
DECset
DIGITAL Language-Sensitive Editor
Command-Line Interface and Callable
Routines Reference Manual
Order Number: AA–QJESB–TK

November 1998

This reference manual provides information about using the DIGITAL
Language-Sensitive Editor’s command-line interface and callable routines
on OpenVMS systems. For additional reference information, see the
DIGITAL Language-Sensitive Editor/Source Code Analyzer for OpenVMS
Reference Manual.

Revision/Update Information: This is a revised manual.

Operating System and Version: OpenVMS VAX, Version 6.2 or higher
OpenVMS Alpha, Version 6.2 or higher
DECwindows Motif, Version 1.2-3 or
higher

Software Version: DECset for OpenVMS, Version 12.3

Digital Equipment Corporation
Maynard, Massachusetts



First Printing, November 1993
Revised, May 1995
Revised, November 1998

While DIGITAL or EDS believes the information included in this publication is correct as of the
date of publication, it is subject to change without notice.

Possession, use, or copying of the software described in this documentation is authorized only
pursuant to a valid written license from DIGITAL, an authorized sublicensor, or the identified
licensor.

Digital Equipment Corporation or EDS makes no representations that the interconnection of its
products in the manner described in this document will not infringe existing or future patent
rights, nor do the descriptions contained in this document imply the granting of licenses to
make, use, or sell equipment or software in accordance with the description.

© Electronic Data Systems Limited 1994, 1995, 1998.

© Digital Equipment Corporation 1993, 1995, 1998. All rights reserved.

The following atr trademarks of Digital Equipment Corporation: DEC Ada, DEC BASIC, DEC
Pascal, DECset, DECterm, DECwindows, DIGITAL, DIGITAL C, DIGITAL C++, DIGITAL
COBOL, DIGITAL Fortran, OpenVMS, VAX, VAX DOCUMENT, VAX MACRO, VAX PL/I, VMS,
and the DIGITAL logo.

All other trademarks and registered trademarks are the property of their respective holders.

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Using LSE on OpenVMS Systems

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1.2 LSE Logical Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–1
1.3 Using Command Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–3
1.3.1 Setting the Default Command Language . . . . . . . . . . . . . . . . 1–3
1.3.2 Invoking LSE Command Languages . . . . . . . . . . . . . . . . . . . 1–4
1.3.3 Using the SET PROMPT KEYPAD Command . . . . . . . . . . . . 1–4
1.3.4 Integrating LSE with SCA and CMS . . . . . . . . . . . . . . . . . . . 1–5
1.3.5 Integrating DECwindows LSE with DECwindows SCA . . . . . 1–5
1.4 LSE Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–7
1.4.1 LSE Command-Line Qualifiers . . . . . . . . . . . . . . . . . . . . . . . 1–8
1.5 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–15
1.6 Diagnostic File Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–17
1.6.1 The /DIAGNOSTICS Qualifier . . . . . . . . . . . . . . . . . . . . . . . . 1–17
1.6.2 User-File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–18
1.6.3 User-File Format Command Descriptions . . . . . . . . . . . . . . . 1–19

END DIAGNOSTIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–20
END MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–21
MESSAGE/FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–22
MESSAGE/TEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–23
REGION/FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–24
REGION/LIBRARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–26
REGION/NESTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–28
REGION/TEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–30
START DIAGNOSTIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–32
START MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–33

iii



2 Using LSE Callable Routines

2.1 LSE Callable Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–1
2.1.1 Two Interfaces to Callable LSE . . . . . . . . . . . . . . . . . . . . . . . 2–2
2.1.2 Shareable Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.1.3 Passing Parameters to Callable LSE Routines . . . . . . . . . . . . 2–4
2.1.4 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2.1.5 Return Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.2 Simplified Callable Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–5
2.3 Full Callable Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–7
2.3.1 Main Callable LSE Utility Routines . . . . . . . . . . . . . . . . . . . . 2–7
2.3.2 Other LSE Utility Routines . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.3.3 User-Written Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–8
2.4 Examples of Using LSE Routines . . . . . . . . . . . . . . . . . . . . . . . . . 2–9
2.5 LSE Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–30

LSE$CLEANUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–31
LSE$CLIPARSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–35
LSE$CLOSE_TERMINAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–37
LSE$CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–38
LSE$EDIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–40
LSE$EXECUTE_COMMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–42
LSE$EXECUTE_INIFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–44
LSE$FILEIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–46
LSE$HANDLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–51
LSE$INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–53
LSE$LSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–61
LSE$MESSAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–63
LSE$PARSEINFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–64
FILEIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–66
HANDLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–68
INITIALIZE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–70
USER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–72

iv



Index

Examples

1–1 User-File Format Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . 1–18
2–1 Sample VAX BLISS Template for Callable DECTPU . . . . . . . 2–10
2–2 Normal LSE Setup in DIGITAL Fortran . . . . . . . . . . . . . . . . 2–16
2–3 Building a Callback Item List with DIGITAL Fortran . . . . . . 2–19
2–4 Specifying a User-Written File I/O Routine in DIGITAL C . . 2–23

Figures

2–1 Bound Procedure Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–4
2–2 Stream Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–47
2–3 Format of an Item Descriptor . . . . . . . . . . . . . . . . . . . . . . . . 2–54

Tables

1 Conventions Used in this Guide . . . . . . . . . . . . . . . . . . . . . . . viii
1–1 LSE Logical Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1–2
1–2 LSE Command-Line Qualifiers . . . . . . . . . . . . . . . . . . . . . . . 1–8
2–1 LSE$CLEANUP Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2–32
2–2 LSE$INITIALIZE Item Codes . . . . . . . . . . . . . . . . . . . . . . . . 2–54
2–3 LSE$_OPTIONS Masks and Bits . . . . . . . . . . . . . . . . . . . . . . 2–57

v





Preface

This reference provides information on how to use the DIGITAL Language-
Sensitive Editor (LSE) command-line interface and callable routines on
OpenVMS systems.

Intended Audience
This reference is intended for experienced programmers and technical
managers.

Document Structure
This reference contains the following information:

• Chapter 1 provides OpenVMS operating system-specific information for
using LSE.

• Chapter 2 describes the LSE callable interface routines and how to use
them.

Associated Documents
The following documents are also helpful when using LSE:

• The DIGITAL Language-Sensitive Editor/Source Code Analyzer for
OpenVMS Reference Manual provides a description of the LSE commands.

• The Guide to DIGITAL Language-Sensitive Editor for OpenVMS Systems
provides a tutorial description on the use of the LSE commands from the
DECwindows interface, and contains other important user information.

LSE is a component of the DECset toolkit. For more information on other
DECset components, see the reference manuals for the individual components.

vii



References to Other Products
Some older products that DECset components previously worked with might
no longer be available or supported by DIGITAL. Any reference in this manual
to such products does not imply actual support, or that recent interoperability
testing has been conducted with these products.

Note

These references serve only to provide examples to those who continue
to use these products with DECset.

Refer to the Software Product Description for a current list of the products that
the DECset components are warranted to interact with and support.

Conventions
Table 1 lists the conventions used in this guide.

Table 1 Conventions Used in this Guide

Convention Description

$ A dollar sign ( $ ) represents the OpenVMS DCL system
prompt.

Return In interactive examples, a label enclosed in a box
indicates that you press a key on the terminal, for
example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must
press the key labeled Ctrl while you simultaneously
press another key, for example, Ctrl/Y or Ctrl/Z.

KPn The phrase KPn indicates that you must press the key
labeled with the number or character n on the numeric
keypad, for example, KP3 or KP-.

file-spec, ... A horizontal ellipsis following a parameter, option,
or value in syntax descriptions indicates additional
parameters, options, or values you can enter.

. . . A horizontal ellipsis in a figure or example indicates
that not all of the statements are shown.

(continued on next page)

viii



Table 1 (Cont.) Conventions Used in this Guide

Convention Description

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

( ) In format descriptions, if you choose more than one
option, parentheses indicate that you must enclose the
choices in parentheses.

[ ] In format descriptions, brackets indicate that whatever
is enclosed is optional; you can select none, one, or all
of the choices.

{} In format descriptions, braces surround a required
choice of options; you must choose one of the options
listed.

boldface text Boldface text represents the introduction of a new
term.

monospaced boldface text Boldface, monospaced text represents user input in
interactive examples.

italic text Italic text represents book titles, parameters,
arguments, and information that can vary in system
messages (for example, Internal error number).

UPPERCASE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

lowercase Lowercase in examples indicates that you are to
substitute a word or value of your choice.

mouse The term mouse refers to any pointing device, such as
a mouse, puck, or stylus.

MB1,MB2,MB3 MB1 indicates the left mouse button, MB2 indicates
the middle mouse button, and MB3 indicates the right
mouse button.

In this manual, VMS refers to OpenVMS VAX and OpenVMS Alpha software.

ix





1
Using LSE on OpenVMS Systems

1.1 Introduction
This chapter describes basic information for using DIGITAL Language-
Sensitive Editor (LSE) on OpenVMS systems.

LSE is a multilanguage text editor that speeds up writing and compiling source
code. It is part of the DECset family of software development tools. Each of
the DECset tools enable you to take advantage of the multilanguage software
development capabilities on OpenVMS systems.

This chapter contains the following information:

• How logical names are used by LSE

• Format of the LSE command line and detailed descriptions of each
command-line qualifier

• Using the command languages

• Templates for subroutine packages

• Diagnostic file support

The LSE commands referenced in this document are for the VMSLSE and
Portable command languages. For information on the LSE callable interface,
see Chapter 2.

1.2 LSE Logical Names
Table 1–1 lists the logical names and describes how they are used by LSE.

Using LSE on OpenVMS Systems 1–1



Using LSE on OpenVMS Systems
1.2 LSE Logical Names

Table 1–1 LSE Logical Names

Logical Name Description

LSE$READ_ONLY_DIRECTORY Logical for read-only directories. Same as
using the SET DIRECTORY READONLY
command, except it can be executed from
the DCL command line. Define this logical
to be a list of directories for which LSE will
create read-only buffers for input files from
within them.

LSE$SOURCE Logical for source directories. Same as
using the SET DIRECTORY SOURCE
command, except it can be executed from
the DCL command line. Define this logical
to be a list of directories for LSE to use
when locating files.

LSE$INITIALIZATION Logical for an initialization file. Same as
invoking LSE with the /INITIALIZATION
qualifier.

LSE$COMMAND Logical for a command file. Same as
invoking LSE with the /COMMAND
qualifier.

LSE$ENVIRONMENT Logical for an environment file. Same as
invoking LSE with the /ENVIRONMENT
qualifier.

LSE$SECTION Logical for a command file. Same as
invoking LSE with the /SECTION qualifier.

LSE$SYSTEM_ENVIRONMENT Logical for an environment file. Same as
invoking LSE with the
/SYSTEM_ENVIRONMENT qualifier.

LSE$CURRENT_FILE Logical for the current file. Set to the last
file edited by LSE and used when LSE is
started, if no file is specified (unless the
qualifier /NOCURRENT_FILE is specified).

LSE$START_LINE Logical for the current file. Holds the line
of the last editing position in the last file
edited by LSE.

LSE$START_CHARACTER Logical for the current file. Holds the
character of the last editing position in the
last file edited by LSE.

LSE$EXAMPLE Logical that points to the LSE examples
directory.

1–2 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.3 Using Command Languages

1.3 Using Command Languages
LSE has two command languages available: VMSLSE and Portable. The
VMSLSE command language is the original LSE command language that has
always been present in LSE, and has remained the most used. In addition,
the VMSLSE command language is required for integration with DECwindows
SCA. The Portable command language is a more recent command language
devised for use in environments other than OpenVMS. The choice of default
command language is made at DECset installation time, but can always be
changed.

You can determine the current command language setting by issuing the
following command:

LSE> PLSE SHOW ATTRIBUTES

For information on integrating LSE with DIGITAL Source Code Analyzer
(SCA) and DIGITAL Code Management System (CMS), see Section 1.3.4 and
Section 1.3.5.

This guide presents examples of both VMSLSE and Portable commands.

Note

The online LSE Help includes a command translation table from
VMSLSE to Portable commands. At the command line, execute the
following command:

LSE> PLSE HELP VMSLSE_Command_Translation_Table

For information on customizing the Portable command language, invoke the
following Help command:

LSE> PLSE HELP Customizing_Command_Language

1.3.1 Setting the Default Command Language
If you often use commands that can only be invoked in one command language,
you might want to change the default command language setting. To set the
default command language, perform one of the following:

• In LSE—Enter SET COMMAND LANGUAGE VMSLSE or SET
COMMAND LANGUAGE Portable.

• In an initialization file—Specify the desired SET COMMAND LANGUAGE
command.

Using LSE on OpenVMS Systems 1–3



Using LSE on OpenVMS Systems
1.3 Using Command Languages

• LSE procedure calls in a command file—Enter
LSE_SET_COMMAND_LANGUAGE (’VMSLSE’) or
LSE_SET_COMMAND_LANGUAGE (’PORTABLE’).

1.3.2 Invoking LSE Command Languages
Only one of the command languages can be set as the default, and you
will normally invoke the commands that apply to that command language.
However, you might occasionally need to invoke a specific command from
the nondefault language. The following examples show the syntax for LSE
commands both within and outside the default command language setting:

• VMSLSE commands in a VMSLSE language setting (normal—no special
command syntax needed)

LSE> CHECK LANGUAGE/HELP PASCAL

• Portable commands in a VMSLSE language setting

LSE> PLSE CHECK LANGUAGE HELP PASCAL

• VMSLSE commands in a Portable language setting

LSE> TPU LSE$DO_COMMAND (’SET SCREEN HEIGHT=18’)

• Portable commands in a Portable language setting (normal—no special
command syntax needed)

LSE> SET HEIGHT 18

You can also set your own defaults in private section files, such as saving all
current settings into a binary file when you execute the
SAVE_ENVIRONMENT command.

1.3.3 Using the SET PROMPT KEYPAD Command
By default, the VMSLSE command language uses the VMSLSE keypad, which
you can change to the DEFAULT or USER keypad. Specify the following
command at the LSE> prompt:

LSE> PLSE SET PROMPT KEYPAD keypad_name

In this example, keypad_name represents one of the following:

• DEFAULT—Allows the use of any default key definition within a prompt
(for example, REMOVE and INSERT)

• USER—Allows the use of any key definition within a prompt, including
user-defined keys

• VMSLSE—Allows the use of the VMSLSE keypad (the default setting)

By default, the Portable command language uses the DEFAULT keypad.

1–4 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.3 Using Command Languages

1.3.4 Integrating LSE with SCA and CMS
Integration of LSE (character-cell or DECwindows) with CMS and the
character-cell SCA is not enabled by default in the Portable command language
setting. To enable this integration, specify the following command from the
Portable command language:

LSE> ENABLE VMS INTEGRATION

This command sets the VMSSCA_ and VMSCMS_ grammar prefixes, enabling
access to VMSLSE-compatible SCA and CMS commands. This command also
redefines key bindings and menu labels related to cross referencing to SCA (for
example, Ctrl/D is redefined to GOTO DECLARATION).

The DISABLE VMS INTEGRATION command restores the default setting.

Note

The ENABLE VMS INTEGRATION command enables two additional
command prefixes VMSCMS_ and VMSSCA_, which serve to ‘‘hide’’
the standard Help for CMS and SCA commands in this environment.
You can access Help for these commands using either of the following
methods:

• Execute Help with a SPAWN command:

LSE> SPAWN CMS HELP cms-command

LSE> SPAWN SCA HELP sca-command

• Interrupt operations with the DISABLE VMS INTEGRATION
command, access the Help you need, then resume operations with
the ENABLE VMS INTEGRATION command.

1.3.5 Integrating DECwindows LSE with DECwindows SCA
To integrate DECwindows LSE with DECwindows SCA requires that your
default command language setting be VMSLSE. Once that has been ensured,
you need to redefine some commands. (This is unlike the integration described
in Section 1.3.4.)

If your default is the Portable command language, the first step is to change it,
as follows:

LSE> SET COMMAND LANGUAGE VMSLSE

Using LSE on OpenVMS Systems 1–5



Using LSE on OpenVMS Systems
1.3 Using Command Languages

With the VMSLSE command language set, you must redefine the menu
commands and optionally redefine the key bindings, as follows:

1. Redefine the DECwindows LSE menu commands—From the
DECwindows LSE Options menu, select Menus... to display the "LSE:
Menus" dialog box, then perform the following steps:

a. From the right-hand list box, titled Labels, select the Find Occurrences
label. In the TPU Code text field at the bottom, remove the "$KEY"
string so the label definition appears as follows:

LSE_FIND_OCCURRENCES

After changing the label definition, click the Add Entry Arrow button
to add the modified label.

b. From the right-hand list box, titled Labels, select the Goto Declaration
label. In the TPU Code text field at the bottom, remove the "$KEY"
string so the label definition appears as follows:

LSE_GOTO_DECLARATION

After changing the label definition, click the Add Entry Arrow button
to add the modified label.

2. Optionally redefine the DECwindows LSE key bindings—From the
DECwindows LSE command line, redefine the following key bindings by
executing each of these commands:

LSE> DEFINE KEY CTRL/D "TPU LSE_GOTO_DECLARATION"
LSE> DEFINE KEY GOLD-CTRL/D "TPU VMSSCA_GOTO_CONTEXT_DECLARATION(’/INDICATED’)"
LSE> DEFINE KEY GOLD-CTRL/F "TPU LSE_FIND_OCCURRENCES"

Redefine these key bindings if you expect that you might, at any time, use
the CTRL keys instead of the menu commands.

Note

If a DECwindows SCA session was not active when you executed the
previous commands, attempts to use the changed "Find Occurrences"
or "Goto Declaration" Source menu options or key bindings will result
in the error message, "Cross reference utility not running". You
simply need to launch DECwindows SCA; there is no need to redo the
commands.

1–6 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.4 LSE Command Line

1.4 LSE Command Line
This section describes the format of the LSE command line and includes
detailed descriptions of each command-line qualifier.

The LSEDIT command invokes LSE. This command has the following syntax:

LSEDIT [/qualifiers] [file-spec]

/qualifiers
Specifies the LSEDIT command qualifiers.

file-spec
Specifies the file to be edited. It must be an OpenVMS file specification.
LSE uses the setting of the SET DIRECTORY SOURCE command or the
corresponding LSE$SOURCE logical name to resolve the file specification.

LSE reads the file into a buffer if the file exists. The buffer name is taken from
the name and type of the file specification in the command line. The file type
determines the language for the buffer. For example, .FOR is the file type for
Fortran, .PLI is the file type for PL/I, and .PAS is the file type for Pascal. If
the file does not exist, it is created when you use the EXIT command to leave
LSE.

If you do not specify a file name in your file specification, LSE uses the file
name specified in your last LSEDIT command, provided you entered the
EXIT command to end that editing session. If you do not specify a file type
in your file specification, LSE adds .LSE if your default command language
is VMSLSE, or .PLSE if your default command language is the Portable
command language.

The cursor is positioned at the same place as when you last left LSE. The file
name, type, and position are collectively called the current file information.
The current file information is updated only when you use the EXIT command
to leave LSE. If you use the /NOCURRENT_FILE qualifier, LSE does not use
the file specification from the previous LSEDIT command as the input file
specification. The QUIT command or Ctrl/Y does not change the current file
information.

Using LSE on OpenVMS Systems 1–7



Using LSE on OpenVMS Systems
1.4 LSE Command Line

1.4.1 LSE Command-Line Qualifiers
When you invoke LSE, you can use several command-line qualifiers to provide
more information to LSE on how to handle your files. Table 1–2 lists these
command-line qualifiers. Detailed descriptions of the qualifiers and their
defaults, indicated by ( D ), follow the table.

Table 1–2 LSE Command-Line Qualifiers

Qualifier Default

/[NO]COMMAND=file-spec See text

/[NO]CREATE /CREATE

/[NO]CURRENT_FILE /CURRENT_FILE

/[NO]DEBUG /NODEBUG

/[NO]DISPLAY /DISPLAY=CHARACTER_CELL

/[NO]ENVIRONMENT=file-spec-list /NOENVIRONMENT

/[NO]INITIALIZATION=file-spec See text

/[NO]INTERFACE /INTERFACE=CHARACTER_CELL

/[NO]JOURNAL[=file-name] /JOURNAL

/LANGUAGE=language See text

/[NO]MODIFY See text

/[NO]OUTPUT[=file-spec] /OUTPUT[=file-spec]

/[NO]READ_ONLY See text

/[NO]RECOVER /NORECOVER

/[NO]SECTION=file-spec /SECTION=LSE$SECTION

/START_POSITION=(line,character) See text

/[NO]SYSTEM_ENVIRONMENT /SYSTEM_ENVIRONMENT=LSE$SYSTEM_
ENVIRONMENT

/[NO]WRITE See text

/COMMAND=file-spec
/NOCOMMAND
Specifies a file containing DECTPU statements to be executed as part of the
LSE initialization.

If you specify the /NOCOMMAND qualifier, LSE does not use a DECTPU
initialization command file. (See the DIGITAL Text Processing Utility Reference
Manual for more information.)

1–8 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.4 LSE Command Line

You can define the logical name LSE$COMMAND to point to a file containing
DECTPU statements. If neither the /COMMAND nor /NOCOMMAND
qualifier appears on the command line, LSE tries to translate the logical
name LSE$COMMAND. If it has a translation, that value is used in the same
way as the /COMMAND qualifier value.

/CREATE ( D )
/NOCREATE
Controls whether LSE creates a new file when the specified input file is not
found. By default, LSE provides a buffer in which to create the file. When
you exit from LSE or write out the contents of the buffer with the WRITE or
COMPILE command, LSE creates a new file with the input file specification in
the appropriate directory.

When you specify the /NOCREATE qualifier on the LSE command line and the
name of a file to edit and the named file does not exist, LSE displays an error
message and places you in a buffer called $MAIN.

/CURRENT_FILE ( D )
/NOCURRENT_FILE
Specifies whether LSE uses the last file edited as the input file specification if
no file is specified on the command line.

/DEBUG[=debug-filespec]
/NODEBUG ( D )
Determines whether you will run a DECTPU debugger. This is useful in
testing DECTPU procedures for an application you are creating. LSE
reads, compiles, and executes the debug file before executing TPU$INIT_
PROCEDURE.

The default debug file specification is SYS$SHARE:LSE$DEBUG.TPU. You can
override this default on the command line to specify a debug file of your own.
For example, the following command invokes LSE, using a debug file called
SYS$SHARE:MYDEBUG.TPU:

$ LSEDIT/DEBUG=mydebug

You can define the logical name LSE$DEBUG to specify a debug file of
your own. This is useful if you want to keep the debug file in a directory
other than SYS$SHARE. You cannot use wildcards in the debug file
specification. The TPU debugger provides commands to manipulate variables
and control program execution. To start editing the code in the file you
are debugging, use the debugger command GO. For more information
about the DECTPU debugger, read the comments in the source file in

Using LSE on OpenVMS Systems 1–9



Using LSE on OpenVMS Systems
1.4 LSE Command Line

SYS$SHARE:LSE$DEBUG.TPU, or see the DIGITAL Text Processing Utility
Manual.

/DISPLAY=CHARACTER_CELL ( D )
/DISPLAY=DECWINDOWS
/DISPLAY=screen_manager_filespec
/NODISPLAY
Specifies which screen manager you want to run.

The /DISPLAY command qualifier is optional. By default, LSE uses the
character-cell screen manager. As an alternative to the /DISPLAY qualifier, you
can define the logical name LSE$DISPLAY_MANAGER as DECWINDOWS,
CHARACTER_CELL, or as a screen-manager file specification.

Note that this qualifier is synonymous to the /INTERFACE qualifier. In
addition, it allows you to specify the negative form, /NODISPLAY.

If you specify /DISPLAY=CHARACTER_CELL, LSE uses the character-cell
screen manager, which runs in a DECterm terminal emulator or on a physical
terminal.

If you specify /DISPLAY=DECWINDOWS, LSE uses the DECwindows screen
manager, which creates a DECwindows window in which to run LSE.

You cannot use the /NODISPLAY qualifier if the logical name
LSE$DISPLAY_MANAGER is pointing to the DECwindows window manager.

/ENVIRONMENT=file-spec-list
/NOENVIRONMENT( D )
Specifies the name of one or more binary environment files containing LSE
language, token, placeholder, alias, or package definitions. LSE reads in these
definitions as part of the LSE startup procedure. If you specify more than one
file, you must enclose the files in parentheses and separate them with commas.

If definitions or deletions of items appear in more than one file, the definition
that appears in the file listed first takes precedence.

SYS$LIBRARY: is the default device. The default file type is .ENV.

The logical name LSE$ENVIRONMENT is an alternative to the /ENVIRONMENT
command qualifier. If the /ENVIRONMENT or /NOENVIRONMENT qualifier
does not appear on the command line, LSE tries to translate the logical name
LSE$ENVIRONMENT. If it has a translation, the value is used in the same
way as the /ENVIRONMENT qualifier value. LSE translates the first ten
indexes of the logical name LSE$ENVIRONMENT.

See the SAVE ENVIRONMENT command in the LSE command dictionary for
information on using environment files.

1–10 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.4 LSE Command Line

/INITIALIZATION=file-spec
/NOINITIALIZATION
Specifies the name of a file containing a sequence of LSE commands to be
executed as part of the LSE startup procedure. This file usually contains the
occurrences of the NEW KEY command.

The logical name LSE$INITIALIZATION is an alternative to the
/INITIALIZATION qualifier. If /INITIALIZATION or /NOINITIALIZATION
does not appear on the command line, LSE tries to translate the logical name
LSE$INITIALIZATION. If it has a translation, the value is used in the same
way as the /INITIALIZATION qualifier value.

/INTERFACE=CHARACTER_CELL ( D )
/INTERFACE=DECWINDOWS
/INTERFACE=screen_manager_filespec
Specifies which screen manager you want to run.

The /INTERFACE qualifier is optional. By default, LSE uses the character-
cell screen manager. As an alternative to the /INTERFACE qualifier, you
can define the logical name LSE$DISPLAY_MANAGER as DECWINDOWS,
CHARACTER_CELL, or as a screen-manager file specification.

Note that this qualifier is synonymous to the /DISPLAY qualifier, but unlike
/DISPLAY, you cannot specify negation.

If you specify /INTERFACE=CHARACTER_CELL, LSE uses the character-cell
screen manager, which runs in a DECterm terminal emulator, or on a physical
terminal.

If you specify /INTERFACE=DECWINDOWS, LSE uses the DECwindows
screen manager, which creates a DECwindows window in which to run LSE.

/JOURNAL ( D )
/JOURNAL[=file-name]
/NOJOURNAL
Enables journaling for the editing session.

The /JOURNAL qualifier without any value enables buffer-change journaling
only. One buffer-change journal file is created for each editing buffer. The
name of each buffer-change journal file corresponds to the name of the
buffer it is journaling. The default file type for buffer-change journal files is
.TPU$JOURNAL.

Using LSE on OpenVMS Systems 1–11



Using LSE on OpenVMS Systems
1.4 LSE Command Line

If you supply a file name as the value to the /JOURNAL qualifier, keystroke
journaling is also performed. The name of the keystroke journal is taken from
the value supplied to the /JOURNAL qualifier. There is one keystroke journal
file for the editing session. The default file type for keystroke journal files is
.TJL.

To perform a recovery using a buffer-change journal file, use the RECOVER
BUFFER command after starting the editor. Use the /RECOVER command-
line qualifier only when attempting to recover using a keystroke journal file.
If you perform a recovery using a keystroke journal file, be sure to restore the
editing session that you began.

If you do not want to create a journal file of either type, use the /NOJOURNAL
qualifier.

/LANGUAGE=language
Sets the language for the current input file by overriding the language
indicated by the file type of the input file.

/MODIFY
/NOMODIFY
Specifies whether the buffer you create is modifiable or unmodifiable. If you
specify the /MODIFY qualifier, the LSEDIT command creates a modifiable
buffer. If you specify the /NOMODIFY qualifier, the LSEDIT command creates
an unmodifiable buffer. If you do not specify either qualifier, LSE determines
the buffer’s modifiable status from the read-only or write setting. By default, a
read-only buffer is unmodifiable and a write buffer is modifiable.

/OUTPUT[=file-spec] ( D )
/NOOUTPUT
Specifies the name of the file that LSE creates from the input file when you
exit from the editing session. Specifying a file specification on the /OUTPUT
qualifier causes LSE to ignore the current file information. By default, LSE
creates a new version of the input file.

Missing components of the file specification in the /OUTPUT qualifier take
their values from the corresponding fields of the input file specification.

When you exit from the editing session, LSE writes other buffers to their
associated files if the buffer contents have been modified during the session.
If you specify the /NOOUTPUT qualifier, LSE prevents writing back the main
buffer when you exit.

1–12 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.4 LSE Command Line

/READ_ONLY
/NOREAD_ONLY
Specifies that LSE create a read-only buffer for the input file. LSE does not
create a new output file. Any changes to the file are lost when you exit from
the editing session. This qualifier does not affect writing back other buffers to
their associated files if they were modified during the editing session.

If the /[NO]READ_ONLY qualifier is not specified explicitly, the read or write
status of the buffer for the input file is determined by the default settings of
the SET DIRECTORY command, or LSE$READ_ONLY_DIRECTORY logical
name.

/RECOVER
/NORECOVER ( D )
Directs LSE to use the latest version of the file specified as the value to the
/JOURNAL qualifier to recover changes that might have been lost due to a
previous abnormal LSE termination.

Note

The qualifier /RECOVER should be used only when attempting to
recover using a keystroke journal file. If you want to recover using a
buffer-change journal file, use the RECOVER BUFFER command in
LSE after the editor has been started.

When you recover a session, all files must be in the same state as they
were at the start of the editing session being recovered. You must enter the
LSEDIT/RECOVER command with the same qualifiers, initialization file,
section file, and environment file as you did for the session being recovered.

All terminal characteristics must be in the same state as they were at the start
of the editing session being recovered. If you changed the width or page length
of the terminal, you must change it back to the value it had at the start of the
editing session you want to recover. Check the following values by using the
DCL command SHOW TERMINAL:

• Device type

• Edit mode

• Eight bit

• Page

• Width

Using LSE on OpenVMS Systems 1–13



Using LSE on OpenVMS Systems
1.4 LSE Command Line

/SECTION=file-spec
/SECTION=LSE$SECTION ( D )
/NOSECTION
Specifies whether LSE is to map a section file containing DECTPU
procedures, key definitions, and variables. By default, LSE maps section
file LSE$SECTION. If you supply another file specification, LSE applies the
default SYS$LIBRARY:.TPU$SECTION when it opens the file.

If you specify the /NOSECTION qualifier, LSE does not use a section file, and
many LSE commands will not work. Therefore, when using the /NOSECTION
qualifier, you should specify the /COMMAND qualifier. The command file
should use only standard DECTPU built-ins.

/START_POSITION=(line,character)
Specifies the starting line and character in the file (top-of-file is
/START_POSITION=(1,1)). If you do not specify /START_POSITION, LSE
starts either at the top of the file, or at the position of the cursor when you last
edited the file.

/SYSTEM_ENVIRONMENT=file-spec
/SYSTEM_ENVIRONMENT=LSE$SYSTEM_ENVIRONMENT ( D )
/NOSYSTEM_ENVIRONMENT
Specifies the name of a system environment file. The difference between the
file specified by this qualifier and the file specified by the /ENVIRONMENT
qualifier is that definitions from the system environment file are not saved by
a SAVE ENVIRONMENT command.

The default device is SYS$LIBRARY: and the default file type is .ENV.

/WRITE
/NOWRITE
Specifies that LSE create a new output file when you exit from the editing
session. Any changes you made to the file are saved.

If the /[NO]WRITE qualifier is not specified explicitly, the read or write status
of the buffer for the input file is determined by the default settings of the SET
DIRECTORY command, or the LSE$READ_ONLY_DIRECTORY logical name.

1–14 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.5 Packages

1.5 Packages
LSE provides templates for subroutine packages. These packages define
OpenVMS System Services, Run-Time Library (LIB$, STR$, SMG$), and
Record Management System (RMS) routines. In addition, LSE provides a
mechanism for defining packages for your own subroutine libraries.

The System Services and RMS packages consist of routine definitions and
parameter definitions that are available automatically when you use LSE with
any of the following languages:

• DEC Ada

• DEC BASIC

• VAX BLISS-32

• DIGITAL C

• DIGITAL C++

• DIGITAL COBOL

• DIGITAL VAX COBOL

• DIGITAL Fortran

• VAX MACRO

• DEC Pascal

• VAX PL/I

Routines are useful for describing subroutine libraries. Not only are they
language-independent, but they need to be defined only once. Routine names
are used in the same way tokens are used. For example, if you type the routine
name SYS$FILESCAN and expand it, the following results:

sys$filescan ( {srcstr},
{valuelst},
[fldflags] )

Most languages access OpenVMS System Services and RMS routines with
the prefix SYS$. These languages must use the SYSTEM_SERVICES
package. Other languages use different prefixes. For example, DEC Ada
prohibits the prefix dollar sign ( $ ) and must use the STARLET package. VAX
BLISS and DEC Pascal require the prefix dollar sign ( $ ) and must use the
KEYWORD_SYSTEM_SERVICES package.

Using LSE on OpenVMS Systems 1–15



Using LSE on OpenVMS Systems
1.5 Packages

For example, to call the $SNDOPR system service from a VAX PL/I program,
enter the following line:

status := sys$sndopr

Then, you press the EXPAND key with the cursor just after sys$sndopr. This
expands to the following lines:

status := sys$sndopr (
{msgbuf},
[chan])

This indicates that the $SNDOPR system service has two parameters:
MSGBUF, which is required and CHAN, which is optional. Because CHAN
is optional, LSE expands it with an optional placeholder that you can either
delete or expand. Languages other than DEC Ada and VAX BLISS have
similar features.

In DEC Ada, the dollar sign is not used as part of the system service name.
Thus, you can enter the following line:

starlet.sndopr

Next, when you press the EXPAND key, it expands to the following lines:

STARLET.SNDOPR (
STATUS => {status},
MSGBUF => {msgbuf},
[CHAN => {chan}]);

In VAX BLISS, the system services start with a dollar sign without the leading
SYS. Thus, you can enter the following line:

status = $sndopr

When you press the EXPAND key it expands to the following lines:

status = $sndopr (
msgbuf = {~msgbuf~},
[~chan = {~chan~}~])

You can access OpenVMS online help for any of the system services in any
language. If you want help on any routine, place the cursor on the routine
name and press the HELP INDICATED key (PF1-PF2). You cannot use HELP
INDICATED on the parameter names; however, the HELP entry for the system
service will contain information on the parameters.

If you want to see the contents of a given package, parameter, or routine, use
the SHOW command. If you want to modify the definitions of a package, use
the EXTRACT command.

1–16 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.6 Diagnostic File Support

1.6 Diagnostic File Support
Diagnostic files communicate diagnostic messages to LSE from various tools.
A tool, such as a compiler, generates a diagnostic file that LSE uses to display
the diagnostics. After you display a diagnostic file in LSE, you can navigate
through the file from one diagnostic to the next. You can use the GOTO
SOURCE command to display the source that corresponds to a diagnostic in
another window.

There are two formats for diagnostic files:

• User-file format—Provides a simple format for customer tools to
communicate diagnostic information to LSE. You can list this format
without a special dump utility.

• DIGITAL internal-file format—Binary format that is used by DIGITAL
products to communicate diagnostic messages to LSE.

You can concatenate user-file and DIGITAL internal-file diagnostic modules
into one file and review them together.

Typically, a tool generates a module of zero or more diagnostics each time it
processes a source file. For example, a compiler generates a diagnostic module
for each compilation. Diagnostics typically are errors. Each diagnostic consists
of the following:

• Regions — Define the location of the source associated with the diagnostic.
There can be more than one region.

• Messages — Textual descriptions that explain the diagnostic. There can be
more than one message.

The rules that apply to DCL apply to the user-file format. For example,
nonquoted strings are converted to uppercase.

Section 1.6.1 describes the use of the /DIAGNOSTICS qualifier with the
COMPILE command. Section 1.6.2 shows an example diagnostic module in the
user-file format and explains how the module is used. Section 1.6.3 describes
each of the commands used in the user-file format.

1.6.1 The /DIAGNOSTICS Qualifier
The /DIAGNOSTICS qualifier is used with the COMPILE command to specify
that diagnostic files are generated by the compiler.

This command-line qualifier is required for Portable LSE and must be added
to the language’s compile command. For VMSLSE, the qualifier is added by
default.

Using LSE on OpenVMS Systems 1–17



Using LSE on OpenVMS Systems
1.6 Diagnostic File Support

In VMSLSE, when you specify the /CAPABILITIES=DIAGNOSTICS qualifier
for the DEFINE LANGUAGE and MODIFY LANGUAGE commands, a
/DIAGNOSTICS qualifier is automatically appended to the COMPILE
command. In Portable LSE, the /DIAGNOSTICS qualifier must be added
to the COMPILE command.

1.6.2 User-File Format
Example 1–1 shows a diagnostic module in the user-file format. Comments are
introduced by an exclamation mark (!).

Example 1–1 User-File Format Diagnostic

start module ! This command signals the start of a module.

start diagnostic ! This region marks line 1 in the file, and 1

! it is not a primary region.

region/file DEV$:[user.ex1]test.ada;1/line=1/column_range=(1,65535) 2

region/nested/column_range=(18)! Marks the 18th column in the above region. 3

! 2nd region

region/file DEV$:[user.ex1]test.ada;1/line=3/column_range=(1,65535)

! The following nested region marks column 4 of line 3 for the file specified above.

region/nested/column_range=(4)! Marks the 4th column in the above region.

! This is the primary region that LSE will highlight when positioned on this
! diagnostic.

region/file DEV$:[user.ex1]test.ada;1/line=10/column_range=(1,65535)-
/primary ! This region marks all of line 10 in the file.

region/nested/column_range=(4,4) ! Specifies a subregion at the above region.

! Messages

message/text=quoted "%ADAC-E-ASSIGNNERESTYP, Result type BOOLEAN in pre ..."

message/text=quoted " b at line 3 is not the same as type INTEGER ..."

message/text=quoted " subprogram ’in’ formal a at line 1 [LSM 5.2(1)]"

end diagnostic

! The next example is taken from a C diagnostic. The file region refers to a line
! in the text that contains a macro call and the text supplied by the text
! region is the macro expansion.

(continued on next page)

1–18 Using LSE on OpenVMS Systems



Using LSE on OpenVMS Systems
1.6 Diagnostic File Support

Example 1–1 (Cont.) User-File Format Diagnostic

start diagnostic 4

region/file DEV$:[user.c]macro.c;2/line=11/column_range=(5,25)-
/primary

region/text " if (i>0) j=k else l=m;"-
/line=1/column_range=(1,26)

message/text=quoted "%CC-W-INSBEFORE, Insert "";"" before reserved word ..."

end diagnostic

end module

Key to Example 1–1

1 The first diagnostic shows how regions and messages work together.

2 The file regions refer to lines in the source that cause the error described
in the text message.

3 The nested regions in each of the file regions refer to the location in each
line that contributes to the error.

4 The second diagnostic shows how a text region can be used to display
macro text for error messages.

1.6.3 User-File Format Command Descriptions
The following section describes the commands that define the user-file format.

Using LSE on OpenVMS Systems 1–19



END DIAGNOSTIC

END DIAGNOSTIC

Ends a diagnostic that begins with a START DIAGNOSTIC command.

Format

END DIAGNOSTIC

Description

This command ends a sequence of commands that make up a diagnostic.

Example

See Example 1–1 for a sample of the END DIAGNOSTIC command.

1–20 Using LSE on OpenVMS Systems



END MODULE

END MODULE

Ends a module in the user-file format that begins with the START MODULE
command.

Format

END MODULE

Description

This command ends a sequence of commands that make up a user-file format
diagnostic module.

Example

See Example 1–1 for a sample of the END MODULE command.

Using LSE on OpenVMS Systems 1–21



MESSAGE/FILE

MESSAGE/FILE

Defines a message in a file for a diagnostic that appears in the REVIEW buffer
during a review session.

Format

MESSAGE/FILE file-spec

Command Parameter

file-spec
Specifies the file containing the message

Description

This command specifies a file that contains the message to be displayed in the
REVIEW buffer for a diagnostic. The entire file is displayed in the REVIEW
buffer. The message is usually an error message.

Example

MESSAGE/FILE DEV$:[USER]MESSAGE.TXT

The contents of the file specified are displayed as the message in the REVIEW
buffer.

1–22 Using LSE on OpenVMS Systems



MESSAGE/TEXT

MESSAGE/TEXT

Defines a quoted or unquoted message for a diagnostic that appears in the
REVIEW buffer during a review session.

Format

MESSAGE/TEXT=[UN]QUOTED message-definition

Command Parameter

message-definition
Specifies the message

Description

The MESSAGE/TEXT=QUOTED command specifies that the message for the
diagnostic is a quoted string. A quoted message is enclosed in double quotes
(‘‘’’) with embedded double quotes (‘‘‘‘’’’’) used to place quotes in the string.

The MESSAGE/TEXT=UNQUOTED command specifies that the message is
the remaining text in the line. It does not have to be quoted. Nonquoted text
is converted to uppercase and leading and trailing white space is removed.

The message is usually an error message. If no qualifier is specified for the
MESSAGE command, /TEXT_QUOTED is the default.

Examples

1. MESSAGE/TEXT=UNQUOTED Here is another message.

This message is displayed in the REVIEW buffer. Leading and trailing
white space is truncated and the lowercase letters are converted to
uppercase, as follows:

HERE IS ANOTHER MESSAGE.

2. MESSAGE "Inserted "";"" at end of line"

If no qualifier is specified, or /TEXT alone is specified, the default becomes
/TEXT=QUOTED. This message is included in the REVIEW buffer without
the beginning and trailing quotes, as follows:

Inserted ";" at end of line.

Using LSE on OpenVMS Systems 1–23



REGION/FILE

REGION/FILE

Specifies that the source location associated with a diagnostic is in a file.

Format

REGION/FILE file-spec

Command Qualifiers Defaults

/LINE=number /LINE=1
/COLUMN_RANGE=(number,number) /COLUMN_RANGE=(1,1)
/LABEL=string See text
/PRIMARY

Qualifiers

/LINE=number
/LINE=1 (D)
Specifies the line number in the file for the region. The first line in a file is 1.
The valid range for the /LINE qualifier is �1 and higher. The �1 indicates a
line after the last line and 0 indicates a line before the first line. If the line
value is 0 or �1, any column range values specified are ignored.

/COLUMN_RANGE=(number,number)
/COLUMN_RANGE=(1,1) (D)
Specifies a range of columns in the file that defines the region. If only
the first number is specified, the second number defaults to the value
of the first number; that is, /COLUMN_RANGE=5 is equivalent to
/COLUMN_RANGE=(5,5). The valid range of numbers for a column range
is 1 to 65535, inclusive, with 65535 indicating the end-of-line and 1 indicating
the first column on a line. Therefore, /COLUMN_RANGE=(12,65535) defines a
region that starts in column 12 and runs to the end-of-line.

/LABEL=string
Specifies a short message that is appended to the beginning of the region in the
REVIEW buffer. The default is line n, where n is the line number of the source
specified with the /LINE qualifier and the default for text regions is supplied
text. The string must contain 14 or fewer characters.

/PRIMARY
Specifies the primary region among a group of regions. LSE positions the
cursor on the primary region for a diagnostic when reviewing that diagnostic.
If no region is specified as primary, the first sequential region (any region

1–24 Using LSE on OpenVMS Systems



REGION/FILE

but a nested region) is assumed to be primary. If more than one region in a
diagnostic is marked primary, the first one is used.

Command Parameter

file-spec
Specifies the file that contains the region. The full file specification for the file
region, which includes the device, directory, and version, should be used to help
ensure that LSE accesses the correct file when the GOTO SOURCE command
is executed.

Description

This command defines an area in a file that is associated with a diagnostic.
This area cannot span more than one line. If /FILE, /LIBRARY, /NESTED, or
/TEXT is not specified with the REGION command, /FILE is the default and
need not be entered.

Example

REGION/FILE DEV$:[user]program.src;23 -
/LINE=10 -
/COLUMN_RANGE=1 -
/Label="Src Line 10:" -
/PRIMARY

This region points to the first column of the tenth line in file
DEV$:[user]program.src;23. The region has a user-specified label and is a
primary region.

Using LSE on OpenVMS Systems 1–25



REGION/LIBRARY

REGION/LIBRARY

Specifies that the source location associated with a diagnostic is in a module
within a text library.

Format

REGION/LIBRARY file-spec

Command Qualifiers Defaults

/MODULE=module-name
/LINE=number /LINE=1
/COLUMN_RANGE=(number,number) /COLUMN_RANGE=(1,1)
/LABEL=string See text
/PRIMARY

Qualifiers

/MODULE=module-name
Specifies the module in the library that contains the region.

/LINE=number
/LINE=1 (D)
Specifies the line number in the library module for the region. The first line in
the module is 1. The valid range for the /LINE qualifier is �1 and higher. The
�1 indicates a line after the last line and 0 indicates a line before the first line.
If the line value is 0 or �1, any column range values specified are ignored.

/COLUMN_RANGE=(number,number)
/COLUMN_RANGE=(1,1) (D)
Specifies a range of columns in a module that defines the region. If only
the first number is specified, then the second number defaults to the
value of the first number; that is, /COLUMN_RANGE=5 is equivalent to
/COLUMN_RANGE=(5,5). The valid range of numbers for a column range is
1 to 65535, inclusive, with 65535 indicating the end-of-line and 1 indicating
the first column on a line. Therefore, /COLUMN_RANGE=(12,65535) defines a
region that starts in column 12 and runs to the end-of-line.

/LABEL=string
Specifies a short message that is appended to the beginning of the region in the
REVIEW buffer. The default is line n, where n is the line number of the source
specified with the /LINE qualifier and the default for text regions is supplied
text. The string must contain 14 or fewer characters.

1–26 Using LSE on OpenVMS Systems



REGION/LIBRARY

/PRIMARY
Specifies the primary region among a group of regions. LSE positions the
cursor on the primary region for a diagnostic when reviewing that diagnostic.
If no region is specified as primary, the first sequential region (any region
but a nested region) is assumed to be primary. If more than one region in a
diagnostic is marked primary, the first one is used.

Command Parameter

file-spec
Specifies the library that contains the region. The full file specification for the
library region, which includes the device, directory, and version, should be used
to help ensure that LSE accesses the correct file when the GOTO SOURCE
command is executed.

Description

This command defines an area in a library module for a diagnostic. This area
cannot span more than one line.

Example

REGION/LIBRARY DEV$:[user]textlib.tlb;3 -
/MODULE=textmod -
/LINE=1 -
/COLUMN_RANGE=(1,65535)

This region defines the entire first line in module textmod of library
DEV$:[user]textlib.tlb;3. No label is specified, so the default of line 1 is
used. This is not a primary region.

Using LSE on OpenVMS Systems 1–27



REGION/NESTED

REGION/NESTED

Specifies that the source location associated with a diagnostic is a subregion of
the previous region.

Format

REGION/NESTED

Command Qualifier Default

/COLUMN_RANGE=(number,number) /COLUMN_RANGE=(1,1)

Command Qualifier

/COLUMN_RANGE=(number,number)
/COLUMN_RANGE=(1,1) (D)
Specifies a range of columns that define a subregion of the previous region.
If only the first number is specified, the second number defaults to the
value of the first number; that is, /COLUMN_RANGE=5 is equivalent to
/COLUMN_RANGE=(5,5). The valid range of numbers for a column range is
1 to 65535, inclusive, with 65535 indicating the end-of-line and 1 indicating
the first column on a line. Therefore, /COLUMN_RANGE=(12,65535) defines a
region that starts in column 12 and runs to the end-of-line.

Description

This command defines an area that is a subregion of the /FILE, /TEXT,
/LIBRARY, or /NESTED region. This area cannot span more than one line.

Each type of sequential region (file, text, or library) can have a nested region
inside it. Nested regions can have nested regions. However, each subsequent
nested region must fit inside the previous region. Regions of the same size are
considered to fit inside each other. A nested region cannot appear by itself; it
must be a subregion of a sequential region. If more than four nested regions
follow a sequential region, the rest are ignored.

If the GOTO SOURCE command is executed when reviewing a diagnostic
file, LSE moves to the beginning of the innermost region of the region it is
positioned on in the REVIEW buffer.

1–28 Using LSE on OpenVMS Systems



REGION/NESTED

Example

REGION/FILE DEV$:[user]program.src;1 -
/LINE=10 -
/COLUMN_RANGE=(1,65535)

REGION/NESTED/COLUMN_RANGE=(2,10)

REGION/NESTED/COLUMN_RANGE=10

The nested regions define subregions of the file region. The first nested region
defines the area from column 2 to column 10, inclusive, on line 10 in file
DEV$:[user]program.src;1. The second nested region defines the last column in
that region.

Using LSE on OpenVMS Systems 1–29



REGION/TEXT

REGION/TEXT

Specifies that the source location associated with a diagnostic is in the text
that is included in this command as arguments.

Format

REGION/TEXT string [,string...]

Command Qualifiers Defaults

/LINE=number /LINE=1
/COLUMN_RANGE=(number,number) /COLUMN_RANGE=(1,1)
/LABEL=string See text
/PRIMARY

Qualifiers

/LINE=number
/LINE=1 (D)
Specifies the line number of the strings included in the region. The first string
included is line 1. The valid range for the /LINE qualifier is �1 and higher.
The �1 indicates a line after the last line and 0 indicates a line before the
first line. If the line value is 0 or �1, any column range values specified are
ignored.

/COLUMN_RANGE=(number,number)
/COLUMN_RANGE=(1,1) (D)
Specifies a range of columns in the specified string that defines the region.
If only the first number is specified, the second number defaults to the
value of the first number; that is, /COLUMN_RANGE=5 is equivalent to
/COLUMN_RANGE=(5,5). The valid range of numbers for a column range is
1 to 65535, inclusive, with 65535 indicating the end-of-line and 1 indicating
the first column on a line. Therefore, /COLUMN_RANGE=(12,65535) defines a
region that starts in column 12 and runs to the end-of-line.

/LABEL=string
Specifies a short message that is appended to the beginning of the region in the
REVIEW buffer. The default is line n, where n is the line number of the source
specified with the /LINE qualifier and the default for text regions is supplied
text. The string must contain 14 or fewer characters.

1–30 Using LSE on OpenVMS Systems



REGION/TEXT

/PRIMARY
Specifies the primary region among a group of regions. LSE positions the
cursor on the primary region for a diagnostic when reviewing that diagnostic.
If no region is specified as primary, the first sequential region (any region
but a nested region) is assumed to be primary. If more than one region in a
diagnostic is marked primary, the first one is used.

Command Parameter

string [,string...]
A quoted string (or strings separated by commas) that is the supplied text for
this command. This text appears in the REVIEW buffer for the region.

Description

This command defines an area in the text supplied with the command for a
diagnostic. This area cannot span more than one line.

Example

REGION/TEXT "A := B;", -
"C := D," -
/LINE=1 -
/COLUMN_RANGE=(7,7)
/PRIMARY

This region points to the last column of the first supplied string. No label is
specified, so the default of supplied text is used. This is a primary region. See
Example 1–1 for more samples.

Using LSE on OpenVMS Systems 1–31



START DIAGNOSTIC

START DIAGNOSTIC

Specifies the start of a diagnostic.

Format

START DIAGNOSTIC

Diagnostic Body

END DIAGNOSTIC

Command Parameter

Diagnostic Body
A diagnostic consists of a START DIAGNOSTIC command, one or more regions,
one or more messages, and an END DIAGNOSTIC command.

Description

This command marks the start of a diagnostic module in the user format.

Example

See Example 1–1 for samples of the START DIAGNOSTIC command.

1–32 Using LSE on OpenVMS Systems



START MODULE

START MODULE

Specifies the start of a diagnostic module in the user format.

Format

START MODULE

Module Body

END MODULE

Command Parameter

Module Body
A module consists of a START MODULE command, zero or more diagnostics,
and an END MODULE command.

Description

This command marks the start of a diagnostic module in the user format.

Example

See Example 1–1 for a sample of the START MODULE command.

Using LSE on OpenVMS Systems 1–33





2
Using LSE Callable Routines

This chapter describes the LSE callable routines. It describes the purpose of
the LSE callable routines, the parameters for a routine call, and the primary
status returns. The parameter in the call syntax represents the object that you
pass to an LSE routine. Each parameter description lists the data type and the
passing mechanism for the object. The data types are standard OpenVMS data
types. The passing mechanism indicates how the parameter list is interpreted.

2.1 LSE Callable Routines
Callable LSE routines make LSE accessible from within other languages and
applications. You can call LSE from a program written in any language that
generates calls using the OpenVMS Procedure Calling and Condition Handling
Standard. You can also call LSE from OpenVMS utilities, for example, MAIL.
With callable LSE, you can perform text-processing functions within your
program.

Callable LSE consists of a set of callable routines that reside in the LSE
shareable image, LSESHR.EXE. You access callable LSE by linking to this
shareable image, which includes the callable interface routine names and
constants. As with the DCL-level LSE interface, you can use files for input
to and output from callable LSE. You can also write your own routines for
processing file input, output, and messages.

You should be familiar with the following items:

• The OpenVMS Procedure Calling and Condition Handling Standard

• The OpenVMS Run-Time Library (RTL)

• The precise manner in which data types are represented on an OpenVMS
system

• The method for calling routines written in a language other than the one
you are using for the main program

The calling program must ensure that parameters passed to a called procedure,
in this case LSE, are of the type and form that the LSE procedure accepts.

Using LSE Callable Routines 2–1



Using LSE Callable Routines
2.1 LSE Callable Routines

The LSE routines described in this reference return condition values indicating
the routine’s completion status. When comparing a returned condition value
with a test value, use the LIB$MATCH routine from the RTL. Do not test the
condition value as if it were a simple integer.

2.1.1 Two Interfaces to Callable LSE
There are two interfaces that you can use to access callable LSE: the simplified
callable interface and the full callable interface.

Simplified Callable Interface
The easiest way to use callable LSE is to use the simplified callable interface.
LSE provides two alternative routines in its simplified callable interface. These
routines in turn call additional routines that do the following:

• Initialize LSE

• Provide the editor with the parameters necessary for its operation

• Control the editing session

• Perform error handling

When using the simplified callable interface, you can use the LSE$LSE
routine to specify an OpenVMS command line for LSE, or you can call the
LSE$EDIT routine to specify an input file and an output file. LSE$EDIT
builds a command string that is then passed to the LSE$LSE routine. These
two routines are described in detail in Section 2.2.

If your application parses information that is not related to the operation
of LSE, make sure the application obtains and uses all non-LSE parse
information before the application calls the simplified callable interface. The
reason is that the simplified callable interface destroys all parse information
obtained and stored before the simplified callable interface was called.

If your application calls the DECwindows version of LSE, the application may
call LSE$EDIT or LSE$LSE a single time only. Also, the application may not
call XtInitialize before calling LSE.

Full Callable Interface
The full callable interface consists of the main callable LSE routines and the
LSE Utility routines.

2–2 Using LSE Callable Routines



Using LSE Callable Routines
2.1 LSE Callable Routines

To use the full callable interface, you have your program access the main
callable LSE routines directly. These routines do the following:

• Initialize LSE (LSE$INITIALIZE)

• Execute LSE procedures (LSE$EXECUTE_INIFILE and
LSE$EXECUTE_COMMAND)

• Give control to the editor (LSE$CONTROL)

• Terminate the editing session (LSE$CLEANUP)

When using the full callable interface, you must provide values for certain
parameters. In some cases, the values you supply are actually addresses for
additional routines. For example, when you call LSE$INITIALIZE, you must
include the address of a routine that specifies initialization options. Depending
on your particular application, you may also have to write additional routines.
For example, you may need to write routines for performing file operations,
handling errors, and otherwise controlling the editing session. Callable LSE
provides utility routines that can perform some of these tasks for you. These
utility routines do the following:

• Parse the OpenVMS command line and build the item list used for
initializing LSE

• Handle file operations

• Output error messages

• Handle conditions

If your application calls the DECwindows version of LSE, the application may
call LSE$INITIALIZE a single time only. Also, the application may not call
XtInitialize before calling LSE.

Various topics relating to the full callable interface are described in the
following sections:

• Section 2.3 briefly describes the interface.

• Section 2.3.1 describes the main callable LSE routines (LSE$INITIALIZE,
LSE$EXECUTE_INIFILE, LSE$CONTROL, LSE$EXECUTE_COMMAND,
and LSE$CLEANUP).

• Section 2.3.2 discusses additional routines that LSE provides for use with
the full callable interface.

• Section 2.3.3 defines the requirements for routines that you can write for
use with the full callable interface.

Using LSE Callable Routines 2–3



Using LSE Callable Routines
2.1 LSE Callable Routines

2.1.2 Shareable Image
Whether you use the simplified callable interface or the full callable interface,
you access callable LSE by linking to the LSE shareable image, LSESHR.EXE.
This image contains the routine names and constants available for use by an
application. In addition, LSESHR.EXE provides the following symbols:

• TPU$GL_VERSION, the version of the shareable image

• TPU$GL_UPDATE, the update number of the shareable image

• TPU$_FACILITY, the DECTPU facility code

2.1.3 Passing Parameters to Callable LSE Routines
Parameters are passed to callable LSE by reference or descriptor, using
standard OpenVMS mechanisms. When the parameter is a routine, the
parameter is passed by descriptor as a bound procedure value (BPV) data type.

A bound procedure value is a two-longword entity in which the first longword
contains the address of a procedure entry mask, and the second longword is
the environment value. The environment value is determined in a language-
specific manner when the original bound procedure value is generated. When
the bound procedure is called, the calling program loads the second longword
into R1.

Figure 2–1 shows the structure of a bound procedure value.

Figure 2–1 Bound Procedure Value

Name of Your Routine

Environment

ZK−4046−GE

2.1.4 Error Handling
When you use the simplified callable interface, LSE establishes its own
condition handler, LSE$HANDLER, to handle all errors. When you use the
full callable interface, there are two ways to handle errors:

• You can use LSE’s default condition handler,

• You can write your own condition handler to process some of the errors,
and you can call LSE$HANDLER to process the rest.

2–4 Using LSE Callable Routines



Using LSE Callable Routines
2.1 LSE Callable Routines

2.1.5 Return Values
All LSE condition codes are declared as universal symbols. Therefore, you
automatically have access to these symbols when you link your program to the
shareable image. The condition code values are returned in R0.

Additional information about condition codes is provided in the descriptions
of callable LSE routines found in subsequent sections. This information is
provided under the section heading Condition Values Returned and indicates
the values that are returned when the default condition handler is established.

2.2 Simplified Callable Interface
The LSE simplified callable interface consists of two routines: LSE$LSE and
LSE$EDIT. These entry points to DECTPU are useful for the following kinds
of applications:

• Those able to specify all the editing parameters on a single command line

• Those that need to specify only an input file and an output file

If your application parses information that is not related to the operation of
LSE, make sure the application gets, and uses, all non-LSE parse information
before the application calls the simplified callable interface. The simplified
callable interface destroys all parse information obtained and stored before the
simplified callable interface was called.

The following example calls LSE$EDIT to edit text in the file INFILE.DAT and
writes the result to OUTFILE.DAT. Note that the parameters to LSE$EDIT
must be passed by descriptor.

/*
Sample C program that calls LSE. This program uses LSE$EDIT to
provide the names of the input and output files.

*/

#include descrip

int return_status;

static $DESCRIPTOR (input_file, "infile.dat");
static $DESCRIPTOR (output_file, "outfile.dat");

main (argc, argv)
int argc;
char *argv[];

Using LSE Callable Routines 2–5



Using LSE Callable Routines
2.2 Simplified Callable Interface

{
/*
Call LSE to edit text in "infile.dat" and write the result
to "outfile.dat". Return the condition code from LSE as the
status of this program.

*/

return_status = LSE$EDIT (&input_file, &output_file);
exit (return_status);
}

The next example performs the same task as the previous example. This time,
the LSE$LSE entry point is used. LSE$LSE accepts a single argument, which
is a command string starting with the verb LSEDIT. The command string can
contain all the qualifiers that are accepted by the LSEDIT command.

/*
Sample C program that calls LSE. This program uses LSE$LSE and
specifies a command string

*/

#include descrip

int return_status;

static $DESCRIPTOR (command_prefix, "LSE/NOJOURNAL/NOCOMMAND/OUTPUT=");
static $DESCRIPTOR (input_file, "infile.dat");
static $DESCRIPTOR (output_file, "outfile.dat");
static $DESCRIPTOR (space_desc, " ");

char command_line [100];
static $DESCRIPTOR (command_desc, command_line);

main (argc, argv)
int argc;
char *argv[];

{
/*
Build the command line for LSE. Note that the command verb
is LSEDIT. The string we construct in the buffer command_line
will be
LSEDIT/NOJOURNAL/NOCOMMAND/OUTPUT=outfile.dat infile.dat

*/

return_status = STR$CONCAT (&command_desc,
&command_prefix,
&output_file,
&space_desc,
&input_file);

if (! return_status)
exit (return_status);

2–6 Using LSE Callable Routines



Using LSE Callable Routines
2.2 Simplified Callable Interface

/*
Now call LSE to edit the file

*/
return_status = LSE$LSE (&command_desc);
exit (return_status);
}

2.3 Full Callable Interface
The LSE full callable interface consists of a set of routines that you can use to
perform the following tasks:

• Specify initialization parameters

• Control file input/output (I/O)

• Specify commands to be executed by LSE

• Control how conditions are handled

You can call the individual LSE routines that perform these functions from a
user-written program.

This interface has two sets of routines: the main LSE callable routines and the
LSE Utility routines. These LSE routines, and your own routines that pass
parameters to the LSE routines, are the mechanism that your application uses
to control LSE.

The following sections describe the main callable routines, how parameters are
passed to these routines, the LSE Utility routines, and the requirements of
user-written routines.

2.3.1 Main Callable LSE Utility Routines
This section describes the following callable LSE routines:

• LSE$INITIALIZE

• LSE$EXECUTE_INIFILE

• LSE$CONTROL

• LSE$EXECUTE_COMMAND

• LSE$CLEANUP

Using LSE Callable Routines 2–7



Using LSE Callable Routines
2.3 Full Callable Interface

Note

Before calling any of these routines, you must establish LSE$HANDLER
or provide your own condition handler. See the routine description of
LSE$HANDLER in Section 2.5 for information about establishing a
condition handler.

2.3.2 Other LSE Utility Routines
The full callable interface includes several utility routines for which you can
provide parameters. Depending on your application, you may be able to use
these routines rather than write your own routines. These LSE Utility routines
and their descriptions follow:

• LSE$CLIPARSE—Parses a command line and builds the item list for
LSE$INITIALIZE.

• LSE$PARSEINFO—Parses a command and builds an item list for
LSE$INITIALIZE.

• LSE$FILEIO—Is the default file I/O routine.

• LSE$MESSAGE—Writes error messages and strings by using the built-in
procedure MESSAGE.

• LSE$HANDLER—Is the default condition handler.

• LSE$CLOSE_TERMINAL—Closes DECTPU’s channel to the terminal (and
its associated mailbox) for the duration of a CALL_USER routine.

Note that LSE$CLIPARSE and LSE$PARSEINFO destroy the context
maintained by the CLI$ routines for parsing commands.

2.3.3 User-Written Routines
This section defines the requirements for user-written routines. When these
routines are passed to LSE, they must be passed as bound procedure values.
(See Section 2.1.3 for a description of bound procedure values.) Depending on
your application, you may have to write one or all of the following routines:

• Routine for initialization callback
This is a routine that LSE$INITIALIZE calls to obtain values for
initialization parameters. The initialization parameters are returned
as an item list.

2–8 Using LSE Callable Routines



Using LSE Callable Routines
2.3 Full Callable Interface

• Routine for file I/O
This is a routine that handles file operations. Instead of writing your own
file I/O routine, you can use the LSE$FILEIO utility routine. LSE does not
use this routine for journal file operations or for operations performed by
the built-in procedure SAVE.

• Routine for condition handling
This is a routine that handles error conditions. Instead of writing
your own condition handler, you can use the default condition handler,
LSE$HANDLER.

• Routine for the built-in procedure CALL_USER
This is a routine that is called by the built-in procedure CALL_USER. You
can use this mechanism to cause your program to get control during an
editing session.

2.4 Examples of Using LSE Routines
Example 2–1, Example 2–2, Example 2–3, and Example 2–4 use callable LSE.
The examples are included here for illustrative purposes only; DIGITAL does
not assume responsibility for supporting these examples.

Using LSE Callable Routines 2–9



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–1 Sample VAX BLISS Template for Callable DECTPU

MODULE file_io_example (MAIN = top_level,
ADDRESSING_MODE (EXTERNAL = GENERAL)) =

BEGIN

FORWARD ROUTINE
top_level, ! Main routine of this example
lse_init, ! Initialize LSE
lse_io; ! File I/O routine for LSE

!
! Declare the stream data structure passed to the file I/O routine
!
MACRO

stream_file_id = 0, 0, 32, 0 % , ! File ID
stream_rat = 6, 0, 8, 0 % , ! Record attributes
stream_rfm = 7, 0, 8, 0 % , ! Record format
stream_file_nm = 8, 0, 0, 0 % ; ! File name descriptor

!
! Declare the routines that would actually do the I/O. These must be supplied
! in another module
!
EXTERNAL ROUTINE

my_io_open, ! Routine to open a file
my_io_close, ! Routine to close a file
my_io_get_record, ! Routine to read a record
my_io_put_record; ! Routine to write a record

!
! Declare the LSE routines
!
EXTERNAL ROUTINE

lse$fileio, ! LSE’s internal file I/O routine
lse$handler, ! LSE’s condition handler
lse$initialize, ! Initialize LSE
lse$execute_inifile, ! Execute the initial procedures
lse$execute_command, ! Execute an LSE statement
lse$control, ! Let user interact with LSE
lse$cleanup; ! Have LSE clean up after itself

!
! Declare the LSE literals
!
EXTERNAL LITERAL

lse$k_close, ! File I/O operation codes
lse$k_close_delete,
lse$k_open,
lse$k_get,
lse$k_put,

(continued on next page)

2–10 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

lse$_access, ! File access codes
lse$k_io,
lse$k_input,
lse$k_output,

lse$_calluser, ! Item list entry codes
lse$_fileio,
lse$_outputfile,
lse$_sectionfile,
lse$_commandfile,
lse$_filename,
lse$_journalfile,
lse$_options,

lse$m_recover, ! Mask for values in options bit vector
lse$m_journal,
lse$m_read,
lse$m_command,
lse$m_create,
lse$m_section,
lse$m_display,
lse$m_output,

lse$m_reset_terminal, ! Masks for cleanup bit vector
lse$m_kill_processes,
lse$m_delete_exith,
lse$m_last_time,

tpu$_nofileaccess, ! DECTPU status codes
tpu$_openin,
tpu$_inviocode,
tpu$_failure,
tpu$_closein,
tpu$_closeout,
tpu$_readerr,
tpu$_writeerr,
tpu$_success;

(continued on next page)

Using LSE Callable Routines 2–11



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU
ROUTINE top_level =

BEGIN
!++
! Main entry point of your program
!--
! Your_initialization_routine must be declared as a BPV

LOCAL
initialize_bpv: VECTOR [2],
status,
cleanup_flags;

!
! First establish the condition handler
!
ENABLE

lse$handler ();
!
! Initialize the editing session by passing LSE$INITIALIZE the address of
! the bound procedure value that defines the routine that LSE is
! to call to return the initialization item list.
!
initialize_bpv [0] = lse_init;
initialize_bpv [1] = 0;
lse$initialize (initialize_bpv);
!
! Call LSE to execute the contents of the command file, the debug file,
! or the LSE$INIT_PROCEDURE from the section file.
!
lse$execute_inifile();
!
! Let LSE take over.
!
lse$control();
!
! Have LSE clean up after itself.
!
cleanup_flags = lse$m_reset_terminal OR ! Reset the terminal

lse$m_kill_processes OR ! Delete subprocesses
lse$m_delete_exith OR ! Delete the exit handler
lse$m_last_time; ! Last time calling the editor

lse$cleanup (cleanup_flags);

RETURN tpu$_success;

END;

(continued on next page)

2–12 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

ROUTINE lse_init =

BEGIN

!
! Allocate the storage block needed to pass the file I/O routine as a
! bound procedure variable as well as the bit vector for the initialization
! options.
!
OWN

file_io_bpv: VECTOR [2, LONG]
INITIAL (LSE_IO, 0),

options;
!
! These macros define the file names passed to LSE.
!
MACRO

out_file = ’OUTPUT.TPU’ % ,
com_file = ’LSE$COMMAND’ % ,
sec_file = ’LSE$SECTION’ % ,
inp_file = ’FILE.TPU’ % ;

!
! Create the item list to pass to LSE. Each item list entry consists of
! two words that specify the size of the item and its code, the address of
! the buffer containing the data, and a longword to receive a result (always
! zero, since LSE does not return any result values in the item list).
!
! +--------------------------------+
! | Item Code | Item Length |
! +----------------+---------------+
! | Buffer Address |
! +--------------------------------+
! | Return Address (always 0) |
! +--------------------------------+
!
! Remember that the item list is always terminated with a longword containing
! a zero.
!
BIND

item_list = UPLIT BYTE (
WORD (4), ! Options bit vector
WORD (lse$_options),
LONG (options),
LONG (0),

(continued on next page)

Using LSE Callable Routines 2–13



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

WORD (4), ! File I/O routine
WORD (lse$_fileio),
LONG (file_io_bpv),
LONG (0),

WORD (%CHARCOUNT (out_file)), ! Output file
WORD (lse$_outputfile),
LONG (UPLIT (%ASCII out_file)),
LONG (0),

WORD (%CHARCOUNT (com_file)), ! Command file
WORD (lse$_commandfile),
LONG (UPLIT (%ASCII com_file)),
LONG (0),

WORD (%CHARCOUNT (sec_file)), ! Section file
WORD (lse$_sectionfile),
LONG (UPLIT (%ASCII sec_file)),
LONG (0),

WORD (%CHARCOUNT (inp_file)), ! Input file
WORD (lse$_filename),
LONG (UPLIT (%ASCII inp_file)),
LONG (0),

LONG (0)); ! Terminating longword of 0
!
! Initialize the options bitvector
!
options = lse$m_display OR ! We have a display

lse$m_section OR ! We have a section file
lse$m_create OR ! Create a new file if one does not

! exist
lse$m_command OR ! We have a section file
lse$m_output; ! We supplied an output file spec

!
! Return the item list as the value of this routine for LSE to interpret.
!
RETURN item_list;

END; ! End of routine lse_init

(continued on next page)

2–14 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–1 (Cont.) Sample VAX BLISS Template for Callable DECTPU

ROUTINE lse_io (p_opcode, stream: REF BLOCK [ ,byte], data) =
!
! This routine determines how to process a TPU I/O request.
!

BEGIN

LOCAL
status;

!
! Is this one of ours, or do we pass it to LSE’s file I/O routines?
!

IF (..p_opcode NEQ lse$k_open) AND (.stream [stream_file_id] GTR 511)
THEN

RETURN lse$fileio (.p_opcode, .stream, .data);

!
! Either we are opening the file, or we know it is one of ours.
! Call the appropriate routine (not shown in this example).
!

SELECTONE ..p_opcode OF
SET

[lse$k_open]:
status = my_io_open (.stream, .data);

[lse$k_close, lse$k_close_delete]:
status = my_io_close (.stream, .data);

[lse$k_get]:
status = my_io_get_record (.stream, .data);

[lse$k_put]:
status = my_io_put_record (.stream, .data);

[OTHERWISE]:
status = tpu$_failure;

TES;

RETURN .status;

END; ! End of routine LSE_IO

END ! End Module file_io_example

Using LSE Callable Routines 2–15



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–2 Normal LSE Setup in DIGITAL Fortran

C A sample FORTRAN program that calls LSE to act
C normally, using the programmable interface.
C
C IMPLICIT NONE

INTEGER*4 CLEAN_OPT !Options for cleanup routine.
INTEGER*4 STATUS !Return status from LSE routines.
INTEGER*4 BPV_PARSE(2) !Set up a Bound Procedure Value.
INTEGER*4 LOC_PARSE !A local function call.

C
C Declare the LSE functions.
C

INTEGER*4 LSE$CONTROL
INTEGER*4 LSE$CLEANUP
INTEGER*4 LSE$EXECUTE_INIFILE
INTEGER*4 LSE$INITIALIZE
INTEGER*4 LSE$CLIPARSE

C
C Declare a local copy to hold the values of LSE cleanup variables.
C

INTEGER*4 RESET_TERMINAL
INTEGER*4 DELETE_JOURNAL
INTEGER*4 DELETE_BUFFERS,DELETE_WINDOWS
INTEGER*4 DELETE_EXITH,EXECUTE_PROC
INTEGER*4 PRUNE_CACHE,KILL_PROCESSES
INTEGER*4 CLOSE_SECTION

C
C Declare the LSE functions used as external.
C

EXTERNAL LSE$HANDLER
EXTERNAL LSE$CLIPARSE

EXTERNAL TPU$_SUCCESS !External error message.

EXTERNAL LOC_PARSE !User-supplied routine to call LSE$CLIPARSE.
C
C Declare the LSE cleanup variables as external.
C These are the external literals that hold the
C value of the options.
C

EXTERNAL LSE$M_RESET_TERMINAL
EXTERNAL LSE$M_DELETE_JOURNAL
EXTERNAL LSE$M_DELETE_BUFFERS,LSE$M_DELETE_WINDOWS
EXTERNAL LSE$M_DELETE_EXITH,LSE$M_EXECUTE_PROC
EXTERNAL LSE$M_PRUNE_CACHE,LSE$M_KILL_PROCESSES

100 CALL LIB$ESTABLISH ( LSE$HANDLER ) !Establish the condition handler.

(continued on next page)

2–16 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–2 (Cont.) Normal LSE Setup in DIGITAL Fortran
C
C Set up the Bound Procedure Value for the call to LSE$INITIALIZE.
C

BPV_PARSE( 1 ) = %LOC( LOC_PARSE )
BPV_PARSE( 2 ) = 0

C
C Call the LSE initialization routine to do some setup work.
C

STATUS = LSE$INITIALIZE ( BPV_PARSE )
C
C Check the status. If it is not a success, then signal the error.
C

IF ( STATUS .NE. %LOC ( TPU$_SUCCESS ) ) THEN

CALL LIB$SIGNAL( %VAL( STATUS ) )
GOTO 9999

ENDIF
C
C Execute the LSE$_ init files and also a command file if it
C was specified in the command line call to LSE.
C

STATUS = LSE$EXECUTE_INIFILE ( )

IF ( STATUS .NE. %LOC ( TPU$_SUCCESS ) ) THEN !Make sure everything is ok.

CALL LIB$SIGNAL( %VAL( STATUS ) )
GOTO 9999

ENDIF
C
C Invoke LSE as it normally would appear.
C

STATUS = LSE$CONTROL ( ) !Call LSE.

IF ( STATUS .NE. %LOC ( TPU$_SUCCESS ) ) THEN !Make sure everything is ok.

CALL LIB$SIGNAL( %VAL( STATUS ) )
C GOTO 9999

ENDIF

(continued on next page)

Using LSE Callable Routines 2–17



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–2 (Cont.) Normal LSE Setup in DIGITAL Fortran

C
C Get the value of the option from the external literals. In FORTRAN, you
C cannot use external literals directly so you must first get the value
C of the literal from its external location. Here we are getting the
C values of the options that we want to use in the call to LSE$CLEANUP.
C

DELETE_JOURNAL = %LOC ( LSE$M_DELETE_JOURNAL )
DELETE_EXITH = %LOC ( LSE$M_DELETE_EXITH )
DELETE_BUFFERS = %LOC ( LSE$M_DELETE_BUFFERS )
DELETE_WINDOWS = %LOC ( LSE$M_DELETE_WINDOWS )
EXECUTE_PROC = %LOC ( LSE$M_EXECUTE_PROC )
RESET_TERMINAL = %LOC ( LSE$M_RESET_TERMINAL )
KILL_PROCESSES = %LOC ( LSE$M_KILL_PROCESSES )
CLOSE_SECTION = %LOC ( LSE$M_CLOSE_SECTION )

C
C Now that we have the local copies of the variables we can do the
C logical OR to set the multiple options that we need.
C

CLEAN_OPT = DELETE_JOURNAL .OR. DELETE_EXITH .OR.
1 DELETE_BUFFERS .OR. DELETE_WINDOWS .OR. EXECUTE_PROC
1 .OR. RESET_TERMINAL .OR. KILL_PROCESSES .OR. CLOSE_SECTION

C
C Do the necessary cleanup.
C LSE$CLEANUP wants the address of the flags as the parameter so
C pass the %LOC of CLEAN_OPT, which is the address of the variable.

STATUS = LSE$CLEANUP ( %LOC ( CLEAN_OPT ) )

IF ( STATUS .NE. %LOC (TPU$_SUCCESS) ) THEN

CALL LIB$SIGNAL( %VAL(STATUS) )

ENDIF

9999 CALL LIB$REVERT !Go back to normal processing -- handlers.

STOP
END

C
C

INTEGER*4 FUNCTION LOC_PARSE

INTEGER*4 BPV(2) !A local Bound Procedure Value

CHARACTER*12 EDIT_COMM !A command line to send to LSE$CLIPARSE
C
C Declare the LSE functions used.
C

INTEGER*4 LSE$FILEIO
INTEGER*4 LSE$CLIPARSE

(continued on next page)

2–18 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–2 (Cont.) Normal LSE Setup in DIGITAL Fortran

C
C Declare this routine as external because it is never called directly and
C we need to tell FORTRAN that it is a function and not a variable.
C

EXTERNAL LSE$FILEIO

BPV(1) = %LOC(LSE$FILEIO) !Set up the bound procedure value.
BPV(2) = 0

EDIT_COMM(1:12) = ’LSE TEST.TXT’
C
C Parse the command line and build the item list for LSE$INITIALIZE.
C
9999 LOC_PARSE = LSE$CLIPARSE (EDIT_COMM, BPV , 0)

RETURN
END

Example 2–3 Building a Callback Item List with DIGITAL Fortran

PROGRAM TEST_LSE
C

IMPLICIT NONE
C
C Define the expected LSE return statuses.
C

EXTERNAL TPU$_SUCCESS
EXTERNAL TPU$_QUITTING
EXTERNAL TPU$_EXITING

C
C Declare the LSE routines and symbols used.
C

EXTERNAL LSE$M_DELETE_CONTEXT
EXTERNAL LSE$HANDLER
INTEGER*4 LSE$M_DELETE_CONTEXT
INTEGER*4 LSE$INITIALIZE
INTEGER*4 LSE$EXECUTE_INIFILE
INTEGER*4 LSE$CONTROL
INTEGER*4 LSE$CLEANUP

C
C Use LIB$MATCH_COND to compare condition codes.
C

INTEGER*4 LIB$MATCH_COND

(continued on next page)

Using LSE Callable Routines 2–19



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–3 (Cont.) Building a Callback Item List with DIGITAL Fortran
C
C Declare the external callback routine.
C

EXTERNAL LSE_STARTUP ! The LSE setup function.
INTEGER*4 LSE_STARTUP

INTEGER*4 BPV(2) ! Set up a Bound Procedure Value.
C
C Declare the functions used for working with the condition handler.
C

INTEGER*4 LIB$ESTABLISH
INTEGER*4 LIB$REVERT

C
C Local flags and indices
C

INTEGER*4 CLEANUP_FLAG ! Flag(s) for LSE cleanup.
INTEGER*4 RET_STATUS
INTEGER*4 MATCH_STATUS

C
C Initializations
C

RET_STATUS = 0
CLEANUP_FLAG = %LOC(LSE$M_DELETE_CONTEXT)

C
C Establish the default LSE condition handler.
C

CALL LIB$ESTABLISH(%REF(LSE$HANDLER))
C
C Set up the Bound Procedure Value for the initialization callback.
C

BPV(1) = %LOC (LSE_STARTUP)
BPV(2) = 0

C
C Call the LSE procedure for initialization.
C

RET_STATUS = LSE$INITIALIZE(BPV)

IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
CALL LIB$SIGNAL (%VAL(RET_STATUS))
ENDIF

C
C Execute the LSE initialization file.
C

RET_STATUS = LSE$EXECUTE_INIFILE()

IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
CALL LIB$SIGNAL (%VAL(RET_STATUS))
ENDIF

(continued on next page)

2–20 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–3 (Cont.) Building a Callback Item List with DIGITAL Fortran

C
C Pass control to LSE.
C

RET_STATUS = LSE$CONTROL()
C
C Test for valid exit condition codes. You must use LIB$MATCH_COND
C because the severity of TPU$_QUITTING can be set by the LSE
C application.
C

MATCH_STATUS = LIB$MATCH_COND (RET_STATUS, %LOC (TPU$_QUITTING),
1 %LOC (TPU$_EXITING))
IF (MATCH_STATUS .EQ. 0) THEN
CALL LIB$SIGNAL (%VAL(RET_STATUS))
ENDIF

C
C Clean up after processing.
C

RET_STATUS = LSE$CLEANUP(%REF(CLEANUP_FLAG))

IF (RET_STATUS .NE. %LOC(TPU$_SUCCESS)) THEN
CALL LIB$SIGNAL (%VAL(RET_STATUS))
ENDIF

C
C Set the condition handler back to the default.
C

RET_STATUS = LIB$REVERT()

END

INTEGER*4 FUNCTION LSE_STARTUP

IMPLICIT NONE

INTEGER*4 OPTION_MASK ! Temporary variable for LSE
CHARACTER*44 SECTION_NAME ! Temporary variable for LSE

C
C External LSE routines and symbols.
C

EXTERNAL LSE$K_OPTIONS
EXTERNAL LSE$M_READ
EXTERNAL LSE$M_SECTION
EXTERNAL LSE$M_DISPLAY
EXTERNAL LSE$K_SECTIONFILE
EXTERNAL LSE$K_FILEIO
EXTERNAL LSE$FILEIO
INTEGER*4 LSE$FILEIO

(continued on next page)

Using LSE Callable Routines 2–21



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–3 (Cont.) Building a Callback Item List with DIGITAL Fortran

C
C The bound procedure value used for setting up the file I/O routine.
C

INTEGER*4 BPV(2)

C
C Define the structure of the item list defined for the callback.
C

STRUCTURE /CALLBACK/
INTEGER*2 BUFFER_LENGTH
INTEGER*2 ITEM_CODE
INTEGER*4 BUFFER_ADDRESS
INTEGER*4 RETURN_ADDRESS
END STRUCTURE

C
C There are a total of four items in the item list.
C

RECORD /CALLBACK/ CALLBACK (4)
C
C Make sure it is not optimized!
C

VOLATILE /CALLBACK/
C
C Define the options we want to use in the LSE session.
C

OPTION_MASK = %LOC(LSE$M_SECTION) .OR. %LOC(LSE$M_READ)
1 .OR. %LOC(LSE$M_DISPLAY)

C
C Define the name of the initialization section file.
C

SECTION_NAME = ’LSE$SECTION’
C
C Set up the required I/O routine. Use the LSE default.
C

BPV(1) = %LOC(LSE$FILEIO)
BPV(2) = 0

C
C Build the callback item list.
C
C Set up the edit session options.
C

CALLBACK(1).ITEM_CODE = %LOC(LSE$K_OPTIONS)
CALLBACK(1).BUFFER_ADDRESS = %LOC(OPTION_MASK)
CALLBACK(1).BUFFER_LENGTH = 4
CALLBACK(1).RETURN_ADDRESS = 0

(continued on next page)

2–22 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–3 (Cont.) Building a Callback Item List with DIGITAL Fortran
C
C Identify the section file to be used.
C

CALLBACK(2).ITEM_CODE = %LOC(LSE$K_SECTIONFILE)
CALLBACK(2).BUFFER_ADDRESS = %LOC(SECTION_NAME)
CALLBACK(2).BUFFER_LENGTH = LEN(SECTION_NAME)
CALLBACK(2).RETURN_ADDRESS = 0

C
C Set up the I/O handler.
C

CALLBACK(3).ITEM_CODE = %LOC(LSE$K_FILEIO)
CALLBACK(3).BUFFER_ADDRESS = %LOC(BPV)
CALLBACK(3).BUFFER_LENGTH = 4
CALLBACK(3).RETURN_ADDRESS = 0

C
C End the item list with zeros to indicate we are finished.
C

CALLBACK(4).ITEM_CODE = 0
CALLBACK(4).BUFFER_ADDRESS = 0
CALLBACK(4).BUFFER_LENGTH = 0
CALLBACK(4).RETURN_ADDRESS = 0

C
C Return the address of the item list.
C

LSE_STARTUP = %LOC(CALLBACK)

RETURN
END

Example 2–4 Specifying a User-Written File I/O Routine in DIGITAL C

/*
Simple example of a C program to invoke LSE. This program provides its
own FILEIO routine instead of using the one provided by LSE.
*/
#include descrip
#include stdio

/* Data structures needed */

struct bpv_arg /* Bound procedure value */
{
int *routine_add ; /* Pointer to routine */
int env ; /* Environment pointer */
} ;

(continued on next page)

Using LSE Callable Routines 2–23



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–4 (Cont.) Specifying a User-Written File I/O Routine in DIGITAL C

struct item_list_entry /* Item list data structure */
{
short int buffer_length; /* Buffer length */
short int item_code; /* Item code */
int *buffer_add; /* Buffer address */
int *return_len_add; /* Return address */
} ;

struct stream_type
{
int ident; /* Stream id */
short int alloc; /* File size */
short int flags; /* File record attributes/format */
short int length; /* Resultant file name length */
short int stuff; /* File name descriptor class & type */
int nam_add; /* File name descriptor text pointer */
} ;

globalvalue tpu$_success; /* TPU Success code */
globalvalue tpu$_quitting; /* Exit code defined by TPU */

globalvalue /* Cleanup codes defined by LSE */
lse$m_delete_journal, lse$m_delete_exith,
lse$m_delete_buffers, lse$m_delete_windows, lse$m_delete_cache,
lse$m_prune_cache, lse$m_execute_file, lse$m_execute_proc,
lse$m_delete_context, lse$m_reset_terminal, lse$m_kill_processes,
lse$m_close_section, lse$m_delete_others, lse$m_last_time;

globalvalue /* Item codes for item list entries */
lse$k_fileio, lse$k_options, lse$k_sectionfile,
lse$k_commandfile ;

globalvalue /* Option codes for option item */
lse$m_display, lse$m_section, lse$m_command, lse$m_create ;

globalvalue /* Possible item codes in item list */
lse$_access, lse$_filename, lse$_defaultfile,
lse$_relatedfile, lse$_record_attr, lse$_maximize_ver,
lse$_flush, lse$_filesize;

globalvalue /* Possible access types for lse$_access */
lse$k_io, lse$k_input, lse$k_output;

globalvalue /* RMS File Not Found message code */
rms$_fnf;

(continued on next page)

2–24 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–4 (Cont.) Specifying a User-Written File I/O Routine in DIGITAL C
globalvalue /* FILEIO routine functions */

lse$k_open, lse$k_close, lse$k_close_delete,
lse$k_get, lse$k_put;

int lib$establish (); /* RTL routine to establish an event handler */
int lse$cleanup (); /* LSE routine to free resources used */
int lse$control (); /* LSE routine to invoke the editor */
int lse$execute_inifile (); /* LSE routine to execute initialization code */
int lse$handler (); /* LSE signal handling routine */
int lse$initialize (); /* LSE routine to initialize the editor */

/*
This function opens a file for either read or write access, based on
the item list passed as the data parameter. Note that a full implementation
of the file open routine would have to handle the default file, related
file, record attribute, maximize version, flush and file size item code
properly.

*/
open_file (data, stream)

int *data;
struct stream_type *stream;

{
struct item_list_entry *item;
char *access; /* File access type */
char filename[256]; /* Max file specification size */

FILE *fopen();

/* Process the item list */

item = data;
while (item->item_code != 0 && item->buffer_length != 0)

{
if (item->item_code == lse$_access)

{
if (item->buffer_add == lse$k_io) access = "r+";
else if (item->buffer_add == lse$k_input) access = "r";
else if (item->buffer_add == lse$k_output) access = "w";
}

else if (item->item_code == lse$_filename)
{
strncpy (filename, item->buffer_add, item->buffer_length);
filename [item->buffer_length] = 0;
lib$scopy_r_dx (&item->buffer_length, item->buffer_add,

&stream->length);
}

(continued on next page)

Using LSE Callable Routines 2–25



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–4 (Cont.) Specifying a User-Written File I/O Routine in DIGITAL C
else if (item->item_code == lse$_defaultfile)

{ /* Add code to handle default file */
} /* spec here */

else if (item->item_code == lse$_relatedfile)
{ /* Add code to handle related */
} /* file spec here */

else if (item->item_code == lse$_record_attr)
{ /* Add code to handle record */
} /* attributes for creating files */

else if (item->item_code == lse$_maximize_ver)
{ /* Add code to maximize version */
} /* number with existing file here */

else if (item->item_code == lse$_flush)
{ /* Add code to cause each record */
} /* to be flushed to disk as written */

else if (item->item_code == lse$_filesize)
{ /* Add code to handle specification */
} /* of initial file allocation here */

++item; /* get next item */
}

stream->ident = fopen(filename,access);
if (stream->ident != 0)

return tpu$_success;
else

return rms$_fnf;
}
/*

This procedure closes a file.
*/
close_file (data,stream)
struct stream_type *stream;

{
close(stream->ident);
return tpu$_success;

}
/*

This procedure reads a line from a file.
*/
read_line(data,stream)
struct dsc$descriptor *data;
struct stream_type *stream;

{
char textline[984]; /* Max line size for TPU records */
int len;

globalvalue rms$_eof; /* RMS End-Of-File code */

(continued on next page)

2–26 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–4 (Cont.) Specifying a User-Written File I/O Routine in DIGITAL C

if (fgets(textline,984,stream->ident) == NULL)
return rms$_eof;

else
{
len = strlen(textline);
if (len > 0)

len = len - 1;
return lib$scopy_r_dx (&len, textline, data);
}

}
/*

This procedure writes a line to a file.
*/
write_line(data,stream)
struct dsc$descriptor *data;
struct stream_type *stream;

{
char textline[984]; /* Max line size for TPU records */

strncpy (textline, data->dsc$a_pointer, data->dsc$w_length);
textline [data->dsc$w_length] = 0;
fputs(textline,stream->ident);
fputs("\n",stream->ident);
return tpu$_success;

}
/*

This procedure will handle I/O for LSE.
*/
fileio(code,stream,data)
int *code;
int *stream;
int *data;

{
int status;

/* Dispatch based on code type. Note that a full implementation of the */
/* file I/O routines would have to handle the close and delete code properly */
/* instead of simply closing the file. */

if (*code == lse$k_open) /* Initial access to file */
status = open_file (data,stream);

else if (*code == lse$k_close) /* End access to file */
status = close_file (data,stream);

else if (*code == lse$k_close_delete) /* Treat same as close */
status = close_file (data,stream);

(continued on next page)

Using LSE Callable Routines 2–27



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–4 (Cont.) Specifying a User-Written File I/O Routine in DIGITAL C
else if (*code == lse$k_get) /* Read a record from a file */

status = read_line (data,stream);
else if (*code == lse$k_put) /* Write a record to a file */

status = write_line (data,stream);
else

{ /* Who knows what we got? */
status = tpu$_success;

printf ("Bad FILEIO I/O function requested");
}

return status;
}
/*

This procedure formats the initialization item list and returns it as
a return value.

*/
callrout()
{

static struct bpv_arg add_block =
{ fileio, 0 } ; /* BPV for fileio routine */

int options ;
char *section_name = "LSE$SECTION";
static struct item_list_entry arg[] =

{/* length code buffer add return add */
{ 4,lse$k_fileio, 0, 0 },
{ 4,lse$k_options, 0, 0 },
{ 0,lse$k_sectionfile,0, 0 },
{ 0,0, 0, 0 }

};

/* Setup file I/O routine item entry */
arg[0].buffer_add = &add_block;

/* Setup options item entry. Leave journaling off. */
options = lse$m_display | lse$m_section;
arg[1].buffer_add = &options;

/* Setup section file name */
arg[2].buffer_length = strlen(section_name);
arg[2].buffer_add = section_name;

return arg;
}

(continued on next page)

2–28 Using LSE Callable Routines



Using LSE Callable Routines
2.4 Examples of Using LSE Routines

Example 2–4 (Cont.) Specifying a User-Written File I/O Routine in DIGITAL C

/*
Main program. Initializes LSE, then passes control to it.

*/
main()
{

int return_status ;
int cleanup_options;
struct bpv_arg add_block;

/* Establish as condition handler the normal LSE handler */

lib$establish(lse$handler);

/* Setup a BPV to point to the callback routine */

add_block.routine_add = callrout ;
add_block.env = 0;

/* Do the initialize of LSE */

return_status = lse$initialize(&add_block);
if (!return_status)

exit(return_status);

/* Have LSE execute the procedure LSE$INIT_PROCEDURE from the section file */
/* and then compile and execute the code from the command file */

return_status = lse$execute_inifile();
if (!return_status)

exit (return_status);

/* Turn control over to LSE */

return_status = lse$control ();
if (!return_status)

exit(return_status);

/* Now clean up. */

cleanup_options = lse$m_last_time | lse$m_delete_context;
return_status = lse$cleanup (&cleanup_options);
exit (return_status);

printf("Experiment complete");
}

Using LSE Callable Routines 2–29



Using LSE Callable Routines
2.5 LSE Routines

2.5 LSE Routines
The following pages describe the individual LSE routines.

In this section, VMS Usage refers to OpenVMS VAX and OpenVMS Alpha
usage.

2–30 Using LSE Callable Routines



LSE$CLEANUP

LSE$CLEANUP—Free System Resources Used During LSE
Session

Cleans up internal data structures, frees memory, and restores terminals to
their initial state.

This is the final routine called in each interaction with LSE.

Format

LSE$CLEANUP flags

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value. Most utility routines return a condition value in
R0. The condition value that this routine can return is listed in the Condition
Value Returned section.

Argument

flags
VMS Usage: mask_longword
type: longword (unsigned)
access: read-only
mechanism: by reference

Flags (or mask) defining the cleanup options. The flags argument is the
address of a longword bit mask defining the cleanup options or the address
of a 32-bit mask defining the cleanup options. This mask is the logical OR of
the flag bits you want to set. LSE$V . . . indicates a bit item and LSE$M . . .
indicates a mask. Table 2–1 describes the various cleanup options.

Using LSE Callable Routines 2–31



LSE$CLEANUP

Table 2–1 LSE$CLEANUP Options

Symbol 1 Function

LSE$M_DELETE_
JOURNAL

Closes and deletes the journal file if it is open.

LSE$M_DELETE_EXITH Deletes LSE’s exit handler.
LSE$M_DELETE_
BUFFERS

Deletes all text buffers. If this is not the last
time you are calling LSE, then all variables
referring to these data structures are reset as if
by the built-in procedure DELETE. If a buffer
is deleted, then all ranges and markers within
that buffer, and any subprocesses using that
buffer, are also deleted.

LSE$M_DELETE_
WINDOWS

Deletes all windows. If this is not the last time
you are calling LSE, then all variables referring
to these data structures are reset as if by the
built-in procedure DELETE.

LSE$M_DELETE_CACHE Deletes the virtual file manager’s data
structures and caches. If this deletion is
requested, then all buffers are also deleted.
If the cache is deleted, the initialization routine
has to reinitialize the virtual file manager the
next time it is called.

LSE$M_PRUNE_CACHE Frees up any virtual file manager caches that
have no pages allocated to buffers. This frees up
any caches that may have been created during
the session but that are no longer needed.

LSE$M_EXECUTE_FILE Reexecutes the command file if
LSE$EXECUTE_INIFILE is called again. You
must set this bit if you plan to specify a new
file name for the command file. This option is
used in conjunction with the option bit passed
to LSE$INITIALIZE indicating the presence of
the /COMMAND qualifier.

1The prefix can be LSE$M_ or LSE$V_. LSE$M_ denotes a mask corresponding to the specific field
in which the bit is set. LSE$V_ is a bit number.

(continued on next page)

2–32 Using LSE Callable Routines



LSE$CLEANUP

Table 2–1 (Cont.) LSE$CLEANUP Options

Symbol 1 Function

LSE$M_EXECUTE_PROC Looks up LSE$INIT_PROCEDURE and
executes it the next time
LSE$EXECUTE_INIFILE is called.

LSE$M_DELETE_
CONTEXT

Deletes the entire context of LSE. If this option
is specified, then all other options are implied,
except for executing the initialization file and
initialization procedure.

LSE$M_RESET_TERMINAL Resets the terminal to the state it was in
upon entry to LSE. The terminal mailbox and
all windows are deleted. If the terminal is
reset, then it is reinitialized the next time
LSE$INITIALIZE is called.

LSE$M_KILL_PROCESSES Deletes all subprocesses created during the
session.

LSE$M_CLOSE_SECTION2 Closes the section file and releases the
associated memory. All buffers, windows, and
processes are deleted. The cache is purged
and the flags are set for reexecution of the
initialization file and initialization procedure.
If the section is closed and if the option bit
indicates the presence of the /SECTION
qualifier, then the next call to LSE$INITIALIZE
attempts a new restore operation.

LSE$M_DELETE_OTHERS Deletes all miscellaneous preallocated data
structures, whose memory is reallocated the
next time LSE$INITIALIZE is called.

LSE$M_LAST_TIME This bit should be set only when you are calling
LSE for the last time. Note that if you set
this bit and then recall LSE, the results are
unpredictable.

1The prefix can be LSE$M_ or LSE$V_. LSE$M_ denotes a mask corresponding to the specific field
in which the bit is set. LSE$V_ is a bit number.
2Using the simplified callable interface does not set LSE$_CLOSE_SECTION. Therefore, you can
make multiple calls to LSE$LSE without having to open and close the section file on each call.

Using LSE Callable Routines 2–33



LSE$CLEANUP

Condition Value Returned

TPU$_SUCCESS Normal successful completion.

Description

This routine is the final routine called in each interaction with LSE. It tells
LSE to clean up its internal data structures and to prepare for additional
invocations. You can control what this routine resets by setting or clearing the
flags described previously.

When you finish with LSE, call this routine to free the memory and restore the
characteristics of the terminal to their original settings.

If you intend to exit after calling LSE$CLEANUP, do not delete the data
structures; the OpenVMS system, does this automatically. Allowing your
OpenVMS system to delete the structures improves the performance of your
program.

Notes

1. When you use the simplified interface, LSE automatically sets the following
flags:

• LSE$V_RESET_TERMINAL

• LSE$V_DELETE_BUFFERS

• LSE$V_DELETE_JOURNAL

• LSE$V_DELETE_WINDOWS

• LSE$V_DELETE_EXITH

• LSE$V_EXECUTE_PROC

• LSE$V_EXECUTE_FILE

• LSE$V_PRUNE_CACHE

• LSE$V_KILL_PROCESSES

2. If this routine does not return a success status, no other calls to the editor
should be made.

2–34 Using LSE Callable Routines



LSE$CLIPARSE

LSE$CLIPARSE—Parse a Command Line

Parses a command line and builds the item list for LSE$INITIALIZE.

It calls CLI$DCL_PARSE to establish a command table and a com-
mand to parse. It then calls LSE$PARSEINFO to build an item list for
LSE$INITIALIZE.

If your application parses information that is not related to the operation of
LSE, make sure the application gets, and uses, all non-LSE parse information
before the application calls LSE$CLIPARSE. LSE$CLIPARSE destroys all
parse information obtained and stored before LSE$CLIPARSE was called.

Format

LSE$CLIPARSE string, fileio, call_user

Returns

VMS Usage: item_list
type: longword (unsigned)
access: read-only
mechanism: by reference

This routine returns the address of an item list.

Arguments

string
VMS Usage: char_string
type: character string
access: read-only
mechanism: by descriptor

Command line. The string argument is the address of a descriptor of an LSE
command.

fileio
VMS Usage: vector_longword_unsigned
type: bound procedure value
access: read-only
mechanism: by descriptor

File I/O routine. The fileio argument is the address of a descriptor of a file I/O
routine.

Using LSE Callable Routines 2–35



LSE$CLIPARSE

call_user
VMS Usage: vector_longword_unsigned
type: bound procedure value
access: read-only
mechanism: by descriptor

Call-user routine. The call_user argument is the address of a descriptor of a
call-user routine.

2–36 Using LSE Callable Routines



LSE$CLOSE_TERMINAL

LSE$CLOSE_TERMINAL—Close Channel to Terminal

Closes the LSE channel to the terminal.

Format

LSE$CLOSE_TERMINAL

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value. Most utility routines return a condition value in
R0. The condition value that this routine can return is listed in the Condition
Value Returned section.

Condition Value Returned

TPU$_SUCCESS Normal successful completion.

Description

This routine is used with the built-in procedure CALL_USER and its associated
call-user routine to control LSE access to the terminal. When a call-user
routine invokes LSE$CLOSE_TERMINAL, LSE closes its channel to the
terminal and the channel of LSE’s associated mailbox.

When the call-user routine returns control to it, LSE automatically reopens a
channel to the terminal and redisplays the visible windows.

A call-user routine can use LSE$CLOSE_TERMINAL at any point in the
program and as many times as necessary. If the terminal is already closed to
LSE when LSE$CLOSE_TERMINAL is used, the call is ignored.

Using LSE Callable Routines 2–37



LSE$CONTROL

LSE$CONTROL—Pass Control to LSE

Is the main processing routine of LSE. It is responsible for reading the text
and commands and executing them. When you call this routine (after calling
LSE$INITIALIZE), control is turned over to LSE.

Format

LSE$CONTROL (last-line, last-char, out-file)

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed in the Condition Values
Returned section.

Arguments

last-line
VMS Usage: integer
type: longword (signed)
access: write-only
mechanism: by reference

A signed longword to receive the final position in buffer LSE$MAIN_BUFFER.
The first line in the file is line 1.

last-char
VMS Usage: integer
type: longword (signed)
access: write-only
mechanism: by reference

A signed longword to receive the final column position in buffer
LSE$MAIN_BUFFER. The first column on a line is column 1.

2–38 Using LSE Callable Routines



LSE$CONTROL

out-file
VMS Usage: char-string
type: character string
access: write-only
mechanism: by descriptor

A character string that receives the file specification of the file to which the
buffer, pointed to by the DECTPU variable LSE$MAIN_BUFFER, was written
on exit. If LSE$MAIN_BUFFER was not written to its designated output file,
the out-file is the file specification of the file read into LSE$MAIN_BUFFER.
If you enter the QUIT command, this specification is the null string. You can
use this information to return to this file during a subsequent edit. LSE uses
STR$COPY to fill in this string.

The last-line and last-char arguments together describe the last current
position in the buffer pointed to by the DECTPU variable
LSE$MAIN_BUFFER. You can use this information to return to this file
position in a subsequent edit.

Condition Value Returned

TPU$_EXITING A result of EXIT (when the default condition
handler is enabled).

TPU$_QUITTING A result of QUIT (when the default condition
handler is enabled).

TPU$_RECOVERFAIL A recovery operation was terminated
abnormally.

Description

This routine controls the edit session. It is responsible for reading the text and
commands and executing them. Windows on the screen are updated to reflect
the edits that are performed.

Using LSE Callable Routines 2–39



LSE$EDIT

LSE$EDIT—Edit a File

Builds a command string from its parameters and passes it to the LSE$LSE
routine.

LSE$EDIT is another entry point to the LSE simplified callable interface.

Format

LSE$EDIT input, output

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed in the Condition Values
Returned section.

Arguments

input
VMS Usage: char_string
type: character string
access: read-only
mechanism: by descriptor

Input file name. The input argument is the address of a descriptor of a file
specification.

2–40 Using LSE Callable Routines



LSE$EDIT

output
VMS Usage: char_string
type: character string
access: read-only
mechanism: by descriptor

Output file name. The output argument is the address of a descriptor of an
output file specification. It is used with the /OUTPUT command qualifier.

Condition Value Returned

The LSE$EDIT routine returns any value returned by LSE$LSE.

Description

This routine builds a command string and passes it to LSE$LSE. If the length
of the output string is greater than 0, you can include it in the command line
by using the /OUTPUT qualifier, as follows:

LSEDIT [/OUTPUT= output] input

If your application parses information that is not related to the operation
of LSE, make sure the application gets, and uses, all non-LSE parse
information before the application calls LSE$EDIT. LSE$EDIT destroys
all parse information obtained and stored before LSE$EDIT is called.

Using LSE Callable Routines 2–41



LSE$EXECUTE_COMMAND

LSE$EXECUTE_COMMAND—Execute One or More DECTPU
Statements

Allows your program to execute DECTPU statements.

Format

LSE$EXECUTE_COMMAND string

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed in the Condition Values
Returned section.

Argument

string
VMS Usage: char_string
type: character string
access: read only
mechanism: by value

DECTPU statement. The string argument is the address of a descriptor of a
character string denoting one or more DECTPU statements.

Condition Values Returned

TPU$_SUCCESS Normal successful completion.
TPU$_EXITING EXIT built-in procedure was invoked.
TPU$_QUITTING QUIT built-in procedure was invoked.
TPU$_EXECUTEFAIL Execution aborted. This could be because of

execution errors or compilation errors.

2–42 Using LSE Callable Routines



LSE$EXECUTE_COMMAND

Description

This routine performs the same function as the built-in procedure EXECUTE
described in the DIGITAL Text Processing Utility Reference Manual.

Using LSE Callable Routines 2–43



LSE$EXECUTE_INIFILE

LSE$EXECUTE_INIFILE—Execute Initialization Files

Allows you to execute a user-written initialization file.

This routine must be executed after the editor is initialized, but before any
other commands are processed.

Format

LSE$EXECUTE_INIFILE

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed in the Condition Values
Returned section.

Condition Values Returned

TPU$_SUCCESS Normal successful completion.
TPU$_EXITING A result of EXIT. If the default condition

handler is being used, the session is
terminated.

TPU$_QUITTING A result of QUIT. If the default condition
handler is being used, the session is
terminated.

TPU$_COMPILEFAIL The compilation of the initialization file was
unsuccessful.

TPU$_EXECUTEFAIL The execution of the statements in the
initialization file was unsuccessful.

TPU$_FAILURE General code for all other errors.

2–44 Using LSE Callable Routines



LSE$EXECUTE_INIFILE

Description

This routine causes DECTPU to perform the following steps:

1. The command file is read into a buffer. If you specified a file on the
command line that cannot be found, an error message is displayed and the
routine is aborted. The default is LSE$COMMAND.TPU.

2. If you specified the /DEBUG qualifier on the command line, the DEBUG
file is read into a buffer. The default is SYS$SHARE:LSE$DEBUG.TPU.

3. The DEBUG file is compiled and executed (if available).

4. TPU$INIT_PROCEDURE is executed (if available).

5. The command buffer is compiled and executed (if available).

6. TPU$INIT_POSTPROCEDURE is executed (if available).

Note

If you call this routine after calling LSE$CLEANUP, you must have
set the flags LSE$M_EXECUTE_PROC and LSE$M_EXECUTE_FILE
beforehand. Otherwise, the initialization file will not execute.

Using LSE Callable Routines 2–45



LSE$FILEIO

LSE$FILEIO—Perform File Operations

Handles all LSE file operations. Your own file I/O routine can call this routine
to perform some operations for it. However, the routine that opens the file
must perform all operations for that file. For example, if LSE$FILEIO opens
the file it must also close it.

Format

LSE$FILEIO code, stream, data

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed in the Condition Values
Returned section.

Arguments

code
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read-only
mechanism: by reference

Item code specifying an LSE function. The code argument is the address of a
longword containing an item code from LSE specifying a function to perform.
You can specify the following item codes in the file I/O routine:

• LSE$K_OPEN
This item code specifies that the data parameter is the address of an item
list. This item list contains the information necessary to open the file. The
stream parameter should be filled in with a unique identifying value to be
used for all future references to this file. The resultant file name should
also be copied with a dynamic string descriptor.

• LSE$K_CLOSE
The file specified by the stream argument is to be closed. All memory being
used by its structures can be released.

2–46 Using LSE Callable Routines



LSE$FILEIO

• LSE$K_CLOSE_DELETE
The file specified by the stream argument is to be closed and deleted. All
memory being used by its structures can be released.

• LSE$K_GET
The data parameter is the address of a dynamic string descriptor to be
filled with the next record from the file specified by the stream argument.
The routine should use the routines provided by the OpenVMS Run-Time
Library to copy text into this descriptor. LSE frees the memory allocated
for the data read when the file I/O routine indicates that the end of the file
has been reached.

• LSE$K_PUT
The data parameter is the address of a descriptor for the data to be written
to the file specified by the stream argument.

stream
VMS Usage: unspecified
type: longword (unsigned)
access: modify
mechanism: by reference

File description. The stream argument is the address of a data structure
consisting of four longwords. This data structure is used to describe the file to
be manipulated.

This data structure is used to refer to all files. It is written to when an open
file request is made. All other requests use information in this structure to
determine which file is being referenced.

Figure 2–2 shows the stream data structure.

Figure 2–2 Stream Data Structure

ZK−4045−GE

File Identifier

RFM

Class Type Length

Allocation

Address of Name

Using LSE Callable Routines 2–47



LSE$FILEIO

The first longword is used to hold a unique identifier for each file. The user-
written file I/O routine is restricted to values between 0 and 511. Thus, you
can have up to 512 files open simultaneously.

The second longword is divided into three fields. The low word is used to store
the allocation quantity, that is, the number of blocks allocated to this file from
the FAB (FAB$L_ALQ). This value is used later to calculate the output file size
for preallocation of disk space. The low-order byte of the second word is used
to store the record attribute byte (FAB$B_RAT) when an existing file is opened.
The high-order byte is used to store the record format byte (FAB$B_RFM)
when an existing file is opened. The values in the low word and the low-order
and high-order bytes of the second word are used for creating the output file in
the same format as the input file. These three fields are to be filled in by the
routine opening the file.

The last two longwords are used as a descriptor for the resultant or the
expanded file name. This name is used later when LSE processes EXIT
commands. This descriptor is to be filled in with the file name after an open
operation. It should be allocated with either the routine LIB$SCOPY_R_DX or
the routine LIB$SCOPY_DX from the RTL. This space is freed by LSE when it
is no longer needed.

data
VMS Usage: item_list_3
type: longword (unsigned)
access: modify
mechanism: by reference

Stream data. The data argument is either the address of an item list or the
address of a descriptor.

Note

The meaning of this parameter depends on the item code specified in
the code field.

When the LSE$K_OPEN item code is entered, the data parameter is the
address of an item list containing information about the open request. The
following LSE item codes are available for specifying information about the
open request:

2–48 Using LSE Callable Routines



LSE$FILEIO

• LSE$_ACCESS allows you to specify one of three item codes in the buffer
address field, as follows:

– LSE$K_IO

– LSE$K_INPUT

– LSE$K_OUTPUT

• LSE$_FILENAME is used for specifying the address of a string to use as
the name of the file you are opening. The length field contains the length
of this string, and the address field contains the address.

• LSE$_DEFAULTFILE is used for assigning a default file name to the
file being opened. The buffer-length field contains the length, and the
buffer-address field contains the address of the default file name.

• LSE$_RELATEDFILE is used for specifying a related file name for the
file being opened. The buffer-length field contains the length, and the
buffer-address field contains the address of a string to use as the related
file name.

• LSE$_RECORD_ATTR specifies that the buffer-address field contains the
value for the record attribute byte in the FAB (FAB$B_RAT) used for file
creation.

• LSE$_RECORD_FORM specifies that the buffer-address field contains the
value for the record format byte in the FAB (FAB$B_RFM) used for file
creation.

• LSE$_MAXIMIZE_VER specifies that the version number of the output file
should be one higher than the highest existing version number.

• LSE$_FLUSH specifies that the file should have every record flushed after
it is written.

• LSE$_FILESIZE specifies the value for the allocation quantity when
creating the file. The value is specified in the buffer-address field.

• LSE$_EOF_BLOCK specifies the end-of-file block number of the file.
The BUFADR field is the address of a longword into which the file I/O
routine must write the file’s end-of-file block number (from XAB$L_EBK in
$XABFHC).

• LSE$_EOF_FFB specifies the file’s first free byte offset into the end-of-file
block. The BUFADR field is the address of a word into which the file I/O
routine must write the file’s first free byte offset into the end-of-file block
(XAB$W_FFB in $XABFHC).

Using LSE Callable Routines 2–49



LSE$FILEIO

Condition Values Returned

The LSE$FILEIO routine returns an RMS status code to LSE. The file I/O
routine is responsible for signaling all errors if you want any messages
displayed.

Description

By default, LSE$FILEIO creates variable-length files with carriage-return
record attributes (FAB$B_RFM = VAR, FAB$B_RAT = CR). If you pass to it
the LSE$_RECORD_ATTR or LSE$_RECORD_FORM item, that item is used
instead. The following combinations of formats and attributes are acceptable:

Format Attributes

STM,STMLF,STMCR 0,BLK,CR,BLK+CR
VAR 0,BLK,FTN,CR,BLK+FTN,BLK+CR

All other combinations are converted to VAR format with CR attributes.

This routine always puts values greater than 511 in the first longword of the
stream data structure. Because a user-written file I/O routine is restricted to
the values 0 through 511, you can distinguish the file-control blocks (FCB) this
routine fills in from the ones you created.

Note

LSE uses LSE$FILEIO by default when you use the simplified callable
interface. When you use the full callable interface, you must explicitly
invoke LSE$FILEIO or provide your own file I/O routine.

2–50 Using LSE Callable Routines



LSE$HANDLER

LSE$HANDLER—LSE Condition Handler

Is the LSE condition handler.

The LSE condition handler invokes the Put Message (SYS$PUTMSG) system
service, passing it the address of LSE$MESSAGE.

Format

LSE$HANDLER signal_vector, mechanism_vector

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value.

Arguments

signal_vector
VMS Usage: arg_list
type: longword (unsigned)
access: modify
mechanism: by reference

Signal vector. See the OpenVMS System Services Reference Manual for
information about the signal vector passed to a condition handler.

mechanism_vector
VMS Usage: arg_list
type: longword (unsigned)
access: read-only
mechanism: by reference

Mechanism vector. See the OpenVMS System Services Reference Manual for
information about the mechanism vector passed to a condition handler.

Using LSE Callable Routines 2–51



LSE$HANDLER

Description

This routine performs the actual output of the message. The Put Message
(SYS$PUTMSG) system service formats only the message. It gets the settings
for the message flags and facility name from the variables described in
Section 2.1. You must use the DECTPU built-in procedure SET to modify those
values.

If the condition value received by the handler has a fatal status or does not
have an LSE, DECTPU, CLI$, or SCA facility code, the condition is resignaled.

If the condition is TPU$_QUITTING, TPU$_EXITING, or TPU$_
RECOVERFAIL, a request to unwind is made to the establisher of the
condition handler.

After handling the message, the condition handler returns with a continue
status. DECTPU error message requests are made by signaling a condition
to indicate which message should be written out. The arguments in the
signal array are a correctly formatted message argument vector. This vector
sometimes contains multiple conditions and formatted ASCII output (FAO)
arguments for the associated messages. For example, if the editor attempts to
open a file that does not exist, the DECTPU message TPU$_NOFILEACCESS
is signaled. The FAO argument to this message is a string for the name of
the file. This condition has an error status, followed by the RMS status field
(STS) and status-value field (STV). Because this condition does not have a fatal
severity, LSE continues after handling the error.

The editor does not automatically return from LSE$CONTROL. If you call the
LSE$CONTROL routine, you must explicitly establish a way to regain control
(for example, using the built-in procedure CALL_USER). Also, if you establish
your own condition handler but call the LSE handler for certain conditions,
the default condition handler must be established at the point in your program
where you want to return control.

See the OpenVMS Calling Standard for information about the OpenVMS
Condition Handling Standard.

2–52 Using LSE Callable Routines



LSE$INITIALIZE

LSE$INITIALIZE—Initialize DECTPU for Editing

Initializes LSE for editing. This routine allocates global data structures,
initializes global variables, and calls the appropriate setup routines for each of
the major components of the editor, including the Virtual File Manager, Screen
Manager, and I/O subsystem.

Format

LSE$INITIALIZE callback [,user_arg]

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed in the Condition Values
Returned section.

Arguments

callback
VMS Usage: vector_longword_unsigned
type: bound procedure value
access: read only
mechanism: by descriptor

Callback routine. The callback argument is the address of a user-written
routine that returns the address of an item list containing initialization
parameters or a routine for handling file I/O operations. This callback routine
must call a parsing routine, which can be LSE$CLIPARSE or a user-written
parsing routine.

Callable LSE defines thirteen item codes that you can use for specifying
initialization parameters. You do not have to arrange the item codes in any
particular order in the list. Figure 2–3 shows the general format of an item
descriptor. For information about how to build an item list, see the OpenVMS
programmer’s manual associated with the language you are using.

Using LSE Callable Routines 2–53



LSE$INITIALIZE

Figure 2–3 Format of an Item Descriptor

Item Code Buffer Length

Buffer Address

Return Address

ZK−4044−GE

The return address in an item descriptor is usually 0.

Table 2–2 describes the available item codes.

Table 2–2 LSE$INITIALIZE Item Codes

Item Code Description

LSE$_OPTIONS Enables the command qualifiers. Ten bits in the
buffer-address field correspond to the various
LSE command qualifiers. The remaining 22 bits
in the buffer-address field are reserved.

LSE$_JOURNALFILE Passes the string specified with the /JOURNAL
qualifier. The buffer-length field is the length
of the string, and the buffer-address field
is the address of the string. This string is
available with GET_INFO (COMMAND_
LINE,‘‘JOURNAL_FILE’’). This string may be
a null string.

LSE$_SECTIONFILE Passes the string that is the name of the binary
initialization file (section file) to be mapped in.
The buffer-length field is the length of the string
and the buffer-address field is the address of the
string. The LSE CLD file has a default value for
this string. If the LSE$V_SECTION bit is set,
this item code must be specified.

(continued on next page)

2–54 Using LSE Callable Routines



LSE$INITIALIZE

Table 2–2 (Cont.) LSE$INITIALIZE Item Codes

Item Code Description

LSE$_OUTPUTFILE Passes the string specified with the /OUTPUT
qualifier. The buffer-length field is the length
of the string, and the buffer-address field
specifies the address of the string. This string
is returned by the built-in procedure GET_INFO
(COMMAND_LINE, ‘‘OUTPUT_FILE’’). The
string may be a null string.

LSE$_DISPLAYFILE Passes the string specified with the /DISPLAY
qualifier. The buffer-length field is the length of
the string, and the buffer-address field specifies
the address of the string.

LSE$_COMMANDFILE Passes the string specified with the /COMMAND
qualifier. The buffer-length field is the length
of the string, and the buffer-address field is the
address of the string. This string is returned by
the built-in procedure GET_INFO (COMMAND_
LINE, ‘‘COMMAND_FILE’’). The string may be a
null string.

LSE$_FILENAME Passes the string that is the name of the input
file specified in the command line. The buffer-
length field specifies the length of this string,
and the buffer-address field specifies its address.
This string is returned by the built-in procedure
GET_INFO (COMMAND_LINE, ‘‘FILE_NAME’’).
This file name may be a null string.

LSE$_FILEIO Passes the bound procedure value of a routine
to be used for handling file operations. You may
provide your own file I/O routine, or you can call
LSE$FILEIO, the utility routine provided by LSE
for handling file operations. The buffer-address
field specifies the address of a two-longword
vector. The first longword of the vector contains
the address of the routine. The second longword
specifies the environment value that LSE loads
into R1 before calling the routine.

(continued on next page)

Using LSE Callable Routines 2–55



LSE$INITIALIZE

Table 2–2 (Cont.) LSE$INITIALIZE Item Codes

Item Code Description

LSE$_CALLUSER Passes the bound procedure value of the user-
written routine that the built-in procedure
CALL_USER is to call. The buffer-address field
specifies the address of a two-longword vector.
The first longword of the vector contains the
address of the routine. The second longword
specifies the environment value that LSE loads
into R1 before calling the routine.

LSE$_INIT_FILE Passes the string specified with the
/INITIALIZATION qualifier. The buffer-length
field is the length of the string, and the buffer-
address field is the address of the string. This
string is returned by using the built-in procedure
GET_INFO (COMMAND_LINE,‘‘INIT_FILE’’).

LSE$_START_LINE Passes the starting line number for the edit.
The buffer-address field contains the first of the
two integer values you specified as part of the
/START_POSITION command qualifier. The
value is available by using the built-in procedure
GET_INFO (COMMAND_LINE,‘‘LINE’’). Usually
an initialization procedure uses this information
to set the starting position in the main editing
buffer. The first line in the buffer is line 1.

LSE$_START_CHAR Passes the starting column position for the edit.
The buffer-address field contains the second of
the two integer values you specified as part of
the /START_POSITION command qualifier. The
value is available using the built-in procedure
GET_INFO (COMMAND_LINE, ‘‘CHARACTER’’).
Usually an initialization procedure uses this
information to set the starting position in the
main editing buffer. The first column on a line
corresponds to character 1.

(continued on next page)

2–56 Using LSE Callable Routines



LSE$INITIALIZE

Table 2–2 (Cont.) LSE$INITIALIZE Item Codes

Item Code Description

LSE$_CTRL_C_ROUTINE Passes the bound procedure value of a routine to
be used for handling Ctrl/C ASTs. LSE calls the
routine when a Ctrl/C AST occurs. If the routine
returns a FALSE value, LSE assumes that the
Ctrl/C has been handled. If the routine returns a
TRUE value, LSE aborts any currently executing
LSE procedure. The buffer-address field specifies
the address of a two-longword vector. The first
longword of the vector contains the address of
the routine. The second longword specifies the
environment value that LSE loads into R1 before
calling the routine.

LSE$_DEBUGFILE Passes the string specified with the /DEBUG
command qualifier. The buffer-length field is the
length of the string, and the buffer-address field
is the address of the string.

Table 2–3 shows the bits and corresponding masks enabled by the item code
LSE$_OPTIONS.

Table 2–3 LSE$_OPTIONS Masks and Bits

Mask 1 Bit 2 Function

LSE$M_RECOVER LSE$V_RECOVER Performs a recovery
operation.

LSE$M_JOURNAL LSE$V_JOURNAL Journals the edit session.
LSE$M_READ LSE$V_READ Makes this a

READ_ONLY edit session
for the main buffer.

1LSE$M . . . indicates a mask.
2LSE$V . . . indicates a bit item.

(continued on next page)

Using LSE Callable Routines 2–57



LSE$INITIALIZE

Table 2–3 (Cont.) LSE$_OPTIONS Masks and Bits

Mask1 Bit 2 Function

LSE$M_SECTION LSE$V_SECTION Maps in a binary
initialization file (a
DECTPU section file)
during startup.

LSE$M_CREATE LSE$V_CREATE Creates an input file if
the one specified does not
exist.

LSE$M_OUTPUT LSE$V_OUTPUT Writes the modified input
file upon exiting.

LSE$M_COMMAND LSE$V_COMMAND Executes a command file
during startup.

LSE$M_DISPLAY LSE$V_DISPLAY Attempts to use the
terminal for screen-
oriented editing and
display purposes.

LSE$M_INIT LSE$V_INIT Indicates the presence of
an initialization file.

LSE$M_COMMAND_
DFLTED

LSE$V_COMMAND_
DFLTED

Indicates whether the
user defaulted the name
of the command line. A
setting of TRUE means
the user did not specify a
command file. If this bit
is set to FALSE and the
user did not specify a file,
LSE$INITIALIZE fails.

LSE$M_WRITE LSE$V_WRITE Indicates whether the
/WRITE qualifier was
specified on the command
line.

1LSE$M . . . indicates a mask.
2LSE$V . . . indicates a bit item.

(continued on next page)

2–58 Using LSE Callable Routines



LSE$INITIALIZE

Table 2–3 (Cont.) LSE$_OPTIONS Masks and Bits

Mask 1 Bit 2 Function

LSE$M_MODIFY LSE$V_MODIFY Indicates whether the
/MODIFY qualifier was
specified on the command
line.

LSE$M_NOMODIFY LSE$V_NOMODIFY Indicates whether the
/NOMODIFY qualifier
was specified on the
command line.

LSE$M_DEBUG LSE$V_DEBUG Indicates whether the
/DEBUG qualifier was
specified.

1LSE$M . . . indicates a mask.
2LSE$V . . . indicates a bit item.

To create the bits, start with the value 0, then use the OR operator on the mask
(LSE$M . . . ) of each item you want to set. Another way to create the bits is
to treat the 32 bits as a bit vector and set the bit (LSE$V . . . ) corresponding
to the item you want.

user_arg
VMS Usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

User argument. The user_arg argument is passed to the user-written
initialization routine INITIALIZE.

The user_arg argument is provided to allow an application to pass information
through LSE$INITIALIZE to the user-written initialization routine. LSE does
not interpret this data in any way.

Using LSE Callable Routines 2–59



LSE$INITIALIZE

Condition Values Returned

TPU$_SUCCESS Initialization was completed successfully.
TPU$_SYSERROR A system service did not work correctly.
TPU$_NONANSICRT The input device (SYS$INPUT) is not a

supported terminal.
TPU$_RESTOREFAIL An error occurred during the restore operation.
TPU$_NOFILEROUTINE No routine has been established to perform file

operations.
TPU$_INSVIRMEM Insufficient virtual memory exists for the

editor to initialize.
TPU$_FAILURE General code for all other errors during

initialization.

Description

This routine is the first routine that must be called after establishing a
condition handler.

This routine initializes the editor according to the information received from
the callback routine. The initialization routine defaults all file specifications to
the null string and all options to off. However, it does not default the file I/O
or call-user routine addresses.

If you do not specify a section file, the software features of the editor are
limited.

2–60 Using LSE Callable Routines



LSE$LSE

LSE$LSE—Invoke LSE

Invokes LSE and is equivalent to the DCL command LSEDIT.

Format

LSE$LSE command

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed in the Condition Values
Returned section.

Argument

command
VMS Usage: char_string
type: character string
access: read-only
mechanism: by descriptor

Command string. The command argument is the address of a descriptor of a
command line.

Condition Values Returned

The LSE$LSE routine returns any condition value returned by LSE$INITIALIZE,
LSE$EXECUTE_INFILE, LSE$CONTROL, and LSE$CLEANUP.

Description

This routine takes the command string specified and passes it to the editor.
LSE uses the information from this command string for initialization purposes,
just as though you had entered the command at the DCL level.

Using the simplified callable interface does not set LSE$V_CLOSE_SECTION.
This feature allows you to make multiple calls to LSE$LSE without requiring
you to open and close the section file on each call.

Using LSE Callable Routines 2–61



LSE$LSE

If your application parses information that is not related to the operation of
LSE, make sure the application gets, and uses, all non-LSE parse information
before the application calls LSE$LSE. LSE$LSE destroys all parse information
obtained and stored before LSE$LSE was called.

2–62 Using LSE Callable Routines



LSE$MESSAGE

LSE$MESSAGE—Write Message String

Writes error messages and strings by using the built-in procedure, MESSAGE.

You can call this routine to have messages written and handled in a manner
consistent with LSE. This routine should be used only after
LSE$EXECUTE_INIFILE.

Format

LSE$MESSAGE string

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value.

Note

The return status should be ignored because it is intended for use by
the Put Message (SYS$PUTMSG) system service.

Argument

string
VMS Usage: char_string
type: character string
access: read-only
mechanism: by descriptor

Formatted message. The string argument is the address of a descriptor of text
to be written. It must be completely formatted. This routine does not append
the message prefixes. However, the text is appended to the message buffer
if one exists. In addition, if the buffer is mapped to a window, the window is
updated.

Using LSE Callable Routines 2–63



LSE$PARSEINFO

LSE$PARSEINFO—Parse Command Line and Build Item List

Parses a command and builds the item list for LSE$INITIALIZE.

Format

LSE$PARSEINFO fileio, call_user

Returns

VMS Usage: item_list
type: longword (unsigned)
access: read-only
mechanism: by reference

The routine returns the address of an item list.

Arguments

fileio
VMS Usage: vector_longword_unsigned
type: bound procedure value
access: read-only
mechanism: by descriptor

File I/O routine. The fileio argument is the address of a descriptor of a file I/O
routine.

call_user
VMS Usage: vector_longword_unsigned
type: bound procedure value
access: read-only
mechanism: by descriptor

Call-user routine. The call_user argument is the address of a descriptor of a
call-user routine.

2–64 Using LSE Callable Routines



LSE$PARSEINFO

Description

This routine parses a command and builds the item list for LSE$INITIALIZE.

This routine uses the Command Language Interpreter (CLI) routines to parse
the current command. It makes queries about the command parameters and
qualifiers that LSE expects. The results of these queries are used to set up the
proper information in an item list. The addresses of the user routines are used
for those items in the list. The address of this list is the return value of the
routine.

If your application parses information that is not related to the operation of
LSE, make sure the application gets, and uses, all non-LSE parse information
before the application calls LSE$PARSEINFO interface. LSE$PARSEINFO
destroys all parse information obtained and stored before LSE$PARSEINFO
was called.

Using LSE Callable Routines 2–65



FILEIO

FILEIO—User-Written Routine to Perform File Operations

Handles LSE file operations. The name of this routine can be either your own
file I/O routine or the name of the LSE file I/O routine (LSE$FILEIO).

Format

FILEIO code, stream, data

Returns

VMS Usage: cond_value
type: longword (usigned)
access: write-only
mechanism: by reference

Longword condition value. Most utility routines return a condition value in R0.
Condition values that this routine can return are listed in the Condition Values
Returned section.

Arguments

code
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read-only
mechanism: by reference

Item code specifying an LSE function. The code argument is the address of
a longword containing an item code from LSE that specifies a function to
perform.

stream
VMS Usage: unspecified
type: longword (unsigned)
access: modify
mechanism: by reference

File description. The stream argument is the address of a data structure
containing four longwords. This data structure is used to describe the file to be
manipulated.

2–66 Using LSE Callable Routines



FILEIO

data
VMS Usage: item_list_3
type: longword (unsigned)
access: modify
mechanism: by reference

Stream data. The data argument is either the address of an item list or the
address of a descriptor.

Note

The value of this parameter depends on which item code you specify.

Condition Values Returned

The condition values returned are determined by the user and should indicate
success or failure of the operation.

Description

The bound procedure value of the FILEIO routine is specified in the item list
built by the callback routine. This routine is called to perform file operations.
Instead of using your own file I/O routine, you can call LSE$FILEIO and pass
it the parameters for any file operation that you do not want to handle. Note,
however, that LSE$FILEIO must handle all I/O requests for any file it opens.
Also, if it does not open the file, it cannot handle any I/O requests for the file.
In other words, you cannot intermix the file operations between your own file
I/O routine and the one supplied by LSE.

Using LSE Callable Routines 2–67



HANDLER

HANDLER—User-Written Condition Handling Routine

Performs condition handling. It is a user-written routine.

Format

HANDLER signal_vector, mechanism_vector

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value.

Arguments

signal_vector
VMS Usage: arg_list
type: longword (unsigned)
access: modify
mechanism: by reference

Signal vector. See the OpenVMS System Services Reference Manual for
information about the signal vector passed to a condition handler.

mechanism_vector
VMS Usage: arg_list
type: longword (unsigned)
access: read-only
mechanism: by reference

Mechanism vector. See the OpenVMS System Services Reference Manual for
information about the mechanism vector passed to a condition handler.

Description

If you need more information about writing condition handlers and the
OpenVMS Condition Handling Standard, refer to the Introduction to OpenVMS
System Routines.

2–68 Using LSE Callable Routines



HANDLER

Instead of writing your own condition handler, you can use the default
condition handler, LSE$HANDLER. If you want to write your own routine,
you must call LSE$HANDLER with the same parameters that your routine
received to handle LSE internal signals.

Using LSE Callable Routines 2–69



INITIALIZE

INITIALIZE—User-Written Initialization Routine

Is passed to LSE$INITIALIZE as a bound procedure value and called to supply
information needed to initialize LSE. It is a user-written routine.

Format

INITIALIZE [user_arg]

Returns

VMS Usage: item_list
type: longword (unsigned)
access: read-only
mechanism: by reference

This routine returns the address of an item list.

Arguments

user_arg
VMS Usage: user_arg
type: longword (unsigned)
access: read-only
mechanism: by value

User argument.

Description

The user-written INITIALIZE routine is passed to LSE$INITIALIZE as a
bound procedure value and called to supply information needed to initialize
LSE.

If the user_arg parameter was specified in the call to LSE$INITIALIZE, the
initialization callback routine is called with only that parameter. If user_arg
was not specified in the call to LSE$INITIALIZE, the initialization callback
routine is called with no parameters.

The user_arg parameter is provided to allow an application to pass information
through LSE$INITIALIZE to the user-written initialization routine. LSE does
not interpret this data in any way.

2–70 Using LSE Callable Routines



INITIALIZE

The user-written callback routine is expected to return the address of an item
list containing initialization parameters. Because the item list is used outside
the scope of the initialization callback routine, it should be allocated in static
memory.

The item list entries are discussed in the section on LSE$INITIALIZE. Most of
the initialization parameters have a default value: strings default to the null
string and flags default to false. The only required initialization parameter is
the address of a routine for file I/O. If an entry for the file I/O routine address
is not present in the item list, LSE$INITIALIZE returns with a failure status.

Using LSE Callable Routines 2–71



USER

USER—User-Written Routine Called from an LSE Editing
Session

Allows your program to get control during an LSE editing session (for example,
to leave the editor temporarily and perform a calculation).

This user-written routine is invoked by the DECTPU built-in procedure
CALL_USER. The built-in procedure CALL_USER passes three parameters
to this routine. These parameters are then passed to the appropriate part
of your application to be used as specified. (For example, they may be used
as operands in a calculation within a FORTRAN program.) Using the string
routines provided by the OpenVMS Run-Time Library (RTL), your application
fills in the stringout parameter in the call-user routine, which returns the
stringout value to the built-in procedure CALL_USER.

Format

USER integer, stringin, stringout

Returns

VMS Usage: cond_value
type: longword (unsigned)
access: write-only
mechanism: by value

Longword condition value.

Arguments

integer
VMS Usage: longword_unsigned
type: longword (unsigned)
access: read-only
mechanism: by descriptor

First parameter to the built-in procedure CALL_USER. This is an input-only
parameter and must not be modified.

2–72 Using LSE Callable Routines



USER

stringin
VMS Usage: char_string
type: character string
access: read-only
mechanism: by descriptor

Second parameter to the built-in procedure CALL_USER. This is an input-only
parameter and must not be modified.

stringout
VMS Usage: char_string
type: character string
access: read-only
mechanism: by descriptor

Return value for the built-in procedure CALL_USER. Your program should
fill in this descriptor with a dynamic string allocated by the string routines
provided by the RTL. LSE frees this string when necessary.

Description

The description of the built-in procedure CALL_USER in the DIGITAL Text
Processing Utility Reference Manual shows an example of a BASIC program
that is a call-user routine.

Using LSE Callable Routines 2–73



USER

Example

INTEGER FUNCTION TPU$CALLUSER (x,y,z)
IMPLICIT NONE
INTEGER X
CHARACTER*(*) Y
STRUCTURE /dynamic/ Z

INTEGER*2 length
BYTE dtype
BYTE class
INTEGER ptr

END STRUCTURE
RECORD /dynamic/ Z
CHARACTER*80 local_copy
INTEGER rs,lclen
INTEGER STR$COPY_DX
local_copy = ’<’ // y // ’>’
lclen = LEN(Y) + 2

RS = STR$COPY_DX(Z,local_copy(l:lclen))
TPU$CALLUSER = RS
END

You can call this FORTRAN program with a DECTPU procedure. The following
is an example of one such procedure:

PROCEDURE MY_CALL
local status;
status := CALL_USER (0,’ABCD’);
MESSAGE(’"’ + ’"’);
ENDPROCEDURE

2–74 Using LSE Callable Routines



Index

C
Command file, 1–8
Command languages, 1–3
Command line

file specification, 1–7
for LSE, 1–7

Command-line qualifiers
/COMMAND qualifier, 1–8
/CREATE qualifier, 1–9
/CURRENT_FILE qualifier, 1–9
/DEBUG qualifier, 1–9
/DIAGNOSTICS qualifier, 1–17
/DISPLAY qualifier, 1–10
/ENVIRONMENT qualifier, 1–10
/INITIALIZATION qualifier, 1–11
/INTERFACE qualifier, 1–11
/JOURNAL qualifier, 1–11
/LANGUAGE qualifier, 1–12
/MODIFY qualifier, 1–12
/OUTPUT qualifier, 1–12
/READ_ONLY qualifier, 1–13
/RECOVER qualifier, 1–13
/SECTION qualifier, 1–14
/START_POSITION qualifier, 1–14
/SYSTEM_ENVIRONMENT qualifier,

1–14
/WRITE qualifier, 1–14

Commands
related to diagnostic file support

END DIAGNOSTIC, 1–20
END MODULE, 1–21
MESSAGE/FILE, 1–22
MESSAGE/TEXT, 1–23

Commands
related to diagnostic file support (cont’d)

REGION/FILE, 1–24
REGION/LIBRARY, 1–26
REGION/NESTED, 1–28
REGION/TEXT, 1–30
START DIAGNOSTIC, 1–32
START MODULE, 1–33

D
DECTPU SET procedure, 2–52
Diagnostic file support

DIGITAL internal-file format, 1–17
user-file format, 1–17

Diagnostics
See Diagnostic file support, 1–17

E
END DIAGNOSTIC command, 1–20
END MODULE command, 1–21
Environment file, 1–10

F
File

DIGITAL internal-file format, 1–17
user-file format, 1–17

FILEIO routine, 2–66

Index–1



H
HANDLER routine

user-written, 2–68

I
Initialization

LSE, 1–11
INITIALIZE routine, 2–70
Invoking LSE, 1–7
Item list

with LSE routines, 2–64

L
LSE$CLEANUP routine, 2–31
LSE$CLIPARSE routine, 2–35
LSE$CLOSE_TERMINAL routine, 2–37
LSE$COMMAND, 1–8
LSE$CONTROL routine, 2–38
LSE$DISPLAY_MANAGER, 1–10
LSE$EDIT routine, 2–40
LSE$ENVIRONMENT, 1–10
LSE$EXECUTE_COMMAND routine, 2–42
LSE$EXECUTE_INIFILE routine, 2–44
LSE$FILEIO routine, 2–46
LSE$HANDLER routine, 2–51
LSE$INITIALIZATION, 1–11
LSE$INITIALIZE routine, 2–53
LSE$LSE routine, 2–61
LSE$MESSAGE routine, 2–63
LSE$PARSEINFO routine, 2–64
LSE$SECTION, 1–14
LSE routines

condition handler
condition codes, 2–5
universal symbols, 2–5

shareable image
constants, 2–4
symbols, 2–4

user-written
FILEIO, 2–66
INITIALIZE, 2–70
requirements, 2–8

LSE routines
user-written (cont’d)

USER, 2–72

M
MESSAGE/FILE command, 1–22
MESSAGE/TEXT command, 1–23
Messages, 1–17

P
Packages

subroutine, 1–15
Portable command language, 1–3

R
REGION/FILE command, 1–24
REGION/LIBRARY command, 1–26
REGION/NESTED command, 1–28
REGION/TEXT command, 1–30
Regions, 1–17

S
START DIAGNOSTIC command, 1–32
START MODULE command, 1–33
Subroutine packages, 1–15

U
USER routine, 2–72
User-written LSE routines

See LSE routines

V
VMSLSE command language, 1–3

Index–2


