DEC X.500 Directory Service

Programming Reference

Order Number: AA-PUCGB-TE

Revision/Update Information: Version 1.3

Digital Equipment Corporation
Maynard, Massachusetts

Printing, February 1994
al Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

© Digital Equipment Corporation 1993, 1994. All Rights Reserved.

Please complete the Reader's Comments page at the end of the book. It will help us to keep
improving our documentation.

The following are trademarks of Digital Equipment Corporation: DEC, OpenVMS, OSAK, VAX
DOCUMENT, and the DIGITAL logo.

OSF and OSF/1 are trademarks of the Open Software Foundation, Inc.

X/Open is a trademark of the X/Open Company Limited.

This document was prepared using VAX DOCUMENT, Version 2.1.

Compaq
Compaq, the Compaq logo, DEC, Digital, OpenVMS, VAX, VAX DOCUMENT and Tru64 UNIX registered in U.S. Patent and Trademark Office.

Digital and Tru64 UNIX are trademarks of Compaq Information Technologies Group, L.P. in the United States and/or other countries.

Motif, OSF, OSF/Motif, OSF/1 and UNIX are trademarks of The Open Group in the United States and other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Compaq Computer Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Confidential computer software. Valid license from Compaq required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided "as is" without warranty of any kind and is subject to change without notice. The warranties for Compaq products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty.

© 2001 Compaq Computer Corporation

Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Compaq or an authorized sub-licensor.

Preface

Contents

1 The XDS Programming Interface

2

1.1
1.2
13
14

Clanguage Binding
C Naming Conventions
Function Return Values
Compilingand Linking

Interface Description

2.1
2.2
2.3
2.4
2.5
251
252
253
2.6
26.1
2.6.2
2.6.3
2.7
2.7.1
2.7.2

Abstract Services and Interface Functions
Negotiation Sequence.t

Session........
Context

Function Arguments
Attribute and AVA
Entry Info Selection

Name

Synchronous and Asynchronous Operation

Synchronous .
Asynchronous

Vii

RN

|
wwkR P

I\JI\JI\)I\)NI\JI\JII\)NNI\JI\JI\)NN
oo ~N~NOoOOOOOTOolh, B WwWE

3

4

Interface Class Definitions

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28
3.29
3.30

Access Point

Address

Attribute
Attribute List

AVA ..

Common Results e
Compare Result

Context

Continuation Reference
Distinguished Name.
Entry Information
Entry Information Selection.
Entry Modification
Entry Modification List
EXTENSIONo

Filter .

Filter Item
List Information.
List Information Item
List Result

Name .

Operation Progresst
Partial Outcome Qualifier
Presentation Address i
Read Result
Relative Distinguished Name
Relative Name
Search Information
Search Result.

Session

Interface Functions

AS COMPANE . .t
ds initialize

ds_list

[
A B WwWww

WWwWwwwwwow

AN
=

QO BRABRWWNRPFPOOOMOMOOURAWWNEROOO O

w W
[e R T T R A |
e

R R A R R
NN NNNNDN R R R R R R R R R

4-2
4-4
4-7

4-14

4-18

4-24

4-26

ds modify entry

ds modify_rdn
ds read
ds receive result
ds_remove _entry
ds_search
ds shutdown
ds unbind
dS VEISION . ..
dsX_trace object.
5 Errors
51 Error .. e
5.2 Abandon Failed
5.3 Attribute Error
54 Attribute Problem
55 Communications Error.
5.6 Library Error
57 Name Error e
5.8 Referral e
5.9 Security Error
5.10 Service Error
511 System Error
5,12 Update Error

6 Directory Class Definitions

6.1 Selected Attribute Types
6.2 Selected Object Classes
6.3 OM Class Hierarchy
6.3.1 Algorithm Identifier
6.3.2 Certificate
6.3.3 Certificate List
6.3.4 Certificate Pair.
6.3.5 Certificate Sublist
6.3.6 Facsimile Phone Number
6.3.7 DL Submit Permission
6.3.8 Postal Address i
6.3.9 Search Criterion. e
6.3.10 Search Guide

4-32
4-40
4-43
4-54
4-58
4-63
4-71
4-73
4-75
4-77

QO WO NOOP,WWNN

T
=

II|IC|D<ID

PPPOPPOOD PP
PRRPRRPRPRPRRRRRR
ON~NOUDRDWNNOON

6.3.11 Signature e 6-19

6.3.12 Teletex Terminal Identifier. 6-20
6.3.13 Telex Number. 6—-20
Index
Figures
3-1 Hierarchy of Directory Object Classes 3-2
5-1 Hierarchy of Error Object Classes 5-1
6-1 Hierarchy of Selected Object Classes 6-11
Tables
1-1 Naming Conventions for C Identifiers 1-2
2-1 Interface Functions 2-2
6-1 Representation of Values for Selected Attribute Types. 62
62 Selected Object Classes 6-10

vi

Preface

Purpose of This Manual

This manual provides reference material for writers of applications that use the
XDS interface to the X.500 Directory Service. It assumes that you are familiar
with the X.500 Directory Service, as described in DEC™ X.500 Directory
Service Management, and understand the X.500 API concepts, as described in
DEC X.500 Directory Service Programming.

The implementation of XDS described in this document is based on Version 1
of the X/Open™ CAE Specification API to Directory Services (XDS).

Note that although you can also use the XDS interface to access a Distributed
Computing Environment (DCE) Cell Directory Service (CDS), this book deals

primarily with using XDS in an X.500 environment. If you are using XDS to

develop a CDS application, you should refer to the DCE documentation.

Related Documents
You may also need the following related documents:

= DEC X.500 Directory Service Programming

e DEC X.500 Directory Service Management

= DEC X.500 Directory Service Problem Solving
e OSl-Abstract-Data Manipulation

Conventions
The term X.500 API is used to describe XDS. For details of the XDS interface
and DCE CDS, refer to the DCE documentation.

The following conventions are used in this book:

italics Indicates an attribute value
this typeface Indicates an example of code

Vii

Comments on This Manual

If you have any comments on the content or structure of this manual, or
suggestions for future releases of this manual, please mail them to Digital’s
Mail Interchange Group using one of the following forms of address:

= Internet:
migbooks@reo.mts.dec.com

e X.400:
S=migbooks; O=digital; OUl=reo; P=digital, A=gold 400; C=gb

viii

1

The XDS Programming Interface

1.1 C Language Binding

The C binding specifies identifiers for all the elements of the X.500 API so
that applications written in C can access the directory. These elements include
function names, typedef names and constants.

The definitions of the C identifiers appear in several header files:

= xom.h and xomi.h contain definitions for the associated OM API.

< xds.h contains definitions for the Directory Service.

= xdsbdcp.h contains definitions for the Basic Directory Contents Package.
= xdssap.h contains definitions for the Strong Authentication Package.

e xdsmdup.h contains definitions for the MHS Directory User Package. It
includes xmhp.h.

= xdsdec.h contains definitions of OM attributes and Directory attributes
specific to Digital's DSA

Note

If you have Digital’'s DCE software installed on your system you will
also have other header files specific to DCE.

1.2 C Naming Conventions

The X.500 API uses part of the C public namespace for its facilities. All
identifiers start with the letters ds or DS. The interface reserves all identifiers
starting with the letters dsP for private use by implementations of the X.500
API. It also reserves all identifiers starting with the letters dsX or DSX for
vendor-specific extensions to the X.500 API. You must not use any identifiers

The XDS Programming Interface 1-1

starting with these letters. Table 1-1 presents details of the C naming
conventions.

Table 1-1 Naming Conventions for C ldentifiers

Iltem Prefix
Reserved for implementors dsP_
Reserved for interface extensions dsX_
Reserved for interface extensions DSX_
Functions ds_
Error values DS _E_
OM class names DS C_
OM value length limits DS VL_
OM value number limits DS_VN_
Other constants DS_
Attribute Type DS A
Object Class DS O_

See OSl-Abstract-Data Manipulation for information about the naming
conventions used in the OM API.

Certain C identifiers are documented within this book. These are as follows:

e OM class names are written in English. The equivalent C identifier follows
the English name and is spelt entirely in upper case and starts with
DS_C_, for example, Read Result and DS_C_READ_RESULT.

= Constants that represent errors are treated as a special case. Values of
the OM attribute Problem that are a subclass of the OM class Error are
written in English. The equivalent C identifier follows the English nhame
and is spelt entirely in upper case, starts with DS_E_ and is enclosed in
parenthesis, for example, Alias Problem (DS_E_ALIAS_PROBLEM).

= Enumeration constants, the names of OM attributes, and all other
constants except errors are written in English. The equivalent C identifier
follows the English name and is spelt entirely in upper case, starts
with DS_ and is enclosed in parenthesis, for example, Information Type
(DS_INFO_TYPE).

The remaining C identifiers are derived as follows:

< All hyphens and spaces are translated to underscores.

1-2 The XDS Programming Interface

< Function names are spelt entirely in lower case and prefixed by ds_. For
example, Receive-Result becomes ds_receive_result. The exception to this
rule is the Trace-Object function (a Digital extension), which becomes
dsX_trace_object.

= Enumeration tags are derived by prefixing the name of the corresponding
OM syntax with DS_ and replacing hyphens (-) with underscores (). The
case of the letters is not changed. For example, Enum(Limit-Problem)
becomes DS_Limit_Problem.

e C function parameters are derived from the names of the function
arguments and results, and are spelt entirely in lower case. The names of
results have _return appended. For example, the argument Name becomes
name while the result Operation-Status becomes operation_status_return.

= Where the value of the upper limit in either the Value Length or Number
of Values columns of the OM class definition tables is not equal to one,
a C identifier can be used to represent this upper limit. The identifier
is the OM attribute name in upper case and prefixed by either DS _
VL_ for Value Length, or DS_VN_ for Number of Values. For example,
the upper limit of the string length of the Postal Address attribute
of the Postal Address object (30), can be represented by the identifier
DS_VL_POSTAL_ADDRESS.

1.3 Function Return Values

The return value of a C function is bound to the Status result of the language-
independent description. Functions return a value of the type DS_status,
indicating whether any errors occurred during the function call. If the function
succeeds, then its value is the constant Success. If a function returns a status
other than this, then it has not updated the return parameters. The value of
the status in this case is an error object as described in Chapter 5.

1.4 Compiling and Linking

All application programs that use the X.500 APl must include the xom.h and
xds.h header files, in that order. After you include these headers you can
include any of the optional header files. See DEC X.500 Directory Service
Programming for details of these header files and information about linking
your application program.

The XDS Programming Interface 1-3

2

Interface Description

This chapter describes the X.500 API functions and the Object Management
(OM) classes that are used as arguments and results of these functions. These
functions and objects are based on the standard X.500 Abstract Services.

2.1 Abstract Services and Interface Functions

This section describes the X.500 Abstract Services available and explains how
they map to the interface functions. The Abstract Services are used to interact
with the X.500 Directory and each maps to a single function call.

The Abstract Services are:

Abandon
AddEntry
Compare
DirectoryBind
DirectoryUnbind
List
ModifyEntry
ModifyRDN
Read
RemoveEntry

Search

Each of the abstract services maps to a single function of the same name, with
the following exceptions:

DirectoryBind maps to Bind
DirectoryUnbind maps to Unbind

Interface Description 2-1

The X.500 API functions are summarized in Table 2—1 and are fully described
in Chapter 4. Not all these functions are applicable to a CDS Directory; see
your DCE documentation for information about using the XDS interface with
CDS. The column headed Asynchronous in Table 2—1 indicates whether the
function can execute asynchronously.

Table 2—-1 Interface Functions

Name Asynchronous Description

Abandon no Abandons an outstanding operation.

Add-Entry yes Adds an entry to the Directory Information Tree
(DIT).

Bind no Opens a session with the directory.

Compare yes Compares a given attribute value with the

attribute value stored in the directory for a
particular entry.

Initialize no Initializes the interface.

List yes Lists the immediate subordinate entries of a
particular entry.

Modify-Entry yes Modifies a directory entry.

Modify-RDN yes Changes the Relative Distinguished Name (RDN)
of an entry.

Read yes Queries information on an entry by name.

Receive-Result no Retrieves the result of an asynchronously
executed function.

Remove-Entry yes Removes an entry from the DIT.

Search yes Finds entries of interest in a portion of the DIT.

Shutdown no Shuts down the interface.

Unbind no Closes a directory session.

Version no Negotiates features of the interface and service.

Trace-Object no Digital extension. Displays an explanation of the

content of an object.

2—-2 Interface Description

2.2 Negotiation Sequence

This section describes the initialization and shutdown sequence of the interface
and the optional features that this allows. The sequence involves the following
functions:

Initialize

The Initialize function returns a workspace. This workspace supports only
the standard Directory Service Package (xds.h). It does not support any
other packages or extensions. See Chapter 3 for details of the Directory
Service Package.

The workspace can be extended to support the optional Basic Directory
Contents Package (xdsbdcp.h), the Strong Authentication Package
(xdssap.h) or the MHS Directory User package (xdsmdup.h). See Chapter 6
for details of these optional packages.

The workspace can also be extended to include any vendor-specific
extension. Digital extensions are described in DEC X.500 Directory Service
Programming.

Version

Extensions to the workspace are supplied as arguments to the Version
function. When a workspace with the required features has been set up in
this way, the application can use it as required to create and manipulate
objects using the OM functions and to start one or more sessions using the
Bind function.

Shutdown

When the application has completed all its tasks, it must end all its
sessions by calling Unbind once for each call made to Bind. Then the
application must release all its objects by calling the OM-Delete function
for each top-level object, and release all resources associated with the
workspace by calling the Shutdown function.

You retain access to service-generated public objects after the Shutdown
function has been called. You can also start another cycle by calling the
Initialize function if required by the application.

Interface Description 2-3

2.3 Session

This section describes what a session is and how it is started and ended. It
also explains the setting of session parameters and the defaults.

An object of OM class Session contains the address of the Directory System
Agent (DSA) a particular directory operation is sent to. A Session object
contains some DirectoryBind arguments, for example, the Distinguished Name
of the requesting DUA. The Session object is passed as the first argument to
most of the interface functions.

You can create an object of the OM class Session and set appropriate attribute
values using the OM functions. A directory session is then started by calling
the Bind function and ended by calling the Unbind function. A session with
default attributes can be started by passing the constant Default-Session as
the session argument to the Bind function. You can also use the DUA defaults
file to specify some of the attribute values. See DEC X.500 Directory Service
Programming for information about Default-Session and the DUA defaults file.

The Bind function must be called before the Session object can be used as an
argument to any other directory interface function. The Bind function returns
the Bound Session object, which is a parameter to other directory functions.
After calling the Unbind function you must call Bind again if you want to start
another session. You may re-use an existing Session object if you call Bind
after calling Unbind.

2.4 Context

2-4

An object of OM class Context defines the characteristics of the interaction with
the Directory Service. These are specific to a particular directory operation but
often remain unchanged for many operations. It is unlikely that a user will
want to change the parameters that determine these characteristics often. The
Context object is supplied as the second argument to many Directory requests.
This reduces the number of arguments passed to each function, as it has the
same effect as passing a group of additional arguments on every function call.

The value of each attribute of the Context object is determined when the
function is called and remains fixed throughout the operation. All OM
attributes in the Context object have default values and the constant Default-
Context can be passed as the value of the Context argument to cause all these
system defaults to be taken. You can also use the DUA defaults file to specify
some of the values. Values given in the DUA defaults file override the system
defaults. If you supply a Context object and not the Default-Context constant,
the values in the DUA defaults file are not ignored. See DEC X.500 Directory
Service Programming for information about Default-Context and the DUA
defaults file.

Interface Description

2.5 Function Arguments

This section describes arguments to operations and how these are mapped to
function arguments. When a function argument is an instance of a particular
OM class, it can also be an instance of any subclass of that class. For example,
most functions have a Name argument that accepts values of the OM class
Name or an instance of the subclass DS-Name. All arguments that are objects
can be supplied to the function as either public objects or private objects.

2.5.1 Attribute and AVA

Each directory attribute is represented by an object of the OM class Attribute.
This OM class has attributes that represent the attribute type and attribute
values. See Section 3.3 for further information on these attributes.

The representation of the attribute value depends on the attribute type and is
determined as set out in the list below:

= If the attribute type and the representation of the corresponding values
are defined in a package, the attributes are represented as specified in the
package. The selected attribute types defined in Section 6.1 are an example
of this (but note that this XDS implementation does not support any of
these packages).

= If the value is an ASN.1 simple type, then the representation is the
corresponding type specified in OSI-Abstract-Data Manipulation.

« If the value is an ASN.1 structured type, then the value is represented in
Basic Encoding Rules (BER) with an OM syntax String (Encoding).

An attribute-value-assertion (AVA) is an assertion about the value of an
attribute of a particular entry. It consists of an attribute type and a single
value.

An AVA is represented by an instance of the OM class AVA, which is a subclass
of Attribute.

2.5.2 Entry Info Selection

The Selection arguments of the Read and Search functions tailor the function
results to obtain just part of the required entry. Information about all
attributes, no attributes, or about a named set of attributes can be chosen.
Attribute types are always returned, but the attribute values do not have to be.

The value of the Selection argument is an instance of the OM class Entry-Info-
Selection. In a simple case you can use one of the following constants:

= Select-No-Attributes, to verify the existence of an entry

Interface Description 2-5

e Select-All-Types, to return just the types of all attributes
= Select-All-Types-And-Values, to return the types and values of all attributes

To choose a particular set of attributes you must create a new instance of the
OM class Entry-Info-Selection. See DEC X.500 Directory Service Programming
for more information.

2.5.3 Name

Most functions take a Name argument to specify the target entry of the
function. The name is represented by an instance of one of the subclasses of
the OM class Name.

The Name specified may contain aliases. The Dont-Dereference-Aliases
control determines whether such aliases are dereferenced. You can set the
control in the Context parameter. By default the control is false for directory
interrogations and true for modifications.

A Relative Distinguished Name is represented by an instance of a subclass of
the OM class Relative-Name. This subclass is DS-RDN.

2.6 Function Results

All functions return the C function result Status. If a function was invoked
asynchronously, it also returns an Invoke-1D that identifies the particular
invocation of that function. The interrogation functions return a result.
The Invoke-ID and Result are returned using pointers that are supplied as
arguments of the C functions. These function results are described in the
following sections.

All objects returned by functions, including results and errors, are private
objects in the workspace of the session object used by that function.

2.6.1 Status

2-6

Every function returns a Status value that is either one of the constants
Success and No-Workspace, or a pointer to a private object that describes an
error. Errors are represented by private objects whose OM class is a subclass
of the OM class Error. Details of all errors are in Chapter 5.

Interface Description

2.6.2 Result

Directory interrogation operations return a result if they succeed. Any
errors from all operations are reported in the Status parameter described in
Section 2.6.1. The value of Result is Success if it is returned by a function call
that succeeds in invoking an operation. The value of Result is an error if it is
returned by a function call that fails to invoke an operation. The result of an
asynchronous operation is returned by a call to the Receive-Result function.

The result of an interrogation is returned in a private object whose OM class
is appropriate to the particular operation. The result of a single operation

is returned in a single object. The components of the result of an operation
are represented by OM attributes in the operation’s Result object. All the
information contained in the Abstract Service result is available to the
application. You can read the result using the functions provided by the OM
API.

Only interrogation operations produce results. Each type of interrogation has
a specific OM class of object for its result. These OM classes are defined in
Chapter 3 and are called:

e Compare-Result
= List-Result
= Read-Result

e Search-Result

2.6.3 Invoke-ID

All functions that invoke an asynchronous directory operation return an
Invoke-ID. This is an integer that uniquely identifies the particular invocation
of an operation. It is used to receive the result and status of asynchronous
operations or to abandon them. It is not relevant to synchronous operations.

The Invoke-ID of an asynchronous operation is unique amongst the Invoke-1Ds
of outstanding operations in a given session. The Invoke-ID of a synchronous
operation (including all CDS operations), or of a call that fails to invoke an
operation, is unspecified.

Asynchronous operations are described in Section 2.7 and DEC X.500 Directory
Service Programming.

Interface Description 2-7

2.7 Synchronous and Asynchronous Operation

This section describes how the interface provides synchronous and
asynchronous modes of operation, and the features of each.

For further information on synchronous and asynchronous operations, see DEC
X.500 Directory Service Programming.

2.7.1 Synchronous

This is the default mode of operation. The value of the Asynchronous
parameter in the Context object is set to false. In synchronous mode, all
functions wait until the operation is complete before returning. The thread of
control is blocked within the interface after calling a function until a result or
error is returned. An application is able to make use of the result as soon as
the function returns it.

All errors that occur during a synchronous operation are reported when the
function returns.

If you call a synchronous function (other than Receive-Result or Abandon)
when there is one or more outstanding asynchronous operation, some directory
services may return the Library-Error error, mixed-synchronous. However
Digital’'s X.500 API allows you to call a function synchronously even if there
are outstanding asynchronous operations. To do this you must call the
Receive-Result function after each synchronous function call.

2.7.2 Asynchronous

2-8

In asynchronous mode, the functions are able to complete before the actual
operation is complete. The application is then able to continue with other
processing while the operation is being executed by the Directory. You access
the result of the function by calling the Receive-Result function.

An application can initiate several concurrent asynchronous operations

on the same session before receiving any of the results. The number of
outstanding asynchronous operations must not exceed the constant value
Max-Outstanding-Operations. This constant is defined in the header file xds.h.

If an error is detected before an asynchronous request is submitted to the
Directory, then the function returns immediately and no asynchronous
operation is generated. Other errors are notified by the Receive-Result function
when the result of the operation is returned.

Interface Description

You must ensure that there are no outstanding asynchronous operations on

a session when a call to the Unbind function is made on that session. When
the Unbind function is called there is no way to determine whether any
outstanding asynchronous operations succeed, or even if they were sent to the
Directory.

Interface Description 2-9

3

Interface Class Definitions

This chapter defines the OM classes that make up the Directory Service
Package, as defined in the xds.h header file that is described in DEC X.500
Directory Service Programming. The errors defined in Chapter 5 also belong to
this package.

This chapter explains the hierarchical organization of these classes. Figure 3-1
shows the hierarchy of the classes with the names of abstract classes in italics.
An application is not permitted to create or modify instances of some classes
because they are returned by the X.500 API, but never supplied to it. Classes
that you can create instances of are shown in bold type in Figure 3-1. The
object class Object is defined in OSI-Abstract-Data Manipulation. It contains
one attribute, Class, which denotes the class of the object.

This chapter contains descriptions of the OM classes in alphabetical order.
Each OM class is described in a separate section that identifies the OM
attributes specific to that class and lists its superclasses. The attributes in an
instance of an OM class include those specific to that class and those inherited
from superclasses. For each class, there is a table that defines the class-specific
attributes, if there are any. The tables give the following information:

e The name of each OM attribute

e The syntax of each attribute value (including any appropriate object class,
enumeration syntax or string type in parentheses)

e The number of values each attribute can have

= The initial value, if any, that the OM-Create function supplies if
initialization is requested (initial values are not supplied for all attributes)

These classes cannot be encoded using the OM-Encode and OM-Decode
functions. For more information about OM classes and syntaxes, see OSI-
Abstract-Data Manipulation.

Interface Class Definitions 3-1

Figure 3—1 Hierarchy of Directory Object Classes

Object

—— Access Point
Addrless

Presentation Address

—— Attribute
AVA

Entry Modification

Filter ltem

— Attribute List
L

Entry Information

Common Results

Compare Result

List Information
Read Result
Search Information

Context

Continuation Reference
Entry Information Selection
Entry Modification List
Error

Extension

Filter

List Information Item

List Result

Namle

Distinguished Name

Operation Progress
—— Partial Outcome Qualifier
Relative Name

L

Relative Distinguished Name
—— Search Result
—— Session MIG0259

3-2 |Interface Class Definitions

3.1 Access Point
DS_C_ACCESS_POINT

An instance of the OM class Access Point identifies a particular point at which
access to a DSA can occur. An application must not create or modify instances
of this class. The class has the attributes of its superclass, Object, and the
following attributes:

OM Attribute Name Value Syntax Number of Values
Address Object(Address) 1
AE Title Object(Name) 1

Address (DS_ADDRESS)
Indicates the address of the DSA for use in communication with it.

AE Title (DS_AE_TITLE)
Indicates the name of the DSA.

3.2 Address
DS_C_ADDRESS

An instance of the OM class Address represents the address of a particular
entity or service, for example, a DSA. It is an abstract class that has the
attributes of its superclass, Object, and no others.

An address is an unambiguous name, label, or number that identifies the
location of the entity or service. All addresses are represented as instances
of some subclass of this class. The only subclass defined in this guide is
Presentation Address, which is the presentation address of an OSI application
process.

3.3 Attribute
DS_C_ATTRIBUTE

An instance of the OM class Attribute is a component of a directory entry.
The OM class Attribute has the attributes of its superclass, Object, and the
following attributes:

Interface Class Definitions 3-3

OM Attribute Name Value Syntax Number of Values

Attribute Type String(Object Identifier) 1
Attribute Values any 0 or more

Attribute Type (DS_ATTRIBUTE_TYPE)
Indicates the class of information given by this attribute.

Attribute Values (DS_ATTRIBUTE_VALUES)
Indicates the value syntax and the number of values allowed for this
attribute. This is determined by the value of the Attribute Type.

3.4 Attribute List
DS _C ATTRIBUTE_LIST

An instance of the OM class Attribute List is a list of directory attributes. It
has the attributes of its superclass, Object, and the following attribute:

OM Attribute Name Value Syntax Number of Values

Attributes Object(Attribute) 0 or more

Attributes (DS_ATTRIBUTES)
Indicates the attributes that will constitute a new entry, or those attributes
selected from an existing entry.

3.5 AVA
DS_C_AVA

An instance of the OM class AVA is a proposition concerning the values of a
directory entry. It has the attributes of its superclasses, Object and Attribute,
and no others. There must be exactly one value of the attribute Attribute
Values. The Attribute Type remains single-valued. The value syntax of
Attribute Values must conform with the rules set out in Section 2.5.1.

3-4 Interface Class Definitions

3.6 Common Results
DS_C_COMMON_RESULTS

An instance of the OM class Common Results contains results that are
returned by the directory interrogation operations. It is an abstract class that
has the attributes of its superclass, Object, and the following attributes:

OM Attribute Name Value Syntax Number of Values
Alias Dereferenced Boolean 1
Performer Object(Name) Oor1l

Alias Dereferenced (DS_ALIAS DEREFERENCED)

Indicates whether the name of the target entry that was passed as a
function argument included an alias that was dereferenced to determine
the distinguished name.

Performer (DS_PERFORMER)

When present, this attribute gives the distinguished name of the performer
of a particular operation. It can be present when the result is signed and
holds the name of the DSA that signed the result. Note that the presence
of this attribute does imply that strong authentication is supported.
Digital's DSA may return this attribute, but does not support strong
authentication.

3.7 Compare Result
DS_C_COMPARE_RESULT

An instance of the OM class Compare Result contains the result of a successful
call to the Compare function. An application must not create or modify
instances of this class. The class has the attributes of its superclasses, Object
and Common Results, and the following attributes:

OM Attribute Name Value Syntax Number of Values
From-Entry Boolean 1

Matched Boolean 1

Object-Name Object(Name) Oorl

From Entry (DS_FROM_ENTRY)
Indicates whether the assertion was tested against the specified object’s
entry rather than a copy of it.

Interface Class Definitions 3-5

Matched (DS_MATCHED)
Indicates whether the assertion specified as an argument was true.

Object Name (DS_OBJECT_NAME)

Indicates the Distinguished Name of the target object of the operation.
This attribute will be present if the OM attribute Alias Dereferenced is
true.

3.8 Context
DS _C_CONTEXT

An instance of the OM class Context contains arguments that are accepted
by most of the interface functions. Some of these attributes define the service
controls that determine how an operation is carried out. The Context object
has the attributes of its superclass, Object, and the following attributes:

Number of
OM Attribute Name Value Syntax Values Initial Value
Aliased RDNs Integer Oor1l -
Extensions Object(Extension) 0 or more -
Operation Progress Object(Operation Progress) 1 Operation Not Started
Chaining Prohibited Boolean 1 false!
Dont Dereference Boolean 1 false®
Aliases
Dont Use Copy Boolean 1 false!
Local Scope Boolean 1 true?
Prefer Chaining Boolean 1 true?
Priority Enum(Priority) 1 Medium?
Scope Of Referral Enum(Scope-Of-Referral) Oor1l DMD?
Size Limit Integer Oor1l ot
Time Limit Integer Oor1l ot
Automatic Continuation Boolean 1 true
Asynchronous Boolean 1 false

IThis can be overridden by information in the DUA defaults file (see Section 2.4).

Applications can assume that an object of OM class Context, created with
default values of all its OM attributes, will work with all the interface

3-6 Interface Class Definitions

functions. You should ensure that this is the case. The constant Default
Context (DS_DEFAULT_CONTEXT) can be used as an argument to interface
functions instead of creating an OM object with default values. You can also
specify information in the DUA defaults file. See DEC X.500 Directory Service
Programming for information about setting application defaults.

Aliased RDNs (DS_ALIASED_RDNS)

Indicates how many of the RDNs in the target name have been produced
by dereferencing an alias. Its value is zero if no aliases have been
dereferenced. This value should be used in the Context parameter of any
continued operation.

Extensions (DS_EXT)
Indicates any future standardized extensions that should be applied to the
directory.

Operation Progress (DS_OPERATION_PROGRESS)
Indicates the state that the Directory Service is to assume at the start of
the operation. It normally takes its default value of Operation Not Started.

Chaining Prohibited (DS_CHAINING_PROHIB)
Indicates that chaining the request to other DSAs is prohibited.

Dont Dereference Aliases (DS_DONT_DEREFERENCE_ALIASES)
Indicates that any aliases used to identify the target entry of an operation
are not dereferenced. This allows interrogation of alias entries.

Dont Use Copy (DS_DONT_USE_COPY)
Indicates that the request is to be satisfied only by access to entries and
not by use of copy entries.

Local Scope (DS _LOCAL_SCOPE)

Indicates that the directory request is to be satisfied locally. The meaning
of this option is determined by the DSA implementation but typically it
restricts the request to the DSA in which the request originated (as is the
case with Digital DSAS) or to that Directory Management Domain.

Prefer-Chaining (DS_PREFER_CHAINING)

Indicates that chaining is preferred to referrals. A DSA does not have
to follow this preference and can return a referral even if this parameter
has the value true. If this parameter has the value true, a Digital DSA
will always use chaining, rather than returning a referral, provided that
authentication is likely to be accepted by the other DSA. See DEC X.500

Interface Class Definitions 3-7

3-8

Directory Service Management for more information about chaining and
referrals.

Priority (DS_PRIORITY)

Indicates the priority at which the Directory is to try to satisfy the request
relative to other directory requests. It is not a guaranteed service as there
is no Directory-wide prioritization. Its value is one of:

e Low (DS_LOW)
e Medium (DS_MEDIUM)
e High (DS_HIGH)

Digital’'s X.500 Directory Service does not recognize the Priority settings.
All requests sent to a Digital DSA are treated with equal priority.

Scope of Referral (DS_SCOPE_OF REFERRAL)

Indicates the portion of the Directory to which referrals are to be limited.
This includes Referral errors and Partial Outcome Qualifiers. Its value is
one of the following:

e DMD (DS_DMD)
DSAs within the Directory Management Domain (DMD) in which the
request originates.

= country (DS_COUNTRY)
DSAs in any DMD within the country in which the request originates.

If its value is not set to one of the above, no limit is applied. Digital's DSA
ignores the setting of this control and does not impose any limit on the
scope of referrals.

Size Limit (DS_SIZE_LIMIT)

Indicates the maximum number of objects about which list or search
operations should return information. If the limit is exceeded then
information is returned about exactly this number of objects. Which objects
are chosen is unspecified.

Time Limit (DS_TIME_LIMIT)

Indicates the maximum time, in seconds, within which the service should
be provided. If the limit is reached a Service Error, Time Limit Exceeded,
is returned by all operations except for List and Search. In this case, List
and Search return an arbitrary selection of accumulated results.

Interface Class Definitions

Automatic-Continuation (DS_AUTOMATIC_CONTINUATION)
Indicates the requestor’s requirement for continuation reference handling,
including referrals and those in partial outcome qualifiers. The value is
one of the following:

false (OM_FALSE)
The interface returns all continuation references to the application,
which then processes them.

true (OM_TRUE)

The continuation references are automatically processed and the
subsequent results returned to the application whenever practical.
This is a much simpler process unless the application has special
requirements. The continuation references can still be returned to the
application if, for example, the relevant DSA cannot be contacted.

Digital's X.500 Directory Service APl does not support the Automatic-
Continuation service. All referrals are passed to the application, regardless
of the setting of this parameter.

Asynchronous (DS_ASYNCHRONOUS)
Indicates whether this service call should operate asynchronously, or not.
The value is one of the following:

false (OM_FALSE).
The operation is performed synchronously (sequentially), with control
not returning from the function until a result or error is returned.

true (OM_TRUE).

The operation is performed asynchronously (non-blocking). The
application can perform multiple concurrent asynchronous operations,
and can associate a result with the original operation. This result is
returned by calling the Receive-Result function. The maximum number
of outstanding asynchronous operations is defined by the constant
Maximum Outstanding Operations (DS_MAX_OUTSTANDING _
OPERATIONS) (defined in xds.h - see DEC X.500 Directory Service
Programming). The value of this constant is defined by the DSA
implementation.

Interface Class Definitions 3-9

3.9 Continuation Reference

3-10

DS_C_CONTINUATION_REF

An instance of the OM class Continuation Reference contains the information
that enables a partially completed directory request to be continued, for
example, following a referral. An application must not create or modify
instances of this class. The class has the attributes of its superclass, Object,
and the following attributes:

OM Attribute Name Value Syntax Number of Values
Access Points Object(Access Point) 1 or more
Aliased RDNs Integer 1

Operation Progress Object(Operation Progress) 1

RDNs Resolved Integer Oorl

Target Object Object(Name) 1

Access Points (DS_ACCESS_POINTYS)
Consists of the names and presentation addresses of the DSAs where the
directory request should be continued.

Aliased RDNs (DS_ALIASED_RDNS)

Indicates how many of the RDNSs in the target name have been produced
by dereferencing an alias. Its value is zero if no aliases have been
dereferenced. This value should be used in the Context parameter of any
continued operation.

Operation Progress (DS_OPERATION_PROGRESS)
The state at which the directory request must be continued. This value
should be used in the Context parameter of any continued operation.

RDNs Resolved (DS_RDNS_RESOLVED)
Indicates how many RDNs in the supplied object name have been resolved.

Target Object (DS_TARGET_OBJECT)
The name of the object upon which the continuation is to be carried out.

Interface Class Definitions

3.10 Distinguished Name
DS_C_DS_DN

An instance of the OM class Distinguished Name represents the name of a
directory object. It has the attributes of its superclasses, Object and Name,
and the following attribute:

OM Attribute Name Value Syntax Number of Values

RDNs Object(Relative Distinguished Name) 0 or more

RDNs (DS_RDNS)

The sequence of RDNs that define a path through the Directory
Information Tree (DIT) from its root to the object that the Distinguished
Name denotes. The order of the values is significant; the first value is
closest to the root and the last value is the RDN of the object.

3.11 Entry Information
DS_C_ENTRY_INFO

An instance of the OM class Entry Information contains selected information
from a single entry. It has the attributes of its superclasses, Object and
Attribute List, and the following attributes:

OM Attribute Name Value Syntax Number of Values
From Entry Boolean 1
Object Name Object(Name) 1

From Entry (DS_FROM_ENTRY)
Indicates whether the information was extracted from a specified object’s
entry or a copy of the entry.

Object Name (DS_OBJECT_NAME)
The object’s Distinguished Name.

Interface Class Definitions 3-11

3.12 Entry Information Selection

3-12

DS_C_ENTRY_INFO_SELECTION

An instance of the OM class Entry Information Selection identifies the
information to be extracted from an entry. It has the attributes of its
superclass, Object, and the following attributes:

Number of
OM Attribute Name Value Syntax Values Initial Value
All Attributes Boolean 1 true
Attributes Selected String(Object Identifier) 0 or more -
Information Type Enum(Information-Type) 1 types-and-values

All Attributes (DS_ALL_ATTRIBUTES)
Indicates which attributes are of interest. Its value is one of the following:

- false (OM_FALSE).
Information is requested about just those attributes listed in Attributes
Selected.

e true (OM_TRUE).
Information is requested about all attributes in the entry, apart from
operational attributes which must be requested specifically using the
Attributes Selected attribute.

Attributes Selected (DS_ATTRIBUTES_SELECTED)

Lists the types of the attributes from which information is to be extracted.
If you supply an empty list, no attribute data is returned. This can be used
to verify the existence of an entry, or return the Distinguished Name of

an entry. If you require information from operational attributes, you must
specifically select those attributes using the Attributes Selected attribute.

Information Type (DS_INFO_TYPE)
Identifies what information is to be extracted from each identified attribute.
Its value must be one of:

= Types-Only (DS_TYPES_ONLY)
Only the attribute types of the selected attributes in the entry are to be
returned.

e Types-And-Values (DS_TYPES_AND_VALUES)
Attribute types and values of the selected attributes in the entry are to
be returned.

Interface Class Definitions

3.13 Entry Modification
DS_C_ENTRY_MOD

An instance of the OM class Entry Modification describes one modification to a
specified attribute of an entry. It has the attributes of its superclasses, Object
and Attribute, and the following attribute:

Number of
OM Attribute Name Value Syntax Values Initial Value
Modification Type Enum(Modification-Type) 1 add-attribute

Modification Type (DS_MOD_TYPE)
Identifies the type of modification. Its value must be one of the following:

e add-attribute (DS_ADD_ATTRIBUTE)
The specified attribute is absent and is to be added with the specified
values.

e add-values (DS_ADD_VALUES)
One or more specified values are to be added to an existing specified
attribute.

= remove-attribute (DS_REMOVE_ATTRIBUTE)
An existing specified attribute is to be removed. Any values in the
attribute Attribute-Values are ignored.

e remove-values (DS _REMOVE_VALUES)
One or more specified values are to be removed from an existing
specified attribute.

The attribute type to be modified, and the associated values, are specified
in the OM attributes Attribute-Type and Attribute-Values, which are
inherited from the Attribute superclass.

3.14 Entry Modification List
DS_C_ENTRY_MOD_LIST

An instance of the OM class Entry Modification List contains an ordered
sequence of changes to be made to an entry. It has the attributes of its
superclass, Object, and the following attribute:

Interface Class Definitions 3-13

OM Attribute Name Value Syntax Number of Values

Changes Object(Entry Modification) 1 or more

Changes (DS_CHANGEYS)
Identifies the modifications to be made to the entry of the specified object
in the order specified.

3.15 Extension

3-14

DS_C_EXT

An instance of the OM class Extension denotes a standardized extension to
the Directory Service. It has the attributes of its superclass, Object, and the
following attributes:

Number of
OM Attribute Name Value Syntax Values Initial Value
Critical Boolean 1 false
Identifier Integer 1 -
Item Parameters - 1 -

Critical (DS_CRIT)
Has a value of one of the following:

= false (OM_FALSE)
The operation can be performed even if the extension is not available.

e true (OM_TRUE)
The extended operation must be performed or an error must be
reported.

Identifier (DS_IDENT)
Identifies the service extension.

Item Parameters (DS_ITEM_PARAMETERS)

Supplies the parameters of the extension. Its syntax is determined by the
Identifier.

Interface Class Definitions

3.16 Filter
DS_C FILTER

An instance of the OM class Filter is an assertion about the existence or value
of information contained in an entry. A filter is a collection of other filters and
filter items connected with Boolean operators.

The possible values of a filter are:
- false

e true

e undefined

The value of a filter is determined by evaluating each of the nested components
and combining their values using the Boolean operators. Components whose
values are undefined are ignored. The filter value is undefined if all the
component filters and filter items are undefined.

An entry is selected if it satisfies the conditions defined in the filter, that is, if
the filter value is true for that entry.

An instance of the OM class Filter has the attributes of its superclass, Object,
and the following attributes:

Number of
OM Attribute Name Value Syntax Values Initial Value
Filter Items Object(Filter Item) 0 or more -
Filters Object(Filter) 0 or more -
Filter Type Enum(Filter-Type) 1 and

Filter Items (DS_FILTER_ITEMS)
A collection of assertions each relating to one attribute of an entry.

Filters (DS_FILTERS)
A collection of filters.

Filter Type (DS_FILTER_TYPE)
The filter’s type. Its value is one of the following:

= and (DS_AND)
The filter is the logical connection of its components. The filter is true

if all nested filters or filter items are true or if there are no nested filter
items.

Interface Class Definitions 3-15

e or (DS_OR)
The filter is true if any of the nested filters or filter items are true. The
filter is false if there are no nested components.

= not (DS_NOT)
The result of the filter is reversed. There must be exactly one nested
filter or filter item. The filter is true if the enclosed filter or filter item
is false. The filter is false if the enclosed filter or filter item is true.

3.17 Filter Item

3-16

DS_C_FILTER_ITEM

An instance of class Filter Item is a component of a filter. It is an assertion
about the existence or values of a single attribute type in an entry. The DSA
determines the value of the Filter Item. The value is undefined if any of the
following are true:

e The Attribute Type is not known.

= Any of the Attribute Values do not conform to the attribute syntax defined
for that attribute type.

= The Filter Item Type uses a matching rule that is not defined for the
attribute syntax.

It has the attributes of its superclasses, Object and Attribute, and the following
attributes:

OM Attribute Name Value Syntax Number of Values
Filter Item Type Enum(Filter-1tem-Type) 1

Final Substring String? Oor1l

Initial Substring String! Oor1l

The string cannot be of zero length

Filter Item Type (DS_FILTER_ITEM_TYPE)
Identifies the type of the Filter Item and therefore the nature of the filter.
Its value must be one of the following:

= approximate-match (DS_APPROXIMATE_MATCH)
The filter item is true if the entry contains at least one value of the
specified type that is approximately equal to the specified value. There
must be exactly one value of the attribute Attribute Values.

Interface Class Definitions

The matching rules for approximate-match are defined by the DSA
implementation and vary according to the attribute syntax.

= equality (DS_EQUALITY)
The filter item is true if the entry contains at least one value of the
specified type that is equal to the specified value. There must be
exactly one value of the attribute Attribute Values.

The matching rules for equality are defined by the DSA implementation
and vary according to the attribute syntax.

= greater-or-equal (DS_GREATER_OR_EQUAL)
The filter item is true if at least one value of the attribute is greater
than or equal to the supplied value. There must be exactly one value of
the attribute Attribute Values.

The matching rules for greater-or-equal are defined by the DSA
implementation and vary according to the attribute syntax.

= less-or-equal (DS_LESS OR_EQUAL)
The filter item is true if at least one value of the attribute is less than
or equal to the supplied value. There must be exactly one value of the
attribute Attribute Values.

The matching rules for less-or-equal are defined by the DSA
implementation and vary according to the attribute syntax.

e present (DS_PRESENT)
The filter item is true if the entry contains an attribute of the specified
type. Attribute Values are ignored.

The matching rules for present are defined by the DSA implementation
and vary according to the attribute syntax.

= substrings (DS_SUBSTRINGS)
The filter item is true if the entry contains at least one value of the
specified type that contains all of the specified substrings in the given
order. There can be any number of substrings given as values of
Attribute Values, including none. Substrings must not overlap but they
can be separated from each other or the ends of the attribute value by
zero or more string elements.

The matching rules for substrings are defined by the DSA
implementation and vary according to the attribute syntax.

Final Substring (DS_FINAL_SUBSTRING)

The substring that must match the last portion of an attribute value in the
entry.

Interface Class Definitions 3-17

Initial Substring (DS_INITIAL_SUBSTRING)
The substring that must match the first portion of an attribute value in the
entry.

3.18 List Information

DS_C_LIST_INFO

An instance of the OM class List Information is a portion of the results of a
List function call. An application must not create or modify instances of this
class. The class has the attributes of its superclasses, Object and Common
Results, and the following attributes:

OM Attribute Name Value Syntax Number of Values
Object Name Object(Name) Oorl

Partial Outcome Object(Partial Outcome Qualifier) Oor1l
Qualifier

Subordinates Object(List Information Item) 0 or more

Object Name (DS_OBJECT NAME)
The Distinguished Name of the target object entry of the operation. It is
present if the Alias Dereferenced attribute is true.

Partial Outcome Qualifier (DS _PARTIAL _OUTCOME_QUAL)

Is present if the list of subordinates is incomplete. It contains details of
why the search was not completed and which areas of the Directory were
not searched.

Subordinates (DS_SUBORDINATES)
Is information about zero or more subordinate objects identified by the List
function.

3.19 List Information Item

3-18

DS_C_LIST_INFO_ITEM

An instance of the OM class List Information Item contains details of one
subordinate object returned by the List function. An application must not
create or modify instances of this class. The class has the attributes of its
superclass, Object, and the following attributes:

Interface Class Definitions

OM Attribute Name Value Syntax Number of Values

Alias Entry Boolean 1
From Entry Boolean 1
RDN Object(Relative Name) 1

Alias Entry (DS_ALIAS_ENTRY)
Indicates whether the subordinate object is an alias.

From Entry (DS_FROM_ENTRY)
Indicates whether information about the object was obtained from its entry
or a copy of the entry.

RDN (DS_RDN)
The RDN of the object. If this is the name of an alias entry, it is not
dereferenced.

3.20 List Result
DS _C_LIST _RESULT

An instance of the OM class List Result contains the results of a successful call
to the List function. An application must not create or modify instances of this
class. The class has the attributes of its superclass, Object, and the following

attributes:

OM Attribute Name Value Syntax Number of Values
List Information Object(List Information) Oor1l
Uncorrelated List Object(List Result) 0 or more
Information

List Information (DS_LIST_INFO)
The result of the List function, or a portion of it.

Uncorrelated List Information (DS_UNCORRELATED_LIST_INFO)
The information returned when the DUA has requested a protection
request of Signed. This can consist of a number of sets of results
originating from and signed by different components of the Directory.

Digital's DSA does not support this service.

Interface Class Definitions 3-19

3.21 Name

DS_C_NAME

An instance of the OM class Name represents a nhame of an entry in the
Directory or part of that name. It is an abstract class that has the attributes
of its superclass, Object, and no others.

A name unambiguously distinguishes the object from all other objects whose
entries appear in the DIT. However, an object may have more than one real-
world name, that is, a name need not be unique. A distinguished name is
unique; there are no other distinguished names that identify the same object.
A relative distinguished name is a part of a name, and only distinguishes
the object from others that are its siblings. Most of the interface functions
take a name argument, the value of which must be an instance of one of the
subclasses of this OM class. Thus, this OM class serves to collect together all
possible representations of names.

This guide defines one subclass of this OM class, Distinguished Name, which
provides a single representation for names, including distinguished names.

3.22 Operation Progress

3-20

DS_C_OPERATION_PROGRESS

An instance of the OM class Operation Progress specifies the progress or
processing state of a directory request. An application must not create or
modify instances of this class. The class has the attributes of its superclass,
Object, and the following attributes:

OM Attribute Name Value Syntax Number of Values
Name Resolution Enum(Name-Resolution-Phase) 1

Phase

Next RDN To Be Integer Oor1l

Resolved

The target name mentioned below is the nhame upon which processing of the
directory request is currently focused.

Name Resolution Phase (DS_NAME_RESOLUTION_PHASE)
Indicates what phase has been reached in handling the target name. Its
value is one of:

e Completed (DS_COMPLETED)
The DSA holding the target object has been reached.

Interface Class Definitions

= Not-Started (DS_NOT_STARTED)
A DSA with a naming context containing the initial RDN(s) of the
name has not yet been reached.

e Proceeding (DS_PROCEEDING)
The initial part of the name has been recognized but the DSA holding
the target object has not yet been reached.

Next RDN To Be Resolved (DS_NEXT_RDN_TO_BE_RESOLVED)
Indicates to the DSA which of the RDNSs in the target object is next to be
resolved. It is an integer that ranges from one to the number of RDNs in
the name. This attribute only has a value if the value of Name Resolution
Phase is Proceeding.

The constant Operation Not Started (DS_OPERATION_NOT_STARTED)

may be used in the Context of an operation instead of an instance of this
OM class (see Section 3.8).

3.23 Partial Outcome Qualifier
DS_C_PARTIAL_OUTCOME_QUAL

An instance of the OM class Partial Outcome Qualifier explains how incomplete
the results of a call to the List or Search functions are and why. An application
must not create or modify instances of this class. This class has the attributes
of its superclass, Object, and the following attributes:

OM Attribute Name Value Syntax Number of Values
Limit Problem Enum(Limit-Problem) 1
Unavailable Boolean 1

Critical Extensions
Unexplored Object(Continuation Reference) 0 or more

Limit Problem (DS_LIMIT_PROBLEM)
If present, explains why the results are incomplete. Its value is one of the
following:

= Administrative-Limit-Exceeded (DS_ADMIN_LIMIT_EXCEEDED)
An administrative limit was reached.

e No-Limit-Exceeded (DS_NO_LIMIT_EXCEEDED)
There was no limit problem.

Interface Class Definitions 3-21

e Size-Limit-Exceeded (DS_SIZE_LIMIT_EXCEEDED)
The maximum number of objects specified as a service control was
reached.

= Time-Limit-Exceeded (DS_TIME_LIMIT_EXCEEDED)
The maximum number of seconds specified as a service control was
reached.

Unavailable Critical Extensions (DS_UNAVAILABLE_CRIT_EXT)

If true, indicates that some part of the Directory cannot provide a requested
critical service extension. The user requested one or more standard service
extensions, by including values of the OM attribute Extensions in the
Context supplied for the operation and additionally, indicated some of them
to be essential by setting the OM attribute Critical in the extension to be
true.

Unexplored (DS_UNEXPLORED)

Identifies any parts of the Directory that were not explored. This allows
the directory request to be continued. Only continuation references within
the scope specified by the Scope Of Referral Context attribute are included.

3.24 Presentation Address

3-22

DS_C_PRESENTATION_ADDRESS

An instance of the OM class Presentation Address is a presentation address of
an OSI application entity used for OSI communications. It has the attributes
of its superclasses, Object and Address, and the following attributes:

OM Attribute Name Value Syntax Number of Values
N-Addresses String(Octet) 1 or more
P-Selector String(Octet) Oorl
S-Selector String(Octet) Oorl
T-Selector String(Octet) Oorl

N-Addresses (DS_N_ADDRESSES)
The network address of the application entity.

P-Selector (DS_P_SELECTOR)
The presentation selector.

Interface Class Definitions

S-Selector (DS_S SELECTOR)
The session selector.

T-Selector (DS_T_SELECTOR)
The transport selector.

3.25 Read Result
DS_C_READ _RESULT

An instance of the OM class Read Result contains the result of a successful call
to the Read function. An application must not create or modify instances of
this class. The class has the attributes of its superclasses, Object and Common
Results, and the following attribute:

OM Attribute Name Value Syntax Number of Values

Entry Object(Entry Information) 1

Entry (DS_ENTRY)
The information extracted from the entry of the target object.

3.26 Relative Distinguished Name
DS_C_DS_RDN

An instance of the OM class Relative Distinguished Name is an RDN. An RDN
uniquely identifies an immediate subordinate of an object whose entry is in the
DIT. It has the attributes of its superclasses, Object and Relative Name, and
the following attribute:

OM Attribute Name Value Syntax Number of Values

AVAs Object(AVA) 1 or more

AVAs (DS_AVAS)

The OM attribute AVAs indicates the AVAs marked by the Directory as
components of the entry’s RDN. The assertions are true of the object but
not of its siblings. The values they contain are in the object’s entry. The
order of the AVAs is not significant.

Interface Class Definitions 3-23

3.27 Relative Name
DS_C_RELATIVE_NAME

An instance of the OM class Relative Name represents the RDN of objects in
the Directory. It is an abstract class that has the attributes of its superclass,
Object, and no others.

It has a single subclass, Relative Distinguished Name, which provides a
representation for RDNs.

3.28 Search Information
DS_C_SEARCH_INFO

An instance of the OM class Search Information contains part of the result
of a successful call to the Search function. An application must not create or
modify instances of this class. The class has the attributes of its superclasses,
Object and Common Results, and the following attributes:

Number
OM Attribute Name Value Syntax of Values
Entries Object(Entry Information) 0 or

more
Object Name Object(Name) Oorl
Partial Outcome Qualifier Object(Partial Outcome Qualifier) Oor1l

Entries (DS_ENTRIES)
Contains information about zero or more objects found by the Search
function that match the given selection criteria.

Object Name (DS_OBJECT_NAME)
The Distinguished Name of the target object of the operation. It is present
if the attribute Alias Dereferenced is true.

Partial Outcome Qualifier (DS _PARTIAL OUTCOME_QUAL)

This is only present if the list of entries is incomplete. It contains details of
why the search was not completed and which areas of the Directory were
not searched.

3-24 Interface Class Definitions

3.29 Search Result
DS_C_SEARCH_RESULT

An instance of the OM class Search Result contains the result of a successful
call to the Search function. An application must not create or modify instances
of this class. The class has the attributes of its superclass, Object, and the
following attributes:

OM Attribute Name Value Syntax Number of Values
Search Information Object(Search Information) Oor1l
Uncorrelated Object(Search Result) 0 or more

Search Information

Search Information (DS_SEARCH_INFO)
The result of the Search function, or a portion of it.

Uncorrelated Search Information (DS_UNCORRELATED_SEARCH _
INFO)

The information returned when the DUA has requested a protection
request of Signed. This can consist of a number of sets of results
originating from and signed by different components of the Directory.

3.30 Session
DS_C_SESSION

An instance of the OM class Session identifies a particular link from the
application to the DUA. It has the attributes of its superclass, Object, and the
following attributes:

Number of
OM Attribute Name Value Syntax Values Initial Value
DSA Address Object(Address) Oorl nonet!
DSA Name Object(Name) Oorl none’
File Descriptor? Integer 1 No_Valid_File_Descriptor
Requestor Object(Name) Oorl none?

LYou can use the DUA defaults file to configure this. See Section 2.3 for more information.

20n an OpenVMS™ system, the value of the File Descriptor parameter is always No-Valid-File-
Descriptor. No-Valid-File-Descriptor is also the value if you are bound only to a CDS directory.

Interface Class Definitions 3-25

Number of
OM Attribute Name Value Syntax Values Initial Value

Password String(Octet) Oorl none?

LYou can use the DUA defaults file to configure this. See Section 2.3 for more information.

DSA Address (DS_DSA_ADDRESS)
Indicates the address of the default DSA named by DSA Name.

DSA Name (DS_DSA_NAME)
Indicates the Distinguished Name of the DSA that is used by default to
service directory requests.

File Descriptor (DS_FILE_DESCRIPTOR)
Indicates the file descriptor associated with the session.

Requestor (DS_REQUESTOR)
The Distinguished Name of the user of this directory session.

Password (DSX_PASSWORD)
This is the password that allows the user access to the directory. This is a
Digital extension to XDS.

Applications can assume that an object of OM Class Session, created with
default values of all its OM attributes, will work with all the interface
functions. You should ensure that this is the case. Such a session can be
created by passing the constant Default Session (DS DEFAULT_SESSION)
as an argument of the Bind function. Section 2.3 contains information
about the Default Session constant and defining default values.

3-26 Interface Class Definitions

A

Interface Functions

This chapter describes, in alphabetic order, the X.500 API functions. It
explains what the functions do, describes the function arguments and return
values, and lists the errors that can occur for each function.

Call these functions to use the services provided by the X.500 API. See DEC
X.500 Directory Service Programming for further information on using the
functions with an X.500 directory. The DCE Notes section of the function
descriptions gives brief details of how the function is used with CDS. See
Digital DCE for DEC OSF/1 AXP Product Guide for information about using
this interface with CDS.

The behavior of the interface is undefined if an argument to a function has
an invalid value. This only applies if a specific error condition is not defined.
Chapter 5 contains details of the errors returned by the interface functions.

Note that for many of the example programs shown, the return code of a
function call is often not checked. This omission, and others, are intentional to
ensure clarity and brevity within the example programs. The programs have
been written to show as much important detail as possible, while remaining
correct and concise.

The next section is a general introduction to the interface functions; the rest of
this chapter contains descriptions of the interface functions.

Interface Functions 4-1

ds_intro

This reference page introduces the X/OPEN Directory Services (XDS) functions.

#include <xom.h>

#include <xds.h>

Description

This reference page lists the XDS interface functions supported in this product.
XDS provides a C language binding.

Function

Description

ds_abandon
ds _add_entry

ds bind
ds_compare
ds_initialize
ds_list
ds_modify _entry

ds_modify rdn

ds read
ds_receive _result

ds remove_entry
ds_search
ds_shutdown
ds_unbind

Interface Functions

Abandons an outstanding asynchronous operation.

Adds a leaf entry to the Directory Information Tree
(DIT).

Opens a session with a directory user agent.

Compares a purported attribute value with the
attribute value stored in the directory for a
particular entry.

Initializes the interface.

Enumerates the immediate subordinates of a
particular directory entry.

Performs an atomic modification of a directory
entry.

Changes the Relative Distinguished Name (RDN)
of a leaf entry.

Queries information on a directory entry by name

Retrieves the result of an asynchronously executed
operation

Removes a leaf entry from the DIT

Finds entries of interest in a portion of the DIT
Shuts down the interface

Unbinds from a directory session

ds_intro

Function Description

ds_version Negotiates features of the interface and service

dsX_trace_object Displays an explanation of the content of an object
DCE Notes

The DEC X.500 Directory Service supports asynchronous operations, which the
Distributed Computing Environment (DCE) XDS interface does not. Thus, the
Abandon and Receive Result functions are included in the Digital product.

The differences between the X.500 Directory Service and the Cell Directory
Service (CDS) are as follows:

All functions operate on the X.500 name space.

CDS does not support the Modify RDN or Search functions. The Service-
Error unwilling-to-perform is returned if either function is attempted on
CDs.

CDS does not support the X.500 schema. Therefore, CDS does not have:
— The concept of an object class

— Mandatory attributes for a given object

— A set of attributes expressly permitted for a given object

— A predefined definition of single and multivalued attributes

The absence of the schema means that the usual errors, which are returned
by X.500 for breach of the rules, are not returned by CDS.

The CDS naming Directory Information Tree (DIT) is modeled on a typical
file system architecture, in which directories are used to store objects and
can contain subdirectories. Leaf objects in the CDS DIT are similar to
X.500 naming objects. However, subtree objects are called directories as
in a file system directory. All new objects must be added to an existing
directory. CDS directory objects cannot be added, removed, modified, or
compared using the XDS programming interface.

In CDS, the naming attribute of an object is not stored in the object.
Consequently, in CDS the Read operation never returns this attribute,
and the Compare operation applied to this attribute returns with the
Attribute-Error constraint-violation.

See the notes in the relevant reference page for function-specific differences.

Interface Functions 4-3

ds_abandon

ds_abandon

This function abandons an outstanding asynchronous operation.

Syntax
Status = ds_abandon (Session, Invoke-ID)
Argument Data Type Access
Session OM_private_object read
Invoke-1D Integer read
Status DS_status

C Binding
DS status ds_abandon (session, invoke_id)
OM_private_object session
OM_sint invoke_id

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session in which the operation was submitted to the
directory.

Invoke-ID
Identifies the operation that is to be abandoned.

The value of Invoke-ID must be that which was returned by the function
call that initiated the asynchronous directory operation that is now to be
abandoned.

Description

This function abandons the outstanding asynchronous function call. The
asynchronous function is no longer outstanding after the Abandon function
returns, and the results of the asynchronous function will never be returned by
the Receive-Result function, even if the function returns an error.

4-4 Interface Functions

ds_abandon

DCE Notes

The DCE XDS interface does not support asynchronous operations.

Return Value

DS_SUCCESS The operation completed successfully.
DS_NO _WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:
Abandon-Failed
Communications-Error
Library-Error, with Problem attribute values of bad-session, or
miscellaneous
The result of the asynchronous operation will not be returned even if an
Abandon-Failed error is returned.
Example

The following code extract shows an example call to the Abandon function. The
abandon function abandons the results of the asynchronous operation identified
by the Invoke-ID argument.

OM_private_object bound_session;
OM_sint invoke _id;

{

DS_status status;
status = ds_abandon(bound_session, invoke_id);

Interface Functions 4-5

ds_abandon

if (status == DS_SUCCESS)
printf("ABANDON was successful\n®);
else

printf("ABANDON failed\n");

4-6 Interface Functions

ds_add_entry

ds_add_entry

Adds an entry to the Directory Information Tree (DIT).

Syntax
Status = ds_add_entry (Session, Context, Name, Entry, Invoke-ID)
Argument Data Type Access
Session OM_private_object read
Context OM_private_object read
Name OM_object read
Entry OM_object read
Invoke-ID Integer write
Status DS_status

C Binding
DS_status ds_add_entry (session, context, name, entry, invoke_id_return)
OM_private_object session
OM_private_object context
OM_object name
OM_object entry
OM_sint xinvoke_id_return

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The Context parameters to be used for this operation. The Size-Limit and
Dont-Dereference-Aliases Context parameters do not apply to this operation.
This argument must be a Context OM private object or the constant Default-
Context.

Interface Functions 4-7

ds_add_entry

Name

A Name OM object containing the distinguished name of the entry to be added.
The immediate superior of the new entry is determined by removing the last
RDN component that belongs to the new entry. The immediate superior should
exist in the same DSA otherwise the function may fail with an Update-Error,
affecting-multiple-DSAs. It does not fail if an agreement exists between the
DSAs that allows the entry to be added. Any aliases in the name will not be
dereferenced.

Entry

The attribute information which, together with the RDN, constitutes the
entry to be created. The information must be contained in an Attribute List
OM object, or an OM object that is a subclass of Attribute-List. The object
parameter should not contain the value of the RDN of the entry being created.

Invoke-ID
The Invoke-ID of an asynchronous directory operation. This is passed by
reference.

Description

This function adds an entry to the Directory. The entry can be either an object
entry or an alias entry. The Directory checks that the resulting entry conforms
to the Directory schema.

DCE Notes

4-8

Ideally, the user does not know whether X.500 or CDS is actually handling the
DCE naming operations. There are, however, some situations where naming
results will differ depending on which service is handling the operation. (The
intro reference page for XDS functions describes the general differences
between operations on X.500 and CDS.)

Note the following issues for the Add Entry function:

= All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

= When a CDS name is passed to XDS and DCE is not installed, a Library-
Error, not-supported, is returned. This error is also returned when an
X.500 name is passed to XDS and X.500 is not installed.

= Only leaf objects (that is, objects that are not CDS directory objects) can be
added to CDS through the XDS interface.

Interface Functions

ds_add_entry

e The DS_A_OBJECT_CLASS attribute of an object is single valued in
CDS and multivalued in X.500. If the Entry argument contains a DS_A_
OBJECT_CLASS attribute with a value of DS_O_ALIAS, a CDS alias (soft
link) will be created. If the attribute value is DS_O_GROUP_OF _NAMES,
a CDS Group object will be created. Any other value for DS_A OBJECT _
CLASS, or the absence of this attribute, will result in the creation of an
ordinary CDS object.

e Only the DS_A_ COMMON_NAME and DS_A_MEMBER attributes are
valid for the DS_O_GROUP_OF_NAMES object in CDS.

e CDS supports only the following X.500 attribute syntaxes:

OM_S_TELETEX_STRING
OM_S_OBJECT_IDENTIFIER_STRING
OM_S_OCTET_STRING
OM_S_PRINTABLE_STRING
OM_S_NUMERIC_STRING
OM_S_BOOLEAN

OM_S_INTEGER
OM_S_UTC_TIME_STRING
OM_S_ENCODING_STRING

If attributes of any other syntax are supplied to an Add Entry operation
that references CDS, then it returns the Attribute-Error constraint-
violation.

Because CDS does not implement the X.500 schema rules, some CDS objects
may not contain mandatory attributes like object class and so on.

Return Value

DS_SUCCESS The entry was added, if the operation was
invoked synchronously. The operation was
initiated, if it was invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Interface Functions 4-9

ds_add_entry

Errors

This function can return pointers to the following error objects:

Examples

Attribute-Error, constraint-violation

Communications-Error

Library-Error, with Problem attribute values of bad-argument, bad-context,
bad-name, bad-session, miscellaneous, missing-type, not-supported or
too-many-operations

Name-Error, no-such-object

Referral

Security-Error

Service-Error

Update-Error

The following code extracts show an example call to the Add Entry
function. The Add Entry function is used to create a new directory entry
containing two attributes: common name and organization unit.

There are two examples. The first example shows how to perform an
asynchronous Add Entry operation. The second example shows how to
perform a synchronous Add Entry operation.

The Bound_Session argument contains the identity of a session returned
from an earlier call to the Bind function. This object identifies the session
through which the request should be issued. The Name argument is
assumed to have been previously defined. Examples of how to define a
Name argument, including an example of a CDS Name argument, are
shown in the Read function.

OM_private_object bound_session, context;
OM_workspace workspace;
OM _return_code om_status = OM_SUCCESS;

OM_descriptor ATLST entry[4], * contents of entry */
ATTR_sn_Black[4],
ATTR_oc_OrgPerson[5],
Context[3]; /* For the context */

I* Define the first X.500 Object Class attribute */

4-10 Interface Functions

ds_add_entry

OMX_CLASS_DESC(ATTR_oc_OrgPerson[0], DS_C_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(ATTR_oc_OrgPerson[1], DS_ATTRIBUTE_TYPE,
DS_A OBJECT. CLASS)
OMX_STRING_DESC(ATTR_oc_OrgPerson[2], OM_S_OBJECT_IDENTIFIER_STRING,
DS_ATTRIBUTE_VALUES,
DS _O_PERSON.elements,
DS_O_PERSON.length);
OMX_STRING_DESC(ATTR_oc_OrgPerson[3], OM_S_OBJECT_IDENTIFIER_STRING,
DS_ATTRIBUTE_VALUES,
DS_O_ORG_PERSON. elements,
DS_O_ORG_PERSON.length);
OMX_OM_NULL_DESC(ATTR_oc_OrgPerson[4]);

[* Define the X.500 Surname attribute */

OMX_CLASS_DESC(ATTR_sn_Black[0], DS_C_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(ATTR_sn_Blackjl], DS_ATTRIBUTE_TYPE,
DS_A_SURNAME);
OMX_ZSTRING_DESC(ATTR_sn_Black[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Black");
OMX_OM_NULL_DESC(ATTR_sn_Black[3]);

[* Define the Attribute List */

OMX_CLASS DESC(ATLST entry[0], DS_C_ATTRIBUTE_LIST);
OMX_OBJECT DESC(ATLST entry[l], DS _ATTRIBUTES, ATTR_sn Black):
OMX_OBJECT DESC(ATLST entry[2, DS_ATTRIBUTES, ATTR oc_OrgPerson);
OMX_OM_NULL_DESC(ATLST entry[3));

[* now create the context object and set the Asynchronous flag to */
[* true to indicate that the operation should be asynchronous. ¥
om_status = om_create(DS_C_CONTEXT, OM_TRUE, workspace, &context);

OMX_CLASS_DESC(Context[0], DS_C_CONTEXT);
OMX_BOOLEAN_DESC(Context[l], ~DS_ASYNCHRONOUS,OM_TRUE);
OMX_OM_NULL_DESC(Context[2]);

* Now place the contents of the public object cpub_context into */
[* the private object context *

om_status = om_put(context, OM_REPLACE_ALL, Context, 0, 0, 0);
{

DS_status status;

OM_sint invoke_id:;
OM_uint completion_flag;
DS_status operation_status;

OM_return_code ~ om_status;
OM_private_object entry, add_entry result;

[* create the OM private object: entry */

om_status = om_create(DS_C_ATTRIBUTE_LIST, OM_FALSE, workspace,
&entry);

Interface Functions 4-11

ds_add_entry

[* Copy the attribute list from the cpub_attr list public */
[* object into the entry private object *

om_status = om_put(entry, OM_REPLACE_ALL, ATLST entry, 0, 0, 0);
[* Call the Add Entry function using entry as a parameter */

status = ds_add_entry(bound_session, context, name, entry,
&invoke_id);

if (status == DS_SUCCESS)

printf("ADD ENTRY request was successful\n");
}

else

printf("ADD ENTRY request failed\n");

[* now wait for the response... */
completion_flag = DS_OUTSTANDING_OPERATIONS;
I* loop around calls to receive_result() until we get one back */

while ((status == DS_SUCCESS)
&& (completion_flag == DS_OUTSTANDING_OPERATIONS))
{

status = ds_receive_result(bound_session, &completion_flag,
&operation_status,
&add_entry result, &invoke_id);

if (status == DS_SUCCESS)
switch (completion_flag)

case DS_COMPLETED_OPERATION:

[* we have a completed operation */

if(operation_status == DS_SUCCESS)
printf("ADD ENTRY was successful\n");

break;

case DS_OUTSTANDING_OPERATIONS:
printf("There are outstanding operations\n");

break;

case DS_NO_OUTSTANDING_OPERATION:
printf("There are NO outstanding operations\n);

4-12 Interface Functions

}

ds_add_entry

break;

Example 1 shows:

How to define a private object containing context parameters.

How to define a public object (cpub_attr_list) containing the attributes
to be added to the new directory entry.

How to use the OM Create function to create a private object (entry)
and how to use the OM Put function to copy the entry’s attributes from
the public object (cpub_attr_list) into the newly created private object
(entry).

How to use the Receive Result function to obtain the result of the Add
Entry function.

The OM Create and the OM Put functions are assumed to succeed.

OM_private_object bound_session, context, name;

{

}

DS_status status;
OM_private_object entry;

status = ds_add_entry(bound_session, DS _DEFAULT_CONTEXT, name,
entry, NULL);

if (status == DS_SUCCESS)
printf("ADD ENTRY was successful\n®);
else

printf("ADD ENTRY failed\n");

Example 2 shows how to perform a synchronous Add Entry operation. Note
that the Invoke_id argument is not needed and therefore set to NULL. The
example assumes that all other arguments have been defined as shown in
Example 1.

Interface Functions 4-13

ds_bind

ds_hind

Syntax

Opens a session with the directory service.

Status = ds_bind (Session, Workspace, Bound-Session)

Argument Data Type Access
Session OM_object read
Workspace OM_workspace read
Bound-Session OM_private_object write
Status DS_status
C Binding
DS status ds_hind (session, workspace, bound_session_return)
OM_object session
OM_workspace workspace
OM_private_object xbound_session_return
Arguments
Session

A Session OM object specifying the address of the DSA to bind to, and other
information. You can submit either an OM public object or an OM private
object as this argument. You can also use the constant Default-Session as the
value of this argument, causing a new session to be created with default values
for all its OM attributes. The Bind operation uses information from the DUA
defaults file when the constant Default-Session is used.

Workspace

Specifies the workspace (obtained from a call to the Initialize function) which is
to be associated with the session. All function results from directory operations
using this session will be returned as private objects in this workspace. If

the Session argument is a private object, it must be a private object in this
workspace.

4-14 Interface Functions

ds_bind

Bound-Session

A Session OM private object identifying a directory session. This session may
be used as an argument to other functions, for example the Read function. If
the value of Session was Default-Session or a public object, then Bound-Session
is a new private object. Otherwise, when the Session is a private object, then
Bound-Session is that private object. The function supplies default values for
any of the OM attributes that were not present in the session instance supplied
as an argument. It also sets the value of the File-Descriptor OM Attribute.
The initial value of this attribute is No-Valid-File-Descriptor. On an OpenVMS
system, a file descriptor is not returned and the value of this attribute does
not change. Note also that if the application binds only to a CDS directory, the
value of the File-Descriptor OM attribute does not change.

Description

This function opens a session with the directory service and returns a session
object for use in subsequent function calls. This function must be called before
any other directory functions.

DCE Notes

Ideally, the user does not know whether X.500 or CDS is actually handling the
DCE naming operations. There are, however, some situations where naming
results will differ depending on which service is handling the operation. (The
intro reference page for XDS functions describes the general differences
between operations on X.500 and CDS.)

Note that to use CDS when X.500 is not active, the Bind function must

be called with the value of the session parameter to set to DS DEFAULT _
SESSION. In this case, the Bind function will return DS_SUCCESS, but the
returned Bound Session object may be used only for directory operations on the
CDS namespace. If an operation is attempted against X.500 with this Bound
Session, the directory routine will return the Library-Error, not-supported.

If your application was built and runs on a system where CDS is installed but
X.500 is not installed, the Bind function will only attempt to bind to the CDS
directory. If your application was built and runs on a system where X.500 is
installed but CDS is not installed, the Bind function will only attempt to bind
to the X.500 directory, and will return an error if it fails. If both CDS and
X.500 are installed on the system and your application was built and runs
against the XDS shareable library files, then the Bind function will attempt to
bind to both directories.

Interface Functions 4-15

ds_bind

Note that in normal operation, no error message is returned if the Bind
function fails to connect to an X.500 directory, but an error will be returned
when your application attempts an X.500 operation. If you require error
messages to be returned when the Bind function fails, your application
must call the Version function and negotiate the Digital extension feature
DSX-RET-X500-BIND-ERR-FTR.

Return Value

DS_SUCCESS The operation completed successfully.
DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:
System-Error
Library-Error, with Problem attribute values of bad-session, miscellaneous,
not-supported or too-many-sessions
Security-Error
Service-Error
Communications-Error
Example

The following code extract shows an example call to the Bind function. It
establishes a session with the directory service.

OM_private_object bound_session;
OM_workspace workspace;

{
DS_status status;
status = ds_bind(DS_DEFAULT SESSION, workspace, &bound_session);

4-16 Interface Functions

ds_bind

if (status == DS_SUCCESS)
printf("BIND was successful\n");
else

{
printf("BIND failed\n");

}

The Bind function associates a workspace, obtained from a call to the Initialize
function, with the directory service session returned in the Bound_Session
argument. The function uses the default session constant DS_DEFAULT _
SESSION as the Session argument.

Interface Functions 4-17

ds_compare

ds_compare

Compares an attribute value with the attribute value stored in the Directory
for a particular entry.

Syntax
Status = ds_compare (Session, Context, Name, AVA, Result, Invoke-ID)
Argument Data Type Access
Session OM_private_object read
Context OM_private_object read
Name OM_object read
AVA OM_object read
Result OM_private_object write
Invoke-ID Integer write
Status DS_status

C Binding
DS_status ds_compare (session, context, name, ava, result_return, invoke_id_return)
OM_private_object session
OM_private_object context
OM_object name
OM_object ava
OM_private_object xresult_return
OM_sint xinvoke_id_return

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The Context parameters to be used for this operation. The Size-Limit Context
parameter does not apply to this operation. This argument must be a Context
OM private object or the constant Default-Context.

4-18 Interface Functions

ds_compare

Name

A Name OM object containing the name of the target entry. Any aliases in
the name will be dereferenced unless prohibited by the Context parameter
Dont-Dereference-Aliases.

AVA
An AVA OM object containing the attribute-value-assertion that specifies the
attribute type and value to be compared with that in the entry.

Result

A Compare-Result OM private object containing flags indicating whether the
values matched and whether the comparison was made against the original
entry. It also contains the Distinguished Name of the target object if an alias
was dereferenced.

Invoke-1D
The Invoke-ID of an asynchronous directory operation. This is only valid if the
Asynchronous OM attribute in the Context parameter is set to True.

Description

This function checks that the value supplied in the given AVA is the same
as the value or values of the same attribute type in the named entry. The
operation fails and an error is returned if the target object is not found or if
the target entry does not have the required attribute type.

If this function is called asynchronously, then the result can be abandoned by
calling the Abandon function.

DCE Notes

Ideally, the user does not know whether X.500 or CDS is actually handling the
DCE naming operations. There are, however, some situations where naming
results will differ depending on which service is handling the operation. (The
intro reference page for XDS functions describes the general differences
between operations on X.500 and CDS.)

Note the following issues for the Compare function:

e All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

e When a CDS name is passed to XDS and DCE is not installed, a Library-
Error, not-supported, is returned. This error is also returned when an
X.500 name is passed to XDS and X.500 is not installed.

Interface Functions 4-19

ds_compare

< In CDS, the naming attribute of an object is not stored in the attribute list
of an object. Thus in CDS a Compare operation of the purported naming
attribute value with the naming attribute value of the directory object
always fails to match.

= CDS supports only the following X.500 attribute syntaxes:

OM_S_TELETEX_STRING
OM_S_OBJECT_IDENTIFIER_STRING
OM_S_OCTET_STRING
OM_S_PRINTABLE_STRING
OM_S_NUMERIC_STRING
OM_S_BOOLEAN

OM_S_INTEGER
OM_S_UTC_TIME_STRING
OM_S_ENCODING_STRING

If attributes of any other syntax are supplied to a Compare operation that
references CDS, then it returns the Attribute-Error constraint-violation.

< In CDS, the name parameter supplied to the Compare function must
ultimately resolve to the name of a leaf (that is, a CDS Object) entry;
otherwise, the Name-Error no-such-object is returned. The function never
interprets the name parameter as the name of a CDS Directory entry.

Return Value

DS_SUCCESS The comparison was completed, if the
operation was invoked synchronously. The
operation was initiated, if it was invoked
asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:

Library-Error, with Problem attribute values of bad-argument, bad-context,
bad-name, bad-session, miscellaneous, missing-type, not-supported or
too-many-operations

Attribute-Error, constraint-violation

4-20 Interface Functions

Examples

ds_compare

Name-Error, no-such-object
Referral

Security-Error
Service-Error
Communications-Error

The following code extracts show an example call to the Compare function.
The Compare function is used to compare the common name attribute with
the name attribute contained within the directory entry identified by the
Name argument.

There are two examples. The first example shows how to perform an
asynchronous Compare operation. The second example shows how to
perform a synchronous Compare operation.

The Bound_Session argument contains the identity of a session returned
from an earlier call to the Bind function. This object identifies the session
through which the request should be issued. The Name argument is
assumed to have been previously defined. Examples of how to define a
Name argument, including an example of a CDS Name argument, are
shown in the Read function.

OM_private_object ava;

OM_workspace workspace;
OM_descriptor cpub_ava[4];

DS _status status;

OM_sint invoke_id;
OM_uint completion_flag;
DS_status operation_status;
OM_return_code om_status;

OM_private_object name, compare_result;
OM _return_code om_status = OM_SUCCESS;

OMX_CLASS_DESC(cpub_ava[0], DS_C_AVA);
OMX_ATTR_TYPE_DESC(cpub_ava[l], DS_ATTRIBUTE_TYPE,
DS_A_COMMON_NAME);
OMX_ZSTRING_DESC(cpub_ava[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Albert Einstein");
OMX_OM_NULL_DESC(cpub_ava[3]);

[* create the OM private object: ava */
om_status = om_create(DS_C_AVA, OM_FALSE, workspace, &ava);

[* Copy the attribute list from the cpub_ava public object */
[* into the ava private object ¥

Interface Functions 4-21

ds_compare

om_status = om_put(ava, OM_REPLACE_ALL, cpub_ava, 0,0,0);
* call the ds_compare function using ava as a parameter */

status = ds_compare(bound_session, context, name, .
ava, &compare_result, &invoke_id);

if (status == DS_SUCCESS)
printf("COMPARE request was successful\n®);
else

printf("COMPARE request failed\n");

[* now wait for the response... */
completion_flag = DS_OUTSTANDING_OPERATIONS;
[* loop around calls to receive_result() until we get one back */

while ((status == DS_SUCCESS)
&& (completion_flag == DS_OUTSTANDING_OPERATIONS))
{

status = ds_receive_result(bound_session, &completion_flag,
&operation_status, &compare_result,
&invoke_id);

if (status == DS_SUCCESS)

switch (completion_flag)

{
case DS_COMPLETED_OPERATION:

[* we have a completed operation */
* now see what we have got back ... */
if(operation_status == DS_SUCCESS)
printf("COMPARE result received\n");
[* use OM to examine compare_result object */
else
printf("COMPARE request failed\n");

break;
case DS _OUTSTANDING_OPERATIONS:

'B'reak;

4-22 Interface Functions

ds_compare

case DS _NO_OUTSTANDING_OPERATION:
'B'reak;

}
}

Example 1 shows:

How to define an attribute value assertion and use that in the Compare

function.

How to define an AVA OM public object (cpub_ava) containing the
attribute value assertion.

How to use the OM Create function to create an AVA OM private object
(ava) and how to use the OM Put function to copy the attribute value
assertion from the public object (cpub_ava) into the newly created
private object (ava).

How to use the Receive Result function to obtain the result of the
Compare function.

The OM Create and the OM Put functions are assumed to succeed.

OM_private_object bound_session, name, context;

{

}

DS_status status;
OM_private_object ava;

status = ds_compare(bound_session, DS_DEFAULT_CONTEXT,
name, ava, &compare_result, NULL);

if (status == DS_SUCCESS)
printf("COMPARE request was successful\n®);
[* examine compare result object to see if */
[* comparison was TRUE or FALSE */

else

printf("COMPARE request failed\n");

Example 1 shows how to perform a synchronous Compare operation. Note
that the Invoke-1D argument is not needed and therefore set to NULL. The
example assumes that all other arguments have been defined as shown in
Example 1.

Interface Functions 4-23

ds_initialize

ds_initialize
Initializes the interface.

Syntax

Workspace = ds_initialize (void)

Argument Data Type
Workspace OM_workspace
C Binding

OM_workspace ds_initialize (void)

Description

This function performs any necessary initialization of the X.500 API including
the creation of a workspace. You must call this function before you call any
other X.500 API functions. It may be called multiple times, in which case each
call returns a workspace which is distinct from other workspaces created by
the Initialize function but not yet deleted by the Shutdown function.

Return Value

Workspace

Upon successful completion this function returns a pointer to a workspace in
which OM objects can be created and manipulated. Only objects created in this
workspace can be used as arguments to the other directory interface functions.
This function returns NULL if it fails.

Errors

This function does not return any errors.

4-24 Interface Functions

ds_initialize

Example

The following code extract shows an example of a call to the Initialize
function. The Initialize function is used to initialize the X.500 APl and
create a workspace which can then be used by other functions.

OM_workspace workspace;

if ((workspace = ds_initialize()) != NULL)
printf("INITIALIZE was successful\n");
else

printf("INITIALIZE failed\n");
}

The Initialize function establishes the workspace that you can then use to
communicate with the directory, for the remainder of the session.

Interface Functions 4-25

ds_list

ds_list

Syntax

Lists all the immediate subordinate entries of a directory entry.

Status = ds_list (Session, Context, Name, Result, Invoke-ID)

Argument Data Type Access
Session OM_private_object read
Context OM_private_object read
Name OM_object read
Result OM_private_object write
Invoke-ID Integer write
Status DS_status

C Binding
DS_status ds_list (session, context, name, result_return, invoke_id_return)
OM_private_object session
OM_private_object context
OM_object name
OM_private_object xresult_return
OM_sint xinvoke_id_return

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context
The directory context to be used for this operation. This argument must be a
Context OM private object or the constant Default-Context.

Name

A Name OM object specifying the name of the object entry whose immediate
subordinates are to be listed. Any aliases in the name will be dereferenced
unless prohibited by the Context parameter Dont-Dereference-Aliases.

4-26 Interface Functions

ds_list

Result

A List-Result OM private object, passed by reference, containing some
information about the target object’'s immediate subordinates. It also contains
the distinguished name of the target object if an alias was dereferenced to
find it. Aliases in the subordinate names are identified, but not dereferenced.
Additionally, there may be a partial outcome qualifier which indicates that the
result is incomplete. It also explains the reason why, for example, the time
limit expired, and contains information that may be helpful when attempting
to complete the operation.

Invoke-1D
The Invoke-ID of an asynchronous directory operation.

Description

This function is used to obtain a list of all the immediate subordinates
of a named entry. It is possible that the list will be incomplete in some
circumstances.

If this function is called asynchronously, then the result can be abandoned by
calling the Abandon function.

DCE Notes

Ideally, the user does not know whether X.500 or CDS is actually handling the
DCE naming operations. There are, however, some situations where naming
results will differ depending on which service is handling the operation. (The
intro reference page for XDS functions describes the general differences
between operations on X.500 and CDS.)

Note the following issues for the List function:

e All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

= When a CDS name is passed to XDS and DCE is not installed, a Library-
Error, not-supported, is returned. This error is also returned when an
X.500 name is passed to XDS and X.500 is not installed.

Interface Functions 4-27

ds_list

Return Value

DS _SUCCESS The target object was located regardless

of whether it has any subordinates, if the
operation was invoked synchronously. The
operation was initiated, if it was invoked

asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to

the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Errors

This function can return pointers to the following error objects:

Examples

Library-Error, with Problem attribute values of bad-argument, bad-context,
bad-name, bad-session, miscellaneous, missing-type, not-supported or
too-many-operations

Name-Error

Referral

Security-Error

Service-Error

Communications-Error

The following code extracts show an example call to the List function.
The List function is used to list the subordinates of the directory entry
identified in the Name argument.

There are two examples. The first example shows how to perform an
asynchronous List operation. The second example shows how to perform a
synchronous List operation.

The Bound_Session argument contains the identity of a session, established
using the Bind function, through which the request should be issued. The
Name argument is assumed to have been previously defined. Examples

of how to define a Name argument, including an example of a CDS Name
argument, are shown in the Read function.

4-28 Interface Functions

ds_list

OM_private_object bound_session, context, name;

OM_workspace workspace;

{
DS_status status;
OM_private_object list_result;
OM_sint invoke_id;
OM_uint completion_flag;
DS_status operation_status;

OM_return_code om_status;
OM_public_object spub_result;
OM _value_position desc_count;

[* call ds_list to list the subordinates of the entry */
[* identified in name *

status = ds_list(bound_session, context, name, &list_result,
&invoke_id);

completion_flag = DS_OUTSTANDING_OPERATIONS;
I* loop around calls to receive result() until we get one back */

while ((status == DS_SUCCESS) &&
(completion_flag == DS_OUTSTANDING_OPERATIONS))

status = ds_receive_result(bound_session, &completion_flag,
&operation_status, &list result,
&invoke_id);

if (status == DS_SUCCESS)
{
switch (completion_flag)

case DS_COMPLETED_OPERATION:

[* we have a completed operation *
¥ now see what we have got back ... */

if (operation_status == DS_SUCCESS)
{

om_status = om_get(list_result, OM_NO_EXCLUSIONS,
0, 0, 0, OM_ALL_VALUES,
&spub_result, &desc_count);

Interface Functions 4-29

ds_list

if (om_status == OM_SUCCESS)

[* if desc_count is not zero, the results are now */
[* available in the public object spub_result ¥

else

[* error getting results */

else

{}

break;
case DS_COMPLETED OPERATION:

'b'reak;
case DS_COMPLETED OPERATION:

'b"reak;

}

Example 1 shows:
< A call to the List function.

e How to use the Receive Result function to obtain the result of the List
function.

< How to use the OM Get function to copy the attributes of the
List-Result OM private object into the equivalent List-Result OM
public object (Spub_Result) for examination.

The OM Get function is assumed to succeed.

OM_private_object bound_session, context, name;

{

DS_status status;
OM_private_object list_result;
OM_public_object spub_result;
OM _value_position desc_count;

status = ds_list(bound_session, DS_DEFAULT CONTEXT, name,
&list_result, NULL);

if (status == DS_SUCCESS)

[* LIST was successful */

4-30 Interface Functions

ds_list

* now see what we have got back ... */

om_status = om_get(list_result, OM_NO_EXCLUSIONS,
0, 0, 0, OM_ALL_VALUES,
&spub_result, &desc_count);

if (om_status == OM_SUCCESS)

[* if desc_count!=0, results now available as a public */
[* object ¥/

else

[* error getting results */

Example 2 shows how to perform a synchronous List operation. Note that
the Invoke-ID argument is not needed and therefore set to NULL. The

example assumes that all other arguments have been defined as shown in
Example 1.

Interface Functions 4-31

ds_modify_entry

ds_modify_entry

Syntax

Performs an modification on an entry.

Status = ds_modify_entry (Session, Context, Name, Changes, Invoke-ID)

Argument Data Type Access
Session OM_private_object read
Context OM_private_object read
Name OM_object read
Changes OM_object read
Invoke-ID Integer write
Status DS_status

C Binding
DS status ds_modify_entry (session, context, name, changes, invoke_id_return)
OM_private_object session
OM_private_object context
OM_object name
OM_object changes
OM_sint xinvoke_id_return

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context
The Context parameters to be used for this operation. This argument must be
a Context OM private object or the constant Default-Context.

Name

A Name OM object containing the name of the target entry. Any aliases in the
name will be dereferenced if the Digital DSA attribute Dereference Alias on
Modify is set and the Dont Deference Aliases service control is not set.

4-32 Interface Functions

ds_modify_entry

Changes
An Entry-Modification-List OM object specifying a sequence of modifications to
the named entry.

Invoke-1D
The Invoke-ID of an asynchronous directory operation.

Description

This function is used to make a series of one or more of the following changes
to a single entry:

e Add a new attribute (add-attribute)

= Remove an attribute (remove-attribute)
e Add attribute values (add-values)

< Remove attribute values (remove-values)

You can replace values by a combination of adding values and removing values
in a single operation. You can only change the RDN of an entry by using the
Modify-RDN function.

The result of the operation is as if each modification is made in the order
specified in the Changes argument. If any of the individual modifications fail,
then an Attribute-Error is reported and the entry is left as it was before the
whole operation. The operation is atomic, either all the changes are made or
none are. The Directory Service checks that the resulting entry conforms to
the schema.

DCE Notes

Ideally, the user does not know whether X.500 or CDS is actually handling the
DCE naming operations. There are, however, some situations where naming
results will differ depending on which service is handling the operation. (The
intro reference page for XDS functions describes the general differences
between operations on X.500 and CDS.)

Note the following issues for the Modify Entry function:

e All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

e When a CDS name is passed to XDS and DCE is not installed, a Library-
Error, not-supported, is returned. This error is also returned when an
X.500 name is passed to XDS and X.500 is not installed.

Interface Functions 4-33

ds_modify_entry

< Naming schema rules do not apply in CDS. At the XDS API, all CDS
attributes are treated as multivalued. Adding an attribute that already
exists on the CDS entry causes an additional value to be added to that
attribute’s set of values. Thus the following Attribute-Errors are never
returned by CDS:

no-such-attribute-or-value
attribute-or-value-already-exists

Naming operations that would normally return these errors succeed in
CDS. In particular, the addition of an attribute that already exists does not
return with an error. Instead, the values of the attribute to be added are
combined with the values of the existing attribute.

e CDS supports only the following X.500 attribute syntaxes:

OM_S_TELETEX_STRING
OM_S_OBJECT_IDENTIFIER_STRING
OM_S_OCTET_STRING
OM_S_PRINTABLE_STRING
OM_S_NUMERIC_STRING
OM_S_BOOLEAN

OM_S_INTEGER
OM_S_UTC_TIME_STRING
OM_S_ENCODING_STRING

If attributes of any other syntax are supplied to a Modify Entry operation
that references CDS, then it returns the Attribute-Error constraint-
violation.

= In CDS, the name parameter supplied to the Modify Entry function must
ultimately resolve to the name of a leaf (that is, a CDS Object) entry;
otherwise the Name-Error no-such-object is returned. The function never
interprets the name parameter as the name of a CDS Directory entry.

Return Value

DS_SUCCESS All the modifications were made to the entry,
if the operation was invoked synchronously.
The operation was initiated, if it was invoked
asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

4-34 Interface Functions

ds_modify_entry

If neither of these constants is returned, then the function returns a pointer to
an error object of one of the classes listed below.

Errors

This function can return pointers to the following error objects:

Library-Error, with Problem attribute values of bad-argument, bad-context,
bad-name, bad-session, miscellaneous, missing-type, not-supported, or
too-many-operations

Attribute-Error, constraint-violation

Name-Error, no-such-object

Referral

Security-Error

Service-Error

Update-Error

Communications-Error

An Attribute-Error is returned if you attempt any of the following:

e To use Add-Attribute to add an existing attribute

< To add a value to a non-existent attribute type

e To use Remove-Attribute to remove a non-existent attribute or non-existent
attribute value

An attempt to remove an attribute or attribute value which is part of the
object's RDN or to modify the object class attribute results in an Update-Error.

Examples

The following code extracts show an example call to the Modify Entry
function. Note that the standard schema does not contain an object class
with the attributes used in the example. The Modify Entry function is used
to modify the directory entry, identified in the Name argument, as follows:

Add a new X.500 attribute Title with the value "Sales & Marketing
Director”

Add the value "Abacus Trading Corporation” to the X.500 attribute
Organization Name

Remove the X.500 attribute Organizational Unit Name

Remove the value "US" from the Country Name X.500 attribute

Interface Functions 4-35

ds_modify_entry

4-36

There are two examples. The first example shows how to perform an
asynchronous Modify Entry operation. The second example shows how to
perform a synchronous Modify Entry operation.

The Bound_Session argument contains the identity of a session, established
using the Bind function, through which the request should be issued. Two
arguments are assumed to have been previously defined. These are the
Name argument and the Context argument. Examples of how to define

a Name argument, including an example of a CDS Name argument, are
shown in the Read function. An example of how to define a Context
argument is shown in the Add Entry function.

OM_private_object bound_session, context, name;

[* define some public objects to contain the changes to be made to */
[* the directory entry *

[* declare the descriptor lists (public objects) */

OM_descriptor cpub_mod_list[6];
OM_descriptor cpub_mod1[5];
OM_descriptor cpub_mod2[6];
OM_descriptor cpub_mod3[4];
OM_descriptor cpub_mod4[5];

[* define the first descriptor list */

OMX_CLASS_DESC(cpub_mod1[0], DS_C_ENTRY_MOD);
OMX_ENUM_DESC(cpub_mod1[1], DS_MOD_TYPE,
DS_ADD_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(cpub_mod1[2], DS_ATTRIBUTE_TYPE,
DS_A_TITLE);
OMX_ZSTRING_DESC(cpub_mod1[3], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Sales & Marketing Director");
OMX_OM_NULL_DESC(cpub_mod1[4]);

[* define the second descriptor list */

OMX_CLASS DESC(cpub_mod2[0], DS_C_ENTRY_MOD);
OMX_ENUM_DESC(cpub_mod2[1], DS_MOD_TYPE,
DS_ADD_VALUES);
OMX_ATTR_TYPE_DESC(cpub_mod2[2], DS_ATTRIBUTE_TYPE,
DS_A ORG_NAME);
OMX_ZSTRING_DESC(cpub_mod2[3], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Abacus Trading Corporation”);
OMX_ZSTRING_DESC(cpub_mod2[4], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Abacus");
OMX_OM_NULL_DESC(cpub_mod2[5]);

Interface Functions

ds_modify_entry

I* define the third descriptor list */

OMX_CLASS_DESC(cpub_mod3[0], DS_C_ENTRY_MOD);
OMX_ENUM_DESC(cpub_mod3[1], DS_MOD_TYPE,
DS_REMOVE_ATTRIBUTE);
OMX_ATTR_TYPE_DESC(cpub_mod3[2], DS_ATTRIBUTE_TYPE,
DS_A_ORG_UNIT_NAME);
OMX_OM_NULL_DESC(cpub_mod3][3));

[* define the fourth descriptor list */

OMX_CLASS DESC(cpub_mod4[0], DS_C_ENTRY_MOD);
OMX_ENUM_DESC(cpub_mod4[1], DS_MOD_TYPE,
DS_REMOVE_VALUES);
OMX_ATTR_TYPE_DESC(cpub_mod4[2], DS ATTRIBUTE_TYPE,
DS_A_COUNTRY_NAME);
OMX_ZSTRING_DESC(cpub_mod4[3], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,

"US')
OMX_OM_NULL_DESC(cpub_mod4{4]);
[* define the fifth descriptor list */
OMX_CLASS_DESC(cpub_mod_list[0], DS_C _ENTRY_MOD_LIST);
OMX_OBJECT_DESC(cpub_mod_list[1], DS_CHANGES, cpub_modl);
OMX_OBJECT_DESC(cpub_mod_list[2], DS_CHANGES, cpub_mod2);
OMX_OBJECT_DESC(cpub_mod_list[3], DS_CHANGES, cpub_mod3);
OMX_OBJECT_DESC(cpub_mod_list[4], DS_CHANGES, cpub_mod4);

OMX_OM_NULL_DESC(cpub_mod_list[5]);

{
DS_status status;
OM_sint invoke _id;
OM_uint completion_flag;
DS _status operation_status;

OM_return_code ~ om_status;
OM_private_object changes, modify_entry result;

[* create an OM Private object called changes*/
om_status = om_create(DS_C_ENTRY_MOD_LIST, OM_FALSE, workspace,

&changes);
[* now put the contents of the public object, cpub_mod list, */
¥ in to the changes private object *
om_status = om_put(changes, OM_REPLACE_ALL, cpub_mod_list,
0, 0, 0);
[* Call the Modify Entry function using the changes object as */
[* a parameter *

status = ds_modify_entry(bound_session, context, name, changes,
&invoke_id);

Interface Functions

4-37

ds_modify_entry

if (status == DS_SUCCESS)
printf("MODIFY ENTRY was successful\n");
else

printf("MODIFY ENTRY failed\n");

[* now wait for the response... */
completion_flag = DS_OUTSTANDING_OPERATIONS;
* loop around calls to receive result() until we get one back */

while ((status == DS_SUCCESS) &&
(completion_flag == DS_OUTSTANDING_OPERATIONS))

status = ds_receive_result(bound_session, &completion_flag,
&operation_status,
&modify_entry_result,
&invoke_id);

if (status == DS_SUCCESS)

switch (completion_flag)

{
case DS_COMPLETED_OPERATION:

[* we have a completed operation */
[* check operation_status */
break;

case DS _OUTSTANDING_OPERATIONS:
Bfeak;
case DS _NO_OUTSTANDING_OPERATION:

'B'reak;

}

Example 1 shows the following:

< How to define an Entry-Modification-List OM public object (cpub_mod_
list) containing the modifications to be made.

4-38 Interface Functions

ds_modify_entry

< How to use the OM Create function to create an Entry-Modification-
List OM private object (changes) and how to use the OM Put function
to copy the modifications from the public object (cpub_mod_list) into the
newly created private object (changes).

Both the OM Create and the OM Put functions are assumed to succeed.

= How to obtain the result of the Modify Entry function using the Receive
Result function.

OM _private_object bound_session, context, name;

DS _status status;
OM_private_object changes;

status = ds_modify_entry(bound_session, DS_DEFAULT_CONTEXT,
name, changes, NULL);

if (status == DS_SUCCESS)
printf("MODIFY_ENTRY was successful\n®);
else
printf("MODIFY_ENTRY failed\n");
}

Example 2 shows how to perform a synchronous Modify Entry operation.
Note that the Invoke-ID argument is not needed so NULL is used. This
example assumes that the Changes argument has been defined as shown
in Example 1.

Interface Functions 4-39

ds_modify_rdn

ds_modify_rdn

Changes the Relative Distinguished Name (RDN) of an entry.

Syntax
Status = ds_modify_rdn (Session, Context, Name, New-RDN, Delete-Old-RDN, Invoke-ID)
Argument Data Type Access
Session OM_private_object read
Context OM_private_object read
Name OM_object read
New-RDN OM_object read
Delete-Old-RDN OM_boolean read
Invoke-1D Integer write
Status DS_status
C Binding
DS status ds_modify_rdn (session, context, name, new_rdn, delete_old rdn, invoke id_return)
OM_private_object session
OM_private_object context
OM_object name
OM_object new_rdn
OM_boolean delete_old_rdn
OM_sint xinvoke_id_return
Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context
The directory context to be used for this operation. This argument must be a
Context OM private object or the constant Default-Context.

4-40 Interface Functions

ds_modify_rdn

Name

A Name OM object containing the current name of the target entry. Any
aliases in the name will be dereferenced if the Digital DSA attribute
Dereference Alias on Modify is set and the Dont Deference Aliases service
control is not set.

New-RDN

A Relative-Name OM object specifying the new RDN. If an attribute value in
the new RDN does not already exist in the entry, either as part of the old RDN
or as a non-distinguished value, then the new value is added.

Delete-Old-RDN

When this takes the value false the old values will remain, but not as part of
the RDN. When this takes the value true, all attribute values in the old RDN
that are not also in the new RDN are deleted. If the operation removes the
last value of an attribute, the attribute is deleted. This argument must be true
when the value of a single-valued attribute is changed.

Invoke-1D
The Invoke-ID of an asynchronous directory operation.

Description

This function is used to change the RDN of a leaf entry. This can be either an
object entry or an alias entry.

DCE Notes

CDS does not support the Modify RDN function; it returns with the Service-
Error unwilling-to-perform.

Return Value

DS _SUCCESS The RDN of the entry was changed, if the
operation was invoked synchronously. The
operation was initiated, if it was invoked
asynchronously.

DS_NO_ WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Interface Functions 4-41

ds_modify_rdn

Errors
This function can return pointers to the following error objects:
Library-Error, with Problem attribute values of bad-argument, bad-context,
bad-name, bad-session, miscellaneous, missing-type, or too-many-operations
Attribute-Error
Name-Error
Referral
Security-Error
Service-Error
Update-Error
Communications-Error
The Update-Error affects-multiple-DSAs that is referred to in the argument
descriptions need not be returned if there is local agreement between the DSAs
to allow the entry to be modified.
Example
The following code extract shows an example call to the Modify RDN function.
OM_private_object bound_session, context, name, new_rdn;
OM_sint invoke_id:;
OM_boolean delete_old _rdn;
{
DS_status status;
status = ds_modify_rdn(bound_session, DS _DEFAULT_CONTEXT, name,
new_rdn, delete_old_rdn, NULL);
if (status == DS_SUCCESS)
printf("MODIFY RDN was successful\n);
else
printf("MODIFY RDN failed\n");
return status;
}
4-42 Interface Functions

ds_read

ds_read

Queries information in a particular entry.

Syntax
Status =ds_read (Session, Context, Name, Selection, Result, Invoke-ID)
Argument Data Type Access
Session OM_private_object read
Context OM_private_object read
Name OM_object read
Selection OM_object read
Result OM_object write
Invoke-1D Integer write
Status DS _status

C Binding
DS_status ds_read (session, context, name, selection, result_return, invoke_id_return)
OM_private_object session
OM_private_object context
OM_object name
OM_object selection
OM_private_object xresult_return
OM_sint xinvoke_id_return

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The directory context to be used for this operation. The Size-Limit Context
parameter does not apply to this operation. This argument must be a Context
OM private object or the constant Default-Context.

Interface Functions 4-43

ds_read

Name

A Name OM object containing the name of the target entry. Any aliases in
the name will be dereferenced unless prohibited by the Context parameter
Dont-Dereference-Aliases.

Selection

An Entry-Information-Selection OM object or a constant specifying what
information from the named entry is requested. Information about no
attributes, all attributes, or just a named set can be chosen. Attribute types
are always returned, but the attribute values need not be. The following
constants can be used:

= Select-No-Attributes, to verify the existence of an entry
= Select_All-Types, to return just the types of all attributes
= Select-All-Types-And-Values, to return the types and values of all attributes

Result

A Read-Result OM object, passed by reference, containing the distinguished
name of the target object and a flag indicating whether the result came from
the original entry or a copy. It also contains any requested attribute types and
values. Attribute information is only returned if access rights are sufficient.
No object is returned if the call does not complete successfully.

Invoke-ID
The Invoke-ID of an asynchronous directory operation.

Description

This function is used to extract information from an explicitly named entry. It
can also be used to verify a distinguished name.

If this function is called asynchronously, then the result can be abandoned by
calling the Abandon function.

DCE Notes

Ideally, the user does not know whether X.500 or CDS is actually handling the
DCE naming operations. There are, however, some situations where naming
results will differ depending on which service is handling the operation. (The
intro reference page for XDS functions describes the general differences
between operations on X.500 and CDS.)

4-44 Interface Functions

ds_read

Note the following issues for the Read function:

All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

When a CDS name is passed to XDS and DCE is not installed, a Library-
Error, not-supported, is returned. This error is also returned when an
X.500 name is passed to XDS, and X.500 is not installed.

Because CDS does not implement the X.500 schema rules, some CDS
objects may not contain mandatory attributes such as object class and so
on. In CDS, a read of an alias object fails if the DS_A_ALIASED_OBJECT _
NAME does not exist. Instead, CDS returns with the Name-Error no-such-
object.

In CDS, the naming attribute of an object is not stored in the attribute
list for the object. Thus in CDS, the Read function does not return this
attribute in the attribute list for an object.

Return Value

Errors

DS_SUCCESS The read was completed, if the operation was

invoked synchronously. The operation was
initiated, if it was invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to

the Initialize function.

If neither of these constants are returned, then the function returns a pointer

to an error object of one of the classes listed below.

This function can return pointers to the following error objects:

Library-Error, with Problem attribute values of bad-argument, bad-
attribute, bad-context, bad-name, bad-session, miscellaneous, missing-type,
not-supported or too-many-operations

Attribute-Error

Name-Error, no-such-object

Referral

Security-Error

Service-Error

Communications-Error

Interface Functions 4-45

ds_read

An Attribute-Error, no-such-attribute, is reported if an explicit list of attributes
is specified by the selection argument but none of them are present in the
entry. This error is not reported if any of the selected attributes are present.

A Security-Error, insufficient-access-rights, is reported where access rights
prohibit the reading of all requested attribute values.

Examples

The following code extracts show an example call to the Read function. The
Read function is used to read all the types and values from all attributes of
the directory entry identified in the Name argument.

There are three examples. The first example shows how to perform an
asynchronous Read operation. The second example shows how to perform
a synchronous Read operation. The third example shows how to perform a
synchronous Read operation with a CDS name.

The Bound_Session argument contains the identity of a session returned
from an earlier call to the Bind function. This object identifies the session
through which the request should be issued. The Context argument is
assumed to have been previously defined. An example of how to define a
Context argument is shown in the Add Entry function.

OM_workspace workspace;
OM_descriptor cpub_dn[6];

OM_descriptor cpub_rdn1[3];
OM_descriptor cpub_rdn2[3];
OM_descriptor cpub_rdn3[3];
OM_descriptor cpub_rdn4[3];
OM_descriptor cpub_aval[4];
OM_descriptor cpub_ava2[4];
OM_descriptor cpub_ava3[4];
OM_descriptor cpub_avad[4];
OM_value_position desc_count;

DS_status status;

OM_sint invoke _id;
OM_uint completion_flag;
DS _status operation_status;

OM_return_code om_status;
OM_private_object name, read_result;
OM_public_object spub_result;

4-46 Interface Functions

ds_read

OMX_CLASS_DESC(cpub_aval[0], DS_C_AVA);

OMX_ATTR_TYPE_DESC(cpub_aval[l], DS_ATTRIBUTE_TYPE,
DS_A_COMMON NAME)

cpub_aval[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Albert Einstein");

OMX_ZSTRING_DESC(

OMX_OM_NULL DESC(cpub_aval[3]);

OMX_CLASS_DESC(cpub_ava2[0], DS_C_AVA);

OMX ATTR_TYPE_DESC(cpub_ava?[1], DS_ _ATTRIBUTE_TYPE,
DS_A_ORG_UNIT NAME)

cpub_ava2[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,

OMX_ZSTRING_DESC(

OMX_OM_NULL_DESC(

OMX_CLASS_DESC(

OMX_ZSTRING_DESC(

OMX_OM_NULL_DESC(

OMX_CLASS_DESC(
OMX_ZSTRING_DESC(

OMX_OM_NULL_DESC(

OMX_CLASS_DESC(
OMX_OBJECT_DESC(
OMX_OM_NULL_DESC(

OMX_CLASS_DESC(
OMX_OBJECT DESC(
OMX_OM_NULL_DESC(

OMX_CLASS_DESC(
OMX_OBJECT DESC(
OMX_OM_NULL_DESC(

cpub_ava?[3]);

"Research");

cpub_ava3[0], DS_C_AVA);
OMX_ATTR_TYPE_DESC(cpub_ava3[l], DS_ATTRIBUTE_TYPE,
DS_A ORG_NAME);
cpub_ava3[2], OM_S_PRINTABLE_STRING,
DS ATTRIBUTE VALUES

cpub_ava3|3]);

"Digital Equipment Corporauon");

cpub_avad[0], DS_C_AVA);

OMX ATTR_TYPE_DESC(cpub_ava4[1], DS_ _ATTRIBUTE_TYPE,
DS_A_COUNTRY NAME)
cpub_avad[2], OM_S
DS_ATTRIBUTE_VALUES,

cpub_ava4[3]);

cpub_rdn1[0],
cpub_rdni[1],

cpub_rdn1[2));

cpub_rdn2[0],
cpub_rdn2[1],

cpub_rdn2[2]);

cpub_rdn3[0],
cpub_rdn3[1],
cpub_rdn3[2]);

"us");

PRINTABLE_STRING,

DS_C DS _RDN);
DS_AVAS, cpub_aval);

DS_C_DS_RDN);
DS_AVAS, cpub_ava2);

DS_C DS _RDN);
DS_AVAS, cpub_ava3);

OMX_CLASS DESC(cpub_rdn4[0], DS _C_DS _RDN);
OMX_OBJECT_DESC(cpub_rdn4[1], DS_AVAS, cpub_avad);
OMX_OM_NULL_DESC(cpub_rdnd[2]);

OMX_CLASS_DESC(cpub_dn|0], DS_C DS DN);
OMX_OBJECT_DESC(cpub_dn[1], DS_RDNS, cpub_rdn4);
OMX_OBJECT_DESC(cpub_dn[2], DS_RDNS, cpub_rdn3);
OMX_OBJECT_DESC(cpub_dn[3], DS_RDNS, cpub_rdn2);
OMX_OBJECT_DESC(cpub_dn[4], DS_RDNS, cpub_rdnd);
OMX_OM_NULL_DESC(cpub_dn[5]);

Interface Functions

4-47

ds_read

4-48

[* create the OM private object: name */
om_status = om_create(DS_C_DS DN, OM_FALSE, workspace, &name);

[* Copy the attribute list from the cpub_dn public object into *
[* the name private object *

om_status = om_put(name, OM_REPLACE_ALL, cpub_dn, 0,0,0);

* call the ds_read function using Name as a parameter and */
* select only the information specified by rdn_type list */

status = ds_read(bound_session, context, name,
DS _SELECT ALL TYPES_AND_VALUES, é&read_result,
&invoke_id);

if (status == DS_SUCCESS)
printf("READ request was successful\n”);
else

printf("READ request failed\n");

[* now wait for the response... */
completion_flag = DS_OUTSTANDING_OPERATIONS;
I* loop around calls to receive_result() until we get one back */

while ((status == DS_SUCCESS)
&& (completion_flag == DS_OUTSTANDING_OPERATIONS))
{

status = ds_receive_result(bound_session, &completion_flag,
&operation_status, &read_result,
&invoke_id);

if (status == DS_SUCCESS)

switch (completion_flag)

{
case DS_COMPLETED_OPERATION:

[* we have a completed operation *
¥ now see what we have got back ... */

if (operation_status == DS_SUCCESS)
{

om_status = om_get(read_result, OM_NO_EXCLUSIONS,
0, 0, 0, OM_ALL_VALUES,
&spub_result, &desc_count);

Interface Functions

ds_read

if (om_status == OM_SUCCESS)

¥ check desc_count != 0 ¥
[* results now available in public object */
[* spub_result *

else

[* error getting results */
[* search_result not deleted */

}
}
else

{.}

break;

case DS _OUTSTANDING_OPERATIONS:
'b”reak;

case DS_NO_OUTSTANDING_OPERATION:

b”reak;

}
}

Example 1 shows:
= How to define a private object containing a distinguished name.

< How to define a DS-DN OM public object (cpub_dn) containing the
entry’s distinguished name: /C=US/O=Digital Equipment Corporation
/OU=Research/CN=Albert Einstein

= How to use the OM Create function to create a DS-DN OM private
object (name) and how to use the OM Put function to copy the
distinguished name from the public object (cpub_dn) into the newly
created private object (name).

e How to use the Receive Result function to obtain the result of the Read
function.

< How to use the OM Get function to copy the attributes of the
Read-Result OM private object into the Read-Result OM public object
(Spub_Result) for examination.

The OM Create, OM Put and the OM Get functions are assumed to
succeed.

Interface Functions 4-49

ds_read

OM_private_object bound_session, name, context;

{

}

Example 2 shows how to perform a synchronous Read operation. Note that
the Invoke-ID argument is not needed and therefore set to NULL. The
example assumes that all other arguments have been defined as shown in

DS_status

OM_private_object

status;
name;

status = ds_read(bound_session, DS_DEFAULT CONTEXT,
name, selection, &info, NULL);

if (status == DS_SUCCESS)
printf("READ was successful\n®);
else

printf("READ failed\n");

Example 1.

OM_workspace
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor
OM_descriptor

workspace;
cpub_dn[7];
cpub_rdn0[3];
cpub_rdn1[3];
cpub_rdn2[3];
cpub_rdn3[3];
cpub_rdn4[3];
cpub_ava0[4];
cpub_aval[4];
cpub_ava2[4];
cpub_ava3[4];
cpub_avad[4];

OM_value_position desc_count;

DS_status status;

OM_sint invoke_id;
OM_uint completion_flag;
DS_status operation_status;

OM_return_code om_status;
OM_private_object name, read result;
OM_public_object spub_result;

4-50 Interface Functions

ds_read

OMX_CLASS_DESC(cpub_ava0[0], DS_C_AVA);

OMX_ATTR_TYPE_DESC(cpub_ava0O[1], DS_ATTRIBUTE_TYPE,
DSX TYPELESS RDN)

OMX_ZSTRING_DESC(cpub_ava0[2], OM_S_PRINTABLE_STRING,
DS _ATTRIBUTE_VALUES,
"CDS");

OMX_OM_NULL DESC(cpub_ava0[3]);

OMX_CLASS_DESC(cpub_aval[0], DS_C_AVA);

OMX ATTR_TYPE_DESC(cpub_aval[l], DS_ _ATTRIBUTE_TYPE,
DSX_TYPELESS RDN)

OMX_ZSTRING_DESC(cpub_aval[2], OM S PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Projects");

OMX_OM_NULL_DESC(cpub_aval[3]);

OMX_CLASS_DESC(cpub_ava2[0], DS_C_AVA);
OMX_ATTR_TYPE_DESC(cpub_ava2[l], DS_ATTRIBUTE_TYPE,
DS A ORG UNIT NAME)
OMX_ZSTRING_DESC(cpub_ava2[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE VALUES
"Research");
OMX_OM_NULL DESC(cpub_ava2[3]);

OMX_CLASS_DESC(cpub_ava3[0], DS_C_AVA);
OMX_ATTR_TYPE_DESC(cpub_ava3[1], DS_ATTRIBUTE_TYPE,
DS_A_ORG_NAME);
OMX_ZSTRING_DESC(cpub_ava3[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,
"Digital Equipment Corporation”);
OMX_OM_NULL_DESC(cpub_ava3[3]);

OMX_CLASS DESC(cpub_ava4[0], DS_C_AVA);

OMX_ATTR_TYPE_DESC(cpub_ava4[l], DS_ATTRIBUTE_TYPE,
DS_A_COUNTRY_NAME):

OMX_ZSTRING_DESC(cpub_ava4[2], OM_S_PRINTABLE_STRING,
DS_ATTRIBUTE_VALUES,

"US"):
OMX_OM_NULL DESC(cpub_ava4[3]);
OMX_CLASS_DESC(cpub_rdn0[0], DS_C_DS_RDN);
OMX_OBJECT_DESC(cpub_rdn0[1], DS_AVAS, cpub_ava0);
OMX_OM_NULL_DESC(cpub_rdn0[2]);
OMX_CLASS DESC(cpub_rdn1[0], DS_C_DS_RDN);
OMX_OBJECT DESC(cpub_rdnl[1], DS_AVAS, cpub_aval);
OMX_OM_NULL _DESC(cpub_rdn1[2]);
OMX_CLASS_DESC(cpub_rdn2[0], DS_C_DS_RDN);
OMX_OBJECT_DESC(cpub_rdn2[1], DS_AVAS, cpub_ava2);

OMX_OM_NULL_DESC(cpub_rdn2[2));

Interface Functions 4-51

ds_read

4-52

OMX_CLASS DESC(cpub_rdn3[0],
OMX_OBJECT_DESC(cpub_rdn3[1],
OMX_OM_NULL_DESC(cpub_rdn3[2]);

OMX_CLASS_DESC(cpub_rdnd(0],
OMX_OBJECT_DESC(cpub_rdn4[1],
OMX_OM_NULL_DESC(cpub_rdn4[2]);

OMX_CLASS_DESC(cpub_dn([0],
OMX_OBJECT_DESC(cpub_dn[1],
OMX_OBJECT_DESC(cpub_dn[2],
OMX_OBJECT_DESC(cpub_dn[3],
OMX_OBJECT_DESC(cpub_dn[4],
OMX_OBJECT_DESC(cpub_dn[5],
OMX_OM_NULL_DESC(cpub_dn[6]);

[* create the OM private object: name */

DS_C_DS_RDN);
DS_AVAS, cpub_ava3);

DS_C_DS_RDN);
DS_AVAS, cpub_ava4);

DS_C DS DN);
DS _RDNS, cpub_rdn4)
DS_RDNS, cpub_rdn3);
DS _RDNS, cpub_rdn2);
)
)

DS_RDNS, cpub_rdn1
DS _RDNS, cpub_rdn0

om_status = om_create(DS_C_DS DN, OM_FALSE, workspace, &name);
[* Copy the attribute list from the cpub_dn public object into *

¥ the name private object

*

om_status = om_put(name, OM_REPLACE_ALL, cpub_dn, 0,0,0);

[* call the ds_read function using Name as a parameter and */
* specify that all attribute types and values be read. */
[* Note that invoke_id parameter is may be set NULL in the */

* case of synchronous operation.

*

status = ds_read(bound_session, DS_DEFAULT_CONTEXT, name,
DS_SELECT ALL TYPES AND VALUES, &read result,

NULL);
if (status == DS_SUCCESS)

printf("READ request was successful\n");

om_status = om_get(read_result, OM_NO_EXCLUSIONS,
0, 0, 0, OM ALL_VALUES
&spub_result, &desc_count);

Interface Functions

ds_read

if (om_status == OM_SUCCESS)

I* check desc_count = 0 */
[* results now available in public object */
[* spub_result *

else

[* error getting results */
[* search_result not deleted */

}

else

printf("READ request failed\n");
}

Example 3 shows the synchronous reading of all attribute types and
values from the CDS entry /.../C=US/O=Digital Equipment Corporation
/OU=Research/Projects/CDS

Note the use of the special attribute type DSX _TYPELESS RDN in the
rightmost RDNs of the name. The presence of one or more occurrences
of this attribute type indicates to the XDS API that a name is a CDS
distinguished name.

Note that the CDS global naming root /... need not be explicitly supplied
as the first RDN in a CDS distinguished name. When the XDS API
encounters a CDS distinguished name, it will internally prepend the CDS
global naming root, unless one of the CDS local haming roots such as /.: or
/- has been explicitly supplied.

A CDS local naming root, if desired, must be explicitly supplied as the
first RDN of a distinguished name. It is specified with an attribute type of
DSX _TYPELESS RDN and an attribute value of .. or : as appropriate.

Note that the Invoke-ID argument is not needed for synchronous operation
and is therefore set to NULL. The Bound-Session argument is assumed to
have been set up as in Example 1.

Interface Functions 4-53

ds_receive_result

ds_receive_result

This function retrieves the result of an asynchronously executed operation.

Syntax
Status = ds_receive_result (Session, Completion-Flag, Operation-Status, Result, Invoke-ID)
Argument Data Type Access
Session OM_private_object read
Completion-Flag Unsigned Integer write
Operation-Status DS_status write
Result OM_private_object write
Invoke-ID Integer write
Status DS_status
C Binding
DS _status ds_receive_result (session, completion-flag, operation-status, result, invoke-id)
OM_private_object session
OM _uint xcompletion_flag_return
DS_status xoperation_status_return
OM_private_object xresult_return
OM_sint xinvoke_id_return
Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session in which the operation was performed.

Completion-Flag
One of the following values to indicate the status of outstanding asynchronous
operations:

e Completed-Operation. At least one outstanding asynchronous operation
has completed and its result is available.

= Outstanding-Operations. There are outstanding asynchronous operations
but none has completed.

4-54 Interface Functions

ds_receive_result

e No-Outstanding-Operation. There are no outstanding asynchronous
operations.

The result of the Completion-Flag parameter is valid if Status has the value
Success.

Upon successful return with Completion-Flag having the value completed-
operation, Status and Invoke-ID parameter values for the completed operation
are returned.

Operation-Status

Takes an error value if an error occurred during the execution of the
asynchronous directory operation. If no error occurred then it takes the

value success. The possible error values are listed for each individual operation
in the corresponding function description.

This result is only valid if the status has the value success and Completion-Flag
has the value completed-operation.

Result

The result of the completed asynchronous operation. Its value is the constant
Null-Result if the operation was one that does not return a result (Add-Entry,
Modify-Entry, Modify-RDN, or Remove-Entry). Otherwise it is an OM object of
the appropriate OM class for the result of the asynchronous operation. You can
check the class of the Result by using the OM functions.

This result is only valid if the following conditions are true:
= Status has the value success
= Completion-Flag has the value completed-operation

e Operation-Status has the value success

Invoke-1D
The Invoke-I1D of the operation whose result is being returned.

This result is valid if the Status has the value success and Completion-Flag
has the value completed-operation.

Interface Functions 4-55

ds_receive_result

Description

This function is used to retrieve the completed results of an outstanding
asynchronous operation.

The function results include two status indications. One, called Status,
indicates that the function call itself was successful and is always returned.
The other, called Operation-Status, is used to return the status of the
completed asynchronous operation and is only returned if there is one. See
DEC X.500 Directory Service Programming for information about calling
functions asynchronously.

DCE Notes

The DCE XDS interface does not support asynchronous operations.

Return Value

Errors

DS SUCCESS The operation completed successfully.

DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

This function can return pointers to the following error object:

Library-Error, with Problem attribute values of bad-session, or
miscellaneous

Any errors related to the completed asynchronous operation are reported in
Operation-Status as described above.

Example

The following code extract shows an example call to the Receive Result
function. The Receive Result function is used to obtain the result of an
outstanding asynchronous operation.

4-56 Interface Functions

ds_receive_result

{
[* Call the Modify Entry function asynchronously using the — */
I* changes object as a parameter. The Asynchronous attribute */
[* on the OM Context object has value True *
status = ds_modify_entry(session,context,name,changes,&invoke _id);
if (status == DS_SUCCESS)
{.}
else
{-}
¥ now wait for the response... */
completion_flag = DS_OUTSTANDING_OPERATIONS;
I* loop around calls to receive_result() until we get one back */
while ((status == DS_SUCCESS) &&
(completion_flag == DS_OUTSTANDING_OPERATIONS))
status = ds_receive_result(bound_session, &completion_flag,
&operation_status,
&modify_entry_result,
&invoke_id);
if (status == DS_SUCCESS)
switch (completion_flag)
case DS_COMPLETED OPERATION:
[* operation is complete */
break;
case DS_OUTSTANDING_OPERATIONS:
Bfeak;
case DS_NO_OUTSTANDING_OPERATION:
't;reak;
}
}
}
}

The Receive Result function uses as input, the Invoke-ID argument output
from the asynchronous function.

Interface Functions 4-57

ds_remove_entry

ds_remove_entry

Removes an entry from the Directory Information Tree (DIT).

Syntax
Status = ds_remove_entry (Session, Context, Name, Invoke-ID)
Argument Data Type Access
Session OM_private_object read
Context OM_private_object read
Name OM_object read
Invoke-1D Integer write
Status DS_status

C Binding
DS_status ds_remove_entry (session, context, name, invoke_id_return)
OM_private_object session
OM_private_object context
OM_object name
OM_sint xinvoke_id_return

Arguments
Session

The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context

The directory context to be used for this operation. The Size-Limit and Dont-
Dereference-Aliases Context parameters do not apply to this operation. This
argument must be a Context OM private object or the constant Default-
Context.

Name
A Name OM object containing the name of the target entry. Any aliases in the
name will not be dereferenced.

Invoke-ID
The Invoke-ID of an asynchronous directory operation.

4-58 Interface Functions

ds_remove_entry

Description

This function is used to remove an entry from the Directory. This may be
an object entry or an alias entry. The entry must not have any subordinate
entries.

DCE Notes

Ideally, the user does not know whether X.500 or CDS is actually handling the
DCE naming operations. There are, however, some situations where naming
results will differ depending on which service is handling the operation. (The
intro reference page for XDS functions describes the general differences
between operations on X.500 and CDS.)

Note the following issues for the Remove Entry function:

e All CDS operations are synchronous. If a CDS operation is attempted and
the Context parameter Asynchronous has been set true, a Library-Error,
not-supported, is returned.

e When a CDS name is passed to XDS and DCE is not installed, a Library-
Error, not-supported, is returned. This error is also returned when an
X.500 name is passed to XDS, and X.500 is not installed.

< In CDS, the name parameter supplied to the Remove Entry function must
ultimately resolve to the name of a leaf (that is, a CDS Object) entry;
otherwise, the Name-Error no-such-object is returned. The function never
interprets the name parameter as the name of a CDS Directory entry.

Return Value

DS _SUCCESS The entry was removed, if the operation was
invoked synchronously. The operation was
initiated, if it was invoked asynchronously.

DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Interface Functions 4-59

ds_remove_entry

Errors

This function can return pointers to the following error objects:

Examples

Library-Error, with Problem attribute values of bad-argument, bad-context,
bad-name, bad-session, miscellaneous, missing-type, not-supported or
too-many-operations

Name-Error, no-such-object

Referral

Security-Error

Service-Error

Update-Error

Communications-Error

The following code extracts show an example call to the Remove Entry
function. The Remove Entry function is used to remove an existing
directory entry.

There are two examples. The first example shows how to perform an
asynchronous Remove Entry operation. The second example shows how to
perform a synchronous Remove Entry operation.

The Bound_Session argument contains the identity of a session returned
from an earlier call to the Bind function. This object identifies the session
through which the request should be issued. The Name argument and the
Context argument are assumed to have been previously defined. Examples
of how to define a Name argument, including an example of a CDS Name
argument, are shown in the Read function. An example of how to define a
Context argument is shown in the Add Entry function.

OM_private_object bound_session, context, name;

{
DS_status status;
OM_sint invoke_id;
OM_uint completion_flag;
DS_status operation_status;

OM_private_object remove_entry_result;

[* Call the Remove Entry function */

status = ds_remove_entry(bound_session, context, name,
&invoke _id);

4-60 Interface Functions

ds_remove_entry

if (status == DS_SUCCESS)
printf("REMOVE ENTRY request was successful\n");
else

printf("REMOVE ENTRY request failed\n");

¥ now wait for the response... */
completion_flag = DS_OUTSTANDING_OPERATIONS;
I* loop around calls to receive_result() until we get one back */

while ((status == DS_SUCCESS) &&
(completion_flag == DS_OUTSTANDING_OPERATIONS))

status = ds_receive_result(bound_session, &completion_flag,
&operation_status,
&remove_entry_result,
&invoke_id);

if (status == DS_SUCCESS)

switch (completion_flag)

{
case DS_COMPLETED_OPERATION:

[* we have a completed operation */
¥ check operation_status */
break;

case DS _OUTSTANDING_OPERATIONS:
'b”reak;
case DS NO_OUTSTANDING_OPERATION:

b”reak;

}
}

Example 1 removes the directory entry, identified in the Name argument,
from the directory. Since the operation is executed asynchronously, an
invoke identifier is returned in the Invoke-ID argument. This uniquely
identifies this specific operation and is therefore used in the subsequent
Receive Result function to obtain the result of the operation.

Interface Functions 4-61

ds_remove_entry

4-62

OM_private_object bound_session, context, name;

{
DS_status status;
OM_private_object changes;
status = ds_remove_entry(bound_session, DS_DEFAULT_CONTEXT,
name, changes, NULL);
if (status == DS_SUCCESS)
printf("REMOVE_ENTRY was successful\n®);
else
printf("REMOVE_ENTRY failed\n");
return status;
}

Example 2 shows a synchronous call to the Remove Entry function. The
operation being performed is the same as that shown in Example 1, the
only difference being that this operation completes immediately and the
result is contained in the Status argument. The Invoke-ID argument is not
needed and is therefore set to NULL.

Interface Functions

ds_search

ds_search

Finds entries of interest in a portion of the Directory.

Syntax

Status = ds_search (Session, Context, Name, Subset, Filter, Search_Aliases, Selection, Result,
Invoke-ID)

Argument Data Type Access
Session OM_private_object read
Context OM_private_object read
Name OM_object read
Subset Integer read
Filter OM_object read
Search_Aliases OM_boolean read
Selection OM_object read
Result OM_private_object write
Status DS_status write
Invoke-1D Integer

C Binding

DS_status ds_search (session, context, name, subset, filter, search_aliases, selection, result_return,

OM_private_object
OM_private_object
OM_object
OM_sint
OM_object
OM_boolean
OM_object
OM_private_object
OM_sint

invoke_id_return)

session

context

name

subset

filter

search_aliases

selection
xresult_return

xinvoke_id_return

Interface Functions 4-63

ds_search

Arguments

4-64

Session
The Session OM private object that was returned by the Bind function,
identifying the directory session to be used.

Context
The Context parameters to be used for this operation. This argument must be
a Context OM private object or the constant Default-Context.

Name

A Name OM object containing the name of the target entry, which forms
the base of the search. Any aliases in the name will be dereferenced unless
prohibited by the Dont-Dereference-Aliases Context parameter.

Subset
The search limit that specifies a portion of the Directory to be searched. Its
value must be one of:

= base-object, meaning search just the target entry

= one-level, meaning search just the immediate subordinates of the target
entry

= whole-subtree, meaning search the target entry and all its subordinates

Filter

A Filter OM object, specifying a filter to prevent unwanted entries being
returned in the results of the search. Information is only returned on entries
that satisfy the filter. The constant No-Filter can be used as the value of this
argument if you want to search all entries. This corresponds to a filter with
a value of and for the attribute Filter-Type, and no values of the attributes
Filters or Filter-l1tems.

Search-Aliases
Any aliases in the subordinate entries being searched are dereferenced if the
value of this argument is true. They are not dereferenced if its value is false.

Selection

An Entry-Information-Selection OM object or a constant specifying what
information from the named entry is requested. Information about no
attributes, all attributes, or just a named set can be chosen. Attribute types
are always returned, but the attribute values need not be. The following
constants can be used:

= Select-No-Attributes, to verify the existence of an entry

Interface Functions

ds_search

e Select-All-Types, to return just the types of all attributes

= Select-All-Types-And-Values, to return the types and values of all attributes

Result

A Search-Result OM private object, passed by reference, containing the
requested information from each object in the search space that satisfied
the filter. The distinguished name of the target object is present if an alias
was dereferenced. Additionally there may be a partial outcome qualifier that
indicates the result is incomplete. It also explains why it is not complete and
how it could be completed.

Invoke-ID
The Invoke-ID of an asynchronous operation.

Description

This function is used to search a portion of the directory and return selected
information from the entries of interest. It is possible that the information will
be incomplete in some circumstances.

If this function is called asynchronously, then the result can be abandoned by
calling the Abandon function.

DCE Notes

CDS does not support the Search function. It returns with the Service-Error
unwilling-to-perform.

Return Value

DS _SUCCESS The target object was located, if the operation
was invoked synchronously. The operation was
initiated, if it was invoked asynchronously.

DS_NO _WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Interface Functions 4-65

ds_search

Errors

This function can return pointers to the following error objects:

Library-Error, with Problem attribute values of bad-argument, bad-context,
bad-name, bad-session, miscellaneous, missing-type, or too-many-operations
Attribute-Error

Name-Error

Referral

Security-Error

Service-Error

Communications-Error

An unfiltered search of just the base object succeeds even if none of the
requested attributes is found while Read fails with the same selected
attributes.

A Security-Error, insufficient-access-rights, is only reported where access rights
prohibit the reading of all requested attribute values.

Examples

The following code extract shows an example call to the Search function.
The Search function is used to search the directory for a specific entry and
then extract the values of the Surname and the Title attributes from that
entry.

There are two examples. The first example shows how to perform an
asynchronous Search operation. The second example shows how to perform
a synchronous Search operation.

The Bound_Session argument contains the identity of a session returned
from an earlier call to the Bind function. This object identifies the session
through which the request should be issued. The Name argument and the
Context argument are assumed to have been previously defined. Examples
of how to define a Name argument are shown in the Read function. An
example of how to define a Context argument is shown in the Add Entry
function.

4-66 Interface Functions

ds_search

OM_private_object bound_session, context, name;
OM_workspace workspace;

OM_descriptor cpub_eis[5];

OM _value_position desc_count;

DS_status status;
OM_private_object search_result;
OM_sint invoke_id;
OM_uint completion_flag;
DS_status operation_status;

OM_return_code om_status;
OM_public_object spub_result;
OM _value_position desc_count;
OM_private_object selection;

[* create a descriptor list for surname and title of class */
[* entry information selection */

OMX_CLASS DESC(cpub_eis[0], DS_C_ENTRY_INFO_SELECTION);
OMX_ATTR_TYPE_DESC(cpub_eis[1], DS_ATTRIBUTES_SELECTED,
DS_A SURNAME);
OMX_ATTR_TYPE_DESC(cpub_eis[2], DS_ATTRIBUTES_SELECTED,
DS_A TITLE);
OMX_ENUM_DESC(cpub_eis[3], DS_INFO_TYPE,
DS_TYPES_ONLY);
OMX_OM_NULL_DESC(cpub_eis[4]);

[* Create an OM private object called selection */

om_status = om_create(DS_C_ENTRY_INFO_SELECTION,OM_FALSE,
workspace, &selection);

[* Object created, now put in the attributes from cpub_eis */
om_status = om_put(selection, OM_REPLACE_ALL, cpub_eis ,0,0,0);
¥ now start the search using selection as a parameter*/

status = ds_search(bound_session, context, name, DS_ONE_LEVEL,
DS _NO FILTER, OM_FALSE, selection,
&search_result, &invoke_id);

completion_flag = DS_OUTSTANDING_OPERATIONS;
I* loop around calls to receive result() until we get one back */

while ((status == DS_SUCCESS) &&
(completion_flag == DS_OUTSTANDING_OPERATIONS))

status = ds_receive_result(bound_session, &completion_flag,
&operation_status, &search_result,
&invoke_id);

Interface Functions 4-67

ds_search

if (status == DS_SUCCESS)
{
switch (completion_flag)

{
case DS_COMPLETED_OPERATION:

¥ we have a completed operation *
* now see what we have got back ... */
if (operation_status == DS_SUCCESS)

{

om_status = om_get(search_result, OM_NO_EXCLUSIONS,
0, 0, 0, OM_ALL VALUES,
&spub_result, &desc_count);

if (om_status == OM_SUCCESS)
{
[* results now available as a public object */

[* check desc_count != 0 ¥
[* delete the search result... */

om_status = om_delete(search_result);
else

[* error getting results */
[* search_result not deleted */

}
}

else

{.}

break;
case DS_COMPLETED OPERATION:

'b“reak;
case DS_COMPLETED OPERATION:

b"reak;

}

Example 1 shows the following:

< How to define an Entry-Information-Selection OM public object
(cpub_eis) containing details of the information that is to be returned
from the search.

4-68 Interface Functions

ds_search

< How to use the OM Create function to create a private object (selection)
and how to use the OM Put function to copy the details of the required
information from the Entry-Information-Selection OM public object
(cpub_eis) into the newly-created Entry-Information-Selection OM
private object (selection).

< How to obtain the result of the Search function using the Receive
Result function.

= How to use the OM Get function to copy the attributes of the
Search-Result OM private object into the Search-Result OM public
object (Spub_Result) for examination.

The OM Create, OM Put, OM Get and OM Delete functions are assumed to
succeed.

OM_private_object bound_session, context, name;
OM _value_position desc_count;

DS_status status;

OM_private_object search_result;
OM_private_object selection;

OM_public_object spub_result;

[* start the search using selection as a parameter */

status = ds_search(bound_session, DS _DEFAULT_CONTEXT, name,
DS _ONE_LEVEL, DS _NO FILTER, OM_FALSE,
selection, &search_result, NULL);

if (status == DS_SUCCESS)
{

¥ now see what we have got back ... */

om_status = om_get(search_result, OM_NO_EXCLUSIONS,
0, 0, 0, OM_ALL_VALUES,
&spub_result, &desc_count);

if (om_status == OM_SUCCESS)
[* results now available as a public object */

¥ check desc_count != 0 *
[* delete the search result... */

Interface Functions 4-69

ds_search

om_status = om_delete(search_result);

else

[* error getting results */
[* search_result not deleted */

}

Example 2 shows how to perform a synchronous Search operation. Note
that the Invoke-ID argument is not needed and NULL is used. This

example assumes that the Selection argument has been defined as shown
in Example 1.

4-70 Interface Functions

ds_shutdown

ds_shutdown

Syntax

Shuts down the interface and closes the workspace.

Status = ds_shutdown (Workspace)

Argument Data Type Access
Workspace OM_workspace read
Status DS_status

C Binding
DS_status ds_shutdown (workspace)
OM_workspace workspace

Arguments
Workspace

Specifies the workspace (obtained from a call to the Initialize function) that is
to be deleted.

Description

This function shuts down the interface previously established by Initialize and
enables the service to release resources.

After this function has been called, no OM objects or other data values
associated with the workspace are valid, with the exception of client-generated
public objects. You should call the Unbind function for all sessions in this
workspace. You must not subsequently call any X.500 API functions that
operate on OM objects in this workspace.

In order to ensure that resources are freed, applications should release all
private objects by calling the OM Delete function for all top-level OM private
objects before calling this function. This is not necessary for subobjects.
Applications should also release all service-generated public objects by calling
the OM Delete function. You can do this either before or after the calling of
this function.

Interface Functions 4-71

ds_shutdown

Return Value

DS _SUCCESS The shutdown was completed, if the operation
was invoked synchronously. The operation was
initiated, if it was invoked asynchronously.

DS_NO _WORKSPACE A workspace has not been set up by a call to
the Initialize function.

Errors

This function does not return any error objects.

Example

The following code extract shows an example call to the Shutdown function:

OM_workspace workspace;

DS_status status;
[* Finally, close down the workspace */
ds_status = ds_shutdown(workspace);

}

The Shutdown function closes down the workspace identified in the Workspace
argument. The workspace identity is obtained from the Initialize function.

4-72 Interface Functions

ds_unbind

ds_unbind

Syntax

This function closes a directory session.

Status = ds_unbind (Session)

Argument Data Type Access
Session OM_private_object read
Status DS_status

C Binding
DS_status ds_unbind (session)
OM_private_object session

Arguments
Session

The directory session that is to be unbound. This argument must be the
Session OM private object that was returned by the Bind function, identifying
the directory session. If the function succeeds, the value of the File-Descriptor
OM attribute is No-Valid-File-Descriptor. The other OM attributes are
unchanged.

Description

This function terminates the given directory session and makes the argument
unavailable for use with all other interface functions except Bind.

The results of any outstanding asynchronous operations that were initiated
using the given Session can no longer be received, and it is not possible to find
out if they succeeded. It is therefore recommended that you obtain the results
of all outstanding asynchronous operations by calling the Receive-Result
function before calling Unbind.

It is possible to use the unbound session again as an argument to Bind,
perhaps after modification by the Object Management functions.

Interface Functions 4-73

ds_unbind

Return Value

DS _SUCCESS The operation completed successfully.
DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Errors
This function can return pointers to the following error object:
Library-Error, with Problem attribute values of bad-session, or
miscellaneous.
Example

The following code extract shows an example call to the Unbind function.

OM_private_object bound_session;
DS_status status;

status = ds_unbind(bound_session);
if (status == DS_SUCCESS)

printf("UNBIND was successful\n®);
else
printf("UNBIND failed\n");
\ }
The Unbind function closes down a session established by the Bind function.
The Bound_Session argument identifies the session to be closed.

4-74 Interface Functions

ds_version

ds_version

Syntax

Negotiates the features of the interface and service.

Status = ds_version (Feature-List, Workspace)

Argument Data Type Access
Feature-List DS_Feature write/read
Workspace OM_workspace read
Status DS_status

C Binding
DS_status ds_version (feature_list, workspace)
DS_feature feature_list[]
OM_workspace workspace

Arguments

Feature-List

An ordered sequence of features, each represented by an object identifier. The
sequence is terminated by an object identifier having no components (that is, a
length of zero, and any value of the data pointer in the C representation).

Workspace

Specifies the workspace (obtained from a call to the Initialize function) for
which the features are to be negotiated. The features will be in effect for
operations which use the workspace or directory sessions associated with the
workspace.

Description

This function negotiates features of the interface that are represented by object
identifiers. Features are negotiated after a workspace has been initialized.
Negotiable features include the Basic-Directory-Contents Package, the Strong-
Authentication Package, and the MHS Directory User Package. Digital’s
implementation of this function does not support these packages, but supports
one extension, DSX-RET-X500-BIND-ERR-FTR. This feature guarantees that
the Bind function will always return an error if it fails to connect to an X.500

Interface Functions 4-75

ds_version

directory. This feature is useful if the system where your application runs is
capable of simultaneous connections to both CDS and X.500 directories in the
same XDS session. In other circumstances, this feature is not needed.

Return Value

DS _SUCCESS The features were successfully negotiated.
DS_NO_WORKSPACE A workspace has not been set up by a call to
the Initialize function.

If neither of these constants are returned, then the function returns a pointer
to an error object of one of the classes listed below.

Errors
This function can return pointers to the following error objects:
Library-Error, with the Problem attribute values of miscellaneous, bad_
workspace.
System-Error
Example

The following code extract shows an example call to the Version function.

{
OM_workspace workspace;
DS feature feature_list[];
DS _status status;
status = ds_version(feature_list, workspace);
if (status == DS_SUCCESS)
printf("VERSION was successful\n");
else
printf("VERSION failed\n");
}

4-76 Interface Functions

dsX_trace_object

dsX_trace_object

Displays an explanation of the content of an object on the current output
device.

Syntax
(void) dsX_trace_object (Object)

Argument Data Type Access

Object OM_object read

C Binding
dsX_trace_object (object)

OM_object object

Arguments

OM_object

The object whose content you want to inspect.
Description

This function displays on the current output device information about the
content of an OM object, as follows:

= A full expansion of a public object
e The type of a private object
= Details of the content of an error object

= For a name object or AVA encoded in ASN.1, both the ASCII and
hexadecimal representations of the ASN.1 encoding

The routine also checks for null pointers.

Errors

This function does not return any errors.

Interface Functions 4-77

dsX_trace_object

Example

The following code extract shows an example call to the Trace Object function:

OM_workspace workspace;
OM _return_code status;
OM_object session = NULL,;

status = om_create(DS_C_SESSION,OM_TRUE,workspace,&session);
if (status == OM_SUCCESS)

dsX_trace_object(session);

4-78 Interface Functions

5

Errors

This chapter defines the errors that can arise in the use of the X.500 API and
the method used to report them. It also describes the hierarchical organization
of the Object Management (OM) classes defined in this chapter and shows
how the classes inherit OM attributes from superclasses. Figure 5-1 shows
the hierarchy of error object classes with the names of abstract OM classes in
italics.

Figure 5-1 Hierarchy of Error Object Classes

Object ———— Attribute Error
— Continuation Reference

—— Abandon Failed

—— Attribute Problem
—— Communications Error
— Library Error

—— Name Error

— Security Error

—— Service Error

—— System Error

—— Update Error

MIG0260

The object class Object is defined in the OSI-Abstract-Data Manipulation. It
contains one attribute, Class, which denotes the class of the object.

Errors 5-1

The following sections contain descriptions of the OM classes used to define
errors. Each OM class is described in a separate section that identifies the OM
attributes specific to that class and lists its superclasses. For each class, there
is a table that defines the class-specific attributes, if there are any. The tables
give the following information:

e The name of each attribute

= The syntax of each attribute value (including any appropriate object class,
enumeration syntax or string type in parenthesis)

e The number of values each attribute can have

e The initial value, if any, that the OM-Create function supplies (if
initialization is requested)

Applications must not create or modify instances of any of these classes.

5.1 Error
DS_C_ERROR

This class contains the parameters common to all errors. Error is an abstract
class that has the attributes of its superclass, Object, and the following

attribute:
OM Attribute Name Value Syntax Number of Values
Problem Enum(Problem) 1

Problem (DS_PROBLEM)
Provides details of the error. A number of possible values are defined, each
of which is described under the appropriate error class.

5.2 Abandon Failed
DS_C_ABANDON_FAILED

An instance of the class Abandon Failed reports an error during an attempt to
abandon an operation. It has the attributes of its superclass, Object and Error,
and no other attributes.

The OM attribute Problem inherited from the superclass Error has the
following values:

= Cannot Abandon (DS_E_CANNOT_ABANDON)
The operation does not allow an abandon operation on it, or the operation
could not be abandoned for an unspecified reason.

5-2 Errors

< No Such Operation (DS_E_NO_SUCH_OPERATION)
The Directory has no knowledge of the operation that was the subject of
the abandon request.

e Too Late (DS_E_TOO_LATE)
The operation has already completed.

5.3 Attribute Error
DS_C_ATTRIBUTE_ERROR

An instance of the class Attribute Error reports attribute-related directory
errors. It has the attributes of its superclass, Object, and the following

attributes:

OM Attribute Name Value Syntax Number of Values
Object Name Object(Name) 1

Problems Object(Attribute Problem) 1 or more

Object Name (DS_OBJECT_NAME)
The name of the directory entry to which the operation was being applied
when the failure occurred.

Problems (DS_PROBLEMS)
Lists the attribute-related problems that occurred. An Attribute Error can
report several problems at once, all related to the named object.

5.4 Attribute Problem
DS_C ATTRIBUTE_PROBLEM

An instance of the class Attribute Problem describes a problem that is
attribute-related. It has the attributes of its superclasses, Object and Error,
and the following attributes:

OM Attribute Name Value Syntax Number of Values
Attribute Type String(Object Identifier) 1
Attribute Value - Oor1l

Attribute Type (DS_ATTRIBUTE_TYPE)
Identifies the type of the attribute associated with the problem.

Errors 5-3

Attribute Value (DS_ATTRIBUTE_VALUE)
The attribute value associated with the problem. It is present only if
required to avoid ambiguity. Its syntax is determined by Attribute Type.

The OM attribute Problem inherited from the superclass Error has one of the
following values:

Attribute or Value Exists (DS_E_ATTRIBUTE_OR_VALUE_EXISTS)
The attribute or attribute value to be added is already present in the
specified entry.

Constraint Violation (DS_E_CONSTRAINT_VIOLATION)
The attribute or attribute value does not conform to constraints imposed by
the Directory or by the attribute definition.

Inappropriate Matching (DS_E_INAPPROP_MATCHING)
The matching rule used is not defined for the attribute type.

Invalid Attribute Syntax (DS_E_INVALID_ATTRIBUTE_SYNTAX)
A value presented as an argument does not conform to the attribute syntax
of the attribute type.

No Such Attribute Or Value (DS_E_NO_SUCH_ATTRIBUTE_OR_VALUE)
The specified attribute or attribute value was not found in the specified
entry. This is reported by the Read or Search functions if an explicit list
of attributes is specified in the Selection argument, and none of them are
present in the entry.

Undefined Attribute Type (DS_E_UNDEFINED_ATTRIBUTE_TYPE)
The attribute type, which was supplied as an argument to either the Add
Entry or Modify Entry function, is undefined.

5.5 Communications Error
DS_C_COMMUNICATIONS ERROR

An instance of the class Communications Error reports errors occurring

in other OSI services supporting the Directory Service. Communications
errors include those occurring in Remote Operation, Association Control,
Presentation, Session and Transport. It has the attributes of its superclasses,
Object and Error, and the attributes listed below.

5-4 Errors

DSX_INVOKE_ID
DSX_COMM_PROBLEM
DSX_OSAK_STATUS1
DSX_OSAK_STATUS?2
DSX_TRANSPORT_STATUS1

DSX_TRANSPORT_STATUS2

DSX_ABORT_REASON

DSX_REJECT_REASON

DSX_UNEXPECTED_EVENT_CODE

DSX_PDU

The attribute Problem inherited from the superclass Error indicates the type
of error. For most problem codes there are attributes that contain further

information. The following table shows the problem codes and the attributes
that contain further information:

Attribute
Problem Code Related Attributes Type
DS_E_COMMUNICATIONS_PROBLEM DSX_OSAK_STATUS1 Integer
DSX_OSAK_STATUS2
DSX_TRANSPORT_STATUS1
DSX_TRANSPORT_STATUS2
DSX_E_TRANSMIT_PROBLEM DSX_OSAK_STATUS1 Integer
DSX_OSAK_STATUS2
DSX_TRANSPORT_STATUS1
DSX_TRANSPORT_STATUS2
DSX_E_RECEIVE_PROBLEM DSX_OSAK_STATUS1 Integer
DSX_OSAK_STATUS2
DSX_TRANSPORT_STATUS1
DSX_TRANSPORT_STATUS2
DSX_E_OSAK_ABORT DSX_ABORT_REASON Integer
DSX_E_OSAK_REJECT DSX_REJECT_REASON Integer
DSX_E_UNEXPECTED_OSAK_EVENT DSX_UNEXPECTED_EVENT _ Integer
CODE
DSX_E_DECODE_FAILED DSX_PDU Pointer to
PDU
DSX_E_BAD_INVOKE_ID DSX_INVOKE_ID OM_sint
DSX_E_NO_MEMORY none
DSX_E_ROSE_REJECT DSX_REJECT_REASON Integer
DSX_E_ROSE_INVOKE_PROBLEM DSX_REJECT_REASON Integer

For information about these OSAK™ events, see the OSI Applications Kernel
Programming Reference manual.

Errors 5-5

5.6 Library Error
DS_C_LIBRARY_ERROR

An instance of the class Library Error reports errors detected by the interface
function library. It has the attributes of its superclasses, Object and Error,
and no other attributes. Each function has several possible errors that can

be detected by the library and are returned directly by the subroutine. These
errors occur when the library cannot perform an action in submitting a service
request or in deciphering a response from the Directory.

The OM attribute Problem inherited from the superclass Error has one of the
following values:

5-6 Errors

Bad Argument (DS_E_BAD_ARGUMENT)

An invalid argument, other than Name, was supplied. Supplying an
instance of OM class Attribute with no values of the OM attribute
Attribute-Values as an input argument to an X.500 API function always
results in this error, because directory attributes always have at least one
value.

Bad Class (DS_E_BAD_CLASS)
The class of an argument is not supported for this operation.

Bad Context (DS_E_BAD_CONTEXT)
An invalid context argument was supplied.

Bad Name (DS_E_BAD_NAME)
An invalid name argument was supplied.

Bad Session (DS_E_BAD_SESSION)
An invalid session argument was supplied.

Miscellaneous (DS_E_MISCELLANEOQOUS)

A miscellaneous error occurred during interaction with the Directory. This
error is returned if the interface cannot clear a transient system error by
retrying the affected system call.

Missing Type (DS_E_MISSING_TYPE)
The attribute type was not included in an AVA that was passed as part of a
Distinguished Name argument.

Not Supported (DS_E_NOT_SUPPORTED)
The requested, optional functionality is not available in this
implementation.

Too Many Operations (DS_E_TOO_MANY_OPERATIONS)
No more directory operations can be performed until at least one
asynchronous operation has completed.

e Too Many Sessions (DS_E_TOO_MANY_SESSIONS)
No more directory sessions can be started.

5.7 Name Error
DS_C_NAME_ERROR

An instance of the class Name Error reports name-related directory errors.
It has the attributes of its superclasses, Object and Error, and the following

attribute:
OM Attribute Name Value Syntax Number of Values
Matched Object(Name) 1

Matched (DS_MATCHED)

The first part of the name up to, but not including, the first unrecognized
RDN. This name is either the one that was supplied or the one resulting
from the dereferencing of an alias. This OM Name object names the lowest
entry or alias entry in the DIT that was matched.

The OM attribute Problem inherited from the superclass Error has one of the
following values:

= Alias Dereferencing Problem (DS_E_ALIAS_DEREFERENCING_
PROBLEM)
An alias was found where aliases are not allowed. This could be one of the
following:

— An alias in a modification operation
— An alias when the Dont Dereference Aliases Context parameter is set
— An alias pointing to another alias

e Alias Problem (DS_E_ALIAS_PROBLEM)
An alias has been dereferenced that names an object that does not exist.

= Invalid Attribute Value (DS_E_INVALID_ATTRIBUTE_VALUE)
The attribute value, in an AVA in an RDN in the name, does not conform
to the attribute syntax for the attribute type in the AVA.

e No Such Object (DS_E_NO_SUCH_OBJECT)
The specified name does not match the name of any object in the Directory.

Errors 5-7

5.8 Referral
DS_C_REFERRAL

An instance of the class Referral reports a failure to perform an operation
and redirects the requestor to one or more access points better equipped to
perform the request. A Referral has the attributes of its superclasses, Object
and Continuation Reference, and no other attributes.

5.9 Security Error
DS C_SECURITY_ERROR

An instance of the class Security Error reports security-related Directory
errors. It has the attributes of its superclasses, Object and Error, and no other
attributes.

The OM attribute Problem inherited from the superclass Error has one of the
following values:

= Inappropriate Authentication (DS_E_INAPPROP_AUTHENTICATION)
The level of security attached to the requestor’s credentials is inconsistent
with the level of protection requested.

= Insufficient Access Rights (DS_E_INSUFFICIENT_ACCESS_RIGHTS)
The requestor is not permitted to perform the operation.

e Invalid Credentials (DS_E_INVALID_CREDENTIALS)
The requestor’s credentials are invalid.

= Invalid Signature (DS_E_INVALID_SIGNATURE)
The signature joined to the request is invalid.

= No Information (DS_E_NO_INFO)
The request has produced a security error but no other information is
available.

= Protection Required (DS_E_PROTECTION_REQUIRED)
The Directory cannot perform the operation because it was not signed.

5.10 Service Error
DS_C_SERVICE_ERROR

An instance of the class Service Error reports a service-related Directory
error. It has the attributes of its superclasses, Object and Error, and no other
attributes.

5-8 Errors

The OM attribute Problem inherited from the superclass Error has one of the
following values:

Administrative Limit Exceeded (DS_E_ADMIN_LIMIT_EXCEEDED)
The operation could not be performed within the administrative constraints
on the Directory, and no partial results are available.

Busy (DS_E_BUSY)
Some part of the Directory is temporarily too busy to perform the operation
but might be able to perform it soon.

Chaining Required (DS_E_CHAINING_REQUIRED)
Chaining is required for the operation to be performed but is prohibited by
the Chaining Prohibited Context parameter.

DIT Error (DS_E_DIT_ERROR)
An inconsistency has been detected in the DIT. This is possibly localized in
an entry or set of entries.

Invalid Reference (DS_E_INVALID_REF)

The DSA was unable to perform the request as directed through the
Operations Progress Context parameter. This is possibly because of an
invalid referral.

Loop Detected (DS_E_LOOP_DETECTED)
The DSA detected a loop within the Directory.

Out Of Scope (DS_E_OUT_OF_SCOPE)
The Directory cannot provide a Referral or Partial Outcome Qualifier
within the required scope.

Time Limit Exceeded (DS_E_TIME_LIMIT_EXCEEDED)
The operation could not be performed within the specified time limit and
no partial results are available.

Unable To Proceed (DS_E_UNABLE_TO_PROCEED)
A DSA was asked to resolve a name within a particular naming context
over which it has no administrative authority.

Unavailable (DS_E_UNAVAILABLE)
Some part of the Directory is not currently available.

Unavailable Critical Extension (DS_E_UNAVAILABLE_CRIT_EXT)
One, or more, critical extensions were requested but were not available.

Errors 5-9

e Unwilling To Perform (DS_E_UNWILLING_TO_PERFORM)
Some part of the Directory will not perform the operation because it
requires excessive resources, or because it would violate administrative

policy.

5.11 System Error
DS _C _SYSTEM_ERROR

An instance of the class System Error reports errors that occur in the operating
system. It has the attributes of its superclasses, Object and Error, and no other
attributes.

The OM attribute Problem inherited from the superclass Error has the same
value as errno defined in the C programming language.

The current release of XDS does not report any system errors.

5.12 Update Error
DS_C_UPDATE_ERROR

An instance of the class Update Error reports a modification-related Directory
error. It has the attributes of its superclasses, Object and Error, and no other
attributes.

The OM attribute Problem inherited from the superclass Error has one of the
following values:

= Affects Multiple DSAs (DS_E_AFFECTS_MULTIPLE_DSAS)
The modification would affect several DSAs and is not allowed. Local
agreement among DSAs might allow such modifications and the problem
would not then be reported.

= Entry Exists (DS_E_ENTRY_EXISTS)
The name passed to the Add Entry function already exists.

= Naming Violation (DS_E_NAMING_VIOLATION)
The modification would leave the DIT improperly structured.

< Not Allowed On Non Leaf (DS E_NOT_ALLOWED_ON_NON_LEAF)
The modification would be to an interior entry of the DIT and this is not
allowed.

< Not Allowed On RDN (DS_E_NOT_ALLOWED_ON_RDN)
The modification would alter an entry’s RDN.

5-10 Errors

= Object Class Modification Prohibited (DS_E_OBJECT_CLASS_MOD_
PROHIB)
The modification would alter an entry’s Object Class attribute.

= Object Class Violation (DS_E_OBJECT_CLASS _VIOLATION)
The modification would leave the entry inconsistent with its Object Class
definition.

Errors 5-11

6

Directory Class Definitions

This chapter defines the attributes that make up directory entries.

The CCITT X.500 Series of Recommendations define a number of attribute
types, attribute syntaxes, attribute sets, and object classes. The attribute
types are known as selected attribute types, and the object classes are
known as selected object classes. These definitions allow the creation and
maintenance of Directory entries for a number of common objects. Therefore,
the representation of such objects will be the same throughout the Directory.
The definitions include such objects as Country, Organization and Person.

This chapter sets out names for each of these items, and defines OM classes to
represent those which are not represented directly by OM syntaxes.

The constants and OM classes defined in this chapter are additional to those
described in Chapter 3, since they are not essential to the working of the
interface, but instead allow directory entries to be utilized. The definitions are
further divided into three packages, each of which is optionally supported.

The first package is the Basic Directory Contents Package (BDCP) and contains
all of the definitions except those concerned with strong authentication. The C
constants associated with this package are in the xdsbdcp.h header file.

The second package is the Strong Authentication Package (SAP) which
contains definitions for strong authentication. The C constants associated with
this package are in the xdssap.h header file.

The third package is the MHS Directory User Package (MDUP) which contains
definitions to support the use of the directory by 1988 X.400 User Agents and
MTAs for the purposes of name resolution, distribution list expansion and
capability assessment. The definitions are based upon the attribute types and
syntaxes specified in the recommendation X.402, Annex A. The C constants
associated with this package are in the xdsmdup.h header file.

Note that Digital’s implementation of XDS does not support all these packages.
Refer to the DEC X.500 Directory Service Programming for more information
about XDS header files.

Directory Class Definitions 6-1

6.1 Selected Attribute Types

This section describes the attribute types defined in the standards for use in
directory entries. Each Directory entry is made up of a number of attributes.
Each of these attributes has an attribute type and one or more attribute
values. The form of each attribute value is determined by the attribute syntax
associated with the attribute type.

In the interface, attributes appear as instances of the OM class Attribute.
Attribute types are represented as the value of the OM attribute Attribute-
Type. Attribute values are represented as the values of the OM attribute
Attribute-Values. Each attribute type has an object-identifier, assigned in the
CCITT X.500 Standards, that is the value of the OM attribute Attribute-Type.
In the interface, these object-identifiers are represented by constants. These
constants have the name of the directory attribute prefixed by A_ for ease of
identification. Therefore, the C constant starts with DS_A .

In Table 6-1 the matching rules that the Directory uses for the particular
attribute are indicated as follows:

< E indicates the rules for determining if two values are equal.

= S indicates the rules for determining if one value is a substring of another.

Table 6-1 Representation of Values for Selected Attribute Types

Value Matching

Attribute Type Value Syntax Length Rules Package
A-Aliased-Object-Name Object(Name) - E BDCP
A-Authority-Revoc-List Object(Revoc-List) - - SAP
A-Business-Category String(Teletex) 1-128 E,S BDCP
A-CA-Cert Object(Cert) - - SAP
A-Cert-Revoc-List Object(Revoc-List) - — SAP
A-Common-Name String(Teletex) 1-64 E,S BDCP
A-Country-Name String(Printable) 2 BDCP
A-Cross-Cert-Pair Object(Cert-Pair) - - SAP
A-Deliv-Content-Length Integer - - MDUP
A-Deliv-Content-Types String(Object-ldentifier) - - MDUP
A-Deliv-EITs String(Object-ldentifier) - - MDUP

6—2 Directory Class Definitions

(continued on next page)

Table 6-1 (Cont.) Representation of Values for Selected Attribute Types

Value Matching

Attribute Type Value Syntax Length Rules Package
A-Description String(Teletex) 1-1024 E,S BDCP
A-Dest-Indicator String(Printable) 1-128 E.S BDCP
A-DL-Members Object(OR-Name) - - MDUP
A-DL-Submit-Perms Object(DL-Submit-Perms) - - MDUP
A-Facsimile-Phone-Nbr Object(Facsimile-Phone-Nbr) - - BDCP
A-Internat-1ISDN-Nbr String(Numeric) 1-16 - BDCP
A-Knowledge-Info String(Teletex) - E,S BDCP
A-Locality-Name String(Teletex) 1-128 E,S BDCP
A-Member Object(Name) - E BDCP
A-Message-Store Object(DS-DN) - - MDUP
A-Object-Class String(Object-Identifier) - E BDCP
A-OR-Addresses Object(OR-Address) - - MDUP
A-Org-Name String(Teletex) 1-64 E,S BDCP
A-Org-Unit-Name String(Teletex) 1-64 E,S BDCP
A-Owner Object(Name) - E BDCP
A-Phone-Nbr String(Printable) 1-32 E,S BDCP
A-Phy-Deliv-Off-Name String(Teletex) 1-128 E.S BDCP
A-Post-Office-Box String(Teletex) 1-40 E,S BDCP
A-Postal-Address Object(Postal-Address) - E BDCP
A-Postal-Code String(Teletex) 1-40 E,S BDCP
A-Pref-Deliv-Method Enum(Pref-Deliv-Method) - - BDCP
A-Pref-Deliv-Methods Enum(Delivery-Mode) - E MDUP
A-Presentation-Address Object(Presentation-Address) - E BDCP
A-Registered-Address Object(Postal-Address) - - BDCP
A-Role-Occupant Object(Name) - E BDCP
A-Search-Guide Object(Search-Guide) - - BDCP
A-See-Also Object(Name) - E BDCP
A-Serial-Nbr String(Printable) 1-64 E,S BDCP

(continued on next page)

Directory Class Definitions 6-3

Table 6-1 (Cont.) Representation of Values for Selected Attribute Types

Value Matching

Attribute Type Value Syntax Length Rules Package
A-State-Or-Prov-Name String(Teletex) 1-128 E,S BDCP
A-Street-Address String(Teletex) 1-128 E,S BDCP
A-Support-Applic-Context String(Object-ldentifier) - E BDCP
A-Supp-Auto-Actions String(Object-ldentifier) - - MDUP
A-Supp-Content-Types String(Object-ldentifier) - - MDUP
A-Supp-Opt-Attributes String(Object-ldentifier) - - MDUP
A-Surname String(Teletex) 1-64 E,S BDCP
A-Teletex-Term-Ident Object(Teletex-Term-ldent) - - BDCP
A-Telex-Nbr Object(Telex-Nbr) - - BDCP
A-Title String(Teletex) 1-64 E,S BDCP
A-User-Cert Object(Cert) - - SAP
A-User-Password String(Octet) 0-128 - BDCP
A-X121-Address String(Numeric) 1-15 E,S BDCP

All these attribute types are multi-valued except for the following that are
single-valued:

= A-Aliased-Object-Name

= A-Country-Name

e A-Deliverable-Content-Length

e A-Message-Store

= A-Pref-Deliv-Methods

= A-Presentation-Address

The following list describes all the attribute types from Table 6-1.

A-Aliased-Object-Name

This attribute occurs only in alias entries. It gives the Distinguished Name
of the object that is given an alias by the entry in which this attribute occurs.
An alias is an alternative to an object’s distinguished name. Any object may
(but need not) have one or more aliases. The directory is said to dereference
an alias whenever it replaces the alias with the distinguished name associated
with it by means of this attribute.

6—4 Directory Class Definitions

A-Authority-Revoc-List

This attribute occurs in entries describing a Certification Authority. It lists all
the certificates issued to any Certification Authority known to this authority
that were later revoked.

A-Business-Category
Describes the businesses in which the object is engaged.

A-CA-Cert
The certificate assigned to the object. The object is a Certification Authority.

A-Cert-Revoc-List
This attribute occurs in entries that describe a Certification Authority. It is the
list of certificates issued by this authority and later revoked.

A-Common-Name
The names by which the object is commonly known in the context defined by
its position in the DIT.

A-Country-Name

Identifies the country in which the object is located or with which it is
associated. The matching rules require that differences in the case of
alphabetical characters are considered insignificant.

A-Cross-Cert-Pair

One or two certificates held in the entry of a Certification Authority. One is the
certificate of one Certification Authority guaranteed by a second authority. The
other is the certificate of the second authority guaranteed by the first authority.

A-Deliv-Content-Length
Identifies the maximum content length of messages that can be delivered to a
user.

A-Deliv-Content-Types
Identifies the content types of messages that can be delivered to a user.

A-Deliv-EITs
Identifies the Encoded Information Types (EITs) of messages that can be
delivered to a user.

A-Description
The informal description of the object.

A-Dest-Indicator

Country-city pairs that enable the object to be reached through the public
telegram service. The matching rules require that differences in the case of
alphabetical characters are considered insignificant.

Directory Class Definitions 6-5

A-DL-Members
Identifies the members of a distribution list (DL).

A-DL-Submit-Perms
Identifies the users and distribution lists (DLs) that are permitted to submit
messages to a distribution list.

A-Facsimile-Phone-Nbr

Denotes the telephone numbers for facsimile terminals through which the
object can be reached or with which it is associated. This attribute can also
include the parameters of the facsimile terminal.

A-Internat-1SDN-Nbr

The International Integrated Services Digital Network (ISDN) number through
which the object can be reached or with which it is associated. The matching
rules require that differences caused by the presence of spaces are considered
insignificant.

A-Knowledge-Info
This attribute occurs in entries that describe a DSA. It provides an informal
description of the directory knowledge that the DSA contains.

A-Locality-Name

Identifies geographical areas or localities. If used as part of a directory name,
it indicates the localities in which the object is located or with which it is
associated.

A-Member
Indicates names of objects that are considered to be members of the present
object (which might be for example, a distribution list for electronic mail).

A-Message-Store
Identifies the user’s message store (MS) by name.

A-Object-Class

Identifies the object classes to which the object belongs and also identifies their
superclasses. This attribute must be present in every entry and must not be
modified.

A-OR-Name
Identifies the MHS O/R address of a user or a distribution list.

A-Org-Name
Identifies an organization with which the object is connected.

A-Org-Unit-Name
Identifies the part of the organization with which the object is connected.

6—6 Directory Class Definitions

A-Owner
Indicates the names of the objects that are responsible for the object.

A-Phone-Nbr
Identifies telephones through which the object can be reached or with which it
is associated.

A-Phy-Deliv-Office-Name
The names of cities, towns, or villages that contain physical delivery offices
through which the object can take delivery of physical mail.

A-Post-Office-Box
Identifies post office boxes at which the object can take delivery of physical
mail.

A-Postal-Address

Indicates postal addresses at which the object can take delivery of physical
mail. The matching rules require that differences in the case of alphabetical
characters are considered insignificant.

A-Postal-Code
Indicates postal codes assigned to the area or building where the object can
take delivery of physical mail.

A-Pref-Deliv-Method
The methods of communication preferred by the object. They are ordered so
that the most preferred method comes first.

= Any-Deliv-Method. No preference.

e G3-Facsimile-Deliv. Through Group 3 facsimile.
e G4-Facsimile-Deliv. Through Group 4 facsimile.
= |A5-Terminal-Deliv. Through IA5 text.

e MHS-Deliv. Through Electronic Messaging Systems based on the CCITT
X.400 series of Recommendations.

= Physical-Deliv. Through the postal or other physical delivery system.
= Telephone-Deliv. By telephone.

e Teletex-Deliv. Through teletex.

e Telex-Deliv. Through telex.

= Videotex-Deliv. Through videotex.

Directory Class Definitions 6-7

A-Pref-Deliv-Methods
Identifies the methods of delivery preferred by the user. They are ordered so
that the most preferred method comes first.

A-Presentation-Address

The presentation address of the object which is an application entity. The
matching rule for a presented value to match a value stored in the directory is
that the P-Selector, S-Selector and T-Selector of the two Presentation Addresses
must be equal and the N-Addresses of the presented value must be a subset of
those of the stored value.

A-Registered-Address

Indicates the mnemonics that enable the object to be reached through the
public telegram service. It identifies the object in the context of a particular
city and is registered in the country containing that city. The matching rules
require that differences in the case of alphabetical characters are considered
insignificant.

A-Role-Occupant
This attribute occurs in entries that describe an organizational role. It gives
the names of objects that fulfill this role.

A-Search-Guide
Indicates criteria that can be used to build filters for searches in which the
object is the base.

A-See-Also
Names of objects that represent other aspects of the real world object
represented by the present object.

A-Serial-Nbr
Indicates serial numbers of a device.

A-State-Or-Province-Name
Specifies a state, province or other geographical region in which the object is
located or with which it is associated.

A-Street-Address
Identifies the street address where the object is located or with which it is
connected.

A-Support-Appl-Context
This attribute occurs in entries that describe an application entity. It identifies
the application contexts supported by the object.

A-Supported-Automatic-Actions
Identifies the automatic actions that a message store fully supports.

6—8 Directory Class Definitions

A-Supported-Content-Types
Identifies the content type of the messages whose syntax and semantics a
message store fully supports.

A-Supported-Optional-Attributes
Identifies the optional attributes that a message store fully supports.

A-Surname
This attribute occurs in entries that describe a person. It is the surname by
which the person is commonly known.

A-Teletex-Term-ldent
Descriptions of teletex terminals through which the object can be reached or
with which it is associated.

A-Telex-Nbr
Descriptions of telex terminals through which the object can be reached or with
which it is associated.

A-Title
Identifies the position or function of a person within an organization.

A-User-Cert
The user certificates assigned to the object. This can be any user certificate
including a Certification Authority certificate.

A-User-Password
The passwords assigned to the object.

A-X121-Address

Identifies points on the public data network where the object can be reached or
with which it is associated. The matching rules require that differences caused
by the presence of spaces are considered insignificant.

6.2 Selected Object Classes

This section lists the object classes that are defined in the standards. Each
Directory entry belongs to an object class identified by the attribute Object-
Class. The values of this attribute are object identifiers. These are represented
in the interface by constants with the same name as the object class prefixed
by O_ for ease of reading. The C constants are prefixed by DS_O _.

Table 6-2 shows the selected object classes, as defined in the standards.

Directory Class Definitions 6-9

Table 6-2 Selected Object Classes

Object Class Package Object Class Package
O-Alias BDCP O-MHS-Message-Trans-Ag MDUP
O-Applic-Entity BDCP O-MHS-User MDUP
O-Applic-Process BDCP O-MHS-User-Agent MDUP
O-Cert-Authority SAP 0O-Org BDCP
O-Country BDCP O-Org-Person BDCP
O-Device BDCP 0-0Org-Role BDCP
O-DSA BDCP 0O-0Org-Unit BDCP
O-Group-Of-Names BDCP O-Person BDCP
O-Locality BDCP O-Residential-Person BDCP
O-MHS-Distribution-List MDUP O-Strong-Authent-User SAP

O-MHS-Message-Store MDUP O-Top BDCP

Each object class has zero or more mandatory attributes and zero or more
optional attributes. A directory entry must contain all the mandatory
attributes associated with its object class and superclasses.

6.3 OM Class Hierarchy

Figure 6-1 shows the hierarchical organization of the selected object classes. It
shows which OM classes inherit attributes from their superclasses. The name
of the abstract OM classes is shown in italics.

Note

Digital's X.500 API does not fully support the object classes in
Figure 6-1. You cannot pass them as interface objects, only as ASN.1
structures.

The object class Object is defined in the OSI-Abstract-Data Manipulation. It
contains one attribute, Class, which denotes the class of the object.

6-10 Directory Class Definitions

Figure 6-1 Hierarchy of Selected Object Classes

Object

Algorithm Identifier
Certificate Pair

Facsimile Phone Number

OR Address
I OR Name
—— Postal Address
—— Search Criterion
—— Search Guide
— Signature
Certificate

Certificate List
Certificate Sublist

DL Submit Permission
Teletex Terminal ldentifier
Telex Number

MIG0261

The following sections describe the additional OM classes used to represent
values of the selected attributes described in Section 6.1. These are described
in alphabetical order. Each OM class is described in a separate section that
identifies the OM attributes specific to that class and lists its superclasses.
The attributes in an instance of an OM class include those specific to that class
and those inherited from each of its superclasses. For each class, there is a
table that defines the class-specific attributes, if there are any. The tables give
the following information:

The name of each attribute

The syntax of each attribute value (including any appropriate object class,
enumeration syntax or string type in parenthesis)

The restrictions, if any, on the length of each attribute value
The number of values each attribute can have

The initial value, if any, that the OM-Create function supplies (if
initialization is requested)

These classes cannot be encoded using the OM-Encode and OM-Decode
functions.

Directory Class Definitions 6-11

6.3.1 Algorithm Identifier
DS_C_ALGORITHM_IDENT

An instance of the OM class Algorithm ldentifier records the encryption
algorithm used by an object to sign messages. It also contains the algorithm
parameters. It has the attributes of its superclass, Object, and the OM
attributes listed in the following table.

OM Attribute Name Value Syntax Number of Values

Algorithm String(Object Identifier) 1

Algorithm Parameters Any 0-1

Algorithm (DS_ALGORITHM)
An object identifier that uniquely identifies an algorithm used by an object.

Algorithm Parameters (DS_ALGORITHM_PARAMETERS)
The values of the algorithm parameters that the object uses. The syntax is
determined by the algorithm.

6.3.2 Certificate
DS _C _CERT

An instance of the OM class Certificate is a Certificate containing a user’s
Distinguished Name, public key, and additional information. These are all
signed by the issuing Certification Authority so that the certification cannot be
forged. It has the attributes of its superclasses, Object and Signature, and the
OM attributes listed in the following table.

Value Number of Initial
OM Attribute Name Value Syntax Length Values Value
Serial Number Integer - 1 -
Subject Object(Name) - 1 -
Subject Algorithm Object(Algorithm - 1 -
Identifier)
Subject Public Key String(Bit) - 1 -
Validity Not After String(UTC-Time) 0-17 1 -
Validity Not Before String(UTC-Time) 0-17 1 -
Version Enum(Version) - 1 v1988

6-12 Directory Class Definitions

Serial Number (DS_SERIAL_NBR)
Distinguishes this certificate from all the others that were or will be issued
by the Certification Authority that issued it.

Subject (DS_SUBJECT)
The subject’s name.

Subject Algorithm (DS_SUBJECT_ALGORITHM)
The algorithm that is used by the subject for encryption. This is associated
with the public key.

Subject Public Key (DS_SUBJECT_PUBLIC_KEY)
The public key of the subject. This is associated with the encryption
algorithm.

Validity Not After (DS_VALIDITY_NOT_AFTER)

Indicates the last day that the certificate is valid. Note, the upper limit
of the value length (17) is contained in the integer constant DS VL _
VALIDITY_NOT_AFTER.

Validity Not Before (DS_VALIDITY_NOT_BEFORE)

Indicates the first day that the certificate is valid. Note, the upper limit
of the value length (17) is contained in the integer constant DS VL _
VALIDITY_NOT_BEFORE.

Version (DS_VERSION)
Identifies the design of the certificate. Its value is v1988 meaning that the
design is that specified in the 1988 version of the standards.

6.3.3 Certificate List
DS_C CERT_LIST

An instance of the OM class Certificate List documents the revocation of zero or
more certificates. The documentation is provided by a Certification Authority
whose signature is associated with the instance. It has the attributes of

its superclasses, Object and Signature, and the OM attributes listed in the
following table.

Value Number of
OM Attribute Name Value Syntax Length Values
Last Update String(UTC-Time) 0-17 1

Directory Class Definitions 6-13

Value Number of
OM Attribute Name Value Syntax Length Values

Revoked Certificates Object(Certificate Sublist) - 0 or more

Last Update (DS_LAST_UPDATE)

Indicates the time at which the revocation list was updated to its current
state. Note, the upper limit of the value length (17) is contained in the
integer constant DS_VL_LAST_UPDATE.

Revoked Certificates (DS_REVOKED_CERTS)
Identifies the revoked certificates.

6.3.4 Certificate Pair
DS _C_CERT_PAIR

An instance of the OM class Certificate Pair contains one or both copies of a
forward and reverse certificate to help users build a certification path. It has
the attributes of its superclass, Object, and the OM attributes listed in the
following table.

OM Attribute Name Value Syntax Number of Values
Forward Object(Certificate) 0-1
Reverse Object(Certificate) 0-1

Forward (DS_FORWARD)
The certificate of one Certification Authority issued by a second
Certification Authority.

Reverse (DS _REVERSE)
The certificate of the second Certification Authority issued by the first
Certification Authority.

At least one of the above attributes must be present.

6.3.5 Certificate Sublist

DS_C_CERT_SUBLIST
An instance of the OM class Certificate Sublist documents the revocation of
zero or more certificates issued by the Certification Authority whose signature

is associated with the instance. It has the attributes of its superclasses, Object
and Signature, and the OM attributes listed in the following table.

6-14 Directory Class Definitions

Value

OM Attribute Name Value Syntax Length Number of Values
Revocation Date String(UTC-Time) 0-17 0 or more!
Serial Numbers Integer - 0 or more!

1The values of these two attributes parallel one another and must be equal in number

Revocation Date (DS_REVOC_DATE)

Indicates the date when each of the certificates was revoked. The serial
numbers of the certificates are the corresponding values of the OM
attribute Serial Numbers. Note, the upper limit of the value length (17) is
contained in the integer constant DS_VL_REVOC _DATE.

Serial Numbers (DS_SERIAL_NBRS)
The serial numbers assigned to the revoked certificates.
The values of the above attributes must be equal in number.
6.3.6 Facsimile Phone Number
DS _C_FACSIMILE_PHONE_NBR

An instance of the OM class Facsimile Phone Number identifies and optionally
describes a facsimile terminal. It has the attributes of its superclass, Object,
and the OM attributes listed in the following table.

Value
OM Attribute Name Value Syntax Length Number of Values
Parameters Object(G3 Fax NBPs) - 0-1
Phone Number String(Printable)? 1-32 1

Ias permitted by International Standard E.123

Directory Class Definitions 6-15

Parameters (DS_PARAMETERS)

If present, identifies the non-basic capabilities of the facsimile terminal. Its
value syntax is as defined in the guide MAILbus 400 Application Program
Interface Programming.

Phone Number (DS_PHONE_NBR)

A telephone number through which the facsimile terminal can be accessed.
Note, the upper limit of the value length (32) is contained in the integer
constant DS_VL_PHONE_NBR.

6.3.7 DL Submit Permission
DS C_DL_SUBMIT_PERMS
An instance of the OM class DL Submit Permission characterizes an attribute

each of whose value is a submit permission. It has the attributes of its
superclass, Object, and the OM attributes listed in the following table.

OM Attribute Name Value Syntax Number of Values
Permission Type Enum(Permission-Type) 1

Individual Object(OR Name) 0-1

Member of DL Object(OR Name) 0-1

Pattern Match Object(OR Name) 0-1

Member of Group Object(Name) 0 or more

Permission Type (DS_PERM_TYPE)
Indicates the type of the permission specified by DL-Submit-Permission.
Its value is one of:

= individual (DS_PERM_INDIVIDUAL)
< member of dl (DS_PERM_MEMBER_OF_DL)
e pattern match (DS_PERM_PATTERN_MATCH)

= member of group (DS_PERM_MEMBER_OF_GROUP)
It also indicates which of the following four attributes is also present.

Individual (DS_INDIVIDUAL)

Indicates the user or unexpanded distribution list whose O/R name is equal
to the specified O/R name.

6-16 Directory Class Definitions

Member of DL (DS_MEMBER_OF DL)
Indicates each member of the distribution list or nested distribution list
whose O/R name is equal to the specified O/R name.

Pattern Match (DS_PATTERN_MATCH)
Indicates each user or unexpanded distribution list whose O/R name
matches the specified O/R name pattern.

Member of Group (DS_MEMBER_OF_GROUP)
Indicates each member of the group-of-names whose name is specified, or
of each nested group-of-names recursively.

6.3.8 Postal Address
DS_C_POSTAL_ADDRESS

An instance of the OM class Postal Address is a postal address. It has the
attributes of its superclass, Object, and the following OM attribute:

Value
OM Attribute Name Value Syntax Length Number of Values
Postal Address String(Teletex) 1-30 1-6

Postal Address (DS_POSTAL_ADDRESS)

Signifies the postal address. Each value of this attribute is one line of
address. Note, the upper limit of the value length (30) is contained in the
integer constant DS_VL_POSTAL_ADDRESS. Note, the upper limit of the
number of values (6) is contained in the integer constant DS_VN_POSTAL _
ADDRESS.

6.3.9 Search Criterion
DS_C_SEARCH_CRITERION
An instance of the OM class Search Criterion is a component of a Search

Guide OM object. It has the attributes of its superclass, Object, and the OM
attributes listed in the following table.

Number of
OM Attribute Name Value Syntax Values Initial Value
Attribute Type String(Object Identifier) 0-1 -
Criteria Object(Search Criterion) 0 or more -

Directory Class Definitions 6-17

Number of

OM Attribute Name Value Syntax Values Initial Value
Filter Item Type Enum(Filter-1tem-Type) 0-1 -
Filter Type Enum(Filter-Type) 1 item

Attribute Type (DS_ATTRIBUTE_TYPE)
The attribute type to be used in the suggested Filter-ltem. This attribute
is only present if the value of Filter-Type is item.

Criteria (DS_CRITERIA)
The nested search criteria. This attribute is not present if the value of
Filter-Type is item.

Filter Item Type (DS_FILTER_ITEM_TYPE)
The type of the suggested filter-item. This OM attribute is only present
when the value of Filter-Item is item. Its value is one of the following:

— approximate-match (DS_APPROXIMATE_MATCH)

equality (DS_EQUALITY)

greater-or-equal (DS_GREATER_OR_EQUAL)

less-or-equal (DS _LESS OR_EQUAL)

substrings (DS_SUBSTRINGS)

It cannot have the value present (DS_PRESENT). Refer to Section 3.17.

Filter Type (DS_FILTER_TYPE)
The type of the suggested filter. Refer to Section 3.16 for a description of
this attribute.

6.3.10 Search Guide
DS _C_SEARCH_GUIDE

An instance of the OM class Search Guide suggests a criterion for searching
the Directory for particular entries. It can be used to build a Filter for a
Search operation that is based on the object in whose entry the guide is placed.
It has the attributes of its superclass, Object, and the OM attributes listed in
the following table.

6-18 Directory Class Definitions

OM Attribute Name Value Syntax Number of Values

Object Class String(Object Identifier) 0-1
Criteria Object(Search Criterion) 1

Object Class (DS_OBJECT_CLASS)
Identifies the object class of the entries to which the search guide applies.
The search guide applies to objects of any class if this attribute is absent.

Criteria (DS_CRITERIA)
The suggested search criteria.

6.3.11 Signature
DS_C_SIGNATURE

The abstract OM class Signature contains the algorithm identifier used to
produce a digital signature and the name of the object that produced it. The
scope of the signature is any instance of any subclass of Signature. It has
the attributes of its superclass, Object, and the OM attributes listed in the
following table.

OM Attribute Name Value Syntax Number of Values
Issuer Object(Name) 1
Signature Object(Algorithm Identifier) 1
Signature Value String(Octet) 1

Issuer (DS_ISSUER)
The name of the object that produced the digital signature.

Signhature (DS_SIGNATURE)
Identifies the algorithm that was used to produce the digital signature and
any parameters of the algorithm.

Signature Value (DS_SIGNATURE_VALUE)

An enciphered summary of the information connected with the signature.
The summary is produced by means of a one-way hash function.
Enciphering is carried out using the secret key of the signer.

Directory Class Definitions 6-19

6.3.12 Teletex Terminal Identifier
DS C TELETEX_TERM_IDENT
An instance of OM class Teletex Terminal ldentifier identifies and describes a

Teletex terminal. It has the attributes of its superclass, Object, and the OM
attributes listed in the following table.

Value Number of
OM Attribute Name Value Syntax Length Values
Parameters Object(Teletex NBPSs) - 0-1
Teletex Terminal String(Printable)* 1-1024 1

as permitted by the International Standard F.200

Parameters (DS_PARAMETERS)
Identifies the non basic capabilities of the Teletex terminal.

Teletex Terminal (DS_TELETEX_TERM)
Identifies a Teletex terminal. Note, the upper limit of the value length
(1024) is contained in the integer constant DS_VL_TELETEX_TERM.

6.3.13 Telex Number
DS _C_TELEX_NBR

An instance of OM class Telex Number identifies and describes a telex
terminal. It has the attributes of its superclass, Object, and the OM attributes
listed in the following table.

OM Attribute Name Value Length Value Syntax Number of Values
Answerback String(Printable) 1-8 1
Country Code String(Printable) 1-4 1
Telex Number String(Printable) 1-14 1

Answerback (DS_ANSWERBACK)

The code with which the telex terminal acknowledges calls to it. Note,
the upper limit of the value length (8) is contained in the integer constant
DS_VL_ANSWERBACK.

6—20 Directory Class Definitions

Country Code (DS_COUNTRY_CODE)

The identifier of the country through which the telex terminal is accessed.
Note, the upper limit of the value length (4) is contained in the integer
constant DS_VL_COUNTRY_CODE.

Telex Number (DS_TELEX_NBR)
The number by which the telex terminal is addressed. The upper limit of
the value length (14) is contained in the integer constant DS VL _TELEX

NBR.

Directory Class Definitions 6-21

A

A-Aliased-Object-Name, 6-2, 64
A-Authority-Revoc-List, 6-2, 6-5
Abandon, 4-4
Abandon Failed object class, 5-2
Abstract Services, 2-1
A-Business-Category, 6-2, 6-5
A-CA-Cert, 6-2, 6-5
Access Point object class, 3-3
Access Points attribute, 3-10
A-Cert-Revoc-List, 6-2, 6-5
A-Common-Name, 6-2, 6-5
A-Country-Name, 6-2, 6-5
A-Cross-Cert-Pair, 6-2, 6-5
Add Entry, 4-7

arguments, 4-7

C binding, 4-7

description of, 4-8

errors, 4-10

return value, 4-9

syntax, 4-7
Address attribute, 3-3
Address object class, 3-3
A-Deliv-Content-Length, 6-2, 6-5
A-Deliv-Content-Types, 6-2, 6-5
A-Deliv-EITs, 6-2, 6-5
A-Description, 6-3, 6-5
A-Dest-Indicator, 6-5
A-Dest-Indicator-Ind, 6-3
A-DL-Members, 6-3, 6-6
A-DL-Submit-Perms, 6-6

Index

Administrative-Limit-Exceeded, 3-21
Administrative Limit Exceeded problem code,
5-9
AE Title attribute, 3-3
A-Facsimile-Phone-Nbr, 6-3, 6-6
Affects Multiple DSAs problem code, 5-10
A-Internat-ISDN-Nbr, 6-3, 6-6
A-Knowledge-Info, 6-3, 6-6
Algorithm attribute, 6-12
Algorithm Identifier object class, 6-12
Algorithm Parameters attribute, 6-12
Alias Dereferenced attribute, 3-5
Alias Dereferencing Problem problem code,
5-7
Aliased RDNs attribute, 3-7, 3-10
Alias Entry attribute, 3-19
Alias Problem problem code, 5-7
All Attributes attribute, 3-12
A-Locality-Name, 6-3, 6-6
A-Member, 6-3, 6-6
A-Message-Store, 6-3, 6-6
Answerback attribute, 6-20
Any-Deliv-Method, 6-7
A-Object-Class, 6-3, 6-6
A-OR-Address, 6-6
A-OR-Addresses, 6-3
A-Org-Name, 6-3, 6-6
A-Org-Unit-Name, 6-3, 6-6
A-Owner, 6-3, 6-7
A-Phone-Nbr, 6-3, 6-7
A-Phy-Deliv-Office-Name, 6-7
A-Phy-Deliv-Off-Name, 6-3

Index—1

A-Postal-Address, 6-3, 6-7 AVA object class, 3—4

A-Postal-Code, 6-3, 6—7 AVAs attribute, 3-23
A-Post-Office-Box, 6-3, 67 A-X121-Address, 6-4, 6-9
A-Pref-Deliv-Method, 6-3, 6-7
A-Pref-Deliv-Methods, 6-3, 6-8 B
A-Presentation-Address, 6-3, 6-8
A-Registered-Address, 6-3, 6-8 Bad Argument problem code, 5-6
A-Role-Occupant, 6-3, 6-8 Bad Class problem code, 5-6
A-Search-Guide, 6-3, 6-8 Bad Context problem code, 5-6
A-See-Also, 6-3, 6-8 Bad Name problem code, 5-6
A-Serial-Nbr, 6-3, 6-8 Bad Session problem code, 5-6
A-State-Or-Province-Name, 6-8 Basic Directory Contents Package, 2-3
A-State-Or-Prov-Name, 6-4 See also xdshdcp.h
A-Street-Address, 6-4, 6-8 Bind, 2-3, 4-14
A-Submit-Perms, 6-3 arguments, 4-14
A-Supp-Auto-Actions, 6-4, 6-8 C binding, 4-14
A-Supp-Content-Types, 6-4, 6-9 description of, 4-15
A-Supp-Opt-Attributes, 6-4, 6-9 errors, 4-16
A-Support-Applic-Context, 6-4, 6-8 return value, 4-16
A-Surname, 6-4, 6-9 syntax, 4-14
Asynchronous attribute, 3-9 Busy problem code, 5-9
A-Teletex-Term-ldent, 6-4, 6-9
A-Telex-Nbr, 6-4, 6-9 C
A-Title, 6-4, 6-9
Attribute, 2-5 Cannot Abandon problem code, 5-2
Attribute Error object class, 5-3 CDS, vii, 2-2, 4-1, 4-3, 4-8, 4-15, 4-19,
Attribute List object class, 3-4 4-27, 4-33, 4-41, 4-44, 4-53, 4-59, 4-65
Attribute object class, 3-3 Cell Directory Service
Attribute Problem object class, 5-3 See CDS
Attributes attribute, 3-4 Certificate List object class, 6-13
Attr!butes Selected attribute, 3-12 Certificate object class, 6-12
Attribute-Type, 2-5 Certificate Pair object class, 6-14
Attribute Type attribute, 3-4, 5-3, 6-18 Certificate Sublist object class, 6-14
Attribute Value Already Exists problem code, C function return values, 1-3

_5—4) Chaining Prohibited attribute, 3-7
Attribute Value Assertion, 2-5 Chaining Required problem code, 5-9
Attribute Value attribute, 5-4 Changes attribute, 3-14
Attribute-Values, 2-5 C identifiers, 1-1, 1-2
Attribute Values attribute, 3-4 constants, 1-3
A-User-Cert, 6-4, 6-9 enumeration constants, 1-2
A-User-Password, 6-4, 6-9 enumeration tags, 1-3
Automatic Continuation attribute, 3-9 errors, 1-2
AVA, 2-5

function names, 1-3
function parameters, 1-3
Object Management class names, 1-2

Index—2

C identifiers (cont'd) Dont Dereference Aliases attribute, 3-7

Value-Length, 1-3 Dont Use Copy attribute, 3-7

Value-Number, 1-3 DS, 1-2
C language binding, 1-1 DSA Address attribute, 3-26
C naming conventions, 1-1 DSA Name attribute, 3-26
Common Results object class, 3-5 dsP , 1-1, 1-2
Communications Error object class, 5-4 dsX , 1-1,1-2
Compare, 4-18 DSX , 1-1,1-2

arguments, 4-18 ds . 1-1, 1-2, 1-3

C binding, 4-18 DS, 1-1, 1-2, 1-3

description of, 4-19 DS A, 1-2

errors, 4-20 DS_C_, 1-2

return value, 4-20 DS_C_ABANDON_FAILED, 5-2

syntax, 4-18 DS_C_ACCESS_POINT, 3-3
Compare Result object class, 3-5 DS C ADDRESS, 3-3
Complllpg, 1_—3 _ DS_C_ALGORITHM_IDENT, 6-12
Constraint Violation problem code, 54 DS C ATTRIBUTE, 3-3
Context, 2—4 DS_C_ATTRIBUTE_ERROR, 5-3
Context object class, 3-6 DS_C_ATTRIBUTE_LIST, 3-4
Continuation Reference object class, 3-10 DS_C_ATTRIBUTE_PROBLEM, 5-3
Country Code attribute, 6-21 DS C AVA, 3-4
Criteria attribute, 6-18, 6-19 DS C CERT, 6-12
Critical attribute, 3-14 DS C CERT LIST, 6-13

DS C CERT_PAIR, 6-14

D DS_C_CERT_SUBLIST, 6-14

DS_C_COMMON_RESULTS, 3-5
DS_C_COMMUNICATIONS_ERROR, 5-4
DS_C_COMPARE_RESULT, 3-5
DS_C_CONTEXT, 3-6
DS_C_CONTINUATION_REF, 3-10
DS_C_DL_SUBMIT_PERMS, 6-16

DS C_DS_DN, 3-11

DS_C_DS_RDN, 3-23
DS_C_ENTRY_INFO, 3-11

DCE, vii, 1-1, 2-2, 4-3, 4-8, 4-15, 4-19,
4-27, 4-33, 4-41, 4-44, 4-59, 4-65

Default-Context, 2-4
Default-Session, 2-4
Digital's DSA

implementation details, 3-8, 3-9, 3-19
Digital's X.500 API

implementation details, 6-1, 6-10

2

Directory Service Package, 2-3, 3-1 DS C ENTRY MOD, 3-13
See also xds.h DS _C_ENTRY_MOD _LIST, 3-13
class hierarchy, 3-1 DS C ERROR, 5-2
Object Management classes, 3-1 DS_C_EXT, 314
Distinguished Name object class, 3-11 DS C FACSIMILE PHONE NBR, 6-15
Distributed Computing Environment DS _C_FILTER, 3-15 -
See DCE DS _C _FILTER_ITEM, 3-16
DIT Error problem code, 5-9 DS C LIBRARY_ERROR, 5-6
DL Submit Permission object class, 6-16 DS _C _LIST_INFO, 3-18

Index—3

DS _C LIST_INFO_ITEM, 3-18 Entry Modification List object class, 3-13

DS_C_LIST_RESULT, 3-19 Entry Modification object class, 3-13
DS C NAME, 3-20 Error
DS_C_NAME_ERROR, 5-7 Abandon Failed, 5-2
DS_C_OPERATION_PROGRESS, 3-20 Attribute Error, 5-3
DS C PARTIAL OUTCOME_QUAL, 3-21 Attribute Problem, 5-3
DS _C POSTAL_ADDRESS, 6-17 Communications Error, 5-4
DS _C_PRESENTATION_ADDRESS, 3-22 Library Error, 5-6
DS C READ RESULT, 3-23 Name Error, 5-7
DS _C REFERRAL, 5-8 Referral, 5-8
DS _C_RELATIVE_NAME, 3-24 Security Error, 5-8
DS C SEARCH_CRITERION, 6-17 Service Error, 5-8
DS _C_SEARCH_GUIDE, 6-18 System Error, 5-10
DS_C_SEARCH_INFO, 3-24 Update Error, 5-10
DS C SEARCH_RESULT, 3-25 Error object class, 5-2
DS _C _SECURITY_ERROR, 5-8 Extension object class, 3-14
DS_C_SERVICE_ERROR, 5-8 Extensions attribute, 3-7
DS _C SESSION, 3-25
DS_C_SIGNATURE, 6-19 F
DS _C_SYSTEM_ERROR, 5-10
DS C TELETEX TERM IDENT, 6-20 Facsimile Phone Number object class, 6-15
DS C TELEX NBR, 6-20 File Descriptor attribute, 3-26
DS C UPDATE ERROR, 5-10 Filter Item object class, 3-16
DS DEFAULT CONTEXT, 2-4 Filter Items attribute, 3-15
DS E, 1-2 Filter Item Type attribute, 3-16, 6-18
DS O, 1-2 Filter object class, 3-15
DS SUCCESS, 1-3 Filters attribute, 3-15
DS VL, 1-2,1-3 Filter Type attribute, 3-15, 6-18
DS VN, 1-2,1-3 Final Substring attribute, 3-17
-7 Forward, 6-14
E Forward attribute, 6-14
From Entry attribute, 3-5, 3-11, 3-19
Entries attribute, 3-24 Function arguments, 2-5
Entry, 3-23 Function Results, 2-6
Entry attribute, 3-23 Invoke-1D, 2-7
Entry Exists problem code, 5-10 Result, 2-7
Entry Information object class, 3-11 Status, 2-6
Entry Information Selection object class,
3-12 G
Entry-Info-Selection, 2-5
Select-All-Types, 2-5 G3-Facsimile-Deliv, 6-7
Select-All-Types-And-Values, 2-5 G4-Facsimile-Deliv, 6-7

Select-No-Attributes, 2-5

Index—4

IA5-Terminal-Deliv, 6-7
Identifier attribute, 3-14
Inappropriate Authentication problem code,
5-8

Inappropriate Matching problem code, 5-4
Individual attribute, 6-16
Information Type attribute, 3-12
Initialize, 2-3, 4-24

C binding, 4-24

description of, 4-24

errors, 4-24

syntax, 4-24
Initial Substring attribute, 3-18
Insufficient Access Rights problem code, 5-8
Interface, 2-3

extensions to, 2-3

initialization, 2-3

shutdown, 2-3
Intro, 4-2
Invalid Attribute Syntax problem code, 5-4
Invalid Attribute Value problem code, 5-7
Invalid Credentials problem code, 5-8
Invalid Reference problem code, 5-9
Invalid Signature problem code, 5-8
Invoke-1D, 2-7
Issuer attribute, 6-19
Item Parameters attribute, 3-14

L

List Information attribute, 3-19

List Information Item object class, 3-18

List Information object class, 3-18
List Result object class, 3-19
Local Scope attribute, 3-7

Loop Detected problem code, 5-9

M

Last Update attribute, 6-14
Library Error object class, 5-6
Limit Problem attribute, 3-21
Linking, 1-3
List, 4-26
arguments, 4-26
C binding, 4-26
description of, 4-27
errors, 4-28
return value, 4-28
syntax, 4-26

Matched attribute, 3-6, 5-7
Member of DL attribute, 6-17
Member of Group attribute, 6-17
MHS-Deliv, 6-7
MHS Directory User Package, 2-3

See also xdsmdup.h
Miscellaneous problem code, 5-6
Missing Type problem code, 5-6
Modification Type attribute, 3-13
Modify Entry, 4-32

arguments, 4-32

C binding, 4-32

description of, 4-33

errors, 4-35

return value, 4-34

syntax, 4-32
Modify RDN, 4-40

arguments, 4-40

C binding, 4-40

description of, 4-41

errors, 4-42

return value, 4-41

syntax, 4-40

N

N-Addresses attribute, 3-22
Name
DS RDN, 2-6
RDN, 2-6, 4-40
Relative-Name, 2-6

See also Distinguished Name, 2-6
See also Relative Distinguished Name,

2-6

Index-5

Name Error object class, 5-7

Name object class, 3-20

Name Resolution Phase attribute, 3-20

Naming Violation problem code, 5-10

Next RDN To Be Resolved attribute, 3-21

No Information problem code, 5-8

No-Limit-Exceeded, 3-21

No Such Attribute or Value problem code,
5-4

No Such Object problem code, 5-7

No Such Operation problem code, 5-3

Not Allowed On Non Leaf problem code,
5-10

Not Allowed On RDN problem code, 5-10

Not Supported problem code, 5-6

O

Operation Progress object class, 3-20
O-Person, 6-10
O-Residential-Person, 6-10
O-Strong-Authent-User, 6-10
O-Top, 6-10

Out Of Scope problem code, 5-9

P

O-Alias, 6-10
O-Applic-Entity, 6-10
O-Applic-Process, 6-10
Object Class attribute, 6-19

Object Class Modification Prohibited problem

code, 5-11
Object Class Violation problem code, 5-11
Object Name attribute, 3-6, 3—11, 3-18,
3-24, 5-3
O-Cert-Authority, 6-10
O-Country, 6-10
O-Device, 6-10
O-DSA, 6-10
O-Group-Of-Names, 6-10
O-Locality, 6-10
O-MHS-Distribution-List, 6-10
O-MHS-Message-Store, 6-10
O-MHS-User, 6-10
O-MHS-User-Agent, 6-10
OM naming conventions, 1-2
O-Org, 6-10
O-Org-Person, 6-10
0O-0Org-Role, 6-10
0O-Org-Unit, 6-10
Operation Progress attribute, 3-7, 3-10

Index—6

Parameters, 6-15

Parameters attribute, 6-16, 6-20

Partial Outcome Qualifier attribute, 3-18,
3-24

Partial Outcome Qualifier object class, 3-21

Password attribute, 3-26

Pattern Match attribute, 6-17

Performer, 3-5

Permission Type attribute, 6-16

Phone-Nbr, 6-15

Phone Number attribute, 6-16

Physical-Deliv, 6-7

Postal Address, 6-17

Postal-Address, 6-17

Postal Address object class, 6-17

Prefer Chaining attribute, 3-7

Presentation Address object class, 3-22

Priority attribute, 3-8

Problem attribute, 5-2

Problems attribute, 5-3

Protection Required problem code, 5-8

P-Selector attribute, 3-22

R

RDN, 4-40
RDN attribute, 3-19
RDNs Resolved attribute, 3-10
Read, 4-43
arguments, 4-43
C binding, 4-43
description of, 4-44
errors, 4-45
return value, 4-24, 4-45
syntax, 4-43

Read Result object class, 3-23
Receive Result, 4-54
arguments, 4-54
C binding, 4-54
description of, 4-56
errors, 4-56
return value, 4-56
syntax, 4-54
Referral object class, 5-8
Relative Distinguished Name

See RDN
Relative Distinguished Name object class,
3-23
Relative Name object class, 3-24
Remove Entry, 4-58
arguments, 4-58
C binding, 4-58
description of, 4-59
errors, 4-60
return value, 4-59
syntax, 4-58
Requestor attribute, 3-26
Result, 2-7
_return, 1-3
Reverse, 6-14
Reverse attribute, 6-14
Revocation Date attribute, 6-15
Revoked Certificates attribute, 6-14

S

Scope of Referral attribute, 3-8
Search, 4-63

arguments, 4-63

C binding, 4-63

description of, 4-65

errors, 4-66

return value, 4-65

syntax, 4-63
Search Criterion object class, 6-17
Search Guide object class, 6-18
Search Information attribute, 3-25
Search Information object class, 3-24

Search Result object class, 3-25
Security Error object class, 5-8
Serial Number attribute, 6-13
Serial Numbers attribute, 6-15
Service Error object class, 5-8
Session, 2-4
Session object class, 3-25
Shutdown, 2-3, 4-71

arguments, 4-71

C binding, 4-71

description of, 4-71

errors, 4-72

return value, 4-72

syntax, 4-71
Signature attribute, 6-19
Signature object class, 6-19
Signature Value attribute, 6-19
Size Limit attribute, 3-8
Size-Limit-Exceeded, 3-22
S-Selector attribute, 3-23
Status, 2-6
Strong Authentication Package, 2-3

See also xdssap.h
Subject Algorithm attribute, 6-13
Subject attribute, 6-13
Subject Public Key attribute, 6-13
Subordinates attribute, 3-18
System Error object class, 5-10

T

Target Object attribute, 3-10

Telephone-Deliv, 6-7

Teletex-Deliv, 6-7

Teletex Terminal attribute, 6-20

Teletex Terminal Identifier object class,
6-20

Telex-Deliv, 6-7

Telex Number attribute, 6-21

Telex Number object class, 6-20

Time Limit attribute, 3-8

Time-Limit-Exceeded, 3-22

Time Limit Exceeded problem code, 5-9

Index—7

Too Late problem code, 5-3
Too Many Operations problem code, 5-6
Too Many Sessions problem code, 5-7
Trace Object, 4-77

arguments, 4-77

C binding, 4-77

description of, 4-77

errors, 4-77

syntax, 4-77
T-Selector attribute, 3-23

U

Unable To Proceed problem code, 5-9

Unavailable Critical Extension problem code,

5-9
Unavailable Critical Extensions attribute,
3-22
Unavailable problem code, 5-9
Unbind, 2-3, 4-73
arguments, 4-73
C binding, 4-73
description of, 4-73
errors, 4-74
return value, 4-74
syntax, 4-73
Uncorrelated list Information, 3-19

Uncorrelated Search Information attribute,

3-25

Undefined Attribute Type problem code, 5-4

Unexplored attribute, 3-22

Unwilling To Perform problem code, 5-10

Update Error object class, 5-10

V

Validity Not After attribute, 6-13
Validity Not Before attribute, 6-13
Version, 2-3, 4-75

arguments, 4-75

C binding, 4-75

description of, 4-75

errors, 4-76

return value, 4-76

syntax, 4-75

Index—8

Version attribute, 6-13
Videotex-Deliv, 6-7

wW

workspace
extending, 2-3
shutting down, 2-3
Workspace
setting up, 2-3

X

xds.h, 1-1, 1-3
xdsbdcp.h, 1-1
xdsdec.h, 1-1
xdsmdup.h, 1-1
xdssap.h, 1-1
xom.h, 1-1, 1-3
xomi.h, 1-1

