
HP DECset for OpenVMS

Guide to the Code Management
System
Order Number: AA–KL03H–TE

July 2005

This manual describes the concepts, commands, and features of the Code
Management System (CMS).

Revision/Update Information: This is a revised manual.

Operating System Version: OpenVMS I64 Version 8.2

OpenVMS Alpha Version 7.3–2 or 8.2

OpenVMS VAX Version 7.3

Windowing System Version: DECwindows Motif for OpenVMS I64
Version 1.5

DECwindows Motif for OpenVMS Alpha
Version 1.3–1 or 1.5

DECwindows Motif for OpenVMS VAX
Version 1.2–6

Software Version: HP DECset Version 12.7 for OpenVMS

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Java is a US trademark of Sun Microsystems, Inc.

Microsoft, Windows, and Windows NT are U.S. registered trademarks of Microsoft Corporation.

Printed in the US

Contents

Preface . xi

1 Introduction to CMS

1.1 Overview . 1–1
1.2 CMS Concepts . 1–2
1.2.1 Libraries, Elements, and Generations 1–2
1.2.2 Groups and Classes . 1–2
1.2.3 Reservations and Replacements . 1–2
1.2.4 Review . 1–3
1.2.5 History and Remarks . 1–3
1.2.6 Reference Copies . 1–3
1.2.7 Lines of Descent and Variant Generations 1–3
1.2.8 Concurrent Reservations . 1–4
1.2.9 Merging and Conflicts . 1–4
1.2.10 Security . 1–4
1.2.11 Events and Notification . 1–5
1.3 Invoking CMS . 1–5
1.4 Getting Help . 1–6
1.5 Sample Session . 1–7
1.6 Command Summary . 1–11

2 Using CMS with DECwindows Motif

2.1 Invoking CMS . 2–1
2.2 CMS Menus . 2–1
2.2.1 File Menu . 2–2
2.2.2 Edit Menu . 2–3
2.2.3 View Menu . 2–3
2.2.4 Maintenance Menu . 2–6
2.2.5 Data Menu . 2–9
2.2.6 Options Menu . 2–10
2.2.7 Help Menu . 2–12

iii

2.3 Displaying CMS Information in DECwindows Motif 2–12
2.3.1 Displaying More Than One View . 2–13
2.3.2 Restricting Views . 2–13
2.3.3 Customizing Your Initial View . 2–13
2.3.4 Expanding and Collapsing CMS Objects 2–14
2.3.4.1 Double Clicking . 2–14
2.3.4.2 Choosing a Function . 2–15
2.3.4.3 Using the Pop-Up Menu . 2–16
2.4 DECwindows LSE/CMS Integration . 2–17
2.4.1 CMS Functions from LSE . 2–17
2.4.2 LSE Functions from CMS . 2–18
2.4.3 Creating an Element in the CMS Library 2–19
2.4.4 Fetching a Generation of an Element From the CMS

Library . 2–20
2.4.5 Reserving an Element in the CMS Library 2–21
2.4.6 Replacing an Element into the CMS Library 2–21
2.4.7 Performing CMS Differences Operations 2–22
2.5 CMS Command Correspondence . 2–23
2.6 Small Screen Support . 2–23
2.7 Customizing Your CMS DECwindows Motif Interface 2–24

3 Libraries

3.1 Creating Libraries . 3–1
3.1.1 Creating the Directory . 3–1
3.1.2 Creating the Library . 3–2
3.1.3 Creating Elements in the Library . 3–3
3.1.4 Creating a Reference Copy Directory 3–6
3.2 Using Libraries . 3–7
3.2.1 Setting Libraries . 3–8
3.2.2 Modifying Library Lists . 3–8
3.3 Controlling Occlusion in Multiple Libraries 3–9
3.3.1 Occlusion of Multiple Object Types in a Command 3–11
3.3.2 Examples . 3–13
3.4 Library Locking . 3–16

iv

4 Elements and Generations

4.1 The Relationship Between Elements and Generations 4–1
4.2 Manipulating Elements and Generations 4–3
4.2.1 Creating Elements and Generations 4–3
4.2.2 Fetching an Element Generation . 4–4
4.2.3 Reserving an Element Generation . 4–4
4.2.4 Replacing an Element Generation . 4–6
4.2.5 Monitoring Element Changes . 4–7
4.2.6 Displaying Information About Elements and Generations . . . 4–7
4.2.7 Deleting Generations . 4–10
4.3 Concurrency . 4–11
4.3.1 Concurrent Access . 4–11
4.3.2 Concurrent Reservations . 4–11
4.3.3 Concurrent Replacements . 4–12
4.4 Delta Files . 4–13
4.5 Element Attributes . 4–14
4.5.1 The History Attribute . 4–14
4.5.2 The Notes and Position Attributes . 4–17
4.5.3 The Reference Copy Attribute . 4–19
4.5.4 The Review Attribute . 4–20
4.5.5 Examples of Using Element Attributes 4–21

5 Groups and Classes

5.1 Overview . 5–1
5.1.1 Groups . 5–1
5.1.2 Classes . 5–1
5.1.3 The Difference Between Groups and Classes 5–2
5.2 Manipulating Groups . 5–4
5.2.1 Creating Groups . 5–4
5.2.2 Inserting Elements into Groups . 5–5
5.2.3 Retrieving and Removing Elements from a Group 5–7
5.2.4 Displaying the Group Structure of a Library 5–8
5.2.5 Deleting Groups . 5–8
5.3 Manipulating Classes . 5–9
5.3.1 Creating Classes . 5–9
5.3.2 Inserting Element Generations into Classes 5–9
5.3.3 Retrieving and Removing Generations from a Class 5–11
5.3.4 Displaying the Class Structure of a Library 5–11
5.3.5 Deleting Classes . 5–12
5.4 Group and Class Attributes . 5–12

v

6 Variants and Merging

6.1 Lines of Descent . 6–1
6.1.1 Creating a Variant Generation . 6–1
6.1.2 Accessing Variant Generations . 6–5
6.1.3 Ancestor and Descendant Generations 6–6
6.2 Merging Two Generations of an Element 6–7
6.2.1 Merging Element Generations . 6–8
6.2.2 Conflicts in the Merging Process . 6–13
6.2.3 Verifying Merged Changes . 6–14

7 Security Features

7.1 OpenVMS File Access . 7–2
7.1.1 Assigning UIC Protection . 7–3
7.1.2 Assigning OpenVMS ACL Protection 7–4
7.1.2.1 Using OpenVMS ACLs on Directories 7–5
7.1.2.2 Using OpenVMS ACLs on Files . 7–6
7.2 CMS ACLs . 7–9
7.2.1 Creating CMS ACLs . 7–11
7.2.1.1 ACE Format . 7–11
7.2.1.2 Access Types . 7–12
7.2.1.3 ACL Format . 7–14
7.2.2 Specifying ACLs with Commands . 7–15
7.2.2.1 Examples of ACLs on Commands 7–16
7.2.3 Specifying ACLs with Other CMS Objects 7–18
7.2.3.1 Specifying ACLs on Elements, Groups, and Classes 7–18
7.2.3.1.1 Examples of ACLs on Elements, Groups, and

Classes . 7–19
7.2.3.2 Specifying ACLs on Element Lists, Group Lists, and

Class Lists . 7–20
7.2.3.2.1 Examples of ACLs on Lists . 7–22
7.2.3.3 Specifying ACLs on Libraries and History 7–23
7.2.3.3.1 Examples of ACLs on History and the Library 7–24
7.3 OpenVMS BYPASS Privilege and CMS BYPASS Access 7–26
7.4 Combining OpenVMS and CMS Security Mechanisms 7–27
7.4.1 Example of Protection Scheme Using OpenVMS and CMS

Mechanisms . 7–28

vi

8 Event Handling and Notification

8.1 Event Handling . 8–1
8.1.1 Specifying Action ACEs . 8–2
8.1.2 Detecting Events . 8–3
8.1.3 Using Your Own Event Handler . 8–3
8.2 Notification of Events . 8–5
8.3 Examples . 8–6

9 Library Maintenance

9.1 Command Rollback . 9–1
9.2 Verifying Data in a CMS Library . 9–3
9.2.1 Using VERIFY/RECOVER . 9–4
9.2.2 Using VERIFY/REPAIR . 9–5
9.2.3 Correcting Errors . 9–6
9.2.4 Reference Copies . 9–7
9.3 Maintaining Library Efficiency . 9–8
9.3.1 Deleting History Records . 9–8
9.3.2 Deleting and Archiving Element Generations 9–8
9.4 Unusual Occurrences . 9–10

10 Command Syntax

10.1 Command Format and Prompting . 10–1
10.2 Command Parameters . 10–2
10.2.1 Directory Specifications . 10–3
10.2.2 Remarks . 10–3
10.2.3 Element Names . 10–5
10.2.4 Element Expressions . 10–6
10.2.5 Element Generations and Expressions 10–7
10.2.6 Group Names . 10–9
10.2.7 Group Expressions . 10–10
10.2.8 Class Names . 10–10
10.2.9 Class Expressions . 10–11
10.3 Comma Lists . 10–11
10.4 Command Qualifiers . 10–12
10.4.1 Qualifier Values . 10–12
10.4.1.1 File Specifications . 10–13
10.4.1.2 File Structures . 10–13
10.4.1.3 Time Values . 10–13
10.4.2 Qualifier Defaults . 10–13
10.5 Wildcard Expressions . 10–14

vii

10.5.1 Single-Character Wildcards . 10–14
10.5.2 Partial-Field and Full-Field Wildcards 10–15
10.5.3 Canceling Wildcard Transactions . 10–15
10.6 Command Abbreviations . 10–15

A Summary of CMS Interface Functional Mappings

B CMS Library Storage Method

C System Management Considerations

C.1 Library Backup . C–1
C.2 System Time Errors . C–2
C.3 Library Limits . C–2
C.4 Quotas . C–2

Index

Examples

4–1 An Element with History and Notes Attributes 4–22
4–2 Example of Using the Review Attribute 4–23

Figures

2–1 Expanding a Group . 2–14
2–2 CMS Pop-Up Menu . 2–17
2–3 LSE/CMS Integration . 2–17
2–4 Command Mode . 2–25
2–5 Restricting History . 2–26
3–1 Building a CMS Library . 3–5
3–2 Library Occlusion . 3–13
4–1 Elements and Their Generations . 4–2
5–1 Groups and Classes . 5–3
5–2 Generations in a Group . 5–6
5–3 The Relationship Between Groups and Elements 5–10
6–1 Creating a Variant Generation . 6–3

viii

6–2 Extending a Variant Generation from an Earlier
Generation . 6–4

6–3 Ancestors on a Tree of Descent . 6–6
6–4 Descendants on a Tree of Descent . 6–7
6–5 The Relationship Between a Generation and an Element . . . 6–10
6–6 A Generation After Replacement in the Library 6–12
7–1 CMS ACL Access Types . 7–13

Tables

1–1 CMS Command Summary . 1–11
7–1 File Access Required for CMS Commands 7–6
7–2 Object Types and Related Expressions 7–15

ix

Preface

The Code Management System for OpenVMS (CMS) is an online library system
that helps track software development and maintenance. This guide provides
reference and conceptual information on how to use CMS on OpenVMS
systems.

Intended Audience
This guide is intended for all users of CMS, including managers, project
programmers, writers, and others who might be responsible for maintaining
CMS libraries.

This guide can be used by both experienced and novice users of CMS. You
do not need a detailed understanding of the OpenVMS operating system.
However, some familiarity with the conventions of the Digital Command
Language (DCL) is helpful.

Document Structure
This guide is task-oriented and provides information on how to use CMS. It is
divided into the following chapters and appendices:

• Chapter 1 describes the basic concepts of CMS and presents a tutorial
example to help you get started.

• Chapter 2 describes how to use the CMS DECwindows Motif user interface.

• Chapter 3 describes how to set up a CMS library and how to use library
search lists.

• Chapter 4 explains the concepts of files in a CMS library.

• Chapter 5 explains how to organize files into groups and classes.

• Chapter 6 describes lines of descent, how to create variant lines of descent,
and how to merge files.

• Chapter 7 describes the protection mechanisms that you can use in CMS.

xi

• Chapter 8 describes how CMS handles events and the concept of
notification when these events occur.

• Chapter 9 describes how to maintain the validity and integrity of your
CMS library.

• Chapter 10 gives detailed information on CMS syntax and how to specify
commands.

• Appendix A provides a table displaying how each of the CMS interfaces are
functionally mapped to each other.

• Appendix B contains information on how libraries are stored.

• Appendix C contains information about running CMS on the OpenVMS
operating system.

Related Documents
The following documents might also be helpful when using CMS:

• The HP DECset for OpenVMS Installation Guide contains instructions for
installing CMS.

• The Code Management System for OpenVMS Release Notes contain added
information on the use and maintenance of CMS.

• The CMS Client User’s Guide describes the installation and use of the CMS
Client software in a Microsoft Windows environment.

• The HP DECset for OpenVMS Code Management System Reference Manual
describes all the commands available for CMS.

• The HP DECset for OpenVMS Code Management System Callable Routines
Reference Manual describes the set of CMS callable routines.

• The Using DECset for OpenVMS Systems contains information on using
the other components of DECset.

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

xii

References to Other Products
Some older products that DECset components worked with previously may
no longer be available or supported by HP. References in this manual to such
products serve as examples only and do not imply that HP has conducted
recent interoperability testing.

See the Software Product Description for a current list of supported products
that are warranted to interact with DECset components.

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How to Order Additional Documentation
For information about how to order additional documentation, visit the
following World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following typographic conventions may be used in this manual:

Convention Description

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key
or a pointing device button.

Return In examples, a key name enclosed in a box indicates
that you press a key on the keyboard. In text, a key
name is not enclosed in a box.

KP n A sequence such as KP1 indicates that you must press
the key labeled with the number or character n on the
numeric keypad.

xiii

Convention Description

. . . A horizontal ellipsis in a figure or example indicates
the following possibilities:

• Additional optional arguments in a statement have
been omitted.

• The preceding item or items can be repeated one
or more times.

• Additional parameters, values, or other informa-
tion can be entered.

.

.

.

A vertical ellipsis indicates the omission of items from
a code example or command format; the items are
omitted because they are not important to the topic
being described.

() In command format descriptions, parentheses indicate
that you must enclose multiple choices in parentheses.

[] In command format descriptions, brackets indicate
optional choices. You can choose one or more items or
no items. Do not type the brackets on the command
line. However, you must include the brackets in the
syntax for OpenVMS directory specifications and for a
substring specification in an assignment statement.

{} In command format descriptions, braces indicate
required choices; you must choose at least one of the
items listed. Do not type the braces on the command
line.

bold type Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute,
or a reason.

Example This typeface indicates code examples, command
examples, and interactive screen displays. In text,
this type also identifies URLs, UNIX commands and
pathnames, PC-based commands and folders, and
certain elements of the C programming language.

italic type Italic type indicates important information, complete
titles of manuals or variables. Variables include
information that varies in system output (for
example, Internal error number), in command lines
(/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the
device type).

xiv

Convention Description

UPPERCASE TYPE Uppercase indicates the name of a command, routine,
file, file protection code, or the abbreviation of a system
privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command
or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Unless otherwise noted, you terminate a command by pressing the Return key.

xv

1
Introduction to CMS

The Code Management System (CMS) for OpenVMS is a library system for
software development and maintenance. CMS stores files called elements in
an online library, keeps track of changes made to these files, and monitors user
access to the files.

This chapter provides the following information:

• An overview of CMS and information on how to get started

• An introduction to CMS concepts

• A sample CMS session

• A summary of CMS commands

1.1 Overview
During software development, programmers continually make changes to
project files. CMS stores and monitors these files.

CMS enables you to store project files in a central library where they are
available to all project members. Some of the tasks you can perform on these
files are as follows:

• Store files (called elements) in a library.

• Fetch elements, modify them, and test them in your own directory.

• Control concurrent modifications to the same element.

• Merge concurrent modifications to an element.

• Create successive versions (called generations) of elements.

• Compare two generations of an element within a library.

• Organize related library elements into groups.

• Define a set of generations of elements as a class to make up a base level
or release version of a project.

Introduction to CMS 1–1

Introduction to CMS
1.1 Overview

• Track which users are working on which elements from the library.

• Maintain a historical account of element and library transactions.

1.2 CMS Concepts
This section introduces basic CMS concepts.

1.2.1 Libraries, Elements, and Generations
CMS stores all the information it needs in a library. A CMS library is
an OpenVMS directory containing specially formatted files. It serves as a
container or repository for various CMS entities (called objects).

An element is the basic structural unit in a CMS library; it consists of one
file and all its versions. An element generation represents a specific version
of that element. When you create an element and place it in a CMS library
for the first time, CMS creates generation 1 of that element. Each time you
reserve and then replace a generation of an element in the library, CMS creates
a new generation of that element.

For information on libraries, see Chapter 3. For information on elements and
generations, see Chapter 4.

1.2.2 Groups and Classes
A group is a set of elements (or other groups) that you can combine and
manipulate as a unit. For example, you might create a group containing all
the elements that process error messages.

A class is a set of particular generations of elements. You typically combine
generations of elements into classes to represent progressive stages, or base
levels, in the development of an entire system.

For information on groups and classes, see Chapter 5.

1.2.3 Reservations and Replacements
As changes are made to a file in the OpenVMS file system, new versions
of that file are created. Similarly, as an element is developed in CMS, new
generations of that element are created. In addition to storing the element and
its generations, CMS manages the development process by using reservations
and replacements.

A reservation exists in the CMS library when you retrieve an element
generation with the intent to modify it. The reservation ends and a
replacement occurs when you return the modified contents to the library.

For information on reservations and replacements, see Chapter 4.

1–2 Introduction to CMS

Introduction to CMS
1.2 CMS Concepts

1.2.4 Review
You can mark an element generation for review to indicate that its contents
should be reviewed by other users. After the review process is complete, the
element generation can be marked as having been accepted or rejected.

For information on marking an element generation for review and the review
process, see Section 4.5.4.

1.2.5 History and Remarks
All CMS commands that modify a library or its contents are recorded in the
library history. You can display any part of the history by using the SHOW
HISTORY command. All commands that are recorded allow you to enter a
remark, which is recorded in the history along with the command. Remarks
are useful in explaining library and element modifications.

For information on library history, see Chapter 4. For information on remarks,
see Section 10.2.2.

1.2.6 Reference Copies
For easy reference, you can direct CMS to automatically store copies of
the latest main-line generation of selected library elements in a separately
designated directory, called a reference copy directory.

For information on reference copies, see Sections 3.1.4 and 4.5.3.

1.2.7 Lines of Descent and Variant Generations
The first generation of a newly created element is generation 1. Every time
you reserve and replace a generation of that element, CMS numbers a new
generation by adding 1 to the number of the reserved generation. This new
generation is a descendant of the generation from which it was created. The
main line of descent consists of generation 1 and its direct descendants.

A generation can have only one direct ancestor and one direct descendant,
but it can also have a number of variant descendants. Those generations
that are not on the direct line of descent of a generation are called variant
generations. You specify variant generations by adding a letter, called the
variant letter, and the number 1 to the parent generation. For example,
generation 2E1 is a variant descendant of generation 2.

A variant generation and its direct descendants (for example, generations
2E1, 2E2, 2E3) form a variant line of descent. A variant generation can have
variant descendants; for instance, generation 2E1W1 is a variant descendant of
generation 2E1.

For information on lines of descent and variant generations, see Chapter 6.

Introduction to CMS 1–3

Introduction to CMS
1.2 CMS Concepts

1.2.8 Concurrent Reservations
You can create variant generations at any time, but default usage creates
successive generations along the same line of descent. You must create a
variant generation when the direct successor of a reserved generation already
exists and you replace a concurrent reservation.

A concurrent reservation exists when an element generation has been
reserved more than once by one or more users. In this case, only one of these
reservations can be replaced on the direct line of descent; the rest of the
reservations must be replaced as variant generations.

For information on concurrency, see Section 4.3.

1.2.9 Merging and Conflicts
You can use variant generations to maintain separate but related development
of an element, or you might have generations that have undergone concurrent
development.

If concurrent changes have been made to a generation, you can merge the
changes from one line of descent and some variant line of descent into a single
generation.

CMS resolves changes from two generations by comparing them to their
common ancestor generation. If both generations change a region of their
common ancestor in different ways, this region is known as a conflict. Where
the changes do not conflict, CMS includes the appropriate change; where the
changes conflict, CMS includes the changes from both generations and flags
the conflicting region. In either case, you should verify the resulting merged
output for correctness; for example, program source code should be compiled
and executed to ensure that it is syntactically and logically correct. After
verifying and making any necessary modifications, you can replace the merged
reservation.

For information on merging and conflicts, see Chapter 6.

1.2.10 Security
The OpenVMS operating system provides a security mechanism based on user
identification codes (UIC) and access control lists (ACLs) to control access to
files within the file system. Similarly, you can use CMS ACLs for controlling
access to CMS objects through CMS operations. For you to successfully access
an object in the CMS library, both the file system and the CMS internal
security mechanism must allow you to do so.

For information on the OpenVMS and CMS security mechanisms, see
Chapter 7.

1–4 Introduction to CMS

Introduction to CMS
1.2 CMS Concepts

1.2.11 Events and Notification
You can use CMS ACLs to specify that a CMS object being accessed constitutes
an event, and that some action should be taken when an event occurs. You
can specify lists of people to be notified when certain events occur on objects
in the CMS library. The default action performed is notification through the
OpenVMS Mail Utility (MAIL) to one or more users. CMS provides a default
notification event handler; in addition, you can write event handlers of your
own for CMS to use.

For information on events and notification, see Chapter 8.

1.3 Invoking CMS
You can invoke CMS in the following ways:

• From the DCL command level

• From the CMS subsystem command level

• From a program that calls CMS routines directly

• From the DECwindows Motif user interface

• From the CMS Client user interface (for accessing OpenVMS CMS libraries
from a PC environment)

Enter CMS commands at the DCL command level prompt ($) by preceding
them with the word CMS. After each command executes, control is returned to
DCL level. For example:

$ CMS SHOW RESERVATIONS
.
.
.

$

You can invoke CMS as a subsystem in the command-line interface in the
following ways:

• Enter the CMS command at the DCL prompt.

• Enter the CMS command with the /INTERFACE qualifier at the DCL
prompt.

• Enter the CMS command with the /INTERFACE=CHARACTER_CELL
qualifier and keyword at the DCL prompt.

Introduction to CMS 1–5

Introduction to CMS
1.3 Invoking CMS

For example, you can enter any one of the following commands to enter CMS
command-line subsystem mode:

$ CMS
CMS> SHOW RESERVATIONS
. . .

$ CMS/INTERFACE
CMS> SHOW RESERVATIONS
. . .

$ CMS/INTERFACE=CHARACTER_CELL
CMS> SHOW RESERVATIONS
. . .

For information on entering the CMS DECwindows Motif interface, see
Section 2.1.

You should enter the CMS subsystem when you plan on entering a series
of CMS commands. This avoids the overhead involved with invoking CMS
multiple times.

To terminate the CMS session and return to DCL level, type EXIT or press
Ctrl/Z.

Full CMS functionality is available at the command-line level, and most of
this guide describes how to use CMS in that manner. However, Chapter 2
provides information on accessing CMS commands and options through the
DECwindows pull-down menus and dialog boxes. In addition, callable interface
routines are described in the HP DECset for OpenVMS Code Management
System Callable Routines Reference Manual. Appendix A contains a table that
shows how each of these CMS interfaces map to each other.

1.4 Getting Help
You can get information about CMS either at DCL level or at CMS subsystem
level. At DCL level, the DCL command HELP CMS provides online help on
CMS commands, qualifiers, and other topics. For example:

$ HELP CMS

To get help on a specific CMS command, such as the CREATE ELEMENT
command, type the command after HELP CMS, as follows:

$ HELP CMS CREATE ELEMENT

You can get help at the CMS subsystem level by typing either HELP, or HELP
and the specific command. For example:

CMS> HELP CREATE ELEMENT

1–6 Introduction to CMS

Introduction to CMS
1.4 Getting Help

To get help from the DECwindows Motif interface, see Section 2.2.

1.5 Sample Session
This section contains a tutorial example showing how to use basic CMS
features. The numbers in the example match the explanations at the end of
the example.

Username: JONES 1
Password:
$ SET DEFAULT [JONES.PROJECT] 2
$ DIRECTORY 3

Directory DISKX:[JONES.PROJECT]

CMDRMVGRO.BLI;1 CMDRMVGRO.SDML;1 DIFF_DESIGN.MEM;2
INSTALL-VERSION.TXT;4 INTERNAL_CUST_SITES.COM;6
LOGIN.COM;71 MAIL_FIL_KEY.COM;6
NOTES$NOTEBOOK.NOTE;1 V010-29_INSTALL.TXT;1
V050-CALLABLE.LOG;2

Total of 10 files.

$ CMS 4

CMS> CREATE LIBRARY [JONES.CMSLIB] 5
_Remark: creating new library for my project
%CMS-S-CREATED, CMS Library DISKX:[JONES.CMSLIB] created
%CMS-I-LIBIS, library is DISKX:[JONES.CMSLIB]
%CMS-S-LIBSET, library set

CMS> CREATE ELEMENT/KEEP *.* 6
_Remark: creating elements from default directory to new CMS lib
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]CMDRMVGRO.BLI created
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]CMDRMVGRO.SDML created
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]DIFF_DESIGN.MEM created
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]INSTALL-VERSION.TXT created

.

.

.
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]V010-29_INSTALL.TXT created
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]V050-CALLABLE.LOG created
CMS> EXIT 7
$ LOGOUT

.

.

.
$ CMS 8
CMS> SET LIBRARY [.CMSLIB] 9
%CMS-I-LIBIS, library is DISKX:[JONES.CMSLIB]
%CMS-S-LIBSET, library set
-CMS-I-SUPERSEDE, library list superseded

CMS> SHOW ELEMENT 1 0

Elements in CMS Library DISKX:[JONES.CMSLIB]

Introduction to CMS 1–7

Introduction to CMS
1.5 Sample Session

CMDRMVGRO.BLI "creating elements from default directory to new CMS lib"
CMDRMVGRO.SDML "creating elements from default directory to new CMS lib"
DIFF_DESIGN.MEM "creating elements from default directory to new CMS lib"
INSTALL-VERSION.TXT "creating elements from default directory to new CMS lib"

.

.

.
V010-29_INSTALL.TXT "creating elements from default directory to new CMS lib"
V050-CALLABLE.LOG "creating elements from default directory to new CMS lib"

CMS> CREATE GROUP 1 1
_Group name: USER_MANUAL
_Remark: creating group for the project user’s manual
%CMS-S-CREATED, group DISKX:[JONES.CMSLIB]USER_MANUAL created

CMS> INSERT ELEMENT CMDRMVGRO.BLI,CMDRMVGRO.SDML USER_MANUAL 1 2
_Remark: inserting the command routine files into group USER_MANUAL
%CMS-I-INSERTED, element DISKX:[JONES.CMSLIB]CMDRMVGRO.BLI inserted into
DISKX:[JONES.CMSLIB]group USER_MANUAL
%CMS-I-INSERTED, DISKX:[JONES.CMSLIB]element CMDRMVGRO.SDML inserted into
DISKX:[JONES.CMSLIB]group USER_MANUAL
%CMS-I-INSERTIONS, 2 insertions completed

CMS> CREATE ELEMENT CMS$$GSR.TXT/INPUT=DISK$$XXX:[PROJECT.PUBLIC] 1 3
_Remark: also need the shareable image
%CMS-S-CREATED, element DISKX:[JONES.CMSLIB]CMS$$GSR.TXT created

CMS> INSERT ELEMENT CMS$$GSR.TXT USER_MANUAL 1 4
_Remark: inserting the shareable image into group USER_MANUAL
%CMS-I-INSERTED, element DISKX:[JONES.CMSLIB]CMS$$GSR.TXT inserted into
DISKX:[JONES.CMSLIB]group USER_MANUAL
%CMS-I-INSERTIONS, 1 insertion completed

CMS> CREATE CLASS BASELEVEL1 1 5
_Remark: creating class to contain files needed for base level 1
%CMS-S-CREATED, class DISKX:[JONES.CMSLIB]BASELEVEL1 created

CMS> RESERVE DIFF_DESIGN.MEM,USER_MANUAL "must add topics to these files" 1 6
%CMS-I-RESERVED, generation 1 of element DISKX:[JONES.CMSLIB]CMDRMVGRO.BLI reserved
%CMS-I-RESERVED, generation 1 of element DISKX:[JONES.CMSLIB]CMDRMVGRO.SDML reserved
%CMS-I-RESERVED, generation 1 of element DISKX:[JONES.CMSLIB]CMS$$GSR.TXT reserved
%CMS-I-RESERVED, generation 1 of element DISKX:[JONES.CMSLIB]DIFF_DESIGN reserved
%CMS-I-RESERVATIONS, 4 elements reserved

CMS> REPLACE CMS$$GSR.TXT "made two changes to table" 1 7
%CMS-S-GENCREATED, generation 2 of element DISKX:[JONES.CMSLIB]CMS$$GSR.TXT
created

CMS> SHOW GENERATION 1 8

Element generations in CMS Library DISKX:[JONES.CMSLIB]

CMDRMVGRO.BLI 1 23-JAN-2005 17:45:46 JONES "creating elements from
default directory to new CMS lib"

1–8 Introduction to CMS

Introduction to CMS
1.5 Sample Session

CMDRMVGRO.SDML 1 23-JAN-2005 17:46:47 JONES "creating elements from
default directory to new CMS lib"

CMS$$GSR.TXT 2 23-JAN-2005 18:12:18 JONES "made two changes to
table

.

.

.
V050-CALLABLE.LOG 1 23-JAN-2005 17:49:47 JONES "creating elements from

default directory to new CMS lib"

CMS> INSERT GENERATION CMS$$GSR.TXT/GEN=1,MAIL_FIL_KEY.COM BASELEVEL1 1 9
_Remark: these generations needed in class to build baselevel1
%CMS-S-GENINSERTED, generation 1 of element DISKX:[JONES.CMSLIB]CMS$$GSR.TXT
inserted into class DISKX:[JONES.CMSLIB]BASELEVEL1
%CMS-S-GENINSERTED, generation 2 of element DISKX:[JONES.CMSLIB]MAIL_FIL_KEY.COM
inserted into class DISKX:[JONES.CMSLIB]BASELEVEL1

CMS> SHOW RESERVATIONS 2 0

Reservations in CMS Library DISKX:[JONES.CMSLIB]

CMDRMVGRO.BLI
(1) JONES 1 24-JAN-2005 17:45:46 "need to add merging to these files"

CMDRMVGRO.SDML
(1) JONES 1 24-JAN-2005 17:46:47 "need to add merging to these files"

DIFF_DESIGN
(1) JONES 1 24-JAN-2005 17:48:29 "need to add merging to these files"

CMS> SHOW GROUP USER_MANUAL/CONTENTS 2 1

Groups in CMS Library DISKX:[JONES.CMSLIB]

USER_MANUAL "creating group for the project user’s manual"
CMDRMVGRO.BLI
CMDRMVGRO.SDML
CMS$$GSR.TXT

CMS> EXIT 2 2
$

Key to Example:

1 User Jones logs in.

2 Jones sets the default directory to the [.PROJECT] directory.

3 Jones displays the default directory DISKX:[JONES.PROJECT].

4 Jones invokes the CMS image and enters the CMS subsystem.

5 Jones creates [.CMSLIB] with the CREATE LIBRARY command.

6 Jones enters the CREATE ELEMENT command, and all files from the
default directory [JONES.CMSLIB] are created as elements in the CMS
library. The files are not deleted from Jones’s default directory because the
/KEEP qualifier was specified on the CREATE ELEMENT command.

7 Jones exits from CMS and logs out.

Introduction to CMS 1–9

Introduction to CMS
1.5 Sample Session

8 Jones later logs in and reenters CMS.

9 Jones sets the library to [JONES.CMSLIB].

1 0 Jones displays all elements with the SHOW ELEMENT command.

1 1 Jones creates a group named USER_MANUAL.

1 2 Jones then inserts the two elements CMDRMVGRO.BLI and
CMDRMVGRO.SDML into the group USER_MANUAL.

1 3 Jones decides that an element from the project directory is needed, and
specifies the /INPUT qualifier on the CREATE ELEMENT command to
indicate that the element is located in a different directory from the default
directory. Because Jones did not specify /KEEP, the file will be deleted
from the project directory.

1 4 Jones then inserts the element into the group USER_MANUAL.

1 5 Jones creates the BASELEVEL1 class with the CREATE CLASS command.

1 6 Jones reserves the element DIFF_DESIGN.MEM and the group
USER_MANUAL from the CMS library. CMS places the element
DIFF_DESIGN.MEM and the contents (in this case, elements) of group
USER_MANUAL in Jones’s default directory. Jones can then modify these
files as necessary.

1 7 Jones had previously reserved the element CMS$$GSR.TXT (which is
part of the group USER_MANUAL), and made changes to that file. Jones
replaces the element from the default directory [JONES] back into the
CMS library [JONES.CMSLIB].

1 8 Jones enters the SHOW GENERATION command to display the last
generation on the main line of descent for each element in the CMS library.

1 9 Jones then inserts generation 1 of the element CMS$$GSR.TXT and a
generation of the element MAIL_FIL_KEY.COM into class BASELEVEL1.
(If you do not specify the /GENERATION qualifier on an element, CMS
uses the latest generation.)

2 0 Jones displays all current reservations.

2 1 Jones displays the contents of the group USER_MANUAL.

2 2 Jones exits from CMS.

1–10 Introduction to CMS

Introduction to CMS
1.6 Command Summary

1.6 Command Summary
Table 1–1 lists and briefly describes all CMS commands.

Table 1–1 CMS Command Summary

Command Description

ACCEPT GENERATION Changes the review status of one or more generations
from pending to accepted and removes them from the
review pending list.

ANNOTATE Creates a listing file (element-name.ANN) that includes
the element history and an annotated source listing.

CANCEL REVIEW Changes the review status of one or more element
generations from pending to none and removes them
from the review pending list.

CONVERT LIBRARY Converts libraries that were created with Version 2.n
of CMS for use with Version 3.0 or higher.

COPY CLASS Copies one or more existing classes (including
generation history and file attributes) to form one
or more new classes.

COPY ELEMENT Copies one or more existing library elements (including
history and file attributes) to form one or more new
elements.

COPY GROUP Copies one or more existing groups (including history
and file attributes) to form one or more new groups.

CREATE CLASS Establishes one or more classes. Once a class is
established, any set of element generations can be
placed in that class with the INSERT GENERATION
command.

CREATE ELEMENT Establishes one or more new elements in a CMS library
by moving one or more files into the CMS library. By
default, CMS deletes all copies of the input file after
creating the element.

CREATE GROUP Establishes one or more groups. Once a group is
established, any set of elements or groups can be
placed in that group with the INSERT ELEMENT or
INSERT GROUP command.

CREATE LIBRARY Creates one or more CMS libraries by loading one or
more empty directories with CMS control structures.

DELETE CLASS Deletes one or more classes from the library.

(continued on next page)

Introduction to CMS 1–11

Introduction to CMS
1.6 Command Summary

Table 1–1 (Cont.) CMS Command Summary

Command Description

DELETE ELEMENT Deletes one or more elements from the library.

DELETE GENERATION Deletes one or more generations from one or more
elements in the library.

DELETE GROUP Deletes one or more groups from the library.

DELETE HISTORY Deletes some or all of the library history.

DIFFERENCES Compares the contents of two files and creates a listing
file (filename.DIF) showing all the lines that differ.
DIFFERENCES can also compare element generations
in a CMS library, or a file to an element generation.

DIFFERENCES/CLASS Compares the contents of two classes and creates
a listing file (classname.DIF) showing all member
generations that differ between classes.

FETCH Retrieves a copy of one or more specified element
generations.

HELP Provides online CMS help.

INSERT ELEMENT Places one or more elements in one or more groups.

INSERT GENERATION Places one or more element generations in one or more
classes.

INSERT GROUP Places one or more groups in another group or groups.

MARK GENERATION Changes the review status of one or more generations
to pending and adds them to the review pending list.

MODIFY CLASS Changes the attributes of a class from those
established with the CREATE CLASS command, or
with a previous MODIFY CLASS command.

MODIFY ELEMENT Changes the attributes of one or more elements from
those established with the CREATE ELEMENT
command, or with a previous MODIFY ELEMENT
command.

MODIFY GENERATION Changes the attributes of one or more generations
from those established with the CREATE ELEMENT
or REPLACE command, or with a previous MODIFY
GENERATION command.

MODIFY GROUP Changes the attributes of one or more groups from
those established with the CREATE GROUP command,
or with a previous MODIFY GROUP command.

(continued on next page)

1–12 Introduction to CMS

Introduction to CMS
1.6 Command Summary

Table 1–1 (Cont.) CMS Command Summary

Command Description

MODIFY LIBRARY Changes the attributes of the library from those
established with the CREATE LIBRARY command,
or with a previous MODIFY LIBRARY command.

MODIFY RESERVATION Changes the remark associated with a specific
reservation of an element.

REJECT GENERATION Changes the review status of one or more generations
from pending to rejected and removes them from the
review pending list.

REMARK Enters a remark in the library history.

REMOVE ELEMENT Removes one or more elements from one or more
groups.

REMOVE GENERATION Removes one or more generations from one or more
classes.

REMOVE GROUP Removes one or more groups from another group or
groups.

REPLACE Returns the most recent version of one or more
reserved generations to the library, thus creating a
new generation of each element. The reservation ends,
and CMS deletes all versions of the input file.

RESERVE Delivers a copy of one or more generations and marks
them as reserved.

RETRIEVE ARCHIVE Delivers a copy of one or more generations from
one or more archive files created with the DELETE
GENERATION/ARCHIVE command.

REVIEW GENERATION Associates a review comment with one or more
generations that are currently under review.

SET ACL Manipulates access control lists on various objects in
the CMS library.

SET LIBRARY Identifies one or more existing CMS libraries so
subsequent CMS commands refer to the specified
library or libraries.

SET NOLIBRARY Removes one or more libraries from the current library
search list.

SHOW ACL Displays the access control list associated with one or
more specified objects.

(continued on next page)

Introduction to CMS 1–13

Introduction to CMS
1.6 Command Summary

Table 1–1 (Cont.) CMS Command Summary

Command Description

SHOW ARCHIVE Displays information about the contents of one
or more archive files created with the DELETE
GENERATION/ARCHIVE command.

SHOW CLASS Displays one or more established classes.

SHOW ELEMENT Displays information about one or more elements.

SHOW GENERATION Displays a listing of one or more established
generations.

SHOW GROUP Displays a listing of one or more established groups.

SHOW HISTORY Displays a chronological listing of all CMS transactions
that have affected the library.

SHOW LIBRARY Displays the current library directory specification or
list of library directory specifications.

SHOW RESERVATIONS Displays a listing of all current reservations and
concurrent replacements.

SHOW REVIEWS_PENDING Displays a listing of generations that currently have
reviews pending, and any associated review remarks.

SHOW VERSION Displays the version number of your CMS system.

UNRESERVE Cancels an existing reservation.

VERIFY Performs a series of consistency checks on your CMS
library to confirm that all elements are present and
stored properly.

1–14 Introduction to CMS

2
Using CMS with DECwindows Motif

This chapter describes how you use CMS with the DECwindows Motif
interface. It describes how to invoke CMS in the DECwindows Motif
environment, get help, and display information. The chapter also shows a
sample session.

Before continuing with this chapter, you should be familiar with how to start
a DECwindows Motif desktop session, use and manage windows, and run a
DECwindows Motif application.

2.1 Invoking CMS
To invoke the CMS DECwindows Motif interface, enter the following command:

$ CMS/INTERFACE=DECWINDOWS

The following section describes the available menus and menu options.

2.2 CMS Menus
You use CMS menus to access buttons and dialog boxes that let you create and
open libraries, manipulate elements and generations, and perform other CMS
operations.

The main CMS window contains the following menus:

File Data

Edit Options

View Help

Maintenance

Using CMS with DECwindows Motif 2–1

Using CMS with DECwindows Motif
2.2 CMS Menus

2.2.1 File Menu
Choose the File menu items to perform the following operations:

• New—Create either a new library or a new element.

The New Library... and New Element... items in the submenu invoke
dialog boxes that prompt you for information to create the new objects.

• Open...—Establish an existing CMS library as the current library. The
library is automatically inserted into the library search list.

When you choose Open..., a dialog box is displayed, enabling you to specify
options for the library to be opened. You can specify multiple libraries to
be opened by separating each library with a comma.

• Fetch...—Retrieve a copy of the specified object or objects from the CMS
library. The object can be an element name, group name (CMS will fetch
the most recent generations of elements in the group), wildcard expression,
or a list of these separated by commas.

CMS fetches the most recent generation on the main line of descent, unless
you fill in the Generation field. The Fetch function delivers a copy of the
specified generations to your current, default directory. The generation is
not reserved, and CMS does not allow you to replace it. CMS allows you to
fetch a generation that is already reserved, and notifies you of any current
generation reservations for the element. If a version of a file with the same
name as the element already exists in your current, default directory when
you execute the fetch transaction, CMS notifies you. A new version is then
created with the next higher version number.

• Reserve...—Retrieve a copy of the specified object from the CMS library
and mark it as reserved. The object can be an element, group, wildcard
expression, or a list of these separated by commas.

The Reserve function places a copy of the object in your current default
directory and marks the object as reserved. When you choose the Reserve
menu item, a dialog box is displayed, enabling you to specify options for
the reserve transaction.

• Replace...—Return an element reservation to the library and create a new
generation of the element. The replace transaction transfers a file from
your default directory to the current CMS library, thus creating a new
generation.

• Unreserve...—Cancel one or more reservations of a generation of an
element. You cannot unreserve a generation held by another user unless
you hold BYPASS privilege, or unless you are granted BYPASS access to
the element by an access control list (ACL).

2–2 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.2 CMS Menus

If you have more than one reservation of an element or if you are canceling
another user’s reservation, you must specify the exact reservation to
be canceled. You do this by using either the Generation option or the
Reservation Identification button in the Options dialog box (choose the
Options button).

• Close...—Remove one or more libraries from the current library search list.

• Set Directory...—Specify a default device and directory to be automatically
used for file input and output.

CMS uses the default device and directory you specify for the duration
of the current CMS session. Your initial default device and directory are
restored when you exit from the CMS session.

• Close View...—Close the current view window when there are multiple
CMS views open.

The Close View menu item is located in both the File and View menus, and
has the same function in both menus.

• Exit—End the CMS session.

2.2.2 Edit Menu
Choose the Edit menu items to perform the following clipboard operations:

• Copy—Move the selected text to the clipboard. The Copy function does not
alter any information.

• Select All—Select the entire contents of the window, not just the data
currently visible in the window.

2.2.3 View Menu
Choose the View menu items to display CMS library objects and information
about those objects. The options are as follows:

• Element—Display all the elements in the current library. CMS lists the
elements in alphabetical order.

Double click on a specific element to expand it to display the list of
generations that belong to the element.

If you have opened multiple libraries, CMS displays the name of each
library in the library list. You must separately expand each library into its
elements.

• Group—Display all the groups in the current library. CMS lists the groups
in alphabetical order.

Using CMS with DECwindows Motif 2–3

Using CMS with DECwindows Motif
2.2 CMS Menus

Double click on a specific group to expand it to display the list of elements
and other groups contained in the group.

If you have opened multiple libraries, CMS displays the name of each
library in the library list. You must separately expand each library into its
groups.

• Class—Display all the classes in the current library. CMS lists the classes
in alphabetical order.

Double click on a specific class to expand it to display the list of generations
contained in the class.

If you have opened multiple libraries, CMS displays the name of each
library in the library list. You must separately expand each library into its
classes.

• Reservation—Display elements and generations that are reserved in the
current library.

Double click on a reserved element to expand it into individual generation
reservations. Double click on a reserved generation to expand it into the
following information:

Reservation identification number

Name of the user who has it reserved

Generation number

Date, time, and remark associated with the reservation

If you have opened multiple libraries, CMS displays only the name of each
library in the library list. You must separately expand each library into its
reserved elements and generations.

• History—Display a chronological list of the transactions performed in the
library. Each history record contains the following information:

Date and time of the transaction

User name of the user who performed the action

Transaction that was performed

Name of the element and generation number

Remark associated with the transaction

If you have opened multiple libraries, CMS displays the name of each
library in the library list. You must separately expand each library into its
history records.

2–4 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.2 CMS Menus

• Review—Display a list of all elements and generations that currently have
reviews pending in the library.

Double click on a specific element under review to expand it into its
individual generations under review. Double click on a generation to
expand it into a list of review comments, if any. CMS displays the following
information:

Generation number of the element

Name of the user who placed the element under review

Date, time, and remark associated with the element or generation
under review

If you have opened multiple libraries, CMS displays the name of each
library in the library list. You must separately expand each library into its
review elements.

• Command—Display a list of every CMS command on which an ACL can be
placed.

Double click on a specific command to expand it to display the ACL
assigned to the command, if any.

If you have opened multiple libraries, CMS displays the name of each
library in the library list. You must separately expand each library into its
commands.

You can also use the View menu items to do the following:

• Expand and collapse—Expand and collapse an object’s children, attributes,
ACL, group or class membership list, or all of the above options.

• New—Display a list of all available types of views. You can choose one of
the following types:

Element

Group

Class

Reservation

History

Review

Command

CMS displays a new view window that contains the type of view you chose.

Using CMS with DECwindows Motif 2–5

Using CMS with DECwindows Motif
2.2 CMS Menus

To close a window when you have multiple view windows open, pull down
the View menu, then choose Close View. The Close View menu item is
located in both the File and View menus, and has the same function in
both menus.

• Restrict...—Control the contents of the current view. The Restrict View
options are equivalent to options available when using command-line
interface SHOW commands.

When you choose Restrict..., a dialog box is displayed, enabling you to
specify an object (or objects) to be displayed with the options you specify.

To view an object other than the object type in your current view, change
the view by choosing a different type of view; or pull down the New View
submenu, choose the desired view, then choose the Restrict... menu item.

• Unrestrict...—Control the contents of the current view. The Unrestrict
View options are equivalent to options available when using command-line
interface NOSHOW commands.

When you choose Unrestrict..., a dialog box is displayed, enabling you to
specify an object (or objects) to be restricted with the options you specify.

To view an object other than the object type in your current view, change
the view by choosing a different type of view; or pull down the New View
submenu, choose the desired view, then choose the Unrestrict... menu item.

• Close View—Close the current view window when there are multiple CMS
views open.

The Close View menu item is located in both the File and View menus, and
has the same function in both menus.

• Update—Collapse previously expanded objects and display an updated view
window, including any changes made to the library search list.

2.2.4 Maintenance Menu
Choose the Maintenance menu items to perform the following operations:

• Insert—Display a list of the following types of objects on which you can
perform insertion transactions:

Elements

Groups

Generations

2–6 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.2 CMS Menus

• Remove—Display a list containing the following types of objects on which
you can perform remove transactions:

Elements

Groups

Generations

• New— Display a list containing the following types of objects on which you
can operate:

Groups

Classes

• Copy— Display a list containing the following types of objects which you
can copy:

Elements

Groups

Classes

This menu enables you to copy one or more existing objects and create a
new object (or objects) in the same library or another library. The original
object is left unchanged.

If you copy an object to the same library, the object must have a different
name.

• Modify—Display a list containing the following types of objects whose
characteristics can be changed:

Elements

Groups

Classes

Generations

Libraries

Reservation

• Delete—Display a list containing the following types of objects that can be
deleted:

Elements

Groups

Classes

Using CMS with DECwindows Motif 2–7

Using CMS with DECwindows Motif
2.2 CMS Menus

Generations

History

• Verify...—Instruct CMS to perform a series of consistency checks on your
CMS library. CMS verifies libraries to confirm that the library structure
and library files are in a valid form.

By default, CMS verifies all the elements in each library in the library
search list. To specify that CMS verify only the first occurrence of each
element in the search list, use the Occlude option.

When you choose Verify..., a dialog box is displayed, enabling you to specify
options for the library to be verified.

• Review...—Communicate information about the status of generations of
elements. Using the Review menu item, you can mark a generation to be
examined and commented on by other team members.

The generation can then be accepted, rejected, or the review canceled. To
display pending reviews, do the following:

1. Pull down the View menu.

2. Choose the Review submenu.

You can also pull down the View... menu item again and choose the
Restrict... menu item. This enables you to restrict the information
displayed by the Review View.

You can view remarks made by other users by doing the following:

1. Click on an element generation.

2. Pull down the View menu.

3. Pull down the Expand submenu.

4. Choose the Children menu item.

• Remark...—Add a remark to the library history. The remark is recorded in
the library history in the following format:

date time username REMARK "remark"

Use the remark to describe a transaction. You can use any characters;
however, the length of the remark cannot exceed 256 characters.

• Set ACL...—Manipulate the ACL on various objects in the library. An ACL
consists of access control entries (ACEs) that grant or deny access to a
command or other object to specified users.

2–8 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.2 CMS Menus

Generally, there are two ways in which you can use ACLs on objects:

To control and restrict access to commands

To control and restrict access to other objects (elements, groups, classes,
the element list, the group list, the class list, library history, and library
attributes)

When you choose one of these menu items, a dialog box is displayed, enabling
you to view and specify options for that operation.

2.2.5 Data Menu
Choose the Data menu item to perform the following operations:

• Element/File Differences...—Compare two files, two generations of
elements, or a file and a generation of an element.

If CMS finds differences, it creates a file that contains the lines that differ
between them, and delivers a copy of the file to your current, default
directory.

If the files are the same, CMS issues a message to that effect and does not
create a differences file. If you have turned off the Differences Only button,
CMS creates a file, even if there are no differences.

• Class Differences...—Compare the member generations between two
classes.

If CMS finds differences, it creates a file that lists the members that differ
between them, and delivers a copy of the file to your current, default
directory.

If the classes are the same, CMS issues a message to that effect and does
not create a differences file. If you have turned off the Differences Only
button, CMS creates a file, even if there are no differences.

• Annotate...—Create a line-by-line file listing of the changes made to each
specified element generation. CMS places this file in your current, default
directory or a directory you specify.

The Annotate function documents the development of an element, and
creates an output file that contains an annotated listing. Unless you
specify a different name, CMS names the file the same as the element
name. The file type is .ANN. The annotated listing file contains two parts:

History—Includes the generation number, date, time, user, and remark
associated with each generation of the element

Source file listing—Lists all the lines inserted or modified from
generation 1 to the specified generation.

Using CMS with DECwindows Motif 2–9

Using CMS with DECwindows Motif
2.2 CMS Menus

When you choose one of these menu items, a dialog box is displayed, enabling
you to view and specify options for that operation.

2.2.6 Options Menu
Choose the Options menu items to perform the following operations:

• Show Command...—Enter CMS command-line commands at the CMS
prompt. The output appears in the CMS Command window.

When you choose the Show Command... menu item, a dialog box is
displayed with a display window, a smaller input window containing
the CMS prompt (CMS>), and the Clear Command Window and Cancel
buttons.

• Message Logging...—Direct CMS to display error, success, and
informational messages using the options you choose.

• Initial Library...—Specify a library or libraries to be automatically opened
each time you invoke CMS.

When you choose Initial Library..., a dialog box is displayed, enabling you
to specify one or more library specifications.

• Known Libraries...—Specify multiple library names that CMS stores and
displays each time you enter CMS.

When you enter CMS, the libraries you specified are shown in the Open
Library dialog box.

• View...—Specify the default view you want displayed each time you invoke
CMS. You can specify one of the following views:

Element

Group

Class

Reservation

History

Review

Command

You can also specify the style in which CMS displays the view (textual,
outline, or tree) or to invoke views on fetch and reserve operations from
LSE.

• Default Occlusion...—Set default occlusion information.

2–10 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.2 CMS Menus

• Restrict...—Customize the display of options for the view type you specify.
Using the Restrict submenu is equivalent to using command-line interface
SHOW commands.

Use the Restrict submenu to restrict the display of options before you
display a view.

• Save Settings, Restore Settings, Restore System Settings—Enable
systemwide defaults, thus overriding any current customizations.

Note

Some customizations take effect immediately, whereas others might
take effect the next time you invoke the associated view. Still others
take effect the next time you invoke the CMS DECwindows interface
(for example, the Initial Library menu item).

Using CMS with DECwindows Motif 2–11

Using CMS with DECwindows Motif
2.2 CMS Menus

2.2.7 Help Menu
You obtain help in the DECwindows Motif environment by pulling down the
Help menu. Help provides brief information about screen objects, concepts, and
tasks that you can perform in CMS.

The CMS DECwindows Motif interface has online help that provides complete
information on all screen objects, including scroll bars, icons, menus, dialog
boxes, text fields, buttons, and functions. The online help is context-sensitive.
To get online help, do the following:

1. Position the pointer on the desired object.

2. Press and hold the Help key while you press MB1.

3. Release both keys.

A Help window opens to display information about the object.

2.3 Displaying CMS Information in DECwindows Motif
You display and obtain information about CMS objects through views. Views
replace the CMS SHOW commands.

In the DECwindows Motif environment, CMS provides the following types of
views:

• Element

• Group

• Class

• Reservation

• History

• Review

• Command

When you invoke the CMS DECwindows Motif interface for the first time,
CMS displays an Element View. This is a view of all elements in your current
library. However, if you have opened multiple libraries, CMS displays each
library name. To obtain a different view, do the following:

1. Pull down the View menu.

2. Choose the desired view.

2–12 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.3 Displaying CMS Information in DECwindows Motif

CMS displays the appropriate view for the type you choose. For example, if you
choose a group view, CMS displays the names of all the groups in the library.
However, if you have more than one library open, CMS displays only each
library name. You must then expand each library into the groups it contains.

2.3.1 Displaying More Than One View
A single view can display only one type of information at a time; however, you
can display multiple view windows. To obtain multiple view windows, do the
following:

1. Pull down the View menu.

2. Choose the New menu item; the New submenu is displayed.

3. Choose the desired view.

CMS displays an additional window with the view you choose.

You can display any number of views that you want; each view is independent
of other views. By using CMS views, you can choose objects on which you want
to perform functions.

2.3.2 Restricting Views
You can restrict views to display objects meeting certain criteria. For example,
to restrict a Reservation View to display only reservations made by a particular
user, do the following:

1. Pull down the View menu.

2. Choose the Reservation menu item.

3. Pull down the View menu.

4. Choose the Restrict... menu item.

A dialog box is displayed, enabling you to specify the user name for which CMS
should display reservations.

2.3.3 Customizing Your Initial View
CMS enables you to customize your CMS session by specifying which view you
want displayed on startup. To customize your CMS session, do the following:

1. Pull down the Options menu.

2. Choose the View... menu item.

3. Choose the desired view.

4. Pull down the Options menu.

Using CMS with DECwindows Motif 2–13

Using CMS with DECwindows Motif
2.3 Displaying CMS Information in DECwindows Motif

5. Choose the Save Attributes menu item.

You can also obtain information about CMS objects by expanding them. See
Section 2.3.4 for more information.

2.3.4 Expanding and Collapsing CMS Objects
The CMS DECwindows Motif interface provides the following ways to expand
and choose objects:

• Double click on an object to expand it.

• Choose a menu item, then specify the name of the object in the associated
dialog box. Or, first click on an object and then choose a menu item and
provide information about it in the associated dialog box.

• Click on an object, then press MB3 to obtain a pop-up menu.

The following sections describe these methods.

2.3.4.1 Double Clicking
Figure 2–1 shows the group DOC_TEST expanded to show its children.

Figure 2–1 Expanding a Group

2–14 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.3 Displaying CMS Information in DECwindows Motif

To expand this group using double clicking, do the following:

1. Pull down the View menu.

2. Choose the Group menu item.

3. Double click on the desired group (in this example, group DOC_TEST), or
choose the Expand item from the View menu.

Group DOC_TEST expands into its components, including elements and any
other groups contained in group DOC_TEST. Double clicking on the element
BASCOM.REQ expands it into its generations.

Note

If an item is expanded fully, double clicking collapses the information
into the previous level of information.

You can also expand an object by choosing a function. For example, to expand
the group DOC_TEST, do the following:

1. Click on the desired object (in this example, group DOC_TEST).

2. Pull down the View menu.

3. Choose the Expand menu item; the Expand submenu is displayed.

4. Choose the Children submenu item.

Section 2.3.4.2 contains more information about choosing a function.

2.3.4.2 Choosing a Function
Most of the functions performed on CMS objects are grouped into two menus:
File and Maintenance. You use the File menu to manipulate library and
element activities, such as creating new libraries or fetching, reserving,
replacing, or creating new elements. You use the Maintenance menu to
perform organizational or maintenance operations on libraries and library
elements. These include modifying elements, inserting elements into or
removing elements from various groups or classes, and so on.

Using CMS with DECwindows Motif 2–15

Using CMS with DECwindows Motif
2.3 Displaying CMS Information in DECwindows Motif

To choose an object and perform a specific operation, use one of the following
methods:

• Click on an object, then choose a menu item and provide information about
the object in the associated dialog box. For example, to reserve an element,
do the following:

1. Click on an element.

2. Pull down the File menu.

3. Choose the Reserve... menu item.

A dialog box is displayed, with the name of the element you have chosen in
the Selected list box. You can then enter additional information about the
element and the reserve function, and click on the OK button.

• Choose a menu item, then specify the name of the object in the associated
dialog box. For example, to reserve an element, do the following:

1. Pull down the File menu.

2. Click on the Reserve... menu item.

3. Click on the Element field in the Reserve... dialog box.

4. Fill in the Element field with the name of the element you want to
reserve.

You can then enter additional information about the element and the
reserve function, and click on the OK button.

2.3.4.3 Using the Pop-Up Menu
CMS provides a pop-up menu enabling you to quickly access some of the most
commonly used CMS functions. You can use the pop-up menu with any CMS
object that can be used in those functions.

To get the pop-up menu, press and hold MB3. Or, to first choose an object for
the operation, click on the object, then press and hold MB3 to get the pop-up
menu.

2–16 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.3 Displaying CMS Information in DECwindows Motif

Figure 2–2 shows the pop-up menu.

Figure 2–2 CMS Pop-Up Menu

2.4 DECwindows LSE/CMS Integration
LSE is integrated with CMS to ease the management of source code between
the two DECset components, as follows:

• From within LSE, you can enter commands or select menu choices to
manipulate CMS elements, LSE buffers, or disk files.

• From within CMS, you can select menu choices to manipulate CMS
elements, LSE buffers, or disk files.

As shown in Figure 2–3, you can fetch and reserve an element from a CMS
library, edit the file or perform differences, or replace or create a file to the
library.

Figure 2–3 LSE/CMS Integration

LSE

Fetch
Reserve

Differences

Replace
Create

CMS
Library

2.4.1 CMS Functions from LSE
From LSE, you can perform all CMS operations on the CMS library of your
choice. To see which library is set, issue the following command:

LSE> CMS SHOW LIBRARY

Using CMS with DECwindows Motif 2–17

Using CMS with DECwindows Motif
2.4 DECwindows LSE/CMS Integration

The following example shows a typical system response that might appear in
the LSE buffer:

Your CMS library list consists of:
DISK11:[EXCERPTS.CMS.VMS]

To reset to another CMS library, issue a command similar to the following:

LSE> CMS SET LIBRARY DISK11:[SUMMARIES.CMS.VMS]

The following list further describes the major CMS functions available from
LSE integrated functions, and presents examples:

• Reserve (and unreserve) an element in the CMS library into an LSE buffer.
Use the LSE File menu or the LSE command line. The following example
shows how to reserve generation 12 of a CMS element at the LSE command
line.

LSE> CMS RESERVE COPY.PAS/GENERATION=12

• Replace an element into the CMS library from an LSE buffer. Use the LSE
File menu or the LSE command line. The following example shows how to
replace a CMS element at the LSE command line.

LSE> CMS REPLACE COPY.PAS "Nov 2005 update"

• Perform CMS differences between any combination of CMS elements and
disk files or between CMS classes, putting the results into a disk file. Use
the LSE command line only.

The following example shows how to perform differences between
generation 15 of a CMS element and version 2 of the related disk file
at the LSE command line.

LSE> CMS DIFFERENCES COPY.PAS/GENERATION=15 COPY.PAS;2

All other CMS operations are available via the LSE command-line interface.

2.4.2 LSE Functions from CMS
From the CMS File pull-down menu, you can perform the following operations:

• Create an element in the CMS library from the current LSE buffer.

• Fetch a generation of an element from the CMS library into an LSE buffer.

• Reserve an element in the CMS library into an LSE buffer.

• Replace an element into the CMS library from an LSE buffer.

• Perform CMS differences between two generations of elements.

2–18 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.4 DECwindows LSE/CMS Integration

• Perform CMS differences between the current LSE buffer and its
corresponding CMS element or a file.

• Perform CMS differences between two classes.

From the CMS Options pull-down menu, you can perform the following
operations:

• Use a view to fetch a generation of an element from the CMS library into
an LSE buffer.

• Use a view to reserve an element in the CMS library into an LSE buffer.

2.4.3 Creating an Element in the CMS Library
There are two ways to create an element in the CMS library:

• Create the CMS element in CMS.
You can create an element in the CMS library from the contents of the
current LSE buffer via the CMS pull-down menu. If the specified file name
is currently in an LSE buffer, the LSE buffer is written to disk and that
version of the CMS element is created.

To create an element, do the following:

1. From the CMS File menu, choose New, Element to access the New
Element dialog box.

2. Specify an LSE edit buffer in the Element text field, or accept the
current LSE edit buffer (if LSE is running). The buffer name must be
a valid CMS element name, as defined in Section 10.2.3. If the text
in the current LSE buffer has changed from an older version on disk,
a new version is written to disk at the same time the new element is
created in the CMS library.

You can also import a file by clicking the Input File toggle button and
typing a file name in the associated text field. The Input File and
Element choices are mutually exclusive. That is, you can specify either
an input file or an LSE edit buffer, but not both.

• Create the CMS element in LSE.
To create a CMS element from the LSE command line, issue a command
similar to the following:

LSE> CMS CREATE ELEMENT COPY.PAS "Dec 2005 update"

If the specified file is in the current LSE buffer and is different from the
latest version on disk, a new version is saved and that version is used for
the CMS element.

Using CMS with DECwindows Motif 2–19

Using CMS with DECwindows Motif
2.4 DECwindows LSE/CMS Integration

2.4.4 Fetching a Generation of an Element From the CMS Library
To fetch a generation of a CMS element, use one of the following methods:

• Fetch a CMS element using CMS.
You can fetch a generation of an element from the CMS library into an LSE
buffer via the CMS File menu, or by double clicking on the element name.
If DECwindows LSE is running, the specified CMS element is fetched and
displayed in an LSE buffer with the same name.

• Fetch a CMS element using LSE.
To fetch a CMS element in LSE, either select Fetch from the File menu, or
issue a command similar to the following at the command line:

LSE> CMS FETCH COPY.PAS "Modify Dec 2005 update"

To fetch an earlier generation, specify the /GENERATION=n qualifier. If
DECwindows LSE is running, the specified CMS element is fetched and
displayed in an LSE buffer with the same name. For a different file name,
use the /OUTPUT=file-spec qualifier.

2–20 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.4 DECwindows LSE/CMS Integration

2.4.5 Reserving an Element in the CMS Library
To reserve or unreserve a CMS element, use one of the following methods:

• Reserve a CMS element using CMS.
You can reserve an element in the CMS library into an LSE buffer via
the CMS File menu. If DECwindows LSE is running, the specified CMS
element is reserved and displayed in an LSE buffer with the same name.

• Reserve a CMS element using LSE.
To reserve a CMS element in LSE, either select Reserve from the File
menu, or issue a command similar to the following at the command line:

LSE> CMS RESERVE COPY.PAS "Modify Dec 2005 update"

To reserve an earlier generation, specify the /GENERATION=n qualifier. If
DECwindows LSE is running, the specified CMS element is reserved and
displayed in an LSE buffer with the same name. For a different file name,
use the /OUTPUT=file-spec qualifier.

2.4.6 Replacing an Element into the CMS Library
To replace a CMS element, use one of the following methods:

• Replace a CMS element using CMS.
You can replace an element into the CMS library from an LSE buffer via
the CMS File menu. If the specified file name is currently in an LSE buffer,
the LSE buffer is written to disk and that version of the CMS element is
replaced. To replace the element, do the following:

1. From the CMS File menu, choose Replace to access the Replace dialog
box.

2. Verify the selected CMS elements in the Selected list box, change
element names or generations, or click on Cancel to return to the CMS
window. If you did not select an element in the CMS window, the
cursor is displayed in the Element text field for your input. However, if
you did select an element, the Element text field is unavailable.

To avoid creating a new generation if the input file has no changes from the
reserved generation, activate the Create New Generation Only if Changed
toggle button in the Replace Options dialog box.

Using CMS with DECwindows Motif 2–21

Using CMS with DECwindows Motif
2.4 DECwindows LSE/CMS Integration

• Replace a CMS element using LSE.
To replace a CMS element in LSE, either select Replace from the File
menu, or issue a command similar to the following at the command line:

LSE> CMS REPLACE COPY.PAS "Dec 2005 update, mod. Jan 2006"

To avoid creating a new generation if the input file has no changes from
the reserved generation, use the /IF_CHANGED qualifier.

2.4.7 Performing CMS Differences Operations
To perform a CMS differences operation, use one of the following methods:

• Perform CMS differences using CMS.
Access either the Element/File Differences or Class Differences dialog box
from the Data pull-down menu in DECwindows CMS. Use the Primary
Input region to identify the first item to be compared, and the Secondary
Input region for the second item. Select the two items using the following
buttons and fields:

Selected—If you selected a CMS object, that object is displayed in the
Selected field of the Primary Input region. You can either accept that
object or specify another object. If you did not select a CMS object, the
Selected area is inactive.

When comparing elements, CMS uses the highest mainline generation
(1+) by default, unless you selected a specific generation. To compare
any other generation, supply the exact generation number in the form
ELEMENT\n.

Generation (Element differences only)—To compare a CMS
element, click the Generation toggle button and enter the generation
value in the text field.

Element/File (Element differences only)—Click on the
Element/File label and specify either an OpenVMS file specification or
a CMS element. The OpenVMS file can be specified without a version
number, but a CMS element must be specified with a generation
number. For a CMS element, click the Generation button to specify
that the file is an element and not an OpenVMS file. If no CMS
element was selected, the text field remains blank in both the Primary
Input and Secondary Input areas.

• Perform CMS differences using LSE.
Enter the command and specify which items should be used to perform the
operation. Enter only the file name for an LSE buffer, add version numbers

2–22 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.4 DECwindows LSE/CMS Integration

for disk files, or add the /GENERATION=n qualifier for CMS elements, as
shown in the following examples:

This performs differences between generation 2 of a CMS element and
version 8 of a disk file.

LSE> CMS DIFFERENCES COPY.PAS/GENERATION=2 COPY.PAS;8

This performs differences between generation 2 of a CMS element and
generation 1 of the same CMS element.

LSE> CMS DIFFERENCES COPY.PAS/GENERATION=2 COPY.PAS/GENERATION=1

2.5 CMS Command Correspondence
Most command-line interface CMS commands have a corresponding menu path
in the DECwindows Motif interface. However, the following CMS commands
are not included in the CMS DECwindows Motif interface:

• CONVERT LIBRARY

• RETRIEVE ARCHIVE

• SHOW ARCHIVE

• SHOW LIBRARY

You can invoke the CMS command line from the DECwindows Motif interface
by entering command mode. To enter command mode, do the following:

1. Pull down the Options menu.

2. Choose the Show Command... menu item.

A dialog box is displayed, containing an output window and the CMS
command-line prompt. Enter CMS command-line interface commands at the
CMS prompt (CMS>). CMS displays the resulting command output in the
output window (see Figure 2–4).

2.6 Small Screen Support
The CMS DECwindows Motif interface enables you to change the default
values for window sizes and font sizes, so you can view all the CMS information
even on a small PC screen.

The CMS default values for text fonts, window sizes, and other window
resources are contained in the file CMS$DW_DEFAULTS.DAT in the directory
DECW$SYSTEM_DEFAULTS. Create a local copy of this file to the directory
DECW$USER_DEFAULTS, then read the value descriptions in the resource
file and modify the defaults to your preferences.

Using CMS with DECwindows Motif 2–23

Using CMS with DECwindows Motif
2.7 Customizing Your CMS DECwindows Motif Interface

2.7 Customizing Your CMS DECwindows Motif Interface
The CMS DECwindows Motif interface enables you to conveniently customize
many options, including the following:

• Message-logging options

• The initial library to open each time you enter CMS

• A library (or libraries) that are most commonly used, which you can specify
once and then conveniently open by choosing them from a list

• The default view to be displayed each time you enter CMS

• The default occlusion

• Default restrictions for each view type

Figure 2–4 shows the Command dialog box. The command SHOW LIBRARY
has been entered at the CMS command-line prompt (CMS>), and the resulting
information is displayed in the output box.

2–24 Using CMS with DECwindows Motif

Using CMS with DECwindows Motif
2.7 Customizing Your CMS DECwindows Motif Interface

Figure 2–4 Command Mode

In Figure 2–5, the Customize Restrict History dialog box is shown. The user
has specified that the history view contain only elements with the file type
.REQ that have been modified, created, or deleted in the last 30 days by user
SMITH.

Using CMS with DECwindows Motif 2–25

Using CMS with DECwindows Motif
2.7 Customizing Your CMS DECwindows Motif Interface

Figure 2–5 Restricting History

2–26 Using CMS with DECwindows Motif

3
Libraries

A CMS library consists of a set of defined objects that can be operated on by
CMS commands. A CMS library resides in a directory that has been initialized
for use solely by CMS.

This chapter describes how to create and use CMS libraries, control occlusion
of CMS objects, and library locking.

3.1 Creating Libraries
This section describes how to create a CMS library. First, you must create
a directory to contain the library; then you create the library, and create
elements in it.

You can also optionally create a reference copy directory. A reference copy
directory is a directory used for storing copies of the latest generation on the
main line of descent for specified elements in a CMS library. See Section 3.1.4
for more information.

3.1.1 Creating the Directory
You create a directory to contain your CMS library by using the DCL command
CREATE/DIRECTORY. The format of the command is as follows:

CREATE/DIRECTORY directory-specification

For example:

$ CREATE/DIRECTORY [PROJECT.CMSLIB]

The name PROJECT identifies the first-level directory. This command creates
the empty subdirectory [.CMSLIB] within the directory [PROJECT]. For more
information on the CREATE/DIRECTORY command, see the HP OpenVMS
DCL Dictionary.

Libraries 3–1

Libraries
3.1 Creating Libraries

A directory specification can refer to either a first-level directory or a
subdirectory. To create a first-level directory, you must have write access
to the master file directory (MFD) on the volume on which you are creating
the directory. Normally, on a system volume, only users with a system
user identification code (UIC) or the SYSPRV or BYPASS user privilege are
allowed write access to the MFD to create a first-level directory. To create a
subdirectory, you must have write access to the next higher directory level. For
more information on directory specifications, see Chapter 10.

Note

You should not place any version limit on a CMS library; CMS
automatically purges and deletes unused files within a library. A
library must have a file retention count of at least 2 to allow error
recovery in case of system failure.

CMS limits directory trees to a depth of eight. Because CMS might
create subdirectories, you should not create a library in an eighth-level
directory.

If you want to place access control lists (ACLs) on the library directory,
you should do so before you create the library, so files created during
library creation are assigned the correct protection. See Chapter 7 for more
information on ACLs.

3.1.2 Creating the Library
You create a CMS library with the CREATE LIBRARY command. The
CREATE LIBRARY command creates CMS control files in the specified
directory. The directory must exist and must be empty. Once you create a
library in a directory, CMS uses that directory to locate and store files. Note
that your default directory cannot be a CMS library. After you create a library
with the CREATE LIBRARY command, all subsequent CMS commands refer to
this library until the end of the terminal session, until you specify a different
library with the SET LIBRARY command, or until you deassign the library list
with the SET NOLIBRARY command.

3–2 Libraries

Libraries
3.1 Creating Libraries

The following command initializes a library in the empty directory
[PROJECT.CMSLIB]:

$ CMS CREATE LIBRARY [PROJECT.CMSLIB]
_Remark: test procedure library
%CMS-S-CREATED, CMS library DISKX:[PROJECT.CMSLIB] created
%CMS-I-LIBIS, Library is DISKX:[PROJECT.CMSLIB]
%CMS-S-LIBSET, CMS library set

CAUTION

Once the library is created, you should access it only through a CMS
interface. If a library has been accessed by means other than CMS,
such as copying the file through a DCL command, it might result in
unrecoverable library corruption. Files that have been placed into the
library directory by means other than CMS can be deleted by CMS
when the library is verified and repaired (see Chapter 9).

You can create more than one library with the CREATE LIBRARY command
by specifying a list of directory specifications separated by commas. For more
information, see Section 3.2.

The CREATE LIBRARY command also allows you to optionally specify a
directory to be used for maintaining reference copies of library elements. For
information about using reference copy directories, see Section 3.1.4.

3.1.3 Creating Elements in the Library
You store a file in a CMS library with the CREATE ELEMENT command.
CREATE ELEMENT uses the input file you provide to create the first version
of an element. This first version represents generation 1 of the element. An
element represents all the versions of a particular file as it is developed. Every
element in the CMS library must have a unique name.

The following is an example of the CREATE ELEMENT command:

$ CMS CREATE ELEMENT OUTPUT.FOR "ascii output format routines"
%CMS-S-CREATED, element [PROJECT.CMSLIB]OUTPUT.FOR created

This command creates the element named OUTPUT.FOR. Generation 1 of
element OUTPUT.FOR now exists in the library.

Libraries 3–3

Libraries
3.1 Creating Libraries

The file specified in the CREATE ELEMENT command must be present in
your current, default directory (unless you specify a different location by using
the /INPUT qualifier). CMS deletes all copies of that file from the default
or specified directory after creating the new element. You can override this
default by specifying the /KEEP or /RESERVE qualifier on the CREATE
ELEMENT or MODIFY ELEMENT command, or library-wide by specifying the
/KEEP qualifier on the CREATE LIBRARY or MODIFY LIBRARY command.
The contents of the file used to create the element become generation 1 of that
element.

CMS can store and operate on nontext files; however, CMS cannot store
directory files.

There is no explicit limit on the number of elements (or groups or classes) that
can exist in a library. However, there might be limits imposed by your system
configuration, including system, process, disk space, and virtual memory
limitations.

To create an element in the library, you must have read access to the file from
which you are creating the element.

Figure 3–1 shows the process of establishing a library and creating elements in
it. See Chapter 4 for more information about elements.

3–4 Libraries

Libraries
3.1 Creating Libraries

Figure 3–1 Building a CMS Library

DISKX:

Project

(Before CMS Directory Setup)

DISKX:

Project

CMSLIB

2. CMS Library Established Using
CMS CREATE LIBRARY Command

1. CMS Directory Established Using
$CREATE/DIRECTORY Command

DISKX:

Project

CMSLIB

CMS Data Structures

DISKX:

Project

CMSLIB

CMS Data Structures

ADCONVERT.BAS
SAMPLE.BAS
SPEC.RNO
SYNCHRON.BAS
TIMETST.COM

3. Library Elements Inserted Using
CMS CREATE ELEMENT Command

ZK−0369−GE

Libraries 3–5

Libraries
3.1 Creating Libraries

3.1.4 Creating a Reference Copy Directory
A reference copy directory is a directory in which CMS maintains a copy of
the latest generation on the main line of descent of each element.

The reference copy directory cannot be a CMS library, nor can it be a
subdirectory of a CMS library directory. Although CMS allows different
libraries to be assigned the same reference copy directory, it is strongly
recommended that you assign each CMS library its own unique reference copy
directory.

To establish a reference copy directory, first create a directory (see
Section 3.1.1), then use the /REFERENCE_COPY qualifier with the CREATE
LIBRARY or MODIFY LIBRARY command. The /REFERENCE_COPY
qualifier directs CMS to store the name of this directory in the library, creating
a permanent association between the CMS library and this directory (unless
you enter a MODIFY LIBRARY/NOREFERENCE_COPY command, which
removes this association). For example:

$ CREATE/DIRECTORY [PROJECT.CMSLIB]
$ CREATE/DIRECTORY [PROJECT.REFCOPY]
$ CMS CREATE LIBRARY [PROJECT.CMSLIB]/REFERENCE_COPY=[PROJECT.REFCOPY]
_Remark: Master library with reference copies
%CMS-S-CREATED, library DISKX:[PROJECT.CMSLIB] created

In this example, the first CREATE/DIRECTORY command creates the CMS
library directory [PROJECT.CMSLIB]; the second CREATE/DIRECTORY
command creates the reference copy directory [PROJECT.REFCOPY].
The CREATE LIBRARY command initializes a CMS library in the
[PROJECT.CMSLIB] directory and creates a permanent association between
the CMS library and the [PROJECT.REFCOPY] directory.

Once a reference copy directory is established for a library, CMS maintains
reference copy files in that directory. Every time you create a new main-line
generation of an element (by using CREATE ELEMENT or REPLACE), CMS
updates the reference copy of that element. Existing elements in the library
will not have the reference copy attribute set. Use the /REFERENCE_COPY
qualifier on the MODIFY ELEMENT command to enable the reference copy
attribute on those elements for which reference copies are to be maintained.
See Section 4.5.3 for more information.

3–6 Libraries

Libraries
3.1 Creating Libraries

The following example assigns an existing CMS library a reference copy
directory and creates reference copies for existing elements:

$ CREATE/DIRECTORY [PROJECT.REFCOPY]
$ CMS
CMS> SET LIBRARY [PROJECT.CMSLIB]
CMS> MODIFY LIBRARY/REFERENCE_COPY=[PROJECT.REFCOPY]
_Remark: Establish reference copy directory
CMS> MODIFY ELEMENT/REFERENCE_COPY *.* "enable reference copy"

The MODIFY LIBRARY command establishes the directory
[PROJECT.REFCOPY] as the reference copy directory for the current CMS
library [PROJECT.CMSLIB]. The MODIFY ELEMENT command changes
the reference copy attribute for all currently existing elements and creates
reference copies for them. Use the SHOW LIBRARY/FULL command to display
the directory specification of a reference copy directory.

If you do not want some elements to have reference copies, modify those
elements with the /NOREFERENCE_COPY qualifier on the MODIFY
ELEMENT command. For more information, see the descriptions of the
CREATE ELEMENT and MODIFY ELEMENT commands in the online help or
the HP DECset for OpenVMS Code Management System Reference Manual.

CMS does not create reference copies for any variant generations. CMS
maintains a reference copy only of the latest generation on the main line of
descent of each element.

3.2 Using Libraries
When you invoke CMS, you must explicitly set up a library environment to tell
CMS which library (or libraries) you want to use. This sets a library search
list. You do this by either creating a new library or libraries (with the CREATE
LIBRARY command), or by selecting an existing library or libraries (with the
SET LIBRARY command).

A CMS library search list is a list of one or more libraries. When CMS operates
on multiple libraries, it accesses them in the order you specified when you set
the library list. If you invoke CMS and do not establish at least one library
in the library search list, you receive an error indicating that your library
environment is undefined and your library search list is empty.

Libraries in the library search list do not need to be related; each library
is complete and self-contained. You can specify libraries in any order, but
a library can appear only once in the library search list. You can specify a
maximum of 128 libraries in a library search list.

Libraries 3–7

Libraries
3.2 Using Libraries

After you establish a library search list, that list remains in effect for all
further CMS commands until you modify it with the CREATE LIBRARY
command or SET [NO]LIBRARY command, or log out.

3.2.1 Setting Libraries
You set one or more libraries by entering the SET LIBRARY command, or the
CREATE LIBRARY command, which performs an implicit SET LIBRARY
operation. The SET LIBRARY command defines a DCL logical name,
CMS$LIB, which points to the library or libraries you have selected. After
you have selected a library or libraries, all CMS commands you enter refer to
the CMS$LIB library list. The library list exists until you enter another SET
LIBRARY, SET NOLIBRARY, or CREATE LIBRARY command, or log out.

You can enter one or more library directory names as a parameter to the SET
LIBRARY command. For example, to set your library to [PROJECT.CMSLIB],
enter the following command:

$ CMS SET LIBRARY [PROJECT.CMSLIB]
%CMS-I-LIBIS, library is DISKX:[PROJECT.CMSLIB]
%CMS-S-LIBSET, library set
%CMS-I-SUPERSEDE, library list superseded

This command sets (or resets) the library search list to contain only the library
[PROJECT.CMSLIB].

To set your library search list to contain more than one library, you would
specify multiple libraries separated by commas. For example:

CMS> SET LIBRARY [PROJECT1.CMSLIB],[PROJECT3.CMSLIB]
%CMS-I-LIBIS, library is DISKX:[PROJECT1.CMLSIB]
%CMS-I-LIBINSLIS, library DISKX:[PROJECT3.CMSLIB] inserted at end of library
list
%CMS-S-LIBSET, library set

This command sets (or resets) the library search list to contain only the two
libraries [PROJECT1.CMSLIB] and [PROJECT3.CMSLIB].

If you try to set your library to a directory that has not been initialized by
CREATE LIBRARY, CMS$LIB becomes undefined and CMS issues a warning
message.

3.2.2 Modifying Library Lists
To add libraries to an established library search list, use the /BEFORE and
/AFTER qualifiers on the CREATE LIBRARY or SET LIBRARY command to
control the placement of the new libraries in the existing library search list.

3–8 Libraries

Libraries
3.2 Using Libraries

For example:

CMS> CREATE LIBRARY [PROJECT1.CMSLIB],[PROJECT3.CMSLIB]
CMS> SET LIBRARY [PROJECT2.CMSLIB]/BEFORE=[PROJECT3.CMSLIB]

In this example, the CREATE LIBRARY command establishes the library
search list consisting of the two libraries [PROJECT1.CMSLIB] and
[PROJECT3.CMSLIB]. The SET LIBRARY command inserts the library
[PROJECT2.CMSLIB] in the library search list. The library search list now
consists of three libraries: [PROJECT1.CMSLIB], [PROJECT2.CMSLIB], and
[PROJECT3.CMSLIB], in that order.

If you specify either the /BEFORE or the /AFTER qualifier without a value, the
new library (or libraries) are added to the existing search list either before or
after the entire library list, respectively.

If you do not specify either qualifier, a new library search list is created,
replacing the entire existing library search list.

To remove one or more libraries from the existing search list, use the SET
NOLIBRARY command. The SET NOLIBRARY command accepts one or more
library directory specifications, which are then removed from the list, leaving
the rest of the list intact. If you do not specify a library directory, every library
from the entire library search list is removed, and the library search list
becomes undefined. For more information on the SET NOLIBRARY command,
see the online help or the HP DECset for OpenVMS Code Management System
Reference Manual.

3.3 Controlling Occlusion in Multiple Libraries
CMS operates on your library search list by searching through the library (or
libraries) in the list. If you have more than one library in the search list, CMS
searches the libraries one at a time in the order they appear in the search list,
until a specified object is found. Once the object is found, CMS performs the
specified operation on the object. By default, CMS does not continue to search
for the object in any of the remaining libraries.

Objects with the same name can exist in more than one library. When an
object exists in more than one library of a library search list, CMS processes
only the first occurrence of the specified object and ignores any later instances
of that object in subsequent libraries. This behavior is occlusion; that is, the
first instance of the object occludes any subsequent instances of that object.
For example:

CMS> SET LIBRARY [BOOK.CMSLIB],[EXAMPLES.CMSLIB],[TEMP.CMSLIB]
CMS> FETCH TESTBAS.SDML "fetch first instance"

Libraries 3–9

Libraries
3.3 Controlling Occlusion in Multiple Libraries

In this example, CMS searches the library list, starting with the library
[BOOK.CMSLIB], then [EXAMPLES.CMSLIB], then [TEMP.CMSLIB]. When
CMS locates the element TESTBAS.SDML, it fetches the element from the
first library in the list in which it finds it. For example, if the element
TESTBAS.SDML existed in [EXAMPLES.CMSLIB] and in [TEMP.CMSLIB],
CMS would fetch the element only from [EXAMPLES.CMSLIB], because that
element would occlude the element in [TEMP.CMSLIB].

You control occlusion with the /OCCLUDE qualifier. The /OCCLUDE qualifier
has the following format:

/OCCLUDE[=options,...]

You can specify the following options with this qualifier:

• [NO]CLASS—Controls occlusion for classes

• [NO]ELEMENT—Controls occlusion for elements

• [NO]GROUP—Controls occlusion for groups

• [NO]OTHER—Controls occlusion for library attributes, history, commands,
the class list, the element list, and the group list

• ALL

• NONE

You can specify either ALL or NONE, or one or more of the remaining
keywords in any combination. If you do not specify a keyword on the
/OCCLUDE qualifier, the default is /OCCLUDE=ALL. The ALL keyword
enables occlusion for all four object types; the NONE keyword disables
occlusion for all four object types. To disable occlusion for a specific object, use
the /OCCLUDE qualifier with a negated keyword. For example:

$ CMS SET LIBRARY [WORK.CMSLIB],[PROJECT.CMSLIB]
%CMS-I-LIBIS, library is DISKX:[WORK.CMSLIB]
%CMS-I-LIBINSLIS, library DISKX:[PROJECT.CMSLIB] inserted at end of library
list
%CMS-S-LIBSET, library set
%CMS-I-SUPERSEDE, library list superseded

$ CMS FETCH SAMPLE.PAS/OCCLUDE=NOELEMENT "fetch all instances"
%CMS-S-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
%CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.PAS;2 created
%CMS-S-FETCHED, generation 1 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched

This command produces two copies of SAMPLE.PAS—the latest generation
from library [WORK.CMSLIB], and the latest generation from library
[PROJECT.CMSLIB].

3–10 Libraries

Libraries
3.3 Controlling Occlusion in Multiple Libraries

Note that first CMS fetches the first instance of the file SAMPLE.PAS and then
fetches the second instance, which creates a newer version of SAMPLE.PAS.

3.3.1 Occlusion of Multiple Object Types in a Command
Many CMS commands allow you to specify more than one object type on
a command line. For instance, you can specify an element specification
consisting of a list of element names and group names, as in the following
example:

$ CMS FETCH CODE,BUILD.COM "fetch all code and the build procedure"

In this example, the group CODE represents all program source modules,
and the element BUILD.COM is the build procedure to compile and link the
program.

You can also specify a command in which objects of one type are inserted into
or removed from objects of a different type. For example:

$ CMS INSERT ELEMENT MAIN.BAS CODE "insert main module into CODE group"

This command inserts the element MAIN.BAS into the group CODE.

When you specify multiple object types in a CMS command, CMS
simultaneously performs occlusion on all applicable objects. Specifically, in the
preceding example, CMS simultaneously performs occlusion on the elements
and the groups, and ignores occlusion for other object types. A special case
occurs when you use a group name as an element specification. In this case,
the elements in the group occlude subsequent instances of those elements (if
element occlusion is enabled). In such cases, CMS performs element occlusion
even if the specification contained only group names.

The following two examples show the difference between using a group
name as an element specification and using a comma-separated list of the
same element names that are in the group. In these examples, the default
directory is [WORK], the current library search list is set to [WORK.CMSLIB],
[PROJECT.CMSLIB]; the group SAMPLES is in [PROJECT.CMSLIB]
and contains the elements SAMPLE.PAS and SAMPLE.DAT. The library
[WORK.CMSLIB] does not contain any groups, but does contain the same
elements. The examples correspond with Figure 3–2.

CMS> FETCH SAMPLES
_Remark: fetch 1st instance of element generations from group SAMPLES
%CMS-I-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.DAT fetched
%CMS-I-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%CMS-I-FETCHES, 2 elements fetched

Libraries 3–11

Libraries
3.3 Controlling Occlusion in Multiple Libraries

CMS> FETCH/OCCLUDE=NOELEMENT SAMPLES
_Remark: fetch all instances of element generations from group SAMPLES
%CMS-I-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.DAT fetched
%CMS-I-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%CMS-I-FETCHES, 2 elements fetched

In this case, the group SAMPLES is used as the element specification. Note
that the /OCCLUDE qualifier has no effect; two elements are fetched in each
case. Although the two elements SAMPLE.DAT and SAMPLE.PAS exist
in the first library [WORK.CMSLIB], they are not fetched because CMS
looks for the elements in group SAMPLES, which is in the second library
[PROJECT.CMSLIB]. Because there are no further occurrences of SAMPLES,
the two elements in the second library are fetched.

CMS> FETCH SAMPLE.DAT,SAMPLE.PAS
_Remark: fetch first instance of sample elements
%CMS-I-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.DAT fetched
%CMS-I-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
%CMS-I-FETCHES, 2 elements fetched

CMS> FETCH/OCCLUDE=NOELEMENT SAMPLE.DAT,SAMPLE.PAS
_Remark: fetch all instances of sample elements
%CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.DAT;2 created
%CMS-I-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.DAT fetched
%CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.DAT;2 created
%CMS-I-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
%CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.DAT;3 created
%CMS-I-FETCHED, generation 1 of element DISKX:[PROJECT.CMSLIB]SAMPLE.DAT fetched
%CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.PAS;3 created
%CMS-I-FETCHED, generation 1 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%CMS-I-FETCHES, 4 elements fetched

In the first command, CMS assumes /OCCLUDE=ALL, and fetches only the
first instance of each of the elements SAMPLE.DAT and SAMPLE.PAS. In
the second command, because the /OCCLUDE=NOELEMENT qualifier was
specified, CMS fetches all occurrences of each element from both libraries.

Thus, an element specification consisting of a group containing a set of
elements, and an element specification consisting of a list of the same set of
elements, are not equivalent. In the first case, CMS locates the first instance
of the group. Previous instances of the elements in the group might exist in an
earlier library, but are not selected because they are not located in the library
with the specified group. In the second case, the first instance of each of the
specified elements is found, regardless of which library they might be in. In
fact, they might be found in libraries in the list prior to the library in which
the group is found.

3–12 Libraries

Libraries
3.3 Controlling Occlusion in Multiple Libraries

3.3.2 Examples
The following examples show how to control occlusion on various
CMS objects. For the following examples, assume the library is set to
[WORK.CMSLIB],[PROJECT.CMSLIB]. The library [WORK.CMSLIB] contains
the two elements SAMPLE.DAT and SAMPLE.PAS, with generation 1 of the
element SAMPLE.PAS inserted into class V1. The library [PROJECT.CMSLIB]
contains the two elements SAMPLE.DAT and SAMPLE.PAS. These two
elements are inserted into the group SAMPLES. Generation 2 of element
SAMPLE.PAS is inserted into class V2. Figure 3–2 matches the following
examples.

Figure 3–2 Library Occlusion

ZK−6651−GE

2

1

2

1

DISKX:

PROJECT.CMSLIB

Group SAMPLES

Class V2

SAMPLE.DAT SAMPLE. PAS

DISKX:

Group SAMPLES

Class V1

1 1

SAMPLE.DAT SAMPLE. PAS

WORK.CMSLIB

Libraries 3–13

Libraries
3.3 Controlling Occlusion in Multiple Libraries

1. $ CMS FETCH SAMPLE.PAS "fetch the first instance"
%CMS-S-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
%CMS-S-FETCHES, 1 element fetched

In this example, CMS assumes the default value of the /OCCLUDE qualifier
(/OCCLUDE=ALL), and fetches only the first instance of SAMPLE.PAS.

2. $ CMS FETCH/OCCLUDE=NOELEMENT SAMPLE.PAS "fetch all instances"
%CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.PAS;2 created
%CMS-S-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
%CMS-I-FILEXISTS, file already exists, DISKX:[WORK]SAMPLE.PAS;3 created
%CMS-S-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%CMS-S-FETCHES, 2 elements fetched

In this example, because the /OCCLUDE qualifier is specified with the negated
keyword NOELEMENT, CMS retrieves all (both) instances of SAMPLE.PAS.
Note that the second instance of SAMPLE.PAS is fetched into the next higher
version of the output file, which is then placed into your default directory.

3. $ CMS FETCH SAMPLE.PAS/GENERATION=V1 "default occlusion"
%CMS-S-FETCHED, generation 1 of element DISKX:[WORK.CMSLIB]SAMPLE.PAS fetched
%CMS-S-FETCHES, 1 element fetched

$ CMS FETCH SAMPLE.DAT/GENERATION=V1 "SAMPLE.DAT not in class V1"
%CMS-E-NOFETCH, error fetching element DISKX:[WORK.CMSLIB]SAMPLE.DAT
-CMS-E-GENNOTFOUND, generation V1 of DISKX:[WORK.CMSLIB]SAMPLE.DAT not found
%CMS-E-ERRFETCHES, 0 elements fetched and 1 error occurred

$ CMS FETCH SAMPLES/GENERATION=V1
_Remark: SAMPLES group not in 1st library where class V1 is located
%CMS-E-NOFETCH, error fetching element SAMPLES
-CMS-E-NOTFOUND, Group SAMPLES not found
%CMS-E-ERRFETCHES, 0 elements fetched and 1 error occurred

$ CMS FETCH SAMPLE.PAS/GENERATION=V2 "element found but not class"
%CMS-E-NOFETCH, error fetching element DISKX:[WORK.CMSLIB]SAMPLE.PAS
-CMS-E-GENNOTFOUND, generation V2 of DISKX:[WORK.CMSLIB]SAMPLE.PAS not found
-CMS-E-NOTFOUND, Class DISKX:[WORK.CMSLIB]V2 not found
%CMS-E-ERRFETCHES, 0 elements fetched and 1 error occurred

$ CMS FETCH/OCCLUDE=NOELEMENT SAMPLE.PAS/GENERATION=V2
_Remark: element found but not class
%CMS-E-NOFETCH, error fetching element DISKX:[WORK.CMSLIB]SAMPLE.PAS
-CMS-E-GENNOTFOUND, generation V2 of DISKX:[WORK.CMSLIB]SAMPLE.PAS not found
-CMS-E-NOTFOUND, Class DISKX:[WORK.CMSLIB]V2 not found
%CMS-S-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]SAMPLE.PAS fetched
%CMS-E-ERRFETCHES, 1 element fetched and 1 error occurred)

This example shows occlusion when multiple object types are present. Classes
V1 and V2 exist in the first and second libraries, respectively.

3–14 Libraries

Libraries
3.3 Controlling Occlusion in Multiple Libraries

Note that in the last case, an error diagnostic is generated when the first
instance of SAMPLE.PAS is found and the class V2 is not found; when both
the element and the class are found, the specified generation is successfully
fetched.

4. $ CMS VERIFY SAMPLE.DAT/OCCLUDE=NOELEMENT
%CMS-I-VERCLS, class list verified
%CMS-I-VERCMD, command list verified
%CMS-I-VERELE, element list verified
%CMS-I-VERGRP, group list verified
%CMS-I-VERRES, reservation list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERARC, archive control block verified
%CMS-I-VER2, internal contiguous space verified
%CMS-I-VERCON, control file verified
%CMS-I-VEREDF, element DISKX:[WORK.CMSLIB]SAMPLE.DAT verified
%CMS-I-VEREDFS, element data files verified
%CMS-S-VERIFIED, library DISKX:[WORK.CMSLIB] verified
%CMS-I-VERCLS, class list verified
%CMS-I-VERCMD, command list verified
%CMS-I-VERELE, element list verified
%CMS-I-VERGRP, group list verified
%CMS-I-VERRES, reservation list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERFRE, internal free space list verified
%CMS-I-VERARC, archive control block verified
%CMS-I-VER2, internal contiguous space verified
%CMS-I-VERCON, control file verified
%CMS-I-VEREDF, element DISKX:[PROJECT.CMSLIB]SAMPLE.DAT verified
%CMS-I-VEREDFS, element data files verified
%CMS-S-VERIFIED, library DISKX:[PROJECT.CMSLIB] verified

In this example, because the /OCCLUDE qualifier is specified with the negated
keyword NOELEMENT, CMS verifies both libraries and both instances of the
element SAMPLE.DAT.

Libraries 3–15

Libraries
3.4 Library Locking

3.4 Library Locking
CMS allows multiple read operations in the library at the same time. Read
operations are operations that do not change any information in the library;
for example, ANNOTATE, SHOW commands, SET LIBRARY, FETCH without
a remark, and DIFFERENCES. Read operations allow users to use any
combination of these commands in the library without interfering with each
other in any way.

CMS controls concurrent access to the library by using the OpenVMS locking
mechanism. The locking mechanism does not allow multiple write or multiple
read and write operations in the library at the same time. Write operations
are operations that change information in the library; for example, CREATE,
FETCH with a remark, INSERT, MODIFY, REMOVE, SET ACL, RESERVE,
and REPLACE.

When CMS has locked the library during a write operation, any access
attempts made by other users are not allowed until the write operation is
complete.

If the library remains locked for an extended period, CMS periodically issues
messages informing you that the library is still in use. Your command is
processed as soon as the lock preventing your library access is released.

When you enter a command, CMS attempts to lock the library only for the
appropriate type of access for that command. If no other locks prevent your
lock from being granted, you gain immediate access to the library, and your
command is processed. If the library is locked for an access type incompatible
with that required by your command (for example, a user entered a SHOW
GENERATION command that locks the library for read access, and you enter
a REPLACE command that locks the library for write access), CMS informs
you that the library is locked and issues the following error message:

%CMS-I-INUSE, library library-specification is in use, please wait

CMS processes read and write attempts on the library in order.

3–16 Libraries

Libraries
3.4 Library Locking

Assume the following series of actions:

• User A has currently entered a command causing a library lock for read
access (such as a SHOW GENERATION command).

• User B enters a command requiring write access (such as a REPLACE
command), thus causing CMS to lock out user B.

• User C then enters a command requiring read access (such as an
ANNOTATE command).

CMS will not process user C’s command until user B’s command has been
processed, even though the current library lock (user A’s read lock) allows user
C’s command to gain access to the library. This prevents a chain of compatible
lock requests from locking an incompatible lock request out of the library for a
prolonged period of time.

If your command cannot gain access to the library after 15 minutes, the
waiting loop expires and CMS issues a message requesting that you try the
command again later. You can use Ctrl/C at any point to abort the command.

Libraries 3–17

4
Elements and Generations

A CMS library is a collection of files, which represent elements and element
generations. An element is the basic structural unit in a library. An element
consists of one file and all its versions, called generations. This chapter
describes elements and their generations in detail.

4.1 The Relationship Between Elements and Generations
When you place a file in a CMS library for the first time, CMS uses that file to
create an element; that file becomes generation 1 of that element. An element
generation represents a specific version of an element. Each time you reserve
and replace an element in the library, CMS creates a new generation. CMS
can store multiple generations of an element.

CMS assigns a permanent generation number to each new generation.
This number is unique for each generation of a particular element. A CMS
generation number is not the same as a version number that OpenVMS assigns
to files; file version numbers have no significance to CMS.

Figure 4–1 shows four elements and their generations in a simple CMS
library.

Elements and Generations 4–1

Elements and Generations
4.1 The Relationship Between Elements and Generations

Figure 4–1 Elements and Their Generations

3

2

1

3

2

1

2

1

2

1

SEARCH.FOR OUTPUT.FOR ARGCHK.FOR INIT.FOR

ZK−1690−GE

This library contains three generations of the element SEARCH.FOR. The
first generation was created with the CREATE ELEMENT command. Then,
a generation of the element was reserved from and replaced into the library
twice, creating generations 2 and 3. Similarly, the library contains two
generations of OUTPUT.FOR, three generations of ARGCHK.FOR, and two
generations of INIT.FOR. CMS stores the entire text of the first generation of
an element. Then, in successive generations, CMS stores only the lines that
change from one generation to the next (see Section 4.4 and Appendix B for
more information).

4–2 Elements and Generations

Elements and Generations
4.1 The Relationship Between Elements and Generations

The following example shows how to reserve a generation of an element
named INIT.FOR and replace it in the CMS library, thereby creating a new
generation.

$ CMS RESERVE INIT.FOR "change block header offset"
%CMS-S-RESERVED, generation 2 of element DISKX:[PROJECT.CMSLIB]INIT.FOR reserved

.

.

.
$ CMS REPLACE INIT.FOR "header offset and additional free space added"
%CMS-S-GENCREATED, generation 3 of DISKX:[PROJECT.CMSLIB]element INIT.FOR created

The RESERVE command retrieves the latest main-line generation of element
INIT.FOR, which is generation 2. The file is created in your current default
directory and generation 2 is marked as reserved. The REPLACE command
returns the contents of the file to the CMS library and assigns the next
number in sequence to the new generation. Because generation 2 was
reserved, the replacement transaction creates generation 3. See Section 4.2.3
and Section 4.2.4 for more information on the RESERVE and REPLACE
commands, respectively.

4.2 Manipulating Elements and Generations
The following sections describe how to create, fetch, reserve, replace, monitor,
display, and delete elements and generations in a CMS library.

4.2.1 Creating Elements and Generations
You create an element with the CREATE ELEMENT command. Each time you
reserve and replace a generation of an element, you create a new generation of
that element (see Section 4.2.4).

In the CREATE ELEMENT command, you specify the name and type of the
file that is to become the name of the element. Within a library, all element
names must be unique. The file-name component cannot be 00CMS because
that name is reserved for CMS. Specify the file with the following syntax:

filename.type

For example:

$ CMS CREATE ELEMENT INIT.FOR "initialization routines"
%CMS-S-CREATED, element DISKX:[PROJECT.CMSLIB]INIT.FOR created

This command creates an element named INIT.FOR from the file INIT.FOR.
CMS searches for the file named INIT.FOR in your default directory; use the
/INPUT qualifier on the CREATE ELEMENT command to specify a different
location, a different file name, or both.

Elements and Generations 4–3

Elements and Generations
4.2 Manipulating Elements and Generations

When an element is created, CMS deletes all versions of the file in your default
directory used to create the new element. Use the /KEEP or /RESERVE
qualifier to prevent CMS from deleting any files. This can be specified at the
element or library level.

4.2.2 Fetching an Element Generation
The FETCH command copies the contents of an element generation into a file.
Unlike the RESERVE command, FETCH does not mark an element generation
as reserved, and you cannot replace a fetched copy in the library. You can fetch
a copy of a generation of an element regardless if the element is reserved.

For example, to retrieve a copy of the latest main-line generation of an element
named TIMTST.COM, enter the following command:

$ CMS FETCH TIMTST.COM
_Remark: Testing storage blocks
%CMS-S-FETCHED, generation 2 of element DISKX:[PROJECT.CMSLIB]TIMTST.COM fetched

CMS retrieves the latest main-line generation of the element TIMTST.COM
(generation 2). To retrieve an earlier generation (or variant generation; see
Chapter 6), specify the /GENERATION qualifier on the FETCH command.

CMS creates a file with the same name as the fetched element, and places
this file in your current, default directory. Use the /OUTPUT qualifier on the
FETCH command to specify a different file name, a different location, or both.

4.2.3 Reserving an Element Generation
After creating an element in a CMS library, use the RESERVE command to
retrieve a copy of a generation of the element to make changes to it. When you
reserve a generation, CMS retrieves a copy of the generation of the element
and marks that generation as reserved in the CMS library. You can then edit,
compile, test, and debug the file as necessary. Most of your work with the CMS
library consists of reserving library element generations for work and replacing
the modified files back into the library as new generations.

When you reserve a generation of an element, CMS creates a file with the same
name as the element, and places this file in your current, default directory.
Use the /OUTPUT qualifier on the RESERVE command to specify a different
location, a different file name, or both.

CMS prompts you to enter a remark when you reserve an element generation.
You should use the remark to explain why you are reserving the generation;
the remarks provide a permanent record of your work. If you need to revise the
remark at a later time, you can use the MODIFY RESERVATION command to
enter a new remark string.

4–4 Elements and Generations

Elements and Generations
4.2 Manipulating Elements and Generations

For example, to reserve the element SYNCHRON.BAS, enter the following
command:

$ CMS RESERVE SYNCHRON.BAS
_Remark: losing sample from one data line
%CMS-S-RESERVED, generation 2 of element DISKX:[PROJECT.CMSLIB]SYNCHRON.BAS reserved

CMS copies the element generation into a file that is created in your current
default directory. CMS marks the generation with your reservation and records
the transaction in the library transaction history.

CMS retrieves the latest main-line generation of the element SYNCHRON.BAS
(generation 2). To reserve an earlier generation (or a variant generation; see
Chapter 6), specify the /GENERATION qualifier on the RESERVE command.
For example:

$ CMS RESERVE SYNCHRON.BAS/GENERATION=1
_Remark: Commenting data line sampling code
%CMS-S-RESERVED, generation 1 of element DISX:[PROJECT.CMSLIB]SYNCHRON.BAS reserved

A copy of the first generation of the element is then placed in the current,
default directory.

CMS allows you to concurrently reserve more than one generation of the same
element, or the same generation more than once. If any generation of an
element is already reserved (by you or another person) CMS issues a message
about the reservation already in effect. You then have the option to proceed
with your reservation or quit. If you choose to proceed with the reservation,
the element is considered to have concurrent reservations. While you have an
element generation reserved, any user who reserves or attempts to reserve a
generation of the same element receives a CMS message indicating that you
have reserved the element generation. See Section 4.3.2 for more information
on concurrent reservations.

If you reserve an element generation and then decide not to modify it, you
can cancel your reservation with the UNRESERVE command. CMS records
the cancellation in the library history. CMS does not modify the library
element and does not create a new generation of the element when you
cancel a reservation. The UNRESERVE command is useful if you reserve a
wrong element, or if you do not want your modifications to become part of
the element. For example, to unreserve a generation of the element named
SYNCHRON.BAS, enter the following command:

$ CMS UNRESERVE SYNCHRON.BAS
_Remark: element not applicable--wrong file
%CMS-S-UNRESERVED, element DISKX:[PROJECT.CMSLIB]SYNCHRON.BAS unreserved

Elements and Generations 4–5

Elements and Generations
4.2 Manipulating Elements and Generations

Normally, CMS allows you to unreserve only your own reservation. However, if
you hold BYPASS privilege or if an access control entry (ACE) on the element
grants you BYPASS access, you can cancel any reservation of that element
held by another user. The cancellation of the reservation is then logged in the
history file under your name. See Chapter 7 for more information.

4.2.4 Replacing an Element Generation
After modifying a reserved generation, use the REPLACE command to replace
the latest version of the modified file into the library. CMS then deletes
all copies of that file from your directory (unless you specify the /KEEP or
/RESERVE qualifier), assigns a new CMS generation number to the newly
created element generation, terminates your reservation, and records the
transaction. For example:

$ CMS RESERVE SPEC.RNO
_Remark: Misspelling in Reliability section
%CMS-S-RESERVED, generation 3 of element DISKX:[PROJECT.CMSLIB]SPEC.RNO reserved

.

.

.
$ CMS REPLACE SPEC.RNO
_Remark: Reliability section typo fixed
%CMS-S-GENCREATED, generation 4 of element DISKX:[PROJECT.CMSLIB]SPEC.RNO created

In this example, the current generation (generation 3) is reserved to correct a
typographical error, and then replaced.

To avoid creating a new generation if the input file has no changes from
the reserved generation, use the /IF_CHANGED qualifier on the REPLACE
command. You can also use the /INSERT_INTO_CLASS qualifier to insert the
generation into one or more classes automatically. For more information, see
the description of the REPLACE command in the online help or the HP DECset
for OpenVMS Code Management System Reference Manual.

Normally, CMS allows you to replace only your own reservation. However, if
you hold BYPASS privilege or if an ACE on the element grants you BYPASS
access, you can replace any reservation of that element held by another user.
This mechanism allows you to designate a single person who is responsible for
reviewing and entering all changed reservations into the library, for example.
See Chapters 7 and 8 for more information on ACEs.

CMS allows you to concurrently reserve more than one generation of the
same element, or the same generation more than once. When you replace
the generations that are concurrently reserved by you, you must specify
the /GENERATION or /IDENTIFICATION_NUMBER qualifier on the
REPLACE command. See Section 4.3.3 for information on replacing concurrent
reservations.

4–6 Elements and Generations

Elements and Generations
4.2 Manipulating Elements and Generations

4.2.5 Monitoring Element Changes
You can monitor changes made to elements by using the notification ACE or
the review attribute.

The notification ACE enables you to specify a list of people to be notified when
particular events occur in a CMS library. See Chapter 8 for more information
on CMS notification.

The review attribute enables you to specify that newly created element
generations are to be placed on a review pending list. You can then associate
review remarks with a generation under review. To assign the review
attribute, use the /REVIEW qualifier on either the CREATE ELEMENT or
the MODIFY ELEMENT command. The review attribute specifies that any
new generations of that element are marked as pending review. You can also
mark a specific generation for review by using the MARK GENERATION
command. To determine which generations have reviews pending, use the
SHOW REVIEWS_PENDING command.

When you review a generation, you can accept or reject the generation, cancel
the review, or enter review comments. For more information on review, see
Section 4.5.4 and the descriptions of the following commands in the online help
or the HP DECset for OpenVMS Code Management System Reference Manual.

• ACCEPT GENERATION

• CANCEL REVIEW

• MARK GENERATION

• REJECT GENERATION

• REVIEW GENERATION

• SHOW REVIEWS_PENDING

4.2.6 Displaying Information About Elements and Generations
You can view information about elements and generations in a CMS library
with the SHOW commands. The SHOW ELEMENT command displays
information about some or all of the elements in the current library. For
example:

$ CMS SHOW ELEMENT
Elements in CMS Library DISKX:[PROJECT.CMSLIB]

Elements and Generations 4–7

Elements and Generations
4.2 Manipulating Elements and Generations

ADCONVERT.BAS "analog to digital conversion routines"
ERRMSG.TXT "initial load"
SAMPLE.BAS "Sampling module"
SPEC.RNO "ADS functional specification"
SYNCHRON.BAS "Synchronization routines"
TIMTST.COM "Command procedure for tests"

In this case, SHOW ELEMENT displays an alphabetical list of all the elements
in the project library [PROJECT.CMSLIB], along with their remarks. You can
also use the SHOW ELEMENT/MEMBER command to display the element
name, creation remark, and the name of any groups to which the element
belongs.

If you need information about a specific generation of an element, use the
SHOW GENERATION command. If you omit a generation number, CMS
assumes the last generation on the main line of descent. If you include a
generation number, specify it with the /GENERATION qualifier. For example:

$ CMS SHOW GENERATION SYNCHRON.BAS/GENERATION=3

Element generations in CMS Library DISKX:[PROJECT.CMSLIB]

SYNCHRON.BAS 3 26-JUN-2005 09:44:12 KELLEY "a/d conversion integrated"

This command displays the characteristics of generation 3 of the element
SYNCHRON.BAS.

To discover which generation of an element is in a particular class, use the
SHOW GENERATION command and specify the class name as the generation
expression. For example:

$ CMS SHOW GENERATION/GENERATION=BASELEVEL1 SYNCHRON.BAS

Element generations in CMS Library DISKX:[PROJECT.CMSLIB]

SYNCHRON.BAS 3 26-JUN-2005 09:44:12 KELLEY "a/d conversion integrated"

This command displays the generation of element SYNCHRON.BAS that is in
class BASELEVEL1.

The CMS command SHOW GENERATION/MEMBER lists the element name,
generation number, and names of any classes to which the element generation
belongs. The CMS command SHOW GENERATION/MEMBER defaults to
the latest generation. To discover if the generation that is in the class is not
the latest generation of the element, use the /DESCENDANTS qualifier. For
example:

4–8 Elements and Generations

Elements and Generations
4.2 Manipulating Elements and Generations

$ SHOW GENERATION/MEMBER/DESCENDANTS TEST.FOR

Element generations in CMS Library DISKX:[PROJECT.CMSLIB]

TEST.FOR
2 18-OCT-1994 15:04:54 SMITH "header changed"

1 26-SEP-1994 13:38:04 SMITH ""
Member list: RELEASE1

This command displays the generation number, date, time, remark, and the
name of any classes to which each generation belongs for all the generations of
the element TEST.FOR.

Whenever you create, reserve, or replace a library element, CMS stores
information about the transaction in the library’s history file. The SHOW
HISTORY command allows you to review a chronological list of all library
transactions. For example:

$ CMS SHOW HISTORY

History of CMS Library DISKX:[PROJECT.CMSLIB]

2-MAY-2005 14:22:16 WHIPPLE CREATE LIBRARY DISKX:[PROJECT.CMSLIB] "a/d data
sampling library"

2-MAY-2005 14:26:47 MARTIN CREATE ELEMENT SPEC.RNO "ADS functional
specification"

8-JUN-2005 12:09:02 WHIPPLE CREATE ELEMENT ADCONVERT.BAS "analog to digital
conversion routines"

8-JUN-2005 12:25:41 WHIPPLE CREATE ELEMENT SAMPLE.BAS "Sampling module"
8-JUN-2005 12:29:24 HENRY CREATE ELEMENT SYNCHRON.BAS "Synchronization

routines"
8-JUN-2005 14:01:36 HENRY CREATE ELEMENT TIMTST.COM "Command procedure for

tests"
9-JUN-2005 14:47:40 DAVIS RESERVE SYNCHRON.BAS(1) "losing sample from one

data line"

CMS does not record transactions that do not alter the library. CMS logs
FETCH transactions only if you supply a remark.

You can use the SHOW HISTORY command with the /UNUSUAL qualifier
to report any abnormal library transactions that occurred, such as two
reservations in effect for the same element at the same time.

The SHOW RESERVATIONS command lists element generations that are
currently reserved (or by identification number, if the element is concurrently
reserved), who reserved each generation, when it was reserved, and why it was
reserved. For example:

Elements and Generations 4–9

Elements and Generations
4.2 Manipulating Elements and Generations

$ CMS SHOW RESERVATIONS

Reservations in CMS Library DISKX:[PROJECT.CMSLIB]

SAMPLE.BAS
(1) JIMK 1 30-JUN-2005 11:19:29 "add code for more data lines"

SYNCHRON.BAS
(1) KELLEY 3 18-JUN-2005 09:42:03 "integrate a/d conversion"

You can use the SHOW GROUP/CONTENTS command to display the contents
of a group. For example:

$ CMS SHOW GROUP/CONTENTS TIME_TST

Groups in CMS Library DISKX:[PROJECT.CMSLIB]

TIME_TST "comparison testing prototype group"
SYNCHRON.BAS
TIMTST.COM

This command lists the elements contained in group TIME_TST.

4.2.7 Deleting Generations
To delete one or more generations of an element from the library, use the
DELETE GENERATION command. This command is useful if you replaced
a wrong version of a file into the CMS library, or if you want to remove old
generations of elements. This command permanently removes information
about a generation from the corresponding element in the library. If the
latest main-line generation is deleted, the next latest main-line generation is
placed into the reference copy directory. Deleting a generation does not remove
changes from subsequent generations that were originally made in the deleted
generation and thus exist in subsequent generations.

Deleting unneeded generations allows operations that access generations (for
example, FETCH, REPLACE, and RESERVE) to complete faster because the
number of generations to be searched is reduced (see Section 9.3.2 for more
information).

When you delete an element generation, you can optionally use the /ARCHIVE
qualifier to direct CMS to create an archive file. When you specify /ARCHIVE,
CMS creates a file containing all the information from the deleted generation,
and places it in your default directory. For more information, see Section 9.3.2
and the description of DELETE GENERATION/ARCHIVE in the online help
and the HP DECset for OpenVMS Code Management System Reference Manual.

4–10 Elements and Generations

Elements and Generations
4.3 Concurrency

4.3 Concurrency
This section describes how CMS organizes concurrent changes to library
elements and how to resolve conflicting changes to those elements. A
concurrent change occurs when two or more people work on an element at the
same time and make separate changes to the element.

If you cannot avoid making a concurrent reservation, be aware that some
additional effort is involved when you replace concurrent reservations. The
following sections describe how to reserve a generation of an element that has
prior reservations, and replace the reservation into the library.

4.3.1 Concurrent Access
CMS allows you to control concurrent access to an element by using the
concurrent attribute. You define the concurrent attribute by specifying the
/[NO]CONCURRENT qualifier. The library-wide default is /CONCURRENT,
which can be changed at the library or element level.

You can prohibit concurrent access by specifying the /NOCONCURRENT
qualifier on the CREATE ELEMENT command for a new element, or by
using the MODIFY ELEMENT command to change the attribute of an existing
element. You cannot modify concurrent access to an element while a generation
of the element is reserved. When you prohibit concurrent access to an element,
only one reservation of the element is allowed at a time until you use the
MODIFY ELEMENT/CONCURRENT command to allow concurrent access.

You can temporarily prohibit concurrent access for the duration of a reservation
by specifying the /NOCONCURRENT qualifier on the RESERVE command.
If you reserve a generation of an element in this way, you must replace it or
cancel the reservation (with the UNRESERVE command) before you or anyone
else can reserve any generation of the element.

4.3.2 Concurrent Reservations
If a generation of the element you want to reserve is already reserved and
concurrent access is not prohibited, CMS accepts your RESERVE command
and the remark you enter with it, but warns you that an element generation
is currently reserved and by whom, and prompts you for confirmation before
proceeding. If you continue with the reservation, the element is then marked
as being concurrently reserved, and it retains that status until all reservations
of the element are ended. For example:

Elements and Generations 4–11

Elements and Generations
4.3 Concurrency

$ CMS RESERVE BASTEST.GNC
_Remark: reserving for final production
Element BASTEST.GNC currently reserved by:

(1) DAVIS 3 28-JAN-2005 09:27:46 "for testing"
Proceed? [Y/N] (N):

If you type NO or press Return, CMS does not execute the reserve transaction.
If you type YES, CMS places a copy of the generation in your current, default
directory, marks the element as concurrently reserved, and records the
reservation transaction in the library history. CMS records the transaction
as an unusual occurrence. For information about unusual occurrences, see
Chapter 9.

CMS allows multiple reservations by a single user; that is, you can
reserve more than one generation of the same element, and you can
also reserve the same generation more than once. CMS assigns a unique
identification number to each reserved generation. The identification number
appears first on each line. Use the SHOW RESERVATIONS command to
determine the identification number of each reservation. You must use the
/IDENTIFICATION_NUMBER qualifier to replace a concurrent reservation
(see Section 4.3.3).

4.3.3 Concurrent Replacements
When a concurrent reservation ends (when you replace the element generation
with the REPLACE command), it is called a concurrent replacement. When
you replace an element that another user has concurrently reserved, CMS
reports that a prior concurrent reservation was made and specifies who the
second reserver was, even if the second reserver has already replaced the
element. For example:

$ CMS REPLACE BASTEST.GNC
_Remark: replacing after completing edits
Concurrent replacements

(1) DAVIS 2 28-JAN-2005 09:27:46 "for testing"
Proceed? [Y/N] (N):

If you type NO or press Return after the Proceed? prompt, CMS does not
execute the replacement transaction. If you type YES, CMS proceeds with
the command and records the transaction as an unusual occurrence. For
information about unusual occurrences, see Chapter 9.

At least one reserver must replace a concurrent reservation as a variant
generation. You replace the concurrent reservation as a variant generation by
specifying the /VARIANT qualifier on the REPLACE command. This begins
a variant line of descent. Either user can then merge the variant generation
back into the original line so both sets of program modifications appear in one

4–12 Elements and Generations

Elements and Generations
4.3 Concurrency

generation, or the variant line of descent can be continued (see Chapter 6 for
more information).

CMS allows you to concurrently reserve a specific generation more than once.
When you replace the generations that are concurrently reserved by you, you
must specify which reservation is to be replaced. You can do this with either
the /GENERATION qualifier or the /IDENTIFICATION_NUMBER qualifier on
the REPLACE command.

You can use /GENERATION as long as the concurrent reservations are not
on the same generation. If you have more than one concurrent reservation
for the same generation, you must identify the specific reservation to be
replaced. Each reservation is assigned an identification number. Use the
SHOW RESERVATIONS command to determine the identification number of
each reservation. The identification number appears first on each line. If you
use the /IDENTIFICATION_NUMBER qualifier, you do not need to also use
the /GENERATION qualifier. For example:

$ CMS REPLACE BASTEST.GNC/IDENTIFICATION_NUMBER=2
_Remark: replacing after completing edits
Element BASTEST.PAS currently reserved by:

(1) DAVIS 3 28-JAN-2005 09:27:46 "for testing"
Proceed? [Y/N] (N):

In this example, the /IDENTIFICATION_NUMBER qualifier specifies that the
second reserved generation be replaced into the CMS library. CMS reports
other existing reservations you hold for that element (in this case, the first
reserved generation), and then prompts you to proceed.

You must also use the /GENERATION or /IDENTIFICATION_NUMBER
qualifier if you are replacing another user’s reservation. For more information,
see Section 7.3 and the description of the REPLACE command in the online
help or the HP DECset for OpenVMS Code Management System Reference
Manual.

4.4 Delta Files
For each element stored in the library, CMS maintains a delta file—a single
file containing a representation of the contents of all the generations of that
element.

In addition to the actual data, the delta file contains control records.
Control records tell CMS which data records are valid for which specific
generations of the element. When you retrieve a generation of an element,
CMS includes records that are valid and excludes records that are not valid for
that generation.

Elements and Generations 4–13

Elements and Generations
4.4 Delta Files

One of the effects of the delta file method of storing information is that
retrieval times are consistent within a given element. For example, it takes
a similar amount of time to fetch generation 100 of an element or generation
1 of that same element. Another effect is that generation deletion does not
necessarily produce a significantly smaller delta file, because records that are
valid in a generation being deleted might also be valid (and, in fact, are likely
to be valid) in later or earlier generations that are not being deleted.

See Appendix B for more information on how CMS stores library information.

4.5 Element Attributes
The CREATE ELEMENT and MODIFY ELEMENT commands enable you to
specify the following element attributes:

• The concurrent attribute controls whether concurrent reservations of an
element are allowed (See Section 4.3.2 for more information).

• The history, notes, and position attributes enable you to manipulate the
format of historical information associated with an element.

• The reference copy attribute directs CMS to maintain a reference copy of
an element.

• The review attribute directs CMS to mark newly created generations of an
element as pending review.

You can use the SHOW ELEMENT/FULL command to display the current
settings of these attributes. For more information, see the online help or the
HP DECset for OpenVMS Code Management System Reference Manual.

4.5.1 The History Attribute
When the history attribute is defined for an element, CMS includes the
element generation history in the output file when you retrieve a generation
of an element from the library with the FETCH or RESERVE command. This
history is a list of the transactions that created each generation of the element.
Each transaction record consists of the generation number, user, date, time,
and remark associated with the generation.

Use the /HISTORY qualifier to define the history attribute for an element.
You can either establish the history attribute when the element is created
with the CREATE ELEMENT command, or change the history attribute of
an existing element with the MODIFY ELEMENT command. You can cancel
the history attribute by using the /NOHISTORY qualifier on the MODIFY
ELEMENT command. You can also specify the /[NO]HISTORY qualifier on
the FETCH and RESERVE commands to temporarily override the element’s
history attribute.

4–14 Elements and Generations

Elements and Generations
4.5 Element Attributes

The format of the /HISTORY qualifier is as follows:

/HISTORY="string" /NOHISTORY

‘‘string’’
Specifies the format of each line of the element history. The string must
contain exactly one occurrence of the history format parameter, can contain
only printing ASCII characters and the space and tab characters, and must
begin and end with a quotation mark ("). The history format parameter
consists of a number sign (#) followed by an uppercase or lowercase letter H or
B. For example:

"!#H"
"/*#b*/"

The exclamation point (!) and the slash-asterisk characters (/* */) indicate
comments.

Use the letter B to direct CMS to include the history at the beginning of
the file and H to include the history at the end of the file. The history text
is inserted into the string wherever the #H or #B history format parameter
occurs. To include a number sign (#) in the string, type it twice (##). To
include a quotation mark in the string, type it twice (""). If the file contains
source code, you must include comment indicators or delimiters applicable to
your source code in the string so the program can be compiled or assembled.
The history is then treated as a comment.

Note

Because of Record Management Services (RMS) record storage
restrictions, CMS cannot include history text in files with fixed-
length records. If you try to fetch or reserve a generation of an element
that has history enabled and the generation has fixed-length records,
you receive the following message:

%CMS-I-NOHISTNOTES, history and notes will not be included in output file

The history includes a line for each generation of an element. Each line
consists of the text contained in the quoted string, with #H or #B replaced by
the creation information for that generation. The history region is delimited by
the following line:

CMS REPLACEMENT HISTORY, Element element-name

Elements and Generations 4–15

Elements and Generations
4.5 Element Attributes

This line enables the REPLACE command to distinguish the history from
the rest of the file when it is returned to the library. CMS does not consider
history text to be part of the file. Instead, the history is added to the file when
it is retrieved from the library and removed when the file is replaced into the
library. The generation numbers of a retrieved generation and its ancestors are
marked with an asterisk (*).

Do not insert or modify text in the history section while editing a file in your
directory. CMS expects only history lines between the two header lines. The
REPLACE command reports an error if it finds any other text where the
history should be, and the command is not executed. You must then delete the
extra text with an editor and reenter the REPLACE command.

The following command establishes the history attribute for a file that
contains a Pascal program:

$ CMS MODIFY ELEMENT SEMANTICS.PAS/HISTORY="{#H}" "est. history attribute"

When the default generation of SEMANTICS.PAS is retrieved with the FETCH
or RESERVE command, the history at the end of the program looks like this:

{ CMS REPLACEMENT HISTORY, Element SEMANTICS.PAS }
{ *6 28-JUL-2005 10:00:54 EDGAR "formal parameter list support added"}
{ *5 24-JUL-2005 16:10:14 DAVIS "actual parameter list support added"}
{ *4 20-JUL-2005 12:22:07 MARTIN "preliminary work on routine calls done"}
{ 3C1 17-JUL-2005 12:15:45 JEFF "error checking on CASE statement works"}
{ *3 11-JUL-2005 11:57:18 MALER "CASE statement support"}
{ *2 7-JUL-2005 11:56:05 HENRY "FOR loop support done"}
{ *1 9-JUN-2005 18:11:25 BARRETT "semantic analysis module"}
{ CMS REPLACEMENT HISTORY, Element SEMANTICS.PAS }

The braces ({}) indicate comments in Pascal. Because the braces surround
the lines of the history, the history lines are ignored by the Pascal compiler.
The history is delimited with the header line. Each existing generation of the
element is listed. The generation numbers of the specified generation and its
ancestors are marked with an asterisk. Generation 6 was retrieved; therefore,
that generation and its ancestors are marked with an asterisk. Generation
3C1 is not an ancestor because it is on a variant line of descent.

4–16 Elements and Generations

Elements and Generations
4.5 Element Attributes

Note

Some language processors do not accept a file that has data after
the formal end of the program. If you use #H in the definition of
the history attribute for an element, the element file might not be
compatible with these processors. If this occurs, you can specify the
/NOHISTORY qualifier with the RESERVE and FETCH commands.
When you use this qualifier, CMS does not include the history in the
file placed in your directory. Also, because CMS wraps history lines at
132 characters, you can use the /NOHISTORY qualifier with history
lines that are longer than 132 if your file is to be used by a processor or
compiler that does not accept 132-character lines.

See Section 4.5.5 for an example of using the history attribute.

4.5.2 The Notes and Position Attributes
When you use the RESERVE or FETCH command and the notes and position
attributes are defined for an element, CMS appends notes to lines of the file. A
note appears on every line that has been modified since generation 1 as close
to the position specified by the position attribute as possible. Notes can be
one or both of the following:

• Generation numbers indicating the latest generation in which the line was
inserted or modified

• ASCII text contained in the quoted string parameter of the /NOTES
qualifier

You use the /NOTES qualifier to define the notes attribute, and the
/POSITION qualifier to define the column in which the note should start.
You can establish these attributes when the element is created with the
CREATE ELEMENT command, or you can change the attributes of an existing
element with the MODIFY ELEMENT command. Any element that has the
notes attribute must have the position attribute and vice versa. Use the
/NONOTES qualifier with the MODIFY ELEMENT command to cancel both
attributes.

You can also specify the /[NO]NOTES and /POSITION qualifiers with the
FETCH and RESERVE commands to temporarily override the element’s notes
and position attributes.

The format of the /NOTES qualifier is as follows:

/NOTES="string" /NONOTES

Elements and Generations 4–17

Elements and Generations
4.5 Element Attributes

‘‘string’’
Specifies the format of the notes. The string can contain only ASCII characters;
it must begin and end with a quotation mark ("). The notes string cannot
exceed 100 characters. The string can optionally contain one occurrence of the
notes format parameter. The notes format parameter consists of a number sign
(#) followed by an uppercase or lowercase letter G. For example:

"!#G"
"/*#g*/"

The exclamation point (!) and the slash-asterisk characters (/* */) indicate
comments.

To include a number sign (#) in the string, type it twice (##). To include a
quotation mark in the string, type it twice (""). If the file contains source
code, you must include comment indicators applicable to your source code in
the string so the program can be compiled or assembled. The notes are then
treated as comments. See Section 4.5.5 for an example.

A note for a line consists of the text contained in the quoted string. The notes
parameter is replaced by the number of the generation in which the line was
inserted or most recently modified.

Note

Because of Record Management Services (RMS) record storage
restrictions, CMS cannot include notes text in files with fixed-length
records. If you attempt to fetch or reserve a generation of an element
that has notes enabled and the generation has fixed-length records, you
receive the following message:

%CMS-I-NOHISTNOTES, history and notes will not be included in output file

A note for a line appears at the position specified by the /POSITION qualifier.
The /POSITION qualifier is required when /NOTES is specified.

The format of the /POSITION qualifier is as follows:

/POSITION=n

n
Specifies the character position at which the notes are to appear on the line.
The position value must be an integer in the range 1 to 511.

4–18 Elements and Generations

Elements and Generations
4.5 Element Attributes

The note is placed to the right of the text of the line. If the length of the line
is less than n, the note begins at position n. If the length of the line is greater
than or equal to n, the note begins at the next tab stop after the end of the text
of the line. (Tab stops are at position 9 and at every 8 characters thereafter.)

CMS does not consider notes to be part of the element generation. Instead,
notes are added to the file when it is retrieved from the library and removed
when the file is replaced into the library. If, while editing the file, you add
text after the note or within the note, CMS does not recognize it as a note; and
therefore, replaces it as part of the generation. If you add text that looks like a
note, CMS interprets it as a note and removes it before replacing the file.

See Section 4.5.5 for an example of using the notes and position attributes.

4.5.3 The Reference Copy Attribute
An element reference copy is a copy of the latest main-line generation of an
element. CMS maintains reference copies of the latest generations of selected
library elements in a non-library directory.

If you have established a reference copy directory for a library, each newly
created element is automatically set with the /REFERENCE_COPY qualifier.
New elements inherit the reference copy attribute from the library setting.

When the reference copy attribute is enabled for an element, CMS creates
a reference copy by fetching a copy of the latest main-line generation into the
reference copy directory. If, for any reason, the reference copy directory cannot
be updated, CMS does not create the new generation.

You can use the /REFERENCE_COPY qualifier to define the reference copy
attribute for a single element. Either establish the reference copy attribute
when the element is created with the CREATE ELEMENT command, or
change the reference copy attribute of an existing element with the MODIFY
ELEMENT command. You can prevent CMS from creating a reference copy by
specifying the /NOREFERENCE_COPY qualifier with the CREATE ELEMENT
or MODIFY ELEMENT command.

The format of the /[NO]REFERENCE_COPY qualifier is as follows:

/REFERENCE_COPY /NOREFERENCE_COPY

For more information on reference copies, See Section 3.1.4 and the
/[NO]REFERENCE_COPY qualifier in the online help or the HP DECset
for OpenVMS Code Management System Reference Manual.

Elements and Generations 4–19

Elements and Generations
4.5 Element Attributes

4.5.4 The Review Attribute
When the review attribute is enabled for an element, CMS places any newly
created generations of that element on the review pending list, and marks
them for review. You can associate review remarks with a generation under
review by using the REVIEW GENERATION command (see the online help or
the HP DECset for OpenVMS Code Management System Reference Manual).

You use the /REVIEW qualifier to define the review attribute for an element.
You can establish the review attribute when the element is created with the
CREATE ELEMENT command, or you can change the attribute of an existing
element with the MODIFY ELEMENT command. You can cancel the review
attribute by using the /NOREVIEW qualifier on the MODIFY ELEMENT
command.

The format of the /[NO]REVIEW qualifier is as follows:

/REVIEW /NOREVIEW

To determine what generations are under review, use the SHOW
REVIEWS_PENDING command, which also shows any review comments.
Once a generation is under review, a user trying to retrieve that generation
with a FETCH command is informed that a review is pending. If you retrieve
the generation with the RESERVE command, you are informed that a review
is pending and are prompted for confirmation to continue. The messages are
issued until the generation’s review status is resolved. A generation with a
review pending cannot be deleted.

You can resolve a generation’s review status in one of three ways: accept the
generation with the ACCEPT GENERATION command, cancel the review
with the CANCEL REVIEW command, or reject the generation with the
REJECT GENERATION command. If you accept the generation or cancel the
review, CMS halts review-related messages and confirmations on subsequent
reservation attempts. If you reject the generation, CMS issues a message
indicating that the generation was reviewed and rejected. The generation is
still accessible so the problems in it that caused the rejection can be corrected.

A generation created from a generation that currently has a review pending or
that was previously rejected is automatically marked for review, regardless of
the setting of the element’s review attribute.

You can also use the MARK GENERATION and REVIEW GENERATION
commands to mark a generation for review and to review the generation. For
more information, see the descriptions of these commands in the online help or
the HP DECset for OpenVMS Code Management System Reference Manual.

See Section 4.5.5 for an example of using the review attribute.

4–20 Elements and Generations

Elements and Generations
4.5 Element Attributes

4.5.5 Examples of Using Element Attributes
The following example shows how to create the element DOC.C with the
history, notes, and position attributes.

$ CMS CREATE ELEMENT DOC.C/HISTORY="!#H"/NOTES="!#G"/POSITION=80
_Remark: Require file for multiple reservations
%CMS-S-CREATED, element DISKX:[PROJECT.CMSLIB]DOC.C created

This command creates an element called DOC.C. The element contains data
structures written in the C programming language. The /HISTORY qualifier
specifies that history is to be appended to the file when it is retrieved from
the library. Each line of the history is preceded by a slash and asterisk (/*),
which indicates a comment in the C language. The /NOTES and /POSITION
qualifiers specify that generation numbers are to be embedded in the lines of
the file at position 80. The generation numbers are preceded by an exclamation
point (!).

The history and notes are embedded in the file DOC.C when it is retrieved with
the RESERVE or FETCH command. Alternatively, you can specify /NONOTES
or /NOHISTORY with the FETCH or RESERVE command to direct CMS to
omit the notes or history in the file.

In the following example, three generations of the file DOC.C exist and the
element is retrieved with the FETCH command.

$ CMS FETCH DOC.C
_Remark: take a look at history and notes specifications
%CMS-S-FETCHED, generation 3 of element DISKX:[PROJECT.CMSLIB]DOC.C fetched

The FETCH command retrieves generation 3 of the element. (If the
/NONOTES and /NOHISTORY qualifiers had been specified on the FETCH
command, the retrieved file would not contain the notes and history embedded
by the element creation.) The file that is delivered to the user’s directory is
shown in Example 4–1.

Elements and Generations 4–21

Elements and Generations
4.5 Element Attributes

Example 4–1 An Element with History and Notes Attributes

/* Tests of CMS$CREATE_LIBRARY return status values */ 1

#include <stdio.h> /* Input/output utilities */ 1
#include "[]easy.h" /* Descriptor utilities */ 1

globalvalue cms$_created;
globalvalue cms$_nocreate;

main()
{

/* Dynamic descriptor allocation */ 1

DYNDESC(d_libspec);
DYNDESC(d_cmsdir); !2 2

/* Local variables */ 1

int lib_db[50];
int status;
char *libspec = "testlib:";
char *cmsdir = "[.cmsdir]"; !2 2

DYNDESC_A(d_libspec, libspec);
DYNDESC_A(d_cmsdir, cmsdir);

/* The actual tests */

status = cms$create_library(&lib_db,&d_cmsdir); !2 2
if (status == cms$_nocreate)

printf("\nReturn status = CMS$_NOCREATE\n");
else

printf("\n*** Unrecognized return status ***\n");

printf("\n\nCorrect operation\n");
status = cms$create_library(&lib_db,&d_libspec);
if (status == cms$_created)

printf("\nReturn status = CMS$_CREATED\n");
else

printf("\n*** Return status is unsuccessful ***\n"); !3 2

}
! CMS REPLACEMENT HISTORY, Element DOC.C 2
! *3 23-AUG-2005 12:19:50 DOC$SMITH "" 2
! *2 10-AUG-2005 12:17:44 DOC$JONES "" 2
! *1 4-AUG-2005 12:14:16 DOC$SMITH "" 2
! CMS REPLACEMENT HISTORY, Element DOC.C 2

Key to example:

1 Indicates comments existing in the file

2 Indicates comments supplied by CMS

4–22 Elements and Generations

Elements and Generations
4.5 Element Attributes

The numbers at position 80 (preceded by an exclamation point) to the right
of the code denote the generation in which the lines were inserted or most
recently modified. Lines not changed since generation 1 have no notes. The
history starts and ends with the following title:

! CMS REPLACEMENT HISTORY, Element DOC.C.

The history shows the transactions that created each generation of the element.

Example 4–2 shows the process of marking generations for review, displaying
the list of generations in the library that are on the review pending list,
rejecting a generation, and reserving a generation that has been rejected.

Example 4–2 Example of Using the Review Attribute

CMS> MARK GENERATION BASCHAP*.SDML
_Remark: need to review chapters for BASIC manual
%CMS-I-MARKED, generation 1 of element DISKX:[PROJECT.CMSLIB]BASCHAP1.SDML
marked for review
%CMS-I-MARKED, generation 1 of element DISKX:[PROJECT.CMSLIB]BASCHAP2.SDML
marked for review
%CMS-I-MARKED, generation 1 of element DISKX:[PROJECT.CMSLIB]BASCHAP3.SDML
marked for review
%CMS-I-MODIFICATIONS, 3 modifications completed

CMS> SHOW REVIEWS_PENDING

Reviews pending in CMS Library DISKX:[PROJECT.CMSLIB]

BASCHAP1.SDML
DAVIS 1 28-JAN-2005 15:48:25 "creating Chapter 1 INTRO"

BASCHAP2.SDML
DAVIS 1 28-JAN-2005 15:48:29 "creating Chapter 2 SYNTAX"

BASCHAP3.SDML
DAVIS 1 28-JAN-2005 15:48:32 "creating Chapter 3 NEW FEATURES"

CMS> FETCH BASCHAP3.SDML
_Remark: new features still applicable?
Generation 1 of element BASCHAP3.SDML has a review pending
%CMS-S-FETCHED, generation 1 of element DISKX:[PROJECT.CMSLIB]BASCHAP3.SDML fetched

.

.

.
CMS> REJECT GENERATION BASCHAP3.SDML "new features made into separate
section, not an entire chapter"
%CMS-S-REJECTED, generation 1 of element DISKX:[PROJECT.CMSLIB]BASCHAP3.SDML rejected

CMS> RESERVE BASCHAP3.SDML "need to pull section"
Generation 1 of element BASCHAP3.SDML has been rejected
Proceed? [Y/N] (N): YES
%CMS-S-RESERVED, generation 1 of element DISKX:[PROJECT.CMSLIB]BASCHAP3.SDML reserved

Elements and Generations 4–23

5
Groups and Classes

This chapter describes how to create and use groups and classes.

5.1 Overview
Groups and classes are mechanisms that you can use to organize a CMS
library. Both groups and classes are typically used in a library; although each
mechanism creates a different library structure, both can be used in the same
library without conflict.

5.1.1 Groups
A group is a collection of elements or other groups, or a combination of both.
You combine one or more elements into a group that you can then manipulate
as a single unit. For example, you might create a group that contains all the
files that process error messages, a group that contains all the chapters and
appendixes in a book, or a group that contains the modules needed to build a
part of a database.

Even if an element is in a group, you can still manipulate the element as an
object that is separate from the group. A group can also belong to one or more
other groups. The only restriction is that a group cannot be a member of itself;
that is, it cannot directly or indirectly be a subgroup of itself.

5.1.2 Classes
A class is a set of specific generations of elements that can be manipulated as
a unit. A class can hold only one generation of any element.

You use classes to represent the state of development of a system or set of
elements at a particular time or stage. You can think of a class as a picture
taken of a library at a particular time. For example, you might create a class
named FIRST_DRAFT that contains only those generations of elements that
were used in producing the first draft of a manual.

Groups and Classes 5–1

Groups and Classes
5.1 Overview

Typically, you create a class to contain generations of all the components of a
software system for a release version of a product. You can establish classes
for different stages or milestones. For example, you could establish one class
for implementation, a second for testing, and a third for generations that
have completed the first two stages. As each module progresses through each
stage, you assign each generation to an appropriate class; thus, you can easily
determine your progress by displaying the contents of the different classes, and
you can later reconstruct any stage of development.

Once you insert an element generation into a class, further changes made to
the element are not reflected in the contents of that class.

5.1.3 The Difference Between Groups and Classes
When you use groups, you manipulate elements. A group is an entity that
enables you to give a name to a set of elements in the library and manipulate
the set of elements with that name. You typically use groups to associate
elements together. For example, you could create a group containing all the
art figures in a manual, or a group containing all source modules that contain
callable entry points.

When you use classes, you manipulate specific generations of elements. A class
is an entity that enables you to give a name to a set of specific generations of
elements in the library and manipulate the set with that name. In contrast
to groups, classes contain only one generation from an element. You typically
use classes to take a ‘‘timed snapshot’’ of a set of generations; that is, the
generations that are meaningful to a project at a particular time. For example,
you could create a class containing the specific generations that are included in
a code freeze or field-test kit, or a class containing the specific generations that
make up the state of the project on some other significant date. Figure 5–1
shows the relationship between a group and a class.

5–2 Groups and Classes

Groups and Classes
5.1 Overview

Figure 5–1 Groups and Classes

2

3 3

2

SEARCH.FOR OUTPUT.FOR ARGCHK.FOR INIT.FOR

ZK−1693−GE

1 1 1 1

2 2

3 3

4 4 4 4

5 5 5

6 6

Group BUILDBASE

Legend

Group BUILDBASE

Class BASELEVEL4

Groups and Classes 5–3

Groups and Classes
5.1 Overview

The circles in the figure represent four elements and their generations. The
number in each circle represents the generation number of the element
generation. These four elements and their respective generations are contained
in group BUILDBASE, a group containing the modules needed to build part of
a database.

If you retrieve group BUILDBASE, you receive the latest generation on the
main line of descent of each of the following elements in the group:

SEARCH.FOR, generation 6
OUTPUT.FOR, generation 5
ARGCHK.FOR, generation 6
INIT.FOR, generation 4

The dashed line that connects element generations represents class
BASELEVEL4. Class BASELEVEL4 contains the element generations that
comprise the state of the library on March 12, the date the project moved to
base level 4.

If you retrieve class BASELEVEL4, you receive the following element
generations:

SEARCH.FOR, generation 2
OUTPUT.FOR, generation 5
ARGCHK.FOR, generation 5
INIT.FOR, generation 1

5.2 Manipulating Groups
The following sections describe how to create and use groups.

5.2.1 Creating Groups
Groups can contain elements, other groups, or a combination of both. You
establish an empty group with the CREATE GROUP command. For example:

$ CMS CREATE GROUP USER_MANUAL "user documentation"
%CMS-S-CREATED, group DISKX:[PROJECT.CMSLIB]USER_MANUAL created

This command creates an empty group named USER_MANUAL.

5–4 Groups and Classes

Groups and Classes
5.2 Manipulating Groups

5.2.2 Inserting Elements into Groups
After you establish a group, you place one or more elements in the group with
the INSERT ELEMENT command.

The following command inserts the elements COPYRIGHT.DOC and
BOOTSTRAP.DOC into the group named USER_MANUAL:

$ CMS INSERT ELEMENT COPYRIGHT.DOC,BOOTSTRAP.DOC USER_MANUAL
_Remark: copyright page
%CMS-I-INSERTED, element DISKX:[PROJECT.CMSLIB]COPYRIGHT.DOC inserted into
group DISKX:[PROJECT.CMSLIB]USER_MANUAL
%CMS-I-INSERTED, element DISKX:[PROJECT.CMSLIB]BOOTSTRAP.DOC inserted into
group DISKX:[PROJECT.CMSLIB]USER_MANUAL
%CMS-S-INSERTIONS, 2 insertions completed

Figure 5–2 shows the group USER_MANUAL, which contains two elements,
BOOTSTRAP.DOC and COPYRIGHT.DOC.

Groups and Classes 5–5

Groups and Classes
5.2 Manipulating Groups

Figure 5–2 Generations in a Group

3

2

1

2

1

BOOTSTRAP.DOC COPYRIGHT.DOC

Group USER_MANUAL

ZK−1691−GE

This figure shows that all generations of the two elements are associated with
the group. Therefore, you can access any generation of the elements in a group.

The element expression specified on the INSERT ELEMENT command can
be one or more element names, group names, or a wildcard expression (for
information about element expressions, see Section 10.2.4). If you specify a
group name with the INSERT ELEMENT command, CMS enters the names
of all of the elements in that group into the destination group. For instance, if

5–6 Groups and Classes

Groups and Classes
5.2 Manipulating Groups

you use INSERT ELEMENT to insert the contents of group A into group B, the
contents of group B are not affected by any subsequent changes of the contents
of group A.

You can also use the INSERT GROUP command to insert groups (and, thus
indirectly, elements) into a group. For example:

$ CMS INSERT GROUP USER_MANUAL CODE_AND_DOCS
%CMS-S-INSERTED, group DISKX:[PROJECT.CMSLIB]USER_MANUAL inserted into
DISKX:[PROJECT.CMSLIB]group CODE_AND_DOCS

This command inserts the group USER_MANUAL into the group
CODE_AND_DOCS. The INSERT GROUP command enters the group name
USER_MANUAL into the list of entries for the group CODE_AND_DOCS. If
the contents for the group USER_MANUAL change, the elements accessible
through CODE_AND_DOCS also change.

5.2.3 Retrieving and Removing Elements from a Group
After you create a group and insert elements or other groups into that group,
you can retrieve all generations of elements in the group with a single FETCH
or RESERVE command. For example:

$ CMS FETCH USER_MANUAL "copy for internal sites"
%CMS-I-FETCHED, generation 4 of element DISKX:[PROJECT.CMSLIB]BOOTSTRAP.DOC fetched
%CMS-I-FETCHED, generation 1 of element DISKX:[PROJECT.CMSLIB]COPYRIGHT.DOC fetched
%CMS-S-FETCHES, 2 elements fetched

When you enter the FETCH command, CMS places a copy of the latest
generation on the main line of descent of each element belonging to the group
named USER_MANUAL into your current, default directory.

By default, when you retrieve a group of elements, you get the latest generation
on the main line of descent of each element in the group. By using the
/GENERATION qualifier, you can gain access to a specific generation. Note
that when you use the /GENERATION qualifier with groups, the generation
expression is applied across the group. Thus, if you were to fetch a group of
elements and you specified /GENERATION=2, CMS would retrieve the second
generation of each element in the group.

The REMOVE ELEMENT command enables you to remove an element from a
group; however, it does not alter or delete the element itself. For example:

$ CMS REMOVE ELEMENT SPEC.RNO DOCUMENTATION
_Remark: User’s manual ready for first review
%CMS-S-REMOVED, element DISKX:[PROJECT.CMSLIB]SPEC.RNO removed from group
DISKX:[PROJECT.CMSLIB]DOCUMENTATION

This command removes the element SPEC.RNO from the group
DOCUMENTATION.

Groups and Classes 5–7

Groups and Classes
5.2 Manipulating Groups

You can also use the REMOVE GROUP command to remove groups from other
groups. For example:

$ CMS REMOVE GROUP USER_MANUAL CODE_AND_DOCS "removing group"
%CMS-S-REMOVED, group DISKX:[PROJECT.CMSLIB]USER_MANUAL removed from group
DISKX:[PROJECT.CMSLIB]CODE_AND_DOCS

This command removes the group USER_MANUAL from the group
CODE_AND_DOCS. However, CMS does not delete or alter the groups being
removed.

5.2.4 Displaying the Group Structure of a Library
To find out what groups are defined in your library, use the SHOW GROUP
command. CMS lists group names in alphabetical order with the remark
associated with the group. To obtain a list of all elements and groups in
a specific group, use the SHOW GROUP command with the /CONTENTS
qualifier. For example, to display the contents of the group named
DATA_ROUTINES, you would type the following command:

$ CMS SHOW GROUP/CONTENTS DATA_ROUTINES

Groups in CMS Library DISKX:[PROJECT.CMSLIB]

DATA_ROUTINES "routines for input & conversion"
ADCONVERT.BAS
SAMPLE.BAS

5.2.5 Deleting Groups
The DELETE GROUP command deletes one or more groups from a CMS
library. The group must be empty prior to deletion. If the group contains any
content, use the REMOVE ELEMENT command, REMOVE GROUP command,
or the DELETE GROUP command with the /REMOVE_CONTENTS qualifier.
For example:

CMS> DELETE GROUP TIME_TST "superseded by comparison tests"
%CMS-S-DELETED, group DISKX:[PROJECT.CMSLIB]TIME_TST deleted

This command deletes the group named TIME_TST.

If the group is not empty, or if it belongs to another group, CMS returns
an error and does not delete the group. Use the REMOVE ELEMENT or
REMOVE GROUP command to remove elements or groups from the group
before entering the DELETE GROUP command.

5–8 Groups and Classes

Groups and Classes
5.3 Manipulating Classes

5.3 Manipulating Classes
The following sections describe how to create and use classes.

5.3.1 Creating Classes
You establish an empty class with the CREATE CLASS command. For
example:

$ CMS CREATE CLASS INTERNAL_RELEASE "for use in-house only"
%CMS-S-CREATED, class DISK:[PROJECT.CMSLIB]INTERNAL_RELEASE created

This command creates a class called INTERNAL_RELEASE. The class does
not yet contain any element generations.

5.3.2 Inserting Element Generations into Classes
You place an element generation into a class with the INSERT GENERATION
command.

The following commands place generations of INIT.FOR and ARGCHK.FOR
into the class INTERNAL_RELEASE:

CMS> INSERT GENERATION INIT.FOR INTERNAL_RELEASE
_Remark: Initialization routine for demo
%CMS-S-GENINSERTED, generation 2 of element DISKX:[PROJECT.CMSLIB]INIT.FOR
inserted in class DISKX:[PROJECT.CMSLIB]INTERNAL_RELEASE
CMS> INSERT GENERATION ARGCHK.FOR/GENERATION=3 INTERNAL_RELEASE
_Remark: Demo semantic analyzer
%CMS-S-GENINSERTED, generation 3 of element DISKX:[PROJECT.CMSLIB]ARGCHK.FOR
inserted in class DISKX:[PROJECT.CMSLIB]INTERNAL_RELEASE

The INSERT GENERATION command uses the latest generation on the main
line of descent, unless you specify the /GENERATION qualifier. A class can
contain no more than one generation of an element. A generation can belong to
zero, one, or more classes.

Figure 5–3 shows the relationship of elements, generations, and the class
INTERNAL_RELEASE.

Groups and Classes 5–9

Groups and Classes
5.3 Manipulating Classes

Figure 5–3 The Relationship Between Groups and Elements

2

SEARCH.FOR OUTPUT.FOR ARGCHK.FOR INIT.FOR

3

2

ZK−1692−GE

3

The class INTERNAL_RELEASE contains generation 2 of INIT.FOR,
generation 2 of SEARCH.FOR, generation 3 of OUTPUT.FOR, and generation
3 of ARGCHK.FOR.

You can also insert a generation into one or more classes using the /INSERT_
INTO_CLASS qualifier to the REPLACE command. See the HP DECset for
OpenVMS Code Management System Reference Manual for information on
using this qualifier.

5–10 Groups and Classes

Groups and Classes
5.3 Manipulating Classes

5.3.3 Retrieving and Removing Generations from a Class
You can retrieve an element generation from a class by specifying the class
name on the /GENERATION qualifier on the FETCH or RESERVE command.
A class can contain no more than one generation of an element; the class name
specifies the generation of the element to be retrieved. For example:

$ CMS RESERVE SEARCH.FOR/GENERATION=INTERNAL_RELEASE
_Remark: add support for alternate two-character graphics
%CMS-S-RESERVED, generation 2 of element DISKX:[PROJECT.CMSLIB]SEARCH.FOR reserved

This command reserves generation 2 of SEARCH.FOR, because that generation
belongs to the class INTERNAL_RELEASE.

If a class is established to contain each version or base level of a system, you
can accurately reconstruct any previous version of the system. For example, if
the users of your system use version 1, the element generations that constitute
version 1 could belong to the class VER1. If the software has changed because
you are in the process of developing version 2 and a bug is reported in version
1, you can retrieve the generation of the element in which the bug appeared
because you know that it belongs to class VER1.

The REMOVE GENERATION command enables you to remove an element
generation from a class. For example:

$ CMS REMOVE GENERATION DISPLAY.BAS BASELEVEL1 "no longer needed"

In this example, a generation of the element DISPLAY.BAS is removed from
class BASELEVEL1. CMS then revises information about BASELEVEL1 so no
generation of DISPLAY.BAS is included in the class.

5.3.4 Displaying the Class Structure of a Library
To find out which classes are defined in your library, use the SHOW CLASS
command. CMS lists class names in alphabetical order with the remark that is
associated with the class. To obtain a list of all generations in a specific class,
use the SHOW CLASS command with the /CONTENTS qualifier. For example:

$ CMS SHOW CLASS/CONTENTS BASELEVEL1

Classes in CMS Library DISKX:[PROJECT.CMSLIB]

BASELEVEL1 "Specifying all generations for first base level"
ADCONVERT.BAS 5
DISPLAY.BAS 2
SAMPLE.BAS 6
SYNCHRON.BAS 4

This command displays all the elements and their generations in class
BASELEVEL1.

Groups and Classes 5–11

Groups and Classes
5.3 Manipulating Classes

5.3.5 Deleting Classes
The DELETE CLASS command deletes one or more classes from a CMS
library. The class must be empty prior to deletion. If the class contains
any content, use the REMOVE GENERATION command or the DELETE
GROUP command with the /REMOVE_CONTENTS qualifier. For example:
For example:

$ CMS DELETE CLASS PRE_RELEASE "no longer necessary"
%CMS-S-DELETED, class DISKX:[PROJECT.CMSLIB]PRE_RELEASE deleted

This command deletes the class named PRE_RELEASE.

If any element generations belong to the class, CMS issues an error message
and does not delete the class. Use the REMOVE GENERATION command to
remove element generations from a class before entering the DELETE CLASS
command.

5.4 Group and Class Attributes
You can change the name, remark, and read-only attribute of both groups and
classes by using the MODIFY GROUP and MODIFY CLASS commands.

You can use the /NAME qualifier on the MODIFY GROUP command to change
the name of a group created with the CREATE GROUP command. Similarly,
you can use the /NAME qualifier on the MODIFY CLASS command to change
the name of a class created with the CREATE CLASS command.

You can use the /REMARK qualifier on the MODIFY GROUP and MODIFY
CLASS commands to specify a new remark to be substituted for the remark
created with the CREATE GROUP and CREATE CLASS commands.

You can use the /READ_ONLY qualifier on the MODIFY GROUP and MODIFY
CLASS commands to assign read-only access to groups or classes. A group or
a class that is set to read-only access cannot be changed; you cannot insert or
remove any items to or from the group or class. In addition, you cannot change
the name of a group or a class that is set to read-only access.

The following example sets the group DIAGNOSTICS to read-only access:

$ CMS MODIFY GROUP DIAGNOSTICS/READ_ONLY
_Remark: diagnostics for use with V2 compiler

5–12 Groups and Classes

Groups and Classes
5.4 Group and Class Attributes

After this command has been executed, the group cannot be altered. To change
the group, use the /NOREAD_ONLY qualifier with the MODIFY GROUP
command. Similarly, you can use the /READ_ONLY and /NOREAD_ONLY
qualifiers with the MODIFY CLASS command to enable or disable
modifications to a class.

In addition, you can use the SET ACL and SHOW ACL commands to specify
and display access control lists for groups and classes (as well as for other CMS
library objects). See Chapters 7 and 8 for more information.

Groups and Classes 5–13

6
Variants and Merging

This chapter provides information on lines of descent, creating variant lines of
descent, and merging element generations.

6.1 Lines of Descent
The line of descent for a specified generation consists of all ancestors and direct
descendants of that generation. The main line of descent consists of generation
1 and its direct descendants (generation 2, generation 3, and so on). A variant
line of descent contains one or more variant generations; for example, the line
of descent for generation 3A1B2 consists of the following generations: 1, 2, 3,
3A1, 3A1B1, 3A1B3, and so on. Generation 1 is the beginning of every line of
descent.

Some projects require alternate development paths, such as a trial development
of a slightly different internal program structure, a change in the scope of an
existing program, or a version to run on a different operating system. Variant
generations are the mechanism that CMS uses to organize concurrent, parallel
changes to a library element.

6.1.1 Creating a Variant Generation
To create a variant generation, use the /VARIANT=x qualifier on the REPLACE
command. This creates a variant line of descent that CMS can distinguish
from the main line of descent. The parameter x, called the variant letter, is
any single alphabetic character (A through Z). If you enter the variant letter as
a lowercase character, CMS converts it to uppercase. CMS copies the replaced
file into the library and labels the variant generation by appending the variant
letter and the number 1 to the generation number of the ancestor generation.

Variants and Merging 6–1

Variants and Merging
6.1 Lines of Descent

For example, if you reserved generation 7 of an element named INIT.FOR, you
could create a variant as follows:

$ CMS REPLACE INIT.FOR/VARIANT=T
_Remark: Routine added for multi-user system
%CMS-S-GENCREATED, generation 7T1 of element DISKX:[PROJECT.CMSLIB]INIT.FOR created

The variant letter (in this case, T) identifies the new line of descent. The
variant letter has no meaning to CMS; you can use it for mnemonic purposes.
For instance, you can choose a variant letter that indicates the purpose of the
variant line, such as F for fixes, E for enhancements, and so forth.

The number after the variant letter identifies successive generations on that
new line of descent. For example, if you reserve and replace generation 7T1
of INIT.FOR, generation 7T2 is created. Each variant can have variants of
its own using the same method; for example, you could replace a variant to
generation 7T1 with the REPLACE/VARIANT=E command to create generation
7T1E1.

You can create a variant line for any reason; however, there are two cases in
which you must create a variant in order to replace an element.

First, when two or more reservations are in effect for the same generation of
the same element at the same time, all but one of the reservations must be
replaced as a variant. CMS manages concurrent changes by allowing only one
replacement to become the next generation on the same line of descent. The
other replacements must begin variant lines of descent; the changes can then
be merged back into the original line of descent (see Section 6.2.1).

6–2 Variants and Merging

Variants and Merging
6.1 Lines of Descent

Figure 6–1 shows one element at three different stages of development. In
stage I, the element has six generations. At this point, two users reserve
generation 6 of the element. The users replace their reservations, creating
generation 7 (stage II) and variant generation 6X1 (stage III).

Figure 6–1 Creating a Variant Generation

6 6 6

I II III

ZK−1694−GE

6 x 1

Second, when you reserve a generation other than the most recent one on a line
of descent, you must always create a variant successor because the successor
on the same line of descent already exists. For example, if you reserved an
earlier generation to modify software that has already been released, you must
create a variant to store the modification. The change can then be merged into
the original line of descent (see Section 6.2).

Variants and Merging 6–3

Variants and Merging
6.1 Lines of Descent

Figure 6–2 shows one element at two stages of development. If you reserve
generation 3 of the element, you must create a variant (shown here as
generation 3T1) when you replace the generation with the REPLACE
command, because generation 4 already exists.

Figure 6–2 Extending a Variant Generation from an Earlier Generation

ZK−1695−GE

2

3

4

3

3T1

6–4 Variants and Merging

Variants and Merging
6.1 Lines of Descent

6.1.2 Accessing Variant Generations
Variant generation numbers can be used like any other generation numbers.
You retrieve a variant generation of an element by using the /GENERATION
qualifier with the FETCH or RESERVE command. You must specify a
generation number or a class name when you use the /GENERATION qualifier.
When you replace a reserved variant generation, the new generation is created
on the same variant line. For example:

$ CMS RESERVE SEMANTICS.PAS/GENERATION=3C1
_Remark: checks for multiple CASE labels
%CMS-S-RESERVED, generation 3C1 of element DISKX:[PROJECT.CMSLIB]SEMANTICS.PAS reserved

.

.

.
(modify and test element file)

.

.

.
$ CMS REPLACE SEMANTICS.PAS
_Remark: error checking on multiple CASE labels done
%CMS-S-GENCREATED, generation 3C2 of element DISKX:[PROJECT.CMSLIB]SEMANTICS.PAS created

In this example, the /GENERATION qualifier on the RESERVE command
specifies that generation 3C1 is to be reserved. The REPLACE command
returns the element to the library and creates generation 3C2, which is on the
same line of descent as its predecessor, 3C1.

Variants and Merging 6–5

Variants and Merging
6.1 Lines of Descent

6.1.3 Ancestor and Descendant Generations
The ancestors of a generation on the main line of descent are all the preceding
generations back to the first generation of the element (generation 1). The
ancestors of a variant generation are all the preceding generations on the
variant line of descent, which includes all generations on the path back to the
first generation of the element. Figure 6–3 shows the path to the ancestors of
generation 2B2.

Figure 6–3 Ancestors on a Tree of Descent

2

1

2B1

2B2

ZK−1699−GE

6–6 Variants and Merging

Variants and Merging
6.1 Lines of Descent

The descendants of a generation consist of all successive generations (on the
same line of descent) and all their variant generations. Figure 6–4 shows the
paths that connect the descendants of generation 2.

Figure 6–4 Descendants on a Tree of Descent

2

3

4

ZK−1700−GE

2B1

2B2

To display the ancestors or descendants of a generation, use the SHOW
GENERATION command with the /ANCESTORS or /DESCENDANTS
qualifier, respectively.

6.2 Merging Two Generations of an Element
At some point in the development cycle, you might want to combine changes
made in two generations of an element. For example, if concurrent changes
are made to a generation of an element, those changes must be replaced as two
separate generations, at least one of which must be a variant. The changes
made in these new generations can now be merged into a single generation of
the element.

Variants and Merging 6–7

Variants and Merging
6.2 Merging Two Generations of an Element

Two conditions are necessary for a merge transaction:

• The generations must belong to the same element; that is, you cannot
merge generations of different elements.

• One generation cannot be an ancestor of the other; that is, they must be
on different lines of descent. For example, in Figure 6–4, you could merge
generation 2B1 and 3 or 2B2 and 3, but you could not merge generations 2
and 3, or 2 and 2B1, or 2 and 2B2.

The following sections describe how to merge generations and how the merging
process works.

6.2.1 Merging Element Generations
When you merge generations, CMS identifies the generation you specify with
the /MERGE qualifier, the generation being fetched or reserved, and all edits
on the lines of descent for the two generations. (The two generations used in
the merge transaction cannot be on the same line of descent.)

CMS then compares the changes that have been made in both generations
being merged against the lines of descent. CMS looks for identical regions of
text between each of the generations being merged and the lines of descent.
These identical regions provide ‘‘anchor’’ points. The location of changes is
determined relative to these anchor points—not relative to any particular line
number. For example, CMS could consider line 200 in one generation being
merged to be at the same location as line 500 in the other generation.

Any changes found in only one of the generations are included in the new
file. These are called successful merges. Identical changes (modifications,
insertions, or deletions) made at identical locations in the merged generations
are also included in the new file (also called successful merges). Different
changes made at identical locations are flagged by CMS and require manual
resolution. These changes are called merge conflicts. (Section 6.2.2 explains
how conflicts between two generations are treated in the merging process.)
CMS then creates an output file containing the results of the merge
transaction, and places it in your current default directory. CMS assigns
the current time as the creation and revision time of the output file; the output
file does not inherit these values from the reserved generation.

6–8 Variants and Merging

Variants and Merging
6.2 Merging Two Generations of an Element

Note

Because of Record Management Services (RMS) record storage
restrictions, CMS does not merge element generations that have fixed-
length records of different size. CMS does merge element generations
that have fixed-length records with identical formats, however. If
you try to merge fixed-length records of different size, you receive the
following error messages:

CMS-E-SIZEMISMAT, cannot merge generations with different size records
CMS-E-GENRECSIZE, generation ## has ##-byte records, ## has ##-byte records

If at least one of the merged generations has variable-length records,
no restrictions apply, and the resulting generation has variable-length
records.

The /MERGE qualifier identifies the element generation that CMS merges into
the generation being retrieved with the FETCH or RESERVE command.

For example, the following command merges generation 3A1 of the element
DATACHAP.TXT into generation 7B3:

$ CMS FETCH DATACHAP.TXT/GENERATION=7B3/MERGE=3A1

Figure 6–5 shows the contents of three generations of the element CITY.TXT
(generations 1, 2, and 1S1) and the relationship between the element
generations.

Variants and Merging 6–9

Variants and Merging
6.2 Merging Two Generations of an Element

Figure 6–5 The Relationship Between a Generation and an Element

1

2

1S1

ZK−1696−GE

Generation 1

Generation 2

Boston
New York

Boston
Detroit
New York

Generation 1S1

Boston
New York
San Francisco

In this example, generation 2 is the most recent on the main line of descent.
Therefore, you can merge generations 2 and 1S1 with the following command:

$ CMS RESERVE CITY.TXT/MERGE=1S1
_Remark: merge generations 2 and 1S1
%CMS-I-MERGECOUNT, 2 changes successfully merged with no conflicts
%CMS-S-RESERVED, generation 2 of element DISKX:[PROJECT.CMSLIB]CITY.TXT reserved
and merged with generation 1S1

This command merges generation 1S1 into generation 2 of CITY.TXT. The
output file (named CITY.TXT) contains the text common to both generations
and the changes made to both generations. (The file is placed in your current
default directory, or, if you use the /OUTPUT qualifier, another location.) CMS
marks generation 2 of the element CITY.TXT as reserved. The generation
indicated by the /MERGE qualifier (in this example, generation 1S1) is not
reserved.

6–10 Variants and Merging

Variants and Merging
6.2 Merging Two Generations of an Element

CMS determines the changes made in each of the generations being merged
by comparing them against generation 1, which is the line of descent. In this
case, the changes were made to different parts of the file; thus, no conflicts
exist. The resulting file looks like this:

BOSTON
DETROIT
NEW YORK
SAN FRANCISCO

The line DETROIT is the only difference between generation 1 and generation
2. This change occurs after the line BOSTON in the line of descent. The line
SAN FRANCISCO is the only difference between generation 1 and generation
1S1. This change occurs after the line NEW YORK in the line of descent.
Because the changes in generations 1S1 and 2 occur at different places in the
lines of descent, both changes can be applied without conflict.

The merge transaction combines two lines of descent in a file outside the
library. When you merge with the RESERVE command, you can subsequently
replace the element in the library. The following command replaces the file
created by merging generation 1S1 into generation 2 of CITY.TXT:

$ CMS REPLACE CITY.TXT "completed new format"
%CMS-S-GENCREATED, generation 3 of element DISKX:[PROJECT.CMSLIB]CITY.TXT created

The generation created by the replacement is a successor only to the generation
that was reserved. Because generation 2 was specified as the retrieved
generation when it was reserved, the REPLACE command creates
generation 3.

Variants and Merging 6–11

Variants and Merging
6.2 Merging Two Generations of an Element

Figure 6–6 shows the relationship of the generations of CITY.TXT after the
replacement transaction. Note that no ancestor or line of descent relationship
exists between generation 1S1 and generation 3.

Figure 6–6 A Generation After Replacement in the Library

2

3

1

1S1

ZK−1697−GE

If you do not want to create a new generation but want to produce a merged
file, use the FETCH/MERGE command to merge two lines of descent. You
can also use the ANNOTATE/MERGE command to create a single file that
contains the text common to both generations and the changes made to
both generations. For more information, see the ANNOTATE command in
the online help or the HP DECset for OpenVMS Code Management System
Reference Manual.

For information on verifying the merge transaction, see Section 6.2.3.

6–12 Variants and Merging

Variants and Merging
6.2 Merging Two Generations of an Element

6.2.2 Conflicts in the Merging Process
Different changes made at identical locations in a generation are called
conflicting changes. A conflicting change can be one of the following:

• An insertion of one or more lines

• A deletion of one or more lines

• A replacement of n lines by m lines (n might be equal to m)

If CMS detects conflicting changes in the merged generations, it notifies
you by including the changes from both generations in the resulting file and
surrounding them with asterisks.

Suppose that generation 2 of the element CITY.TXT contains an additional line
of text and looks like the following:

BOSTON
DETROIT
NEW YORK
PORTLAND

Under these circumstances, the same merge transaction described in
Section 6.2.1 produces different results:

$ CMS RESERVE CITY.TXT/MERGE=1S1
_Remark: merge two generations
%CMS-W-MERGECONFLICT, 1 change successfully merged with 1 conflict
%CMS-S-RESERVED, generation 2 of element DISKX:[PROJECT.CMSLIB]CITY.TXT reserved
and merged with generation 1S1

The resulting file looks like this:

BOSTON
DETROIT
NEW YORK
*************** Conflict 1 ***
PORTLAND
**
SAN FRANCISCO
******** End of Conflict 1 ***

When the two generations are merged, one change is successfully merged and
one conflict exists. The line DETROIT from generation 2 is applied to the
lines of descent without conflict. That is, there is no change from generation
1S1 in the same location. However, the line PORTLAND from generation 2
and the line SAN FRANCISCO from generation 1S1 both occur at the same
location. Each conflict is flagged with the word ‘‘Conflict’’ and a sequential
conflict number in a line of asterisks. (For files with short fixed-length records,
CMS attempts to fit the ‘‘Conflict’’ label; if the Conflict label does not fit, CMS

Variants and Merging 6–13

Variants and Merging
6.2 Merging Two Generations of an Element

outputs only asterisks.) Following the asterisks, CMS displays the conflicting
segments of text.

When CMS reports conflicts from a merge transaction, you must resolve
conflicting lines with a text editor. For example, you might want to delete one
set of changes.

Note

You must delete the conflict flags (the lines containing asterisks). If you
do not delete them and the merged element is reserved, the REPLACE
command replaces those lines into the library.

6.2.3 Verifying Merged Changes
The merging process is based solely on the text in the files being merged and
is performed with no understanding of the meaning of that text. Thus, the
resulting file from a ‘‘successful’’ merge might not have the desired form. For
example, consider a document where both changes include the same paragraph,
but at different places in the file. The successfully merged copy will contain
a redundant paragraph. Or consider simultaneous changes made to a code
module where one change deleted an unused routine whereas the other called
that routine. The merged version would contain the call but no routine to be
called, yet the merge would be considered successful by CMS.

You should always verify that the merge transaction had the intended
results. You can use the ANNOTATE/MERGE command to produce an
annotated listing that shows all changes made to a file, or you can use the
DIFFERENCES/FULL command to compare the contents of the files. If you
use the DIFFERENCES command, perform the differences transaction three
times: once against the new file and each of the merged generations (to ensure
that their contents were preserved) and once against the new file and the lines
of descent.

In addition, because CMS does not understand the meaning of the text in the
files being merged, where applicable you should always compile and link the
file as a precautionary measure.

For more information on the ANNOTATE and DIFFERENCES commands, see
the online help or the HP DECset for OpenVMS Code Management System
Reference Manual.

6–14 Variants and Merging

7
Security Features

You can use two types of security mechanisms to protect your CMS library and
the objects in your library:

• Standard OpenVMS file protection mechanisms based on user identification
codes (UICs) and access control lists (ACLs)

• CMS ACLs

You use OpenVMS file protection mechanisms to control access to OpenVMS
files and directories. In general, UIC-based protection is useful for denying
or granting access to a user or group of users (as defined by the UIC group
number) or to all users on the system. OpenVMS ACL-based protection is
useful for specifying access for a collection of users who are not in the same
UIC group.

CMS ACLs are useful for controlling access to CMS objects and to CMS
operations (commands) performed on those objects. Generally, you should use
CMS ACLs whenever CMS-specific control is needed instead of, or in addition,
to OpenVMS protection mechanisms. CMS ACLs are very similar to OpenVMS
ACLs; the difference is that although OpenVMS ACLs are used to specify read,
write, execute, and delete access, CMS ACLs are used to specify access types
for CMS operations.

This chapter describes both security mechanisms; however, you should fully
understand the composition of OpenVMS ACLs and their syntax requirements
before using CMS ACLs. For more information on ACLs, see the HP OpenVMS
operating system documentation.

Security Features 7–1

Security Features
7.1 OpenVMS File Access

7.1 OpenVMS File Access
When you try to access a directory or file, OpenVMS determines whether you
are allowed access by checking the protection mask against your UIC (unless
there is an ACL on the directory or file that grants immediate access to the
directory or file). Specifically, OpenVMS follows these steps to determine
whether a user is allowed access to a particular directory or file:

1. It evaluates any ACLs and grants or restricts the associated access.

2. If an ACL does not specifically grant or deny access to the user, or if there
is no associated ACL, it uses UIC-based protection to determine access.

BYPASS privilege or GRPPRV, READALL, or SYSPRV privileges can grant the
user access, even if it is denied by the UIC- or ACL-based protection schemes.

To fully access a CMS library, you must have the following OpenVMS
protection scheme:

• Read and write access to the CMS library directory

• Read and write access to the 01CMS.CMS control file

• Read, write, and delete access to the 01CMS.HIS control file

• Read and delete access to the element data files

• Execute access to the CMS images SYS$SYSTEM:CMS.EXE,
SYS$SHARE:CMSSHR.EXE, and SYS$SHARE:CMSPROSHR.EXE

To access a remote CMS library, you need to either:

• Mount the library via the Distributed File System (DFS) and then access it
locally on the DFS device.

• Run CMS on the remote node and point its DECwindows interface back to
the local node.

To use the default event action handler, you need the following access:

• Execute access to the CMS image SYS$SHARE:CMS$EVENT_ACTION.EXE

To define CMS messages to the OpenVMS Message Utility, you need the
following access:

• Execute access to the CMS image SYS$MESSAGE:CMSMSG.EXE

7–2 Security Features

Security Features
7.1 OpenVMS File Access

To use the CMS DECwindows Motif interface, you additionally need the
following access:

• Read access to the files DECW$SYSTEM_DEFAULTS:CMS$DW.UID,
DECW$SYSTEM_DEFAULTS:CMS$DW_DEFAULTS.DAT, and
SYS$HELP:CMS$DW_HELP.HLB

• Execute access to the CMS image SYS$SYSTEM:CMS$DW.EXE

If you allow read-only access to a library directory or the 01CMS.CMS file,
users cannot make changes to the contents of the library. You must have delete
access to an element data file to delete, reserve, or replace a generation of the
element. To modify the name of an element, you must have delete access to the
element data file and to its corresponding reference copy, if one exists.

You should set up a library so at least one account has read, write, and delete
access to every element data file in the library. All three types of access are
necessary to execute the VERIFY/RECOVER and VERIFY/REPAIR commands
(see Chapter 9).

In some cases, when you use the OpenVMS file protection scheme, the
methods you use to manipulate a file might modify certain fields in the file
header. When you next use CMS on the library, CMS informs you that some
other means has been used to access the library; you must then execute the
VERIFY/REPAIR command (see Section 9.2.3).

The following sections summarize procedures that you can use to define
OpenVMS access to your CMS library.

7.1.1 Assigning UIC Protection
UIC-based protection controls access to directories and files as well as other
OpenVMS objects. On OpenVMS systems, each user has an associated UIC.
Typically, UICs are presented in numeric or alphanumeric format, for example,
[221,253], or [PROJECT,JONES].

In addition, every file has a protection mask and owner UIC associated with it.
When a user tries to gain access to a directory or file, the system first checks
for existing ACLs, then, if none exist, checks the UIC-based protection mask.
A UIC protection mask allows or denies the following types of access:

• Read (R)

• Write (W)

Security Features 7–3

Security Features
7.1 OpenVMS File Access

• Execute (E)

• Delete (D)

The protection mask describes the categories of users who have access to a
directory or file, and the type of access each category has. The categories of
users are as follows:

• System (S)

• Owner (O)

• Group (G)

• World (W)

You use the DCL command SET PROTECTION to specify a particular
protection mask for a directory and its contents. The following example
shows the protection mask you can use to allow system, owner, and group
access to the library directory [PROJECT]CMSLIB.DIR:

$ SET PROTECTION=(S:RWE,O:RWE,G:RWE,W) [PROJECT]CMSLIB.DIR

This protection mask denies world access to the library. Similarly, you can
use the SET PROTECTION command to specify a UIC protection mask for an
individual file within the library directory. For example:

$ SET PROTECTION=(S:RWD,O:RWD,G:RWD,W) [PROJECT.CMSLIB]01CMS.CMS

7.1.2 Assigning OpenVMS ACL Protection
An ACL consists of access control entries (ACEs) that grant or deny access
to a directory or file (or other OpenVMS object) to specific users. You use
ACLs with a library directory to define access to an entire library. You
use ACLs with library files to establish greater control over access to library
contents. Generally, OpenVMS ACLs are used in conjunction with the standard
UIC-based protection as a way to fine-tune protection.

You can use the following DCL commands to manipulate entire OpenVMS
ACLs or individual ACEs:

• EDIT/ACL

• SET ACL

• SET FILE/ACL

• SET DEVICE/ACL

• SET DIRECTORY/ACL

7–4 Security Features

Security Features
7.1 OpenVMS File Access

You can use the following DCL commands to display OpenVMS ACLs:

• SHOW ACL

• DIRECTORY/ACL

• DIRECTORY/FULL

• DIRECTORY/SECURITY

See the HP OpenVMS DCL Dictionary for more information on these
commands. For information on ACLs and ACEs, see the HP OpenVMS
Guide to System Security.

7.1.2.1 Using OpenVMS ACLs on Directories
OpenVMS directory ACLs provide three means of controlling access to a
directory:

• By controlling access to the directory file itself. For example:

$ SET FILE/ACL=(IDENTIFIER=DBASEGRP,ACCESS=READ+WRITE) CMSLIB.DIR

This ACE grants read and write access to the directory file CMSLIB.DIR to
users who have the DBASEGRP identifier.

• By specifying a default UIC protection mask to be assigned to each new
file created in the directory. To specify a particular UIC protection mask,
use the DEFAULT_PROTECTION keyword as the first field of an ACE. For
example:

$ SET FILE/ACL=(DEFAULT_PROTECTION,S:RWED,O:RWED,G:RWED) CMSLIB.DIR

This ACE specifies that the UIC protection (S:RWED,O:RWED,G:RWED)
be applied to each new file created in the directory. (It does not affect any
files that might already exist in the directory.) If no other ACEs impose
stricter limitations, the system, owner, and group users are granted full
access to new files in the library.

• By specifying a default ACL to be assigned to each file created in the
directory. To specify a default ACL, use the OPTIONS=DEFAULT clause in
the second field of an ACE that is applied to a directory file. For example:

$ SET FILE/ACL=(IDENTIFIER=DBASEGRP,OPTIONS=DEFAULT,ACCESS=READ+ -
_$ WRITE+DELETE) CMSLIB.DIR

The OPTIONS=DEFAULT clause directs the operating system to duplicate
this ACE in the ACL of every new file created in the directory. This ACE
grants read, write, and delete access to users who have the DBASEGRP
identifier.

Security Features 7–5

Security Features
7.1 OpenVMS File Access

7.1.2.2 Using OpenVMS ACLs on Files
To exercise greater control over library access, you can explicitly set the
file protection for each file in the library. Once you have created the first
generation of an element, you can add the necessary ACEs to the ACL for the
element data file. Every time you create a new generation of the file, CMS
creates a new version of the file in the library directory, and the operating
system automatically duplicates the ACL.

For example, you might establish the following ACL for an element data file:

$ SET FILE/ACL=(IDENTIFIER=CMSMGR,ACCESS=READ+WRITE+DELETE),-
_$ (IDENTIFIER=[JONES],ACCESS=READ+WRITE+DELETE), -
_$ (IDENTIFIER=[507,*],ACCESS=READ) [PROJECT.CMSLIB.CMS$000]EXAMPLE.PAS

This ACL allows both the user with the CMSMGR identifier and user JONES
read, write, and delete access to the element EXAMPLE.PAS. Users in the UIC
group identified by number 507 can read (fetch), but cannot write (modify) the
element.

You must have both read and delete access to an element data file to reserve
and replace generations of the corresponding element. If you reserve a
generation of an element and then the access changes (so either your account
and the element data file ACE no longer have the same identifier, or you no
longer have delete access to the element data file), you cannot replace the
reserved generation.

Table 7–1 shows a list of the CMS commands and the protection required for
each object (an element data file, a control file, or a library directory) that the
command accesses.

Table 7–1 File Access Required for CMS Commands

Command

Library
Directory
and
Subdirectories 01CMS.CMS 01CMS.HIS

Element
Data File

Reference
Copy File

Reference
Copy
Directory

ACCEPT
GENERATION

RW RW RW

ANNOTATE R R R

CANCEL
REVIEW

RW RW RW

(continued on next page)

7–6 Security Features

Security Features
7.1 OpenVMS File Access

Table 7–1 (Cont.) File Access Required for CMS Commands

Command

Library
Directory
and
Subdirectories 01CMS.CMS 01CMS.HIS

Element
Data File

Reference
Copy File

Reference
Copy
Directory

CONVERT
LIBRARY

—V2-library-
name

R RW R R

—V3-library-
name

RW1 RW

COPY
ELEMENT

RW2 RW RW R RW

CREATE
CLASS

RW RW RW

CREATE
ELEMENT

RW RW RW RW

CREATE
GROUP

RW RW RW

CREATE
LIBRARY

RW1

DELETE
CLASS

RW RW RW

DELETE
ELEMENT

RW RW RW RD RD RW

DELETE
GENERATION

RW RW RW RWD RWD RW

DELETE
GROUP

RW RW RW

DELETE
HISTORY

RW RW RWD

DIFFERENCES3 R R R

FETCH RW4 R RW4 R

1The directory must be empty.
2You must have read access to the source library and both read and write access to the destination library.
3You must have access to the library and its contents only when you specify an element generation in the
differences transaction.
4You must have write access to the library directory and read and write access to the history file only if you
enter a remark for the fetch transaction.

(continued on next page)

Security Features 7–7

Security Features
7.1 OpenVMS File Access

Table 7–1 (Cont.) File Access Required for CMS Commands

Command

Library
Directory
and
Subdirectories 01CMS.CMS 01CMS.HIS

Element
Data File

Reference
Copy File

Reference
Copy
Directory

INSERT
ELEMENT

RW RW RW

INSERT
GENERATION

RW RW RW

INSERT
GROUP

RW RW RW

MARK
GENERATION

RW RW RW

MODIFY
CLASS

RW RW RW

MODIFY
ELEMENT

RW RW RW RWD RWD RW

MODIFY
GENERATION

RW RW RW

MODIFY
GROUP

RW RW RW

MODIFY
LIBRARY

RW RW RW R R

MODIFY
RESERVATION

RW RW RW RWD RWD RW

REJECT
GENERATION

RW RW RW

REMARK RW RW RW

REMOVE
ELEMENT

RW RW RW

REMOVE
GENERATION

RW RW RW

REMOVE
GROUP

RW RW RW

REPLACE RW RW RW RWD RWD RW

RESERVE RW RW RW RWD

RETRIEVE
ARCHIVE5

5You must have read access to the archive file.

(continued on next page)

7–8 Security Features

Security Features
7.1 OpenVMS File Access

Table 7–1 (Cont.) File Access Required for CMS Commands

Command

Library
Directory
and
Subdirectories 01CMS.CMS 01CMS.HIS

Element
Data File

Reference
Copy File

Reference
Copy
Directory

REVIEW
GENERATION

RW RW RW

SET ACL RW RW RW

SET LIBRARY R R

SHOW
commands

R R

SHOW
ARCHIVE5

SHOW
HISTORY

R R R

SHOW
LIBRARY

R

UNRESERVE RW RW RW

VERIFY/
RECOVER

RW RW RW RWD

VERIFY/
REPAIR

RW RW RW RWD RWD RW

5You must have read access to the archive file.

If you have set up a restrictive file protection scheme and there is a system
failure during a CMS transaction that leaves your library in an inconsistent
state, a user with sufficient access to the library and its files should execute
the VERIFY/RECOVER command (see Chapter 9). You can also recover the
library if you have BYPASS privilege (see Section 7.3), or read, write, and
delete access to all the library files.

7.2 CMS ACLs
A CMS ACL is used to control access to CMS library objects. You can assign
CMS ACLs to the following types of objects:

• Elements

• Groups

• Classes

• Element list

Security Features 7–9

Security Features
7.2 CMS ACLs

• Group list

• Class list

• History

• Library attributes

• Commands

When there is no ACL on a command or other object, access to the command or
other object is unrestricted. Assigning an ACL to an object limits access to the
specified user or users.

To determine whether access to an object is allowed, CMS evaluates the ACL
on that object. If no ACL exists, access to the object is granted. If an ACL
does exist, CMS searches the ACL sequentially for the first ACE that the
user matches. A match is determined by comparing the identifiers specified
in the ACE against the identifiers held by the user. If the user holds all the
identifiers specified in the ACE, that ACE is a match. CMS grants the specified
access of the first ACE matched; if another ACE further down in the ACL also
matches, it has no effect. If none of the ACEs match, access is denied.

Note that if you are granted access to an object by CMS ACLs, you still need
access to the files via OpenVMS protection mechanisms. (However, use of the
BYPASS privilege will allow you access; see Section 7.3 for more information.)

There are two ways in which you can use CMS ACLs:

• To control and restrict access to CMS commands

For example, you can create an ACL specifying certain users who are
not allowed to use the DELETE ELEMENT command, or users who are
allowed to only use the FETCH, RESERVE, and REPLACE commands.
See Section 7.2.2 for more information.

7–10 Security Features

Security Features
7.2 CMS ACLs

• To control and restrict access to CMS objects

For example, you can create an ACL specifying certain users who are not
allowed to insert or modify a particular element. You can put ACLs on
elements, groups, and classes as well as on the element, group, and class
lists. You can also put an ACL on the entire library and on the library
history. See Section 7.2.3.2 and Section 7.2.3.3 for more information.

You can also use CMS ACLs to define CMS events (see Chapter 8).

7.2.1 Creating CMS ACLs
An ACL consists of ACEs that grant or deny access to a command or other
object to specific users.

You can use two types of ACEs in CMS:

• Identifier ACEs—Control which users can perform which CMS operations
on a specified object.

• Action ACEs—Define CMS events and specify actions to be taken when the
events occur (these are described in Chapter 8).

The following sections describe the format of an ACE and an ACL.

7.2.1.1 ACE Format
An identifier ACE has the following format:

(IDENTIFIER=identifier [,OPTIONS=options] [,ACCESS=access])

identifier
This field can contain any valid OpenVMS identifier. You use identifiers to
specify the users in an ACL. There are three types of identifiers:

• UIC identifiers

• General identifiers

• System-defined identifiers

UIC identifiers are described in Section 7.1.1. General identifiers identify
groups of users on the system. For example, CMSPROJ_MEMBR or
DBASEGRP are general identifiers. System-defined identifiers are described in
the HP OpenVMS Guide to System Security.

Security Features 7–11

Security Features
7.2 CMS ACLs

You can specify multiple identifiers by separating them with a plus sign (+).
The plus sign indicates the logical AND operation. CMS grants the access
included in the ACE only for the user who matches all the identifiers. For
example:

(IDENTIFIER=PROJ_LEADER + [PROJ,*])

In this example, the multiple identifier is matched only if the user both holds
the PROJ_LEADER identifier and belongs to the PROJ group.

options
This field can contain the keyword DEFAULT or NONE. This option is valid
only for object lists, that is, lists of elements, groups, or classes. It is not valid
for commands. See Section 7.2.3.2 for more information on the options clause.

access
This field specifies the type of access that CMS allows the user or users
identified in the identifier clause of the ACE. You can specify multiple access
types by separating them with a plus sign (+). The plus sign indicates the
logical OR operation. For example:

(IDENTIFIER=PROJ_LEADER, ACCESS=MODIFY+DELETE)

This example indicates that both the modify and delete operations are allowed
for the user holding the PROJ_LEADER identifier.

The next section provides more detail on CMS access types.

7.2.1.2 Access Types
Figure 7–1 shows all the possible access types for CMS ACLs, along with the
object types for which they are meaningful.

7–12 Security Features

Security Features
7.2 CMS ACLs

Figure 7–1 CMS ACL Access Types

Access Element Group Class History Commands

ZK−7993−GE

Element
List

Group
List

Class
List

Library
Attributes

ACCEPT

ANNOTATE

BYPASS

CANCEL

CONTROL

COPY

CREATE

DELETE

EXECUTE

FETCH

INSERT

MARK

MODIFY

REJECT

REMARK

REMOVE

REPAIR

REPLACE

RESERVE

REVIEW

UNRESERVE

VERIFY

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

EXECUTE Access
To perform any CMS operation, you must have EXECUTE access to the
command, in addition to the appropriate access to the object or objects accessed
by the command. For example, to create an element, you need the following
access:

• EXECUTE access to the CREATE ELEMENT command

Security Features 7–13

Security Features
7.2 CMS ACLs

• CREATE access to the element list

To create an element and reserve it, you need the following access:

• EXECUTE access to the CREATE ELEMENT command

• CREATE access to the element list

• EXECUTE access to the RESERVE command

• RESERVE access to the element

To copy an element, in the source library, you need the following access:

• EXECUTE access to the COPY ELEMENT command

• COPY access to the element

To copy an element, in the destination library, you need the following access:

• EXECUTE access to the CREATE ELEMENT command

• CREATE access to the element list

CONTROL Access
To modify or delete an ACL on an object, you must have CONTROL access
to the object. In addition, you must have EXECUTE access to the SET ACL
command.

You can prevent other users from modifying or deleting an ACL on an object by
giving only yourself CONTROL access. Note that at least one user must have
CONTROL access; if not, you must use BYPASS privilege to modify or delete
that ACL.

See Section 7.2.2 for information on specifying ACLs on commands. See
Section 7.2.3 for more information on specifying ACLs on other object types.

7.2.1.3 ACL Format
You use the CMS SET ACL command to specify ACEs on commands and other
objects in the CMS library. The SET ACL command has the following format:

SET ACL /OBJECT_TYPE=type object-expression "remark"

The object expression depends on the object type; they must be related, as
shown in Table 7–2.

7–14 Security Features

Security Features
7.2 CMS ACLs

Table 7–2 Object Types and Related Expressions

Object Type Object Expression

ELEMENT An element expression

GROUP A group expression

CLASS A class expression

COMMAND The name of a command, or a list of commands

LIBRARY ELEMENT_LIST
GROUP_LIST
CLASS_LIST
HISTORY
LIBRARY_ATTRIBUTES

If the object type is LIBRARY, the object expression must be one or more
keywords (called subtypes), as specified in Table 7–2. You can abbreviate these
subtypes.

The SET ACL command is described in detail in the online help and the HP
DECset for OpenVMS Code Management System Reference Manual. Sections
7.2.2 and 7.2.3 describe specifying ACLs with commands and other objects.

7.2.2 Specifying ACLs with Commands
Specifying a CMS ACL on a command enables you to restrict one or more users
from accessing that command. This provides a broad protective mechanism
that allows greater control over the CMS library than using OpenVMS ACLs
and UICs.

You use CMS ACLs on commands and other objects; in most cases, using CMS
ACLs on commands is the most effective method to suit most user’s needs.

When you use the SET ACL command to set an ACL on a command, the object
type must be COMMAND, as specified in Table 7–2. The object expression
must be one of the following commands:

ACCEPT_GENERATION MARK_GENERATION

ANNOTATE MODIFY_CLASS

CANCEL_REVIEW MODIFY_ELEMENT

COPY_CLASS MODIFY_GENERATION

COPY_ELEMENT MODIFY_GROUP

COPY_GROUP MODIFY_LIBRARY

Security Features 7–15

Security Features
7.2 CMS ACLs

CREATE_CLASS MODIFY_RESERVATION

CREATE_ELEMENT REJECT_GENERATION

CREATE_GROUP REMARK

DELETE_CLASS REMOVE_ELEMENT

DELETE_ELEMENT REMOVE_GENERATION

DELETE_GENERATION REMOVE_GROUP

DELETE_GROUP REPLACE

DELETE_HISTORY RESERVE

DIFFERENCES REVIEW_GENERATION

DIFFERENCES_CLASS SET_ACL

FETCH UNRESERVE

INSERT_ELEMENT VERIFY

INSERT_GENERATION

INSERT_GROUP

You can display this list of commands by entering the SHOW ACL
/OBJECT_TYPE=COMMAND * command. Note that commands containing
two words must include an underscore.

To access a command, you must have EXECUTE access to that command.

7.2.2.1 Examples of ACLs on Commands

1. $ CMS SET ACL/OBJECT_TYPE=COMMAND RESERVE,REPLACE -
_$ /ACL=(IDENTIFIER=[PROJECT,WILSON],ACCESS=EXECUTE) ""

This command specifies that the user with the UIC [PROJECT,WILSON] is
allowed EXECUTE access to the RESERVE and REPLACE commands.

2. $ CMS SET ACL/OBJECT_TYPE=COMMAND INSERT_ELEMENT -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=CONTROL) ""
%CMS-S-MODACL, modified access control list for command
DISKX:[PROJECT.CMSLIB]INSERT_ELEMENT

$ CMS INSERT ELEMENT ELEMENT.2 GROUP2 ""
%CMS-E-NOINSERT, error inserting DISKX:[PROJECT.CMSLIB]ELEMENT.2
into group DISKX:[PROJECT.CMSLIB]GROUP2
-CMS-E-NOACCESS, no execute access to INSERT ELEMENT command
$ CMS SET ACL/OBJECT_TYPE=COMMAND INSERT_ELEMENT -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=EXECUTE+CONTROL)""
%CMS-S-MODACL, modified access control list for command
DISKX:[PROJECT.CMSLIB]INSERT_ELEMENT

$ CMS SHOW ACL/OBJECT_TYPE=COMMAND INSERT_ELEMENT

ACLs in CMS Library DISKX:[PROJECT.CMSLIB]

7–16 Security Features

Security Features
7.2 CMS ACLs

INSERT_ELEMENT
(IDENTIFIER=[WORK,JONES],ACCESS=EXECUTE+CONTROL)

$ CMS INSERT ELEMENT ELEMENT.2 GROUP2 ""
%CMS-S-INSERTED, element DISKX:[PROJECT.CMSLIB]ELEMENT.2 inserted into
group DISKX:[PROJECT.CMSLIB]GROUP2

In this example, user JONES assigns an ACL containing CONTROL access
to the INSERT ELEMENT command. The SHOW ACL command displays
the ACL on INSERT ELEMENT. (Note that commands containing more
than one word must be specified with an underscore.) The example then
shows that JONES tries to insert another element into another group.
The attempt fails because, although JONES has CONTROL access to the
INSERT ELEMENT command, he does not also have EXECUTE access to
it.

CONTROL access allows you to modify the ACL. Because JONES has
CONTROL access, he modifies the ACL to allow himself EXECUTE access
to the INSERT ELEMENT command. (You must have EXECUTE access to
use any commands.) He can then insert elements successfully.

3. $ CMS SET LIBRARY [WORK.CMSLIB],[PROJECT.CMSLIB]
%CMS-I-LIBIS, library is DISKX:[WORK.CMSLIB]
%CMS-I-LIBINSLIS, library DISKX:[PROJECT.CMSLIB] inserted at end of
library list
%CMS-S-LIBSET, library set

$ CMS SET ACL/ACL=((IDENTIFIER=SMITH,ACCESS=CONTROL),(IDENTIFIER=*, -
_$ ACCESS=NONE))DELETE_ELEMENT/OBJECT_TYPE=COMMAND/OCCLUDE=NOOTHER ""
%CMS-S-MODACL, modified access control list for command
DISKX:[WORK.CMSLIB]DELETE_ELEMENT
%CMS-S-MODACL, modified access control list for command
DISKX:[PROJECT.CMSLIB]DELETE_ELEMENT
%CMS-S-MODACLS, 2 access control lists modified

This example shows the use of occlusion. The SET ACL command is used
to restrict access to the DELETE ELEMENT command in both libraries
[WORK.CMSLIB] and [PROJECT.CMSLIB]. See Section 3.3 for more
information on occlusion.

Security Features 7–17

Security Features
7.2 CMS ACLs

7.2.3 Specifying ACLs with Other CMS Objects
For users requiring more restrictive control, you can fine-tune access by using
CMS ACLs in combination with objects besides commands. These other objects
include:

• Elements, groups, and classes

• Element lists, group lists, and class lists

• Library history and library attributes

The following sections describe these objects in detail.

7.2.3.1 Specifying ACLs on Elements, Groups, and Classes
Specifying a CMS ACL on an element, group, or class enables you to restrict
one or more users from accessing that object. For example, you can create
an ACL specifying certain users who are not allowed to insert or modify a
particular element.

When you use the SET ACL command on an object, the object type must be
ELEMENT, GROUP, or CLASS as specified in Table 7–2. The object expression
must be an element, group, or class expression, respectively.

See Figure 7–1 for all the possible access types that are allowed with these
objects. Note that not all access types have meaning for all objects. For
example, giving a user RESERVE access to a class is meaningless, because the
RESERVE command does not operate on classes.

7–18 Security Features

Security Features
7.2 CMS ACLs

7.2.3.1.1 Examples of ACLs on Elements, Groups, and Classes

1. $ CMS SET ACL EXAMPLE.PAS/OBJECT_TYPE=ELEMENT -
_$ /ACL=(IDENTIFIER=[555,*],ACCESS=FETCH) ""

This command specifies that users with the UIC [555,*] are allowed only
FETCH access to the element EXAMPLE.PAS.

2. $ CMS SET ACL/OBJECT_TYPE=ELEMENT ELEMENT.1 -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=RESERVE+CONTROL)""
%CMS-S-MODACL, modified access control list for element
DISKX:[PROJECT.CMSLIB]ELEMENT.1

$ CMS SET ACL/OBJECT_TYPE=ELEMENT ELEMENT.1/ACL=(IDENTIFIER=JONES, -
_$ ACCESS=NONE) ""
%CMS-S-MODACL, modified access control list for element
DISKX:[PROJECT.CMSLIB]ELEMENT.1

$ CMS RESERVE ELEMENT.1 ""
%CMS-E-NOFETCH, error reserving element DISKX:[PROJECT.CMSLIB]ELEMENT.1
-CMS-E-NOACCESS, no reserve access to element ELEMENT.1

$ CMS SET ACL/OBJECT_TYPE=ELEMENT ELEMENT.1 -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=RESERVE+CONTROL) ""
%CMS-E-NOMODACL, error modifying access control list for element
DISKX:[PROJECT.CMSLIB]ELEMENT.1
-CMS-E-NOACCESS, no control access to element ELEMENT.1

In this example, user JONES assigns an ACL containing RESERVE
and CONTROL access to the element ELEMENT.1. Then, another user
(who has BYPASS privilege) sets an ACL on ELEMENT.1 containing
ACCESS=NONE, thus restricting JONES from reserving that element, and
removing any prior access that JONES had assigned. JONES then tries to
reserve the element. His attempt is unsuccessful because he no longer has
RESERVE access to the element. He also does not have CONTROL access
to the element, which would allow him to modify the ACL assigned by the
second user.

3. $ CMS SET ACL/OBJECT_TYPE=CLASS CLASS1 -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=CONTROL) ""
%CMS-S-MODACL, modified access control list for class
DISKX:[PROJECT.CMSLIB]CLASS1

$ CMS SHOW ACL/OBJECT_TYPE=CLASS CLASS1

ACLs in CMS Library DISKX:[PROJECT.CMSLIB]

CLASS1
(IDENTIFIER=[WORK,JONES],ACCESS=CONTROL)

Security Features 7–19

Security Features
7.2 CMS ACLs

$ CMS MODIFY CLASS/NOREAD_ONLY CLASS1 ""
%CMS-E-NOMODIFY, error modifying class DISKX:[PROJECT.CMSLIB]CLASS1
-CMS-E-NOACCESS, no modify access to class CLASS1

$ CMS SET ACL/OBJECT_TYPE=CLASS CLASS1 -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=MODIFY+CONTROL) ""
%CMS-S-MODACL, modified access control list for class
DISKX:[PROJECT.CMSLIB]CLASS1

$ CMS MODIFY CLASS/NOREAD_ONLY CLASS1 ""
%CMS-S-MODIFIED, class DISKX:[PROJECT.CMSLIB]CLASS1 modified

In this example, user JONES assigns an ACL giving himself CONTROL
access to the class CLASS1. He then tries to modify the class, but is
unsuccessful because, although he has CONTROL access to the class,
he does not also have MODIFY access. However, because JONES has
CONTROL access, this allows him to enter the SET ACL command. He
then assigns another ACL containing both CONTROL and MODIFY access
to the class, then successfully modifies the class.

7.2.3.2 Specifying ACLs on Element Lists, Group Lists, and Class Lists
The difference between an object and its list is important in the understanding
of CMS ACLs. Conceptually, element, group, and class lists are objects
representing all the elements, groups, and classes already existing or yet
to be created in a CMS library. Object lists are used solely with CMS ACLs.

When you use the SET ACL command on an object list, the object type must
be LIBRARY. The object expression must be one of the following keywords:
ELEMENT_LIST, GROUP_LIST, or CLASS_LIST, as specified in Table 7–2 (see
Section 7.2.3.3 for information on the HISTORY and LIBRARY_ATTRIBUTES
keywords). See Figure 7–1 for all the possible access types that are allowed
with these objects.

Specifying an ACL on an object list grants the right to create new objects in
the library. For example:

$ CMS SET ACL/OBJECT_TYPE=LIBRARY GROUP_LIST -
_$ /ACL=(IDENTIFIER=PROJ_TEAM,ACCESS=CREATE) ""

This example assigns an ACL to the group list, and allows only the holders of
the identifier PROJ_TEAM to create groups in the library.

You can also specify a default ACL to be used on newly created objects in the
library. You do this by specifying the OPTIONS=DEFAULT clause in the ACL
of an object list. For example:

$ CMS SET ACL/OBJECT_TYPE=LIBRARY ELEMENT_LIST/ACL=(IDENTIFIER=PROJ_TEAM, -
_$ OPTIONS=DEFAULT, ACCESS=FETCH) ""

7–20 Security Features

Security Features
7.2 CMS ACLs

This example specifies that only holders of the PROJ_TEAM identifier can
FETCH newly created elements.

Each time you create a new object, CMS searches for the ACEs containing the
OPTIONS=DEFAULT clause in the ACL of the corresponding object list. If any
exist, the newly created object (or objects) are automatically assigned the ACEs
containing the OPTIONS=DEFAULT clause. For example, if you specify ACEs
containing OPTIONS=DEFAULT in the ACL of a group list, CMS assigns the
default ACEs in the ACL to any newly created groups.

OPTIONS=DEFAULT is valid only for object lists. Note that the
OPTIONS=DEFAULT clause does not affect any objects already in the list, only
new objects. You can assign default ACEs to existing objects by specifying the
SET ACL/DEFAULT command.

Because it is not possible to assign an ACL granting CREATE access to an
object that does not yet exist, the only access types that are meaningful for an
object list ACE not containing the OPTIONS=DEFAULT clause are CREATE
and CONTROL access. All other access types are meaningful only if the
OPTIONS=DEFAULT clause is present.

Caution

Because default ACEs do not grant access, when you use default ACEs,
you should assign another ACE granting yourself or another user
a minimum of CONTROL access to an object; otherwise, you could
restrict your own access to the object.

When you use the COPY ELEMENT command, the source element’s ACL is
not assigned to the target element. Instead, the target element receives the
default ACL (if any) that is set on the element list.

If you do not use the OPTIONS=DEFAULT clause, newly created objects are
not affected by the ACL (if any) on the object list. The OPTIONS=NONE clause
indicates that new objects are not assigned that ACE from the object list.
NONE is equivalent to not specifying a clause. Note that the OPTIONS=NONE
clause is not displayed when you enter the SHOW ACL command.

Security Features 7–21

Security Features
7.2 CMS ACLs

7.2.3.2.1 Examples of ACLs on Lists

1. $ CMS SET ACL/OBJECT_TYPE=LIBRARY ELEMENT_LIST -
_$ /ACL=((IDENTIFIER=JONES,OPTIONS=DEFAULT,ACCESS=RESERVE -
_$ +CONTROL),(IDENTIFIER=JONES,ACCESS=CREATE+CONTROL)) ""

This command places two ACEs on the element list. The first ACE is
a default ACE, which causes all new elements created in the library to
inherit an ACE giving RESERVE access to the user with the identifier
JONES. The second ACE defines the access to the element list itself.
Because CREATE access is specified, the user with the identifier JONES is
allowed to create elements in the library. Note that both ACEs also grant
control access; this is necessary to allow modification of the ACL once it
has been created.

2. $ CMS SET ACL/OBJECT_TYPE=LIBRARY CLASS_LIST -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=CONTROL) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX:[PROJECT.CMSLIB]CLASS_LIST

$ CMS CREATE CLASS CLASS4 ""
%CMS-E-NOCREATE, error creating class DISKX:[PROJECT.CMSLIB]CLASS4
-CMS-E-NOACCESS, no create access to CLASS_LIST

$ CMS SET ACL/OBJECT_TYPE=LIBRARY CLASS_LIST -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=CREATE+CONTROL) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX:[PROJECT.CMSLIB]CLASS_LIST

$ CMS SHOW ACL/OBJECT_TYPE=LIBRARY CLASS_LIST

ACLs in CMS Library DISKX:[PROJECT.CMSLIB]

CLASS_LIST
(IDENTIFIER=[WORK,JONES],ACCESS=CREATE+CONTROL)

$ CMS CREATE CLASS CLASS4 ""
%CMS-S-CREATED, class DISKX:[PROJECT.CMSLIB]CLASS4 created

In this example, JONES assigns an ACL containing CONTROL access to
the class list. Assigning an ACL to the class list will affect the creation of
new classes in the library. However, when he tries to create a new class,
he receives an error because he does not also have CREATE access to the
class list. Because he has CONTROL access, he then assigns a new ACL
giving himself both CONTROL and CREATE access. He can then create
new classes.

7–22 Security Features

Security Features
7.2 CMS ACLs

3. $ CMS SET ACL/OBJECT_TYPE=LIBRARY ELEMENT_LIST -
_$/ACL=((IDENTIFIER=JONES,ACCESS=CREATE+CONTROL), -
_$ (IDENTIFIER=FLYNN,OPTIONS=DEFAULT,ACCESS=FETCH), -
_$ (IDENTIFIER=SMITH,OPTIONS=DEFAULT,ACCESS=RESERVE+REPLACE)) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX:[PROJECT.CMSLIB]ELEMENT_LIST

$ CMS SHOW ACL/OBJECT_TYPE=LIBRARY ELEMENT_LIST

ACLs in CMS Library DISKX:[PROJECT.CMSLIB]

ELEMENT_LIST
(IDENTIFIER=[WORK,JONES],ACCESS=CREATE+CONTROL)
(IDENTIFIER=[WORK,FLYNN],OPTIONS=DEFAULT,ACCESS=FETCH)
(IDENTIFIER=[WORK,SMITH],OPTIONS=DEFAULT,ACCESS=REPLACE+RESERVE)

$ CMS CREATE ELEMENT ELEMENT.4 ""
%CMS-S-CREATED, element DISKX:[PROJECT.CMSLIB]ELEMENT.4 created

$ CMS SHOW ACL/OBJECT_TYPE=ELEMENT ELEMENT.4

ACLs in CMS Library DISKX:[PROJECT.CMSLIB]

ELEMENT.4
(IDENTIFIER=[WORK,FLYNN],ACCESS=FETCH)
(IDENTIFIER=[WORK,SMITH],ACCESS=REPLACE+RESERVE)

In this example, user JONES assigns an ACL on the element list. The ACL
specifies the following:

• JONES is allowed CREATE and CONTROL access to the element list.

• By using OPTIONS=DEFAULT, JONES assigns user FLYNN only
FETCH access to new elements created in the library.

• By using OPTIONS=DEFAULT, JONES assigns user SMITH only
REPLACE and RESERVE access to new elements created in the
library.

JONES then successfully creates a new element named ELEMENT.4.
When the SHOW ACL command is entered, the default access on the
element for each user is displayed. User JONES’s access is not displayed
because he has access to the element list, not the element itself.

7.2.3.3 Specifying ACLs on Libraries and History
Specifying a CMS ACL on the library or the library history enables you to
restrict one or more users from certain types of access to the library, or from
certain types of access to the library history. You can restrict users from the
following types of access to the library:

• MODIFY

• REPAIR

Security Features 7–23

Security Features
7.2 CMS ACLs

• VERIFY

You can restrict users from the following types of access to the library history:

• DELETE

• REMARK

REPAIR and VERIFY Access
REPAIR access is required to use VERIFY/REPAIR on a library. If you have
REPAIR access to a library object, you can enter VERIFY/REPAIR, even if you
do not have VERIFY access to that library.

Because CMS cannot determine whether access control information is valid
until it verifies the database, the VERIFY and REPAIR access types apply only
to element data file verification. Once the database has been verified, CMS
checks the following:

• Access to the VERIFY command

• VERIFY or REPAIR access to the library

• VERIFY or REPAIR access to each element

When you use the SET ACL command on a library or history, the object type
must be LIBRARY, as specified in Table 7–2. The object expression must be
either LIBRARY_ATTRIBUTES or HISTORY.

See Figure 7–1 for all the possible access types allowed on a library or history.

7.2.3.3.1 Examples of ACLs on History and the Library

1. $ CMS SET ACL/OBJECT_TYPE=LIBRARY HISTORY -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=CONTROL) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX:[PROJECT.CMSLIB]HISTORY

$ CMS REMARK "Add a remark to history"
%CMS-E-NOREMARK, error adding remark to library
-CMS-E-NOACCESS, no remark access to library history

$ CMS SET ACL/OBJECT_TYPE=LIBRARY HISTORY -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=REMARK+CONTROL) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX:[PROJECT.CMSLIB]HISTORY

$ CMS REMARK "Add a remark to history"
%CMS-S-REMARK, remark added to history file

7–24 Security Features

Security Features
7.2 CMS ACLs

In this example, JONES assigns an ACL giving himself CONTROL access to
the library history. He then tries to add a remark to the library history, but is
unsuccessful because he does not have REMARK access to the history. He then
assigns another ACL containing both CONTROL and REMARK access, and
can then successfully add a remark to the library history file.

2. $ CMS SET ACL/OBJECT_TYPE=LIBRARY LIBRARY_ATTRIBUTES -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=CONTROL) ""
%CMS-S-MODACL, modified access control list for subtype
DISKX:[PROJECT.CMSLIB]LIBRARY_ATTRIBUTES

$ CMS VERIFY/REPAIR
%CMS-I-VERCLS, class list verified
%CMS-I-VERCMD, command list verified
%CMS-I-VERELE, element list verified

.

.

.
%CMS-I-VERCON, control file verified
%CMS-E-ERRVEREDFS, element data files verified with errors
-CMS-E-NOACCESS, no repair access to library DISKX:[PROJECT.CMSLIB]
%CMS-E-NOREPAIR, error repairing library

$ CMS SET ACL/OBJECT_TYPE=LIBRARY LIBRARY_ATTRIBUTES -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=CONTROL+REPAIR) ""
%CMS-S-MODACL, modified access control list for subtype

DISKX:[PROJECT.CMSLIB]LIBRARY_ATTRIBUTES

$ CMS SHOW ACL/OBJECT_TYPE=LIBRARY LIBRARY_ATTRIBUTES

ACLs in CMS Library DISKX:[PROJECT.CMSLIB]

LIBRARY_ATTRIBUTES
(IDENTIFIER=[WORK,JONES],ACCESS=CONTROL+REPAIR)

$ CMS VERIFY/REPAIR
%CMS-I-VERCLS, class list verified
%CMS-I-VERCMD, command list verified
%CMS-I-VERELE, element list verified

.

.

.
%CMS-I-VERCON, control file verified
%CMS-E-VEREDFERR, element DISKX:[PROJECT.CMSLIB]ELEMENT.1 verified with errors
-CMS-E-NOACCESS, no repair access to element ELEMENT.1
%CMS-I-VEREDF, element DISKX:[PROJECT.CMSLIB]ELEMENT.2 verified
%CMS-I-VEREDF, element DISKX:[PROJECT.CMSLIB]ELEMENT.3 verified
%CMS-E-VEREDFERR, element DISKX:[PROJECT.CMSLIB]ELEMENT.4 verified with errors
-CMS-E-NOACCESS, no repair access to element ELEMENT.4
%CMS-E-ERRVEREDFS, element data files verified with errors
%CMS-E-NOREPAIR, error repairing library

Security Features 7–25

Security Features
7.2 CMS ACLs

$ CMS SHOW ACL/OBJECT_TYPE=ELEMENT ELEMENT.1, ELEMENT.4
ACLs in CMS Library DISKX:[PROJECT.CMSLIB]

ELEMENT.1
(IDENTIFIER=[WORK,JONES],ACCESS=NONE)

ELEMENT.4
(IDENTIFIER=[WORK,FLYNN],ACCESS=FETCH)
(IDENTIFIER=[WORK,SMITH],ACCESS=REPLACE+RESERVE)

This example demonstrates how REPAIR access is used. First, JONES assigns
an ACL to the library indicating that he is allowed CONTROL access to
the library. He then tries a VERIFY/REPAIR operation on the library. This
attempt is unsuccessful because he does not also have REPAIR access to the
library. He assigns a new ACL containing both CONTROL and REPAIR access
to the library, and tries another VERIFY/REPAIR operation on the library.
This attempt is also unsuccessful because, although he has REPAIR access
to the library, he does not have REPAIR access to the elements ELEMENT.1
and ELEMENT.4 (as displayed by the SHOW ACL command). When entering
VERIFY/REPAIR, you must have REPAIR access both to the library and to the
individual elements in the library.

7.3 OpenVMS BYPASS Privilege and CMS BYPASS Access
The OpenVMS BYPASS privilege allows a user read, write, execute, and
delete access to all files, bypassing UIC protection. A user holding BYPASS
privilege is also granted access to any CMS object or command, regardless of
any OpenVMS or CMS protections.

Whenever you define ACLs for objects, remember that users with BYPASS
privilege are granted complete access; for this reason, BYPASS privilege is
usually reserved for experienced users who need this privilege.

Being granted CMS BYPASS access is not equivalent to holding OpenVMS
BYPASS privilege. The CMS BYPASS access type allows you only to unreserve
or replace another user’s reservation for an element. (OpenVMS BYPASS
privilege also allows you to unreserve or replace another user’s reservation.)

The following example shows the use of CMS BYPASS access:

$ CMS SHOW RESERVATIONS

Reservations in CMS Library DISKX:[PROJECT.CMSLIB]

ELEMENT.2
(1) FLYNN 1 12-JAN-1998 18:57:43 ""

$ CMS REPLACE ELEMENT.2/IDENTIFICATION_NUMBER=1 ""
%CMS-E-NOREPLACE, error replacing DISKX:[PROJECT.CMSLIB]ELEMENT.2
-CMS-E-IDENTNOTRES, reservation 1 is not reserved by you

7–26 Security Features

Security Features
7.3 OpenVMS BYPASS Privilege and CMS BYPASS Access

$ CMS SET ACL/OBJECT_TYPE=ELEMENT ELEMENT.2 -
_$ /ACL=(IDENTIFIER=JONES,ACCESS=BYPASS+REPLACE+CONTROL) ""
%CMS-S-MODACL, modified access control list for element
DISKX:[PROJECT.CMSLIB]ELEMENT.2

$ CMS SHOW ACL/OBJECT_TYPE=ELEMENT ELEMENT.2

ACLs in CMS Library DISKX:[PROJECT.CMSLIB]

ELEMENT.2
(IDENTIFIER=[WORK,JONES],ACCESS=CONTROL+BYPASS+REPLACE)

$ CMS REPLACE ELEMENT.2/IDENTIFICATION_NUMBER=1 ""
Element DISKX:[PROJECT.CMSLIB]ELEMENT.2 currently reserved by:

(1) FLYNN 1 12-JAN-1998 18:57:43 ""
Replace (1) ELEMENT.2 generation 1, held by FLYNN? [Y/N] (N): Y
%CMS-S-GENCREATED, generation 2 of element DISKX:[PROJECT.CMSLIB]ELEMENT.2 created

This example shows the use of BYPASS access to replace another user’s
reservation. The user JONES unsuccessfully tries to replace FLYNN’s
reservation 1 of the element ELEMENT.2. JONES then assigns an ACL
allowing him CONTROL, BYPASS, and REPLACE access to the element.
CONTROL allows him to modify the ACL again after he replaces the element.
BYPASS allows him to replace FLYNN’s reservation. REPLACE is needed to
perform the actual replacement. Both BYPASS and REPLACE are required;
he can then successfully replace FLYNN’s reservation of the element.

7.4 Combining OpenVMS and CMS Security Mechanisms
When CMS ACLs are used in conjunction with OpenVMS protection
mechanisms, you should ensure that you allow sufficient access via OpenVMS
protection so that all users can perform necessary operations, but you should
not allow unnecessary access. In other words, you should set the OpenVMS
file protections to allow only as much access as is needed by users to perform
operations, as shown in Table 7–1. (A set of users can be defined by their UIC,
identifiers, or both.)

If a set or sets of users still need to perform a subset of operations beyond the
OpenVMS protection you have set up, you can use CMS ACLs to obtain a more
restrictive protection scheme.

For example, suppose a group of CMS users is divided into those holding
the identifier LIBRARIAN, and those holding the identifier PROGRAMMER.
Members of both groups are allowed to reserve elements, but only holders of
the LIBRARIAN identifier are allowed to replace them.

As listed in Table 7–1, both the RESERVE and REPLACE commands require
the same access to all files in the library. Thus, allowing users holding the
PROGRAMMER identifier sufficient access to the library files to perform a
reserve operation implicitly allows them access to perform a replace operation.

Security Features 7–27

Security Features
7.4 Combining OpenVMS and CMS Security Mechanisms

Using OpenVMS file protection mechanisms, it is not possible to allow access
to RESERVE while disallowing access to REPLACE. However, in CMS, you
can place a CMS ACL on the REPLACE command that allows access to
holders of the LIBRARIAN identifier, but disallows access to holders of the
PROGRAMMER identifier.

To successfully operate in a CMS library, the library directory, control files,
and element data files must be accessible through the OpenVMS system
(including ACLs and UIC protection mechanisms). In addition, the commands
you enter in the library, and the objects referenced by those commands, must
be accessible through the CMS ACL mechanism.

Note

The use of both OpenVMS and CMS ACLs does not ensure complete
library security. The library can still be accessed using means other
than through a CMS interface. However, keep in mind that accessing
a library by means other than CMS, such as copying the file through a
DCL command, can result in unrecoverable library corruption.

7.4.1 Example of Protection Scheme Using OpenVMS and CMS
Mechanisms

This example shows a possible protection scheme using both OpenVMS and
CMS security mechanisms.

Suppose a project team consists of the members Smith, Brown, Jones,
Anderson, and Nelson. Smith is the project leader, Brown and Jones are
senior developers, and Anderson and Nelson are junior developers. All project
team members except Nelson hold the PROJECT identifier.

These project members require the following types of access to the library:

• Smith requires full access to the library.

• Brown and Jones are allowed to perform all operations except DELETE
ELEMENT and DELETE GENERATION.

• Anderson is allowed to perform all operations except DELETE ELEMENT,
DELETE GENERATION, and REPLACE.

• Nelson is allowed access only to the FETCH command.

7–28 Security Features

Security Features
7.4 Combining OpenVMS and CMS Security Mechanisms

In this example, the access required to the library files is set according to
Table 7–1. An OpenVMS ACL for each file could be set up as follows:

1. Library Directory and Subdirectories:
(IDENTIFIER=PROJECT, ACCESS=READ+WRITE)
(IDENTIFIER=NELSON, ACCESS=READ)
(IDENTIFIER=*, ACCESS=NONE)
(IDENTIFIER=PROJECT,OPTIONS=DEFAULT,ACCESS=READ+WRITE+DELETE)
(IDENTIFIER=NELSON,OPTIONS=DEFAULT,ACCESS=READ)
(IDENTIFIER=*,OPTIONS=DEFAULT,ACCESS=NONE)

01CMS.CMS:
(IDENTIFIER=PROJECT, ACCESS=READ+WRITE)
(IDENTIFIER=NELSON, ACCESS=READ)
(IDENTIFIER=*, ACCESS=NONE)

01CMS.HIS:
(IDENTIFIER=PROJECT, ACCESS=READ+WRITE+DELETE)
(IDENTIFIER=NELSON, ACCESS=NONE)
(IDENTIFIER=*, ACCESS=NONE)

Element Data Files:
(IDENTIFIER=PROJECT, ACCESS=READ+WRITE+DELETE)
(IDENTIFIER=NELSON, ACCESS=READ)
(IDENTIFIER=*, ACCESS=NONE)

Note that Nelson is only allowed to use the FETCH command, without
specifying a remark. This is due to Nelson’s lack of access to the library
directory and 01CMS.HIS. Also note that the ACE containing the
ACCESS=NONE clause denies access to all library files to anyone not on
the project team. The OPTIONS=DEFAULT ACEs on the library directory
ensure that newly created element data files receive the proper ACL.

Security Features 7–29

Security Features
7.4 Combining OpenVMS and CMS Security Mechanisms

Although the ACLs assigned to the library files provide the access needed by
the members of the project team, they still do not sufficiently restrict access
as originally required. To do this, CMS ACLs must be set up on the various
commands. To ensure that these ACLs are not changed except by the project
leader, an additional requirement is that only Smith can use the SET ACL
command. Smith must also have CONTROL access to each of the commands
in order to change their ACLs once they have been assigned. The CMS ACLs
could be set up as follows:

2. FETCH:
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)
(IDENTIFIER=PROJECT, ACCESS=EXECUTE)
(IDENTIFIER=NELSON, ACCESS=EXECUTE)

DELETE ELEMENT and DELETE GENERATION:
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)

REPLACE:
(IDENTIFIER=ANDERSON, ACCESS=NONE)
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)
(IDENTIFIER=PROJECT, ACCESS=EXECUTE)

SET ACL:
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)

All other commands:
(IDENTIFIER=SMITH, ACCESS=EXECUTE+CONTROL)
(IDENTIFIER=PROJECT, ACCESS=EXECUTE)

If an identifier does not match any ACE in an ACL (assuming an ACL
exists) CMS denies access to the object. Thus, Nelson is denied access to
all commands except FETCH. Even though Anderson holds the PROJECT
identifier, he matches the first ACE in the ACL on the REPLACE command,
and so is also denied access. Similarly, the ACE for Smith must be placed
before the ACE for PROJECT; otherwise, Smith will match the PROJECT ACE
and would not receive CONTROL access.

7–30 Security Features

8
Event Handling and Notification

You can specify lists of people who are to be notified when certain events occur
in the library. An event is an operation involving one or more of the following
objects:

• Elements

• Element list

• Classes

• Class list

• Groups

• Group list

• History

• Commands

• Library attributes

The following sections describe how to specify events, use the default or a
user-written handler, and use notification. Section 8.3 shows examples of using
notification.

8.1 Event Handling
You specify and detect events by using CMS access control lists (ACLs) and
access control entries (ACEs). CMS notifies users of events by processing one
or more action ACEs in an object’s ACL. The following sections describe how to
specify events and how events are detected by means of action ACEs.

Event Handling and Notification 8–1

Event Handling and Notification
8.1 Event Handling

8.1.1 Specifying Action ACEs
CMS ACLs support two types of ACEs: identifier ACEs and action ACEs. You
use identifier ACEs to control which users can perform which CMS operations
on a specified object (see Section 7.2.1). You use action ACEs to define CMS
events. An action ACE enables you to specify a particular action to be taken
when a CMS object is accessed in a certain way.

An action ACE has the following format:

(ACTION[=image], PARAMETER=string [,IDENTIFIER=identifier]
[,OPTIONS=options] [,ACCESS=access])

The ACTION clause identifies the ACE as an action ACE; you can optionally
use it to specify a shareable image containing your own event-handler routine,
CMS$EVENT_ACTION (see Section 8.1.3). Do not include the .EXE file
extension in the event-handler name. If you do not specify a user-written,
event-handler routine on the ACTION clause, CMS uses the default event
handler SYS$SHARE:CMS$EVENT_ACTION image.

If you use the default image, the string specified on the PARAMETER clause
must be a valid MAIL recipient specification, such as MYNODE::JONES or
@DISTLIST, or a list of specifications separated with commas. You might
need to enclose the string in quotation marks if the string contains a list,
period, comma, or other non-alphanumeric characters. You should also enclose
the string in quotation marks when differentiating between uppercase and
lowercase, or CMS will convert the string to uppercase.

You can use the NOTIFY clause as a synonym for the ACTION,PARAMETER=
(that is, the ACTION clause without the =image parameter) when you specify
an action ACE. For example, the following specifications are equivalent:

(NOTIFY=@LIST)
(ACTION, PARAMETER=@LIST)

You cannot use the NOTIFY clause, however, if you specify a user-written
handler.

The IDENTIFIER clause is optional in action ACEs. If it is not specified, CMS
assumes the IDENTIFIER=* clause by default. The IDENTIFIER, OPTIONS
and ACCESS clauses are described in detail in Section 7.2.1.

See Section 8.3 for examples of action ACEs.

8–2 Event Handling and Notification

Event Handling and Notification
8.1 Event Handling

8.1.2 Detecting Events
A CMS event occurs only when the user has been granted the right to perform
the operation and the operation has been successfully performed. Therefore,
you cannot use an event handler to prevent a command from performing its
operation, nor does the command fail if the event handler cannot be invoked.

Multiple events can occur as a result of a single CMS command being executed.
For example, if action ACEs have been assigned to the elements A.TXT and
B.TXT and to the command RESERVE, three independent events can be
triggered by the command RESERVE A.TXT,B.TXT, one for each of the three
objects.

An exception is the INSERT and REMOVE commands. Execution of the
INSERT and REMOVE commands involves two types of objects: the objects
being inserted or removed, and the objects being inserted into or removed from.
CMS does not check ACLs associated with objects of the first type; therefore,
insert and remove operations involving objects of the first type cannot trigger
events. For example:

$ CMS INSERT ELEMENT A.TXT,B.TXT TEST_BAS ""

This command could trigger an event associated with the group TEST_BAS,
but not with the elements A.TXT and B.TXT.

8.1.3 Using Your Own Event Handler
When CMS detects that a specified event has occurred, it invokes the event
handler routine CMS$EVENT_ACTION in the
SYS$SHARE:CMS$EVENT_ACTION image, or, if you have written your own
shareable image, in your user-provided image.

You specify your own shareable image name in the ACTION clause of the ACE
that is defining the event. You do this by specifying the image name after the
ACTION keyword, as follows:

ACTION=image_name

See Section 8.1.1 for more information.

You must include a routine named CMS$EVENT_ACTION in your image.
CMS dynamically activates the CMS$EVENT_ACTION routine’s image,
if necessary, by calling LIB$FIND_IMAGE_SYMBOL, then calls the
CMS$EVENT_ACTION routine.

Event Handling and Notification 8–3

Event Handling and Notification
8.1 Event Handling

Your CMS$EVENT_ACTION routine should follow the rules for callback
routines (see the online callable routines file). The routine calling format and
arguments for CMS$EVENT_ACTION are as follows:

CMS$EVENT_ACTION (library_data_block,
user_param,
library_specification_id,
ace_parameter_id,
history_record_id)

library_data_block
Type: cntrlblk
Access: read
Mechanism: by reference
Specifies the library data block (LDB) for the current library.

user_param
Type: undefined
Access: modify
Mechanism: undefined
Specifies the user_arg value passed in a call to a callable CMS routine whose
action caused the event. If no user argument was specified in the user call, or
if the event did not occur as a result of a user call to a callable CMS routine,
the call-frame entry for user_param points to a location containing the value
zero. In this case, user_param is allocated as read-only storage.

library_specification_id
Type: address
Access: read
Mechanism: by reference
Specifies a string identifier for the current CMS library directory specification.

ace_parameter_id
Type: address
Access: read
Mechanism: by reference
Specifies a string identifier for the string found in the PARAMETER clause of
the current ACE (the ACE that defines the current event).

8–4 Event Handling and Notification

Event Handling and Notification
8.1 Event Handling

history_record_id
Type: address
Access: read
Mechanism: by reference
Specifies a string identifier for the string containing the history record written
as a result of the current CMS operation (the operation that caused the current
event).

The library_data_block argument should be used only by the default
CMS$EVENT_ACTION routine; any user-written CMS$EVENT_ACTION
routine should ignore it. The user_param argument is provided so
a user-written CMS$EVENT_ACTION routine can interpret it; the
default CMS$EVENT_ACTION routine ignores it. If you use the default
CMS$EVENT_ACTION routine, CMS expects the ace_parameter_id
argument to point to a string containing a list of valid MAIL recipient
specifications.

When the default CMS$EVENT_ACTION routine encounters errors, it signals
error conditions. If the severity code of the condition is an informational or a
warning status code, CMS handles it without interrupting the execution of the
CMS$EVENT_ACTION routine. On completion, the CMS$EVENT_ACTION
routine returns a completion status code; this status code is signaled by CMS if
it does not indicate success.

A user-provided CMS$EVENT_ACTION routine should not issue calls to
callable CMS routines other than CMS$GET_STRING or CMS$PUT_STRING.
Otherwise, a call issued by CMS$EVENT_ACTION might cause a new
CMS event to occur, and possibly trigger an infinite chain of events. A
user-provided CMS$EVENT_ACTION routine, however, can call the default
CMS$EVENT_ACTION routine as part of its event-handling action.

8.2 Notification of Events
User notification is divided into two parts:

• Detecting and dispatching events

• Notifying users of those events by using the OpenVMS Mail Utility (MAIL)

The default CMS$EVENT_ACTION routine determines the name of the
current user (the user whose action caused the event). It then sends one or
more notification messages through MAIL. You specify the recipients of the
messages in the PARAMETER clause of the ACE defining the event.

Event Handling and Notification 8–5

Event Handling and Notification
8.2 Notification of Events

Each notification message is formatted as follows:

From: <string specifying the current user>
To: <string specifying the recipient>
Subj: CMS notification for library <library name>

<message in a CMS history record format>

You use the SET ACL command to associate action ACEs with CMS library
objects, and to define events involving these objects. For example:

CMS> SET ACL SPEC.RNO/OBJECT=ELEMENT/ACL=(NOTIFY=JOEUSER,ACCESS=MODIFY)
_Remark: send notification if element modified

This command specifies that a notification message be sent to user JOEUSER
on the local node each time SPEC.RNO is modified.

The text of a notification message is identical to the CMS history record
written about the same event. Therefore, CMS notification enables users to
receive selected history records through MAIL.

Note that transactions that are not logged in the library history and therefore
have no history line (such as ANNOTATE, SHOW, and DIFFERENCES) do not
cause an event.

The default CMS$EVENT_ACTION routine makes only one attempt to
send each notification message. If the attempt fails, the specified event is
not affected in any way. No record of failed MAIL messages is maintained,
although the user whose action triggered the event receives any error messages
incurred by the default CMS$EVENT_ACTION routine.

To avoid duplicate MAIL messages, you should define action ACEs such that
only one event occurs as a result of a single CMS command being executed.
Similarly, you should carefully select the recipients of notification messages to
avoid unnecessary failed MAIL messages.

8.3 Examples
The following examples show how to use ACLs and notification on objects.

1. $ CMS SET ACL/OBJECT=ELEMENT EXAMPLE.PAS -
_$ /ACL=(NOTIFY=LEADER,ACCESS=MODIFY) "notify project leader"

This example specifies that the LEADER account is notified (through
MAIL) when a user modifies the element EXAMPLE.PAS.

8–6 Event Handling and Notification

Event Handling and Notification
8.3 Examples

2. $ CMS SET ACL/OBJECT=GROUP DATA_STRUCTURES -
_$ /ACL=(ACTION,PARAMETER="MYNODE::JONES",ACCESS= MODIFY)
_Remark: notify when group DATA_STRUCTURES is modified

This example specifies that when a user modifies the group
DATA_STRUCTURES, CMS calls the default image
SYS$LIBRARY:CMS$EVENT_ACTION.EXE (because you specified
ACTION with no file specification) with the parameter MYNODE::JONES.
CMS$EVENT_ACTION.EXE then notifies MYNODE::JONES that a user
has modified the group DATA_STRUCTURES.

3. $ CMS SET ACL/OBJECT=ELEMENT EXAMPLE.PAS -
_$ /ACL=(ACTION=CMSLOG_PRO,PARAMETER="NOTIFY.LOG",ACCESS=DELETE)
_Remark: call event handler when element EXAMPLE.PAS is deleted

This example specifies that when the element EXAMPLE.PAS is deleted,
CMS calls the user-written event-handler image CMSLOG_PRO, and
passes the parameter NOTIFY.LOG. Note that the event-handler
routine name is specified without the .EXE file extension, and the
NOTIFY.LOG parameter is enclosed in quotation marks because it contains
a nonalphanumeric character (a period).

Event Handling and Notification 8–7

9
Library Maintenance

CMS automatically performs maintenance on CMS libraries. You can also
perform other types of maintenance to ensure a valid and responsive library.

This chapter presents information on library maintenance that CMS performs,
and on the functions that CMS makes available for you to maintain your
library and validate its integrity. It also provides some hints on dealing with
library problems.

9.1 Command Rollback
If a CMS command is terminated before it has finished executing, CMS
automatically initiates a process called command rollback. Rollback
evaluates the state of the library and then takes appropriate action to return
the library to a consistent state so you can enter subsequent CMS commands.

Depending on the point at which the transaction is terminated, rollback takes
the following actions:

• If the library contents have not been modified, rollback cancels the
command.

• If the transaction is terminated before the update is complete, rollback
cancels the command and restores the library to the state it was in before
the command was entered. CMS closes and deletes any new files that were
created in the library as a result of the command. In addition, rolling back
a transaction involves restoring any files in the current, default directory
to the state they were in before the command was entered.

For example, if you run out of disk space during execution of a REPLACE
command, CMS might not finish integrating the changes into the element
file. In this case, rollback cancels the command, deletes any files that were
placed in the library as a result of the command, and restores the library
and your current, default directory to the state they were in before the
command was entered.

Library Maintenance 9–1

Library Maintenance
9.1 Command Rollback

• If the library contents have been completely modified, restoration is
not necessary. Rollback recognizes that the command has already been
completed and takes no action. For example, a command might be
terminated after execution but before control is returned to DCL command
level or CMS subsystem level. In this case, the rollback mechanism
determines that the command has been executed and rolling back the
transaction is not necessary.

The following are examples of errors that can cause rollback:

• You press Ctrl/Y and then enter a command (except STOP); this terminates
the transaction. If you enter the DCL command CONTINUE after pressing
Ctrl/Y, the CMS command continues executing. This Ctrl/Y CONTINUE
sequence works the same as with any DCL command.

• A system-generated error occurs (such as running out of disk space).

• Certain CMS errors occur, causing CMS to enter an error message.

• CMS is terminated by an OpenVMS exception condition.

CMS cannot initiate command rollback under the following circumstances:

• You press Ctrl/Y and then enter the DCL command STOP.

Caution

Never abort the CMS process by pressing Ctrl/Y, then entering the DCL
command STOP. CMS cannot perform rollback under this circumstance.
To abort CMS, press Ctrl/Y and enter the DCL command EXIT. This
enables CMS to roll back the library into a usable state.

• The system is shut down during the execution of a command.

• There is a system failure as a result of a hardware or software error.

• An error occurs during the rollback process itself.

If one of these errors occurs, you must restore the library with the
VERIFY/RECOVER command (see Section 9.2.1). CMS informs you if
entering VERIFY/RECOVER is necessary.

9–2 Library Maintenance

Library Maintenance
9.2 Verifying Data in a CMS Library

9.2 Verifying Data in a CMS Library
The VERIFY command checks your CMS library to confirm that the library
structure and library files are in a valid form. If you use the VERIFY command
under normal conditions, the command executes successfully, and VERIFY
returns a success code. A successful VERIFY command indicates that CMS
considers the information in your CMS library to be valid.

However, as a result of certain occurrences (for example, a library file is
manipulated by a program other than CMS, or the system fails), the data in a
CMS library might not be valid. In these cases, when you issue VERIFY, CMS
detects the corruption, and VERIFY returns an error code.

The VERIFY command checks the following conditions:

• The library must be set to a valid CMS library directory, or a list of library
directories.

• The last CMS command entered on the library must have finished
executing (if it did not, CMS attempts automatic recovery before
continuing).

• All library control files (01CMS.type) that should be in the library are
present and accessible.

• The element, reference copy, class, and group information, reservation
information, command list, security information, and internal database
structures are in a valid format.

• All element files have been manipulated only by CMS.

• All element files have valid checksums (see Section 9.2.2) indicating that
data has not been lost from or added to the files.

• Only element files and other files used by CMS are present in the library
(that is, there are no nonelement and no non-CMS files).

• All element files that should be there (one for each element) are present.

If the last transaction is prematurely terminated and is not automatically
rolled back, use the VERIFY/RECOVER command. If any file in the library
is not closed by CMS or if the checksum for one or more files is invalid or
missing, use the VERIFY/REPAIR command. When you use VERIFY/REPAIR,
you must be sure that data has not been lost or added. See Section 9.2.3 for
more information.

Library Maintenance 9–3

Library Maintenance
9.2 Verifying Data in a CMS Library

You cannot use the /RECOVER and /REPAIR qualifiers on the same
VERIFY command. If conditions exist that call for the execution of both
VERIFY/RECOVER and VERIFY/REPAIR, you must enter VERIFY/RECOVER
first, then VERIFY/REPAIR.

The following sections describe the /RECOVER and /REPAIR qualifiers in
detail.

9.2.1 Using VERIFY/RECOVER
Most CMS commands update several files in the library. If a command is
terminated while it is updating the library, the library can be left in a state
in which some files have been modified and others have not. Usually, if a
command is terminated prematurely, the rollback mechanism cancels and rolls
back the transaction (see Section 9.1). If CMS cannot roll back the library,
you must use the VERIFY/RECOVER command to restore the library to a
consistent state.

If you terminate a command at a time when the files in the library might have
been left in an inconsistent state, CMS recognizes that the command execution
was incomplete. When any user tries to enter a subsequent CMS command
to the same library, CMS attempts automatic recovery. If automatic recovery
fails, CMS advises the user to enter VERIFY/RECOVER. In this case, users
cannot access the CMS library until VERIFY/RECOVER has been executed.

The VERIFY/RECOVER and VERIFY/REPAIR commands use earlier versions
of files in the library to restore the library. You should not delete or purge any
files from the library, because CMS performs its own cleanup functions.

The VERIFY/RECOVER command cancels only the previous transaction.
If the event that causes the premature termination (for example, a system
failure) also corrupts data in the library (that is, data stored in files that were
present before the event), you must use other means to restore the library.
VERIFY/REPAIR corrects some of the unusual occurrences within a CMS
library (see Section 9.2.2). CMS might inform you if library repair is necessary
after certain commands are issued. In this case, you receive the following
message:

%CMS-E-USEREPAIR, use VERIFY/REPAIR

The VERIFY/RECOVER command affects only the currently set CMS library
or libraries, not your default directory. An incomplete transaction might mean
that the process of moving files into your directory or deleting files from your
directory is incomplete. You must recognize these conditions yourself and, if
necessary, remedy them with CMS or DCL commands.

9–4 Library Maintenance

Library Maintenance
9.2 Verifying Data in a CMS Library

For example, the REPLACE command generally uses a file from your current,
default directory to update the element file. If the system fails during a
replacement transaction, the process of updating the library file might be
incomplete. CMS never deletes any files from your directory until a transaction
is complete. In this case, you would need to enter the VERIFY/RECOVER
command to cancel the transaction. The file that was being copied would still
be in your current, default directory. Another REPLACE command creates a
new generation as you originally intended.

If you have set up a restrictive file protection scheme and there is a system
failure during a CMS transaction that leaves your library in an inconsistent
state, a user with sufficient access to the library and its files should execute
the VERIFY/RECOVER command. You can also recover the library if you have
BYPASS privilege, or read, write, and execute access to all the library files.
For more information, see Chapter 7.

The following commands do not update the library and thus cannot leave the
library in an inconsistent state:

ANNOTATE
DIFFERENCES
DIFFERENCES/CLASS
FETCH (no remark)
RETRIEVE ARCHIVE
SET LIBRARY
SET NOLIBRARY
SHOW commands
VERIFY (no qualifiers)

9.2.2 Using VERIFY/REPAIR
You use the VERIFY/REPAIR command when the VERIFY command informs
you of one of the following conditions:

• Element data files in the library were not closed by CMS.

• The checksum of elements in the library is invalid.

• Generations in the library have an invalid maximum record size.

• The last recorded transaction time is greater than the current system time.

• The reference copy for an element is missing.

• A reference copy is found for an element with the /NOREFERENCE_COPY
qualifier.

• There are duplicate reference copies for an element.

Library Maintenance 9–5

Library Maintenance
9.2 Verifying Data in a CMS Library

• The reference copy is invalid.

CMS uses information in the file header of a library file to confirm that the file
was closed by CMS. If the file was not closed by CMS (for example, if it was
opened and closed with a text editor), VERIFY/REPAIR repairs the file header
so it can be successfully verified.

For each element, CMS maintains a number known as a checksum. A
checksum is a count that varies with the number of characters and the value
of the characters in a file. Every time CMS writes a file in the library, the
checksum is recalculated. The VERIFY command calculates the checksum for
every element in the library. If this checksum does not equal the stored value,
data has probably been lost from, added to, or changed in the file.

The VERIFY/REPAIR command corrects a bad checksum by recalculating the
value based on the current contents of the file and then storing this value. The
contents of the file are not altered. If you know that data has been lost from or
added to the element, you must correct it manually. See Section 9.2.3 for more
information.

The VERIFY/REPAIR command adjusts element generations that were created
from files with fixed-length records by earlier versions of CMS and have a
stored maximum record size of zero. VERIFY/REPAIR examines the element
data file, determines what the correct size should be, and stores this value with
the generation.

The VERIFY/RECOVER and VERIFY/REPAIR commands use earlier versions
of files in the library to restore the library. You should not delete or purge any
files from the library, because CMS performs its own cleanup functions.

9.2.3 Correcting Errors
If a program other than CMS has been used to manipulate the files in the CMS
library, you might receive the following error message:

%CMS-E-VEREDFERR, element DISKX:[PROJECT.CMSLIB]TEST.SDML verified with errors
-CMS-E-NOTBYCMS, data file DISKX:[PROJECT.CMSLIB]TEST.SDML;1 not closed by CMS

If no other errors accompany this message, CMS considers the contents of the
file valid, despite manipulation from the outside program. In this case, you can
use the VERIFY/REPAIR command to correct any errors (however, you should
always investigate your source file to ensure that your file is still valid). Some
examples of what can cause these errors are as follows:

• Entering the DCL command SET PROTECTION or SET FILE/PROTECTION

• Entering the DCL command SET ACL or SET FILE/ACL

• Restoring your CMS library from backup

9–6 Library Maintenance

Library Maintenance
9.2 Verifying Data in a CMS Library

• Entering the DCL command COPY

Other programs (such as a text editor) can also cause this error.

CMS might also issue the following error message:

%CMS-E-BADCRC, bad checksum in element

This error is usually accompanied by the CMS-E-NOTBYCMS error. A bad
checksum indicates that the contents of the element data file are different
from what CMS expects. This usually means that data in the file has been
corrupted. Corruption can occur if something has changed the contents of the
element data file; this can happen if you alter the element data file, or if a
previous version of the element data file was restored from backup. Corruption
can also occur if the library directory contains a revision of the CMS database
(01CMS.CMS) that does not correspond to the element data file. This typically
occurs if the 01CMS.CMS file was restored from backup, but the rest of the
library contains more recent versions of element files and was not restored.

You can use the VERIFY/REPAIR command to correct BADCRC errors. If CMS
finds more than one version of the element file, it keeps the version containing
the correct checksum, and deletes the other files. If no file exists with the
correct checksum, VERIFY/REPAIR records the checksum from the most recent
file, and deletes any other copies. CMS can then use that value for future
checks. CMS does not attempt to alter the contents of the file.

You should use VERIFY/REPAIR to correct BADCRC errors only if you
understand the source of these errors and the potential impact of repairing
them.

9.2.4 Reference Copies
If a library has a reference copy directory, the VERIFY/REPAIR command
performs a comparison between the reference copy and the latest generation on
the main line of descent for each element in the library.

If CMS finds a reference copy for an element that does not have the reference
copy attribute, it prompts you for confirmation, then deletes the reference copy
file.

If the reference copy attribute is enabled for an element and you enter the
VERIFY/REPAIR command, one of the following situations might occur:

• If there is no valid reference copy in the reference copy directory, CMS
prompts you for confirmation to delete the remaining copies, then fetches
the latest main-line generation (1+) into the reference copy directory.

Library Maintenance 9–7

Library Maintenance
9.2 Verifying Data in a CMS Library

• If there is more than one reference copy and there is at least one valid copy,
CMS keeps the valid copy (or the latest valid generation, if more than one
valid copy exists) in the reference copy directory, and deletes the remaining
copies.

• If the reference copy does not exist, CMS fetches the latest main-line
generation (1+) into the reference copy directory.

9.3 Maintaining Library Efficiency
The following sections describe the features that CMS provides to enable you
to maintain the contents of your CMS library.

9.3.1 Deleting History Records
CMS maintains a history file in which all operations that modify the library are
recorded. Each operation causes a single record (or one record for each item,
when wildcards have been used) to be written into the 01CMS.HIS control file.
As libraries get older, history files typically become quite large, taking up disk
space and causing SHOW HISTORY performance to degrade. Because very
old history is generally no longer useful, you can use the DELETE HISTORY
command to reduce the size of the file.

Element generation information (for example, as displayed with the commands
SHOW GENERATION, FETCH/HISTORY, and ANNOTATE) is part of each
generation and is not stored in the history file; therefore, it is not affected by
the deletion of the library history.

9.3.2 Deleting and Archiving Element Generations
When you enter a FETCH, RESERVE, or REPLACE command, CMS searches
all the generations of a specified element for the generation you are trying to
access. As libraries get older, the number of generations usually increases, and
CMS commands that operate on element generations respond more slowly.

You can alleviate this problem by deleting the generations of an element that
you no longer need. For example, if you have an element with 100 generations,
and generation 5 was released in version 1 of your product, generation 30
was released in version 2, generation 43 was released in version 3, and you
are currently developing version 4, you probably do not need to reproduce
generations prior to 43, with the exception of those specific generations that
went into the released versions. You can use the DELETE GENERATION
command to remove the unneeded generations (for more information, see
the online help or the HP DECset for OpenVMS Code Management System
Reference Manual).

9–8 Library Maintenance

Library Maintenance
9.3 Maintaining Library Efficiency

When you delete a generation, the definition of the generation is permanently
removed from the corresponding element in the CMS library. Deleting a
generation does not remove changes from subsequent generations that were
originally made in the deleted generation. If you delete a generation from
the end of a line of descent, all the changes representing that generation are
removed from the delta file (see Section 4.4 and Appendix B). If you remove
a generation from the middle of a line of descent, changes made in that
generation are propagated into the surviving descendant and combined or
eliminated from the delta file if possible, because later generations still depend
on those changes. You should not rely on generation deletion to reduce the size
of a delta file.

If you want to delete an element generation from the CMS library but might
still want to access the contents of that generation, you can use the /ARCHIVE
qualifier on the DELETE GENERATION command. This qualifier directs
CMS to create an archive file containing all the information from the deleted
generation.

The archive file is self-contained; you do not need a CMS library to restore
the contents of the file. The archive file exists outside of the CMS library and
can be backed up onto tape and deleted. You can use the SHOW ARCHIVE
command to display the contents of an archive file. Use the RETRIEVE
ARCHIVE command to retrieve a copy of any of the generations in an archive
file. You cannot restore a generation from the archive directly into the CMS
library. To restore the generation, you must retrieve the generation into a file,
use the RESERVE command to reserve a generation of the element in the
library, then use the REPLACE command to replace the reservation, using the
retrieved file as input.

Although the VERIFY command does not operate on archive files, the files
store a checksum of the information in the file. The RETRIEVE ARCHIVE
command issues a warning message if it finds that the checksum of the data in
the file does not match the stored checksum. An incorrect checksum does not
prevent you from accessing the data in the file, but it might indicate that the
file is corrupt. In this case, you should restore another copy from backup.

Library Maintenance 9–9

Library Maintenance
9.4 Unusual Occurrences

9.4 Unusual Occurrences
An unusual occurrence results from the execution of a CMS command that
might, at times, have undesirable consequences. An unusual occurrence is
always logged in the library history file. The following actions cause CMS to
record an unusual occurrence:

• Entering a RESERVE command that creates a concurrent reservation

• Entering a REPLACE command that creates a concurrent replacement

• Entering a REPLACE or UNRESERVE command where BYPASS access
was used to manipulate another user’s reservation

• Entering the VERIFY/REPAIR command

• Entering the VERIFY/RECOVER command

• Entering the CONVERT LIBRARY command

• Entering the REMARK/UNUSUAL command

The SHOW HISTORY/UNUSUAL command displays the records of
transactions that caused unusual occurrences. CMS identifies unusual
occurrences in the library history by displaying an asterisk in the first column
of the transaction record.

When the RESERVE or REPLACE command produces an unusual occurrence,
CMS informs you of the potential unusual occurrence and asks whether
you want to proceed. If you answer YES, the command is executed and the
transaction is recorded as an unusual occurrence.

The VERIFY/RECOVER and VERIFY/REPAIR commands are logged as
unusual occurrences because they are entered when something is wrong with
the CMS library structure or its files. If you enter VERIFY/RECOVER or
VERIFY/REPAIR on a valid library, or if you enter the VERIFY command
without qualifiers, CMS does not log an unusual occurrence.

5822CH10.SDML

9–10 Library Maintenance

10
Command Syntax

This chapter describes how to enter CMS commands and gives the syntax for
command parameters, qualifiers, remarks, and wildcard characters.

10.1 Command Format and Prompting
The general format of a CMS command is as follows:

command [keyword] [parameter] [/qualifier...] [remark]

A CMS command consists of the name of the command, and a keyword if it is
required by the syntax of the command. For example, the RESERVE command
consists of only the command name. The SHOW command requires a keyword,
for example, HISTORY. In general, you must use one or more spaces or tabs to
separate items in a command string. Spaces or tabs preceding a qualifier are
optional.

The formats of parameters, remarks, and qualifiers are described in Sections
10.2, 10.2.2, and 10.4, respectively.

A CMS command string can consist of 1024 characters if you use hyphen
continuation characters (-). The command can contain any printing characters,
spaces, and tabs.

CMS compresses multiple spaces and tabs to a single space (except in quoted
strings). You can enter CMS commands in either lowercase or uppercase
characters. CMS changes lowercase characters to uppercase (except in quoted
strings). As a result, all commands recorded in the library history are in
uppercase characters.

If you enter a command that requires a parameter and you do not specify one,
CMS prompts you for one. Note, however, that if you use CMS in batch mode
or in a command procedure, CMS does not prompt for missing items.

Command Syntax 10–1

Command Syntax
10.1 Command Format and Prompting

Some commands might require confirmation after you enter the command. In
these cases, you are prompted for a YES or NO answer. In some cases, you can
also supply one of the following responses:

Positive Response Negative Response

1 0

TRUE FALSE

ALL QUIT or Ctrl/Z

Typing ALL indicates that CMS should perform the action (or actions) specified
by the command without any confirmation (for example, after the INSERT
GENERATION command). Typing QUIT or pressing Ctrl/Z indicates that CMS
should not perform any actions specified by the command.

If you press Return, CMS uses the default, indicated in brackets ([]). Note
that CMS checks only the first character of each confirmation response.
Thus, typing YAHOO is equivalent to typing YES or Y. If you type any
other characters, CMS continues to prompt you until you type an acceptable
response.

To halt the execution of a CMS command, press Ctrl/C. Ctrl/C indicates that
CMS should terminate the processing of that command. For more information
on using Ctrl/C, see Chapter 9.

10.2 Command Parameters
This section describes the parameters that can be used with CMS commands:

• Directory specifications

• Remarks

• Element names

• Element expressions

• Element generations

• Element generation expressions

• Group names

• Group expressions

• Class names

• Class expressions

10–2 Command Syntax

Command Syntax
10.2 Command Parameters

In addition, you can use wildcard expressions as parameters to certain CMS
commands. Wildcard expressions are described in Section 10.5.

10.2.1 Directory Specifications
You use a directory specification to refer to a directory that contains
(or will contain) a CMS library or reference copy directory. A directory
specification is used as a parameter to the CREATE LIBRARY, SET LIBRARY,
and SET NOLIBRARY commands, and as a qualifier value to the COPY
ELEMENT command. In addition, it is a parameter to the DCL command
CREATE/DIRECTORY, which is used to create a directory that will contain a
CMS library (see Chapter 3) or reference copy directory.

The format of a directory specification is as follows:

disk:[directory]

disk
Specifies one or more disks where the directory that contains your CMS library
is located. If you omit the disk name, your current default disk is assumed.

directory
Specifies a directory that contains your CMS library. Directory names must be
enclosed in square brackets ([]). Wildcards are not allowed.

For more information on how to specify disk and directory names, see the
OpenVMS User’s Manual.

Example

$ CMS SET LIBRARY [SWIFT.CMSLIB]

This example specifies the subdirectory CMSLIB under the top-level directory
[SWIFT] on the current default disk.

10.2.2 Remarks
A remark is a character string that you supply to describe a transaction. All
CMS commands that modify the library or its contents allow you to enter a
remark, which is recorded in the library history as part of the transaction
record. Remarks are useful in tracking modifications to a library element. For
example, in the remark given on the REPLACE command, you could indicate
what changes were made to the element for which you are creating a new
generation. For example:

CMS> REPLACE DATAFIG3.SDML "updated figure to show new merge routine"

Command Syntax 10–3

Command Syntax
10.2 Command Parameters

For the purpose of command-line interpretation, remarks are defined as
parameters; thus, you can enter qualifiers after the remark. However, the
remark must be the last parameter entered on the command line. Because
remarks are defined as parameters, CMS attempts to translate the remark if
other parameters are missing or incorrectly placed. If, for example, you omit
an element name from the syntax of a command, but you enter a remark, CMS
assumes that the remark is intended as the name of an element.

Quotation marks ("") are required to enclose the remark if you enter it on the
same line as the command and the remark contains any spaces. For example,
a one-word remark entered on the command line does not require enclosing
quotation marks. The text can consist of any printing characters, spaces, and
tabs. If you press Ctrl/Z as part of a remark, it terminates the command input
at that point, and CMS executes the command. If you press Ctrl/C as part of
a remark, CMS cancels the command. To insert a quotation mark (") within
a remark, type it twice (""). If a remark consists only of two consecutive
quotation marks (""), the remark text is null.

If you omit a remark on the command line of a command that requires a
remark, CMS prompts you for the text of the remark on the next line. For
example:

CMS> REPLACE DATAFIG3.SDML
_Remark: updated figure to show new merge routine

Type the text of the remark immediately following the prompt. In this case,
you need not enter quotation marks unless you want them to be included in
the text of the remark. If you press Return in response to the prompt, you are
not prompted again, and the remark text is entered as null.

When you start the remark on the same line as the CMS command, the total
length of the remark (including quotation marks), added to the character count
for the rest of the command, cannot exceed 256 characters. When you enter
the remark in response to the prompt, the length of the remark cannot exceed
254 characters.

You cannot use the hyphen continuation character (-) to continue a remark.
If you type a hyphen within a remark and then press Return, the hyphen
becomes the last character in the logged remark. The closing quotation marks
are assumed. To continue a remark, type the remark until the text wraps to
the next line.

10–4 Command Syntax

Command Syntax
10.2 Command Parameters

Examples

1. CMS> REPLACE SYNTAX.PAS "RECORD declaration implemented"

Note that a blank must precede the first quotation mark in a remark. The
remark, including the quotation marks, is recorded as part of the record of
the REPLACE transaction in the project history.

2. CMS> FETCH SEMANTICS.PAS
_Remark: Get copy for code review

If you press Return before you enter a remark, CMS prompts for the
remark. The remark is recorded in the project history. It looks the same
as if the remark had been entered on the same line as the rest of the
command (CMS encloses the remark in quotation marks).

3. CMS> FETCH LEXICAL.PAS "check alternate two-character graphic imple
mentation for demo version of front end"

You cannot use the DCL continuation character (-) to continue the remark;
you must continue typing until the text wraps to the next line.

10.2.3 Element Names
You name an element by specifying it as the parameter to the CREATE
ELEMENT command.

The format of an element name is as follows:

filename.type

filename
Specifies the file-name component of an OpenVMS file specification. The
filename can be 0 to 39 characters, and must begin with an alphanumeric
character. For a list of the characters that you can use in a file name, see the
OpenVMS User’s Manual. Note that systems running versions of OpenVMS
that support extended filenames no longer have these and other filename
restrictions on ODS-5 volumes. See your system manager for details on the
/EXTENDED_FILENAMES qualifier if this applies to your environment.

type
Specifies the file-type component of an OpenVMS file specification. The file
type can be 0 to 39 characters. For a list of the characters you can use in a file
type, see the OpenVMS User’s Manual.

Command Syntax 10–5

Command Syntax
10.2 Command Parameters

Separate the file name and the file type with a period (.). An element name
must contain a single period even if the file type or file name is null. Spaces
and tabs are not legal element name characters. Note that systems running
versions of OpenVMS that support extended filenames no longer have these
and other filename restrictions on ODS-5 volumes. See your system manager
for details on the /EXTENDED_FILENAMES qualifier if this applies to your
environment.

Note

Within a library, all element names must be unique. The file-name
component cannot be 00CMS because that name is reserved for CMS.

The following are examples of valid element names on most systems:

TEST.BAS SAMPLE.SDML ARGCHK.COM MOD5.S

The following is an example of a valid element name for an OpenVMS systems
that supports extended filenames:

SAMPLE^ ORIGIN.TXT

Any file listing requests for this library would display the previous file name
as SAMPLE^_ORIGIN.TXT (RMS automatically replaces the space with
an underscore). Other characters must also be preceded by the circumflex
character, but the space is the only character replaced like this.

10.2.4 Element Expressions
An element expression lets you name multiple instances of an element in a
single parameter field.

An element expression is composed of one or more of the following:

• An element name

• A group expression

• A wildcard expression (a wildcard character, or a wildcard character used
in combination with a name or partial name)

• A list of the preceding items, with the items separated by commas

10–6 Command Syntax

Command Syntax
10.2 Command Parameters

If you specify an element name, CMS manipulates a single element. If you
specify more than one element name separated by commas or if you specify a
group, a wildcard expression, or a combination of these, CMS operates on one
or more elements. For example:

CMS> SET LIBRARY [JONES.CMSLIB]
CMS> CREATE ELEMENT ELE.SDML,*.LIS,DATASAM.PAS "element list"

This command sets the current CMS library to [JONES.CMSLIB] and creates
the element ELE.SDML, all elements with a file type of .LIS, and the element
DATASAM.PAS. These elements are created from files in your default disk and
directory.

You must include a period (.) in the element expression to select one or more
elements from the complete list of elements in the library. If you do not include
a period, CMS interprets the parameter as a group name and selects elements
based on the list of groups established in the library.

10.2.5 Element Generations and Expressions
An element generation is a specific version of an element. Each time you
reserve and replace a version of an element in the library, CMS creates a new
generation of that element. The first generation of an element is generation
1. Each element generation is assigned a unique generation number; by
default, subsequent generations are numbered sequentially by adding 1 to the
predecessor generation number.

You can create a variant generation number from an existing generation
number by appending a variant letter to the existing generation number
and starting a new level number sequence beginning at 1. For example, the
generation 7A1 could be a variant generation of generation 7.

The syntax of a generation number is as follows:

level-number [variant-letter level-number]...

In this syntax, the level-number is a positive integer, and leading zeros are
not allowed. The variant-letter is a single alphabetic character (a through z, A
through Z).

An element generation expression enables you to specify a particular
generation of an element. You can specify a generation indirectly by using
a class name, the plus operator, the semicolon, or relative generation offsets.
These methods can be combined or used separately.

Command Syntax 10–7

Command Syntax
10.2 Command Parameters

The format of a generation expression is as follows:
�

generation-number [+]
class-name [+]

�
� [;] relative-generation-offset �

generation-number
Specifies a unique element generation.

class-name
Specifies a CMS class name according to the syntax rules in Section 10.2.8. If a
class name value is given, the generation specification refers to the generation
in the specified class.

+
Indicates the plus operator. CMS locates the latest generation on the same line
of descent as the generation specified by the generation number or class name.

;
Required to separate the relative generation offset from the generation
specification. The semicolon is not allowed in cases where a generation number
or class name has been omitted and CMS supplies a default value.

relative-generation-offset
Specifies an integer that directs CMS to locate an ancestor or direct descendant
of the specified generation. If the relative generation number is negative, CMS
locates an ancestor generation. If the relative generation number is positive,
CMS locates a direct descendant. The absolute value of the relative generation
number indicates how many steps should be taken to the next existing ancestor
or descendant generation. A relative generation offset of zero has no effect.

If generations have been deleted, CMS selects the third existing generation
prior to the generation you specified. For example, assume the current
generation of SAMPLE.PAS in class VERSION1 is generation 7, and
generations 5 and 6 have been deleted on the main line of descent for
SAMPLE.PAS (thus, the line of descent appears as 1, 2, 3, 4, 7).

10–8 Command Syntax

Command Syntax
10.2 Command Parameters

Examples
Assume the element SEMANTICS.PAS has six generations on the main
line of descent. In addition, a variant line consists of generations 3C1
and 3C2. Generation 5 belongs to the class VERSION1. The following
examples show valid forms of the /GENERATION qualifier for the element
SEMANTICS.PAS.

1. SEMANTICS.PAS/GENERATION=4

This reference selects generation 4 of SEMANTICS.PAS.

2. SEMANTICS.PAS/GENERATION=3C1+

This reference selects the latest generation (generation 3C2) on variant
line C that extends from generation 3 on the main line of descent. You can
use this form if you know a variant line exists and want the most recent
generation, but do not know how many generations are on that line.

3. SEMANTICS.PAS/GENERATION=VERSION1

This reference selects the generation of SEMANTICS.PAS (generation 5)
that belongs to the class VERSION1.

4. SEMANTICS.PAS/GENERATION=VERSION1;-3

This reference uses a relative generation offset of –3 to select the third
generation of SEMANTICS.PAS before the generation that is in class
VERSION1. In this example, CMS locates generation 2 of SAMPLE.PAS.

10.2.6 Group Names
You name a group by specifying it as the parameter to the CREATE GROUP
command. A group name can be up to 39 characters long, and can contain any
of the following characters:

• Letters and digits (a through z, A through Z, and 0 through 9)

• Dollar signs ($)

• Hyphens (-)

• Underscores (_)

A group name must begin with an alphabetic character. Group names cannot
contain a period (.) because CMS interprets a group name containing a period
as an element name. You cannot use the same name for both a group and a
class in the same library. The following are examples of valid group names:

Command Syntax 10–9

Command Syntax
10.2 Command Parameters

GRAPHICS
DATA_IN
DATA$OUT
CREATE-MODULES

10.2.7 Group Expressions
A group expression lets you name one or more multiple instances of a group in
a single parameter field. A group expression is composed of one or more of the
following:

• A group name

• A wildcard expression (a wildcard character, or a wildcard character used
in combination with a name or partial name)

• A list of the preceding items, with the items separated by commas

If you specify a group name, CMS operates on a single group. If you specify
more than one group name separated by commas or a wildcard expression,
CMS operates on one or more groups. The following are examples of valid
group expressions:

GROUPA
*88
MAIN$MODULES
PHASE_*_DOCS

10.2.8 Class Names
You name a class by specifying it as the parameter to the CREATE CLASS
command. A class name can be up to 39 characters long, and can contain any
of the following characters:

• Letters and digits (a through z, A through Z, and 0 through 9)

• Periods (.)

• Underscores (_)

• Dollar signs ($)

• Hyphens (-)

A class name must begin with an alphabetic character. You cannot use the
same name for both a class and a group in the same library. The following are
examples of valid class names:

BASE_LEVEL3
DEMO.1
VERSION$A
FIELD-TEST

10–10 Command Syntax

Command Syntax
10.2 Command Parameters

10.2.9 Class Expressions
A class expression lets you name multiple classes in a single parameter field.
A class expression is composed of one or more of the following:

• A class name

• A wildcard expression (a wildcard character used in combination with a
name or partial name)

• A list of the preceding items, with the items separated by commas

If you specify a class name, CMS operates on a single class. If you specify
more than one class name separated by commas or a wildcard expression, CMS
operates on one or more classes. The following are examples of valid class
expressions:

VERSION1
BASELINE*
FIELD_TEST
DEMO.%

10.3 Comma Lists
Where a comma list is valid, you can specify more than one value for a
parameter, separated by commas, on the command line. For example:

CMS> DELETE GROUP USER_VIEW,USER_INTFACE,TESTGRP
_Remark: groups no longer necessary--superseded by field test
%CMS-I-DELETED, group DISKX:[PROJECT.CMSLIB]USER_VIEW deleted
%CMS-I-DELETED, group DISKX:[PROJECT.CMSLIB]USER_INTFACE deleted
%CMS-I-DELETED, group DISKX:[PROJECT.CMSLIB]TESTGRP deleted
%CMS-S-DELETIONS, 3 deletions completed

This command deletes the three groups USER_VIEW, USER_INTFACE, and
TESTGRP. The same remark is logged in the history for each of these groups.

To cancel a comma list transaction before it has completed, press Ctrl/C.
If you press Ctrl/C during a transaction using a comma list, CMS finishes
the immediate transaction, but does not continue. For example, if you are
replacing several elements and you press Ctrl/C during the replacement of the
first element, CMS finishes that replacement transaction but does not continue
with the others.

When you enter a command using a comma list from DCL command level and
then press Ctrl/C during execution of the command, CMS returns control to
DCL. If you enter the command from the CMS subsystem prompt level, control
is returned to CMS.

Command Syntax 10–11

Command Syntax
10.4 Command Qualifiers

10.4 Command Qualifiers
Command qualifiers always start with a slash character (/) and might
require a value. A command qualifier, if used, must follow the command (and
the keyword, if any). Qualifiers can appear before or after any parameters
specified on the command line, except when you use the /GENERATION
qualifier with the DIFFERENCES command (see the description of the
DIFFERENCES command in the online help or the HP DECset for OpenVMS
Code Management System Reference Manual). You can enter qualifiers after
remarks. A command qualifier has the same meaning whether it follows the
command name or a command parameter.

For example, the following two commands are equivalent:

$ CMS CREATE ELEMENT/KEEP CODEGEN.PAS ""
$ CMS CREATE ELEMENT CODEGEN.PAS/KEEP ""

The /KEEP qualifier specifies that the file CODEGEN.PAS is not to be deleted
from the user’s directory.

Many qualifiers on CMS commands have both a positive and a negative form.
For example, /APPEND and /NOAPPEND are the positive and negative forms
of the same qualifier.

If you specify the same qualifier more than once on a command or specify both
the positive and negative form of the same qualifier, CMS uses only the last
specification. For example:

$ CMS FETCH INIT.FOR/OUTPUT=TEST.FOR/OUTPUT=INITEST.FOR

If you enter this command, CMS uses the second output file specification
(INITEST.FOR).

10.4.1 Qualifier Values
Various CMS command qualifiers require quoted strings, file specifications,
directory specifications, numeric values, alphabetic values, times, or generation
expressions as qualifier values.

You must separate a qualifier and its value with either an equal sign (=) or a
colon (:). Zero, one, or more spaces and tabs can appear between the qualifier
and the separator, and between the separator and the value. For example, the
following two specifications are equivalent:

/OUTPUT = TESTFE.COM
/OUTPUT: TESTFE.COM

The following sections describe file specifications and the format for entering
dates.

10–12 Command Syntax

Command Syntax
10.4 Command Qualifiers

10.4.1.1 File Specifications
Many CMS commands allow you to specify input or output files. These
commands accept full OpenVMS file specifications as qualifier values. If
you do not enter a full file specification, CMS uses the current directory,
device, or node. For a complete description of a file specification, see the
OpenVMS User’s Manual. Note that systems running versions of OpenVMS
that support extended filenames no longer have these and other filename
restrictions on ODS-5 volumes. See your system manager for details on the
/EXTENDED_FILENAMES qualifier if this applies to your environment.

10.4.1.2 File Structures
CMS only handles valid RMS files. If the input file is generated from a non-
valid (non-HP) RMS file, you must use the OpenVMS ANALYZE/RMS facility
to analyze the legality of the file before you store it in the CMS library.

10.4.1.3 Time Values
Several commands allow you to specify time values with the /BEFORE and
/SINCE qualifiers. Each of these qualifiers accepts an absolute, delta, or
combination time value. You can also specify one of the following keywords:
YESTERDAY, TODAY, or TOMORROW.

An absolute time is a specific date or time of day, or both. A delta time value
is the difference between the current time and a future time. A combination
time consists of an absolute time value plus or minus a delta time value. For
detailed information about time values, see the OpenVMS User’s Manual.

10.4.2 Qualifier Defaults
Each command description in the online help or the HP DECset for OpenVMS
Code Management System Reference Manual contains a list of qualifiers and
qualifier defaults. The default indicates the action taken when you omit the
qualifier.

Qualifiers with simple positive and negative forms (those that do not take
qualifier values) are listed in the command format sections with their defaults.
For example:

/[NO]APPEND /NOAPPEND

On the left, the qualifier is listed with brackets ([]) around the optional part
of the qualifier (NO). On the right, the default is listed.

Command Syntax 10–13

Command Syntax
10.4 Command Qualifiers

Some qualifiers have a positive form that allows a qualifier value, and a
negative form that does not allow the value. These qualifiers are shown with
their defaults. For example:

/MERGE=generation-exp /NOMERGE
/NOMERGE

If you use the positive form, the generation expression is required. If you
use the negative form, which is the default, the generation expression is not
allowed.

The defaults (if any) for qualifier values are explained in the qualifier
descriptions and are also indicated by the letter D next to the qualifier
name.

10.5 Wildcard Expressions
You can use DCL wildcard expressions in the parameters for many CMS
commands. The wildcard characters are the percent sign (%) for single-
character substitution and the asterisk (*) for partial- or full-field substitution.
By using these wildcards, you can direct CMS to operate on more than one
element, group, or class at a time. In addition, you can use wildcards in
input and output file specifications, and the directory-searching wildcards (the
ellipsis (. . .) and the minus sign (–)) in input file specifications.

For elements and generations, wildcards can apply to either the file-name field
or the file-type field, according to the position they occupy.

The following sections describe general rules for using wildcards.

10.5.1 Single-Character Wildcards
The percent sign (%) is the single-character wildcard indicator. When you use
the percent sign in a command parameter, CMS selects elements, groups, or
classes by substituting any single, allowable character for the percent sign.

For example, the wildcard expression DATA%.FOR might result in the
following list of elements:

DATA1.FOR
DATA2.FOR

10–14 Command Syntax

Command Syntax
10.5 Wildcard Expressions

10.5.2 Partial-Field and Full-Field Wildcards
The asterisk (*) is the partial- and full-field wildcard indicator. When you
use an asterisk in a command parameter, CMS selects objects whose names
contain the character patterns given in the wildcard expression. CMS replaces
the asterisk with any number of allowable characters (within the range of zero
to the maximum size of the field).

For example, the element expression DATA*.FOR might result in the following
list of elements:

DATA.FOR
DATA1.FOR
DATA2.FOR
DATA_IN.FOR
DATA_OUT.FOR

10.5.3 Canceling Wildcard Transactions
To cancel a wildcard transaction before it has completed, press Ctrl/C. If you
press Ctrl/C during a wildcard transaction that updates the library, CMS
finishes the immediate transaction, but does not continue. For example, if you
are replacing several elements and you press Ctrl/C during the replacement
of the first element, CMS finishes that replacement transaction but does not
continue with the others.

When you enter a wildcard command from DCL command level and then press
Ctrl/C during execution of the command, CMS returns control to DCL. If you
enter the command from the CMS subsystem prompt level, control is returned
to CMS.

10.6 Command Abbreviations
You can abbreviate command, keyword, and qualifier names by eliminating
characters from the end of the specified command, keyword, or name. You
cannot truncate the string ‘‘CMS’’ when entering a CMS command at DCL
level. All commands and qualifiers are unique when truncated to their first
four characters. You can truncate these names to fewer than four characters as
long as the result is unique.

For example, VERIFY is the only CMS command that begins with the
character V. Therefore, the VERIFY command can be truncated to CMS V at
DCL level and V at CMS subsystem level.

You do not count the slash character (/) or the prefix NO on negative qualifiers
when you count characters to determine the shortest allowable form of a
qualifier. However, you must count the underscore (_) character.

Command Syntax 10–15

A
Summary of CMS Interface Functional

Mappings

This table displays how each of the CMS interfaces are functionally mapped
into each other.

DCL Command Callable Routine DECwindows Motif Menu Item

ACCEPT GENERATION CMS$REVIEW_GENERATION Maintenance.Review.Accept

ANNOTATE CMS$ANNOTATE Data.Annotate

CANCEL REVIEW CMS$REVIEW_GENERATION Maintenance.Review.Cancel

CONVERT LIBRARY N/A N/A

COPY CLASS CMS$COPY_CLASS Maintenance.Copy.Class

COPY ELEMENT CMS$COPY_ELEMENT Maintenance.Copy.Element

COPY GROUP CMS$COPY_GROUP Maintenance.Copy.Group

CREATE CLASS CMS$CREATE_CLASS Maintenance.Create.Class

CREATE ELEMENT CMS$CREATE_ELEMENT Data.Create.Element

CREATE GROUP CMS$CREATE_GROUP Maintenance.Create.Group

CREATE LIBRARY CMS$CREATE_LIBRARY Library.Create

DELETE CLASS CMS$DELETE_CLASS Maintenance.Delete.Class

DELETE ELEMENT CMS$DELETE_ELEMENT Maintenance.Delete.Element

DELETE GENERATION CMS$DELETE_GENERATION Maintenance.Delete.Generation

DELETE GROUP CMS$DELETE_GROUP Maintenance.Delete.Group

DELETE HISTORY CMS$DELETE_HISTORY Maintenance.Delete.History

DIFFERENCES CMS$DIFFERENCES Data.Differences.File

DIFFERENCES/CLASS CMS$DIFFERENCES_CLASS Data.Differences.Class

FETCH CMS$FETCH Data.Fetch

Summary of CMS Interface Functional Mappings A–1

Summary of CMS Interface Functional Mappings

DCL Command Callable Routine DECwindows Motif Menu Item

INSERT ELEMENT CMS$INSERT_ELEMENT Maintenance.Insert.Element

INSERT GENERATION CMS$INSERT_GENERATION Maintenance.Insert.Generation

INSERT GROUP CMS$INSERT_GROUP Maintenance.Insert.Group

MARK GENERATION CMS$REVIEW_GENERATION Maintenance.Review.Mark

MODIFY CLASS CMS$MODIFY_CLASS Maintenance.Modify.Class

MODIFY ELEMENT CMS$MODIFY_ELEMENT Maintenance.Modify.Element

MODIFY GENERATION CMS$MODIFY_GENERATION Maintenance.Modify.Generation

MODIFY GROUP CMS$MODIFY_GROUP Maintenance.Modify.Group

MODIFY LIBRARY CMS$MODIFY_LIBRARY Maintenance.Modify.Library

MODIFY RESERVATION CMS$MODIFY_RESERVATION Maintenance.Modify.Reservation

REJECT GENERATION CMS$REVIEW_GENERATION Maintenance.Review.Reject

REMARK CMS$REMARK Maintenance.Remark

REMOVE ELEMENT CMS$REMOVE_ELEMENT Maintenance.Remove.Element

REMOVE GENERATION CMS$REMOVE_GENERATION Maintenance.Remove.Generation

REMOVE GROUP CMS$REMOVE_GROUP Maintenance.Remove.Group

REPLACE CMS$REPLACE Data.Replace

RESERVE CMS$FETCH Data.Reserve

RETRIEVE ARCHIVE CMS$RETRIEVE_ARCHIVE N/A

REVIEW GENERATION CMS$REVIEW_GENERATION Maintenance.Review.Comment

SET ACL CMS$SET_ACL Maintenance.Set.ACL

SET LIBRARY CMS$SET_LIBRARY Library.Open

SET NOLIBRARY CMS$SET_NOLIBRARY Library.Close

SHOW ACL CMS$SHOW_ACL View.Expand.ACLs

SHOW ARCHIVE CMS$SHOW_ARCHIVE N/A

SHOW CLASS CMS$SHOW_CLASS View.Class

SHOW ELEMENT CMS$SHOW_ELEMENT View.Element

SHOW GENERATION CMS$SHOW_GENERATION View.Expand.Children

SHOW GROUP CMS$SHOW_GROUP View.Group

SHOW HISTORY CMS$SHOW_HISTORY View.History

SHOW LIBRARY CMS$SHOW_LIBRARY N/A

A–2 Summary of CMS Interface Functional Mappings

Summary of CMS Interface Functional Mappings

DCL Command Callable Routine DECwindows Motif Menu Item

SHOW RESERVATIONS CMS$SHOW_RESERVATIONS View.Reservation

SHOW REVIEWS_
PENDING

CMS$SHOW_REVIEWS_
PENDING

View.Review

SHOW VERSION CMS$SHOW_VERSION Help.About

UNRESERVE CMS$UNRESERVE Data.Unreserve

VERIFY CMS$VERIFY Library.Verify

Summary of CMS Interface Functional Mappings A–3

B
CMS Library Storage Method

This appendix contains information that might be useful to you as you build
and use your CMS library. In general, project planning has the greatest impact
on how you can best use CMS. Each project has its own characteristics that
determine how you should organize your library.

CMS stores the entire text of the first generation of an element. This file is
called a delta file. Each time you replace an element, CMS determines what
has been changed in the element files, and, to save storage space, stores only
the new and changed lines of successive generations. (See Chapter 4 for more
information.) To estimate the required storage for the library, you should allow
three times the amount of disk space that you would normally allow for one
copy of all project files.

The following example shows a file in a CMS library:

.

.

.
APPLES
BANANAS
CHERRIES

*2D
POOCHES

*2E
*2I
*3D

PAUNCHES
*3E

PEACHES
*2E

ELDERBERRIES
.
.
.

CMS Library Storage Method B–1

CMS Library Storage Method

This example shows that each data item is numbered according to the element
generations in which the item appears. The first generation elements are
APPLES, BANANAS, CHERRIES, POOCHES, and ELDERBERRIES. In
the second generation, POOCHES is deleted (*2D-*2E) but PAUNCHES and
PEACHES are inserted (*2I-*2E). PAUNCHES is then deleted in the third
generation (*3D-*3E).

CMS can provide a complete copy of any of the three generations whenever
necessary. (It can also produce an annotated copy showing all changes in each
generation and identify the users who made those changes.) However, the data
requires only seven lines of storage space in the library. Conventional storage
methods require 15 lines, five lines for each of the three copies of the data.

You do not need to save backup copies of CMS library files in your account.
Normal system-backup procedures should be followed for a CMS library. CMS
itself maintains a certain amount of backup information so it can recover from
an incomplete transaction after a system failure.

Elements are stored most efficiently when modifications leave the majority of
the file lines unchanged. CMS stores only one copy of an element; this copy
includes all lines from the first generation plus all modifications to successive
generations. Thus, the number of differences (relative to the number of
original lines) affects system efficiency.

For example, the modifications to successive generations of a FORTRAN
source program might typically change 15 to 20 percent of the lines during
the development of that program. Because the bulk of the program does not
change, this kind of element is ideal for a CMS library. However, because the
same program’s listing file would change greatly with each modification (due to
the compiler’s effect on line numbers, addresses, and so forth), each generation
of the stored listing element would contain almost as many differences as
original lines.

B–2 CMS Library Storage Method

C
System Management Considerations

This appendix contains information about running CMS on an OpenVMS
system.

C.1 Library Backup
You should use normal system-backup procedures to back up your CMS
libraries. Although CMS is designed to recover from certain kinds of failures,
there are some events that leave a library in a state that is impossible to
recover or repair. If this is the case, you should have a recent backup copy of
the library that you can use as a replacement.

If there is an error in any of the library data structures contained in the
control file, you should use a backup copy of the entire library. In some cases,
CMS might display an error message indicating that an element file has been
corrupted. In this case, you can substitute a recent backup copy of the element
file.

If you substitute a backup version of an element file for a corrupted element
file, you should note the following effect: if the library control file indicates that
additional generations were created after the backup element generation, the
contents of those additional generations are the same as those of the backup
element generation. Thus, if you have an element that has 10 generations, and
you substitute a file that corresponds to generation 9, the element is still valid;
however, generations 9 and 10 have the same contents.

When you use a backup copy of an element data file, follow these rules:

• Use full wildcards (file name, extension, and version number) when you
copy the backup file so you maintain all the file header information.

• Remove the corrupted file from the library to avoid time conflicts between
the earlier backup copy and the later, corrupted file.

• After restoring the element data file, use VERIFY/REPAIR to fix the
checksum.

See Chapter 9 for more information on library maintenance.

System Management Considerations C–1

System Management Considerations
C.2 System Time Errors

C.2 System Time Errors
Under certain circumstances, CMS might display the following messages:

%CMS-E-NOREF, error referencing ’directory’
-CMS-E-SYSTIMERR, system time has been set incorrectly
-CMS-E-SYSTIMDIF, last transaction executed at ’time’

CMS displays these messages if the current system time is before the time of
the last transaction. One of three situations might have occurred:

• The system time was inadvertently set back.

• At some point, the system time was set ahead and then later corrected
(any transactions that were executed during this time period might appear
to have occurred in the future).

• There is a difference between the system time of two nodes on a cluster.

When CMS indicates a system time error, you should first check the system
times and correct any error. If your system is part of a cluster, check all
the nodes on the cluster. After you correct the system time error, compare
the current system time with the time of the last transaction (reported in
the SYSTIMDIF message). If the difference between the time of the last
transaction and the current system time is small, wait until the current system
time is later than the last transaction and execute the command again. If the
time difference is large, use the command VERIFY/REPAIR.

C.3 Library Limits
CMS libraries are limited to the maximum number of objects as shown in the
following table.

Library Objects Maximum Number Allowed per Library

Elements 65,535

Classes 65,535

Groups 65,535

C.4 Quotas
See the Code Management System for OpenVMS Release Notes for the
recommended minimum disk space and system quota settings for CMS.

C–2 System Management Considerations

Index

01CMS.CMS control file, 7–2, 7–3, 7–4,
7–29, 9–7

01CMS.HIS control file, 7–2

A
Abbreviation of commands, 10–15
Aborting CMS, 9–2
Absolute time value, 10–13
ACCEPT GENERATION command

resolving review status, 4–20
Access

CONTROL, 7–14
controlling with OpenVMS ACLs, 7–5
EXECUTE, 7–13
images required for library in OpenVMS,

7–2
read-only for class, 5–12
read-only for group, 5–12
REPAIR, 7–24
required for creating a directory, 3–2
required for creating an element, 3–4
required for DECwindows Motif, 7–3
required in OpenVMS for a CMS library,

7–2
required on objects through OpenVMS,

7–6
required to recover library, 9–5
to CMS commands, 7–10
to elements in groups, 5–6
to files

during system failure, 7–9
to files through OpenVMS, 7–2
to library

by other than CMS, 7–3

Access (cont’d)
to library directory by OpenVMS, 7–2
types of

for CMS ACLs, 7–12
VERIFY, 7–24

Access control entry
See ACE

Access control list
See ACL

Accessing variant generations, 6–5
Access order of library search list, 3–7
ACE

CMS action, 8–2
default, 8–2
default CMS, 7–21
format in CMS, 7–11
identifier, 7–11
MAIL specification in, 8–2
OpenVMS, 7–4
specifying events with through CMS, 8–1
used in canceling a reservation, 4–6

ACL
CMS

See also CMS ACL
CMS object types that can be assigned,

7–9
combining CMS and OpenVMS, 7–27
controlling access to OpenVMS directory,

7–5
creating, 7–11 to 7–15
differences between CMS and OpenVMS,

7–1
evaluation through CMS, 7–10
evaluation through OpenVMS, 7–2
file protection through OpenVMS, 7–6

Index–1

ACL (cont’d)
format, 7–14
multiple events, 8–3
on class list, 7–20
on element list, 7–20
on group list, 7–20
OpenVMS, 7–4 to 7–9
specifying default CMS, 7–20
specifying default OpenVMS, 7–5
specifying events with through CMS, 8–1
specifying on classes through CMS, 7–18
specifying on CMS commands, 7–15
specifying on elements through CMS,

7–18
specifying on groups through CMS, 7–18
types to use in CMS, 7–11

Action ACE, 7–11
Action ACE in CMS, 8–2

format, 8–2
ACTION clause, 8–2
Ancestor, 6–6

displaying, 6–7
main line, 6–6
variant line, 6–6

Anchor points in merge transaction, 6–8
ANNOTATE command

during merge, 6–12, 6–14
Archive files

creating, 4–10
Archiving generations, 9–9
Arguments

in CMS$EVENT_ACTION callback
routine, 8–4

ASCII
text in notes string, 4–17

Asterisk
in history file, 4–16
in library history file, 9–10
in merge file, 6–13

Attribute
reference copy, 9–7

Attributes
canceling, 4–17
concurrent, 4–11
displaying, 4–14

Attributes (cont’d)
establishing reference copy, 3–6
history, 4–14
library, 8–1
notes, 4–17
overview of, 4–14
position, 4–17

tabs in output, 4–23
read-only, 5–12 to 5–13
reference copy, 4–19
review, 4–7, 4–20

B
Backup of library, B–2
BADCRC error, 9–7
Base levels, 1–2
#B history string, 4–15
Building a library, 3–4
BYPASS privilege, 4–6, 7–30, 9–5

CMS, 7–26
difference between CMS and OpenVMS,

7–26
in CMS, 7–14
OpenVMS, 7–26

required to recover library, 7–9
BYPASS privilege in OpemVMS, 7–2
BYPASS user privilege, 3–2

C
Callback routine

CMS$EVENT_ACTION, 8–3, 8–4
CMS$GET_STRING, 8–5
CMS$PUT_STRING, 8–5
status code, 8–5

Canceling a comma list transaction, 10–11
Canceling a reservation, 4–5
Canceling a wildcard transaction, 10–15
CANCEL REVIEW command

resolving review status, 4–20
Changes

in merging, 6–13
made to concurrent elements, 4–11

Index–2

Character conversion, 10–1
Characters

allowed in command string, 10–1
allowed in remarks, 10–4
line continuation, 10–1

Checksum, 9–6, 9–7
in element data file, 9–7

Choosing a function, 2–15
Class

changing name of, 5–12
creating, 5–9
definition of, 5–1
deleting, 5–12
differences from groups, 5–2
displaying information about, 4–7, 5–11
inserting generation into, 5–9
limit of number in library, 3–4
maximum number, C–2
name format, 10–10
number of allowed generations, 5–9
removing generation from, 5–11, 5–12
retrieving generation from, 5–11
setting to read-only access, 5–12
specifying a CMS ACL on, 7–18

Class expression
format, 10–11

Class list, 8–1
specifying a CMS ACL on, 7–20

Clause
ACCESS=NONE, 7–29
ACTION, 8–2
NOTIFY, 8–2
OPTIONS=DEFAULT, 7–5, 7–20
OPTIONS=NONE, 7–21

Cleanup functions performed by CMS, 9–4
Clicking on an object, 2–15
CMS

command correspondence, 2–23
command summary, 1–11 to 1–14
concepts of, 1–2 to 1–5
overview of, 1–1 to 1–2
pop-up menu, 2–16

CMS$EVENT_ACTION image, 8–2, 8–3
arguments in, 8–4
callback routine, 8–4

CMS$EVENT_ACTION image (cont’d)
status codes, 8–5

CMS$GET_STRING callback routine, 8–5
CMS$LIB logical name, 3–8
CMS$PUT_STRING callback routine, 8–5
CMS ACL, 7–9 to 7–26

access types, 7–12
combining with OpenVMS ACLs, 7–27
differences from OpenVMS, 7–1
object types, 7–12
ways to use, 7–10
when to use, 7–1, 7–27

Combination time value, 10–13
Combining changes

See Merge transaction
Comma list, 3–8, 10–11

canceling, 10–11
Command

See also individual commands
abbreviation, 10–15
canceled by rollback, 9–1
CMS access required to use, 7–13
confirmation, 10–1
DCL

See DCL
CREATE/DIRECTORY, 3–1
DIRECTORY/ACL, 7–5
DIRECTORY/FULL, 7–5
DIRECTORY/SECURITY, 7–5
EDIT/ACL, 7–4
SET ACL, 7–4
SET DEVICE/ACL, 7–4
SET DIRECTORY/ACL, 7–4
SET FILE/ACL, 7–4
SET PROTECTION, 7–4
SHOW ACL, 7–5
used with ACLs, 7–4

entering, 10–1
entering in the DECwindows Motif

interface, 2–23
format, 10–1
halting execution of, 10–2
incomplete execution of, 9–1
level, 1–5
OpenVMS required access to, 7–6

Index–3

Command (cont’d)
premature cancellation of, 9–4
prompt, 10–1
qualifiers, 10–12
restricting access to through CMS ACLs,

7–10
rollback, 9–1
specifying a CMS ACL on, 7–15
specifying multiple object types on, 3–11
summary of, 1–11 to 1–14
syntax, 10–1
that adds generations, 9–8
that does not update library, 9–5
truncation of, 10–15

Command dialog box, 2–24
Command mode dialog box

entering, 2–23
Command rollback

See Rollback
Command string

format, 10–1
length, 10–1
parameters, 10–2
remark, 10–3
types of characters, 10–1

Comments
in history, 4–15

Concepts of CMS, 1–2 to 1–5
Concurrency

how CMS organizes changes, 4–11
Concurrent attribute, 4–11
Concurrent changes

managing, 6–2
merging, 6–7

Concurrent replacement, 4–12
Concurrent reservations, 4–5, 4–11, 6–2

by you, 4–6, 4–12
concept of, 1–4

Confirmation prompt, 10–1
Conflict flags, 6–14
Conflicting changes

avoiding, 4–12
Conflicting merge, 6–8, 6–13

resolving, 6–14

Context-sensitive help, 2–12
Continuation character, 10–4
CONTROL access, 7–14
Control records, 4–13
Correcting errors, 9–6
Corruption

in file, 9–7
in library, 9–3

CREATE/DIRECTORY DCL command, 3–1
CREATE CLASS command, 5–9
CREATE ELEMENT

prohibiting concurrent access using, 4–11
CREATE ELEMENT command, 3–3, 4–3

creating first generation using, 4–2
establishing history attribute using, 4–14
establishing notes attribute using, 4–17
establishing reference copy attribute

using, 4–19
establishing review attribute using, 4–20
specifying attributes, 4–14
specifying review attribute using, 4–7

CREATE GROUP command, 5–4
CREATE LIBRARY command, 3–2 to 3–3,

3–6, 3–8
adding libraries to library list, 3–8
establishing reference copy directory

using, 3–6
setting a search list using, 3–7

Creating
archive files, 4–10
CMS ACLs, 7–11 to 7–15

Creating a reference copy directory, 3–6
Creating a subdirectory, 3–1
Creating a variant line of descent, 4–12
Creating directories, 3–1
Creating elements and generations, 3–3,

4–3
Creating libraries, 3–1
Creating variant generations, 6–1
Ctrl/C, 10–2

as part of a remark, 10–4
canceling comma list transactions, 10–11
canceling wildcard transactions, 10–15
in comma list, 10–11

Index–4

Ctrl/Y, 9–2
Ctrl/Z

as part of a remark, 10–4
Customizing

DECwindows Motif interface, 2–24
views, 2–13

D
Data file

not closed by CMS, 9–6
DCL

commands used with ACLs, 7–4
continuation character, 10–4
CONTINUE command, 9–2
COPY command, 9–6
CREATE/DIRECTORY command, 3–1
DIRECTORY/ACL command, 7–5
DIRECTORY/FULL command, 7–5
DIRECTORY/SECURITY command, 7–5
EDIT/ACL command, 7–4
invoking CMS from, 1–5
SET ACL command, 7–4, 9–6
SET DEVICE/ACL command, 7–4
SET DIRECTORY/ACL command, 7–4
SET FILE/ACL command, 7–4, 9–6
SET FILE/PROTECTION command, 9–6
SET PROTECTION command, 7–4, 9–6
SHOW ACL command, 7–5
STOP command, 9–2

Deassigning libraries, 3–9
DECwindows Motif

access required for library through
OpenVMS, 7–3

menus, 2–1
using with CMS, 2–1 to 2–26

Default ACE
in CMS, 8–2

Default ACL
specifying CMS, 7–20
specifying OpenVMS, 7–5

Default CMS ACE, 7–21
Default directory, 3–2

Default event handler, 8–2
Default identifier mask, 7–5
Default qualifier, 10–13
Default UIC, 7–5
DEFAULT_PROTECTION keyword, 7–5
Delete access

in OpenVMS, 7–2
DELETE CLASS command, 5–12
DELETE GENERATION command, 4–10

creating archive files, 4–10
DELETE GROUP command, 5–8
DELETE HISTORY command

to reduce size of history, 9–8
Deleting element generations, 9–8
Deleting generations, 4–10

effect on reference copy directory, 4–10
Delta file, 4–13
Delta time value, 10–13
Descendant, 6–7

direct, 6–1
displaying, 6–7

Descendants
displaying, 4–9

Detecting events, 8–1
DIFFERENCES command

during merge, 6–14
Direct descendant, 6–1
Directory

access, 3–2
controlling with OpenVMS ACLs, 7–5
creating, 3–1, 3–2
default, 3–2
displaying, 3–7
OpenVMS access to, 7–2
reference copy

See Reference copy directory
specification, 3–2, 10–3

format, 10–3
DIRECTORY/ACL DCL command, 7–5
DIRECTORY/FULL DCL command, 7–5
DIRECTORY/SECURITY DCL command,

7–5
Disk space, 9–1

Index–5

Displaying attributes, 4–14
Displaying class membership, 4–8
Displaying contents of a group, 4–10
Displaying descendants, 4–9
Displaying group membership, 4–8
Display of

ancestors, 6–7
class contents, 5–11
class information, 4–7
descendants, 6–7
element information, 4–7
generation information, 4–7
generations in class, 5–11
group contents, 4–10, 5–8
group information, 4–7
history, 4–9
information using DECwindows Motif,

2–12
reservation information, 4–9
unusual occurrences, 9–10

Double clicking, 2–14

E
EDIT/ACL DCL command, 7–4
Element

See Review
ancestor, 6–6
attributes, 4–14
canceling reservation of, 4–5
creating, 3–3, 4–3
data file, 7–6
definition of, 4–1
deleting, 9–8
descendant, 6–6
displaying information about, 4–7
fetching, 4–4
inserting into group, 5–5
limit of number in library, 3–4
maximum number, C–2
merging two generations of an, 6–7
monitoring changes to, 4–7
name, 3–3, 4–3
name format, 10–5
protecting through OpenVMS, 7–6

Element (cont’d)
reference copy, 4–19
relationship to generation, 4–1
removing from group, 5–7
repairing reference copy directory, 9–7
replacing, 4–6
reserving, 4–4
reserving in DECwindows Motif, 2–16
retrieving from group, 5–7
specifying a CMS ACL on, 7–18

Element data file, 9–7
Element expression

format, 10–6
Element generation

See Generation
Element list, 8–1

specifying a CMS ACL on, 7–20
Element view, 2–12
Entering commands, 10–1
Entering remarks, 4–5
Entity

See Object
Error

causing rollback, 9–2
correcting, 9–6
examples of what can cause, 9–6
messages

BADCRC, 9–7
NOTBYCMS, 9–6

Event
defining using ACEs, 8–2
definition of, 8–1
detecting, 8–1
exception in multiple events, 8–3
multiple occurrences of, 8–3
notification, 8–5
specifying, 8–1

Event handler, 8–2 to 8–3
Event handling, 8–1 to 8–5
Examples

canceling a reservation
See also UNRESERVE, 4–5

CMS tutorial, 1–7
concurrent replacement, 4–12
concurrent reservation, 4–11

Index–6

Examples (cont’d)
creating a class, 5–9
creating a directory, 3–1
creating a group, 5–4
creating a library, 3–3
creating an element, 3–3, 4–3
creating a reference copy directory, 3–6
creating a variant generation, 6–2
customizing view in DECwindows Motif,

2–13
deleting a group, 5–8
displaying class contents, 5–11
displaying group contents, 5–8
displaying information on elements, 4–7
entering command mode in DECwindows

Motif, 2–23, 2–24
establishing an ACL, 7–6
establishing the history attribute, 4–16,

4–22
establishing the notes attribute, 4–22
establishing the review attribute, 4–23
expanding a group in DECwindows Motif,

2–14
expanding by choosing a function in

DECwindows Motif, 2–15
expanding using double clicking in

DECwindows Motif, 2–14
fetching all elements from a group, 5–7
fetching an element, 4–4
inserting a generation into a class, 5–9
inserting elements into a group, 5–5
inserting groups into a group, 5–7
merging generations, 6–10
modifying a reference copy directory, 3–7
obtaining multiple views in DECwindows

Motif, 2–13
of a comma list, 10–7, 10–11
of a remark, 10–3, 10–4
of class expressions, 10–11
of class names, 10–10
of element names, 10–6
of group expressions, 10–10
of group names, 10–9
of occlusion, 3–13

Examples (cont’d)
of protection scheme using CMS and

OpenVMS ACLs, 7–28
of using ACLs on library objects, 7–24,

7–26
of using CMS ACLs on commands, 7–16
of using CMS ACLs on history, 7–24
of using CMS ACLs on object lists, 7–22
of using CMS ACLs on objects, 7–19
of using CMS ACLs on the library, 7–25
of using CMS BYPASS access, 7–26
of using wildcard expressions, 10–14,

10–15
removing a generation from a class, 5–11
removing a group from a group, 5–8
removing elements from a group, 5–7
replacing a variant generation, 6–5
reserving a generation, 4–5
reserving a generation by class name,

5–11
reserving an element, 4–5
reserving an element in DECwindows

Motif, 2–16
reserving a variant generation, 6–5
restricting history in DECwindows Motif,

2–25
restricting reservations view in

DECwindows Motif, 2–13
setting a group to read-only, 5–12
setting a library, 3–8
setting more than one library, 3–8
showing pop-up menu in DECwindows

Motif, 2–17
specifying an event, 8–6
triggering an event, 8–3
using ACLs and notification, 8–6
using an identification number, 4–13

Execute access
in OpenVMS, 7–2

EXECUTE access, 7–13
Exiting from CMS, 1–6
Expanding a group in DECwindows Motif,

2–14

Index–7

Expression
element, 10–6
generation, 10–7
group, 10–10, 10–11

F
Failure

system, 7–9, 9–2, 9–4
FETCH command, 4–4

during merge, 6–9, 6–12
establishing history attribute using, 4–17
retrieving a generation from a class using,

5–11
retrieving a specific generation using, 4–4
used to retrieve a variant generation, 6–5
used to retrieve elements from a group,

5–7
Fetching an element

See FETCH command
File

contents, 4–13
controlling with OpenVMS ACLs, 7–6
corruption, 9–7
deleting history, 9–8
delta, 4–13
element data, 7–6, 9–6
fixed-length, 9–6
kept in reference copy directory, 3–7
kinds of allowed by CMS, 3–3, 3–4
OpenVMS access to, 7–2
protection through OpenVMS, 7–6
purging, 9–4
restoring from rollback, 9–1
storage, 4–13

File access
during system failure, 7–9

File access through OpenVMS, 7–2
File header, 7–3, 9–6
File menu, 2–15
File name

format, 10–5
restriction, 4–3, 10–6

File specification
input and output, 10–13

File type
format, 10–5

Fixed-length record
restriction on, 4–15

Flag
conflict, 6–14

Font size, 2–23
Format

history, 4–15
notes, 4–18
of commands, 10–1
of historical information, 4–14
of notification message, 8–6
position, 4–18

Full-field wildcards, 10–15

G
General identifier, 7–11
Generation

ancestors of, 6–7
archiving, 9–9
canceling reservation of, 4–5
creating, 3–3, 4–3
definition of, 4–1
deleting, 4–10, 9–8
descendants of, 6–7
displaying class contents, 5–11
displaying information about, 4–7
displaying specific, 4–8
fixed-length records in, 6–13
inserting into class, 5–9
merging, 6–7
number, 10–7

format, 10–7
numbers, 4–1
offset number, 10–8
operations with review, 4–20
reference copy, 4–19
relationship to element, 4–1
removing from class, 5–11
replacing, 4–6
reserving, 4–4

Index–8

Generation (cont’d)
retrieving, 9–9
retrieving by class name, 5–11

Generation expression
format, 10–7

Getting information
See SHOW commands

#G notes string, 4–18
Group

changing name of, 5–12
creating, 5–4
definition of, 5–1
deleting, 5–8
differences from classes, 5–2
displaying, 5–8
displaying information about, 4–7
inserting element into, 5–5
inserting groups into, 5–7
inserting into other groups, 5–7
limit of number in library, 3–4
maximum number, C–2
name format, 10–9
occlusion of, 3–11
removing elements from, 5–7, 5–8
removing from another group, 5–8
removing groups from, 5–8
restriction on recursive, 5–1
retrieving element from, 5–7
setting to read-only access, 5–12
specifying a CMS ACL on, 7–18

Group access, 7–4
Group expression

format, 10–10
Group list, 8–1

specifying a CMS ACL on, 7–20
GRPPRV privilege in OpenVMS, 7–2

H
Help

See Online help
through DECwindows Motif, 2–12

HELP command, 1–6

#H history string, 4–15, 4–17
Hints for maintaining libraries, 9–8
History

deleting records, 9–8
lines, 4–15
output, 4–16
position, 4–18
restricting in DECwindows Motif, 2–25
restriction on, 4–15
specifying CMS ACLs on, 7–23
specifying comments in, 4–15
string, 4–15
transactions not logged in, 8–6

History attribute, 4–14
History file

asterisks in, 4–16

I
Identification number, 4–13

of reservation, 4–12
replacing a generation using, 4–13

Identifier
ACE, 7–11
ACE format, 7–11
default mask, 7–5
general, 7–11
system, 7–11
UIC, 7–11

Identifier ACE in CMS, 8–2
IDENTIFIER clause, 8–2
Image

LIB$FIND_IMAGE_SYMBOL, 8–3
required to access library in OpenVMS,

7–2
SYS$SHARE:CMS$EVENT_

ACTION.EXE, 8–2
user-provided for event handling, 8–3

Incomplete command execution, 9–1
Incomplete transaction, 9–4
Input file specification, 10–13
INSERT ELEMENT command

inserting a group using the, 5–6
used on groups, 5–5

Index–9

INSERT GENERATION command, 5–9
INSERT GROUP command, 5–7
Invoking CMS, 1–5

with DECwindows Motif, 2–1

K
Keyword

DEFAULT_PROTECTION, 7–5
for occlusion, 3–10
NONE, 7–12
OPTIONS=DEFAULT, 7–5
TODAY, 10–13
TOMORROW, 10–13
YESTERDAY, 10–13

L
Letter

variant, 6–1
LIB$FIND_IMAGE_SYMBOL image, 8–3
Library

assigning a reference copy directory to,
3–7

attributes, 8–1
back up, B–2
building, 3–4
caution in accessing, 3–3
commands that do not update, 9–5
conditions requiring repair of, 9–5
controlling access to with OpenVMS

ACLs, 7–5
corruption in, 3–3, 9–3
creating, 3–1
deassigning, 3–9
displaying history, 4–9

asterisks in, 9–10
locking, 3–16
maintaining efficiency, 9–8
maintenance, 9–1
OpenVMS access to, 7–2
operations on, 3–9
performance, 9–8
recovering, 7–9
repairing, 9–4

Library (cont’d)
restoring, 9–1, 9–4
rollback, 9–1
search list, 3–7
setting, 3–7

more than one, 3–8
setting up protection through CMS, 7–9
setting up protection through OpenVMS,

7–3
specifying CMS ACLs on, 7–23
storage space, B–1
subtypes in CMS, 7–15
using, 3–7
verifying, 9–3

Library directory
See Directory

Library history
transactions not logged in, 8–6

Library list
modifying, 3–8

Limiting objects in a library, C–2
Limit of objects in a library, 3–4
Line continuation characters, 10–1
Line numbers in merge transaction, 6–8
Line of descent, 6–11

ancestors in, 6–6
definition of, 6–1
descendants in, 6–7
main, 6–1
variant, 6–1

List
See also Search list
class, 7–20, 8–1
element, 7–20, 8–1
group, 7–20, 8–1

Locking a library, 3–16
Logical name

CMS$LIB, 3–8
Lowercase character, 10–1

Index–10

M
MAIL

attempt to notify of event, 8–5
notification messages, 8–5
specification in ACE, 8–2, 8–5

Main-line generation
reference copy of, 4–19

Main line of descent, 4–8, 6–1
Maintaining library efficiency, 9–8
Maintenance menu, 2–15
Maintenance of libraries, 9–1
MARK GENERATION command, 4–7, 4–20
Mask

default identifier, 7–5
protection, 7–4

Maximum number of objects, C–2
Mechanisms

security, 7–1
Membership

displaying class, 4–8
displaying contents of group, 4–10
displaying group, 4–8

Menu
File, 2–15
Maintenance, 2–15
pop-up, 2–16

Merge transaction, 6–7
anchor points in, 6–8
annotated listing of, 6–12
asterisks in file, 6–13
conditions necessary for, 6–8
conflicts, 6–8, 6–13
line numbers in, 6–8
resolving conflicting lines, 6–14
restriction on, 6–8
restriction on fixed-length records, 6–9
successful, 6–8
verifying, 6–14

Message
format of notification, 8–6

MODIFY CLASS command
changing attributes using, 5–12
changing read-only attribute using, 5–12

MODIFY CLASS command (cont’d)
specifying a new remark using, 5–12

MODIFY ELEMENT
changing concurrent access using, 4–11

MODIFY ELEMENT command, 4–23
establishing history attribute using,

4–14, 4–16
establishing notes attribute using, 4–17
establishing reference copy attribute, 3–6
establishing reference copy attribute

using, 4–19
establishing review attribute using, 4–20
specifying attributes, 4–14
specifying review attribute using, 4–7

MODIFY GROUP command
changing attributes using, 5–12
changing read-only attribute using, 5–12
specifying a new remark using, 5–12

Modifying
a search list, 3–8

MODIFY LIBRARY command
establishing reference copy directory

using, 3–6
MODIFY RESERVATION command

changing remark using, 4–4
Monitoring changes to element, 4–7
Multiple object types

specifying, 3–11
Multiple reservations, 4–12

N
Names

class, 10–10
element, 10–5
generation, 10–7
group, 10–9

Negative qualifier, 10–14
NONE keyword, 7–12
NOTBYCMS error, 9–6
Notes

restriction on, 4–18
string, 4–18

Index–11

Notes attribute, 4–17
/NOTES qualifier, 4–17
Notification of events, 8–5
NOTIFY clause, 8–2
Number

identification for reservation, 4–12, 4–13
of objects allowed in library, 3–4

O
Object

expanding and choosing in DECwindows
Motif, 2–14

occlusion of, 3–10
OpenVMS required access to, 7–6
restricting access to through CMS ACLs,

7–11
subtypes in CMS, 7–15
types of, 3–10

for CMS ACLs, 7–12
that can be assigned CMS ACLs, 7–9

Object list, 7–20, 8–1
in CMS ACLs, 7–9

Objects
that trigger events, 8–1

Occlusion, 3–9 to 3–12
definition of, 3–9
disabling, 3–10
examples of, 3–13
keywords, 3–10
of groups, 3–11
of multiple object types, 3–11
rules on object types, 3–10

Occurrence
See Unusual occurrence

Online help, 1–6
through DECwindows Motif, 2–12

OpenVMS
exception condition, 9–2
file access, 7–2
UIC protection, 7–1

OpenVMS ACL, 7–4 to 7–9
combining with CMS ACLs, 7–27
differences from CMS, 7–1
how to use, 7–27

OpenVMS ACL (cont’d)
when to use, 7–1

OpenVMS library protection, 7–3
Operations

merge, 6–8
on libraries, 3–9
on multiple events, 8–3
read, 3–16
write, 3–16

Operator
plus, 10–8

OPTIONS=DEFAULT clause, 7–5, 7–20
OPTIONS=DEFAULT clause in OpenVMS,

7–5
OPTIONS=NONE clause, 7–21
Order of access in library search list, 3–7
Organization of library, 5–1
Output file specification, 10–13
Overview of CMS, 1–1
Owner access, 7–4

P
Parameter

class expression, 10–11
class name, 10–10
directory specification, 10–3
element expression, 10–6
element generation, 10–7
element name, 10–5
generation expression, 10–7
group expression, 10–10
group name, 10–9
used with commands, 10–2
wildcard, 10–14

PARAMETER clause, 8–2
Partial-field wildcards, 10–15
Pending review, 4–20
Performance of libraries, 9–8
Plus operator, 10–8
Pop-up menu, 2–16
Position attribute, 4–17

tabs in output, 4–23

Index–12

/POSITION qualifier, 4–17, 4–18
Positive qualifier, 10–14
Privileges

BYPASS, 4–6
Prompt

for commands, 10–1
remark, 10–4

Protection
controlling access to library with

OpenVMS ACLs, 7–5
on CMS library objects, 7–9
on library through OpenVMS, 7–3
types of in OpenVMS, 7–4
UIC, 7–3
using CMS and OpenVMS ACLs, 7–28
using OpenVMS ACLs, 7–6

required on objects, 7–6
Protection mask, 7–2, 7–3, 7–4

Q
Qualifiers

about, 10–12 to 10–14
Quota requirements, C–2
Quotation marks

in a remark, 10–4

R
Review attribute
Read access

in OpenVMS, 7–2
READALL privilege in OpenVMS, 7–2
Read-only attribute, 5–12 to 5–13
Read operations in library locking, 3–16
Recipient of events, 8–5
Reconstructing previous version of system,

5–11
Records

control, 4–13
Recovering a library, 7–9, 9–5
Reference copy

displaying directory specification, 3–7
missing in library, 9–5

Reference copy attribute, 4–19, 9–7
establishing, 4–19

Reference copy directory, 4–19
assigning to a library, 3–7
attribute, 3–6
creating, 3–6
definition of, 3–6
effect of deleted generations, 4–10
establishing, 3–6
files kept in, 3–7
repairing, 9–7
using, 3–6

Reference copy element
repairing, 9–7

/REFERENCE_COPY qualifier, 4–19
REJECT GENERATION command

resolving review status, 4–20
Relationship between groups and classes,

5–2
Remark

assigning using review, 4–7
changing, 5–12
characters allowed in, 10–4
definition of, 10–3
entering, 4–5
length, 10–4
modifying, 4–4
prompt, 10–4

REMOVE ELEMENT command, 5–7
REMOVE GENERATION command, 5–11
REMOVE GROUP command, 5–8
REPAIR access, 7–24
Repairing a library, 9–5
REPLACE command, 4–6

creating a variant using, 4–12
making concurrent replacement using,

4–12
replacing a generation using identification

number, 4–13
returning file to CMS using, 4–3
used when creating a variant generation,

6–1
using to create a variant generation, 6–2

Index–13

Replacement, 4–6
concurrent, 4–12
of a merged generation, 6–11
using identification number, 4–13

Reservation, 4–4
canceling, 4–5
concurrent, 4–5, 4–11

by you, 4–6
controlling, 4–11

displaying identification number, 4–12
modifying, 4–4

RESERVE command, 4–4
during merge, 6–9
establishing notes attribute using, 4–17
prohibiting concurrent access using, 4–11
reserving concurrent generations using,

4–11
retrieving a generation from a class using,

5–11
retrieving a specific generation using, 4–5
retrieving latest generation using, 4–3
used to retrieve a variant generation, 6–5
used to retrieve elements from a group,

5–7
Reserving an element in DECwindows Motif,

2–16
Resolving merge conflicts, 6–14
Restoring a library, 9–1, 9–4
Restricting history in DECwindows Motif,

2–25
Restriction

on depth of subdirectories, 3–2
on entering STOP command, 9–2
on file names, 4–3, 10–6
on fixed length records, 4–18
on fixed-length records, 4–15
on library not accessed with CMS, 3–3
on merge transaction, 6–8
on merging fixed-length records, 6–9
on recursive groups, 5–1
on version limit on library, 3–2

RETRIEVE ARCHIVE command, 9–9
Review, 4–7

displaying generations under, 4–20
establishing attribute, 4–20

Review (cont’d)
operations with, 4–20
pending, 4–20

REVIEW GENERATION command, 4–20
Review pending list, 4–20
Review process

commands associated with, 4–7
Rollback, 9–1

canceling command, 9–1
errors causing, 9–2

Routine
CMS$EVENT_ACTION, 8–4
CMS$GET_STRING, 8–5
CMS$PUT_STRING, 8–5

S
Sample session, 1–7
Search list

definition of, 3–7
inserting libraries into, 3–8
modifying, 3–8
occlusion of objects in, 3–9
operations on, 3–9
removing libraries from, 3–9
setting, 3–7

Security features, 7–1
Selecting a library, 3–7
Selection

of objects in DECwindows Motif, 2–14
Semicolon, 10–8
SET ACL command, 8–6

format, 7–14
SET ACL DCL command, 7–4
SET DEVICE/ACL DCL command, 7–4
SET DIRECTORY/ACL DCL command, 7–4
SET FILE/ACL DCL command, 7–4
SET LIBRARY command, 3–8

adding libraries to library list, 3–8
setting a search list using, 3–7

SET NOLIBRARY command, 3–8
deassigning a library list, 3–2
removing libraries from library list, 3–9

Index–14

SET PROTECTION DCL command, 7–4
Setting a library, 3–7
Setting library protection through OpenVMS,

7–3
Shareable image, 8–3
SHOW ACL DCL command, 7–5
SHOW ARCHIVE command, 9–9
SHOW CLASS command, 5–11
SHOW ELEMENT command, 4–7

displaying group membership, 4–8
SHOW GENERATION/MEMBER command

displaying descendants, 4–9
SHOW GENERATION command, 4–8

displaying class membership, 4–8
used to display ancestors or descendants,

6–7
SHOW GROUP command, 5–8

displaying contents of, 4–10
SHOW HISTORY command, 4–9, 9–8

displaying unusual occurrences, 9–10
displaying unusual transactions using,

4–9
SHOW LIBRARY command, 3–7
SHOW RESERVATIONS command, 4–9

determining identification number, 4–13
determining identification number using,

4–12
SHOW REVIEWS_PENDING command,

4–7, 4–20
Single-character wildcards, 10–14
Small screen support, 2–23
Spaces

in command syntax, 10–1
in remarks, 10–4

Specification
directory, 10–3
library, 3–2

Specifying a default CMS ACL, 7–20
Specifying a default OpenVMS ACL, 7–5
State of library, 9–4
Status code

in CMS$EVENT_ACTION callback
routine, 8–5

STOP DCL command, 9–2
Storage of files, 4–13
Storage space, B–1
String

command, 10–1
history, 4–15
notes, 4–18
position of, 4–18

Subsystem
See Invoking CMS

Subtypes
CMS objects, 7–15

Successful merges, 6–8
Successive generations, 4–1
Summary of CMS commands, 1–11 to 1–14
Syntax

class expression, 10–11
class name, 10–10
command, 10–1
command parameters, 10–2
command qualifiers, 10–12
directory specifications, 10–3
element expression, 10–6
element name, 10–5
file name, 10–5
file specification, 10–13
file type, 10–5
generation expression, 10–7
generation number, 10–7
group expression, 10–10
group name, 10–9
plus operator, 10–8
relative generation offset, 10–8
remark, 10–3
semicolon, 10–8
variant letter, 10–7
wildcard, 10–14

SYS$SHARE:CMS$EVENT_ACTION.EXE
image, 8–2

SYSPRV privilege in OpenVMS, 7–2
SYSPRV user privilege, 3–2
System access, 7–4
System failure, 7–9, 9–2, 9–4

Index–15

System identifier, 7–11

T
Tabs

in command syntax, 10–1
in notes output, 4–23

Terminating CMS session, 1–6
Text

identical areas in merge transaction, 6–8
Time values, 10–13
TODAY keyword, 10–13
TOMORROW keyword, 10–13
Transactions

See individual commands
displaying unusual, 4–9
incomplete, 9–4
not logged in library history, 8–6
unusual, 4–12

Truncating commands, 10–15
Tutorial CMS session, 1–7

U
UIC, 3–2
UIC identifier, 7–11
UIC protection, 7–3
UNRESERVE command

canceling a reservation using, 4–5
Unusual occurrence, 4–12

asterisk in history file, 9–10
cause of, 9–10
definition of, 9–10
displaying, 9–10

Unusual transactions
displaying, 4–9

Upkeep
See Library maintenance

Uppercase character, 10–1
User identification code, 3–2

See also UIC
User notification of events, 8–5
User privileges

BYPASS, 3–2
SYSPRV, 3–2

User-provided image, 8–3

V
Value

qualifier, 10–12
time, 10–13

Variant generation, 6–1
accessing, 6–5
creating, 6–1
replacing, 6–1
when to use, 6–1

Variant letter, 6–1
Variant letter syntax, 10–7
Variant line generation

format, 10–7
Variant line of descent, 6–1, 6–6

creating, 4–12
VERIFY/RECOVER command, 7–3, 7–9,

9–2, 9–4
VERIFY/REPAIR command, 7–3, 9–4
VERIFY access, 7–24
VERIFY command

conditions checked by, 9–3
returning an error, 9–3
using /RECOVER qualifier, 9–4
using /REPAIR qualifier, 9–4, 9–5

Verifying a library, 9–3
Verifying merged changes, 6–14
Version limit restriction on library, 3–2
Version of system

reconstructing previous, 5–11
Views

customizing your initial, 2–13
displaying more than one, 2–13
element, 2–12
obtaining a different, 2–12
restricting, 2–13
types of in DECwindows Motif, 2–12

Index–16

W
Wildcard

canceling transaction, 10–15
full-field, 10–15
partial-field, 10–15
single-character, 10–14

Wildcard expression

format, 10–14
Window size, 2–23
World access, 7–4
Write access

in OpenVMS, 7–2
Write operations in library locking, 3–16

Y
YESTERDAY keyword, 10–13

Index–17

