–160

pthread_rwlock_rdlock

pthread_rwlock_rdlock

Acquires a read-write lock object for read access.

Syntax

pthread_rwlock_rdlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_rdlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to acquire for read access.

Description

This routine acquires a read-write lock for read access. If no thread already holds
the lock for write access and there are no writers waiting to acquire the lock, the
lock for read access is granted to the calling thread and this routine returns. If a
thread already holds the lock for read access, the lock is granted and this routine
returns.

A thread can hold multiple, concurrent locks for read access on the same read-
write lock. In a given thread, for each call to this routine that successfully
acquires the same read-write lock for read access, a corresponding call to
pthread_rwlock_unlock must be issued.

If some thread already holds the lock for write access, the calling thread will not
acquire the read lock. If the read lock is not acquired, the calling thread blocks
until it can acquire the lock for read access. Results are undefined if the calling
thread has already acquired a lock for write access on rwlock when this routine is
called.

If the read-write lock object referenced by rwlock is not initialized, the results of
calling this routine are undefined.

If a thread is interrupted (via a Tru64 UNIX signal or an OpenVMS AST) while
waiting for a read-write lock for read access, upon return from the interrupt
routine the thread resumes waiting for the lock as if it had not been interrupted.

pthread–161

pthread_rwlock_rdlock

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion; the read-write lock object was
acquired for read access.

[EINVAL] The value specified by rwlock does not refer to an initialized
read-write lock object.

[EDEADLCK] The calling thread already owns the specified read-write lock
object for write access.

[EAGAIN] The lock for read access could not be acquired because the
maximum number of read lock acquisitions for rwlock has
been exceeded.

Associated Routines

pthread_rwlock_init()
pthread_rwlockattr_init()
pthread_rwlock_tryrdlock()
pthread_rwlock_wrlock()
pthread_rwlock_unlock()

pthread–162

pthread_rwlock_setname_np

pthread_rwlock_setname_np

Changes the object name in a read-write lock object.

Syntax

pthread_rwlock_setname_np(
rwlock,
name,
mbz);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_rwlock_setname_np (

pthread_rwlock_t *rwlock,
const char *name,
void *mbz);

Arguments

rwlock
Address of the read-write lock object whose object name is to be changed.

name
Object name value to copy into the read-write lock object.

mbz
Reserved for future use. The value must be zero (0).

Description

This routine changes the object name in the read-write lock object specified by
rwlock to the value specified by name. To set a new read-write lock object’s object
name, call this routine immediately after initializing the read-write lock object.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

pthread–163

pthread_rwlock_setname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion, the read-write lock object was
acquired for read access.

[EINVAL] The value specified by rwlock is invalid, or the length in
characters of name exceeds 31.

[ENOMEM] Insufficient memory to create a copy of the object name
string.

Associated Routines

pthread_rwlock_getname_np()
pthread_rwlock_init()

pthread–164

pthread_rwlock_tryrdlock

pthread_rwlock_tryrdlock

Attempts to acquire a read-write lock object for read access without waiting.

Syntax

pthread_rwlock_tryrdlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_tryrdlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to acquire for read access.

Description

This routine attempts to acquire a read-write lock for read access, but does not
wait for the lock if it not immediately available.

If no thread already holds the lock for write access and there are no writers
waiting to acquire the lock, the lock for read access is granted to the calling
thread and this routine returns. If a thread already holds the lock for read
access, the lock is granted and this routine returns.

If some thread already holds the lock for write access, the calling thread will not
acquire the read lock. Results are undefined if the calling thread has already
acquired a lock for write access on rwlock when this routine is called.

A thread can hold multiple, concurrent locks for read access on the same read-
write lock. In a given thread, for each call to this routine that successfully
acquires the same read-write lock for read access, a corresponding call to
pthread_rwlock_unlock() must be issued.

If the read-write lock object referenced by rwlock is not initialized, the results of
calling this routine are undefined.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

pthread–165

pthread_rwlock_tryrdlock

Return Description

0 Successful completion; the read-write lock object was
acquired for read access.

[EAGAIN] The lock for read access could not be acquired because the
maximum number of read lock acquisitions for rwlock has
been exceeded.

[EBUSY] The read-write lock could not be acquired for read access
because another thread already acquired it for write access
or is blocked and waiting for it for write access.

[EDEADLCK] The current thread already owns the read-write lock for
writing.

[EINVAL] The value specified by rwlock does not refer to an initialized
read-write lock object.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()

pthread–166

pthread_rwlock_trywrlock

pthread_rwlock_trywrlock

Attempts to acquire a read-write lock object for write access without waiting.

Syntax

pthread_rwlock_trywrlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_trywrlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to acquire for write access.

Description

This routine attempts to acquire the read-write lock referenced by rwlock for
write access. If any thread already holds that lock for write access or read access,
this routine fails and returns [EBUSY] and the calling thread does not wait for
the lock to become available.

Results are undefined if the calling thread holds the read-write lock (whether for
read or write access) at the time this routine is called.

If the read-write lock object referenced by rwlock is not initialized, the results of
calling this routine are undefined.

Realtime applications can encounter priority inversion when using read-write
locks. The problem occurs when a high-priority thread acquires a read-write
lock that is about to be unlocked (that is, posted) by a low-priority thread, but
the low-priority thread is preempted by a medium-priority thread. This scenario
leads to priority inversion in that a high-priority thread is blocked by lower-
priority threads for an unlimited period of time. During system design, realtime
programmers must take into account the possibility of priority inversion and can
deal with it in a number of ways, such as by having critical sections that are
guarded by read-write locks execute at a high priority, so that a thread cannot be
preempted while executing in its critical section.

pthread–167

pthread_rwlock_trywrlock

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion, the read-write lock object was
acquired for write access.

[EBUSY] The read-write lock could not be acquired for write access
because it was already locked for write access or for read
access.

[EDEADLCK] The current thread already owns the read-write lock for
write or read access.

[EINVAL] The value specified by rwlock does not refer to an initialized
read-write lock object.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()

pthread–168

pthread_rwlock_unlock

pthread_rwlock_unlock

Unlocks a read-write lock object.

Syntax

pthread_rwlock_unlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_unlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to be unlocked.

Description

This routine releases a lock acquisition held on the read-write lock object
referenced by rwlock. Results are undefined if rwlock is not held by the calling
thread.

If this routine is called to release a lock for read access on rwlock and the calling
thread also currently holds other locks for read access on rwlock, the read-write
lock object remains in the read locked state. If this routine releases the calling
thread’s last lock for read access on rwlock, the calling thread is no longer one of
the owners of the lock object.

If this routine is called to release a lock for write access on rwlock, the lock object
is put in the unlocked state with no owners.

If a call to this routine results in the read-write lock object becoming unlocked
and there are multiple threads waiting to acquire that lock for write access,
the Threads Library uses the scheduling policy of those waiting threads to
determine which thread next acquires the lock object for write access. If there are
multiple threads waiting to acquire the read-write lock object for read access, the
Threads Library uses the scheduling policy of those waiting threads to determine
the order in which those threads acquire the lock for read access. If there are
multiple threads waiting to acquire the read-write lock object for both read and
write access, it is unspecified whether a thread waiting for read access or for
write access next acquires the lock object.

If the read-write lock object referenced by rwlock is not initialized, the results of
calling this routine are undefined.

pthread–169

pthread_rwlock_unlock

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The values specified by rwlock does not refer to an initialized

read-write lock object.
[EPERM] The calling thread does not hold the read-write lock object.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_wrlock()

pthread–170

pthread_rwlock_wrlock

pthread_rwlock_wrlock

Acquires a read-write lock for write access.

Syntax

pthread_rwlock_wrlock(
rwlock);

Argument Data Type Access

rwlock opaque pthread_rwlock_t write

C Binding

#include <pthread.h>

int
pthread_rwlock_wrlock (

pthread_rwlock_t *rwlock);

Arguments

rwlock
Address of the read-write lock object to acquire for write access.

Description

This routine attempts to acquire a read-write lock for write access. If any thread
already has acquired the lock for write access or read access, the lock is not
granted and the calling thread blocks until it can acquire the lock. A thread can
hold only one lock for write access on a read-write lock.

Results are undefined if the calling thread holds the read-write lock (whether for
read or write access) at the time this routine is called.

If the read-write lock object referenced by rwlock is not initialized, the results of
calling this routine are undefined.

If a thread is interrupted (via a Tru64 UNIX signal or an OpenVMS AST) while
waiting for a read-write lock for write access, upon return from the interrupt
routine the thread resumes waiting for the lock as if it had not been interrupted.

Realtime applications can encounter priority inversion when using read-write
locks. The problem occurs when a high-priority thread acquires a read-write
lock that is about to be unlocked (that is, posted) by a low-priority thread, but
the low-priority thread is preempted by a medium-priority thread. This scenario
leads to priority inversion in that a high-priority thread is blocked by lower-
priority threads for an unlimited period of time. During system design, realtime
programmers must take into account the possibility of priority inversion and can
deal with it in a number of ways, such as by having critical sections that are
guarded by read-write locks execute at a high priority, so that a thread cannot be
preempted while executing in its critical section.

pthread–171

pthread_rwlock_wrlock

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion, the read-write lock object was
acquired for write access.

[EDEADLCK] The calling thread already owns the read-write lock for write
or read access.

[EINVAL] The value specified by rwlock does not refer to an initialized
read-write lock object.

Associated Routines

pthread_rwlockattr_init()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()

pthread–172

pthread_self

pthread_self

Obtains the identifier of the calling thread.

Syntax

pthread_self();

C Binding

#include <pthread.h>

pthread_t
pthread_self (void);

Arguments

None

Description

This routine returns the address of the calling thread’s own thread identifier.
For example, you can use this thread object to obtain the calling thread’s own
sequence number. To do so, pass the return value from this routine in a call to
the pthread_getsequence_np() routine, as follows:

.

.

.
unsigned long this_thread_nbr;
.
.
.
this_thread_nbr = pthread_getsequence_np(pthread_self());
.
.
.

The return value from the pthread_self() routine becomes meaningless after
the calling thread is destroyed.

Return Values

Returns the address of the calling thread’s own thread object.

Associated Routines

pthread_cancel()
pthread_create()
pthread_detach()
pthread_exit()
pthread_getsequence_np()
pthread_join()
pthread_kill()
pthread_sigmask()

pthread–173

pthread_setcancelstate

pthread_setcancelstate

Sets the calling thread’s cancelability state.

Syntax

pthread_setcancelstate(
state,
oldstate);

Argument Data Type Access

state integer read

oldstate integer write

C Binding

#include <pthread.h>

int
pthread_setcancelstate (

int state,
int *oldstate);

Arguments

state
State of general cancelability to set for the calling thread. The following are valid
cancel state values:

PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE

oldstate
Previous cancelability state for the calling thread.

Description

This routine sets the calling thread’s cancelability state and returns the calling
thread’s previous cancelability state in oldstate.

When cancelability state is set to PTHREAD_CANCEL_DISABLE, a cancelation request
cannot be delivered to the thread, even if a cancelable routine is called or
asynchronous cancelability type is enabled.

When a thread is created, its default cancelability state is
PTHREAD_CANCEL_ENABLE.

Possible Problems When Disabling Cancelability
The most important use of thread cancelation is to ensure that indefinite wait
operations are terminated. For example, a thread that waits on some network
connection, which can possibly take days to respond (or might never respond),
should be made cancelable.

pthread–174

pthread_setcancelstate

When a thread’s cancelability is disabled, no routine in that thread is cancelable.
As a result, the user is unable to cancel the operation performed by that thread.
When disabling cancelability, be sure that no long waits can occur or that it is
necessary for other reasons to defer cancelation requests around that particular
region of code.

Return Values

On successful completion, this routine returns the calling thread’s previous
cancelability state in the location specified by the oldstate argument.

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or

PTHREAD_CANCEL_DISABLE.

Associated Routines

pthread_cancel()
pthread_setcanceltype()
pthread_testcancel()

pthread–175

pthread_setcanceltype

pthread_setcanceltype

Sets the calling thread’s cancelability type.

Syntax

pthread_setcanceltype(
type,
oldtype);

Argument Data Type Access

type integer read

oldtype integer write

C Binding

#include <pthread.h>

int
pthread_setcanceltype (

int type,
int *oldtype);

Arguments

type
The cancelability type to set for the calling thread. The following are valid values:

PTHREAD_CANCEL_DEFERRED
PTHREAD_CANCEL_ASYNCHRONOUS

oldtype
Returns the previous cancelability type.

Description

This routine sets the cancelability type and returns the previous type in location
oldtype.

When a thread’s cancelability state is set to PTHREAD_CANCEL_DISABLE, (see
pthread_setcancelstate()), a cancelation request cannot be delivered to that
thread, even if a cancelable routine is called or asynchronous cancelability type is
enabled.

When the cancelability state is set to PTHREAD_CANCEL_ENABLE,
cancelability depends on the thread’s cancelability type, as follows:

• If the thread’s cancelability type is PTHREAD_CANCEL_DEFERRED, the thread can
only receive a cancelation request at a cancelation point (including condition
waits, thread joins, and calls to pthread_testcancel()).

• If the thread’s cancelability type is PTHREAD_CANCEL_ASYNCHRONOUS, the thread
can be canceled at any point in its execution.

pthread–176

pthread_setcanceltype

When a thread is created, the default cancelability type is
PTHREAD_CANCEL_DEFERRED.

Caution

If the asynchronous cancelability type is set, do not call any routine
unless it is explicitly documented as ‘‘safe for asynchronous cancelation.’’
Note that none of the general run-time libraries and none of the POSIX
Threads libraries are safe for asynchronous cancelation except for
pthread_setcanceltype() and pthread_setcancelstate().

Use asynchronous cancelability only when you have a compute-bound
section of code that carries no state and makes no routine calls.

Return Values

On successful completion, this routine returns the previous cancelability type in
oldtype.

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified type is not PTHREAD_CANCEL_DEFERRED or

PTHREAD_CANCEL_AYNCHRONOUS.

Associated Routines

pthread_cancel()
pthread_setcancelstate()
pthread_testcancel()

pthread–177

pthread_setconcurrency

pthread_setconcurrency

Changes the value of the concurrency level global variable for this process.

Syntax

pthread_setconcurrency(
level);

Argument Data Type Access

level int read

C Binding

#include <pthread.h>

int
pthread_setconcurrency (

int level);

Arguments

level
New value for the concurrency level for this process.

Description

This routine stores the value specified in the level argument in the ‘‘concurrency
level’’ global setting for the calling thread’s process. Because the Threads Library
automatically manages the concurrency of all threads in a multithreaded process,
it ignores this concurrency level value.

‘‘Concurrency level’’ is a parameter used to coerce ‘‘simple’’ 2-level schedulers into
allowing application concurrency. The Threads Library supplies the maximum
concurrency at all times, automatically. It has no need for coercion, and calls
pthread_setconcurrency() merely to determine the value returned by the next
call to pthread_getconcurrency().

The concurrency level value has no effect on the behavior of a multithreaded
program that uses the Threads Library. This routine is provided for Single UNIX
Specification, Version 2 source code compatibility and has no other effect when
called.

After calling this routine, subsequent calls to the pthread_getconcurrency()
routine return the same value, until another call to pthread_setconcurrency()
changes that value.

The initial concurrency level is zero (0), indicating that the Threads Library
manages the concurrency level. To indicate in a portable manner that the
implementation is to resume control of concurrency level, call this routine with a
level argument of zero (0).

The concurrency level value can be obtained using the
pthread_getconcurrency() routine.

pthread–178

pthread_setconcurrency

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The value specified by new_level would cause a system

resource to be exceeded.
[EINVAL] The value specified by new_level is negative.

Associated Routines

pthread_getconcurrency()

pthread–179

pthread_setname_np

pthread_setname_np

Changes the object name in the thread object for an existing thread.

Syntax

pthread_setname_np(
thread,
name,
mbz);

Argument Data Type Access

thread opaque pthread_thread_t write

name char read

mbz void read

C Binding

#include <pthread.h>

int
pthread_setname_np (

pthread_thread_t thread,
const char *name,
void *mbz);

Arguments

thread
Thread object whose object name is to be changed.

name
Object name value to copy into the thread object.

mbz
Reserved for future use. The value must be zero (0).

Description

This routine changes the object name in the thread object for the thread specified
by the thread argument to the value specified by the name argument. To set
an existing thread’s object name, call this routine after creating the thread.
However, with this approach your program must account for the possibility that
the target thread either has already exited or has been canceled before this
routine is called.

The object name is a C language string and provides an identifier that is
meaningful to a person debugging a multithreaded application. The maximum
number of characters in the object name is 31.

This routine contrasts with pthread_attr_setname_np(), which changes the
object name attribute in a thread attributes object that is used to create a new
thread.

pthread–180

pthread_setname_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The length in characters of name exceeds 31.
[ENOMEM] Insufficient memory to create a copy of the object name

string.
[ESRCH] The thread specified by thread does not exist.

Associated Routines

pthread_attr_getname_np()
pthread_attr_setname_np()
pthread_getname_np()

pthread–181

pthread_setschedparam

pthread_setschedparam

Changes a thread’s scheduling policy and scheduling parameters.

Syntax

pthread_setschedparam(
thread,
policy,
param);

Argument Data Type Access

thread opaque pthread_t read

policy integer read

param struct sched_param read

C Binding

#include <pthread.h>

int
pthread_setschedparam (

pthread_t thread,
int policy,
const struct sched_param *param);

Arguments

thread
Thread whose scheduling policy and parameters are to be changed.

policy
New scheduling policy value for the thread specified in thread. The following are
valid values:

SCHED_BG_NP
SCHED_FG_NP
SCHED_FIFO
SCHED_OTHER
SCHED_RR

See Section 2.3.2.2 for a description of thread scheduling policies.

param
New values of the scheduling parameters associated with the scheduling policy
for the thread specified in thread. Valid values for the sched_priority field of a
sched_param structure depend on the chosen scheduling policy. Use the POSIX
routines sched_get_priority_min() or sched_get_priority_max() to determine
the low and high limits of each policy.

Additionally, the Threads Librray provides nonportable priority range constants,
as follows:

pthread–182

pthread_setschedparam

Low High

PRI_FIFO_MIN PRI_FIFO_MAX

PRI_RR_MIN PRI_RR_MAX

PRI_OTHER_MIN PRI_OTHER_MAX

PRI_FG_MIN_NP PRI_FG_MAX_NP

PRI_BG_MIN_NP PRI_BG_MAX_NP

The default priority varies by platform. On Tru64 UNIX, the default is 19 (that
is, the POSIX priority of a normal timeshare process). On other platforms the
default priority is the midpoint between PRI_FG_MIN_NP and PRI_FG_MAX_NP.
(Section 2.3.6 describes how to specify priorities between the minimum and
maximum values.)

Description

This routine changes both the current scheduling policy and associated scheduling
parameters of the thread specified by thread to the policy and associated
parameters provided in policy and param, respectively.

All currently implemented scheduling policies have one scheduling parameter
called sched_priority. For the policy you choose, you must specify an
appropriate value in the sched_priority field of the sched_param structure.

Changing the scheduling policy or priority, or both, of a thread can cause it
either to start executing or to be preempted by another thread. A thread changes
its own scheduling policy and priority by using the handle returned by the
pthread_self() routine.

This routine differs from pthread_attr_setschedpolicy() and
pthread_attr_setschedparam(), in that those routines set the scheduling policy
and parameter attributes that are used to establish the scheduling priority and
scheduling policy of a new thread when it is created. However, this routine
changes the scheduling policy and parameters of an existing thread.

Return Values

If an error condition occurs, no scheduling policy or parameters are changed for
the target thread, and this routine returns an integer value indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by policy or param is invalid.
[ENOTSUP] An attempt was made to set the scheduling policy or a

parameter to an unsupported value.
[EPERM] The caller does not have the appropriate privileges to set the

scheduling policy or parameters of the specified thread.
[ESRCH] The value specified by thread does not refer to an existing

thread.

pthread–183

pthread_setschedparam

Associated Routines

pthread_attr_setschedparam()
pthread_attr_setschedpolicy()
pthread_create()
pthread_self()
sched_yield()

pthread–184

pthread_setspecific

pthread_setspecific

Sets the thread-specific data value associated with the specified key for the calling
thread.

Syntax

pthread_setspecific(
key,
value);

Argument Data Type Access

key opaque pthread_key_t read

value void * read

C Binding

#include <pthread.h>

int
pthread_setspecific (

pthread_key_t key,
const void *value);

Arguments

key
Thread-specific key that identifies the thread-specific data to receive value. This
key value must be obtained from pthread_key_create().

value
New thread-specific data value to associate with the specified key for the calling
thread.

Description

This routine sets the thread-specific data value associated with the specified key
for the current thread. If a value is defined for the key in this thread (the current
value is not NULL), the new value is substituted for it. The key is obtained by a
previous call to pthread_key_create().

Different threads can bind different values to the same key. These values are
typically pointers to blocks of dynamically allocated memory that are reserved for
use by the calling thread.

Do not call this routine from a thread-specific data destructor function.

Note that although the type for value (void *) implies that it represents an
address, the type is being used as a ‘‘universal scalar type.’’ The Threads Library
simply stores value for later retrieval.

pthread–185

pthread_setspecific

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified key is invalid.
[ENOMEM] Insufficient memory to associate the value with the key.

Associated Routines

pthread_getspecific()
pthread_key_create()
pthread_key_delete()

pthread–186

pthread_sigmask

pthread_sigmask

Examine or change the calling thread’s signal mask.

This routine is for Tru64 UNIX systems only.

Syntax

pthread_sigmask(
how,
set,
oset);

Argument Data Type Access

how integer read

set sigset_t read

oset sigset_t write

C Binding

#include <pthread.h>
include <signal.h>

int
pthread_sigmask (

int how,
const sigset_t *set,
sigset_t *oset);

Arguments

how
Indicates the manner in which the set of masked signals is changed. The optional
values are as follows:

SIG_BLOCK The resulting set is the union of the current set and the
signal set pointed to by the set argument.

SIG_UNBLOCK The resulting set is the intersection of the current set
and the complement of the signal set pointed to by the
set argument.

SIG_SETMASK The resulting set is the signal set pointed to by the set
argument.

set
Specifies the signal set by pointing to a set of signals used to change the blocked
set. If this set value is NULL, the how argument is ignored and the process
signal mask is unchanged.

oset
Receives the value of the current signal mask (unless this value is NULL).

pthread–187

pthread_sigmask

Description

This routine examines or changes the calling thread’s signal mask. Typically,
you use the SIG_BLOCK option for the how value to block signals during a
critical section of code, and then use this routine’s SIG_SETMASK option to
restore the mask to the previous value returned by the previous call to the
pthread_sigmask() routine.

If there are any unblocked signals pending after a call to this routine, at least one
of those signals will be delivered before this routine returns.

This routine does not allow the SIGKILL or SIGSTOP signals to be blocked. If
a program attempts to block one of these signals, pthread_sigmask() gives no
indication of the error.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified for how is invalid.

pthread–188

pthread_testcancel

pthread_testcancel

Requests delivery of a pending cancelation request to the calling thread.

Syntax

pthread_testcancel();

C Binding

#include <pthread.h>

void
pthread_testcancel (void);

Arguments

None

Description

This routine requests delivery of a pending cancelation request to the calling
thread. Thus, calling this routine creates a cancelation point within the calling
thread.

The cancelation request is delivered only if a request is pending for the calling
thread and the calling thread’s cancelability state is enabled. (A thread disables
delivery of cancelation requests to itself by calling pthread_setcancelstate().)

When called within very long loops, this routine ensures that a pending
cancelation request is noticed by the calling thread within a reasonable amount
of time.

Return Values

None

Associated Routines

pthread_setcancelstate()

pthread–189

pthread_unlock_global_np

pthread_unlock_global_np

Unlocks the Threads Library global mutex.

Syntax

pthread_unlock_global_np();

C Binding

#include <pthread.h>

int
pthread_unlock_global_np (void);

Arguments

None

Description

This routine unlocks the Threads Library global mutex. Because the global mutex
is recursive, the unlock occurs when each call to pthread_lock_global_np()
has been matched by a call to this routine. For example, if you called
pthread_lock_global_np() three times, pthread_unlock_global_np() unlocks
the global mutex when you call it the third time.

If no threads are waiting for the global mutex, it becomes unlocked with no
current owner. If one or more threads are waiting to lock the global mutex, this
routine causes one thread to unblock and to try to acquire the global mutex. The
scheduling policy is used by this routine to determine which thread is awakened.
For the policies SCHED_FIFO and SCHED_RR, a blocked thread is chosen in priority
order, using first-in/first-out (FIFO) within priorities.

pthread–190

pthread_unlock_global_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EPERM] The mutex is unlocked or owned by another thread.

Associated Routines

pthread_lock_global_np()

pthread–191

pthread_yield_np

pthread_yield_np

Notifies the scheduler that the current thread is willing to release its processor to
other threads of the same or higher priority.

Syntax

pthread_yield_np();

C Binding

int
pthread_yield_np (void);

Arguments

None

Description

This routine notifies the thread scheduler that the current thread is willing
to release its processor to other threads of equivalent or greater scheduling
precedence. (A thread generally will release its processor to a thread of a greater
scheduling precedence without calling this routine.) If no other threads of
equivalent or greater scheduling precedence are ready to execute, the thread
continues.

This routine can allow knowledge of the details of an application to be used to
improve its performance. If a thread does not call pthread_yield_np(), other
threads may be given the opportunity to run at arbitrary points (possibly even
when the interrupted thread holds a required resource). By making strategic
calls to pthread_yield_np(), other threads can be given the opportunity to run
when the resources are free. This improves performance by reducing contention
for the resource.

As a general guideline, consider calling this routine after a thread has released a
resource (such as a mutex) which is heavily contended for by other threads. This
can be especially important either if the program is running on a uniprocessor
machine, or if the thread acquires and releases the resource inside a tight loop.

Use this routine carefully and sparingly, because misuse can cause unnecessary
context switching which will increase overhead and actually degrade performance.
For example, it is counter-productive for a thread to yield while it holds a resource
that the threads to which it is yielding will need. Likewise, it is pointless to yield
unless there is likely to be another thread that is ready to run.

Note

pthread_yield_np() is equivalent to sched_yield(). Use
sched_yield() since it is part of the standard portable POSIX Threads
Library.

pthread–192

pthread_yield_np

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ENOSYS] The routine pthread_yield_np() is not supported by this

implementation.

Associated Routines

pthread_attr_setschedparam()
pthread_getschedparam()
pthread_setschedparam()

pthread–193

sched_get_priority_max

sched_get_priority_max

Returns the maximum priority for the specified scheduling policy.

Syntax

sched_get_priority_max(
policy);

Argument Data Type Access

policy integer read

C Binding

#include <sched.h>

int
sched_get_priority_max (

int policy);

Arguments

policy
One of the scheduling policies, as defined in sched.h.

Description

This routine returns the maximum priority for the scheduling policy specified in
the policy argument. The argument value must be one of the scheduling policies
(SCHED_FIFO, SCHED_RR, or SCHED_OTHER), as defined in the sched.h header file.

No special privileges are required to use this routine.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value of the policy argument does not represent a defined

scheduling policy.

pthread–194

sched_get_priority_min

sched_get_priority_min

Returns the minimum priority for the specified scheduling policy.

Syntax

sched_get_priority_min(
policy);

Argument Data Type Access

policy integer read

C Binding

#include <sched.h>

int
sched_get_priority_min (

int policy);

Arguments

policy
One of the scheduling policies, as defined in sched.h.

Description

This routine returns the minimum priority for the scheduling policy specified in
the policy argument. The argument value must be one of the scheduling policies
(SCHED_FIFO, SCHED_RR, or SCHED_OTHER), as defined in the sched.h header file.

No special privileges are required to use this routine.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value of the policy argument does not represent a defined

scheduling policy.

pthread–195

sched_yield

sched_yield

Yields execution to another thread.

Syntax

sched_yield();

C Binding

#include <sched.h>
#include <unistd.h>

int
sched_yield (void);

Arguments

None

Description

In conformance with the IEEE POSIX.1-1996 standard, the sched_yield()
function causes the calling thread to yield execution to another thread. It is
useful when a thread running under the SCHED_FIFO scheduling policy must allow
another thread at the same priority to run. The thread that is interrupted by
sched_yield() goes to the end of the queue for its priority.

If no other thread is runnable at the priority of the calling thread, the calling
thread continues to run.

Threads with higher priority are allowed to preempt the calling thread, so the
sched_yield() function has no effect on the scheduling of higher- or lower-
priority threads.

The sched_yield() routine takes no arguments. No special privileges are needed
to use the sched_yield() function.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ENOSYS] The routine sched_yield() is not supported by this

implementation.

Associated Routines

pthread_attr_setschedparam()
pthread_getschedparam()
pthread_setschedparam()

pthread–196

sigwait

sigwait

Suspends a calling thread until a signal arrives.

This routine is for Tru64 UNIX systems only.

Syntax

sigwait(
set,
signal);

Argument Data Type Access

set sigset_t read

signal integer write

C Binding

#include <signal.h>

int
sigwait (

sigset_t *set,
int *signal);

Arguments

set
Set of signals to wait for.

signal
Signal number obtained for the selected signal.

Description

This routine blocks the calling thread until at least one of the signals in the
set argument is in the caller’s set of pending signals. When this happens, one
of those signals is automatically selected and removed from the set of pending
signals. The signal number identifying that signal is then returned.

This routine stores the signal number obtained in the address specified in the
signal argument.

The effect of calling this routine is unspecified if any signals in the set argument
are not blocked at the time of the call.

The set signal set object is created using the set manipulation routines
sigemptyset(), sigfillset(), sigaddset(), and sigdelset().

If, while this routine is waiting, a signal occurs that is eligible for delivery (that
is, not blocked by the signal mask), that signal is handled asynchronously and
the wait is interrupted.

pthread–197

sigwait

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value of the set argument contains an invalid or

unsupported signal number.
[EINTR] The wait was interrupted by an unblocked, caught signal.

pthread–198

Part III
Compaq Proprietary Interfaces: tis Routines

Reference

Part III provides detailed descriptions of the Compaq proprietary thread-
independent services (or tis) interface routines.

These routines are designed to provide efficient tools for thread safety in libraries
whose routines do not themselves use threads. The tis interface provides
functions similar to the pthread functions for synchronization. In a program
that creates or uses threads, the tis functions provide full thread synchronization
and coherence of memory access. But, in a program that does not use threads,
the same tis calls provide low-overhead ‘‘stub’’ implementations of pthread
features.

The objects created using tis interface routines are the same as pthread
interface objects.

The variable errno is not used by the tis routines. Like the pthread routines,
the tis routines return integer values indicating the type of error.

Note

Never use tis_cond_wait() in a nonthreaded environment. It cannot
wait, as there would be no thread able to awaken the waiter. The tis
‘‘stub’’ will abort your program.

When threads are present, the guidelines for using pthread routines apply to
using the corresponding tis routines.

tis_cond_broadcast

tis_cond_broadcast

Wakes all threads that are waiting on a condition variable.

Syntax

tis_cond_broadcast(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <tis.h>

int
tis_cond_broadcast (

pthread_cond_t *cond);

Arguments

cond
Address of the condition variable (passed by reference) on which to broadcast.

Description

When threads are not present, this routine has no effect.

When threads are present, this routine unblocks all threads waiting on the
specified condition variable cond.

For further information about actions when threads are present, refer to the
pthread_cond_broadcast() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable.

Associated Routines

tis_cond_destroy()
tis_cond_init()
tis_cond_signal()
tis_cond_wait()

tis–3

tis_cond_destroy

tis_cond_destroy

Destroys the specified condition variable.

Syntax

tis_cond_destroy(
cond);

Argument Data Type Access

cond opaque pthread_cond_t write

C Binding

#include <tis.h>

int
tis_cond_destroy (

pthread_cond_t *cond);

Arguments

cond
Address of the condition variable (passed by reference) to be destroyed.

Description

This routine destroys the condition variable specified by cond. After this routine
is called, the Threads Library may reclaim internal storage used by the condition
variable object. Call this routine when a condition variable will no longer be
referenced.

The results of this routine are unpredictable if the condition variable specified in
cond does not exist or is not initialized.

For more information about actions when threads are present, refer to the
pthread_cond_destroy() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] The object being referenced by cond is being referenced by

another thread that is currently executing a
tis_cond_wait() on the condition variable specified in cond.
(This error can only occur when threads are present.)

[EINVAL] The value specified by cond is not a valid condition variable.

tis–4

tis_cond_destroy

Associated Routines

tis_cond_broadcast()
tis_cond_init()
tis_cond_signal()
tis_cond_wait()

tis–5

tis_cond_init

tis_cond_init

Initializes a condition variable.

Syntax

tis_cond_init(
cond);

Argument Data Type Access

cond opaque pthread_cond_t write

C Binding

#include <tis.h>

int
tis_cond_init (

pthread_cond_t *cond);

Arguments

cond
Address of the condition variable (passed by reference) to be initialized.

Description

This routine initializes a condition variable (cond) with the Threads Library
default condition variable attributes.

A condition variable is a synchronization object used with a mutex. A mutex
controls access to shared data. When threads are present, a condition variable
allows threads to wait for data to enter a defined state.

For more information about actions taken when threads are present, refer to the
pthread_cond_init() description.

Your program can use the macro PTHREAD_COND_INITIALIZER to initialize
statically allocated condition variables to the default condition variable attributes.
Static initialization can be used only for a condition variable with storage class
‘‘extern’’ or ‘‘static’’ — ‘‘automatic’’ (stack local) objects must be initialized by
calling tis_cond_init(). Use this macro as follows:

pthread_cond_t condition = PTHREAD_COND_INITIALIZER;

When statically initialized, a condition variable should not also be initialized
using tis_cond_init().

Return Values

If there is an error condition, the following occurs:

• The routine returns an integer value indicating the type of error.

• The condition variable is not initialized.

• The contents of condition variable cond are undefined.

tis–6

tis_cond_init

The possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize

another condition variable, or
The system-imposed limit on the total number of condition
variables under execution by a single user is exceeded.

[EBUSY] The implementation has detected an attempt to reinitialize
the object referenced by cond, a previously initialized, but
not yet destroyed condition variable.

[EINVAL] The value specified by cond is not a valid condition variable.
[ENOMEM] Insufficient memory to initialize the condition variable.

Associated Routines

tis_cond_broadcast()
tis_cond_destroy()
tis_cond_signal()
tis_cond_wait()

tis–7

tis_cond_signal

tis_cond_signal

Wakes at least one thread that is waiting on the specified condition variable.

Syntax

tis_cond_signal(
cond);

Argument Data Type Access

cond opaque pthread_cond_t modify

C Binding

#include <tis.h>

int
tis_cond_signal (

pthread_cond_t *cond);

Arguments

cond
Address of the condition variable (passed by reference) on which to signal.

Description

When threads are present, this routine unblocks at least one thread that is
waiting on the specified condition variable cond. When threads are not present,
this routine has no effect.

For more information about actions taken when threads are present, refer to the
pthread_cond_signal() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable.

Associated Routines

tis_cond_broadcast()
tis_cond_destroy()
tis_cond_init()
tis_cond_wait()

tis–8

tis_cond_timedwait

tis_cond_timedwait

Causes a thread to wait for the specified condition variable to be signaled or
broadcast, such that it will awake after a specified period of time.

Syntax

tis_cond_timedwait(
cond,
mutex,
abstime);

Argument Data Type Access

cond opaque pthread_cond_t modify

mutex opaque pthread_mutex_t modify

abstime structure timespec read

C Binding

#include <tis.h>

int
tis_cond_timedwait (

pthread_cond_t *cond,
pthread_mutex_t *mutex,
const struct timespec *abstime);

Arguments

cond
Condition variable that the calling thread waits on.

mutex
Mutex associated with the condition variable specified in cond.

abstime
Absolute time at which the wait expires, if the condition has not been signaled
or broadcast. See the tis_get_expiration() routine, which is used to obtain a
value for this argument.

The abstime argument is specified in Universal Coordinated Time (UTC). In the
UTC-based model, time is represented as seconds since the Epoch. The Epoch is
defined as the time 0 hours, 0 minutes, 0 seconds, January 1st, 1970 UTC.

Description

If threads are not present, this function is equivalent to sleep().

This routine causes a thread to wait until one of the following occurs:

• The specified condition variable is signaled or broadcast.

• The current system clock time is greater than or equal to the time specified
by the abstime argument.

tis–9

tis_cond_timedwait

This routine is identical to tis_cond_wait(), except that this routine can return
before a condition variable is signaled or broadcast, specifically, when the specified
time expires. For more information, see the tis_cond_wait() description.

This routine atomically releases the mutex and causes the calling thread
to wait on the condition. When the thread regains control after calling
tis_cond_timedwait(), the mutex is locked and the thread is the owner.
This is true regardless of why the wait ended. If general cancelability is enabled,
the thread reacquires the mutex (blocking for it if necessary) before the cleanup
handlers are run (or before the exception is raised).

If the current time equals or exceeds the expiration time, this routine returns
immediately, releasing and reacquiring the mutex. It might cause the calling
thread to yield (see the sched_yield() description). Your code should check the
return status whenever this routine returns and take the appropriate action.
Otherwise, waiting on the condition variable can become a nonblocking loop.

Call this routine after you have locked the mutex specified in mutex. The results
of this routine are unpredictable if this routine is called without first locking
the mutex. The only routines that are supported for use with asynchronous
cancelability enabled are those that disable asynchronous cancelability.

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by cond, mutex, or abstime is invalid, or

Different mutexes are supplied for concurrent
tis_cond_timedwait() operations or
tis_cond_wait() operations on the same condition variable,
or
The mutex was not owned by the calling thread at the time
of the call.

[ETIMEDOUT] The time specified by abstime expired.
[ENOMEM] The Threads Library cannot acquire memory needed to block

using a statically initialized condition variable.

Associated Routines

tis_cond_broadcast()
tis_cond_destroy()
tis_cond_init()
tis_cond_signal()
tis_cond_wait()
tis_get_expiration()

tis–10

tis_cond_wait

tis_cond_wait

Causes a thread to wait for the specified condition variable to be signaled or
broadcast.

Syntax

tis_cond_wait(
cond,
mutex);

Argument Data Type Access

cond opaque pthread_cond_t modify

mutex opaque pthread_mutex_t modify

C Binding

#include <tis.h>

int
tis_cond_wait (

pthread_cond_t *cond,
pthread_mutex_t *mutex);

Arguments

cond
Address of the condition variable (passed by reference) on which to wait.

mutex
Address of the mutex (passed by reference) that is associated with the condition
variable specified in cond.

Description

When threads are present, this routine causes a thread to wait for the specified
condition variable cond to be signaled or broadcast.

Calling this routine in a single-threaded environment is a coding error.
Because no other thread exists to issue a call to tis_cond_signal() or
tis_cond_broadcast(), using this routine in a single-threaded environment
forces the program to exit.

For further information about actions taken when threads are present, refer to
the pthread_cond_wait() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

tis–11

tis_cond_wait

Return Description

0 Successful completion.
[EINVAL] The value specified by cond is not a valid condition variable

or the value specified by mutex is not a valid mutex, or
Different mutexes are supplied for concurrent
tis_cond_wait() operations on the same condition variable,
or
The mutex was not owned by the calling thread at the time
of the call.

Associated Routines

tis_cond_broadcast()
tis_cond_destroy()
tis_cond_init()
tis_cond_signal()

tis–12

tis_getspecific

tis_getspecific

Obtains the data associated with the specified thread-specific data key.

Syntax

tis_getspecific(
key);

Argument Data Type Access

key opaque pthread_key_t read

C Binding

#include <tis.h>

void *
tis_getspecific (

pthread_key_t key);

Arguments

key
Identifies a value returned by a call to tis_key_create(). This routine returns
the data value associated with the thread-specific data key.

Description

This routine returns the value currently bound to the specified thread-specific
data key.

This routine can be called from a data destructor function.

When threads are present, the data and keys are thread specific; they enable a
library to maintain context on a per-thread basis.

Return Values

No errors are returned. This routine returns the data value associated with the
specified thread-specific data key key. If no data value is associated with key, or
if key is not defined, then a NULL value is returned.

Associated Routines

tis_key_create()
tis_key_delete()
tis_setspecific()

tis–13

tis_get_expiration

tis_get_expiration

Obtains a value representing a desired expiration time.

Syntax

tis_get_expiration(
delta,
abstime);

Argument Data Type Access

delta struct timespec read

abstime struct timespec write

C Binding

#include <tis.h>

int
tis_get_expiration (

const struct timespec *delta,
struct timespec *abstime);

Arguments

delta
Number of seconds and nanoseconds to add to the current system time. (The
result is the time in the future.) This result will be placed in abstime.

abstime
Value representing the absolute expiration time. The absolute expiration time is
obtained by adding delta to the current system time. The resulting abstime is in
Universal Coordinated Time (UTC).

Description

If threads are not present, this routine has no effect.

This routine adds a specified interval to the current absolute system time and
returns a new absolute time. This new absolute time is used as the expiration
time in a call to tis_cond_timedwait().

The timespec structure contains the following two fields:

• tv_sec is an integral number of seconds.

• tv_nsec is an integral number of nanoseconds.

tis–14

tis_get_expiration

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by delta is invalid.

Associated Routines

tis_cond_timedwait()

tis–15

tis_io_complete

tis_io_complete

AST completion routine to VMS I/O system services.
This routine is for OpenVMS systems only.

Syntax

tis_io_complete();

C Binding

#include <tis.h>

int
tis_io_complete (void);

Description

When you are performing thread-synchronous ‘‘wait-form’’ system service calls
on OpenVMS such as $QIOW, $ENQW, $GETJPIW, and so on, you should use this
routine and tis_sync() with the asynchronous form of the service (in other
words, without the ‘‘W’’), and specify the address of tis_io_complete() as the
completion AST routine (the AST argument if any is ignored). That must also
specify an IOSB (or equivalent, such as an LKSB) and if possible a unique event
flag (see lib$get_ef). Once the library code is ready to wait for the I/O, it simply
calls tis_sync() (just as if it were calling $SYNC).

Return Values

None.

Associated Routines

tis_sync()

tis–16

tis_key_create

tis_key_create

Generates a unique thread-specific data key.

Syntax

tis_key_create(
key,
destructor);

Argument Data Type Access

key opaque pthread_key_t write

destructor procedure read

C Binding

#include <tis.h>

int
tis_key_create (

pthread_key_t *key,
void (*destructor)(void *));

Arguments

key
Address of a variable that receives the key value. This value is used in calls
to tis_getspecific() and tis_setspecific() to obtain and set the value
associated with this key.

destructor
Address of a routine that is called to destroy the context value when a thread
terminates with a non-NULL value for the key. Note that this argument is used
only when threads are present.

Description

This routine generates a unique thread-specific data key. The key argument
points to an opaque object used to locate data.

This routine generates and returns a new key value. The key reserves a cell.
Each call to this routine creates a new cell that is unique within an application
invocation. Keys must be generated from initialization code that is guaranteed to
be called only once within each process. (See the tis_once() description for more
information.)

Your program can associate an optional destructor function with each key. At
thread exit, if a key has a non-NULL destructor function pointer, and the thread
has a non-NULL value associated with that key, the function pointed to is called
with the current associated value as its sole argument. The order in which data
destructors are called at thread termination is undefined.

tis–17

tis_key_create

When threads are present, keys and any corresponding data are thread specific;
they enable the context to be maintained on a per-thread basis. For more
information about the use of tis_key_create() in a threaded environment, refer
to the pthread_key_create() description.

The Threads Library imposes a maximum number of thread-specific data keys,
equal to the symbolic constant PTHREAD_KEYS_MAX.

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacked the necessary resources to create another

thread-specific data key, or the limit on the total number of
keys per process (PTHREAD_KEYS_MAX) has been exceeded.

[EINVAL] The value specified by key is invalid.
[ENOMEM] Insufficient memory to create the key.

Associated Routines

tis_getspecific()
tis_key_delete()
tis_setspecific()
tis_once()

tis–18

tis_key_delete

tis_key_delete

Deletes the specified thread-specific data key.

Syntax

tis_key_delete(
key);

Argument Data Type Access

key opaque pthread_key_t write

C Binding

#include <tis.h>

int
tis_key_delete (

pthread_key_t key);

Arguments

key
Thread-specific data key to be deleted.

Description

This routine deletes a thread-specific data key key previously returned by a call
to the tis_key_create() routine. The data values associated with key need
not be NULL at the time this routine is called. The application must free any
application storage or perform any cleanup actions for data structures related to
the deleted key or associated data. This cleanup can be done before or after this
routine is called. If the cleanup is done after this routine is called, the application
must have a private mechanism to access any and all thread-specific values,
contexts, and so on.

Attempting to use the thread-specific data key key after calling this routine
results in unpredictable behavior.

No destructor functions are invoked by this routine. Any destructor functions
that may have been associated with key will no longer be called upon thread exit.

This routine can be called from destructor functions.

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value for key is invalid.

tis–19

tis_key_delete

Associated Routines

tis_getspecific()
tis_key_create()
tis_setspecific()

tis–20

tis_lock_global

tis_lock_global

Locks the Threads Library global mutex.

Syntax

tis_lock_global();

C Binding

#include <tis.h>

int
tis_lock_global (void);

Arguments

None

Description

This routine locks the global mutex. The global mutex is recursive. For example,
if you called tis_lock_global() three times, tis_unlock_global() unlocks the
global mutex when you call it the third time.

For more information about actions taken when threads are present, refer to the
pthread_lock_global_np() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.

Associated Routines

tis_unlock_global()

tis–21

tis_mutex_destroy

tis_mutex_destroy

Destroys the specified mutex object.

Syntax

tis_mutex_destroy(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t write

C Binding

#include <tis.h>

int
tis_mutex_destroy (

pthread_mutex_t *mutex);

Arguments

mutex
Address of the mutex object (passed by reference) to be destroyed.

Description

This routine destroys a mutex object by uninitializing it, and should be called
when a mutex object is no longer referenced. After this routine is called, the
Threads Library can reclaim internal storage used by the mutex object.

It is safe to destroy an initialized mutex object that is unlocked. However, it is
illegal to destroy a locked mutex object.

The results of this routine are unpredictable if the mutex object specified in the
mutex argument either does not currently exist or is not initialized.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] An attempt was made to destroy the object referenced by

mutex while it is locked or referenced.
[EINVAL] The value specified by mutex is not a valid mutex.
[EPERM] The caller does not have privileges to perform the operation.

tis–22

tis_mutex_destroy

Associated Routines

tis_mutex_init()
tis_mutex_lock()
tis_mutex_trylock()
tis_mutex_unlock()

tis–23

tis_mutex_init

tis_mutex_init

Initializes the specified mutex object.

Syntax

tis_mutex_init(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t write

C Binding

#include <tis.h>

int
tis_mutex_init (

pthread_mutex_t *mutex);

Arguments

mutex
Pointer to a mutex object (passed by reference) to be initialized.

Description

This routine initializes a mutex object with the Threads Library default mutex
attributes. A mutex is a synchronization object that allows multiple threads to
serialize their access to shared data.

The mutex object is initialized and set to the unlocked state.

Your program can use the PTHREAD_MUTEX_INITIALIZER macro to statically
initialize a mutex object without calling this routine. Static initialization can
be used only for a condition variable with storage class ‘‘extern’’ or ‘‘static’’ —
‘‘automatic’’ (stack local) objects must be initialized by calling tis_mutex_init().
Use this macro as follows:

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EAGAIN] The system lacks the necessary resources to initialize a

mutex.
[EBUSY] The implementation has detected an attempt to reinitialize

mutex (a previously initialized, but not yet destroyed, mutex).

tis–24

tis_mutex_init

Return Description

[EINVAL] The value specified by mutex is not a valid mutex.
[ENOMEM] Insufficient memory to initialize the mutex.
[EPERM] The caller does not have privileges to perform this operation.

Associated Routines

tis_mutex_destroy()
tis_mutex_lock()
tis_mutex_trylock()
tis_mutex_unlock()

tis–25

tis_mutex_lock

tis_mutex_lock

Locks an unlocked mutex.

Syntax

tis_mutex_lock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <tis.h>

int
tis_mutex_lock (

pthread_mutex_t *mutex);

Arguments

mutex
Address of the mutex (passed by reference) to be locked.

Description

This routine locks the specified mutex mutex. A deadlock can result if the owner
of a mutex calls this routine in an attempt to lock the same mutex a second time.
(The Threads Library may not detect or report the deadlock.)

In a threaded environment, the thread that has locked a mutex becomes its
current owner and remains the owner until the same thread has unlocked it.
This routine returns with the mutex in the locked state and with the current
thread as the mutex’s current owner.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EDEADLK] A deadlock condition is detected.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

tis_mutex_destroy()
tis_mutex_init()
tis_mutex_trylock()
tis_mutex_unlock()

tis–26

tis_mutex_trylock

tis_mutex_trylock

Attempts to lock the specified mutex.

Syntax

tis_mutex_trylock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <tis.h>

int
tis_mutex_trylock (

pthread_mutex_t *mutex);

Arguments

mutex
Address of the mutex (passed by reference) to be locked.

Description

This routine attempts to lock the specified mutex mutex. When this routine
is called, an attempt is made immediately to lock the mutex. If the mutex is
successfully locked, zero (0) is returned.

If the specified mutex is already locked when this routine is called, the caller does
not wait for the mutex to become available. [EBUSY] is returned, and the thread
does not wait to acquire the lock.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] The mutex is already locked; therefore, it was not acquired.
[EINVAL] The value specified by mutex is not a valid mutex.

Associated Routines

tis_mutex_destroy()
tis_mutex_init()
tis_mutex_lock()
tis_mutex_unlock()

tis–27

tis_mutex_unlock

tis_mutex_unlock

Unlocks the specified mutex.

Syntax

tis_mutex_unlock(
mutex);

Argument Data Type Access

mutex opaque pthread_mutex_t read

C Binding

#include <tis.h>

int
tis_mutex_unlock (

pthread_mutex_t *mutex);

Arguments

mutex
Address of the mutex (passed by reference) to be unlocked.

Description

This routine unlocks the specified mutex mutex.

For more information about actions taken when threads are present, refer to the
pthread_mutex_unlock() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by mutex is not a valid mutex.
[EPERM] The caller does not own the mutex.

Associated Routines

tis_mutex_destroy()
tis_mutex_init()
tis_mutex_lock()
tis_mutex_trylock()

tis–28

tis_once

tis_once

Calls a one-time initialization routine that can be executed by only one thread,
once.

Syntax

tis_once(
once_control,
init_routine);

Argument Data Type Access

once_control opaque pthread_once_t modify

init_routine procedure read

C Binding

#include <tis.h>

int
tis_once (

pthread_once_t *once_control,
void (*init_routine) (void));

Arguments

once_control
Address of a record (control block) that defines the one-time initialization code.
Any one-time initialization routine in static storage specified by once_control must
have its own unique pthread_once_t record.

init_routine
Address of a procedure that performs the initialization. This routine is called
only once, regardless of the number of times it and its associated once_control are
passed to tis_once().

Description

The first call to this routine by a process with a given once_control calls the
init_routine with no arguments. Thereafter, subsequent calls to tis_once() with
the same once_control do not call the init_routine. On return from tis_once(), it
is guaranteed that the initialization routine has completed.

For example, a mutex or a thread-specific data key must be created exactly once.
In a threaded environment, calling tis_once() ensures that the initialization is
serialized across multiple threads.

Note

If you specify an init_routine that directly or indirectly results in a
recursive call to tis_once() and that specifies the same init_block
argument, the recursive call results in a deadlock.

tis–29

tis_once

The PTHREAD_ONCE_INIT macro, defined in the pthread.h header file, must be
used to initialize a once_control record. Thus, your program must declare a
once_control record as follows:

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Note that it is often easier to simply lock a statically initialized mutex, check
a control flag, and perform necessary initialization (in-line) rather than using
tis_once(). For example, you can code an ‘‘init’’ routine that begins with the
following basic logic:

init()
{
static pthread_mutex_t mutex = PTHREAD_MUTEX_INIT;
static int flag = FALSE;

tis_mutex_lock(&mutex);
if(!flag)
{
flag = TRUE;
/* initialize code */

}
tis_mutex_unlock(&mutex);

}

Return Values

If an error occurs, this routine returns an integer indicating the type of error.
Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] Invalid argument.

tis–30

tis_read_lock

tis_read_lock

Acquires a read-write lock for read access.

Syntax

tis_read_lock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_read_lock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock.

Description

This routine acquires a read-write lock for read access. This routine waits for
any existing lock holder for write access to relinquish its lock before granting the
lock for read access. This routine returns when the lock is acquired. If the lock is
already held simply for read access, the lock is granted.

For each call to tis_read_lock() that successfully acquires the lock for read
access, a corresponding call to tis_read_unlock() must be issued.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_trylock()
tis_read_unlock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–31

tis_read_trylock

tis_read_trylock

Attempts to acquire a read-write lock for read access. Does not wait if the lock
cannot be immediately granted.

Syntax

tis_read_trylock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_read_trylock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be acquired.

Description

This routine attempts to acquire a read-write lock for read access. If the lock
cannot be granted, the routine returns without waiting.

When a thread calls this routine, an attempt is made to immediately acquire the
lock for read access. If the lock is acquired, zero (0) is returned. If a holder of the
lock for write access exists, [EBUSY] is returned.

If the lock cannot be acquired for read access immediately, the calling program
does not wait for the lock to be released.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion; the lock was acquired.
[EBUSY] The lock is being held for write access. The lock for read

access was not acquired.
[EINVAL] The value specified by lock is not a valid read-write lock.

tis–32

tis_read_trylock

Associated Routines

tis_read_lock()
tis_read_unlock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–33

tis_read_unlock

tis_read_unlock

Unlocks a read-write lock that was acquired for read access.

Syntax

tis_read_unlock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_read_unlock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be unlocked.

Description

This routine unlocks a read-write lock that was acquired for read access. If there
are no other holders of the lock for read access and another thread is waiting to
acquire the lock for write access, that lock acquisition is granted.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–34

tis_rwlock_destroy

tis_rwlock_destroy

Destroys the specified read-write lock object.

Syntax

tis_rwlock_destroy(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_rwlock_destroy (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock object to be destroyed.

Description

This routine destroys the specified read-write lock object. Prior to calling this
routine, ensure that there are no locks granted to the specified read-write lock
and that there are no threads waiting for pending lock acquisitions on the
specified read-write lock.

This routine should be called only after all reader threads (and perhaps one
writer thread) have finished using the specified read-write lock.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EBUSY] The lock is in use.
[EINVAL] The value specified by lock is not a valid read-write lock.

tis–35

tis_rwlock_destroy

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_init()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–36

tis_rwlock_init

tis_rwlock_init

Initializes a read-write lock object.

Syntax

tis_rwlock_init(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_rwlock_init (

tis_rwlock_t *lock);

Arguments

lock
Address of a read-write lock object.

Description

This routine initializes a read-write lock object. The routine initializes the
tis_rwlock_t structure that holds the object’s lock states.

To destroy a read-write lock object, call the tis_rwlock_destroy() routine.

Note

The tis read-write lock has no relationship to the Single UNIX
Specification, Version 2 (SUSV2, or UNIX98) read-write lock routines
(such as pthread_rwlock_init()). The tis_rwlock_t type, in particular,
cannot be used with the pthread read-write lock functions, nor can a
pthread_rwlock_t type be used with the tis read-write lock functions.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.
[ENOMEM] Insufficient memory to initialize lock.

tis–37

tis_rwlock_init

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_destroy()
tis_write_lock()
tis_write_trylock()
tis_write_unlock()

tis–38

tis_self

tis_self

Returns the identifier of the calling thread.

Syntax

tis_self(
void);

C Binding

#include <tis.h>

pthread_t
tis_self (void);

Arguments

None

Description

This routine allows a thread to obtain its own thread identifier.

This value becomes meaningless when the thread is destroyed.

Note that the initial thread in a process can ‘‘change identity’’ when thread
system initialization completes—that is, when the multithreading run-time
environment is loaded.

Return Values

Returns the thread identifier of the calling thread.

Associated Routines

pthread_create()

tis–39

tis_setcancelstate

tis_setcancelstate

Changes the calling thread’s cancelability state.

Syntax

tis_setcancelstate(
state,
oldstate);

Argument Data Type Access

state integer read

oldstate integer write

C Binding

#include <tis.h>

int
tis_setcancelstate (

int state,
int *oldstate);

Arguments

state
State of general cancelability to set for the calling thread. Valid state values are
as follows:

PTHREAD_CANCEL_ENABLE
PTHREAD_CANCEL_DISABLE

oldstate
Receives the value of the calling thread’s previous cancelability state.

Description

This routine sets the calling thread’s cancelability state to the value specified in
the state argument and returns the calling thread’s previous cancelability state in
the location referenced by the oldstate argument.

When a thread’s cancelability state is set to PTHREAD_CANCEL_DISABLE, a
cancelation request cannot be delivered to the thread, even if a cancelable
routine is called or asynchronous cancelability is enabled.

When a thread is created, its default cancelability state is
PTHREAD_CANCEL_ENABLE. When this routine is called prior to loading threads,
the cancelability state propagates to the initial thread in the executing program.

Possible Problems When Disabling Cancelability
The most important use of a cancelation request is to ensure that indefinite
wait operations are terminated. For example, a thread waiting on some network
connection, which might take days to respond (or might never respond), should be
made cancelable.

tis–40

tis_setcancelstate

When a thread’s cancelability state is disabled, no routine called within that
thread is cancelable. As a result, the user is unable to cancel the operation.
When disabling cancelability, be sure that no long waits can occur or that it is
necessary for other reasons to defer cancelation requests around that particular
region of code.

Return Values

On successful completion, this routine returns the calling thread’s previous
cancelability state in the oldstate argument.

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The specified state is not PTHREAD_CANCEL_ENABLE or

PTHREAD_CANCEL_DISABLE.

Associated Routines

tis_testcancel()

tis–41

tis_setspecific

tis_setspecific

Changes the value associated with the specified thread-specific data key.

Syntax

tis_setspecific(
key,
value);

Argument Data Type Access

key opaque pthread_key_t read

value void * read

C Binding

#include <tis.h>

int
tis_setspecific (

pthread_key_t key,
const void *value);

Arguments

key
Thread-specific data key that identifies the data to receive value. Must be
obtained from a call to tis_key_create().

value
New value to associate with the specified key. Once set, this value can be
retrieved using the same key in a call to tis_getspecific().

Description

This routine sets the value associated with the specified thread-specific data
key. If a value is defined for the key (that is, the current value is not NULL),
the new value is substituted for it. The key is obtained by a previous call to
tis_key_create().

Do not call this routine from a data destructor function. Doing so could lead to a
memory leak or an infinite loop.

tis–42

tis_setspecific

Return Values

If an error condition occurs, this routine returns an integer indicating the type of
error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by key is not a valid key.
[ENOMEM] Insufficient memory to associate the value with the key.

Associated Routines

tis_getspecific()
tis_key_create()
tis_key_delete()

tis–43

tis_sync

tis_sync

Used as the synchronization point for asynchronous I/O system services. This
routine is for OpenVMS systems only.

Syntax

tis_sync(
efn,
iosb);

Argument Data Type Access

efn unsigned long read

iosb void * read

C Binding

#include <tis.h>

int
tis_sync (

unsigned long efn,
void *iosb);

Arguments

efn
The event flag specified with the OpenVMS system service routine.

iosb
The IOSB specified with the OpenVMS system service routine.

Description

When you are performing thread-synchronous ‘‘wait-form’’ system service calls
on OpenVMS such as $QIOW, $ENQW, $GETJPIW, and so on, you should use this
routine and tis_io_complete() with the asynchronous form of the service
(that is, without the ‘‘W’’) and specify the address of tis_io_complete() as the
completion AST routine (the AST argument, if any, is ignored). The call must
also specify an IOSB (or equivalent, such as an LKSB) and if possible a unique
event flag (see lib$get_ef). Once the library code is ready to wait for the I/O, it
simply calls tis_sync() (just as if it were calling $SYNC).

Return Values

This routine has the same return values as the OpenVMS $SYNC() routine.

Associated Routines

tis_io_complete()

tis–44

tis_testcancel

tis_testcancel

Creates a cancelation point in the calling thread.

Syntax

tis_testcancel();

C Binding

#include <tis.h>

void
tis_testcancel (void);

Arguments

None

Description

This routine requests delivery of a pending cancelation request to the calling
thread. Thus, this routine creates a cancelation point in the calling thread. The
cancelation request is delivered only if a request is pending for the calling thread
and the calling thread’s cancelability state is enabled. (A thread disables delivery
of cancelation requests to itself by calling tis_setcancelstate().)

This routine, when called within very long loops, ensures that a pending
cancelation request is noticed within a reasonable amount of time.

Return Values

None

Associated Routines

tis_setcancelstate()

tis–45

tis_unlock_global

tis_unlock_global

Unlocks the Threads Library global mutex.

Syntax

tis_unlock_global();

C Binding

#include <tis.h>

int
tis_unlock_global (void);

Arguments

None

Description

This routine unlocks the global mutex. Because the global mutex is recursive, the
unlock occurs when each call to tis_lock_global() has been matched by a call
to this routine. For example, if your program called tis_lock_global() three
times, tis_unlock_global() unlocks the global mutex when you call it the third
time.

For more information about actions taken when threads are present, refer to the
pthread_unlock_global_np() description.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EPERM] The global mutex is unlocked or locked by another thread.

Associated Routines

tis_lock_global()

tis–46

tis_write_lock

tis_write_lock

Acquires a read-write lock for write access.

Syntax

tis_write_lock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_write_lock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be acquired for write access.

Description

This routine acquires a read-write lock for write access. This routine waits for
any other active locks (for either read or write access) to be unlocked before this
acquisition request is granted.

This routine returns when the specified read-write lock is acquired for write
access.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_trylock()
tis_write_unlock()

tis–47

tis_write_trylock

tis_write_trylock

Attempts to acquire a read-write lock for write access.

Syntax

tis_write_trylock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_write_trylock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be acquired for write access.

Description

This routine attempts to acquire a read-write lock for write access. The routine
attempts to immediately acquire the lock. If the lock is acquired, zero (0) is
returned. If the lock is held by another thread (for either read or write access),
[EBUSY] is returned and the calling thread does not wait for the write-access
lock to be acquired.

Note that it is a coding error to attempt to acquire the lock for write access if
the lock is already held by the calling thread. (However, this routine returns
[EBUSY] anyway, because no ownership error-checking takes place.)

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion, the lock is acquired for write access.
[EBUSY] The lock was not acquired for write access, as it is already

held by another thread.
[EINVAL] The value specified by lock is not a valid read-write lock.

tis–48

tis_write_trylock

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_destroy()
tis_rwlock_init()
tis_write_lock()
tis_write_unlock()

tis–49

tis_write_unlock

tis_write_unlock

Unlocks a read-write lock that was acquired for write access.

Syntax

tis_write_unlock(
lock);

Argument Data Type Access

lock opaque tis_rwlock_t write

C Binding

#include <tis.h>

int
tis_write_unlock (

tis_rwlock_t *lock);

Arguments

lock
Address of the read-write lock to be unlocked.

Description

This routine unlocks a read-write lock that was acquired for write access.

Upon completion of this routine, any thread waiting to acquire the lock for read
access will have those acquisitions granted. If no threads are waiting to acquire
the lock for read access, then a thread waiting to acquire it for write access will
have that acquisition granted.

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type error. Possible return values are as follows:

Return Description

0 Successful completion.
[EINVAL] The value specified by lock is not a valid read-write lock.

Associated Routines

tis_read_lock()
tis_read_trylock()
tis_read_unlock()
tis_rwlock_init()
tis_rwlock_destroy()
tis_write_lock()
tis_write_trylock()

tis–50

tis_yield

tis_yield

Notifies the scheduler that the current thread is willing to release its processor to
other threads of the same or higher priority.

Syntax

tis_yield();

C Binding

int
tis_yield (void);

Arguments

None

Description

When threads are not present, this routine has no effect.

This routine notifies the thread scheduler that the current thread is willing
to release its processor to other threads of equivalent or greater scheduling
precedence. (A thread generally will release its processor to a thread of a greater
scheduling precedence without calling this routine.) If no other threads of
equivalent or greater scheduling precedence are ready to execute, the thread
continues.

This routine can allow knowledge of the details of an application to be used to
improve its performance. If a thread does not call tis_yield(), other threads
may be given the opportunity to run at arbitrary points (possibly even when
the interrupted thread holds a required resource). By making strategic calls
to tis_yield(), other threads can be given the opportunity to run when the
resources are free. This improves performance by reducing contention for the
resource.

As a general guideline, consider calling this routine after a thread has released a
resource (such as a mutex) which is heavily contended for by other threads. This
can be especially important if the program is running on a uniprocessor machine,
or if the thread acquires and releases the resource inside a tight loop.

Use this routine carefully and sparingly, because misuse can cause unnecessary
context switching that will increase overhead and actually degrade performance.
For example, it is counter-productive for a thread to yield while it holds a resource
that the threads to which it is yielding will need. Likewise, it is pointless to yield
unless there is likely to be another thread that is ready to run.

tis–51

tis_yield

Return Values

If an error condition occurs, this routine returns an integer value indicating the
type of error. Possible return values are as follows:

Return Description

0 Successful completion.
[ENOSYS] The routine tis_yield() is not supported by this

implementation.

tis–52

Part IV
Appendixes

Part IV contains appendixes that provide supporting information about the
POSIX Threads Library, such as operating system-specific information, debugging
information, and additional reference information.

A
Considerations for Tru64 UNIX Systems

This appendix discusses Threads Library issues specific to Tru64 UNIX systems.

A.1 Overview
The Tru64 UNIX operating system supports multiple concurrent ‘‘execution
contexts’’ within a process. The Threads Library uses these kernel execution
contexts to implement user threads. One important benefit of this is that user
threads can run simultaneously on separate processors in a multiprocessor
system. Review Section 3.1 for tips for ensuring that your application will work
correctly with kernel threads and multiprocessing.

A.2 Building Threaded Applications
The following sections discuss points to consider when building using the Threads
Library.

A.2.1 Including Threads Header Files
Include one of the Threads Library header files shown in Table A–1 in your
program to use the appropriate Threads library.

Table A–1 Header Files

Header File Interface

pthread.h POSIX routines

tis.h Thread-independent services routines

Do not include more than one of these header files in your module.

A.2.2 Building Multithreaded Applications from Threads Libraries
Multithreaded applications are built using shared libraries. For a description of
shared libraries, see the Tru64 UNIX Programmer’s Guide.

Table A–2 contains the libraries supported for multithreaded programming.

Table A–2 Tru64 UNIX Shared Libraries for Multithreaded Programs

libpthreads.so Shared version of Threads Library ‘‘legacy’’ package,
implementing the Compaq-proprietary CMA (or cma) and
POSIX 1003.4a/Draft 4 (d4 or DCEthreads) interfaces.

libpthread.so Shared version of the POSIX threads package. Requires
libexc.so and libc.so

(continued on next page)

Considerations for Tru64 UNIX Systems A–1

Considerations for Tru64 UNIX Systems
A.2 Building Threaded Applications

Table A–2 (Cont.) Tru64 UNIX Shared Libraries for Multithreaded Programs

libexc.so Shared version of Tru64 UNIX exception support package.

libc.so Shared version of the C language run-time library (libc.so).

Build a multithreaded application using shared versions of libexc, libpthread,
and libc using this command:

% cc -o myprog myprog.c -pthread

If you use a compiler front-end or other (not C) language environment that
does not support the -pthread compilation switch, you must provide the -
D_REENTRANT compilation switch (or equivalent) at compilation, and link as shown
in Section A.2.3.

A.2.3 Linking Multithreaded Shared Libraries
The ld command does not support the -pthread or -threads switch. Normally,
programs can be compiled and linked from the cc command. If you must link
using the ld command, you must list the shared libraries in the proper order.
The libc library should be the last library referenced, libexc should immediately
precede libc, and the thread libraries should precede libexc.

For libraries that use only the pthread interface, use the following:

ld <...> -lpthread -lexc -lc

If using the cma or d4 interfaces, use the following:

ld <...> -lpthreads -lpthread -lexc -lc

Also, cc -pthread (or cc -threads) causes the compiler to replace any libraries
that have special thread-safe alternatives. These libraries have the same name
ending in -r. For example, cc -pthread -o foo -lbar, if there is a libbar.so and
libbar_r.so, would use the latter. When linking with the ld command, you must
perform that search and replacement yourself.

Note

If you build software (whether applications or libraries) that links against
the static version of a Threads library, you must not require developers
who use your software to link against any library that dynamically loads
any Threads shared library, such as libpthread.so.

A.2.4 Compiling Applications With the tis Interface
Applications that use the Compaq-proprietary thread-independent services (or
tis) interface should include the tis.h header file and link against the shared C
run-time library (libc.so).

A.3 Two-Level Scheduling on Tru64 UNIX Systems
Under Tru64 UNIX Version 4.0 and later, the Threads Library implements a two-
level scheduling model. The thread library schedules ‘‘user threads’’ onto kernel
execution contexts (often known as ‘‘kernel threads’’ or ‘‘virtual processors’’), just
as Tru64 UNIX schedules processes onto the processors of a multiprocessing
machine.

A–2 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.3 Two-Level Scheduling on Tru64 UNIX Systems

A user thread is executed on a kernel thread until it blocks or exhausts its
timeslice quantum. Then, the Threads Library schedules a new user thread
to run. While the Threads Library is scheduling user threads onto kernel
threads, the Tru64 UNIX kernel is independently scheduling those kernel threads
to run on physical processors. The term ‘‘two-level scheduling’’ refers to this
relationship.

This division allows most thread scheduling to take place completely in user
mode, without the intervention of the kernel. Since a thread context switch does
not involve any privileged information, it can be done much more efficiently in
user mode.

The key to making the two-level scheduling model work is efficient two-way
communication between the Threads Library and the Tru64 UNIX kernel.
When a thread blocks in the kernel, the Threads Library scheduler is notified
so that it can schedule another thread to take advantage of the idle kernel
thread. This mechanism, sometimes referred to as an upcall, is inspired by
original research on scheduler activations at the University of Washington. (See
Scheduler Activations: Effective Kernel Support for the User-Level Management of
Parallelism by Anderson, Bershad, Lazowska, and Levy; ACM Operating Systems
Review Volume 25, Number 5, Proceedings of the Thirteenth ACM Symposium on
Operating Systems Principles, October 13-16, 1991).

A.3.1 Use of Kernel Threads
Tru64 UNIX kernel threads are created as they are needed by the application.
The number of kernel threads that the Threads Library creates is limited by
normal Tru64 UNIX configuration limits regarding user and system thread
creation. Normally, however, the Threads Library creates one kernel thread for
each actual processor on the system, plus a ‘‘manager thread’’ for bookkeeping
operations.

The Threads Library does not delete these kernel threads or let them terminate.
Kernel threads not currently needed are retained in an idle state until they
are needed again. (These idled kernel threads are deleted by the kernel if they
remain idle for a long time.) When the process terminates, all kernel threads in
the process are reclaimed by the kernel.

The Threads Library scheduler can schedule any user thread onto any kernel
thread. Therefore, a user thread can run on different kernel threads at different
times. Normally, this should pose no problem. However, for example, the kernel
thread ID as reported by the dbx or Ladebug debuggers (in ‘‘native’’ $threadlevel)
can change at any time.

A.3.2 Support for Realtime Scheduling
The Threads Library supports Tru64 UNIX realtime scheduling. This allows
you to set the scheduling policy and priority of threads. By default, threads
are created using process contention scope. This means that the full range of
POSIX.1 scheduling policy and priority is available. However, threads running
in process contention scope do not preempt lower-priority threads in another
process. For example, a thread in process contention scope with SCHED_FIFO
policy and maximum priority 63 will not preempt a thread in another process
running with SCHED_FIFO and lower priority.

Considerations for Tru64 UNIX Systems A–3

Considerations for Tru64 UNIX Systems
A.3 Two-Level Scheduling on Tru64 UNIX Systems

In contrast, system contention scope means that each thread created by the
program has a direct and unique binding to one kernel execution context. A
system contention scope thread competes against all threads in the system and
will preempt any thread with lower priority. For this reason, the priority range
of threads in system contention scope is restricted unless running with root
privilege.

Specifically, a thread with SCHED_FIFO policy cannot run at a priority higher than
18 without privilege, since doing so could lock out all other users on the system
until the thread blocked. Threads at any other scheduling policy (including
SCHED_RR) can run at priority 19 because they are subject to periodic timeslicing
by the system. For more information, see the Tru64 UNIX Realtime Programming
Guide.

If your program lacks necessary privileges, attempting to call the following
routines for a thread in system contention scope returns the error value
[EPERM]:

pthread_attr_setschedpolicy() (Error returned by pthread_create() at
thread creation)

pthread_attr_setschedparam() (Error returned by pthread_create() at
thread creation)

pthread_setschedparam()

Prior to Tru64 UNIX Version 4.0, all threads used only system contention scope.
In Tru64 UNIX Version 4.0, all threads created using the pthread interface, by
default, have process contention scope.

A.4 Thread Cancelability of System Services
Tru64 UNIX supports the required system cancelation points specified by the
POSIX.1 standard and by the Single UNIX Specification, Version 2 (UNIX98).

For legacy multithreaded applications, note that threads created using the cma
or d4 interfaces will not be cancelable at any system call. (Here ‘‘system call’’
means any function without the pthread_ prefix.) If system call cancelation is
required, you must write code using the pthread interface.

Note

It is not legal, or supported, to call any Tru64 UNIX system function with
asynchronous cancelability type. You cannot ‘‘work around’’ the lack of
system call cancelation using asynchronous cancelability.

For more information, see Section 2.3.7.

A–4 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.4 Thread Cancelability of System Services

A.4.1 Cancelation Points
The following functions are cancelation points (as defined by the Single UNIX
Specification, Version 2 (SUSV2)):

accept()
aio_suspend()
close()
connect()
creat()
fcntl() (for cmd F_SETLKW)
fsync()
getmsg()
getpmsg()
lockf()
mq_receive()
mq_send()
msgrcv()
msgsnd()
msync()
nanosleep()
open()
pause()
poll()
pread()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_delay_np()
pthread_join()
pthread_testcancel()
putmsg()
putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()
select()
sem_wait()

send()
sendmsg()
sendto()
shutdown()
sigpause()
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
system()
tcdrain()
t_close()
t_connect()
t_listen()
t_rcv()
t_rcvconnect()
t_rcvrel()
t_rcvreldata()
t_rcvudata()
t_rcvv()
t_rcvvudata()
t_snd()
t_sndrel()
t_sndreldata()
t_sndudata()
t_sndv
t_sndvudata()
usleep()
wait()
wait3()
waitid()
waitpid()
write()
writev()

Considerations for Tru64 UNIX Systems A–5

Considerations for Tru64 UNIX Systems
A.4 Thread Cancelability of System Services

A.4.2 Conditional or Future Cancelation Points
These functions may not cause delivery of a pending cancel, and cancelation may
not interrupt a blocking state. Some will recognize cancelation only under some
conditions (for example, if printf() flushes a standard I/O buffer to the file
stream). Others may currently not be coded to recognize cancelation, but may be
changed in the future. All code should be prepared to handle cancelation at these
calls, but must not depend on cancelation at these calls.

closedir()
closelog()
ctermid()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey()
dbm_open()
dbm_store()
dlclose()
dlopen()
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endutxent()
fclose()
fcntl() (for any cmd)
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()
fgetws()
fopen()
fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()
freopen()
fscanf()
fseek()
fseeko()
fsetpos()
ftell()
ftello()
ftw()
fwprintf()
fwrite()
fwscanf()
getc()
getc_unlocked()

getchar()
getchar_unlocked()
getcwd()
getdate()
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
gethostbyaddr()
gethostbyname()
gethostent()
gethostname()
getlogin()
getlogin_r()
getnetbyaddr()
getnetbyname()
getnetent()
getprotobynumber()
getprotobyname()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
getw()
getwc()
getwchar()
getwd()
glob()
iconv_close()
iconv_open()
ioctl()
lseek()
mkstemp()
nftw()
opendir()
openlog()
pclose()

perror()
popen()
printf()
putc()
putc_unlocked()
putchar()
putchar_unlocked()

puts()
pututxline()
putw()
putwc()
putwchar()
readdir()
readdir_r()
remove()
rename()
rewind()
rewinddir()
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
strerror()
syslog()
tmpfile()
tmpname()
ttyname()
ttyname_r()
ungetc()
ungetwc()
unlink()
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wprintf()
wscanf()

Note that appropriate non-standard functions that do not appear in the preceding
list might become cancelation points in the future. Tru64 UNIX will also
implement new cancelation points, as specified by future revisions of the relevant
formal or consortium standard bodies.

A–6 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.5 Using Signals

A.5 Using Signals
This section discusses signal handling based on the POSIX.1 standard.

Tru64 UNIX Version 4.0 introduced the full POSIX.1 signal model. In previous
versions, ‘‘synchronous’’ signals (those resulting from execution errors, such as
SIGSEGV and SIGILL) could have different signal actions for each thread. Prior
to Tru64 UNIX Version 3.2, all threads shared a common, processwide signal
mask, which meant one thread could not receive a signal while another had the
signal blocked.

Under Tru64 UNIX Version 4.0 and later, all signal actions are processwide. That
is, when any thread uses sigaction or equivalent to either set a signal handler, or
to modify the signal action (for example, to ignore a signal), that action will affect
all threads. Each thread has a private signal mask so that it can block signals
without affecting the behavior of other threads.

Prior to Tru64 UNIX Version 4.0, asynchronous signals were processed only in
the main thread. In Tru64 UNIX Version 4.0, any thread that does not have the
signal masked can process the signal.

Note

To support binary compatibility, for a thread created by a cma or d4
interface routine, the thread starts with all asynchronous signals blocked.

A.5.1 POSIX sigwait Service
The POSIX 1003.1 sigwait() service allows any thread to block until one of a
specified set of signals is delivered. A thread can wait for any of the asynchronous
signals except for SIGKILL and SIGSTOP.

For example, you can create a thread that blocks on a sigwait() routine for
SIGINT, rather than handling a Ctrl/C in the normal way. This thread could then
cancel other threads to cause the program to shut down the current activities.

Following are two reasons for avoiding signals:

• Signals cannot be used in a modular way in a multithreaded program.

• Signals, used as an asynchronous programming technique, are unnecessary in
a multithreaded program.

In a multithreaded program, signal handlers cannot be used in a modular way
because there is only one signal handler routine for all of the threads in an
application. If two threads install different signal handlers for the signal, all
threads will dispatch to the last handler when they receive the signal.

Most applications should avoid using asynchronous programming techniques with
threads. For example, techniques that rely on timer and I/O signals are usually
more complicated and errorprone than techniques that rely on simply waiting
synchronously within a thread. Furthermore, most of the thread services are not
supported for use in signal handlers, and most run-time library functions cannot
be used reliably inside a signal handler.

Some I/O intensive code may benefit from asynchronous I/O, but these programs
will generally be more difficult to write and maintain than ‘‘pure’’ threaded code.

Considerations for Tru64 UNIX Systems A–7

Considerations for Tru64 UNIX Systems
A.5 Using Signals

A thread should not wait for a synchronous signal. This is because synchronous
signals are the result of an error during the execution of a thread, and if the
thread is waiting for a signal, then it is not executing. Therefore, a synchronous
signal cannot occur for a particular thread while it is waiting, and the thread will
wait forever.

The POSIX.1 standard requires that the thread block the signals for which it
will wait before calling sigwait(). For reliable operation, the signals should be
blocked in all threads. Otherwise, the signal might be delivered to another thread
before the sigwait thread calls sigwait(), or after it has returned with another
signal.

A.5.2 Handling Synchronous Signals as Exceptions
For the signals traditionally representing synchronous errors in the program, the
Threads Library catches the signal and converts it into an equivalent exception.
This exception is then propagated up the call stack in the current thread and can
be caught and handled using the normal exception catching mechanisms.

Table A–3 lists Tru64 UNIX signals that are reported as exceptions by default.
If any thread declares an action for one of these signals (using sigaction(2) or
equivalent), no thread in the process can receive the exception.

Table A–3 Signals Reported as Exceptions

Signal Exception

SIGILL pthread_exc_illinstr_e

SIGIOT pthread_exc_SIGIOT_e

SIGEMT pthread_exc_SIGEMT_e

SIGFPE pthread_exc_aritherr_e

SIGBUS pthread_exc_illaddr_e

SIGSEGV pthread_exc_illaddr_e

SIGSYS pthread_exc_SIGSYS_e

SIGPIPE pthread_exc_SIGPIPE_e

A.6 Thread Stack Guard Areas
When creating a thread based on a thread attributes object, the Threads Library
potentially rounds up the value specified in the object’s guardsize attribute. The
Threads Library does so based on the value of the configurable system variable
PAGESIZE (see <sys/mman.h>. The default value of the guardsize attribute in a
thread attributes object is the number of bytes equal to the setting of PAGESIZE.

A.7 Thread Stack and Backing Store Allocation
Starting in Version 5.0, for threads that accept the default stack address
attribute, the Threads Library allocates a thread’s writable stack area from
uncommitted virtual memory, then commits predefined increments of the writable
stack area to the thread only as it is needed. The stack’s corresponding backing
store is also reserved incrementally as the stack is committed. In this way, no
more backing store is reserved than the stack actually requires.

A–8 Considerations for Tru64 UNIX Systems

Considerations for Tru64 UNIX Systems
A.7 Thread Stack and Backing Store Allocation

Because Tru64 UNIX 5.0 does not commit backing store (or physical pages) for
stacks until the pages are used by the program, the default stack size has been
increased. The previous default of about 24Kb (3 pages) has been increased to
5Mb.

A.8 Dynamic Activation
Dynamic activation of the Threads Library run-time environment, or of code that
depends on the Threads Library, is currently not supported.

A.9 Pagefaults and Realtime Scheduling
Like normal file I/O operations, pagefaults are ‘‘thread synchronous’’. A thread
that incurs a ‘‘hard’’ pagefault (reading the page from backing store) will be
blocked while other threads continue to run on the ‘‘virtual processor’’ (or on
others). This has implications for realtime scheduling, especially of SCHED_FIFO
policy threads, that do not expect to block except for explicit I/O synchronization.
To write a SCHED_FIFO thread that cannot block unexpectedly, you must use
mlockall to lock the application into memory, preventing pagefaults.

Considerations for Tru64 UNIX Systems A–9

B
Considerations for OpenVMS Systems

This appendix discusses POSIX Threads Library issues and restrictions specific
to the OpenVMS operating system.

B.1 Overview
The OpenVMS Alpha operating system supports multiple concurrent ‘‘execution
contexts’’ within a process. The Threads Library uses these kernel execution
contexts to implement user threads. One important benefit of this is that user
threads can run simultaneously on separate processors in a multiprocessor
system. Review Section 3.1 for tips for ensuring that your application will work
correctly with kernel threads and multiprocessing. Even without kernel threads,
OpenVMS Alpha ‘‘upcalls’’ support smooth integration between the Threads
Library and kernel scheduler. See Section B.12 for more information, including
how to enable kernel threads and upcalls in your application. OpenVMS VAX
supports neither kernel threads nor upcalls.

B.2 Compiling Under OpenVMS
The C language header files shown in Table B–1 provide interface definitions for
the pthread and tis interfaces.

Table B–1 Header Files

Header File Interface

pthread.h POSIX.1 style routines

tis.h Compaq proprietary thread-independent services
routines

Include only one of these header files in your module.

Special compiler definitions are not required when compiling threaded
applications that use the pthread interface or the tis interface.

B.3 Linking OpenVMS Images
The Threads Library is supplied only as shareable images. It is not supplied as
object libraries.

When you link an image that calls Threads Library routines, you must link
against the appropriate images listed in Table B–2.

Considerations for OpenVMS Systems B–1

Considerations for OpenVMS Systems
B.3 Linking OpenVMS Images

Table B–2 Threads Library Images

Image Routine Library

PTHREAD$RTL.EXE POSIX.1 style interface

CMA$TIS_SHR.EXE Thread-independent services

The image files PTHREAD$RTL.EXE, CMA$TIS_SHR.EXE, CMA$RTL.EXE,
and CMA$LIB_SHR.EXE are included in the IMAGELIB library, making it
unnecessary to specify those images (unless you are using the /NOSYSLIB switch
with the linker) in a Linker options file.

When you link an image that uses the CMA$OPEN_LIB_SHR.EXE and
CMA$OPEN_RTL.EXE images, you must specify them in a Linker options
file.

Note

While this version of the POSIX Threads Library for OpenVMS supports
upward compatibility of source and binaries for the d4 interface, it does
not support upward compability for object files.

For instance, under OpenVMS V7.0 and higher, to link object files that
were compiled under OpenVMS V6.2, follow these steps:

1. Copy CMA$OPEN_RTL.EXE from SYS$SHARE for OpenVMS V6.2
into the directory with your object files compiled under the current
OpenVMS version. During linking, it provides the locations of the
transfer vector entries (OpenVMS VAX) or symbol vector entries
(OpenVMS Alpha) in CMA$OPEN_RTL.EXE for the older OpenVMS
version.

2. Instead of specifying SYS$SHARE:CMA$OPEN_RTL/SHARE in your link
options files, specify CMA$OPEN_RTL/SHARE. Be careful about the
placement of this option in the options file—it should perhaps be
placed at the beginning, or close to it, if you are including other
images that link against PTHREAD$RTL.

3. Link your program.

4. Delete CMA$OPEN_RTL.EXE from your object directory for the
current OpenVMS version.

B.4 Using the Threads Library with AST Routines
An asynchronous system trap, or AST, is an OpenVMS mechanism for reporting
an asynchronous event to a process. The following are restrictions concerning the
use of ASTs with the Threads Library:

• Avoid blocking ASTs using any mechanism other than $SETAST.

• Be aware that blocking ASTs in one thread may prevent delivery of ASTs that
are actually intended for other threads. Therefore, it is best to avoid blocking
ASTs for an extended period of time. Also, it is best to avoid calling Threads
Library functions that may block the thread while it has disabled ASTs.

B–2 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.4 Using the Threads Library with AST Routines

• Do not call Threads Library routines, except those that have the _int
(interrupt) suffix in their names, from within an AST routine. Calling
any other Threads Library routines from code running in an AST can be
unreliable or cause unexpected behavior.

• For OpenVMS Alpha, ASTs are handed off to the Threads Library by the
operating system. This allows ASTs to be delivered in the context of the
appropriate thread. On a multiprocessor machine it may be possible to have a
thread executing an AST routine in parallel with another thread’s execution.
When a thread disables ASTs, not only does it block out its own ASTs, but it
prevents delivery of any ASTs that do not specifically belong to a particular
thread as well.

• For synchronous I/O completion, use the asynchronous variant of the system
service routine and the tis_io_complete() and tis_sync() routines.

B.5 Dynamic Activation
Certain run-time libraries use conditional synchronization mechanisms. These
mechanisms typically are enabled during image initialization when the run-time
library is loaded, and only if the process is multithreaded (that is, if the core
run-time library PTHREAD$RTL has been linked in). If the process is not
multithreaded, the synchronization is disabled.

If your application were to dynamically activate PTHREAD$RTL, any run-time
library that uses conditional synchronization may not behave reliably. Thus,
dynamic activation of the core run-time library PTHREAD$RTL is not supported.

If your application must dynamically activate an image that depends upon
PTHREAD$RTL (that is, the image must run, or can be run, in a multithreaded
environment), you must build the application by explicitly linking the image
calling LIB$FIND_IMAGE_SYMBOL against PTHREAD$RTL.

Use the OpenVMS command ANALYZE/IMAGE to determine whether an
image depends upon PTHREAD$RTL. For more information see your OpenVMS
documentation.

Libraries that wish to use thread-safe synchronization only when threads
are present should use the tis functions instead of dynamically activating
PTHREAD$RTL.EXE.

B.6 Default and Minimum Thread Stack Size
As of OpenVMS Version 7.2, the Threads Library has increased the default thread
stack size for both OpenVMS Alpha and OpenVMS VAX. Applications that create
threads using the default stack size (or a size calculated from the default) will be
unaffected by this change.

As of OpenVMS Version 7.2, the Threads Library has increased the minimum
thread stack size (based on the PTHREAD_STACK_MIN constant) for OpenVMS VAX
only. Existing applications that were built using a version prior to OpenVMS
Version 7.2 and that base their thread stack sizes on this minimum must be
recompiled.

Considerations for OpenVMS Systems B–3

Considerations for OpenVMS Systems
B.7 Requesting a Specific, Absolute Thread Stack Size

B.7 Requesting a Specific, Absolute Thread Stack Size
Prior to OpenVMS Version 7.2, when an application requested to allocate a thread
stack of a specific, absolute size, the Threads Library would increase the size
by a certain quantity, then round up that sum to an integral number of pages.
This process resulted in the actual stack size being considerably larger than the
caller’s request, possibly by more than one page.

Starting with OpenVMS Version 7.2, when an application requests the Threads
Library to allocate a thread stack of a specific, absolute size, no additional space
is added, but the allocation is still rounded up to an integral number of pages.

Any application that uses default-sized stacks is unlikely to experience problems
due to this change. Similarly, any application that sets its thread stack
allocations in terms of either the default or the allowable minimum stack
size is unlikely to experience problems due to this change; however, depending on
the allocation calculation used, the application might receive more memory for
thread stacks.

Starting with OpenVMS Version 7.2, any thread that is created with a stack
allocation of a specific, absolute size might fail during execution because of
insufficient stack space. This failure indicates an existing bug in the application
that was made manifest by the change in the Threads Library.

When the application requests to allocate a thread stack of a specific size, it must
allow for not only the space that the application itself requires, but also sufficient
stack space for context switches and other activity. The Threads Library
only occasionally uses this additional stack space, such as during timeslice
interruptions. A thread with inadequate stack space might not encounter
problems during development and testing because of timing vagaries—for
instance, a thread might not experience problems until a timeslice occurs while
the thread is at its maximum stack utilization—and this situation might never
arise during in-house testing. In a different system environment, such as in
a production environment, the timing might be different, possibly resulting in
occasional failures when certain conditions are met.

B.8 Declaring an OpenVMS Condition Handler
This section discusses a restriction on declaring an OpenVMS condition handler
while using exceptions, and behavior when a condition is signaled.

The following are three ways to declare an OpenVMS condition handler:

• Calling VAXC$ESTABLISH (from a program written in C)

• Calling LIB$ESTABLISH

• Placing the address of the condition handler directly into the stack frame
(from a program written in VAX MACRO or VAX BLISS)

Do not declare an OpenVMS condition handler within a TRY/ENDTRY exception
block. Doing so deletes without notification any handler that exists for the
current procedure. If your code declares a condition handler within the
TRY/ENDTRY block, exceptions will not be handled correctly until the next
TRY statement is executed. The TRY statement restores the condition handler.

On OpenVMS VAX, you can declare a condition handler outside of a TRY/ENDTRY
block with no restrictions. If a condition handler has already been declared when
you execute a TRY statement, the Threads Library saves the previous handler
address. When the Threads Library receives a condition it does not handle

B–4 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.8 Declaring an OpenVMS Condition Handler

(including SS$_UNWIND, SS$_DEBUG, or a condition code that does not have a
SEVERE severity), it invokes the saved condition handler. The condition handler
will be reestablished when the TRY block exits.

B.9 Thread Cancelability of System Services
On OpenVMS Alpha, system calls are not cancelation points for threads created
using the POSIX 1003.1 style interface. System calls are not cancelation points
for threads in legacy multithreaded applications that were created using the
Compaq proprietary CMA (or cma) or POSIX 1003.4a/Draft 4 (d4 or DCEthreads)
interfaces. None of the system calls should be called with asynchronous
cancelation enabled. For more information, see Section 2.3.7.

B.10 Using OpenVMS Alpha 64-Bit Addressing
On OpenVMS Alpha, the Threads Library supports the use of 64-bit addressing
in the pthread interface only. When compiling with the following command, the
pthread_join() function returns a 64-bit void * value as the result:

$ CC/POINTER_SIZE=LONG

You can also use pthread_join64() or pthread_join32() to specify the length in
bits of the return value.

Note that no other Threads Library functions have special 64-bit versions because
the OpenVMS Alpha calling standard always supports 64-bit arguments and
return values.

B.11 Condition Values
Table B–3 lists the condition values for OpenVMS systems and provides an
explanation and user action.

Table B–3 Condition Values

Condition Value Explanation and User Action

CMA$_EXCCOP Exception raised, OpenVMS condition code follows.

Explanation: One of the exception commands (RAISE or
RERAISE) raised or reraised an exception condition originating
outside the Threads Library. The secondary condition code in
the signal vector will be the original code.

User Action: See the documentation for the software that
your program is calling to determine the reason for this
exception.

CMA$_EXCCOPLOS Exception raised, some information lost.

(continued on next page)

Considerations for OpenVMS Systems B–5

Considerations for OpenVMS Systems
B.11 Condition Values

Table B–3 (Cont.) Condition Values

Condition Value Explanation and User Action

Explanation: CMA$_EXCCOPLOS is nearly the same as
CMA$_EXCCOP except that the Threads Library determined
that the copied signal vector may contain address arguments.
However, the address arguments may not be valid when the
stack is unwound and the condition is resignaled. Therefore,
the Threads Library clears the condition codes’ arguments
in the resignaled vector. In most cases, the Threads Library
knows that SS$_ code arguments are ‘‘safe’’ and will not clear
them. Most other codes with arguments will result in CMA$_
EXCCOPLOS.

User Action: See the documentation for the software that
your program is calling to determine the reason for this
exception.

CMA$_EXCEPTION Exception raised, address of exception object is object-address.

Explanation: This condition is used as the primary condition
to RAISE an address-type exception. The condition is
signaled with a single argument containing the address of
the EXCEPTION structure. There is no support for interpreting
this value. It is only meaningful to the facility that defined
the EXCEPTION. It is not good programming practice to let an
address exception propagate outside the facility that raised it.
There is no support for retrieving message text, and it cannot
be interpreted by other facilities.

User Action: None.

B.12 Two-Level Scheduling on OpenVMS Alpha Systems
This section applies to OpenVMS Alpha systems only.

Under OpenVMS Alpha Version 7.0 and later, the Threads Library implements
a two-level scheduling model. This model is based on the concept of virtual
processors. Virtual processors are implemented as a result of using kernel
thread technology in the OpenVMS Alpha operating system.

The Threads Library schedules threads onto virtual processors similar to the
way that OpenVMS schedules processes onto the processors of a multiprocessing
machine. Thus, to the runtime environment, a scheduled thread is executed on a
virtual processor until it blocks or until it exhausts its timeslice quantum; then
the Threads Library schedules a new thread to run.

While the Threads Library schedules threads onto virtual processors, the
OpenVMS scheduler also schedules virtual processors to run on physical
processors. The term ‘‘two-level scheduling’’ derives from this relationship.

The two-level scheduling model provides these advantages:

• It allows most thread scheduling to take place completely in user mode–that
is, without the intervention of the OpenVMS scheduler. Because a thread
context switch does not involve any privileged information (rather, only a
swapping of registers), it can be done much more efficiently in user mode
than a context switch involving the operating system.

B–6 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

• It allows the OpenVMS scheduler to schedule virtual processors onto separate
processors of a multiprocessing machine. This allows a process using the
Threads Library to take advantage of the full resources of a multiprocessor
machine.

The key to making the two-level scheduling model work is the upcall mechanism.
An upcall is a communication between the OpenVMS scheduler and the Threads
Library scheduler. When an event occurs that affects the scheduling of a thread,
such as blocking for a system service, the OpenVMS scheduler calls ‘‘up’’ to the
Threads Library scheduler to notify it of the change in the thread’s status.

This upcall gives the Threads Library the opportunity to schedule another thread
to run on the virtual processor in place of the blocking thread, rather than to
allow the virtual processor itself to block, which would deny that resource to
other threads in the process.

Upcalls are typically arranged in pairs, with an ‘‘unblock’’ upcall corresponding
to each ‘‘block’’ upcall. The unblock upcall notifies the Threads Library that a
previously blocked thread is now eligible to run again. The Threads Library
schedules that thread to run based on its scheduling policy and priority.

B.12.1 Linker Options to Specify Image’s Use of Kernel Threads
In OpenVMS Alpha Version 7.1 and later, the linker supports the /THREADS_
ENABLE (or /NOTHREADS_ENABLE) qualifier for specifying the role of kernel
threads in the resulting image. Use this qualifier to specify whether the process
can create multiple kernel threads and whether the OpenVMS Alpha kernel’s
support for upcalls is enabled. If this qualifier is not specified, the default linker
setting is /NOTHREADS_ENABLE, which results in an image that behaves as
under OpenVMS Alpha Version 6.

The /THREADS_ENABLE qualifier takes two keyword arguments, MULTIPLE_
KERNEL_THREADS and UPCALLS. Table B–4 summarizes the allowable
combinations of these keywords and their effects. This qualifier must be applied
to a ‘‘main’’ image. If used on a shared library image, it will be ignored.

The use of kernel threads and upcalls is also limited by the kernel sysgen
parameter MULTITHREAD. If set to 0, no process may use upcalls or create kernel
threads. A value of 1 allows upcalls, but not kernel threads. A higher value
represents the maximum number of kernel threads each process may use. (You
cannot have multiple kernel threads without upcalls.)

Table B–4 Results of Keyword Arguments to /THREADS_ENABLE Qualifier

Keywords Specified Result

/NOTHREADS_ENABLE No kernel threads support

/THREADS_ENABLE
or:
/THREADS_ENABLE=(MULTIPLE_
KERNEL_THREADS,UPCALLS)

Full kernel threads support, including the ability to run
multiple user threads simultaneously on different CPUs
on a multiprocessor machine

(continued on next page)

Considerations for OpenVMS Systems B–7

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

Table B–4 (Cont.) Results of Keyword Arguments to /THREADS_ENABLE Qualifier

Keywords Specified Result

/THREADS_ENABLE=MULTIPLE_KERNEL_
THREADS

Same behavior as if /NOTHREADS_ENABLE is specified
(without support for upcalls, the Threads Library cannot
reliably use multiple kernel threads)

/THREADS_ENABLE=UPCALLS Upcall support (such as making system calls thread-
synchronous), but restricts the process’ threads to one
CPU on a multiprocessor machine

Note

Under no circumstances should a process explicitly create kernel threads.
The Threads Library creates them as needed when allowed to do so.
Explicit creation of kernel threads by an application disrupts the
operation of the runtime environment and causes incorrect and/or
unreliable application behavior.

B.12.2 Setting Kernel Threads Support in Existing Images
Under OpenVMS Alpha only, use the THREADCP tool to set or show the kernel
threads features described earlier for an existing main image. The tool provides
the ability to enable, disable, and show the state of the thread control bits in an
image’s header.

The THREADCP command verb is not part of the normal set of DCL commands.
To use the tool, you must define the command verb before invoking it, as shown
in Section B.12.2.1.

In a THREADCP command, an image file name is a required parameter for
use with all supported qualifiers. THREADCP supports abbreviations to the
first character for all qualifiers and parameters. When the SHOW qualifier is
used alone with the THREADCP command, the file name can contain wildcard
characters.

After you define the THREADCP command verb, an image’s thread control bits
can be set or cleared using the /ENABLE and /DISABLE qualifiers, respectively.
To do so, specify the name of each thread control bit to be enabled, disabled, or
shown. One or both thread control bits can be specified. The user must have
write access to the image file.

If no thread control bit is specified, the THREADCP default is to operate on
both bits. If the image is currently being executed or is installed, it cannot be
modified.

B.12.2.1 Examples
This command defines the THREADCP command verb:

$ SET COMMAND SYS$UPDATE:THREADCP.CLD

This command displays the current settings of both thread control bits for the
image TEST.EXE:

$ THREADCP/SHOW TEST.EXE

B–8 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

This command displays the current settings of both thread control bits for all
SYS$SYSTEM images:

$ THREADCP/SHOW SYS$SYSTEM:*

This command sets both thread control bits explicitly for the image TEST.EXE:

$ THREADCP/ENABLE=(MULTIPLE_KERNEL_THREADS, UPCALLS) TEST.EXE

This command clears both thread control bits explicitly for the image TEST.EXE:

$ THREADCP/DISABLE=(MULTIPLE_KERNEL_THREADS, UPCALLS) TEST.EXE

B.12.3 Querying and Setting Kernel Threads Features
On OpenVMS Alpha systems, a program can call the $GETJPI system service and
specify the appropriate MULTITHREAD item code to determine whether kernel
threads are in use. The return values have the same meanings as are defined for
the MULTITHREAD system parameter, as summarized in Table B–5.

Table B–5 Return Values from $GETJPI System Service

Value Description

0 Both upcalls and the creation of multiple kernel threads are disabled.

1 Upcalls are enabled; the creation of multiple kernel threads is disabled.

2 through 16 Both upcalls and the creation of multiple kernel threads are enabled.
The number specified represents the maximum number of kernel
threads that can be created for a single process.

B.12.4 Creation of Virtual Processors
Virtual processors are created as they are needed by the application. For a
multithreaded application, the number of virtual processors that the Threads
Library creates is limited by the SYSGEN parameter MULTITHREAD. This
parameter is typically set to the number of processors present in the system.

In general, there is no reason to create more virtual processors than there are
physical processors; that is, the virtual processors would contend with each other
for the physical processors and cause unnecessary overhead. Regardless of the
value of the MULTITHREAD parameter, the Threads Library creates no more
virtual processors than there are user threads (excluding internal threads).

The Threads Library does not delete virtual processors or let them terminate.
They are retained in the HIB idle state until they are needed again. During
image rundown, they are deleted by OpenVMS.

The Threads Library scheduler can schedule any user thread onto any virtual
processor. Therefore, a user thread can run on different kernel threads at
different times. Normally, this should pose no problem; however, for example, a
user thread’s PID (as retrieved by querying the system) can change from time to
time.

Considerations for OpenVMS Systems B–9

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

B.12.5 Delivery of ASTs
When a user mode AST becomes deliverable to a Threads Library process,
the OpenVMS scheduler makes an upcall to the Threads Library, passing
the information that is required to deliver the AST (service routine address,
argument, and target user thread ID). The Threads Library stores this
information and queues the AST to be delivered to the appropriate user thread.
That thread is made runnable (if it is not already), and executes the AST routine
the next time it is scheduled to run. This means the following:

• A per-thread AST will interrupt the user thread that requested it, regardless
of on which virtual processor the thread is running.

• The AST will be run at the priority of the target thread, so that low-priority
threads’ ASTs do not preempt or interfere with the execution of high-priority
threads.

• The AST routine executes in the context of the target thread, so that the
danger of surprise stack overflows is diminished, and stack-walks and
exception propagation work as they should.

In addition to per-thread ASTs, there are also user mode ASTs that are directed
either to the process as a whole, or to no thread in particular, or to a thread that
has since terminated. These ‘‘process’’ ASTs are queued to the initial thread,
making the thread runnable in a fashion similar to per-thread ASTs. They are
executed in the context of the initial thread, for the following reasons:

• The initial thread has an expandable stack, unlike the other threads, which
minimizes the danger of stack space problems.

• Any code that is making assumptions about specific characteristics of AST
delivery is most likely running in the initial thread, so delivering the AST to
the initial thread is least likely to cause problems.

• To ensure that the process ASTs are executed promptly, the initial thread
gets a boost to the top scheduling priority. Because these ASTs cannot be
associated with a particular thread, their priority cannot be assessed, so it is
important that they be delivered promptly in the event that a high-priority
thread is waiting to be signaled by one of them.

Note

In all OpenVMS releases to date, all ASTs are directed to the process
as a whole. In future releases, AST delivery will be made per thread as
individual services are updated.

The following implications must be considered for application development:

• If an application makes heavy use of ASTs, it can starve the initial thread
to a degree, because only that thread executes the ASTs that are directed to
the entire process. (This is in contrast with the behavior prior to OpenVMS
Version 7.0 of starving all threads equally).

• There are also implications for controlling AST delivery. $SETAST generates
an upcall similar to the one for AST delivery. This allows the Threads Library
to note the request by a thread to block (or unblock) AST delivery. When a
thread has requested that ASTs be blocked, it will not receive delivery of any
per-thread ASTs; nor will the process receive delivery of any process ASTs.
This is, in effect, the behavior prior to OpenVMS Version 7.0, except that a

B–10 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

second thread cannot undo a block requested by a previous thread. Avoid
using any mechanism other than $SETAST to block ASTs; it will interfere
with the process as a whole and may produce undesirable results.

• Another implication is that a thread can be executing on one virtual processor
at the same time that an AST is executing on another virtual processor.
In general, this should not pose a significant problem for multithreaded
applications. Such applications should have already minimized their AST
use, since ASTs and threads can be difficult to use together reliably.

In addition, AST routines should already be performing only atomic
operations, since thread synchronization is not available to code executing
at AST level. Any ‘‘legacy’’ code (such as a nonthreaded application using
threaded libraries) is executed in the initial thread, where the normal
assumptions about AST delivery are maintained. If a piece of code cannot
tolerate concurrent execution with an AST routine, it should disable AST
delivery during its execution.

B.12.6 Blocking System Services
In OpenVMS Alpha Version 7.0 and later, with few exceptions a blocking system
service call is thread synchronous—that is, only the calling thread is blocked.
The exceptions are services that do not block in user mode and services that set
common event flags. (See also Section B.12.8.)

When a thread calls a system service that must block, the OpenVMS scheduler
makes an upcall to allow the Threads Library to schedule another user thread
to execute. Therefore, only the calling thread is blocked, all other threads are
unaffected, and the process continues running. When the service completes,
the thread is awakened by means of another upcall, and the Threads Library
schedules it to run again at the thread’s next opportunity.

This applies to all ‘‘W’’ forms of system services, for example, $QIOW, $END_
TRANSW, and $GETJPIW. Additionally, this applies to the following event flag
services: $WAITFR, $WFLAND, and $WFLOR.

B.12.7 $HIBER and $WAKE
$HIBER and $WAKE result in upcalls to the Threads Library. When a user
thread calls $HIBER, only that thread is blocked; all other threads continue
running. The blocking thread is immediately unscheduled and another thread is
scheduled to run instead. When a thread (or another process) calls $WAKE, all
hibernating threads are awakened.

Prior to OpenVMS Version 7.0, a thread that called a $HIBER (or called a library
routine that eventually resulted in a call to $HIBER) would cause the whole
process to hibernate for a brief period whenever that thread was scheduled to
‘‘run.’’ Also, with multiple threads in calls to $HIBER simultaneously, there was
no reliable way to wake the threads (or a specific thread); the next hibernating
thread to be scheduled would awaken, and any other threads would continue to
sleep.

In OpenVMS Alpha Version 7.0 and later, these problems have been resolved.
However, this new behavior has some other effects. For instance, hibernation-
based services, such as LIB$WAIT and the C RTL sleep() routine, may be
prone to premature completion. If the service does not validate its wakeup (that
is, ensure that enough time has passed or that there is some other reason for
it to return), then it will be prone to this problem, as are the above services,
since they do not perform such wake-up validation. (The sleep() routine does

Considerations for OpenVMS Systems B–11

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

this deliberately to mimic the ANSI C required behavior of returning when
interrupted by a signal. Though OpenVMS does not have UNIX signals, an
asynchronous $WAKE is similar in intent.)

B.12.8 Event Flags
All event flags are shared by all threads in the process. Therefore, it is possible
for different threads’ use of the same event flag to cause interference.

If two threads use the same event flag in calls to different system services,
whichever service completes first will cause both threads to awaken, even though
the other service has not completed. This situation can be resolved by specifying
an I/O status block (IOSB) for those system services that use them. When an
IOSB is present, the blocked thread will not be awakened when the event flag is
set, unless the IOSB has also been written.

A Threads Library process is rarely in LEF state. In general, instead of blocking
for an event flag wait, the Threads Library schedules another thread to be run.
However, if no threads are available, the Threads Library schedules a ‘‘null’’
thread, which places the virtual processor in HIB state until it is needed to
execute a thread.

Note

If a thread calls a system service that uses a common event flag, the
calling thread’s virtual processor blocks until the wait is satisfied. (That
is, no upcall is made to the OpenVMS kernel to schedule another thread.)
On a uniprocessor, such a system service call will most likely cause all
threads in the process to block.

B.12.9 Interactions with OpenVMS
There are several interactions with the OpenVMS operating system that should
be noted:

• Like system service calls, pagefault waits are thread synchronous. When a
thread incurs a ‘‘hard’’ pagefault (reading the page from disk), an upcall to
the Threads Library takes place, and the Threads Library places the thread
in a blocked state. The Threads Library schedules another thread to run in
its place.

When the pagefault resolution is complete, another upcall occurs, and the
Threads Library schedules it to run at its next opportunity. It is possible for
multiple threads to take faults on the same page at approximately the same
time. Each thread is blocked, in turn, and becomes unblocked when the page
becomes valid.

• Most OpenVMS system services cannot themselves support being called by
multiple threads concurrently. Therefore, calls to OpenVMS system services
are serialized using a mechanism called the inner-mode semaphore. If one
thread attempts to call a system service while another thread is in the middle
of calling a system service, the second thread is blocked by an upcall until the
first thread completes its service call.

• Threads Library timeslicing changed slightly for OpenVMS Alpha Version
7.0 and later. Prior to Version 7.0, the Threads Library timeslicer was
implemented using an OpenVMS timer. This caused a Threads Library
scheduler AST to be delivered to the process at regular wall-clock time

B–12 Considerations for OpenVMS Systems

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

intervals. While running on wall-clock time was a necessary evil (to support
the interruption of system service blocks), this timeslice mechanism had
several drawbacks.

In OpenVMS Version 7.0 and later, timeslicing is implemented as an upcall
to the Threads Library that is delivered after the thread has consumed a
sufficient amount of CPU time. Thus, when no threads are running, no
timeslicing takes place.

B.12.10 Image Exit
In multithreaded processes, image exit occurs as follows: $EXIT does not
immediately invoke exit handler routines. Instead, it results in an upcall that
causes the Threads Library to schedule a special thread to execute the exit-
handler routines. $EXIT then calls pthread_exit() to terminate the calling
thread. This allows the calling thread to release any resources that it might be
holding.

To avoid possible deadlocks, the exit-handler routines are executed in a separate
thread. For example, if a thread calls $EXIT while holding a mutex that is
required by an exit-handler routine, then that routine causes the thread to block
forever, as it waits for a mutex that it already holds. Because the exit-handler
routine executes in a separate thread, it can block while the thread holding the
mutex cleans up.

$FORCEX works in an analogous fashion. Instead of invoking $EXIT directly,
it causes an upcall that allows the Threads Library to release the exit-handler
thread.

DCL Ctrl/Y continues to work as it always has on multithreaded applications.
However, typing EXIT or issuing any other command that invokes a new image
causes the $FORCEX upcall. While this is an improvement in many cases over
the behavior prior to OpenVMS Version 7.0, it does not guarantee that the
multithreaded application will exit.

For example, if the application is deadlocked, holding a resource required by
one of the exit handler’s routines, the application will continue to hang, even
after typing Ctrl/Y and EXIT. In these cases, type Ctrl/Y and STOP to terminate
the application without running exit handlers. Note that doing so causes the
application to be unable to clean up, and it may leave data files and the terminal
in an inconsistent state.

B.12.11 SYSGEN Parameter MULTITHREAD
The SYSGEN parameter MULTITHREAD limits the maximum number of kernel
threads per process. It is set by AUTOGEN to the number of CPUs on the
system. If MULTITHREAD is set to zero (0), two-level scheduling support is
disabled, and the Threads Library reverts to its behavior prior to OpenVMS
Version 7.0—that is, no upcalls can occur, and it does not use all processors in
multiprocessor systems.

B.12.12 Process Control System Services and DCL Commands
OpenVMS system services and DCL commands are either process based or
operate on a per-thread basis. This section identifies several system services on
this basis.

Considerations for OpenVMS Systems B–13

Considerations for OpenVMS Systems
B.12 Two-Level Scheduling on OpenVMS Alpha Systems

B.12.12.1 Process-Level System Services
The following system services continue to be process based: $SUSPEND,
$RESUME, and $DELPRC. These services will operate on an entire process;
they are not thread based. For example, $SUSPEND issued by a thread will
suspend all of the virtual processors in process, not just the calling thread.

Under OpenVMS Version 7.0 or later, it is possible, such as when at a breakpoint
in the debugger, to see all but one of your kernel threads in SUSP state.
This effect is a part of the debugging support and is not the result of calling
$SUSPND.

B.12.12.2 Kernel-Level System Services
The following system services now operate on a per-thread basis: $HIBER,
$SCHDWK, and $SYNCH. These services will not operate on an entire process;
they are thread based. For example, $HIBER will cause the calling thread to
become inactive but will not affect other threads in the process.

B.12.12.3 DCL Commands
The following DCL commands operate as indicated:

• STOP/IDENTIFICATION—This command continues to work on a process
basis.

• SET PROCESS—This command continues to work on a process basis except
for SET PROCESS/PRIORITY.

• SET PROCESS/PRIORITY—This command now sets the priority of a kernel
thread. Avoid setting different priorities for kernel threads in the same
process. Refer to Section B.12.4 for more information.

B.13 Interoperability with POSIX for OpenVMS
Previous releases of the POSIX for OpenVMS layered product had very limited
interoperability with the Threads Library. Under OpenVMS Version 7.0 and
later, using the Threads Library with the POSIX for OpenVMS layered product is
not supported.

B–14 Considerations for OpenVMS Systems

C
Debugging Multithreaded Applications

The debugging information in this appendix is specific to applications that use
the POSIX Threads Library.

C.1 Using PTHREAD_CONFIG
During initialization of the Threads Library run-time environment, the
PTHREAD_CONFIG environment variable (on Tru64 UNIX systems) or logical
symbol (on OpenVMS systems), if defined, is used to set static options for the
multithreaded program. You can set PTHREAD_CONFIG to assist you in debugging a
Threads Library application.

C.1.1 Major and Minor Keywords
As summarized in Table C–1, PTHREAD_CONFIG takes ‘‘major keywords’’ as
arguments. Use a ‘‘minor keyword’’ to specify a value for each major keyword.

Table C–1 PTHREAD_CONFIG Settings

Major keyword Minor keyword Meaning

dump= file-path Path of bugcheck file (OpenVMS
only)

meter= condition Meter condition variable operations

mutex Meter mutex operations

stack
Record thread greatest stack extent

all Meter all available operations

none No metering

width= bugcheck_output_width Width of output from bugcheck
output

C.1.2 Specifying Multiple Values
When setting PTHREAD_CONFIG, use a semicolon to separate major keyword
expressions and use a comma to separate minor keyword values. For example,
using DCL under OpenVMS, you can set PTHREAD_CONFIG as follows:

$ define PTHREAD_CONFIG "meter=(stack,mutex);dump=/tmp/dump-d.dmp;width=132"

Debugging Multithreaded Applications C–1

Debugging Multithreaded Applications
C.2 Running in Metered Mode

C.2 Running in Metered Mode
Metering tells the Threads Library to collect statistical and historical information
about the use of synchronization objects within your program. This affects all
synchronization within the program, including that within the Threads Library
itself and any other libraries that use threads. Therefore, metering provides a
very powerful tool for debugging multithreaded code.

To enable metering, define PTHREAD_CONFIG prior to running any threaded
application. The variable should have a value of meter=all to enable metering.
This causes the Threads Library to gather and record statistics and history
information for all synchronization operations.

Programs running in metered mode are somewhat slower than unmetered
programs. Also, normal mutexes that are metered can behave like errorcheck
mutexes in many ways. This does not affect the behavior of correct programs, but
you should be aware of some differences between normal and errorcheck mutexes.
The most important difference is that normal mutexes do not report a number of
usage errors, while errorcheck mutexes do.

Because it can be expensive to detect these conditions, a normal mutex may not
always report these errors. Regardless of whether the program seems to work
correctly under these circumstances, the operations are illegal. A metered normal
mutex will report these errors under more circumstances than will an unmetered
normal mutex.

C.3 Visual Threads
We recommend Visual Threads to debug Threads Library applications on Tru64
UNIX and OpenVMS systems. Visual Threads can be used to automatically
diagnose common problems associated with multithreading, including deadlock,
protection of shared data (on Tru64 UNIX systems only), and thread usage errors.
It can also be used to monitor the thread-related performance of an application,
helping you to identify bottlenecks or locking granularity problems. It is a
unique debugging tool because it can be used to identify problem areas even if an
application does not show any specific symptoms.

See the online Visual Threads documentation at www.compaq.com/visualthreads/
for more information.

C.4 Using Ladebug on Tru64 UNIX Systems
The Compaq Ladebug debugger provides commands to display the state of
threads, mutexes, and condition variables.

Using the Ladebug commands, you can examine core files and remote debug
sessions, as well as run processes.

The basic commands are:

• thread n — Sets the current thread context to n.

• show thread [n ...] — Displays thread state (more information displayed if
$verbose=1)

• show mutex [n ...] — Displays mutex state.

• show condition [n ...] — Displays condition variable state.

Refer to the Ladebug documentation for further details.

C–2 Debugging Multithreaded Applications

Debugging Multithreaded Applications
C.5 Debugging Threads on OpenVMS Systems

C.5 Debugging Threads on OpenVMS Systems
This section presents particular topics that relate to debugging a multithreaded
application under OpenVMS.

C.5.1 Display of Stack Trace from Unhandled Exception
When a program incurs an unhandled exception, a stack trace is produced
that shows the call frames from the point where the exception was raised or,
if TRY/CATCH, TRY/FINALLY, or POSIX cleanup handlers are used, from the point
where it was last reraised to the bottom of the stack.

Debugging Multithreaded Applications C–3

D
Migrating from the cma Interface

This appendix presents information that helps you migrate existing programs
and applications that use the Compaq proprietary CMA (or cma) interface to use
the pthread interface, based on the IEEE POSIX 1003.1c-1995 standard.

Note

In future releases, the cma interface will continue to exist and be
supported, but it will no longer be documented or enhanced. Therefore, it
is recommended that you port your cma-based programs and applications
to the pthread interface as soon as possible. The pthread interface is
the most portable, efficient, and robust multithreading run-time library
offered by Compaq.

D.1 Overview
The pthread interface differs significantly from the cma interface, though there
are many similarities between the functions that individual routines perform.
This section gives hints about the relationship between the two sets of routines,
to assist you in migrating applications.

Note that routines whose names have the _np suffix are not portable—that is, the
routine might not be available except in the POSIX Threads Library.

You should include the C language pthread.h header file for prototypes of the
pthread routines.

D.2 cma Handles
A cma handle is storage, similar to a pointer, that refers to a specific Threads
Library object (thread, mutex, condition variable, queue, or attributes object).

Handles are allocated by the user application. They can be freely copied by the
program and stored in any class of storage; objects are managed by the Threads
Library.

In the cma interface, because objects are accessed only by handles, you can think
of the handle as if it were the object itself. Threads Library objects are accessed
by handles (rather than pointers), because handles allow for greater robustness
and portability. Handles allow the Threads Library to detect the following types
of run-time errors:

• Using an uninitialized handle

• Using a corrupted handle

• Using a handle whose object no longer exists (a dangling handle)

Migrating from the cma Interface D–1

Migrating from the cma Interface
D.2 cma Handles

Handles are not supported in the pthread interface. Although this provides less
robustness due to more limited error checking, it allows better performance by
decreasing memory use and memory access. (That is, handles result in pointers
to pointers.)

D.3 Interface Routine Mapping
As summarized in Table D–1, many cma routines perform functions nearly
identical to corresponding routines in the pthread interface. The syntax and
semantics differ, but the similarities are also notable.

Table D–1 Corresponding cma and pthread Routines

cma Routine pthread Routine Notes

cma_alert_disable_asynch() pthread_setcancelstate()/pthread_setcanceltype()

cma_alert_disable_general() pthread_setcancelstate()/pthread_setcanceltype()

cma_alert_enable_asynch() pthread_setcancelstate()/pthread_setcanceltype()

cma_alert_enable_general() pthread_setcancelstate()/pthread_setcanceltype()

cma_alert_restore() pthread_setcancelstate()/pthread_setcanceltype()

cma_alert_test() pthread_testcancel()

cma_attr_create() pthread_attr_init()

cma_attr_delete() pthread_attr_destroy()

cma_attr_get_guardsize() pthread_attr_getguardsize_np()

cma_attr_get_inherit_sched() pthread_attr_getinheritsched()

cma_attr_get_mutex_kind() pthread_mutexattr_gettype_np()

cma_attr_get_priority() pthread_attr_setsched_param()

cma_attr_get_sched() pthread_attr_getschedpolicy()

cma_attr_get_stacksize() pthread_attr_getstacksize()

cma_attr_set_guardsize() pthread_attr_setguardsize_np()

cma_attr_set_inherit_sched() pthread_attr_setinheritsched()

cma_attr_set_mutex_kind() pthread_mutexattr_settype_np()

cma_attr_set_priority() pthread_attr_setsched_param()

cma_attr_set_sched() pthread_attr_setschedpolicy()

cma_attr_set_stacksize() pthread_attr_setstacksize()

cma_cond_broadcast() pthread_cond_broadcast()

cma_cond_create() pthread_cond_init()

cma_cond_delete() pthread_cond_destroy()

cma_cond_signal() pthread_cond_signal()

cma_cond_signal_int() pthread_cond_signal_int_np()

cma_cond_timed_wait() pthread_cond_timedwait()

cma_cond_wait() pthread_cond_wait()

cma_delay() pthread_delay_np()

(continued on next page)

D–2 Migrating from the cma Interface

Migrating from the cma Interface
D.3 Interface Routine Mapping

Table D–1 (Cont.) Corresponding cma and pthread Routines

cma Routine pthread Routine Notes

cma_handle_assign() none Use
Language
assignment
operator.

cma_handle_equal() pthread_equal()

cma_init() none Not
necessary.

cma_key_create() pthread_key_create()
(Note: pthread_key_delete() is
available as well.)

cma_key_get_context() pthread_getspecific()

cma_key_set_context() pthread_setspecific()

cma_lock_global() pthread_lock_global_np()

cma_mutex_create() pthread_mutex_init()

cma_mutex_delete() pthread_mutex_delete()

cma_mutex_lock() pthread_mutex_lock()

cma_mutex_try_lock() pthread_mutex_trylock()

cma_mutex_unlock() pthread_mutex_unlock()

cma_once() pthread_once()

cma_stack_check_limit_np()

cma_thread_alert() pthread_cancel()

cma_thread_bind_to_cpu() none

cma_thread_create() pthread_create()

cma_thread_detach() pthread_detach()

cma_thread_exit_error() pthread_exit() With
Status.

cma_thread_exit_normal() pthread_exit() With
Status.

cma_thread_get_priority() pthread_getschedparam()

cma_thread_get_sched() pthread_setschedparam()

cma_thread_get_self() pthread_self()

cma_thread_join() pthread_join()

cma_thread_set_priority() pthread_setschedparam()

cma_thread_set_sched() pthread_setschedparam()

cma_time_get_expiration() pthread_get_expiration_np()

cma_unlock_global() pthread_unlock_global_np()

cma_yield() pthread_yield_np()

Notice that the cma routine cma_cond_timed_wait() requires the time
argument expiration to be specified in local time; whereas the pthread routine
pthread_cond_timedwait() requires the time argument abstime to be specified
in Universal Coordinated Time (UTC).

Migrating from the cma Interface D–3

Migrating from the cma Interface
D.4 New pthread Routines

D.4 New pthread Routines
The following are pthread interface routines that have no functional similarities
in the cma interface:

pthread_atfork() (Tru64 UNIX only)
pthread_attr_getdetachstate()
pthread_attr_getscope()
pthread_attr_setdetachstate()
pthread_attr_setscope()
pthread_condattr_getpshared()
pthread_condattr_setpshared()
pthread_key_delete()
pthread_kill() (Tru64 UNIX only)
pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()
All pthread_rwlockattr_ and pthread_rwlock_ routines
pthread_sigmask() (Tru64 UNIX only)
sigwait()

D–4 Migrating from the cma Interface

E
Migrating from the d4 Interface

This appendix provides migration information for the routines in the POSIX
1003.4a/Draft 4 (or d4) interface.

Note

Applications that use the d4 routines require significant modification to
be migrated to the pthread interface described in Part II.

E.1 Overview
Routines in the pthread interface differ significantly from the original POSIX
1003.4a/Draft 4 implementation. This section describes the major changes
between the interfaces.

E.2 Error Status and Function Returns
The pthread interface does not use the global variable errno. (Note that
the Threads Library provides a thread-specific errno for use by libraries and
application code, but the pthread interface does not write to it.)

If an error condition occurs, a pthread routine returns an integer value
that indicates the type of error. For example, a call to the d4 interface’s
implementation of pthread_cond_destroy() that returned a –1 and set errno
to [EBUSY], returns [EBUSY] as the routine’s return value in the pthread
interface implementation.

On successful completion, most pthread interface routines return zero (0).

E.3 Replaced or Renamed Routines
Many routines in the d4 interface have been replaced or renamed in the pthread
interface, as shown in Table E–1.

Table E–1 pthread Routines That Replace d4 Routines

d4 Routine Replacement pthread Routine

pthread_attr_create() pthread_attr_init()

pthread_attr_delete() pthread_attr_destroy()

pthread_attr_set/getdetach_np() pthread_attr_set/getdetachstate()

pthread_attr_set/getguardsize_np()pthread_attr_set/getguardsize()

(continued on next page)

Migrating from the d4 Interface E–1

Migrating from the d4 Interface
E.3 Replaced or Renamed Routines

Table E–1 (Cont.) pthread Routines That Replace d4 Routines

d4 Routine Replacement pthread Routine

pthread_attr_set/getprio() pthread_attr_set/getschedparam()

pthread_attr_set/getsched() pthread_attr_set/getschedpolicy()

pthread_condattr_create() pthread_condattr_init()

pthread_condattr_delete() pthread_condattr_destroy()

pthread_keycreate() pthread_key_create()

pthread_mutexattr_create() pthread_mutexattr_init()

pthread_mutexattr_delete() pthread_mutexattr_destroy()

pthread_mutexattr_get/setkind_np()pthread_mutexattr_get/settype()

pthread_setasynccancel() pthread_setcanceltype()

pthread_setcancel() pthread_setcancelstate()

pthread_set/getprio() pthread_set/getschedparam()

pthread_set/getscheduler() pthread_set/getschedparam()

pthread_yield() sched_yield()

E.4 Routines with No Changes to Syntax
Except for the return value, the following routines in the d4 interface have no
changes to syntax in the pthread interface:

pthread_attr_setinheritsched()
pthread_cancel()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_signal()
pthread_cond_signal_int_np()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_delay_np()
pthread_equal()
pthread_exit()
pthread_get_expiration_np()
pthread_join() (now detaches the thread)
pthread_mutex_destroy()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_once()

The following routines have no changes in syntax or return value:

pthread_self()
pthread_testcancel()

Notice that the d4 routine pthread_cond_timedwait() requires the time
argument abstime to be specified in local time; whereas the pthread routine
pthread_cond_timedwait() requires the time argument abstime to be specified
in Universal Coordinated Time (UTC).

E–2 Migrating from the d4 Interface

Migrating from the d4 Interface
E.5 Routines with Prototype or Syntax Changes

E.5 Routines with Prototype or Syntax Changes
Table E–2 shows the routines in the d4 interface that have changes to their
argument syntax in the pthread interface.

Table E–2 d4 Routines With Syntax Changes as pthread Routines

Old Syntax New Syntax

int pthread_attr_getinheritsched(
pthread_attr_t attr)

int pthread_attr_getinheritsched(
const pthread_attr_t *attr,
int *inheritsched)

unsigned long pthread_attr_getstacksize(
pthread_attr_t attr)

int pthread_attr_getstacksize(
const pthread_attr_t *attr,
size_t *stacksize)

unsigned long pthread_attr_setstacksize(
pthread_attr_t *attr,
long stacksize)

int pthread_attr_setstacksize(
const pthread_attr_t *attr,
size_t stacksize)

int pthread_cleanup_pop(
int execute)

void pthread_cleanup_pop(
int execute)

int pthread_cond_init(
pthread_cond_t *cond,
pthread_condattr_t attr)

int pthread_cond_init(
pthread_cond_t *cond,
pthread_condattr_t *attr)

int pthread_create(
pthread_t *thread,
pthread_attr_t attr,
pthread_startroutine_t start_routine,
pthread_addr_t arg)

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void* (*start_routine)(void *),
void *arg)

int pthread_detach(
pthread_t *thread)

int pthread_detach(
pthread_t thread)

int pthread_getspecific(
pthread_key_t key, void **value)

void *pthread_getspecific(
pthread_key_t key)

void pthread_lock_global_np() int pthread_lock_global_np(void)

void pthread_unlock_global_np() int pthread_unlock_global_np(void)

int pthread_mutex_init(
pthread_mutex_t *mutex,
pthread_mutexattr_t attr)

int pthread_mutex_init(
pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr)

Table E–3 shows routines in the d4 interface that have a corresponding pthread
routine that does not support the obsolete d4-style datatypes. These datatypes
were documented for previous releases of the Threads Library.

If your original code used the standard Threads Library datatypes, then this
migration requirement might not impact your code.

Migrating from the d4 Interface E–3

Migrating from the d4 Interface
E.5 Routines with Prototype or Syntax Changes

Table E–3 d4 Routines Whose pthread Counterpart Uses Standard Datatypes

New Standard Datatype Syntax Nonstandard Datatype Syntax

void pthread_cleanup_push(
void (*routine)(void *), void *arg)

int pthread_cleanup_push(
pthread_cleanup_t *routine,
pthread_addr_t arg)

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void *arg)

int pthread_create(
pthread_t *thread,
pthread_attr_t attr,
pthread_startroutine_t start_routine,
pthread_addr_t arg)

int pthread_exit(
void *value_ptr)

int pthread_exit(
pthread_addr_t status)

void *pthread_getspecific(
pthread_key_t key)

int pthread_getspecific(
pthread_key_t key,
pthread_addr_t *value)

int pthread_join(
pthread_t thread, void **value_ptr)

int pthread_join(
pthread_t thread,
pthread_addr_t *status)

int pthread_once(
pthread_once_t *once_control,
void (*init_routine)(void))

int pthread_once(
pthread_once_t *once_block,
pthread_initroutine_t init_routine)

int pthread_setspecific(
pthread_key_t key, const void *value)

int pthread_setspecific(
pthread_key_t key,
pthread_addr_t value)

E.6 New Routines
The following are routines in the pthread interface that did not exist at the time
of the implementation of the d4 interface:

pthread_atfork() (Tru64 UNIX only)
pthread_attr_getscope()
pthread_attr_setscope()
pthread_key_delete()
pthread_kill() (Tru64 UNIX only)
All pthread_rwlockattr_ and pthread_rwlock_ routines
pthread_sigmask() (Tru64 UNIX only)
All _getpshared and _setpshared routines

E–4 Migrating from the d4 Interface

Glossary

actual granularity

Granularity for a program; limited by the granularities made available by
the processor, but determined by the code produced by the compiler. See also
granularity, natural granularity, and system granularity.

address exception

An exception whose identity is based on where in the program it was raised. See
also exception and status exception.

alert

See cancelation request.

alertable routine

See cancelable routine.

AST

Mechanism that signals an asynchronous event to a process.

asynchronous cancelability

If enabled, allows a thread to receive a cancelation request at any time (not only
at cancelation points). See also general cancelability.

asynchronous signal

Signal that is the result of an event that is external to the process and is
delivered at any point in a thread’s execution when such an event occurs. See
also synchronous signal.

attributes

Individual components of the attributes object. Attributes specify detailed
properties about the objects to be created. See also attributes object.

attributes object

Object used to describe Threads Library objects (thread, mutex, condition
variable, or queue). This description consists of the individual attribute values
that are used to create an object. See also attributes.

bugcheck

An error condition internal to the Threads Library run-time environment that
causes it to produce a specially formatted error message. Output of this message
can be controlled using the PTHREAD_CONFIG environment variable or logical
symbol.

Glossary–1

cancelability state

Attribute of a thread that determines whether it currently receives cancelation
requests.

cancelability type

Attribute of a thread that determines whether it responds to a cancelation
request at cancelation points (synchronous cancelation) or at any point in its
execution (asynchronous cancelation).

cancelation point

A routine that, when called, determines whether a cancelation request is pending
for this thread.

cancelation request

Mechanism by which one thread requests termination of another thread (or
itself).

condition variable

Object that allows a thread to block its own execution until some shared data
reaches a particular state.

condition variable attributes object

Object that allows you to specify values for condition variable attributes when
you create a condition variable.

contention scope

Attribute of a thread that specifies the set of threads with which it competes for
processing resources. See also process contention scope and system contention
scope.

deadlock

Condition involving one or more threads and a set of one or more resources in
which each of the threads is blocked waiting for one of the resources and all of
the resources are held by the threads such that none of the threads can continue.
For example, a thread will enter a self-deadlock when it attempts to lock a
normal mutex a second time. Likewise, two threads will enter a deadlock when
each attempts to lock a second mutex that is already held by the other. The
introduction of additional threads and synchronization objects allows for more
complex deadlock configurations.

dynamic memory

Memory that is allocated by the program as a result of a call to some memory
management function, and that is referenced through pointer variables. See also
static memory and stack memory.

epilogue code

Block of code, associated with a Threads Library exception scope, that finalizes
the context of an exception scope. Epilogue code is always executed, regardless of
whether the code in the associated exception scope raised an exception.

Glossary–2

errorcheck mutex

Mutex that can be locked exactly once by a thread, like a normal mutex. If a
thread tries to lock the mutex again without first unlocking it, the thread receives
an error instead of deadlocking. See also deadlock, mutex, normal mutex, and
recursive mutex.

exception

Object that describes an error condition.

exception scope

Block of code where exceptions are handled.

finalization code

See epilogue code.

general cancelability

If enabled, allows a thread to receive a cancelation request at specific cancelation
points. If disabled, the thread cannot be canceled. See also asynchronous
cancelability.

global lock

Single recursive mutex provided by the Threads Library for use by all threads
in a process when calling routines or code that is not thread-safe to ensure
serialized, exclusive access to the unsafe code.

granularity

Smallest unit of storage (that is, bytes, words, longwords, or quadwords) that
a computer can load or store in one machine instruction. See also actual
granularity, natural granularity, and system granularity.

guard area

Area at the overflow end of a thread’s writable stack and the stack overflow
warning area that is inaccessible to the thread. If the thread attempts to access
a memory location within the guard area, a memory addressing violation occurs.
See also overflow warning area.

guard pages

Low-level memory regions that form a stack guard region.

guardsize attribute

Attribute of a thread that specifies the minimum size (in bytes) of the guard area
for a thread’s stack.

handle

Storage, similar to a pointer, that refers to a specific Threads Library object.

inherit scheduling attribute

Attribute of a thread that specifies whether a newly created thread inherits the
scheduling attributes (scheduling priority, policy and contention scope) of the
creating thread or uses the scheduling attributes stored in the attributes object.
See also thread attributes object.

Glossary–3

kernel execution context

Entity managed by the operating system kernel that uses processing resources.
Also known as a kernel thread or virtual processor.

lifetime

Length of time memory is allocated for a particular purpose.

lock acquisition

Each instance of acquiring a mutex or read-write lock.

multithreaded programming

Division of a program into multiple threads that execute concurrently.

mutex

Mutual exclusion, an object that multiple threads use to ensure the integrity of a
shared resource that they access (most commonly shared data) by allowing only
one thread to access it at a time. See also normal mutex, errorcheck mutex, and
recursive mutex.

mutex attributes object

Object that allows you to specify values for mutex attributes when you create a
mutex.

mutex kind attribute

Mutex attribute that specifies whether its kind is normal, recursive, or
errorcheck.

natural granularity

Granularity of a processor; determined by the processor’s architecture, cache
architecture, and instruction set. See also actual granularity, granularity, and
system granularity.

nonterminating signal

Signal that does not result in the termination of the process by default. See also
terminating signal.

normal mutex

A kind of mutex that can be locked exactly once by a thread. It does not
perform error checks. If a thread tries to lock the mutex again without first
unlocking it, the thread waits for itself to release the lock and deadlocks. In the
Threads Library, this kind of mutex offers the best performance. See also mutex,
errorcheck mutex, and recursive mutex.

overflow warning area

Area between the overflow end of the thread’s writable stack and the stack guard
area. If the thread attempts to access a memory location within the overflow
warning area, a stack overflow exception occurs. The program can catch this
exception and continue processing. See also guard area.

per-thread context

See thread-specific data.

Glossary–4

predicate

Boolean expression that defines a particular state of shared data; threads wait on
a condition variable for shared data to enter the defined state. See also condition
variable.

priority inversion

Occurs when interaction among three or more threads blocks the highest-priority
thread from executing until after the lowest-priority thread can execute.

process contention scope

Setting for the contention scope attribute of a thread. Specifies that a thread
competes for processing resources only with other threads in the same process.
See also contention scope and system contention scope.

race condition

Occurs when two or more threads perform an operation, and the result of the
operation depends on unpredictable timing factors.

read-write lock

An object that serializes access, in a thread-safe manner, to a data object that is
shared among threads and that is frequently read but less frequently written.

recursive mutex

Mutex that can be locked more than once by a given thread without causing
a deadlock. The thread must call the pthread_mutex_unlock() routine the
same number of times that it called the pthread_mutex_lock() routine before
another thread can lock the mutex. See also deadlock, mutex, normal mutex, and
errorcheck mutex.

reentrant

Refers to a routine that functions normally despite being called simultaneously or
sequentially in different threads.

scheduling policy attribute

Attribute of a thread that describes how the thread is scheduled for execution
relative to the other threads in the program. See also thread attributes object.

scheduling precedence

The set of characteristics of threads and the Threads Library scheduling
algorithm that, in combination, determine which thread will be allowed to run
when a scheduling decision is made. Scheduling decisions are made either when
a thread becomes ready to run (for example, when a mutex on which it was
waiting is unlocked, or a condition variable on which it was waiting is signaled or
broadcast), or when a thread is blocked (for example, when it attempts to lock a
locked mutex or when it waits on a condition variable).

scheduling priority attribute

Attribute of a thread that specifies the execution priority of a thread, expressed
relative to other threads in the same policy. See also thread attributes object.

scope

Areas of a program where code can access memory.

Glossary–5

software interrupt handler

A routine that is executed in response to an interrupt generated by the operating
system or equivalent support software. For example, an AST service routine
handles interrupts on OpenVMS systems; a signal handler routine handles
interrupts on Tru64 UNIX systems.

stack memory

Memory that is allocated from a thread’s stack area at run time by code
generated by the language compiler, generally when a routine is initially called.
See also dynamic memory and static memory.

stacksize attribute

Attribute of a thread that specifies the minimum size (in bytes) of the memory
required for its stack.

start routine

Routine in your program where a newly created thread begins executing.

static memory

Any variable that is permanently allocated at a particular address for the life of
the program. See also dynamic memory and stack memory.

status exception

An exception whose identity is based on the status value it contains. See also
exception and address exception.

synchronous signal

Signal that is the result of an event that occurs inside a process and is delivered
synchronously with respect to that event. See also asynchronous signal.

system contention scope

Setting for the contention scope attribute of a thread. Specifies that a thread
competes for processing resources with all other threads in the system. See also
contention scope and process contention scope.

system granularity

Granularity provided by an operating system’s run-time libraries, to provide a
consistent and coherent environment for applications. See also actual granularity,
granularity, and natural granularity.

terminating signal

Signal that results in the termination of the process by default. See also
nonterminating signal.

thread

Single, sequential flow of control within a program. Within a single thread, there
is a single point of execution.

thread attributes object

Object that allows you to specify values for thread attributes when you create a
thread.

Glossary–6

thread object

Data structure that describes a thread.

thread-safe

Refers to a routine that can be called simultaneously from multiple threads
without risk of corruption. Refers to a library that typically consists of routines
that do not themselves create or use threads but which can be called safely from
applications that use threads.

thread-independent services

Routines in the Threads Library tis interface that support building thread-safe
libraries.

thread-specific data

User-specified fields of arbitrary data that can be added to a thread’s context.

time slicing

Mechanism that ensures that every thread is allowed time to execute by
preempting running threads at fixed intervals.

tis condition variable

Condition variable object that can be created using the Threads Library tis
interface routines.

tis mutex

Mutex object that can be created using the Threads Library tis interface routines.

two-level scheduling

Thread scheduling model that schedules user threads onto kernel execution
contexts, just as the operating system schedules processes onto the processors of
a multiprocessor machine.

upcall

Technique for the operating system kernel to inform the Threads Library that a
kernel execution context is available. When a kernel execution context becomes
available, the Threads Library scheduler schedules the thread with highest
scheduling precedence that is ready to run onto the available kernel execution
context.

word tearing

Form of race condition in a multithreaded program where two or more threads
independently read the same granule of memory, update different portions of
that granule, then independently (that is, asynchronously) store their respective
copies of that granule. Can occur due to programmer’s inattention to granularity
considerations.

Glossary–7

Index

A
Address exceptions, 5–7
Addressing, 64-bit, B–5
API

See Application Programming Interface (API)
Application programming interface (API)

POSIX Threads error conditions from, 3–17
ASTs (asynchronous system traps)

POSIX Threads’ delivery of, B–10
restrictions on use with POSIX Threads, B–2

Asynchronous programming techniques, in a
multithreaded program, A–7

Asynchronous thread cancelation, 2–15
cleanup from, 2–17

Asynchronous user interface example program,
6–8

Attributes
of condition variables, 2–27
of mutexes, 2–22

mutex type, 2–22
of threads, 2–3

contention scope, 2–7
guardsize, 2–7
inherit scheduling, 2–3
scheduling policy, 2–3
scheduling priority, 2–5
stack address, 2–6
stack size, 2–6

Attributes objects, 2–1
creating, 2–1
destroying, 2–2

B
Background scheduling policy, 2–3
Boss/worker functional model, 1–4

work queue variation, 1–4
Bugchecks, 3–18

configuring output, 3–18
contents of dump file, 3–18
interpreting output, 3–18

C
Cancelability state, 2–15
Cancelability state attribute

of thread attributes object, 2–15
setting, pthread–174, tis–40

Cancelability type, 2–15
Cancelability type attribute

of thread attributes object, 2–15
setting, pthread–176

Cancelation points
in multithreaded code, 2–16
POSIX Threads routines that provide, 2–16,

4–2
system service routines that provide

under OpenVMS Alpha, B–5
under Tru64 UNIX, A–5

Cancelation requests
delivering, pthread–50, pthread–189, tis–45
sending, pthread–50

CATCH macro, 5–10
CATCH_ALL macro, 5–11
Cleanup handlers, 2–11

executing, pthread–52
registering, pthread–54

cma interface
See Compaq-proprietary CMA (cma) interface

CMA interface, D–1
Compaq proprietary CMA (cma) interface, 1–19,

D–1
Compiling applications

under OpenVMS, B–1
under Tru64 UNIX, A–1

Concurrency level
of threads

obtaining, pthread–99
setting, pthread–178

Condition handlers (OpenVMS), declaring, B–4
Condition values (OpenVMS), used by POSIX

Threads, B–5
Condition variable attributes objects, 2–1, 2–27

creating, pthread–59
destroying, pthread–56
initializing, pthread–59
obtaining process-shared attribute value,

pthread–57

Index–1

Condition variable attributes objects (cont’d)
setting process-shared attribute value,

pthread–61
Condition variables, 2–23

creating, pthread–69, tis–6
destroying, pthread–65, tis–4
distinguishing from mutexes, 3–7
initializing, pthread–69, tis–6
naming, pthread–67, pthread–71
process-shared, 2–29
signaling, 2–23, 3–9
under the thread-independent services (tis)

interface, 4–3
using in thread-safe library code, 4–3
waiting a specified time interval for, 2–27,

pthread–79, tis–9
waiting indefinitely for, 2–23, pthread–81,

tis–11
wakeups for waiting threads, pthread–63,

pthread–73, pthread–75, tis–3, tis–8
spurious, 2–23

Contention scope, 2–7
interaction with thread scheduling attributes,

3–7
Contention scope attribute

of thread attributes object, 2–7
obtaining, pthread–19
setting, pthread–42

D
d4 interface

See POSIX 1003.4a/Draft 4 (d4) interface
Data

See Thread-specific data
Deadlocks, 1–6, 3–8

avoiding, 3–8
Debugging, tools for POSIX Threads applications,

C–1
Debugging tools

metered mode, C–2
under OpenVMS, C–3
under Tru64 UNIX, C–2
Visual Threads, C–2

Default mutexes, 2–21
Deferred thread cancelation, cleanup from, 2–16
Detachstate attribute

of thread attributes object
obtaining, pthread–7
setting, pthread–29

Dynamic activation
of POSIX Threads

under OpenVMS, B–3
under Tru64 UNIX, A–9

Dynamic memory, 3–4
Dynamic memory, using from threads, 3–4

E
errno variable, pthread–1, tis–1
Errorcheck mutexes, 2–21
Error conditions

detecting, 3–17
from POSIX Threads application programming

interface, 3–17
internal to POSIX Threads, 3–17

Event flags (OpenVMS), B–12
Example programs

asynchronous user interface, 6–8
prime number search, 6–1

Exceptions
address, 5–7
cancelation of threads, 2–15
catching

all, 5–11
specific, 5–10

CATCH macro, 5–10
CATCH_ALL macro, 5–11
debugging when unhandled (OpenVMS), C–3
epilogue actions for, 5–12
exceptions package, 5–1
failing

due to condition handlers, B–4
FINALLY macro, 5–12, 5–16
importing error status into, pthread–95
interoperability of, 5–21
language-specific, 5–21
matching two, 5–15, pthread–93
naming conventions for, 5–16
obtaining error status from, 5–14, pthread–91
operations on, 5–13
POSIX Threads-defined objects, 5–20
POSIX Threads exceptions package, 1–8
programming for, 5–2
programming languages supported for, 5–1
pthread_exc_get_status_np() routine, 5–14,

pthread–91
pthread_exc_matches_np() routine, 5–15,

pthread–93
pthread_exc_report_np() routine, 5–15,

pthread–94
pthread_exc_set_status_np() routine, 5–14,

pthread–95
purpose of, 5–2
RAISE macro, 5–9
raising, 5–9
referencing when caught, 5–13
relation to return codes and signals, 5–1
reporting, pthread–94
reporting when caught, 5–15
RERAISE macro, 5–12, 5–20
reraising, 5–12
scope of, 5–8
setting error status in, 5–14

Index–2

Exceptions (cont’d)
status, 5–7
synchronous signals reported as, A–8
termination of, 5–7
THIS_CATCH exception object, 5–13
TRY macro, 5–8
unhandled, C–3
using, 5–16

Exception scopes, 5–8
Expiration time, obtaining, pthread–106, tis–14

F
FINALLY macro, 5–12, 5–16
First-in/first-out (FIFO) scheduling policy, 2–3
Foreground scheduling policy, 2–3
Fork handlers (Tru64 UNIX), pthread–3
Functional models

for multithreaded programming, 1–4
boss/worker, 1–4
combinations, 1–5
pipelining, 1–5
work crew, 1–4

G
$GETJPI system service (OpenVMS)

MULTITHREAD item code, B–9
Global lock

See POSIX Threads, global lock
Granularity

avoiding errors, 3–13
compiler support for, 3–12
defined, 3–10
determinants of, 3–11
members of composite data objects, 3–13
word tearing, 3–12

Guardsize attribute
of thread attributes object, 2–7, 3–5

obtaining, pthread–9
setting, pthread–31

H
Handlers

cleanup, 2–11
condition (OpenVMS), B–4
fork (Tru64 UNIX), pthread–3
interrupt, pthread–75, pthread–77

$HIBER system service (OpenVMS), B–11

I
I/O completion, tis–16, tis–44
Images (OpenVMS)

compiling for POSIX Threads, B–1
linking POSIX Threads-based, B–1

Inherit scheduling attribute
of thread attributes object, 2–3

obtaining, pthread–11
setting, pthread–33

Interfaces
to POSIX Threads, 1–6

Compaq proprietary CMA (cma), 1–19,
D–1

in C language, 1–7
in languages other than C, 1–7
obsolete, 1–19
POSIX.1 (pthread), 1–7
POSIX 1003.4a/Draft 4 (d4), 1–19, E–1
thread-independent services (tis), 1–16,

4–1, tis–1
undocumented but supported, 1–19

Interrupt handlers, for threads, pthread–75,
pthread–77

K
Kernel threads

enabling in existing OpenVMS images, B–8
OpenVMS linker options, B–7
querying use of (OpenVMS), B–9
relation to user threads

under OpenVMS, B–6
under Tru64 UNIX, A–3

virtual processors for (OpenVMS), B–9

L
Ladebug debugger (Tru64 UNIX), C–2
Libraries

for POSIX Threads, 1–6
lacking thread safety, 1–6, 3–16
shared (Tru64 UNIX)

linking with POSIX Threads, A–2
using with POSIX Threads, A–1

thread-safe, 3–16, 4–1
Linking applications

under OpenVMS, B–1
Linking applications, under Tru64 UNIX, A–2
Lock acquisition, 2–1
Locks

global
See POSIX Threads, global lock

read-write, 4–3

M
Macros

CATCH, 5–10
CATCH_ALL, 5–11
FINALLY, 5–12, 5–16
PTHREAD_COND_INITIALIZER, 4–3,

pthread–69
PTHREAD_COND_INITWITHNAME_NP, 4–3

Index–3

Macros (cont’d)
PTHREAD_MUTEX_INITIALIZER, 4–2,

pthread–137
PTHREAD_MUTEX_INITWITHNAME, 4–2
PTHREAD_ONCE_INIT, pthread–148
RAISE macro, 5–9
RERAISE, 5–12, 5–20
TRY, 5–8

restrictions, B–4
Memory

dynamic, 3–4
sharing, 3–3
stack, 3–4

identifying overflow, 2–7
static, 3–4
synchronizing threads’ access to, 3–3

Multiprocessing systems, 1–1
Multithreaded programming

asynchronous programming techniques, A–7
asynchronous thread execution, 3–1
cancelation point routines, 4–2
cancelation points, 2–16
dependencies upon other libraries, 3–15

multiple thread libraries unsupported,
3–17

not thread-safe, 3–16
reentrant, 3–16
thread-safe, 3–16

detecting error conditions, 3–17
example programs

asynchronous user interface, 6–8
prime number search, 6–1
thread cancelation, 2–18

functional models, 1–4
boss/worker, 1–4
combinations, 1–5
pipelining, 1–5
work crew, 1–4

managing a thread’s stack, 3–5
one-time initialization, 3–15, pthread–147,

tis–29
potential issues, 1–6

deadlocks, 1–6
dependence upon nonreentrant software,

1–6, 3–16
priority inversion, 1–6
program complexity, 1–6
race conditions, 1–6

programming errors
initializing objects after thread creation,

3–2
passing stack local data, 3–2
thread scheduling as thread

synchronization, 3–2
scheduling threads, 3–6

interaction with thread contention scope,
3–7

priority inversion, 3–7

Multithreaded programming
scheduling threads (cont’d)

real-time, 3–6
sharing memory, 3–3
signals (Tru64 UNIX)

avoiding use of, A–7
synchronizing memory access, 3–3, 3–7

avoiding deadlocks, 3–8
avoiding race conditions, 3–8
distinguishing mutexes and condition

variables, 3–7
signaling a condition variable, 3–9

using memory
dynamic, 3–4
stack, 3–4
static, 3–4

writing thread-safe libraries, 4–1
yielding thread execution, pthread–192,

pthread–196, tis–51
Mutex attributes objects, 2–1, 2–22

creating, pthread–127
destroying, pthread–122
initializing, pthread–127
mutex type attribute, 2–22

obtaining, pthread–125
setting, pthread–131

obtaining the value of the process-shared
attribute, pthread–123

setting the value of the process-shared
attribute, pthread–129

Mutexes, 2–20
creating, pthread–137, tis–24
destroying, pthread–133, tis–22
distinguishing from condition variables, 3–7
initializing, pthread–137, tis–24
in thread-safe library code, 4–2
locking, pthread–139, pthread–143, tis–26,

tis–27
locking, before signaling a condition variable,

3–9
naming, pthread–135, pthread–141
operations on, 2–22
POSIX Threads global

locking, pthread–120, tis–21
unlocking, pthread–190, tis–46

process-shared, 2–29
protecting call to code lacking thread safety,

3–17
types of

default, 2–21
errorcheck, 2–21
normal, 2–20
recursive, 2–21

under the thread-independent services (tis)
interface, 4–2

unlocking, pthread–145, tis–28
using static data before release of, 3–17

Index–4

Mutex type attribute
of mutex attributes object, 2–22

N
Naming conventions, for exception objects, 5–16
Normal mutexes, 2–20

O
Object names

obtaining, pthread–13, pthread–67,
pthread–100, pthread–114, pthread–135

setting, pthread–35, pthread–71, pthread–116,
pthread–141, pthread–180

One-time initialization of threads, 3–15
OpenVMS operating system

64-bit addressing, B–5
condition values used by POSIX Threads, B–5
DCL command operation with POSIX Threads,

B–14
debugging POSIX Threads applications, C–3
interactions with POSIX Threads, B–12
linker options for kernel threads, B–7
linking POSIX Threads-based images, B–1
system services

blocking, B–11
using POSIX Threads with, B–1

P
Pagefaults of POSIX Threads, under Tr64 UNIX,

A–9
PAGESIZE environment variable (Tru64 UNIX)

relation to size of thread stack guard region,
A–8

Pipelining functional model, 1–5
POSIX.1 (pthread) interface, 1–7, pthread–1

optionally implemented routines, 1–16
summary of routines, 1–7

POSIX.1003.4a/Draft 4 (d4) interface, pthread–1
POSIX.1003.4a/Draft 4 document, pthread–1
POSIX.1 standard, 1–7, pthread–1

optionally implemented routines, 1–16
POSIX 1003.1-1996 standard

See POSIX.1 standard
POSIX 1003.4a/Draft 4 (d4) interface, 1–19, E–1
POSIX for OpenVMS layered product

interoperability with POSIX Threads, B–14
POSIX Threads

64-bit addressing, B–5
blocking OpenVMS system services, B–11
bugcheck feature

See Bugchecks
cancelability of system services, A–4, B–5
compiling applications

under OpenVMS, B–1
under Tru64 UNIX, A–1

POSIX Threads (cont’d)
condition values used, B–5
debugging applications, C–1
declaring OpenVMS condition handlers, B–4
delivery of OpenVMS ASTs, B–10
dynamic activation

under OpenVMS, B–3
under Tru64 UNIX, A–9

effects of OpenVMS DCL commands, B–14
error conditions

application programming interface level,
3–17

internal, 3–17
exiting from OpenVMS images, B–13
global lock

avoiding software that lacks thread safety,
3–17

using from the tis interface, 4–2
header files

under OpenVMS, B–1
under Tru64 UNIX, A–1

interactions with OpenVMS, B–12
interfaces, 1–6

Compaq proprietary CMA (cma), 1–19
in C language, 1–7
in languages other than C, 1–7
obsolete, 1–19
POSIX.1 (pthread), 1–7
POSIX 1003.4a/Draft 4 (d4), 1–19
thread-independent services (tis), 1–16
undocumented but supported, 1–19

interoperability
with errno variable, pthread–1, tis–1
with POSIX for OpenVMS layered product,

B–14
with signals (Tru64 UNIX), A–7

libraries, 1–6
linking applications

under Tru64 UNIX, A–2
linking with shared libraries (Tru64 UNIX),

A–2
pagefaults, under Tru64 UNIX, A–9
platform dependencies

for OpenVMS, B–1
for Tru64 UNIX, A–1

POSIX.1 (pthread) interface, pthread–1
POSIX.1003.4a/Draft 4 (d4) interface,

pthread–1
realtime scheduling, A–3
realtime scheduling, under Tru64 UNIX, A–9
thread-independent services (tis) interface,

1–16, 4–1, tis–1
two-level scheduling

under OpenVMS Alpha, B–6
under Tru64 UNIX, A–2

use of kernel threads
under OpenVMS Alpha, B–6
under Tru64 UNIX, A–3

Index–5

POSIX Threads (cont’d)
virtual processors (OpenVMS), B–9

POSIX Threads exceptions package, 1–8
POSIX Threads global mutex

locking, pthread–120, tis–21
unlocking, pthread–190, tis–46

Prime number search example program, 6–1
Priority inversion, 1–6, 3–7

avoiding, 3–7
Process contention scope, 2–7, A–4
Processes

child
creating, pthread–3

Processors
causing thread to release control of,

pthread–192, tis–51
Process-shared synchronization objects, 2–28

programming considerations, 2–29
pthread.h header file, 1–7, A–1, B–1
pthread interface

See POSIX.1 (pthread) interface
pthread_atfork() routine, pthread–3
pthread_attr_destroy() routine, pthread–6

using, 2–2
pthread_attr_getdetachstate() routine, pthread–7
pthread_attr_getguardsize() routine, pthread–9

using, 2–7
pthread_attr_getinheritsched() routine,

pthread–11
pthread_attr_getname_np() routine, pthread–13
pthread_attr_getschedparam() routine,

pthread–15
pthread_attr_getschedpolicy() routine, pthread–17
pthread_attr_getscope() routine, pthread–19

using, 2–8
pthread_attr_getstackaddr() routine, pthread–21

using, 2–6
pthread_attr_getstackaddr_np() routine,

pthread–23
pthread_attr_getstacksize() routine, pthread–25
pthread_attr_init() routine, pthread–27

using, 2–1
pthread_attr_setdetachstate() routine,

pthread–29
using, 2–2

pthread_attr_setguardsize() routine, pthread–31
using, 2–7

pthread_attr_setinheritsched() routine,
pthread–33

using, 2–3
pthread_attr_setname_np() routine, pthread–35
pthread_attr_setschedparam() routine,

pthread–37
using, 2–6

pthread_attr_setschedpolicy() routine, pthread–40
using, 2–4

pthread_attr_setscope() routine, pthread–42
using, 2–8

pthread_attr_setstackaddr() routine, pthread–44
using, 2–6

pthread_attr_setstackaddr_np() routine,
pthread–46

pthread_attr_setstacksize() routine, pthread–48
using, 2–6, 3–6

pthread_cancel() routine, pthread–50
using, 2–9, 2–14

PTHREAD_CANCELED return value, 2–15
pthread_cleanup_pop() routine, pthread–52

using, 2–9, 2–11, 2–16
pthread_cleanup_push() routine, pthread–54

using, 2–9, 2–11, 2–15, 2–16
pthread_condattr_destroy() routine, pthread–56

using, 2–2
pthread_condattr_init() routine, pthread–59

using, 2–1
pthread_cond_broadcast() routine, pthread–63

using, 2–26, 3–3
pthread_cond_destroy() routine, pthread–65

using, 2–27
pthread_cond_getname_np() routine, pthread–67
pthread_cond_init() routine, pthread–69

using, 2–26
PTHREAD_COND_INITIALIZER macro, 4–3,

pthread–69
PTHREAD_COND_INITWITHNAME_NP macro,

4–3
pthread_cond_setname_np() routine, pthread–71
pthread_cond_signal() routine, pthread–73

using, 2–24, 2–26, 3–3
pthread_cond_signal_int_np() routine, pthread–75

using, 2–26, 2–27, 3–18
pthread_cond_sig_preempt_int_np() routine,

pthread–77
using, 2–26

pthread_cond_timedwait() routine, pthread–79
using, 2–21, 2–27, 3–3

pthread_cond_wait() routine, pthread–81
using, 2–21, 2–24, 2–26, 3–3

PTHREAD_CONFIG, C–1
configuring bugcheck output, 3–18
major and minor keyword settings, C–1
specifying multiple values, C–1

pthread_create() routine, pthread–83
using, 2–2, 3–3

pthread_delay_np() routine, pthread–87
pthread_detach() routine, pthread–88

using, 2–11
pthread_equal() routine, pthread–90
pthread_exceptions.h header file, 1–8
pthread_exc_get_status_np() routine, pthread–91

using, 5–14
pthread_exc_matches_np() routine, pthread–93

using, 5–15

Index–6

pthread_exc_report_np() routine, pthread–94
using, 5–15

pthread_exc_set_status_np() routine, pthread–95
using, 5–14

pthread_exit() routine, pthread–97
using, 2–9, 2–10

pthread_getconcurrency() routine, pthread–99
pthread_getname_np() routine, pthread–100
pthread_getschedparam() routine, pthread–102
pthread_getsequence_np() routine, pthread–104
pthread_getspecific() routine, pthread–105

using, 2–30
pthread_get_expiration_np() routine, pthread–106
pthread_join() routine, pthread–108

using, 2–12, 3–3
pthread_key_create() routine, pthread–110

using, 2–30
pthread_key_delete() routine, pthread–112
pthread_key_getname_np() routine, pthread–114
pthread_key_setname_np() routine, pthread–116
pthread_kill() routine, pthread–118
pthread_lock_global_np() routine, pthread–120

using, 3–17
pthread_mutexattr_destroy() routine,

pthread–122
using, 2–2

pthread_mutexattr_gettype() routine,
pthread–125

using, 2–22
pthread_mutexattr_init() routine, pthread–127

using, 2–1
pthread_mutexattr_settype() routine,

pthread–131
using, 2–22

pthread_mutex_destroy() routine, pthread–133
using, 2–22

pthread_mutex_getname_np() routine,
pthread–135

pthread_mutex_init() routine, pthread–137
using, 2–20

PTHREAD_MUTEX_INITIALIZER macro, 4–2,
pthread–137

PTHREAD_MUTEX_INITWITHNAME macro,
4–2

pthread_mutex_lock() routine, pthread–139
using, 2–21, 2–22, 3–3

pthread_mutex_setname_np() routine,
pthread–141

pthread_mutex_trylock() routine, pthread–143
using, 2–22, 3–3

pthread_mutex_unlock() routine, pthread–145
using, 2–21, 2–22, 3–3

pthread_once() routine, pthread–147
using, 3–2, 3–15

PTHREAD_ONCE_INIT macro, pthread–148

pthread_once_t data structure, pthread–147,
tis–29

pthread_rwlockattr_destroy() routine
using, 2–2

pthread_rwlockattr_init() routine
using, 2–1

pthread_self() routine, pthread–173
pthread_setcancelstate() routine, pthread–174

using, 2–15
pthread_setcanceltype() routine, pthread–176

using, 2–15
pthread_setconcurrency() routine, pthread–178
pthread_setname_np() routine, pthread–180
pthread_setschedparam() routine, pthread–182

using, 2–4, 2–6
pthread_setspecific() routine, pthread–185

using, 2–30
pthread_sigmask() routine, pthread–187
pthread_testcancel() routine, pthread–189

using, 2–15
pthread_unlock_global_np() routine, pthread–190

using, 3–17
pthread_yield_np() routine, pthread–192

R
Race conditions, 1–6

avoiding, 3–8
word tearing, 3–12

RAISE macro, 5–9
Read-write lock attributes objects

creating, pthread–152
destroying, pthread–149
get process-shared attribute value,

pthread–150
initializing, pthread–152
set process-shared attribute value,

pthread–153
Read-write locks, 2–27, 4–3

attributes, 2–28
changing object name in, pthread–163
creating, pthread–159, tis–37
destroying, 2–28, pthread–155, tis–35
initializing, 2–28, pthread–159, tis–37
locking

for read access, pthread–161, tis–31, tis–32
without waiting, pthread–165

for write access, pthread–171, tis–47,
tis–48
without waiting, pthread–167

obtaining object name, pthread–157
process-shared, 2–29
thread priority, 2–28
under the thread-independent services (tis)

interface, 4–3
unlocking, pthread–169

for read access, tis–34
for write access, tis–50

Index–7

Read-write locks (cont’d)
using in thread-safe library code, 4–3
writer precedence, 2–28

Realtime scheduling
of POSIX Threads

under Tru64 UNIX, A–9
Recursive mutexes, 2–21
Reentrant code, 3–16

required for multithreaded programming, 1–6
required for thread-safe code, 4–1

RERAISE macro, 5–12, 5–20
Round-robin (RR) scheduling policy, 2–3

S
Scheduling parameters

of threads
obtaining, pthread–102
setting, pthread–182

Scheduling parameters attribute
of thread attributes object

obtaining, pthread–15
setting, pthread–37

Scheduling policy attribute
of thread attributes object, 2–3

obtaining, pthread–17
setting, pthread–40

Scheduling priority attribute, of thread attributes
object, 2–5

sched_get_priority_max() routine, pthread–194
sched_get_priority_min() routine, pthread–195
sched_yield() routine, pthread–196
Sequence numbers

See Thread sequence numbers
Sharing memory, between threads, 3–3
Signal masks (Tru64 UNIX)

See Thread signal masks
Signals (Tru64 UNIX)

per-thread usage, A–7
synchronous

reported as exceptions, A–8
sigwait() routine, pthread–197, A–7
Spurious wakeups, 2–23
Stack address attribute

of thread attributes object, 2–6
obtaining, pthread–21, pthread–23
setting, pthread–44, pthread–46

Stack memory, using from threads, 3–4
Stacks, of threads

See Thread stacks
Stacksize attribute

of thread attributes object, 2–6
obtaining, pthread–25
setting, pthread–48

Static memory, 3–4
using before release of mutex, 3–17
using from threads, 3–4

Status exceptions, 5–7
$SYNC, tis–44
Synchronization objects

condition variables, 2–23
mutexes, 2–20
read-write locks, 2–27
stack-based

static initialization inappropriate for, 3–10
Synchronizing I/O completion, tis–16, tis–44
Synchronous thread cancelation, 2–15
SYSGEN (OpenVMS)

MULTITHREAD parameter, B–13
System contention scope, 2–7, A–4
System services, cancelability from POSIX

Threads, A–4, B–5

T
THIS_CATCH exception object, 5–13
Thread attributes objects, 2–1

cancelability state attribute, 2–15
setting, pthread–174, tis–40

cancelability type attribute, 2–15
setting, pthread–176

contention scope attribute, 2–7, pthread–19,
pthread–42

creating, pthread–27
destroying, pthread–6
detachstate attribute, pthread–7, pthread–29
guardsize attribute, 2–7, 3–5, pthread–9,

pthread–31
inherit scheduling attribute, 2–3, pthread–11,

pthread–33
initializing, pthread–27
naming, pthread–13, pthread–35
scheduling parameters, pthread–15,

pthread–37
scheduling policy attribute, 2–3, pthread–17,

pthread–40
scheduling priority attribute, 2–5
setting attributes in, 2–3
stack address attribute, 2–6, pthread–21,

pthread–23, pthread–44, pthread–46
stacksize attribute, 2–6, pthread–25,

pthread–48
THREADCP tool (OpenVMS), B–8
Thread-independent services (tis) interface, 1–16,

tis–1
condition variables, 4–3
features of, 4–1
mutexes, 4–2
performance of routines, 4–2
read-write locks, 4–3
run-time linkages to routines, 4–2
summary of routines, 1–17
thread-specific data, 4–3

Index–8

Thread objects, naming, pthread–100,
pthread–180

Thread-reentrant code
See Reentrant code

Threads
See also Multithreaded programming
advantages of, 1–1
attributes of, 2–3
avoiding nonreentrant routines, 1–6
cancelability state, 2–15
cancelability type, 2–15
canceling, 2–14, pthread–50

asynchronously, 2–15
code example, 2–18
control of, 2–15
delivery of cancelation request,

pthread–189
exception-based implementation, 2–15
PTHREAD_CANCELED return value,

2–15
synchronously, 2–15
whether enabled, 2–15

changes of state, 1–3
cleanup

from asynchronous cancelation, 2–17
from deferred cancelation, 2–16

cleanup handlers, 2–11, pthread–52,
pthread–54

concurrency level, pthread–99, pthread–178
contention scope, 2–7
context-switching

in user mode, 3–1
creating, 2–2, pthread–83
deadlocks among, 1–6
delaying execution of, pthread–87
delivering cancelation requests, tis–45
destroying, 2–11, pthread–88
detaching, 2–11, pthread–88
executing, 1–3
granularity considerations, 3–10
identifiers

comparing, pthread–90
obtaining, pthread–173, tis–39

joining with another thread, 2–12, pthread–108
locking mutexes, pthread–143, tis–27
one-time initialization of, 3–15, pthread–147,

tis–29
on multiprocessor systems, 1–1
overview of, 1–2
priority inversion among, 1–6
process contention scope, A–4
race conditions among, 1–6
reentrant code for, 1–6
releasing processor, pthread–192, tis–51
scheduling, 2–12

alternative policies, 2–3
alternative priorities, 2–5
calculating priority, 2–13

Threads
scheduling (cont’d)

effects of scheduling policy, 2–13
inheriting attributes, 2–3
issues, 3–6
realtime (Tru64 UNIX), A–3

scheduling parameters
obtaining, pthread–102
setting, pthread–182

sending signals to, pthread–118
sequence numbers

obtaining, pthread–104
sharing memory, 3–3
signal masks for (Tru64 UNIX)

obtaining, pthread–187
setting, pthread–187

synchronizing memory access, 3–3
system contention scope, A–4
terminating, 2–9

due to error, pthread–83
normally, pthread–83
series of actions, 2–9, pthread–85
via pthread_exit() routine, pthread–97

thread-specific data, 2–30
time slicing, 2–4
unlocking mutexes, pthread–145, tis–28
unlocking POSIX Threads global mutex,

pthread–190
unlocking the POSIX Threads global mutex,

tis–46
using a stack guard area, 2–7
using a stack overflow warning area, 2–7
using dynamic memory, 3–4
using stack memory, 3–4
using static memory, 3–4
waiting for another thread to terminate, 2–12,

pthread–108
waiting on mutexes, pthread–139
wakeups for

broadcasting, pthread–63, tis–3
signaling, pthread–73, pthread–75,

pthread–77, tis–8
yielding processor to another thread,

pthread–192, tis–51
yielding to another thread, pthread–196

Thread-safe code, 3–16
in libraries, 4–1
requires reentrant compilation, 4–1
using condition variables, 4–3
using mutexes, 4–2
using read-write locks, 4–3
using thread-specific data, 4–3

Thread sequence numbers, obtaining,
pthread–104

Thread signal masks (Tru64 UNIX)
obtaining, pthread–187
setting, pthread–187

Index–9

Thread-specific data, 2–30
keys

creating, pthread–110, tis–17
destroying, pthread–112, tis–19
naming, pthread–114, pthread–116
obtaining, pthread–105, tis–13
setting, pthread–185, tis–42

under the thread-independent services (tis)
interface, 4–3

using in thread-safe library code, 4–3
Thread stacks, 3–4

default size of
under OpenVMS, B–3

diagnosing overflow, 3–6
identifying overflow of, 2–7, 3–5
incremental allocation

under Tru64 UNIX, A–8
managing, 3–5
minimum size of

under OpenVMS, B–3
setting the origin address, 2–6
size of

determining, 3–5
requesting absolute, B–4

tracing, C–3
using a stack guard area, 2–7, 3–5

under Tru64 UNIX, A–8
using a stack overflow warning area, 2–7, 3–5

Throughput scheduling policy, 2–3
Time, expiration, obtaining, pthread–106, tis–14
Time slicing, of threads, 2–4
tis interface

See Thread-independent services (tis) interface
tis_cond_broadcast() routine, tis–3
tis_cond_destroy() routine, tis–4
tis_cond_init() routine, tis–6
tis_cond_signal() routine, tis–8
tis_cond_timedwait() routine, tis–9
tis_cond_wait() routine, tis–11

using, 4–2
tis_getspecific() routine, tis–13
tis_get_expiration() routine, tis–14
tis_io_complete() routine, tis–16
tis_key_create() routine, tis–17
tis_key_delete() routine, tis–19
tis_lock_global() routine, tis–21

using, 4–2
tis_mutex_destroy() routine, tis–22
tis_mutex_init() routine, tis–24

using, 4–2
tis_mutex_lock() routine, tis–26
tis_mutex_trylock() routine, tis–27
tis_mutex_unlock() routine, tis–28
tis_once() routine, tis–29
tis_read_lock() routine, tis–31

using, 4–4

tis_read_trylock() routine, tis–32
using, 4–4

tis_read_unlock() routine, tis–34
tis_rwlock_destroy() routine, tis–35

using, 4–4
tis_rwlock_init() routine, tis–37

using, 4–4
tis_self() routine, tis–39
tis_setcancelstate() routine, tis–40
tis_setspecific() routine, tis–42
tis_sync() routine, tis–44
tis_testcancel() routine, tis–45

using, 4–2
tis_unlock_global() routine, tis–46

using, 4–2
tis_write_lock() routine, tis–47

using, 4–4
tis_write_trylock() routine, tis–48

using, 4–4
tis_write_unlock() routine, tis–50
tis_yield() routine, tis–51
Tru64 UNIX operating system, using POSIX

Threads with, A–1
TRY macro, 5–8

restrictions, B–4
Two-level scheduling

under OpenVMS Alpha, B–6
under Tru64 UNIX, A–2

U
Upcalls

under OpenVMS, B–7
due to $HIBER and $WAKE system

services, B–11
under Tru64 UNIX, A–3

User threads, A–3
relation to kernel threads

under OpenVMS, B–6, B–9
under Tru64 UNIX, A–3

V
Virtual processors (OpenVMS), for kernel threads,

B–9
Visual Threads, C–2

W
$WAKE system service (OpenVMS), B–11
Wakeups

for threads
broadcasting, pthread–63, tis–3
signaling, pthread–73, pthread–75,

pthread–77, tis–8
spurious, 2–23

Index–10

Word tearing, 3–12
identifying scenarios, 3–13, 3–15

Work crew functional model, 1–4
Work queues, variation of boss/worker functional

model, 1–4

Y
Yielding to another thread, pthread–192, tis–51

Index–11

	Guide to the POSIX Threads Library
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	Conventions

	Part I Compaq POSIX Threads Library Overview and Programming Guidelines
	1 Introducing Multithreaded Programming
	1.1 Advantages of Using Threads
	1.2 Overview of Threads
	1.3 Thread Execution
	1.4 Functional Models for Multithreaded Programming
	1.4.1 Boss/Worker Model
	1.4.2 Work Crew Model
	1.4.3 Pipelining Model
	1.4.4 Combination of Functional Models

	1.5 Programming Issues for Multithreaded Programs
	1.6 POSIX Threads Libraries and Interfaces
	1.6.1 The pthread Multithreading Interface
	1.6.2 Thread-Independent Services Interface
	1.6.3 Undocumented and Obsolete Interfaces

	2 Objects and Operations
	2.1 Threads and Synchronization Objects
	2.2 Attributes Objects
	2.3 Thread Operations
	2.3.1 Creating a Thread
	2.3.2 Setting the Attributes of a New Thread
	2.3.3 Terminating a Thread
	2.3.4 Detaching and Destroying a Thread
	2.3.5 Joining With a Thread
	2.3.6 Scheduling a Thread
	2.3.7 Canceling a Thread

	2.4 Synchronization Objects
	2.4.1 Mutexes
	2.4.2 Condition Variables
	2.4.3 Condition Variable Attributes
	2.4.4 Read-Write Locks

	2.5 Process-Shared Synchronization Objects
	2.5.1 Programming Considerations
	2.5.2 Process-Shared Mutexes
	2.5.3 Process-Shared Condition Variables
	2.5.4 Process-Shared Read-Write Locks

	2.6 Thread-Specific Data

	3 Programming with Threads
	3.1 Designing Code for Asynchronous Execution
	3.1.1 Avoid Passing Stack Local Data
	3.1.2 Initialize Objects Before Thread Creation
	3.1.3 Do Not Use Scheduling As Synchronization

	3.2 Memory Synchronization Between Threads
	3.3 Sharing Memory Between Threads
	3.3.1 Using Static Memory
	3.3.2 Using Stack Memory
	3.3.3 Using Dynamic Memory

	3.4 Managing a Thread’s Stack
	3.4.1 Sizing the Stack
	3.4.2 Using Stack Overflow Warning and Stack Guard Areas
	3.4.3 Diagnosing Stack Overflow Errors

	3.5 Scheduling Issues
	3.5.1 Real-Time Scheduling
	3.5.2 Priority Inversion
	3.5.3 Dependencies Among Scheduling Attributes and Contention Scope

	3.6 Using Synchronization Objects
	3.6.1 Distinguishing Proper Usage of Mutexes and Condition Variables
	3.6.2 Avoiding Race Conditions
	3.6.3 Avoiding Deadlocks
	3.6.4 Signaling a Condition Variable
	3.6.5 Static Initialization Inappropriate for Stack-Based Synchronization Objects

	3.7 Granularity Considerations
	3.7.1 Determinants of a Program’s Granularity
	3.7.2 Compiler Support for Determining the Program’s Actual Granularity
	3.7.3 Word Tearing
	3.7.4 Alignments of Members of Composite Data Objects
	3.7.5 Avoiding Granularity-Related Errors
	3.7.6 Identifying Possible Word-Tearing Situations Using Visual Threads

	3.8 One-Time Initialization
	3.9 Managing Dependencies Upon Other Libraries
	3.9.1 Thread Reentrancy
	3.9.2 Thread Safety
	3.9.3 Lacking Thread Safety
	3.9.4 Use of Multiple Threads Libraries Not Supported

	3.10 Detecting Error Conditions
	3.10.1 Bugcheck Information
	3.10.2 Interpreting a Bugcheck

	4 Writing Thread-Safe Libraries
	4.1 Features of the tis Interface
	4.1.1 Reentrant Code Required
	4.1.2 Performance of tis Interface Routines
	4.1.3 Run-Time Linkage of tis Interface Routines
	4.1.4 Cancelation Points

	4.2 Using Mutexes
	4.3 Using Condition Variables
	4.4 Using Thread-Specific Data
	4.5 Using Read-Write Locks

	5 Using the Exceptions Package
	5.1 About the Exceptions Package
	5.1.1 Supported Programming Languages
	5.1.2 Relation of Exceptions to Return Codes and Signals

	5.2 Why Use Exceptions
	5.3 Exception Programming
	5.3.1 Declaring and Initializing an Exception
	5.3.2 Raising an Exception
	5.3.3 Catching an Exception
	5.3.4 Reraising an Exception
	5.3.5 Expressing Epilogue Actions

	5.4 Exception Objects
	5.4.1 Declaring and Initializing Exception Objects
	5.4.2 Address Exceptions and Status Exceptions
	5.4.3 How Exceptions Terminate

	5.5 Exception Scopes
	5.6 Raising Exceptions
	5.7 Exception Handling Macros
	5.7.1 Context of the Handler
	5.7.2 Handlers and Macros
	5.7.3 Catching Specific Exceptions
	5.7.4 Catching Unspecified Exceptions
	5.7.5 Reraising the Current Exception
	5.7.6 Defining Epilogue Actions

	5.8 Operations on Exceptions
	5.8.1 Referencing the Caught Exception
	5.8.2 Setting a System-Defined Error Status
	5.8.3 Obtaining a System-Defined Error Status
	5.8.4 Reporting a Caught Exception
	5.8.5 Determining Whether Two Exceptions Match

	5.9 Using Exceptions
	5.9.1 Develop Naming Conventions for Exceptions
	5.9.2 Enclose Appropriate Actions in an Exception Scope
	5.9.3 Raise Exceptions Prior to Performing Side-Effects
	5.9.4 Exiting an Exception Scope
	5.9.5 Declare Variables Within Handler Code as Volatile
	5.9.6 Reraise Caught Exceptions That Are Not Fully Handled
	5.9.7 Avoid Dynamically Allocated Exception Objects

	5.10 Exceptions Defined by the POSIX Threads Library
	5.11 Interoperability of Language-Specific Exceptions
	5.12 Host Operating System Dependencies
	5.12.1 Tru64 UNIX Dependencies
	5.12.2 OpenVMS Conditions and Exceptions

	6 Examples
	6.1 Prime Number Search Example
	6.2 Asynchronous User Interface Example

	Part II POSIX.1 (pthread) Routines Reference
	pthread_atfork
	pthread_attr_destroy
	pthread_attr_getdetachstate
	pthread_attr_getguardsize
	pthread_attr_getinheritsched
	pthread_attr_getname_np
	pthread_attr_getschedparam
	pthread_attr_getschedpolicy
	pthread_attr_getscope
	pthread_attr_getstackaddr
	pthread_attr_getstackaddr_np
	pthread_attr_getstacksize
	pthread_attr_init
	pthread_attr_setdetachstate
	pthread_attr_setguardsize
	pthread_attr_setinheritsched
	pthread_attr_setname_np
	pthread_attr_setschedparam
	pthread_attr_setschedpolicy
	pthread_attr_setscope
	pthread_attr_setstackaddr
	pthread_attr_setstackaddr_np
	pthread_attr_setstacksize
	pthread_cancel
	pthread_cleanup_pop
	pthread_cleanup_push
	pthread_condattr_destroy
	pthread_condattr_getpshared
	pthread_condattr_init
	pthread_condattr_setpshared
	pthread_cond_broadcast
	pthread_cond_destroy
	pthread_cond_getname_np
	pthread_cond_init
	pthread_cond_setname_np
	pthread_cond_signal
	pthread_cond_signal_int_np
	pthread_cond_sig_preempt_int_np
	pthread_cond_timedwait
	pthread_cond_wait
	pthread_create
	pthread_delay_np
	pthread_detach
	pthread_equal
	pthread_exc_get_status_np
	pthread_exc_matches_np
	pthread_exc_report_np
	pthread_exc_set_status_np
	pthread_exit
	pthread_getconcurrency
	pthread_getname_np
	pthread_getschedparam
	pthread_getsequence_np
	pthread_getspecific
	pthread_get_expiration_np
	pthread_join
	pthread_key_create
	pthread_key_delete
	pthread_key_getname_np
	pthread_key_setname_np
	pthread_kill
	pthread_lock_global_np
	pthread_mutexattr_destroy
	pthread_mutexattr_getpshared
	pthread_mutexattr_gettype
	pthread_mutexattr_init
	pthread_mutexattr_setpshared
	pthread_mutexattr_settype
	pthread_mutex_destroy
	pthread_mutex_getname_np
	pthread_mutex_init
	pthread_mutex_lock
	pthread_mutex_setname_np
	pthread_mutex_trylock
	pthread_mutex_unlock
	pthread_once
	pthread_rwlockattr_destroy
	pthread_rwlockattr_getpshared
	pthread_rwlockattr_init
	pthread_rwlockattr_setpshared
	pthread_rwlock_destroy
	pthread_rwlock_getname_np
	pthread_rwlock_init
	pthread_rwlock_rdlock
	pthread_rwlock_setname_np
	pthread_rwlock_tryrdlock
	pthread_rwlock_trywrlock
	pthread_rwlock_unlock
	pthread_rwlock_wrlock
	pthread_self
	pthread_setcancelstate
	pthread_setcanceltype
	pthread_setconcurrency
	pthread_setname_np
	pthread_setschedparam
	pthread_setspecific
	pthread_sigmask
	pthread_testcancel
	pthread_unlock_global_np
	pthread_yield_np
	sched_get_priority_max
	sched_get_priority_min
	sched_yield
	sigwait

	Part III Compaq Proprietary Interfaces: tis Routines Reference
	tis_cond_broadcast
	tis_cond_destroy
	tis_cond_init
	tis_cond_signal
	tis_cond_timedwait
	tis_cond_wait
	tis_getspecific
	tis_get_expiration
	tis_io_complete
	tis_key_create
	tis_key_delete
	tis_lock_global
	tis_mutex_destroy
	tis_mutex_init
	tis_mutex_lock
	tis_mutex_trylock
	tis_mutex_unlock
	tis_once
	tis_read_lock
	tis_read_trylock
	tis_read_unlock
	tis_rwlock_destroy
	tis_rwlock_init
	tis_self
	tis_setcancelstate
	tis_setspecific
	tis_sync
	tis_testcancel
	tis_unlock_global
	tis_write_lock
	tis_write_trylock
	tis_write_unlock
	tis_yield

	Part IV Appendixes
	A Considerations for Tru64 UNIX Systems
	A.1 Overview
	A.2 Building Threaded Applications
	A.2.1 Including Threads Header Files
	A.2.2 Building Multithreaded Applications from Threads Libraries
	A.2.3 Linking Multithreaded Shared Libraries
	A.2.4 Compiling Applications With the tis Interface

	A.3 Two-Level Scheduling on Tru64 UNIX Systems
	A.3.1 Use of Kernel Threads
	A.3.2 Support for Realtime Scheduling

	A.4 Thread Cancelability of System Services
	A.4.1 Cancelation Points
	A.4.2 Conditional or Future Cancelation Points

	A.5 Using Signals
	A.5.1 POSIX sigwait Service
	A.5.2 Handling Synchronous Signals as Exceptions

	A.6 Thread Stack Guard Areas
	A.7 Thread Stack and Backing Store Allocation
	A.8 Dynamic Activation
	A.9 Pagefaults and Realtime Scheduling

	B Considerations for OpenVMS Systems
	B.1 Overview
	B.2 Compiling Under OpenVMS
	B.3 Linking OpenVMS Images
	B.4 Using the Threads Library with AST Routines
	B.5 Dynamic Activation
	B.6 Default and Minimum Thread Stack Size
	B.7 Requesting a Specific, Absolute Thread Stack Size
	B.8 Declaring an OpenVMS Condition Handler
	B.9 Thread Cancelability of System Services
	B.10 Using OpenVMS Alpha 64-Bit Addressing
	B.11 Condition Values
	B.12 Two-Level Scheduling on OpenVMS Alpha Systems
	B.12.1 Linker Options to Specify Image’s Use of Kernel Threads
	B.12.2 Setting Kernel Threads Support in Existing Images
	B.12.3 Querying and Setting Kernel Threads Features
	B.12.4 Creation of Virtual Processors
	B.12.5 Delivery of ASTs
	B.12.6 Blocking System Services
	B.12.7 $HIBER and $WAKE
	B.12.8 Event Flags
	B.12.9 Interactions with OpenVMS
	B.12.10 Image Exit
	B.12.11 SYSGEN Parameter MULTITHREAD
	B.12.12 Process Control System Services and DCL Commands

	B.13 Interoperability with POSIX for OpenVMS

	C Debugging Multithreaded Applications
	C.1 Using PTHREAD_CONFIG
	C.1.1 Major and Minor Keywords
	C.1.2 Specifying Multiple Values

	C.2 Running in Metered Mode
	C.3 Visual Threads
	C.4 Using Ladebug on Tru64 UNIX Systems
	C.5 Debugging Threads on OpenVMS Systems
	C.5.1 Display of Stack Trace from Unhandled Exception

	D Migrating from the cma Interface
	D.1 Overview
	D.2 cma Handles
	D.3 Interface Routine Mapping
	D.4 New pthread Routines

	E Migrating from the d4 Interface
	E.1 Overview
	E.2 Error Status and Function Returns
	E.3 Replaced or Renamed Routines
	E.4 Routines with No Changes to Syntax
	E.5 Routines with Prototype or Syntax Changes
	E.6 New Routines

	Glossary
	Index
	Examples
	Example 2–1 pthread Cancel
	Example 5–1 Raising an Exception
	Example 5–2 Catching an Exception Using CATCH
	Example 5–3 Catching an Exception Using CATCH and CATCH_ALL
	Example 5–4 Defining Epilogue Actions Using FINALLY
	Example 5–5 Defining an Exception Scope
	Example 5–6 Raising an Exception
	Example 5–7 Catching a Specific Exception Using CATCH
	Example 5–8 Catching an Unspecified Exception Using CATCH_ALL
	Example 5–9 Defining Epilogue Actions Using FINALLY
	Example 5–10 Setting an Error Status in an Exception Object
	Example 5–11 Obtaining the Error Status Value from a Status Exception Object
	Example 5–12 Comparing Two Exception Objects
	Example 5–13 Incorrect Placement of Statements That Might Raise an Exception
	Example 5–14 Correct Placement of Statements That Might Raise an Exception
	Example 5–15 Use of the Volatile Type Qualifier Within an Exception Scope
	Example 6–1 C Program Example (Prime Number Search)
	Example 6–2 C Program Example (Asynchronous User Interface)

	Figures
	Figure 1–1 Single-Threaded Process
	Figure 1–2 Multithreaded Process
	Figure 1–3 Thread State Transitions
	Figure 1–4 Work Crew Model of Thread Operation
	Figure 1–5 Pipelining Model of Thread Operation
	Figure 2–1 Flow with FIFO Scheduling
	Figure 2–2 Flow with RR Scheduling
	Figure 2–3 Flow with Default Scheduling
	Figure 2–4 Only One Thread Can Lock a Mutex
	Figure 2–5 Thread A Waits on Condition Ready
	Figure 2–6 Thread B Signals Condition Ready
	Figure 2–7 Thread A Wakes and Proceeds
	Figure 4–1 Read-Write Lock Behavior

	Tables
	Table 1–1 pthread Routines Summary
	Table 1–2 tis Routines Summary
	Table 2–1 Support for Thread Contention Scope
	Table 3–1 Default and Optional Granularities
	Table 5–1 Names of Exception Objects Defined by the Threads Library
	Table A–1 Header Files
	Table A–2 Tru64 UNIX Shared Libraries for Multithreaded Programs
	Table A–3 Signals Reported as Exceptions
	Table B–1 Header Files
	Table B–2 Threads Library Images
	Table B–3 Condition Values
	Table B–4 Results of Keyword Arguments to /THREADS_ENABLE Qualifier
	Table B–5 Return Values from $GETJPI System Service
	Table C–1 PTHREAD_CONFIG Settings
	Table D–1 Corresponding cma and pthread Routines
	Table E–1 pthread Routines That Replace d4 Routines
	Table E–2 d4 Routines With Syntax Changes as pthread Routines
	Table E–3 d4 Routines Whose pthread Counterpart Uses Standard Datatypes

