
DEC X.500 Directory Service
OSI-Abstract-Data Manipulation
Order Number: AA-PXVFA-TE

Revision/Update Information: 1.0

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, March 1993

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

Possession, use, duplication or dissemination of the software described in this document is
authorized only pursuant to a valid written license from Digital or the third-party owner of the
software copyright.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993. All Rights Reserved.

Please complete the Reader’s Comments page at the end of the book. It will help us to keep
improving our documentation.

The following are trademarks of Digital Equipment Corporation: DEC, MAILbus, MAILbus 400,
VAX DOCUMENT, and the DIGITAL logo.

X/Open is a trademark of the X/Open Company Limited.

This document was prepared using VAX DOCUMENT, Version 2.1.

Compaq
Compaq, the Compaq logo, DEC, Digital, OpenVMS, VAX, VAX DOCUMENT and Tru64 UNIX registered in U.S. Patent and Trademark Office.

Digital and Tru64 UNIX are trademarks of Compaq Information Technologies Group, L.P. in the United States and/or other countries.

Motif, OSF, OSF/Motif, OSF/1 and UNIX are trademarks of The Open Group in the United States and other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Compaq Computer Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Confidential computer software. Valid license from Compaq required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty.

© 2001 Compaq Computer Corporation

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Compaq or an authorized sub-licensor.

Contents

Preface . ix

Part I Programming

1 Introduction

1.1 Conformance . 1–2
1.2 Digital’s Implementation of the OM API 1–2
1.3 Digital’s Extensions to the OM API . 1–3
1.4 Variable Names . 1–4
1.5 Reference Pages . 1–5
1.6 Terminology . 1–5

2 OSI-Abstract-Data Manipulation Concepts

2.1 Objects . 2–1
2.1.1 Private Objects . 2–2
2.1.2 Public Objects . 2–3
2.2 Attributes . 2–4
2.3 Subobjects . 2–6
2.4 Object Classes . 2–8
2.4.1 Class Hierarchy . 2–8
2.5 Packages . 2–10
2.6 Workspaces . 2–10
2.7 Descriptors and Descriptor Lists . 2–11

iii

3 Using the OSI-Abstract-Data Manipulation API

3.1 Creating an Object . 3–2
3.1.1 Creating a Private Object . 3–2
3.1.2 Creating a Public Object . 3–3
3.2 Modifying a Private Object . 3–5
3.2.1 Removing Attribute Values . 3–5
3.2.2 Putting Values into a Private Object 3–6
3.2.3 Copying a String Attribute Value . 3–8
3.2.4 Writing a String Attribute Value in Segments 3–10
3.3 Examining a Private Object . 3–11
3.4 Reading a String Attribute Value . 3–15
3.5 Deleting an Object . 3–16
3.5.1 Deleting a Service-Generated Public Object 3–16
3.5.2 Deleting a Private Object . 3–17
3.6 Copying an Object . 3–18
3.7 Determining the Class of an Object . 3–18
3.8 Encoding and Decoding Private Objects . 3–19
3.8.1 Encoding . 3–20
3.8.2 Decoding . 3–20

Part II Reference

4 Object Management Package

4.1 OM Package Object Identifier . 4–1
4.2 Class Hierarchy . 4–1
4.3 Class Definitions . 4–2
4.3.1 Object . 4–2
4.3.2 Encoding . 4–3
4.3.3 External . 4–4
4.4 C Naming Conventions . 4–5

5 OSI-Abstract-Data Manipulation Functions

om_copy . 5–2
om_copy_value . 5–4
om_create . 5–6
om_decode . 5–8
om_delete . 5–10
om_encode . 5–12
om_get . 5–14

iv

om_instance . 5–20
om_put . 5–22
om_read . 5–28

om_remove . 5–31
om_write . 5–33

6 OSI-Abstract-Data Manipulation Syntaxes

6.1 Syntax Templates . 6–1
6.2 Syntaxes Defined for OSI-Abstract-Data Manipulation 6–1
6.3 Strings . 6–2
6.4 OM Syntaxes and ASN.1 . 6–4

7 Object Management Data Types

OM_boolean . 7–3
OM_descriptor . 7–4
OM_enumeration . 7–5
OM_exclusions . 7–6
OM_integer . 7–7
OM_modification . 7–8
OM_object . 7–9
OM_object_identifier . 7–10
OM_private_object . 7–13
OM_public_object . 7–14
OM_return_code . 7–17
OM_string . 7–18
OM_syntax . 7–20
OM_type . 7–22
OM_type_list . 7–23
OM_value . 7–24
OM_value_length . 7–26
OM_value_number . 7–27
OM_value_position . 7–28
OM_workspace . 7–29

v

8 OSI-Abstract-Data Manipulation Header Files

A Symbolic Constants

B String Contents

B.1 Numeric Strings . B–1
B.2 Printable Strings . B–1
B.3 IA5 Strings . B–1

C Return Values

Index

Figures

2–1 Relationship between Application, OM and Objects 2–2
2–2 Private and Public Objects . 2–4
2–3 An Object with Two Attributes . 2–6
2–4 A Subobject as an Attribute . 2–7
2–5 Class Hierarchy . 2–9
2–6 Components of a Descriptor . 2–12
2–7 Components of a Descriptor List . 2–13
4–1 Class Hierarchy of the OM Classes . 4–1
5–1 Original Object . 5–18
5–2 Public Object . 5–19
5–3 Source and Destination Objects Before Copying Attribute

Values . 5–25
5–4 Destination Object After Copying Attribute Values 5–26
5–5 Example of Using the Write Function 5–36
6–1 Structure of a String . 6–3
7–1 Exporting and Importing Object Identifiers 7–12
7–2 Representation of a Bit String in the C Interface 7–19
7–3 Syntax Component of a Descriptor . 7–20
7–4 Representation of OM_value . 7–25

vi

Tables

3–1 Object Management Functions . 3–1
4–1 C Naming Conventions . 4–5
5–1 Initial Values for the Elements String 5–29
6–1 Secondary Identifiers of String Syntaxes 6–3
6–2 Relationship of OM Syntaxes to ASN.1 Simple Types 6–4
6–3 Relationship of OM Syntaxes to ASN.1 Useful Types 6–4
6–4 Relationship of OM Syntaxes to ASN.1 Character String

Types . 6–5
6–5 Relationship of OM Syntaxes to ASN.1 Type Constructors . . 6–5
7–1 OM Data Types . 7–1
C–1 OM API Return Values . C–1

vii

Preface

Purpose of this Guide
This guide describes Digital’s OSI-Abstract-Data Manipulation Application
Program Interface, and provides reference information for developers of
applications that use it.

Throughout this guide, OSI-Abstract-Data Manipulation is abbreviated to
OM, and Application Program Interface to API. Unless otherwise stated, OM
API refers to Digital’s implementation of the OM API specified by the X/Open
Company Limited in conjunction with the X.400 API Association.

Structure of this Guide
This guide is divided into two parts. Part I introduces the terms and concepts
used in OSI-Abstract-Data Manipulation, and with the aid of examples,
explains how to use the OM API. You should read it in its entirety before you
read Part II and any of the documents mentioned in the Related Documents
section.

Part II gives reference information for the OM API, for example class
definitions, routine descriptions, and data types.

Intended Audience
This guide is intended for programmers using Digital’s OM API in conjunction
with either the MAILbus 400 API or the Digital X.500 API (or both) to develop
an application.

ix

Prerequisites
This guide assumes that you have read the introductory chapters in the
documentation for either the MAILbus 400 API or the X.500 API, and that
you have a basic understanding of purposes for which your application will be
using the OM API.

You must be familiar with and understand Open Systems Interconnection
(OSI) terms and concepts.

You must also be familiar with the C programming language, which is the
programming language supported by the OM API.

Related Documents
Before you start writing your application, make sure that you have the
documentation for the other API (or APIs) that you are going to use:

• MAILbus 400 API documentation

• Digital X.500 API documentation

For background information on the MAILbus 400 Message Transfer Agent and
an explanation of the concepts associated with a Message Handling System,
refer to MAILbus 400 MTA Introduction.

For background information on Digital’s X.500 Directory Service and an
explanation of the concepts associated with a Directory Service, refer to the
Digital X.500 documentation set.

The name of the X/Open specification to which the OM API conforms is
X/Open CAE Specification, OSI-Abstract-Data Manipulation API (XOM). It is
available from:

X/Open Company Limited,
Apex Plaza,
Forbury Road,
Reading,
Berks, RG1 1AX,
United Kingdom.

x

Conventions
The following conventions are used in this book:

this typeface Indicates an example of code

newterm Indicates the introduction of a new term.

variable Represents variables to type in commands or responses.

[0, 232) Means the range 0 to 232 including the 0 but not the 232

Abbreviations
The following abbreviations are used in this guide:

ASN.1 Abstract Syntax Notation One

API Application Program Interface

BER Basic Encoding Rules

IM Interpersonal Messaging

MH Message Handling

OM OSI-Abstract-Data Manipulation

OR Originator/Recipient

OSI Open Systems Interconnection

RD Recipient Descriptor

xi

Part I
Programming

This part introduces Digital’s OSI-Abstract-Data Manipulation Application
Program Interface (OM API) and explains how to use it. It contains three
chapters:

• Chapter 1: this gives an introduction to the OM API.

• Chapter 2: this describes the key concepts in OSI-Abstract-Data
Manipulation.

• Chapter 3: this describes how you can use the OM API to create and
manipulate objects when building an application using the X.400 or the
X.500 API, or both.

1
Introduction

This chapter gives an introduction to Digital’s OSI-Abstract-Data Manipulation
Application Program Interface (OM API).

The Digital OM API is an implementation of the OM API specified by the
X.400 API Association and the X/Open Company Limited. It provides a
standard interface for creating and manipulating abstract data items. In
open systems, the definitive descriptions of abstract data items are given in
Abstract Syntax Notation One (ASN.1), and the data items can therefore be
large and complex. The OM API provides a model for manipulating data items
regardless of their size and complexity, and in so doing, simplifies the task of
programming.

The data items that the OM API allows you to manipulate are referred to
throughout this manual as objects.

The Digital OM API is intended for use in writing applications with other
Digital interfaces, for example, the MAILbus 400 API and the Digital X.500
API. When you are using the MAILbus 400 API, the Digital OM API enables
you to create and manipulate objects required for a Message Handling
application, for example, Messages and Non-delivery Reports. When you are
using the Digital X.500 API, the Digital OM API enables you to create and
manipulate objects required for use in an X.500 Directory Service, for example,
Directory Entries and their attributes.

Because the Digital APIs are based on standard interfaces, the applications
that you write using them can easily be adapted for use with other
implementations of the standard interfaces.

Introduction 1–1

1.1 Conformance
The Digital OM API conforms to the X/Open CAE Specification, OSI-Abstract-
Data Manipulation API (XOM), produced in conjunction with the X.400 API
Association, and published by the X/Open Company Limited (November 1991).

With respect to the requirements listed in the X/Open CAE Specification, the
Digital OM API conforms as follows:

• Workspaces

The Digital OM API associates the OM Package with each workspace
it opens. It opens a workspace for each invocation of the Open function
(MAILbus 400 API), and of the Initialize function (Digital X.500 API). The
OM Package is described in Chapter 4.

• Aspects

The Digital OM API implements all defined aspects of the standard OM
API, with the options described in Section 1.2.

• Encoding Rules

In its implementation of the Encode and Decode functions (see Section 3.8),
the Digital OM API supports the ASN.1 Basic Encoding Rules (BER).

1.2 Digital’s Implementation of the OM API
The X/Open CAE Specification leaves certain aspects of the interface to be
decided by the implementor. These are as follows:

• The local character set representation and the precise mappings between
the local character set and the various string syntaxes.

The Digital OM API does not support local character sets when used
with the MAILbus 400 API. When used with the Digital X.500 API, the
Digital OM API supports T.61 as the non-local string syntax and ISO
Latin 1 as the local string syntax. For more details refer to the X.500 API
documentation.

• The precise definitions in C of the intermediate data types.

In the Digital OM API, these are as follows:

typedef int OM_sint;

typedef short OM_sint16;

typedef long int OM_sint32;

1–2 Introduction

typedef unsigned OM_uint;

typedef unsigned short OM_uint16;

typedef long unsigned OM_uint32;

• The length of the longest string that the Get function returns.

When used with the MAILbus 400 API, the length of the longest string
that the Get function returns is 1024 bytes. Any strings that are longer
than this must be dealt with using the Read and Write functions.

When used with the Digital X.500 API, there is no limit to the length of
the string returned by the Get function.

• Whether the service reports an exception if an object supplied to it as an
argument is not minimally consistent. An object is minimally consistent
if:

The type of each of its attributes is specific to the object’s class or one
of its superclasses.

The number of values of each attribute is no greater than the class
permits.

The syntax of each value is among those the class permits.

The number of bits, octets or characters in each string value is among
those the class permits.

Because the MAILbus 400 API and Digital X.500 API both check for the
consistency of objects and report exceptions if necessary, the Digital OM
API does not report an exception if an object supplied to it as an argument
is not minimally consistent.

1.3 Digital’s Extensions to the OM API
The Digital OM API provides macros for creating public objects dynamically.
These macros are in the header file xom.h and allow you to set an empty
descriptor to your required value, once you have declared a descriptor or
descriptor list. The macros are as follows. Note that because they are
proprietary extensions to the standard OM API, they have the prefix OMX.

Introduction 1–3

• OMX_CLASS_DESC

Sets an object’s class descriptor to the specified class.

• OMX_BOOLEAN_DESC

Sets a Boolean value descriptor for the specified type.

• OMX_ENUM_DESC

Sets an enumerated value descriptor for the specified type.

• OMX_INTEGER_DESC

Sets an integer value descriptor for the specified type.

• OMX_OBJECT_DESC

Sets an object descriptor for the specified type.

• OMX_OM_NULL_DESC

Sets the null descriptor that terminates the descriptor list.

• OMX_ATTR_TYPE_DESC

Sets an attribute type descriptor using the specified object identifier string.

• OMX_ZSTRING_DESC

Sets a string descriptor given a null (zero) terminated string using the
specified type name.

• OMX_STRING_DESC

Sets a string descriptor given the length and elements pointer and using
the specified type name.

For examples of how these macros can be used, refer to Chapter 7.

1.4 Variable Names
When defining variables, avoid using names that are used in the Digital OM
API. These begin with the prefixes OM_, OM_C, OM_S, om_, OMP, omp, OMX,
and omx. Also avoid using names that are used in the MAILbus 400 API or
the Digital X.500 API (refer to the relevant manual for details). If you define
a variable that is already in use, you will see an error message when you
attempt to link the application.

1–4 Introduction

1.5 Reference Pages
If you are building your application on an ULTRIX system, you can get help on
a particular function by using the man command to display the reference page
for that function, for example:

% man om_get

If you forget the name of a function, or if you forget which functions are
available, use the apropos command. The following example shows how to
display a list of commands that include the word get; the om_get function will
be included in the list.

% apropos get

The following example shows how to display a list of all the OM functions:

% apropos om_

The man -k command has the same effect as the apropos command.

1.6 Terminology
The OSI-Abstract-Data Manipulation terms and expressions that you need to
be familiar with are described in Chapter 2.

The term Service refers to the Digital implementation of the OM API together
with either the MAILbus 400 API or the X.500 API. The term Client refers to
the application that uses the Service.

Throughout the rest of the manual, the term OM API refers to the Digital OM
API, the term X.400 API to the MAILbus 400 API, and the term X.500 API to
the Digital X.500 API.

Introduction 1–5

2
OSI-Abstract-Data Manipulation Concepts

This chapter describes the key concepts in OSI-Abstract-Data Manipulation.
You need an understanding of these concepts before using the OM API.

2.1 Objects
An Object is an item of OSI abstract data representing a real-world object
or piece of information; for example, a person, an electronic mail message, a
presentation address or a printer.

The X.400 API allows you to reference and maintain objects needed for
message access, message transfer, and interpersonal messaging; that is,
messaging objects. The X.500 API allows you to reference and maintain objects
in an X.500 directory; that is, directory objects.

The following are examples of objects:

• Messaging objects:

Interpersonal Message

Delivered Report

• Directory objects:

Search-Result

Presentation-Address

Figure 2–1 shows the relationship between your application, the OM API, and
messaging or directory objects.

OSI-Abstract-Data Manipulation Concepts 2–1

Figure 2–1 Relationship between Application, OM and Objects

Messaging
Objects

Directory
Objects

Application

MIG 0156

OM API

There are two types of object:

• Private objects

• Public objects

The OM API allows you to use both types in your application.

2.1.1 Private Objects
A Private Object is an object whose internal format is known only to the
Service. A private object is identified by a pointer variable called a Handle.
Your application can create and manipulate a private object by calling the
OM API functions. You do not need to know anything about how the object is
represented.

The facility to create private objects means that different Services can
represent the same object in different ways. The X.400 API and the X.500 API,
for example, each have their own internal representation for a Presentation
Address.

A private object created in one workspace can be copied to a private object in
another using the Copy function. The copy may have a different representation
from the original. (For more information on workspaces, refer to Section 2.6.)

2–2 OSI-Abstract-Data Manipulation Concepts

2.1.2 Public Objects
A Public Object consists of a data structure called a descriptor list (see
Section 2.7). The descriptor list contains all the OM attribute values of the
object.

There are two types of public object:

• Client-generated public objects

These are public objects created by your application in storage allocated by
the application.

• Service-generated public objects

These are public objects created by the Service in storage allocated by the
Service. You can examine and delete service-generated public objects; you
must not try to modify them.

Figure 2–2 shows private and public objects in relation to the OM API. The
diagram shows that:

• The application can use the OM API functions to create and manipulate
private objects and to generate service-generated public objects.

• The application can use programming language constructs to create and
manipulate client-generated public objects and to read service-generated
public objects.

OSI-Abstract-Data Manipulation Concepts 2–3

Figure 2–2 Private and Public Objects

Programming language

MIG 0080

Private
object

Memory allocated to the Service-
generated

public
object

Memory allocated to the Service

constructs
APPLICATION

 (a workspace)

Client

public
generated

object

Client-

OM API
FUNCTIONS

FUNCTIONS

2.2 Attributes
An object consists of zero or more attributes. An attribute represents a
specific item of information about the object. It consists of an attribute type, a
syntax, and zero or more values.

The attribute type identifies the kind of information stored in the attribute.
For example, the X.400 API attribute type Deferred Delivery Time is used
to indicate that a message should not be delivered before a specified time.
The attribute type can be thought of as the attribute name, and so the
documentation might refer, for example, to the Deferred Delivery Time
attribute.

The attribute syntax denotes the format of the information that can be stored
in the attribute. For example, the Deferred Delivery Time attribute has the
syntax String(UTC Time) (see Part II), and its values must therefore be in the
format defined for representing times (UTC format).

2–4 OSI-Abstract-Data Manipulation Concepts

The basic OM syntaxes are defined in Chapter 6. The documentation for the
X.400 and X.500 APIs contain definitions of the syntaxes specific to those APIs.

An attribute value is an item of information that you want to store in the
attribute. For example, the Deferred Delivery Time attribute could contain the
value 921211163120Z.

An attribute can be single-valued or multi-valued. A single-valued attribute
has one value, whereas a multi-valued attibute can have more than one value.

The syntax of some attributes can be one of a specified set of syntaxes.
Such attributes are called set-valued attributes. In the X.400 API, for
example, the OR Address contains many attributes that can have values
of either String(Printable) or String(Teletex) syntax, such as Postal Office
Name. The values of a set-valued attribute do not all have to be of the same
syntax. For example, Postal Office Name could have two values, one of syntax
String(Printable), the other String(Teletex).

Figure 2–3 shows an object with two attributes, A and B. Attribute A has three
values, and attribute B has two values.

OSI-Abstract-Data Manipulation Concepts 2–5

Figure 2–3 An Object with Two Attributes

Attribute A

OBJECT

Syntax

Value Type

Attribute B

MIG 0083

Syntax

Value

Syntax

Value

Syntax

Value

Syntax

Value Type

2.3 Subobjects
An object can have attribute values that are themselves objects. An object
acting as an attribute value is called a subobject. Subobjects can be private
or public objects, and can also have attributes that are objects. There is no
limit to the number of levels of subobjects allowed within an object.

Figure 2–4 shows an object that has three attributes:

• Attribute A has two values.

• Attribute B has one value, which is a subobject with two attributes, 1 and
2, each of which has one value.

• Attribute C has one value.

2–6 OSI-Abstract-Data Manipulation Concepts

Figure 2–4 A Subobject as an Attribute

Attribute B

OBJECT

Attribute C

Attribute A

MIG 0158

type

syntax

value

type

type

syntax

syntax

syntax

value

value

value

type
syntax

value

type
syntax

value

Attribute 1

Attribute 2

SUBOBJECT

Subobjects of a private object must also be private objects. You can use the
Put function (see Table 3–1) to put a public object into an attribute of a private
object. However, the public object is then copied and converted into a private
object.

A client-generated public object can have subobjects that are either private
or public (client-generated or service-generated). You add subobjects to
client-generated public objects using programming language constructs (see
Section 2.7).

A service-generated public object can have subobjects that are either service-
generated public objects or private objects. This depends on the parameters
you pass to the Get function (see Table 3–1) to produce the object.

OSI-Abstract-Data Manipulation Concepts 2–7

2.4 Object Classes
Objects of similar structure or purpose are organized into groups called
classes. Every object belongs to a class, and is known as an instance of that
class. A class is characterized by a particular set of attributes.

The class of an object determines the attributes that may be present in the
object, and may put constraints on those attributes. If, for example, class
X has four attributes, 1, 2, 3 and 4, the class specification could impose the
following constraints on those attributes:

• Attribute 1 is mandatory; it must have at least one value.

• Attribute 2 is optional; it can have zero or more values.

• Attribute 3 is set-valued; its value must be chosen from a set of possible
values allowed by its syntax

• Attribute 4 is single-valued; it must have only one value. It has a string
syntax associated with it, and the object class definition specifies the
maximum length of the string value.

Chapter 4 of this manual, and the documentation for the X.400 and X.500
APIs, give details of the classes, attributes and attribute constraints defined
for the APIs.

2.4.1 Class Hierarchy
The OM API organizes classes into a hierarchy with a class called Object at
its root. Every class except Object has a class immediately above it in the
hierarchy, referred to as a superclass. It may also have a class (or classes)
below it, referred to as a subclass.

Figure 2–5 shows a section of the X.400 API Message Handling class hierarchy.
The diagram shows that the Recipient Descriptor (RD) class has one subclass,
Submitted Probe RD, that the Submitted Probe RD class has two subclasses,
Probe RD and Submitted Message RD, and that the Submitted Message RD
class has one subclass, Message RD.

Important

An instance of a subclass has the attributes that characterize
the class, but in addition inherits the attributes that character-
ize its superclasses.

2–8 OSI-Abstract-Data Manipulation Concepts

Figure 2–5 Class Hierarchy

Recipient Descriptor (RD)

Submitted Probe RD

Probe RD

Submitted Message RD

Message RD

MIG0157

In the example in Figure 2–5, an instance of class Submitted Message RD
(recipient descriptor) has the attributes of class Submitted Message RD. It
also inherits the attributes of its superclass, Submitted Probe RD, including
any attributes that an instance of class Submitted Probe RD inherits from its
superclass, Recipient Descriptor. An instance of class Submitted Message RD
therefore has the attributes of the Submitted Message RD, Submitted Probe
RD and Recipient Descriptor classes.

Besides being an instance of its own class, an object is also an instance of all
of its superclasses. If at any time in your application you need to use an object
of a certain class, you can use an object of one of its subclasses instead. For
example, in the hierarchy shown in Figure 2–5 you could use an object of class
Message RD in place of an object of class Submitted Message RD. In the X.400
API, the MA Open function requires an object of class OR Address. However,
you can call MA Open with an object of class OR Name because OR Name is a
subclass of OR Address.

A class may be concrete or abstract. You can create an instance of a concrete
class, but you cannot create an instance of an abstract class. Abstract classes
exist as superclasses to enable attributes to be shared among several classes.
In the example in Figure 2–5, Recipient Descriptor (RD) is an abstract class, as
indicated by the italics.

The class hierarchy of the OM API is described in Chapter 4.

OSI-Abstract-Data Manipulation Concepts 2–9

2.5 Packages
A package is a set of classes that are functionally related. The X.400 Message
Handling (MH) package, for example, contains definitions for Messages,
Reports, and Message Identifiers.

Each package is identified by an OSI Object Identifier. There are four X.400
packages and four X.500 packages available. Refer to the MAILbus 400 API
documentation and the X.500 API documentation for details of the packages
associated with each API. Refer to Chapter 4 of this manual for details of the
OM package.

A package closure refers to the set of classes that need to be supported
in order to be able to create all possible instances of all classes defined in a
package. This is significant because a class can be defined to have an attribute
whose value is an object of a class defined in another package. It then becomes
necessary to support both packages in order to create an instance of such a
class with that attribute in it. For example, the X.500 Basic Directory Contents
package contains a class called Teletex-Term-Ident. This class has an attribute
whose value is an object of a class called Teletex NBPs, which is defined in the
X.400 Message Transfer package. Class Teletex NBPs is therefore said to be in
the closure of the Basic Directory Contents package.

Package closures do not affect application developers using the X.400 or the
X.500 API. Both these APIs are self-contained in that they include all the
necessary class definitions.

2.6 Workspaces
The OM API maintains private objects and service-generated public objects
in workspaces. A workspace is both an area of storage for objects in the
closure of one or more packages that are associated with the workspace, and a
definition of the OM functions that manipulate that data.

You can only create an instance of a class in a workspace if the package in
which that class is defined is associated with the workspace. For example, to
create an object of the X.500 API class DS-DN, the workspace must have the
Directory Service package associated with it.

The OM package is automatically associated with every workspace that you
open. The X.400 and X.500 APIs have their own mechanisms for associating
with workspaces:

• Use the MA (Message Access) Open or the MT (Message Transfer) Open
function to associate an X.400 package with a workspace. You may also
associate Functional Units (small groups of related classes and functions)

2–10 OSI-Abstract-Data Manipulation Concepts

with a workspace. Refer to the MAILbus 400 API documentation for
details of Functional Units.

• Use the DS Initialize function to associate the X.500 Directory Service
package with a workspace. Other packages are associated with a
workspace using the DS Version function.

The implementation of the OM API functions may differ between workspaces.
For example, the OM API implementation associated with an X.500 API
workspace is different from that associated with an X.400 API workspace.
However, this is transparent to the user of the OM API.

You cannot create a workspace which embraces packages from more than one
of the APIs. You can, however, use an object from a workspace associated with
one API as input to a function provided by another. If you use the X.500 API
to build and access a directory service, for example, you could obtain an OR
address from the directory and then add it to a message that you build using
the X.400 API.

2.7 Descriptors and Descriptor Lists
Descriptors and Descriptor Lists are data structures used to construct a public
object. A private object has a single descriptor that identifies it (the Handle),
but the internal construction is not apparent to the application. A public object
is a list of descriptors referred to as a descriptor list.

A descriptor is a defined data structure that represents a single attribute.
The structure has three components:

• A type, identifying the type of the attribute that the descriptor represents
(the attribute name). This is an integer.

• A syntax, identifying the syntax associated with the attribute type that the
descriptor represents. This is an integer and a set of flags.

• A value, identifying the value of the attribute that the descriptor
represents. This can be one of the following:

The information stored in the attribute, if the type is a simple type; for
example, Integer or Boolean.

A pointer to the information, if the type is an object or a string.

Figure 2–6 shows how a descriptor is constructed.

OSI-Abstract-Data Manipulation Concepts 2–11

Figure 2–6 Components of a Descriptor

Type Syntax Value

Integer Integer and Flags Value or Pointer

MIG0257

A descriptor list is an unordered set of descriptors that can represent several
attribute types and values. It can be regarded as an array of the type OM_
descriptor (see Chapter 7). Descriptor lists can store single-valued and multi-
valued OM attributes. Although attributes in a descriptor list are unordered, if
an attribute is multi-valued, the order of the values must be preserved.

A single-valued attribute is represented by a single descriptor in a descriptor
list. A multi-valued attribute is represented by several descriptors in a
descriptor list, each with the same attribute type.

A single descriptor list can represent several single-valued and multi-valued
attributes. In this case, descriptors of the same attribute type are always
adjacent to each other in the descriptor list.

The descriptor describing the class of the object must, if present, be the first
descriptor in the descriptor list. The constant OM_NULL_DESCRIPTOR
denotes the end of the descriptor list.

Figure 2–7 shows how a descriptor list is constructed. The descriptor list
contains the following descriptors:

• A class descriptor, T1, representing the class of the public object.

• A single descriptor, T2, representing a single-valued attribute in the public
object.

• Three descriptors, T3, representing an attribute with three values in the
public object.

• The null descriptor, signaling the end of the descriptor list.

2–12 OSI-Abstract-Data Manipulation Concepts

Figure 2–7 Components of a Descriptor List

Type Syntax Value

T1

T2

T3

T3

T3

S

S

S

S

S

V

V

V3

V1

V2

MIG0262

NULL DESCRIPTOR

Part II of this guide includes descriptions of the Descriptor and Public Object
data types.

OSI-Abstract-Data Manipulation Concepts 2–13

3
Using the OSI-Abstract-Data Manipulation

API

This chapter describes how you can use the OM API to create and manipulate
objects that you need when building an application using the X.400 or the
X.500 API, or both.

Table 3–1 shows you what the OM API allows you to do with objects, and gives
the name of the function that you should use in each case.

Table 3–1 Object Management Functions

Task
Function
Name C Binding

Create a private object Create om_create()

Assign values to attributes of a private object, or
change existing attribute values of a private object

Put om_put()

Remove attribute values from a private object Remove om_remove()

Create a public copy of the whole or part of a private
object

Get om_get()

Make an exact but independent copy of a private
object

Copy om_copy()

Determine whether an object is an instance of a
named class

Instance om_instance()

Delete a private object or a service-generated public
object

Delete om_delete()

Read a segment of a string from a private object Read om_read()

Copy long string values from one private object to
another

Copy Value om_copy_value()

Write a segment of a string to a private object Write om_write()

Encode a private object Encode om_encode()

Decode a private object Decode om_decode()

Using the OSI-Abstract-Data Manipulation API 3–1

Chapter 5 gives full information on how to call each of the OM functions.

Code Examples

The code examples in this chapter are fragments of C programs. They
assume that the header file xom.h has been included and that a valid
workspace has been set up by a call to the appropriate X.400 API or
X.500 API function.

3.1 Creating an Object
Your application must be able to create objects to pass as arguments to the
X.400 or X.500 API functions that it uses.

You can declare a public object statically or you can create one dynamically at
run time. You can only create a private object dynamically. You must consider
this each time your application needs to pass an object as an argument to an
X.400 API or an X.500 API function.

If data in your application can be declared statically, declare a public object
and pass this to the interface. If data must be built dynamically, you can either
build a public object or use the OM API to build a private object. The X.400
and X.500 APIs convert public objects into private objects before operating on
them. It may therefore be more efficient to pass private objects.

3.1.1 Creating a Private Object
Use the Create function to create a new private object that is an instance of
a class that you specify in the function call. The object class that you specify
must be a concrete class; you cannot create an instance of an abstract class.

The X.400 and X.500 APIs include some concrete classes that are defined to
return information to your application; for example, the Submission Results
and Search-Result classes. You cannot create instances of these classes because
they are intended to be returned by the API in question and never supplied to
it.

You can choose to initialize the object with values specified in the class
definition. For example, a directory service object of the Entry-Info-Selection
class has three attributes, two of which can be initialized on creation:

• All-Attributes, which can be initialized to true

• Attribute-Selected, which is not initialized

• Info-Type, which can be initialized to types-and-values

3–2 Using the OSI-Abstract-Data Manipulation API

To create the object with initial values, specify true for the Initialise argument
of the Create function. Refer to Chapter 5 for a full description of the Create
function, and to Chapter 4 for a list of the initial values supplied by the Create
function.

The following example shows how to create a private object of Message
Handling (MH) class Local Per-recipient NDR, with the Initialise argument set
to false; the function does not initialize any of the object’s attributes.

OM_private_object ndr;
OM_workspace workspace;
OM_return_code result;

result = om_create (MH_C_LOCAL_PER_RECIP_NDR,
/* class of object */

OM_FALSE,
/* do not initialise attributes */

workspace,
/* workspace in which object created */

&ndr);
/* created object */

The following example shows how to create a private object of the X.500 class
Entry-Info-Selection, with the Initialise argument set to true; the function
initializes two of the object’s attributes.

OM_private_object select_info;
OM_workspace workspace;
OM_return_code result;

result = om_create (DS_C_ENTRY_INFO_SELECTION,
/* class of object */

OM_TRUE,
/* initialise attributes */

workspace,
/* workspace in which object created */

&select_info);
/* created object */

3.1.2 Creating a Public Object
To create a public object, declare a descriptor list in your application program.
The following example shows the static declaration of an X.500 public object
(selection), to be passed as an argument to the X.500 API DS Read function
(ds_read). The object is an instance of the Entry-Info-Selection class.

Using the OSI-Abstract-Data Manipulation API 3–3

#define ASTR "DS_A_COMMON_NAME"

static OM_descriptor selection[] = {
OM_OID_DESC(OM_CLASS, DS_C_ENTRY_INFO_SELECTION),
{DS_ALL_ATTRIBUTES, OM_S_BOOLEAN, OM_FALSE},
{DS_ATTRIBUTES_SELECTED, OM_S_OBJECT_IDENTIFIER_STRING, OM_STRING(ASTR)},
{DS_INFO_TYPE, OM_S_ENUMERATION, DS_TYPES_AND_VALUES},
OM_NULL_DESCRIPTOR

};

The example shows:

• The declaration of the class descriptor using the OM_OID_DESC macro.

• The declaration of descriptors to represent the object’s attributes,
DS_ALL_ATTRIBUTES, DS_ATTRIBUTES_SELECTED, and DS_INFO_TYPE.

• The OM syntaxes of the attribute values OM_S_BOOLEAN,
OM_S_OBJECT_IDENTIFIER_STRINGand OM_S_ENUMERATION.

• The attribute values, OM_FALSE, OM_STRING(ASTR)and
DS_TYPES_AND_VALUES.

• The declaration of the null descriptor, OM_NULL_DESCRIPTOR.

OM_STRINGis used to delimit the string that is the attribute value.

If you need to create public objects dynamically, you can do so using the Digital
macros that are available in the <xom.h> header file. These allow you to set
an empty descriptor to your required value, once you have declared a public
descriptor or descriptor list. The following is an example:

/* Header files: */

#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>

/* Declarations: */

OM_EXPORT(DS_A_SURNAME)
OM_EXPORT(DS_A_TITLE)

OM_descriptor cpub_eis[5];

/* Assignment: */

OMX_CLASS_DESC(cpub_eis[0], DS_C_ENTRY_INFO_SELECTION);
OMX_ATTR_TYPE_DESC(cpub_eis[1], DS_ATTRIBUTES_SELECTED,DS_A_SURNAME);
OMX_ATTR_TYPE_DESC(cpub_eis[2], DS_ATTRIBUTES_SELECTED,DS_A_TITLE);
OMX_ENUM_DESC(cpub_eis[3], DS_INFO_TYPE, DS_TYPES_ONLY);
OMX_OM_NULL_DESC(cpub_eis[4]);

These macros are described in Chapter 7.

3–4 Using the OSI-Abstract-Data Manipulation API

You can create a public object that is a copy of a private object using the Get
function. This function is described in Section 3.3.

3.2 Modifying a Private Object
There are several ways of modifying a private object:

• Remove specified attribute values (see Section 3.2.1).

• Insert new attribute values or replace existing ones (see Section 3.2.2).

• Copy attribute values from a private object to an attribute (see
Section 3.2.3).

• Write a segment of a string to an attribute (see Section 3.2.4).

3.2.1 Removing Attribute Values
If you wish to remove attribute values from a private object, you can do so
using the Remove function. You can remove a single value (even if this is the
only value in the attribute) or a range of values. If no attribute values remain
after you use the Remove function, the attribute no longer exists (the function
deletes the attribute).

When you use this function, you must specify the following:

• The private object whose attribute value, or values, you want to remove (in
the Subject argument).

• The type of the attribute whose value, or values, you want to remove (in
the Type argument).

• The position of the first value you want to remove (in the Initial Value
argument).

• The position after the last value you want to remove (in the Limiting Value
argument).

Attribute value positions start at zero. The first value in an attribute is
therefore at position zero.

For a full description of the Remove function, refer to Chapter 5.

The following example shows a single value being removed from a
private object of X.400 Message Handling class Message (message).
MH_T_LATEST_DELIVERY_TIMEis the attribute type whose value is removed.
This attribute has one value. The function therefore removes the value and
deletes the attribute.

Using the OSI-Abstract-Data Manipulation API 3–5

OM_private_object message;
OM_return_code result;

result = om_remove (message,
/* object from which to remove value */

MH_T_LATEST_DELIVERY_TIME,
/* attribute to remove */

0,1));
/* position of single value to remove */

The following example shows a range of values being removed from a private
object of the X.500 class Entry-Information-Selection (select_info):

OM_private_object select_info;
OM_return_code result;

result = om_remove (select_info,
/* object from which to remove value */

DS_ATTRIBUTES_SELECTED,
/* attribute to remove */

1,4));
/* range of values to remove */

DS_ATTRIBUTES_SELECTEDis the attribute type whose values are removed. If
this attribute has five values (positions 0 to 4), then this function removes the
second, third and fourth values.

3.2.2 Putting Values into a Private Object
You can use the Put function to allocate values to attributes that have not
been initialized, or to change attribute values. The Put function places
copies of attribute values from one object (the source) into another object (the
destination). The destination must be private; the source can be private or
public.

Use the Included Types argument to specify the attribute type, or types, whose
values you want to copy. If a specified attribute type is present in the source
object, then all its values are copied to the attribute of the same type in the
destination. If you do not specify any types, then the values of all attribute
types in the source are copied to corresponding attributes in the destination.

You can specify that you want to replace values in the destination with source
values, or that you want to insert the source values at particular points in
the destination, leaving existing destination values unchanged. You specify
the way that values are inserted into the destination using the Modification
argument as follows:

• To insert values before any existing attribute values in the destination,
specify insert-at-beginning.

3–6 Using the OSI-Abstract-Data Manipulation API

• To insert values after any existing attribute values in the destination,
specify insert-at-end.

• To remove existing values from the attribute in the destination and replace
them with the values from the source, specify replace-all.

• To place values before the value at a specified position in the destination
attribute, specify insert-at-certain-point.

When you use this value, specify the position before which you want the
values inserted as the Initial Value argument.

• To remove values at specified positions in the destination attribute and
replace them with the values from the source attribute, specify replace-
certain-values. The number of values removed from the destination does
not have to equal those in the source. For example, you could remove five
values and replace them with a single value, or remove a single value and
replace it with two values.

When you use this argument, specify the values to be replaced as follows:

The position of the first value to be replaced as the Initial Value
argument

The position after the last value to be replaced as the Limiting value
argument

The class of the source object is ignored; it has no effect on the destination
object.

For a full description of the Put function, refer to Chapter 5.

The following example shows how to create an object of the X.500 class
Entry-Mod (modification). The values from a public object of the same class,
pub_mod, are put into the private object using Put.

#define ASTR "DS_A_COMMON_NAME"
#define STR1 "John Smith"
#define STR2 "Jack Smith"
#define STR3 "Jonathan Smith"

om_private_object modification;
OM_return_code result;
OM_workspace workspace;

Using the OSI-Abstract-Data Manipulation API 3–7

/* declare public object, pub_mod */
static OM_descriptor pub_mod[] = {

OM_OID_DESC (OM_CLASS, DS_C_ENTRY_MOD),
{DS_ATTRIBUTE_TYPE, OM_S_OBJECT_IDENTIFIER_STRING, OM_STRING(ASTR)},
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING(STR1)},
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING(STR2)},
{DS_ATTRIBUTE_VALUES, OM_S_PRINTABLE_STRING, OM_STRING(STR3)},
{DS_MOD_TYPE, OM_S_ENUMERATION, DS_ADD_VALUES}
OM_NULL_DESCRIPTOR

};

/* create private object, modification*/
result = om_create (DS_C_ENTRY_MOD,

/* class of object */
OM_FALSE,

/* do not initialise attributes */
workspace,

/* workspace in which object created */
&modification);

/* created object */

/* put the values from the public object into the private object */

result = om_put (modification,
/* destination object */

OM_REPLACE_ALL,
/* type of modification */

pub_mod,
/* source of values to be put */

0,0,0);
/* include all attributes, all positions */

After the call to the Put function, the private object modification contains all
the attributes and values declared in the public object pub_mod.

3.2.3 Copying a String Attribute Value
Use the Copy Value function to copy a string attribute value from one
private object to another. If the attribute to which you are copying has no
existing value, this function inserts the copied value. Otherwise, the function
overwrites the existing value.

Both values must be strings. The syntax of the copied value is the same as the
syntax of the value from which the copy is made. For example, if the syntax of
the attribute value from which you are copying is String(Graphic), the syntax
of the attribute value to which you are copying is also String(Graphic).

When you use this function you must specify the following:

• The private object from which the string is copied (in the Source argument).

3–8 Using the OSI-Abstract-Data Manipulation API

• The type of the attribute from which the string is copied (in the Source
Type argument).

• The position in the attribute of the string that you want copied (in the
Source Value Position argument).

• The private object into which the string is copied (in the Destination
argument).

• The type of the attribute into which the string is copied (in the Destination
Type argument).

• The position in the attribute into which the string is copied, replacing any
existing value at that position (in the Destination Value argument).

For a full description of the Copy Value function, refer to Chapter 5.

The following example shows how to copy a string value between two objects
of the X.400 Message Handling class Delivery Envelope (envelope1 and
envelope2).

OM_private_object envelope1,
envelope2;

OM_return_code result;

result = om_copy_value (envelope1,
/* source object */

MH_T_CONTENT_IDENTIFIER,
/* source attribute */

0,
/* position of value in source attribute */

envelope2,
/* destination object */

MH_T_CONTENT_IDENTIFIER,
/* destination attribute */

0);
/* position in destination attribute */

This call to Copy Value reads the string value at position 0 in the Content
Identifier attribute of envelope1 . This value is then copied to position 0 in the
Content Identifier attribute of envelope2 .

Using the OSI-Abstract-Data Manipulation API 3–9

3.2.4 Writing a String Attribute Value in Segments
Use the Write function to write a segment of a string value into a private
object. This function is useful for long string values.

You can call the function as many times as necessary to write a long string
attribute value without having to place a copy of the whole value in memory.
For example, you can use the Write function to write text into the body part of
an X.400 message.

You can use the Write function to create new attribute values or to alter
existing ones. You can insert segments into an existing attribute at any point,
but any values already in the string beyond the insertion point are overwritten.
The segment that you write therefore automatically becomes the last segment
of the attribute value.

You do not have to use the Write function to put a long string value in an
attribute. You can use the Put and Copy Value functions on long strings as
well.

When you use this function, you must specify the following:

• The private object into which the segment is written (in the Subject
argument).

• The type of the attribute into which the segment is written (in the Type
argument).

• The position of the value in the attribute into which the segment is written
(in the Value Position argument).

• The syntax of the value into which the segment is written, if the value does
not already exist (in the Syntax argument).

• The offset, in octets, within the value, to start writing the segment (in the
Starting Position argument).

• The string segment that is written to the value (in the Elements
argument).

This function has an output argument, Next Position, which gives the offset
(in octets) of the last segment written. You can use this value as the Starting
Position argument of the next call to the Write function, thereby writing the
string sequentially to an attribute value.

For a full description of the Write function, refer to Chapter 5.

3–10 Using the OSI-Abstract-Data Manipulation API

The following example shows a string segment being written to an object of the
X.400 Interpersonal Messaging class IA5 Text Body Part (body_part).

OM_return_code result;
OM_value_position position;

input_string = OM_STRING ("Text Body");
position = 0;

result = om_write (body_part,
/* object containing string segment */

IM_TEXT,
/* attribute containing string segment */

0,
/* position of value to write to */

OM_S_IA5_STRING,
/* syntax of value */

&position,
/* starting position for current/next string */

input_string);
/* string segment to be written */

In this example the type of attribute being written to is IM_TEXT; the position
of the value being written to is 0; the syntax of the value is OM_S_IA5_STRING.

3.3 Examining a Private Object
This section explains how to read the attribute values of a private object. Your
application will need to do this so that it can process the results of certain
function calls. A User Agent designed to use the X.400 API, for example, must
examine the object returned from a call to the Start Delivery function in order
to convey the information in it to the appropriate user or users. Similarly, an
application that uses the X.500 API, must examine the object returned from a
call to the Search function.

To examine the values of a private object, you must use the Get function.
A private object is a nested data structure, and the Get function allows you
to obtain data from any desired level in the structure. You can use the Get
function in different ways:

• You can use the Get function to get all the data back in one go as a service-
generated public object, that is, a descriptor list, and then write your own
routines to work through the list. This method duplicates all the data that
you ask for.

If run-time speed is important and memory usage is not a consideration,
then using this method avoids the overhead of multiple OM calls.

Using the OSI-Abstract-Data Manipulation API 3–11

• You can use the Get function to work down the nested structure, getting
data from one level at a time. This method does not duplicate data (from
the private object to a public object) until you get to the values you want.

Use this method if you wish to limit memory usage, or if the overhead of
multiple OM calls is acceptable.

• You can use a combination of the above methods by working your way
down the nested structure one level at a time until you get to the subobject
you are interested in, and then retrieve all the data from that subobject in
one go.

To work through a data structure one level at a time, use exclusions when
calling the Get function. For example, you can exclude certain attribute types
from the public copy. The exclusions you specify determine which subsets of
the private object are copied into the public object.

You can combine exclusions by adding the values that denote individual
exclusions.

When you use this function you must specify the following:

• The private object that you want a public copy of (in the Original
argument).

• The exclusions to be applied (in the Exclusions argument). See Part II for
details of the values of this argument.

• If you specified the value exclude-all-but-these-types in the Exclusions
argument, then you must specify the attribute types that you want
included in the copy (in the Included Types argument).

• Whether you want any string values translated into an implementation-
defined local character set representation (in the Local Strings argument).

• If you specified the value exclude-all-but-these-values in the Exclusions
argument, then you must specify the position within the original’s
attributes of the first value to be included in the copy (in the Initial Value
argument).

You must also specify the position within the original’s attributes of the
value after the last value to be included in the copy (in the Limiting Value
argument).

Some attributes in the public copy may be subobjects. Descriptors representing
these subobjects are returned by the call to the Get function, unless you
specify exclude-subobjects in the Exclusions argument. If you specify exclude-
subobjects, you only get a pointer (handle) to the private subobject. Therefore,

3–12 Using the OSI-Abstract-Data Manipulation API

to examine the private subobjects, use the Get function again, passing the
subobject as the Original argument to the function.

Note that if you specify exclude-values, the copy includes subobjects but
without their values.

If the public copy contains an attribute with a syntax of long string, the
function does not return a descriptor for that attribute. You must call the Read
function to examine the attribute. Section 3.4 describes the Read function.

For a full description of the Get function, refer to Chapter 5.

The following example shows how to use the Get function to make a public
copy of an object of the X.400 Message Handling class Local Per-recipient NDR
(ndr) containing the attribute MH_T_TEMPORARY.

OM_private_object ndr;
OM_public_object ndr_copy;
OM_value_position total_number;

OM_type
temporary[] = {MH_T_TEMPORARY, OM_NO_MORE_TYPES};

result = om_get (ndr,
/* object to be copied */

OM_EXCLUDE_ALL_BUT_THESE_TYPES,
/* include attributes of specified types */

temporary,
/* type to be included */

OM_FALSE,0,0,
/* no translation into local char set */

ndr_copy,
/* the copy */

&total_number);
/* number of attributes copied */

The example shows the use of the exclusion exclude-all-but-these-types.
The public copy (ndr_copy) includes a descriptor representing the attribute
MH_T_TEMPORARY (temporary), and its single value.

The following example shows how to use the Get function to work down a
nested structure, getting one level at a time. The structure is a Result object
returned from a call to the X.500 API DS Read function. Note that this code
example uses the dsX_trace_object function, which is not available in the
MAILbus 400 API.

Using the OSI-Abstract-Data Manipulation API 3–13

/* declare an OM-type-list structure and variables to hold pointers to the
entry, DS_object and RDNS subobjects:
*/

OM_integer desc_count;
OM_object read_result;
OM_type included_types[2];
OM_public_object spub_entry;
OM_public_object spub_DS_object;
OM_public_object spub_RDNS;

/* and set up the OM attributes you want to get first: */

included_types[0] = DS_ENTRY;
included_types[1] = OM_NO_MORE_TYPES;

/* now get only a pointer to the first subobject, the entry */

om_status = om_get(read_result,
OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
included_types, OM_FALSE, 0, OM_ALL_VALUES,
&spub_entry, &desc_count);

/* the object spub_entry now contains only the
OM-descriptor for an entry-information object */

dsX_trace_object(spub_entry);

/* Now use OM_get() again to extract the DN of the object */

included_types[0] = DS_OBJECT_NAME;
om_status = om_get(spub_entry->value.object.object,

OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
included_types, OM_FALSE, 0, OM_ALL_VALUES,
&spub_DS_object, &desc_count);

dsX_trace_object(spub_DS_object);

/* Next, use OM_get() again to extract the RDNS */

included_types[0] = DS_RDNS;
om_status = om_get(spub_DS_object->value.object.object,

OM_EXCLUDE_ALL_BUT_THESE_TYPES+OM_EXCLUDE_SUBOBJECTS,
included_types, OM_FALSE, 0, OM_ALL_VALUES,
&spub_RDNS, &desc_count);

dsX_trace_object(spub_RDNS);

/* Now loop around each RDN, extract a pointer to the AVAS
and then extract the attribute type and value
*/

...

/* When finished, remember to delete all the objects you have used */

3–14 Using the OSI-Abstract-Data Manipulation API

3.4 Reading a String Attribute Value
Use the Read function to read a string in a private object, one segment at
a time. This function enables you to read a specific segment of a long value
without placing a copy of the entire value in memory. You specify which
segment of the attribute value you want to read in your call to Read.

You must specify the following when you use this function:

• The private object from which the string value is read (in the Subject
argument).

• The type of the attribute from which the string value is read (in the Type
argument).

• The position in the attribute of the value that is read (in the Value Position
argument).

• A Boolean value indicating whether the string is converted into the local
character set representation (in the Local String argument).

• The position within the string value of the element that is read (in the
First-Element-Position argument).

• A pointer to a variable of type OM_string into which the element is read
(in the Elements argument).

The Read function has an output argument, Next Position, which gives the
offset (in octets) within the string of the next segment to be read. You can
use this value as the Starting Position argument of the next call to the Read
function. Therefore, you can read a string sequentially from an attribute into
the storage declared in the Elements argument.

For a full description of the Read function, refer to Chapter 5.

The following example shows how to read a string value from an object of the
X.400 Interpersonal Messaging class IA5 Text Body Part (body_part). The
Service will return 0 when there is no more text left to read.

OM_private_object body_part;
OM_return code result;
OM_string message;
OM_string_length offset;
char read_buffer[1024];

message.length = 1024
message.elements = read_buffer;
offset = 0;

Using the OSI-Abstract-Data Manipulation API 3–15

result = om_read (body_part,
/* object containing value to be read */

IM_TEXT,
/* attribute from which value is to be read */

0,
/* position of value to read from */

OM_FALSE,
/* no translation into local char set */

&offset,
/* string offset of segment to be read */

&message);
/* the string read from the value */

The type of the attribute read is IM_TEXT. The first element of the first value in
this attribute is read into message .

3.5 Deleting an Object
You can use the Delete function to delete private objects or service-generated
public objects when you no longer require them. This function releases all the
resources that the Service assigned to the object.

3.5.1 Deleting a Service-Generated Public Object
When you use the Delete function to delete a service-generated public object,
the function also deletes all the object’s public subobjects. However, it does not
delete its private subobjects.

For a full description of the Delete function, refer to Chapter 5.

The following example shows how to delete a service-generated public object of
the X.500 class Entry-Info-Selection (info_select_copy). The object is a public
copy of a private object of the Entry-Info-Selection class info_select .

OM_return_code result;
OM_private_object info_select;
OM_object info_select_copy;
OM_value_position total_number;

3–16 Using the OSI-Abstract-Data Manipulation API

result = om_get (info_select,
/* object to be copied */

OM_NO_EXCLUSIONS,
/* no exclusions */

NULL,
/* ignored because no exclusions specified */

OM_FALSE,0,0,
/* no translation into local char set */

&info_select_copy,
/* the copy */

&total_number);
/* number of attributes copied */

/* Examine info_select_copy public object using C programming language
constructs */

/* Delete object when finished with it */

result = om_delete (info_select_copy);
/* the object to be deleted */

3.5.2 Deleting a Private Object
When you use the Delete function to delete a private object, the object and its
private subobjects become inaccessible; that is, the handles of the object and of
its subobjects, if any, become invalid.

If you use the function to delete a private object that is a subobject of another
private object, then the subobject becomes inaccessible by its own handle, but
is still accessible if you use the Get function on the private object that contains
it. A private object is only deleted when all handles to it are invalid.

The following example shows how to delete a private object of the X.400
Message Handling class Local NDR (ndr), created using the Create function.

OM_return_code result;
OM_workspace workspace;
OM_private_object ndr;

result = om_create (MH_C_LOCAL_NDR,
/* class of object */

OM_TRUE,
/* initialise attributes */

workspace,
/* workspace */

&ndr);
/* created object */

/* Manipulate ndr private object using OM functions, and use it as
input to the X.400 API Message Access (MA) Finish-Delivery function,
ma_finish_delivery */

Using the OSI-Abstract-Data Manipulation API 3–17

/* Delete object when finished with it */

result = om_delete (ndr);
/* the object to be deleted */

3.6 Copying an Object
The Copy function allows you to create an exact copy of a private object and
its subobjects. The service places the copy in a workspace that you specify
when you call the Copy function. The copy is independent of the original and
so when you modify the copy, the original is not affected.

Specify the following when you call this function:

• The private object to be copied.

• The workspace into which the copy is to be placed.

• A pointer to a private object, which will contain the copy.

For a full description of the Copy function, refer to Chapter 5.

The following example shows how to copy an object of the X.400 Message
Handling class Local NDR (ndr). The copy is ndr_copy .

OM_return_code result;
OM_private_object ndr,

ndr_copy;
OM_workspace workspace;

result = om_copy (ndr,
/* object to be copied */

workspace,
/* workspace in which to create copy */

&ndr_copy);
/* the copy */

3.7 Determining the Class of an Object
The Instance function enables you to find out whether an object is an instance
of a specified class. You can use this function to determine the class of private
or service-generated public objects.

For example, suppose you want to check that Object A is an instance of the
X.500 class, Attribute-List. Object A is an instance of the Entry-Info class,
which is a subclass of Attribute-List. Examining the Class attribute of Object
A gives the value Entry-Info. However, using the Instance function with Object
A’s Handle and the identifier of the Attribute-List class as arguments confirms
that Object A is also an instance of the Attribute-List class.

3–18 Using the OSI-Abstract-Data Manipulation API

Specify the following when you call this function:

• The name of the object whose class you wish to check (in the Subject
argument).

• The class that you are testing for (in the Class argument).

• A pointer to a variable of type Boolean that will contain the result of the
query.

After the application has called the function, the Boolean variable contains
the value true if the object is an instance of the given class (or one of its
subclasses), and false if it is not.

For a full description of the Instance function, refer to Chapter 5.

The following example shows how to check a private object, an_object , to see
if it is an instance of the X.400 Message Handling class Submitted Message
RD. inst is the return argument. The function returns true in the parameter
if the object is an instance of the Submitted Message RD class, or its subclass
Message RD.

OM_private_object an_object;
OM_return_code result;
OM_boolean inst;

result = om_instance (an_object,
/* object to be checked */

MH_C_SUBMITTED_MESSAGE_RD,
/* class to be checked against */

&inst);
/* result */

if (inst == OM_TRUE)
/* the object is an instance of specified class */

else
/* the object is not an instance of specified class */

3.8 Encoding and Decoding Private Objects
The OM API provides two functions, Encode and Decode, which respectively
enable you to encode private objects, and to decode encoded objects back into
private objects. The current version only supports the encoding of objects
according to ASN.1 Basic Encoding Rules (BER).

The advantage of encoding data is that it becomes completely transportable;
the data can have only one meaning, regardless of the hardware platform.

Using the OSI-Abstract-Data Manipulation API 3–19

3.8.1 Encoding
The Encode function enables you to create a new private object that is the
encoded version of an existing private object. Because the encoding can only be
done according to the Basic Encoding Rules, you must specify OM_BER in the
function call.

For a full description of the Encode function, refer to Chapter 5.

The following example shows the encoding of an object of the X.400 Message
Handling class Report (encodable_object). The object is encoded according to
the rules OM_BER, and the encoded object is encoding .

OM_return_code result;
OM_private_object encodable_object,

encoding;

result = om_encode (encodable_object,
/* object to be encoded */

OM_BER,
/* encoding rules */

&encoding);
/* encoded object */

3.8.2 Decoding
The Decode function creates a new private object that is a decoded version
of an existing encoded private object. The copy is independent and any
alterations you make to the original do not affect the copy.

For a full description of the Decode function, refer to Chapter 5.

The following example shows the decoding of the object encoded in the code
example from Section 3.8.1. The encoded object is encoding , and the decoded
object is decoded_object .

OM_return_code result;
OM_private_object encoding,

decoded_object;

result = om_decode (encoding,
/* object to be decoded */

&decoded_object);
/* decoded object */

The decoded object is an instance of the X.400 Message Handling class Report,
the same as the object that was previously encoded.

3–20 Using the OSI-Abstract-Data Manipulation API

Part II
Reference

This part gives reference information for the OM API. It contains five chapters
and three appendixes:

• Chapter 4: this describes the Object Management Package.

• Chapter 5: this describes the OM API functions, for example the Get and
Put functions.

• Chapter 6: this describes the syntaxes that OM attribute values can have.

• Chapter 7: this describes the data types defined for OM.

• Chapter 8: this describes the OM API header files.

• Appendix A: this lists the declarations that define the symbolic constants
for the C interface of the OM API.

• Appendix B: this lists the characters that are allowed in string types
Printable, Numeric and IA5.

• Appendix C: this lists and explains the return values used by the functions
in the OM API.

4
Object Management Package

This chapter describes the Object Management (OM) package.

4.1 OM Package Object Identifier
An object identifier is assigned to the OM package. In Abstract Syntax
Notation One (ASN.1), it is specified as:

{joint-iso-ccitt mhs-motis(6) group(6) white(1) api(2) om(4)}

The OM API header file includes a symbol definition for this object identifier.
The symbol is OM_OM.

4.2 Class Hierarchy
Figure 4–1 shows the Object Management class hierarchy. The italic font used
for the Object class indicates that it is an abstract class. The bold font used
for the External class indicates that it is a class to which om_encode applies.
om_create applies to both concrete classes. (The OM functions are described in
Chapter 5.)

Figure 4–1 Class Hierarchy of the OM Classes

Encoding

MIG0090

Object

External

Object Management Package 4–1

Section 4.3 contains definitions of these classes.

4.3 Class Definitions
This section describes the classes in the OM package. The attributes belonging
to each class are shown in tables with the following columns:

• OM Attribute

Lists the attributes specific to the class.

• Value Syntax

Gives the syntax for each attribute.

• Value Length

Indicates constraints on the number of bits, octets, or characters in each
value that is a string.

• Number of Values

Indicates constraints on the number of values (and therefore whether the
value is optional or mandatory).

• Initial Value

Shows the values that om_create supplies when you initialize the
application.

Beneath each table is a list describing the attributes in the table.

4.3.1 Object
OM_C_OBJECT

The Object class represents information objects. This abstract class has no
superclass, and all other classes in the OM Package are its subclasses.

The Object class has the attribute shown in the following table.

OM Attribute Value Syntax
Value

Length
Number

of Values Initial Value

Class String(Object Identifier) - 1 -

Class (OM_CLASS)
Specifies the class of the object.

4–2 Object Management Package

4.3.2 Encoding
OM_C_ENCODING

An instance of the Encoding class is an object in a form suitable for passing
between workspaces, for transport across a network, or for storage in a file.
The form may also be suitable for presentation to an intermediate service
provider, for example a Directory Service or a Message Transfer System that
would not otherwise recognize the object.

This class has the attributes of its superclass plus those listed in the following
table.

OM Attribute Value Syntax
Value

Length
Number

of Values Initial Value

Object Class String(Object Identifier) - 1 -

Object Encoding String(Encoding) - 1 -

Rules String(Object Identifier) - 1 BER

Object Class (OM_OBJECT_CLASS)
Identifies the class of the object that the Object Encoding attribute encodes.
The class should be a concrete class.

Object Encoding (OM_OBJECT_ENCODING)
The encoding.

Rules (OM_RULES)
Identifies the set of rules that were followed to produce the Object Encoding
attribute. The current version of the OM API only supports the ASN.1
Basic Encoding Rules (BER), the symbol for which is OM_BER.

NOTE

An object of the Encoding class must appear as a value whose syntax
is Object(Encoding), even if the encoded object belongs to some other
class.

Object Management Package 4–3

4.3.3 External
OM_C_EXTERNAL

An instance of the External class describes a data value and identifies its data
type. This class corresponds to the ASN.1 class External.

This class has the attributes of its superclass plus those listed in the following
table.

OM Attribute Value Syntax
Value

Length
Number

of Values Initial Value

Arbitrary Encoding String(Bit) - 0-11 -

ASN1 Encoding String(Encoding) - 0-11 -

Data Value Descriptor String(Object Descriptor) - 0-1 -

Direct Reference String(Object Identifier) - 0-1 -

Indirect Reference Integer - 0-1 -

Octet Aligned Encoding String(Octet) - 0-11 -

1Exactly one of these three attributes must be present in an instance of the External class.

Arbitrary Encoding (OM_ARBITRARY_ENCODING)
Represents the data value as a bit string.

ASN1 Encoding (OM_ASN1_ENCODING)
The data value, present only if the data type is an ASN.1 type.

Data Value Descriptor (OM_DATA_VALUE_DESCRIPTOR)
A description of the data value.

Direct Reference (OM_DIRECT_REFERENCE)
A direct reference to the data type.

Indirect Reference (OM_INDIRECT_REFERENCE)
An indirect reference to the data type.

Octet Aligned Encoding (OM_OCTET_ALIGNED_ENCODING)
Represents the data value as an octet string.

4–4 Object Management Package

4.4 C Naming Conventions
The OM API supports only the C programming language. How a C identifier
is derived depends upon the type of element, as described in Table 4–1. The C
identifier has the prefix listed in the column headed Prefix. The remainder of
the identifier is in the case listed in the column headed Case.

Table 4–1 C Naming Conventions

Element Type Prefix Case

Data type om_ Lower

Data value OM_ Upper

Data value (class 1) OM_C_ Upper

Data value (syntax) OM_S_ Upper

Data value component (structure
member)

– Lower

Function om_ Lower

Function argument – Lower

Function result – Lower

Macro OM_ Upper

Reserved for use by implementors OMP Any

Reserved for use by implementors omP Any

Reserved for proprietary extension omX Any

Reserved for proprietary extension OMX Any

Object Management Package 4–5

5
OSI-Abstract-Data Manipulation Functions

This chapter describes the OM API functions. The functions are listed in
alphabetical order.

Each function description includes a list of return values. For an explanation
of these values, refer to Appendix C.

OSI-Abstract-Data Manipulation Functions 5–1

om_copy

om_copy

Creates a copy of an existing private object.

Syntax

OM_return_code om_copy (original, workspace, copy)

Argument Data Type Access

original OM_private object read

workspace OM_workspace read

copy OM_private_object write

return_code OM_return_code

C Binding

OM_return_code om_copy (original, workspace, copy)

OM_private_object original,
OM_workspace workspace,
OM_private_object �copy

Arguments

Original
The original private object.

Workspace
The workspace in which the Service creates the copy. The workspace that the
Client specifies in this argument must be one that is associated with a package
containing the class of the original object.

Copy
The copy of the original object. The Service returns this argument if the
Return Code of the function is OM_SUCCESS.

5–2 OSI-Abstract-Data Manipulation Functions

om_copy

Description

This function creates a new private object, the copy, which is an exact but
independent copy of an existing private object, the original. The function also
copies the original’s subobjects, if it has any.

The Client can specify a workspace in which the Service should place the
copy. If the Client does not do so, the Service places the copy in the original’s
workspace.

Return Values

OM_SUCCESS
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_CLASS
OM_NO_SUCH_OBJECT
OM_NO_SUCH_WORKSPACE
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR
OM_TOO_MANY_VALUES

OSI-Abstract-Data Manipulation Functions 5–3

om_copy_value

om_copy_value

Copies a value (string) from a private object and places it in another private
object.

Syntax

OM_return_code om_copy_value (source, source_type, source_value_position, destination,
destination_type, destination_value_position)

Argument Data Type Access

source OM_private_object read

source_type OM_type read

source_value_position OM_value_position read

destination OM_private_object read

destination_type OM_type read

destination_value_position OM_value_position read

return_code OM_return_code

C Binding

OM_return_code om_copy_value (source, source_type, source_value_position, destination,
destination_type, destination_value_position)

OM_private_object source,
OM_type source_type,
OM_value_position source_value_position,
OM_private_object destination,
OM_type destination_type,
OM_value_position destination_value_position

Arguments

Source
The object from which you want to copy the value.

Source Type
The type of the attribute value from which you want to copy the value.

Source Value Position
The position within the attribute of the value to be copied.

5–4 OSI-Abstract-Data Manipulation Functions

om_copy_value

Destination
The object to which you want to copy the value.

Destination Type
The type of the attribute to which you want to copy the value.

Destination Value Position
The position within the destination attribute at which you want to place the
copied value. If the value of this argument exceeds the number of values in the
Destination attribute, then it is taken to be equal to that number.

Description

This function either replaces, or fills in for the first time, an attribute value in
the destination object with a copy of an attribute value from the source object.
The source value should be a string. The copy has the same syntax as the
source value. See Chapter 7 for more information on the String data type.

Return Values

OM_SUCCESS
OM_FUNCTION_DECLINED
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_OBJECT
OM_NO_SUCH_TYPE
OM_NOT_PRESENT
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR
OM_WRONG_VALUE_LENGTH
OM_WRONG_VALUE_SYNTAX
OM_WRONG_VALUE_TYPE

OSI-Abstract-Data Manipulation Functions 5–5

om_create

om_create

Creates a new private object that is an instance of a particular class.

Syntax

OM_return_code om_create (class, initialise, workspace, object)

Argument Data Type Access

class OM_object_identifier read

initialise OM_boolean read

workspace OM_workspace read

object OM_private_object write

return_code OM_return_code

C Binding

OM_return_code om_create (class, initialise, workspace, object)

OM_object_identifier class,
OM_boolean initialise,
OM_workspace workspace,
OM_private_object �object

Arguments

Class
The class of the object you are creating. It must be a concrete class.

Initialise
If you set this argument to OM_TRUE, the object that you create has some of
its attributes initialised. These are the attributes for which initial values are
specified in the class definition table. You can find these class definition tables
in the documentation for the X.400 and X.500 APIs.

If you set this argument to OM_FALSE, the object you create has only its Class
attribute initialised.

Workspace
The workspace in which the Service should create the object. The class you
specify for the object must be in a package that you have already associated

5–6 OSI-Abstract-Data Manipulation Functions

om_create

with this workspace. Chapter 2 explains how to associate a package with a
workspace.

Object
This is the created object. The Service returns this argument if the Return
Code of the function is OM_SUCCESS.

Description

This function creates a private object in the workspace that you specify.

You can add new values and replace or remove existing values, any time after
the object has been created. In this way, you can create any possible instance
of the object’s class.

Return Values

OM_SUCCESS
OM_FUNCTION_DECLINED
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_CLASS
OM_NO_SUCH_WORKSPACE
OM_NOT_CONCRETE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR

OSI-Abstract-Data Manipulation Functions 5–7

om_decode

om_decode

Creates a new private object that decodes an existing ASN.1 private object.

Syntax

OM_return_code om_decode (encoding, original)

Argument Data Type Access

encoding OM_private_object read

original OM_private_object write

return_code OM_return_code

C Binding

OM_return_code om_decode (encoding, original)

OM_private_object encoding,
OM_private_object �original

Arguments

Encoding
The encoded object that you want to decode. It must be an instance of the
Encoding class.

Original
An object that is the decoded version of the encoding. The Service creates this
object in the workspace in which the encoding is located. The Service returns
this argument if the Return Code of the function is OM_SUCCESS.

Description

This function creates a new private object by decoding the ASN.1 of the original
object.

In the Encoding argument, you specify the class of the existing object and the
rules used to encode it. In the current version of the OM API, you must specify
ASN.1 BER.

5–8 OSI-Abstract-Data Manipulation Functions

om_decode

Return Values

OM_SUCCESS
OM_ENCODING_INVALID
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_CLASS
OM_NO_SUCH_OBJECT
OM_NO_SUCH_RULES
OM_NOT_AN_ENCODING
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR
OM_TOO_MANY_VALUES
OM_WRONG_VALUE_LENGTH
OM_WRONG_VALUE_MAKEUP
OM_WRONG_VALUE_NUMBER
OM_WRONG_VALUE_SYNTAX
OM_WRONG_VALUE_TYPE

OSI-Abstract-Data Manipulation Functions 5–9

om_delete

om_delete

Deletes a service-generated public object or makes a private object inaccessible.

Syntax

OM_return_code om_delete (subject)

Argument Data Type Access

subject OM_object read

return_code OM_return_code

C Binding

OM_return_code om_delete (subject)

OM_object subject

Arguments

Subject
The object that you want the Service to delete. It must be a service-generated
public object or a private object. If the object that you specify is a client-
generated public object, the function returns an error status.

Description

This function deletes a service-generated public object, or makes a private
object inaccessible.

When you apply this function to a service-generated public object, the function
deletes the object and releases the resources associated with it. The resources
include the space occupied by descriptors and attribute values. The function
also deletes all public subobjects of the subject. This function does not delete
private subobjects.

When you apply this function to a private object, the function makes the object
inaccessible by making its Handle invalid. The function also makes invalid the
Handles of any private subobjects of the subject. Note that the effect of using
an object’s Handle once it has been made invalid is undefined.

5–10 OSI-Abstract-Data Manipulation Functions

om_delete

Return Values

OM_SUCCESS
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_OBJECT
OM_NO_SUCH_SYNTAX
OM_NO_SUCH_TYPE
OM_NOT_THE_SERVICES
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR

OSI-Abstract-Data Manipulation Functions 5–11

om_encode

om_encode

Creates a new private object that encodes an existing private object.

Syntax

OM_return_code om_encode (original, rules, encoding)

Argument Data Type Access

original OM_private_object read

rules OM_object_identifier read

encoding OM_private_object write

return_code OM_return_code

C Binding

OM_return_code om_encode (original, rules, encoding)

OM_private_object original,
OM_object_identifier rules,
OM_private_object �encoding

Arguments

Original
The object you want to encode.

Rules
The set of rules that the Service must follow to produce an encoding. In this
version of the OM API, you can only specify ASN.1 BER.

Encoding
An object that is the encoded version of the original. The Service creates
this object in the workspace in which the original is located. The Service
returns this argument if the Return Code of the function is OM_SUCCESS.
The returned object is an instance of the Encoding class.

5–12 OSI-Abstract-Data Manipulation Functions

om_encode

Description

This function creates a new private object, the encoding, which exactly and
independently encodes an existing private object, the original.

When you apply this function to a private object, the function uses the encoding
rules you specify to create a new private object. The new encoded private object
is independent of the original private object.

Return Values

OM_SUCCESS
OM_FUNCTION_DECLINED
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_OBJECT
OM_NO_SUCH_RULES
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR

OSI-Abstract-Data Manipulation Functions 5–13

om_get

om_get

Creates a new public object that is a copy of the whole or part of a private
object.

Syntax

OM_return_code om_get (original, exclusions, included_types, local_strings, initial_value,
limiting_value, copy, total_number)

Argument Data Type Access

original OM_private_object read

exclusions OM_exclusions read

included_types OM_type_list read

local_strings OM_boolean read

initial_value OM_value_position read

limiting_value OM_value_position read

copy OM_public_object write

total_number OM_value_position write

return_code OM_return_code

C Binding

OM_return_code om_get (original, exclusions, included_types, local_strings, initial_value,
limiting_value, copy, total_number)

OM_private_object original,
OM_exclusions exclusions,
OM_type_list included_types,
OM_boolean local_strings,
OM_value_position initial_value,
OM_value_position limiting_value,
OM_public_object �copy,
OM_value_position �total_number

5–14 OSI-Abstract-Data Manipulation Functions

om_get

Arguments

Original
The private object, all or part of which you want to copy.

Exclusions
A list of zero or more values, each of which reduces the copy to a portion of the
original. The exclusions apply to the attributes of the original object, but not to
the attributes of its subobjects. This argument has one or more of the following
values:

• OM_EXCLUDE_ALL_BUT_THESE_TYPES

The copy includes descriptors of attributes of specified types only.

• OM_EXCLUDE_MULTIPLES

The copy includes a single descriptor for each attribute having two or
more values, instead of one descriptor for each value. Each such descriptor
contains no attribute value, and the No-Value bit of the syntax component
is set. If the attribute has values of two or more syntaxes, the descriptor
identifies one of those syntaxes. Which syntax it identifies is unspecified.

• OM_EXCLUDE_ALL_BUT_THESE_VALUES

The copy includes descriptors encompassing only values at specified
positions within an attribute.

• OM_EXCLUDE_VALUES

The copy includes a single descriptor for each attribute value, but the
descriptor does not contain the value, and the No-Value bit of the syntax
component is set.

• OM_EXCLUDE_SUBOBJECTS

The copy includes a descriptor for each value which has a syntax of
object. Each descriptor contains an object Handle for the original private
subobject, instead of a public copy of the original private subobject. The
Handle makes the private subobject accessible for use in OM function calls.

• OM_EXCLUDE_DESCRIPTORS

The function does not return any descriptors, nor does it return a value in
the Copy argument. The value of the Total Number argument gives the
number of descriptors which would have otherwise been returned.

• OM_NO_EXCLUSIONS

The copy contains descriptors and values for all attributes in the original.

OSI-Abstract-Data Manipulation Functions 5–15

om_get

If you specify multiple exclusions, the Service applies the exclusions in the
order in which they occur in the above list. If a portion of the object disappears
after the Service applies an exclusion, the Service applies no further exclusions
to that portion.

Included Types
The types of attributes that are to be included in the copy, provided they
appear in the original. This argument must be present if you select the
OM_EXCLUDE_ALL_BUT_THESE_TYPES exclusion, but must otherwise be
set to null.

Local Strings
If you set this argument to OM_TRUE, you indicate to the Service that it must
translate all String(*) values included in the Copy into the local character set
representation. This translation may cause the loss of some information.

Initial Value
The position within each attribute of the first value to be included in the copy.
This argument must be present if you select the OM_EXCLUDE_ALL_BUT_
THESE_VALUES exclusion, but must otherwise be set to null.

If the value of Initial Value is OM_ALL_VALUES, or if it exceeds the number
of values present in an attribute, the Service takes Initial Value to be equal to
the number of values present in the attribute.

Limiting Value
The position in each attribute that is one element beyond the position of
the last value included in the copy. This argument must be present if you
select the OM_EXCLUDE_ALL_BUT_THESE_VALUES exclusion, but must
otherwise be set to null.

If the value of Limiting Value is less than that of Initial Value, the Service does
not put any values in the copy.

If the value of Limiting Value is OM_ALL_VALUES, or if it exceeds the number
of values present in an attribute, then the Service takes Limiting Value to be
equal to the number of values present in the attribute.

Copy
An exact but independent copy of the original. The Service returns this
argument if both the following conditions are true:

• The Return Code of the function is OM_SUCCESS

• You do not specify the OM_EXCLUDE_DESCRIPTORS exclusion

5–16 OSI-Abstract-Data Manipulation Functions

om_get

You do not have to allocate any space to the copy. If you alter any portion of
this space, you may affect the behaviour of the Service.

Total Number
The number of attribute descriptors in the copy. This does not include
descriptors in any subobjects of the copy. If you specify the OM_EXCLUDE_
DESCRIPTORS exclusion, then there is no copy. Therefore, the value in Total
Number is the number of descriptors that the Service would return if you did
not specify OM_EXCLUDE_DESCRIPTORS (applying any other exclusions
that you specified).

NOTE

Total Number excludes the special descriptor that signals the end of a
public object, OM_NULL_DESCRIPTOR.

Description

This function creates a new public object, the copy, which is an exact but
independent copy of an existing private object, the original.

When using this function, you can request certain exclusions, each of which
reduces the copy to a portion of the original.

When this function is used with the X.400 API, one exclusion is requested
implicitly. For each attribute value in the original that is a string exceeding
1024 bytes in length, the copy includes a descriptor that omits the elements,
but specifies the length of the string. In this case, the following applies:

• The syntax of the descriptor has its Long-String bit set.

• The value of the descriptor is a string whose elements component is set
to OM_ELEMENTS_UNSPECIFIED, but whose length component does
specify the correct length.

Note that if you are using the OM API with the X.400 API, you can read long
strings using om_read .

When used with the X.500 API, there is no limit to the length of string
returned by om_get , and so this exclusion is not requested implicitly.

Figure 5–1 shows the original object, with Initial Value and Limiting Value
labelled.

OSI-Abstract-Data Manipulation Functions 5–17

om_get

Figure 5–1 Original Object

Attribute A

Original

Syntax

Value

 Type

Initial Value

B

Attribute B

Syntax

Value

Limiting Value

 Type

A

MIG 0081

Syntax

Value

Syntax

Value

Syntax

Value

Value Position 2

Value Position 1

Value Position 0

First Second Third

In this example, the call to om_get includes the following argument values:

• Exclusions has the value
OM_EXCLUDE_ALL_BUT_THESE_VALUES + OM_EXCLUDE_ALL_BUT_THESE_TYPES

• Included Types lists Type A.

• Local Strings has the value OM_FALSE.

• Initial Value has the value 1, and Limiting Value the value 2.

5–18 OSI-Abstract-Data Manipulation Functions

om_get

Figure 5–2 shows the Copy and Total Number after a call to om_get .

Figure 5–2 Public Object

Type Syntax Value

A

A

S

S

Second

Third

MIG0084

Total Number = 2

AN SN VN

Key:

AN = OM_NO_MORE_TYPES
SN = OM_S_NO_MORE_SYNTAXES
VN = OM_LENGTH_UNSPECIFIED, OM_ELEMENTS_UNSPECIFIED

Value

Value

Return Values

OM_SUCCESS
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_EXCLUSION
OM_NO_SUCH_OBJECT
OM_NO_SUCH_TYPE
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR
OM_WRONG_VALUE_SYNTAX
OM_WRONG_VALUE_TYPE

OSI-Abstract-Data Manipulation Functions 5–19

om_instance

om_instance

Determines whether an object is an instance of a particular class or of one of
its subclasses.

Syntax

OM_return_code om_instance (subject, class, instance)

Argument Data Type Access

subject OM_object read

class OM_object_identifier read

instance OM_boolean write

return_code OM_return_code

C Binding

OM_return_code om_instance (subject, class, instance)

OM_object subject,
OM_object_identifier class,
OM_boolean �instance

Arguments

Subject
The object whose class you want to verify.

Class
The class against which you want to verify the subject.

Instance
The Service sets this argument to OM_TRUE if the subject is an instance
of the class you specified, and OM_FALSE if the subject is not. The Service
returns this argument if the Return Code of the function is OM_SUCCESS.

5–20 OSI-Abstract-Data Manipulation Functions

om_instance

Description

This function enables you to determine whether an object is an instance of a
specified class or of any of the subclasses of that class.

Note that it is possible to determine an object’s class by using programming
constructs to inspect the object, if it is public, or by using om_get , if it is
private. The advantage of the Instance function is that it indicates whether
the object is an instance of the specified class, even when it is also a subclass
of the specified class.

Return Values

OM_SUCCESS
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_CLASS
OM_NO_SUCH_OBJECT
OM_NO_SUCH_SYNTAX
OM_NOT_THE_SERVICES
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR

OSI-Abstract-Data Manipulation Functions 5–21

om_put

om_put

Places copies of the attribute values of a private or public object into a private
object.

Syntax

OM_return_code om_put (destination, modification, source, included_types, initial_value,
limiting_value)

Argument Data Type Access

destination OM_private_object read

modification OM_modification read

source OM_object read

included_types OM_type_list read

initial_value OM_value_position read

limiting_value OM_value_position read

return_code OM_return_code

C Binding

OM_return_code om_put (destination, modification, source, included_types, initial_value,
limiting_value)

OM_private_object destination,
OM_modification modification,
OM_object source,
OM_type_list included_types,
OM_value_position initial_value,
OM_value_position limiting_value

Arguments

Destination
The object into which you want to put attribute values. This function does not
affect the class of the destination.

Modification
A list of modifications to the attributes selected for copying. The modifications
you request determine how the function modifies the destination object with
the attributes, that is, where it puts them.

5–22 OSI-Abstract-Data Manipulation Functions

om_put

The Modification argument can have one of the following values:

• OM_INSERT_AT_BEGINNING

The Service inserts the source values before all existing destination values.
This does not affect the existing destination values.

• OM_INSERT_AT_CERTAIN_POINT

The Service inserts the source values before the value at a specified
position in the destination attribute. This does not affect the existing
destination values.

• OM_INSERT_AT_END

The Service inserts the source values after all existing destination values.
This does not affect the existing destination values.

• OM_REPLACE_ALL

The Service replaces any destination values with the source values, and
discards the original destination values.

• OM_REPLACE_CERTAIN_VALUES

The Service replaces the values at specified positions in the destination
attribute with values from the source. The Service discards the original
destination attribute values at those positions.

Source
The object from which you want to copy attribute values. This function ignores
the class of the source.

Included Types
The types of attributes that should be copied to the destination, if they appear
in the source. If you do not specify a value for this argument, the Service
copies all attributes from the source to the destination.

Initial Value
You need to pass a value for this argument when you select the OM_INSERT_
AT_CERTAIN_POINT modification or the OM_REPLACE_CERTAIN_VALUES
modification. The following table shows what the Initial Value argument
represents in each of these cases.

OSI-Abstract-Data Manipulation Functions 5–23

om_put

Modification Meaning of the Initial Value Argument

insert-at-certain-points The position within each destination attribute at
which the Service should insert source values

replace-certain-values The first value that the Service should replace

If you give this argument a value that is greater than the number of values
present in a destination attribute, or if you use the value OM_ALL_VALUES,
the Service takes Initial Value to be equal to the number of values present in
the destination attribute.

Limiting Value
You need to pass a value for this argument when you select the OM_
REPLACE_CERTAIN_VALUES modification. The argument specifies the
position within each destination attribute that is one beyond that of the last
value to be replaced. The value of Limiting Value must be greater than that of
Initial Value.

If you give this argument a value that is greater than the number of values
present in a destination attribute, or if you use the value OM_ALL_VALUES,
the Service takes Limiting Value to be equal to the number of values present
in the destination attribute.

Description

This function places in one private object, the destination, copies of the
attribute values of another object, the source. The source can be a public or
private object.

You must specify that the Service does one of the following:

• Replace all the values in the destination with values from the source.

• Replace specified values in the destination with values from the source.

• Insert values from the source in a particular position in the destination.

Only use om_put to copy attributes from the source that occur in the definition
of the class to which the destination belongs.

The Service first converts all string values that are in the local representation
into the non-local representation for that syntax.

Figure 5–3 shows an example of a source object and a destination object before
a call to om_put , with Initial Value and Limiting Value labelled.

5–24 OSI-Abstract-Data Manipulation Functions

om_put

Figure 5–3 Source and Destination Objects Before Copying Attribute Values

Initial Value
Limiting Value

Attribute

Destination

A

Attribute
D

Attribute

Source

 Type
A

A Syntax

Value
3

Attribute
B

MIG 0077

Syntax

Value
2

Syntax

Value
1

Syntax

Value
4

Syntax

Value
5

Syntax

Value
6

 Type
A

 Type
D

 Type
B

Syntax

Value
9

Syntax

Value
11

Syntax

Value
10

Syntax

Value
8

Syntax

Value
7

In this example, the call to om_put includes the following argument values:

• Modification has the value OM_REPLACE_CERTAIN_VALUES

OSI-Abstract-Data Manipulation Functions 5–25

om_put

• Included Types lists Type A and Type C

Figure 5–4 shows the destination object after the call to Put.

Figure 5–4 Destination Object After Copying Attribute Values

Syntax

Value
3

Attribute

Destination

 Type
A

A

Attribute
D

MIG 0078

Syntax

Value
2

Syntax

Value
7

Syntax

Value
11

Syntax

Value
10

 Type
D

Syntax

Value
1

There is no attribute of type C in the source object. The destination object
therefore contains no attributes of this type, even though type C is specified in
the Included Types argument.

The destination object contains an attribute, D, which is not affected by om_put .

Return Values

OM_SUCCESS
OM_FUNCTION_DECLINED
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_CLASS
OM_NO_SUCH_MODIFICATION
OM_NO_SUCH_OBJECT
OM_NO_SUCH_SYNTAX

5–26 OSI-Abstract-Data Manipulation Functions

om_put

OM_NO_SUCH_TYPE
OM_NOT_CONCRETE
OM_NOT_PRESENT
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR
OM_TOO_MANY_VALUES
OM_VALUES_NOT_ADJACENT
OM_WRONG_VALUE_LENGTH
OM_WRONG_VALUE_MAKEUP
OM_WRONG_VALUE_NUMBER
OM_WRONG_VALUE_POSITION
OM_WRONG_VALUE_SYNTAX
OM_WRONG_VALUE_TYPE

OSI-Abstract-Data Manipulation Functions 5–27

om_read

om_read

Reads a segment of a string from a private object.

Syntax

OM_return_code om_read (subject, type, value_position, local_string, string_offset, elements)

Argument Data Type Access

subject OM_private_object read

type OM_type read

value_position OM_value_position read

local_string OM_boolean read

string_offset OM_string_length read-write

elements OM_string write

return_code OM_return_code

C Binding

OM_return_code om_read (subject, type, value_position, local_string, string_offset, elements)

OM_private_object subject,
OM_type type,
OM_value_position value_position,
OM_boolean local_string,
OM_string_length �string_offset,
OM_string �elements

Arguments

Subject
The private object from which you want to read the segment.

Type
The type of the attribute containing the value that you want to read.

Value Position
The position in a multi-valued attribute of the value that you want to read.

5–28 OSI-Abstract-Data Manipulation Functions

om_read

Local String
If you set this argument to OM_TRUE, the Service translates the attribute
segment into the local character set. This translation may result in the loss of
some information.

String Offset
If provided by the Client, this argument denotes the position within the
attribute value of the first element that you want to read. If you give this
argument a value that exceeds the number of elements present in the attribute
value, the Service takes the argument to be equal to the number of elements
present in the attribute value.

If returned by the Service, this argument denotes the position of the next
segment within the attribute value, as an offset in octets. If the segment just
read was the last in the string, then this argument is set to zero. The result is
present only if the Return Code result is OM_SUCCESS.

The value indicating the next position can be specified in a subsequent call as
the position to start from, enabling sequential reading of the segments in a
string value.

Elements
A space into which the Service returns the segment of the attribute value that
you want to read. This argument is a string with two components, Elements
and Length. Table 5–1 shows the initial values that you should give to these
components.

Table 5–1 Initial Values for the Elements String

String Component Initial Value

Elements Pointer to a buffer
Length The number of octets required to contain the segment

that the function returns

You must make sure that the buffer is big enough to hold the number of octets.

The Service modifies the Elements argument. Each element that the function
returns becomes an element in the string. The string’s length becomes the
number of octets actually required to hold the segment read (which may be
smaller than the length initially specified.)

If the value of Local Strings is OM_TRUE, the final length of the string
may not be the same as the initial length of the string. This depends on the
characteristics of the translation into the local character set.

OSI-Abstract-Data Manipulation Functions 5–29

om_read

Chapter 7 gives details of the OM String data type.

Description

The function enables you to read a long string without requiring the Service to
place a copy of the entire string in memory.

Return Values

OM_SUCCESS
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_OBJECT
OM_NO_SUCH_TYPE
OM_NOT_PRESENT
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR
OM_WRONG_VALUE_SYNTAX

5–30 OSI-Abstract-Data Manipulation Functions

om_remove

om_remove

Removes and discards specified values of an attribute of a private object.

Syntax

OM_return_code om_remove (subject, type, initial_value, limiting_value)

Argument Data Type Access

subject OM_private_object read

type OM_type read

initial_value OM_value_position read

limiting_value OM_value_position read

return_code OM_return_code

C Binding

OM_return_code om_remove (subject, type, initial_value, limiting_value)

OM_private_object subject,
OM_type type,
OM_value_position initial_value,
OM_value_position limiting_value

Arguments

Subject
The private object from which you want to remove attribute values. The
function does not affect the class of the subject.

Type
The type of the attribute from which you want to remove values. The type
must not be OM_CLASS.

Initial Value
The position within the attribute of the first value to be removed.

If the value of Initial Value is OM_ALL_VALUES, or if it exceeds the number
of values present in the attribute, the Service takes this argument to be equal
to the number of values present in the attribute.

OSI-Abstract-Data Manipulation Functions 5–31

om_remove

Limiting Value
The position within the attribute one beyond that of the last value to be
removed. If this argument is less than the Initial Value argument, no values
are removed.

If the value of Limiting Value is OM_ALL_VALUES, or if the value exceeds the
number of values present in an attribute, the Service takes this argument to
be equal to the number of values present in the attribute.

Description

This function removes and discards particular values of an attribute of a
private object, the subject. If no values remain in an attribute after removal of
the values you specify, the Service removes the attribute. If one of the values
you specify is a subobject, the Service removes that value, and then applies
om_delete to make the subobject inaccessible.

Return Values

OM_SUCCESS
OM_FUNCTION_DECLINED
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_OBJECT
OM_NO_SUCH_TYPE
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR

5–32 OSI-Abstract-Data Manipulation Functions

om_write

om_write

Writes a segment of a string to an attribute in a private object.

Syntax

OM_return_code om_write (subject, type, value_position, syntax, string_offset, elements)

Argument Data Type Access

subject OM_private_object read

type OM_type read

value_position OM_value_position read

syntax OM_syntax read

string_offset OM_string_length read-write

elements OM_string read

return_code OM_return_code

C Binding

OM_return_code om_write (subject, type, value_position, syntax, string_offset, elements)

OM_private_object subject,
OM_type type,
OM_value_position value_position,
OM_syntax syntax,
OM_string_length �string_offset,
OM_string elements

Arguments

Subject
The object into which you want to write the string segment.

Type
The type of the attribute to which you want to write the string segment.

Value Position
In a multi-valued attribute, the position of the value in which you want to
place the string. This argument must have a positive value, and it must not
exceed the number of values present in the attribute. If it equals the number

OSI-Abstract-Data Manipulation Functions 5–33

om_write

of values present, the Service inserts the segment at the end of the attribute as
a new value.

Syntax
If you are writing a new value to an attribute, identify in this argument
the syntax that you want the new value to have. It must be a permissible
syntax for the attribute to which you are writing. To check that the syntax
is permissible, consult the definition of the class of which the subject is an
instance.

If you are overwriting or amending a value that is already present in the
subject, the Service preserves the syntax of that value, so you can supply a null
value.

String Offset
If supplied by the Client, this argument denotes the position, p, within the
attribute value at which you want the first segment written. The position is
specified as an offset in octets relative to the start of the string value.

If this argument has a value greater than the number of elements in the
attribute value, the Service takes the argument to be equal to that number.

If returned by the Service, this argument denotes the position of the end of the
last segment written. The position is specified as an offset in octets relative to
the start of the string value.

The value returned by the Service as the position of the end of the last segment
written can be specified as the position from which to start writing the next
segment. This enables you to write segments sequentially.

Elements
The string segment that you want to write to the attribute, n elements in
number. Copies of these elements occupy the positions, within the value, in the
interval between p and (p + n). The function discards any elements already in
or beyond these positions.

The elements are bits, octets, or characters, depending on the nature of the
string.

5–34 OSI-Abstract-Data Manipulation Functions

om_write

Description

This function writes a segment of an attribute value in a private object, the
subject. The segment that the Service writes becomes the last segment in the
attribute value. The function discards any segments in the attribute value
whose offsets are equal to or greater than the offset specified in String Offset.

If the segment that the Service writes is in the local representation, the
Service converts it to the non-local representation. This can result in loss
of information and may result in a different number of elements than that
specified.

Figure 5–5 gives an example of using om_write . In this example, Local String
is assumed to be OM_FALSE. The diagram shows Value Position, First String
Offset, and Next String Offset. It also shows that the element after Next
String Offset is discarded.

Return Values

OM_SUCCESS
OM_FUNCTION_DECLINED
OM_FUNCTION_INTERRUPTED
OM_MEMORY_INSUFFICIENT
OM_NETWORK_ERROR
OM_NO_SUCH_OBJECT
OM_NO_SUCH_SYNTAX
OM_NO_SUCH_TYPE
OM_NOT_PRESENT
OM_NOT_PRIVATE
OM_PERMANENT_ERROR
OM_POINTER_INVALID
OM_SYSTEM_ERROR
OM_TEMPORARY_ERROR
OM_WRONG_VALUE_LENGTH
OM_WRONG_VALUE_MAKEUP
OM_WRONG_VALUE_POSITION
OM_WRONG_VALUE_SYNTAX

OSI-Abstract-Data Manipulation Functions 5–35

om_write

Figure 5–5 Example of Using the Write Function

Attribute A

Subject

Syntax
Integer

Value Type
Integer

Value Position

First String Offset

Next String Offset

Elements
to be written:

Syntax
Integer

Value

Syntax
Integer

Value

5–36 OSI-Abstract-Data Manipulation Functions

6
OSI-Abstract-Data Manipulation Syntaxes

This chapter describes the syntaxes that OM attribute values can have.

The names of some OM syntaxes are constructed from syntax templates, as
described in Section 6.1.

Section 6.2 gives a list of syntaxes defined for OM.

Section 6.3 gives more detailed information about the String syntax.

Most of the OM syntaxes correspond closely with ASN.1 data types and type
constructors. Section 6.4 shows which syntaxes correspond to which ASN.1
data types.

6.1 Syntax Templates
A syntax template is a construction consisting of a primary identifier followed
by an asterisk enclosed in parentheses. For example, String(*) is a syntax
template with String as its primary identifier.

A syntax template represents a group of related syntaxes. If the text is
referring to any member of the group, without distinction, it uses the primary
identifier on its own. If the text is referring to a particular member of the
group, it uses the template, and replaces the asterisk with one of a set of
secondary identifiers associated with the template. For example, the String
primary identifier might use the secondary identifier Printable to denote the
Printable String syntax, thus giving String(Printable).

6.2 Syntaxes Defined for OSI-Abstract-Data Manipulation
The following syntaxes are defined for OM:

• Boolean

A value of this syntax is a Boolean value; it may be either OM_TRUE or
OM_FALSE.

OSI-Abstract-Data Manipulation Syntaxes 6–1

• Enumeration (*)

A value of any syntax that this template represents is one of a set of values
associated with the syntax.

• Integer

A value of this syntax is either a positive or a negative integer.

• Null

There is only one value in this syntax; it is a placeholder used to denote
that the attribute has no value.

• Object (*)

A value of any syntax that this template represents is an object . The
group represents all instances of any class associated with the syntax.
The secondary identifier that distinguishes the member of this group of
syntaxes is the name of the class.

• String (*)

A value of any syntax that this template represents is a string of which the
form and meaning are associated with the syntax.

The secondary identifier that distinguishes the member of this group of
syntaxes is usually the first word of the name of the ASN.1 type.

6.3 Strings
A string consists of a length indicator and an ordered sequence of zero or more
elements. The elements may be bits, octets, or groups of octets representing
characters. Strings containing these three types of elements are called bit
strings, octet strings and character strings, respectively.

The length of a string is the number of octets in the string. A single character
may be represented by more than one octet, therefore the length of a character
string may not be equal to the number of characters it contains. Any constraint
on the value length of a string is specified in the appropriate class definition.

The elements of a string are numbered. The position of the first element is
zero. The positions of successive elements are successive positive integers.
When passing a large string value across the interface, it may be necessary
to segment it. A segment is any number of contiguous elements in a string.
Segment boundaries have no semantic significance.

6–2 OSI-Abstract-Data Manipulation Syntaxes

Figure 6–1 Structure of a String

Segments

Element Element Element Element Element Element

MIG 0076

Position
zero

Position
five

Figure 6–1 shows a string, with labelled elements, positions and segments.

Table 6–1 shows the secondary identifiers assigned to the syntaxes that form
the String group.

Table 6–1 Secondary Identifiers of String Syntaxes

Bit String Identifiers Octet String Identifiers Character String Identifiers

Bit Encoding1 General2

Object Identifier3 Generalised Time2

Octet Graphic2

IA52

Numeric2

Object descriptor2

Printable2

Teletex2

UTC Time2

Videotex2

Visible2

1The octets are those that the BER permit for the contents octets of the encoding of a value of any
ASN.1 type.
2The characters are those permitted by the ASN.1 type of the same name. Values of these syntaxes
must be in their BER encoded form.
3The values are those that the BER permit for the contents octets of the encoding of a value of the
ASN.1 Object Identifier type.

OSI-Abstract-Data Manipulation Syntaxes 6–3

The symbolic constants for the OM syntaxes are given in Appendix A.

6.4 OM Syntaxes and ASN.1
This section contains tables showing the relationships between OM syntaxes
and ASN.1 data types and type constructors.

Table 6–2 Relationship of OM Syntaxes to ASN.1 Simple Types

ASN.1 Type Functionally Equivalent OM Syntax

Bit String String (Bit)

Boolean Boolean

Integer Integer

Null Null

Object Identifier String (Object Identifier)

Octet String String (Octet)

Real none

Table 6–3 Relationship of OM Syntaxes to ASN.1 Useful Types

ASN.1 Type Functionally Equivalent OM Syntax

External Object (External)

Generalised Time String (Generalised Time)

Object Descriptor String (Object Descriptor)

Universal Time String (UTC Time)

6–4 OSI-Abstract-Data Manipulation Syntaxes

Table 6–4 Relationship of OM Syntaxes to ASN.1 Character String Types

ASN.1 Type Functionally Equivalent OM Syntax

General String String (General)

Graphic String String (Graphic)

IA5 String String (IA5)

- String (Local)

Numeric String String (Numeric)

Printable String String (Printable)

Teletex String String (Teletex)

Videotex String String (Videotex)

Visible String String (Visible)

Table 6–5 Relationship of OM Syntaxes to ASN.1 Type Constructors

ASN.1 Type Functionally Equivalent OM Syntax

Any String (Encoding)

Choice Object

Enumerated Enumeration

Selection none 1

Sequence Object

Sequence Of Object

Set Object

Set Of Object

Tagged none 2

1This type constructor is used at specification time, and therefore has no corresponding syntax.
2The function of this type constructor is to distinguish the alternatives of a choice or the elements
of a sequence or set. Use attribute types to perform this function.

There are ASN.1 type constructors other than those listed in Table 6–5. You
can model the principal ASN.1 type constructors by using objects to group
attributes, or by using attributes to group values. You can model these type
constructors as classes of the following kinds:

• Choice

Define an attribute type for each alternative, exactly one alternative being
permitted in an instance of the class.

OSI-Abstract-Data Manipulation Syntaxes 6–5

• Sequence or Set

Define an attribute type for each sequence element or set element. If an
element is optional, the attribute has either zero values or one value.

• Sequence Of or Set Of

Define a single attribute with multiple values.

6–6 OSI-Abstract-Data Manipulation Syntaxes

7
Object Management Data Types

This chapter describes the data types defined for OM. These are the data types
that describe the format of OM attribute values, as determined by the syntax.

Table 7–1 lists all the OM data types.

Table 7–1 OM Data Types

Data Type Description

Boolean Boolean data value

Descriptor Describes an attribute type and value

Enumeration Enumerated data value

Exclusions Exclusions parameter for the Get function

Integer Integer data value

Modification Modifications parameter for the Put function

Object Handle to private or public object

Object Identifier Object identifier data value

Private Object Handle to an object in an implementation-defined
representation

Public Object Defined representation of an object that can be
directly interrogated by a program

Return Code A value returned from all OM functions, indicating
that the function succeeded, or that it failed for a
specified reason

String Data value of String syntax

Syntax Identifies a syntax type

Type Identifies an OM attribute type

(continued on next page)

Object Management Data Types 7–1

Table 7–1 (Cont.) OM Data Types

Data Type Description

Type List Enumerates a sequence of OM types

Value Represents any data value

Value Number Denotes the number of values for an attribute

Value Position Denotes the position of a value within an attribute

Workspace Identifies an application-specific API that uses OM,
for example Directory or Message Handling

The definitions of the intermediate data types in the OM API are as follows:

typedef int OM_sint;

typedef short OM_sint16;

typedef long int OM_sint32;

typedef unsigned OM_uint;

typedef unsigned short OM_uint16;

typedef long unsigned OM_uint32;

7–2 Object Management Data Types

OM_boolean

OM_boolean

Type definition for a Boolean data value.

C Declaration

typedef OM_uint32 OM_boolean;

Description

A value of this data type is a Boolean value; it can be either true (represented
by the constant OM_TRUE) or false (represented by the constant OM_FALSE).

Object Management Data Types 7–3

OM_descriptor

OM_descriptor

Type definition for describing an attribute type and value.

C Declaration

typedef struct OM_descriptor_struct
{

OM_type type;
OM_syntax syntax;
OM_value value;

} OM_descriptor;

Description

A value of this data type embodies an attribute value. A sequence of
descriptors (an array in C) can represent all the values of all the attributes of
an object. A public object is composed of such a sequence of descriptors.

A descriptor has the following components:

Component
Type of the
Component Purpose

Type OM_type Identifies type of attribute value
Syntax OM_syntax Identifies syntax of attribute value
Value OM_value Specifies value of attribute

7–4 Object Management Data Types

OM_enumeration

OM_enumeration

Type definition for an enumerated data value.

C Declaration

typedef OM_sint32 OM_enumeration;

Description

A value of this data type is an attribute value whose syntax is Enumeration.

Object Management Data Types 7–5

OM_exclusions

OM_exclusions

Type definition for the Exclusions argument of the Get function.

C Declaration

typedef OM_uint OM_exclusions;

Description

A value of this data type is an unordered set of one or more values, all of which
are distinct. Each value denotes an exclusion, as defined by the Get function.
The following is a list of possible values:

• OM_EXCLUDE_ALL-BUT_THESE_TYPES

• OM_EXCLUDE_MULTIPLES

• OM_EXCLUDE_ALL_BUT_THESE_VALUES

• OM_EXCLUDE_VALUES

• OM_EXCLUDE_SUBOBJECTS

• OM_EXCLUDE_DESCRIPTORS

• OM_NO_EXCLUSIONS

Each value except OM_NO_EXCLUSIONS is represented by a distinct bit.
The presence of a value is represented by one, and the absence of a value is
represented by zero.

7–6 Object Management Data Types

OM_integer

OM_integer

Type definition for an Integer data value.

C Declaration

typedef OM_sint32 OM_integer;

Description

A value of this data type is an attribute value whose syntax is Integer. Note
that it is a signed integer.

Object Management Data Types 7–7

OM_modification

OM_modification

Type definition for the Modifications argument of the Put function.

C Declaration

typedef OM_uint OM_modification;

Description

A value of this data type is an unordered set of one or more values, all of which
are distinct. Each value denotes a modification, as defined by the Put function.
The following is a list of possible values:

• OM_INSERT_AT_BEGINNING

• OM_INSERT_AT_CERTAIN_POINT

• OM_INSERT_AT_END

• OM_REPLACE_ALL

• OM_REPLACE_CERTAIN_VALUES

7–8 Object Management Data Types

OM_object

OM_object

Type definition for a handle to either a private object or a public object.

C Declaration

typedef struct OM_descriptor_struct �OM_object;

Description

A value of this data type represents a private or a public object. The value
is an ordered sequence of one or more instances of the Descriptor data type.
Refer to the descriptions of the OM_private_object and OM_public_object data
types for details of constraints on the sequence.

Object Management Data Types 7–9

OM_object_identifier

OM_object_identifier

Type definition for an object identifier data value.

C Declaration

typedef OM_string OM_object_identifier;

Description

A value of this data type is an octet string that consists of the contents octets
of the BER encoding of an ASN.1 object identifier.

The OM API provides some variables and macros for use with object identifiers:

• OM_C_<class_name>

For each class name and object identifier, there is a global variable with
the same name. For example, for the External class, there is a global
variable called OM_C_EXTERNAL; for the object identifier for BER rules,
there is a global variable called OM_BER. You can use these variables as
arguments to routines, once they have been declared by the OM_EXPORT
macro (see below).

• OM_OID_DESC(<type>, <OID_name>)

This macro initializes a descriptor as part of a declaration (static
initialization). The following table shows how the macro sets the
components of the descriptor.

Component of
Descriptor Initial Setting

type Type given in the call to the macro
syntax OM_S_OBJECT_IDENTIFIER_STRING
value OID_Name given in the call to the macro.

• OM_NULL_DESCRIPTOR

This macro initializes a descriptor (as part of a declaration) to mark the
end of a public object allocated by a Client.

• OM_EXPORT and OM_IMPORT

The OM_EXPORT macro enables you to declare an object identifier. The
OM_IMPORT macro allows you to make that object identifier available
within a different compilation unit.

7–10 Object Management Data Types

OM_object_identifier

You must declare each object identifier used in your application program.
You can declare an object identifier in the compilation unit that uses the
object identifier, or you can declare all your object identifiers in the same
compilation unit. The application program must explicitly reference an
object identifier in every compilation unit that uses the object identifier.

The OM_EXPORT macro allocates memory for the constants that represent
an object identifier. The following is an example of the use of the macro.

/* This code must appear in one compilation unit */

#include <xom.h>

OM_EXPORT(OM_C_ENCODING)
OM_EXPORT(OM_BER)

The following points apply to the OM_EXPORT macro:

• You may reference an OID (object identifier) or class name in the same
compilation unit in which you use the OM_EXPORT macro to declare
it.

• You must use OM_EXPORT to declare the storage for an OID, even if
you only have a single compilation unit.

The following is an example of the use of the OM_IMPORT macro:

include <xom.h>

main()

OM_IMPORT(OM_C_ENCODING)
OM_IMPORT(OM_C_BER)
{
/ Example 1 Define a public object of class Encoding

Note: xxxx is a Message Handling Class
that can be encoded

/

OM_descriptor my_public_object[] = {
OM_OID_DESC(OM_CLASS, OM_C_ENCODING),
OM_OID_DESC(OM_OBJECT_CLASS, MA_C_xxxx),
{ OM_OBJECT_ENCODING, OM_S_ENCODING, some_BER_value },
OM_OID_DESC(OM_RULES, OM_C_BER),
OM_NULL_DESCRIPTOR
};

/ Example 2 Pass class Encoding as an argument to om_instance
/

OM_return_code = om_instance(my_object, OM_C_ENCODING, &boolean_result)
}

Object Management Data Types 7–11

OM_object_identifier

Figure 7–1 shows two object identifiers and a class name being exported
from one compilation unit into two other compilation units.

Figure 7–1 Exporting and Importing Object Identifiers

Compilation Unit A

MIG 0088

OM_EXPORT (OID1)

OM_EXPORT (OID2)

OM_EXPORT (CN1)

Compilation Unit B

OM_IMPORT (OID1)

COMPILER

Compilation Unit C

OM_IMPORT (OID2)

SOURCE FILES

OM_IMPORT (CN1)

COMPILER

COMPILER

OID1

OID2

CN1

OID1

OID2

CN1

OBJECT FILES

LINKER

7–12 Object Management Data Types

OM_private_object

OM_private_object

Type definition for a handle to an object in a private, implementation-defined
representation.

C Declaration

typedef OM_object OM_private_object;

Description

A value of this data type is the handle or designator for a private object. Such
a value consists of a single descriptor.

The components of this descriptor have the following values:

Component Value

Type private_object
Representation Not used by Client
Syntax Not used by Client
Value Not used by Client

Object Management Data Types 7–13

OM_public_object

OM_public_object

Type definition for a defined representation of an object that can be directly
interrogated by a programmer.

C Declaration

typedef OM_object OM_public_object;

Description

A value of this data type is a public object. Such a value consists of a sequence
of one or more descriptors. All but the last of these descriptors represent
attribute values of the object.

The last descriptor, OM_NULL_DESCRIPTOR, signals the end of the sequence
of descriptors. The components of this descriptor have the following values:

Component Value Constant

Type no-more-types OM_NO_MORE_TYPES
Syntax no-more-syntaxes OM_NO_MORE_SYNTAXES
Value Unspecified:

String.Length
String.Elements

OM_LENGTH_UNSPECIFIED
OM_ELEMENTS_UNSPECIFIED

If an attribute has more than one value, the descriptors for those values must
be adjacent to one another, in the same order as the values they represent.

The order in which attributes appear in the sequence is unspecified, with
one exception. The Class attribute, if it is present, comes before any other
attributes. The Syntax component of the descriptor for the Class attribute has
the OM_SERVICE_GENERATED bit set if the object is created by the Service,
or cleared if it is created by the Client.

The Digital OM API provides additional macros for creating public objects
dynamically. These macros are in the header file xom.h and allow you to set
an empty descriptor to your required value, once you have declared a public
descriptor or descriptor list. The macros are as follows. Note that because they
are proprietary extensions to the standard OM API, they have the prefix OMX.

7–14 Object Management Data Types

OM_public_object

• OMX_CLASS_DESC

This macro sets an object’s class descriptor to the specified class.

#define OMX_CLASS_DESC(desc,oidstr) { desc.type = OM_CLASS; \
desc.syntax = OM_S_OBJECT_IDENTIFIER_STRING; \
desc.value.string = oidstr; }

• OMX_BOOLEAN_DESC

This macro sets a Boolean value descriptor for the specified type.

#define OMX_BOOLEAN_DESC(desc,type_name,bool) { desc.type = type_name; \
desc.syntax = OM_S_BOOLEAN; \
desc.value.boolean = bool; }

• OMX_ENUM_DESC

This macro sets an enumerated value descriptor for the specified type.

#define OMX_ENUM_DESC(desc,type_name,enum) { desc.type = type_name; \
desc.syntax = OM_S_ENUMERATION; \
desc.value.enumeration = enum; }

• OMX_INTEGER_DESC

This macro sets an integer value descriptor for the specified type.

#define OMX_INTEGER_DESC(desc,type_name,integr) { desc.type = type_name; \
desc.syntax = OM_S_INTEGER; \
desc.value.integer = integr; }

• OMX_OBJECT_DESC

This macro sets an object descriptor for the specified type.

#define OMX_OBJECT_DESC(desc,type_name,obj) { desc.type = type_name; \
desc.syntax = OM_S_OBJECT; \
desc.value.object.object = obj; }

• OMX_OM_NULL_DESC

This macro sets the null descriptor that terminates the descriptor list.

#define OMX_OM_NULL_DESC(desc) { desc.type = OM_NO_MORE_TYPES; \
desc.syntax = OM_S_NO_MORE_SYNTAXES; \
desc.value.string.length = 0; \
desc.value.string.elements = OM_ELEMENTS_UNSPECIFIED; }

Object Management Data Types 7–15

OM_public_object

• OMX_ATTR_TYPE_DESC

This macro sets an attribute type descriptor using the specified object
identifier string.

#define OMX_ATTR_TYPE_DESC(desc, ds_type, oidstr) { desc.type = ds_type; \
desc.syntax = OM_S_OBJECT_IDENTIFIER_STRING; \
desc.value.string = oidstr; }

• OMX_ZSTRING_DESC

This macro sets a string descriptor given a null (zero) terminated string
using the specified type name.

#define OMX_ZSTRING_DESC(desc,syntx,type_name,str) { desc.type = type_name; \
desc.syntax = syntx; \

desc.value.string.elements = (void *)str; \
desc.value.string.length = strlen(str); }

• OMX_STRING_DESC

This macro sets a string descriptor given the length and elements pointer
and using the specified type name.

#define OMX_STRING_DESC(desc,syntx,type_name,str,len) {\
desc.type = type_name;\
desc.syntax = syntx; \
desc.value.string.elements = (void *)str; \
desc.value.string.length = len; }

The following is an example of the use of these macros.

/* Header files: */

#include <xom.h>
#include <xds.h>
#include <xdsbdcp.h>

/* Declarations: */

OM_EXPORT(DS_A_SURNAME)
OM_EXPORT(DS_A_TITLE)

OM_descriptor cpub_eis[5];

/* Assignment: */

OMX_CLASS_DESC(cpub_eis[0], DS_C_ENTRY_INFO_SELECTION);
OMX_ATTR_TYPE_DESC(cpub_eis[1], DS_ATTRIBUTES_SELECTED,DS_A_SURNAME);
OMX_ATTR_TYPE_DESC(cpub_eis[2], DS_ATTRIBUTES_SELECTED,DS_A_TITLE);
OMX_ENUM_DESC(cpub_eis[3], DS_INFO_TYPE, DS_TYPES_ONLY);
OMX_OM_NULL_DESC(cpub_eis[4]);

7–16 Object Management Data Types

OM_return_code

OM_return_code

Type definition for a value that all OM routines return. The value indicates
either that the routine succeeded or that it failed for a specified reason.

C Declaration

typedef OM_uint OM_return_code;

Description

A value of this data type is an integer in the range [0, 216-1), which shows the
outcome of an OM function.

In Chapter 5, each function description includes a list of the codes that may be
returned by that function.

Object Management Data Types 7–17

OM_string

OM_string

Type definition for a data value of String syntax.

C Declaration

typedef OM_uint32 OM_string_length;
typedef struct
{

OM_string_length length;
void �elements;

} OM_string;

#define OM_STRING(string)
{
(OM_string_length)(sizeof(string)-1), (string)
}

Description

A value of this data type is an instance of a String syntax.

A string is represented as either a length-specified string or a null-terminated
string. A string has the following components:

• Length

• Elements

Bit Strings

The bits of a bit string are represented as a sequence of octets. The first
octet of the sequence stores the number of unused bits in the last octet
of the sequence. The bits making up the string, starting with the most
significant bit and ending with the least significant bit, occupy the second
and consecutive octets, including as many bits of the final octet as are
needed. Figure 7–2 illustrates this.

7–18 Object Management Data Types

OM_string

Figure 7–2 Representation of a Bit String in the C Interface

Bit string:

Octets representing
the bit string:

1 2 3 4 5 6 7 8 9

First octet Second octet Third octet

MIG 0089

6 5 4 3 2 1 0 7 67 6 5 4 3 2 1 0 7 5 4 3 2 1 0

The diagram shows a bit string containing 9 bits. The first octet stores the
number of unused bits in the last (third) octet, which in this case is 7.

Character Strings

The characters of a character string can be any sequence of octets
acceptable as the primitive contents octets of the BER encoding of an
ASN.1 type. The ASN.1 type defines the variety of character string. A
zero character follows the characters of the character string. The length
component of the string does not include this zero character. If the string
is a null-terminated string, the zero character marks the end of the string.

The Service supplies a string value in the length-specified form. The Client
may supply a string value to the Service in either the length-specified form or
the null-terminated form.

The standard OM API provides a macro, {OM_STRING}, for constructing a
value of the string data type when you know only the value of the elements
component. The macro is for use with octet strings and character strings, but
not with bit strings.

Object Management Data Types 7–19

OM_syntax

OM_syntax

Type definition for identifying a syntax type.

C Declaration

typedef OM_uint16 OM_syntax;

Description

A value of this data type is an integer in the range [0, 216) which denotes an
individual syntax or a set of syntaxes.

The identifiers of all the OM syntaxes are given in Chapter 6.

The syntax component has six parts. Five of these parts are flags, and the
sixth is the syntax value. The five flags are encoded in the five high-order bits
of the syntax component. The syntax value is an 11-bit integer. This is shown
in Figure 7–3.

Figure 7–3 Syntax Component of a Descriptor

Flags Syntax value

MIG 0159

First Octet Second Octet

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

To access the syntax value, use the OM_S_SYNTAX constant as shown in the
following example:

OM_descriptor d;

if ((d->syntax & OM_S_SYNTAX) == OM_S_INTEGER)
{process the value as an integer}

7–20 Object Management Data Types

OM_syntax

To access a flag value, use the constant for the flag, as shown in the following
use of the OM_S_SERVICE_GENERATED constant:

OM_descriptor d;

if (d->syntax & OM_S_SERVICE_GENERATED)
{process the service-generated descriptor}

The flags are as follows:

Part Bit Occupied Constant

Long-String 15 (0x8000) OM_S_LONG_STRING
No-Value 14 (0x4000) OM_S_NO_VALUE
Local-String 13 (0x2000) OM_S_LOCAL_STRING
Service-Generated 12 (0x1000) OM_S_SERVICE_GENERATED
Private 11 (0x0800) OM_S_PRIVATE

The Long-String bit is set if the component is a descriptor generated by the
Service and the length of the descriptor value is greater than 1024.

The No-Value bit is set if the component is a descriptor generated by the
Service, and the descriptor value is not present because a call to om_get
specified OM_EXCLUDE_VALUES or OM_EXCLUDE_MULTIPLES.

Only one of the five flags can be set by the application, namely the Local-String
flag. To set this flag, use the OM_S_LOCAL_STRING constant as shown in the
following example:

OM_descriptor d;

d->syntax = d->syntax | OM_S_LOCAL_STRING

The Local-String bit is set if the component is a string represented in an
implementation-defined local character set.

The Service-Generated bit is set if the component is a descriptor generated by
the Service and is the first descriptor of a public object.

The Private bit is set if the component in the Service-generated public object
or in the defined part of a private object contains a reference to the handle
of a private subobject. (Note that this applies only when the descriptor is
Service-generated; the Client need not set this bit in a Client-generated object
containing a reference to a private object.)

Object Management Data Types 7–21

OM_type

OM_type

Type definition for identifying an OM attribute type.

C Declaration

typedef OM_uint16 OM_type;

Description

A value of this type is an integer in the range [0, 216-1), which denotes a
type in the context of a package. The values no-more-types, private-object,
and public-object have the meanings given to them by the OM_type_list, OM_
private_object, and OM_public_object data types, respectively.

7–22 Object Management Data Types

OM_type_list

OM_type_list

Type definition for enumerating a sequence of OM attribute types.

C Declaration

typedef OM_type �OM_type_list;

Description

A value of this data type is an ordered sequence of zero or more type numbers,
each an instance of the data type OM_type.

Another data value, no-more-types, follows and thus delimits the sequence.
The C representation of the sequence is an array.

An example of the OM_type_list data type is given below.

OM_type rdn_type_list[2];

rdn_type_list[0] = DS_RDNS;
rdn_type_list[1] = OM_NO_MORE_TYPES;

Object Management Data Types 7–23

OM_value

OM_value

Type definition for representing any data value.

C Declaration

typedef struct
{

OM_uint32 padding
OM_object object;

} OM_padded_object;

Format

typedef union OM_value_union
{

OM_string string;
OM_boolean boolean;
OM_enumeration enumeration;
OM_integer integer;
OM_padded_object object;

} OM_value;

Description

A value of this data type is an attribute value, and appears only as a
component of a descriptor. You can determine what the syntax of the value is
by examining the syntax component of the descriptor. Refer to the section on
OM_descriptor for information on the structure of a descriptor.

A value of this data type has no components if either the syntax of the
descriptor is OM_S_NO_MORE_SYNTAXES, or the No-Value bit in the syntax
component is set.

Otherwise, the value has exactly one component, determined by the value’s
syntax:

• A String if the syntax is a String syntax

• A Boolean if the syntax is Boolean

• An Enumeration if the syntax is Enumerated

• An Integer if the syntax is Integer

• An Object if the syntax is Object

7–24 Object Management Data Types

OM_value

When the variant in OM_value_union is a string, the Padding field in OM_
padded_object aligns the Elements component within the string with the Object
field in the structure OM_padded_object. Both components contain pointers for
the benefit of initialisation.

The way in which the OM_value data type is represented in memory is shown
in Figure 7–4.

Figure 7–4 Representation of OM_value

MIG 0160

First Four Octets Second Four Octets

Boolean

Enumeration

Integer

String Length Elements Pointer

Object Pointer-

Object Management Data Types 7–25

OM_value_length

OM_value_length

The number of bits, octets, or characters in a string.

C Declaration

typedef OM_uint32 OM_value_length;

Description

A value of this data type is an integer in the range [0, 232-1). It represents the
number of bits in a bit string, or the number of octets in an octet string, or the
number of characters in a character string. This data type allows you to define
attribute constraints.

Note that the data type is not used when handling strings through the
interface (see the section on the OM_string syntax).

7–26 Object Management Data Types

OM_value_number

OM_value_number

Type definition for denoting any constraints on the number of values for an
attribute.

C Declaration

typedef OM_uint32 OM_value_number;

Description

A value of this data type is an integer in the range [0, 232-1). It denotes the
number of values allowed for an attribute. This data type allows you to define
attribute constraints.

Object Management Data Types 7–27

OM_value_position

OM_value_position

Type definition for denoting an attribute value’s position within an attribute.

C Declaration

typedef OM_uint32 OM_value_position;

Description

A value of this data type is an integer in the range [0, 232-1), denoting the
position of a value within an attribute. However, the value OM_ALL_VALUES
has the meaning given to it by the Get function.

7–28 Object Management Data Types

OM_workspace

OM_workspace

Type definition for identifying an API that implements OM. For example, the
workspace could be a Directory Service or a Message Handling Service.

C Declaration

typedef void �OM_workspace;

Description

A value of this data type is the Handle or Designator for a workspace, as
returned by ma_open, mt_open and ds_initialize .

Object Management Data Types 7–29

8
OSI-Abstract-Data Manipulation Header

Files

The OM API requires two header files:

• xom.h

This file defines the symbols that are available to client applications.

• xomi.h

This file defines symbols for the C workspace interface.

One of the files, xom.h, includes the other by reference; you only need to
include xom.h in your application.

After including xom.h, include the header files that are appropriate to the
sort of application you are writing. For example, if you are writing an X.500
Directory Service application, you need to include the header files defined for
the X.500 API, as descriibed in the X.500 API documentation. Whatever other
header files you include, always include xom.h first.

To include xom.h use the following code:

#include <xom.h>

OSI-Abstract-Data Manipulation Header Files 8–1

A
Symbolic Constants

This appendix lists the declarations that define the symbolic constants for the
C interface of the OM API. The declarations are contained in the header file
<xom.h>.

/* SYMBOLIC CONSTANTS */

/* Boolean */

#define OM_FALSE ((OM_boolean) 0)

#define OM_TRUE ((OM_boolean) 1)

/* Element Position */

#define OM_LENGTH_UNSPECIFIED ((OM_string_length) 0xFFFFFFFF)

/* Exclusions */

#define OM_NO_EXCLUSIONS ((OM_exclusions) 0)

#define OM_EXCLUDE_ALL_BUT_THESE_TYPES ((OM_exclusions) 1)

#define OM_EXCLUDE_ALL_BUT_THESE_VALUES ((OM_exclusions) 2)

#define OM_EXCLUDE_MULTIPLES ((OM_exclusions) 4)

#define OM_EXCLUDE_SUBOBJECTS ((OM_exclusions) 8)

#define OM_EXCLUDE_VALUES ((OM_exclusions) 16)

#define OM_EXCLUDE_DESCRIPTORS ((OM_exclusions) 32)

/* Modification */

#define OM_INSERT_AT_BEGINNING ((OM_modification) 1)

#define OM_INSERT_AT_CERTAIN_POINT ((OM_modification) 2)

#define OM_INSERT_AT_END ((OM_modification) 3)

#define OM_REPLACE_ALL ((OM_modification) 4)

Symbolic Constants A–1

#define OM_REPLACE_CERTAIN_VALUES ((OM_modification) 5)

/* Return Codes */

#define OM_SUCCESS ((OM_return_code) 0)

#define OM_ENCODING_INVALID ((OM_return_code) 1)

#define OM_FUNCTION_DECLINED ((OM_return_code) 2)

#define OM_FUNCTION_INTERRUPTED ((OM_return_code) 3)

#define OM_MEMORY_INSUFFICIENT ((OM_return_code) 4)

#define OM_NETWORK_ERROR ((OM_return_code) 5)

#define OM_NO_SUCH_CLASS ((OM_return_code) 6)

#define OM_NO_SUCH_EXCLUSION ((OM_return_code) 7)

#define OM_NO_SUCH_MODIFICATION ((OM_return_code) 8)

#define OM_NO_SUCH_OBJECT ((OM_return_code) 9)

#define OM_NO_SUCH_RULES ((OM_return_code) 10)

#define OM_NO_SUCH_SYNTAX ((OM_return_code) 11)

#define OM_NO_SUCH_TYPE ((OM_return_code) 12)

#define OM_NO_SUCH_WORKSPACE ((OM_return_code) 13)

#define OM_NOT_AN_ENCODING ((OM_return_code) 14)

#define OM_NOT_CONCRETE ((OM_return_code) 15)

#define OM_NOT_PRESENT ((OM_return_code) 16)

#define OM_NOT_PRIVATE ((OM_return_code) 17)

#define OM_NOT_THE_SERVICES ((OM_return_code) 18)

#define OM_PERMANENT_ERROR ((OM_return_code) 19)

#define OM_POINTER_INVALID ((OM_return_code) 20)

#define OM_SYSTEM_ERROR ((OM_return_code) 21)

#define OM_TEMPORARY_ERROR ((OM_return_code) 22)

#define OM_TOO_MANY_VALUES ((OM_return_code) 23)

#define OM_VALUES_NOT_ADJACENT ((OM_return_code) 24)

#define OM_WRONG_VALUE_LENGTH ((OM_return_code) 25)

#define OM_WRONG_VALUE_MAKEUP ((OM_return_code) 26)

#define OM_WRONG_VALUE_NUMBER ((OM_return_code) 27)

#define OM_WRONG_VALUE_POSITION ((OM_return_code) 28)

#define OM_WRONG_VALUE_SYNTAX ((OM_return_code) 29)

A–2 Symbolic Constants

#define OM_WRONG_VALUE_TYPE ((OM_return_code) 30)

/* String (Elements component) */

#define OM_ELEMENTS_UNSPECIFIED ((void*) 0)

/* Syntax */

#define OM_S_NO_MORE_SYNTAXES ((OM_syntax) 0)

#define OM_S_BIT_STRING ((OM_syntax) 3)

#define OM_S_BOOLEAN ((OM_syntax) 1)

#define OM_S_ENCODING_STRING ((OM_syntax) 8)

#define OM_S_ENUMERATION ((OM_syntax) 10)

#define OM_S_GENERAL_STRING ((OM_syntax) 27)

#define OM_S_GENERALISED_TIME_STRING ((OM_syntax) 24)

#define OM_S_GRAPHIC_STRING ((OM_syntax) 25)

#define OM_S_IA5_STRING ((OM_syntax) 22)

#define OM_S_INTEGER ((OM_syntax) 2)

#define OM_S_NULL ((OM_syntax) 5)

#define OM_S_NUMERIC_STRING ((OM_syntax) 18)

#define OM_S_OBJECT ((OM_syntax) 127)

#define OM_S_OBJECT_DESCRIPTOR_STRING ((OM_syntax) 7)

#define OM_S_OBJECT_IDENTIFIER_STRING ((OM_syntax) 6)

#define OM_S_OCTET_STRING ((OM_syntax) 4)

#define OM_S_PRINTABLE_STRING ((OM_syntax) 19)

#define OM_S_TELETEX_STRING ((OM_syntax) 20)

#define OM_S_UTC_TIME_STRING ((OM_syntax) 23)

#define OM_S_VIDEOTEX_STRING ((OM_syntax) 21)

#define OM_S_VISIBLE_STRING ((OM_syntax) 26)

#define OM_S_LONG_STRING ((OM_syntax) 0x8000)

#define OM_S_NO_VALUE ((OM_syntax) 0x4000)

#define OM_S_LOCAL_STRING ((OM_syntax) 0x2000)

#define OM_S_SERVICE_GENERATED ((OM_syntax) 0x1000)

#define OM_S_PRIVATE ((OM_syntax) 0x0800)

Symbolic Constants A–3

#define OM_S_SYNTAX ((OM_syntax) 0x03FF)

/* Type */

#define OM_NO_MORE_TYPES ((OM_type) 0)

#define OM_ARBITRARY_ENCODING ((OM_type) 1)

#define OM_ASN1_ENCODING ((OM_type) 2)

#define OM_CLASS ((OM_type) 3)

#define OM_DATA_VALUE_DESCRIPTOR ((OM_type) 4)

#define OM_DIRECT_REFERENCE ((OM_type) 5)

#define OM_INDIRECT_REFERENCE ((OM_type) 6)

#define OM_OBJECT_CLASS ((OM_type) 7)

#define OM_OBJECT_ENCODING ((OM_type) 8)

#define OM_OCTET_ALIGNED_ENCODING ((OM_type) 9)

#define OM_PRIVATE_OBJECT ((OM_type) 10)

#define OM_RULES ((OM_type) 11)

/* Value Position */

#define OM_ALL_VALUES ((OM_value_position) 0xFFFFFFFF)

A–4 Symbolic Constants

B
String Contents

This appendix lists the characters that are allowed in string types Printable,
Numeric and IA5. A space is indicated by the word space.

B.1 Numeric Strings
The following characters are valid in numeric strings:

space
0 1 2 3 4 5 6 7 8 9

B.2 Printable Strings
The following characters are valid in printable strings:

space
’ () + , - . /
0 1 2 3 4 5 6 7 8 9
: = ?
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z

B.3 IA5 Strings
The following characters are valid in IA5 strings:

space
! " # $ % & ’ () * + , - . /
0 1 2 3 4 5 6 7 8 9
: ; < = > ? @
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
[\] ^ _ ‘
a b c d e f g h i j k l m n o p q r s t u v w x y z
{ | } ~

String Contents B–1

C
Return Values

This appendix explains the return values used by the functions in the OM
API. To find out which return values are used by a particular function, refer to
Chapter 5.

Table C–1 OM API Return Values

Error Meaning
OM_return

_code

OM_FUNCTION_INTERRUPTED The function was aborted by external
intervention.

3

OM_MEMORY_INSUFFICIENT There is not enough memory for the function
to complete its task.

4

OM_NETWORK_ERROR The Service cannot use the underlying
network, and the link to the Client is lost or
cannot be established.

5

OM_NO_SUCH_CLASS The Client has passed an undefined class
identifier to the Service.

6

OM_NO_SUCH_OBJECT The Client has specified a nonexistent
object, or an invalid handle for an object.

9

OM_NO_SUCH_SYNTAX The Client has passed a public object to the
Service with an undefined syntax identifier.

11

OM_NO_SUCH_TYPE The Client has passed a public object to the
Service with a type identifier that is not
defined for the requested package.

12

OM_NOT_PRESENT This error status indicates that an
application built with the MAILbus 400
API has specified an incorrect recipient
number in the Local NDR object passed to
the Finish Delivery function.

16

(continued on next page)

Return Values C–1

Table C–1 (Cont.) OM API Return Values

Error Meaning
OM_return

_code

OM_NOT_PRIVATE The Client has specified a public object when
it should have specified a private one.

17

OM_PERMANENT_ERROR The Service encountered an unspecified
permanent problem.

19

OM_POINTER_INVALID The Client has supplied an invalid pointer
as a function argument.

20

OM_SYSTEM_ERROR The Service cannot use the operating
system.

21

OM_TEMPORARY_ERROR The Service encountered an unspecified
temporary problem.

22

OM_TOO_MANY_VALUES An implementation limit prevents the
addition to an object of another attribute
value.

23

OM_WRONG_VALUE_LENGTH The Client has passed an object to the
Service with an attribute containing a value
that violates the value length constraints for
the attribute.

25

OM_WRONG_VALUE_MAKEUP The Client has passed an object to the
Service with an attribute containing a value
that violates a constraint of the attribute’s
syntax.

26

OM_WRONG_VALUE_NUMBER The Client has passed an object to the
Service with an attribute containing a value
that violates the value number constraints
for the attribute.

27

OM_WRONG_VALUE_SYNTAX The Client has passed an object to the
Service with an attribute containing a value
with an illegal syntax.

29

OM_WRONG_VALUE_TYPE The Client has passed an object to the
Service containing a value of the wrong type
for the class.

30

C–2 Return Values

Index

A
apropos command, 1–5
Arbitrary Encoding attribute, 4–4
ASN.1

BER, 1–2
Encoding attribute, 4–4

Attributes
allocating values to, 3–6
changing values of, 3–6
constraints on, 2–8
definition of, 2–4
syntax, 2–4
type, 2–4, 2–11

Attribute values, 2–5
copying strings, 3–8
inserting, 3–6
reading, 3–11
removing, 3–5
replacing, 3–5

B
Basic Encoding Rules, 1–2
BER, 3–19

see Basic Encoding Rules
Boolean syntax, 6–1

C
Class argument, 5–6, 5–20
Class attribute, 4–2

Class definitions, 4–2
Encoding, 4–3
External, 4–4
Object, 4–2

Classes, 2–8
abstract, 2–9
concrete, 2–9
hierarchy, 2–8

subclasses, 2–8
superclasses, 2–8

instances of, 2–8, 3–18
subclasses, 2–8
superclasses, 2–8

Class hierarchy, 4–1
diagram, 4–1

Client-generated public objects, 2–3, 2–7
C naming conventions, 4–5
Conformance, 1–2
Copy argument, 5–2, 5–16
Copy function, 3–18, 5–2

example of use of, 3–18
Copy Value function, 3–8, 5–4

example of use of, 3–9
Create function, 3–2, 5–6

example of use of, 3–3
Creating an object, 3–2

dynamically, 3–2
private objects, 3–2
public objects, 3–3
statically, 3–2

Index–1

D
Data types, 7–1

Boolean, 7–3
Descriptor, 7–4
Enumeration, 7–5
Exclusions, 7–6
Integer, 7–7
Modification, 7–8
Object, 7–9
Object Identifier, 7–10
Private Object, 7–13
Public Object, 7–14
Return Code, 7–17
String, 7–18
Syntax, 7–20
Type, 7–22
Type List, 7–23
Value, 7–24
Value Length, 7–26
Value Number, 7–27
Value Position, 7–28
Workspace, 7–29

Data Value Descriptor attribute, 4–4
Decode function, 3–19, 3–20, 5–8

example of use of, 3–20
Delete function, 3–16, 5–10

examples of use of, 3–16
Descriptor lists, 2–11

diagram of components, 2–12
Descriptors, 2–11

components of, 2–11
diagram, 2–11

Destination argument, 5–4, 5–22
Destination Type argument, 5–5
Destination Value Position argument, 5–5
Digital’s implementation of the OM API,

1–2
Digital extensions, 1–3
Directory objects, 2–1
Direct Reference attribute, 4–4

E
Elements argument, 5–29, 5–34
Encode function, 3–19, 3–20, 5–12

example of use of, 3–20
Encoding argument, 5–8, 5–12
Encoding class, 4–3
Encoding rules, 1–2
Enumeration syntax, 6–2
Errors, C–1
Exclusions argument, 5–15
Extensions, 1–3
External class, 4–4

F
Functions, 3–1, 5–1

Copy, 3–18, 5–2
Copy Value, 3–8, 5–4
Create, 3–2, 5–6
Decode, 1–2, 3–19, 3–20, 5–8
Delete, 3–16, 5–10
Encode, 1–2, 3–19, 3–20, 5–12
Get, 3–11, 5–14
Instance, 3–18, 5–20
Put, 3–6, 5–22
Read, 3–15, 5–28
Remove, 3–5, 5–31
table of, 3–1
Write, 3–10, 5–33

G
Get function, 1–3, 3–11, 5–14

example of use of, 3–13
exclusions, 3–12

Getting help, 1–5

H
Header files, 8–1

ximp.h, A–1
Help, 1–5

Index–2

Hierarchy of classes, 2–8
subclasses, 2–8
superclasses, 2–8

Hierarchy of object classes
subclasses, 2–8
superclasses, 2–8

I
Implementation of the OM API, 1–2
Included Types argument, 5–16, 5–23
Indirect Reference attribute, 4–4
Initialise argument, 5–6
Initial Value argument, 5–16, 5–23, 5–31
Instance argument, 5–20
Instance function, 3–18, 5–20

example of use of, 3–19
Instances of classes, 2–8
Integer syntax, 6–2
Intermediate data types, 1–2, 7–2

L
Limiting Value, 5–16
Limiting Value argument, 5–24, 5–31
Local character sets, 1–2
Local String argument, 5–28
Local Strings argument, 5–16
Long string values

writing, 3–10

M
man command, 1–5
Messaging objects, 2–1
Modification argument, 5–22

N
Naming conventions, 4–5
Null syntax, 6–2

O
Object argument, 5–7
Object class, 4–2
Object Class attribute, 4–3
Object classes

see Classes
Object Encoding attribute, 4–3
Object handles, 2–2
Object identifier

OM Package, 4–1
Objects

attributes, 2–4
creating, 3–2
definition of, 2–1
deleting, 3–16, 3–17
determining class of, 3–18
directory, 2–1
messaging, 2–1
modifying, 3–5
private, 2–2, 2–7
public, 2–2, 2–3

client-generated, 2–3, 2–7
service-generated, 2–3, 2–7

Octet Aligned Encoding attribute, 4–4
OM class definitions, 4–2

Encoding, 4–3
External, 4–4
Object, 4–2

OM class hierarchy, 4–1
diagram, 4–1

OM data types, 7–1
OM functions, 5–1

see Functions
OM header files, 8–1
OM Package, 4–1

class definitions, 4–2
object identifier, 4–1

OM syntaxes, 6–1
OM_boolean data type, 7–3
om_copy , 5–2
om_copy_value , 5–4

Index–3

om_create , 5–6
om_decode , 5–8
om_delete , 5–10
OM_descriptor data type, 7–4
om_encode , 5–12
OM_enumeration data type, 7–5
OM_exclusions data type, 7–6
OM_EXPORT macro/begin, 7–10
OM_EXPORT macro/end, 7–12
om_get , 5–14
OM_IMPORT macro/begin, 7–10
OM_IMPORT macro/end, 7–12
om_instance , 5–20
OM_integer data type, 7–7
OM_modification data type, 7–8
OM_NULL_DESCRIPTOR macro, 7–10
OM_object data type, 7–9
OM_object_identifier data type, 7–10
OM_private_object data type, 7–13
OM_public_object data type, 7–14
om_put , 5–22
om_read , 5–28
om_remove , 5–31
OM_return_code data type, 7–17
OM_string data type, 7–18
OM_syntax data type, 7–20
OM_type data type, 7–22
OM_type_list data type, 7–23
OM_value data type, 7–24
OM_value_length data type, 7–26
OM_value_number data type, 7–27
OM_value_position data type, 7–28
OM_workspace data type, 7–29
om_write , 5–33
Original argument, 5–2, 5–8, 5–12, 5–14

P
Packages, 2–10

closures, 2–10
Private objects, 2–2, 2–7

copying, 3–4
creating, 3–2
deleting, 3–17
modifying, 3–5

Public descriptors, 2–11
Public objects, 2–2, 2–3

client-generated, 2–3, 2–7
creating, 3–3
deleting, 3–16
service-generated, 2–3, 2–7

Put function, 3–6, 5–22
example of use of, 3–7

R
Read function, 3–15, 5–28

example of use of, 3–15
Reference pages, 1–5
Remove function, 3–5, 5–31

example of use of, 3–5
Representation of local character sets, 1–2
Return values, C–1 to C–2
Rules argument, 5–12
Rules attribute, 4–3

S
Service-generated public objects, 2–3, 2–7
Source argument, 5–4, 5–23
Source Type argument, 5–4
Source Value Position argument, 5–4
String Offset argument, 5–29, 5–34
Strings, 6–2

secondary identifiers, 6–3
structure of, 6–3

String syntax, 6–2
Subclasses, 2–8
Subject argument, 5–10, 5–20, 5–28, 5–31,

5–33
Subobjects, 2–6
Superclasses, 2–8
Syntax argument, 5–34
Syntaxes, 6–1

Boolean, 6–1
Enumeration, 6–2
Integer, 6–2
Null, 6–2
String, 6–2

Index–4

Syntax templates, 6–1

T
Terminology, 1–5
Total Number argument, 5–17
Type argument, 5–28, 5–31, 5–33

V
Value Position argument, 5–28, 5–33

W
Workspace argument, 5–6
Workspaces, 1–2, 2–10

associating with a package, 2–10
Write function, 3–10, 5–33

example of use of, 3–10

X
X.400 API Association, 1–1
ximp.h header file, A–1
xom.h header file, 8–1
xomi.h header file, 8–1
X/Open Company, 1–1

Index–5

