
DECset
Guide to DIGITAL Source Code
Analyzer for OpenVMS Systems
Order Number: AA–PQ9MC–TE

November 1998

This guide describes the DIGITAL Source Code Analyzer (SCA) for
OpenVMS Systems and explains how to get started using its basic features.

Revision Update Information: This is a revised guide.

Operating System and Version: OpenVMS VAX, Version 6.2 or higher
OpenVMS Alpha, Version 6.2 or higher
DECwindows Motif, Version 1.2-3 or
higher

Software Version: DECset for OpenVMS, Version 12.3

DIGITAL Source Code Analyzer for
OpenVMS Systems, Version 4.6

Digital Equipment Corporation
Maynard, Massachusetts

First Printing, July 1992
Revised, May 1995
Revised, November 1998

While DIGITAL or EDS believes the information included in this publication is correct as of the
date of publication, it is subject to change without notice.

Possession, use, or copying of the software described in this documentation is authorized only
pursuant to a valid written license from DIGITAL, an authorized sublicensor, or the identified
licenser.

Digital Equipment Corporation or EDS makes no representations that the interconnection of its
products in the manner described in this document will not infringe existing or future patent
rights, nor do the descriptions contained in this document imply the granting of licenses to
make, use, or sell equipment or software in accordance with the description.

© Electronic Data Systems Limited 1994, 1995, 1998.

© Digital Equipment Corporation 1992, 1995, 1998. All rights reserved.

The following are trademarks of Digital Equipment Corporation: DECdocument, DECset,
DECwindows, DIGITAL, OpenVMS, VAX, VAX DOCUMENT, VMS, and the DIGITAL logo.)

The following are third-party trademarks:

Motif is a registered trademark in the United States and other countries, of the Open Software
Foundation, Inc.

PostScript is a registered trademark of Adobe Systems Incorporated.

All other trademarks and registered trademarks are the property of their respective holders.

This document is available on CDROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . ix

1 Introduction

1.1 SCA Concepts and Features . 1–1
1.1.1 SCA Terminology . 1–3
1.1.2 SCA Language Support . 1–3
1.2 Using SCA . 1–4
1.2.1 Performing Queries with SCA . 1–4
1.2.2 Getting Help . 1–5
1.2.3 Using SCA Windows . 1–6
1.2.4 Using SCA Batch Commands . 1–8

2 Getting Started

2.1 Invoking SCA . 2–1
2.2 Opening the Sample SCA Library . 2–2
2.3 Performing SCA Queries . 2–3
2.3.1 Using SCA Query Windows . 2–3
2.3.2 Browsing for Names . 2–4
2.3.3 Browsing for Classes . 2–6
2.3.3.1 Specifying a Class Browser Query 2–6
2.3.3.2 Viewing Class Browser Query Results 2–8
2.3.4 Cross Referencing Information . 2–10
2.3.4.1 Specifying a Cross-Reference Query 2–10
2.3.4.2 Viewing Cross-Reference Query Results 2–12
2.3.5 Creating Call Graphs . 2–13
2.3.5.1 Specifying a Call Graph Query . 2–14
2.3.5.2 Viewing Call Graph Query Results 2–15
2.3.5.3 Moving to a Routine’s Source . 2–17
2.3.6 Reviewing Data Structures . 2–18
2.3.6.1 Specifying a Data Structure Query 2–18
2.3.6.2 Viewing Data Structure Query Results 2–20

iii

2.3.7 Maintaining Multiple Queries . 2–20
2.4 Exiting from SCA . 2–21

3 Using SCA Libraries

3.1 Setting Up Your SCA Environment . 3–1
3.1.1 Creating Analysis Data Files . 3–2
3.1.2 Steps for Environment Setup . 3–2
3.2 Creating a New SCA Library . 3–4
3.3 Loading an SCA Library . 3–5
3.3.1 Replacing and Adding Analysis Data 3–6
3.3.2 Specifying the Update Library . 3–6
3.3.3 Deleting Analysis Data Files . 3–6
3.4 Opening an Existing SCA Library . 3–8
3.4.1 Replacing the Library List . 3–8
3.4.2 Adding Libraries to the Library List 3–9
3.4.3 Repositioning Libraries in the Current Library List for

DECwindows . 3–11
3.5 Maintaining Your SCA Libraries . 3–13
3.5.1 Reorganizing SCA Libraries . 3–13
3.5.2 Deleting an SCA Library . 3–14
3.5.3 Displaying Library and Module Information 3–14
3.5.3.1 Displaying Library Attributes . 3–15
3.5.3.2 Displaying Modules and Module Attributes 3–15
3.5.3.3 Hiding Library and Module Attributes 3–17
3.5.4 Recovering SCA Libraries . 3–18

4 Performing Queries

4.1 Performing Cross-Reference Queries . 4–1
4.1.1 Cross-Referencing a Symbol by Name 4–2
4.1.2 Cross-Referencing by Symbol Usage 4–5
4.1.3 Limiting Queries to Specific Modules 4–7
4.1.4 Cross-Referencing by Symbol Type . 4–8
4.1.5 Cross-Referencing by Symbol Domain 4–10
4.1.6 Limiting Queries to Specific Files . 4–11
4.1.7 Go-To-Source Feature . 4–12
4.1.8 Navigating to Other Query Windows 4–13
4.2 Performing Call Graph Queries . 4–14
4.2.1 Displaying Calls From a Routine . 4–14
4.2.1.1 Navigating a Large Display . 4–15
4.2.1.2 Going to Source Code . 4–17

iv

4.2.2 Refining Your Query . 4–17
4.2.2.1 Using the Negation Operator . 4–17
4.2.2.2 Eliminating Extraneous Information 4–18
4.2.2.3 Removing Redundancy . 4–18
4.2.2.4 Extending Information About a Routine 4–19
4.2.3 Selecting and Removing Items . 4–20
4.2.3.1 Selecting Nodes . 4–20
4.2.3.2 Removing Nodes . 4–21
4.2.4 Formatting Your Display . 4–21
4.2.4.1 Specifying Vertical Call Graphs . 4–21
4.2.4.2 Redrawing the Graph . 4–22
4.2.4.3 Specifying Lexical, Compact, and Graph Displays 4–22
4.2.5 Displaying Recursive Calls . 4–25
4.2.6 Printing Call Graph Results . 4–27
4.3 Performing Data Structure Queries . 4–28
4.3.1 Using the Data Structure Query Attributes 4–28
4.3.2 Creating Type Trees . 4–28
4.3.2.1 Extending a Type Tree . 4–29
4.3.2.2 Selecting and Removing Nodes from a Type Tree 4–32
4.4 Modifying the Current Query . 4–34
4.4.1 Keeping Items from the Previous Query Result 4–35
4.4.2 Removing Items from the Previous Query Result 4–36
4.4.3 Adding Items to the Previous Query Result 4–37
4.5 Using Multiple Queries . 4–39
4.5.1 Moving to the Next or Previous Query 4–39
4.5.2 Navigating Through the List of Queries 4–40
4.5.2.1 Accessing the Query List . 4–40
4.5.2.2 Selecting from the Query List . 4–41
4.5.3 Saving Queries . 4–41
4.5.4 Deleting Queries . 4–42
4.6 Modifying the Display Options . 4–43

5 Using LSE and SCA to Design Programs

5.1 Introduction . 5–1
5.2 Creating Designs . 5–2
5.2.1 Designing Routine Declarations . 5–4
5.2.2 Refining the Design . 5–6
5.2.3 Designing Data Declarations . 5–7
5.3 Processing Designs . 5–8
5.3.1 Loading Design Information into an SCA Library 5–9
5.4 Analyzing Designs . 5–9
5.5 Expressing Design Information in Comments 5–10

v

5.5.1 Using Tagged Comments . 5–10
5.5.2 Adding New Tags and Keyword Lists 5–12
5.5.3 Associating Tags with Objects . 5–13
5.6 Generating Design Reports . 5–15
5.6.1 Using Design Report Formats . 5–15
5.6.2 Creating Online HELP . 5–17
5.6.3 Creating LSE Package Definitions . 5–18
5.6.4 Creating INTERNALS Reports . 5–18
5.6.5 Creating 2167A Software Design Reports 5–20
5.6.5.1 Describing 2167A Structure in your Code 5–21
5.6.5.2 Retrieving 2167A Structure Information 5–23
5.7 Reverse-Engineering a Design . 5–25
5.7.1 Sample Report . 5–26

matrix_multiply . 5–27

Index

Figures

1–1 SCA Main Window . 1–6
2–1 Name Browser Dialog Box . 2–5
2–2 Cross-Reference Results Window . 2–6
2–3 The Class Browser Query Window . 2–7
2–4 The Class Browser Results Window . 2–8
2–5 Extending to a Class Node . 2–9
2–6 The Cross-Reference Query Window 2–11
2–7 The Cross-Reference Query Result Window 2–12
2–8 Expanding Information . 2–13
2–9 The Call Graph Query Window . 2–14
2–10 The Call Graph Results Window . 2–15
2–11 Extending to a Node . 2–16
2–12 Extending from a Node . 2–17
2–13 The Data Structures Query Window 2–18
2–14 The Data Structures Results Window 2–20
3–1 Setting Up an SCA Environment . 3–3
3–2 The New Library Dialog Box . 3–5
3–3 The Load Dialog Box . 3–7
3–4 The Open Library Dialog Box . 3–11
3–5 Displaying Attributes . 3–17

vi

4–1 Cross-Referencing by Symbol Name . 4–4
4–2 Limiting Queries to Specific Modules 4–7
4–3 Cross-Referencing by Symbol Domain 4–11
4–4 Go-To-Source Feature . 4–13
4–5 Call Graph Results . 4–15
4–6 The Navigation Window . 4–16
4–7 Simplified Call Graph . 4–18
4–8 Extending From a Node . 4–20
4–9 Lexical Tree Display Example . 4–23
4–10 Compact Tree Display Example . 4–24
4–11 Graph Display Example . 4–25
4–12 Recursive Calls . 4–26
4–13 Extract Graph Dialog Box . 4–27
4–14 Initial Type Display . 4–29
4–15 Extended Type Tree . 4–30
4–16 Repositioned Type Tree . 4–32
4–17 Selecting a Node . 4–33
4–18 Final Display . 4–34
4–19 Keeping Items from the Results . 4–35
4–20 Removing Items from the Results . 4–37
4–21 Adding Items to the Results . 4–38
4–22 Query List Dialog Box . 4–41
4–23 Customize Views Dialog Box . 4–44

Tables

1 Conventions Used in this Guide . xi
3–1 How SCA Uses Multiple Libraries . 3–12

vii

Preface

This guide explains how to use the DIGITAL Source Code Analyzer (SCA) in
the OpenVMS environment.

Intended Audience
This guide is intended for experienced programmers and technical managers.

Document Structure
This guide contains the following chapters:

• Chapter 1 provides an overview of SCA. It describes SCA components and
features, how to get help, and how to use SCA interactively and with the
SCA batch commands.

• Chapter 2 provides information on invoking SCA, opening the sample
library, and performing SCA queries.

• Chapter 3 provides information on creating analysis data files, creating
an SCA library, loading files to an SCA library, and performing library
maintenance.

• Chapter 4 provides more information on specifying cross-reference, call
graph, and data structure queries. It also describes how to use multiple
queries and customize graphical results.

• Chapter 5 provides a scenario of how to create and process a detailed
program design. It also shows how to evolve an implementation from
this design, and how to reverse-engineer the implementation to retrieve a
design corresponding to the original.

ix

Associated Documents
The following documents may also be helpful when using SCA:

• See the DECset Installation Guide for OpenVMS Systems for installation
instructions for SCA.

• DIGITAL Source Code Analyzer Command-Line Interface and Callable
Routines Reference Manual contains callable interface information,
OpenVMS-specific information, and SCA query language information.

• The DIGITAL Language-Sensitive Editor/Source Code Analyzer for
OpenVMS Reference Manual provides a description of the SCA commands.

References to Other Products
Some older products that DECset components previously worked with might
no longer be available or supported by DIGITAL. Any reference in this manual
to such products does not imply actual support, or that recent interoperability
testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue
to use these products with DECset.

Refer to the Software Product Description for a current list of the products that
the DECset components are warranted to interact with and support.

x

Conventions
Table 1 lists the conventions used in this guide.

Table 1 Conventions Used in this Guide

Convention Description

$ A dollar sign ($) represents the OpenVMS DCL system
prompt.

Return In interactive examples, a label enclosed in a box
indicates that you press a key on the terminal, for
example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP3 or KP-.

boldface text Boldface text represents the introduction of a new
term.

monospace boldface text Boldface, monospace text represents user input in
interactive examples.

italic text Italic text represents book titles, parameters,
arguments, and information that can vary in system
messages (for example, Internal error number).

UPPERCASE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

lowercase Lowercase in examples indicates that you are to
substitute a word or value of your choice.

mouse The term mouse refers to any pointing device, such as
a mouse, puck, or stylus.

MB1,MB2,MB3 MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button.

xi

1
Introduction

The DIGITAL Source Code Analyzer (SCA) is an interactive cross-reference
and static analysis tool that works with many languages. It can help you
understand the complexities of a large software project. Because it allows you
to analyze and understand an entire system, SCA is extremely useful during
the implementation and maintenance phases of a project.

SCA is especially useful with the DIGITAL Language-Sensitive Editor (LSE).
When SCA is used with LSE, you can interactively edit, compile, debug,
navigate, and analyze source code during a single editing session.

1.1 SCA Concepts and Features
In a large, multi-module system, you might not be familiar with all of the
source code. It might have been written by different developers in a number
of different programming languages. SCA can help you browse through the
source code and learn about the program structure. If you are already familiar
with the source code, SCA lets you navigate directly to the source code you
want and gives you valuable cross-reference information.

SCA provides the following capabilities:

• Navigation

SCA provides navigation capabilities that let you locate and view the
components of your source code. SCA accomplishes this by storing
compiler-generated information about a set of source files in an SCA
library. SCA then allows you to perform queries about your source code in
several ways:

By using a name browser to quickly locate all items that match a
search string

By using a class browser to quickly locate all program symbols that
match a search string

By specifying a cross-reference query to find how and where program
symbols are used

Introduction 1–1

Introduction
1.1 SCA Concepts and Features

By specifying a call graph query to graphically display call relationships
between routines

By specifying a data structure query to graphically display the
structure of data types in your code or find symbols of a given type

After you have a query result, you can use the go-to-source feature to
navigate to locations of interest in your source code.

• Graphical user interface

SCA capabilities are accessible through a DECwindows graphical user
interface. This user interface makes it easy to specify complex queries
without learning a specialized query language. It is easy to navigate
between call graph queries, data structure queries, and cross-reference
queries. The context-sensitive help facility allows you to display help
information on all parts of the user interface.

• Library creation and maintenance

SCA merges analysis data (.ANA) files generated by supporting compilers
into SCA libraries to create a picture of your entire source code. These
files contain a collection of information relating to all of the program
symbols, modules, and files contained in your source files. Once you open
an SCA library for a particular software project, you can use the SCA
navigational and static analysis features. You can also open a personal
library, containing information on only those modules you are working on,
and use this library with the main library that describes the rest of the
system.

• Sample SCA library

To get you started, SCA provides a sample library that you can open from
the SCA Main window. The library is in SCA$ROOT:[EXAMPLE] on OpenVMS
systems. All tutorials presented in this guide are based on this library. For
information on opening this library, see Section 2.2.

• Static analysis

SCA provides static analysis capabilities that let you check for consistent
use of program symbols. This capability is provided by the INSPECT
command. See the DIGITAL Source Code Analyzer Command-Line
Interface and Callable Routines Reference Manual for information on using
this command to perform static analysis.

1–2 Introduction

Introduction
1.1 SCA Concepts and Features

1.1.1 SCA Terminology
To help you understand the language of SCA, the following list defines some
key terms. For a complete list of SCA terms, access the online glossary of
terms from the SCA Main window’s Help menu.

• Symbol—A single object in a program, such as a procedure, variable, file,
or module.

• Symbol name—The exact name of the symbol as it is used in the source
code.

• Occurrence—A single declaration of a symbol or reference to a symbol.

• Analysis data—Information generated by supporting compilers about all
symbols contained in the source files.

• .ANA files—A file of analysis data generated by the compiler. These files
are loaded into an SCA library, which is the database for SCA navigation
and static analysis features. Some compilers generate .XREF files that can
be converted to .ANA files by means of the SCA IMPORT command.

• SCA library—A collection of source information generated by supporting
compilers in the form of .ANA files.

• Cross-reference query—A request that SCA find occurrences of symbols
and indicate their locations in the source code.

• Call graph query—A request that SCA show the structure of subroutine
call relationships in the source.

• Data structure query—A request that SCA show the structure of data
types in the source.

• Relationship—The relationship between one occurrence of a symbol to
another.

1.1.2 SCA Language Support
Sca provides support for the following languages:

DEC Ada
DEC BASIC
VAX BLISS-32
DIGITAL C
DIGITAL C++
DIGITAL COBOL
DIGITAL VAX COBOL
DIGITAL Fortran
VAX MACRO

Introduction 1–3

Introduction
1.1 SCA Concepts and Features

DEC Pascal
VAXELN Pascal
VAX PL/I

1.2 Using SCA
This section presents the following basic information for using SCA:

• Performing queries

• Getting help

• Using SCA windows

• Using SCA batch commands

See Chapter 2 and Chapter 4 for complete, task-oriented information on using
SCA.

1.2.1 Performing Queries with SCA
The SCA query facilities let you obtain information about symbols in your
source code. You can specify a cross-reference query to display specific symbol,
file, or module information. You can determine declarations of program
symbols, references to the symbols, and references to source files. You can
also determine the call relationships between routines by displaying call tree
information. Within the editing environment, you can navigate through the
complexities of an entire system and, as necessary, inspect and edit related
source files.

SCA provides the following capabilities:

• Interactive query of symbol, module, and file information

• Display of routine call relationships and type trees

• Inspection of routines, variables, and other symbols

• Maintenance of source code information libraries

LSE provides the following additional capabilities:

• Navigation through one or more SCA queries

• Access and display of source code during an interactive query

With LSE editing features, you can move through an unfamiliar system
without regard for module or file boundaries. For example, given the task of
modifying the characteristics of a variable, you can locate all of the uses of the
variable across the system and make your changes without leaving LSE.

1–4 Introduction

Introduction
1.2 Using SCA

1.2.2 Getting Help
Help is available for SCA within LSE, as well as for SCA at the DCL or
subsystem level.

To display help information about SCA$EXAMPLE, enter the following
command:

LSE> HELP SCA_TOPICS SCA_EXAMPLE

The DECwindows SCA user interface provides context-sensitive online help for
all window items, menu items, commands, and graph displays.

To get online help on any menu or submenu item, do the following:

1. Set the location cursor by selecting the menu or submenu item. For
example, press and hold MB1 and choose a pull-down menu item.

2. Press the Help key.

SCA displays context-sensitive help on that item. However, if the input focus
is in a dialog box and you press the Help key, you receive an overview of the
entire dialog box and not just the selected item.

You can also get context-sensitive help from the on Context pull-down menu
item, as follows:

1. Pull down the Help menu.

2. Choose the on Context menu item.
The pointer changes to a question mark.

3. Position the question mark on a window object and press MB1.

You can get additional online help from the Help pull-down menu. These items
include:

• on Version—Shows copyright and version information

• on Terms—Provides a glossary of SCA terms

• on Help—Provides general information about context-sensitive and task-
oriented help

• on Window—Provides help information specific to the current window

Introduction 1–5

Introduction
1.2 Using SCA

1.2.3 Using SCA Windows
The SCA Main window is the starting point for using all the SCA interactive
features. It lets you perform library management functions and provides access
to the name browser and query windows, from which you interactively analyze
your source code.

The SCA Main window, shown in Figure 1–1, is composed of screen objects
used in all the SCA graphical windows. These objects include the menu bar,
options region, display region, and selection buttons.

Figure 1–1 SCA Main Window

Menu bar

Display
region

Options
region

Selection
buttons

1–6 Introduction

Introduction
1.2 Using SCA

The menu bar, located across the top of the window, contains pull-down
menus. In the SCA Main window, these allow you to perform the following
tasks:

• Create and manage SCA libraries.

• View library and module information.

• Access a query window.

• Load and recover SCA libraries.

• Enter SCA commands.

• Access topical help information.

The options region allows you to enter information and select one or several
options. In the SCA Main window, for example, you can enter the name of an
SCA library in the box labeled ‘‘Enter library directory specification to replace
current library list:’’. Other windows, like the query windows, allow you to
click on any of several options from a list.

The display region complements the options region. In the SCA Main
window, a list of active SCA libraries appears in the Current Library List: box.

Selection buttons appear on the bottom of all windows and dialog boxes
(smaller windows that appear as a result of making a selection from a pull-
down menu). In the SCA Main window, these buttons allow you to select a type
of query or browse symbol names in your source code. Many windows contain
standard buttons that control the settings for windows and dialog boxes. These
standard buttons are as follows:

• The Apply button accepts the current settings and performs the operation.
This action does not close the window or dialog box.

• The Close button closes the window.

• The Cancel button closes the dialog box.

• The OK button accepts the current settings and performs the operation.
This action closes the window or dialog box.

• The Reset button clears the current settings from the window or dialog box,
allowing you to start over.

Introduction 1–7

Introduction
1.2 Using SCA

1.2.4 Using SCA Batch Commands
Most often, you will work interactively in SCA using the graphical user
interface. You can also enter batch commands for background processing. You
can specify these commands in the following ways:

• From the DCL command line

• From the SCA Show Command dialog box, accessed from the SCA Main
window by choosing Enter Command... from the Commands menu

The following list specifies the batch commands and gives a brief description of
each one:

• ANALYZE—Creates analysis data (.ANA) files that describe the indicated
source files.

• INSPECT—Checks the consistency between declarations or references for
the same symbol.

• LOAD—Loads analysis data into an SCA library. Note that you would
normally load files from within SCA (using the Load dialog box). However,
if you are loading a large number of files, you might want to load them
outside SCA using this command.

• REORGANIZE—Organizes the specified SCA libraries for optimal query
and update performance.

• REPORT—Produces a user-written report or one of the following standard
reports: HELP, PACKAGE, INTERNALS, and 2167A_DESIGN. (See
the Guide to Detailed Program Design for OpenVMS Systems for more
information.)

For more information on these commands, as well as other SCA commands, see
the DIGITAL Language-Sensitive Editor/Source Code Analyzer for OpenVMS
Reference Manual.

1–8 Introduction

2
Getting Started

This chapter provides a tutorial to get you started with SCA by using
information from the sample SCA library.

This chapter describes the following topics:

• Invoking SCA

• Opening the sample SCA library

• Performing SCA queries (see Chapter 4 for detailed information about
performing SCA queries)

2.1 Invoking SCA
You can invoke SCA in three ways:

• With DIGITAL Language-Sensitive Editor (LSE)—As an integrated tool.

• At the DCL level—As a standalone tool in either character-cell or
DECwindows mode.

• With the SCA callable interface—See the DIGITAL Source Code Analyzer
Command-Line Interface and Callable Routines Reference Manual for
details and examples.

As an integrated tool, LSE supports an expanded command language, which
includes all SCA standalone commands and related navigational commands.
SCA-related commands are defined in the Command Dictionary section of
the DIGITAL Language-Sensitive Editor/Source Code Analyzer for OpenVMS
Reference Manual. SCA commands are issued in the same manner as LSE
commands. For information on the VMS and Portable command languages,
see the section on using command languages in the DIGITAL Source Code
Analyzer Command-Line Interface and Callable Routines Reference Manual.

You issue SCA commands within LSE as follows:

LSE> command [parameter] [/qualifier...]

Getting Started 2–1

Getting Started
2.1 Invoking SCA

To invoke standalone SCA and issue a command at the DCL level, enter the
following:

$ SCA command [parameter] [/qualifier...]

You can also invoke standalone SCA at the DCL level by entering the following:

$ SCA

The SCA> prompt appears on your screen as follows:

SCA>

You can enter SCA commands at this prompt in the same way you do at the
LSE prompt within LSE: type each command and execute it by pressing the
Return or Enter key. An EXIT command ends an SCA session and returns you
to the DCL level. You can also press Ctrl/Z to end an SCA session.

To invoke SCA from the DCL command line on OpenVMS systems for
DECwindows, enter the following command:

$ SCA/INTERFACE=DECWINDOWS

2.2 Opening the Sample SCA Library
To get started with SCA, you need to open an SCA library. The tutorials
presented in this guide use the sample SCA library.

To begin, invoke the DIGITAL Language-Sensitive Editor (LSE), as described
in Section 2.1.

Once in LSE, use the SET LIBRARY command to access the example library.
Type the following:

LSE> SET LIBRARY SCA$EXAMPLE

A message appears in the message buffer at the bottom of your screen
to indicate that you have successfully selected an SCA library. For the
SCA$EXAMPLE library, the message reads as follows:

Your SCA Library is SCA$ROOT:[EXAMPLE]

To open this library for DECwindows, do the following:

1. From the SCA Main window, position the pointer on the Enter library
directory specification to replace current library list box and click on MB1
to activate it.

2. Enter the OpenVMS library specification, SCA$ROOT:[EXAMPLE].

3. Press Return or click on Apply.

2–2 Getting Started

Getting Started
2.2 Opening the Sample SCA Library

The Current Library List: box now shows this library. See Chapter 3 for
information on creating your own SCA libraries.

2.3 Performing SCA Queries
SCA query capabilities let you systematically browse your software system for
important information. When you perform a query, you ask SCA to retrieve
any information that meets the query criteria.

SCA lets you perform the following types of queries:

• The name browser lets you browse for program symbols by wildcard
string. It functions as a convenient memory jogger to help locate the names
of items with which you are somewhat familiar.

• The class browser lets you browse for program symbols by displaying the
inheritance hierarchy of C++ classes.

• Cross-reference queries let you find occurrences of symbols and see
where they are located in the source code.

• Call graph queries let you construct a picture of calls to or within
routines in your source code.

• Data structure queries let you see the structure and the use of data
types in your code.

You might first want to see which modules comprise the system loaded into
the SCA library. To do this, view the modules of analysis data contained in
the sample SCA library by following the steps in Section 3.5.3.2. After you are
familiar with the modules of this library, proceed with the following tutorial.

2.3.1 Using SCA Query Windows
SCA query windows let you specify query attributes and view query results.
When you use SCA to browse names in your source code (see Section 2.3.2),
you specify your query and view the result in the same Name Browser window.
When you use SCA to get cross-reference information, or to create call graphs
or type trees, you specify your query in one window (the query window) and
view the results in another window (the result window).

For example, if you want to see all calls to the routine build_table, specify the
query in the Call Graph Query window. SCA then displays the call graph in
the Call Graph Query Result window.

When you specify subsequent queries, SCA reuses the same two windows. SCA
keeps a list of previous query specifications and results that you can use (see
Section 4.5).

Getting Started 2–3

Getting Started
2.3 Performing SCA Queries

It is easy to navigate from one query to another. From any query window or
query result window, you use the Query pull-down menu and choose the type
of query you want to perform next.

The following sections get you started using the SCA query windows.

2.3.2 Browsing for Names
The SCA name browser lets you specify wildcard expressions from which SCA
displays a list of symbols matching that string. The name browser helps you
find symbols when you are not quite sure of their names.

Suppose that you know of a procedure in the system that might be useful in
new code that you are writing, but you cannot remember its name. You only
remember that it begins with build.

To browse your code for this procedure, do the following:

1. From the SCA Main window, position the pointer on the Name Browser ...
button and press MB1, or pull down the Query menu and choose the Name
Browser... menu item. The Name Browser dialog box is displayed.

2. Point and click on the Filter box to activate it, then type build*.

3. Click on Filter.

SCA displays all the symbol names that match the wildcard expression.

As you can see in Figure 2–1, SCA found four names that match the wildcard
string. (Note that the first item in the list is selected.)

2–4 Getting Started

Getting Started
2.3 Performing SCA Queries

Figure 2–1 Name Browser Dialog Box

From the Name Browser dialog box, you can perform queries on a selected
item, as follows:

1. Click on MB3. SCA displays a pop-up menu, as shown in Figure 2–1.

2. Position the pointer on the Cross Reference menu item and click on MB3.

SCA displays the Cross-Reference Results window, as shown in Figure 2–2.
As you can see, buildtable is a module. Section 2.3.4 describes how to
perform a cross-reference query on the last item from the name browser list,
build_table.

Getting Started 2–5

Getting Started
2.3 Performing SCA Queries

Figure 2–2 Cross-Reference Results Window

2.3.3 Browsing for Classes
Browsing for classes allows you to graphically display the structure, or
inheritance hierarchy, of C++ classes in your source code. SCA builds a tree
that visually shows these relationships. SCA provides you with several options
for formatting the class browser display. When you specify a class structure
query, SCA graphically displays the structure of class types in your code. Class
structure queries let you:

• Display a type tree, which gives structured information about a specified
type.

• Display a list of symbols that are of the specified type.

The following sections describe how to perform a class structure query and
manipulate the results.

2.3.3.1 Specifying a Class Browser Query
To specify a class browser query, do the following:

1. From any SCA query window (for example, the Call Graph Query window),
pull down the Query menu. (You can also click the Class Browser...
selection button from the SCA main window.)

2. Choose the Class Browser... menu item. SCA displays the Class Browser
Query window, shown in Figure 2–3.

2–6 Getting Started

Getting Started
2.3 Performing SCA Queries

Figure 2–3 The Class Browser Query Window

eagle

To ask SCA, ‘‘What is the class structure for all relationships used by "eagle"?’’,
do the following:

1. Position the pointer in the specification box (upper right) for the Used by
query attribute and press MB1 to activate it.

2. Enter eagle in the specification box. By leaving the To and Depth query
attributes blank, SCA interprets this query as, ‘‘Find the first level of all
classes used by "eagle"’’. The Depth query attribute specifies how many
levels SCA should display.

3. Click on OK. SCA graphically displays the class structure.

Getting Started 2–7

Getting Started
2.3 Performing SCA Queries

2.3.3.2 Viewing Class Browser Query Results
Figure 2–4 shows the query result from Section 2.3.3.1.

Figure 2–4 The Class Browser Results Window

The class structure shows that eagle is used by several classes. Each class,
depicted within a box, is called a node. The arrows showing the class
relationships are called arcs.

By default, SCA displays the type tree as a lexical tree. A lexical tree shows
all calls for the indicated depth, in the order in which they appear in the source
code.

SCA also displays more detail about each node in the type tree. As shown in
Figure 2–4, the lower pane of the Class Browser Results window shows an
alphabetic list of the usage. Use the horizontal scroll bar to view all the details
about this usage. You can select a class from either the display graph or the
list in the lower pane.

2–8 Getting Started

Getting Started
2.3 Performing SCA Queries

As shown in Figure 2–4, SCA displayed one level of detail from eagle. You
could have specified Depth = All to show all levels of detail from eagle. A
more efficient way is to use the Extend options. Using these options, you can
incrementally expand your class display to show additional levels of detail. For
example, to see what calls pet, do the following:

1. Position the pointer on the class pet and click on MB1 to select it.

2. Click on MB3. A pop-up menu is displayed, as shown in Figure 2–4.

3. Position the pointer on the Extend To menu item and click on MB3.
SCA extends the class browse display to pet by one level, as shown in
Figure 2–5. (Note that you can choose the Extend To menu item from the
Modify menu to get the same result.)

Figure 2–5 Extending to a Class Node

The class browser display now shows all classes that extend to the class pet,
including the original class browser result, eagle.

Getting Started 2–9

Getting Started
2.3 Performing SCA Queries

2.3.4 Cross Referencing Information
A cross-reference query enables you to find specific occurrences of a symbol and
their locations in the source code.

2.3.4.1 Specifying a Cross-Reference Query
To find all occurrences of the symbol build_table, continue these steps from
the tutorial in Section 2.3.2:

1. From the Cross-Reference Results window, pull down the Query menu.

2. Choose the Show Query Window menu item.

SCA displays the Cross-Reference Query window, as shown in Figure 2–6.

3. Click MB1 on the Reset button to clear the window. Click on the
specification box for the Name query attribute.

4. Type build_table in the specification box.

5. Click on OK. (You can also click on Apply or press Return for the same
action. Clicking on Apply retains the query window.)

2–10 Getting Started

Getting Started
2.3 Performing SCA Queries

Figure 2–6 The Cross-Reference Query Window

Getting Started 2–11

Getting Started
2.3 Performing SCA Queries

2.3.4.2 Viewing Cross-Reference Query Results
Figure 2–7 shows the cross-reference query result. This information includes
the symbol name, type, and domain. (Use the scroll bar or move the sash to the
right to view this information.) In this example, build_table is a procedure.

Figure 2–7 The Cross-Reference Query Result Window

You can expand the result to display information about occurrences of a symbol.
This information includes the usage, module or routine that contains the
occurrence, and file where the occurrence resides.

To expand the information, do the following:

1. Position the pointer on the icon next to the symbol name.

2. Double click on MB1. (Alternatively, you can click MB1 anywhere on the
line to select the symbol, then choose the Expand menu item from the View
menu.) SCA provides information about the occurrences of the selected
symbol, as shown in Figure 2–8.

2–12 Getting Started

Getting Started
2.3 Performing SCA Queries

Figure 2–8 Expanding Information

The right-hand pane of the result window now shows the occurrences of
build_table. For example, the first occurrence is in the module buildtable in
the file buildtable.c on line 117. You can collapse this information by double
clicking again on the symbol icon.

SCA also enables you to display full information for a selected symbol or
occurrence. See Section 4.1 for more information on cross-reference queries.

With LSE running, you can double click MB1 on a symbol name in the left-
hand pane, or an occurrence in the right-hand pane of a query result, and go
directly to its location in the source code.

2.3.5 Creating Call Graphs
A call graph query enables you to graphically display call relationships
between routines in your source code. SCA builds a call graph that
hierarchically shows these relationships. SCA provides you with several
options for formatting the call graph display.

Getting Started 2–13

Getting Started
2.3 Performing SCA Queries

2.3.5.1 Specifying a Call Graph Query
In the following example, you specify a call graph query to ask SCA, ‘‘What
routines does the function copy_file call?’’ Perform the following steps:

1. From any SCA query window (for example, the Cross-Reference Results
window from the last example), pull down the Query menu.

2. Choose the Call Graphs... menu item. The Call Graph Query window is
displayed, as shown in Figure 2–9.

3. Position the pointer in the specification box for the From query attribute
and press MB1 to activate it.

4. Enter copy_file in the specification box. By leaving the To and Depth
query attributes blank, SCA interprets this query as, ‘‘Find the first level
of all calls from copy_file’’. The Depth query attribute specifies how many
levels of calls SCA should display.

5. Click on Apply. SCA displays a Cancel Operation box in case you change
your mind. SCA creates a new call graph with a depth of 1.

Figure 2–9 The Call Graph Query Window

2–14 Getting Started

Getting Started
2.3 Performing SCA Queries

2.3.5.2 Viewing Call Graph Query Results
Figure 2–10 shows the query result from Section 2.3.5.1.

Figure 2–10 The Call Graph Results Window

The call graph shows that the routine copy_file calls several routines. Each
routine, depicted in the call graph by a circle, is called a node. The arrows
showing the call relationships are called arcs.

By default, SCA displays a call graph as a lexical tree. A lexical tree shows
all calls for the indicated depth, in the order in which they appear in the source
code. See Section 4.4 for information about other call graph display formats.

SCA also displays more detail about each node in the call graph. As shown
in Figure 2–10, the lower pane of the Call Graph Results window shows an
alphabetic list of the routines. For each routine it shows its type, the domain it
is part of, its usage, what module or routine it is contained by, the file it resides
in, and the line number in that file. You can select a node in the call graph by
pointing to a node in the graph, or by pointing to a node name in the list and
pressing MB1.

Getting Started 2–15

Getting Started
2.3 Performing SCA Queries

As you can see in Figure 2–10, SCA displayed one level of detail from
copy_file. You could have specified Depth = All to show all levels of detail
from copy_file. A more efficient way is to use the Extend options. Using
these options, you can incrementally expand your call graph to show additional
levels of detail. For example, to see what calls copy_file, do the following:

1. Position the pointer on the node copy_file and click on MB1 to select it.

2. Click on MB3. A pop-up menu is displayed, as shown in Figure 2–11.

3. Position the pointer on the Extend To menu item and click on MB3. SCA
extends the call graph to copy_file by one level. (Note that you can choose
the Extend To menu item from the Modify menu to get the same result.)

Figure 2–11 Extending to a Node

2–16 Getting Started

Getting Started
2.3 Performing SCA Queries

To extend from a node, do the following:

1. Position the pointer on the node main and click on MB1 to select it.

2. Click on MB3. A pop-up menu is displayed.

3. Choose the Extend From menu item. SCA extends the call graph from main
by one level. Figure 2–12 shows the result.

Figure 2–12 Extending from a Node

2.3.5.3 Moving to a Routine’s Source
When you use SCA with LSE, you can read and modify associated source code.
To go to the source of a particular routine, point to a node in the call graph, or
to its name in the lower pane, and double click on MB1. For example, when
you double click on copy_file, LSE displays the declaration of copy_file in
the source code.

Getting Started 2–17

Getting Started
2.3 Performing SCA Queries

2.3.6 Reviewing Data Structures
When you specify a data structure query, SCA graphically displays the
structure of data types in your code. Data structure queries let you:

• Display a type tree, which gives structured information about a specified
type.

• Display a list of symbols that are of the specified type.

The following sections describe how to perform a data structure query and
manipulate the results. For more information on specifying data structure
queries, see Section 4.3.

2.3.6.1 Specifying a Data Structure Query
To specify a data structure query, do the following:

1. From any SCA query window (for example, the Call Graph Query window),
pull down the Query menu.

2. Choose the Data Structures... menu item. SCA displays the Data
Structures Query window, shown in Figure 2–13.

Figure 2–13 The Data Structures Query Window

2–18 Getting Started

Getting Started
2.3 Performing SCA Queries

To ask SCA, ‘‘What is the data structure for the type trans_table?’’, do the
following:

1. Position the pointer in the specification box (upper right) for the Type of
query attribute and press MB1 to activate it.

2. Enter trans_table in the specification box.

3. Click on OK. SCA graphically displays the data structure.

Getting Started 2–19

Getting Started
2.3 Performing SCA Queries

2.3.6.2 Viewing Data Structure Query Results
Figure 2–14 shows the query result from Section 2.3.6.1.

Figure 2–14 The Data Structures Results Window

The data structure result shows that trans_table is an array of records
with the components trans_value and compress. trans_value is of type
code_value, and compress is of type boolean.

When you position the pointer on a node and press MB1, SCA highlights the
corresponding information in the lower pane of the window. For example,
when you click on trans_value, SCA highlights the line ‘‘trans_value [is of
type] code_value.’’

As with a call graph, SCA displays a type tree in lexical format by default
and lets you manipulate the display of information in several ways from the
View menu. SCA allows you to customize the result window so your default
display is, for example, a graph instead of a lexical tree. See Section 4.6 for
information on modifying the display data structure queries, see Section 4.3.

2.3.7 Maintaining Multiple Queries
SCA lets you maintain more than one query at a time. This feature maximizes
the use of SCA by allowing you to perform simultaneous source investigations.

For example, when you specify a cross-reference query, SCA creates a new
query by default. If, during the session, you go to the source of a symbol
occurrence and find another symbol you want to investigate before returning to

2–20 Getting Started

Getting Started
2.3 Performing SCA Queries

your last query, you can specify a new query about the symbol. After inquiries
in your new session are completed, you can go back to your previous session.

SCA lets you use multiple queries in the following manner:

• You can navigate between individual queries using convenient pull-down
menu items.

• When you specify a query, you can update existing queries in the following
ways:

Keep the items from the previous query result that match the new
selection attributes.

Remove the items from the previous query result that match the new
selection attributes.

Add the new items matching the current selection attributes to the
previous query result.

2.4 Exiting from SCA
To end your SCA session and return to the DCL level, enter the EXIT command
or press Ctrl/Z.

To exit from any SCA window, choose Exit from the File menu. When you exit
from the SCA Main window, you terminate the SCA session.

When you reinvoke SCA, the SCA libraries that you created and opened will be
active in the library list.

Getting Started 2–21

3
Using SCA Libraries

An SCA library is a collection of information about your source code. The
information in an SCA library includes the names and locations of variables
in your code, information about where routines are called and what their
arguments are, and other useful information about your source code.

This chapter describes the following topics:

• Setting up your SCA environment in preparation for creating and loading
SCA libraries

• Creating new SCA libraries

• Loading SCA libraries

• Opening existing SCA libraries

• Maintaining your SCA libraries

3.1 Setting Up Your SCA Environment
The information in your SCA libraries is generated by supporting compilers
in the form of analysis data (.ANA) files. You might have to convert some
compilers’ files, as described in Section 3.1.1. This section describes how to set
up your environment in preparation for creating SCA libraries and loading the
analysis data files.

Using SCA Libraries 3–1

Using SCA Libraries
3.1 Setting Up Your SCA Environment

3.1.1 Creating Analysis Data Files
SCA depends on supporting compilers for the generation of files containing
detailed analysis data. These analysis data files contain information about all
of the symbols, files, and modules in the source code. You load this information
into an SCA library (see Section 3.3). It is then used as a database for the SCA
query and analysis features.

Some compilers generate .XREF files that can be converted to .ANA files by
means of the SCA IMPORT command. For more information on the IMPORT
command, see the DIGITAL Language-Sensitive Editor/Source Code Analyzer
for OpenVMS Reference Manual.

For OpenVMS systems, you produce an analysis data file by specifying the
/ANALYSIS_DATA qualifier during compilation. This qualifier requests that
the compiler generate a file of analysis data information with a default file type
of .ANA.

For example, the following DIGITAL C command line compiles the specified
input files and creates the requested analysis data files:

$ CC/ANALYSIS_DATA PG1,PG2,PG3

3.1.2 Steps for Environment Setup
To set up an SCA environment, do the following:

1. Create the analysis data files (for example, PG1.ANA, PG2.ANA, PG3.ANA
with the DIGITAL C compiler).

2. Create a directory to contain the SCA library (for example,
PROJ:[MYLIB.SCA]).

3. Use SCA to create a new SCA library; use the directory created in Step 2
as the library specification (see Section 3.2).

4. Load the analysis data files into the new SCA library (see Section 3.3).

5. Use SCA to perform queries about the information stored in the library.

Figure 3–1 shows these steps.

3–2 Using SCA Libraries

Using SCA Libraries
3.1 Setting Up Your SCA Environment

Figure 3–1 Setting Up an SCA Environment

New Library Dialog Box

SCA
LIBRARY

Load Dialog Box

Create directory2

Invoke SCA and
create SCA library

3

Load analysis data4

Use SCA to
perform queries

5

Compile source and
create analysis data

1
$ CC/ANALYSIS_DATA PG1, PG2, PG3

PROJ: [PROJ.SRC] PROJ: [PROJ.SRC] PROJ: [PROJ.SRC]

PG1.C PG2.C PG3.C

PG1.ANA PG2.ANA PG3.ANA

$CREATE/DIR PROJ:[MYLIB.SCA]

PROJ:[MYLIB.SCA]

PROJ:[MYLIB.SCA]

PG1.ANA
PG2.ANA
PG3.ANA

ZK−4991A−GE

Using SCA Libraries 3–3

Using SCA Libraries
3.2 Creating a New SCA Library

3.2 Creating a New SCA Library
This section describes how to create an SCA library. For information on
opening existing SCA libraries, see Section 3.4.

Before creating a new SCA library, you need to complete the following steps:

• Compile your source code and specify that the compiler generate analysis
data files (for information on creating these files, see Section 3.1).

• Create a directory to contain the new SCA library.

The first step in creating an SCA library is to create a directory for it. The
following command at the DCL level creates a subdirectory for a local SCA
library:

$ CREATE/DIRECTORY PROJ:[USER.LIB1]

With the CREATE LIBRARY command, you can initialize a new SCA library
by specifying its directory. The command has the following form:

CREATE LIBRARY [/qualifier...] directory-spec[,...]

In the following example, the CREATE LIBRARY command initializes and
activates two libraries (LIB1 and LIB3) in the local subdirectories specified.

$ SCA CREATE LIBRARY [.LIB1],[.LIB3]
%SCA-S-NEWLIB, SCA Library created in PROJ:[USER.LIB1]
%SCA-S-LIB, your SCA Library is PROJ:[USER.LIB1]
%SCA-S-NEWLIB, SCA Library created in PROJ:[USER.LIB3]
%SCA-S-LIB, your SCA Libraries are
-SCA-S-LIB, PROJ:[USER.LIB1]
-SCA-S-LIB, PROJ:[USER.LIB3]

To create a new SCA library for DECwindows, do the following:

1. From the SCA Main window, pull down the File menu.

2. Choose the New Library... menu item. The New Library dialog box is
displayed, into which you enter the specification for the new library.
Figure 3–2 shows the New Library dialog box.

3. Position the pointer in the Library Specification box and click on MB1 to
activate it.

4. Enter the library specification (the directory specification of the directory
you created for the SCA library). This becomes the name of the new SCA
library.

5. Click on OK. (If you are creating more than one library, click on Apply and
enter the next library specification. Click on OK when you are finished.)

3–4 Using SCA Libraries

Using SCA Libraries
3.2 Creating a New SCA Library

SCA creates the library and positions it first in the list of current SCA
libraries in the main window. The first library in the library list is the
primary library, which is used by any operation that acts on a single
library (for example, LOAD, RECOVER, VERIFY). See Section 3.4.3 for
information on how to position SCA libraries in the library list.

Figure 3–2 The New Library Dialog Box

SCA displays a message if the name you specified for the new library already
exists. You can recreate an existing library by choosing the Replace if Exists
option in the New Library dialog box.

3.3 Loading an SCA Library
A newly created SCA library is empty until you load analysis data files.

The LOAD command loads one or more files of compiler-generated source
analysis data (.ANA) into an SCA library. If you want to load more than one
.ANA file, you can use wildcard file specifications to identify the files. The
LOAD command has the following form:

LOAD [/qualifier...] file-spec[,...]

Using SCA Libraries 3–5

Using SCA Libraries
3.3 Loading an SCA Library

When you issue a LOAD command, the first library in the current list is loaded
by default, unless you specify another library. For example, if the first library
in the list is located at [.LIB1], loading occurs as follows:

$ SCA LOAD PG1,PG2,PG3
$ SCA LOAD/LIBRARY=[.LIB2] PG4,PG5
$ SCA LOAD/LIBRARY=[.LIB3] PG6,PG7

By default, the first command loads the first library listed (LIB1) with the
modules contained in the specified data analysis files (PG1 to PG3); the next
commands then load the libraries (LIB2 and LIB3) specified by the /LIBRARY
qualifier. You must use the /LIBRARY qualifier to specify libraries on your
library list.

3.3.1 Replacing and Adding Analysis Data
The /REPLACE qualifier replaces modules in the specified library, if they exist,
and adds any newly specified modules. The /NOREPLACE qualifier adds new
modules to the library. The default is /REPLACE.

In the following example, the /NOREPLACE qualifier adds a new file of source
analysis data to the current primary library (/LIBRARY=primary-library by
default).

$ SCA LOAD/NOREPLACE PG1,PG4
%SCA-W-LOADED, module PG1 has already been loaded
%SCA-S-LOADED, module PG4 loaded
%SCA-S-COUNT, 1 module loaded, (1 new, 0 replaced)

3.3.2 Specifying the Update Library
The /LIBRARY=library-spec qualifier specifies the SCA library to be updated.
The update library must be one of the libraries on the current list. The default
is /LIBRARY=primary-library.

In the following example, the LOAD command replaces (/REPLACE by default)
the specified module (PG1) if it exists in the specified library (LIB2). If the
module does not exist, it is added to the library.

$ SCA LOAD/LIBRARY=LIB2 PG1
%SCA-S-LOADED, module PG1 loaded

3.3.3 Deleting Analysis Data Files
The /DELETE qualifier deletes an .ANA file from its present location when it
is successfully loaded into an SCA library. You can recover deleted .ANA files
from SCA libraries using the EXTRACT MODULE command.

3–6 Using SCA Libraries

Using SCA Libraries
3.3 Loading an SCA Library

For DECwindows, from the SCA Main window, click MB1 on an SCA library to
select it, then perform these steps to load the analysis data files:

1. From the SCA Main window, pull down the Maintenance menu.

2. Choose the Load... menu item. The Load dialog box is displayed.
Figure 3–3 shows the Load dialog box. Note that the Filter box shows
the current directory and *.ANA for the analysis data files. If your analysis
data files are in a different directory, enter that directory name in the
Filter box, or double click on a directory from the Directories box. The
analysis data files are listed in the Files box.

3. Position the pointer on an analysis data file and double click on MB1. SCA
loads the file into the selected SCA library.

Figure 3–3 The Load Dialog Box

Another way to load an analysis data file is to type the file name directly in
the Load into Library: box on the bottom of the dialog box and click on Apply.
Using this method, you can load several files by entering the file names in a
space-separated list, or by specifying a wildcard expression.

Using SCA Libraries 3–7

Using SCA Libraries
3.4 Opening an Existing SCA Library

3.4 Opening an Existing SCA Library
You must specify an SCA library for use during an SCA session. To do this, use
the SET LIBRARY command. If a library list exists, it is replaced by default.
The SET LIBRARY command has the following form:

SET LIBRARY [/qualifier...] directory-spec[,...]

In the following example, the SET LIBRARY command replaces the entries
on the library list with those specified (LIB1 and LIB2) and selects them for
access as a single virtual library:

$ SCA SET LIBRARY [.LIB1],[.LIB2]
%SCA-S-LIB, your SCA libraries are
-SCA-S-LIB, PROJ:[USER.LIB1]
-SCA-S-LIB, PROJ:[USER.LIB2]

SCA provides a way to open libraries that are not in your current library list.
For DECwindows, when you open a library, SCA displays the library name
in the Current Library List box in the SCA Main window. SCA uses all the
libraries in the current library list when you perform a query.

Note

Certain SCA functions use only the selected library (for example, the
LOAD command). The SCA query functions use all libraries in the
current library list.

There are two ways to open an SCA library:

• From the SCA Main window, which replaces libraries in the list

• From the Open Library dialog box, which adds or replaces libraries to the
list

Depending on the method you choose, you either replace the list of current
libraries with the libraries you are opening or add them to the current library
list, as described in the following sections.

3.4.1 Replacing the Library List
The /[NO]REPLACE qualifier replaces an existing library in the specified
directory with a new empty library. The default is /NOREPLACE. In the
following example, the CREATE LIBRARY command reinitializes LIB3:

$ SCA CREATE LIBRARY/REPLACE [.LIB3]
%SCA-S-NEWLIB, SCA Library created in PROJ:[USER.LIB3]
%SCA-W-NEWLIB, your SCA Library is PROJ:[USER.LIB3]

3–8 Using SCA Libraries

Using SCA Libraries
3.4 Opening an Existing SCA Library

For DECwindows, the easiest way to open an SCA library is to enter a library
specification directly from the SCA Main window. SCA replaces all libraries in
the Current Library List: box with the ones you specified. Subsequent SCA
functions now use these libraries.

To open an SCA library from the SCA Main window, do the following:

1. Position the pointer on the ‘‘Enter library directory specification to replace
current library list’’ box and click on MB1 to activate it.

2. Enter the specification for the library. You can indicate multiple libraries
by separating each library name with a comma. The libraries will be
opened in the order in which you typed them.

3. Press Return or click on Apply.

The Current Library List box shows the libraries you opened.

3.4.2 Adding Libraries to the Library List
SCA searches for libraries in the order they are listed on library lists. The
/BEFORE qualifier adds the libraries specified on the command line to the
beginning of the current library list. The /BEFORE=library-spec qualifier
inserts the libraries specified on the command line before the library specified
by the qualifier.

In the following example, the CREATE LIBRARY command creates a library
(LIB2) and inserts its directory specification in the current library list before
the library (LIB3) specified by the /BEFORE qualifier:

$ SCA CREATE LIBRARY/BEFORE=[.LIB3] [.LIB2]
%SCA-S-NEWLIB, SCA Library created in PROJ:[USER.LIB2]
%SCA-S-LIB, your SCA Libraries are
-SCA-S-LIB, PROJ:[USER.LIB1]
-SCA-S-LIB, PROJ:[USER.LIB2]
-SCA-S-LIB, PROJ:[USER.LIB3]

The /AFTER qualifier adds the libraries specified on the command line to
the end of the current library list. The /AFTER=library-spec qualifier inserts
libraries specified on the command line after the library specified by the
qualifier.

Using SCA Libraries 3–9

Using SCA Libraries
3.4 Opening an Existing SCA Library

In the following example, the CREATE LIBRARY command inserts the library
specified on the command line (LIB4) in the list following the library (LIB3)
specified by the /AFTER qualifier:

$ SCA CREATE LIBRARY/AFTER=[.LIB3] [.LIB4]
%SCA-S-NEWLIB, SCA Library created in PROJ:[USER.LIB4]
%SCA-S-LIB, your SCA Libraries are
-SCA-S-LIB, PROJ:[USER.LIB1]
-SCA-S-LIB, PROJ:[USER.LIB2]
-SCA-S-LIB, PROJ:[USER.LIB3]
-SCA-S-LIB, PROJ:[USER.LIB4]

For DECwindows, another way to open an SCA library is from the Open
Library dialog box. Using this method, you can add libraries to the current
library list. This method also allows you to position the libraries among other
libraries in the list (see Section 3.4.3). By default, the new library you add
becomes the selected library.

To add libraries to the library list, do the following:

1. From the SCA Main window, pull down the File menu.

2. Choose the Open Library... menu item. The Open Library dialog box
appears, from which you enter a library specification. Figure 3–4 shows
the Open Library dialog box.

3. Position the pointer in the Library Specification: box and click on MB1 to
activate it.

4. Enter the specification of the library you want to open.

5. Click on OK. (If you are adding more than one library, click on Apply and
enter the next library specification. Click on OK when you are finished.)

3–10 Using SCA Libraries

Using SCA Libraries
3.4 Opening an Existing SCA Library

Figure 3–4 The Open Library Dialog Box

SCA adds each library to the beginning of the library list and selects the
first one added as the current (selected) library. Figure 3–4 shows that
SCA$ROOT:[EXAMPLE] is the current library and the Instead option is the
default. When you add a new library, SCA adds the library to the list instead
of the current library.

Note

If you do not want the libraries you added to replace the current
library, choose the After or First button from the Open Library dialog
box before clicking on OK. SCA places the new libraries after the
current library or first in the library list, depending on which button
you chose.

3.4.3 Repositioning Libraries in the Current Library List for
DECwindows

Where you position a library in the current library list affects how SCA uses
modules of analysis data. Table 3–1 shows this concept.

Using SCA Libraries 3–11

Using SCA Libraries
3.4 Opening an Existing SCA Library

Assume that you open three SCA libraries, LIB1, LIB2, and LIB3, and that
they contain four modules, A, B ,C, and D. As Table 3–1 shows, two modules, A
and D, are present in two libraries. When SCA executes a query (for example,
FIND x), it looks for x in the following places:

LIB1, Module A
LIB2, Module B, D
LIB3, Module C

If two modules in the current library list have the same name, the first module
occludes the later modules. Any SCA operations performed with the current
library list will ignore occluded modules. In the example, Module A is read
from LIB1, which precedes LIB2 in the library list. See Section 3.5.3 for more
information about viewing modules.

Table 3–1 How SCA Uses Multiple Libraries

Libraries Modules

LIB1 A

LIB2 A B D

LIB3 C D

If Module A in LIB1 and Module A in LIB2 were different in content and you
want SCA to use Module A in LIB2, position LIB2 before LIB1 in the library
list when you open it.

Assume that module A in LIB1 and module A in LIB2 differ in content,
although they have the same name. If you want SCA to use module A in LIB2,
you can reposition your SCA libraries so LIB2 precedes LIB1 in the current
library list. To do this, perform the following steps:

1. From the SCA Main window, click on MB1 on LIB1 in the Library List box.

2. Pull down the File menu.

3. Choose the Close Library menu item.

SCA closes, or deactivates, LIB1. LIB1 still exists with all its analysis
data, it is just removed from the library list. If you chose the Delete
Library menu item, the library would no longer exist.

4. Click MB1 on LIB2 in the Library List box.

5. Pull down the File menu.

3–12 Using SCA Libraries

Using SCA Libraries
3.4 Opening an Existing SCA Library

6. Choose the Open Library... menu item.

SCA displays the Open Library dialog box (see Figure 3–4). Because you
selected LIB2 in Step 4, the Instead of button and After button are now
active.

7. Enter LIB1 in the Library Specification box and click on the After button.

8. Click on OK.

SCA updates the current library list. Modules in LIB2 now occlude
modules with the same name in LIB1.

In the previous example, you had to close a library on the current library list
to reposition it. The recommended way to use SCA is to first determine the
order in which you want to position SCA libraries before you open them. As
such, you would have opened LIB2 before LIB1.

3.5 Maintaining Your SCA Libraries
SCA lets you maintain your libraries in the following ways:

• By reorganizing the contents of individual SCA libraries for better
performance

• By deleting unneeded SCA libraries

• By displaying information on library and module attributes

• By recovering damaged libraries

The following sections describe these library maintenance features.

3.5.1 Reorganizing SCA Libraries
When you reorganize SCA libraries, you optimize their size and organization.
As a result, query and update operations are faster.

The REORGANIZE command sorts, compresses, and reorders the data
structures in an SCA library, freeing up memory space and improving library
performance. The result is a smaller, more efficient SCA library.

The REORGANIZE command has the following form:

REORGANIZE [/qualifier...] [library-spec[,...]]

You can use this command after a library has been substantially updated, such
as after creation and loading, or after a series of LOAD or DELETE MODULE
commands. For example, the following sequence is recommended to create
an SCA library. You can change the qualifiers on the CREATE LIBRARY
command to suit your needs.

Using SCA Libraries 3–13

Using SCA Libraries
3.5 Maintaining Your SCA Libraries

$ SCA
SCA> CREATE LIBRARY/SIZE=8000/MOD=200 library-directory
SCA> LOAD data-file-directory:*.ANA
SCA> REORGANIZE

The library-directory parameter specifies the location of the library to be
reorganized. The default is the current library directory.

The REORGANIZE commands creates scratch files in SYS$SCRATCH
approximately equal in size to the files in the library being reorganized.

To reorganize an SCA library for DECwindows, do the following:

1. From the SCA Main window, select a library from the Current Library List
box.

2. Pull down the Maintenance menu.

3. Choose the Reorganize menu item.

3.5.2 Deleting an SCA Library
The DELETE LIBRARY command deletes the library in the local subdirectory
specified. The file containing the library is deleted and the library returns
to its state before a CREATE LIBRARY command was issued. The DELETE
LIBRARY command has the following form:

DELETE LIBRARY [/qualifier...] directory-spec[,...]

To delete an SCA library and its contents for DECwindows, do the following:

1. From the SCA Main window, position the pointer on a library in the
Current Library List: box and press MB1 to select it.

2. Pull down the File menu.

3. Choose the Delete Library menu item.

4. Click on OK when SCA prompts you to confirm the deletion before deleting
the library.

SCA deletes the selected library and removes it from the library list.

3.5.3 Displaying Library and Module Information
The library attributes include the library number, date it was created, date last
accessed and by whom, and number of blocks allocated and used. The module
attributes include the module type (for example, C), module identifier, compiler
name and compile command line used, date compiled, SCA library where the
module resides, and date it was loaded into the library.

3–14 Using SCA Libraries

Using SCA Libraries
3.5 Maintaining Your SCA Libraries

3.5.3.1 Displaying Library Attributes
Use the following command to display the directory specifications for the
current SCA library:

$ SCA SHOW LIBRARY
%SCA-S-LIB, your current SCA library is PROJ:[USER.SCA]
$

To display library attributes for DECwindows, do the following:

1. Position the pointer on a library in the Current Library List: box and press
MB1 to select it.

2. Pull down the View menu.

3. Choose the Show Attributes menu item. SCA displays attribute
information for the selected library.

3.5.3.2 Displaying Modules and Module Attributes
The SHOW MODULE command selectively displays information about modules
in SCA libraries. The SHOW MODULEcommand has the following form:

SHOW MODULE [/qualifier...] [module-name-expr[,...]]

Complete or partial information about all modules, or selected modules, can be
displayed. The terms ‘‘visible’’ and ‘‘hidden’’ refer to the results of the module
selection process that occur when multiple libraries are accessed.

If you use a general module query, abbreviated information is displayed. The
default qualifier is /BRIEF. For example:

$ SCA SHOW MODULE
Module Ident Language Compiled

BUILD_TABLE 1 01 Pascal 24-Oct-1998 15:43
COPY_FILE 1 01 Pascal 24-Oct-1998 15:44
EXPAND_STRING 1 01 Pascal 24-Oct-1998 15:44
OPEN_FILES 1 01 Pascal 24-Oct-1998 15:43
TRANSLIT 1 01 Pascal 24-Oct-1998 15:44
TYPES 1 01 Pascal 24-Oct-1998 15:43
%SCA-S-MODULES, total of 6 modules

If you use a general module query with the /FULL qualifier, details of all the
module information in the library are displayed.

If you type a specific module name, detailed information on the specified
module is displayed.

The /VISIBLE qualifier displays only visible modules. The default is /VISIBLE.

The /ALL qualifier displays all modules (both visible and hidden).

Using SCA Libraries 3–15

Using SCA Libraries
3.5 Maintaining Your SCA Libraries

For DECwindows, to display a list of modules for any SCA library, position the
pointer on a library name in the Current Library List box and double click on
MB1. You can also select an SCA library, then choose the Show Modules menu
item from the View menu.

SCA displays a list of modules for the selected library. Double click again on
the library name to hide the modules, or select a library and choose the Hide
Modules menu item from the View menu.

To display attribute information for any module in the library:

1. Position the pointer on a module name and press MB1 to select it.

2. Pull down the View menu.

3. Choose the Show Attributes menu item. SCA displays the attributes for
the selected module.

Figure 3–5 shows the attributes of the sample SCA library and the attributes
for the build_table module.

3–16 Using SCA Libraries

Using SCA Libraries
3.5 Maintaining Your SCA Libraries

Figure 3–5 Displaying Attributes

17−Apr−1998 10:56

3.5.3.3 Hiding Library and Module Attributes
The /HIDDEN qualifier displays hidden modules.

To hide library or module attributes for DECwindows, do the following:

1. From the SCA Main window Current Library List box, click on a library or
module name.

2. Pull down the View menu.

3. Choose the Hide Attributes menu item. SCA hides the attributes of the
selected library or module.

Using SCA Libraries 3–17

Using SCA Libraries
3.5 Maintaining Your SCA Libraries

3.5.4 Recovering SCA Libraries
SCA provides a way for you to recover an SCA library. For example, a library
may have inconsistencies resulting from the abnormal termination of a LOAD
or DELETE MODULE command.

When you recover a library, SCA deletes from the library any module that
started to load but had not completed loading, or any module that started to be
deleted but had not completed deleting. SCA cannot recover modules waiting
to be processed; you will need to load them again.

To recover an SCA library for DECwindows, do the following:

1. From the SCA Main window, click MB1 on a library in the Current Library
List box.

2. Pull down the Maintenance menu.

3. Choose the Recover menu item. SCA recovers the library.

3–18 Using SCA Libraries

4
Performing Queries

This chapter describes how to use SCA as an interactive tool for analyzing
source code. Chapter 2 introduced the SCA query capabilities. This chapter
builds on that information.

This chapter describes the following topics:

• Using SCA to get cross-reference information about your source code

• Graphically displaying call graph queries

• Graphically displaying data structure queries

• Modifying the current query

• Navigating through the list of queries and using previous queries to build
new ones

• Modifying the graphical display defaults

The tutorials in this chapter use the sample SCA library (see Section 2.2). In
addition, certain examples refer to the editing capabilities of the DIGITAL
Language-Sensitive Editor (LSE) to demonstrate SCA as an integrated tool.

4.1 Performing Cross-Reference Queries
When you perform cross-reference queries, you ask SCA to show how and
where symbols are used in your code. Once you open an SCA library, you can
interactively perform queries directly from your editor.

For example, assume you are editing your code in LSE and want to find
information about the variable code. You want to ask SCA for the following
types of information:

• All places where code is used

• All write-references to code

• How code is used in a specific module

Performing Queries 4–1

Performing Queries
4.1 Performing Cross-Reference Queries

The following sections demonstrate a typical cross-reference query session that
lets you obtain this and other information. Note that the example begins with
a broad query specification that is continually revised to narrow the results
until only the information of interest remains.

4.1.1 Cross-Referencing a Symbol by Name
A name-selection expression selects occurrences that have names that match a
specified name expression.

A name-selection expression has the following form, where name is a formal
parameter name and a name-expression is a string of characters, possibly
including wildcards:

name-selection-exp ::= name-expression |
name=name-expression |
name=(name-expression,...)

An attribute-selection expression with no formal parameter name is a name-
selection expression. A name expression that includes a wildcard character
is equivalent to a union of all the names that match the name-selection
expression. A list of name expressions is equivalent to a union of name-
selection expressions, each having a single name expression. Given these rules,
the following three examples are equivalent:

name=(namexp1, namexp2)

name=namexp1 OR name=namexp2

namexp1 OR namexp2

When a complex string is enclosed in quotation marks, the string can contain
any ASCII character except a quotation mark. If you want a quotation mark in
such a string, it must be represented by two successive quotation marks. For
example, the following quoted complex string contains a single quotation mark
enclosed in parentheses:

"one quotation mark ("")"

You can override the wildcard characters (% and *) using the ampersand (&).
If you want an ampersand in a string, it must be represented by two successive
ampersands. For example:

• Use the name expression &* to find the name consisting of a single
asterisk.

• Use the name expression && to find the name consisting of a single
ampersand.

4–2 Performing Queries

Performing Queries
4.1 Performing Cross-Reference Queries

Enclosing a complex string in quotation marks does not affect the case-
sensitivity of matching. String matching is not sensitive to the case of the
string specified in the name expression.

Although a hyphen (-) is allowed in a simple name, a command line that ends
in a hyphen is a continued command, just as in DCL.

In the following example for DECwindows, you specify a cross-reference query
using only the Name query attribute. SCA lets you specify one or several
symbol names. To see all references to build_table and code, do the following:

1. From the SCA Main window or from any query window, pull down the
Query menu and choose the Cross Reference... menu item. SCA displays
the Cross Reference Query window (see Figure 2–6).

Note

In LSE, when you enter the FIND OCCURRENCES command or
GOTO DECLARATION command and specify a symbol name, an SCA
cross-reference query is automatically performed. SCA displays the
query result in the Cross Reference Query Result window.

2. Click on the specification box for the Name query attribute and enter
build_table, code.

Note

SCA lets you specify multiple items in the specification boxes for
the Name, In File, and In Module query attributes. Use a comma to
separate items in the list.

3. Click on Apply. SCA displays the query result.

4. Position the pointer on the window sash (the vertical bar in the center of
the display area) and press and hold MB1.

5. Drag the sash to the right to see more information about the symbols.

Note that the right-hand pane is blank. SCA lets you display occurrence
information in that pane, as in the next step.

6. Double click on the icon to the left of code (the second symbol in the list).

Performing Queries 4–3

Performing Queries
4.1 Performing Cross-Reference Queries

SCA shows all occurrences of the variable code in the right-hand pane (see
Figure 4–1).

Figure 4–1 Cross-Referencing by Symbol Name

The information SCA provides for each occurrence includes its usage type, the
routine or module that contains it, and the source file where it is located. For
instance, in the previous example the second occurrence of the symbol code is:

• A write reference

• Contained in the module code

• Located in file buildtable.c

• Located on line 108 in buildtable.c

4–4 Performing Queries

Performing Queries
4.1 Performing Cross-Reference Queries

4.1.2 Cross-Referencing by Symbol Usage
An occurrence-selection expression selects occurrences whose occurrence
class is one of those specified in the occurrence-selection expression. An
occurrence-selection expression has the following form:

occurrence-selection-exp ::= occurrence=occurrence-class |
occurrence=(occurrence-class,...

Occurrence is a formal parameter name and occurrence-class is one of the
following keywords:

Declarations

• PRIMARY—Most significant declaration (such as FUNCTION)

• ASSOCIATED—Associated declaration (such as EXTERNAL)

• DECLARATION—Both PRIMARY and ASSOCIATED declarations

References

• READ, FETCH—Retrieval of a symbol value

• WRITE, STORE—Assignment of a symbol value

• ADDRESS, POINTER—Reference to the location of a symbol

• CALL—Call to a routine or macro

• COMMAND_LINE—Command-line file reference

• INCLUDE—Source file include reference

• PRECOMPILED—Precompiled file include reference

• BASE—Any base class of a C++ class

• FRIEND—Any friend of a C++ class

• MEMBER—Any member of a C++ class

• SEPARATE—Any Ada package or subprogram unit defined as SEPARATE

• USE—Any USE of an Ada package or subprogram unit, or USE of a
DIGITAL Fortran 90 module

• WITH—Any WITH of an Ada package or subprogram unit

• REFERENCE—All of the previous references

• OTHER—Any other kind of reference (such as a macro expansion or use of
a constant)

Performing Queries 4–5

Performing Queries
4.1 Performing Cross-Reference Queries

Other Occurrence Classes

• EXPLICIT—Explicitly declared

• IMPLICIT—Implicitly declared

• VISIBLE—Occurrence appears in the source

• HIDDEN—Occurrence does not appear in the source

• COMPILATION_UNIT—Occurrence is compilation-unit

• LIMITED—Any Ada limited private type

• PRIVATE—Any private C++ object, or Ada private type

• PROTECTED—Any protected C++ object

• PUBLIC—Any public C++ object

• VIRTUAL—Any virtual C++ object

Assume that you are only interested in write references to the variable code.
To revise your query to show this particular usage for DECwindows, do the
following:

1. From the Cross Reference Results window, pull down the Query menu.

2. Choose the Show Query Window menu item. SCA displays the query
window.

3. Scroll to Write in the Selection box for the Usage query attribute and click
on Write. Write appears in the Selected box.

4. Click on the Keep items from previous result option. This option keeps the
results from the previous query that match the new selection attributes (it
updates the previous query).

5. Click on Apply and wait for the new query result to display.

6. Pull down the View menu.

7. Choose the Expand All menu item. SCA displays the query result and
shows only write and read-write references to the variable code.

4–6 Performing Queries

Performing Queries
4.1 Performing Cross-Reference Queries

4.1.3 Limiting Queries to Specific Modules
You might want to further focus your query to display only write references to
code in the module copyfile. To do this for DECwindows, perform these steps:

1. From the Cross Reference Query window, click on the specification box for
the In Module attribute to activate it.

2. Enter copyfile in the specification box.

3. Click on Apply.

SCA displays the new result. It again keeps items from the previous result,
because this option remains active from the last query. Choose the Expand
All menu item from the View menu to see more detail. Figure 4–2 shows the
query specification and result.

Figure 4–2 Limiting Queries to Specific Modules

Most often, you will want to specify a module name when you look for primary
declarations of symbols. The following example shows how to get the primary
declaration of code in module copyfile:

1. Return to the Cross Reference Query window.

2. Scroll to find Primary in the Selection Box for the Usage query attribute,
then click on MB1 to select it. Primary is added to the Selected box.

3. Click on the Create new result button.

Performing Queries 4–7

Performing Queries
4.1 Performing Cross-Reference Queries

4. Click on Apply. SCA shows the result in the result window.

5. Double click on the icon next to the variable name code to expand the
information. SCA shows the primary declaration of code in module
copyfile in the result.

4.1.4 Cross-Referencing by Symbol Type
A symbol-class-selection expression selects occurrences whose symbol class is
one of those specified in the symbol-class-selection expression. A symbol-class-
selection expression has the following form:

symbol-class-selection-exp ::= symbol=symbol-class |
symbol=(symbol-class,...)

Symbol is a formal parameter name and symbol-class is one of the following
keywords:

• ARGUMENT—Formal argument (such as a routine argument or macro
argument)

• CLASS—Any C++ class object construct defined by union, structure, or
class statements

• COMPONENT, FIELD—Component of a record

• CONSTANT, LITERAL—Named compile-time constant value

• EXCEPTION—Exception

• FILE—File

• FUNCTION, PROCEDURE, PROGRAM, ROUTINE, SUBROUTINE—
Callable program function

• GENERIC—Generic unit

• KEYWORD—Keyword

• LABEL—User-specified label

• MACRO—Macro

• MODULE, PACKAGE—Collection of logically related elements

• PLACEHOLDER—Marker where program text is needed

• PSECT—Program section

• TAG—Comment heading

• TASK—Task

• TYPE—User-defined type

4–8 Performing Queries

Performing Queries
4.1 Performing Cross-Reference Queries

• UNBOUND—Unbound name

• VARIABLE—Program variable

• OTHER—Any other class of symbol

You use one or more of the generic (multilanguage) keywords to request specific
classes of symbols. Because different languages use different terminology,
several alternatives are provided for some classes of symbols.

A list of symbol classes is equivalent to a union of symbol-class-selection
expressions, each having a single symbol class.

In the following example for DECwindows, you specify a cross-reference query
by symbol type. There are several symbol types listed in the Selection box, for
example: variables, constants, and functions. When you specify a symbol type,
SCA lists the names of all symbols of that type.

SCA lists generic symbol types in the Selection box for this attribute. To see
what types correspond to these symbol types, look at the language table in
SCA help for the language that you are using. For example, the symbol type
routine means procedure in Pascal.

You can also ask SCA to list the names of symbols for all types except the
indicated types. The following example shows how to specify the negation
operator when performing a cross-reference query by symbol type:

1. In the Cross Reference Query window, click on Reset to clear the previous
query specification. The Reset button clears the window and resets the
Create new result option.

2. Click on the specification box for the Name query attribute.

3. Enter type_example.

4. Press and hold MB1 on the Any box for the Type query attribute.

5. Drag the mouse to choose the None option and release MB1.

6. Select Module in the Selection box for the Type query attribute. Module
appears in the Selected box.

7. Click on Apply. SCA creates a new query result showing type_example
that is not of type Module.

Performing Queries 4–9

Performing Queries
4.1 Performing Cross-Reference Queries

4.1.5 Cross-Referencing by Symbol Domain
A symbol-domain-selection expression selects occurrences whose symbol domain
is one of those specified in the symbol-domain-selection expression.

Symbol domain is the range of source code in which a symbol has the potential
of being used. For example, a C static declaration creates a symbol that has a
module-specific symbol domain; it cannot be used outside of that module. On
the other hand, a regular C module-level declaration creates a symbol that has
a multimodule symbol domain; it has the potential of being used in more than
one module. The symbol domain of a GLOBAL is multimodule, regardless of
how many modules there are in which the symbol is used.

A symbol-domain-selection expression has the following form:

symbol-domain-selection-exp ::= domain=symbol-domain |
domain=(symbol-domain,...)

Domain is a formal parameter name and symbol-domain is one of the following
keywords:

• INHERITABLE—Able to be inherited into other modules (for example, by
means of Pascal environment or Ada compilation system mechanisms)

• GLOBAL—Known to multiple modules via linker global symbol definitions

• PREDEFINED—Defined by the language (examples: FORTRAN sin,
Pascal writeln)

• MULTI_MODULE—Domain spans more than one module
(domain=multi_module is equivalent to domain=(inheritable,global,
predefined))

• MODULE_SPECIFIC—Domain is limited to one module

A list of symbol domains is equivalent to a union of symbol-domain-selection
expressions, each having a single symbol domain.

The following example for DECwindows forms a query to ask, ‘‘What global
procedures are there named build_table?’’:

1. In the Cross Reference Query window, click on Reset to clear the previous
query specification.

2. Click on the selection box for the Name query attribute.

3. Enter build_table.

4. Select Global in the Selection box for the Domain query attribute. Global
appears in the Selected box.

4–10 Performing Queries

Performing Queries
4.1 Performing Cross-Reference Queries

5. Click on Apply. SCA creates a new query result showing only the global
procedures.

6. Double click MB1 on the icon next to the procedure build_table to see
more detail.

Figure 4–3 shows the query specification and result.

Figure 4–3 Cross-Referencing by Symbol Domain

4.1.6 Limiting Queries to Specific Files
As with modules, you can limit your cross-reference query results to
occurrences located in a particular file. In the Cross Reference Query window,
enter the file specification in the specification box for the In File query
attribute.

If the file you specify contains other Include files, these files are not used unless
you list them separately. You can enter multiple files in the file specification
box by separating each with a comma. For example, if your source file X.C
contains the include file X.H, specify two files in the file specification box, as
follows:

x.c, x.h

Performing Queries 4–11

Performing Queries
4.1 Performing Cross-Reference Queries

4.1.7 Go-To-Source Feature
When you arrive at a useful query result, SCA provides a convenient way to go
to a selected occurrence’s location in your source code.

Note

The go-to-source feature is available from the Name Browser and from
the Cross Reference, Call Graph, and Data Structure query results.
See Section 4.2 and Section 4.3 for information on going to source from
a call graph or data structure query result. To go-to-source from the
Name Browser, you select a name and click on the Go to Declaration
button in the Name Browser dialog box.

From the Cross Reference Results window, position the pointer on the name of
a symbol in the left-hand pane, or the name of an occurrence in the right-hand
pane of the query result, and double click on MB1. Figure 4–4 shows an
occurrence of build_table that has been selected and the cursor positioned to
its corresponding location in the source code.

4–12 Performing Queries

Performing Queries
4.1 Performing Cross-Reference Queries

Figure 4–4 Go-To-Source Feature

4.1.8 Navigating to Other Query Windows
As you examine the cross-reference results, you might also want to see the
structure of your code. SCA can graphically display routine calls and data
structures. From the Query pull-down menu, you can select menu items to
specify call graph and data structure queries.

To specify a call graph query from the Cross Reference Query window, do the
following:

1. Pull down the Query menu.

2. Choose the Call Graphs... menu item. The Call Graph Query window is
displayed.

Performing Queries 4–13

Performing Queries
4.2 Performing Call Graph Queries

4.2 Performing Call Graph Queries
This section describes how to graphically display call relationships in your
source.

Beginning with a simple query, you construct a graph that gives you an
overview of particular calls in your software system. You build your call graph
by extending to and from nodes that depict routines in your graph, as well
as removing unwanted nodes. The end result is a detailed graph of the call
relationships you want to see.

The following sections describe how to perform call graph queries.

4.2.1 Displaying Calls From a Routine
Suppose you are debugging the routine read_command_line and you want to
know which routines might be invoked if you called it. To specify a call graph
query, do the following:

1. From the SCA Main window, click MB1 on the Call Graphs . . . button.
The Call Graph Query window is displayed.

2. Click MB1 on the specification box for the From query attribute.

3. Enter read_command_line in the specification box.

4. Click on OK.

SCA interprets this query as, ‘‘Find all calls from read_command_line.’’
Figure 4–5 shows the resulting display. Note that the default depth is 1.

4–14 Performing Queries

Performing Queries
4.2 Performing Call Graph Queries

Figure 4–5 Call Graph Results

4.2.1.1 Navigating a Large Display
SCA displays all routines called by read_command_line. Because this is a large
display, the entire result (shown as a lexical tree by default) cannot fit in the
window’s display area. You can use the scroll bars to view various parts of the
call graph, or click MB1 on a name in the lower pane to show the graph area
that pertains to that node.

SCA also provides a Navigation window that lets you look at a call graph in
its entirety. The Navigation window serves two purposes:

• You can determine the part of the graph you want to see and navigate to
that location.

• Upon viewing an image of the entire graph, you can decide whether to use
this graph, or to respecify your query to limit the results.

To display the Navigation window, click on the navigation button. The
navigation button is the small square (icon) in the lower-right corner of the
top pane, between the horizontal and vertical scroll bars.

Performing Queries 4–15

Performing Queries
4.2 Performing Call Graph Queries

SCA displays the Navigation window, shown in Figure 4–6. The Navigation
window shows an image of the entire graphical display.

Figure 4–6 The Navigation Window

As you can see in Figure 4–6, there is a box within the display outlining part
of the graph. This area corresponds to the image currently in the query result
display area. To navigate to another part of the graph, do the following:

1. Position the pointer in the Navigation box. A cross-hair cursor appears.

2. Press and hold MB1.

3. Move the box to the part of the call graph you want to see. In this case,
move the box up to the top of the graph.

4–16 Performing Queries

Performing Queries
4.2 Performing Call Graph Queries

4. Release MB1. The display area of the Call Graph Results window now
shows this part of the graph (you should see the routine open_in).
The Navigation window stays active until you click MB1 again on the
navigation button.

4.2.1.2 Going to Source Code
When you find something interesting in your call graph query result, you
might want to see the location of that symbol in your source code. You can go
to source in three ways from the call graph display:

• Position the pointer on a node or arc of the call graph and double click on
MB1.

• Double click MB1 on a line in the list of information below the call graph.

• Select a node or arc in the call graph, then pull down the View menu and
choose the Goto Source menu item.

In the first case, double clicking on a node goes to the declaration of the
routine. Double clicking on an arc goes to the source of the call.

If you are displaying the call graph in compacted or graph format, double
clicking MB1 on an arc highlights that arc and all corresponding calls in the
list below. SCA goes to the source of the first call in the list.

4.2.2 Refining Your Query
After you specify an SCA query, you can refine it until you arrive at the most
meaningful information. This section demonstrates several ways to refine your
query.

4.2.2.1 Using the Negation Operator
Suppose you know that string function names begin with str and you do
not need to see calls to these routines. You can use the negation operator to
exclude that information from the result. To refine your query to remove calls
to these routines, do the following:

1. Pull down the Query menu and choose the Show Query Window menu
item. SCA displays the Call Graph Query window.

2. Press and hold MB1 on the Any box for the To query attribute.

3. Drag the mouse to choose the None option and release MB1.

4. Click MB1 on the corresponding selection box and enter str*.

5. Click on Apply.

Use the scroll bar or Navigation window to move to the top of the display. Note
that SCA has removed calls to strlen and strncpy.

Performing Queries 4–17

Performing Queries
4.2 Performing Call Graph Queries

4.2.2.2 Eliminating Extraneous Information
To limit your query results to only those routines found in your application,
SCA provides a feature that lets you modify your query results to remove items
not defined in your SCA library. Perform the following steps:

1. From the Call Graph Results window, pull down the Modify menu.

2. Choose the Remove items not defined in the SCA library menu item. This
step keeps everything that has primary declarations in the SCA library.

Figure 4–7 shows the simplified query result.

Figure 4–7 Simplified Call Graph

4.2.2.3 Removing Redundancy
As mentioned in Section 2.3.5, SCA displays call graphs as lexical trees by
default. (See Section 4.2.4 for information on call graph display formats and
Section 4.6 on changing the display defaults.) As such, if a routine is called
more than once by other routines, it appears more than once in the call graph.
In the previous example, the node expand_string appears twice. To compact
the call graph to eliminate redundancy, do the following:

1. Pull down the View menu from the Call Graph Results window.

2. Choose the Compact Tree menu item.

4–18 Performing Queries

Performing Queries
4.2 Performing Call Graph Queries

SCA further simplifies the call graph.

4.2.2.4 Extending Information About a Routine
You can ask SCA to display more information about a given routine. Whenever
you refine your call graph queries in SCA, you have two basic ways to work:

• By specifying new query attributes for the current query

• By extending your current query display

In the first case, you return to the query window and revise the current query
specification (see Section 4.4.3). This method is useful when you know several
things about your code and want to indicate several conditions in your query.
If you want to see what, if anything, calls a given routine or what that routine
calls, you can use the Extend options.

To get more information about the node build_table directly from the display
of the query result, do the following:

1. In the display of the current query result, position the pointer on the node
build_table and click MB1 to select it.

2. Click on MB3. A pop-up menu is displayed.

3. Choose the Extend From menu item. SCA adds calls from build_table.
Figure 4–8 shows the result.

Performing Queries 4–19

Performing Queries
4.2 Performing Call Graph Queries

Figure 4–8 Extending From a Node

In the same way that you extend from a node, you can select the Extend To
menu item to extend to a node. Extending to a node finds routines that call the
routine corresponding to that node. For example, if you had a call tree from
build_table and you selected Extend To build_table, SCA would show the
node read_command_line with an arc extending to build_table.

4.2.3 Selecting and Removing Items
Suppose you want to show calls only in the path from read_command_line to
build_table. You can select the nodes from your call graph and remove them
in the following ways:

• By choosing Remove Item(s) from the pop-up menu

• By choosing Remove Selected Items from the Modify pull-down menu

4.2.3.1 Selecting Nodes
Before removing a node, you must first select it. To select a node, position
the pointer on the node and click on MB1. To select multiple nodes, do the
following:

1. Position the pointer near the nodes you want to select.

2. Press and hold MB1.

4–20 Performing Queries

Performing Queries
4.2 Performing Call Graph Queries

3. Drag the mouse. SCA forms a box that grows as you drag the mouse.

4. Outline the nodes that you want to select, then release MB1. SCA
highlights the selected nodes.

4.2.3.2 Removing Nodes
To select and remove a node, do the following:

1. In the call graph display, position the pointer on expand_string and click
on MB1.

2. Click on MB3. A pop-up menu is displayed.

3. Choose the Remove Item(s) menu item. SCA removes the node and its
subgraph from the display.

4.2.4 Formatting Your Display
SCA enables you to format the call graph display so it best reflects your
program structure. You can then print out the call graph (see Section 4.2.6).

Note

You can format and print data structure query results in the same
way as call graph query results. See Section 4.3 for information on
performing data structure queries.

4.2.4.1 Specifying Vertical Call Graphs
Suppose you want your call graph shown vertically, and you want to reposition
calls from build_table. Perform these steps:

1. From the call graph query display, pull down the View menu.

2. Choose the Vertical menu item. SCA changes the call graph to a vertical
representation. Note how the display is somewhat crowded. Assume that
you want more space between build_table and write_error to better
show the arcs between the nodes. To move these nodes, continue with
Steps 3 and 4.

3. Position the pointer on write_error and press and hold MB2.

4. Drag the mouse down slightly and release MB2. SCA moves write_error
to the new position and extends the arc.

Performing Queries 4–21

Performing Queries
4.2 Performing Call Graph Queries

4.2.4.2 Redrawing the Graph
SCA enables you to redraw the graph after deleting nodes. Redrawing the
graph compresses the display in the results window.

To redraw a graph, select the Redraw option in one of the following ways:

• Pull down the View menu from the Call Graph or Data Structure Results
window and choose the Redraw menu item.

• Press and hold MB3 from the Call Graph or Data Structure Results window
and choose the Redraw pop-up menu item. Release MB3.

4.2.4.3 Specifying Lexical, Compact, and Graph Displays
SCA displays call graphs (and type trees) as lexical trees by default. When
you pull down the View menu from the Call Graph Results window or
Data Structure Results window, note that Lexical Tree, Compact Tree, and
Graph are all display options. Lexical Tree is the default display option. (See
Section 4.6 for information on changing the default display option.)

4–22 Performing Queries

Performing Queries
4.2 Performing Call Graph Queries

As mentioned in Section 2.3.5, a lexical tree shows query results in lexical
order and shows all calls for the indicated depth. Figure 4–9 shows a sample
lexical tree. Note that all calls to malloc are represented.

Figure 4–9 Lexical Tree Display Example

Performing Queries 4–23

Performing Queries
4.2 Performing Call Graph Queries

The Compact Tree format removes redundant calls from a given node, as shown
in Figure 4–10.

Figure 4–10 Compact Tree Display Example

The Graph format further compresses the call graph result by removing all
duplicate nodes. In Figure 4–11, the multiple nodes for malloc shown in
Figure 4–10 have been removed.

4–24 Performing Queries

Performing Queries
4.2 Performing Call Graph Queries

Figure 4–11 Graph Display Example

The Graph format is the most concise format. The format you choose depends
on the amount of information you need to see. If, for example, you need to
see how many times a given routine is called, the Lexical Tree format is most
useful. If you are interested in finding all calls to a routine, the Graph format
is most useful.

4.2.5 Displaying Recursive Calls
SCA has a special way of handling recursive calls. Recursive calls take one of
the following general forms:

• A calls A

• A calls B calls A

For example, suppose your source code has the following structure:

Proc routine1 ()
routine2 ()

Proc routine2 ()
routine1 ()
routine2 ()

Performing Queries 4–25

Performing Queries
4.2 Performing Call Graph Queries

To create a call graph of this structure from the Call Graph Query window, do
the following:

1. Click MB1 on the specification box for the From query attribute.

2. Enter routine2 in the specification box.

3. Click MB1 on the specification box for the Depth query attribute.

4. Enter all in the specification box.

5. Select the Create new result option.

6. Click on OK.

Figure 4–12 shows the resulting call graph in Lexical format.

Figure 4–12 Recursive Calls

As you can see, routine2 calls routine1, which calls routine2 again. In
addition, routine2 calls itself.

Recursive calls are shown as dashed circles. If you change your query result
to Graph format, SCA displays the arc from routine2 to routine1, then back
again to routine2, as well as an arc pointing from routine2 to itself.

4–26 Performing Queries

Performing Queries
4.2 Performing Call Graph Queries

4.2.6 Printing Call Graph Results
After you refine your query and modify the display to produce a useful call
graph, you might want to print out the result. SCA lets you extract the call
graph to a specified output file. To output the query result, do the following:

1. From the Call Graph Results window, pull down the File menu.

2. Choose the Extract menu item. The Extract graph dialog box is displayed,
as shown in Figure 4–13.

3. Enter the file specification for the output file.

4. Click on OK.

Figure 4–13 Extract Graph Dialog Box

SCA creates a .DDIF file of the currently displayed call graph. You can
continue displaying the results of other call graph queries and extract them in
the same manner.

Performing Queries 4–27

Performing Queries
4.3 Performing Data Structure Queries

4.3 Performing Data Structure Queries
Data structure queries enable you to see the relationship between data types
in your code. This information is useful if your code has many user-defined
data types, particularly if they are complex record structures.

The following sections describe how to perform data structure queries in more
detail. For an example of the Data Structures Query window, see Figure 2–13.

4.3.1 Using the Data Structure Query Attributes
When you specify a data structure query, you can ask SCA to do two things:

• Display a graphical representation of a data type (enter query atribute in
the ‘‘Type of’’ data field).

• Find symbols of a specified type (enter query atribute in the ‘‘Of type’’ data
field).

In the first case, you provide a symbol name for the ‘‘Type’’ of query attribute
in the Data Structure Query window. The symbol can be a variable or a type.
SCA finds the type of each symbol.

For example, suppose you have the variable X in your code. If you enter X
in the specification box, SCA finds the data type of the variable X. In another
example, if you have a type named T in your code and you enter T in the ‘‘Type
of’’ specification box, SCA graphically displays the structure of T.

When you provide a data type name for the ‘‘Of type’’ query attribute in the
Data Structure Query window, SCA finds symbols that are of that type. For
example, if you enter ‘‘Type of’’ X and ‘‘Of type’’ INTEGER, SCA finds symbols
named X that are of type INTEGER.

The type can be predefined by the programming language, such as INTEGER,
or it can be user-defined. For example, if you leave the ‘‘Type of’’ attribute
blank and enter user_defined_type for the ‘‘Of type’’ query attribute, SCA
finds all symbols that are of type user_defined_type.

4.3.2 Creating Type Trees
The result of a data structure query is a type tree. Type trees give you a
graphical overview of the structure of your data types. Like call graphs, type
trees contain nodes and arcs. You can click on a node to get ‘‘type’’ information
about the structure. Double clicking on a node takes you to that occurrence in
your source code.

4–28 Performing Queries

Performing Queries
4.3 Performing Data Structure Queries

Another similarity to call graphs is that type trees can be extended,
compressed, and in other ways modified to best display the result. You
can also extract your final result into a file for printing (see Section 4.2.6 for
information).

To perform a data structure query, do the following:

1. From the Data Structure Query window, click MB1 on the specification box
for the ‘‘Type of’’ query attribute.

2. Enter ui_user_data.

3. Click on OK.

SCA creates a type tree that shows the data structure for the type
ui_user_data. See Figure 4–14.

Figure 4–14 Initial Type Display

4.3.2.1 Extending a Type Tree
You can extend your type tree to see more information. The node begin-
ning with window_title is a record containing several fields. Note that
window_title and several other fields are marked with squares in the right
margin. These indicate that you can further extend the type tree from that
item because these fields are also of some user-defined type.

Performing Queries 4–29

Performing Queries
4.3 Performing Data Structure Queries

Before you can extend an item, you must select it. SCA lets you select a
single item or select the entire node (in this case, all the fields in the record).
To select a single item, click MB1 on the name of the item (for example,
window_title). To select the entire record, click MB1 on the border of the
node, or on the line between the item names. Selecting globally is useful for
extending or removing all items in a node.

To extend the type tree from window_title, do the following:

1. Click MB1 on window_title to select it. Note that the line highlighted
in the lower pane of Figure 4–14 shows that window_title is of type
string_desc. To see the structure of string_desc, continue with Steps 2
and 3.

2. Click on MB3. A pop-up menu is displayed.

3. Choose the Extend From menu item.

Figure 4–15 shows the result.

Figure 4–15 Extended Type Tree

SCA shows that the structure string_desc has four fields (SCA shows the
name of a structure outside the node box). When you click on the name of any
field, the corresponding information is displayed in the bottom window.

4–30 Performing Queries

Performing Queries
4.3 Performing Data Structure Queries

Next, return to the previous node and select q_context. (Again, the square in
the right margin next to the name denotes an extendible field, as well as the
information in the lower pane.) To extend from q_context, do the following:

1. Click on MB3. A pop-up menu is displayed.

2. Choose the Extend From menu item. Note that the resulting type tree is
large and cannot display in its entirety.

3. Click MB1 on the navigation button. SCA displays the Navigation window,
which shows an image of the entire graphical display. The outlined area
within the Navigation window represents the current display. To navigate
to another part of the type tree, go to Step 4.

4. Click and hold MB1 and move the outline box up so you see the top nodes
of the tree, then release MB1. The display area of the Data Structure
Results window now shows this part of the tree.

The node represented by a broken-line box indicates a recursive structure. The
recursive data structure display is similar to a recursive call graph display (see
Section 4.2.5). In this example, the structure query_context contains a field
that is also of type query_context.

Performing Queries 4–31

Performing Queries
4.3 Performing Data Structure Queries

You can also reposition nodes in the query result. Position the pointer on
a node then click and hold MB2. Drag the node to the desired location and
release MB2. Figure 4–16 shows the previous type tree repositioned.

Figure 4–16 Repositioned Type Tree

4.3.2.2 Selecting and Removing Nodes from a Type Tree
Suppose you decide that the node string_desc is not important and you want
to remove all occurrences of it from the type tree. By selecting the node, SCA
selects all nodes with the same name.

4–32 Performing Queries

Performing Queries
4.3 Performing Data Structure Queries

To select string_desc, click MB1 on the border of the node box. SCA highlights
the selected nodes, as shown in Figure 4–17.

Figure 4–17 Selecting a Node

To remove the selected nodes, do the following:

1. Click on MB3. A pop-up menu is displayed.

2. Choose the Remove Item(s) menu item. SCA removes both nodes for
string_desc.

Performing Queries 4–33

Performing Queries
4.3 Performing Data Structure Queries

Figure 4–18 shows the modified type tree.

Figure 4–18 Final Display

As with cross-reference or call graph queries, you can go to the source code by
double clicking MB1 on a node in the display or item in the bottom window.
You can also specify additional queries by choosing items from the Query pull-
down menu. Choose Show Query Window to specify data structure queries.
Choose Call Graphs or Cross Reference to specify call graph and cross-reference
queries, respectively.

4.4 Modifying the Current Query
When you display the query window for cross references, call graphs, or data
structures, SCA provides several options that affect the query result. By
default, SCA creates a new query each time you enter a query specification and
the new query is added to the query list (see Section 4.5). You also have the
option to modify the current query instead of creating a new query.

By modifying the current query, you use previous query results to build a new
result. The following sections explain how to do this.

4–34 Performing Queries

Performing Queries
4.4 Modifying the Current Query

4.4.1 Keeping Items from the Previous Query Result
From the Cross Reference Query window, when you click MB1 on the Keep
items from previous result option, SCA keeps the results from the previous
query that match the new selection attributes. For example, if you ask SCA
to cross reference the symbol build* then modify your query to show only
declarations of build*, SCA will update the result to keep only the matching
items.

Figure 4–19 shows the query specification and result.

Figure 4–19 Keeping Items from the Results

Performing Queries 4–35

Performing Queries
4.4 Modifying the Current Query

4.4.2 Removing Items from the Previous Query Result
Suppose you are reviewing the current cross-reference query result showing
declarations of build* and you do not want to see module declarations. To
remove that information from the previous result, do the following:

1. From the Cross Reference Query window, revise your query by selecting
Module for the Type query attribute. (Note that in the previous example
you specified Name = build* and Usage = Declaration.)

2. Choose the Remove items from previous result option.

3. Click on Apply.

4–36 Performing Queries

Performing Queries
4.4 Modifying the Current Query

SCA removes the module declaration from the result, as shown in
Figure 4–20.

Figure 4–20 Removing Items from the Results

4.4.3 Adding Items to the Previous Query Result
You can add items to a previous query result for cross-reference, call graph,
or data structure queries. For example, suppose you want to cross reference
the symbol copy_file. To continue the current query and ask SCA to add that
information to the current query results, do the following:

1. Press the Reset button to clear the query window.

2. Enter copy_file as the Name query attribute.

3. Choose the Add items to previous result option.

Performing Queries 4–37

Performing Queries
4.4 Modifying the Current Query

4. Click on Apply.

SCA adds information about copy_file to the previous results (see
Figure 4–21).

Figure 4–21 Adding Items to the Results

In the previous examples, you performed several steps but modified the same
query. SCA shows this as one query in the query result list.

4–38 Performing Queries

Performing Queries
4.5 Using Multiple Queries

4.5 Using Multiple Queries
SCA provides a multiple query feature that enables you to maintain more
than one query session at a time. This feature maximizes the use of SCA by
enabling you to perform simultaneous source investigations.

For example, when you issue a query command, a new query session is created.
If, during a session, you go to the source of an occurrence and find a symbol
that you want to investigate before returning to your last query, you can
issue a new query about the symbol. After the inquiries in your new session
are completed, you can then go back to your previous session by issuing a
PREVIOUS QUERY command.

Current query defines the last query command issued as the target of a
GOTO QUERY, NEXT QUERY, or PREVIOUS QUERY command. If no query
command has been issued during the current editing session, there is no
current query. Using one of the query commands (FIND, INSPECT, GOTO
QUERY, NEXT QUERY, PREVIOUS QUERY) reestablishes a query as the
current query.

You can also display all the queries you have made during an SCA session
by issuing the SHOW QUERY command. The one marked with asterisks (*)
indicates the current query.

From any query or query result window, you can access this list and select
a previously defined query. From there, you can modify this query and get
additional information.

The following sections describe how to navigate to previous queries and select
them for use. In addition, you are shown how to delete unwanted queries from
the query list.

4.5.1 Moving to the Next or Previous Query
SCA provides a way to navigate to the previous or next query in the query list.

The NEXT QUERY command moves the cursor forward through multiple query
sessions. You enter the command as follows:

LSE> NEXT QUERY

The NEXT QUERY command moves forward through the query sessions in
their order of creation. The window is remapped to the buffer associated with
the next query session. If there is no next query session, the previous query
session is used.

Performing Queries 4–39

Performing Queries
4.5 Using Multiple Queries

The PREVIOUS QUERY command moves the cursor backward through
multiple query sessions. You enter the command as follows:

LSE> PREVIOUS QUERY

The PREVIOUS QUERY command moves backward through the query sessions
in the reverse order of their creation. The window is remapped to the buffer
associated with the previous query session. If there is no previous query
session, the next query session is used.

For DECwindows, from the Query window or Results window, pull down the
Query menu and choose the Previous or Next menu item. SCA displays the
query specification or result for that query.

4.5.2 Navigating Through the List of Queries
After you create several queries, you might want to see a list of those queries
and select a query for modification or deletion, or look at the query results
again. The following sections describe how to access and select from the query
list.

4.5.2.1 Accessing the Query List
The GOTO QUERY command moves the cursor to the specified query session.
The command has the following form:

GOTO QUERY name

You enter the command as follows:

LSE> GOTO QUERY 1

The GOTO QUERY command causes the query number specified by the name
parameter to become the current query session and maps the buffer associated
with that query session.

To access the query list in DECwindows, do the following:

1. From a Query window or a Results window, pull down the Query menu.

2. Choose the List . . . menu item.

The Query List dialog box is displayed. Figure 4–22 shows the Query List
dialog box with a list of queries.

4–40 Performing Queries

Performing Queries
4.5 Using Multiple Queries

Figure 4–22 Query List Dialog Box

4.5.2.2 Selecting from the Query List
To select a query from the query list, position the pointer on a query and click
on MB1. When you click on OK or Apply in the Query List dialog box, or
double click on a query, the selected query becomes the current query, which
you can modify or delete.

4.5.3 Saving Queries
Use the SAVE QUERY command to save queries made during an SCA session
into a command file. The saved query can then be read into any SCA session
by using the @file-specification command.

The SAVE QUERY command saves a query session. The command has the
following form:

SAVE QUERY [query-name,...] /OUTPUT=output-file-specification
/PREFIX=name-prefix /QUALIFIERS=find-command-qualifiers

You enter the command as follows:

LSE> SAVE QUERY

You can use the following qualifiers to achieve the desired results:

• /OUTPUT=output-file-specification—Specifies an output file name and
overrides the default QUERY.COM.

• /PREFIX=name-prefix—Adds the specified prefix to all query names. Use
this qualifier to make sure query names are unique.

Performing Queries 4–41

Performing Queries
4.5 Using Multiple Queries

• /QUALIFIERS=find-command-qualifiers—Used to specify FIND command
qualifiers that will be added to each saved query.

For more details, including a full example, see the SAVE QUERY
description in the Command Dictionary section of the DIGITAL Language-
Sensitive Editor/Source Code Analyzer for OpenVMS Reference Manual.

4.5.4 Deleting Queries
As your list of queries grows, you might want to delete unneeded queries. The
SCA delete operation always deletes the current query (the query currently
displayed on the screen). You can set the current query by using Previous or
Next, or the query list (see Section 4.5.1 and Section 4.5.2).

The DELETE QUERY command deletes a query session. The command has
the following form:

DELETE QUERY [name]

You enter the command as follows:

LSE> DELETE QUERY 1

The DELETE QUERY command deletes the specified query session. If no
name is specified, the current query session is deleted. If the current query
session is deleted, no current query exists.

To delete the current query from either the query window or the query result
window, do the following:

1. Pull down the Query menu.

2. Choose the Delete menu item.

SCA deletes the query. If there are more queries, the next query in the list
becomes the current query.

4–42 Performing Queries

Performing Queries
4.6 Modifying the Display Options

4.6 Modifying the Display Options
SCA lets you modify the View menu defaults for displaying the results of Call
Graph and Data Structure queries. These changes stay in effect for the current
SCA session.

By default, call graphs and type trees are presented as horizontal, lexical
trees. If you want to change the display of a call graph to remove redundant
information, you can compress the lexical tree, as follows:

1. Pull down the View menu from the Call Graph Query Result window.

2. Choose the Compact Tree menu item.

You can also use the View menu to change the compacted call graph to vertical
instead of horizontal.

However, you might prefer your result graphs to always display in a compacted,
vertical form. SCA lets you change the View menu defaults so the Compact
Tree and Vertical menu items become the defaults.

To change the View menu defaults, do the following:

• Pull down the Options menu from the Call Graph Results window.

• Choose the View menu item. The Customize Views dialog box is displayed,
as shown in Figure 4–23.

• Click MB1 on Compact Tree, then click MB1 on Vertical.

• Click on OK.

Performing Queries 4–43

Performing Queries
4.6 Modifying the Display Options

Figure 4–23 Customize Views Dialog Box

When SCA displays the results of a subsequent call graph or data structure,
it will automatically compact the tree and show it vertically. When you pull
down the View menu from the Call Graph Results window, these menu items
will appear as the defaults (grayed out in the list). Changing the default does
not affect the appearance of call graphs that already exist.

4–44 Performing Queries

5
Using LSE and SCA to Design Programs

This chapter provides a scenario of how you can generate a detailed program
design. This is only a guideline that takes you through the stages of generating
a detailed design.

In addition, this chapter describes how to create and process the design. It
also shows how to evolve an implementation from this design, and shows how
to reverse-engineer the implementation to retrieve a design corresponding to
the original.

This chapter describes the following topics:

• Introducing detailed program design

• Using LSE to create the design

• Using the OpenVMS compilers and SCA to process the design

• Analyzing designs

• Storing design information in tagged comments and defining new tags and
keyword lists

• Generating design reports

• Reverse-engineering designs

5.1 Introduction
In many software engineering environments, the last step before actual coding
is generating a detailed design. Frequently, a Program Design Language (PDL)
is used for that purpose. In the OpenVMS environment, you create detailed
designs as follows:

• Use traditional programming languages.

• Embed design information in comments.

• Write algorithms with pseudocode placeholders.

Using LSE and SCA to Design Programs 5–1

Using LSE and SCA to Design Programs
5.1 Introduction

The language you use for your implementation can be your Program Design
Language.

Once written, you can process and analyze designs to produce a variety of
design reports. You can reverse-engineer existing code to create a design report
that describes the design of the code as actually implemented.

Definitions for a detailed design vary, but detailed designs usually include the
following:

• Specification of module organization

• Global interfaces

• Global data and data types

• Outlines of crucial algorithms

Because design is an ongoing, iterative process, there are no rules for
determining when a design is complete, or for which pieces of a design must
be specified. In the OpenVMS environment, designs consist of one or more
modules, in one or more of the available languages. Within each module,
there is great flexibility concerning how much must be fully specified and how
much can be left as pseudocode. Customer-written compilers, and even some
obsolescent DIGITAL compilers, might not support the /DESIGN qualifier.
Refer to the specific compiler’s documentation to determine whether it supports
the entering of design information.

5.2 Creating Designs
When you create a design for a single module that contains two routines,
such a design is likely to identify some general information about the module,
such as name, purpose, global data, design issues, and so on. Similarly,
it will identify the routines, their purposes, basic algorithms, and possibly
parameters, return values, and other design information.

The following example shows how to generate a design, using Ada as the base
language. Use the following steps:

1. Invoke LSE to create a new Ada file.

LSE creates a file containing the single placeholder {compilation_unit}.

2. Expand the placeholder and choose the package body.

3. Expand the header comment and start filling it in.

5–2 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.2 Creating Designs

The following example shows how it might appear:

-- ++
-- FACILITY:
--
-- Sample facility 1
--
-- ABSTRACT:
--
-- This package is a sample package used to illustrate the way you
-- use LSE and SCA to create a detailed design.
--
-- AUTHORS:
--
-- Dave Ang
--
-- CREATION DATE: 2 July 1998
--
-- DESIGN ISSUES:
--
-- This is a sample design. There is one module, which contains two
-- routines and one global data declaration.
--
-- To illustrate the various levels of design that are possible, you
-- can expand one of the routines in some detail, while leaving the other
-- routine at a very abstract level.
--
-- KEYWORDS:
--
-- Examples, sample design
--
-- MODIFICATION HISTORY:
--
-- --
[context_clause]...
{package_body}

This example shows how you can use comment tags for design information.
Most tags contain ordinary text that describes specific pieces of the design.
Here, keyword tags are used to express relationships and associations. The
keyword tag FACILITY indicates that this module is part of Sample facility
1. In addition, the keyword tag KEYWORDS is used to associate the terms
examples and sample design with this module.

If you establish appropriate conventions for such tags, you can use SCA for
queries such as ‘‘find all packages that belong to a particular facility’’ or ‘‘find
all packages that have to do with examples.’’ For any given project, there will
probably be tags that are specific to that project. Section 5.5.2 describes how to
add new tags.

Using LSE and SCA to Design Programs 5–3

Using LSE and SCA to Design Programs
5.2 Creating Designs

To write the outline of the package body, expand the {package_body}
placeholders to provide skeletons for the following:

• Type declaration

• Function body declaration

• Procedure body declaration

The following results:

package body first_module is
type {identifier} ([discriminant_part]) is {type_definition};

function function_1 ([formal_part]) return {type_mark} is
-- [function_header_comment]

[declarative_part]
begin

[statement]...
return {expression};

[exception_part]
end function_1;

procedure procedure_2 ([formal_part]) is
-- [procedure_header_comment]

[declarative_part]
begin

{statement}...
[exception_part]
end procedure_2;

begin
{statement}...

end first_module;

The next section shows how to expand these placeholders to obtain useful
routine designs.

5.2.1 Designing Routine Declarations
To create designs for individual routines, you expand LSE placeholders as
necessary. Use tags and pseudocode placeholders to contain design information
that is still at an abstract level, and use actual language constructs for those
portions of the algorithm that are known.

5–4 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.2 Creating Designs

If, for example, the design has only a few details, it can appear as follows:

function function_1 (
P1 : in P1_type;
P2 : in P2_type := null_P2)

return integer is
-- ++
-- FUNCTIONAL DESCRIPTION:
--
-- This function computes the integer function of the P1, with
-- or without P2s.
--
-- FORMAL PARAMETERS:
--
-- P1:
--
-- The P1 whose function we want.
--
-- P2:
--
-- The P2 to involve with the P1.
--
-- RETURN VALUE:
--
-- The computed function.
--
-- ALGORITHM:
--
-- Use the regular function algorithm if the P2 is
-- present, and use Murphy’s function algorithm if
-- it isn’t.
--
-- [logical properties]
--
-- [optional subprogram tags]
-- --

[declarative_part]
begin

[statement]...
return {expression};

[exception_part]
end function_1;

Much of the calling sequence has been specified. This information is useful to
people who use this function. Thus far, this example shows how you can use
the ALGORITHM tag to describe the top layer of the algorithm in ordinary
English. Later, you can use pseudocode to describe the algorithm. Other
placeholders are left in place, because they will also be expanded as work
progresses.

Using LSE and SCA to Design Programs 5–5

Using LSE and SCA to Design Programs
5.2 Creating Designs

To complete the algorithm design, use the ENTER PSEUDOCODE command
to write the algorithm design.

The following example shows only the routine body:

partial_function, -- Used to store the partial
-- results from Murphy’s algorithm

final_function : integer; -- Used to store the final result
begin

if «the P2 is present» then 1
«Use the standard algorithm» 2

else
«Use Murphy’s algorithm»
final_function :=
fix_partial_function(partial_function); 3

end if;
[statement]... 4
return final_function;

end function_1;

1 Use pseudocode as the conditional expression in the if
statement.

2 Use pseudocode to represent the entire body of the then clause of the
statement.

3 Show a procedure call. The procedure specification (not shown) must also
be present for Ada to recognize this procedure call. Subsequently, you will
be able to use SCA to get information about calls to this routine, including
this call.

4 Contain an ordinary LSE placeholder. You can use placeholders as part of a
design in any context in which they normally appear. In this example, the
[statement]... placeholder remains as a convenience because the algorithm
is not yet complete.

5.2.2 Refining the Design
As the design is refined, more details can be filled in. To preserve the original
design information, use the ENTER COMMENT command. This applies both
during the low-level design phase and during the implementation phase.

5–6 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.2 Creating Designs

For example, the if statement in the previous example can be refined as
follows:

if P2 /= null_P2 then -- the P2 is present 1

-- Use the standard algorithm 2
[loop_identifier]: loop

«Calculate function iteratively from P2»
end loop;
{tbs}

else
«Use Murphy’s algorithm»
final_function := fix_partial_function(partial_function);

end if;

1 The ENTER COMMENT/LINE command is used to move the pseudocode
for the if statement over to the right, before writing the actual condition.

2 The ENTER COMMENT/BLOCK comment is used to turn the pseudocode
placeholder into a block comment before writing the first statement, which
is a loop statement. The ENTER COMMENT/BLOCK command produces
the {tbs} placeholder.

5.2.3 Designing Data Declarations
The design of data structures is an important part of a detailed design. If the
design calls for an array of records to be shared between the two routines,
but not visible outside the package, such an array would be declared in the
package body, before the declaration of the two subprograms. Furthermore,
if the design has specified only a few of the fields of the record and has not
specified the length of the array, the design would appear as follows:

type record_type is
record

count : integer := 0;
record_name : string({discrete_range}...); 1

subfield_1 : «A type suitable for subfield 1»; 2

«subfield 2, which has property x» 3
[component_declaration]...
[variant_part]

end record;
shared_array : array ({discrete_range}...) of record_type;

In this example, LSE placeholders are used several ways.

1 LSE generates the placeholder discrete_range.

2 Show a pseudocode placeholder. This is created using the ENTER
PSEUDOCODE command, and then typing the contents.

Using LSE and SCA to Design Programs 5–7

Using LSE and SCA to Design Programs
5.2 Creating Designs

3 Show a pseudocode placeholder, which describes the next field of the record
in general terms.

Two important points concerning pseudocode placeholders are illustrated by
this example:

• The contents of a pseudocode placeholder typically has whatever
information is available to describe the object. The level of detail and
the nature of the information varies from design to design.

• Whenever possible, it is preferable to fill in as much detail of the design as
possible in the native language.

The previous example could have been declared as follows:

type record_type is
«a complicated record definition»;

Although this format might seem to have the same information, it actually
suppresses information that could be parsed by the compiler and entered in
your SCA database. For instance, in this case, the compiler does not recognize
the type definition as a record definition and will not be able to do as much
design checking later. This would make subsequent review of your design more
difficult. Of course, if the nature of the high-level design makes it improper to
make decisions, such as the names of the fields, it might be appropriate to use
the natural language description in pseudocode. The choice depends upon the
particular goals of the low-level design.

5.3 Processing Designs
Once there is a partial or complete design, you can process the design by using
an OpenVMS compiler and the DIGITAL Source Code Analyzer.

With all the OpenVMS compilers that support SCA, you use the /DESIGN
qualifier to tell the compiler to process design information. This qualifier takes
two keyword values, as follows:

• [NO]COMMENT

This tells the compiler to search inside comments for program design
information.

• [NO]PLACEHOLDERS

This tells the compiler to recognize placeholders as valid program syntax.

To process the previous design, enter the following command:

$ ADA first_module/DESIGN=(COMMENT,PLACEHOLDERS)/ANALYSIS_DATA

5–8 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.3 Processing Designs

Because the default keyword values for the /DESIGN qualifier are
(COMMENT,PLACEHOLDERS), you can also enter the following:

$ ADA first_module/DESIGN/ANALYSIS_DATA

5.3.1 Loading Design Information into an SCA Library
To load analysis data files created with the /DESIGN qualifier into an SCA
library, use the SCA LOAD command. From the point of view of SCA, there is
no difference between an analysis data file containing design information and
one containing pure code. If a design evolves directly into an implementation,
you can use the same arrangement of libraries during design as during
implementation.

To preserve your design as a fixed reference point while continuing
implementation, you can set up your SCA libraries to keep design information
in one file and the implementation in another file. With SCA, you can use a list
of individual SCA libraries as your current virtual library. If a module appears
in more than one library in the list, the first instance of the module occludes
subsequent instances. Thus, you can set up your SCA libraries so modules
being implemented occlude their designs. For those modules that have not
been converted to code, the designs are still available. For example:

$ SCA SET LIBRARY [user.code.sca_library],[project.code.sca_library], -
[user.design.sca_library],[project.design.sca_library]

To refer to both the code and the designs from SCA at the same time, you have
two options:

• You can choose a naming convention at the module level to distinguish
between the design of a module and its code. This is necessary because
SCA allows only one module of a given name in any virtual library; any
other modules are occluded.

• You can switch back and forth, using the DIGITAL Source Code Analyzer
SET LIBRARY command.

5.4 Analyzing Designs
Once the analysis data files from a design are loaded into an SCA library, you
can use SCA queries to retrieve information, as with any other SCA library.
There are a number of symbol classes defined by SCA specifically for design
information, such as keyword, placeholder, and tag. To get the indicated design
information, you use these classes with the SYMBOL= construct.

Using LSE and SCA to Design Programs 5–9

Using LSE and SCA to Design Programs
5.4 Analyzing Designs

For example, if you want to find all routines that are marked with the keyword
interface, use the following SCA query:

$ SCA FIND CONTAINED_BY(SYMBOL=routine, ’interface’ AND -
SYMBOL=KEYWORD, DEPTH=1)

5.5 Expressing Design Information in Comments
You can capture much of a detailed design by using pseudocode placeholders;
however, a significant amount of information is expressed using tagged
comments. With LSE, you can easily enter tagged comments into your
programs. The templates for LSE include a standard set of comment tags. In
addition, you can change these tags or add new tags.

When programs are compiled with the /DESIGN=COMMENTS and
/ANALYSIS_DATA qualifiers, the compiler performs the following:

• Scans the contents of comments

• Parses tags and their values

• Inserts relevant data about those comments into the SCA analysis file

This information can then be retrieved by SCA and matched with
corresponding identifiers, such as routine names that appear in the code,
and used to generate design reports.

5.5.1 Using Tagged Comments
Tagged comments are based on a simple structure. Each comment is treated
as a sequence of (tag, tag value) pairs. You define tags in LSE and save the
definitions in an LSE environment file, which is read by the compiler. Default
tags are in the LSE$SYSTEM_ENVIRONMENT file, where they are also
available to compilers. There are several types of tags, and the value of the
tag is parsed differently depending on the tag type. There are also a number of
special case tags, each of which begins with a dollar sign ($).

As the compiler scans comments, it groups the comments into comment
blocks. Comment blocks are separated either by code (any visible text that is
not contained in a comment) or by a totally blank line (any blank line that is
not contained in a comment). Within each comment block, the compiler scans
the text of the comment line by line, looking for tags. To be recognized, the tag
must be the first text on the line of the comment, not counting the comment
delimiters. Furthermore, the tag must either be the only text on the line, or
the tag must be terminated by a colon or hyphen. Anything after the tag,
either on the same line or on subsequent lines, forms the value of the tag, up
to but not including the next tag found.

5–10 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.5 Expressing Design Information in Comments

There are three types of tags: text, keyword, and structured.

Text tags contain ordinary text and are the most common type of tag. No
further processing or special scanning is done on the value of a text tag.

Keyword tags contain a list of zero or more keywords used to flag sections
of code. Any given keyword tag can be defined to accept keywords from
a predefined list, which in turn is defined with the DEFINE KEYWORD
command, or can take arbitrary keywords. In either case, keywords are
separated by commas, and can contain space characters. The keywords are
scanned by the compiler, and each keyword is stored in the SCA analysis file,
making subsequent retrieval easy.

Structured tags add a second level of structure to the tag. The value of a
structured tag consists of a sequence of one or more subtags. For example,
the FORMAL PARAMETERS tag consists of a sequence in which each
parameter name is a subtag, and the description of the parameter is the
value of the subtag. Unlike ordinary tags, subtags need not be predefined. To
be recognized, subtags must conform to the following rules:

• Each subtag must be preceded by a blank comment line.

• The subtag must be indented at least as much as the structured tag to
which it belongs.

• The subtag must be terminated by a colon or hyphen.

To make sure the next tag after the structured tag is properly recognized as a
new tag, and not as a subtag or the value of a subtag, it too must conform to
the following special rules:

• It must be preceded by a blank comment line.

• One of the following must hold:

Indented less than the previous subtag and less than or equal to the
indentation of the previous tag

Terminated with a punctuation character different from the one used to
terminate the last subtag

Two implicit tags are defined for all languages. These are the $UNTAGGED
tag and the $REMARK tag. The $UNTAGGED tag refers to any comment text
that occurs at the beginning of a comment block, before the first tag of the
comment block is found.

Using LSE and SCA to Design Programs 5–11

Using LSE and SCA to Design Programs
5.5 Expressing Design Information in Comments

For example:

function function_1 (...)
--
-- This function computes the integer function of the P1,
-- with or without P2s.
--
-- FORMAL PARAMETERS:
...

The text This function computes the integer ... would be the value of the
$UNTAGGED tag, because no tag name precedes it in the comment block.

The $REMARK tag is the first line of text in the comment block, not counting
any tag names. In the previous example, the $REMARK string would be This
function computes the integer function of the P1,. You use the $REMARK tag
for cases where only a single line of text is required. It is especially useful in
sequences of variable declarations, which frequently look like the following:

v1, -- remark for v1
v2, -- remark for v2
...
vN :INTEGER; -- remark for vN

5.5.2 Adding New Tags and Keyword Lists
You can use user-defined tags to represent various kinds of design information.
To define new tags, use the DEFINE TAG and DEFINE KEYWORDS
commands. To save tag definitions in an environment file, use the SAVE
ENVIRONMENT command. To tell the compiler about the tag definitions,
define the logical name LSE$ENVIRONMENT to include the environment file
(LSE$ENVIRONMENT can be a search list). Then these tags are available
when compiling programs with the /DESIGN qualifier.

For example, to label each module with a list of requirements that are satisfied
by this module, enter the following commands:

DEFINE TAG requirements/TYPE=KEYWORD/KEYWORDS=requirement_list/LANGUAGE=ADA

DEFINE KEYWORDS requirement_list
"Requirement 1"
"Requirement 2"
"Requirement 3"

END DEFINE

Now you can save these definitions in an environment file by entering the
following command:

LSE> SAVE ENVIRONMENT/NEW MYDISK:[MYDIRECTORY]MYTAGS

5–12 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.5 Expressing Design Information in Comments

The /NEW qualifier tells LSE to save only the new definitions that you
have added during the current editing session. This creates a file called
MYDISK:[MYDIRECTORY]MYTAGS.ENV. To have the compilers and LSE use
this file, enter the following DCL command:

$ DEFINE LSE$ENVIRONMENT MYDISK:[MYDIRECTORY]MYTAGS.ENV

You can now use the /DESIGN qualifier to compile your program.

5.5.3 Associating Tags with Objects
You can use tagged comments to associate design information with objects
in your program. They are meaningful only when used in conjunction with
declarations. Tagged comments that occur in executable portions of your code,
where there are no adjacent declarations, are not used for design reports.

To find the association between tags and objects, use the SCA containment
functions, CONTAINING and CONTAINED_BY. See the appendix on SCA
query expressions in the DIGITAL Language-Sensitive Editor/Source Code
Analyzer for OpenVMS Reference Manual for more details. To find the
FUNCTIONAL DESCRIPTION of routine R1, for example, you can specify
the following SCA command:

FIND CONTAINED_BY (-
R1 AND SYMBOL=ROUTINE, -
"FUNCTIONAL DESCRIPTION" AND SYMBOL=TAG, -
1)

Because, in some languages, routines can contain other routines, it is
important to specify the DEPTH parameter in the CONTAINED_BY function
as 1. There are two important exceptions to this:

• The $REMARK tag is always contained inside another tag, typically inside
the $UNTAGGED tag. Hence it will be at DEPTH=2.

• Subtags of structured tags are contained inside the structured tag.
Therefore, subtags will be at DEPTH=2 with respect to the associated
object, and DEPTH=1 with respect to the structured tag that contains the
subtags.

Because the SCA containment functions can be slow for depths greater than
1, use only DEPTH=2 when necessary, that is, when you know that you are in
one of these situations.

Sometimes tagged comments are not strictly nested inside a declaration. For
example, a common formatting style for the C programming language is to
put the comment block for a function in front of the function declaration. A
strict interpretation of containment would imply that the function declaration
does not contain the comment block. To solve this problem, SCA implicitly

Using LSE and SCA to Design Programs 5–13

Using LSE and SCA to Design Programs
5.5 Expressing Design Information in Comments

extends the lexical range of definitions so they include comment blocks that are
adjacent to those definitions.

SCA generally looks for the closest declaration immediately adjacent to the
comment block. If the code fragments on both sides of the comment block are
not part of declarations, no comment association is done by SCA. In that case,
the comment is contained in whatever outer-level declaration contains the
comment, if any.

This comment association can sometimes be ambiguous. For example, suppose
you had the following C fragment:

int x;
/* This comment describes a variable */
int y;

The declarations of x and y would both be adjacent to the comment. You can
control this explicitly by putting in blank lines to create the association you
want. For example:

int x;
/* This comment describes a variable */

int y;

This results in the comment being associated with x.

int x;

/* This comment describes a variable */
int y;

This results in the comment being associated with y.

If you leave an ambiguous situation in your code, SCA uses the setting of the
/COMMENT=(ASSOCIATED_IDENTIFIER=keyword) qualifier on the LSE
command DEFINE LANGUAGE. (See the entry for DEFINE LANGUAGE in
the DIGITAL Language-Sensitive Editor/Source Code Analyzer for OpenVMS
Reference Manual for more details on the syntax of this qualifier.)

The ASSOCIATED_IDENTIFIER=keyword qualifier is subtle. SCA does
not use the current value of the qualifier when you run SCA from within
LSE. Rather, when you use the /DESIGN=COMMENTS qualifier to compile
your source program, the compiler uses your LSE$ENVIRONMENT file and
the LSE$SYSTEM_ENVIRONMENT file to determine the setting of the
/COMMENT=(ASSOCIATED_IDENTIFIER=keyword) qualifier. That setting
is stored in your .ANA file. SCA performs the comment association, using
that setting, at the time you load the file into the SCA library. If you want to
change the setting of that qualifier, you must change the setting in LSE, save

5–14 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.5 Expressing Design Information in Comments

a new LSE environment file, recompile your program, and load the new .ANA
file into SCA.

5.6 Generating Design Reports
In addition to getting information directly from SCA queries, you can produce
a variety of reports based upon your design in your SCA database. Typically,
reports cover all or a designated part of your SCA database and present
information in a structured, organized way. You must have both LSE and SCA
on your system to generate reports.

You generate reports with the SCA command REPORT. The REPORT
command requires both SCA and LSE because the reports are actually
implemented in underlying code common to LSE and SCA. This code is
installed as part of LSE, not with SCA.

5.6.1 Using Design Report Formats
You use the REPORT command both for reports provided by DIGITAL and for
customized reports that you have created. The REPORT command takes the
following form:

LSE> REPORT report_name

The reports provided by DIGITAL are as follows:

• HELP—An OpenVMS Help file generated from your design or code

• PACKAGE—An LSE package definition

• INTERNALS—A general report that describes your entire design in an
organized manner

• 2167A_DESIGN—A report that produces a document that meets the
requirements of the U.S. Defense Department’s DOD-STD-2167A Software
Design Document

The output of the REPORT command is typically not in its final state. For
example, HELP reports must be loaded by the OpenVMS librarian into a help
library, and PACKAGE reports must be executed by LSE to produce package
definitions. With INTERNALS and 2167A reports, you can produce reports
that can be read in three different ways: directly, with DECdocument, or with
DIGITAL Standard Runoff. You get more power by using either DECdocument
or DIGITAL Standard Runoff.

Using LSE and SCA to Design Programs 5–15

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

Because reports typically perform many SCA queries over your SCA library,
they can be time-consuming. For this reason, DIGITAL recommends that
you use the REPORT command from batch jobs. However, when customizing
reports, use a small SCA library for testing purposes. You must debug these
reports by executing them from within LSE, and by using TPU features to help
with your debugging.

You make reports work by building an SCA query that represents the files in
your system. To extract the data for the report, it steps through the files one
at a time and steps through the routines within each file one at a time. Most
of the data in reports is taken directly from the appropriate comment tags in
your program. Certain significant data is based on properties of your code,
such as the parameters to a routine. Reports are designed to accept a variety
of synonymous tags for specific sections of reports. For example, the FORMAL
PARAMETERS and FORMAL ARGUMENTS tags are treated as synonyms.

The reports provided by DIGITAL use tags that are included in the system
environment file supplied with LSE. You can use the SHOW TAGS command
to show the tags for a particular language.

An important convention followed by these tags is that the tags that are
applicable for an entire file or module are distinct from the tags that are
applicable for a single subroutine. For example, the ABSTRACT tag describes
a module, whereas the FUNCTIONAL DESCRIPTION tag describes a
subroutine or function. This convention makes it easier for the report tool
to distinguish between the two levels of tag information.

Because there are so many tags, not all of them are actually used by reports, so
the reports do not become unwieldy. You can customize reports to include tags
of interest to you, and you can add new tags in addition to the tags supplied by
DIGITAL.

The default domain for reports is the set of all files that have command line
references in your SCA library, as follows:

FIND SYMBOL=FILE AND OCCURRENCE=COMMAND_LINE

To limit reports to specific files in your system, do the following:

1. Determine an SCA query that represents the specific files.

2. Perform the query and give it a name by using the FIND/NAME command.

3. Use the query name as the domain for the report.

5–16 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

The following example limits the report to just those files that contain the
string ‘‘matrix’’ as part of the file name:

FIND/NAME=myquery -
matrix AND SYMBOL=FILE AND OCCURRENCE=COMMAND_LINE

REPORT/DOMAIN=myquery report_name

Reports are driven by the source files, and this limits the ability of the reports
to present information that is not explicit in your source files. For example,
if a routine declaration or comment block crosses a file boundary by including
another file, the report can behave unpredictably. In addition, declarations
that are generated by macros or preprocessors are not processed by the reports
provided by DIGITAL. Declarations that occur in precompiled files, such
as Pascal environment files, will show up in the report for the precompiled
file—not for the source files that use the precompiled file.

An additional restriction is that your SCA library must reflect the current
state of your source files. Otherwise, the report tool will be unable to locate
the tags in your source files. In many cases, you can customize reports to solve
particular problems of this nature.

5.6.2 Creating Online HELP
The HELP report produces an .HLP file, suitable for loading by the OpenVMS
Librarian into a standard OpenVMS help library. See the OpenVMS Command
Definition, Librarian, and Message Utilities Manual for information on help
libraries. The default output file name for the HELP report is HELP.HLP. You
can change this by using the /OUTPUT qualifier on the REPORT command to
specify a different file name.

The HELP report recognizes the HELP and HLP target types, both of which
result in .HLP files. Because this is the default, there is no need to specify the
/TARGET qualifier when using the HELP report supplied by DIGITAL, unless
you have added customizations for different targets.

For each file in the domain, the HELP report creates a top-level entry for the
file. The help information for that entry is taken verbatim from the module
description tag for the file. (The tags MODULE DESCRIPTION, PROGRAM
DESCRIPTION, PACKAGE DESCRIPTION, and ABSTRACT are considered
synonyms for this purpose.) Then, for each routine in the file, a level 2
entry is created. Again, the help text is taken from a tag (in this case, the
FUNCTIONAL DESCRIPTION tag) for the routine. Finally, level 3 entries
are created for the parameters of the routine, with the text from the comment
associated with the parameter or the text from the appropriate subtag of
the FORMAL PARAMETERS tag used as the help text. (The tags FORMAL

Using LSE and SCA to Design Programs 5–17

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

PARAMETERS, FORMAL ARGUMENTS, PARAMETERS, and ARGUMENTS
are considered synonyms.)

The /FILL qualifier is not meaningful for the HELP report. All output text in
the help report is copied verbatim from tags in your program, with no filling or
justification.

5.6.3 Creating LSE Package Definitions
The PACKAGE report produces an .LSE file, suitable for execution by LSE
to define LSE packages for your program. The default output file name for
the PACKAGE report is PACKAGE.LSE. You can change this by using the
/OUTPUT qualifier on the REPORT command to specify a different file name.

The PACKAGE report recognizes only the LSE target type. Because this is
the default, there is no need to specify the /TARGET qualifier when using the
PACKAGE report.

For each file in the domain, the PACKAGE report creates an LSE DEFINE
PACKAGE command. It then generates a DEFINE ROUTINE command for
each routine in the file and DEFINE PARAMETER commands, as appropriate.
The description string on the DEFINE ROUTINE command is the $REMARK
string associated with the routine. The /TOPIC string for the DEFINE
PACKAGE command is the name of the package, whereas the /TOPIC string
for each DEFINE ROUTINE is the name of the routine.

The PACKAGE report uses two additional qualifiers. The /HELP_LIBRARY
qualifier specifies the name of the help library to use for the DEFINE
PACKAGE commands created by the report. The /LANGUAGES qualifier
specifies the languages to use for the DEFINE PACKAGE command.

The /FILL qualifier is not meaningful for the package report.

5.6.4 Creating INTERNALS Reports
The INTERNALS report is a comprehensive report on the design of your
system, on a module-by-module, routine-by-routine basis. The INTERNALS
report extracts information from tags contained in comments to describe
the various aspects of your program. For example, information under the
FUNCTIONAL DESCRIPTION tag is used to describe each routine, whereas
information under the RETURN VALUE tag is used to describe the return
value of each routine. The INTERNALS report also uses the LSE overview
mechanism to present the code of each routine in a structured, top-down way.

5–18 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

Three targets are recognized by the INTERNALS report. These targets are as
follows:

• DOCUMENT—This is the default target. This outputs an .SDML file
suitable for processing by DECdocument.

• RUNOFF—This outputs an .RNO file suitable for processing by DIGITAL
Standard Runoff (DSR).

• TEXT—This outputs a .TXT file that you can read directly.

The default file name in all three cases is INTERNALS, with the default
file type being determined from the target type. For example, if you want to
produce an INTERNALS report that can be processed by DECdocument, enter
the following command:

SCA> REPORT INTERNALS/TARGET=DOCUMENT

When you process the resulting file with DECdocument, you must use the
SOFTWARE.REFERENCE doctype, as follows:

$ DOCUMENT INTERNALS.SDML SOFTWARE.REFERENCE destination

The /FILL qualifier is important for INTERNALS reports. In cases where text
tags are copied into the report, the /FILL qualifier determines whether the text
will be filled. Use /NOFILL if your comments typically contain tables or other
formatted output that should not be filled.

For each file in the domain, the INTERNALS report creates a chapter in the
output file. The chapter contains the following:

• Description of the file or module, taken from the ABSTRACT or MODULE
DESCRIPTION tags

• Sections that describe the global objects of the module, such as imported
variables and exported variables

• A section on each routine

The format of each routine section is similar to the format of routines in
the OpenVMS Run-Time Library Routines Volume. That is, each routine
section has a title, a brief description of the routine (taken from the
$REMARK tag for the routine), a sample invocation, a more complete
description (taken from the FUNCTIONAL DESCRIPTION tag), sections
for the other tags in the comment block for the routine, and the body of the
routine.

Using LSE and SCA to Design Programs 5–19

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

The body of the routine is presented in a top-down, hierarchical fashion,
using overviews to hide details at the upper layers, and proceeding until
the entire body has been produced. For each overview placeholder that
appears in the body, there is a cross-reference number (white-on-black callout
for DECdocument output; boldface for RUNOFF output) to the expansion
corresponding to that placeholder. An example of the output for a routine in
the INTERNALS report is presented in Section 5.7.1.

5.6.5 Creating 2167A Software Design Reports
You can use the REPORT command to automatically create the body of a report
that conforms to the requirements of the Software Design Document specified
by MIL-STD-2167A. The report tool creates the design section, which is Section
4 of the 2167A Software Design report. You can include these output files in
your complete Software Design Report, as follows:

• Use the DECdocument <INCLUDE> or <ELEMENT> tags for
DECdocument reports.

• Use the .REQUIRE directive for DIGITAL Standard Runoff (DSR) reports.

• Manually merge the output of the report tool with other text for text
reports.

Sample template files for the top levels of these reports are included in the
SCA$2167A directory, as follows:

2167A_PROFILE.SDML
2167A_PROFILE.RNO

The PROFILE files use the appropriate commands to include the lower-level
files in the report. This examples directory also contains stub files for each
of those lower-level files. Typically, you create the chapters, other than the
requirements chapter, manually or you use some other design tool.

To create one file with the default file name 2167A_DESIGN and a default file
type appropriate for the target, enter the following SCA command:

$ SCA REPORT 2167A_DESIGN

The PROFILE files use 2167A_DESIGN as the name of the file to include
as Section 4 of the report. If you change the output file name by specifying
the /OUTPUT qualifier on the REPORT command, you must also change the
PROFILE file to correspond to the new file name.

5–20 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

5.6.5.1 Describing 2167A Structure in your Code
The specifications for the DOD-STD-2167A Software Design Report call for a
hierarchy of program elements. A design is separated into COMPONENTS,
which can be further separated into sublevel COMPONENTS, or into UNITS.
UNITS are the lowest level of entity described in the design. The design
facility allows you to use tagged comments to represent this structure in your
code.

The mapping implemented by the 2167A_DESIGN report treats the individual
files in your system as the UNITS of the 2167A design. You specify
design information relevant to each unit by including the information in
a comment block in the source file corresponding to that unit. Because
2167A COMPONENTS are collections of units and other components, the
2167A_DESIGN report maps sets of files into components. However, it would
be redundant to duplicate all the design information at the component level
in each file of the component. Instead, select one file as the main design file
of the component and put the design information there. The other files in
the component contain a single tag that names the component to which they
belong.

The special tags used to designate 2167A relationships are as follows:

• UNIT OF

• COMPONENT

• COMPONENT OF

The UNIT OF tag is used in each unit (each file of your system) and names the
component to which the file belongs.

The COMPONENT tag is used only in those files that you have designated as
the design file for specific components; the tag names the component that the
file specifies.

The COMPONENT OF tag is used to establish the relationships between
components. It, too, is used only in designated design files, but it names the
parent of the component being specified in the file. For example:

File: TOP_LEVEL_COMPONENT_.ADA
-- COMPONENT: Top level component
-- ABSTRACT: This is the top level component in a system.
-- [additional tags that describe the design of the component]
package top_level_component is
-- This can be an empty package, or it might contain data that is used
-- throughout the component, or perhaps data exported by the component, or
-- even an entire unit.
end top_level_component

Using LSE and SCA to Design Programs 5–21

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

File: SUB_LEVEL_COMPONENT_.ADA
-- COMPONENT: Sub-level component
-- COMPONENT OF: Top level component
-- ABSTRACT: This is a lower-level component in a system. Note that the
-- value of the COMPONENT OF tag in this file must be spelled exactly the
-- same as the value of the COMPONENT tag in the parent component.
-- [additional tags that describe the design of the component]
--
-- UNIT OF: Sub-level component
-- UNIT DESCRIPTION: For the purposes of this example, we assume that
-- this file contains a complete unit. Therefore, it must also have the
-- UNIT OF tag, even though the component has already been named in the
-- COMPONENT tag.
-- [additional tags that describe the design of the unit]
-- package sub_level_component
package sub_level_component is
procedure ...
function ...
[other declarations]
end sub_level_component

File: UNIT_1_.ADA
-- UNIT OF: top_level_component
-- UNIT DESCRIPTION: This is a simple unit that belongs to the
-- top_level_component.
-- [additional tags that describe the design of the unit]
package unit_1 is
function ...
end unit_1

-- UNIT OF: sub_level_component
-- UNIT DESCRIPTION: This is another simple unit that belongs to the
-- sub_level_component.
-- [additional tags that describe the design of the unit]
package unit_2 is
function ...
end unit_2

You can find a more complete example in the SCA$2167A directory, assuming
this option was chosen when SCA was installed. For this example, use the
following steps:

1. To set your SCA library to be SCA$2167A, enter the following command:

$ SCA SET LIBRARY SCA$2167A

2. To create a report, enter the following command:

$ SCA REPORT 2167A_DESIGN/OUTPUT=mydir:2167a_design

5–22 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

To process the report with DECdocument, do the following:

1. Copy the SDML files from SCA$2167A into your directory, as follows:

$ COPY SCA$2167A:*.SDML mydir:

2. Define 2167A_DESIGN to point at the version you just generated, as
follows:

$ DEFINE 2167A_DESIGN mydir:2167a_design.sdml

3. Invoke DECdocument with a destination_type recognized by DECdocument,
such as POSTSCRIPT, or LINE, as follows:

$ DOCUMENT 2167A_PROFILE MILSPEC destination_type

5.6.5.2 Retrieving 2167A Structure Information
You can use SCA to get information about the structure of your system. For
example, if you want to find all the components in your system, enter the
following query:

SCA> FIND COMPONENT AND SYMBOL=TAG

Because the three primary 2167A tags are all keyword tags, you can use
them in keyword queries. For example, if you want to find all the units of a
component named Component 1, use the following query expression:

CONTAINED_BY (-
END = "UNIT OF" AND SYMBOL=TAG, -
BEGIN = "Component 1" AND SYMBOL=KEYWORD, -
DEPTH = 1)

Similarly, you can use queries on the COMPONENT OF tag to find sublevel
components of a given component.

The 2167A_DESIGN report uses these mappings to create the report. It starts
with the following SCA query expression:

CONTAINED_BY(-
END = "COMPONENT", -
BEGIN = SYMBOL=KEYWORD, -
DEPTH = 1, -
RESULT = BEGIN)

Using LSE and SCA to Design Programs 5–23

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

This returns the occurrences of the names of each component of the system.
The report then goes through the components one at a time, and writes the
component section for each. For each component, it then constructs a query of
the following form:

CONTAINED_BY(-
END = "UNIT OF", -
BEGIN = component_name AND SYMBOL=KEYWORD, -
DEPTH = 1, -
RESULT = BEGIN),

This returns the UNITS that belong to this component. For each such unit, the
corresponding unit subsection is written.

The data in the 2167A Software Design Report is obtained from the various
tags in your program. The general description information for components is
taken from the COMPONENT DESCRIPTION tag. The general description
information for units is taken from the UNIT DESCRIPTION tag. The
following tables show the tags corresponding to other paragraphs in the report:

TAGS FOR COMPONENT INFORMATION:

Tag: Description of corresponding section:

INPUT/OUTPUT DATA Input and output data for the component
ALGORITHMS Algorithms used by the component
ERROR HANDLING Error detection/recovery features
DATA CONVERSION Data conversions done by the component
LOGIC FLOW Logic flow of the component
REQUIREMENTS ALLOCATION Requirements satisfied by this component

TAGS FOR UNIT INFORMATION:

Tag: Description of corresponding section:

INPUT/OUTPUT DATA ELEMENTS Input and output data for the unit
LOCAL DATA ELEMENTS Data used only in this unit
INTERRUPTS AND SIGNALS Interrupts/signals handled by this unit
UNIT ALGORITHMS Algorithms used by this unit
UNIT ERROR HANDLING Error detection/recovery for the unit
UNIT DATA CONVERSION Data conversions done by unit
USE OF OTHER ELEMENTS Other elements used by this unit
UNIT LOGIC FLOW Logic flow of the unit
DATA STRUCTURES Data structures implemented by unit
LOCAL DATA FILES Data files or databases used by unit
LOCAL DATABASES Same as LOCAL DATA FILES
LIMITATIONS Limitations of the unit
REQUIREMENTS ALLOCATED TO
THIS UNIT

Requirements satisfied by this unit

5–24 Using LSE and SCA to Design Programs

Using LSE and SCA to Design Programs
5.6 Generating Design Reports

For Ada programs, these tags can be put into your comment headers
automatically by expanding the 2167A placeholder in the header comment
for the file.

Because the exact mapping between elements of your program and 2167A
items is highly dependent on your particular application and policies, the
2167A report as supplied by DIGITAL makes no attempt to use program
elements (packages, routines, and so on). All information in the report is
obtained from tags. It is, however, possible to customize reports to use
information from your program elements. It is also possible to change the
mapping of UNITS to files and COMPONENTS to sets of files. It is expected
that you will want to use a text editor to do at least some customization of the
2167A report.

5.7 Reverse-Engineering a Design
A powerful feature of the OpenVMS design environment is the ability to
reverse-engineer existing code into layers at various levels, thus retrieving
much of the actual algorithm design. The INTERNALS report produces this
decomposition. You can fine-tune the report with the DEFINE ADJUSTMENT
command. The following example is taken out of context from an Ada package:

function matrix_multiply (left, right : in integer_matrix)
return integer_matrix is

-- ++
-- FUNCTIONAL DESCRIPTION:
--
-- This function computes the matrix product of two integer matrices.
--
-- It uses a simple, triple-nested loop, and does not do any checking to
-- see if the matrices conform.
--
-- FORMAL PARAMETERS:
--
-- left:
-- The left operand.
--
-- right:
-- The right operand.
--
-- FUNCTION VALUE:
--

Using LSE and SCA to Design Programs 5–25

Using LSE and SCA to Design Programs
5.7 Reverse-Engineering a Design

-- The result of multiplying the two matrices.
-- --

result_matrix :
integer_matrix(left’range,right’range(2));

:= (others => (others => 0));
begin

-- Loop over the rows of the left matrix
outer_loop: for i in left’range loop

-- loop over the columns of the right matrix
middle_loop: for j in right’range(2) loop

-- compute the inner product of the current row and column
inner_loop: for k in left’range(2) loop

result_matrix(i,j)
:= result_matrix (i,j) + left(i,k) * right(k,j);

end loop inner_loop;
end loop middle_loop;

end loop outer_loop;
return result_matrix;

end matrix_multiply;

5.7.1 Sample Report
You can compile the previous function design, load it into an SCA library, and
then enter the following command to produce an INTERNALS report:

LSE> REPORT INTERNALS

The report might include a routine section similar to that on the following
pages.

5–26 Using LSE and SCA to Design Programs

matrix_multiply

matrix_multiply

This function computes the matrix product of two integer matrices.

Format

result := matrix_multiply left, right

Returns

The result of multiplying the two matrices

Arguments

left
The left operand

right
The right operand

Description

This function computes the matrix product of two integer matrices.

It uses a simple, triple-nested loop, and does not do any checking to see if the
matrices conform.

Using LSE and SCA to Design Programs 5–27

matrix_multiply

Body

1
-- Loop over the rows of the left matrix
outer_loop: for i in left’range loop

-- loop over the columns of the right matrix
middle_loop: for j in right’range(2) loop

«compute the inner product of the current row and column» 2
end loop middle_loop;

end loop outer_loop;
return result_matrix;

2 -- compute the inner product of the current row and column
inner_loop: for k in left’range(2) loop

result_matrix(i,j)
:= result_matrix (i,j) + left(i,k) * right(k,j);

end loop inner_loop;

The report is generated with numbered callout tags representing levels of
hierarchy in the output. In this example, tag 1 is the top level, the first tag
2 is a pseudocode comment reflecting the fact that a section of code has been
collapsed into this code, and the second tag 2 is the expanded code from the
first tag 2.

5–28 Using LSE and SCA to Design Programs

Index

A
ABSTRACT tag, 5–16
/AFTER qualifier, 3–9
ALGORITHM tag, 5–5
.ANA files, 3–2

See Analysis data files
definition of, 1–3

Analysis data, 3–1
definition of, 1–3

Analysis data (.ANA) files, 3–1
creating, 3–2

/ANALYSIS_DATA qualifier, 5–10
Analyzing designs, 5–9
Arcs, 2–8, 2–15
Attributes

query, 4–28
2167A_DESIGN report

definition of, 5–20
describing structure in code, 5–21
format, 5–15
retrieving structure information, 5–23

B
Batch commands

SCA, 1–8
/BEFORE qualifier, 3–9
/BRIEF qualifier, 3–15

C
Call graph, 4–14, 4–18

display formats as lexical trees, 4–22
formatting, 4–21
information contained in, 2–15
performing queries, 4–14
printing, 4–27
redrawing, 4–22
specifying vertical, 4–21

Call graph query, 2–3, 2–13
attributes, 2–14
definition of, 1–3
displaying calls from a routine, 4–14
displaying recursive calls, 4–25
extending information, 4–19
formatting the display, 4–21
going to source code, 4–17
modifying display options, 4–43
moving to a routine’s source, 2–17
navigating display, 4–15
performing, 4–14
refining the query, 4–17
removing items from, 4–20
removing redundancy, 4–18
removing unneeded information, 4–18
selecting items from, 4–20
specifying, 2–14
specifying negation, 4–17
viewing results, 2–15

Call Graph Query window, 2–14
Call Graph Results window, 2–15

Index–1

Class browser, 2–3, 2–6
Class browser query

specifying, 2–6
viewing results, 2–8

Class Browser Query window, 2–7
Class Browser Results window, 2–8
Commands

DEFINE KEYWORD, 5–11, 5–12
DEFINE PACKAGE, 5–18
DEFINE PARAMETER, 5–18
DEFINE ROUTINE, 5–18
DEFINE TAG, 5–12
ENTER COMMENT, 5–6
ENTER COMMENT/BLOCK, 5–7
ENTER COMMENT/LINE, 5–7
ENTER PSEUDOCODE, 5–6, 5–7
REPORT, 5–15
SAVE ENVIRONMENT, 5–12
SHOW TAGS, 5–16

Comment block
definition of, 5–10

/COMMENT qualifier, 5–14
Comments

See also Tagged comments
block

definition of, 5–10
expressing design information in, 5–10

Compact tree, 4–18, 4–22, 4–23, 4–43
COMPONENT DESCRIPTION tag, 5–24
COMPONENT OF tag, 5–21
COMPONENTS

definition of, 5–21
COMPONENT tag, 5–21
CREATE LIBRARY command, 3–4
Creating designs with PDF, 5–2
Creating INTERNALS reports, 5–18
Creating LSE package definitions, 5–18
Creating online HELP, 5–17
Cross-reference query, 2–3, 2–10

cross-referencing by symbol domain, 4–10
cross referencing by symbol name, 4–2
cross-referencing by symbol type, 4–8
cross-referencing by symbol usage, 4–5
definition of, 1–3
expanding result, 2–12

Cross-reference query (cont’d)
limiting queries to specific files, 4–11
limiting queries to specific modules, 4–7
performing, 4–1
specifying, 2–10
viewing results of a, 2–12

Cross-Reference Query window, 2–11
Cross-Reference Results window, 2–12
Current library, 3–11
Current query

adding items to, 4–37
deleting the, 4–42
keeping items in, 4–35
modifying, 4–34
removing items from, 4–36
saving the, 4–41

D
Data declarations

designing, 5–7
Data structure query, 2–3, 2–18

creating type trees, 4–28
definition of, 1–3
going to source, 4–34
modifying display options, 4–43
performing, 4–28
specifying, 2–18
using attributes, 4–28
viewing, 2–20

Data Structures Query window, 2–19
Data Structures Results window, 2–20
Data types, 4–28

predefined by programming language,
4–28

user-defined, 4–28
DDIF files, 4–27
DEFINE ADJUSTMENT command, 5–25
DEFINE KEYWORD command, 5–11, 5–12
DEFINE PACKAGE command, 5–18
DEFINE PARAMETER command, 5–18
DEFINE ROUTINE command, 5–18
DEFINE TAG command, 5–12

Index–2

DELETE LIBRARY command, 3–14
/DELETE qualifier, 3–6
DELETE QUERY command, 4–42
Deleting queries, 4–42
Deleting SCA libraries, 3–14
Describing 2167A structure in your code,

5–21
/DESIGN=(COMMENT) qualifier, 5–8
/DESIGN=(PLACEHOLDER) qualifier, 5–8
Designing data declarations, 5–7
Designing routine declarations, 5–4
/DESIGN qualifier, 5–8, 5–10
Display formats, 4–22

compact tree, 4–23
graph, 4–24, 4–25
lexical tree, 4–22

Display options
modifying, 4–43

DOD-STD-2167A
See 2167A_DESIGN report

E
ENTER COMMENT/BLOCK command, 5–7
ENTER COMMENT/LINE command, 5–7
ENTER COMMENT command, 5–6
ENTER PSEUDOCODE command, 5–6, 5–7
Environment setup

See SCA environment
Exiting from SCA, 2–2, 2–21
Extending

type trees, 4–29
Extend options, 4–19
Extract graph dialog box, 4–27

F
FACILITY keyword tag, 5–3
Files

DDIF, 4–27
limiting specific queries to a, 4–11

FIND OCCURRENCES command, 4–3
FORMAL PARAMETERS tag, 5–11

/FULL qualifier, 3–15
FUNCTIONAL DESCRIPTION tag, 5–16
Function body declaration, 5–4

G
Generating design reports, 5–15
GOTO DECLARATION command, 4–3
GOTO QUERY command, 4–40
Go-to-source feature, 2–17, 4–12, 4–13,

4–17, 4–34
Graph display format, 4–22, 4–24

H
HELP report

definition of, 5–17
format, 5–15

Help text
accessing, 1–5

/HIDDEN qualifier, 3–15

I
IMPORT command, 1–3, 3–2
INTERNALS report

creating, 5–18
definition of, 5–18, 5–25
format, 5–15
targets

DOCUMENT, 5–19
RUNOFF, 5–19
TEXT, 5–19

Invoking SCA
from OpenVMS systems, 2–2

Issuing SCA commands, 2–1

K
Keyword list

adding, 5–12
KEYWORDS tag, 5–3
Keyword tag

defining, 5–11
definition of, 5–11
FACILITY, 5–3

Index–3

Keyword tag (cont’d)
KEYWORDS, 5–3

L
Lexical tree, 2–8, 2–15, 4–18, 4–22

See also Call graph
Library

See SCA library
SCA

containing design information, 5–9
directory, 3–4
displaying module information, 3–15
displaying specifications, 3–15
initializing, 3–4
loading, 3–5
loading design information into, 5–9
optimizing, 3–13
specifying, 3–8

Library attributes
displaying, 3–15
hiding, 3–17

Library list
adding to, 3–9
replacing, 3–8
repositioning libraries in, 3–11

/LIBRARY qualifier, 3–6
Library sample opening, 2–2
LOAD command, 3–5
Load dialog box, 3–7
Loading design information into an SCA

library, 5–9
LSE$ENVIRONMENT, 5–12
LSE$SYSTEM_ENVIRONMENT, 5–10

M
Maintenance

library, 3–13
MIL-STD-2167A

See 2167A_DESIGN report
Modifying query display options, 4–43
Module

limiting queries to specific, 4–7

Module attributes
displaying, 3–15
hiding, 3–17

Multiple libraries table, 3–12
Multiple queries

moving to next or previous, 4–39
navigating through, 4–39
using query lists, 4–40

N
Name

cross referencing a symbol by, 4–2
Name browser, 2–3, 2–4

dialog box, 2–4
Navigation button, 4–17
Navigation window, 4–15, 4–16
Negation operator, 4–17
New Library dialog box, 3–5
/NEW qualifier, 5–13
NEXT QUERY command, 4–39
Node, 2–8, 2–15, 2–20

extending from a, 4–19
removing, 4–21
selecting, 4–20

/NOREPLACE qualifier, 3–6

O
Occurrence

definition of, 1–3
Online help

accessing, 1–5
Open Library dialog box, 3–10

P
PACKAGE report

definition of, 5–18
format, 5–15

Preserving designs as a fixed reference point,
5–9

PREVIOUS QUERY command, 4–40

Index–4

Primary library, 3–5
Printing

call graph results, 4–27
Procedure body declaration, 5–4
Processing designs, 5–8
Program Design Facility (PDF)

analyzing designs, 5–9
creating designs, 5–2
generating design reports, 5–15
loading design information into an SCA

library, 5–9
processing designs, 5–8
refining designs, 5–6
reverse-engineering a design, 5–25

Program Design Language (PDL), 5–1
Pseudocode

example of, 5–6
writing the algorithm design, 5–6

Q
Qualifier

/ANALYSIS_DATA, 5–10
/COMMENT, 5–14
/DESIGN, 5–8, 5–10
/DESIGN=(COMMENT), 5–8
/DESIGN=(PLACEHOLDER), 5–8
/NEW, 5–13

Query
browsing for classes, 2–6
browsing for names, 2–4
call graph

performing, 4–14
specifying, 2–14

cross reference
performing, 4–1
specifying, 2–10

current
modifying, 4–34

data structure
performing, 4–28
specifying, 2–18

deleting, 4–42
limiting to specific files, 4–11
modifying display options, 4–43

Query (cont’d)
multiple

See Multiple queries
navigating to other windows, 4–13
navigation, 4–15, 4–40
performing a, 2–3
refining, 4–17
saving, 4–41
types of, 2–3
using windows, 2–3

Query attributes, 4–28
Domain, 4–10
in file, 4–11
in module, 4–7
Name query attribute, 4–2
Of type query attribute, 4–28
Type of query attribute, 4–28
Type query attribute, 4–8
Usage query attribute, 4–5
variable of a, 4–28

Query Language
attribute selection expressions

name, 4–2
occurrence, 4–5
symbol class, 4–8
symbol domain, 4–10

name selection, 4–2
occurrence selection, 4–5
symbol class selection, 4–8
symbol domain selection, 4–10

Query list, 4–40
accessing, 4–40
selecting from, 4–41

Query List dialog box, 4–41
Query results

refining, 4–17
Query session

See also Queries
See DELETE QUERY command
See GOTO QUERY command
See NEXT QUERY command
See PREVIOUS QUERY command
See SAVE QUERY command
See SHOW QUERY command

Index–5

Query session (cont’d)
creating, 4–39
current query, 4–39
multiple, 4–39

Query windows
navigating to, 4–13

R
Recovery

library, 3–18
Recursive calls, 4–25
Redundancy

removing, 4–18
Refining designs with PDF, 5–6
Refining query results, 4–17
Relationship

definition of, 1–3
$REMARK tag, 5–12
Reorganize

SCA libraries, 3–13
REORGANIZE command, 3–13
/REPLACE qualifier, 3–6, 3–8
REPORT command, 5–15
Reports

2167A_DESIGN, 5–15, 5–20
generating, 5–15
HELP, 5–15, 5–17
INTERNALS, 5–15, 5–18, 5–25
PACKAGE, 5–15, 5–18
sample, 5–26
sample templates files, 5–20
using design formats, 5–15

Retrieving 2167A structure information,
5–23

Reverse-engineering a design, 5–25
Routine

displaying calls from, 4–14
Routine declarations

designing, 5–4

S
Sample report, 5–26

templates files, 5–20
Sample SCA library, 1–2

file location, 1–2
SAVE ENVIRONMENT command, 5–12
SAVE QUERY command, 4–41
Saving queries, 4–41
SCA

concepts and features, 1–1
graphical user interface, 1–2
libraries, 1–2
navigation, 1–1
static analysis, 1–2

creating analysis data, 3–2
DECwindows, 1–2
exiting from, 2–21
getting help, 1–5
invoking, 2–1
loading libraries, 3–5
opening existing libraries, 3–8
opening sample library, 2–2
overview, 1–1 to 1–4
performing queries, 1–4, 2–3
setting up environment, 3–1
types of queries, 2–3
using, 1–4
using batch commands, 1–8
using query windows, 2–3
using windows, 1–6

SCA batch commands
ANALYZE, 1–8
INSPECT, 1–8
LOAD, 1–8
REORGANIZE, 1–8
REPORT, 1–8
using, 1–8

SCA containment functions
CONTAINING, 5–13
CONTAIN_BY, 5–13

SCA environment, 3–1
steps to setting up, 3–2

Index–6

SCA library
adding to the library list, 3–9
creating a new, 3–4
current, 3–11
definition of, 1–3
deleting, 3–14
displaying library attributes, 3–15
displaying module attributes, 3–15
hiding attributes, 3–17
loading, 3–5
maintenance, 3–13
opening an existing library, 3–8
opening sample library, 2–2
overview, 1–2
primary, 3–5
recovering, 3–18
reorganizing, 3–13
replacing the library list, 3–8
repositioning, 3–11
sample, 1–2
using multiple, 3–11

SCA Main window, 1–6
SCA terminology, 1–3
SCA window components, 1–7

display region, 1–7
menu bar, 1–7
options region, 1–7
selection buttons, 1–7

SET LIBRARY command, 3–8
SHOW LIBRARY command, 3–15
SHOW MODULE command, 3–15
SHOW TAGS command, 5–16
Source code

going to, 4–17
Static analysis, 1–2
Structured tag

subtags, 5–11
Symbol

cross referencing by name, 4–2
cross-referencing by type, 4–8
cross-referencing by usage, 4–5
definition of, 1–3

Symbol domain
cross-referencing by, 4–10

Symbol name
definition of, 1–3

Symbol type
cross-referencing by, 4–8

Symbol usage
cross-referencing by, 4–5

System buffer
query, 4–39

T
Tag, 5–17

See also Keyword tag
ABSTRACT, 5–16
adding new, 5–12
COMPONENT, 5–21
COMPONENT DESCRIPTION, 5–24
COMPONENT OF, 5–21
FORMAL PARAMETERS, 5–11
FUNCTIONAL DESCRIPTION, 5–16
list of, 5–24
$REMARK, 5–11
types of

keyword, 5–11
structured, 5–11
text, 5–11

UNIT DESCRIPTION, 5–24
UNIT OF, 5–21
$UNTAGGED, 5–11

Tagged comments
associating tags with objects, 5–13
definition of, 5–10
using, 5–10

Terminology
SCA, 1–3

Text tag
definition of, 5–11

Type declaration, 5–4
Type tree, 2–6, 2–18

creating, 4–28
extending, 4–29
information contained in, 2–20

Index–7

U
UNIT DESCRIPTION tag, 5–24
UNIT OF tag, 5–21
UNITS

definition of, 5–21
$UNTAGGED tag, 5–12
Using design report formats, 5–15

V
Vertical call graphs

specifying, 4–43
/VISIBLE qualifier, 3–15

W
Windows

navigating to other query, 4–13

X
.XREF files, 1–3

Index–8

