
HP Archive Backup System
for OpenVMS

Guide to Operations

Hewlett-Packard Company
Palo Alto, California

Software Version HP Archive Backup System for
OpenVMS Version V4.4

Required Operating System OpenVMS VAX Version 7.3
OpenVMS Alpha Version 7.3-2, 8.2 or 8.3
OpenVMS I64 Version 8.2-1 or 8.3

Required Software HP Media, Device and Management
Services for OpenVMS
Version V4.4

 DECnet (Phase IV) or DECnet-Plus(Phase V)

TCP/IP Services for OpenVMS

September 2006

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data
for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products and ser-
vices are set forth in the express warranty statements accompanying such products and services. Nothing herein
should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or
omissions contained herein.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

UNIX is a registered trademark of The Open Group.

Oracle is a registered US trademark of Oracle Corporation, Redwood City, California.

Java is a US trademark of Sun Microsystems, Inc. Printed in the US

Printed in the US

Contents

Preface . -xvii

1 Introduction

2 Overview

2.1 ABS Operational Environment . 2-1
2.2 ABS Objects . 2-1
2.2.1 Saves . 2-2
2.2.2 Restores . 2-2
2.2.3 Archives . 2-3
2.2.4 Environments . 2-4
2.2.5 Selections . 2-4
2.2.6 Schedules . 2-5
2.3 ABS Catalogs . 2-5
2.4 Backup Agent . 2-6
2.5 Media, Device and Management Services (MDMS) . 2-7
2.6 User Interfaces . 2-7
2.7 Scheduler Options . 2-7
2.8 MDMS Objects . 2-8
2.8.1 Domain . 2-8
2.8.2 Drives . 2-8
2.8.3 Groups . 2-9
2.8.4 Jukeboxes . 2-9
2.8.5 Locations . 2-10
2.8.6 Magazines . 2-10
2.8.7 Media Types . 2-10
2.8.8 Nodes . 2-11
2.8.9 Pools . 2-11
2.8.10 Volumes . 2-11
2.9 Getting Started . 2-11

3 Saving and Restoring Data

3.1 Archives . 3-1
3.1.1 Archive Name . 3-2
3.1.2 Archive Type . 3-2
3.1.3 Catalog . 3-2
3.1.4 Consolidation . 3-2
3.1.5 Destination . 3-3
3.1.6 Drives . 3-3
3.1.6.1 Drive selection . 3-3
3.1.7 Expiration Date and Retention Days . 3-4
3.1.8 Location . 3-4
iii

3.1.9 Maximum Saves . 3-4
3.1.10 Media Type . 3-4
3.1.11 Pool . 3-4
3.1.12 Volume Sets . 3-5
3.2 Catalogs . 3-5
3.2.1 Catalog Name . 3-5
3.2.2 Catalog Node . 3-5
3.2.3 Type . 3-5
3.2.4 Directory . 3-6
3.2.5 Staging . 3-7
3.2.6 Catalog Save Entries . 3-7
3.2.7 Catalog File Entries . 3-8
3.2.8 Improving Catalog Performance . 3-9
3.2.8.1 Catalog File Sizes . 3-9
3.2.8.2 Catalog File Maintenance . 3-9
3.2.8.3 Catalog Cleanup . 3-10
3.2.8.4 Staging Catalog . 3-10
3.3 Cataloging Existing Savesets . 3-11
3.4 Environments . 3-12
3.4.1 Environment Name . 3-12
3.4.2 Action . 3-12
3.4.3 Compression . 3-13
3.4.4 Data Safety . 3-13
3.4.5 Drive Count . 3-13
3.4.6 Prologue and Epilogue . 3-13
3.4.7 Retry Limit and Interval . 3-14
3.4.8 Links Only and Span Filesystems . 3-15
3.4.9 Listing Option . 3-15
3.4.10 Lock . 3-15
3.4.11 Notification . 3-15
3.4.12 Profile . 3-16
3.5 Saves and Restores . 3-16
3.5.1 Save Name or Restore Name . 3-17
3.5.2 Archive . 3-17
3.5.3 Base Date, Start Date and Skip Time . 3-17
3.5.4 Before Date, Since Date and Date Archived (Restore Only) . 3-18
3.5.5 Catalog (Restore Only) . 3-19
3.5.6 Include, Exclude, Data Type and Source Node . 3-19
3.5.7 Delete Interval and Keep . 3-21
3.5.8 Destination (Restore Only) . 3-21
3.5.9 Environment . 3-22
3.5.10 Frequency and Explicit Interval . 3-22
3.5.11 Incremental . 3-25
3.5.12 Nodes and Groups . 3-26
3.5.13 Prologue and Epilogue . 3-26
3.5.14 Reschedule . 3-28
3.5.15 Selections . 3-28
3.5.16 Sequence Option (Saves Only) . 3-28
3.5.17 Skipping schedule operations on Holidays . 3-28
3.5.17.1 HOLIDAYS.DAT Record Format . 3-29
3.5.17.2 Example: HOLIDAYS.DAT File . 3-29
3.6 Selections . 3-29
iv

3.6.1 Agent Qualifiers . 3-29
3.6.2 Before Date, Since Date and Date Type (Saves Only) . 3-30
3.6.3 Conflict Options (Restore Only) . 3-30
3.6.4 Include, Exclude, Data Type and Source Node . 3-30
3.7 Schedules . 3-32
3.7.1 After Schedule . 3-32
3.7.2 Command . 3-33
3.7.3 Restriction . 3-33
3.7.4 Dates, Days and Months . 3-33
3.7.5 Include and Exclude . 3-35
3.7.6 Times . 3-35

4 Media Management

4.1 MDMS Domain Configuration . 4-1
4.2 Domain . 4-1
4.2.1 ABS Rights . 4-2
4.2.2 Application Rights . 4-2
4.2.3 Check Access . 4-2
4.2.4 Deallocate State . 4-2
4.2.5 Default Rights . 4-2
4.2.6 Mail Users . 4-2
4.2.7 Maximum Scratch Time . 4-3
4.2.8 Media Type . 4-3
4.2.9 Offsite Location . 4-3
4.2.10 Onsite Location . 4-3
4.2.11 OPCOM Classes . 4-3
4.2.12 Operator Rights . 4-3
4.2.13 Protection . 4-3
4.2.14 Relaxed Access . 4-3
4.2.15 Request ID . 4-4
4.2.16 Scheduler Type . 4-4
4.2.17 Scratch Time . 4-4
4.2.18 SYSPRV . 4-4
4.2.19 Transition Time . 4-4
4.2.20 User Rights . 4-5
4.3 Drives . 4-5
4.3.1 Access . 4-5
4.3.2 Automatic Reply . 4-5
4.3.3 Device . 4-5
4.3.4 Disabled . 4-5
4.3.5 Drive Number . 4-6
4.3.6 Groups . 4-6
4.3.7 Jukebox . 4-6
4.3.8 Media Types . 4-6
4.3.9 Nodes . 4-6
4.3.10 Read-Only Media Types . 4-6
4.3.11 Shared . 4-6
4.3.12 Stacker . 4-6
4.3.13 State . 4-7
4.3.14 Allocate Drive (DCL Only) . 4-7
4.3.15 Deallocate Drive (DCL Only) . 4-8
4.3.16 Load Drive . 4-8
v

4.3.17 Unload Drive . 4-8
4.4 Groups . 4-9
4.4.1 Nodes . 4-9
4.5 Jukeboxes . 4-9
4.5.1 Access . 4-9
4.5.2 ACS ID . 4-9
4.5.3 Automatic Reply . 4-9
4.5.4 Cap Size . 4-9
4.5.5 Control . 4-10
4.5.6 Disabled . 4-10
4.5.7 Groups . 4-10
4.5.8 Library ID . 4-10
4.5.9 Location . 4-10
4.5.10 LSM ID . 4-10
4.5.11 Nodes . 4-11
4.5.12 Robot . 4-11
4.5.13 Slot Count . 4-11
4.5.14 State . 4-11
4.5.15 Threshold . 4-11
4.5.16 Topology . 4-12
4.5.17 Usage . 4-12
4.5.18 Inventory Jukebox . 4-12
4.6 Locations . 4-13
4.6.1 Parent Location . 4-14
4.6.2 Spaces . 4-14
4.7 Magazines . 4-14
4.7.1 Jukebox, Start Slot and Position . 4-14
4.7.2 Onsite and Offsite Locations and Dates . 4-14
4.7.3 Slot Count . 4-15
4.7.4 Spaces . 4-15
4.7.5 Move Magazine(s) . 4-15
4.8 Media Types . 4-16
4.8.1 Capacity . 4-16
4.8.2 Compaction . 4-16
4.8.3 Density . 4-16
4.8.4 Length . 4-16
4.9 Node . 4-16
4.9.1 Database Server . 4-16
4.9.2 Disabled . 4-17
4.9.3 OPCOM Class . 4-17
4.9.4 Transports and Full Names . 4-17
4.10Pools . 4-17
4.10.1 Authorized Users . 4-17
4.10.2 Default Users . 4-18
4.10.3 Threshold . 4-18
4.11Volumes . 4-18
4.11.1 Allocation Fields - Account, Username, UIC and Job . 4-20
4.11.2 Allocation and Movement Dates . 4-21
4.11.3 History Dates . 4-21
4.11.4 State . 4-22
4.11.5 Media Types . 4-23
4.11.6 Pool . 4-23
vi

4.11.7 Previous and Next Volumes . 4-23
4.11.8 Placement - Jukebox, Magazine, Locations, Drive . 4-23
4.11.9 Formats - Brand, Format, Block Factor, Record Size . 4-24
4.11.10 Protection . 4-24
4.11.11 Counters . 4-24
4.11.12 Allocate Volume . 4-24
4.11.13 Allocate Volume(s) by Selection Criteria . 4-25
4.11.14 Deallocate Volume . 4-26
4.11.15 Bind Volume . 4-26
4.11.16 Unbind Volume . 4-27
4.11.17 Load Volume . 4-27
4.11.18 Unload Volume . 4-27
4.11.19 Move Volume(s) . 4-28
4.11.20 Initialize Volume(s) . 4-29

5 Security

5.1 MDMS Rights . 5-2
5.2 Access Control . 5-4
5.3 Implementing a Security Strategy . 5-5

6 User Interfaces

6.1 Graphical User Interface . 6-1
6.1.1 Starting MDMSView . 6-2
6.1.1.1 OpenVMS Systems . 6-2
6.1.1.2 Windows Systems . 6-2
6.1.2 Look and Feel . 6-2
6.1.3 Logging In . 6-3
6.1.4 Selecting A View . 6-3
6.1.5 Creating Objects . 6-5
6.1.6 Showing and Modifying Objects . 6-6
6.1.7 Deleting Objects . 6-8
6.1.8 Viewing Relationships Between Objects . 6-8
6.1.9 Performing Operations on Objects . 6-9
6.1.10 Running Save And Restore Requests . 6-10
6.1.11 Showing Current Operations . 6-10
6.1.12 Reporting on Volumes . 6-11
6.1.13 Viewing MDMS Audit and Event Logging . 6-13
6.1.14 Errors . 6-13
6.1.15 Help . 6-14
6.2 DCL Interface . 6-14
6.2.1 Syntax Overview . 6-15
6.2.2 Object Lists . 6-16
6.2.3 Qualifier List . 6-16
6.2.4 Inherit . 6-17
6.2.5 Symbols . 6-17
6.2.6 Help and Reference . 6-17
6.3 User Interface Restrictions . 6-17

7 Preparing For Disaster Recovery

7.1 Disaster Recovery for OpenVMS Systems . 7-1
vii

7.1.1 Backup of Your System Disk . 7-1
7.1.2 Backup of MDMS$ROOT . 7-3
7.1.3 Backup of ABS$ROOT . 7-4
7.2 Prolog and Epilog Procedure . 7-5
7.2.1 Restoring The System Disk . 7-7
7.2.2 Restoring Remaining Savesets . 7-7
7.3 Non-OpenVMS Systems . 7-8
7.4 Thoughts on Save and Restore Procedures . 7-8

8 Remote Devices

8.1 RDF Installation . 8-1
8.2 Configuring RDF . 8-1
8.3 Using RDF with MDMS . 8-2
8.3.1 Starting Up and Shutting Down RDF Software . 8-2
8.3.2 The RDSHOW Procedure . 8-2
8.3.3 Command Overview . 8-2
8.3.4 Showing Your Allocated Remote Devices . 8-2
8.3.5 Showing Available Remote Devices on the Server Node . 8-2
8.3.6 Showing All Remote Devices Allocated on the RDF Client Node . 8-3
8.4 Monitoring and Tuning Network Performance . 8-3
8.4.1 DECnet Phase IV . 8-3
8.4.2 DECnet-Plus (Phase V) . 8-4
8.4.3 Changing Network Parameters . 8-4
8.4.4 Changing Network Parameters for DECnet (Phase IV) . 8-5
8.4.5 Changing Network Parameters for DECnet-Plus(Phase V) . 8-6
8.4.6 Resource Considerations . 8-6
8.4.7 Controlling RDF’s Effect on the Network . 8-8
8.4.8 Surviving Network Failures . 8-8
8.5 Controlling Access to RDF Resources . 8-9
8.5.1 Allow Specific RDF Clients Access to All Remote Devices . 8-9
8.5.2 Allow Specific RDF Clients Access to a Specific Remote Device . 8-9
8.5.3 Deny Specific RDF Clients Access to All Remote Devices . 8-10
8.5.4 Deny Specific RDF Clients Access to a Specific Remote Device . 8-10
8.6 RDserver Inactivity Timer . 8-10
8.7 RDF Error Messages . 8-11

9 System Backup to Tape for Oracle Databases

9.1 Linking System Backup to Tape with the Oracle Server . 9-2
9.1.1 Testing Oracle's Recovery Manager before linking System Backup to Tape 9-3
9.1.2 Authorizing privileges and granting rights to the Oracle server account . 9-3
9.1.3 Editing Oracle's Link Option File and Command Procedures . 9-3
9.1.3.1 Editing Oracle8i Link Option File and Command Procedures . 9-3
9.1.3.2 Editing Oracle9i Link Option file and Command Procedures . 9-5
9.1.4 Shutdown the database . 9-6
9.1.5 Relinking the ORA_RDBMS: executables . 9-6
9.1.6 Startup the database . 9-6
9.1.7 Retesting Oracle's Recovery Manager . 9-6
9.2 Configuring Oracle9i Release 2 (9.2.0.2) with SBT . 9-6
9.2.1 Testing Oracle's Recovery Manager before Setting Up System Backup to Tape 9-6
9.2.2 Authorizing Privileges and Granting Rights to the Oracle Server Account . 9-6
9.2.3 Logical definition for SYS$SHARE:MDMS$SBTSHR_MA64_9I2.EXE . 9-7
viii

9.3 Defining the Logical MDMS$SBT_TRACE_LEVEL . 9-7
9.4 Configuring System Backup to Tape in the Archive Backup System . 9-8
9.4.1 Creating an ORACLE_DB Catalog . 9-8
9.4.2 Creating an Archive . 9-8
9.5 Testing the Configuration of SBT . 9-10
9.6 Using System Backup to Tape with Oracle's Recovery Manager . 9-12
9.6.1 Specifying SBT Shared Library . 9-12
9.6.2 Specifying an Archive . 9-12
9.6.3 Specifying a Catalog . 9-13
9.6.4 Specifying an I/O Block Size . 9-14
9.6.5 Specifying Archives for Duplex Backups . 9-14
9.6.6 Using logical MDMS$SBT_RESTORE_SINGLE_CHANNEL . 9-14
9.7 Using the Show Catalog Command . 9-15
9.8 Using the MDMS Scheduler . 9-17
9.9 System Backup to Tape Defaults . 9-18
9.9.1 Archive Name . 9-18
9.9.2 Catalog Name . 9-18
9.9.3 I/O Block Size . 9-18
9.9.4 MDMS$SBT_RESTORE_SINGLE_CHANNEL=TRUE . 9-18
9.9.5 System Backup to Tape Logicals Names . 9-18
9.10System Backup to Tape Restrictions . 9-19
9.10.1 Doing Parallel Backups . 9-19
9.10.2 Piece Name Length Greater than 254 Characters . 9-20
9.10.3 Using RDF Drives with SBT . 9-20
9.10.4 Backup with Oracle Dead Connection enabled . 9-20
9.11Troubleshooting Tips . 9-20
9.11.1 Using the logical MDMS$SBT_TRACE_LEVEL . 9-20
9.11.2 Fatal Internal Error . 9-22
9.11.3 Check ORA_DUMP:SBTIO.LOG for Errors . 9-22
9.11.4 Using Tape I/O Slaves . 9-23
9.12Support for Oracle RDB database . 9-24
9.12.1 RMU Commands that accept /LIBRARIAN Qualifier . 9-25
9.12.2 BACKUP/RESTORE Using PLAN Files . 9-27
9.12.2.1 PARAMETERS Passed for the PLAN file . 9-28
9.12.3 Logicals to be specified for use with SBT . 9-30
9.12.4 SBT Restrctions for Oracle RDB Database . 9-30

10 Virtual Library System (VLS)

10.1Introduction . 10-1
10.2Features . 10-1
10.3Qualification . 10-2
10.4Restrictions while using VLS . 10-2

11 Architecture

11.1The Server Process . 11-1
11.1.1 The Database (DB) Server . 11-1
11.1.1.1 Database . 11-1
11.1.1.2 Becoming a DB Server . 11-2
11.1.1.3 Finding another DB Server . 11-2
11.1.1.4 Failover of the DB Server . 11-3
11.1.1.5 Role of the DB server . 11-3
ix

11.1.2 Server Communications . 11-3
11.2Scheduler Interface . 11-4
11.2.1 Option INT_QUEUE_MANAGER . 11-4
11.2.2 Option EXT_QUEUE_MANAGER . 11-4
11.2.3 Option EXT_SCHEDULER . 11-4
11.3Catalogs . 11-5
11.3.1 Catalog Sizes . 11-5
11.4Coordinator . 11-7
11.4.1 Coordinator Cleanup . 11-7
11.4.2 Volume Sets . 11-8

12 Troubleshooting

12.1Save and Restore Requests . 12-1
12.1.1 Notification of Save/Restore Completion . 12-1
12.1.2 Log Files . 12-1
12.1.3 Logical Names . 12-1
12.1.4 Alpha Stack Size Logical . 12-1
12.1.5 Fast Skip Errors . 12-1
12.1.6 Volume Set Locking and Coordinator Cleanup Process . 12-2
12.2Media Management . 12-2
12.2.1 Log Files . 12-2
12.2.2 OPCOM . 12-2
12.2.3 MDMS Requests . 12-3
12.2.4 Scheduling Problems . 12-4
12.2.4.1 Internal Scheduling . 12-4
12.2.4.2 External Scheduling . 12-4
12.2.4.3 Scheduler Scheduling . 12-4
12.2.5 MDMS Scheduled Activities . 12-5
12.3MDMSView GUI . 12-5
12.3.1 Running MDMSView GUI After ABS/MDMS Installation . 12-5
12.3.2 Windows Java Path . 12-5
12.3.3 MDMSView Log Screen . 12-5
12.3.4 MDMSView Command Window . 12-5
12.3.5 MDMS$LOGFILE_*.LOG . 12-6
12.4ABS Catalogs . 12-6
12.4.1 Staging Unpack . 12-6
12.4.2 Volume_Set Catalog Cleanup . 12-6
12.5Windows and Unix Clients . 12-7
12.5.1 Windows Log File . 12-7
12.5.2 Windows Quotas . 12-8
12.5.3 Permission Denied Errors . 12-9
12.5.4 UBS FAILURE . 12-9
12.5.5 Considerations for Saving Large Disks on UNIX and Windows Clients . 12-9
12.5.6 Files Larger than 2gb . 12-10
12.6RDF (Remote Device Facility) . 12-10
12.7Information Required When Reporting Problems . 12-11

A Configuration Example

B Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

B.1 Introduction . B-1
x

B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration . B-1
B.2.1 Why Convert from SLS/MDMS V2.x to ABS/MDMS V4.x? . B-2
B.2.1.1 Advantages of using ABS . B-2
B.2.1.2 Restrictions . B-3
B.2.2 SLS and ABS/MDMS Comparisons . B-4
B.2.2.1 Comparing SLS SBK Symbols and ABS Equivalent Backup Attributes B-4
B.2.3 Operational Differences between MDMS V2 and MDMS V3 . B-8
B.2.3.1 Architecture . B-9
B.2.3.2 MDMS Interfaces . B-9
B.2.3.3 Rights and Privileges . B-10
B.2.3.4 MDMS Domain . B-11
B.2.3.5 Drives . B-11
B.2.3.6 Jukeboxes . B-12
B.2.3.7 Locations . B-13
B.2.3.8 Media Types . B-14
B.2.3.9 Magazines . B-14
B.2.3.10 Nodes . B-15
B.2.3.11 Groups . B-15
B.2.3.12 Pools . B-16
B.2.3.13 Volumes . B-16
B.2.3.14 Remote Devices . B-18
B.2.4 Procedures for Converting SLS/MDMS V2.x to ABS/MDMS V4.x . B-18
B.2.4.1 Converting SLS/MDMS V2.x Symbols and Database Files to ABS/MDMS V4.x B-19
B.2.4.2 Applying Prev3 Support . B-31
B.2.4.3 Converting SLS SBK Symbols to ABS Policy Objects . B-31
B.2.5 Troubleshooting SLS/MDMS V2.x to ABS/MDMS V4.x Errors . B-49
B.2.6 Converting MDMS V4.x to a V2.x Volume Database . B-52

C Prev3 Support

C.1 Using SLS/MDMS and ABS/MDMS Simultaneously . C-1
C.1.1 Defining the Prev3 Support Logical . C-1
C.1.1.1 Processes Existing on the System after the Logical is Set . C-2
C.1.1.2 Creating Separate Pools for SLS and ABS . C-2
C.1.1.3 Examining the RDF Settings . C-2
C.2 Using SLS as the Client for ABS/MDMS . C-3
C.2.1 Defining the Prev3 Support Logical . C-3
C.2.1.1 Processes Existing on the System after the Logical is Set . C-4
C.2.1.2 Examining the RDF Settings . C-4
C.2.1.3 Supported STORAGE Commands . C-5

D Upgrading from ABS V2.X/V3.X to V4.x Environment

D.1 Introduction . D-1
D.2 Upgrading from ABS/MDMS V2.x/V3.x to V4.x . D-1
D.2.1 Converting ABS/MDMS V2.x to ABS/MDMS V4.x . D-1
D.2.2 Converting ABS V3.0B and MDMS 2.x to ABS/MDMS V4.x . D-2
D.2.3 Converting ABS/MDMS V3.1x or 3.2x to ABS/MDMS V4.x . D-2
D.2.4 Converting ABS V2.x Catalogs to V4.x Format . D-2
D.2.5 Converting ABS V2.x/V3.x RDB Policy Database to ABS V4.x (MDMS Server Database) D-3
D.2.6 Converting ABS V3.x RMS Policy Database to ABS V4.x (MDMS Server Database) D-3

E ABS/MDMS Support for Fibre Channel
xi

E.1 Introduction . E-1
E.2 Issues with sharing FC connected devices . E-1
E.3 FC connected tape devices, medium changers (robots) and SMS Products . E-2
E.3.0.1 HP Media Device Management System (MDMS) for OpenVMS: . E-2
E.3.0.2 HP Archive Backup System (ABS) for OpenVMS: . E-2
E.4 Multipathing . E-3
E.4.1 Configurations Tested . E-3
E.5 Bibliography . E-4
xii

Tables
Table 3–1 Logical Names Available to Environment Prologues and Epilogues . 3-14
Table 3–2 Use of Base Date, Start Date and Skip Time . 3-18
Table 3–3 Disk, File, Path and Database Specification Formats . 3-20
Table 3–4 Logical Names in Save/Restore Prologues and Epilogues . 3-27
Table 3–5 Disk, File, Path and Database Specification Formats . 3-31
Table 3–6 Date Specifications . 3-33
Table 3–7 Day Specifications . 3-34
Table 3–8 Month Specifications . 3-34
Table 3–9 Combining Dates, Days and Months . 3-34
Table 4–1 MDMS Volume State Transitions . 4-19
Table 5–1 Examples of Low Level Rights . 5-2
Table 5–2 ABS to MDMS Rights Mapping . 5-3
Table 5–3 Access Control Allowed Operations . 5-4
Table 5–4 Domain Access Control Options . 5-4
Table 8–1 How to Change Network Parameters . 8-5
Table 12–1 Assigning a System Variable for Windows Troubleshooting . 12-8
Table 12–2 Modifying the Blocking Factor using MDMSview GUI . 12-10
Table B–1 SBK Symbols in ABS Terminology . B-5
Table B–2 Volume Attributes . B-16
Table B–3 TAPESTART.COM Symbols and the Corresponding MDMS Objects . B-23
Table B–4 Verifying Objects and their Attributes after the Conversion . B-26
Table B–5 Storage Class (Archive) Parameter . B-40
Table B–6 Execution Environment Parameter . B-41
Table B–7 ABS Storage Class Parameter and SLS SBK Equivalent . B-45
Table B–8 ABS Execution Environment Parameter and SLS SBK Equivalent . B-45
Table B–9 ABS Save Request Parameter and SLS SBK Equivalent . B-47
xiii

Figures
Figure 2–1 ABS Save or Restore Request . 2-3
Figure 2–2 ABS Catalogs . 2-6
Figure 3–1 Relationships Between ABS Objects . 3-17
Figure 3–2 Complex Backup Schedules . 3-25
Figure 4–1 Volume State . 4-19
Figure 6–1 MDMSview Main Screen . 6-3
Figure 6–2 Object View Screen. 6-5
Figure 6–3 Drive Create Screen . 6-6
Figure 6–4 Save Show General Screen . 6-8
Figure 6–5 Domain View Showing Expanded Relationships . 6-9
Figure 6–6 Load Volume Screen with Queued Dialog Box . 6-10
Figure 6–7 Save Log Screen . 6-10
Figure 6–8 Show Requests Screen . 6-11
Figure 6–9 Report View Selection Criteria Example . 6-12
Figure 6–10 Report View Results Screen . 6-12
Figure 6–11 Context-Sensitive Help Screen from Show Volume Screen . 6-14
xv

Preface

Intended Audience

This document is intended for storage administrators who are experienced OpenVMS system
managers. This document should be used in conjunction with the Introduction to OpenVMS Sys-
tem Management manual.

Conventions

The following conventions are used in this document:

Convention Description

{} In format command descriptions, braces indicate required elements.

[] In format command descriptions, square brackets indicate optional elements of the
command syntax. You can omit these elements if you wish to use the default
responses.

boldface type Boldface type in text indicates the first instance of a term defined in the Glossary or
defined in text.

italic type Italic type emphasizes important information, indicates variables, indicates com-
plete titles of manuals, and indicates parameters for system information.

Starting
test ...

This type font denotes system response, user input, and examples.

Ctrl/x Hold down the key labels Ctrl (Control) and the specified key simultaneously (such
as Ctrl/Z).

PF1 x The key sequence PF1 x instructs you to press and release the PF1 key, and then
press and release another key (indicated here by x).

n A lowercase italic n denotes the generic use of a number. For example, 19nn indi-
cates a four-digit number in which the last two digits are unknown.

x A lowercase x denotes the generic use of a letter. For example, xxx indicates any
combination of three alphabetic characters.
 xvii

Related Products

The following related products may be mentioned in this document:

Associated Documents

The following documents are part of Archive Backup System for OpenVMS documentation set:

• HP Archive Backup System for OpenVMS Installation Guide

• HP Archive Backup System for OpenVMS Guide to Operations

• HP Archive Backup System for OpenVMS MDMS Reference Manual

Product Description

HSM HSM refers to Hierarchical Storage Management for OpenVMS software.

MDMS MDMS refers to Media and Device Management Services for OpenVMS software.

OpenVMS OpenVMS refers to OpenVMS operating system.

SLS SLS refers to Storage Library System for OpenVMS software.
xviii

1
Introduction

The Archive Backup System for OpenVMS (ABS) is a software product that allows you to save
and restore data in a heterogeneous environment. ABS provides you with the ability to perform
anything from full system backup operations to user-requested or user-created backup opera-
tions. ABS ensures data safety and integrity by providing a secure environment for save and
restore operations.

ABS is based on an OpenVMS system environment and all data is saved to (and restored from)
archives on OpenVMS systems. However, ABS supports saving and restoring data that resides
on nodes running the UNIX and Windows operating systems, as well as OpenVMS systems.

ABS enables you to implement a backup policy that allows you to save the data through auto-
matic or repetitively scheduled save operations. It also enables you to save data randomly using
a one-time-only save operation. ABS allows you to use different scheduler interface options to
schedule requests. This feature allows you to customize the scheduling of save or restore
requests to your system configuration.

Save and restore operations are accomplished using two of the objects recognized by ABS, the
save request and the restore request. These objects allow you to save data from online to either a
offline volume or to another disk, and if necessary, allows you to restore that data to either its
original location or to a different output location.

ABS tracks the location of data when saved as a result of an ABS save request. This information
is kept in an ABS catalog. Upon request, ABS accesses the catalog to locate or restore the data.
Chapter 2 provides an overview of ABS capabilities, and Chapter 3 describes ABS Save and
Restore operations, and the associated ABS objects, in more detail.

ABS is integrated with Media, Device and Management Services (MDMS), which performs the
following functions on behalf of ABS:

• Database Management Services - MDMS maintains the ABS database objects including
saves, restores, archives, environments, catalogs, schedules and selections. Database man-
agement services are available within a distributed environment using either TCP/IP or
DECnet communication protocols. Chapter 3 describes the ABS objects in detail.

• Media Management Services - MDMS maintains a set of physical and logical objects for
management of backup hardware and media. These objects include domain, locations,
nodes, groups, jukeboxes, drives, media types, pools, volumes and magazines. Chapter 4
describes Media Management Services in detail.

• Scheduling Services - MDMS provides extensive internal scheduling services for automati-
cally scheduling ABS save and restore requests. Chapter 3 describes Scheduling Services.

• Security Services - MDMS provides flexible security options using rights, privileges and
object access control for secure use in a distributed environment. Chapter 5 describes secu-
rity services.
 Introduction 1–1

Introduction

• MDMSview - A graphical user interface that manages all ABS and MDMS objects using a
view-based approach for navigation. Views currently supported include Objects, Tasks,
Requests, Reports and Domain. Chapter 6 describes the Graphical User Interface.

• DCL Interface to the Database Objects - A comprehensive set of DCL commands to manage
all ABS objects, compatible with the interface for MDMS media management objects.
Chapter 6 describes DCL operation, with a full reference in the MDMS Reference Guide.

Planning for Disaster Recovery is an important part of any datacenter operation. Chapter 7 offers
guidelines on how to plan for disaster recovery with ABS.

Chapter 11 offers an architectural overview of the ABS/MDMS system; you can use this to
understand the internal operations of ABS and customize certain operational parameters.

A troubleshooting section has been added in Chapter 12. This chapter describes how to define
extended logging options, and offers solutions for some of the more common problems that can
occur in an ABS environment.

The appendix offers the following:

• Example on configuring MDMS

• Procedures for migrating from SLS/MDMS V2.x to ABS/MDMS V4.x environment

• Applying Prev3 Support to use SLS as the client after the migration

• Upgrading from ABS V2.x/V3.x to V4.x environment

• ABS/MDMS support for fibre channel.
1-2 Introduction

2
Overview

This chapter provides an overview of the various components that comprise an ABS/MDMS
operational environment, and includes a simple example on how to get started with ABS. The
overview discusses the following items:

• ABS Operational Environment

• ABS Objects

• ABS Catalogs

• Backup Agent

• Media, Device and Management Services (MDMS)

• User Interfaces

• Scheduler Options

• MDMS Objects

• Getting Started

This chapter provides an overview on the ABS and MDMS environment. See Chapter 3,Saving
and Restoring Data, for detailed information on how to save and restore data using ABS. See
Chapter 4,Media Management, for information about how to configure and maintain the media
management environment.

2.1 ABS Operational Environment
ABS operational environment contains the following components:

• ABS objects - ABS objects define physical locations of saved data, the criteria under which
save and restore requests are performed, and the save and restore requests themselves.
ABS objects are described in Section 2.2.

• ABS catalogs - ABS catalogs are the components of ABS software that contain the history
information about ABS save requests. Catalogs contain the records of data saved using
ABS. Those records enable you to locate and restore data that was saved using ABS.
ABS catalogs are described in Section 2.3.

• Backup agent - A backup agent is the utility that performs the actual data movement opera-
tion. For OpenVMS systems, the backup agents are the OpenVMS BACKUP Utility and the
RMU Backup Utility. For UNIX and Windows clients, the supported backup agent is gtar
(tape archiver). ABS uses gtar because most UNIX and Windows systems support it.
Backup agents are described in Section 2.4.

2.2 ABS Objects
The following sections summarize the objects used by ABS to save and restore data. More
detailed information about ABS objects may be found in Chapter 3, Saving and Restoring Data.
 Overview 2–1

Overview
2.2 ABS Objects
2.2.1 Saves

A save request defines the data to be saved and executes upon immediate invocation or through
an automatic, repetitive schedule. You can create save requests using either the MDMSView
GUI or the CLI interface.

A save defines the following criteria:

• The data to back up - you can specify disks, files or databases to back up

• The type of data to back up (VMS files, Oracle Rdb databases or storage areas, UNIX files
or Windows files)

• Whether the save is an incremental operation based on a previous save, or otherwise

• When to save the data (base date and frequency)

• Where to save the data (which archive to use)

• The length of time to keep the data (retention period or expiration date)

• Who can access a save request (for data safety)

• What environment to use to execute the save request

• Whether to perform pre- or postprocessing commands

To meet your site’s backup requirements, you will need to create save requests that fulfill those
requirements.

2.2.2 Restores

A restore request restores data from an archive back to online storage. You can create restore
requests using either the MDMSView GUI or the CLI interface. Restore requests can be exe-
cuted immediately or at a specified time. You can also schedule restores for repeated operations
in the same manner as saves.

A restore defines the following criteria:

• The data to restore - you can specify disks, files or databases to restore

• The type of data to restore (VMS files, Oracle Rdb databases or storage areas, UNIX files or
Windows files)

• Whether the restore is an incremental restore based on a previous restore, or otherwise

• Where to restore the data (optional output location other than the original location)

• Where the data resides (on which archive)

• Who can access a restore request (for data security)

• What environment to use to execute the restore request

• Whether to perform pre- or postprocessing commands

To meet your storage management requirements, you will need to create restore requests that ful-
fill those requirements.

Figure 2–1 illustrates the path of a save or restore request.
2-2 Overview

Overview
2.2 ABS Objects
Figure 2–1 ABS Save or Restore Request

A save or restore request is invoked through the GUI or through the CLI (DCL).

2.2.3 Archives

An archive defines the media type and other characteristics where you can safely store data.
Each archive has a unique name and contains a set of archive characteristics. You can simply ref-
erence an archive name in a save or restore request rather than a complicated set of characteris-
tics. Archives are designed to be shared among many save or restore requests.

Each archive defines the following:

• The type of archive to use (TAPE or DISK)

• If the archive file system is TAPE, the media type, pool, and location for tape volumes in the
archive

• How long to keep the data stored in a particular archive (retention period or expiration date).
You can specify two archives for save requests that perform both full and incremental oper-
ations (at different times) so that the full and incremental saves can have different retention
periods and can reside on different volume sets

• Who is allowed to access the archive (for data safety)

• Who is allowed write data to and read data from the archive (ensures data safety)

• Which catalog contains the information about the data stored in the archive

• How long to use a volume set

• How many save or restore requests can be executed simultaneously

IF the request is a . . . THEN the data is . . .

Save request Saved from online storage to the archive. An ABS catalog records
the location of the saved data.

Restore request Restored back to online storage. ABS searches the catalog for the
location of the data (archive), loads the appropriate volume, and
restores the data.

Storage

Policy

Restore

Request

Save

Request

Active data (online storage) Inactive data (offline storage)

Catalog

Data movement path

Data history records
Control path

Archive File System

CLI

GUI

CXO4090D
 Overview 2–3

Overview
2.2 ABS Objects
Normally, one archive is associated with both save and restore requests. However, for save
requests that perform both full and incremental saves (at different times), you can define two
archives: the first for full saves and the second for incremental saves. This allows the full and
incremental saves to be performed on different tape volumes with different retention periods.

2.2.4 Environments

An environment object defines the criteria under which save and restore requests are executed.
The criteria defined in an environment include:

• Whom to notify when a backup or restore operation has successfully completed (or failed)

• The number of drives to use for the save or restore requests

• Who is allowed access to the environment (for data security)

• Default data safety checks to perform during save or restore operations (such as Full, XOR
Redundancy, CRC, or a combination thereof)

• Whether to enable log and listing files.

• How often to retry the save or restore operation before requiring user intervention

• Whether to perform job-wide pre- or post-processing commands

• UNIX compression, file system span, and symbolic link options

• The resulting disposition of the files that are saved

• Locking options

2.2.5 Selections

When you specify a set of disk or file specifications for a save or restore request, you are creat-
ing (implicitly or explicitly) a selection object. A selection object contains one or more disk or
file specifications, together with additional selection criteria and operational attributes including
the following:

• Options to pass to the Backup Agent (agent qualifiers)

• The type of data to be saved (VMS files, Rdb databases and storage areas, UNIX files or
Windows files)

• Selection criteria using a combination of before dates and since dates (explicit selection
only)

• Specific files to exclude that would otherwise be included in the file specification

• Who is allowed access to the selection (for data security)

• Conflict options (what to do if the file being restored exists)

• For UNIX files and Windows files, the source node on which these files reside

If you specify a set of disk or file specifications as part of the save or restore request, these files
are stored in a default selection for that save or restore. You can use a default selection exclu-
sively in your saves and restores as long as the other selection criteria (including data type) are
the same for all files in the request. Alternatively, you can create your own selections explicitly
using either the MDMSView GUI or the CLI, and associate them with your save and restore
requests. Each save and restore can support multiple selections.
2-4 Overview

Overview
2.3 ABS Catalogs
2.2.6 Schedules

You can use a variety of ways of scheduling your save and restore requests, including two meth-
ods provided by MDMS, or by the use of a third-party scheduler product (see Section 2.7). The
schedule object defines on what days and times a save or restore request is run. If you use
MDMS scheduling, these schedule objects are executed at the appropriate times and the associ-
ated save and restore requests are invoked. If you use a third-party scheduler, the schedule
objects are still created, but they do not invoke the associated save or restore requests - that is
done by the third-party scheduler. The schedule object is created when you create the associated
save or restore request.

For most save and restore requests, you can define a frequency of operation, which together with
a base date determine the schedule attributes automatically. However, if you use internal MDMS
scheduling, you can specify a custom schedule, and set attributes for scheduling including the
following

• The days of the week you wish a request to run

• The dates of the month you wish a request to run

• The months of the year you wish a request to run

• The times of the day you wish a request to run - a request can run up to 100 times per day

• Specific dates in the next 10 years you wish a request to run, that otherwise would not be run
according to the other selection criteria

• Specific dates in the next 10 years you wish the request not to run, that otherwise would be
run according to the other selection criteria.

• Relate one schedule to another, so that its associated save or restore request runs after the
related save or restore request.

If you use a third-party scheduler, you can specify non-standard frequencies by using an explicit
frequency and interval that is passed to the scheduler, or you can use the scheduler interface
directly to manipulate the frequency of the request.

2.3 ABS Catalogs
An ABS catalog consists of a catalog object and the catalog files. The information contained in
an ABS catalog object includes:

• The type of catalog (FILES, DISKS, VOLUME_SETS)

• Whether or not to use an intermediate staging file

• Who is allowed to access the catalog (for data safety)

• Who is allowed write data to and read data from the catalog (ensures data safety)

The ABS catalog files contain history information about save requests and can be assigned to
one or more archives. Each time a save request is initiated through a particular archive, the save
request history is recorded in an ABS catalog associated with the archive.

The information contained in an ABS catalog includes:

• The name of the data that was saved

• The type of data that was saved (OpenVMS Files, Oracle Rdb Database, Oracle Rdb Storage
Area, UNIX Files, Microsoft Windows Files, Oracle Database)

• The date and time the data was saved

• The save set name where the data is located
 Overview 2–5

Overview
2.4 Backup Agent
• The location of the save set (disk or tape)

• The original location of the data

• The owner of the data

Figure 2–2 shows the relationship between an ABS catalog and an ABS archive.

Figure 2–2 ABS Catalogs

After the installation of ABS is complete, ABS provides a default catalog named
ABS_CATALOG. By default, this catalog is associated with all archives unless it is changed by
the creator of the archive. All ABS catalogs, both the default catalog and user-created catalogs,
support lookup and restore capabilities.

ABS catalogs are node specific but in a VMScluster all nodes could share the same catalog files.

2.4 Backup Agent
ABS uses various backup agents to save and restore data. The backup agent is determined by the
type of data, such as VMS files, Oracle Rdb databases, Oracle Rdb storage areas, UNIX files, or
Windows files. The backup agent is responsible for the actual data movement operation, while
ABS is responsible for invoking the correct backup agent and recording the information about
the save operation.

ABS supports the following backup agents:

• OpenVMS BACKUP Utility - For OpenVMS files, ABS uses the OpenVMS BACKUP
Utility.

• RMU Backup Utility - For Oracle Rdb databases and storage areas, ABS uses the RMU
Backup Utility.

• gtar (GNU tar) - For UNIX and Microsoft Windows files, ABS uses gtar (aka tape archiver
or tar).

SYSTEM_BACKUPS
storage policy

USER_BACKUPS
storage policy

PROJECT_X
storage policy

PROJECT_Y
storage policy

ABS_CATALOG

PROJECT_CATALOG

CXO5022C
2-6 Overview

Overview
2.5 Media, Device and Management Services (MDMS)
2.5 Media, Device and Management Services (MDMS)
Media, Device and Management Services (MDMS), a fully-integrated component of ABS, per-
forms several services for ABS, including:

• Database Services - The ABS objects are managed by MDMS databases and are compatible
with the MDMS media management databases

• Interfaces - Both the MDMSView GUI and the CLI to all objects are managed by MDMS.
The old ABS DCL interface is obsolete, but still supported. The old ABS and MDMS GUIs
are not supported.

• Security Services - MDMS manages access rights and privileges to ABS and MDMS
objects, including individual access control on all objects. Security is discussed in Chapter
5.

• Media Management Services - MDMS supports a set of objects for the purpose of media
management for ABS. Media management services are described in Chapter 4.

2.6 User Interfaces
The interfaces for ABS are provided by MDMS, which performs all database management on
behalf of ABS. MDMS provides the following interfaces.

ABS provided its own CLI interface in versions prior to version 4. This interface is now depre-
cated, but is still provided for backward compatibility. The former ABS GUI, however, is not
supported.

2.7 Scheduler Options
MDMS allows the use of different scheduler interfaces. By default MDMS uses an internal inter-
face to the OpenVMS Queue Manager to schedule save and restore requests. MDMS supports
the following scheduler interfaces:

• INTERNAL (default) - uses an internal interface to OpenVMS Queue Manager

• EXTERNAL - uses DCL commands to interface with the OpenVMS Queue Manager by
calling a command procedure

• SCHEDULER - uses DCL commands to interface with the 3rd party scheduler product by
calling a command procedure; the pre-V3.0 ABS scheduler DECscheduler V2.1B may be
used with this option if you have a license for that product.

Interface Description

MDMSView GUI MDMS provides a graphical user interface (GUI) called MDMSView that
allows manipulation of all ABS and MDMS objects in an integrated GUI.
MDMSView provides several “views” of accessing ABS and MDMS informa-
tion, and is usable on OpenVMS Alpha systems (V7.3-2, V8.2 and V8.3),
OpenVMS I64 (V8.2-1 and V8.3) and any Windows system. See Chapter
6,User Interfaces for a description of MDMSView.

MDMS CLI (DCL) MDMS also provides a Command Line Interface (CLI), which is the Digital
Command Line (DCL) interface, for users who prefer this type of interface, or
for users whose OpenVMS systems cannot support the MDMSview GUI. See
Chapter 6,User Interfaces for a brief description of the CLI interface. This
interface is also described in its entirety in the MDMS Reference Guide.
 Overview 2–7

Overview
2.8 MDMS Objects
Note

The internal queue manager scheduler interface is the only scheduler interface avail-
able with the ABS-OMT license.

The scheduler interface is invoked when a save or restore request is created, you can either start
the request immediately or define a repetitive schedule.

The scheduler interface is used to:

• Automate and manage ABS jobs that run repeatedly, such as ABS save and even restore
requests.

• Capture events through a logging system, so you can generate accounting and historical
reports. This may vary depending on the scheduler interface.

• Execute all requests remotely as well as locally - transparently to the user.

2.8 MDMS Objects
This section summarizes the MDMS objects for media management. See Chapter 4, Media Man-
agement, for more detailed information on MDMS objects.

2.8.1 Domain

The MDMS domain encompasses all objects that are served by a single MDMS database. These
include physical resources such as nodes, jukeboxes, drives and volumes, and logical objects
such as media types, pools and magazines. The domain also encompasses all the users that
access and manage MDMS resources. A domain may encompass a single site location, or can be
geographically distributed, linked via Fibre Channel or a wide area network.

The MDMS domain has a single domain object, which contains:

• The default media type, onsite and offsite locations, protections and dates that are assigned
to new volumes by default

• The default OPCOM classes assigned to new nodes by default

• The type of scheduler to be used in the domain

• The system users to be notified when volumes are deallocated

• The request ID of the next MDMS request

• The mapping of low-level rights to high-level rights

• The level of access control to be assigned to the domain.

2.8.2 Drives

A drive is a physical resource that can read and write data to tape volumes. Drives may be of one
of three types:

• Jukebox - The drive is part of a robot-controlled jukebox, and random-access loading and
unloading is performed by the robot

• Stacker - The drive supports the automatic loading of a succession of volumes in sequential
access. Once the volumes are exhausted, operator intervention is needed to load new vol-
umes

• Standalone - The drive requires operator intervention for all loads and unloads.
2-8 Overview

Overview
2.8 MDMS Objects
Jukebox drives are associated with a jukebox, and require a drive number identifier if the juke-
box is controlled by MRD. Stacker and standalone drives are not associated with a jukebox: this
includes drives used in a stacker configuration that are actually in a physical loader.

MDMS supports a drive object for each drive to be managed by MDMS. The drive object
includes:

• The OpenVMS device name of the drive (this can be the same or different than the drive
name).

• The media types that the drive supports for both read-write and read-only operations

• The nodes and groups with direct access to the drive, including Fibre Channel access

• Flags associated with the drive

• The state of the drive

• Local and/or remote access to the drive

• The jukebox associated with the drive

2.8.3 Groups

The MDMS group object is simply a collection of nodes that have some common association.
You may define groups to represent OpenVMS clusters, a set of nodes that can access Fiber
Channel devices, or for any purpose whatsoever. Groups can typically be used in all commands
that support nodes. It is a convenient way to reference a long list of nodes. In commands that
support nodes and groups, it is possible to specify both for the command.

The only attribute that a group has is a list of nodes.

2.8.4 Jukeboxes

In MDMS, a jukebox is a generic term applied to any robot-controlled device that supports auto-
matic loading of volumes into drives. MDMS jukeboxes include:

• Small, single-drive loaders such as the TZ887 or the TLZ9L

• Large, multi-drive libraries with ports, slots and capabilities typically ranging from the tens
to the hundreds of volumes, such as the ESL9326

• Very large StorageTek (R) silos that may contains literally thousands of volumes and many
tens of drives

A jukebox object is associated with each jukebox, and contains the following fields:

• Control option - controlled by the SCSI-based MRD subsystem, or DCSC for certain silos

• For MRD jukeboxes:

– The OpenVMS robot name for the jukebox

– The number of slots in the jukebox

– The magazine option flag, and optional magazine topology

• For DCSC jukeboxes:

– The library, ACS and LSM identifiers for the jukebox

– The CAP sizes for the jukebox

• The location of the jukeboxes

• Access options for local and/or remote access to the jukebox
 Overview 2–9

Overview
2.8 MDMS Objects
• The threshold value for free volumes in the jukebox (before a warning is issued)

• The groups and nodes that have direct access to the jukebox, including access via Fibre
Channel

• The state of the jukebox

2.8.5 Locations

A location describes the physical location of other objects, and is used as a selection criterion for
allocating drives and volumes, and for placing tape volumes in a specific place. Locations can
exist in a hierarchy, and as such are considered compatible locations for allocation purposes if
locations share a common root in the hierarchy.

Locations only have two attributes:

• Parent location - The parent location in the hierarchy (a location need not have a parent
location)

• Spaces - A range of “spaces” to be used for storing volumes, also optional.

2.8.6 Magazines

A magazine is a logical object that contains a set of volumes that are to be moved as a group.
Magazines typically relate to a physical magazine that certain jukeboxes require in order to
move volumes in and out of a jukebox (for example, a TZ877 or TLZ9L). However, even for
jukeboxes requiring physical magazines, it is not a requirement to configure MDMS magazines
if you want to treat the movement of the individual volumes independently.

Magazines contain the following attributes:

• Slot count

• Placement

• Jukebox name, start slot or position

• Onsite and offsite locations and dates

When a volume is in a magazine, its placement and associated locations are those of the maga-
zine. Magazines can be scheduled to move onsite and offsite. In most cases, this means that all
the volumes in the magazine are moved onsite or offsite; the physical magazine itself usually
stays with the jukebox with a new set of volumes.

The use of magazines is not required.

2.8.7 Media Types

A media type is a logical object that describes certain attributes of tape volume media. Media
types are used as a major selection criterion for drive and volume allocation, and are used to
match volumes with compatible drives. Media types contain the following attributes:

• Density - A density value or keyword that identifies the density of the media. This value
must be one of the keyword values supported by OpenVMS. Density is used in initializing
volumes.

• Compaction - A flag indicating whether compaction is desired on volumes. Setting compac-
tion usually results in about twice as much data capacity for a tape volume.

• Capacity - The size of the media in MB (not used by MDMS).

• Length - The length of the media in feet (not used by MDMS).
2-10 Overview

Overview
2.9 Getting Started
2.8.8 Nodes

A node is an OpenVMS system in the MDMS domain that is running MDMS. Every node in the
domain must have a node definition, which describes the network transports and other informa-
tion applicable to that system. Node attributes include:

• Location of the node

• OPCOM classes to be used for OPCOM messages on the node

• Supported network transports and transport full names

2.8.9 Pools

A pool is a logical object that contains a set of volumes that can be allocated and used by a set of
authorized users. It is one way to separate volumes belonging to different organizations and
allowing only users of those organizations to use the volumes. Pool attributes include:

• Authorized users - A list of users in node::username format that are authorized to allocate
and use volumes in the pool

• Default users - A list of users in node::username format that are not only authorized to use
volumes, but that use volumes from this pool by default.

• Threshold - A minimum value of free volumes in the pool, below which an OPCOM warn-
ing message is sent.

A user need only be defined in one of the lists to be able to use volumes in the pool.

The use of pools is not required.

2.8.10 Volumes

A volume is a single piece of tape media that MDMS applications (ABS and HSM) use to store
tape-related data. Volumes contains many attributes that are used to describe the type of volume,
its placement and location, and dates for scheduling allocation and movement. Volume attributes
include:

• Media type and pool for the volume

• Placement and placement objects such as jukebox, slot, location, magazine

• Onsite and offsite locations and scheduled dates

• Allocation state, user and scheduled scratch date

• Formatting information

• Volume protection

• Counters

• Historical information dates

2.9 Getting Started
This section provides a simple example of how to configure a minimal ABS/MDMS domain and
create a save and restore request. Although most configurations are more complex than this, it
serves to illustrate how to use the MDMS configuration procedure and the default objects pro-
vided by ABS.
 Overview 2–11

Overview
2.9 Getting Started
Before creating save or restore requests, you should first configure the media management envi-
ronment. This includes the tape volumes, drives, jukeboxes and other media management
objects that you may want to use. The recommended way to do this is to run the MDMS config-
uration command procedure, which offers an online tutorial and help in defining the configura-
tion. During execution of this procedure, type “?” to get help on any question, and type “??” to
get help and (in many cases) a list of existing objects or possible values for answers to questions.
To invoke this procedure:

@MDMS$SYSTEM:MDMS$CONFIGURE

A complete example of running this procedure is provided in Appendix A.

Having completed the media management configuration, creating a save or restore request in
ABS can be very simple if you elect to use the default archives, environments and selection
objects. The minimum amount of information you need to specify for a save or restore request is:

• The name of the save or restore.

• The disks or files to be saved.

• The start time of the save.

ABS tries to determine the type of data being saved based on the format of the file specification
and assigns by default a relevant archive and environment. So, for example, a save request can
be specified and executed in a single DCL command as follows:

$ MDMS CREATE SAVE MY_SAVE/INCLUDE=DISK$USER1:[SMITH...]/START

This command creates a save called MY_SAVE, includes the file specification
DISK$USER1:[SMITH...] (all files), and starts the save immediately. MDMS determines that
this is a save of VMS files based on the file format, and assigns archive SYSTEM_BACKUPS
and environment SYSTEM_BACKUPS_ENV, and creates a default selection and schedule.
With this save definition, a default frequency of ONE_TIME_ONLY is assigned, and the save is
not scheduled for regular execution.

A restore can also be defined. For example, to restore the same files that were saved in
MY_SAVE, you can enter the following command:

$ MDMS CREATE RESTORE MY_RESTORE/INCLUDE=DISK$USER1:[SMITH...]/START

This command creates a restore called MY_RESTORE, includes the file specification
DISK$USER1:[SMITH...] (all files), and starts the restore immediately. MDMS determines that
this is a restore of VMS files based on the file format, and assigns archive SYSTEM_BACKUPS
and environment SYSTEM_BACKUPS_ENV, and creates a default selection and schedule.
With this restore definition, a default frequency of ONE_TIME_ONLY is assigned, and the
restore is not scheduled for regular execution.

Note

Define the logical referring to the disk name before executing the restore request. For
more information, see the note given in Section 3.5.8, “Destination (Restore Only)”.

Since these requests were defined with a frequency of ONE_TIME_ONLY, ABS will automati-
cally delete them after a default interval of 3 days after execution.

Of course, creating the backup environment to backup all data in your production environment
will involve more complex definitions, including creating your own archives, environments and
in some cases selections and schedules. Chapter 3, Saving and Restoring Data, describes all the
ABS objects in detail.
2-12 Overview

3
Saving and Restoring Data

This chapter expands upon the ABS Overview in Chapter 2 and describes saving and restoring in
detail by discussing the ABS objects, and the meanings, possible values and uses for all
attributes. For each object, the attributes are listed in alphabetical order for easy reference, but
related attributes are discussed together. The attributes are described without specific syntax or
instructions on how to manipulate them, but are named according to the qualifiers in the CLI and
attributes on the MDMSView GUI screens. For information on the syntax and semantic rules for
each object and attribute, refer to the MDMS Reference Guide.

All objects have an owner, and optional access control which limits access to the object. Since
these attributes are common to all objects, they are described in Chapter 6, Security, instead of
this chapter.

In addition, ABS supports inheriting attributes from one object to another when creating a new
object. For example, if you want to create a new save request SAVE2, but use most of the
attributes from another save request SAVE1, you can specify SAVE1 as the inherit attribute
when you create SAVE2. From there you can modify SAVE2 to define its unique characteristics.
This philosophy applies to all ABS and MDMS objects. You can even inherit restore requests
from save requests if you want to restore the same files as were previously saved.

Finally, all objects have a description attribute in which you can enter a text string to describe the
object. This attribute is not interpreted by either ABS or MDMS, so you can use it for any pur-
pose you see fit. By default, the description is blank.

The following sections discusses all seven ABS objects in detail.

3.1 Archives
Archives define the media type and characteristics about where backup data is stored. Each save
and restore uses exactly one archive, except that certain complex save and restores can use two
archives (see Section 3.3, Cataloging Existing Savesets). You can use a single archive for many
different saves and restores by simply referencing the archive in the save and restore request.
ABS defines four archives by default, which you can use in your save and restore requests as
needed:

• SYSTEM_BACKUPS - For system backups that are normally performed by a system
administrator at regularly scheduled times

• USER_BACKUPS - For backups performed by a non-privileged user to save or restore his
or her own data

• UNIX_BACKUPS - For backups of UNIX client data, normally performed by a system
administrator

• DISASTER_RECOVERY - For backups primarily designated for disaster recovery

Although these default archives are provided by ABS, you may modify them as needed to suit
your site’s operational environment. Alternatively, you can create your own archives and manip-
ulate the attributes as described in the following sections.
 Saving and Restoring Data 3–1

Saving and Restoring Data
3.1 Archives
3.1.1 Archive Name

This name is used to reference the archive in save and restore requests. There are no required or
ad-hoc conventions for archive names, so they can reflect their usage in your environment. How-
ever, there are ad-hoc conventions for environment names based on the archive name, so you
should restrict the archive name to 60 characters.

3.1.2 Archive Type

ABS supports two types of archive, which are hopefully self-explanatory:

• DISK - The archive data is stored on disk media, which can include optical disk. ABS
assumes that all disk media are online and mounted on the OpenVMS system before any
save or restore operation is executed. ABS does not perform any load/unload or mount oper-
ations on disk archives. When you specify disk archive type, the archive must contain a des-
tination attribute indicating the disk and directory location of the archive data.

• TAPE - The archive data is stored on tape media, and uses MDMS for media management
control of the media. When you specify tape archive type, the archive must contain a media
type (defined in MDMS) that defines the type of tape media to be used for the archive. Only
a single media type is supported. In addition, the archive may optionally contain a pool
specification (indicating a set of volumes reserved to users authorized for the pool) and a
location specification (used to allocate a drive).

3.1.3 Catalog

A catalog contains information about what data is stored in the archive and where it is stored.
Each archive uses exactly one catalog, although catalogs can be shared among different archives.
ABS defines a default catalog called ABS_CATALOG, which is assigned to all archives by
default if a different catalog is not specified. If you wish to define a different catalog for an
archive, then specify a catalog object name (not its location) in the catalog attribute of the
archive. For the archive to be useful, the catalog must be defined as a catalog object in MDMS.

An archive with a name of “DISASTER_RECOVERY” is the only archive allowed to have no
catalog associated with it and the save operation is therefore not catalogued (see Chapter 7, Pre-
paring For Disaster Recovery).

3.1.4 Consolidation

ABS supports the concept of consolidation criteria which determine when a volume set should
be retired from use in the archive and a new volume set used. ABS supports three types of con-
solidation criteria, of which none, one, two or all three can be applicable:

• INTERVAL - You can specify an interval as a delta time from the creation of the current vol-
ume set to the creation of the next volume set. The current volume set is retired if the con-
solidation interval is exceeded.

• SAVESETS - You can specify the maximum number of savesets that should reside on the
volume set. If this number would be exceeded, ABS retires the current volume set and allo-
cates a new volume set for the archive. There is an ANSI-imposed maximum of 10000
savesets in a volume set

• VOLUMES - A volume set can contain one or more physical tape volumes. You can limit
the number of volumes by specifying volumes on the consolidation criteria. If this number
would be exceeded, ABS retires the volume set and allocates a new volume set. There is an
ANSI-imposed maximum limit of 100 volumes in a volume set.
3-2 Saving and Restoring Data

Saving and Restoring Data
3.1 Archives
If you specify multiple consolidation criteria, ABS creates a new volume set when the first of
any of the defined criteria are exceeded. The default consolidation criteria is an INTERVAL of 7
days. If no consolidation criteria are specified, then ABS creates a new volume set when the
ANSI limits apply, or upon the first error writing to the volume set. This is not recommended as
you may create excessively large volume sets, and may have to split a volume set between onsite
and offsite (vault) locations. Consolidation criteria are only applicable to an archive type of
TAPE.

3.1.5 Destination

If you specified an archive type of DISK, you must enter a destination attribute for the archive,
or use the default of ABS$ROOT:[000000]. The destination contains the disk and directory loca-
tion of the data saved in this disk archive. When specifying destination, you should ensure that
the specified disk has enough free capacity to handle all data to be saved in this archive. ABS
does not monitor the disk for sufficient capacity. ABS clears this attribute if the archive type is
TAPE.

Also, if you have specified a logical name as part of the destination name, then ensure that before
the restore request is executed, the logical is defined as a concealed logical that is either defined
as a system-wide logical name or just has the physical device name before the restore request is
executed. If you do not want to use the logical name, then specify the physical device name fol-
lowed by the directory path as the destination for the restore request.

3.1.6 Drives

ABS allows you to enter a list of drives that can be used by save and restore operations to and
from this archive. This should be used only to restrict the drives that would normally be avail-
able for these operations for some reason. Normally, you can let ABS select drives for all opera-
tions based on media type and location, and so you do not need to specify the drives in the
archive. If you do specify drives, be aware that these drives apply to restores as well as saves.
Drives are only applicable to an archive type of TAPE.

3.1.6.1 Drive selection

When the drive list is specified in the archive class, the drive is allocated by ABS/MDMS for
operation as below:

1. Volume-set is not present in the archive class

ABS will allocate the first available drive and continues to select a volume matching the
selection criteria. If all the drives in drive list are not free then ABS will Indefinitely loop for
allocating the drives and wait for drive to be available.

2. When the volume set is present in the archive class and the required volume is present in:

– Slot - then ABS selects the first available drive from the drive list.

– Drive that is part of drive list in the archive class - In this condition the drive where the
volume is currently present will be used for save operation.

For example, if drive list consist of 2 drives A and B and if the required volume is present
in B, then drive B will be used for the save/restore operation even if drive A comes first in
the drive list.

3. Drive that is not a part of drive list - ABS will unload the volume from the drive and load the
volume in first available drive in the drive list.

Note

The above allocation algorithm is applicable only when drive list is specified in the
archive class.
 Saving and Restoring Data 3–3

Saving and Restoring Data
3.1 Archives
3.1.7 Expiration Date and Retention Days

ABS supports two alternative methods of specifying when an archive expires. These are:

• Expiration Date - A date given in OpenVMS absolute time that defines a specific future date
that the volume data will expire.

• Retention Days - The number of days following retirement of the volume set that the data
will be retained, after which time it will expire.

Either retention days or expiration date may be given, but not both. By default, ABS defines
retention days of 365, meaning that volume data is valid for one year after retirement of the vol-
ume set.

For an archive type of TAPE it defines the initial scratch date of the tape volume set. Once a vol-
ume has transitioned to FREE state and it has been re-used all catalog entries relating to the past
usage of this volume are deleted. You can change the expiration of the archive by setting a new
scratch date for the volume. Whenever data is added to the volume set a new scratch date will be
set if the expiration date extends beyond the old scratch date.

For an archive type of DISK it defines the time at which the on-disk saveset is deleted. At the
same time all catalog entries relating to that saveset are also deleted.

Expiration date and retention days are only applicable to an archive type of TAPE.

ABS supports save requests that sometimes perform full backups and sometimes perform incre-
mental backups. Under these circumstances, it is useful to use different volume sets with differ-
ent retention days or expiration dates for the fulls and the incrementals. To support this, ABS
allows you to specify two archives for save requests: the first applies to the full backups, and the
second applies to the incremental backups.

3.1.8 Location

A location is an MDMS object that defines the physical location of volumes, drives or juke-
boxes. The location is used as one of the selection criteria (along with media type) for allocating
a drive to load a scratch volume to extend the archive. If no location is specified for the archive,
ABS uses the default onsite location defined in the MDMS domain. This is the default. Location
is only applicable to an archive type of TAPE.

3.1.9 Maximum Saves

ABS supports multiple parallel save operations using a single archive, each operating on a dif-
ferent drive and volume set (archive type TAPE). To enable this feature, specify the maximum
number of parallel saves that are desired using the maximum saves attribute. Values can range
between 1 and 36, with 1 being the default. This attribute also applies to an archive type of
DISK, but without the implications of multiple drives and volume sets being allocated.

3.1.10 Media Type

Media type is an MDMS object that describes the type of tape media to be used in the archive.
Specify a media type that is defined within MDMS, or use the default domain media type. The
media type is used as a mandatory selection criterion (along with optional pool and location) for
volumes to be used in the archive. Media type is only applicable to an archive type of TAPE.

3.1.11 Pool

A pool is a logical MDMS object that relates a collection of volumes to a set of authorized users.
In this way, you can allocate a collection of volumes to certain users knowing that other users
cannot use volumes from the pool. Similarly, you can assign a pool to an archive, so that all vol-
umes used in the archive must be taken from the volumes that are in the pool. You can specify
3-4 Saving and Restoring Data

Saving and Restoring Data
3.2 Catalogs
only one pool per archive. If you do not specify a pool, then only volumes that have no pool
defined can be used for the archive (this is also known as the scratch pool).

3.1.12 Volume Sets

The volume sets attribute indicates which volume sets are currently being used by save requests
using the archive. There may up to the maximum saves number of volume sets currently being
used. These volume sets are those to which the next save operation will be written to the archive.
This attribute is normally maintained by ABS and you should not modify it unless there is a
pressing need to remove one or more of the volume sets from the list and let ABS allocate new
volume sets. Under no circumstances should you add volumes to the volume set list.

3.2 Catalogs
An ABS catalog contains historical information about ABS save operations. This historical
information includes the location of data that was saved using ABS. For this purpose, ABS pro-
vides a default catalog named ABS_CATALOG.

Some sites can operate efficiently using only ABS_CATALOG provided by ABS. However,
using additional catalogs can improve your ABS operations:

• Speed of record insertion

• Speed of lookup operations

• Segregation of saved data

• Regular catalog file maintenance

3.2.1 Catalog Name

This name is used to reference the catalog. There are no required or ad-hoc conventions for cata-
log names, so they can reflect their usage in your environment.

3.2.2 Catalog Node

Catalogs are node specific. You have to specify the MDMS node name where the catalog
resides. An empty catalog node name means the local node where the command was issued or
where the request executes. In a VMScluster, multiple nodes can share the same catalogs on a
common disk as long as they have direct access to the catalog files. During a save operation ABS
always accesses the catalog on the local node even though a different node name is specified in
the archive. During a restore operation the catalog lookup will be performed for the catalog at
the specified node. This allows to restore data that has been saved on another node.

3.2.3 Type

ABS supports four types of catalogs, which are hopefully self-explanatory:

• DISKS - This catalog type only stores information about save requests performed. No infor-
mation about individual filenames are stored in the catalog. The size of a DISKS type cata-
log is drastically smaller than the FILES catalog type. Save requests using this catalog type
must be of type FULL and only specify a disk name. Staging does not apply to these cata-
logs.

Selective restore can be performed from a DISK type of catalog using ABS.

To view information about saved disks use the /SAVE qualifier with the “SHOW CATA-
LOG” command. The show output lists the data saved, the volume ID and save set name
used.
 Saving and Restoring Data 3–5

Saving and Restoring Data
3.2 Catalogs
When a save request uses a DISKS type catalog, the following message is displayed in the
save request log file:

"Filenames will not be catalogued"

• FILES - The FILES type catalog stores all information about save requests performed and
all files saved. It allows individual file lookups and restores.

• SLS - The SLS type catalog is used only for the lookup of the files backed up by SLS. ABS
V4.0x and later versions do not adequately support the use of lookups and restoring of SLS
history files. ABS will only be able to restore the latest files that were backed up by SLS.

Note

For ABS to perform a lookup on the SLS History, the following conditions need to be
met:
1) Image SLS$SHR in the SYS$SHARE directory, and
2) the logical SLS$HIST_<catalog_name> for performing a lookup on the catalog of
SLS Type just as SLS does for the “STOR RESTORE command.

• VOLUME_SETS - The VOLUME_SETS type catalog stores all information like the FILES
type catalog. However, ABS uses individual files for each volume set. Catalog lookups take
slightly longer for VOLUME_SETS type catalogs compared to FILES type catalogs. But
VOLUME_SETS type catalogs avoid the constant growth of catalog files because the vol-
ume set specific file is deleted once the volume set has been re-used. A VOLUME_SETS
type catalog cannot be used for DISK archive types.

Note

In ABS V4.4, the existing lookup on Volume_Set type of catalog is enhanced to use the
date qualifiers effectively. This has significantly reduced the lookup time and
improved the performance. However, if you still want to use the previous Lookup fea-
ture, define the logical ABS_V40_LOOKUP System-wide. By default, this logical is not
set.

$ DEFINE/SYSTEM ABS_V40_LOOKUP 1

This user defined logical is specific to ABS version 4.4 and will be automatically
removed when ABS is uninstalled. In case you want to downgrade ABS, you need to
manually deassign this logical to free the space that it has occupied in the System table.

3.2.4 Directory

By default catalog files are created in ABS$CATALOG. Without modification ABS$CATALOG
points to ABS$ROOT:[CATALOG]. When creating a new catalog you can create the catalog
files in a different location by specifying a device and directory. You have to update the defini-
tion of ABS$CATALOG logical in ABS$SYSTARTUP.COM to include the new device and
directory solution in form of a search list.

Example 3–1 Adding a New Catalog Location

$ CREATE/DIRECTORY DKA100:[ABS_CATALOG]
$ DEFINE/SYSTEM/EXECUTIVE ABS$CATALOG ABS$ROOT:[CATALOG],-
DKA100:[ABS_CATALOGS]

This creates a new directory for catalog files and adds it to the ABS$CATALOG search list. The
same definition needs to be set in ABS$SYSTARTUP.COM.
3-6 Saving and Restoring Data

Saving and Restoring Data
3.2 Catalogs
If a “SHOW CATALOG/FULL” does not display a directory for a catalog it means the catalog’s
location is not included in the ABS$CATALOG search list.

3.2.5 Staging

A catalog that is setup for staging improves the performance of the save operation because the
catalog entry for a saved file is first written to a sequential disk file in ABS$CATALOG. Once
the backup operation has completed a separate process moves the entries from the staging cata-
log file to the final catalog which is specified in the archive associated with the save request.

The final catalog does not contain the information about the save operation until the staging pro-
cess has completed. If you request a backup operation and immediately look in the final catalog,
the entries may not be available, yet. The backup operation and the staging process must com-
plete before the currently saved files can be looked up in the catalog.

You can always modify the staging setting for an existing catalog. The use of staging is highly
recommended to improve your overall backup times.

The staging catalog file is created in the first location pointed to by logical name ABS$CATA-
LOG.

3.2.6 Catalog Save Entries

Save entries contain information about executing or executed save operations:

• Catalog Name - The name of the catalog

• Catalog Node - The name of the MDMS node where the catalog resides

• Date Archived - The date the save operation was performed

• Expiration Date - The original date the entry expires in the catalog (used only for archive
type of DISK)

• Source Node - The network name of the node where the saved data was located (UNIX and
Windows Files only)

• Include - The include file specification used

• Object Entries - Number of entries added to the catalog

• Archive - The name of the archive or, if the original archive no longer exists the previous
archive UID

• Environment - The name of the environment or, if the original environment no longer exists
the previous environment UID

• Save - The name of the save or, if the original save no longer exists the previous environ-
ment UID

• Save Type - Shows the type of save being performed

– all files with recording (R) - All files in a full incremental save with final recording of
the backup date

– all files (B) - All files in an incremental selective save

– all files (S) - All files in a selective save

– all files (0) - All files in an incremental save

– increment level n - All files modified between incremental save n and n-1

• Owner - The owner field of the archive being used

• Saveset Format - The format used in the saveset:
 Saving and Restoring Data 3–7

Saving and Restoring Data
3.2 Catalogs
– GTAR - UNIX gtar format

– NT_GTAR - Windows gtar format

– RMU_BACKUP - Oracle Rdb/RMU saveset format

– VMS_BACKUP - OpenVMS BACKUP saveset format

• Archive Type- DISK or TAPE

• Saveset Location -

– For archive type TAPE the list of volume IDs containing the saveset

– For archive type DISK the on-disk location of the saveset

• Saveset Name - The filename of the saveset

• Saveset Position - The tape mark offset of the beginning of the saveset on tape

• Status - The ABS status for the save operation

• Severity - The ABS severity level for the save operation

3.2.7 Catalog File Entries

File entries contain information about files which have been saved.

• Catalog Name - The name of the catalog

• Catalog Node - The name of the MDMS node where the catalog resides

• Data Select Type - The format of the entry name

– RDB_[Vnm_]_DATABASE - An Oracle Rdb database file

– RDB_[Vnm_]_STORAGE_AREA - An Oracle Rdb storage area

– UNIX_FILES - UNIX file specification

– VMS_FILES - OpenVMS file specification

– VMS_SAVESET - volumeID:saveset specification

– WINDOWS_FILES - Windows files specification

• Filename - The name of the entry

• Source Node - The network nodename where the entry was located

• Date Archived - The date the entry was saved

• Expiration Date - The original date the entry expires in the catalog (used only for archive
type of DISK)

• Creation Date - The date the entry was created on the source node

• Revision Date - The date the entry was last modified on the source node before being saved

• Owner - Owner information of the entry used on the source node

• Saveset Name - Copied from related save entry

• Saveset Location - Copied from related save entry

• Saveset Section -

– For archive type of TAPE the index into the list of volume IDs indicating the volume
which contains the start of the saved entry

– For archive type of DISK it is always 1
3-8 Saving and Restoring Data

Saving and Restoring Data
3.2 Catalogs
• Save Type - Copied from related save entry

• Status - Copied from related save entry

• Severity - Copied from related save entry

3.2.8 Improving Catalog Performance

Catalog files are RMS index-sequential files and as such need regular maintenance to avoid
unnecessary file growth and performance penalties. ABS provides a catalog conversion com-
mand procedure (“ABS$SYSTEM:ABS$CONVERT_CATALOG.COM”) that improves the tar-
get catalog update performance by doing a file-to-file conversion. By converting the target
catalogs, you improve catalog update time.

3.2.8.1 Catalog File Sizes

The ABS catalog files will grow as you continue to execute save requests. The sizes depend on
the number of files saved and the retention period used. For as long as the retention period has
not expired more entries will be added to the catalog. Once the retention period is reached the
ABS_CLEAN_CATLG_<node_name> batch job will remove expired entries from the catalog.
So, the more the files you save and the longer you want to maintain the archived data, the larger
the catalog files size.

Be sure to consider this information when creating catalogs and assigning retention values to
your archives. It may be best to create separate catalogs for each archive, if the retention period
is different. For example, you may create an archive called MONTHLY_SAVE, with a retention
period of one month. Create a catalog called MONTHLY_SAVE to be used by that archive. The
catalog size will grow for one month and then maintains its size.

3.2.8.2 Catalog File Maintenance

Run the conversion command procedure for each individual catalog on a regular basis. Catalogs
with more frequent delete operations should be converted on a monthly basis. See the logfiles
ABS$SYSTEM:ABS$CATALOG_CLEANUP.LOG;* for information on catalog file activities.
As a rule of thumb, the catalog must be converted if more than 10% of its records have been
deleted.

Example 3–2 Converting Catalog Files

$ @ABS$SYSTEM:ABS$CONVERT_CATALOG MyCatalog

This example converts all files for catalog “MyCatalog” by creating new copies of the files in the
same directory.

For additional improvement you can also move the target catalogs to a different disk by defining
a system level search list logical for ABS$CATALOG in ABS$SYSTARTUP.COM. The com-
mand procedure also allows you to move the converted files to a different disk or directory.

Example 3–3 Moving Catalog Files to New Location

$ @ABS$SYSTEM:ABS$CONVERT_CATALOG MyCatalog DKA100:[ABS_CATALOGS]

This example converts the files for catalog “MyCatalog” and places the new files in location
“DKA100:[ABS_CATALOGS”. Once the files have been copied over, you can add the new
location to the ABS$CATALOG search list. Rename the old catalog files to *.DAT_OLD and
verify that you can lookup information using the new files. Once the new catalog files are used
you can delete the old files.
 Saving and Restoring Data 3–9

Saving and Restoring Data
3.2 Catalogs
3.2.8.3 Catalog Cleanup

To clean expired entries from the catalog, there is a process that runs in the ABS$node batch
queue called ABS_CLEAN_CATLG_node. This process is scheduled to run once a day at 12:30
pm. The scheduled time is set in the
ABS$SYSTEM:ABS$START_CATALOG_CLEANUP.COM procedure. You may modify the
start time for the job or change the frequency of the job. If you do not have lot of expired entries
daily, you may want to run the job less frequently.

The log file generated by this cleanup process is called
ABS$LOG:ABS$CATALOG_CLEANUP.LOG. A lot of information about how many records
were read from the catalog, how many were deleted, and any errors are kept in this log. Most
errors seen should be reported to HP.

The catalog cleanup process cleans up all the catalogs when executed. We can also nominate the
catalogs that need to be cleaned up. Also, we can specify the interval in which this cleanup pro-
cess needs to run. This would be helpful:

1. If the cleanup process of all the catalogs takes a long time affecting the other daily jobs.

2. Cleanup of all the catalogs need not done always.

To nominate catalogs for cleanup:

– Stop the catalog cleanup process.

– Submit the cleanup COM file with the parameters as mentioned below:

$ @ABS$SYSTEM:ABS$START_CATALOG_CLEANUP catalog_names interval

catalog_names - Space delimited catalog names. Default: All Catalogs
Interval - "+n-"(n denoting the frequency at which the catalogs need to
be cleaned). Default: Every Day

Example:

$ @ABS$SYSTEM:ABS$START_CATALOG_CLEANUP "CATLG1 CATLG2 CATLG3" "+2-"

This command would nominate CATLG1,CATLG2,CATLG3 catalogs for cleanup and the
cleanup runs with the frequency of 2 days. i.e if submitted on 01-Nov-2001, then cleanup runs
on 03-Nov-2001 at 12:30, 05-Nov-2001 at 12:30 and so on.

Note

The cleanup of the VAOE file can be performed only after defining the
ABS_CATALOG_VAOE_CLEANUP logical System-wide.

$ DEFINE/SYSTEM ABS_CATALOG_VAOE_CLEANUP 1

3.2.8.4 Staging Catalog

With staging enabled for a catalog ABS writes the catalog entries to a sequential file during a
save operation. The save operation at the end creates a command procedure and executes it in a
separate process. This unpack process moves all entries from the staging catalog to the final cat-
alog. If all entries have been moved successfully the command procedure is deleted. If the
unpack process failed for some reason you can run the command procedure manually. To do this,
find the location and name of the command procedure in the logfile of the save request. Then
execute the command procedure on the node where the save request was running.
3-10 Saving and Restoring Data

Saving and Restoring Data
3.3 Cataloging Existing Savesets
Example 3–4 Staging Information in Save Log

21:21:07 COORD: Staging process PID : 2300143C
21:21:07 COORD: Staging catalog : ABS$CATALOG:ABS_CATALOG_4.STG;1
21:21:07 COORD: Staging procedure : ABS$CATALOG:ABS_CATALOG_4_1.COM;1
21:21:07 COORD: Staging logfile : ABS$LOG:ABS_CATALOG_4.LOG

In this example if the command procedure file “ABS$CATALOG:ABS_CATALOG_4_1.COM”
still exists it indicates that the staging unpack process has failed and you can manually execute
the command procedure to update the catalog.

Staging files by default are created in the first location pointed to by logcial name MDMS$CAT-
ALOG.

3.3 Cataloging Existing Savesets
You may catalog information from existing VMS Backup savesets on tape. This allows you to
lookup and restore files from savesets created outside of ABS.

Restrictions:

– The saveset must reside on tape

– Only VMS Backup savesets may be cataloged

– The tape volume must be defined in MDMS and allocated to ABS so that ABS may ref-
erence the volume

– A separate catalog and archive should be created for the saveset information

To catalog the savesets, create a SAVE request with the name of the tape volume and the saveset
name, or wildcard, separated by a colon as the selection (include) and a data_type of
VMS_SAVESET:

MDMS CREATE SAVE mysaveset_catalog/INCLUDE=tap001:mysaveset.sav/DATA_TYPE =
VMS_SAVESET/ARCHIVE=my_archive/ENVIRONMENT=my_env/START=01-MAY-2002

or

MDMS CREATE SAVE mysaveset_catalog -
/INCLUDE=tape001:*/DATA_TYPE=VMS_SAVESET/ARCHIVE=my_archive/ENVIRON-
MENT=my_env/START=01-MAY-2002

ABS will load the tape listed in the include specification, then do a BACKUP/LIST of the con-
tents, loading the information into the ABS catalog defined in the archive. The original date of
the saveset will be preserved in the catalog.

Recommended Implementation:

It is recommended that you create a new catalog to store this data. You should also create a new
archive to be used by these cataloging operations. This is mainly if you are cataloging copied
tapes, where the dates of the original and the copied savesets will be duplicates.

This will allow you to choose to restore from the original or copies by selecting the appropriate
archive for the restore request.

For example:

Several ABS save requests were saved on tape ABS000 using the SYSTEM_BACKUPS
archive. Saveset Manager (SSM) was used to copy that tape to another tape, TAP000.

Before cataloging the data, do the following:
 Saving and Restoring Data 3–11

Saving and Restoring Data
3.4 Environments
Create a new catalog called COPIED_TAPES. Create an archive called COPIED_ARCH, which
points to the catalog COPIED_TAPES.

Create a save request specifying TAP000:* for the include specification and give it a data_type
of VMS_SAVESET.

ABS will execute the request, cataloging the information into the COPIED_TAPES catalog.

To restore the data which is on ABS000 or TAP000, decide which copy you wish to restore and
specify the appropriate archive or catalog on the restore request. For example, to restore from the
original tapes, specify the SYSTEM_BACKUPS archive. To restore from the copy, specify the
COPIED_ARCH archive. The MDMS SHOW CATALOG/FILES command with the /FULL
qualifier will show the volumes used for the data.

Note

If the information about the original and copied savesets is put into the same catalog,
they will have exactly the same archived data. This could cause confusion when restor-
ing the data because ABS may not choose the tapes you wish to use for the restore. To
make it easier to restore, it is recommended to use a separate catalog (as described
above).

3.4 Environments
An environment describes the criteria under which save and restore requests execute, and
exactly one environment must be associated with each save and restore request. You can use a
single environment for many different saves and restores by simply referencing the environment
in the save and restore request. ABS defines five environments by default, which you can use in
your save and restore requests as needed:

• SYSTEM_BACKUPS_ENV - For system backups that are normally performed by a system
administrator at regularly scheduled times

• USER_BACKUPS_ENV - For backups performed by a non-privileged user to save or
restore his or her own data

• UNIX_BACKUPS_ENV - For backups of UNIX client data, normally performed by a sys-
tem administrator

• DISASTER_RECOVERY_ENV - For backups primarily designated for disaster recovery

• DEFAULT_ENV - Used by default in the event one of the other default environments have
been deleted

Although these default environments are provided by ABS, you may modify them as needed to
suit your site’s operational needs. Alternatively, you can create your own environments and
manipulate the attributes as described in the following sections.

3.4.1 Environment Name

This name is used to reference the environment in save and restore requests. There are no
required conventions for environment names, but ABS uses an ad-hoc convention that pairs
environments and archives. If you specify an archive of name FOO, then by convention there
should be a matching environment named FOO_ENV. You can choose to follow or ignore this
convention for your site.

3.4.2 Action

The action attribute specifies one of three possible actions to be performed on files saved using
this environment. Specify one of the following three actions:
3-12 Saving and Restoring Data

Saving and Restoring Data
3.4 Environments
• RECORD_DATE - Modify the BACKUP date to reflect the time that this file was backed
up; this is the required option if you intend to do incremental backups of this file, and is the
default value - supported for files of type VMS_FILES only.

• NO_CHANGE - Do not change the online file at all. If this option is specified, you will not
be able to perform incremental saves on this file.

• DELETE_FILE - This option is used when the backup is intended to be a long-term archive
and you wish the file to be removed from the online system. The file is only deleted on a
successful save operation.

Although RECORD_DATE is supported for VMS_FILES only, it remains the default for all data
types, and is simply ignored for the other types.

3.4.3 Compression

ABS supports the following types of compression for UNIX clients:

• No compression (default)

• UNIX Compression

• GZIP Compression

It is recommended that you either use the default UNIX environment (UNIX_BACKUPS_ENV)
or a single user-created environment for all your UNIX client saves, using a single type of com-
pression for all UNIX saves. If you mix compression types among your UNIX saves, you should
be very careful to assign the appropriate environment on any restore. If you specify the wrong
compression option on a restore, then ABS will not be able to restore the data. The default is no
compression.

3.4.4 Data Safety

The environment object allows you to specify one or more data safety features to ensure the reli-
ability of the data on your offline tape volumes. You can select one or more of the following
options:

CRC - Performs a Cyclic Redundancy check and writes it for each data block on a tape volume.
This enables detection of a bad block during a restore operation.

FULL_VERIFY - Rereads all saved data and compares to what is on disk during a save. This
option approximately doubles the time for the data copy phase of a save operation.

XOR - If the CRC check detects a bad block during a restore operation, the XOR mechanism
allows recovery of the block. This option is applicable only to data type VMS_FILES, for which
the backup agent is VMS BACKUP.

By default, all three options are enabled for maximum data safety.

3.4.5 Drive Count

The drive count specifies the number of tape drives to use for each save or restore using this
environment. If there are at least as many drives available as the drive count, that number of
drives are allocated for each save and restore request. If not, a reduced number of drives are allo-
cated.

The default and highly recommended value is 1. The number of drives may range from 1 to 32.

3.4.6 Prologue and Epilogue

The prologue and epilogue attributes in the environment allow you to invoke a command proce-
dure before and/or after the entire save or restore request. This allows you to perform pre-pro-
cessing and post-processing operations around the entire request. Compare the order of
 Saving and Restoring Data 3–13

Saving and Restoring Data
3.4 Environments
environment prologue and epilogue procedures operations to the individual save and restore pro-
logue and epilogue procedures, which are executed before and/or after each file or disk specifi-
cation in the save or restore request. The order of execution is illustrated below:

• Environment prologue

• Start save or restore request

• First disk/file specification prologue

• First disk/file specification save or restore operation

• First disk/file specification epilogue

• Next disk/file specification prologue

• Next disk/file specification save or restore operation

• Next disk/file specification epilogue

•

• End save or restore request

• Environment epilogue (only on successful completion)

ABS defines logical names that can be used within the prologue or epilogue command proce-
dure. These are defined in the process job table as follows:

You should enter an OpenVMS command of up to 80 characters in the prologue and/or epilogue
strings. For example:

@ABS$SYSTEM:ABS_ENV_PROLOGUE.COM

By default, there are no prologues or epilogues defined for an environment.

3.4.7 Retry Limit and Interval

The retry limit and retry interval options allows you to specify the number of times and how
often ABS should retry a object in a save or restore request before operator intervention is
required. Specify the following:

• Retry Limit - The number of retries (excluding the first attempt) to attempt before activating
the notification options. A value of zero means no retries. You can also specify no limit,
which means retries will be performed until the request either succeeds, or is manually
stopped.

Table 3–1 Logical Names Available to Environment Prologues and Epilogues

Logical Name Meaning

ABS_SAVE_REQUEST_NAME Name of the save request

ABS_RESTORE_REQUEST_NAME Name of the restore request

ABS_STORAGE_CLASS Name of the archive

ABS_EXECUTION_ENVIRONMENT Name of the environment

ABS_NODE_NAME Execution node name

ABS_OUTPUT_DEVICE The name of output device, or
devices, used by the save or restore
request.
3-14 Saving and Restoring Data

Saving and Restoring Data
3.4 Environments
• Interval - The interval between retry attempts, expressed as a delta time. The default retry
interval is 15 minutes.

Each time a retry attempt is made, ABS generates a warning message. If you wish to see the
warning messages, select the warning option in the when attribute for notification.

3.4.8 Links Only and Span Filesystems

For UNIX clients, ABS provides the option to either backup UNIX symbolic links only, or to
follow the UNIX symbolic links and backup up the data as well. The default is to backup the
symbolic links only (not the data).

In addition, ABS allows you to backup only the root file system (such as the disk the root direc-
tory resides on) or an entire file system if the filesystem spans physical devices. The default is
nospan filesystems, which copies the root file system only.

Both attributes apply to data type UNIX_FILES only.

3.4.9 Listing Option

The listing option allows you to specify the type of listing generated for save and restore requests
using this environment. Specify one of the following options:

• NONE - Does not generate a listing file

• BRIEF - Generates a brief listing file

• FULL - Generates a detailed listing file

If not specified, NONE is the default option.

3.4.10 Lock

ABS allows you to specify what a save request should do when data usage conflicts occur by
means of the lock attribute. If you specify lock, ABS saves the data even if other applications
have the data locked for write access. If you specify nolock ABS does not save the data if other
applications have the data locked for write - this is the safer approach. If you specify lock, it is
possible that the data you save is inconsistent, as the other application may be writing to the file
during the actual save operation. Use lock with caution. The default is nolock.

3.4.11 Notification

ABS uses the notification attributes in the environment to determine who, how and under what
circumstances users are notified of ABS events during save and restore operations. ABS sup-
ports notification using mail, OPCOM or both. You can specify up to 32 separate notification
options in each environment, using the following attributes:

• MAIL - Specifies one or more mail users to be notified on certain types of event; specify
one or more OpenVMS mail usernames (including node names as needed).

• OPCOM - Specifies one or more OPCOM classes to be notified on certain types of events -
specify one or more OpenVMS OPCOM classes (e.g. TAPES) to be notified - notification
will be directed to the (execution) node(s) specified in the save or restore request.

• TYPE - Indicates the level of information given. Select one of the following:

– BRIEF - Contains only basic information (default)

– NORMAL - Contains a moderate amount of information

– FULL - Contains the maximum amount of information

• WHEN - Indicates when the notification should occur. Choose one or more of the following:

– START - Sends notification at the start of a save or restore request
 Saving and Restoring Data 3–15

Saving and Restoring Data
3.5 Saves and Restores
– COMPLETE - Sends notification at the completion of a save or restore request with any
status (success or failure)

– WARNING - Sends notification if the request completes with a warning, error or fatal
status

– ERROR - Sends notification if the request completes with an error or fatal status

– FATAL - Sends notification if the request completes with a fatal status

You associate a TYPE and WHEN for each MAIL or OPCOM option provided. If you do not
specify a TYPE and/or WHEN, a notification option acquires a TYPE of BRIEF and a WHEN of
COMPLETE.

If you specify no notification options, then by default ABS sends a brief OPCOM message to
class TAPES on completion of every request executed under the environment.

3.4.12 Profile

ABS allows you to specify the user name, node name, cluster name, rights and privileges under
which save or restore requests in the environment will execute. ABS supports three main options
for username:

• ABS - This option specifies that all save and restore requests execute in the context of the
ABS user (and account). You should not change the cluster, nodes, rights or privileges with
this option, otherwise the saves and restores may not execute correctly. This is the default
option, and is recommended for all system backup operations. It is also the required option
for both UNIX and Windows client operations.

• <REQUESTER> - This option (including the angle brackets) instructs ABS to run associ-
ated save and restore requests under the user profile of the associated save or restore request.
The save and restore user profile (which is not normally displayed and not is changeable) is
that of the user who created the save or restore request. This option should be used for user
backups. With this option you should not adjust node or cluster, but you can manipulate
rights and privileges if the user’s normal rights and privileges are not sufficient to run ABS
save and restore requests.

• Other user - This option instructs ABS to run associated save and restore requests under the
profile of a third user (not the save/restore creator or ABS). With this option, you can
manipulate rights and privileges if the user’s normal rights and privileges are not sufficient
to run ABS save and restore requests. In addition, you should also define node and/or cluster
to uniquely identify the user in the domain. Wildcard node and cluster names are supported.

It is recommended that you only specify a user profile for user backups. All other backups
should run under the default ABS user profile.

3.5 Saves and Restores
The purpose of a save request is to backup data from primary online disk storage to either alter-
native disk or optical storage, or to tape storage. Saves are typically performed on a regular basis
to provide protection in the event of a disk hardware failure, data corruption or deletion, or site
disaster. Saves can also be used for archiving data that must be kept for a relatively long time for
business purposes, but does not need to be online.

The purpose of a restore request is to return data from tape or alternate disk or optical storage
back to primary online storage. In most cases, restores are performed after a disk hardware fail-
ure or user file corruption or deletion - these are usually one-time events. However, sometimes it
is necessary to bring archived data online, and restores (perhaps scheduled restores) can be used
for this purpose also.
3-16 Saving and Restoring Data

Saving and Restoring Data
3.5 Saves and Restores
ABS models save and restore requests in a similar fashion so in most cases the attributes for one
are applicable to the other (exceptions are noted). The main difference is the direction of data
transfer between disk and tape storage. As such, we shall discuss saves and restores in a single
section.

You create each save or restore with a unique name, and associate a single archive and a single
environment with it. Under certain circumstances, you can associate two archives with save
requests. In addition, you implicitly create a schedule with each save request, and specify disks
or files to save in objects called selections. As such each save or restore request is related to
other ABS objects as shown below:

Figure 3–1 Relationships Between ABS Objects

The following sections describes the attributes of save and restore requests.

3.5.1 Save Name or Restore Name

You must assign a unique name to each save and restore request, which is used as the only
method of referencing the request. There are no required conventions associated with save and
restore names. However, in previous ABS versions, the names could be generated automatically
so you might see names that are a combination of the creation date of the request and a generated
unique identifier (UID) if you are converting from pre-V4 ABS. For version V4 and later, ABS
almost always references saves and restores by name rather than UID, and ABS no longer shows
UIDs by default.

3.5.2 Archive

Each save or restore requests is associated with one or two archives, which contain information
about where the backed up data is stored. The two archives are for those requests that involve
both full and incremental operations: the first archive applies to the full operations and the sec-
ond applies to the incremental operations. In this way, fulls and incrementals can reside on dif-
ferent volume sets with their own retention days or expiration dates. In other types of request,
only one archive is used.

If you do not specify an archive, ABS chooses SYSTEM_BACKUPS.

3.5.3 Base Date, Start Date and Skip Time

The base date is the date and time that you wish the request to first execute on a regular basis.
The base date is used for two purposes:

1 Environment

1 Schedule

1-2 Archives
1 Save or
Restore

1-24
Selections
 Saving and Restoring Data 3–17

Saving and Restoring Data
3.5 Saves and Restores
• Defining the date and time to be used as a basis for scheduling - all scheduling intervals are
based on both the date portion and time portion of the base date, and anniversaries of the
base date at intervals defined by the frequency attribute.

• Defining the basis for full versus incremental saves for complex frequencies such as daily-
full-weekly, log_2 and log_3. The base date and appropriate anniversaries of the base date
define the date of the full saves.

Unless you want to change the scheduling or save type basis for the request, you would not
change the base date. As such, the base date will remain a date in the past. Compare this to the
start date, which specifies the next start date and time for the request. The start date is updated
whenever the request is run to reflect the next time it is scheduled, or NONE if it is not scheduled
again.

When a request is first created, and you specify only one of the dates, both dates are set (i.e. the
next start date is the base date). By default, neither a base date or start date are supplied so the
request is not scheduled for execution.

You can use the start date and skip time to request a one-time special, or non-scheduled, execu-
tion of the request. For example, assume that the normal scheduled time for a request is 23:00, as
specified in the base date. However, you know that this is a particularly busy night and you want
to start this request for tonight only at 21:00 instead. You can do this by setting the start date to
21:00. However, when the request is rescheduled, it will be rescheduled to the next iteration of
the base date, or 23:00 the same day. You probably do not want this, so to avoid it you can set the
start date together with a skip time to avoid running the request twice. The skip time is an exclu-
sion time (expressed as a delta time) from the specified start date in which the request will not be
rescheduled: normally you can set this to one day to avoid running the request twice in the same
day. The following table shows some examples of base date, start date and skip time definitions
based on a daily frequency:

When you specify a skip time, ABS saves it in the database until the request is next rescheduled.
When the rescheduling takes place, the skip time is applied to the calculation, then cleared from
the database. If you set a skip time and do not see it in the request, then it has already been
applied to the next start date.

3.5.4 Before Date, Since Date and Date Archived (Restore Only)

When restoring files, you can choose a specific iteration of the files based on their archive date -
that is, the date that they were saved in the archive. If you know the exact date archived, use the
data archived attribute. If you know only an approximate date archived, use the before or since
attributes to specify a range of dates. So, for example, if you wish to restore a file as it existed in
the first week of January, you can specify a before date of the 8th January (at midnight), or a
since date of 1st January (at midnight). When determining appropriate before or since dates, you
should probably lookup the files in the catalog before requesting a restore, so that you can spec-
ify before and since dates that uniquely identify a single iteration of the file to restore.

Table 3–2 Use of Base Date, Start Date and Skip Time

Base Date Start Date Skip Time Next Start

23-Aug 23:00 10-Sep 21:00 None 10-Sep 23:00

23-Aug 23:00 10-Sep 21:00 1-00:00:00 11-Sep 23:00

23-Aug-23:00 10-Sep-23:00 2-00:00:00 12-Sep 23:00
3-18 Saving and Restoring Data

Saving and Restoring Data
3.5 Saves and Restores
The before and since dates in the restore apply only to the archive date of the file. They are not
related to the before and since dates in the selection object, which refer to files’ online dates that
are maintained by OpenVMS.

3.5.5 Catalog (Restore Only)

On a restore, you can specify a catalog name instead of an archive name if you know the name of
the catalog from which to locate the restore information, and do not know the name of the
archive. Normally, however, you would specify the archive under which the data was saved
rather than the catalog.

3.5.6 Include, Exclude, Data Type and Source Node

One of the more obvious attributes of a save or restore request are the file names, disk names
path names or database names that you wish to save or restore. There are two options for speci-
fying these names in a save or restore request:

• In an INCLUDE specification - You can specify the names directly in the save or restore
request in an INCLUDE specification. You can specify multiple disks and/or files in a
comma-separated list with the restriction that all disk and file specifications relate to a sin-
gle data type (for example, VMS files). If you wish to mix file types in a single save or
restore request (for example, VMS files and Windows files), then you must use the second
option.

Note

In case the include specification in the Save request had a directory tree structure, then
to maintain the same during the Restore operation, you must specify the wildcard “*”
in the include specification of the Restore request.
Example: /Include = TPRD:[TPRD.APPFILES*]*.*;*

If you do not use the wildcard “*” or specify a wildcard other than “*” in the include
specification, then all the files are automatically restored to the root directory.
Examples:
/Include = TPRD:[TPRD.APPFILES]*.*;*
/Include = TPRD:[TPRD.APPFILES%]*.*;*

• Using SELECTIONS - With this option, you create selection objects directly using the
MDMSView GUI or the CLI, specify the appropriate include specifications, then associate
the selection object(s) with the save or restore. You can associate multiple selection objects
with any save or restore request as long as the total number of disk, file, path or database
specifications in all the selection objects does not exceed 24.

When you specify disk, file and database names by including them in the save and restore
request, then you are effectively creating a default selection object. This selection object has the
same name as the save or restore, with the suffix “_SAVE_SEL_DEL” or “_REST_SEL_DEF”
respectively. You can specify the following attributes directly in the save or restore request for
inclusion in the default selection:

• INCLUDE - A list of disks, files, paths or databases to include in the save or restore.

• EXCLUDE - A list of files to exclude from the save or restore that would otherwise have
been included according to the include specification. This option applies to data type VMS
FILES only

• DATA TYPE - The type of data to be saved or restored - select one of the following:
 Saving and Restoring Data 3–19

Saving and Restoring Data
3.5 Saves and Restores
– VMS Files - Applicable to VMS files. If only a disk is selected, a FULL backup of the
entire disk is performed. If directory and file specifications are specified, then a
SELECTIVE backup of files is performed.

– Oracle Rdb Database Options - These options (which are version-number specific)
specify that you wish to back up an entire Rdb database using the RMU backup utility.
In this case, specify the name of the Rdb database files.

– Oracle Rdb Storage Area - These options (which are version-number specific) specify
that you wish to back up selected storage areas of an Rdb database. In this case specify
both the database file name(s) and selected storage areas.

– UNIX Files - This option applies to saving or restoring UNIX files on a client node.
Enter a filesystem name in the format “/usr/...” to the level of granularity you want.
With this option you must specify a SOURCE_NODE, which is the name of the UNIX
node on which the online data resides.

– Windows Files - This option applies to saving or restoring Windows files on a client
node. Enter a file pathname starting with the device (for example: C:\Windows\...” to
the level of granularity you want. With this option you must specify a
SOURCE_NODE, which is the name of the Windows node on which the online data
resides.

– VMS Saveset cataloging - This option applies to cataloging existing VMS Backup
saveset from tapes. Enter the tape name followed by a colon (:) and the saveset name
(or wildcard). See Section 3.3 for more information on this functionality.

• SOURCE NODE - This attribute applies to data types UNIX FILES and WINDOWS files
only, and specifies the name of the node on which the file data resides. For other data types,
the node is specified through the nodes and groups attributes in the request.

The following table shows examples of the appropriate file, disk, path or database names that are
valid for each data type:

Table 3–3 Disk, File, Path and Database Specification Formats

Data Type Examples Case Sensitive

VMS Files 1DUA420: (full disk, physical name)
DISK$USER1: (full disk, logical name)
DISK$USER1:[SMITH...]*.*;* (selective)
DISK$USER1:[SMITH]LOGIN.COM;3 (file)

Note: If the include specifications having
“DISK$USER1” are for the restore requests,
then the logical “DISK$USER1” referring to
the disk name must be defined before execut-
ing the restore request. For more information,
see the note given in the Section 3.5.8 “Desti-
nation (Restore Only)” .

No

Oracle Rdb Databases DISK2:[USER_RDB]ACCOUNTS.RDB
Do not specify a version number.

No
3-20 Saving and Restoring Data

Saving and Restoring Data
3.5 Saves and Restores
Note

Wildcards are not allowed in the include specification for WINDOWS_FILES and
UNIX_FILES data type in a save request.

If you prefer to use selection objects directly (which enable you to specify additional selection
criteria), then create a selection as shown in Section 3.3.3, then include the selection in the
SELECTIONS attribute in the save or restore request. You can include up to 24 selections in a
save or restore request with the caveat that a maximum of 24 disk, file or database file specifica-
tions (in total) are supported in a single save or restore request.

3.5.7 Delete Interval and Keep

Some saves and most restores are intended to be run only once, and have a frequency of ONE
TIME ONLY. With this in mind, ABS automatically deletes such requests after a defined interval
after the request has executed. This interval is the delete interval and can be customized for each
save and restore request. If not specified, all ONE TIME ONLY requests are deleted approxi-
mately 3 days after execution: the actual delete is performed by a daily scheduled activity which
runs at a certain time every day. If the frequency is something other than ONE TIME ONLY,
ABS does not automatically delete the request. If the delete interval is set to NONE, then the
request is deleted the next time the scheduled activity runs after execution of the request.

If you do not wish to have these requests automatically deleted, then set the keep attribute. This
flags the request to be kept indefinitely and clears the delete interval.

3.5.8 Destination (Restore Only)

ABS allows you to restore data to a different disk, directory, file system or pathname from where
the data was saved. This is useful if you wish to make additional copies of data from the archive.
If you wish to restore to a different location, enter the disk, directory, file system or pathname in
the destination attribute of the restore. If not specified, the data is restored to the original source
location of the data.

Oracle Rdb Storage Areas DISK2:[RDB]ACCOUNTS.RDB/INCLUDE
=BALANCES (save)
DISK2:[RDB]ACCOUNTS.RDB
/AREA=BALANCES (restore)
Do not specify a version number - the include
syntax is required, even from the GUI. If
entered from the CLI, you must enclose the
specification in quotes.

No

UNIX files /usr/smith/
If entered from the CLI, you must enclose
UNIX specification in quotes.

Yes

Windows files C:\WINNT\SMITH\
If entered from the CLI, you must enclose
Windows specifications in quotes.

No

VMS saveset cataloging tape_name:saveset_name No

Table 3–3 Disk, File, Path and Database Specification Formats

Data Type Examples Case Sensitive
 Saving and Restoring Data 3–21

Saving and Restoring Data
3.5 Saves and Restores
Note

If a logical is used to specify the disk name, which is part of the destination specified
for the restore request (the location where the data is restored), then ensure that the
logical is defined before executing the restore request.

If the destination is not exclusively provided for the /DESTINATION qualifier, then
the restore request considers the include specification path as the default destination.

If the logical is not properly defined, then the restore request fails displaying the
“NO_SUCH_DEVICE” error.

3.5.9 Environment

The environment attribute specifies an environment object name for this request. An environ-
ment contains attributes relating to how the request is executed. For example, an environment
specifies data safety options, notification options and user profile. If not specified, the environ-
ment SYSTEM_BACKUPS_ENV is selected if available, otherwise DEFAULT_ENV is selected.

3.5.10 Frequency and Explicit Interval

ABS supports very flexible options for scheduling save and restore requests, both using the
internal MDMS scheduling options and using a third part scheduler. The scheduling options can
be divided into three main categories:

• Standard - ABS provides a list of standard options that you can specify, and the scheduling
information is applied to the schedule object automatically. Standard options are supported
by both internal MDMS scheduling and an external scheduler product. Standard options are
all those that are neither custom or explicit.

• Custom - This option allows you to customize the schedule for the request if the standard
options are not sufficient. For example, if you want to run the request every second Sunday
in January, April, July and October, then the custom option can do this. You specify CUS-
TOM as the frequency, then modify the schedule object for the request directly. This option
is applicable to internal MDMS scheduling only.

• Explicit - This option also allows you to customize your schedule, but this time with an
external scheduler product. You specify EXPLICIT as a frequency, then enter a string into
the EXPLICIT INTERVAL attribute. This attribute is a string that can be understood by the
external scheduler product specifying the desired frequency. Alternatively, you can use the
user interface of the external scheduler product to specify the frequency of the request. This
option is applicable only to external scheduling options.

Select from one of the following frequencies:

• ONE TIME ONLY - Executes the save request one time only according to the option speci-
fied for Start Date.

After the save request has been executed and the delete interval (default approximately 3
days) have passed, ABS deletes the job from the database (including any external scheduler
database). This is the default frequency if none is specified in the request.

• ON DEMAND - This option executes the save request according to the option specified for
Start Date. The difference between One Time Only and On Demand is that ABS does not
delete the request from the database.

DAILY - Executes a save request once per day according to the option specified for Base
Date.
3-22 Saving and Restoring Data

Saving and Restoring Data
3.5 Saves and Restores
• WEEKLY FULL, DAILY INCREMENTAL (Saves only) - This option enables you to cre-
ate a single save request that executes a full backup operation once per week on the day
specified in the Base Date, and an incremental backup operation for each subsequent day
after the full backup operation is successful. ABS performs the full backup operation on a
fixed day of the week during the 7-day cycle.

The Weekly Full/Daily Incremental Process:

For example, if the save request starts the full backup operation on Monday, ABS will
always perform the full backup operation on Monday for that particular save request. This
happens even if some of the subsequent incremental backup operations fail.

Example A:

If that full backup operation fails, the cycle is repeated until a successful, full backup opera-
tion is achieved. ABS considers success and qualified success as a successful completed
operation. ABS considers all other status as a failed operation.

Example B:

– If you are manually setting up your schedule to skip special days, ABS skips the next
level of an incremental backup operation. In Example B, ABS skips Sunday and does

Day Type

Monday Full

Tuesday Level 1

Wednesday Level 2

Thursday Level 3

Friday Level 4

Saturday Level 5

Sunday Level 6

Monday Full

Day Date and Time Run Type Result

Monday 31-MAR-1997 02:00 Full Failure

Tuesday 01-APR-1997 02:00 Full Failure

Wednesday 02-APR-1997 02:00 Full Success

Thursday 03-APR-1997 02:00 Level 3 Success

Friday 04-APR-1997 02:00 Level 4 Failure

Saturday 05-APR-1997 02:00 Level 5 Success

Sunday 06-APR-1997 02:00 Assume skipping this day using a 3rd
party scheduler

Monday 07-APR-1997 02:00 Full Success
 Saving and Restoring Data 3–23

Saving and Restoring Data
3.5 Saves and Restores
not perform the Level 6 incremental backup operation. ABS resumes the full backup
operation again on Monday, and the schedule once again repeats itself.

– Notice also in Example B that ABS repeats the full backup operation until a successful
full backup operation is achieved on Wednesday. If one of the incremental backup oper-
ations fail, ABS skips to the next level of the incremental backup operations. Unlike
repeating the full backup operation, ABS does not repeat the same level of incremental
backup operations during the 7-day cycle.

– In the Example B, the Level 4 incremental backup operation failed on Friday. On Satur-
day, ABS resumes with a Level 5 incremental backup operation. However, the contents
of the incremental backup operations are correct because ABS will back up all new or
modified files since the last successful full backup or the last successful lower level
incremental backup operation.

– The save log file will contain the following backup command issued by ABS for Satur-
day, 05-APR-1997:

– $ BACKUP/.../SINCE=”03-APR-1997 02:00:00.00”

– Because the last successful lower level incremental backup operation was performed on
03-APR-1997, all changes to any file since the date and time specified in the BACKUP
command are included in the backup operation.

• WEEKLY - Executes the save request once per week according to the date and time speci-
fied for the start time.

• BIWEEKLY - Executes the save request once every two weeks according to the date and
time specified for the start time.

• MONTHLY - Executes the job the first time on the date and time specified in the start time
attribute. Subsequent jobs are scheduled on the first day of each month.

• QUARTERLY - Executes the job the first time on the date and time specified in the start
time attribute. Subsequent jobs are scheduled to execute on the first day of the quarter (3
month period).

• SEMI_ANNUALLY - Executes the job the first time on the date and time specified in the
start time attribute. Subsequent jobs are scheduled to execute on the first day of the month
every 6 months and 12 months.

• ANNUALLY - Executes the job the first time on the date and time specified in the start time
attribute. Subsequent jobs are scheduled to execute every 12 months.

• LOG-2 (Saves only) - ABS executes a full backup operation on day 1, and an incremental
backup operation on day 2. On day 3, ABS executes an extended incremental backup opera-
tion. An extended incremental backup operation backs up any file modified since the last
full or extended incremental backup operation.

• LOG-3 (Saves only) - ABS executes a full backup operation on day 1, and an incremental
backup operation on days 2 and 3. On day 4, ABS executes an extended incremental backup
operation. An extended incremental backup operation backs up any file modified since the
last full or extended incremental backup operation.

Advantages of Log-n backup operations:

Performing Log-n backup operations require less restore operations to fully restore a lost or cor-
rupted disk volume. The higher the number of Log-n, the less restore operations you need to per-
form. Log-n backup operations are configured on a 32-day schedule, as shown in the examples
below:
3-24 Saving and Restoring Data

Saving and Restoring Data
3.5 Saves and Restores
Figure 3–2 Complex Backup Schedules

• CUSTOM - This option allows you to define a specialized frequency by manipulating the
associated schedule object directly. In this way you can define more flexible scheduling fre-
quencies than are offered by the standard options. If you specify CUSTOM but do not mod-
ify the schedule object, then the default custom frequency is daily. This option applies only
if internal MDMS scheduling is enabled (scheduler options INTERNAL and EXTERNAL).

• EXPLICIT - This option enables you to submit the save request using a specific scheduler
interval. If you select Explicit, you must enter a scheduler time format valid for the sched-
uler being used in the EXPLICIT INTERVAL attribute. This option applies only if a third-
party scheduler is being used (scheduler options SCHEDULER).

• NEVER - Never submits the save request and does not call the scheduler to create a job. For
example, you may need to create one or more save requests before you determine their
schedule. To submit the save request, modify the save request and change the scheduling
option.

Depending on the selected scheduling option and the use of a 3rd party scheduler product,
the Explicit Interval option allows to specify more flexible intervals. The Explicit Interval is
passed as a string to the scheduler in use. Consult your scheduler’s manual for more infor-
mation.

3.5.11 Incremental

Every save or restore request can be flagged as an incremental operation or a non-incremental
operation. An incremental operation saves or restores files based on a previous operation - either
a full operation or another incremental operation. For example, you could define a save request
that performs a full disk save on Sunday, and an incremental save request that performs incre-
mental saves on Monday through Saturday. The incremental saves will only save files that have
been created or modified since the previous save (whether full or incremental). Restores can be
performed in a similar fashion.
 Saving and Restoring Data 3–25

Saving and Restoring Data
3.5 Saves and Restores
By default, saves and restores are not flagged as incremental. If you wish to define an incremen-
tal save or restore, then set the incremental attribute.

It is important to point out that if you execute an incremental save 127 times in a row without an
intervening FULL save, then the 128th “incremental” save will actually be a full save. This rule
actually applies to each individual file, disk, path or database specification within the save
request, and as such, it is possible for the various files, disks, paths or databases within a single
save request to be backed up at different incremental levels, or have a mixture of fulls and incre-
mentals. As such, it is recommended that you intersperse a non-incremental (full) save at least
once a week to avoid unexpected full backups on saves/restores marked incremental and to
reduce the restore time required with a large number of incrementals. If you are mixing FULL
and INCREMENTAL save requests, use the same catalog for both save requests so that the
FULL catalog entry will be found and used as a base for the incrementals.

3.5.12 Nodes and Groups

ABS always performs save and restore operations on an OpenVMS execution node, under the
control of the ABS coordinator process. Only one execution node actually executes any particu-
lar save or restore request at a particular time, but you can specify a list of compatible nodes
using either the nodes or groups attributes. At execution time, the node list or group list is
scanned in order to determine the execution node, and ABS will attempt to schedule the opera-
tion on the first such node. If ABS fails to establish a connection to that node, it will try the next
node on the list, and so on until the request is successfully submitted.

For data types VMS files and Oracle databases of all types, the execution node is also the node
where the data resides. Therefore, all execution nodes or groups must have access to the data
being saved or restored. For data types UNIX files and Windows files, the execution node is the
node running the ABS coordinator process, not the UNIX or Windows node on which the data
resides: that node is specified by the SOURCE NODE attribute in the save or restore (or selec-
tion).

If you wish to enter nodes individually, enter a comma-separated list of nodes in the NODES
attribute or select a list of nodes from the GUI. Enter the MDMS node object name (which
should be the same as the DECnet Phase IV name if DECnet is running) - do not specify the
TCP/IP name or DECnet Phase V fullname.

MDMS supports the notion of groups, whereby you can associate a list of nodes which have
something in common (for example, nodes in a cluster) into a group, and simply reference the
group name. In this case, you can simply enter one or more group names in the GROUPS
attribute.

The NODES attribute and GROUPS attribute are mutually exclusive - you have to choose which
one to enter.

If you enter neither nodes nor groups, then ABS enters the node from which the save or restore
was created in the NODES attribute.

3.5.13 Prologue and Epilogue

The prologue and epilogue attributes in the save or restore request allow you to invoke a com-
mand procedure before and/or after each disk, file, path or database specification in the request.
This allows you to perform pre-processing and post-processing operations around individual
save or restore iterations. Compare the order of save and restore prologue and epilogue proce-
dures operations to the environment prologue and epilogue procedures, which are executed
before and/or after the entire save or restore request. The order of execution is illustrated below:

• Environment prologue

• Start save or restore request
3-26 Saving and Restoring Data

Saving and Restoring Data
3.5 Saves and Restores
• First disk/file specification prologue

• First disk/file specification save or restore operation

• First disk/file specification epilogue

• Next disk/file specification prologue

• Next disk/file specification save or restore operation

• Next disk/file specification epilogue

•

• End save or restore request

• Environment epilogue (only on successful completion)

ABS defines logical names that can be used within the prologue or epilogue command proce-
dures. Each name is suffixed by “_n”, where n is the iteration number for each include disk, file,
path or database specification. The value for n starts at 1 and goes to 24, the maximum number

of include specifications supported by ABS. These logical names are defined in the process job
table as follows:

Table 3–4 Logical Names in Save/Restore Prologues and Epilogues

Logical Name Meaning

ABS_OS_OBJECT_SET_n The include disk, file, path or database name
currently being processed

ABS_OS_OBJECT_TYPE_n The data type for the specification

ABS_OS_DMT_n The type of operation:
FULL, INCREMENTAL, SELECTIVE

ABS_OS_INCREMENTAL_LEVEL_n For an INCREMENTAL operation, the incre-
mental level being preformed

ABS_OS_VOLUME_SET_n The volume set being used

ABS_OS_START_RVN_n Starting relative volume number (RVN) of the
volume set for the files being processed. The
value is zero if the archive type is DISK,

ABS_OS_LAST_RVN_n The last relative volume number in the volume
set containing this specification. This value is
valid for epilogue procedures only, and
equates to “Not yet determined” for prologues.
The value is zero if the archive type is DISK.

ABS_OS_START_FILE_POSITION_n The starting file position of the saveset on the
tape volume. This indicates how many tape
marks from the beginning of the tape need to
be skipped to arrive at the file. The value is
zero if the archive type is DISK.

ABS_OS_SAVESET_NAME_n The name of the saveset being used.

ABS_OS_SAVESET_FORMAT_n The format of the saveset: either VMS, gtar or
RMU.

ABS_OS_STATUS_n The ABS status of the portion of the request
for this specification
 Saving and Restoring Data 3–27

Saving and Restoring Data
3.5 Saves and Restores
3.5.14 Reschedule

The reschedule attribute is used to create a new job with an external scheduler product. Nor-
mally, when you create a save or restore request, ABS creates a new scheduler job for the
request. If you modify the request, then ABS modifies the existing scheduler job. However, there
are circumstances whereby the scheduler job is deleted and needs to be re-created. You can set
the reschedule attribute to re-create a new scheduler job for the request. This attribute has no
effect when MDMS scheduling is in operation.

3.5.15 Selections

As discussed in section 3.2.3.6, you can specify the files, disks, paths or databases to be included
in a save or restore request in one of two ways:

• By using the INCLUDE attribute in the save or restore request, and using a default selection

• By manually creating SELECTIONS, including the files, disks, paths or databases in the
selection objects, then associating the selection objects with the save or restore requests.

The SELECTION attribute is how you associate a selection object with a save or restore request.
Simply include the selection names as a comma-separated list in the selections attribute. If you
wish to have no selections and use the default selection, specify no selections.

3.5.16 Sequence Option (Saves Only)

A save operation involves a data copy phase and a post-processing phase. For archive type
TAPE, the post-processing phase does not require the use of a tape drive, so ABS could start on
the next data copy phase using the drive before the post-processing phase of the previous opera-
tion is complete. This option speeds up the total save operation - if you want to use this option,
specify OVERLAPPED as the sequence option. If, on the other hand, you prefer the data copy
and post-processing phases to be performed sequentially, enter SEQUENTIAL for the sequence
option.

By default, the sequence option is set to SEQUENTIAL.

3.5.17 Skipping schedule operations on Holidays

This feature allows the system administrator to prevent scheduling of operations on certain dates
as operators are not available to service requests.

As stated earlier, the start date specifies the next start date and time for the request. This start
date is updated whenever the request is run to reflect the next time it is scheduled, or NONE if it
is not scheduled again.

Before a calculated date is assigned to the start date, it is compared against a list of holidays
which is loaded into memory from MDMS$DATABASE_LOCATION:HOLIDAYS.DAT at start
up.

If the calculated date matches any of the holiday definitions, this date is ignored and we search
further for the next valid start date. This process continues until we find a calculated date that
does not match any of the holiday definitions and hence can be assigned to the start date.

At start up time, the MDMS server reads all the records in HOLIDAYS.DAT and loads the valid
holiday definitions in memory. Definitions that do not confirm to the stated record format are
ignored. The valid holiday definitions loaded in memory are displayed in:

$ MDMS SHOW DOMAIN/FULL

By default, there are no holiday definitions. If the system administrator wishes to define a list of
holidays, a HOLIDAYS.DAT file has to be created in the database location where the MDMS
DATABASE files are present (MDMS$DATABASE_LOCATION:HOLIDAYS.DAT).
3-28 Saving and Restoring Data

Saving and Restoring Data
3.6 Selections
Note

Since the MDMS server loads the holiday definitions into memory at start up time, for
any changes in HOLIDAYS.DAT to take effect, the MDMS server needs to be
restarted.

3.5.17.1 HOLIDAYS.DAT Record Format

The format for each record in HOLIDAYS.DAT file is:

dd-mmm-yyyy,xxxxxxxxxxx

Where:

dd—is the day
mmm—is the first three letters of the month
yyyy—is the year
xxxxxxxx—is the name of the holiday

3.5.17.2 Example: HOLIDAYS.DAT File

The following example shows the contents of a HOLIDAYS.DAT file for the year 2002.

04-JUL-2002,Independence Day
02-SEP-2002,Labor Day
28-NOV-2002,Thanksgiving
25-DEC-2002,Christmas

3.6 Selections
ABS uses selections to hold information about files, disks, paths and databases to be saved or
restored. You can elect to specify these names in one of two ways:

• By using the INCLUDE attribute in the save or restore request, and using a default selection

• By manually creating SELECTIONS, including the files, disks, paths or databases in the
selection objects, then associating the selection objects with the save or restore requests.

The first option is discussed in Section 3.5.6 as part of the save and restore option. This section
discusses the various attributes in the selection object.

The selection object gives you more flexibility to select files based on dates, agent qualifiers for
the backup agent, and specifying conflict options on a restore. You can associate up to 24 selec-
tions with a given save and restore request, with the caveat that the total number of disk, file,
path or database specifications in all selections does not exceed 24.

There are two steps in using selections:

• Creating or modifying a selection object directly by using the MDMSView GUI or the CLI.

• Associating the selection to the associated save and restore request by including it in the
SELECTIONS attribute of the request.

The following sections describe attributes in the selection object.

3.6.1 Agent Qualifiers

ABS uses a backup agent to perform saves and restores, and the backup agent is dependent on
the data type as follows:

• VMS Files - The backup agent is the OpenVMS BACKUP utility.

• Rdb Databases and Rdb Storage Areas - The backup agent is RMU Backup

• UNIX Files and Windows Files - The backup agent is gtar (tape archiver)
 Saving and Restoring Data 3–29

Saving and Restoring Data
3.6 Selections
Although ABS passes information that you specify in the save, restore and environment to the
backup agent, you can pass qualifiers directly to the backup agent using the agent qualifiers
attribute. Refer to the appropriate backup agent documentation for information on these qualifi-
ers.

3.6.2 Before Date, Since Date and Date Type (Saves Only)

For save requests, you can select files for saving based on the date files were last modified. You
can specify either or both of the following:

• Before Date - Any version of the file modified before the specified date

• Since Date - Any version of the file modified after the specified date

If you specify both a before and since date, you are providing a range of dates in which to select
files. If a file does not have a revision date (modified date), then ABS uses the creation date
instead.

ABS does not yet support the date type attribute, which would allow you to select any one of the
four online dates maintained by OpenVMS.

3.6.3 Conflict Options (Restore Only)

When restoring files, you may find that there are files of the same name already located in the
destination directory or original source location. You can specify what ABS should do if it
encounters this situation by specifying one of the following conflict options:

• NEW VERSION - Restores the data and header and creates a new version of the file - appli-
cable to VMS files only.

• OVERLAY VERSION - Overwrites the online version with the archive version of the data,
but keeps the online version of the header.

• REPLACE VERSION - Deletes the online version of the file, and restores both the header
and data from the archive.

• RETAIN VERSION - Keeps the online version of the header and data and does not restore
the file from the archive.

If not specified, the default is RETAIN VERSION.

3.6.4 Include, Exclude, Data Type and Source Node

In exactly the same manner as in save and restore requests, you can specify the following
attributes in selection objects directly:

• INCLUDE - A list of disks, files, paths or databases to include in the save or restore. If you
want the file directory structure to be maintained during the restore operation, see the note
given in Section 3.5.6 “Include, Exclude, Data Type and Source Node” .

• EXCLUDE - A list of files to exclude from the save or restore that would otherwise have
been included according to the include specification. This option applies to data type VMS
FILES only

• DATA TYPE - The type of data to be saved or restored - select one of the following:

– VMS Files - Applicable to VMS files. If only a disk is selected, a FULL backup of the
entire disk is performed. If directory and file specifications are specified, then a
SELECTIVE backup of files is performed.

– Oracle Rdb Database Options - These options (which are version-number specific)
specify that you wish to back up an entire Rdb database using the RMU backup utility.
In this case, specify the name of the Rdb database files.
3-30 Saving and Restoring Data

Saving and Restoring Data
3.6 Selections
– Oracle Rdb Storage Area - These options (which are version-number specific) specify
that you wish to back up selected storage areas of an Rdb database. In this case specify
both the database file name(s) and selected storage areas.

– UNIX Files - This option applies to saving or restoring UNIX files on a client node.
Enter a filesystem name in the format “/usr/...” to the level of granularity you want.
With this option you must specify a SOURCE_NODE, which is the name of the UNIX
node on which the online data resides.

– Windows Files - This options applies to saving or restoring Windows files on a client
node. Enter a file pathname starting with the device (for example: C:\Windows\...” to
the level of granularity you want. With this option you must specify a
SOURCE_NODE, which is the name of the Windows node on which the online data
resides.

• SOURCE NODE - This attribute applies to data types UNIX FILES and WINDOWS files
only, and specifies the name of the node on which the file data resides. For other data types,
the node is specified through the nodes and groups attributes in the request.

The following table shows examples of the appropriate file, disk, path or database names that are
valid for each data type:

Table 3–5 Disk, File, Path and Database Specification Formats

Data Type Examples Case Sensitive

VMS Files 1DUA420: (full disk, physical name)
DISK$USER1: (full disk, logical name)
DISK$USER1:[SMITH...]*.*;* (selective)
DISK$USER1:[SMITH]LOGIN.COM;3 (file)

Note: If the include specifications having
“DISK$USER1” are for the restore requests,
then the logical “DISK$USER1” referring to
the disk name must be defined before execut-
ing the restore request. For more information,
see the note given in the Section 3.5.8 “Desti-
nation (Restore Only)” .

No

Oracle Rdb Databases DISK2:[USER_RDB]ACCOUNTS.RDB
Do not specify a version number.

No

Oracle Rdb Storage Areas DISK2:[RDB]ACCOUNTS.RDB/INCLUDE
=BALANCES (saves)
DISK2:[RDB]ACCOUNTS.RDB
/AREA=BALANCES (restores)
Do not specify a version number - the include
syntax is required, even from the GUI. If
entered from the CLI, you must enclose the
specification in quotes.

No

UNIX files /usr/smith/*
If entered from the CLI, you must enclose
UNIX specification in quotes.

Yes

Windows files C:\WINNT\SMITH*
If entered from the command line, you must
enclose Windows specifications in quotes.

No
 Saving and Restoring Data 3–31

Saving and Restoring Data
3.7 Schedules
3.7 Schedules
ABS supports very flexible options for scheduling save and restore requests, both using the
internal MDMS scheduling options and using a third part scheduler. The scheduling options can
be divided into three main categories:

• Standard - ABS provides a list of standard options that you can specify, and the scheduling
information is applied to the schedule object automatically. Standard options are supported
by both internal MDMS scheduling and an external scheduler product. Standard options are
all those that are neither custom or explicit.

• Custom - This option allows you to customize the schedule for the request if the standard
options are not sufficient. For example, if you want to run the request every second Sunday
in January, April, July and October, then the custom option can do this. You specify CUS-
TOM as the frequency, then modify the schedule object for the request directly. This option
is applicable to internal MDMS scheduling only.

• Explicit - This option also allows you to customize your schedule, but this time with an
external scheduler product. You specify EXPLICIT as a frequency, then enter a string into
the EXPLICIT INTERVAL attribute. This attribute is a string that can be understood by the
external scheduler product specifying the desired frequency. Alternatively, you can use the
user interface of the external scheduler product to specify the frequency of the request. This
option is applicable only to external scheduling options.

This section discusses the second option, custom schedules, which are only applicable to internal
MDMS scheduling. To use a custom schedule, specify CUSTOM as the frequency on the save
and restore request, then modify the attributes of the associated schedule object. The schedule
object always has the name of the save and restore request, followed by “_SAVE_SCHED” or
“REST_SCHED” respectively.

3.7.1 After Schedule

With ABS custom scheduling, you can actually define one schedule to execute after another
schedule has completed. For example, if you want SAVE2 to execute immediately after SAVE1
completes, you can modify SAVE2’s schedule object and setting its AFTER SCHEDULE
attribute to SAVE1’s schedule object. In this case:

SAVE2_SAVE_SCHED:

After Schedule: SAVE1_SAVE_SCHED

If you specify an after schedule and only want the associated request to execute after the after
schedule (and not at any other time), then do not specify any other date or time attributes in the
schedule. If on the other hand you want the associated request to execute at regular times AND
after the specified after schedule, then you can associate date and time attributes to the schedule.

With after schedule, you can also define conditions upon which the schedule will run after the
other schedule. The conditions are stored in an attribute called after schedule when. Select from
one of the following:

• ALL - Always run the schedule after the dependent schedule completion

• SUCCESS - Run the schedule if the dependent save or restore completed with a successful
status

• WARNING - Run the schedule if the dependent save or restore completed with a Warning,
Error or Fatal status

• ERROR - Run the schedule if the dependent save or restore completed with an Error or
Fatal Status
3-32 Saving and Restoring Data

Saving and Restoring Data
3.7 Schedules
• FATAL - Run the schedule if the dependent save or restore completed with a fatal status

• NONE - Never run the schedule (can be used as a temporary placeholder)

If an after schedule name is defined, but no conditions are specified, the default condition is
ALL. To remove the after schedule dependency, specify no after schedule.

3.7.2 Command

For ABS save and restore commands, the command to run a schedule and execute the associated
save and restore request is:

MDMS RUN SCHEDULE schedule_name

You should not modify this command line, unless you know how to activate an ABS request in
some other way.

For non-ABS save or restore requests, this command line can be any command that can be sub-
mitted to the OpenVMS CLI.

3.7.3 Restriction

There is a restriction with using the /AFTER_SCHEDULE qualifier. Only those schedules (cre-
ated automatically by MDMS) that have an associated save can be assigned to the
/AFTER_SCHEDULE qualifier. Schedules that do NOT have an associated save cannot be
assigned to the /AFTER_SCHEDULE qualifier. Hence, any schedule (one with an associated
save, or one which executes DCL commands) can have a dependency on a schedule with an
associated save, but not on a schedule which executes DCL commands. This is a current MDMS
design limitation.

3.7.4 Dates, Days and Months

ABS supplies three attributes in the schedule object by which you can specify on what days you
want the schedule to be regularly executed. These are:

• Dates - The dates of the month you want the schedule to execute

• Days - The days of the week you want the schedule to execute

• Months - The months of the year you want the schedule to execute

You can specify the actual dates in the month that you want the schedule to run by number. Here
are some examples:

 If you don’t specify a date attribute, the default is every day of the month.

Table 3–6 Date Specifications

Dates Explanation

1 First day of month

1-7 First week of month

1-7, 15-21 First and third week of month

1-31 Every day of month (default)
 Saving and Restoring Data 3–33

Saving and Restoring Data
3.7 Schedules
You can specify the actual day in the week that you want the schedule to run by name. Here are
some examples:

If you don’t specify a day attribute, the default is every day of the week.

Finally, you can specify the actual months in the year that you want the schedule to run by name.
Here are some examples:

If you don’t specify a month attribute, the default is every month of the year.

The dates, days and months attributes work together so that all must qualify for the schedule to
be run. Therefore if you specify days SUN, but months of JAN, JUL only, then the schedule only
runs on Sundays in January and July.

The following table shows some examples of how the days, dates and months attributes work
together to produce custom schedules

Table 3–7 Day Specifications

Dates Explanation

SUN Sunday Only

MON-FRI Monday through Friday Only

MON, WED, FRI Monday, Wednesday and Friday Only

FRI-MON, WED Friday, Saturday, Sunday, Wednesday

Table 3–8 Month Specifications

Dates Explanation

MAR March Only

APR-SEP April through September Only

JAN, APR, JUL, OCT January, April, July, October Only

JAN-DEC All months

Table 3–9 Combining Dates, Days and Months

Custom Schedule Dates Days Months

First sunday of every month 1-7 SUN JAN-DEC

First day of the quarter 1 SUN-SAT JAN, APR,
JUL, OCT

First and third saturdays of month 1-7, 15-21 SAT JAN-DEC

First of month, every four months 1 SUN-SAT FEB, JUN,OCT

Weekdays only 1-31 MON-FRI JAN-DEC

Summer weekends only 1-31 SAT-SUN JUN-SEP
3-34 Saving and Restoring Data

Saving and Restoring Data
3.7 Schedules
If there are schedules that cannot be accommodated by this scheme, then you can use the
INCLUDE and EXCLUDE attributes as explained below.

3.7.5 Include and Exclude

Although the days, dates and months attributes can produce a very flexible scheduling scheme,
there may be specific days that you want to include or exclude regardless of the regular schedule.
You can do this using the following attributes:

• INCLUDE - Include specific dates that otherwise may not be included using the days, dates
and months attributes

• EXCLUDE - Exclude specific dates that otherwise may be included using the days, dates
and months attributes

The dates are specified in the standard OpenVMS format DD-MMM-YYYY, and can range from
the current date to up to 10 years in the future. Only dates may be specified, not times. Specifica

tion of include and exclude dates override the regular schedule as determined by the dates, days
and months attributes.

You can also use the include and exclude attributes to augment the days, dates and months in sit-
uations that they do not cover what you want. For example, to run on the last day of every
month, you can specify DATES 31, DAYS MON-SUN and MONTHS JAN-DEC, then specifi-
cally include 28-Feb, 30-Apr, 30-Jun, 30-Sep, 30-Nov.

3.7.6 Times

ABS allows you to specify times that you wish your schedule to run. Normally a schedule runs
only once per day, but ABS allows you the flexibility to specify up to 100 times per day for a
schedule to run. Simply specify times in the times attribute as a comma-separated list. Be careful
to not specify so many times that the schedule executions overlap each other.
 Saving and Restoring Data 3–35

4
Media Management

This chapter expands on the MDMS object summary given in Chapter 2, and describes all the
MDMS objects in detail, including the object attributes and operations that can be performed on
the objects.

Before going into details on each object, however, the use of the MDMS$CONFIGURE.COM
procedure is recommended to configure your MDMS domain and the objects in it. In many cases
this should take care of your entire initial configuration.

4.1 MDMS Domain Configuration
If you are configuring your MDMS domain (including all objects in the domain) for the first
time, HP recommends that you use the MDMS$CONFIGURE.COM command procedure. This
procedure prompts you for most MDMS objects, including domain, drives, jukeboxes, media
types, locations and volumes, and establishes relationships between the objects. The goal is to
allow complete configuration of simple to moderately complex sites without having to read the
manual.

The configuration procedure offers extensive help, and contains much of the information con-
tained in this chapter. Help is offered in a tutorial form if you answer “No” to “Have you used
this procedure before”. In addition, for each question asked, you can enter “?” to have help on
that question displayed. Furthermore, if you type “??” to a question, not only will the help be dis-
played, but in most cases a list of possible options is also displayed.

This procedure is also useful when adding additional resources to an existing MDMS configura-
tion. To invoke this procedure, enter:

@MDMS$SYSTEM:MDMS$CONFIGURE.COM

and just follow the questions and help.

A complete example of running the procedure is shown in Appendix A.

4.2 Domain
The MDMS domain encompasses all objects that are served by a single MDMS database, and all
users that utilize those objects. A domain can range from a single OpenVMS cluster and its
backup requirements, to multi-site configurations that may share resources over a wide area net-
work or through Fibre Channel connections. An OpenVMS system running MDMS is consid-
ered a node within the MDMS domain, and MDMS server processes within a domain can
communicate with one another.

The MDMS domain object is created at initial installation, and cannot be deleted. Its main focus
is to maintain domain-wide attributes and defaults, and these attributes are described in the fol-
lowing sections.
 Media Management 4–1

Media Management
4.2 Domain
4.2.1 ABS Rights

The domain attribute ABS_RIGHTS controls whether a user having certain pre-V4.0 ABS rights
can map these to MDMS rights for security purposes (see Chapter 5, Security for more informa-
tion about rights). Setting the attribute allows the mapping, and setting the attribute to false dis-
allows the mapping.

4.2.2 Application Rights

The right MDMS_APPLICATION_RIGHTS is a high-level right that maps to a set of low level
rights suitable for MDMS applications (for example, ABS and HSM). Normally these rights
should not be changed, or at least not reduced from the default settings otherwise ABS and HSM
may not function correctly. You may add rights to application rights if you have your own
MDMS applications or command procedures. The ABS and MDMS$SERVER accounts should
have MDMS_APPLICATION_RIGHTS granted in the User Authorization File.

4.2.3 Check Access

The check access attribute determines if access controls are checked in the domain. MDMS uses
two forms of security: Rights and Access Control. Rights checking is a task-oriented form of
security and is always performed. However, access control is an object-oriented form of security
and can be optionally enabled or disabled with this attribute. Setting Check Access enables
access control checking. Clearing Check Access disables access control checking even if there
are objects with access control entries.

4.2.4 Deallocate State

When a volume is deallocated after its data has expired, it may go into one of two states. The
transition state is an interim state that the volume goes into after deallocation, but it is not eligi-
ble to be used again until a period of time called the transition time expires. This is a safety fea-
ture that allows you to examine whether the data has legitimately expired, and if not to retain the
volume (put back to the allocated state). If you do not wish this feature, you can disable the tran-
sition state and allow volume to return directly to the free state, where it is eligible for immediate
allocation and initialization for new data. The domain deallocate state is applied to all volumes
that are automatically deallocated by MDMS. When manually deallocating volumes, you can
override the domain deallocate state with a state on the deallocate operation itself.

4.2.5 Default Rights

The MDMS default rights attribute maps a set of MDMS low-level rights to all users in the
domain. This allows you to give all users a limited set of rights to access MDMS objects and per-
form operations, without having to expressly modify their accounts. Be aware that default rights
are applied to all users on all nodes in the domain, so granting such rights should be carefully
reviewed. By default, MDMS maps no rights to the default rights.

4.2.6 Mail Users

When MDMS deallocates volumes based on their scratch date (an operation that is performed
once per day), it sends a mail message indicating which volumes were deallocated to the set of
users defined in the mail users attributes. You should enter a list of users in the format
node::username. Every user in the list will receive the deallocate volume mail messages. This
mail address is also used when the ABS catalog unpack process encounters an error.
4-2 Media Management

Media Management
4.2 Domain
4.2.7 Maximum Scratch Time

The maximum scratch time is the maximum scratch time that can be applied to any volume when
it is allocated. The scratch time is the period of time that you wish the volume to stay allocated
because its data is still valid. The maximum scratch time imposes a maximum limit and over-
rides the volume’s scratch time if it exceeds the maximum. For HSM, the maximum scratch time
should be set to zero (unlimited), as HSM volumes’ data remains valid until it is repacked. For
ABS uses, this value should be set to the longest period of time you wish to retain any volume.

4.2.8 Media Type

The domain media type attribute is the media type that is applied to new volumes and drives by
default when they are created. In a simple configuration, you may only have a single media type,
so specifying it in the domain allows you to not have to specify it when creating individual
drives and volumes. It may also be applied as a default to ABS archives. You may always over-
ride the domain default media type with a specific media type when you create or modify drives
and volumes.

4.2.9 Offsite Location

The domain offsite location attribute is applied by default to the offsite location field of new vol-
umes when they are created. The offsite location is an MDMS location that is used for secure
storage of the volumes in case of a disaster. You can always override the domain default offsite
location when you create or modify volumes.

4.2.10 Onsite Location

The domain onsite location attribute is applied by default to the onsite location field of new vol-
umes when they are created. The onsite location is an MDMS location that is used for storage of
the volumes when they are onsite, or quickly accessible to jukeboxes and drives. You can always
override the domain default onsite location when you create or modify volumes.

4.2.11 OPCOM Classes

The domain OPCOM classes attribute contains the default OPCOM classes that are applied to
new node objects by default when they are created. OPCOM classes are classes of users whose
terminals are enabled to receive certain OPCOM classes. You can override the domain default
OPCOM classes with specific classes on a per-node basis when you create or modify a node.

4.2.12 Operator Rights

The right MDMS_OPERATOR_RIGHTS is a high-level right that maps to a set of low level
rights suitable for operators managing the domain. The default set of operator rights allow for
normal operator activities such as loading and unloading volumes into drives, showing any
object or operations, and moving volumes offsite and onsite. However, you can add or remove
low level rights to/from the operator rights as you wish.

4.2.13 Protection

The domain protection attributes defines the default protection applied to new volumes when
they are created. This protection is used by MDMS when it initializes volumes, and writes the
protection on the magnetic tape volume itself. You can always override the domain default pro-
tection by specifying the protection specifically when creating or modifying a volume.

4.2.14 Relaxed Access

The relaxed access attribute controls the security when a user or application tries to access an
object without any access control entries, and access control checking is enabled. If relaxed
access is set, such access is granted. If relaxed access is clear, such access is denied. The relaxed
access attribute is ignored if the check access attribute is clear.
 Media Management 4–3

Media Management
4.2 Domain
4.2.15 Request ID

MDMS uses sequentially increasing request identifiers for each request received by the MDMS
database server, and this attribute displays the ID of the next request. If this ID is becoming very
large, you can reset it to zero or one (or indeed any value) if you wish. The request ID automati-
cally resets to one when it reaches one million.

4.2.16 Scheduler Type

MDMS performs scheduling operations on behalf of itself and ABS. For ABS scheduling, you
can choose a scheduler type that best meets your needs, as follows:

• Internal - The default internal scheduler type uses MDMS schedule objects and OpenVMS
batch queues. This option should be sufficient for most sites as the schedule object supports
many custom scheduling options.

• External - This option uses MDMS schedule objects and OpenVMS batch queue, but the
scheduling is submitted through a command procedure. You can use this option if you have
a need to modify the command procedure to perform site-specific operations.

• Scheduler - This option uses an external scheduler product via command procedures. ABS
supplies a template scheduler command procedure that you can modify to access your own
scheduler product. You can also use this option to invoke the pre-V3.0 ABS DECScheduler
V2.1B, as long as you have a license for that product.

MDMS-initiated scheduled operations such as MDMS$MOVE_VOLUMES always use the
internal MDMS scheduler.

4.2.17 Scratch Time

The domain default scratch time is the default scratch time applied to new volumes when they
are created. Scratch time indicates how long a volume is to remain allocated (that is, how long its
data is valid and needs to be kept). You can override the domain volume scratch time when you
create, modify or allocate individual volumes. For HSM volumes, the scratch time should be set
to zero (unlimited), since HSM data remains valid until a volume is repacked.

4.2.18 SYSPRV

MDMS uses user account rights as one mechanism for security within the domain. MDMS
allows you to control whether the OpenVMS privilege SYSPRV can map to the ultimate MDMS
right MDMS_ALL_RIGHTS. If you set the SYSPRV attribute, users with SYSPRV are assigned
MDMS_ALL_RIGHTS, which means they can perform any operation subject to access control
checks. Clearing SYSPRV gives users with SYSPRV no special rights.

Note

If you wish to use the SYSPRV attribute from the MDMSView GUI, the user’s autho-
rization file must have SYSPRV defined as a privilege and a default privilege. Having
SETPRV is not sufficient as there is no way to set the SYSPRV privilege from the GUI.

4.2.19 Transition Time

The domain default transition time is applied to volumes by default when they are deallocated
into the transition state. The transition time determines how long the volumes remain in the tran-
sition state before moving to the free state. This attribute is used alongside the deallocation state
attribute, which determines the default state that volumes are deallocated into. You can override
the domain default transition time when you create, modify, or deallocate a volume.
4-4 Media Management

Media Management
4.3 Drives
4.2.20 User Rights

The right MDMS_USER_RIGHTS is a high-level right that maps to a set of low level rights
suitable for non-privileged users that perform ABS or HSM operations. The default set of user
rights allow for user activities such as creating and manipulating their own volumes and loading
and unloading those volumes into drives, showing their volumes. However, you can add or
remove low level rights to/from the user rights as you wish.

4.3 Drives
A drive is a physical resource that can read and write data to tape volumes. Drives can be standa-
lone requiring operator intervention for loading and unloading, in a stacker configuration that
allows limited automatic sequential loading of volumes, or in a jukebox which provides full ran-
dom-access automatic loading. Drives are named in MDMS using a unique name across the
domain; it may or may not be the same as the OpenVMS device name, as these may not be
unique across the domain.

The following sections describe the attributes of a drive.

4.3.1 Access

The access attribute controls whether the drive may be used from local access, remote access or
both. Local access includes direct SCSI access, access via a controller such as the HSJ70, access
via TMSCP, or access via Fibre Channel, and does not require use of the Remote Device Facility
(RDF). Remote access is via a DECnet network requiring RDF. You can set the access to one of
the following:

• All - Allows both local and remote access (default)

• Local - Allows only local access (as defined above)

• Remote - Allows only remote access using RDF

4.3.2 Automatic Reply

Automatic reply is the capability of polling hardware to determine if an operator-assist action
has completed. For example, if MDMS requests that an operator load a volume into a drive,
MDMS can poll the drive to see if the volume was loaded, and if so complete the OPCOM
request without an operator reply. Set automatic reply to enable this feature, and clear to require
an operator response. Please note that some operations cannot be polled and always require an
operator reply. The OPCOM message itself clearly indicates if a reply is needed or automatic
replies are enabled.

4.3.3 Device

The device attribute is the OpenVMS device name for the drive. In many cases you can set up
the drive name to be the OpenVMS device name, and this is the default when you create a drive.
However, the drive name must be unique within the domain, and since the domain can consist of
multiple clusters there may be duplicate device names across the domain. In this case you must
use different drive names from the OpenVMS device names. Also, you can specify simple or
descriptive drive names which are used for most commands, and hide the OpenVMS device in
the device name attribute.

4.3.4 Disabled

By default, drives are enabled, meaning that they can be used by MDMS and its applications.
However, you may wish to disable a drive from use because it may need repair or be used for
some other application. Set the disable flag to disabled the drive, and clear the flag to enable the
drive.
 Media Management 4–5

Media Management
4.3 Drives
4.3.5 Drive Number

If the drive is in a robotically-controlled jukebox, and the jukebox is controlled by MRD, you
must set the drive number to the relative drive number in the jukebox used by MRD. Drives in
jukeboxes are numbered from 0 to n, according to the SCSI addresses of the drives. Refer to the
jukebox documentation on how to specify the relative drive number.

4.3.6 Groups

The groups attribute contains a list of groups containing nodes that have direct access to the
drive. Direct access includes direct-SCSI access, access via a controller such as an HSJ70,
access via TMSCP, and access via Fibre Channel. You can specify as many groups as you wish,
in addition to nodes that may not be in a group.

4.3.7 Jukebox

If the drive is in a jukebox, you must specify which jukebox using the jukebox attribute. Enter a
valid jukebox name from an MDMS-defined jukebox. If there is no jukebox, MDMS treats the
drive as a standalone drive or as a stacker.

4.3.8 Media Types

A drive must support one or more media types in order for volumes to be used on the drive. In
the media type attribute, specify one or more MDMS-defined media types that this drive can
both read and write. If you wish, you can restrict the media types to a subset that you wish this
drive to handle, and not all the media types it could physically handle. In this way, you can
restrict the drive’s usage somewhat.

4.3.9 Nodes

The nodes attribute contains a list of nodes that have direct access to the drive. Direct access
includes direct-SCSI access, access via a controller such as an HSJ70, access via TMSCP, and
access via Fibre Channel. You can specify as many nodes as you wish, in addition to groups of
nodes in the groups attribute.

4.3.10 Read-Only Media Types

In addition to media types that a drive can read and write, a drive may support one or more addi-
tional media types that it can only read. In the read-only media type attribute, specify one or
more MDMS-defined media types that this drive can only read. This allows this drive to be used
when the application operation is read-only (for example, HSM unshelves or ABS restores). Do
not duplicate a media type in both the media type list and read-only media type list.

4.3.11 Shared

You can designate whether a drive is to be used by MDMS applications and users only, or by
non-MDMS users. If the drive is not shared, the MDMS server process allocates the drive on all
clusters to prevent non-MDMS users and applications from allocating it. However, when an
MDMS user attempts to allocate the drive, MDMS will deallocate it and allow the allocation. Set
the shared attribute if you wish to share the drive with non-MDMS users, and clear if you wish to
restrict usage to MDMS users. ABS users who do their own user backups are considered MDMS
users, as are all system backups and HSM shelving/unshelving users.

4.3.12 Stacker

Certain types of drive can be configured as a stacker, which allows a limited automatic sequen-
tial loading capability of a set of volumes. Such drives may physically reside in a loader or have
specialized hardware that allows stacker capabilities. If you wish the drive to support the stacker
loading capability, set this attribute and make sure the jukebox attribute does not contain a juke-
box name. If you wish the drive to operate as a jukebox or standalone drive, clear this attribute.
4-6 Media Management

Media Management
4.3 Drives
4.3.13 State

The drive state field determines the load state of the drive. The drive can be in one of four states:

• Empty - There is no volume in the drive

• Full - There is a volume in the drive

• Loading - A volume is being loaded into the drive

• Unloading - A volume is being unloaded from the drive

This is a protected field that is normally handled by MDMS. Only modify this field if you know
that there are no outstanding requests and the new state reflects the actual state of the drive.

4.3.14 Allocate Drive (DCL Only)

You allocate a drive so that you can it for reading and writing data to a volume. If you allocate a
drive, your process ID and node is stored in the MDMS database, and the drive is allocated in
OpenVMS for your process. Because the MDMSView GUI does not operate in a process con-
text, it is not possible to allocate drives from the GUI.

You can either allocate a drive by name, or you can specify selection criteria to be used for
MDMS to select an available drive for you and allocate it. The allocation selection criteria
include:

• Media Type - Select a drive with the specified media type

• Location - Used with media type, select a drive in the specified location

• Jukebox - Used with media type, select a drive in the specified jukebox

• Group - Used with media type, select a drive that is supported by a node in the group

• Node - Used with media type, select a drive that is supported by the node

• Volume - Select a drive that is compatible with the specified volume (media type and place-
ment)

You can also specify the following options when allocating a drive:

• Assist - A flag indicating whether you wish operator assistance if a drive cannot be allo-
cated. Set if you wish assistance, and clear if you wish to use the retry limit and intervals to
automatically retry (that is, wait for drives to become available).

• Define - Use define to set a logical name for the drive. The logical name evaluates to both
the MDMS Drive Name and the OpenVMS device name, and can be used in either MDMS
or other DCL commands.

• Retry Limit and Interval - If you wish the allocate to retry if there are no available drives, set
the retry limit and interval, and specify noassist.

• Preferred - If you allocated a drive for a specific volume, you can set preferred to request
that the same drive that the volume was last loaded is the preferred drive. If you clear pre-
ferred, this forces MDMS to perform a round-robin allocation of the drives.

• Reply - You can specify a symbol to receive an operator’s reply message.

• Nowrite - You can specify that the drive only has to be compatible for read-only media
types, as the desired operation will only read from the drive.
 Media Management 4–7

Media Management
4.3 Drives
4.3.15 Deallocate Drive (DCL Only)

If you allocated a drive using the DCL “Allocate Drive” command, you should deallocate the
drive when you are finished using it, otherwise the drive will remain allocated until your process
exits.

Simply issue a deallocate drive and specify the drive name or the logical name obtained from the
define option in “Allocate Drive”.

4.3.16 Load Drive

MDMS supports two ways to load volumes into drives:

• Load Drive - This loads a scratch volume into a drive via operator intervention or by stacker
operation. As such, this option is only for standalone and stacker controlled drives.

• Load Volume - This loads a specific volume into a drive, and can apply to all types of drives.

This section discusses the load drive option. The load volume option is discussed under volumes.

The “Load Drive” operation requests either that a scratch volume (in the free state) be loaded
into the drive, or the next volume in the stacker is loaded into the drive. In either case, the vol-
ume ID of the volume is not known until the load completes, and MDMS reads the magnetic
tape label to determine the volume.

The loaded volumes may or may not already be defined in the MDMS database. You can choose
to create volume records by setting the “Create” flag, and optionally providing attributes to
apply to the volume as follows:

• Inherit volume ID - This is the most comprehensive option as it allows the new volume to
inherit all non-protected fields from the specified volume.

• Media type - Assign this media type to the volume. If you use inherit and media type, the
specified media type overrides the inherit media type

• Pool - Assign this volume to the specified pool. If you use inherit and pool, the specified
pool overrides the inherit pool.

When issuing the load drive request, you can specify whether the load is for read/write (almost
always the case) or read-only, and whether operator assistance is required.

You can also specify an alternative message for the operator. This is included in the OPCOM
message instead of the normal MDMS operator message. Use of an alternative message is not
recommended.

When initiating a load from the DCL, you can choose a synchronous operation (default) or an
asynchronous operation using the /NOWAIT qualifier. From MDMSView, a load is always asyn-
chronous, so that you can continue performing other tasks.

4.3.17 Unload Drive

Unlike the load drive operation, the unload drive can be applied to any type of drive at any time.
What it does is simply unload the current volume in the drive, and so you can use this when you
don’t know which volume is in the drive. Alternatively, you can use the unload volume operation
if you know the volume ID in the drive.

The only option for unload drive is to request operator assistance if needed.

When initiating an unload from the DCL, you can choose a synchronous operation (default) or
an asynchronous operation using the /NOWAIT qualifier. From MDMSView, an unload is
always asynchronous, so that you can continue performing other tasks.
4-8 Media Management

Media Management
4.4 Groups
4.4 Groups
The group object is a logical object that is simply a list of nodes that have something in common.
Groups can be used to represent an OpenVMS cluster, a collection of nodes that have access to a
device, or for any other purpose. A node may appear in any number of groups. Groups can be
specified instead of, or in addition to nodes in drive, jukebox, save and restore objects, and can
be used interchangeably with nodes in pool authorization and access control definitions.

Groups contain only one attribute.

4.4.1 Nodes

The list of nodes that comprise the group. Nodes must be OpenVMS nodes that are defined in
the MDMS database. You should not use groups for non-OpenVMS nodes (for example, ABS
UNIX or Windows clients).

4.5 Jukeboxes
In MDMS, a jukebox is a generic term applied to any robot-controlled device that supports auto-
matic loading of volumes into drives. Jukeboxes include small, single-drive loaders, large multi-
drive libraries and very large silos containing thousand of volumes. In general MDMS does not
make distinctions among the types of jukeboxes, except for the software subsystem used to con-
trol them. MDMS supports both the Media Robot Device (MRD) subsystem for SCSI-controlled
robots, and the Digital Cartridge Server Component (DCSC) subsystem for certain silos.

The next sections describe the jukebox attributes.

4.5.1 Access

The access attribute controls whether the jukebox may be used from local access, remote access
or both. Local access includes direct SCSI access, access via a controller such as the HSJ70, or
access via Fibre Channel, and does not require use of the Remote Device Facility (RDF).
Remote access is via a DECnet network requiring RDF. You can set the access to one of the fol-
lowing:

• All - Allows both local and remote access (default)

• Local - Allows only local access (as defined above)

• Remote - Allows only remote access using RDF

4.5.2 ACS ID

For DCSC-controlled jukeboxes, the ACS identifier specifies the Automated Cartridge System
Identifier. Each MDMS jukebox maps to one Library Storage Module (LSM), and requires the
specification of the Library, ACS and LSM identifiers.

4.5.3 Automatic Reply

Automatic reply is a capability of polling hardware to determine if an operator-assist action has
completed. For example, if MDMS requests that an operator move a volume into a port, MDMS
can poll the port to see if the volume is there, and if so complete the OPCOM request without an
operator reply. Set automatic reply to enable this feature, and clear to require an operator
response. Please note that some operations cannot be polled and always require an operator
reply. The OPCOM message itself clearly indicates if a reply is needed or automatic replies are
enabled.

4.5.4 Cap Size

For DCSC-controlled jukeboxes equipped with Cartridge Access Points (CAPs), this attribute
specifies the number of cells for each CAP. The first number is the size for CAP 0, the second for
 Media Management 4–9

Media Management
4.5 Jukeboxes
CAP 1, and so on. If a size is not specified, a default value of 40 is used. Specifying a cap size
optimizes the movement of volumes to and from the jukebox by filling the CAP to capacity for
each move operation.

4.5.5 Control

The control attribute determines the software subsystem that performs robotic actions in the
jukebox. The control may be one of the following:

• MRD (Media Robot Device) - The default control uses SCSI commands to control the robot
in the jukebox. When you specify MRD, you should also specify slot count, robot device
name and a flag as to whether the jukebox supports magazines.

• DCSC (Digital Cartridge Server Component) - MDMS uses the DCSC subsystem to control
the device. When you specify DCSC, you should also specify library ID, ACS ID, LSM ID
and CAP sizes. DCSC is used for certain large silo devices only.

4.5.6 Disabled

By default, jukeboxes are enabled, meaning that they can be used by MDMS and its applica-
tions. However, you may wish to disable a jukebox from use because it may need repair or be
used for some other application. Set the disable flag to disabled the jukebox, and clear the flag to
enable the jukebox.

4.5.7 Groups

The groups attribute contains a list of groups containing nodes that have direct access to the
jukebox. Direct access includes direct-SCSI access, access via a controller such as an HSJ70,
and access via Fibre Channel. TMSCP access is not supported for jukeboxes. You can specify as
many groups as you wish, in addition to nodes that may not be in a group.

4.5.8 Library ID

For DCSC-controlled jukeboxes, the Library identifier specifies the library that this jukebox is
in. Each MDMS jukebox maps to one Library Storage Module (LSM), and requires the specifi-
cation of the Library, ACS and LSM identifiers.

4.5.9 Location

The location attribute specifies the physical location of the jukebox. Location can be used as a
selection criterion for selecting volumes and drives. Specify an MDMS-defined location for the
jukebox. This location may be the same as, or different from, the onsite location that volumes are
stored in when not in a jukebox. If different, moves from the jukebox to the onsite location and
vice versa will be done in two phases: jukebox to jukebox location, then jukebox location to
onsite location, and vice versa.

4.5.10 LSM ID

For DCSC-controlled jukeboxes, the Library Storage Module (LSM) identifier specifies the
LSM that comprises this jukebox. Each MDMS jukebox maps to one Library Storage Module
(LSM), and requires the specification of the Library, ACS and LSM identifiers.
4-10 Media Management

Media Management
4.5 Jukeboxes
4.5.11 Nodes

The nodes attribute contains a list of nodes that have direct access to the jukebox. Direct access
includes direct-SCSI access, access via a controller such as an HSJ70, and access via Fibre
Channel. TMSCP access to jukeboxes is not supported. You can specify as many nodes as you
wish, in addition to groups of nodes in the groups attribute.

4.5.12 Robot

For MRD-controlled jukeboxes, the robot name is the OpenVMS device name of the robot
device. Robot names normally fall into one of several formats:

• GKx0 or GKxn01 for direct-connect SCSI

• nDUAnnn for access via an HSJ-type controller

• 2GGnx for Fibre Channel access

If the jukebox is controlled by direct connect SCSI (first option), the device must be first loaded
on the system with one of the following DCL commands:

Alpha - $ MCR SYSMAN IO CONNECT GKxxx/NOADAPTER/DRIVER=SYS$GKDRIVER.EXE

VAX - $ MCR SYSGEN CONNECT GKxxx/NOADAPTER/DRIVER=GKDRIVER

I64 - $ MCR SYSMAN TO CONNECT GKxxx/NOADAPTER/DRIVER=SYS$GRDDRIVER.EXE

and the device name must begin with GK.

4.5.13 Slot Count

For MRD jukeboxes, the slot count is simply the number of slots (which can contain volumes) in
the jukebox. Volumes reside in numbered slots when they are not in a drive. Slots are numbered
from 0 to (slot count - 1). Filling in this field is optional: MDMS calculates the slot count by
polling the jukebox firmware.

4.5.14 State

The state attribute is a protected field that describes the current state of the jukebox. A jukebox
can be in one of three states:

• Available - Available for use, and not currently performing an operation

• In-Use - Currently performing a robot operation: robot operations occur sequentially; any
new operation requested while the robot is in-use is queued

• Unavailable - The robot is unavailable for use for some reason

This field is normally maintained by MDMS, so you should not modify it unless a problem has
occurred that needs manual cleanup (for example, the robot is stuck in the in-use state when it is
clear that it is not in-use).

4.5.15 Threshold

MDMS provides the capability of monitoring the number of free volumes in a jukebox. A free
volume is one that is available for allocation and writing new data. Many users would like to
maintain a minimum number of free volumes in a jukebox to handle tape writing needs for some
period of time. You can specify a threshold value of free volumes, below which an OPCOM
message is issued that asks an operator move some more free volumes into the jukebox. In addi-
tion, the color status of the jukebox in MDMSView changes to yellow if the number of free vol-
umes falls below the threshold, and to red if there are no free volumes in the jukebox. If you
wish to disable threshold OPCOM messages and color status, set the threshold value to 0.
 Media Management 4–11

Media Management
4.5 Jukeboxes
4.5.16 Topology

The topology attribute specifies the physical configuration of a certain type of jukebox when it is
being used with magazines. Topology is only useful when all of the following conditions are
true:

• The jukebox is controlled by MRD

• The jukebox is in the TL820 class that allows you to open the jukebox door and insert entire
magazines

• The jukebox is configured with towers, faces and levels

You specify the topology of the jukebox so that you can move magazines into and out of the
jukebox by specifying a position rather than a start slot.

For each tower in the jukebox, you specify the number of faces in the tower, the number of levels
in each face, and the number of slots in each level. For TL820-class jukeboxes, the typical values
for each tower are 8 faces, 2 or 3 levels per face and 11 slots per level. The associated magazine
contains 11 slots and fits into a position specified by tower, face and level. Other jukeboxes may
vary.

4.5.17 Usage

The usage attribute determines whether this jukebox is set up to use magazines, and has two val-
ues:

• Magazine - The jukebox is configured to use magazines

• Nomagazine - The jukebox is not configured to use magazines

You should only set usage to magazine if you plan to use MDMS magazine objects and move all
the volumes in the magazines together. An alternative is to move individual volumes separately,
even if they reside in a physical magazine; in this case set usage to nomagazine.

4.5.18 Inventory Jukebox

MDMS provides the capability to inventory jukeboxes, and “discover” volumes in them and
optionally create volumes in the MDMS database to match what was discovered. With this fea-
ture, you can simply place new volumes in the jukebox and let MDMS create the associated vol-
ume records with attributes that you can specify.

There are two types of inventory:

• Inventory using a vision system, which polls the jukebox’s firmware to locate volumes; this
option is available for most larger library and silo type jukeboxes, and this operation takes
only a few seconds to a few minutes depending on the size of the jukebox.

• Physical inventory, which actually loads volumes into drives to read volume labels. This is
the only kind of inventory available for small loader-type jukeboxes that lack a vision sys-
tem. This option is also available for larger jukeboxes, but is not recommended as it takes a
considerable amount of time.

You can inventory whole jukeboxes, or specify a volume range or slot range, as follows:

• Volume range is supported for DCSC-controlled jukeboxes and MRD-based jukeboxes that
have a vision system. Specify a range of volumes such as ABC001-ABC024. Up to 1000
volumes can be specified in a single range. When specifying a volume range, only those
volumes are inventoried; other volumes in the jukebox are not.

• Slot range is available only for MRD-controlled jukeboxes, and can be applied to either
vision or non-vision varieties. With slot range, only the specified slots are inventoried; other
slots are not.
4-12 Media Management

Media Management
4.6 Locations
While inventorying jukeboxes, MDMS can find volumes that are defined and in the jukebox,
that are not defined but are in the jukebox, and that are defined but missing from the jukebox.
MDMS provides several options to handle undefined and missing volumes.

If you set the “Create” flag during an inventory, MDMS will create a volume record for each
undefined volume it finds in the jukebox. You can specify in advance certain attributes to be
applied to this volume record:

• Inherit volume ID - This is the most comprehensive option as it allows the new volume to
inherit all non-protected fields from the specified volume. You normally use a volume
known to be in the jukebox as the inherit volume ID.

• Media type - Assign this media type to the volume. If you use inherit and media type, the
specified media type overrides the inherit media type

• Preinitialized - If you set this flag, the volume will be set to the free state and is immediately
available for use. If you clear this flag, the volume will be set to the uninitialized state, and
needs to be initialized prior to use. You should set or clear this flag depending on whether
the volume is already physically initialized.

If you do not set the “Create” flag, then MDMS will not create new volume records for unde-
fined volumes it finds.

Conversely, you can also define what to do if a volume that should be in the jukebox (according
to the database) is found not to be in the jukebox. There are three options that you can apply
using the “Missing” attribute:

• Delete - Delete the volume from the database; this is not normally what you would want to
do because in most cases the volume is simply in another location and you probably want to
keep it.

• Ignore - Do not change the database; this will probably leave the database in an inconsistent
state, but you may prefer to perform the changes manually.

• Move - This is the default option, and changes the database to flag that the volume is in the
volume’s onsite location.

When initiating an inventory from the DCL, you can choose a synchronous operation (default)
or an asynchronous operation using the /NOWAIT qualifier. From MDMSView, an inventory is
always asynchronous, so that you can continue performing other tasks.

4.6 Locations
A location is an MDMS object that describes the physical location other objects. Nodes, juke-
boxes, magazines, volumes and archives can all have locations associated with them. Locations
are used for volume and drive allocation selection criteria, and for placing volumes and maga-
zines in known labelled locations.

Locations can be hierarchical, and locations in hierarchy that have a common source are consid-
ered compatible locations. For example, locations SHELF1 and SHELF2 are compatible if they
have a common parent location such as ROOM2. Compatible locations are used when allocating
drives and volumes using selection criteria, so you should only define hierarchies to the extent
that you wish compatible locations. Locations that extend beyond a room or floor are generally
not considered compatible, so you should not normally build location hierarchies beyond that
level. Locations can also contain “spaces”, that are normally labelled areas in a location that vol-
umes and magazines can be placed in an onsite location. If a volume or magazine contains a
space definition, this is output in OPCOM messages so that operator can easily locate a volume
or magazine when needed.

Locations contain two attributes, as defined in the following sections.
 Media Management 4–13

Media Management
4.7 Magazines
4.6.1 Parent Location

The parent location is an MDMS location object which is the next level up on the location hier-
archy. For example, a location SHELF1 might have a parent location ROOM2, indicating that
SHELF1 is in ROOM2. You should define a parent location only if you wish all locations
belonging to the parent (including the parent itself) to be compatible when selecting volumes and
drives. For example, in a hierarchy of SHELF1 and SHELF2 in ROOM2, volumes in any of the
three locations would match a request to allocate a volume from ROOM2. Do not use the loca-
tion hierarchy for other purposes.

4.6.2 Spaces

Locations can contain spaces, that are used in OPCOM messages when volumes and magazines
are being moved from one place to another. Enter a range of spaces in an alphanumeric range
separated by a dash. Examples of space ranges are 1-10, A-Z, AAA001-AAA099, 10A-10Z.

4.7 Magazines
A magazine is an MDMS object that contains a set of volumes that are planned to be moved
together as a group. It can also relate to physical magazines that some jukeboxes (most notably
small loaders) require to move volumes into and out of the jukebox. Magazines can be moved
into and out of MRD-controlled jukeboxes with all their volumes at once.

However, just because a jukebox requires a physical magazine does not necessarily mean that
you must use MDMS magazines. The physical magazine jukebox can be handled without maga-
zines, and volumes are moved individually as far as MDMS is concerned. The choice should
depend on whether you wish the volumes to move independently (don’t use magazines) or as a
group together (use magazines).

Magazines are not supported for DCSC-controlled jukeboxes. Magazines have the following
attributes.

4.7.1 Jukebox, Start Slot and Position

The jukebox name contains the name of the jukebox if the magazine is in a jukebox. When in a
jukebox, a magazine can optionally have a start slot or position, as follows:

• In a single-drive loader jukebox, only one magazine can be loaded at a time. In this case, the
start slot is always zero, and the number of slots in the jukebox becomes the number of slots
in the magazine.

• In larger, TL820-type jukeboxes, the magazine can be placed in many different places. If
you have associated a topology with the jukebox, you can place the magazine in a “Posi-
tion”, specified by a tower, face and level specification. This is easier to physically locate in
such jukeboxes than the alternative, which is a start slot designation. OPCOM messages for
Move Magazine operations will state either position or start slot depending on whether a
topology was specified.

All three fields are protected and normally managed by MDMS when a “Move Magazine” oper-
ation occurs. Only manipulate these fields if an error occurs and you need to recover the data-
base to a consistent state.

4.7.2 Onsite and Offsite Locations and Dates

When not in a jukebox, a magazine may be either in an onsite or offsite location. An onsite loca-
tion is one where the magazine can be quickly accessed and moved into a jukebox, which is also
onsite. An offsite location is meant to be a secure location in the case of disaster recovery, and
generally does not have local access to a jukebox. However, nothing in MDMS precludes the
possibility of offsite locations having their own jukeboxes.
4-14 Media Management

Media Management
4.7 Magazines
Each magazine should have an onsite and offsite location defined, so that operators know where
the magazine is physically located. They use these locations, the jukebox name and the place-
ment to determine where a jukebox is at a certain time. Both onsite and offsite locations should
be MDMS-defined location objects.

Together with the offsite and onsite locations, you can associate an offsite and onsite date. These
dates represent the date the magazine is due to be moved offsite or onsite respectively. Typically,
magazines are moved offsite while their volumes’ data is still valid and needs to be protected in
a secure location. When the volumes’ data expires, the magazine should be scheduled to be
brought onsite, so that the newly-freed volumes can be used for other purposes.

If an offsite and/or onsite date is specified, MDMS initiates the movement of the magazines at
some point on the scheduled date automatically. This is performed by the “Move Magazine”
scheduled operation, which by default runs at 1:00 am each day. Operators will see OPCOM
messages to move the magazines to either the onsite or offsite location.

If you do not wish to have MDMS move magazines automatically, either remove the onsite and
offsite dates from the magazine, or disable the scheduled “Move Magazine” activity by assign-
ing a zero time to its schedule object “MDMS$MOVE_MAGAZINES”.

4.7.3 Slot Count

The slot count specifies how many slots are in the magazine. Unlike jukeboxes, this value is
required to make magazines work properly.

4.7.4 Spaces

While in an onsite location, the magazine can occupy a space, which is a labelled part of a loca-
tion that uniquely identifies where the magazine is. A space can be designed to handle a single
volume, but since magazines hold multiple volumes, multiple spaces can also be assigned. Enter
either a space or a range of spaces for the magazine.

4.7.5 Move Magazine(s)

The supported way to move magazines from one place to another is to use the “Move Magazine”
operation. You can move magazines on demand by issuing this operation, or you can let MDMS
automatically move magazines according to pre-defined onsite or offsite dates (this is called a
“scheduled” move). You can also force an early scheduled move if you want it to occur before
the time that MDMS would initiate the move. Moving magazines into jukeboxes must always be
performed manually.

When intiating a “Move Magazine”, you can choose a destination for the magazine if the move
is not a scheduled move. The destination can be one of three types of places:

• Jukebox - You wish to move the magazine and all of its volumes into a jukebox; you would
then specify the jukebox name. If the jukebox is a large TL820-type jukebox, you must also
specify the “Position”, using tower, face and level, or start slot for the magazine.

• Onsite location - You wish to move the magazine to a location that is onsite to the computer
hardware that normally uses it. You would then specify the onsite location name, and
optionally one or more spaces that the magazine (or volumes from the magazine) will
occupy.

• Offsite location - You wish to move the magazine to an offsite location for safety in case of
a disaster. Specify an offsite location name.

If you want to force a scheduled move, you can select “Scheduled”. In most cases, the destina-
tion is predefined, so you don’t need to specify it. However, you can specify an alternative desti-
nation for the scheduled move if you wish by specifying a destination as outlined above.
 Media Management 4–15

Media Management
4.8 Media Types
Finally, you can specify if you need operator assistance. This is recommended with “Move Mag-
azine” as magazines cannot be moved without human intervention. Only if you plan to do the
physical move yourself or you manually let someone know would you disable operator assis-
tance.

4.8 Media Types
MDMS uses media type objects to hold information about the type of media that volumes and
drives can support. MDMS uses media type as a major selection criterion for allocating volumes
and drives, and volumes can only be loaded into drives with compatible media types.

Media types contain four attributes, as defined in the following sections.

4.8.1 Capacity

The capacity attribute indicates the capacity of the media in MB. This field is not used by ABS
or HSM, but is used by the obsolete product “Sequential Media Filesystem” (SMF).

4.8.2 Compaction

This important field indicates whether you wish the tape to be written with firmware compac-
tion. Enabling compaction usually doubles the capacity of the tape, so this is a desirable option
which is set by default. Clear the attribute if you do not wish compaction.

4.8.3 Density

This field indicates the density of the tape that you desire. Many types of tape media (especially
DLT tapes) support multiple densities, and certain types of drive can either read and write a cer-
tain density, or just read some densities. As such, you can define many media types with differ-
ent densities that can be assigned to volumes and drives.

MDMS uses the density field when initializing volumes, so the density must be a valid Open-
VMS density for the version of the operating system being used. Issue a “HELP INITIALIZE
/DENSITY” command to determine the valid densities on the platform.

4.8.4 Length

The length field is used for information purposes only. If your media comes in various lengths,
you can differentiate between types by using the length field. Specify an integer value that has
meaning to your operators.

4.9 Node
An MDMS node is an OpenVMS system that is running MDMS. All nodes running MDMS
must have a node object defined in the database for MDMS to work properly. The node name must
be one of the following, in this order: the SCSNODE name, the DECnet Phase IV name, the host name of
the IP node, or the DECnet Phase V name. If none of these are defined then MDMS$SERVER
should be the node name.

Nodes contain attributes as outlined in the following sections.

4.9.1 Database Server

MDMS operates as a group of co-operating processes running on multiple nodes in multiple
clusters in an MDMS domain. One of these MDMS processes is known as the “Database
Server”, and it actually controls all MDMS operations in the domain. Although only one node is
the database server at any one time, you should enable multiple nodes to be possible database
servers in case the actual database server node fails. In this way, failover is supported.
4-16 Media Management

Media Management
4.10 Pools
A database server must have direct access to the database files located in
MDMS$DATABASE_LOCATION. Direct access, access via MSCP, and access via Fibre Chan-
nel are all considered local access. Access via a network protocol or DFS are not considered
local access. It is recommended that you enable at least 3 nodes as potential database servers to
ensure failover capabilities.

4.9.2 Disabled

Set to disable the node as an MDMS node. Clear to enable the node as an MDMS node.

4.9.3 OPCOM Class

You can specify the OPCOM classes to be used by MDMS for operator messages on this node.
By default, the domain default OPCOM classes are used, but you can override this on a node-by-
node basis. Specify one or more of the standard OpenVMS OPCOM classes - messages are
directed to all login sessions with these OPCOM classes enabled.

4.9.4 Transports and Full Names

You can define which network transports are defined for this node. There are four choices:

• DECnet - The DECnet transport is used

• TCPIP - The TCP/IP transport is used, and the TCP/IP full name is specified

• DECnet, TCPIP - The DECnet and TCP/IP transports can be used, with DECnet preferred

• TCPIP, DECnet - The TCP/IP and DECnet transports can be used, with TCP/IP preferred

If you identify TCP/IP as a supported transport, you must define the TCP/IP fullname in the
TCP/IP fullname field. These fullnames are normally in the format “node.loc.org.ext”. For
example, SLOPER.CXO.CPQCORP.COM

If you identify DECnet as a transport, you need to specify a DECnet full name only if you are
using DECnet-Plus (Phase V). In this case, enter the full name, which is normally in a format
such as LOCAL:.node. If you are running DECnet Phase IV, do not specify a DECnet full name.
The node’s node name is used.

4.10Pools
A pool is a logical MDMS object that associates a set of volumes with a set of users that are
authorized to use those volumes. Every volume can be assigned one pool, for which we say that
the volume is in the pool. The pool is then assigned a set of users that are authorized to use the
volumes in the pool. If a volume does not have a pool specified, then it is said to belong to the
“scratch pool” for which no authorization is required.

Pools have three attributes that are discussed in the following sections.

4.10.1 Authorized Users

You can specify a list of authorized users for the pool, as a comma-separated list of users. Each
user should be specified as node::username or group::username, where both the node/group and
username portions can contain wildcard characters (*%). To authorize everyone, you can specify
::. To authorize everyone on a node you can specify nodename::*. Everyone in the authorized
user list is allowed to allocate volumes in the pool. Other users require MDMS_ALL_RIGHTS
or MDMS_ALLOCATE_ALL rights.
 Media Management 4–17

Media Management
4.11 Volumes
4.10.2 Default Users

Default users are authorized like the authorized users, but in addition are assigned this pool as
their default pool. In this case, if they attempt to allocate a volume and don’t specify a pool, they
will allocate a volume from this pool. A particular user need only appear in one list: they do not
need to be listed in both lists to be an authorized user to their default pool.

4.10.3 Threshold

Pools are useful for dividing volumes between groups or organizations, but they are only useful
is there are free volumes in the pool. MDMS provides the capability of monitoring the number of
free volumes in a pool. A free volume is one that is available for allocation and writing new data.
Many users would like to maintain a minimum number of free volumes in a pool to handle tape
writing needs for some period of time. You can specify a threshold value of free volumes, below
which an OPCOM message is issued that asks an operator add some more free volumes to the
pool. In addition, the color status of the pool in MDMSView changes to yellow if the number of
free volumes falls below the threshold, and to red if there are no free volumes in the pool. If you
wish to disable threshold OPCOM messages and color status, set the threshold value to 0.

4.11 Volumes
A volume is a physical piece of tape media that contains (or will contain) data written by MDMS
applications (ABS or HSM), or user applications. Volumes have many attributes concerning
their placement, allocation status, life-cycle dates, protection attributes and many other things.

Volume records can be created manually with a “Create Volume” operation, or automatically be
MDMS with “Inventory Jukebox” and “Load Drive” operations. The MDMS$CONFIGURE
command procedure can also be used to create volumes.

Once a volume is created it acquires a state. This state determines how the volume may be used
at any time, and to an extent where the volume should be placed.

The following figure illustrates the life cycle of volumes, and the following table indicates how a
volume transitions from one state to another.
4-18 Media Management

Media Management
4.11 Volumes
Figure 4–1 Volume State

Each row describes an operation with current and new volume states, commands and GUI actions that
cause volumes to change states, and if applicable, the volume attributes that MDMS uses to cause volumes
to change states. Descriptions following the table explain important aspects of each operation.

Table 4–1 MDMS Volume State Transitions

Current State Transition to New State New State

Blank MDMS CREATE VOLUME
Volume Create

UNINTIALIZED

Blank MDMS CREATE VOLUME/PREINIT FREE

UNINITIALIZED MDMS INITIALIZE VOLUME
Volume Initialize

FREE

FREE MDMS INITIALIZE VOLUME
Volume Initialize

FREE

FREE MDMS ALLOCATE VOLUME
Volume Allocate

ALLOCATED

ALLOCATED MDMS DEALLOCATE VOLUME
Volume Deallocate
or automatically on
the volume scratch date

TRANSITION

ALLOCATED MDMS DEALLOCATE VOLUME
Volume Deallocate
or automatically on
the volume scratch date

FREE

Allocate Deallocate

Retain

Release

Deallocate

Create

Available
Unavailable

TransitionFreeUnitialized

Allocated

Unavailable

CXO6756A
 Media Management 4–19

Media Management
4.11 Volumes
Note

In the MDMS database, volumes are created with the barcode labels for Vision sup-
port. Hence, it is important that the internal label of the volume match with the bar-
code label.
Example: If a volume’s barcode label is “BDJ541”, then its corresponding entry in the
MDMS Volume database will be “BDJ541” only.

When a volume is loaded into a drive, its barcode label is compared with the volume’s
internal label. In case of a mismatch, various MDMS operations can wrongly set the
placement of such volume(s) to be “ONSITE”.

The following sections describes all the volume attributes in detail, followed by operations that
you can perform on volumes.

4.11.1 Allocation Fields - Account, Username, UIC and Job

The account, username and UIC fields are filled in automatically when a volume is allocated,
and reflect the calling user or specified user during the allocate. The username is a valid Open-
VMS username on the client system performing the allocate, and the account and UIC is from
the user’s entry in the system Authorization (UAF) file.

These fields are normally maintained by MDMS and are protected fields. You should not modify
these fields unless the volume is deallocated. MDMS maintains the Account, Username and UIC
in the volume even after the volume is deallocated, so that you can “retain” the volume back to
the allocated state in case of accidental deallocation.

The job name field is not used by ABS, HSM or MDMS.

TRANSITION MDMS SET VOLUME /RELEASE
Volume Release
or automatically on
the volume transition time

FREE

Any State MDMS SET VOLUME /UNAVAILABLE
Volume Unavailable

UNAVAILABLE

UNAVAILABLE MDMS SET VOLUME /AVAILABLE
Volume Available

Previous State

UNINITIALIZED MDMS DELETE VOLUME
Volume Delete

BLANK

FREE MDMS DELETE VOLUME
Volume Delete

BLANK

Table 4–1 MDMS Volume State Transitions

Current State Transition to New State New State
4-20 Media Management

Media Management
4.11 Volumes
4.11.2 Allocation and Movement Dates

There are several dates that maintain or control allocation and movement dates for volumes.
These are as follows:

• Allocation Date - This is the date that the volume was last allocated using the “Allocate Vol-
ume” function. This field is protected and maintained by MDMS and should not normally
be manually changed.

• Scratch date - This is the date the volume is due to be deallocated. MDMS will automati-
cally deallocate the volume on the scratch date, but you can manually deallocate the volume
before the scratch date as needed.

• Deallocation Date - This is the date the volume is actually deallocated. The volume may go
into either the transition state or the free state depending on whether there is a transition
time on the volume. This field is protected and maintained by MDMS and should not nor-
mally be manually changed.

• Onsite Date - This is the date the volume is due to be moved onsite from an offsite location.
If this date is specified, MDMS automatically generates a “Move Volume” operation to
move the volume onsite. Clear this field if you do not wish MDMS to automatically move
the volume onsite.

• Offsite Date - This is the date the volume is due to be moved offsite. If this date is specified,
MDMS automatically generates a “Move Volume” operation to move the volume offsite.
Clear this field if you do not wish MDMS to automatically move the volume offsite.

• Transition Time - The transition time indicates that the volume is to enter the transition state
when it is deallocated and remain in this state until the transition time has expired. In the
transition state, the volume cannot be allocated for use. When the transition time expires, the
volume enters the free state and may be re-used.

If an offsite and/or onsite date is specified, MDMS initiates the movement of the volumes at
some point on the scheduled date automatically. This is performed by the “Move Volumes”
scheduled operation, which by default runs at 1:00 am each day. Operators will see OPCOM
messages to move the volumes to either the onsite or offsite location.

If you do not wish to have MDMS move volumes automatically, either remove the onsite and
offsite dates from the volume, or disable the scheduled “Move Volumes” activity by assigning a
zero time to its schedule object “MDMS$MOVE_VOLUMES”.

4.11.3 History Dates

The history dates are maintained by MDMS, but are for information purposes only. MDMS does
not use these dates to perform any operations. The following history dates are maintained:

• Creation Date - The date the volume was created in the database. This field is protected and
maintained by MDMS and should not normally be manually changed.

• Initialize Date - The date the volume was last initialized. This field is protected and main-
tained by MDMS and should not normally be manually changed.

• Freed Date - This is the date the volume was last freed, either directly on deallocation, or
upon expiration of the transition time. This field is protected and maintained by MDMS and
should not normally be manually changed.

• Last Access Date - The date the volume was last loaded (and presumably accessed). This
field is protected and maintained by MDMS and should not normally be manually changed.
 Media Management 4–21

Media Management
4.11 Volumes
• Cleaned Date - If the volume is a cleaning volume, MDMS updates the cleaned date to
reflect the date that the volume was last used for cleaning. Otherwise it is set to the creation
date.

• Purchase Date - The date the volume was purchased. MDMS makes this the same values as
the creation date, but you can adjust this if needed.

4.11.4 State

The state field indicates where in a volume’s life cycle the volume exists. The state field itself is
protected, and you should not normally adjust it unless an error occurs. However, you can
“Update State” using certain keywords, which checks for validity and results in a consistent
database state.

A volume can be in one of the following states, which are shown in normal life-cycle order:

• Uninitialized - The default state when a volume is created. This state indicates that the vol-
ume needs to be initialized prior to use, and cannot be allocated until then.

• Free - When a volume is initialized, and after it has been freed, the volume is in the free
state. This means that the volume’s data (if any) is no longer valid and can be used to write
new data. This is the only state from which a user can allocate a new volume for use.

• Allocated - After a volume is allocated, it enters the allocated state. It remains in this state
until the scratch date is reached. MDMS automatically deallocates the volume when the
scratch date is reached, and it transitions to either the transition state (if there is a transition
time on the volume) or the free state.

• Transition - If a volume is deallocated to the transition state, it remains in this state until the
transition time expires. At this point, the volume re-enters the free state.

• Unavailable - This state is used by MDMS if it detects a problem with the volume. For
example, if MDMS cannot read the label on this volume during a load, it puts it in the
unavailable state. MDMS remembers the previous state (the “Available State”), so that
when it comes out of the unavailable state, it goes back to its previous state.

A picture showing the normal state transitions is provided at the top of the volumes section.

While changing the state directly is not recommended, there are several options for changing
state that are supported:

• Available - This changes the state from the unavailable state to the volume’s previous state

• Unavailable - This changes the current state to unavailable, and remembers the volume’s
previous state. The volume cannot be used in this state. You should set this if you believe the
volume is corrupted or broken and cannot be used.

• Release - If the volume is in the Transition State and you have verified that its data has
expired, you can “Release” it to the free state immediately.

• Retain - If the volume is in the Transition State and you have verify that its data has NOT
expired and is still useful, you can “Retain” the volume back to the allocated state. The
existing allocated user, UIC and account are maintained. If the volume was in a volume set,
the volume set is re-created.

• Preinitialize - If you know that the volume is already initialized, and the volume is in the
Uninitialized state, this changes it to the Free state. It does not change the state if the volume
is in any other state.
4-22 Media Management

Media Management
4.11 Volumes
4.11.5 Media Types

A volume’s media types define the type of media for the volume, and what potential compaction
or density options the volume can support. As such, before a volume is initialized, it can poten-
tially support many media types. However, once a volume is initialized, MDMS uses the density
and compaction attributes from a media type to physically write the tape. As such, a volume
should only support one media type at and after the first initialization.

If the volume is in the Uninitialized state, select one or more MDMS-defined media types for the
volume. If the volume is in any other state, select a single media type. If no media type is speci-
fied, the domain default media type is used.

4.11.6 Pool

A pool contains a collection of volumes that can be used by a set of authorized users. To insert a
volume into a pool, simply specify a pool name in the volume’s pool field. If not defined, the
volume is placed in the “scratch pool”, and it can be allocated by any user. If the volume is in the
free state, the number of free volumes in the pool is incremented.

4.11.7 Previous and Next Volumes

These read-only fields indicate if a volume is in a volume set, and what the previous and next
volumes are in the set, relative to this volume. A volume set is created when a tape write opera-
tion reaches end-of-tape and a new tape is required to complete the operation. ABS and HSM
bind the next volume to the current volume, and create a volume set.

These fields are manipulated by “Bind Volume” and “Unbind Volume” operations, both manu-
ally and under control of MDMS applications.

4.11.8 Placement - Jukebox, Magazine, Locations, Drive

The placement fields of a volume indicate where the volume resides, and where it should reside
when moved to an onsite or offsite locations. The placement attributes include the following:

• Placement - The current placement of the volume - options can be:

– Drive - The volume is in a drive, indicated by the drive field

– Jukebox - The volume is in a jukebox, indicated by the jukebox field and the slot field

– Magazine - The volume is in a magazine, indicated by the magazine field and slot field

– Offsite - The volume is in an offsite location, indicated by the offsite location field

– Onsite - The volume is in an onsite location, indicated by the onsite location field, with
optional space field

– Moving - The volume is moving between one place and another

Placement is a protected field managed by MDMS. You should not change placement unless
error recovery is needed.

• Drive - The name of the drive containing the volume. This field may contain a value even if
the volume is not currently in a drive. The drive is a protected field managed by MDMS.
You should not change drive unless error recovery is needed.

• Jukebox - The name of the jukebox containing the volume. The jukebox is a protected field
managed by MDMS. You should not change jukebox unless error recovery is needed. The
slot field indicates the jukebox slot the volume is in, and is filled in even if the volume is
actually in a drive.

• Magazine - The name of the magazine containing the volume. The magazine is a protected
field managed by MDMS. You should not change placement unless error recovery is
 Media Management 4–23

Media Management
4.11 Volumes
needed. The slot field indicates the magazine slot the volume is in (this may or may not be
the same as the jukebox slot). When the volume is in a magazine, its onsite and offsite loca-
tion and date fields are invalid, as the magazine’s onsite and offsite location and dates are
used instead.

• Offsite Location - The designated offsite location for the volume (not valid if the volume is
in a magazine)

• Onsite Location - The designated onsite location for the volume (not valid if the volume is
in a magazine). The Space field indicates which space in the onsite location the volume is in
or would be in if the placement is onsite.

4.11.9 Formats - Brand, Format, Block Factor, Record Size

The format fields are not used by ABS, HSM or MDMS, but can be used to document certain
characteristics of the volume and its data format. The fields are as follows:

• Brand - The manufacturer of the volume - string

• Format - The record format used on the tape volume. Options are:

– ASCII

– BACKUP

– EBCDIC

– NONE

– RMUBACKUP

• Record Size - An integer

• Block Factor - An integer

4.11.10Protection

The protection field provides System, Owner, Group and World access protection for the vol-
ume. This protection is written to the volume when it is initialized, and provides protection from
unauthorized use and re-initialization. The standard protection is:

SYSTEM(R, W) OWNER (R, W) GROUP (R) WORLD (None)

If protection is not set for the volume, the domain default protection is used.

4.11.11Counters

MDMS provides three counters for volumes, as follows:

• Mount Count - This is a count of the number of times the volume is loaded - maintained by
MDMS and incremented every time MDMS loads this volume

• Error Count - Not maintained by MDMS - set this field any integer you wish

• Times Cleaned - If the volume is a cleaning volume, this value is incremented each time the
volume is loaded and used for cleaning. Otherwise it is set to 0.

4.11.12Allocate Volume

You allocate volumes so that you can use them for writing new data. Allocating a volume places
it into the Allocated state, and assigns the calling user (or specified user), UIC, and account in
the allocation fields. This effectively reserves the volume to the user. The volume remains allo-
cated to the user and unavailable for other use until the scratch date is reached, or unless the vol-
ume is manually deallocated.
4-24 Media Management

Media Management
4.11 Volumes
When allocating a volume, you may specify the user for which you are allocating the volume
(for example, ABS). If you do not specify a user, then you as the calling user are placed in the
allocation fields.

Also, during allocation, you can change the following fields in the MDMS database to reflect the
format to be used on the tape:

• Format - The record format used on the tape volume. Options are:

– ASCII

– BACKUP

– EBCDIC

– NONE

– RMUBACKUP

• Record Size - An integer

• Block Factor - An integer

• Scratch Date - The date when the volume’s data becomes obsolete and the volume should
be deallocated - MDMS will automatically deallocate the volume at this time.

• Transition Time - When the volume is deallocated, the volume should go into the Transition
State and remain in this state until the transition time expires, after which it will go into the
Free State. If not specified, the volume goes into the Free State immediately on deallocation.

4.11.13Allocate Volume(s) by Selection Criteria

Instead of allocating a volume by name, you can specify selection criteria to be used for MDMS
to select a free volume for you and allocate it. You can also allocate a volume set by specifying a
count of volumes to allocate. The allocation selection criteria include:

• Media Type - Select a volume with the specified media type

• Location - Used with media type, select a volume in the specified location

• Jukebox - Used with media type, select a volume in the specified jukebox

• Pool - Select a volume in the specified pool

• Like Volume - Select a volume like the specified volume (with the same media type, pool
and placement)

• Bind Volume - Select a volume like the specified volume (with the same media type, pool
and placement) and bind the new volume to the specified volume in a volume set

If you specify a volume count of more than one, then that many volumes will be allocated and
placed in a volume set. If you also use the “Bind Volume” selection option, the new volume set is
bound to the specified volume set.

You can also specify that you wish to change certain attributes of the volume as follows:

• Format - The record format used on the tape volume. Options are:

– ASCII

– BACKUP

– EBCDIC

– NONE

– RMUBACKUP
 Media Management 4–25

Media Management
4.11 Volumes
• Record Size - An integer

• Block Factor - An integer

• Scratch Date - The date when the volume’s data becomes obsolete and the volume should
be deallocated - MDMS will automatically deallocate the volume at this time.

• Transition Time - When the volume is deallocated, the volume should go into the Transition
State and remain in this state until the transition time expires, after which it will go into the
Free State. If not specified, the volume goes into the Free State immediately on deallocation.

4.11.14Deallocate Volume

MDMS normally deallocates volumes when their scratch date expires. However, you can deallo-
cate volumes manually in order to free them up earlier than planned. You can deallocate your
own volumes, or with the appropriate rights deallocate volumes allocated to other users.

If the volume is in a volume set, the volume is also unbound from the volume set.

The following options are available when you deallocate a volume:

• Deallocation State - You can specify if the volume goes into the transition state or the free
state on deallocation. The transition state disallows allocation until the transition time
expires. You should make sure a transition time is specified, otherwise the domain default
transition time is used. If you select the free state, the volume immediately goes into the free
state.

• Transition Time - If the deallocation state is set to Transition, this is the length of time the
volume remains in the transition state. If not specified, the volume’s existing transition time
is used, or the domain default transition time is used.

• User Name - If the volume is allocated to a user other than yourself, you must specify that
user name for the deallocation to occur. You need MDMS_DEALLOCATE_ALL for this
option.

• Deallocate Volume Set - If the volume is in a volume set, the entire volume set is deallocated
by default. You can avoid this by deallocating only the single volume clearing the volume
set attribute. Note that the volume set is still unbound at the deallocated volume.

4.11.15Bind Volume

Binding volumes is the way to create volume sets, by binding one volume (or volume set) to
another volume (or volume set). Normally, MDMS applications such as ABS and HSM perform
automatic binding when they reach end-of-tape. However, it is sometimes necessary to perform
manual binding. For example, if a volume set has been accidentally deallocated but is still
needed, you may need to manually bind the set together (although the retain feature does this
quite well).

There are only two options when binding a volume set:

• Bind Volume ID - The volume or volume set you wish to bind the current volume to. The
current volume is always bound to the end of the specified volume set. Note that the allo-
cated user of the volume set must match the allocated user of the current volume for the bind
to be successful.

• User Name - If this volume is allocated to a different user than yourself, you must specify
that user name. This requires the MDMS_BIND_ALL right.
4-26 Media Management

Media Management
4.11 Volumes
When you bind a new volume to a volume or volume set, the new volume acquires the following
attributes of the volume set:

• Onsite Date

• Offsite Date

• Scratch Date

The next and previous volumes are also updated appropriately.

4.11.16Unbind Volume

Unbinding a volume removes the volume from the volume set without deallocating it. When
unbinding a volume you can choose whether to unbind the entire volume set, or break the vol-
ume set at the point of the unbind. You can also unbind on behalf of the allocated user.

There are only two options for unbind:

• User Name - If this volume is allocated to a different user than yourself, you must specify
that user name. This requires the MDMS_UNBIND_ALL right.

• Unbind Volume Set - Set this flag if you wish to unbind the entire volume set (that is, none
of the volumes will be in a volume set anymore). Clear the flag if you wish to unbind at the
point of the current volume (that is, the volumes before and the volumes after will remain in
two separate volume sets).

4.11.17Load Volume

MDMS supports two ways to load volumes into drives:

• Load Drive - This loads a scratch volume into a drive via operator intervention or by stacker
operation. As such, this option is only for standalone and stacker controlled drives

• Load Volume - This loads a specific volume into a drive, and can apply to all types of drive.

This section discusses the load volume option. The load drive option is discussed under drives.

When loading a specific volume, you normally need to specify the drive in which to load the vol-
ume, unless a drive has been specifically allocated for a volume (via DCL only). Select a drive
with a compatible media type for the volume.

If you are loading a volume into a jukebox drive, and the volume is not in the jukebox, you can
specify an automatic “Move Volume” request to move the volume into the jukebox is desired. If
you do not specify this option, and the volume is not in the jukebox, the operation will fail.

Another option is to request MDMS to check the volume label. This is normally a good idea as
there can be mismatches between the volume’s magnetic label and its bar code label. If the labels
do not match, the load fails. If you do not set the label check flag, the load may succeed but the
label may be wrong. Use this option with caution.

When issuing the load volume request, you can specify whether the load is for read/write or
read-only, and whether operator assistance is required.

You can also specify an alternative message for the operator. This is included in the OPCOM
message instead of the normal MDMS operator message. Use of an alternative message is not
recommended.

4.11.18Unload Volume

You can unload a specific volume from a drive by issuing the “Unload Volume” operation.
Unlike the “Unload Drive” operation which unloads any volume from the drive, the “Unload
Volume” function checks the label on the volume on the drive before unloading it. If the label
can be read and does not match the specified volume, the unload fails.
 Media Management 4–27

Media Management
4.11 Volumes
There is only one option for unload volume - operator assistance. This is recommended unless
you are personally monitoring the unload operation.

4.11.19Move Volume(s)

The supported way to move volumes from one place to another is to use the “Move Volume”
operation. You can move volumes on demand by issuing this operation, or you can let MDMS
automatically move volumes according to pre-defined onsite or offsite dates (this is called a
“scheduled” move). You can also force an early scheduled move if you want it to occur before
the time that MDMS would initiate the move. Moving volumes into jukeboxes or magazines
must always be performed manually.

When intiating a “Move Volume”, you can choose a destination for the volume if the move is not
a scheduled move. The destination can be one of four types of places:

• Jukebox - You wish to move the volume into a jukebox; you would then specify the jukebox
name. You can also specify slot: this is required for small loader jukeboxes unless you per-
form an inventory afterwards. For vision-equipped jukeboxes, MDMS can determine an
appropriate slot for the volume automatically.

• Onsite location - You wish to move the volume to a location that is onsite to the computer
hardware that normally uses it. You would then specify the onsite location name, and
optionally a space that the volume will occupy.

• Offsite location - You wish to move the volume to an offsite location for safety in case of a
disaster. Specify an offsite location name.

• Magazine - You wish to move the volume into a magazine, and specify a magazine slot for
the volume.

If you want to force a scheduled move, you can select “Scheduled”. In most cases, the destina-
tion is predefined, so you don’t need to specify it. However, you can specify an alternative desti-
nation for the scheduled move if you want, by specifying a destination as outlined above.

Also, you can specify whether you need operator assistance to move volume(s) or allow MDMS
to move them independently. For example, if you give the MDMS MOVE VOLUME request
along with the /PORT qualifer for moving volume(s) to outport(s), MDMS completes the request
without operator's assistance based on the availability of free ports.

For every MDMS MOVE VOLUME request, you can view the volume(s) move status. Appro-
priate OPCOMs are displayed informing the success or failure of a particular MOVE VOLUME
request. If operator’s assistance is required, you can move volumes using any qualifier other than
the /PORT qualifier.
4-28 Media Management

Media Management
4.11 Volumes
4.11.20Initialize Volume(s)

MDMS supports initialization of volumes to make them available for use. Initializing a volume
consists of writing an ANSI label on the volume, and applying compaction and density attributes
and the volume protection field in the label. The volume is then free to be written. If the volume
was in the Uninitialized state, it will now change to the Free state. All volumes need to be initial-
ized at least once before ABS and HSM can allocate and use them.

Volumes that are already written need to be initialized again if you wish to use the whole volume
for writing again. Both ABS and MDMS initialize volumes on every allocation.

When initializing volumes, you can specify four options:

• Media Type - If the volume does not have a media type specified, or has more than one
media type specified, this is the time to specify a single media type for the volume. This is
because the initialize instantiates the density and compaction attributes of the media type
when writing to the volume.

• Operator Assistance - Recommended if a problem occurs during loading/unloading during
the initialization.

• Overwrite - If set, this indicates that you wish the volume label to be written regardless of
the label currently on the tape. If clear, the initialize will not take place if there is a different
label on the tape.
 Media Management 4–29

5
Security

The security model used by ABS and MDMS is designed to provide flexibility in both the level
of security and ease-of-use. ABS uses the MDMS security model, which is based on two main
elements:

• Rights - The assignment of individual rights to particular users or classes of users that allow
them to perform specific operations across the domain. Rights allow users to perform opera-
tions on all objects or certain object classes across the domain. This is a task-based form of
security.

• Access Control - The assignment of access control is on a per-object basis, and allows spe-
cific users to perform specific types of operations on the object. This is an object-based form
of security.

In addition, you can assign your MDMS domain one of three levels of access-control based
security as follows:

• No Access Control - As the name implies, MDMS and ABS perform no access control based
checking, even if individual objects have access control entries defined. However, rights
continue to be checked.

• Loose Access Control - This option supports access control checking on objects, but only on
those objects that have at least one access control entry. If there is at least one entry, access
to the object is restricted to users with access control entries supporting the requested
access. With objects with no access control entries, access to the object is implicitly granted.

• Tight Access Control - Designed for secure environments, this option supports access con-
trol checking on all objects. If there is at least one access control entry on an object, access
to the object is restricted to users with access control entries supporting the requested
access. With objects with no access control entries, access to the object is implicitly
denied.This basically requires that all objects have appropriate access controls to be defined
for the object to be used. Certain domain users may access normally inaccessible objects to
prevent accidental lock-out due to insufficient access controls.

In general, the security model requires that both rights and access control are applied to users
wanting to perform operations. In other words, having the “super” right MDMS_ALL_RIGHTS
does not necessarily mean that you can do anything - any access control restrictions must also be
satisfied.

This chapter discusses the security model in more detail.
 Security 5–1

Security
5.1 MDMS Rights
5.1 MDMS Rights
MDMS controls users’ operations with process rights granted to users and applications through
low-level and high-level rights. High-level rights are simply a list of low-level rights assigned to
selected classes of users as follows:

• All users - The MDMS Default rights are applied to all users, even though those users may
not have any MDMS rights defined in their user authorization file. By default, MDMS does
not assign any rights to the default rights, but you can change this.

• MDMS Users - The MDMS_USER right contains a set of rights typically granted to non-
privileged MDMS users that require access to tape drives to perform their own backups and
restores, or their own file shelving.

• MDMS Operators - The MDMS_OPERATOR right contains a set of rights typically needed
for operations management of ABS, HSM and MDMS. This option contains more rights
than are typically assigned to a non-privileged user, and allows such actions as creating vol-
umes, loading volumes and drives, and inventoring jukeboxes.

• MDMS Applications - The MDMS_APPLICATION right contains a set of rights typically
needed for MDMS applications - ABS and HSM. You should not modify these rights, as
they may cause ABS and HSM to fail.

• MDMS Administrators - The MDMS_ALL_RIGHTS low-level right allows a user to per-
form any operation across the domain.

MDMS assigns defaults to all the high-level rights, you can modify high level rights to contain
any list of low-level rights you wish.

To increase flexibility, you can also assign individual users a combination of low-level rights and
high-level rights as needed.

The MDMS rights grant permission to perform certain kinds of operations across the domain,
rather than restrict access to specific objects. The low-level rights typically are named in the fol-
lowing manner:

MDMS_operation_scope

where “operation” is typically an MDMS DCL command verb such as Allocate or Set. The
“scope” may restrict the operation to a certain group of objects. Four common scopes are:

• All - Allows the operation on all objects. This is the most powerful scope.

• Pool - A volume-specific scope that allows operations on volumes to which you have autho-
rization to the pool to which the volume belongs.

• Own - Allows you to perform operations on objects that you own.

• Volume - Allows the operation on all volumes.

The following table shows several examples of how the low-level rights work:

Table 5–1 Examples of Low Level Rights

Right Explanation

MDMS_ALLOCATE_ALL Can allocate any drive or volume

MDMS_SET_VOLUME Can modify any volume’s attributes

MDMS_SET_POOL Can modify a volume’s attributes, if the volume is in a
pool for which you have authorization
5-2 Security

Security
5.1 MDMS Rights
Refer to the MDMS Reference Guide for a complete list of MDMS low-level rights, and the
default mapping of low-level rights to high-level rights.

In previous versions, ABS had a set of rights of its own, and you could map ABS rights to
MDMS rights. For backward compatibility purposes, this mapping is still supported as shown in
the following table:

The mapping of ABS to MDMS rights is optional, and is controlled by the “ABS Rights”
attribute in the domain. If you enable this attribute, the ABS to MDMS rights mapping is sup-
ported.

Finally, you can optionally enable the OpenVMS privilege SYSPRV to map to
MDMS_ALL_RIGHTS. This makes it convenient for system managers to gain all needed rights
by simply turning on SYSPRV. You can control this option using the “SYSPRV” attribute in the
domain. If you enable this attribute, the SYSPRV mapping is supported.

Note

If you wish to use the SYSPRV attribute from the MDMSView GUI, the user’s autho-
rization file must have SYSPRV defined as a privilege and a default privilege. Having
SETPRV is not sufficient as there is no way to set the SYSPRV privilege from the GUI.

Having access rights alone does not necessarily mean that you can perform all operations
granted by those rights. Access control checks (if any) are applied in addition to rights to deter-
mine the final access to an object.

MDMS_DELETE_OWN Can delete any object that you own

MDMS_SHOW_ALL Can show any object

MDMS_SET_ALL Can modify the attributes of any object

Table 5–2 ABS to MDMS Rights Mapping

ABS Right MDMS Rights Granted

ABS_BYPASS MDMS_ALL_RIGHTS

ABS_BACKUP_JOB MDMS_HR_USER

ABS_SHOW_ALL MDMS_SHOW_ALL

ABS_CREATE_EXECUTION_ENV
ABS_CREATE_STORAGE_CLASS

MDMS_CREATE_ALL
MDMS_SET_ALL
MDMS_SHOW_ALL

Table 5–1 Examples of Low Level Rights

Right Explanation
 Security 5–3

Security
5.2 Access Control
5.2 Access Control
Access control complements the MDMS rights access by granting object-based control over
operations. You can assign up to 32 access control entries on any MDMS object, and define the
types of access that the user in the entry is granted. There are seven kinds of access that users can
be granted as shown in the following table:

You can manipulate access control from MDMSView using the Access tab on an object’s Show
screen. From the DCL, you can use the /ACCESS qualifier. In either case, the user name specifi-
cation should include both node name and user name in the format:

node::username

From either interface, wildcards are supported in both the node and username portions of the
specification. For example:

HOUST%::SMITH* allows users whose name begins with SMITH access from HOUST%

JUNGLE::* allows all users access from node JUNGLE

*::SYSTEM allows all users named SYSTEM from all nodes

SYS001::JAMES allows user JAMES from node SYS001 only

If an access control entry matches a requesting user, only the access that is granted in the entry is
granted to the user. Allowances that are not specifically listed are not granted.

Access control checks are optionally performed depending on attributes that you can set in the
domain. The following table explains the settings:

Table 5–3 Access Control Allowed Operations

Allowed Access Explanation

CONTROL The user may modify the object’s access control

EXECUTE The user may perform operations on the object

DELETE The user may delete the object

READ The user may perform restore requests using this object (ABS only)

SET The user may modify the attributes of this object

SHOW The user may show this object

WRITE The user may perform save requests using this object (ABS only)

Table 5–4 Domain Access Control Options

Check Access Relaxed Access Explanation

Clear Clear No access control checking is done

Clear Set No access control checking is done

Set Clear Access control is checked; if there
are no access control entries, access
is denied.
5-4 Security

Security
5.3 Implementing a Security Strategy
Because of the nature of access control, it is possible to set up access control on an object so that
no-one can access the object (even to restore its access control to a usable value). As such,
MDMS provides three “escape” mechanisms to allow certain individuals to access the object
even if not normally allowed through the access control mechanism:

• The owner of an object always has full access to the object. You can disable this feature by
clearing the owner field in the object.

• Any user that is listed in the access control list of the domain has the same level of access to
all objects.

• Finally, the user designated by “Last Updated By” in the domain has full access to all
objects. This is the user who last modified the domain object, and so is assumed to be a
trusted individual with recent access to the object.

To help in determining who the authorized domain users are, the SHOW DOMAIN operation
does not use access control checking, so that anyone with MDMS_SHOW_ALL rights can show
the domain.

Note

Access control checking is in addition to MDMS rights checking; both must be vali-
dated for access to be granted. In addition, if access control checking is disabled in the
domain, MDMS rights checking is still performed for all operations.

5.3 Implementing a Security Strategy
Before assigning rights and access control entries to specific users you, as the system administra-
tor, should carefully review your MDMS and ABS domain and determine what kind of access to
allow your users.

The MDMS domain is a key determining factor as to what level of security you should imple-
ment. The MDMS includes all locations, nodes, jukeboxes, drives, volumes and other MDMS
objects that are served by a single MDMS database. Implicit in this statement are that all users,
operators and system managers on nodes in the domain are also part of the MDMS domain and
need to be granted appropriate access to the domain resources.

Another key issue is what kind of security to the MDMS domain resources, including backup
tape volumes, jukeboxes and drives, do you wish to assign to the domain users. Some possible
scenarios with suggestions are shown below:

• Your domain consists of a single site that is managed by a single organization in a relatively
free environment: MDMS high-level rights assigned to specific users are probably all that is
necessary here. This is the simplest form of security to maintain.

Set Set Access control is checked; if there
are no access control entries, access
is granted.

Table 5–4 Domain Access Control Options

Check Access Relaxed Access Explanation
 Security 5–5

Security
5.3 Implementing a Security Strategy
• Your domain consists of a limited number of sites managed by a single organization in a
secure environment: Since management of the domain is still under a single organization, a
combination of high-level and low-level rights MDMS rights and limited access control
checking may be appropriate. Access control entries on volumes and archives might be
appropriate to specifically limit who can access data. Loose access control is recommended
so objects without access control entries can be accessed. This level of security requires a
moderate amount of maintenance.

• Your domain needs to be very secure, or your domain is geographically distributed or man-
aged by multiple organizations that do not wish to interfere with each other’s resources. In
this case, tight access control with access control entries on every object may be required.
This allows each organization to maintain their own resources (volumes, pools, saves,
restores and so on), while sharing common resources such as nodes, jukeboxes and drives.
An alternative to a distributed domain is to have multiple domains, but resources such as
jukeboxes cannot be shared across domains. This level of security requires a substantial
amount of maintenance.

HP recommends that you begin your security setup by assigning MDMS rights to users, and
determining the high-level to low-level mappings carefully. Once these are assigned, assign var-
ious users high-level rights based on their function. For certain users whose access needs are not
cleanly defined as “User” or “Operator”, assign additional needed low-level rights to those users.

HP also recommends that you disable access control checking in the domain until all of the fol-
lowing are complete:

• You have installed the product(s), including any conversions from previous versions or pre-
vious products such as SLS.

• You have configured your domain.

• You have utilized the product(s) successfully in a production environment. You can perform
ABS saves and restores, or HSM shelving and unshelving, successfully.

• You have analyzed your security requirements and determined that access controls on indi-
vidual objects are required.

You may be concerned that MDMS enforces both access control and MDMS rights in order to
access objects. Why can’t MDMS_ALL_RIGHTS override all access controls? The answer to
this is that MDMS_ALL_RIGHTS can be granted to anyone with SYSPRV privilege on any
node in the MDMS domain. As the domain is a distributed object, potentially available to multi-
ple organizations, you may not want privileged users in the domain but outside of your organiza-
tion accessing your resources. As such, even users with MDMS_ALL_RIGHTS should be
subject to access control checking.

However, you can enable domain-wide “super users” by defining them with full access control
access to the domain. You should limit this access to trusted users across the domain. As these
users have the same level of access to all objects as they do the domain, if they are also granted
MDMS_ALL_RIGHTS, then they can perform any operation on any object in the domain.
5-6 Security

6
User Interfaces

ABS and MDMS support two distinct user interfaces, as follows:

• A Graphical User Interface that combines both ABS and MDMS functions in a single GUI,
and which you can run on OpenVMS systems and Windows PCs.

• A DCL interface, which now exclusively uses MDMS commands. The old ABS DCL inter-
face is still available for backward compatibility, but will not be enhanced any further.

Both interfaces are designed to be full-function, so the choice of which interface to use is strictly
your preference. It is not necessary to switch between interfaces to perform routine management
tasks.

6.1 Graphical User Interface
MDMS provides a graphical user interface called MDMSView, which provides several views that
you can use to manage your MDMS domain. MDMSView provides support for both media man-
agement and (if you have an ABS license) the Archive Backup System. MDMSView is designed
to be the preferred interface to ABS and MDMS, with the goal of supporting most, if not all, of
the regular management tasks. MDMSView supersedes all previous graphical interfaces for both
ABS and MDMS.

MDMSView provides several views into the management of MDMS objects and requests,
including ABS objects managed by MDMS. In V4.4, a limited number of views have been
implemented, but many more are planned for future releases. MDMSView currently supports the
following views:

• Domain View - With this view, you can see the relationship between objects. For example,
under a specific location, you can see the nodes, (child) locations and jukeboxes in that loca-
tion. At the next level, you can, for example, see the drives in the jukebox. On selecting a
specific object, you can then examine and optionally change its attributes.

• Event View - This view allows you to examine the MDMS event and audit logfile, using a
variety of selection criteria.

• Object View - Similar to the domain view, but the navigation is by object class and is not
hierarchical. For example, all 17 objects classes are listed, and all objects in those classes
are displayed. You can then select an object to manipulate.

• Report View - This view allows you to generate reports on a class of object using selection
criteria and attribute display options. Currently, the report view supports only volumes.

• Request View - This view allows you to examine current activities in the MDMS database
server. A request summary and detailed request information is available, with a single click
refresh.
 User Interfaces 6–1

User Interfaces
6.1 Graphical User Interface
• Task View - While both the domain and object view allow manipulation on a single object at
a time, the task view allows you to perform operations on multiple objects at once, or use
selection criteria to allocate objects. For example, you can create, show, delete and modify
multiple objects (of the same type) in one operation.

• Event View - This view allows you to look at the
MDMS$LOG:MDMS$LOGFILE_<node>.LOG file. It also allows you to reset the log,
starting a new file, and set the logfilter (MDMS$LOGFILTER logical).

Each view is provided in a tab from the main screen, and you can be working in several views at
the same time, although only one is visible at a time. When switching from one view tab to
another, the contents of the tab you are leaving are retained, and you can return to it at any time.

6.1.1 Starting MDMSView

6.1.1.1 OpenVMS Systems

MDMSView is installed at installation time on OpenVMS systems. Please refer to the Installa-
tion Guide for instructions on how to install MDMSView and Java on OpenVMS systems.

Once the installation is complete, the following commands are required to activate the GUI:

$ RUN YOUR VERSION SPECIFIC JAVA SETUP.COM FILE

$ SET DISPLAY/CREATE/NODE=nodename/TRANSPORT=TCPIP

$ MDMS/INTERFACE=GUI

where nodename is the TCP/IP node name of the system on which the MDMSView display is to
appear. Although the GUI itself must run on an Alpha or an I64 system, the MDMSView display
can be redirected to any OpenVMS system, including VAX systems. The minimum version of
Java on an Alpha system is 1.2 and the minimum version of Java on an I64 system is 1.4.2.

6.1.1.2 Windows Systems

A SETUP.EXE package is also installed on OpenVMS systems for use on Microsoft Windows
(R) PCs. This file may then be transported to any Microsoft Windows PC and executed. The
SETUP.EXE will install MDMSView at a default location of C:\MDMSView, although alterna-
tive locations are possible. Once the PC installation is complete, you can execute MDMSView
by clicking on the mdmsview.bat file in that directory. This batch file may need to be edited to
include the machine and/or version specific directory of jave.exe if entering java in the com-
mand line does not invoke java.exe from the installed location. Also, if you prefer not to use the
default C:\MDMSView directory for the GUI files, you will need to edit those directories in the
batch file.

6.1.2 Look and Feel

Once MDMSView is started, it will come up with the default look and feel for the system. For
OpenVMS systems, this is the Java/Metal look and feel. For Windows systems, this is the Win-
dows look and feel. You can adjust the look and feel to your taste by using the View menu as fol-
lows:

• OpenVMS systems: View>Java Look and Feel or View>Motif Look and Feel

• Windows systems: View>Java Look and Feel, View>Motif Look and Feel or View>Win-
dows look and feel

Changing the look and feel requires a new login, so it’s a good idea to change this before logging
in. The value is saved in the MDMSView initialization file, and is used on all subsequent invoca-
tions from this location.
6-2 User Interfaces

User Interfaces
6.1 Graphical User Interface
6.1.3 Logging In

Once MDMSView is started and the look and feel is set, you need to log into an OpenVMS sys-
tem, even if you are running on an OpenVMS system already. You can log into any OpenVMS
node in the MDMS domain, as long as it supports TCP/IP communication. Logging in requires
three fields, as follows:

• Node name: TCP/IP name, address or node name alias indicating the OpenVMS node that
you wish to log into. This node must be running MDMS.

• User name: A valid OpenVMS user name on the selected node.

• Password: The password associated with the user account on the selected node.

If there is a login failure for any reason, the node name and user name are retained for subse-
quent retries, but the password must always be re-entered.

After a successful login, the login screen disappears and the MDMSView splash screen is dis-
played.

Figure 6–1 MDMSview Main Screen

6.1.4 Selecting A View

The next step is to select a view depending on what you want to do. Here are some tasks that you
might wish to perform, and the associated view(s) that support them:

• Configure the MDMS domain - Domain view, object view or task view

• Create new objects - Domain view, object view or task view

• Modify object attributes - Domain view, object view or task view

• See relationships between objects - Domain view

• Delete objects - Domain view or object view

• Observe current MDMS operations - Request view

• Look at MDMS audit log entries and events - Event view
 User Interfaces 6–3

User Interfaces
6.1 Graphical User Interface
• Generate volume reports - Report view

• Create multiple objects - Task view

• Allocate volumes based on selection criteria - Task view

• Initialize a set of volumes - Task view

• Run and save or restore request - Domain view or object view

• View, reset, or add filters to the MDMS logfile.

The domain view and object view produce attribute and operation screens that work on one
object at a time. The task view produces screens that can operate on multiple objects, but restrict
the display of attributes to those that are common across the objects. The request view is a spe-
cialized view that allows you to show current requests (as a whole or in detail), and allows you to
delete requests as needed. The report view is a specialized view that generates customized vol-
ume reports.

All view displays are divided into two parts:

• A left screen containing tree nodes for navigation purposes. The structure of the nodes are
view-specific, but the general concept is that there is a level for object classes (for example,
Jukebox or Drive), and under the class is a list of relevant objects (for example, JUKE_1,
DRIVE_1). You can expand or contract any node (except for leaf nodes) in a manner similar
to Windows explorer. If you click on a class name, the associated list of objects are dis-
played on the right side of the screen. If you click on an object name, the object’s attributes
and operations screens are displayed on the right.

• A right screen which contains the object attributes, request information or report that you
wish to view. When clicking a class name from the left side, the objects in that class are dis-
played as icons on the right side. You can double-click on any object icon to bring up the
object’s attributes and operations screens. In the request view, you can refresh the whole
request display or an individual request display by clicking the refresh button.

While resizing the MDMSview screens is not supported, you can choose to view only the left or
right screens by using the arrows at the top of the division between the left and right screens.
Clicking on the left arrow eliminates the left screen, and clicking on the right arrow eliminates
the right screen. To restore the dual screens, click on the opposite arrow.
6-4 User Interfaces

User Interfaces
6.1 Graphical User Interface
Figure 6–2 Object View Screen

6.1.5 Creating Objects

If you wish to create a new object, you can choose the Domain, Object or Task Views to accom-
plish this. The Domain and Object Views create objects one at a time, while the Task View can
create multiple objects.

To create an object, use one of the following methods:

• Click on a class name (e.g. Jukebox) on the left screen, and the class object’s icons are dis-
played on the right screen. On the right screen press the “Create” button to display a create
screen.

• From the object view only, click on “Object”, then double-click on one of the class icons
that are displayed. On the right screen press the “Create” button to display a create screen.

• From the left screen, right-click on a class name, and a popup menu appears. Click on “Cre-
ate” to display a create screen for that class.

• From the task view, expand the Create task and click on one of the class names that appear.

• From the task view, right click on the create task, and a popup menu appears. Click on the
appropriate class name.

Once a create screen appears, (except for catalogs) you are prompted for two pieces of informa-
tion:

• A name for the new object or objects

• An inherit object

The domain and object views allow creation of only one object at a time, whereas the task view
allows a comma-separated list of new objects (and also ranges in the case of volumes). Depend-
ing on the view, enter the name or names of the new objects you wish to create.
 User Interfaces 6–5

User Interfaces
6.1 Graphical User Interface
The inherit object allows you to copy most of the attributes from the inherit object to the object
being created. If you wish to specify an inherit object, use the combo box to select the existing
inherit object. This must be the same type of object, except in the case of restores, in which case
you can inherit from either a restore or a save object.

After clicking create, the new object attribute and operations screens appear, which you can then
modify to your liking. In the task view, this screen modifies all the newly created objects.

Figure 6–3 Drive Create Screen

6.1.6 Showing and Modifying Objects

For objects that already exist, you can use the Domain View, Object View or Task View to show
and optionally modify objects, or to perform operations on them.

To view an object, use one of the following methods:

• From the Domain or Object Views, from the left screen, expand a class name, and click on
an object name.

• From the Domain or Object View, click on a class name from the left to bring up the class
object icons on the right screen, then double click on an object icon.

• From the Task View, right click on the Show task, and a popup menu appears, then click on
an appropriate class and object.

When an object is selected, its attributes and operations are displayed in a two-dimensional tab
screen as follows:

• Vertical tabs on the right side of the screen contain the Show and any operations associated
with the object. Many objects just have a Show tab, but some (for example, volumes) have a
whole list of operational tabs such as load, unload and so on. You can switch between the
tabs by simply clicking on them.

• For the Show screen, there are also horizontal tabs that display related attributes about the
object. Many simple objects have only a General tab that shows all attributes. Other
attributes have General and Advanced tabs, if there is not enough room on one tab. Other
tabs include:
6-6 User Interfaces

User Interfaces
6.1 Graphical User Interface
– A Show Access tab, which shows the access controls on the object. This is in a common
format for all objects. If your site does not use access controls, you can disable these
tabs using the view menu: View>No Access Control Tabs

– The Show screen for Jukeboxes and Magazines also has a Contents tab that shows the
current contents of the drives and slots in the jukebox, and the slots in a magazine.

– Saves and Restores have a selections tab, that shows all selections for the save or
restore, and a log tab that displays the latest version of the associated log file.

If you select the Show screen and wish to modify attributes, use the tool tip text for help on any
field. Select appropriate values (from all the show tabs as needed), then click on Set. This sends
the currently displayed values from all tabs to the MDMS server. If you just wish to view the
object’s attributes without modification, click on Cancel after viewing the attributes. This returns
you to the object class screen.

MDMSView supports switching from one object to another during displaying of values. For
objects that appear in combo boxes or lists, you can view related objects without losing the con-
text of the current object. Each combo box or list attribute supports two methods of viewing,
selecting and creating objects:

• Click on a small button to the right of the combo box or list to receive a popup menu for the
field

• Right-click on the combo box or list and receive the same popup menu for the field

From the menu, there are the following options:

• Show - To show the selected object

• Create - To create a new object

• Reset - To go back to the previously selected objects

• Clear - To clear the selection

• Add and Remove (list only) - To add and remove an object by name

• List all (list only), lists all the objects

If you select Show or Create, you will go to an appropriate screen. When you then complete your
operation on that object, you will come back to the original object.
 User Interfaces 6–7

User Interfaces
6.1 Graphical User Interface
Figure 6–4 Save Show General Screen

6.1.7 Deleting Objects

You can delete objects from the Domain, Object and Task Views. To delete an object, perform
one of the following:

• Display the object as discussed in the previous section, then click the Delete button at the
bottom of the screen.

• Right-click on the object name from the left screen, then select Delete from the pop-up
menu.

• From the task view, select the Delete task, then select the object class, then select the object
names from the list on the delete screen.

A request to delete an object will always bring up a Delete dialog box for confirmation of the
delete. You can confirm “OK” or “Cancel” from here.

6.1.8 Viewing Relationships Between Objects

The Domain view provides a way to view the hierarchical structure of the MDMS domain. The
left side of the screen provides an object-class-object... hierarchy of objects belonging to other
objects, or objects contained in other objects. The left side of the screen displays most of the
object classes which contain other objects (the exceptions: selections, schedules and volumes,
which have no sub-objects). You can begin the hierarchical navigation at any level, and all sub-
levels can be displayed.

For example, starting at jukebox, you can view all objects that reside in a jukebox: Drives, Mag-
azines and Volumes. If you then click on Drives, you will see all drives in this jukebox. If you
then select a drive and click on it, you can see the volume in the drive.

If your domain is sufficiently complex, you might want to expand the left side of the screen by
using the right arrow between the left and right screen. You can then view the entire hierarchy of
the domain.
6-8 User Interfaces

User Interfaces
6.1 Graphical User Interface
Figure 6–5 Domain View Showing Expanded Relationships

6.1.9 Performing Operations on Objects

If you wish to perform an operation on an object (for example, to load a volume into a drive),
you should first display the object’s attributes and operations screens. Then select the desired
operation tab, on the right side of the screen. For example, to load a volume, show the volume
then click on the Load tab.

The load tab is called an operations tab, and they all follow the same basic concepts. You enter
options concerning the operation (for example, operator assistance), then press the appropriate
operation button on the bottom left of the screen. This button is always labelled with the appro-
priate operation (for example, Load).

MDMS has the capability of performing long-running operations synchronously or asynchro-
nously. However, in MDMSView, long-running operations are always submitted asynchronously
and control is returned to the user. Asynchronous operations show a dialog box that states that
the operation has been queued for processing, but has not yet completed. If you perform an oper-
ation that does not result in the dialog box, then you can safely assume it has been completed
synchronously.

If you receive a “queued” dialog box, it does not necessarily mean that the operation was fully
validated. If you want to check on the status of the operation, use the Request View to monitor
the request’s progress.
 User Interfaces 6–9

User Interfaces
6.1 Graphical User Interface
Figure 6–6 Load Volume Screen with Queued Dialog Box

6.1.10 Running Save And Restore Requests

MDMS treats saves and restores in the same manner as other objects that it manages. You can
create new saves and restores in the same way that you create other objects, then select a start
time for them to run. Clicking Set will schedule the save or restore to run at the requested start
date and time.

From MDMSView, however, there is an additional mechanism to run a save or restore. If you
wish to run the request immediately, press the “Run” button at the bottom of the Show screen.
This initiates an immediate run of the save or restore.

Once you run a save and restore request, you can monitor its progress by pressing the “Log” tab
for the save or restore. This tab provides an up-to-date display of the request’s log file.

Figure 6–7 Save Log Screen

6.1.11 Showing Current Operations

The Request View provides a monitoring capability for all current MDMS operations. You can
display all current requests by clicking on Show Requests - this results in a table of requests
being displayed. This includes all current requests, and some recently-completed requests.

You can also expand the requests on the left side of the screen and click on a specific request for
detailed information about the request. Or you can right-click on the request number on the left
screen and select Show.
6-10 User Interfaces

User Interfaces
6.1 Graphical User Interface
If you feel that a request is not working correctly, or for any reason you wish to delete the
request, you can click on delete from the detailed request screen, or select a request number on
the left screen, right-click and select delete from the popup menu.

As with other deletes, a dialog box will appear to confirm the delete of the request.

Figure 6–8 Show Requests Screen

6.1.12 Reporting on Volumes

The Report View provides the capability of generating custom reports on volumes. With this
view, you can choose attributes that can be displayed and/or used as selection criteria for vol-
umes.

To select an attribute for display, simply click on the attribute and then press the right arrow but-
ton to move it to the display screen. The attributes are displayed in the report in the order
selected. If you change your mind or wish to re-order the attributes, select an attribute on the dis-
play screen and press the left arrow button to deselect it.

If you wish to use an attribute as a selection criterion, click on the attribute, then click on “Use
for Selection”. This will enable a field below (either a text field or combo box) to allow you to
enter a selection.

You may display any number of fields and use any number of selection criteria to customize the
report. When your selections are ready, you can generate the report by clicking on “Generate”.
You can see the resultant report in the “Report Results” tab.

If you wish to save this report, enter a report title in the text field at the bottom of the screen and
click on save. The report is saved to the following locations:

• OpenVMS Systems:

– sys$common:[mdms.gui.vms]Report_year_month_day_hour_minut_second.txt

• Windows Systems:

– C:\MDMSView\Report_year_month_day_hour_minute_second.txt

For example, a report file name is: Report_2001_12_17_8_35_17.txt
 User Interfaces 6–11

User Interfaces
6.1 Graphical User Interface
Once the results screen is displayed, you can sort the report using any field by clicking on the
field’s header. You can reverse-sort the same field by clicking on the field header again.

Figure 6–9 Report View Selection Criteria Example

Figure 6–10 Report View Results Screen
6-12 User Interfaces

User Interfaces
6.1 Graphical User Interface
6.1.13 Viewing MDMS Audit and Event Logging

To examine past operations in MDMS, you can use the event view to view the MDMS audit and
event logfile. There are five pre-configured options and a fully flexible custom option to allow
you to select what you wish to see from the MDMS logfile. The five pre-configured options all
apply to the MDMS Database Server logfile and show all operations (auditing and events) for
the following amounts of time before the current time:

• The last minute

• The last 10 minutes

• The last hour

• The last 24 hours

• The last 72 hours

If you wish to see the logfile using other selection criteria, you can use the “Custom” setting. By
clicking on “Custom”, a selection screen appears that allows you to select the entries to be dis-
played as follows:

• Node selection: You can choose the default of the DB server (which contains the most com-
plete information), or select a specific client node. Note that request IDs are not supported
on client nodes, and nor is selection by low and high request IDs.

• Selection Options: You can select a range of entries in the logfile to display by one of:

– Elapsed time in minutes (default of 60 minutes) -OR-

– Before and/or since dates (specified as an absolute time) -OR-

– Low and high request IDs (for DB server only)

• Severity Options: For audit completion entries, you can select that only entries of a certain
combinations of completion status are displayed. You can select one or more of:

– Success (S)

– Informational (I)

– Warning (W)

– Error (E)

– Fatal (F)

After entering the selection criteria, you click on the Show button to display. Depending on the
size of the log file, this operation may take several seconds to complete. You may want to regu-
larly reset your log files to avoid long response times. The code has been written to scan previ-
ous versions of log files if the date and or request selections are not in the latest log file.

The Refresh button at the bottom of the screen refreshes whatever selection is currently on the
screen. The Cancel button allows you to enter a new selection.

6.1.14 Errors

MDMSView can report two types of errors:

• Those generated by MDMSView itself: these typically appear in a dialog box and in the sta-
tus bar at the bottom of the screen. These errors normally explain an illegal user operation.

• Those generated by the MDMS server on the log-in node. These errors appear in a dialog
box with the standard MDMS DCL syntax. These errors are documented in the MDMS Ref-
erence Guide.
 User Interfaces 6–13

User Interfaces
6.2 DCL Interface
6.1.15 Help

MDMSView provides three types of help:

• Tool-tip Help for every field on every screen. To obtain tool-tip help on a field, simply posi-
tion the cursor on that field. The help appears near the field within one second and remains
on the screen for 4 seconds.

• Screen-sensitive Help. For every screen in the Domain, Object or Task Views there is a
“Help” button at the bottom right of each screen. If you press this “Help” button, a help
screen pops-up with information about the screen you from which you pressed the button.
The help information displayed is derived from this manual, the ABS Guide to Operations.

• Finally, there is a “Help” pull-down menu from the main screen. This provides the same
type of Help as the “Help” button, but starts from the beginning of the manual. You can use
the left-screen navigation or a search capability to find what you are interested in.

Figure 6–11 Context-Sensitive Help Screen from Show Volume Screen

6.2 DCL Interface
MDMS provides a DCL command line interface in addition to MDMSView. Some people prefer
a command line interface, and it can also be used for automated command procedures. With this
release, the entire command line interface is supported within MDMS, which maintains the data-
base for both media management and ABS objects.

In previous releases, there was an ABS DCL interface that supported the ABS objects. This
interface is now deprecated, but still works for backward compatibility. If you have command
procedures that use this interface, they will still work. However, this interface will not be
enhanced, so a migration to the MDMS DCL verbs is recommended for the long term.
6-14 User Interfaces

User Interfaces
6.2 DCL Interface
6.2.1 Syntax Overview

The MDMS DCL interface uses a consistent syntax for virtually all commands in the format.

$ MDMS VERB OBJECT_KEYWORD OBJECT_NAME /QUALIFIERS

The verb is a simple action word, and may be one of the following:

• ALLOCATE

• BIND

• CREATE

• DEALLOCATE

• DELETE

• INITIALIZE

• INVENTORY

• LOAD

• SET

• SHOW

• UNBIND

• UNLOAD

The object keyword is the object class name that the verb is to operate on. In MDMS, the object
keyword cannot be omitted. MDMS supports the following object keywords:

• ARCHIVE

• DOMAIN

• DRIVE

• ENVIRONMENT

• GROUP

• JUKEBOX

• LOCATION

• MAGAZINE

• MEDIA_TYPE

• NODE

• POOL

• RESTORE

• SAVE

• SERVER

• SCHEDULE

• SELECTION

• VERSION

• VOLUME
 User Interfaces 6–15

User Interfaces
6.2 DCL Interface
Following the object keyword, you should enter an object name. This must be the name of an
already-existing object unless the verb is “Create”, in which case the object must not already
exist.

The qualifiers for all commands are non-positional and may appear anywhere in the command
line.

There are two exceptions to the general command syntax, as follows:

• The Move verb takes two arguments. The first is the object name as normal, and the second
is a destination object name. The destination object name is not preceded by an object key-
word. An example of a Move command is:

MDMS MOVE VOLUME TLZ234 TLZ_JUKE/SLOT=4

• The Report verb, which takes a variable number of arguments. This verb uses the syntax of
the old SLS Storage Report Volume command. Since the Report verb does not operate on
any specific object, the first argument is always the keyword “Volume”, and the other argu-
ment is a comma-separated list of display and/or selection attributes. For example:

$ MDMS REPORT VOLUME VOLUME,STATE=ALLOCATED,SCRATCH_DATE,PLACEMENT,PLACNAME

6.2.2 Object Lists

With this release of MDMS, all of the following commands accept a list of objects, so that you
can operate on multiple objects in a single command:

• CREATE

• DELETE

• SET

• SHOW

If you specify an attribute in a CREATE or SET command and use an object list, then that
attribute value is applied to all objects in the list.

6.2.3 Qualifier List

Certain qualifiers accept a list of attributes, and the list can be applied in one of three ways using
an appropriate qualifier:

• /ADD - The specified value or list is added to any pre-existing list; this is the default option
if you do not specify a qualifier

• /REMOVE - The specified value or list is removed from any pre-existing list

• /REPLACE - The specified value or list replaces any pre-existing list.

Consider the following examples:

MDMS CREATE GROUP COLORADO/NODES=(DENVER, SPRINGS, PUEBLO)

The group Colorado contains nodes Denver, Springs and Pueblo

MDMS SET GROUP COLORADO/NODE=ASPEN

The group Colorado now contains nodes Denver, Springs, Pueblo and Aspen. With no list quali-
fier specified, /ADD is applied by default.

MDMS SET GROUP COLORADO/NODE=ASPEN/REPLACE

The group Colorado now contains only node Aspen.
6-16 User Interfaces

User Interfaces
6.3 User Interface Restrictions
6.2.4 Inherit

All MDMS objects now accept the /INHERIT qualifier on Create. This allows you to create new
objects and inherit most attributes of an existing object. This provides an easy way to “clone”
objects, then apply the any differences in individual commands. It saves the effort of typing in all
the attributes once a prototype has been established. In general, only non-protected fields of
objects can be inherited.

In addition, the object list capability allows you to clone multiple objects in a single command.
For example:

MDMS CREATE DRIVE DRIVE_2, DRIVE_3, DRIVE_4/INHERIT=DRIVE_1

This command creates three drives and applies all non-protected attributes of DRIVE_1 to the
three new drives.

6.2.5 Symbols

MDMS now supports symbols on all objects which command procedures can read and process.
To use symbols, enter a Show command for a single object. You can define a prefix other than
the default one (MDMS_INQ). If prefix is not specified the default prefix is MDMS_INQ. The
maximum length of the prefix is 8 characters. This qualifier is supported for wildcard show
requests.

The symbols are generally in the format “MDMS_INQ_qualifier”, where “qualifier” is almost
always the associated qualifier name for the attribute. The list of symbols for each show com-
mand is documented for that command, and is also available in DCL help.

When you issue a Show/Symbols, the show output is not displayed by default. If you wish to see
the output as well, use Show/Symbols/Output.

6.2.6 Help and Reference

MDMS supports the normal DCL help mechanisms, as follows:

$ MDMS HELP [VERB] [KEYWORD] [/QUALIFIER]

$ HELP MDMS [VERB] [KEYWORD] [/QUALIFIER]

In addition, you can request help on any error message, for example:

MDMS HELP MESSAGE NOSUCHOBJECT

You can request help on any MDMS logical name, for example:

MDMS HELP LOGICAL MDMS$LOGFILTER

Finally, you can locate the mapping of the old (pre-version 4.0) ABS commands to the MDMS
equivalent, for example:

MDMS HELP MAPPING CREATE ARCHIVE

The MDMS Reference Guide fully documents all DCL commands and qualifiers.

6.3 User Interface Restrictions
MDMSView and the MDMS DCL supports operations on Archive Backup System (ABS)
objects only if an ABS or SLS license is loaded on the system. The ABS objects are:

• Archives

• Environments
 User Interfaces 6–17

User Interfaces
6.3 User Interface Restrictions
• Restores

• Saves

• Selections

MDMS supports operations on the other media management objects if the system only has a
Hierarchical Storage Management (HSM) license installed, or with an ABS or SLS license.

In addition, if the ABS license is the restricted OMT license, the following operations are not
supported:

• Creation of archives or environments

• Support of the Remote Device Facility

• Support of DCSC-controlled jukeboxes

• Support of external scheduler products

• Save/restore frequencies other than Daily_Full_Weekly, On_Demand and One_Time_Only
6-18 User Interfaces

7
Preparing For Disaster Recovery

In case of a disaster you may need to restore all or part of the on-disk data of your computing
environment. Basically you need a bootable system disk and a complete ABS/MDMS environ-
ment to restore all the rest of your data. This chapter explains the task to get you ABS environ-
ment up-and-running from scratch. The procedure differs slightly between OpenVMS and non-
OpenVMS systems.

7.1 Disaster Recovery for OpenVMS Systems
To recover from a total loss of your online data you need the following items for recovery:

c. An image copy of your system disk

d. A copy of your MDMS$ROOT including the database files

e. A copy of your ABS$ROOT including all catalog files

f. A copy of files of any other product required by ABS, such as your 3rd party scheduler
product

In all cases you need to keep the information about the saves in a safe place. This information is
in the ABS save log and includes:

a. The volume IDs of the tapes used

b. The name of the savesets created

c. The source path of the files being saved

Note

It is important to note the full pathname of the original location of the files.

You can print out this information from the epilog procedure of the environment.

7.1.1 Backup of Your System Disk

The easiest way to save your system disk is by using an ABS SAVE object like this:

Example 7–1 Save Object for Disaster Recovery of System Disk

 Save: SYSTEM_DISK
 Description: System Disk Backup for Recovery
 Access Control: NONE
 Owner: BONFYR::FROEHLIN
 Archive: DISASTER_RECOVERY
 Base Date: NONE
 Delete Interval: NONE
 Environment: DISASTER_RECOVERY_ENV
 Epilogue:
 Preparing For Disaster Recovery 7–1

Preparing For Disaster Recovery
7.1 Disaster Recovery for OpenVMS Systems
 Execution Nodes: BONFYR
 Explicit Interval:
 Frequency: DAILY
 Groups:
 Incremental: NO
 Job Number: 0
 Prologue:
 Schedule: SYSTEM_DISK_SAVE_SCHED
 Sequence Option: SEQUENTIAL
 Skip Time: NONE
 Start Date: NONE
Transaction Status:
 Selections: SYSTEM_DISK_SAVE_SEL_DEF

 Default Selection -
- Data Select Type: VMS_FILES
 - Include: 1DUA300:
 - Exclude:
 - Source Node:

This SAVE uses the standard archive of DISASTER_RECOVERY and the standard environ-
ment of DISASTER_RECOVERY _ENV which comes with ABS. If these objects do not exist
on your system run the ABS database initialization program:

$ RUN SYS$SYSTEM:ABS$DB_INIT

This program adds all the missing default ABS objects to the MDMS database.

Saving an OpenVMS system disk online produces many errors for files open for write by the
operating system and layered products. Even though, the image backup produced can be used to
restore a bootable system disk. The problem comes when executing the site-specific
SYSTARTUP_VMS.COM. For example when starting the OpenVMS Queue Manager the com-
mand could hang because the Queue Manager files had been saved in an inconsistent state.
There are three ways to avoid these kind of problems.

• Do a standalone backup of your system disk.

For Alpha systems, see the section "Backing Up the System Disk" in the Appendix of the
“Alpha Upgrade and Installation Manual” in the OpenVMS Documentation.

For VAX systems see the chapter “Using BACKUP” in the “System Manager’s Manual” in
the OpenVMS Documentation.

• Shutdown components of your system until all critical files are closed before starting the
backup of your system disk. To find out which files are open for write use the following
method:

$ BACKUP/IMAGE/IGNORE=INTERLOCK SYS$SYSDEVICE: NLA0:DUMMY.SAV/SAVE

Before the backup shutdown all components for which BACKUP reported:

%BACKUP-W-ACCONFLICT, SYS$SYSDEVICE:[SYS0.SYSCOMMON.SYSEXE]QMAN$MAS-
TER.DAT;1 is open for write by another user

Shutdown of these components can be done in the prolog procedure in environment
DISASTER_RECOVER_ENV. The same components can be automatically restarted in the
epilog procedure.

• Ignore any error messages during the save operation. After restoring your system disk boot
into conversational boot and rename your SYSTARTUP_VMS.COM and SYLOGI-
CALS.COM to prevent any startup of extra components or layered products and reboot.
7-2 Preparing For Disaster Recovery

Preparing For Disaster Recovery
7.1 Disaster Recovery for OpenVMS Systems
7.1.2 Backup of MDMS$ROOT

Backing up MDMS$ROOT with ABS will always find the MDMS database files open for write.
This cannot be avoided. To copy the contents of these files in a consistent way online copies
should be made prior to starting the save request. You can use the standard MDMS command
procedure to do this:

$ @MDMS$SYSTEM:MDMS$COPY_DB_FILES

This command procedures uses DCL CONVERT/SHARE to create file copies with a file exten-
sion of “*.DAT_COPY”. This can be automatically done by executing this command procedure
in the prolog of the environment. All files with that extension can then can be automatically
deleted in the epilog of the environment.

See ABS$SYSTEM:ABS$DISASTER_RECOVERY.TEMPLATE for an example.

If MDMS$ROOT is not located on your system disk or you want a separate save operation, you
can use a separate SAVE object like this:

Example 7–2 Save Object for Disaster Recovery of MDMS$ROOT

 Save: DISASTER_RECOVERY
 Description:
 Access Control: BONFYR::ABS (READ, WRITE, EXECUTE, DELETE, SET,
SHOW,
 CONTROL)
 Owner: BONFYR::ABS
 Archive: DISASTER_RECOVERY
 Base Date: NONE
 Delete Interval: NONE
 Environment: DISASTER_RECOVERY_ENV
 Epilogue: @ABS$SYSTEM:ABS$DISASTER_RECOVERY.COM EPILOG
 Execution Nodes: BONFYR
 Explicit Interval:
 Frequency: ON_DEMAND
 Groups:
 Incremental: NO
 Job Number: 0
 Prologue: @ABS$SYSTEM:ABS$DISASTER_RECOVERY.COM PROLOG
 Schedule: DISASTER_RECOVERY_SAVE_SCHED
 Sequence Option: SEQUENTIAL
 Skip Time: NONE
 Start Date: NONE
Transaction Status:
 Selections: DISASTER_RECOVERY_SAVE_SEL_DEF

 Default Selection -
- Data Select Type: VMS_FILES
 - Include: MDMS$ROOT:[000000...]*.*;*
 - Exclude: [*...]*.LOG;*,[*...]*_DB.DAT;*
 - Source Node:

This save request excludes all the files open for write by MDMS and therefore does not create
any error messages in the save log file.

If you want you can combine the save of the MDMS$ROOT and the ABS$ROOT into one save
object.
 Preparing For Disaster Recovery 7–3

Preparing For Disaster Recovery
7.1 Disaster Recovery for OpenVMS Systems
7.1.3 Backup of ABS$ROOT

Backing up ABS$ROOT with ABS will always find the ABS log files open for write because a
save request always has a catalog file open for write. Not all catalog files might be accessible
through ABS$ROOT. For example if you have created a search list for ABS$CATALOG and
extensions to ABS$CATALOG point to other directories and/or disk devices.

If ABS$ROOT is not located on your system disk or you want a separate save operation, you can
use a separate SAVE object like this:

Example 7–3 Save Object for Disaster Recovery of ABS$ROOT

 Save: DISASTER_RECOVERY
 Description:
 Access Control: BONFYR::ABS (READ, WRITE, EXECUTE, DELETE, SET,
SHOW,
 CONTROL)
 Owner: BONFYR::ABS
 Archive: DISASTER_RECOVERY
 Base Date: NONE
 Delete Interval: NONE
 Environment: DISASTER_RECOVERY_ENV
 Epilogue: @ABS$SYSTEM:ABS$DISASTER_RECOVERY EPILOG
 Execution Nodes: BONFYR
 Explicit Interval:
 Frequency: DAILY
 Groups:
 Incremental: NO
 Job Number: 0
 Prologue: @ABS$SYSTEM:ABS$DISASTER_RECOVERY PROLOG
 Schedule: DISASTER_RECOVERY_SAVE_SCHED
 Sequence Option: SEQUENTIAL
 Skip Time: NONE
 Start Date: NONE
Transaction Status:
 Selections: DISASTER_RECOVERY_SAVE_SEL_DEF

 Default Selection -
- Data Select Type: VMS_FILES
 - Include: ABSS$ROOT:[000000...]*.*;*,
 - Exclude: [*...]COORD_CLEANUP.DAT;*,[*...]*.LOG;
 - Source Node:

If this object does not exist on your system run the ABS database initialization program:

$ RUN SYS$SYSTEM:ABS$DB_INIT

This program adds all the missing default ABS objects to the MDMS database.

This save request excludes all the files open for write by ABS like the current logfile and the
database file used by the coordinator cleanup process (“ABS$COORD_CLEAN”). There should
not be any error message in the save log file.

You have to make sure that you use the DISASTER_RECOVERY archived with an empty cata-
log name defined. The disaster recovery archive is the only archive which allows no catalog
name. Otherwise you get open and verify errors for the catalog being used.

If you have an extended ABS$CATALOG search list, then you have to include the extra entries
in the include specification as well. By default the catalog subdirectory is included under
ABS$ROOT.
If you want, you can combine the save of the MDMS$ROOT and the ABS$ROOT into one save
object.
7-4 Preparing For Disaster Recovery

Preparing For Disaster Recovery
7.2 Prolog and Epilog Procedure
7.2 Prolog and Epilog Procedure
To use ABS$SYSTEM:ABS$DISASTER_RECOVERY.TEMPLATE, you should rename it to
ABS$SYSTEM:ABS$DISASTER_RECOVERY.COM and use it as a prolog and epilogue for
the save(s).To automatically prepare the system for a save operation you can use the prolog and
epilog feature in the environment object being used. The following example shows you how to
use one procedure for both purposes.

Example 7–4 ABS$SYSTEM:ABS$DISASTER_RECOVERY.TEMPLATE.

$!
$! Abstract:
$! This command file is used for saving ABS and MDMS information
$! for later disaster recovery. The procedure is used for prolog
$! as well as epilog procedures in a SAVE operation.
$!
$!
$! INPUT:
$!
$! P1 = "" - no operation
$! = "PROLOG" - prepares a disaster recovery save operation
$! by making online copies of MDMS database files
$! = "EPILOG" - does cleanup of save operation by deleting
$! copies of files created during prolog
$! - lists information about restoring the data
$!
$!--
$!
$!
$ Start:
$!
$ SET NOON
$ IF P1.EQS."PROLOG" THEN GOTO Prolog
$ IF P1.EQS."EPILOG" THEN GOTO Epilog
$ EXIT
$!
$ Prolog:
$!
$ WRITE SYS$OUTPUT "Disaster Recovery Prolog"
$ WRITE SYS$OUTPUT "."
$ IF F$SEARCH("MDMS$DATABASE_LOCATION:MDMS$DOMAIN_DB.DAT").NES.""
$ THEN
$ WRITE SYS$OUTPUT "Creating online copies of MDMS database
files..."
$ WRITE SYS$OUTPUT "."
$ @MDMS$SYSTEM:MDMS$COPY_DB_FILES
$ ENDIF
$ EXIT
$!
$ Epilog:
$!
$ WRITE SYS$OUTPUT "."
$ IF
F$SEARCH("MDMS$DATABASE_LOCATION:MDMS$DOMAIN_DB.DAT_COPY").NES.""
$ THEN
$ WRITE SYS$OUTPUT "Deleting copies of MDMS database files..."
$ WRITE SYS$OUTPUT "."
$ DELETE/NOLOG MDMS$DATABASE_LOCATION:MDMS$*_DB.DAT_COPY;*
$ ENDIF
$ WRITE SYS$OUTPUT "BACKUP restore commands:
$ WRITE SYS$OUTPUT "."
$ nmax = 'F$TRNLNM("ABS_OS_OBJECT_NUMBER")'
$ n = 1
 Preparing For Disaster Recovery 7–5

Preparing For Disaster Recovery
7.2 Prolog and Epilog Procedure
$!
$ NextObject:
$!
$ VolSetLog = "ABS_OS_VOLUME_SET_''n'"
$ VolRVNLog = "ABS_OS_START_RVN_''n'"
$ ObjectLog = "ABS_OS_OBJECT_SET_''n'"
$ SavsetLog = "ABS_OS_SAVESET_NAME_''n'"
$ CALL GetVolumeList "''F$TRNLNM(VolSetLog)'" 'F$TRNLNM(VolRVNLog)'
VolumeList
$ Destination = "''F$TRNLNM(ObjectLog)'"
$ Destination = F$EXTRACT(0,F$LOCATE(":",Destination),Destination)
$ Destination = "''F$TRNLNM(Destination)'"
$ IF F$LOCATE(".]",Destination).NE.F$LENGTH(Destination)
$ THEN
$ Destination = Destination + "[...]" - "]["
$ ELSE
$ Destination = Destination + "[*...]"
$ ENDIF
$ WRITE SYS$OUTPUT " $ BACKUP/OVERLAY/EXACT_ORDER/NOASSIST -"
$ WRITE SYS$OUTPUT " _$ tape:","''F$TRNLNM(Savset-
Log)'/LABEL=(",VolumeList,
$ WRITE SYS$OUTPUT " _$ ''Destination'"
$ WRITE SYS$OUTPUT "."
$ n = n + 1
$ IF n.LE.nmax THEN GOTO NextObject
$ WRITE SYS$OUTPUT "."
$ WRITE SYS$OUTPUT "After restoring the savesets rename the MDMS
database"
$ WRITE SYS$OUTPUT "files from ""MDMS$*_DB.DAT_COPY"" to
""*.DAT""/NEW_VERSION."
$ WRITE SYS$OUTPUT "."
$ EXIT
$!
$ GetVolumeList: SUBROUTINE
$!
$ VolumeID = "''P1'"
$ RVN = 'P2'
$ 'P3' == ""
$ VolumeRVN = 1
$!
$ NextVolume:
$!
$ MDMS SHOW VOLUME 'VolumeID'/SYMBOL
$ IF VolumeRVN.GE.RVN
$ THEN
$ IF 'P3'.NES."" THEN 'P3' == 'P3' + ","
$ 'P3' == 'P3' + "''MDMS_INQ_VOLUME_ID'"
$ ENDIF
$ IF "''MDMS_INQ_NEXT_VOLUME'".EQS."" THEN GOTO EndVolumeList
$ VolumeID = "''MDMS_INQ_NEXT_VOLUME'"
$ VolumeRVN = VolumeRVN + 1
$ GOTO NextVolume
$!
$ EndVolumeList:
$!
$ EXIT

The example procedure creates copies of the MDMS database files in the prolog phase. This
allows to save the files in a consistent state. After a restore from the saveset the files need to be
renamed to their original names.

For convenience the procedure prints out the backup commands needed to restore the data using
information in logical names defined by ABS during the save operation.
7-6 Preparing For Disaster Recovery

Preparing For Disaster Recovery
7.2 Prolog and Epilog Procedure
7.2.1 Restoring The System Disk

To restore your system disk you need to use Standalone BACKUP.

• For Alpha systems, see the section "Backing Up the System Disk" in the Appendix of the
“Alpha Upgrade and Installation Manual” in the OpenVMS Documentation.

• For VAX systems see the chapter “Using BACKUP” in the “System Manager’s Manual” in
the OpenVMS Documentation.

Use the information from the ABS save log to specify the parameters for the BACKUP com-
mand line:

a. /LABEL=(volume_1,volume_2,...volume_n) - the volume IDs of the tapes being used

b. The saveset name

c. The target disk

d. /IMAGE/NOASSIST qualifiers

Example 7–5 BACKUP Command to Restore the System Disk

$ BACKUP/IMAGE MKA500:24DEC20012359590./LABEL=(GKF011,GKF022) -
_$DGA100:/NOASSIST

This restores an image of your system disk in saveset “24DEC20012359590.” on tape volumes
“GKF011” and “GKF022” to disk device “DGA100”.

After a successful restore, boot from your restored system disk. If your system does not boot all
the way through you may have to disable the execution of your “SYSTARTUP_VMS.COM”
command procedure by using a conversational boot and renaming the file.

7.2.2 Restoring Remaining Savesets

Once your system is up-and-running you can restore other save sets necessary to complete the
disaster recovery: Make sure that all of these components or products are shut down before you
restore the individual files. Use the following restore order:

1. First, any other product required by ABS, such as your 3rd party scheduler data if it has
been saved separately. You should startup the component or product just restored.

2. Restore MDMS$ROOT if it has been saved separately. After the restore rename the
“MDMS$*_DB.DAT_COPY” files to “*.DAT”. You can startup MDMS now.

3. Restore ABS$ROOT if it has been saved separately. Restore any other save used to save the
catalog files which are located outside of ABS$ROOT. After the restore you can startup
ABS.

Use the information from the ABS save log to specify the parameters for the BACKUP com-
mand lines:

a. /LABEL=(volume_1,volume_2,...volume_n) - the volume IDs of the tapes being used

b. The saveset name

c. The target disk

d. /IMAGE/NOASSIST qualifiers
 Preparing For Disaster Recovery 7–7

Preparing For Disaster Recovery
7.3 Non-OpenVMS Systems
Example 7–6 BACKUP Command to Restore ABS$ROOT

$ BACKUP/NOASSIST/OVERLAY -
$_MKA500:25DEC20010101010./LABEL=(GKF033,GKF044)-
$_DGA100:[VMS$COMMON.ABS.*...]/LOG

Because ABS has not been started up the ABS$ROOT logical is not available yet. This restores the
ABS$ROOT files in saveset “24DEC20012359590.” on tape volumes “GKF033” and “GKF044” to
disk location “DGA100:[VMS$COMMON.ABS...]”. This assumes that you ABS$ROOT logical was
defined as a concealed device name of “DGA100:[VMS$COMMON.ABS.]”.

Note

It is important to note the full pathname when you save these components or products.

7.3 Non-OpenVMS Systems
ABS cannot restore a bootable system disk of a non-OpenVMS system. Therefore you need to
be able to save and restore the system disk locally. Once you have the system disk restored and
booted the system you have to install the ABS client software for that platform. Once the ABS
client software has been installed you can use ABS on your OpenVMS system to restore data to
the client node.

7.4 Thoughts on Save and Restore Procedures
When it comes to setup procedures on how to save and restore files for disaster recovery there is
a variety of possibilities depending on your configuration and other system activities.

You do not need to have an up-to-date copy of your system disk to restore your ABS environ-
ment. You could start with a fresh installation of OpenVMS. Install ABS and products required
to run ABS (e.g. a 3rd party scheduler). While ABS is shutdown restore the MDMS$ROOT and
ABS$ROOT and other required components. Startup ABS to restore all the rest of your data.

Or in a VMSCluster with more than one system disk you may be able to restore all your data
online using ABS from another node in the cluster.

You can keep a printout of the ABS save log in a safe place. This allows you to restore the data
for files on OpenVMS systems using OpenVMS BACKUP. You need to keep the volume IDs,
the name of the save sets and the include specifications used in the save operation.

Typically you do not want to keep multiple copies of your disaster recovery saves. You may
want to keep 2 copies. So, if you are doing daily disaster recovery saves the archive expiration
should be set to 2 days.

You should use non-incremental saves for the disaster recovery. This allows for an easy restore
in case of an emergency. You can use incremental saves, but on a restore you have to do all the
incremental restores on your own until you have ABS fully up-and-running

Note

And a final word: Make sure that you have a clear procedure on how to do a disaster
recovery. Test your disaster recovery procedure!
7-8 Preparing For Disaster Recovery

8
Remote Devices

This chapter explains how to configure and manage remote devices using the Remote Device
Facility (RDF). RDF is used for devices remotely connected over a wide-area network, and
DECnet is still a requirement for access to these remote devices. RDF is not required for devices
connected remotely via Fibre Channel, as these are considered local devices.

8.1 RDF Installation
When you install ABS (non-standard installation) or MDMS, you are asked whether you want to
install the RDF software. With the ABS standard installation, the RDF client and server software
is installed by default.

During the installation you place the RDF client software on the nodes with disks you want to
access for ABS or HSM. You place the RDF server software on the systems to which the tape
devices (jukeboxes and drives) are connected. This means that when using RDF, you serve the
tape device to the systems with the client disks.

All of the files for RDF are placed in SYS$COMMON:[MDMS.TTI_RDF] for your system.
There are separate locations for VAX or Alpha.

Note

RDF is available on OpenVMS Alpha V8.3

RDF is not available under the following conditions:
* For ABS-OMT license based installation
* On OpenVMS I64

8.2 Configuring RDF
After installing RDF you should check the TTI_RDEV:CONFIG_nodename.DAT file to make
sure it has correct entries.

This file:

• is located on the RDF server node with the tape device

• is created initially during installation

• is a text file

• includes the definition of each device accessible by the RDF software. This definition con-
sists of a physical device name and an RDF characteristic name.

Example:

Device 1MIA0 MIAO

Verify:
 Remote Devices 8–1

Remote Devices
8.3 Using RDF with MDMS
Check this file to make sure that all RDF characteristic names are unique to this node.

8.3 Using RDF with MDMS
The following sections describe how to use RDF with MDMS.

8.3.1 Starting Up and Shutting Down RDF Software

Starting up RDF software:

RDF software is automatically started up along with then MDMS software when you enter the
following command:

$ @SYS$STARTUP:MDMS$STARTUP

Shutting down RDF software:

To shut down the RDF software, enter the following command:

$ @SYS$STARTUP:MDMS$SHUTDOWN

8.3.2 The RDSHOW Procedure

Required privileges:

The following privileges are required to execute the RDSHOW procedure: NETMBX, TMP-
MBX.

In addition, the following privileges are required to show information on remote devices allo-
cated by other processes: SYSPRV, WORLD.

8.3.3 Command Overview

You can run the RDSHOW procedure any time after the MDMS software has been started. RDF
software is automatically started at this time.

Use the following procedures:

$ @TTI_RDEV:RDSHOW CLIENT
$ @TTI_RDEV:RDSHOW SERVER node_name
$ @TTI_RDEV:RDSHOW DEVICES

node_name is the node name of any node on which the RDF server software is running.

8.3.4 Showing Your Allocated Remote Devices

To show remote devices that you have allocated, enter the following command from the RDF
client node:

$ @TTI_RDEV:RDSHOW CLIENT

Result:

RDALLOCATED devices for pid 20200294, user DJ, on node OMAHA::
Local logical Rmt node Remote device
TAPE01 MIAMI:: MIAMI$MUC0

DJ is the user name and OMAHA is the current RDF client node.

8.3.5 Showing Available Remote Devices on the Server Node

The RDSHOW SERVER procedure shows the available devices on a specific SERVER node. To
execute this procedure, enter the following command from any RDF client or RDF server node:

$ @TTI_RDEV:RDSHOW SERVER MIAMI
8-2 Remote Devices

Remote Devices
8.4 Monitoring and Tuning Network Performance
MIAMI is the name of the server node whose devices you want shown.

Result:

Available devices on node MIAMI::
Name Status Characteristics/Comments
MIAMI$MSA0 in use msa0
...by pid 20200246, user CATHY (local)
MIAMI$MUA0 in use mua0
...by pid 202001B6, user CATHY, on node OMAHA::
MIAMI$MUB0 -free- mub0
MIAMI$MUC0 in use muc0
...by pid 2020014C, user DJ, on node OMAHA::

This RDSHOW SERVER command shows any available devices on the server node MIAMI,
including any device characteristics. In addition, each allocated device shows the process PID,
username, and RDF client node name.

The text (local) is shown if the device is locally allocated.

8.3.6 Showing All Remote Devices Allocated on the RDF Client Node

To show all allocated remote devices on an RDF client node, enter the following command from
the RDF client node:

$ @TTI_RDEV:RDSHOW DEVICES

Result:

Devices RDALLOCATED on node OMAHA::
RDdevice Rmt node Remote device User name PID
RDEVA0: MIAMI:: MIAMI$MUC0 DJ 2020014C
RDEVB0: MIAMI:: MIAMI$MUA0 CATHY 202001B6

This command shows all allocated devices on the RDF client node OMAHA. Use this command
to determine which devices are allocated on which nodes.

8.4 Monitoring and Tuning Network Performance
This section describes network issues that are especially important when working with remote
devices.

8.4.1 DECnet Phase IV

The Network Control Program (NCP) is used to change various network parameters. RDF (and
the rest of your network as a whole) benefits from changing two NCP parameters on all nodes in
your network. These parameters are:

• PIPELINE QUOTA

• LINE RECEIVE BUFFERS

Pipeline quota

The pipeline quota is used to send data packets at an even rate. It can be tuned for specific net-
work configurations. For example, in an Ethernet network, the number of packet buffers repre-
sented by the pipeline quota can be calculated as approximately:

buffers = pipeline_quota / 1498

Default:

The default pipeline quota is 10000. At this value, only six packets can be sent before acknowl-
edgment of a packet from the receiving node is required. The sending node stops after the sixth
packet is sent if an acknowledgment is not received.
 Remote Devices 8–3

Remote Devices
8.4 Monitoring and Tuning Network Performance
Recommendation:

The PIPELINE QUOTA can be increased to 45,000 allowing 30 packets to be sent before a
packet is acknowledged (in an Ethernet network). However, performance improvements have
not been verified for values higher than 23,000. It is important to know that increasing the value
of PIPELINE QUOTA improves the performance of RDF, but may negatively impact perfor-
mance of other applications running concurrently with RDF.

Line receive buffers

Similar to the pipeline quota, line receive buffers are used to receive data at a constant rate.

Default:

The default setting for the number of line receive buffers is 6.

Recommendation:

The number of line receive buffers can be increased to 30 allowing 30 packets to be received at a
time. However, performance improvements have not been verified for values greater than 15 and
as stated above, tuning changes may improve RDF performance while negatively impacting
other applications running on the system.

8.4.2 DECnet-Plus (Phase V)

As stated in DECnet-Plus(Phase V), (DECnet/OSI V6.1) Release Notes, a pipeline quota is not
used directly. Users may influence packet transmission rates by adjusting the values for the
transport’s characteristics MAXIMUM TRANSPORT CONNECTIONS, MAXIMUM
RECEIVE BUFFERS, and MAXIMUM WINDOW. The value for the transmit quota is deter-
mined by MAXIMUM RECEIVE BUFFERS divided by Actual TRANSPORT CONNEC-
TIONS.
This will be used for the transmit window, unless MAXIMUM WINDOW is less than this quota.
In that case, MAXIMUM WINDOW will be used for the transmitter window.

The DECnet-Plus defaults (MAXIMUM TRANSPORT CONNECTIONS = 200 and MAXI-
MUM RECEIVE BUFFERS = 4000) produce a MAXIMUM WINDOW of 20. Decreasing
MAXIMUM TRANSPORT CONNECTIONS with a corresponding increase of MAXIMUM
WINDO may improve RDF performance, but also may negatively impact other applications run-
ning on the system.

8.4.3 Changing Network Parameters

This section describes how to change the network parameters for DECnet Phase IV and DECnet-
PLUS.
8-4 Remote Devices

Remote Devices
8.4 Monitoring and Tuning Network Performance
8.4.4 Changing Network Parameters for DECnet (Phase IV)

The pipeline quota is an NCP executor parameter. The line receive buffers setting is an NCP line
parameter.

The following procedure shows how to display and change these parameters in the permanent
DECnet database. These changes should be made on each node of the network.

Requirement:

For the changed parameters to take effect, the node must be rebooted or DECnet must be shut
down.

Table 8–1 How to Change Network Parameters

 Step Action

 1 Enter:

$ run sys$system:NCP
NCP>show executor characteristics

Result:

Node Permanent Characteristics as of 24-MAY-1991 10:10:58
Executor node = 20.1 (DENVER)
Management version = V4.0.0
.
.
.
Pipeline quota = 10000

 2 Enter:

NCP>define executor pipeline quota 45000
NCP>show known lines

Result:

Known line Volatile Summary as of 24-MAY-1991 10:11:13
Line State
SVA-0 on

 3 Enter:

NCP>show line sva-0 characteristics

Result:

Line Permanent Characteristics as of 24-MAY-1991 10:11:31
Line = SVA-0
Receive buffers = 6 <-- value to change
Controller = normal
Protocol = Ethernet
Service timer = 4000
Hardware address = 08-00-2B-0D-D0-5F
Device buffer size = 1498

4 Enter:

NCP>define line sva-0 receive buffers 30
NCP>exit
 Remote Devices 8–5

Remote Devices
8.4 Monitoring and Tuning Network Performance
8.4.5 Changing Network Parameters for DECnet-Plus(Phase V)

The Network Control Language (NCL) is used to change DECnet-Plus network parameters. The
transport parameters MAXIMUM RECEIVE BUFFERS, MAXIMUM TRANSPORT CON-
NECTIONS and MAXIMUM WINDOW can be adjusted by using NCL’s SET OSI TRANS-
PORT command. For example:

NCL> SET OSI TRANSPORT MAXIMUM RECEIVE BUFFERS = 4000 !default value
NCL> SET OSI TRANSPORT MAXIMUM TRANSPORT CONNECTIONS = 200 !default value
NCL> SET OSI TRANSPORT MAXIMUM WINDOWS = 20 !default value

To make the parameter change permanent, add the NCL command(s) to the SYS$MAN-
AGER:NET$OSI_TRANSPORT_STARTUP.NCL file. Refer to the DENET-Plus (DECnet/OSI)
Network Management manual for detailed information.

8.4.6 Resource Considerations

Changing the default values of line receive buffers and the pipeline quota to the values of 30 and
45000 consumes less than 140 pages of nonpaged dynamic memory.

In addition, you may need to increase the number of large request packets (LRPs) and raise the
default value of NETACP BYTLM.

Large request packets

LRPs are used by DECnet to send and receive messages. The number of LRPs is governed by
the SYSGEN parameters LRPCOUNT and LRPCOUNTV.

Recommendation:

A minimum of 30 free LRPs is recommended during peak times. Show these parameters and the
number of free LRPs by entering the following DCL command:

 $ SHOW MEMORY/POOL/FULL

Result:

System Memory Resources on 24-JUN-1991 08:13:57.66
Large Packet (LRP) Lookaside List Packets Bytes
Current Total Size 36 59328
Initial Size (LRPCOUNT) 25 41200
Maximum Size (LRPCOUNTV) 200 329600
Free Space 20 32960

In the LRP lookaside list, this system has:

• Current Total Size of 36

The SYSGEN parameter LRPCOUNT (LRP Count) has been set to 25. The Current Size is not
the same as the Initial Size. This means that OpenVMS software has to allocate more LRPs. This
causes system performance degradation while OpenVMS is expanding the LRP lookaside list.

The LRPCOUNT should have been raised to at least 36 so OpenVMS does not have to allocate
more LRPs.

Recommendation:

Raise the LRPCOUNT parameter to a minimum of 50. Because the LRPCOUNT parameter is
set to only 25, the LRPCOUNT parameter is raised on this system even if the current size was
also 25.
8-6 Remote Devices

Remote Devices
8.4 Monitoring and Tuning Network Performance
• Free Space is 20

This is below the recommended free space amount of 30. This also indicates that LRPCOUNT
should be raised. Raising LRPCOUNT to 50 (when there are currently 36 LRPs) has the effect of
adding 14 LRPs. Fourteen plus the 20 free space equals over 30. This means that the recom-
mended value of 30 free space LRPs is met after LRPCOUNT is set to 50.

• The SYSGEN parameter LRPCOUNTV (LRP count virtual) has been set to 200.

The LRPCOUNTV parameter should be at least four times LRPCOUNT. Raising LRPCOUNT
may mean that LRPCOUNTV has to be raised. In this case, LRPCOUNTV does not have to be
raised because 200 is exactly four times 50 (the new LRPCOUNT value).

Make changes to LRPCOUNT or LRPCOUNTV in both:

– SYSGEN (using CURRENT)

– SYS$SYSTEM:MODPARAMS.DAT file (for when AUTOGEN is run with REBOOT)

Example: Changing LRPCOUNT to 50 in SYSGEN

Username: SYSTEM
Password: (the system password)
$ SET DEFAULT SYS$SYSTEM
$ RUN SYSGEN
SYSGEN> USE CURRENT
SYSGEN> SH LRPCOUNT
Parameter Name Current Default Minimum Maximum
LRPCOUNT 25 4 0 4096
SYSGEN> SET LRPCOUNT 50
SYSGEN> WRITE CURRENT
SYSGEN> SH LRPCOUNT
Parameter Name Current Default Minimum Maximum
LRPCOUNT 50 4 0 4096

Requirement:

After making changes to SYSGEN, reboot your system so the changes take effect.

Example: Changing the LRPCOUNT for AUTOGEN

Add the following line to MODPARAMS.DAT:

$ MIN_LRPCOUNT = 50 ! ADDED {the date} {your initials}

Result:

This ensures that when AUTOGEN runs, LRPCOUNT is not set below 50.

NETACP BYTLM

The default value of NETACP is a BYTLM setting of 65,535. Including overhead, this is enough
for only 25 to 30 line receive buffers. This default BYTLM may not be enough.

Recommendation:

Increase the value of NETACP BYTLM to 110,000.

How to increase NETACP BYTLM:

Before starting DECnet, define the logical NETACP$BUFFER_ LIMIT by entering:

$ DEFINE/SYSTEM/NOLOG NETACP$BUFFER_LIMIT 110000
$ @SYS$MANAGER:STARTNET.COM
 Remote Devices 8–7

Remote Devices
8.4 Monitoring and Tuning Network Performance
8.4.7 Controlling RDF’s Effect on the Network

By default, RDF tries to perform I/O requests as fast as possible. In some cases, this can cause
the network to slow down. Reducing the network bandwidth used by RDF allows more of the
network to become available to other processes.

The RDF logical names that control this are:

RDEV_WRITE_GROUP_SIZE
RDEV_WRITE_GROUP_DELAY

Default:

The default values for these logical names is zero. The following example shows how to define
these logical names on the RDF client node:

$ DEFINE/SYSTEM RDEV_WRITE_GROUP_SIZE 30
$ DEFINE/SYSTEM RDEV_WRITE_GROUP_DELAY 1

Further reduction:

To further reduce bandwidth, the RDEV_WRITE_GROUP_DELAY logical can be increased to
two (2) or three (3).

Note

Reducing the bandwidth used by RDF causes slower transfers of RDF’s data across
the network.

8.4.8 Surviving Network Failures

Remote Device Facility (RDF) can survive network failures of up to 15 minutes long. If the net-
work comes back within the 15 minutes allotted time, the RDCLIENT continues processing
WITHOUT ANY INTERRUPTION OR DATA LOSS. When a network link drops while RDF is
active, after 10 seconds, RDF creates a new network link, synchronizes I/Os between the
RDCLIENT and RDSERVER, and continues processing.

The following example shows how you can test the RDF’s ability to survive a network failure.
(This example assumes that you have both the RDSERVER and RDCLIENT processes running.)

$ @tti_rdev:rdallocate tti::mua0:
RDF - Remote Device Facility (Version 4.3I) - RDALLOCATE Procedure
Copyright (c) 1990, 1996 Touch Technologies, Inc.
Device TTI::TTI$MUA0 ALLOCATED, use TAPE01 to reference it
$ backup/rewind/log/ignore=label sys$library:*.* tape01:test

from a second session:

$ run sys$system:NCP
NCP> show known links

Known Link Volatile Summary as of 13-MAR-1996 14:07:38
Link Node PID Process Remote link Remote user
24593 20.4 (JR) 2040111C MARI_11C_5 8244 CTERM
16790 20.3 (FAST) 20400C3A -rdclient- 16791 tti_rdevSRV
24579 20.6 (CHEERS) 20400113 REMACP 8223 SAMMY
24585 20.6 (CHEERS) 20400113 REMACP 8224 ANDERSON
NCP> disconnect link 16790
.
.
.

8-8 Remote Devices

Remote Devices
8.5 Controlling Access to RDF Resources
Backup pauses momentarily before resuming. Sensing the network disconnect, RDF creates a
new -rdclient- link. Verify this by entering the following command:

NCP> show known links
Known Link Volatile Summary as of 13-MAR-1996 16:07:00

Link Node PID Process Remote link Remote user
24593 20.4 (JR) 2040111C MARI_11C_5 8244 CTERM
24579 20.6 (CHEERS) 20400113 REMACP 8223 SAMMY
24585 20.6 (CHEERS) 20400113 REMACP 8224 ANDERSON
24600 20.3 (FAST) 20400C3A -rdclient- 24601 tti_rdevSRV

NCP> exit

8.5 Controlling Access to RDF Resources
The RDF Security Access feature allows storage administrators to control which remote devices
are allowed to be accessed by RDF client nodes.

8.5.1 Allow Specific RDF Clients Access to All Remote Devices

You can allow specific RDF client nodes access to all remote devices.

Example:

For example, if the server node is MIAMI and access to all remote devices is granted only to
RDF client nodes OMAHA and DENVER, then do the following:

1. Edit TTI_RDEV:CONFIG_MIAMI.DAT

2. Before the first device designation line, insert the /ALLOW qualifier

Edit TTI_RDEV:CONFIG_MIAMI.DAT
CLIENT/ALLOW=(OMAHA,DENVER)
DEVICE 1MUA0: MUAO, TK50
DEVICE MSA0: TU80, 1600bpi

OMAHA and DENVER (the specific RDF CLIENT nodes) are allowed access to all remote
devices (MUA0, TU80) on the server node MIAMI.

Requirements:

If there is more than one RDF client node being allowed access, separate the node names by
commas.

8.5.2 Allow Specific RDF Clients Access to a Specific Remote Device

You can allow specific RDF client nodes access to a specific remote device.

Example:

If the server node is MIAMI and access to MUA0 is allowed by RDF client nodes OMAHA and
DENVER, then do the following:

1. Edit TTI_RDEV:CONFIG_MIAMI.DAT

2. Find the device designation line (for example, DEVICE 1MUA0:)

3. At the end of the device designation line, add the /ALLOW qualifier:

$ Edit TTI_RDEV:CONFIG_MIAMI.DAT
DEVICE 1MUA0: MUA0, TK50/ALLOW=(OMAHA,DENVER)
DEVICE MSA0: TU80, 1600bpi

OMAHA and DENVER (the specific RDF client nodes) are allowed access only to device
MUA0. In this situation, OMAHA is not allowed to access device TU80.
 Remote Devices 8–9

Remote Devices
8.6 RDserver Inactivity Timer
8.5.3 Deny Specific RDF Clients Access to All Remote Devices

You can deny access from specific RDF client nodes to all remote devices. For example, if the
server node is MIAMI and you want to deny access to all remote devices from RDF client nodes
OMAHA and DENVER, do the following:

1. Edit TTI_RDEV:CONFIG_MIAMI.DAT

2. Before the first device designation line, insert the /DENY qualifier:

$ Edit TTI_RDEV:CONFIG_MIAMI.DAT
CLIENT/DENY=(OMAHA,DENVER)
DEVICE 1MUA0: MUA0, TK50
DEVICE MSA0: TU80, 16700bpi

OMAHA and DENVER are the specific RDF client nodes denied access to all the remote
devices (MUA0, TU80) on the server node MIAMI.

8.5.4 Deny Specific RDF Clients Access to a Specific Remote Device

You can deny specific client nodes access to a specific remote device.

Example:

If the server node is MIAMI and you want to deny access to MUA0 from RDF client nodes
OMAHA and DENVER, do the following:

1. Edit TTI_RDEV:CONFIG_MIAMI.DAT

2. Find the device designation line (for example, DEVICE 1MUA0:)

3. At the end of the device designation line, add the /DENY qualifier:

$ Edit TTI_RDEV:CONFIG_MIAMI.DAT
DEVICE 1MUA0: MUA0, TK50/DENY=(OMAHA,DENVER)
DEVICE MSA0: TU80, 16700bpi

OMAHA and DENVER RDF client nodes are denied access to device MUA0 on the server node
MIAMI.

8.6 RDserver Inactivity Timer
One of the features of RDF is the RDserver Inactivity Timer. This feature gives system managers
more control over rdallocated devices.

The purpose of the RDserver Inactivity Timer is to rddeallocate any rdallocated device if NO I/O
activity to the rdallocated device has occurred within a predetermined length of time. When the
RDserver Inactivity Timer expires, the server process drops the link to the client node and deal-
locates the physical device on the server node. On the client side, the client process deallocates
the RDEVn0 device.

The default value for the RDserver Inactivity Timer is 3 hours.

The RDserver Inactivity Timer default value can be manually set by defining a system wide log-
ical on the RDserver node prior to rdallocating on the rdclient node. The logical name is
RDEV_SERVER_INACTIVITY_TIMEOUT.

To manually set the timeout value:

$ DEFINE/SYSTEM RDEV_SERVER_INACTIVITY_TIMEOUT seconds

For example, to set the RDserver Inactivity Timer to 10 hours, you would execute the following
command on the RDserver node:

$ DEFINE/SYSTEM RDEV_SERVER_INACTIVITY_TIMEOUT 36000
8-10 Remote Devices

Remote Devices
8.7 RDF Error Messages
8.7 RDF Error Messages

CLIDENY Access from this CLIENT to the SERVER is not allowed. Check for "CLI-
ENT/ALLOW" in the RDserver’s configuration file.

CLIENTSBUSY All 16 pesudo-devices are already in use.

DEVDENY Client is not allowed to the Device or to the Node. This error message is depen-
dent on the "CLIENT/ALLOW", "/ALLOW" or "CLIENT/DENY", "/DENY"
qualifiers in the configuration file. Verify that the configuration file qualifier is
used appropriately.

EMPTYCFG The RDserver’s configuration file has no valid devices or they are all com-
mented out.

LINKABORT The connection to the device was aborted. For some reason the connection was
interrupted and the remote device could not be found. Check the configuration
file as well as the remote device.

NOCLIENT The RDdriver was not loaded. Most commonly the
RDCLIENT_STARTUP.COM file was not executed for this node.

NOREMOTE This is a RDF status message. The remote device could not be found. Verify the
configuration file as well as the status of the remote device.

SERVERTMO The RDserver did not respond to the request. Most commonly the
RDSERVER_ STARTUP.COM file was not executed on the server node. Or,
the server has too many connections already to reply in time to your request.
 Remote Devices 8–11

9
System Backup to Tape for Oracle Data-

bases

This chapter describes the System Backup to Tape (SBT) for Oracle databases feature of Archive
Backup System (ABS). You can use this feature of the Archive Backup System and Media,
Device and Management Services (MDMS) to back up Oracle8i, Oracle9i and Oracle9i Release
2 (9.2.0.2.0) databases directly to tape using Oracle's Recovery Manager.

We can also use SBT to backup Oracle RDB databases. Oracle RDB Release 7.1.2 has been
tested with ABS SBT.

Section 9.12 will deal with SBT support for Oracle RDB database.

As of this writing, the following versions of Oracle databases are supported:

• Oracle8i

• Oracle9i

In the rest of this section we use Oracle to refer to either Oracle8i or Oracle9i. If there is some-
thing that is specific to a release of Oracle, we will specify that release.

This section does not cover all aspects of configuring ABS /MDMS. This section only covers
what you need to do to use SBT in the ABS/MDMS domain. Before configuring and using SBT,
you must configure the following MDMS objects:

• Media

• Location

• Domain

• Node

• Jukebox

• Tape drives

• Pool

• Tape volumes

If you have been using ABS/MDMS you will already have your domain configured. If this is
your first installation of ABS/MDMS, be sure to configure the above objects before proceeding
with this section.

This section is presented in two portions. The first portion of this section reads like a tutorial in
configuring and using SBT. You should read through this portion to see what is involved to con-
figure and use SBT with Oracle's Recovery Manager. The second portion describes thing like
defaults, logicals, and troubleshooting.

The following topics are covered in this section:
 System Backup to Tape for Oracle Databases 9–1

System Backup to Tape for Oracle Databases
9.1 Linking System Backup to Tape with the Oracle Server
1. Linking SBT with the Oracle server

2. Defining the logical MDMS$SBT_TRACE_LEVEL

3. Configuring ABS

4. Testing the configuration of SBT

5. Using SBT with Oracle's Recovery Manager

6. Using the show catalog command

7. Using the MDMS scheduler

8. System Backup to Tape defaults

9. System Backup to Tape logicals names

10. System Backup to Tape Restrictions

11. Troubleshooting tips

9.1 Linking System Backup to Tape with the Oracle Server

Note

This section is not applicable for Oracle9i Release 2 (9.2.0.2). If you are using Oracle9i
Release 2 (9.2.0.2), please skip this section (9.1) and refer to section 9.2 for configuring
SBT with Oracle9i Release 2 (9.2.0.2).

Before you can use SBT, you must link the SYS$SHARE:MDMS$SBTSHR_MA64.EXE share-
able image with the Oracle server. This is a one time procedure. After performing this procedure,
you can install a new release of ABS/MDMS and not have to relink the Oracle server to the new
release of SBT.

Note

This linking of SBT to the Oracle server is not the same as described in the Oracle
installation guide. The procedure in the Oracle installation guide does not use a share-
able image and has you shutdown the database and relink with the vendors product
with each new release. With the SBT shareable image and this procedure, you only
have to shutdown the database and link one time.

This section takes you through the procedure to link the
SYS$SHARE:MDMS$SBTSHR_MA64.EXE shareable image with the Oracle server:

1. Testing Oracle's Recovery Manager

2. Authorizing privileges and Granting rights to the Oracle server account

3. Editing Oracle's link option file and command procedures

4. Shutdown the database

5. Relinking the ORA_RDBMS: executables

6. Startup the database

7. Retesting Oracle's Recovery Manager
9-2 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.1 Linking System Backup to Tape with the Oracle Server
9.1.1 Testing Oracle's Recovery Manager before linking System Backup to Tape

Before doing the configuration for SBT, you should make sure that Oracle's Recovery Manager
is setup and you are able to access it. If you have been using Oracle's Recovery Manager to write
to disk, then you are ready to switch to SBT. If you have not been using Oracle's Recovery Man-
ager, you should try a backup of a tablespace as shown in Example 9–1.

Example 9–1 Oracle's Recovery Manager Backup of System Tablespace to Disk

RMAN> run
2> {
3> allocate channel d1 type disk;
4> backup tablespace system;
5> release channel d1;
6> }

Example 9–1 created the file ORA_DB:02D9MBV4_1_1.;1 on my system. Of course your file
name will be different. If everything works then you are ready to link Oracle to SBT. If this step
did not work, then your Oracle Recovery Manager is not setup correctly. You need to correct this
before proceeding.

9.1.2 Authorizing privileges and granting rights to the Oracle server account

Before using SBT, you must authorize the VOLPRO privilege and grant the
MDMS_APPLICATION identifier to the Oracle server database administrator account. The
VOLPRO privilege allows the Oracle server to mount volumes that belong to ABS. All volumes
belong to ABS. The MDMS_APPLICATION allows the Oracle server to use the objects in the
MDMS database.

The following example shows the commands that modify the privileges and grant the right to an
account called ORACLE9I:

$ MCR AUTHORIZE
UAF> MODIFY ORACLE9I/PRIVILEGES=VOLPRO
UAF> GRANT/ID MDMS_APPLICATION ORACLE9I
UAF> EXIT
$

Note

Be sure to logout and log back in so that the privileges and rights take effect.

9.1.3 Editing Oracle's Link Option File and Command Procedures

In order to link the SBT shareable image, you must change Oracle's link option file and com-
mand procedures. This section covers what you need to do for Oracle8i and Oracle9i.

9.1.3.1 Editing Oracle8i Link Option File and Command Procedures

In order to link the SBTshareable image, you must change three of Oracle's files. Before editing
these three files, we suggest that you make a copy of the file. In each file, you may need to com-
ment out the line ora_rman_mml_64/lib and/or add the line
SYS$SHARE:MDMS$SBTSHR_MA64.EXE/SHARE. The following are the three files and an
example of each file with the line to comment out and/or the line to be added commented:

• ORA_UTIL:RDBMS_RMAN_NOSHARE.OPT as shown in Example 9–2.

• ORA_RDBMS:LORACLE_64.COM as shown in Example 9–3.

• ORA_UTIL:LOUTL.COM as shown in Example 9–4
 System Backup to Tape for Oracle Databases 9–3

System Backup to Tape for Oracle Databases
9.1 Linking System Backup to Tape with the Oracle Server
Example 9–2 Edited Oracle8i ORA_UTIL:RDBMS_RMAN_NOSHARE.OPT file

!
!
! rdbms libraries
ora_olb:libvsn8/lib
! ora_rman_mml/lib COMMENT OUT THIS LINE
ora_olb:libwtc8/lib
ora_olb:libclient8/lib
ora_olb:libcommon8/lib
ora_olb:libgeneric8/lib
ora_olb:libclient8/lib
ora_olb:libcommon8/lib
ora_olb:libgeneric8/lib

Example 9–3 Edited Oracle8i ORA_RDBMS:LORACLE_64.COM

ora_olb:libclient8_64/lib/incl=(kgu),-
'rdbmslib$$'-
'plsqllib$$'-
'rdbmslib$$'-
! ora_rman_mml_64/lib,- COMMENT OUT THIS LINE
ora_olb:libnro8_64/lib,-
'network$$'-
ora_olb:libtrace8_64/lib,-
'oracore$$'-
'cart64$$'-
ora_olb:libslax8_64/lib,-
'utl$$'-
'oracore$$'-
sys$input/options
sys$share:mdms$sbtshr_ma64.exe/share, - !!! ADDED THIS LINE

Example 9–4 Edited Oracle8i ORA_UTIL.LOUTL.COM

$nonSharedLink:
$ 'loutl_link_cmd$$'/alpha/nouserlibrary'dotrace$$''map$$''mapex-
tra$$''image$$'=
'filename$$''switch$$''userlink$$'/sysexe -
'p2',-
ora_olb:libclient8/lib,-
ora_olb:libsql8/lib,-
'ocis$$'-
'fastupi$$'-
'network$$'-
'rdbmslib_noshare$$'-
'oracore$$'-
'network$$'-
'rdbmslib_noshare$$'-
'otracelib$$'-
'oracore$$'-
'rdbmslib_noshare$$'-
'oracore$$'-
'useroption$$'-
sys$input/opt
sys$share:mdms$sbtshr_ma64.exe/share, - !!! ADDED THIS LINE
sys$share:decc$shr/share
! Temporary: fixup readonly attributes between compiler
versions.
psect_attr = $readonly$,pic,shr
9-4 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.1 Linking System Backup to Tape with the Oracle Server
9.1.3.2 Editing Oracle9i Link Option file and Command Procedures

In order to link the SBT shareable image, you must change Oracle’s link option file and com-
mand procedures. The three files require you to comment out one line and add one line in each
file. Before editing these three files, we suggest that you make a copy of the file. In each file, you
need to comment out ora_rman_mml_64/lib and add the line
SYS$SHARE:MDMS$SBTSHR_MA64.EXE/SHARE. The following are the three files and an
example of each file with the line to comment out and the line to add commented:

• ORA_RDBMS:RDBMS_RMAN_NOSHARE_64.OPT as shown in Example 9–5

• ORA_RDBMS:LORACLE_64.COM as shown in Example 9–6

• ORA_RDBMS:LSHRCLIENT_64.COM as shown in Example 9–7

Example 9–5 Edited ORA_RDBMS:RDBMS_RMAN_NOSHARE_64.OPT file

!
!
! rdbms libraries
ora_olb:libvsn9/lib
ora_olb:libobk/lib
! ora_rman_mml_64/lib COMMENT OUT THIS LINE
sys$share:mdms$sbtshr_ma64.exe/share !!! ADDED THIS LINE
ora_olb:libwtc9/lib
ora_olb:libclient9/lib
ora_olb:libcommon9/lib
ora_olb:libgeneric9/lib
ora_olb:libclient9/lib
ora_olb:libcommon9/lib
ora_olb:libgeneric9/lib

Example 9–6 Editing ORA_RDBMS:LORACLE_64.COM

ora_olb:libobk_64/lib,-
! ora_rman_mml_64/lib,- COMMENT OUT THIS LINE
ora_olb:libnro9_64/lib,-
'network$$'-
ora_olb:libtrace9_64/lib,-
'oracore$$'-
'cart64$$'-
ora_olb:libslax9_64/lib,-
'utl$$'-
'oracore$$'-
sys$input/options
sys$share:mdms$sbtshr_ma64.exe/share, - !!! ADDED THIS LINE
sys$share:decc$shr/share

Example 9–7 Editing ORA_RDBMS:LSHRCLIENT_64.COM

o$$:libobk/lib,-
! ora_rman_mml_64/lib,- COMMENT OUT THIS LINE
o$$:libnro9_64/lib,-
'network$$'-
'oracore$$'-
'rdbmslib$$'-
'oracore$$'-
'network$$'-
'rdbmslib$$'-
'otracelib$$'-
'oracore$$'-
'plsql$$'-
'slax$$'-
'utl$$'-
'oracore$$'-
'rdbms2$$'-
o$$:libcore9_objlib_64/lib/include=(sscoreed),-
sys$input/opt
 System Backup to Tape for Oracle Databases 9–5

System Backup to Tape for Oracle Databases
9.2 Configuring Oracle9i Release 2 (9.2.0.2) with SBT
sys$share:mdms$sbtshr_ma64.exe/share, - !!! ADDED THIS LINE
sys$share:decc$shr/share

9.1.4 Shutdown the database

Before relinking the database, you should shutdown the database.

9.1.5 Relinking the ORA_RDBMS: executables

Now that you have prepared the files for relinking, you must relink the ORA_RDBMS: executa-
bles. Invoke ORA_ INSTALL:ORACLEINS and select RDBMS for rebuild.

9.1.6 Startup the database

Now that you have relinked the Oracle server, you should startup up the database.

9.1.7 Retesting Oracle's Recovery Manager

Before proceeding, you should retest Oracle's Recovery Manager as you did in Section 9.1.1.

9.2 Configuring Oracle9i Release 2 (9.2.0.2) with SBT
This section describes steps for setting up Oracle9i Release 2 (9.2.0.2) with SBT. Oracle9i
Release 2 (9.2.0.2) has support for shared libraries in RMAN. Hence unlike prior versions of
Oracle there is no need for linking the SBT shareable image with Oracle server.

ABS kit provides a special SBT shareable (SYS$SHARE:MDMS$SBTSHR_MA64_9I2.EXE)
for Oracle9i Release 2 (9.2.0.2). This section takes you through steps to be followed to use
MDMS$SBTSHR_MA64_9I2.EXE with Oracle9i Release 2 (9.2.0.2).

9.2.1 Testing Oracle's Recovery Manager before Setting Up System Backup to
Tape

Before doing the configuration for SBT, you should make sure that Oracle's Recovery Manager
is setup and you are able to access it. If you have been using Oracle's Recovery Manager to write
to disk, then you are ready to switch to SBT. If you have not been using Oracle's Recovery Man-
ager, you should try a backup of a tablespace as shown in Example 9–8

Example 9–8 Oracle's Recovery Manager Backup of System Tablespace to Disk

RMAN> run
2> {
3> allocate channel d1 type disk;
4> backup tablespace system;
5> release channel d1;
6> }

System Backup to Tape for Oracle Databases

Example 9–8 created the file ORA_DB:39EGCJVM_1_1.;1 on my system. Of course your file
name will be different. If everything works then you are ready to link Oracle to SBT. If this step
did not work, then your Oracle Recovery Manager is not setup correctly. You need to correct this
before proceeding.

9.2.2 Authorizing Privileges and Granting Rights to the Oracle Server Account

Before using SBT, you must authorize the VOLPRO privilege and grant the
MDMS_APPLICATION identifier to the Oracle server database administrator account. The
VOLPRO privilege allows the Oracle server to mount volumes that belong to ABS. All volumes
belong to ABS. The MDMS_APPLICATION allows the Oracle server to use the objects in the
MDMS database.
9-6 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.3 Defining the Logical MDMS$SBT_TRACE_LEVEL
The following example shows the commands that modify the privileges and grant the right to an
account called ORACLE9I:

$ MCR AUTHORIZE
UAF> MODIFY ORACLE9I/PRIVILEGES=VOLPRO
UAF> GRANT/ID MDMS_APPLICATION ORACLE9I
UAF> EXIT
$

Note

Be sure to logout and log back in so that the privileges and rights take effect.

9.2.3 Logical definition for SYS$SHARE:MDMS$SBTSHR_MA64_9I2.EXE

In rdbms_logicals.com add the following line.

$define/sys abs_sbt SYS$SHARE:MDMS$SBTSHR_MA64_9I2.EXE

You can give the logical whatever name you want, I just picked one for the sake of example and
I will be making use of the logical in the RMAN script.

This logical will be defined when you execute orauser.com file for setting up the user's default
instance.

9.3 Defining the Logical MDMS$SBT_TRACE_LEVEL
The logical MDMS$SBT_TRACE_LEVEL allows you to define how much tracing of SBT you
want to appear in your trace file. The logical is defined in SYS$STARTUP:MDMS$SYSTAR-
TUP.COM. However, if you had previous versions of ABS/MDMS on your system, it may not
be in SYS$STARTUP:MDMS$SYSTARTUP.COM. You can check using the following com-
mand:

$ SEARCH SYS$STARTUP:MDMS$SYSTARTUP.COM MDMS$SBT_TRACE_LEVEL
%SEARCH-I-NOMATCHES, no strings matched

If the search command did not find it, you need to edit SYS$STARTUP:MDMS$SYSTAR-
TUP.TEMPLATE and pull the following code out of it and put the code in SYS$STAR-
TUP:MDMS$SYSTARTUP.COM.

$!
$!
$! The MDMS$SBT_TRACE_LEVEL log name controls what is written to the
$! Oracle trace file for SBT. The trace level can be controlled by
$! this logical separately from the trace level in the Oracle parameters.
$!
$ TR_ERROR = %X00000000 ! Always trace errors, cannot be changed
$ TR_SBTENTRY = %X00000001 ! Entry and exit of oracle called SBT functions
$ TR_SBTPARAM = %X00000002 ! Trace oracle called SBT functions parameters
$ TR_SBTRWENTRY = %X00000004 ! Trace of SBTREAD/SBTWRITE entry
$ TR_SBTRWPARAM = %X00000008 ! Trace of parameters for SBTREAD/SBTWRITE
$ TR_GENINFO = %X00000010 ! Trace general information like backup file
name
$ TR_MEDINFO = %X00000020 ! Trace media movement information
$ TR_TAPSTAT = %X00000040 ! Trace tape/disk transfer stats
$ TR_COMENTRY = %X00000080 ! Entry and exit for common functions
$ TR_COMPARAM = %X00000100 ! Trace parameters for common functions
$ TR_MEDENTRY = %X00000200 ! Entry and exit for media functions
$ TR_MEDPARAM = %X00000400 ! Trace parameters for media functions
$ TR_CATENTRY = %X00000800 ! Entry and exit for catalog functions
$ TR_CATPARAM = %X00001000 ! Trace parameters for catalog functions
$ TR_TAPENTRY = %X00002000 ! Entry and exit for VMSTAPE functions
$ TR_TAPPARAM = %X00004000 ! Trace parameters for VMSTAPE functions
$ TR_VOLENTRY = %X00008000 ! Entry and exit for VOLSET functions
$ TR_VOLPARAM = %x00010000 ! Trace parameters for VOLSET functions
$ tracefilter = TR_GENINFO .OR. TR_MEDINFO
 System Backup to Tape for Oracle Databases 9–7

System Backup to Tape for Oracle Databases
9.4 Configuring System Backup to Tape in the Archive Backup System
$ DEFINE/SYSTEM/NOLOG MDMS$SBT_TRACE_LEVEL 'tracefilter'
$!

After editing SYS$STARTUP:MDMS$SYSTARTUP.COM, be sure to execute it so the logical
is defined. By default the general information and media movement information are traced in the
trace file ORA_DUMP:SBTIO.LOG. Refer to Section 9.11.1 for more information about the log-
ical MDMS$SBT_TRACE_LEVEL.

9.4 Configuring System Backup to Tape in the Archive Backup Sys-
tem

Before you can use SBT, you must configure a catalog and an archive in ABS/MDMS. This sec-
tion describes how to create catalogs and archives. Catalogs store information about what infor-
mation was backed up. Archives allow you to implement your storage policies.

This section shows you how to create the default catalog (ORACLE_DB) and the default archive
(ORACLE_DB_ARCHIVE). By creating these two default objects, you can test SBT easier as
described in Section 9.5.

9.4.1 Creating an ORACLE_DB Catalog

Before you can us the SBT feature, you must create a catalog. The catalog stores the tape vol-
ume, saveset name, and piece name. The catalog allows SBT to lookup the tape volume for a
restore. You should only create one oracle_db type catalog that is accessible to Oracle’s Recover
Manager(s). The catalog is created in ABS$CATALOG:. The catalog must be created in the
ABS$CATALOG: directory that is local to all nodes that will access the catalog.

Use the following command to create a catalog named ORACLE_ DB:

$ MDMS CREATE CATALOG ORACLE_DB /TYPE=ORACLE_DB

Note

Do not use the /NODE qualifier when creating the catalog. This version of SBT can
only access catalogs that are local to the node.

When doing an Oracle Recovery Manager restore, allocateForMaint, or validate command, you
must specify the catalog you want to use. However, the default catalog name for SBT is
ORACLE_DB. Therefore, if you do not specify a catalog, it will lookup information in the
ORACLE_DB catalog on the local node.

Refer to Section 9.7 for information on how to access the ORACLE_DB catalog.

9.4.2 Creating an Archive

An archive defines the tape volumes and archive attributes where you can safely store data. Each
archive has a unique name and contains a set of archive characteristics. You can have as many
archives as you want to implement your storage policies. This section describes how to create an
archive and what attributes pertain to SBT. You should refer to the command reference guide for
information about creating archives and their attributes. You may want to create an archive that
keeps tape volumes for a year and another that keeps tape volumes for 35 days.

Note

When using SBT you do not use an environment, save, or restore object.

The following command creates an archive named ORACLE_DB_ ARCHIVE:

$ MDMS CREATE ARCHIVE ORACLE_DB_ARCHIVE -
/ARCHIVE_TYPE=TAPE -
9-8 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.4 Configuring System Backup to Tape in the Archive Backup Sys-
/CATALOG=(NAME=ORACLE_DB) -
/MAXIMUM_SAVES=36 -
/MEDIA_TYPE=DLT_III -
/POOL=DB_BACKUP_POOL -
/RETENTION_DAYS=35
$ MDMS SHOW ARCHIVE ORACLE_DB_ARCHIVE

 Archive: ORACLE_DB_ARCHIVE 1
 Description:
 Access Control: NONE
 Owner: MOE::ORACLE9I

 Archive Type: TAPE 2
 Catalog -

 - Name: ORACLE_DB 3
 - Nodes:
 Consolidation -

 - Interval: 0007 00:00:00 4
 - Savesets: 0
 - Volumes: 0
 Destination:

 Drives: 5
 Expiration Date: NONE

 Location: CR_2 6
 Maximum Saves: 36 7
 Media Type: DLT_III 8
 Pool: DB_BACKUP_POOL 9
 Retention Days: 35 10
 Volume Sets:

The following describes the different attributes of the archive:

1. Archive: ORACLE_DB_ARCHIVE is the name of the archive created. This is the name
you must specify in Oracle's Recovery Manager allocate command. See Section 9.6.2, Spec-
ifying an Archive on how to specify the archive name in the allocate command. If you do not
specify an archive in Oracle's Recovery Manager commands, ORACLE_DB_ARCHIVE is
used as the default. See Section 9.9.1 for more information.

2. Archive Type: this specifies that the backup will be archived to tape. This version does not
support archive to disk.

3. Catalog Name: you need to specify which catalog used by this archive. If you create more
than one catalog, you must have a different archive for each catalog. However, all archives
can use the same catalog. See Section 9.9.2 for more information.

4. Consolidation Interval: specifies the consolidation interval for the volume sets. The volumes
sets are stored in the Volume Sets: attribute. In this example, after 7 days a new volume set
is started. The default consolidation interval is 7 days.

5. Drives: specifies the tape drives that you want to use when using this archive. This limits the
tape drives that you can use. Unless you need to limit which tape drives to use, I suggest you
do not. See Section 9.10.1 for restrictions in using this attribute.

6. Location: this location came from the MDMS domain object. SBT uses it in selecting a tape
volume and tape drive. Your tape volume, jukebox, and node must also have this location
attribute. If you do not need a location to specify the volumes you want to allocate, specify
/NOLOCATION.
 System Backup to Tape for Oracle Databases 9–9

System Backup to Tape for Oracle Databases
9.5 Testing the Configuration of SBT
7. Maximum Saves: this attribute specifies how many backups can use the volume sets in this
archive at a time. This works great for ABS saves, however, there is a difference when used
with SBT. We suggest that you set it at 36 which is the maximum. You should control the
number of backups using Oracle's Recovery Manager and not this attribute. See Section
9.10.1 for restrictions in using this attribute.

8. Media Type: this is the media type that SBT uses to allocate tape volumes and tape drives.
You must have a media type.

9. Pool: this is the pool that SBT uses to allocate tape volumes along with location and media
type. If you do not need a pool to specify the volumes you want to allocate, specify
/NOPOOL.

10. Retention Days: this specifies the number of days that the volume will be retained before
being scratched. If you want different retention days for different backups, you can use a
different archive with a different retention days specified.

Now that you have created a catalog and archive, you are ready to test that everything is config-
ured correctly. The next section shows how to test the configuration.

9.5 Testing the Configuration of SBT
Now that you have linked SBT with the Oracle server or defined ABS_SBT logical for Oracle
9.2.0.2 and created a catalog and archive, you are ready to test the SBT configuration. Supplied
with SBT is a test program, SYS$SYSTEM:MDMS$SBTTEST_MA64.EXE, that allows you to
test the SBT interface with ABS/MDMS. This test program is applicable to Oracle 9.2.0.2 also.
If you have been using ABS/MDMS you may want to skip this section. It just gives you confi-
dence that ABS/MDMS is setup correctly.

Using sbttest is described in the Oracle documentation. However, their executable will not work
with the SYS$SHARE:MDMS$SBTSHR_MA64.EXE. Oracle supplied the sbttest code and I
compiled and linked it to work with SYS$SHARE:MDMS$SBTSHR_MA64.EXE and supplied
it for your use as SYS$SYSTEM:MDMS$SBTTEST_MA64.EXE.

You must have a catalog and archive defined to use sbttest. In Section 9.4 you created a catalog
and archive. You will use these for the test. The following commands show how to use sbttest:

$ SBTTEST :== SYSSYSTEM:MDMS$SBTTEST_MA64.EXE 1
$ DEFINE MDMS$SBT_ARCHIVE ORACLE_DB_ARCHIVE 2
$ DEFINE MDMS$SBT_CATALOG ORACLE_DB 3
$ SBTTEST TESTFILE -TRACE SBTTEST.TRC 4
MM software supports SBT API version 2.0
MM software is version 4.0.0.0

sbtinit, vendor description string="System Backup to Tape V4.0 (436)" 5
sbtinit successful
sbtinit2 successful
sbtbackup successful
sbtwrite2 successful, wrote 100 blocks
sbtinfo2, SBTBFINFO_NAME=testfile
sbtinfo2, SBTBFINFO_METHOD=stream
sbtinfo2, SBTBFINFO_COMMENT=Onsite: Description for AIF078
sbtinfo2, SBTBFINFO_CRETIME=Fri Dec 7 05:11:07 2001
sbtinfo2, SBTBFINFO_EXPTIME=Sat Dec 7 05:11:07 2002
sbtinfo2, SBTBFINFO_SHARE=single user
sbtinfo2, SBTBFINFO_ORDER=sequential access
sbtinfo2, SBTBFINFO_LABEL=AIF078
sbtinfo2 successful
sbtrestore successful
file was created by this program; seed=1007752246,
blk_size=16384, blk_count=100
sbtread2 successful, read 100 buffers
sbtclose2 successful
9-10 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.5 Testing the Configuration of SBT
sbtremove2(remove_after) successful, remove "testfile"
sbtend successful
*** The SBT API test was successful ***

The following describes the commands in the above example:

1. Define the sbttest symbol. By default the sbttest command is pointing to Oracle's
ORA_RDBMS:SBTTEST.EXE. However, this executable will not work with SBT.

2. Define the MDMS$SBT_ARCHIVE logical. This logical points to the archive that you cre-
ated in Section 9.4.2. In this case, we would not have to define this logical because it is the
default. If you did not create an ORACLE_DB_ARCHIVE archive, you would have speci-
fied the archive here.

3. Define the MDMS$SBT_CATALOG logical. This logical points to the catalog that you cre-
ated in Section 9.4.1. In this case, we would not have to define this logical because it is the
default. If you did not create the default catalog, ORACLE_DB, you would have to specify
it here.

4. Run sbttest using the sbttest command. The parameter TESTFILE is a made up name that
gets put in the catalog during the backup and then is used for the restore. The data stored and
retrieved is 100 blocks of 16384 characters per block. By specifying the -TRACE flag the
file SBTTEST.TRC is written (see the following text).

5. Vendor description string shows that you are using the
SYS$SHARE:MDMS$SBTSHR_MA64.EXE shareable image.

The -TRACE flag generates the SBTTEST.TRC trace file. The trace file should look like the fol-
lowing example:

SBT-00001DB2 12/14/01 10:12:30 Using archive ORACLE_DB_ARCHIVE
SBT-00001DB2 12/14/01 10:12:31 Starting backup of testfile for DB: sbtdb
SBT-00001DB2 12/14/01 10:12:31 Using catalog ORACLE_DB
SBT-00001DB2 12/14/01 10:12:31 Attempting to allocate volume set BEB026
SBT-00001DB2 12/14/01 10:12:33 Allocated drive: TLZ88D Device: MOE$MKC200:
SBT-00001DB2 12/14/01 10:12:33 Drive is in jukebox TLZ88J
SBT-00001DB2 12/14/01 10:12:37 Loading/mounting volume BEB026 on drive TLZ88D
SBT-00001DB2 12/14/01 10:12:37 Loading volume BEB026 on drive TLZ88D
SBT-00001DB2 12/14/01 10:12:45 Mounting volume BEB026 on device MOE$MKC200:
SBT-00001DB2 12/14/01 10:12:53 Skipping 9 tapemarks to end of tape
SBT-00001DB2 12/14/01 10:13:02 Ready to write to saveset 2001121410125267.
on volume BEB026
SBT-00001DB2 12/14/01 10:13:07 Using catalog ORACLE_DB
SBT-00001DB2 12/14/01 10:13:07 Finished writing saveset 2001121410125267.
on volume BEB026
SBT-00001DB2 12/14/01 10:13:09 Starting restore of testfile
SBT-00001DB2 12/14/01 10:13:09 Using catalog ORACLE_DB
SBT-00001DB2 12/14/01 10:13:10 Dismounting volume set member: BEB026 RVN 1
SBT-00001DB2 12/14/01 10:13:10 Deallocating drive TLZ88D
SBT-00001DB2 12/14/01 10:13:11 Allocated drive: TLZ88D Device: MOE$MKC200:
SBT-00001DB2 12/14/01 10:13:11 Drive is in jukebox TLZ88J
SBT-00001DB2 12/14/01 10:13:20 Loading/mounting volume BEB026 on drive TLZ88D
SBT-00001DB2 12/14/01 10:13:20 Loading volume BEB026 on drive TLZ88D
SBT-00001DB2 12/14/01 10:13:29 Mounting volume BEB026 on device _RDEVA0:
SBT-00001DB2 12/14/01 10:13:37 Skipping 9 tapemarks to beginning of saveset
SBT-00001DB2 12/14/01 10:13:44 Ready to read from saveset 2001121410125267.
on volume BEB026
SBT-00001DB2 12/14/01 10:13:47 Finished restoring saveset 2001121410125267.
from volume BEB026
SBT-00001DB2 12/14/01 10:13:49 Dismounting volume set member: BEB026 RVN 1
SBT-00001DB2 12/14/01 10:13:49 Deallocating drive TLZ88D

You are now ready to start using Oracle's Recovery Manager to backup your Oracle database to
tape. The following section describes what Oracle's Recovery Manager commands allow you to
control how you do backups using SBT.
 System Backup to Tape for Oracle Databases 9–11

System Backup to Tape for Oracle Databases
9.6 Using System Backup to Tape with Oracle's Recovery Manager
9.6 Using System Backup to Tape with Oracle's Recovery Manager
This section describes how to use SBT to backup your Oracle database. If you have configured
SBT correctly using the above steps, you are now ready to use SBT with Oracle's Recovery
Manager. How to use Oracle's Recovery Manager is described in Oracle's documentation. This
section describes what Oracle Recovery Manager command keywords and parameters affect
SBT.

The following topics are covered in this section:

• Specify SBT shared library

• Specifying an archive

• Specifying a catalog

• Specifying I/O block size

• Specifying archives for duplex backups

9.6.1 Specifying SBT Shared Library

This is applicable only to Oracle9i Release 2 (9.2.0.2). Oracle9i Release 2 (9.2.0.2) has support
for shared libraries in RMAN. The SBT shared library must be specified as part of the RMAN
script for Oracle to load the sbt shared library.

run
{
allocate channel t1 type 'sbt_tape'
parms="SBT_LIBRARY=abs_sbt,
ENV=(MDMS$SBT_ARCHIVE=REG_RMAN_ARCH,
MDMS$SBT_IO_BLOCK_SIZE=65024)";
backup filesperset 4
database;
release channel t1;
}

In the above script SBT_LIBRARY is a keyword which is assigned the logical name abs_sbt.
Remember that abs_sbt is a system wide logical pointing to
SYS$SHARE:MDMS$SBTSHR_MA64_9I2.EXE. We defined abs_sbt to
SYS$SHARE:MDMS$SBTSHR_MA64_9I2.EXE in rdbms_logicals.com

If you do not specify SBT_LIBRARY params in the script, Oracle will not be able to load the
SBT shareable image.

Moreover params should be specified for each and every channel in the script.

9.6.2 Specifying an Archive

In order to have SBT select the archive that you want, you must specify the archive in the Oracle
Recovery Manager allocate command. The archive is specified in the parms keyword for the
allocate command. Example 9–9 shows how to code an Oracle Recovery Manager script for the
archive OFFSITE_ARCH. The Oracle server creates the process logical
MDMS$SBT_ARCHIVE.

Example 9–9 Specifying the Archive in the Allocate Command

run
{
 allocate channel t1 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=OFFSITE_ARCH)”;
 backup tablespace system;
 release channel t1;
}

9-12 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.6 Using System Backup to Tape with Oracle's Recovery Manager
Note

Everything between the quotes in parms MUST be uppercase characters. The logical
abs_sbt alone is an exception. It works for both upper and lower case.

If you are doing a parallel backup, you need to specify an archive for each channel as shown in
Example 9–10. Also, in this example, I show how to specify a catalog.

Example 9–10 Specifying the Archive for each Channel

run
{
 allocate channel t1 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=ONSITE_ARCH)";
 allocate channel t2 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=ONSITE_ARCH)";
 allocate channel t3 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=ONSITE_ARCH)";
 backup
 (tablespace tbs1,tbs2 channel t1)
 (tablespace tbs3,tbs4 channel t2)
 (tablespace tbs5,tbs6, system channel t3);
 release channel t1;
 release channel t2;
 release channel t3;
 }

If you have an archive you want to use as a default, you can define MDMS$SBT_ARCHIVE as
a system wide logical. Then if you want something different for a particular backup, you can
define it in the allocate command. Also, you can specify different archives for each channel you
allocate.

9.6.3 Specifying a Catalog

In order to have SBT select the catalog to use, you must specify the catalog in the Oracle Recov-
ery Manager allocate command. The catalog is specified in the parms keyword for the allocate
command. Example 9–11 shows how to code an Oracle Recovery Manager script for the catalog
OFFSITE_ CAT.

Example 9–11 Specifying the Catalog in the Allocate Command

run
{

allocate channel t1 type 'sbt_tape'
parms="ENV=(MDMS$SBT_CATALOG=OFFSITE_CAT)";

restore tablespace tbs6;
recover tablespace tbs6;
release channel t1;

}

If you only have one catalog named ORACLE_DB, you never have to specify
MDMS$SBT_CATALOG. I only used different catalogs here for examples.

For a Recover Manager backup operation, the catalog in the archive is always used.The
MDMS$SBT_CATALOG in the parms keyword of the allocate command is ignored.

For a Recovery Manager restore, crosscheck, or delete expired comand the catalog that SBT uses
is determined by the logical MDMS$SBT_CATALOG, the catalog in the archive, or the default
catalog. If the logical MDMS$SBT_CATALOG is defined, SBT uses that catalog. If
MDMS$SBT_CATALOG is not defined, SBT checks to see if MDMS$SBT_ARCHIVE is
defined. If MDMS$SBT_ARCHIVE is defined, SBT uses the catalog in the archive. If
MDMS$SBT_ARCHIVE is not defined, the default catalog ORACLE_DB is used.
 System Backup to Tape for Oracle Databases 9–13

System Backup to Tape for Oracle Databases
9.6 Using System Backup to Tape with Oracle's Recovery Manager
9.6.4 Specifying an I/O Block Size

To help tune your output to different devices, SBT allows you to specify an I/O block size. In the
case of a tape device, the block size is how much data is written to the tape device at one time.
The default is the maximum of 65024 bytes. Example 9–12 shows how to code an Oracle Recov-
ery Manager script for the I/O block size of 32768.

Example 9–12 Specifying the I/O Block Size in the Allocate Command

run
{
 allocate channel t1 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=ONSITE_ARCH,

MDMS$SBT_IO_BLOCK_SIZE=32768)";
 allocate channel t2 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=ONSITE_ARCH,
 MDMS$SBT_IO_BLOCK_SIZE=32768)";
 allocate channel t3 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=ONSITE_ARCH,
 MDMS$SBT_IO_BLOCK_SIZE=32768)";
 backup filesperset 1
 database;
 backup
 current controlfile;
 release channel t1;
 release channel t2;
 release channel t3;
 }

9.6.5 Specifying Archives for Duplex Backups

SBT allows you specify an archive for each stream of a duplex backup. The duplex mode allows
duplicate backups to separate tape volumes. This is accomplished in SBT by having a different
archive for each stream. The different archives are passed into SBT using Oracle's Recovery
Manager allocate command. The parms keyword uses the keyword of ENV. By using
MDMS$SBT_ARCHIVE_1, MDMS$SBT_ ARCHIVE_2, and so forth, you can specify which
archive to use for which copy. Example 9–13 shows an example of doing a duplex backup with
two archives: OFFSITE_ARCH and ONSITE_ ARCH.

Example 9–13 Duplex Command using two Archives

run
{
 set duplex=2;
 allocate channel t1 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE_1=OFFSITE_ARCH,
 MDMS$SBT_ARCHIVE_2=ONSITE_ARCH)";
 backup tablespace system;
 release channel t1;
}

9.6.6 Using logical MDMS$SBT_RESTORE_SINGLE_CHANNEL

This logical can be optionally used only when performing a restore operation with a single chan-
nel .The restore operation will be efficient if this logical is specified. When this logical is speci-
fied ,SBT will not dismount the tape drive after restoring each backup piece. If the next restore
request for a backup piece is in the same tape volume then SBT will position the drive accord-
ingly and restore that piece.

But if the next restore request in that channel is for a backup piece stored in different tape vol-
ume then it will dismount the current volume and mount the required volume. When this logical
is not specified,SBT will dismount the tape drive after restoring each backup piece. This logical
thus avoids unnecessary dismount operations during a restore operation with single channel.
9-14 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.7 Using the Show Catalog Command
Example 9–14 shows how to use this logical in Oracle's Recovery Manager (RMAN) scripts.

Example 9–14 Logical in Oracle's Recovery Manager (RMAN) scripts

run

{
allocate channel t1 type 'sbt_tape'
parms="ENV=(MDMS$SBT_CATALOG=REG_ORACLE_DB,

MDMS$SBT_RESTORE_SINGLE_CHANNEL=TRUE)";
restore database;
recover database;
release channel t1;
sql 'alter database open ';

}

Note

This logical should be passed only when doing a restore with a single channel. Usage of
this logical with multiple channels is not supported as it might lead to a potential dead-
lock during the restore operation. We also don't recommend you to define this logical
system wide and instead we recommend to pass the logical in RMAN scripts.

9.7 Using the Show Catalog Command
Using the show catalog command in MDMS allows you to look up information about a piece
name. Because there are different types of catalogs not all of the qualifiers pertain to an
ORACLE_DB type of catalog. Also, because the ORACLE_DB catalog type is a variation of
another catalog, all of the qualifiers are not what you expect. Example 9–15 shows a simple
command to retrieve information about piece name vedbk5ha_1_1.

Example 9–15 Simple Show Catalog Example

$ MDMS SHOW CATALOG ORACLE_DB -

 _$ /SAVE/FULL/PIECE_NAME="vedbk5ha_1_1" 1
 Catalog Name: ORACLE_DB
 Catalog Node: MOE
 Date Archived: 13-DEC-2001 20:23:07
 Source Node: MOE
 Database: EMPLOYEE

 Block Size: 262144 2
 Archive: RMAN_TAPE_TL893_ARCH

 Environment: 3E6EE027-F007-11D5-9421-5441524E2020 3
 Save: 3E6EE028-F007-11D5-941F-5441524E2020

 Save Type: () 4
 Owner: ABS

 Saveset Format: ORACLE_DB_SBT 5
 Archive Type: TAPE 6
 Saveset Location: AIF049,AIF050 7
 Saveset Name: 2001121320230791. 8
 Saveset Position: 288 9
 Status: Completed with success 10
 Severity: OP_SUCCESS
 Piece Name: vedbk5ha_1_1

The following describes the command and the different fields in the display that I think might
not be obvious to you or I think needs an explanation:
 System Backup to Tape for Oracle Databases 9–15

System Backup to Tape for Oracle Databases
9.7 Using the Show Catalog Command
1. The MDMS show catalog command-you must use the /SAVE qualifier for an ORACLE_DB
catalog type. The /PIECE_NAME lets you look up a particular piece name. The piece name
must be in quotes if the piece name is not all uppercase letters. If you do not use the
/PIECE_NAME qualifier, you will get every entry in the catalog. You need to use the
/FULL qualifier or you will not get much information in the modal default of /BRIEF. I
hope to change this in a subsequent release.

2. Block Size-this is the block size that was sent down from Oracle. When a restore command
is issued from the Oracle Recovery Manager, the block size must be the same.

3. Environment and Save-these UID's mean nothing for an ORACLE_DB type catalog. They
are here because the ORACLE_DB type catalog is a variation of another ABS catalog.

4. Save Type-this means nothing for an ORACLE_DB type catalog.

5. Saveset Format-this is the format type of the saveset on the I/O device. SBT has its own for-
mat and can only be read by SBT.

6. Archive Type-TAPE archive type is the only type supported in this version.

7. Saveset Location-this is the tape volume(s) that the saveset is on. In this example, there are
two tape volumes: AIF049 and AIF050. This means that the saveset was started on tape vol-
ume AIF049 and finished on tape volume AIF050. If you need to do a restore of this piece
name, you need to have both of these volumes onsite. You can use the MDMS show volume
command to look up these tape volumes to see if they are onsite or offsite.

8. Saveset Name-this is the name of the file on the tape volume. We are limited to 17 charac-
ters so we change piece name into a saveset name on a particular volume.

9. Saveset Position-this is the number of tape marks down from the beginning of the tape
where the saveset starts. I doubt if you will ever use this.

10. Status and Severity-these will always be success in the present version. The piece name is
only put in the catalog if the backup completed successfully.

You may want to look up all of the piece names for a particular database. The /INCLUDE quali-
fier is the one to use. The /INCLUDE qualifier was there before we created the ORACLE_DB
type catalog. It accesses the database field of an ORACLE_DB type catalog. Example 9–16
shows a lookup of all records for the EMPLOYEE database.

Example 9–16 Catalog Lookup of All Records for the EMPLOYEE Database

Oracle9i> MDMS SHOW CATALOG ORACLE_DB/SAVE/FULL/INCLUDE=EMPLOYEE
 Catalog Name: ORACLE_DB
 Catalog Node: MOE
 Date Archived: 14-DEC-2001 10:04:53
 Source Node: MOE
 Database: EMPLOYEE
 Block Size: 262144
 Archive: RMAN_TAPE_TL875_ARCH
 Environment: 08E036C7-F07A-11D5-BFEF-5441524E2020
 Save: 08E036C8-F07A-11D5-BFED-5441524E2020
 Save Type: ()
 Owner: ABS
 Saveset Format: ORACLE_DB_SBT
 Archive Type: TAPE
Saveset Location: DEC031
 Saveset Name: 2001121410045349.
Saveset Position: 9
 Status: Completed with success
 Severity: OP_SUCCESS
 Piece Name: 75dbllm4_1_1
 Catalog Name: ORACLE_DB
 Catalog Node: MOE
 Date Archived: 14-DEC-2001 10:00:46
9-16 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.8 Using the MDMS Scheduler
.

.

.
 Database: EMPLOYEE
 Block Size: 262144
 Archive: RMAN_TAPE_TL893_ARCH
 Environment: 9868BCE3-E3EA-11D5-8CAB-5441524E2020
 Save: 9868BCE2-E3EA-11D5-8CAA-5441524E2020
 Save Type: ()
 Owner: ABS
 Saveset Format: ORACLE_DB_SBT
 Archive Type: TAPE
Saveset Location: AFW892
 Saveset Name: 2001112810163927.
Saveset Position: 0
 Status: Completed with success
 Severity: OP_SUCCESS
 Piece Name: jpda8rm4_1_1

For more information about the MDMS show catalog command, refer to the reference manual.

9.8 Using the MDMS Scheduler
Because Oracle's Recovery Manager has no way of scheduling scripts to run periodically, you
need to use an external scheduler. MDMS provides a scheduling capability. See the command
reference guide for creating schedule objects. Example 9–17 shows how to create a schedule to
run a command procedure which has Oracle Recovery Manager commands in it.

Example 9–17 Creating an MDMS schedule

$ MDMS CREATE SCHEDULE BACKUP_DB_TAPE -
 /COMMAND="@DISK$ORACLE5:[ORACLE9I]BACKUP_DB_TAPE.COM" -
 /TIMES=21:00
$ MDMS SHOW SCHED BACKUP_DB_TAPE
 Schedule: BACKUP_DB_TAPE
 Description:
 Access Control: NONE
 Owner: MOE::ORACLE9I
 After Schedule:
 After When: NONE
 Command: @DISK$ORACLE5:[ORACLE9I]BACKUP_DB_TAPE.COM
 Dates: 1-31
 Days: MON-SUN
 Exclude:
 Include:
 Months: JAN-DEC
 Times: 21:00
 Last Start Date: NONE
 Next Start Date: 07-DEC-2001 21:00:00

The following example shows my BACKUP_DB_TAPE.COM file:

$ set nover
$ @oracle_home:login
$ set verify
$ rman nocatalog target sys/admin@orcl
run
{
 allocate channel t1 type 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=ONSITE_ARCH)";
 backup
 format 'Empt%t_s%s_p%p'
 database;
 backup
 format 'Empcct%t_s%s_p%p'
 current controlfile;
 release channel t1;
}

 System Backup to Tape for Oracle Databases 9–17

System Backup to Tape for Oracle Databases
9.9 System Backup to Tape Defaults
exit
$ exit

Note

Since the RMAN script is just a DCL command procedure, the /AFTER_SCHEDULE
qualifier cannot be used to link schedules that execute RMAN scripts. That is, sched-
ules that execute RMAN scripts cannot be assigned to the /AFTER_SCHEDULE qual-
ifier on any schedule object. This is a current design limitation. Please refer to release
notes section 5.3.6 for more details on this restriction.

Note

When specifying a format in the backup command you must put in a % character that
creates unique names being sent to SBT.

You can put Oracle's Recovery Manager command line in the scheduler command and execute a
stored script through a cmdfile.

9.9 System Backup to Tape Defaults
The SBT feature of ABS/MDMS has defaults. This section describes these defaults.

9.9.1 Archive Name

If you do not pass the parms="ENV=(MDMS$SBT_ ARCHIVE=archive_name)" in an Oracle
Recovery Manager allocate command, SBT will use the default ORACLE_DB_ ARCHIVE
archive.

9.9.2 Catalog Name

If you do not pass the parms="ENV=(MDMS$SBT_ CATALOG=catalog_name)" in an Oracle
Recovery Manager allocate command, SBT will use the default ABS$CATA-
LOG:ORACLE_DB catalog.

9.9.3 I/O Block Size

If you do not pass the parms="ENV=(MDMS$SBT_IO_BLOCK_ SIZE=block_size)" in an
Oracle Recovery Manager allocate command, SBT will use a block size of 65024 bytes when
writing blocks on the I/O device. This has nothing to do with the block size that Oracle sends
down to be written on the I/O device.

9.9.4 MDMS$SBT_RESTORE_SINGLE_CHANNEL=TRUE

If you do not pass params="ENV=(MDMS$SBT_RESTORE_SINGLE_CHANNEL=TRUE)"
in an Oracle Recovery manager allocate command,SBT will not treat this restore as a single
channel restore and will force a dismount operation after restoring each backup piece.

9.9.5 System Backup to Tape Logicals Names

 describes the logical names used to control your SBT sessions. These logical names can be a
system wide logical (DEFINE/SYSTEM) or be defined in your Oracle Recovery Manager
scripts. When using in Oracle's Recovery Manager scripts, the logical is declared when you allo-
cate a channel with the keyword of ENVfor the keyword parms. The following example shows
how the MDMS$SBT_ARCHIVE and MDMS$SBT_IO_BLOCK_SIZE logicals are defined as
a process logical with Oracle's Recovery Manager allocate command:

run
{
 allocate channel t1 for 'sbt_tape'
 parms="ENV=(MDMS$SBT_ARCHIVE=OFFSITE_ARCHIVE,
9-18 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.10 System Backup to Tape Restrictions
 MDMS$SBT_IO_BLOCK_SIZE=32768)";
 ...
}

Note

Everything between the quotes in parms MUST be uppercase characters. The logical
abs_sbt alone is an exception. It works for both upper and lower case.

9.10System Backup to Tape Restrictions
This section describes restrictions in the use of this version of SBT.

9.10.1 Doing Parallel Backups

When doing a parallel backup and you do not have all of the SBT resources needed could cause
a backup not to complete. When doing a parallel backup, the controlling Oracle server does not
let any of the Oracle servers doing the backup end until all servers say they have completed their
task. I believe this is to keep the database consistent. However, this can cause the backup to not
complete if SBT resources are not available.

Note

This is not really a SBT restriction, but it is placed here to make you aware of the pos-
sibility of parallel backups not completing.

The following three scenarios can cause a parallel backup not to complete:

• Setting the Drives List in the archive to a number of drives less than the number of parallel
streams that Oracle's Recovery Manager starts. If you do not need to restrict the Oracle

SBT Logical Names

Logical Name Description

MDMS$SBT_ ARCHIVE This logical name is the name of the archive used during a
backup of the Oracle database.

MDMS$SBT_ ARCHIVE_n These logical names are the names of the archives used during a
backup of the Oracle database when using the duplex feature of
Oracle's Recovery Manager. MDMS$SBT_ARCHIVE_1 is for
copy 1, MDMS$SBT_ARCHIVE_2 is for copy 2, and so forth.
Example 9–13 is an example of using these logical.

MDMS$SBT_IO_
BLOCK_SIZE

This logical name is the size of the block that is written on the
tape volume. The default size is 65024 bytes (127 * 512 bytes).
You cannot specify a value larger than 65024 bytes.

MDMS$SBT_ CATALOG This logical name is the name of the catalog used for the fol-
lowing Oracle Recovery Manager commands:
• restore

• validate

• list backup

MDMS$SBT_TRACE_ LEVEL This logical allows you to define how much tracing appears in
the trace file. The logical is defined in SYS$STAR-
TUP:MDMS$SYSTARTUP.COM. By default the values
TR_GENINFO and TR_MEDINFO are defined.
 System Backup to Tape for Oracle Databases 9–19

System Backup to Tape for Oracle Databases
9.11 Troubleshooting Tips
server backups to certain drives, I suggest you do not put anything in this attribute. If you do
use this attribute, be sure you have enough drives for the number of streams in the parallel
backup.

• Setting the Maximum Saves in the Archive to a number less than the number of parallel
streams that Oracle's Recovery Manager starts. I suggest you set it at 36 and control the
number of backups from the Oracle Recovery Manager.

• Starting more parallel backups than you have tape drives. Do not start two or more parallel
backups at the same time unless you have drives available for all streams in the parallel
backups.

To illustrate the problems stated above, I will give an example of setting the Maximum Saves in
the archive to 2 and then using a Oracle Recovery Manager script that starts 3 parallel streams.
Each stream starts the backup, the first two are allowed to get a volume set and start their
backup. The third server starts up and finds that there is no volume set available at this time. It
keeps trying to get a volume set. In the mean time, the first two servers finish doing the backup.
However, the controlling server will not let them end until the third server is finished. Therefore,
they hold on to the resources: drive and volume set. The third server can not finish for lack of
resources. Any of the above problems stated above can cause this deadlock.

9.10.2 Piece Name Length Greater than 254 Characters

A piece name length greater than 254 characters is not supported. This restriction may be lifted
in subsequent versions to 511 characters for a piece name length.

9.10.3 Using RDF Drives with SBT

You can NOT use Remote Device Facility (RDF) drives when using Oracle’s tape I/O slaves.
RDF drives may be used with SBT if you are not using Oracle’s tape I/O slaves.

9.10.4 Backup with Oracle Dead Connection enabled

During backup, Oracle background server process results in access violation when "Oracle Dead
connection" detection is enabled by setting the parameter SQLNET.EXPIRE_TIME with Oracle
9.2.0.4.

To use the sqlnet.expire parameter, the 'backup_tape_io_slaves=TRUE' should be set in the
init.ora file specific to the instance and execute the backup.

This is a workaround when using RMAN and ABS SBT with "sqlnet.expire" set to a non-zero
value.

9.11 Troubleshooting Tips
This section gives you some tips that may help you troubleshoot SBT if you have problems.

9.11.1 Using the logical MDMS$SBT_TRACE_LEVEL

The logical MDMS$SBT_TRACE_LEVEL allows you define how much tracing appears in the
trace file, ORA_DUMP:SBTIO.LOG. By default any error that is detected by SBT, is traced in
the trace file. You can define the logical MDMS$SBT_TRACE_LEVEL to display more infor-
mation. The definition of MDMS$SBT_ TRACE_LEVEL is defined in SYS$STAR-
TUP:MDMS$SYSTARTUP.COM. If the logical is not defined on your system, see Section 9.3
to setup the logical.

There are only three values that you might want to use. The rest of the values are for support use.
By default the following values are enabled:

• TR_GENINFO - general information about the backup and restore. With this value defined,
you will see message about starting the backup or restore.
9-20 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.11 Troubleshooting Tips
• TR_MEDINFO - information about drives and volumes. With this value define, you will see
messages about allocating, loading, mounting, unloading, and deallocating tape volumes
and drives.

As a very minimum, we suggest that you enable the above two values so that you can check the
progress of backups and restores. If the backup or restore can not get a volume set, it will loop,
once a minute, waiting for the volume set to become available. If a tape drive is unavailable,SBT
loops waiting for a drive to become available. SBT tries to allocate the tape drive every minute.
SBT reports that it can not allocate the tape drive after five minutes and then after 10 minutes
and so forth.

Example 9–18 shows an example of ORA_DUMP:SBTIO.LOG with TR_GENINFO and
TR_MEDINFO values enabled. Note that the SBT-00008140 is the pid, in hexadecimal, of the
process doing the backup with SBT- prepended.

Example 9–18 ORA_DUMP:SBTIO.LOG with TR_GENINFO and TR_MEDINFO Val-
ues Enabled

EDINFO Values Enabled
SBT-00008140 12/17/01 09:27:11 Using archive RMAN_TAPE_TL875_ARCH
SBT-00008140 12/17/01 09:27:12 Starting backup of r1dbtgjd_1_1 for DB:
EMPLOYEE
SBT-00008140 12/17/01 09:27:12 Using catalog ORACLE_DB
SBT-00008140 12/17/01 09:27:12 Allocated drive: MKC200 Device: MOE$MKC200:
SBT-00008140 12/17/01 09:27:13 Drive is in jukebox TLZ875
SBT-00008140 12/17/01 09:27:13 Allocated volume AIF078
SBT-00008140 12/17/01 09:27:17 Unloading drive MKC200
SBT-00008140 12/17/01 09:27:46 Loading volume AIF078 on drive MKC200
SBT-00008140 12/17/01 09:28:39 Deallocating drive MKC200
SBT-00008140 12/17/01 09:28:39 Initializing volume AIF078
SBT-00008140 12/17/01 09:29:00 Allocated drive: MKC200 Device: MOE$MKC200:
SBT-00008140 12/17/01 09:29:00 Drive is in jukebox TLZ875
SBT-00008140 12/17/01 09:29:00 Loading/mounting volume AIF078 on drive MKC200
SBT-00008140 12/17/01 09:29:00 Loading volume AIF078 on drive MKC200
SBT-00008140 12/17/01 09:29:09 Mounting volume AIF078 on device MOE$MKC200:
SBT-00008140 12/17/01 09:29:18 Ready to write to saveset 2001121709291582.
on volume AIF078
SBT-00008140 12/17/01 09:30:47 Using catalog ORACLE_DB
SBT-00008140 12/17/01 09:30:48 Finished writing saveset 2001121709291582.
on volume AIF078

We hope the only thing that might not be obvious in Example 9–18 is the saveset name. We are
limited to 17 characters so I change piece name, r1dbtgjd_1_1, into a saveset name,
2001121709291582., on a particular volume.

Another value that you may want to use is TR_TAPSTAT. This gives you statistics about the
reading/writing to a tape volume. Example 9–19 shows an example of tape statistics.

Example 9–19 Trace of Tape Statistics

SBT-00008140 12/17/01 09:50:49 I/O Statistics:

SBT-00008140 12/17/01 09:50:49 DB block size: 262144 bytes 1
SBT-00008140 12/17/01 09:50:50 I/O block size: 65024 bytes 2
SBT-00008140 12/17/01 09:50:50 Total I/Os: 620 3
SBT-00008140 12/17/01 09:50:50 Total I/O wait: 23279 milliseconds 4
SBT-00008140 12/17/01 09:50:50 Maximum I/O wait: 936 milliseconds 5
SBT-00008140 12/17/01 09:50:50 Average I/O wait: 37 milliseconds 6
SBT-00008140 12/17/01 09:50:50 Total Kbytes: 40300 7
SBT-00008140 12/17/01 09:50:50 Total bytes: 40314880.000 8
SBT-00008140 12/17/01 09:50:50 Total seconds: 23 9
 System Backup to Tape for Oracle Databases 9–21

System Backup to Tape for Oracle Databases
9.11 Troubleshooting Tips
SBT-00008140 12/17/01 09:50:50 MBytes/sec: 1.752 10
SBT-00008140 12/17/01 09:50:50 Bytes/sec : 1752820.870 11

The following describes the entries in Example 9–19:

1. DB block size:-this is the size of blocks that Oracle sends to SBT.

2. I/O block size:-this the size of blocks that SBT writes to the I/O device. You can change this
with the logical MDMS$SBT_IO_BLOCK_SIZE which can be specified in an Oracle
Recovery Manager script or as a system wide logical.

3. Total I/Os:-total I/Os to write the I/O block size blocks to the I/O device. In this example:
620 total I/Os writing 65024 byte blocks to the I/O device.

4. Total I/O wait:-this is the number of milliseconds that SBT waited while the blocks are
being written to the I/O device.

5. Maximum I/O wait:-this is the longest wait that SBT made to write a block to the I/O
device.

6. Average I/O wait:-this the average wait of the total I/Os for the total I/O wait time.

7. Total Kbytes:-total Kbytes transferred to the I/O device. It is a truncated value. See total
bytes below.

8. Total bytes:-total bytes transferred to the I/O device.

9. Total seconds:-this is the number of seconds that SBT waited while the blocks are being
written to the I/O device. This does not have the time that Oracle took to provide the infor-
mation to write to the I/O device. The value is truncated from the total I/O wait in millisec-
onds.

10. Mbytes/sec:-Mbytes per second transferred based on total Kbytes and total seconds.

11. Bytes/sec:-bytes per second transferred based on total bytes and total seconds.

Note

These values are the time that SBT waited for the I/O device to give back control. The
values have nothing to do with how long it took Oracle to give information to SBT.

9.11.2 Fatal Internal Error

If you should ever get an Internal error, you should report it to the customer support center.
Example 9–20 shows an example of a fatal internal error. Anyplace that SBT could have
received a value that it did not expect, it is captured and reported as a fatal internal error.

Example 9–20 Fatal Internal Error Example

SBT-00001DB2 12/17/01 13:53:45 Internal error
SBT-00001DB2 12/17/01 13:53:45 Extended Status:
The invalid archive type, 23
SBT-00001DB2 12/17/01 13:53:57 ABEND (abnormal end) was passed
in sbtend flag

9.11.3 Check ORA_DUMP:SBTIO.LOG for Errors

Any time you receive an error in Oracle's Recovery Manager that is related to SBT, you should
check ORA_DUMP:SBTIO.LOG for errors. We are limited to 250 characters returned to the
Oracle Recovery Manager. Therefore, you may not receive all of the information about the error.
However, I am not limited to what I put in the ORA_DUMP:SBTIO.LOG file. So be sure to look
in ORA_DUMP:SBTIO.LOG when getting an error message that in not all there.
9-22 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.11 Troubleshooting Tips
Example 9–21 shows an example of a fatal error reported in Oracle's Recovery Manager. Exam-
ple 9–22 shows what is reported in ORA_DUMP:SBTIO.LOG for the same error. The File:,
Function: and line are information for me to troubleshoot the problem if it is a software error. In
this case, there were no volumes available. Look for it in the ORA_ DUMP:SBTIO.LOG file. In
this case, you can look in the archive to see what the media type, pool, and location were.

Example 9–21 Fatal Error in Oracle's Recovery Manager

ORA-27028: skgfqcre: sbtbackup returned error
ORA-19511: Error received from media manager layer, error text:
Fatal media movement error
Failed to allocate tape volume
MDMS object: RMAN_TAPE_TL875_ARCH
System Error: %MDMS-E-NOVOLUMES, no free volumes match selection criteria
%MDMS-E-NOVOLUMES, no free volumes match selection criteria
%MDMS-I-NOVOLSPOOL, no free volumes in the specified pool were found

Example 9–22 Fatal Error in ORA_DUMP:SBTIO.LOG

SBT-0000819F 12/17/01 14:10:20 Fatal media movement error
SBT-0000819F 12/17/01 14:10:20 Extended Status:
Failed to allocate tape volume
MDMS object: RMAN_TAPE_TL875_ARCH
System Error: %MDMS-E-NOVOLUMES, no free volumes match selection criteria
%MDMS-E-NOVOLUMES, no free volumes match selection criteria
%MDMS-I-NOVOLSPOOL, no free volumes in the specified pool were found
File: WRK$ROOT:[SRC]MDMS_SBT_API_MEDIA.C;1, Function:
sbt_media_allocate_volume,
Line 416
Failed to allocate volume with attributes:
Pool:
Media Type: TLZ88M
Location: 110281

9.11.4 Using Tape I/O Slaves

When using tape I/O slaves, you may not receive the error message from SBT in Oracle's Recov-
ery Manager. Example 9–23 shows the type of error you may get reported for a tape volume
being offsite. Example 9–24 shows the tape volume offsite error reported when not using tape
I/O slaves. So when troubleshooting, also look in the trace log file ORA_ DUMP:SBTIO.LOG.
In both cases the error was reported in the trace log file.

Example 9–23 Volume Offsite Error using Tape I/O Slave

RMAN-08031: released channel: t1
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03006: non-retryable error occurred during execution of command: vali
ate
RMAN-07004: unhandled exception during command execution on channel t1
RMAN-10035: exception raised in RPC: ORA-00447: fatal error in background
process
RMAN-10031: ORA-19583 occurred during call to DBMS_BACKUP_RESTORE.RESTORE
ACKUPP
IECE
RMAN>

Example 9–24 Volume Offsite Error Not using Tape I/O Slave

RMAN-07004: unhandled exception during command execution on channel t1
RMAN-10035: exception raised in RPC: ORA-19507: failed to
retrieve sequential fi LE, handle="6sd8vntq_1_1", parms=""
ORA-27029: skgfrtrv: sbtrestore returned error
ORA-19511: Fatal catalog access error
Piece 6sd8vntq_1_1 cannot be restored because volume AHI164 is offsite
 System Backup to Tape for Oracle Databases 9–23

System Backup to Tape for Oracle Databases
9.12 Support for Oracle RDB database
RMAN-10031: ORA-19624 occurred during call to
DBMS_BACKUP_RESTORE.RESTOREBACKUPPIECE
RMAN>

Example 9–25 Volume Offsite Error in Trace File

SBT-00000889 11/13/01 16:28:02 Fatal catalog access error
SBT-00000889 11/13/01 16:28:02 Extended Status:
Piece 6sd8vntq_1_1 cannot be restored because volume AHI164 is offsite

9.12Support for Oracle RDB database
This section describes the System Backup to Tape (SBT) for Oracle RDB databases feature of
Archive Backup System (ABS).

ABS V4.3 will support Oracle Rdb RMAN Media Management API V2.0 for Oracle Rdb RMU
commands. The System Backup to Tape feature of ABS can be used to backup and restore Ora-
cle RDB Database.

Oracle Media Management V2.0 API for Oracle RDB RMU is an enhancement provided in Ora-
cle RDB RMU Release 7.1.2. The Oracle RDB Release 7.1.2 should be installed for the same.
Rdb V7.1 SQL/Services is required to be installed for RMU parallel backup operations.

This section does not cover all aspects of configuring ABS /MDMS. This section only covers
what you need to do to use SBT in the ABS/MDMS domain. Before configuring and using SBT,
you must configure the following MDMS objects:

• Media

• Location

• Domain

• Node

• Jukebox

• Tape drives

• Pool

• Tape volumes

If you have been using ABS/MDMS you will already have your domain configured. If this is
your first installation of ABS/MDMS, be sure to configure the above objects before proceeding
with this section.

For backing up to and restoring data using ABS SBT, RMU commands accept the /LIBRARIAN
qualifier. To use the LIBRARIAN qualifier the logical RMU$LIBRARIAN_PATH should be
defined. For a parallel RMU backup RMU$LIBRARIAN_PATH should be defined as a system
logical so that the multiple processes created by a parallel backup can all translate the logical.

$DEFINE/PROCESS RMU$LIBRARIAN_PATH librarian_shareable_image.exe
$DEFINE/SYSTEM/EXEC RMU$LIBRARIAN_PATH librarian_shareable_image.exe

For configuring SBT, we define the VMS logical RMU$LIBRARIAN_PATH to point to the 32
bit SBT shareable image (MDMS$SBTSHR_NMA32.EXE) which is copied to SYS$COM-
MON:[SYSEXE] . MDMS should be restarted for the image to take affect. These logicals need
to be defined before the RMU backup or restore command is executed. The image is provided
with the ABS kit.

$DEFINE/SYSTEM RMU$LIBRARIAN_PATH
SYS$COMMON:[SYSEXE]MDMS$SBTSHR_NMA32.EXE
9-24 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.12 Support for Oracle RDB database
Install the file as a shared known image. This associates a known image with the latest version of
the image file

$INSTALL REPLACE /OPEN/HEAD/SHARE
SYS$COMMON:[SYSEXE]MDMS$SBTSHR_NMA32.EXE

The default catalog and archive used by SBT for backup/restore are ORACLE_DB and
ORACLE_DB_ARCHIVE. You should create one oracle_db type catalog and an archive.

Use the following command to create a oracle_db type catalog:

$ MDMS CREATE CATALOG ORACLE_DB /TYPE=ORACLE_DB

Use the following command to create the default archive:

$ MDMS CREATE ARCHIVE ORACLE_DB_ARCHIVE -
/ARCHIVE_TYPE=TAPE -
/CATALOG=(NAME=ORACLE_DB) -
/MAXIMUM_SAVES=36 -
/MEDIA_TYPE=DLT_III -
/POOL=DB_BACKUP_POOL -
/RETENTION_DAYS=35

9.12.1 RMU Commands that accept /LIBRARIAN Qualifier

RMU/BACKUP command accepts the /LIBRARIAN qualifier to backup data using ABS SBT.

$RMU/BACKUP/LIBRARIAN=(trace=disk:[directory]tracefile.trace)/LOG DATABASE
FILENAME.RBF

RMU/RESTORE command accept the /LIBRARIAN qualifier for retrieving data using ABS
SBT.

$RMU/RESTORE/LIBRARIAN=(trace=disk:[directory]tracefile.trace)/LOG FILE-
NAME.RBF

FILENAME.RBF is the backup filename. The backup filename excluding the extension must be
the same name previously used for an RMU backup using SBT.

The RMU command used with the /LIBRARIAN qualifier cannot specify a list of tape or disk
devices. It accepts a backup file ("rbf file") name. Any disk or device specification or file exten-
sion specified with the backup file name is ignored for the backup file name specified to the
archive. For example, "device:[directory]FILENAME.RBF" is specified as "FILENAME" when
the backup file data is stored in or retrieved from the archive. SBT writes trace data to the trace-
file, if specified.

The archive application is a "black box" to RMU and the backup file name is the identifier of the
stream of data stored in the archive. The MDMS utility used with the ARCHIVE BACKUP
SYSTEM is used to associate devices with the stream of data sent to or retrieved from the
archive by RMU. Since SBT is a black box to RMU that can store data to tape or disk, device
specific qualifiers such as /REWIND, /DENSITY or /LABEL cannot be used with this interface.

$RMU/BACKUP/LIBRARIAN=(WRITER_THREADS=2, trace=disk:[directory]trace-
file.trace)/LOG DATABASE FILENAM.RBF

Each writer thread for a backup operation or reader thread for a restore operation manages its
own stream of data. Therefore, each thread uses a unique backup file name generated from the
backup file name specified on the command line. A number is incremented and added to the end
of each backup file name specified to the archive (except for the first) representing a unique data
stream. This number is the equivalent of the volume number associated with non SBT RMU
backups and restores.
 System Backup to Tape for Oracle Databases 9–25

System Backup to Tape for Oracle Databases
9.12 Support for Oracle RDB database
For the above example, the backup file data stream names

FILENAME

FILENAME02

are specified to the archive to identify the two streams of data stored in the archive by the two
writer threads, which together represent the stored database. When

$RMU/RESTORE/LIBRARIAN=(READER_THREADS=2, trace=disk:[directory]trace-
file.trace)/LOG FILENAM.RBF

is specified to restore the database these same two data stream backup file names, one name
specified by each of the two reader threads, will be generated by RMU and sent to the archive
application to retrieve all the data associated with the database. If the number of reader threads is
less than the number of backup writer threads one or more restore reader threads will restore
more than one data stream.

For example, reader threads can be equal to, less than or more than the number of writer threads.

$RMU/RESTORE/LIBRARIAN=(READER_THREADS=1, trace=disk:[directory]trace-
file.trace)/LOG FILENAM.RBF

$RMU/RESTORE/LIBRARIAN=(READER_THREADS=4, trace=disk:[directory]trace-
file.trace)/LOG FILENAM.RBF

The user does not have to specify the same number of reader threads on the restore as writer
threads specified on the backup. If a smaller number of reader threads on the restore is specified
than the number of writer threads specified in the backup of the database, the data streams to be
retrieved will be divided among the specified reader threads using an algorithm which assigns
the data streams so that each thread will have an approximately equal amount of work to do. If a
larger amount of reader threads is specified on the restore than was specified on the backup, the
number of reader threads will be automatically changed to equal the number of writer threads
used in the backup. This is done to prevent an error, which would occur if more data streams
were requested than were stored using SBT by the backup or if threads were created with no
work to do.

$RMU/RESTORE/LIBRARIAN=(READER_THREADS=1, trace=disk:[directory]trace-
file.trace)/LOG/DIRECTORY= disk:[directory1] FILENAM.RBF

During restore, /DIRECTORY qualifier can be used to specifY the destination for the restored
database files. The files are restored to the directory specified.

$RMU/RESTORE/ONLY_ROOT/LIBRARIAN=(trace=disk:[directory]trace-
file.trace)/LOG/DIRECTORY= disk:[directory1] FILENAM.RBF

RMU/RESTORE/ONLY_ROOT command rebuilds only the database root file from a backup
file, produced earlier by an RMU/BACKUP command, to the condition the database root file
was in when the backup was performed.

The /VOLUMES qualifier cannot be used on the RMU/RESTORE command if the /LIBRAR-
IAN qualifier is used. RMU automatically determines the number of data streams stored using
SBT based on the backup file name specified for the restore command and sets the volume num-
ber to the actual number of stored data streams. This makes sure that all data streams, which rep-
resent the database, are retrieved.

The default for both WRITER_THREADS and READER_THREADS is "1". The
WRITER_THREADS parameter can only be specified with the /LIBRARIAN qualifier for the
RMU/BACKUP database command. The READER_THREADS parameter can only be speci-
fied with the /LIBRARIAN qualifier for the RMU/RESTORE database commands.
9-26 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.12 Support for Oracle RDB database
All other RMU commands that accept the /LIBRARIAN qualifier only use one writer thread or
one reader thread representing one archive data stream.

Note

RMU commands only support the retrieval of data using the /LIBRARIAN qualifier
that has been stored by other RMU commands using the /LIBRARIAN qualifier.

In addition to the /LIBRARIAN qualifier used with existing RMU commands, there are new
commands as follows:

$RMU/LIBRARIAN/LIST=(OUTPUT=disk:[directory]listfile.ext) FILENAME.RBF

RMU/LIBRARIAN/LIST command to list data streams stored using SBT that have been created
by RMU from a backup filename.

"/LIST" used alone will display to the default output device. If the "OUTPUT" option is used
output will be displayed to the specified file. All data steams existing in the SBT that was gener-
ated for the specified backup name will be listed.

$RMU/LIBRARIAN/REMOVE=([NO]CONFIRM) FILENAME.RBF

RMU/LIBRARIAN/REMOVE command to delete data streams stored using SBT that have been
created by RMU from a backup filename.

"/REMOVE" deletes all data steams stored using SBT that were generated for the specified
backup name.

Warning

This command should be used with caution. The user should be sure that a more
recent backup for the database using SBT exists under another name before using this
command.

The "CONFIRM" option is the default. It will prompt the user to confirm that he wants to delete
the backup from the ABS. The user can then reply "Y(ES)" to do the deletion or "N(O)" to exit
the command without doing the deletion if he wants to confirm that a more recent backup for the
database exists in the SBT that was generated using a different backup name. The user must
specify the “NOCONFIRM" option if he does not want to be prompted. In this case the deletion
will be done with no confirmation prompt.

9.12.2 BACKUP/RESTORE Using PLAN Files

The /LIBRARIAN qualifier can be used for parallel backup operations where backup threads
can execute in multiple processes. The database backup command can be invoked as a parallel
command which uses multiple processes but the other RMU commands which accept the
/LIBRARIAN qualifier do not support parallel processes but execute in one process. RDB V7.1
SQL/Services is required to be installed for RMU parallel backup operations.

The following lines in the backup PLAN file used to specify the parameters for parallel backup
operations relate directly to ABS SBT.

Backup File = MF_PERSONNEL.RBF
Style = Librarian
Librarian_trace_file = FILE.TRACE
Writer_threads = #

The backup file name must be the same file name specified for the restore and the style must be
set to "Librarian" indicating a backup to the LIBRARIAN. "Librarian_trace_file
=FILE.TRACE" are optional parameters specified with the /LIBRARIAN qualifier and passed
 System Backup to Tape for Oracle Databases 9–27

System Backup to Tape for Oracle Databases
9.12 Support for Oracle RDB database
to SBT to be used for diagnostic purposes. If the backup is a parallel operation a PLAN file is
created and executed as part of the existing RMU/BACKUP/PARALLEL and
RMU/BACKUP/PLAN command syntax. The following is an example of a parallel backup and
non parallel restore (the restore is always non parallel and executes in a single process) using the
/LIBRARIAN qualifier.

$RMU/BACKUP/PARALLEL=EXECUTOR=2/LIBRARIAN=WRITER_THREADS=1-
/LIST_PLAN=FILENAME.PLAN/NOEXECUTE/LOG DATABASE FILENAM.RBF

$RMU/BACKUP/PLAN FILENAME.PLAN

$RMU/RESTORE/LIBRARIAN=(READER_THREADS=2)/LOG FILENAME

In this example the first backup command creates the PLAN file for a parallel backup but does
not execute it. The second backup command executes the parallel backup using the PLAN file.
Note that 2 worker processes will be used and each process will use the 1 writer threads specified
with the /LIBRARIAN qualifier. Each writer thread in each process will write one stream of
backup data using SBT. Therefore 2 streams will be written to the LIBRARIAN archive. The
streams will be given the names

FILENAME

FILENAME02

To retrieve the same 2 data streams which represent the backed up Rdb database on the non par-
allel restore a READER_THREADS=2 parameter can be specified with the /LIBRARIAN qual-
ifier to use 2 threads to execute the restore, or if a READER_THREADS value specified is less
than 2 (1 is the default), RMU will determine the number of data streams actually stored by que-
rying the SBT distribute the data streams among the requested reader threads. If a
READER_THREADS value is specified that is greater than "2" RMU will set it to "2" so that
the restore does not attempt to retrieve data streams which do not exist.

Since all data stream names representing the database are generated based on the backup file
name specified for the RMU backup command used with the /LIBRARIAN qualifier, the user
must use a different backup file name to store the next backup of the database using SBT.

The user can incorporate the date or some other unique identifier in the backup file name to
make it unique if he wants to avoid deleting a previous backup to SBT, which used the same
backup file name.

Note

Deleting the previous backup is not recommended, as entire backup will be lost.

9.12.2.1 PARAMETERS Passed for the PLAN file

WRITER_THREADS=#

Use # writer threads to write # backup data streams using SBT. The database storage areas will
be partitioned among the database streams. The streams will be named BACKUP_FILENAME,
BACKUP_FILENAME02, BACKUP_FILENAME03, up to BACKUP_FILENAME#.
BACKUP_FILENAME is the backup file name specified in the RMU command excluding any
specified VMS file extension. This parameter can only be specified for parallel and non parallel
database backups. The default is 1 writer thread.

READER_THREADS=#

Use # reader threads to read all the backup data streams from SBT created for the backup file-
name. The streams will be named BACKUP_FILENAME, BACKUP_FILENAME02,
BACKUP_FILENAME03, etc. BACKUP_FILENAME is the backup file name specified in the
9-28 System Backup to Tape for Oracle Databases

System Backup to Tape for Oracle Databases
9.12 Support for Oracle RDB database
RMU command excluding any specified VMS file extension. This parameter can only be speci-
fied for database restores. The default is 1 reader thread. A reader thread value of 1 is used for all
other RMU commands that read data using SBT.

The number of READER_THREADS for a database restore from SBT should be equal to or less
than the number of WRITER_THREADS specified for the database backup or the number of
reader threads will be set by RMU to be equal to the number of data streams actually stored
using SBT. If the READER_THREADS specified for the restore are less than the
WRITER_THREADS specified for the backup RMU will partition the data streams among the
specified reader threads so that all data streams representing the database are restored. Therefore,
each reader thread can read more than one data stream.

TRACE_FILE=file_pecification

The trace data will be written to this file, if specified. The logical
MDMS$SBT_TRACE_LEVEL allows you to define how much tracing of SBT you want to
appear in your trace file. The logical is defined in SYS$STARTUP:MDMS$SYSTARTUP.COM.
You can check using the following command:

$ SEARCH SYS$STARTUP:MDMS$SYSTARTUP.COM MDMS$SBT_TRACE_LEVEL
%SEARCH-I-NOMATCHES, no strings matched

If the search command did not find it, you need to edit SYS$STARTUP:MDMS$SYSTAR-
TUP.TEMPLATE and pull the following code out of it and put the code in SYS$STAR-
TUP:MDMS$SYSTARTUP.COM.

$!
$!
$! The MDMS$SBT_TRACE_LEVEL log name controls what is written to the
$! Oracle trace file for SBT. The trace level can be controlled by
$! this logical separately from the trace level in the Oracle parameters.
$!
$ TR_ERROR = %X00000000 ! Always trace errors, cannot be changed
$ TR_SBTENTRY = %X00000001 ! Entry and exit of oracle called SBT functions
$ TR_SBTPARAM = %X00000002 ! Trace oracle called SBT functions parameters
$ TR_SBTRWENTRY = %X00000004 ! Trace of SBTREAD/SBTWRITE entry
$ TR_SBTRWPARAM = %X00000008 ! Trace of parameters for SBTREAD/SBTWRITE
$ TR_GENINFO = %X00000010 ! Trace general information like backup file name
$ TR_MEDINFO = %X00000020 ! Trace media movement information
$ TR_TAPSTAT = %X00000040 ! Trace tape/disk transfer stats
$ TR_COMENTRY = %X00000080 ! Entry and exit for common functions
$ TR_COMPARAM = %X00000100 ! Trace parameters for common functions
$ TR_MEDENTRY = %X00000200 ! Entry and exit for media functions
$ TR_MEDPARAM = %X00000400 ! Trace parameters for media functions
$ TR_CATENTRY = %X00000800 ! Entry and exit for catalog functions
$ TR_CATPARAM = %X00001000 ! Trace parameters for catalog functions
$ TR_TAPENTRY = %X00002000 ! Entry and exit for VMSTAPE functions
$ TR_TAPPARAM = %X00004000 ! Trace parameters for VMSTAPE functions
$ TR_VOLENTRY = %X00008000 ! Entry and exit for VOLSET functions
$ TR_VOLPARAM = %x00010000 ! Trace parameters for VOLSET functions
$ tracefilter = TR_GENINFO .OR. TR_MEDINFO
$ DEFINE/SYSTEM/NOLOG MDMS$SBT_TRACE_LEVEL 'tracefilter'
$!

After editing SYS$STARTUP:MDMS$SYSTARTUP.COM, be sure to execute it so the logical
is defined.
 System Backup to Tape for Oracle Databases 9–29

System Backup to Tape for Oracle Databases
9.12 Support for Oracle RDB database
9.12.3 Logicals to be specified for use with SBT

The two VMS logicals are to be defined for use with SBT. These logicals need to be defined
before the RMU backup or restore command is executed and should not be specified with the list
of logicals specified with the /LIBRARIAN qualifier.

$DEFINE/PROCESS RMU$LIBRARIAN_PATH librarian_shareable_image.exe
$DEFINE/SYSTEM/EXEC RMU$LIBRARIAN_PATH librarian_shareable_image.exe

This logical must be defined and should point to the SBT shareable image to be loaded and
called by RMU backup and restore operations. For a parallel RMU backup
RMU$LIBRARIAN_PATH should be defined as a system logical so that the multiple processes
created by a parallel backup can all translate the logical.

The default catalog and archive used are ORACLE_DB and ORACLE_DB_ARCHIVE.

The list of process logical names, which SBT may use to specify particular catalogs or archives
for storing or retrieving backup files are MDMS$SBT_ARCHIVE, MDMS$SBT_CATALOG

$DEFINE MDMS$SBT_ARCHIVE REG_RMAN_ARCH
$DEFINE MDMS$SBT_CATALOG REG_ORACLE_DB

9.12.4 SBT Restrctions for Oracle RDB Database

The following scenarios will cause backup not to complete:

• Setting the Drives List in the archive to a number of drives less than the number of data
streams that RMU starts.

• Setting the Maximum Saves in the Archive to a number less than the number of data
streams that RMU starts.

• Specifying more number of writer threads than you have tape drives.

• With OpenVMS Alpha or I64 Operating System, V7.3, SBT backup, using user defined cat-
alog (defined using logical MDMS$SBT_CATALOG) fails with "invalid archive type".
9-30 System Backup to Tape for Oracle Databases

10
Virtual Library System (VLS)

10.1 Introduction
The HP StorageWorks 6000 Virtual Library System (VLS) is a RAID 5, Serial ATA disk-based
SAN backup device that emulates physical tape libraries. This configuration allows disk-to-vir-
tual tape (disk-to-disk) backups to be performed using the existing backup application(s) like
ABS/MDMS.

The HP StorageWorks 6000 Virtual Library System accelerates backup performance in complex
SAN environments by integrating seamlessly into the existing backup applications and pro-
cesses. In addition, it also improves the overall reliability. It emulates popular tape libraries and
tape drives; it also matches the existing data protection environment. Thus, removing the need to
change backup software or monitoring policies. By emulating multiple tape drives simulta-
neously, more backup jobs are done in parallel resulting in reduced backup times. Additionally,
because the data resides on disk, single file restores are exceptionally fast.

The HP 6000 Virtual Library System also provides more virtual devices, reducing the complex-
ity of shared storage while maintaining the manageability of a single system. As your environ-
ment changes, the HP 6000 Virtual Library System adapts to it. Also, host masking and mapping
ensures that only the appropriate hosts have access to the HP 6000 Virtual Library System.

10.2Features
• Emulates popular tape drives and libraries:

HP VLS integrates seamlessly into existing backup and recovery processes and applications
by emulating the following libraries:

– HP StorageWorks ESL E-Series

– HP StorageWorks MSL tape libraries

– HP 1/8 autoloaders

• Up to 600 MB/s throughput:
HP VLS provides aggregate performance of over 550MB/s and single stream performance
of up to 150MB/s.

• Compression:
HP VLS includes user-enabled compression that helps doubling of the effective capacity.

• Hot swap array drives:
Hot swap SATA drives allow you to recover from a drive failure without shutting down your
system.

• Redundant array power supplies and cooling:
Redundant power supplies and cooling fans in the array maintain HP VLS in spite of a com-
ponent failure.
 Virtual Library System (VLS) 10–1

Virtual Library System (VLS)
10.3 Qualification
• RAID 5:
RAID 5 provides protection for your data should a drive fail.

• Flexibility in configuration:
You can integrate HP VLS into a HP rack with your other storage and server devices.

• Simulation capacity:
HP VLS allows simulation of the following six types of drives: DLT7000, DLT8000,
SDLT320, LTO1, LTO2, and LTO3.

10.3Qualification
VLS is qualified to be used with ABS/MDMS V4.3A and later versions.

10.4Restrictions while using VLS
• When using VLS, volumes should be created with volume labels in uppercase only.

• Since backup is not taken to a physical tape, volumes cannot be moved to any offsite loca-
tion.
10-2 Virtual Library System (VLS)

11
Architecture

This chapter describes in more technical details the ABS and MDMS infrastructure and imple-
mentation.

11.1 The Server Process
Each OpenVMS node participating in an MDMS Domain runs a generic process called
MDMS$SERVER.

Each MDMS server process can implement 3 functions:

• Current access to the database, the database server

• Forwarding a user request to the current database server

• Executing remote requests on behalf of the database server

Domain

All nodes communicating with the same database server belong to the same MDMS Domain.
Each MDMS Domain has its own database. Typically you have only one MDMS Domain in
your network. But the architecture allows to setup more than one domain. However, one has to
make sure that none of the nodes and none of the MDMS objects (i.e jukeboxes) are used in
more than one domain.

11.1.1 The Database (DB) Server

11.1.1.1 Database

MDMS keeps all its permanent settings in files in a location defined by logical MDMS$DATA-
BASE. The summary of these files are called the MDMS Database.

Each MDMS server needs access to the MDMS database before it is fully functional. The server
translates logical name MDMS$DATABASE_SERVERS which contains a list of potential data-
base server nodes. This logical is defined in MDMS$SYSTARTUP.COM and contains the net-
work names of other servers. Because the server has not yet accessed the database it cannot use
an MDMS node name.

While scanning through the database servers list the server tries to contact the remote server
using the appropriate network for a given network name:

• DECnet, if only alphanumeric characters, e.g. “STAR”

• DECnet-Plus, if network name contains “:.”, e.g. “VMS:.STAR”

• TCP/IP, if network name contains just dots “.” and a possible colon “:” followed by a num-
ber range, e.g. “star.vms.com” or “star.vms.com:2501-2510”

Following are examples of valid TCPIP and DECnet names.

Valid DECnet node names: DEC:.CXO.FARMS[::] - Phase V

 NABSCO[::] - Phase IV
 Architecture 11–1

Architecture
11.1 The Server Process
Note: The DECnet node name is terminated at the "::" if present.

Valid TCP/IP node names: nabsco-12.cxo.dec.com

 nabsco-12[.cxo.dec.com]:

 nabsco-12[.cxo.dec.com]:2501

 nabsco-12[.cxo.dec.com]:2501-2510

Because the database server list is processed from left to right one can control the order by which
server nodes are tried and which network to use. Choosing a network at this point is unrelated to
how the node’s transport is defined in the MDMS database.The requesting node and the con-
tacted node must have the network for this server entry enabled otherwise the contact fails and
the server continues on with the next entry in the list. The failed attempt is logged in the MDMS
server logfile (“MDMS$LOGFILE_LOCATION:MDMS$LOGFILE_<node>.LOG” or
“MDMS$LOGFILE_LOCATION:MDMS$LOGFILE_DBSERVER.LOG”).

11.1.1.2 Becoming a DB Server

The MDMS server tries to match an entry in the database server list with one of its own network
name definitions. The network name definitions are obtained by retrieving the following values
or translating logicals:

• SCSNODE sysgen parameter

• SYS$NODE for DECnet, stripping off the trailing “::”

• SYS$NODE_FULLNAME for DECnet-Plus, stripping off the trailing “::”

• {UCX|TCPIP}$INET_HOST and {UCX|TCPIP}$INET_DOMAIN for TCP/IP, concate-
nating the two strings using a dot “.” in between

• MDMS$SERVER, if none of the above are available

If the server finds a match it tries to open the database files. If it successfully opens all the data-
base files it declares itself the database server. Because the files are opened for exclusive write
and shared read, no other MDMS server can open the database files after that.

A server remains to be a database server until it exits. At this point the database files are closed
and the domain is without a database server until the next server has successfully opened the
database files.

If the server finds the files already open it continues on with the search for a DB server.

11.1.1.3 Finding another DB Server

When contacting another server, the server passes all its network names on to the other node. If
the other node happens to be a DB server it verifies that the requesting node is defined in the
MDMS database. Only when all the node’s network names are defined in the node’s object the
DB server grants access to the requesting node. Otherwise the DB server returns a
MDMS_NODENOTENA (“node not in database or not fully enabled”).

Once the node is granted access to the DB server the node updates its setting from the database.
At this point the TRANSPORT setting of the node is in use. For example it is possible that a
server contacted the DB server via DECnet but when it updates its TRANSPORT setting it is
only allowed to use TCPIP. So from that point on this server only uses TCPIP to “talk” to the DB
server.

Typically all nodes in a domain have the same definition of MDMS$DATABASE_SERVER in
their MDMS$SYSTARTUP.COM. But the definitions do not have to match. For example each
node could list itself first in the list to give a more round-robin behavior.
11-2 Architecture

Architecture
11.1 The Server Process
11.1.1.4 Failover of the DB Server

Once a MDMS server loses contact to the DB server it starts to search for a new DB server using
its own search list in MDMS$DATABASE_SERVER. The server tries the whole search list three
times. The search for the DB server finally ends with either:

a. the node became the DB server itself

b. the node found another DB server

c. the request failed with MDMS_NODBACC (“no access to database server”)

Once a new DB server has been established, all nodes start to forward requests to this server.

11.1.1.5 Role of the DB server

The DB server receives all user requests in an MDMS Domain. It coordinates all activities and
accesses the MDMS database files. The DB server uses a write through cache to access the data-
base. All database files are RMS index-sequential files and their key layout is defined by “.FDL”
(File Definition Language) files in MDMS$SYSTEM.

Most user requests can be executed entirely on the DB server. In some cases the DB server has to
send remote requests to other servers in the domain. For example remote load volume requests
or remote scheduling requests.

11.1.2 Server Communications

An MDMS server can establish three types of listeners:

• The Mailbox Listener

• The DECnet Listener

• The TCP/IP Listener

The Mailbox Listener is always enabled. The server receives user request through its mailbox
described by logical MDMS$MAILBOX. Each user process has its own mailbox to receive the
response from the server.

The DECnet Listener is enabled during server startup if DECnet is available on this node indi-
cated by the existence of logical name SYS$NODE or logical SYS$NODE_FULL_NAME.
Once the server had access to the database and DECNET is not defined in its TRANSPORT set-
ting the server shuts down the DECnet Listener.

The TCPIP Listener is enabled during server startup if TCP/IP is available on this node indicated
by the existence of logical names {UCX|TCPI}$INET_HOST and
{UCX|TCPI}$INET_DOMAIN. Once the server had access to the database and TCPIP is not
defined in its TRANSPORT setting the server shuts down the TCPIP Listener.

Startup and shutdown of the listeners is logged in the MDMS server logfile. Also the “MDMS
SHOW SERVER” display shows the current servers network names at the top and its current
TRANSPORT setting which reflects the active network listeners.

Even though a DB server has received a request via DECnet it could use TCPIP to request a
remote operation (e.g. load volume) at a third node. It all depends on the TRANSPORT setting
of the individual nodes.
 Architecture 11–3

Architecture
11.2 Scheduler Interface
11.2 Scheduler Interface
MDMS calls the scheduler interface from the MDMS DB server process.

11.2.1 Option INT_QUEUE_MANAGER

MDMS uses the programming interface to the OpenVMS Queue Manager. A thread in the
MDMS DB server submits due requests to the OpenVMS Queue Manager. The request will be
submitted to batch queue ABS$<execution_node>. If the batch queue is available on the local
node or is within the OpenVMS cluster the MDMS DB server calls the local Queue Manager.
For remote nodes the MDMS DB server forwards the request to the remote MDMS serve on the
execution node of the request. The remote MDMS server then submits the request to the local
batch queue ABS$<execution_node>.

Failures to call the OpenVMS Queue Manager will be logged in the servers’ logfiles.

11.2.2 Option EXT_QUEUE_MANAGER

This option uses the same method as INT_QUEUE_MANAGER to schedule jobs locally or
remote. But instead of calling the programming interface of the OpenVMS Queue Manager, a
subprocess is created from the MDMS server process to run the command procedure
MDMS$SYSTEM:MDMS$EXT_QUEUE_MANAGER.COM. The command procedure issues
the DCL commands to create, delete, modify and show batch jobs. Also the command procedure
has to return status about the commands and in some cases additional information. See the com-
mand procedure template file, MDMS$SYSTEM:ABS$EXT_QUEUE_MANAGER.TEM-
PLATE for more details.

Failures to execute the command procedure will be logged in the servers’ logfiles. Each activa-
tion of the command procedure creates a logfile of
MDMS$LOG:MDMS$EXT_QUEUE_MANAGER_<request_name>.LOG. The request name
portion of the logfile name maybe truncated to a valid OpenVMS file specification.

11.2.3 Option EXT_SCHEDULER

This option uses the same method as EXT_QUEUE_MANAGER to interface with the sched-
uler. A subprocess is created to run the command procedure ABS$SYS-
TEM:ABS$EXT_SCHEDULER.COM. The command procedure issues the DCL commands to
create, delete, modify and show jobs for third party scheduler product. Also the command proce-
dure has to return status about the commands and in some cases additional information. See the
command procedure template file MDMS$SYSTEM:MDMS$EXT_SCHEDULER.TEM-
PLATE for more details. In contrast to option EXT_QUEUE_MANAGER, ABS assumes that
the third party scheduler product reschedules all requests locally and remote. So MDBS will not
call the scheduler if a request is due to run.

Failures to execute the command procedure will be logged in the servers’ logfiles. Each activa-
tion of the command procedure creates a logfile of
MDBS$LOG:MDMS$EXT_SCHEDULER_<request_name>.LOG. The request name portion
of the logfile name maybe truncated to a valid OpenVMS file specification.
11-4 Architecture

Architecture
11.3 Catalogs
11.3 Catalogs
ABS can have multiple catalogs. Each catalog is comprised of three RMS Indexed Sequential
Files:

• <catalog_name>_%TLE.DAT - Transaction Log Entry

• <catalog_name>_%AOE.DAT - Archive Object Entry – not used for FULL_RESTORE cat-
alog type

• <catalog_name>_*AOE_INSNC.DAT - Archive Entry Object Instance - not used for
FULL_RESTORE catalog type, one file per volume set if VOLUME_SET catalog type

These files must reside in the same directory. Different catalogs can be in different directories or
different disk volumes.

The Transaction Log Entry file contains two entries per save request executed. It contains
among other data the save set name, the tape’s volume ID and the expiration date of the save set.
Depending on record compression the average record size on disk is about 300 bytes. Informa-
tion in a transaction log entry can be displayed by showing catalog save entries.

The Archive Object Entry file contains one entry for each file backed up. It contains among
other data the device and file name. Depending on record compression and depending on actual
filename sizes the average record size on disk is about 300 bytes.

The Archive Object Entry Instance file contains an entry for every time a file is backed up. It
does not contain the filename but a back pointer to the record in the AOE. Depending on record
compression the average record size on disk is about 200 bytes. For a VOLUME_SET catalog
type there is one file per volume set in use. The volume set name is part of the instance file
name.

Information in the archive object entry and the archive object entry instance can be displayed by
showing catalog file entries which contains information from both files.

11.3.1 Catalog Sizes

TLE: This grows to the average size of how many save requests are active.

– This file does not have size problems

– Low volatility to deletes

– 300 bytes times number of active save requests times retention period in days + some
record overhead.

AOE: This grows to the number of files that are actively being backed up

– Medium volatility to deletes

– 300 bytes times number of active files + some record overhead

AOE_INSNC or AOEI: This can grow very large.

– Sized is based on how many files are being backup up and how long the retention time
on the file is.

– High volatility to deletes.

– 200 bytes times average number of files backed up per day times the retention period in
days.
 Architecture 11–5

Architecture
11.3 Catalogs
Example 11–1

– 1 disk volume with 40,000 files

– full saves every week (40,000 files)

– incrementals 6 times a week (estimate 2,000 files/day)

– retention is 30 days for all backups

– TLE 300 X 7 X 30 = 63K bytes

– AOE: 300 X 40,000 = 12 MB

– AOE_INSNC: 200 X 7428 X 30 = 44 MB

Example 11–2

– 1 disk volume, 40,000 files

– full saves every night (40,000 files)

– retention is 30 days for all backups

– TLE: small

– AOE: 300 X 40,000 = 12 MB

– AOE_INSNC: 200 X 40,000 X 30 = 240 MB

Example 11–3

– 10 disk volumes, total of 400,000 files

– full saves every week (400,000 files)

– incrementals 6 times a week (20,000 files)

– retention is 30 days for all backups

– TLE: small

– AOE: 300 X 400,000 = 120 MB

– AOE_INSNC: 200 X 74285 X 30 = 445 MB

Example 11–4

– 10 disk volumes, 400,000 files,

– full saves every night (400,000 files)

– retention is 365 days for all backups

– TLE: small compared to rest

– AOE: 300 X 400,000 = 120 MB

– AOE_INSNC: 200 X 400,000 X 365 = 29 GB

– …and if you had 100 volumes: AOE_INSNC is 292 GB!!!

As you can see from example 10-4, catalogs can become quite large. Changing the backup
schedule so that less files are saved and using shorter retention periods helps to maintain smaller
catalogs. If this cannot be achieved extra disk space should be reserved for the ABS catalogs
with space for future expansion.
11-6 Architecture

Architecture
11.4 Coordinator
11.4 Coordinator
The coordinator process is created when a SAVE or RESTORE request is scheduled to run. It
starts out as a single process in a batch or scheduler job executing ABS$SYSTEM:ABS$COOR-
DINATOR.COM. This process prepares the drive and media for the individual backup agent to
move the data. Once the media is ready to be used the coordinator spawns a subprocess using a
Pseudo Terminal device to communicate with the subprocess.

The coordinator then “feeds” DCL commands to the subprocess which finally contains the com-
mand to execute the backup agent (e.g. OpenVMS BACKUP).

All output by the subprocess is received by the coordinator and checked against entries in the
template files in ABS$TEMPLATES. Each backup agent has its own set of template files for the
different type of save or restore operations. Even though these files can be changed it is not rec-
ommended. The original files have been checksummed for each release and any modification
will be noted in the ABS save or restore logfile.

The coordinator starts a separate subprocess for each selection. If the SEQUENCE OPTION of
the save or restore is set to SEQUENTIAL the coordinator will not start the next subprocess
before the current one has completed. With SEQUENCE _OPTION OVERLAPPED the next
subprocess will be started as soon as the backup agent in the current subprocess has reached a
point where the archive (i.e. drive) is no longer needed. This is defined internally for each
backup agent. For example OpenVMS BACKUP releases the tape drive being used while it exe-
cutes the recording pass when /RECORD was specified.

11.4.1 Coordinator Cleanup

The coordinator cleanup process (“ABS$COORD_CLEAN”) is responsible to cleanup after a
failed save or restore request. It needs to run all the time to perform this task.

Each save or restore request enters a cleanup record into file ABS$SYS-
TEM:COORD_CLEANUP.DAT. The record contains:

– the PID of the process executing the save or restore

– the archive being used

The cleanup process reads this file every minute. If it finds an entry for which the PID field
refers to a non-existent process it releases the volume set used in the archive so it can be used
again.
 Architecture 11–7

Architecture
11.4 Coordinator
11.4.2 Volume Sets

To synchronize access to volumes in a volume set ABS keeps pseudo volume records in the vol-
ume database. The pseudo volume starts with “&+” and the volume ID of the first volume in the
set. To show the pseudo volumes you have to use the /ABS_VOLSET qualifier. The fields in the
volume record are used as follows:

• Brand: PID of process which has the volume locked or locked the last time.Do not change!

• Description: A reservation bitmap displayed as a 32 hex-digit value. The low-order bit is
the general locking bit which means the volume set is in use while the other bits represent
which relative volume in the set is used for a write operation. For troubleshooting purposes
this can be set to an all zero value by specifying exactly 32 zeroes.

• Length: Currently last volume in set by number. Do not change!

• Mount Count: Number of savesets on volume set. Do not change!

• Pool: The EOT tapemark position expressed in number of tapemarks and a version number.
Do not change!
11-8 Architecture

12
Troubleshooting

12.1Save and Restore Requests
12.1.1 Notification of Save/Restore Completion

The first step to checking the status of save and restore requests is by using the notification
options in the environment object. You may set several levels of notification which include start,
complete, warning, error and fatal. The notification may be sent by OPCOM or by mail. If you
have notification options set, you will receive notification when problems occur with your save
and restore requests (or a message about start or completion).

In the MDMS GUI, doing a show of the save or restore request will display the last status of the
request. A green (success) or red (error) box will be displayed in the upper right corner of the
show output.

12.1.2 Log Files

Each save and restore request creates a log file in the ABS$LOG directory when it is run. The
log file is named by the request name. This log contains information about the request, the media
management activities, the backup command and any output from the backup process. If errors
occur it also contains trace information about the error. The last error message generally contains
the actual cause of the error.

12.1.3 Logical Names

There are some logical names which may be defined at a system level which will cause ABS to
log more information in the request log files. You should not set these logical names unless
advised to by a HP customer support representative because the log files can grow quite large if
you use them.

12.1.4 Alpha Stack Size Logical

If you are running your save/restore request on an OpenVMS Alpha system and you see either
ACCVIO or CMA-F-EXCCOP errors in the logs, there is a stack size variable which may elimi-
nate the problem. ABS$COORD_ALPHA_STACKSIZE may be used to increase the stack size
beyond the 65536 default. To use the logical, define it at system level to a value which is a mul-
tiple of 8192

$ DEFINE/SYSTEM ABS$COORD_ALPHA_STACKSIZE 8192 * x

12.1.5 Fast Skip Errors

If you receive an ABS_SKIPMARKS_FAILED error there is a logical name which may be
defined at system level which turns off the ABS fast skip methods. To disable fast skip do the
following command on the affected system:

$ DEFINE/SYSTEM ABS_NO_FAST_SKIP TRUE
 Troubleshooting 12–1

Troubleshooting
12.2 Media Management
12.1.6 Volume Set Locking and Coordinator Cleanup Process

Each volume set used by ABS has a corresponding volume set record. This record is contained
in the MDMS volume database and is named “&+XXXXXX” where the x’s represent the vol-
ume set name. You may view this record by issuing either of the commands

$ MDMS SHOW VOLUME “&+XXXXXX”

$ MDMS SHOW VOLUME/ABS_VOLSET xxxxxx

The description field in the record represents the locks on the volume. If it is all zeroes (0), then
the record is not locked by a request. If there are one(s) (1) in the field, then the record is locked
by one or more requests. The allocation field is used by ABS while setting and clearing the
locks. If it is allocated, ABS is in the processing of locking or unlocking the record. If the record
is locked a second request attempting the use the volume set will wait for it to be unlocked. In
cases where a request fails and the record does not get unlocked, the second request could wait
forever.

There is a process called ABS$COORD_CLEAN which must be running at all times. This pro-
cess keeps track of the requests and which volume sets they are using. If a request fails this pro-
cess will unlock the volume set record so that it is available to other requests.

The coordinator cleanup process logs its activities by OPCOM messages and in a log file called
ABS$LOG:ABS$COORD_CLEANUP.LOG. This log generally does not contain much informa-
tion. If you are finding that volume set records are not getting unlocked and want to be sure that
the coordinator cleanup process is working, you may define a logical name

$ DEFINE/SYSTEM EPCOT_COORD_CLEANUP_DEBUG TRUE

This will cause more information to be logged to the log file.

To manually unlock the volume set record you may issue the command

$ MDMS SET VOLUME “&+XXXXXX”/DESCRIPTION=”000000000000000000000000000000”

There are 32 zeroes in the string. You may also set the volume set record to /STATE=FREE. It is
not advised to use these commands unless you are sure that the volume set is not in use by
another request.

12.2Media Management
12.2.1 Log Files

The MDMS$SERVER process writes to a log file called
MDMS$LOG:MDMS$LOGFILE_<node>_.LOG when it is not an active database server, and a
file called MDMS$LOG:MDMS$LOGFILE_DBSERVER.LOG when it is an active database
server. These files contains information about MDMS requests which have been executed, other
MDMS activities, and errors. The amount of information is controlled by a logical name
MDMS$LOGFILTER. This logical is defined in SYS$STARTUP:MDMS$SYSTARTUP.COM.
There are bitmask values called LT_xxxx in the command procedure If you wish to turn on more
logging you may set the value to these bitmask symbols OR’d together. See the command proce-
dure for more information.

12.2.2 OPCOM

When MDMS requires user intervention, such as making a tape available to a jukebox, an
OPCOM message will be generated. The OPCOM messages are sent to the TAPE operator class
by default. You may set another operator class in the MDMS domain by using the

$ MDMS SET DOMAIN/OPCOM_CLASS = opcom_class
12-2 Troubleshooting

Troubleshooting
12.2 Media Management
A list of supported classes is available in MDMS HELP or in the MDMS Reference Manual.

To enable OPCOM on a terminal so that you may see and reply to the messages, type

$ SET REPLY/ENABLE=opcom_class

To disable OPCOM, type

$ REPLY/DISABLE

Operator privilege is required in order to enable OPCOM.

These message are particularly useful when an ABS save or restore request is hung waiting for
volume. If MDMS is having difficulty obtaining or loading a volume the OPCOM message may
be helpful in determining the problem.

12.2.3 MDMS Requests

Whenever an MDMS request is issued, you may view them using the command

$ MDMS SHOW REQUESTS

Or, you may view the requests by selecting the request tab in MDMSView GUI.

If a request is stalled for some reason you may be able to determine the problem by viewing the
request. It is also useful to look in the MDMS$LOGFILE_<node>_.LOG or
MDMS$LOGFILE_DBSERVER.LOG files.

The following table provides the various state values under MDMS SHOW REQUEST/FULL.

Comp DCSC Completed DCSC request

Comp MRD Completed MRD request

Comp Object Completed lock information request for Object

Comp OPCOM Completed OPCOM request display

Comp RDF Completed RDF operation

Comp System Completed the operation to be performed by system like allocate
drive etc.

Comp Timer- Completed the time period of time Particularly for repetion of some
requests

Completed Completed the request

Starting Started the processing of the request

Wait DCSC The DCSC is being queried and hence wait on the same

Wait Domain Wait on domain

Wait Drive Wait on drive

Wait Group Wait on group

Wait Jukebox Wait on Juke

Wait Location Wait on Location

Wait MRD Wait on MRD response
 Troubleshooting 12–3

Troubleshooting
12.2 Media Management
12.2.4 Scheduling Problems

The MDMS database server acts as the scheduler for all ABS and MDMS schedules. The sched-
ules are viewable by using the command

$ MDMS SHOW SCHEDULES

The MDMS domain contains the type of scheduling that you are using (Internal, External or
Scheduler). In the MDMS$LOG:MDMS$LOGFILE_DBSERVER.LOG file, there will be a
RUN SCHEDULE command for each schedule executed. If save/restore requests, or MDMS
scheduled activities fail to run, there are several ways to track down the problem.

12.2.4.1 Internal Scheduling

If you are using the INTERNAL scheduler type there are log files generated in the MDMS$LOG
directory called MDMS$RUN_<#>.LOG. These files contain information about every schedule
that is run. You can search these files for the name of the request that you were expecting to be
run

12.2.4.2 External Scheduling

If you are using the EXTERNAL scheduler type, MDMS invokes a command procedure to
scheduler the job into a batch queue. This command procedure is called MDMS$SYS-
TEM:MDMS$EXT_QUEUE_MANAGER.COM. There are log files generated in the
MDMS$LOG directory called MDMS$EXQ_<requestname>.LOG which contain the output
from a set verify on the command procedure. These logs may give you information about errors
generated when the job is being inserted into the batch queue. If you have modified the com-
mand procedure they may be especially useful for debugging your procedure.

12.2.4.3 Scheduler Scheduling

If you are using the SCHEDULER scheduler type, MDMS invokes a command procedure to
schedule the job in the DECscheduler (or another scheduler product, if you have modified the
command procedure).

This command procedure is called MDMS$SYSTEM:MDMS$EXT_SCHEDULER.COM.
There are log files generated in the MDMS$LOG directory called MDMS$EXS_<request-
name>.LOG. They contain the output from a set verify on the command procedure. These logs
may give you information about an error generated when the job is being inserted into the sched-
uler and may be especially useful if you have modified the command procedure and are debug-
ing.

Wait Magazine Wait on Magazine

Wait Media type Wait on Media

Wait Node Wait on Node

Wait Object Wait on Object. particularly to find locks

Wait OPCOM Wait on OPCOM display fuction

Wait Pool Wait on Pool

Wait RDF Wait on RDF

Wait System Wait on a system call eg. allocate drive

Wait Timer Wait on the timer specified eg for repetion of some requests

Wait Volume Wait on Volume
12-4 Troubleshooting

Troubleshooting
12.3 MDMSView GUI
12.2.5 MDMS Scheduled Activities

There are six MDMS scheduled activities scheduled daily.

MDMS$DEALLOCATE_VOLUMES

MDMS$DELETE_RESTORES

MDMS$DELETE_SAVES

MDMS$MOVE_MAGAZINES

MDMS$MOVE_VOLUMES

MDMS$PURGE_LOGS

Each one of these generate a log depending on which scheduler type you are using (see above).
If errors occur there may be information in these log files or in the
MDMS$LOG:MDMS$LOGFILE_<node>_.LOG file.

12.3MDMSView GUI
12.3.1 Running MDMSView GUI After ABS/MDMS Installation

After installing ABS/MDMS, you must logout and back in before running the MDMSView GUI
on OpenVMS Alpha. Some of the required symbols for Java will be missing if you do not log
back in and you may receive errors from the MDMS$SYSTEM:MDMS$START_GUI.COM
procedure.

12.3.2 Windows Java Path

If you have Java installed in a location different from the normal default location, the GUI will
not find Java. You must edit the MDMSView.bat file and include the correct path. The default in
this file is

C:\Program Files\JavaSoft\JRE\1.2\bin\java.exe

12.3.3 MDMSView Log Screen

If you receive errors while running the GUI, there is a log screen that may be displayed. This
window may show more information about the errors. This window comes up with the GUI by
default and you can bring it up to the foreground by selecting MDMSView Log Screen from the
View pulldown. The information displayed are the actual calls the GUI is sending to the MDMS
server.

12.3.4 MDMSView Command Window

The window that initially brings up the GUI has additional information in it. This displays the
Java error messages and operations.
 Troubleshooting 12–5

Troubleshooting
12.4 ABS Catalogs
12.3.5 MDMS$LOGFILE_*.LOG

The MDMSView GUI is generating requests to the MDMS server, so any problems may be log-
ging errors into the MDMS$LOG:MDMS$LOGFILE_<node>.LOG or
MDMS$LOG:MDMS$LOGFILE_DBSERVER.LOG files. If you receive an MDMS error win-
dow when executing an action, check these files for errors.

If you receive an error MDMS$ERROR, this means that the MDMS server did not respond cor-
rectly to the request. This error may need to be reported to HP.

12.4ABS Catalogs
12.4.1 Staging Unpack

If you are using ABS catalogs which are set to use staging, the save/restore request logs will con-
tain information about the staging files, the command procedure used to unpack the file, and the
log file generated by the unpack process. The log file is generated in the ABS$LOG directory
and contains information about the unpack process. If there were errors during the unpack mail
will be sent to the person(s) named as the MAIL recipient(s) in the MDMS domain.

If errors occur, the ABS$CATALOG:*.STG and ABS$CATALOG:*.COM files are not deleted.
You may run the *.com file as a batch job with ABS as the user. This allows you to unpack the
files once you have determined the reason that they failed. Some reasons may be that the catalog
disk is full, the system went down, etc.

If there are errors in the unpack logs which indicate an error with the
ABS$CATALOG_UNPACK_STG program, you should report this problem to HP.

12.4.2 Volume_Set Catalog Cleanup

To perform the cleanup on the VAOE file for the Volume_Set type of catalog, ensure that the log-
ical ABS_CATALOG_VAOE_CLEANUP is defined. Also, the VAOE, VAOEI and the VTLE
files corresponding to the catalog must be present in the same location. This is because, before
the actual cleanup of the VAOE file, the Cleanup process compares the entries against the
VAOEI file to check if the entries are valid. If the entries are found valid, only then the Cleanup
process proceeds further.

For example, assuming that the VAOEI files are moved to a directory other than the directory
having the VAOE files. In such cases, when the catalog Cleanup process is executed, it deletes
all the records in the VAOE file as it does not find the corresponding VAOEI file.

Also, the following must be verified before executing the cleanup process:

• Sufficient File Limit (FILLM) Quota and Main Memory is available. The suggested FILLM
quota is 500.

• Parallel Save and Restore requests are not executed. If they are executed, then the catalog
will have dangling VAOEI entries.

Note

This user defined logical is specific to ABS version 4.4 and will be automatically removed
when ABS is uninstalled. In case you want to downgrade ABS, you need to manually deassign
this logical to free the space that it has occupied in the System table.

If there is insufficient FILLM quota, ABS displays an OPCOM once, then logs an error in the
Cleanup log file and aborts the Cleanup process.

• OPCOM message:
The OPCOM message displayed informs you that the FILLM quota is less and also provides
the exact number by which the FILLM quota must be incremented:
12-6 Troubleshooting

Troubleshooting
12.5 Windows and Unix Clients
%%%%%%%%%%% OPCOM 22-APR-2006 21:58:14.26 %%%%%%%%%%%

Message from user SYSTEM on BOLERO
System does not have sufficient FILLM Quota. Catalog cleanup will not be per-
formed. Please increase the current FILLM quota by 58.

Note

The value displayed by the OPCOM is an approximate value and will vary depending
on the number of AOEI files in the customer site.

• Error logged in the Cleanup Log file:

ABS-F-ERROR User does not have sufficient open file FILLM quota.
Catalog Cleanup will not be performed. For the user System, please increase
the FILLM quota by 58.

You need to increase the FILLM quota to the suggested value. For that value to take effect, you
must log off the terminal and logon again.

12.5Windows and Unix Clients
12.5.1 Windows Log File

Should you encounter problems when saving or restoring data using ABS for an Windows client
system, ABS provides a way to help you troubleshoot the problem. Assign a system variable on
the Windows client system that, in turn, creates log files about the Windows client system during
ABS backup operations. These log files will assist you during the troubleshooting process.

Note

Assign this system variable only when you need troubleshooting assistance. Deassign
the system variable when it is no longer needed. Do not leave the system variable
assigned during normal, day-to-day operations. Because the log files can become
extremely large, leaving the system variable assigned could cause performance prob-
lems.

To assign the system variable, use the procedure in Table 12–1.
 Troubleshooting 12–7

Troubleshooting
12.5 Windows and Unix Clients
Table 12–1 Assigning a System Variable for Windows Troubleshooting

12.5.2 Windows Quotas

If you expect to have continuation volumes during your Windows backups, you should set the
following parameter in the registry.

Modify the registry path

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

with the following Windows parameter (set it to 20 or higher)

TcpMaxDataRetransmissions REG_DWORD 20

This change to the default is built into Windows; ensure that the TCP/IP connection is not pre-
maturely terminated with send failures.

Note

After making the changes to the parameter you need to reboot the system to allow the
changes to take effect.

Step Action

1. Log into the administrator account on the Windows client node.

2. Bring up the registry editor (for example, regedt32 from command line)

3. Go to the window for the following location:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\ -
ABSClient\Parameters

4. From the EDIT menu select “Add Value...”, enter ABSGtarLog as the value name.

5. Select the data type as REG_DWORD.

6. Enter a one (1) as the data in the DWORD window; select decimal.

7. Click OK, exit from the registry.

8. Run your save and restore requests as usual.

Result:
The log files generated during the save or restore operation will be located in the system direc-
tory. For example, on an NT Version 4.0 server system, the directory system name would be:

c:\Winnt40S\system32

The log files are named as follows:
• abs_log_file.txt - This log file contains information about the execution of the

file absgtar.exe.

• absclient_log_file.txt - This log file contains information about the execution of
the file absclient.exe.

9. When the log files are no longer needed, go to the same registry window and delete the entry.
Do this by highlighting the entry; select Delete from the EDIT menu.
12-8 Troubleshooting

Troubleshooting
12.5 Windows and Unix Clients
12.5.3 Permission Denied Errors

If you receive these errors during a Windows save, you will need to set access to files on the
Windows system:

ABSgtar: can’t add file C:\AFILE.EXT: Permission Denied

ABSgtar: can’t open directory C:\ADIR: Invalid Command

The cause of these errors is either the directory or file is open for write access by a user or appli-
cation, or the system has been denied read access to the file or directory. ABS runs under the sys-
tem account.

To get around this error, close all open files or set the access on the files for the SYSTEM
account.

To set the file access, select the file from a fileview window. Select Properties from the File pull-
down. Click the Security tab and then select Permissions. Select Add and highlight SYSTEM.
Add the types of access (full control is best so you can restore the files). Click the Add button
This gives the SYSTEM account access to the files.

12.5.4 UBS FAILURE

If you received %ABS --UBS FAILURE -- errors, you may have your TCP/IP parameters set too
low on the OpenVMS system executing the backup. To view the parameters issue the command

$ TCPIP SHOW PROTOCOL/PARAMETERS

The receive and send parameters should be set to 50,000 or higher. If they are not, change them
by using the command

$ TCPIP SET PROTOCOL TCP/QUOTA=(SEND=50000,RECEIVE=50000)

Note

If you have to reboot the machine, make sure that you reset these values after reboot-
ing.

12.5.5 Considerations for Saving Large Disks on UNIX and Windows Clients

ABS stores data on tape based on ANSI Standard X3.27-1987, File Structure and Labeling of
Magnetic Tapes for Information Exchange. This standard requires that the block length (number
of bytes per block for a file) be stored in the header section and the block count (number of
blocks in a file) be stored in the end of file section. Together these fields determine the maximum
number of bytes that the file contains on tape. So, in theory the following formula is imple-
mented:

block length * block count = number of bytes

These fields on tape are stored in an ASCII format with the block length being five digits, and
the block count being six digits. This allows for a maximum save request disk size of 99999 *
999999 = 99,998,900,001bytes (approximately 99 gigabytes (GB)).

ABS uses a default block length of 10240 bytes/block when it stores data to tape. As a result, the
maximum disk size by default is 10240* 999999 = 10,239,989,760 (approximately 10 GB). If
the actual number of bytes exceeds this amount, then ABS$UBS will raise the following asser-
tion and the save request will fail:

assert error: expression = section_block_count <= 999999
 Troubleshooting 12–9

Troubleshooting
12.6 RDF (Remote Device Facility)
The value of the block length is specified to the underlying gtar backup engine as a blocking fac-
tor. The blocking factor is defined as a multiple of 512 bytes. The default block length passed to
gtar is “-b20”. To determine an appropriate blocking factor or block length for a specific situa-
tion, follow these steps:

Step 1. Divide the size of the disk (in bytes) by 99999

Step 2. Divide the resulting number by 512

Step 3. Round up to the next whole number

For example, if the disk size is approximately 30,000,000,000 bytes (30 GB), use the following
formula:

30,000,000,000 / 999999 / 512 = 58.59 or 59

This results in a blocking factor of “-b59”.

You can modify the default block length from the GUI for Windows or UNIX save or restore
request on the Agent Qualifiers window. Specify this value in the Agent Qualifiers window.

Restriction:
ABS will not produce the correct results if the value exceeds “-b127”. If the disk is large enough
to exceed this amount, create more than one save request for that particular disk.

To modify the blocking factor, use the procedure described in Table 12–2.

Table 12–2 Modifying the Blocking Factor using MDMSview GUI

Restore requirement:
When restoring data from a save request where the blocking factor has been modified, you must
specify the same blocking factor that was specified on the save request. Otherwise, the restore
request will fail due to an invalid block size on the tape. As a default, ABS uses 10240.

12.5.6 Files Larger than 2gb

If you are attempting to backup files larger than 2gb on a Windows or Unix system, you may
received errors indicating that the file was not saved. The Windows gtar image we provide is not
able to backup these files.

12.6RDF (Remote Device Facility)
When errors occur with RDF (RDEV) devices, you should check your RDF setup and log files in
the directories pointed to by the logical names TTI_RDEV and TTI_RDF. There are log files
called RDCLIENT_<node>.LOG and RDSERVER_<node>.LOG. Also see the RDF documen-

Step Action

1. Invoke MDMSview GUI

2. Click Objects tab

3. Select Selection Object either from the Tree or the Right panel.

4. Click on the appropriate Selection Name.

5. The attributes screen of the selected Selection Object is displayed on the right panel.

6. Enter the required Blocking Factor value in the Agent Qualifiers option's Text box.

7. Click Set Button, to update the changes made to the selected Selection Object.
12-10 Troubleshooting

Troubleshooting
12.7 Information Required When Reporting Problems
taion and the chapter about Remote Devices in the ABS Guide to Operations for more informa-
tion.

12.7 Information Required When Reporting Problems
If you report a problem to your HPsupport organization, the following information should be
included.

• If the problem is related to a save request:

– MDMS SHOW SAVE/SELECTIONS save

– MDMS SHOW ARCHIVE archive

– MDMS SHOW ENVIRONMENT environment

– MDMS SHOW SCHEDULE schedule

– The log file of the save request

• If the problem is related to a restore request:

– MDMS SHOW RESTORE/SELECTIONS restore

– MDMS SHOW ARCHIVE archive

– MDMS SHOW ENVIRONMENT environment

– MDMS SHOW SCHEDULE schedule

– The log file of the restore request

– The log file for a corresponding save request which saved the data

– MDMS SHOW CATALOG/FILES of the data being requested in the restore request

• If the problem is related to MDMS:

– MDMS SHOW output of the related volumes, drives, etc

– Output from OPCOM messages issued by MDMS

– Pertinent information from the MDMS server log

• If the problem is related to the MDMSView GUI

– GUI version

– Steps taken to reproduce the error

– Error message(s)

– MDMSView Log Screen information

– Java version

– MDMS Command Window information

• Other information may be required, but will be addressed as needed.
 Troubleshooting 12–11

A
Configuration Example

Getting ABS/MDMS up and running is very easy with the MDMS objects configuration com-
mand procedure and then create a save.

First you need to setup your MDMS configuration. Using the MDMS$ROOT:[SYS-
TEM]MDMS$CONFIGURE.COM procedure you can configure your MDMS domain. How-
ever, you need the following information to start:

– Media type - TLZ06 (a media type you make up)

– Onsite location - COMP_ROOM_1 (name you make up)

– Offsite location - IRON_MOUNTAIN (name you make up)

– IP domain name for node - 78.12.53.81 (if using IP)

– Name of your jukebox - TLZ06J (a name you make up)

– Robot name - GKB601: (OpenVMS device name controlling the robot)

– Drive name - TLZ06D (name you make up)

– OpenVMS device name - MOE$MKB600:

– Volumes - TLZ000-TLZ012 (made up name or bar code labels)

After configuring MDMS objects, then you can create a save.

The following is a sample run of MDMS$ROOT:[SYSTEM]MDMS$CONFIGURE.COM using
the information above.

$ @MDMS$ROOT:[SYSTEM]MDMS$CONFIGURE.COM

MDMS Domain Configuration Procedure

© 2005 Hewlett-Packard Development Company, L.P.

Use this procedure to configure MDMS for the first time or to add objects to the configuration.

Do not use this procedure to convert from MDMS V2.9x - use
MDMS$CONVERT_V2_TO_V3.COM instead

Type "?" to any question for help

Type "??" to any question for help and list of values

Type "<return>" to any question for [default] value

Media, Device, and Management Services for ABS and HSM

 Command Line Version: V4.4(10)

Shareable Image Version: V4.4(10)
Configuration Example A–1

Configuration Example

 Server Version: V4.4(10)

* Have you used this procedure before [NO]: no

This command procedure prompts you to enter information that is used to configure the media
and device management (MDMS) portion of your ABS and HSM environment. If you are run-
ning the procedure for the first time you should say "Yes" to "...configure all objects". If you are
refining your configuration, you should say "No" to "...configure all objects", and you will be
prompted for the types of objects you want to configure.

With the exception of volumes, all object names are strings consisting of the letters A-Z, the
numbers 0-9 and the "_" underscore character. White space in object names is not supported. The
object names must be unique in the domain and may be from 1 to 31 characters in length. Vol-
ume names have a maximum of 6 characters. You can type the answer to any question in upper
or lower case and conversions will automatically be performed as needed.

There are a total of 10 types of objects in MDMS, and these are summarized as follows:

* Domain - The entire scope of MDMS operations, which can span geographic locations. There
is one predefined domain which you can configure using this procedure.

* Location - A physical location, configurable as a hierarchy, that may contain volumes, nodes
and jukeboxes, and is used as one selection criteria for allocating volumes and drives.

* Node - An OpenVMS computer system capable of running MDMS and accessing drives and
jukeboxes.

* Jukebox - A robotic device capable of automatically loading and unloading volumes into
drives. Jukeboxes contains drives and volumes, and optionally slots, ports, CAPS depending on
the type of jukebox.

* Drive - A tape drive capable of supporting read and/or write operations for ABS and HSM
applications.

* Pool - A logical object containing a set of volumes that can be allocated by authorized users.

* Media Type - A logical object describing a type of media associated with volumes.

* Volume - A physical piece of tape media used for storing and retrieving data.

* Group - A group of nodes with something in common (e.g. cluster members) that can be spec-
ified instead of a list of nodes.
A–2 Configuration Example

Configuration Example

* Magazine - A logical set of volumes which are moved as a whole and are contained in a phys-
ical magazine cartridge. Magazines are not configured using this procedure. If you want to con-
figure magazines, you should do that manually later.

You will be guided through the following configuration steps during this procedure:

1. Configure the domain - define default values applicable across the domain

2. Configure locations - define physical locations that may contain nodes, jukeboxes, magazines
and volumes

3. Configure nodes - define OpenVMS nodes that run MDMS in your domain and optionally
assign them to groups

4. Configure jukeboxes and drives - define jukebox devices in the domain and their associated
drives and optionally inventory the jukeboxes

5. Configure standalone drives and stackers - define drives that are not contained in jukeboxes

6. Configure volumes - configure tape volumes, together with media types and pools, and
optionally inventory jukeboxes and initialize volumes

*You may execute or skip any step. If you say "configure all objects" you will automatically exe-
cute all steps. However, you can always exit a step by entering <return> when asked to configure
an object.

Type "?" to any question for help

Type "??" to any question for help and a list of values

Type <return> to accept the [default]

* Do you want to configure all objects [YES]: yes

Configuring domain...

* Enter domain default media type: TLZ06

* Apply to default ABS archives? [YES]: YES

* Enter domain default onsite location: COMP_ROOM_1

* Enter domain default offsite location: IRON_MOUNTAIN

* Enter domain default scratch time [365]:

* Enter domain default maximum scratch time [365]:

* Enter domain default transition time [14]:

* Enter domain default deallocation state [TRANSITION]:

* Enter domain default mail notification [SYSTEM]:
Configuration Example A–3

Configuration Example

* Enter domain default OPCOM classes [TAPES]:

* Enter domain default volume protection [SY:RW, OW:RW, GR:R]:

Configuring locations...

* Enter a location to be configured [NONE]:

Configuring nodes...

* Enter a node to be configured [NONE]: MOE

* Does the node support TCPIP communications [YES]: YES

* Does the node support DECnet communications [YES]: YES

* Enter IP domain name for node []: 78.12.53.81

* Enter DECnet-plus domain name []:

* Enter the location of the node [COMP_ROOM_1]:

* Is this node eligible to be a database server [YES]:

* Enter group names for the node []:

*** Proceed (YES, NO/REENTER, QUIT) [YES]:

* Enter a node to be configured [NONE]:

Configuring jukeboxes...

* Enter a jukebox to be configured [NONE]: TLZ06J

* Enter jukebox control type (MRD or DCSC) [MRD]:

* Enter robot name controlling jukebox: GKB601:

* Enter nodes that directly access jukebox: MOE

* Enter location of jukebox [COMP_ROOM_1]:

*** Proceed (YES, NO/REENTER, QUIT) [YES]:

* Enter media types for jukebox drives [TLZ06]:

* Enter jukebox drive 0 to be configured [NONE]: TLZ06D

* Enter OpenVMS device name of drive [TLZ06D]: MOE$MKB600:

*** Proceed (YES, NO/REENTER, QUIT) [YES]:

* Enter jukebox drive 1 to be configured [NONE]:

* Do you want to perform an inventory of the jukebox [NO]: NO

* Enter a jukebox to be configured [NONE]:
A–4 Configuration Example

Configuration Example

Configuring standalone drives and stackers...

* Enter a drive to be configured [NONE]:

Configuring volumes...

* Enter volume range [NONE]: TLZ000-TLZ012

* Enter media type for volumes [TLZ06]:

* Enter pool for volumes:

* Enter placement (Onsite, Offsite or Jukebox) [ONSITE]:

* Enter the onsite location of volumes [COMP_ROOM_1]:

* Enter the offsite location of volumes [IRON_MOUNTAIN]:

* Are volumes initialized [NO]:

* Do you want to initialize the volumes [NO]: NO

*** Proceed (YES, NO/REENTER, QUIT) [YES]:

MDMS configuration is complete.

The following objects now exist in the database:

Domain definition...

 Description: Default MDMS Domain
 Access Control: NONE
 Last Updated By: MOE::SMITH
 Mail: SYSTEM
 Offsite Location: IRON_MOUNTAIN
 Onsite Location: COMP_ROOM_1
 Check Access: NO
 Deallocate State: TRANSITION
 Default Access: YES
Default Media Type: TLZ06
 Opcom Class: TAPES
 Request ID: 35
 Protection: S:RW,O:RW,G:R,W
 DB Server Node: MOE
 DB Server Date: 20-DEC-2001 14:17:00
 Scheduler Type: INTERNAL
 Max Scratch Time: NONE
 Scratch Time: 0365 00:00:00
 Transition Time: 0014 00:00:00

Locations...

Location Name In Location
Configuration Example A–5

Configuration Example

COMP_ROOM_1

IRON_MOUNTAIN

Groups...

%MDMS-E-NOOBJECTS, no such objects currently exist

Nodes...

Node Name Database Transports

MOE YES TCPIP,DECNET

Drives...

Drive Name Allocated State Number Jukebox

TLZ06D NO EMPTY 0 TLZ06J

Jukeboxes...

Jukebox Name State

TLZ06J AVAILABLE

Media types...

Media Type

TLZ06

Pools...

MDMS-E-NOOBJECTS, no such objects currently exist

Volumes...

Volume ID State Scratch Date Placement

TLZ000 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ001 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ002 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ003 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ004 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ005 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ006 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ007 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ008 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ009 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ010 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ011 UNINITIALIZED NONE ONSITE COMP_ROOM_1
TLZ012 UNINITIALIZED NONE ONSITE COMP_ROOM_1
A–6 Configuration Example

Configuration Example

If you completed the procedure successfully and completely, your system should now be ready
for most operations using ABS and/or HSM. If you require further custom configuration, refer to
the Guide to Operations.

Now that you have configured MDMS, you need to move the volumes into the jukebox. In this
example, the volumes were already in the jukebox. I had to move them into the jukebox in the
database. This is why I used /NOASSIST/NOPHYSICAL. The following command moved the
volumes into the jukebox in the database. If you have a vision jukebox the volumes will have
been configured in the jukebox in the MDMS$CONFIGURE.COM procedure.

$ MDMS MOVE VOL TLZ000-TLZ011 TLZ06J/SLOT=0-11/NOASSIST/NOPHYSICAL

$ MDMS SHOW VOL

Volume ID State Scratch Date Placement

TLZ000 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 0
TLZ001 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 1
TLZ002 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 2
TLZ003 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 3
TLZ004 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 4
TLZ005 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 5
TLZ006 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 6
TLZ007 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 7
TLZ008 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 8
TLZ009 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 9
TLZ010 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 10
TLZ011 UNINITIALIZED NONE JUKEBOX TLZ06J, SLOT 11
TLZ012 UNINITIALIZED NONE ONSITE COMP_ROOM_1

You can show the contents of your jukebox using the following command:

$ MDMS SHOW JUKE TLZ06J/CONTENTS

 Jukebox: TLZ06J
 Description:
 Access Control: NONE
 Owner: MOE::SMITH
 Nodes: MOE
 Groups:
 Location: COMP_ROOM_1
 Disabled: NO
 Auto Reply: YES
 Access: ALL
 State: AVAILABLE
 Control: MRD
 Threshold: 0
 Free Volumes: 0
 Robot: GKB601
 Slot Count: 12
 Usage: NOMAGAZINE
Configuration Example A–7

Configuration Example

Jukebox TLZ06J contents:

Number Drive Name Allocated State Volume

 0 TLZ06D NO EMPTY

Slot Volume ID State Scratch date Magazine Slot

 0 TLZ000 UNINITIALIZED NONE --- -
 1 TLZ001 UNINITIALIZED NONE --- -
 2 TLZ002 UNINITIALIZED NONE --- -
 3 TLZ003 UNINITIALIZED NONE --- -
 4 TLZ004 UNINITIALIZED NONE --- -
 5 TLZ005 UNINITIALIZED NONE --- -
 6 TLZ006 UNINITIALIZED NONE --- -
 7 TLZ007 UNINITIALIZED NONE --- -
 8 TLZ008 UNINITIALIZED NONE --- -
 9 TLZ009 UNINITIALIZED NONE --- -
 10 TLZ010 UNINITIALIZED NONE --- -
 11 TLZ011 UNINITIALIZED NONE --- -

Before you can use the volumes, you have to initialize the volumes. If this jukebox would have
been a vision jukebox, you could initialize them in the MDMS$CONFIGURE.COM procedure.

$ MDMS INIT VOL TLZ000-TLZ0011/OVER

$ MDMS SHOW VOL

Volume ID State Scratch Date Placement

TLZ000 FREE NONE JUKEBOX TLZ06J, SLOT 0
TLZ001 FREE NONE JUKEBOX TLZ06J, SLOT 1
TLZ002 FREE NONE DRIVE TLZ06D
TLZ003 FREE NONE JUKEBOX TLZ06J, SLOT 3
TLZ004 FREE NONE JUKEBOX TLZ06J, SLOT 4
TLZ005 FREE NONE JUKEBOX TLZ06J, SLOT 5
TLZ006 FREE NONE JUKEBOX TLZ06J, SLOT 6
TLZ007 FREE NONE JUKEBOX TLZ06J, SLOT 7
TLZ008 FREE NONE JUKEBOX TLZ06J, SLOT 8
TLZ009 FREE NONE JUKEBOX TLZ06J, SLOT 9
TLZ010 FREE NONE JUKEBOX TLZ06J, SLOT 10
TLZ011 FREE NONE JUKEBOX TLZ06J, SLOT 11
TLZ012 UNINITIALIZED NONE ONSITE COMP_ROOM_1

Check the SYSTEM_BACKUPS_ENV. This environment was created when you installed ABS.

$ MDMS SHOW ENV SYSTEM_BACKUPS_ENV

 Environment: SYSTEM_BACKUPS_ENV
 Description:
 Access Control: MOE::ABS (READ, WRITE, EXECUTE, DELETE, SET,
SHOW,
 CONTROL)
 Owner: MOE::ABS
 Action: RECORD_DATE
A–8 Configuration Example

Configuration Example

 Assist: YES
 Compression: NONE
 Data Safety: CRC,FULL_VERIFY,XOR
 Drive Count: 1
 Epilogue:
 Interval: NONE
 Links Only: YES
 Listing Option: NONE
 Lock: YES
 Notification -
 - Opcom: TAPES
 - Type: BRIEF
 - When: FATAL
 Notification -
 - Mail: <REQUESTER>
 - Type: BRIEF
 - When: FATAL
 Profile -
 - Cluster: *
 - Node: *
 - Privileges:
 - Rights:
 - User: ABS
 Prologue:
 Retry Limit: 0
 Span Filesystems: YES

Check the SYSTEM_BACKUPS archive. This archive is created when you installed ABS.
Make sure that it has the media type of your volumes.

$ MDMS SHOW ARCHIVE SYSTEM_BACKUPS

 Archive: SYSTEM_BACKUPS
 Description:
 Access Control: MOE::ABS (READ, WRITE, EXECUTE, DELETE, SET,
SHOW,
 CONTROL)
 Owner: MOE::ABS
 Archive Type: TAPE
 Catalog -
 - Name: ABS_CATALOG
 - Nodes:
 Consolidation -
 - Interval: 0007 00:00:00
 - Savesets: 0
 - Volumes: 0
 Destination:
 Drives:
 Expiration Date: NONE
 Location:
 Maximum Saves: 1
 Media Type: TLZ06
 Pool:
 Retention Days: 365
Configuration Example A–9

Configuration Example

 Volume Sets:

Now create a save with the following attributes:

 Name - SYSTEM_WFD_SR

 Frequency - DAILY_FULL_WEEKLY

 Include - 1DKA0:

 Environment - system_backups_env

 Archive - system_backups

 Start = 21:00

$ MDMS CREATE SAVE SYSTEM_WFD_SR -
_$ /FREQUENCY=DAILY_FULL_WEEKLY -
_$ /INCLUDE=1DKA0: -
_$ /ENVIRONMENT=system_backups_env
_$ /ARCHIVE=SYSTEM_BACKUPS -
_$ /START=21:00
$ MDMS SHOW SAVE SYSTEM_WFD_SR

 Save: SYSTEM_WFD_SR
 Description:
 Access Control: NONE
 Owner: MOE::SMITH
 Archive: SYSTEM_BACKUPS
 Base Date: 20-DEC-2001 21:00:00
 Delete Interval: NONE
 Environment: SYSTEM_BACKUPS_ENV
 Epilogue:
 Execution Nodes: MOE
 Explicit Interval:
 Frequency: DAILY_FULL_WEEKLY
 Groups:
 Incremental: NO
 Job Number: 0
 Prologue:
 Schedule: SYSTEM_WFD_SR_SAVE_SCHED
 Sequence Option: SEQUENTIAL
 Skip Time: NONE
 Start Date: 20-DEC-2001 21:00:00
Transaction Status:
 Selections: SYSTEM_WFD_SR_SAVE_SEL_DEF

 Default Selection -
- Data Select Type: VMS_FILES
 - Include: 1DKA0:
 - Exclude:
 - Source Node:
All done! You can check the results of the daily backups in
ABS$LOG:SYSTEM_WFD_SR.LOG.
A–10 Configuration Example

B
Migrating from SLS/MDMS V2.X to

ABS/MDMS V4.X

B.1 Introduction
This appendix describes the various conversion activities that are needed when migrating to
ABS/MDMS V4.x from SLS/MDMS V2.x. These conversion activities are described in details
under separate headings.

For a better understanding of SLS to ABS migration, relevant details on the need for the migra-
tion and the tasks to be completed for accomplishing the same are provided. They enable you to
decide whether a migration is required and if required, will guide you in planning and executing
the same. The details provided include advantages of using ABS, restrictions in the migration,
phases involved in the migration, and procedures for executing and completing the migration.

B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
It is important to understand the need for the SLS/MDMS V2.x to ABS/MDMS V4.x migration,
as it involves the complete movement of data from SLS environment to ABS environment.
Hence, this section is designed to provide the relevant information that encompasses the pre-
conversion details (Need to Know information) and the SLS to ABS conversion procedures.

The SLS to ABS migration involves the following steps:

• Converting SLS/MDMS V2.x TAPESTART.COM Symbols and Database files to
ABS/MDMS V4.x Database objects.

• Applying the Prev3 Support, after the conversion, you can use SLS as the client to view the
SLS backed up data.

• Converting SLS System Backup files’ (SBK) Symbols to ABS Policy objects.

Following are the points that briefly explain the contents covered:

• Need for migration, which includes the advantages of using ABS and some restrictions on
the migration procedure. See Section B.2.1, “Why Convert from SLS/MDMS V2.x to
ABS/MDMS V4.x?” for more information.

• Comparison of SLS SBK Symbols and ABS equivalent Backup attributes. This comparison
enables you to verify if the SBK Symbols are converted and whether the expected attributes
are set in ABS. See Section B.2.2, “SLS and ABS/MDMS Comparisons” for more informa-
tion.

• Operational differences between MDMS V2.x and MDMS V3.x. As MDMS V3.x is the
base version from which the MDMS V4.x database architecture has evolved, it is important
to know the functionality differences between MDMS V2.x and V3.x . See Section B.2.3,
“Operational Differences between MDMS V2 and MDMS V3” for more information.

• Conversion of SLS/MDMS V2.x Symbols and Database objects to ABS/MDMS V4.x Data-
base objects. The Symbols in TAPESTART.COM are converted to the respective MDMS
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–1

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Database objects. See Section B.2.4.1, “Converting SLS/MDMS V2.x Symbols and Data-
base Files to ABS/MDMS V4.x” for more information.

• Possible conflicts that can occur during the conversion and the methods to resolve the con-
flicts. See Section B.2.4.1.3, “Resolving Conflicts during the Conversion” for more infor-
mation.

• Prev3 Support for using SLS as the client to view the backed up data after the conversion.
See Appendix C, “Applying Prev3 Support” for more information.

• Conversion of SLS SBK Symbols to ABS Policy objects. SLS SBK Symbols are converted
into the following ABS Policy objects: Storage, Environment and Save objects. See Section
B.2.4.3, “Converting SLS SBK Symbols to ABS Policy Objects” for more information.

• Evaluation of the DCL command procedures that are created as part of the SLS SBK Sym-
bols to ABS Policy objects conversion. See Section B.2.4.3.4, “Evaluating the ABS DCL
Command Procedures” for more information.

• Consolidation and implemention of ABS Policy objects for better performance. See Section
B.2.4.3.5, “Consolidating ABS Policy Objects” and Section B.2.4.3.6, “Implementing the
ABS Policies” for more information.

• Disabling SBK files and monitoring ABS activity after the conversion. See Section
B.2.4.3.9, “Disabling the SLS SBK Files” and Section B.2.4.3.11, “Monitoring ABS Activ-
ity” for more information.

• In case you want to revert to the SLS/MDMS V2.x environment, you can use the
ABS/MDMS V4.x to SLS/MDMS V2.x conversion procedure. (Only the volume database
is converted back to the MDMS V2.x environment.) See Section B.2.6, “Converting MDMS
V4.x to a V2.x Volume Database” for more information.

B.2.1 Why Convert from SLS/MDMS V2.x to ABS/MDMS V4.x?

Storage Library System backup (SLS), a legacy product of HP, has been in existence since the
late 1980's and has served the OpenVMS customer base extremely well. With the decision to
make ABS/MDMS the default choice as the Backup application on OpenVMS operating system
environments, the need has risen to provide guidance to those wanting to migrate from SLS sys-
tems to ABS/MDMS systems.

B.2.1.1 Advantages of using ABS

• Support for Windows 2000 and UNIX clients

• Support on I64 for ABS/MDMS

• Consolidated Policy Management

• More intuitive policy organization, with Shared Policies

• Automation of the backup process using MDMS scheduling objects, with minimal user
intervention

• Better Logging and Diagnostic capabilities

• Automatic Full and Incremental operations

• More versatile user requested operations

• On Disk Backups

• A sophisticated and reliable Media Management subsystem

• Better user interface using OPCOMs and Mail Notifications
B–2 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
• Use of new functionality presented in the ABS/MDMS application that includes Oracle,
Windows, and Unix Backups

• Stronger scheduling options

• Support for new devices introduced by HP.
Refer to http://h71000.www7.hp.com/openvms/storage/smstape_matrix.html for the list of
supported devices.

ABS, an object and policy driven application uses MDMS V4.x for automatically converting the
SLS volume, slot and magazine databases, and the TAPESTART.COM command definitions to
MDMS database. It enables conversion to ABS in stages on different nodes over time, which is
called Rolling Upgrade.

SLS V2.x uses TAPESTART.COM, volume and magazine databases, various data files, and
SBK (System Backup) files to do backups. In order to use ABS/MDMS V4.x, you can choose to
do one of the following:

• Convert SLS media information to MDMS database and SLS SBK files to ABS/MDMS
objects. Then, use SLS as a client to restore data that was backed up in SLS environment.

• Transfer SLS data completely into ABS/MDMS V4.x environment and use ABS/MDMS to
do the backup and restore operations from the beginning. In this case, you will not be
migrating from SLS to ABS/MDMS.

• Migrate from SLS to ABS/MDMS; use ABS/MDMS to take further backups of the existing
SLS data and to take further fresh backups.

The conversion is comprised of the following phases:

1. SLS to MDMS conversion: This phase involves the conversion of SLS TAPESTART.COM,
volume and magazine databases into ABS/MDMS V4.x objects. The command procedure
used is MDMS$SYSTEM:MDMS$CONVERT_V2_TO_V4. See Section B.2.4.1, “Con-
verting SLS/MDMS V2.x Symbols and Database Files to ABS/MDMS V4.x” for more
information.

2. Prev3 Support: This phase involves applying the Prev3 Support (setting the Prev3 Support
logical to “TRUE”) to use SLS as the client for viewing and restoring SLS backed up data.
See Appendix C, “Prev3 Support” for more information.

3. SLS to ABS conversion: This phase involves the conversion of SLS SBK files into ABS
V4.x objects. The command procedure used is ABS$SYSTEM:SLS_CONVERT.COM. See
Section B.2.4.3, “Converting SLS SBK Symbols to ABS Policy Objects” for more informa-
tion.

B.2.1.2 Restrictions

• After migrating from SLS/MDMS to ABS/MDMS environment, MDMS of ABS/MDMS
does not use the existing volumes when taking further backups of existing SLS/MDMS data
or when taking fresh backups. This is because even after migration SLS/MDMS still owns
the volumes. Use fresh volumes to take further backups of existing SLS/MDMS data or to
perform fresh backups.

• After migrating from SLS/MDMS to ABS/MDMS environment, ABS/MDMS does not
allow you to restore SLS/MDMS data automatically from the SLS catalog. You need to set
the Prev3 support attribute in ABS/MDMS SYS$MANAGER:MDMS$SYSTARTUP.COM
for ABS/MDMS to take over as the server and SLS to become the client. See Appendix C,
“Prev3 Support” for more information.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–3

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.2 SLS and ABS/MDMS Comparisons

The information provided in the following sections will help you map SLS/MDMS attributes to
the equivalent ABS/MDMS attributes. The mapping of attributes will also provide clarity on
how the data is populated in ABS/MDMS.

Compared to SLS, ABS/MDMS contains mostly executable code with 60% being DCL com-
mand procedures. The result of this difference is that ABS/MDMS cannot be easily customized
to your needs. Many of the SLS customizations may already be there in ABS/MDMS. The mod-
ifications incorporated in SLS will have to be considered and a strategy to implement this func-
tionality must be taken up in ABS/MDMS. In some cases, a new process might have to be
developed on how the backups operations are managed in ABS/MDMS.

B.2.2.1 Comparing SLS SBK Symbols and ABS Equivalent Backup Attributes

Table B–1 (SBK Symbols in ABS Terminology) lists the symbols in an SLS SBK file and the
equivalent ABS DCL attributes.
B–4 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Table B–1 SBK Symbols in ABS Terminology

SBK Symbol ABS Equivalent DCL
Attribute Meaning

DAYS_n Save Request /SCHEDULE
and /EXPLICIT_INTERVAL

Defines how often the backup oper-
ations are performed. If INTER-
VAL=EXPLICIT is used, you must
set the EXPLICIT qualifier.

TIME_n Save Request /START_TIME Defines when the backup operation
starts

NODE_n Save Request
/SOURCE_NODE

Defines the node in your network
where the data resides.

Defaulted to the node where the
save request is created. For
UNIX and NT save requests,
EXECUTION_NODE means
the node specified for the storage
policy that is used for the UNIX or
NT save request.

BACKUP_TYPE Save Request
/OBJECT_TYPE

Defines the type of data to be
backed up or restored.

PRE_PROCESS_FIRST Environment /PROLOGUE Defines the command to be exe-
cuted when the backup job starts

PRE_PROCESS_EACH Save Request /PROLOGUE Defines the command to be exe-
cuted prior to every backup opera-
tion within a job

POST_PROCESS_EACH Save Request /EPILOGUE Defines the command to be exe-
cuted when each operation within a
job completes

POST_PROCESS_LAST Environment /EPILOGUE Defines a command to be executed
when the backup job completes

NEXT_JOB Use dependencies in current
scheduler interface option if
available.

/AFTER_SCHEDULE in the
Save’s Schedule object.

Defines the job that must be exe-
cuted after the current job completes

SUMMARY_FILE ABS REPORT SAVE/FULL
or you can search the ABS
Catalogs for the job details.

Gives overview information about a
save operation in a job.

PRIVS Environment
/PROFILE=(PRIVS)

Defines the set of privileges to be
used when executing the operation

FILES_n Save request Include Specifi
cation

Defines the set of files or other data
objects that need to be backed up or
restored. You can create a comma
separated list of disk or file names.

To add or remove disk or file names
on an existing save request (or
restore request), use the /ADD or
/REMOVE qualifiers.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–5

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
SBK Symbol ABS Equivalent Meaning

QUALIFIERS and
QUALIFIERS_n

1. RECORD
2. CRC
3. INTERLOCK
4. PRIVS :==
5. IMAGE
6. INCREMENTAL
7. BEFORE
8. SINCE
9. EXCLUDE

In Environment:
1. /ACTION
2. /DATA_SAFETY
3. /LOCK_OPTION
4. /PRIVS

In Save:
5. /FULL
6. /INCREMENTAL
7. /BEFORE
8. /SINCE
9. /EXCLUDE

Defines characteristics of the Save
operation, such as the type of data
being backed up and the options for
executing the backup.

All other qualifiers can be specified
using /QUALIFIERS on the save
request.

MNTFLAGS Not supported. ABS controls
mounting of tapes.

Defines how the tapes are mounted

SAVESET_GEN Not supported. ABS gener-
ates the saveset names.

Defines the name of the saveset
stored on the tape

PROTECTION Storage Class /ACCESS Defines the type of access available
to access the backed up data

MEDIA_TYPE Storage Class
/TYPE_OF_MEDIA

Defines the MDMS media type that
is to be used for the backup opera-
tions

DENSITY Density is an attribute of the
MDMS media type object.

Defines the tape density to be used
for the backup operations

REEL_SIZE Maps to the length attribute of
the MDMS media type object.

For 9 track tapes, defines the length
of the tape (example 2400 feet)

TAPE_POOL Storage Class (Archive)
/TAPE_POOL

Defines the MDMS pool from
where the tapes are taken for the
backup operations

QUICKLOAD The MDMS drive attribute
"AUTO_REPLY" can be spec-
ified on a per-drive basis to
determine whether a drive is
online.

Determines whether MDMS will
automatically recognize when a tape
drive is online, without operator’s
intervention.

QUICKLOAD_RETRIES Not supported Defines how long a LOAD request
must remain outstanding before
being canceled.

PREALLOC ABS allocates and manages
volume sets automatically.

Storage Class
/VOLUME_SET

Determines the number of volumes
to be preallocated before a backup
begins. You must manually allocate
the volume and set the
VOLUME_SET to the first volume
in the volume set.

AUTOSEL ABS always automatically
selects new volumes to
append to volume sets (if
needed).

Determines whether SLS is allowed
to automatically select new volumes
from the volume database (if
needed)
B–6 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
SBK Symbol ABS Equivalent Meaning

CONTLOADOPT Logical Name:
ABS$DISABLE_SCRATCH_
LOADS set to one.

Determines whether the operator
can substitute a valid tape for the
requested tape.

By default, ABS requests and
accepts scratch tapes. The logical
can be defined to force specific
tapes to be mounted.

UNATTENDED_BACKUP
S

ABS always attempts to per
form the backup without oper
ator intervention.

Determines whether SYSBAK, by
default, sends responses to ques-
tions rather than requiring opera-
tor’s intervention.

CONTINUE ABS Storage Class name.
Each Storage Class manages
one or more volume sets, and
appends data to these volume
sets until the Consolidation
criteria is exceeded.

Determines how data is consoli-
dated onto the volume sets.

HISTORY_SET Catalog Name
Storage Class /CATALOG

Determines the catalog into which a
record on the operations performed
and the files backed up is written.

SBUPDT_Q Not supported. If a catalog
supports staging, ABS always
performs the catalog update in
a detached process.

Determines the Batch Queue where
the System history set update is per-
formed.

SCRATCH_DAYS Storage Class /RETAIN or
/EXPIRATION

Determines how long data is saved
before the tapes are recycled and
catalog entries removed.

/EXPIRATION and /RETAIN are
mutually exclusive. Use one of
them depending on whether you
want to specify a date (EXPIRA-
TION) or the number of days
(RETAIN).

OFFSITE_DATE
ONSITE_DATE

MDMS volumes support
OFFSITE_DATE and
ONSITE_DATE attributes.
Also, the MOVE VOLUME
commands are automatically
generated when they reach the
onsite and offsite dates.

Determines when the volume sets
are moved offsite or onsite (also
called vaulting).

TAPE_LABELS Not supported. Determines if paper labels are
printed for the volumes that are used
in the backup.

NOTES Equivalent to the MDMS
description field in the Volume
object

Stores a free form text note in the
volume record for the volumes that
are used in the backup.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–7

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.3 Operational Differences between MDMS V2 and MDMS V3

This section discusses the main operational differences between MDMS V3 (includes MDMS
V3 and later versions) and its previous version MDMS V2 (includes MDMS V2 and lower ver-
sions). In some cases, there are conceptual differences in the approach but the output is the same.
You are also given an insight into the changes implemented in order to make the upgrade as
smooth as possible. Also, the reasons for implementing some changes are explained. It also
enables you to use the new features to optimize your configuration and usage of the products.

– Any reference to MDMS V2 in this chapter points to MDMS V2 and lower versions

– Any reference to MDMS V3 in this chapter points to MDMS V3 and later versions

SBK Symbol ABS Equivalent Meaning

DRIVE_TYPE Storage Class /DRIVE_LIST Determines the list of tape drives to
be used.

Note: It is recommended that
MDMS media types be set up cor-
rectly rather than using this field.

N_DRIVES Environment
/DRIVE_COUNT

Determines the number of tape
drives to be used during a backup
operation.

PROGRESS Not supported ABS notifies the operator after a
certain number of files are backed
up.

REPLY_MSG Not supported. MDMS issues
all OPCOM messages in a
standard format

Determines the notification to be
performed when each backup opera-
tion is executed and completed.

STATUS_MAIL Environment /NOTIFICA-
TION

Determines the recepient who must
be e-mailed when the job com-
pletes.

LOG_FILE Not supported. ABS gener-
ates a log file in ABS$LOG.
To view a save log, you need
to type ABS$log followed by
the name of the save request.

Determines the name of the log file
for the operation.

LISTING_GEN Environment
/LISTING_OPTION. ABS
generates the listing files, but
they are always located in
ABS$LISTINGS. They are
named the same as the Save
request followed by the save
operation number.

Determines the name of the backup
listing file to be produced from each
operation.

FULL Environment /LIST
ING_OPTION=FULL

Determines if the listing file pro-
vides complete information or only
a brief about the backed up files .

PRINT_Q Not supported. Determines the Print queue where
the listing file is printed.
B–8 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.3.1 Architecture

The media manager used for previous versions of ABS and HSM was embedded within the SLS
product. The MDMS portion of SLS was implemented in the same requester (SLS$TAP-
MGRRQ), database (SLS$TAPMGRDB) and OPCOM (SLS$OPCOM) processes used for SLS.

The Storage DCL interface contained both SLS and MDMS commands, as did the forms inter-
face and the TAPESTART.COM configuration file. SLS prefix was used for all the Media Man-
agement status and error messages. Over all, it was difficult to determine where MDMS stopped
and SLS took over. To summarize, it was difficult to differenciate MDMS and SLS functional-
ities. In addition, SLS contained many restrictions in its design that inhibited optimal use of ABS
and HSM in a modern environment.

HP reviewed the SLS/MDMS design and the many requests for enhancements, and decided to
completely redesign the Media Manager for ABS and HSM. The result is MDMS V3, which is
included as the preferred Media Manager for both ABS and HSM V3.0, and later versions. The
following are the main functional differences between MDMS V3 and MDMS V2:

• An object oriented design that begins at the user interface and is propagated throughout the
product. You will get familiar with the ten classes of objects and use a consistent interface to
manipulate them.

• A multi-threaded design that allows any number of concurrent operations throughout the
MDMS domain.

• Completely separated from SLS, MDMS V3 has its own fully functional and distinct user
interfaces (DCL and GUI), and error messaging formats. You can select either of the two
interfaces and also use them interchangeably to complete tasks. It is no longer necessary to
switch interfaces to perform certain functions. The GUI can be used on both OpenVMS and
Windows-based PCs.

• A simplified design that utilizes only one server process on a node. The server process per-
forms all MDMS operations on that node.

• Supports modern network protocols that includes TCP/IP and DECnet-Plus with full name
support.

• New features that enhance ease of use

• Manages MDMS jukebox independent of device specifications and supports new devices
without code modifications.

• Flexible logging and auditing capabilities that enable you to view MDMS task status

While MDMS V3 has been completely re-engineered, a greater effort was taken to ensure com-
patibility and upgradability with the previous versions. Important attributes and functions that
you would be using are retained, though in a slightly different form.

The following sections will guide you through the changes.

B.2.3.2 MDMS Interfaces

MDMS versions prior to MDMS V3 had the following interfaces that were used to configure and
execute operations:

• TAPESTART.COM was used for configuring drives, jukeboxes, media types and other
related parameters. Changes to the configurations required SLS/MDMS to be restarted.

• DCL Storage commands were used for day-to-day operations and manipulation of volumes
and magazines.

• Forms interface was used for complex operations that were not supported by DCL.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–9

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
• Utilities such as SLS$VOLUME was used to repair the volume database after an error
occurred

While these interfaces together provided a fully functional product, their inconsistent syntax and
coverage made them difficult to be used.

With MDMS V3, a radical new approach was taken. Two interfaces were selected for implemen-
tation; both of them are functionally complete. A brief on the two interfaces:

A modern DCL interface –

This interface is designed with a consistent syntax that is easier to remember. It is also function-
ally complete so that all MDMS operations are initiated without manipulating files or forms.
This interface is used by batch jobs and command procedures, as well as by operators.

A modern GUI interface –

Based on Java technology, it is developed for users who prefer graphical interface. Like the DCL
interface, it is functionally complete and is used to initiate operations (with necessary excep-
tions). In addition, it contains many wizards that are used for guidance through complex opera-
tions such as configuration and volume rotation. The GUI (Graphical User Interface) is
developed for use on both OpenVMS Alpha (V7.1-2 and later versions) and Windows based sys-
tems.

Note

For initiating GUI operations, it is necessary that the TCP/IP be active on the Open-
VMS MDMS server node and also on the node where the GUI is active.

There are also limited number of logical names used for tailoring the functionality of the product
and initial startup (when the database is not available). The forms interface, TAPESTART.COM
and the utilities are eliminated. When you install MDMS V3, you are prompted for converting
the TAPESTART.COM and the old databases to the new format. See Section B.2.4.1, “Convert-
ing SLS/MDMS V2.x Symbols and Database Files to ABS/MDMS V4.x” for more information.

Both the DCL interface and the GUI allow you to create, modify and delete objects even if it
results in an inconsistency in the database. Some of the points to remember are:

• You can create or modify objects by referencing objects that have not yet been defined. A
warning message is displayed if an object contains undefined references to other objects.

• You can delete objects that have references to other objects. The GUI Delete Wizard will
help you through the procedures to clean up references in an order.

• Another global feature has been added to MDMS V3 and is used when creating objects.
This is the INHERIT option that allows you to create an object using most of the attributes
of an existing object. All fields except the object name and the protected fields can be inher-
ited. See HP Archive Backup System for OpenVMS MDMS Reference Guide for the fields
that cannot be inherited for any particular object.

B.2.3.3 Rights and Privileges

Both the DCL interface and the GUI require privileges to execute commands. These privileges
apply to all commands, including defining objects and attributes that used to reside in the TAPE-
START.COM.

With MDMS V3, privileges are obtained by defining MDMS rights in the users' UAF defini-
tions. There are three high-level rights, one each for a MDMS user, an Application and an Oper-
ator. There are also a large set of low-level rights, several for each command that relate to high-
level rights by a mapping defined in the domain object.
B–10 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
In addition, a Guru right is enabled that allows any command to be executed. The OpenVMS
privilege SYSPRV can optionally be used instead of the Guru right. This mechanism replaces the
six SLS/MDMS V2 rights defined in the TAPESTART.COM and the OPER privilege.

See HP ABS/HSM Command Reference Guide, Chapter 3, MDMS Rights and Privileges for a
complete description of the rights.

B.2.3.4 MDMS Domain

There was no real concept of a domain in SLS/MDMS V2. The scope of operations within SLS
varied according to what was being considered.

For example, attributes defined in TAPESTART.COM were applicable to all nodes using that
version of the file, normally from one node to a cluster. By contrast, volumes, magazines and
pools had scope across clusters and were administered by a single database process running else-
where in the environment.

MDMS V3 formally defines a domain object. The domain object contains default attribute val-
ues that can be applied to any object where they are not specifically defined. MDMS V3 for-
mally supports a single domain, which inturn supports a single database. All objects like the
jukeboxes, drives, volumes, nodes, magazines are defined within the domain.

This method of defining objects introduces a level of incompatibility with the previous versions,
especially with respect to the parameters stored in TAPESTART.COM. Since TAPE-
START.COM can potentially be different on every node, default parameters like MAXS-
CRATCH can have different values on every node. With MDMS V3, the approach is towards
defining default attribute values at the domain level, but also allowing you to override some of
these at a specific object level (example - OPCOM classes for nodes). In other cases, values such
at LOC and VAULT defined in TAPESTART.COM are now separate objects.

After installing MDMS V3, you have to convert each TAPESTART.COM available in your
domain. If the TAPESTART.COM files on every node are compatible (not necessarily identical,
but not conflicting either), then the SLS/MDMS V2 to ABS/MDMS V3 conversion will be auto-
matic. However, if there are conflicts, then they are flagged in a separate conversion log file, and
need to be manually resolved.

Example: Assuming there are two drives named “1MUA500” on different nodes, then one or
both need to be renamed for use in the new MDMS environment.

It is possible to support multiple domains with MDMS V3, but ensure that objects defined are
local to their domain. Each domain has its own database and is independent of other domains
and their respective databases.

Example: Your company might have two autonomous groups with their own computer
resources, labs and personnel. It is reasonable for each group to operate within the boundaries of
their domain and also realize that nodes, jukeboxes, and volumes cannot be shared among the
two groups. If there is a need to share certain resources (example - the jukebox), it is possible to
utilize a single domain and separate certain resources by specifying unique attributes.

B.2.3.5 Drives

The drive object in MDMS V3 is similar in concept to a drive object in MDMS V2. However,
the naming convention for drives in MDMS V3 is different from MDMS V2. In MDMS V2,
drives were named after the OpenVMS device name, optionally qualified by a node.

In MDMS V3, drives are named like most other objects; their name must be unique within the
domain and can comprise a maximum of 31characters. So, you can specify a drive as DRIVE_1
rather than “1MUA510” and specify the OpenVMS device name using the DEVICE_NAME
attribute.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–11

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
It is also equally valid to name the drive after the OpenVMS device name as long as it is unique
within the domain. Specify nodes for drives using the NODES or GROUPS attributes. You must
specify all nodes or groups that have direct access to the drive.

Note

Do not specify a node or group name in the drive name or the OpenVMS device name.

Consider two drives named “1MUA500”, one on cluster “BOSTON” and the other on cluster
“HUSTON”, and you want to use a single MDMS domain. You can set up the drives as follows:

$ MDMS CREATE DRIVE BOS_MUA500/DEVICE=1MUA500/GROUP=BOSTON
$ MDMS CREATE DRIVE HUS_MUA500/DEVICE=1MUA500/GROUP=HUSTON

The new ACCESS attribute can limit use of the drive to be either local or remote access. Local
access is defined as access by any of the nodes in the NODES attribute or any of the nodes
defined in the group object (in the GROUP attributes). Remote access is defined as access from
any other node. By default, both local and remote accesses are allowed.

With MDMS V3, drives can be defined as being jukebox controlled, stacker controlled or stand-
alone.

• Jukebox Controlled: A drive is jukebox controlled when it resides in a jukebox, and you
want random-access loads/unloads of any volume in the jukebox. Define a jukebox name,
control mechanism (MRD or DCSC), and drive number for a MRD jukebox. The drive
number is the number MRD uses to refer to the drive and starts from zero.

• Stacker Controlled: A drive can be defined as a stacker when it resides in a jukebox and you
want sequential loading of volumes, or if the drive supports a stacker loading system. In
such cases, do not define a jukebox name but set the “STACKER” attribute.

• Stand-alone: If the drive is stand-alone (loadable only by an operator), do not define a juke-
box and also clear the “STACKER” attribute.

Set the “AUTOMATIC_REPLY” attribute if you want Opcom requests on the drive to be com-
pleted without operator intervention. It enables a polling scheme that automatically cancels the
request when the requested condition is satisfied.

B.2.3.6 Jukeboxes

In MDMS V2, jukeboxes were differentiated as libraries, loaders and ACS devices, each with
their own commands and functions. With MDMS V3, all automatic loading devices are grouped
under the jukebox object.

Jukeboxes can be controlled by one of the following two subsystems. They can also have unique
names comprising a maximum of 31 characters:

• MRD used for most of the SCSI jukeboxes including some StorageTek silos

• DCSC used for most of the existing and older StorageTek silos

The new “ACCESS” attribute can limit use of the jukebox to be either local or remote access.
Local access is defined as access by any of the nodes in the “NODES” attribute or any of the
nodes defined in the group object (in the GROUP attributes). Remote access is access from any
other node. By default, both local and remote accesses are allowed.

For MRD jukeboxes, the robot name is the name of the device that MRD accesses for jukebox
control. It is equivalent to the device name that is listed first in the old TAPE_JUKEBOXES def-
inition in the TAPESTART.COM (but without the node name). As with drives, nodes for the
jukebox must be specified using the “NODES” or the “GROUPS” attributes.
B–12 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Jukeboxes now have a “LOCATION” attribute, which is used in Opcom messages related to
moving volumes into and out of the jukebox. When moving volumes into a jukebox and if they
are not already available in that particular location, you will first be prompted to move them to
the jukebox location and then to the actual location. Likewise, when moving volumes out of the
jukebox, they will first be moved to the jukebox location and then to the actual location. The rea-
son being that it is more efficient to move all the volumes from their source (wherever they are)
to the jukebox location and then move all the volumes to the final destination.

One of the most important aspects of jukeboxes is whether you will be using the jukebox
with/without magazines. As described in the Section B.2.3.9, “Magazines”, MDMS V3 treats
magazines as a set of volumes within a physical magazine that share a common placement and
move schedule. Unlike MDMS V2, it is not necessary to relate volumes to magazines just
because they reside in a physical magazine, although you can. It is equally valid for volumes to
be moved directly and individually in and out of jukeboxes regardless of whether/not they reside
in a magazine within the jukebox. It is the preferred method when it is expected that the volumes
will be moved independently in and out of the jukebox.

If you decide to formally use magazines, you should set the jukebox usage to magazine. In addi-
tion, if the jukebox can potentially hold multiple magazines at once (example - TL820 style
jukebox), you can optionally define a topology field that represents the physical topology of the
jukebox (towers, faces, levels and slots). If you define a topology field, Opcom messages relat-
ing to magazines movement into and out of the jukebox will contain a magazine position in the
jukebox, rather than a start slot for the magazine. Use of topology and position are optional, but
they make it easier for operators to identify the appropriate magazine for movement.

Importing and exporting volumes (or magazines) into and out of a jukebox is replaced by a com-
mon MOVE command, which specifies a destination parameter. The direction of movement is
determined depending on whether the destination is a jukebox, a location or a magazine. Unlike
previous versions, you can use a single command to move multiple volumes. The Opcom mes-
sages will contain all the volumes to be moved, which have a common source and destination
location. If the jukebox supports ports or caps, all available ports and caps will be used. The
movement is flexible, in the sense you can place volumes in the ports/caps in any order when
importing, and all the ports will be used when exporting volumes. All port/cap oriented juke-
boxes support automatic reply on Opcom messages. It means that the messages need not be
acknowledged for the move to complete.

B.2.3.7 Locations

The concept of locations have been greatly expanded from SLS/MDMS V2, where a copy of
TAPESTART.COM had a single "ONSITE" location defined in the “LOC” symbol and a single
"OFFSITE" location defined in the “VAULT” symbol.

With MDMS V3, locations are now separate objects with the object names having a maximum
of 31 characters. Locations can be arranged in a hierarchy allowing them to be grouped within
other locations. For example, you can define “BOSTON_CAMPUS” as a location with
“BUILDING_1” and “BUILDING_2” located in it and “ROOM_100” and “ROOM_200”
located in “BUILDING_1”. Locations that have common roots are regarded as compatible loca-
tions and are used for allocating drives, and volumes.

Example: When allocating a volume that is available in “ROOM_200” location , if you specify
the location as “BUILDING_1”, then the two locations are considered compatible. However, if
you had specified the location as “BUILDING_2”, then they would not be considered compati-
ble as “ROOM_200” is located in “BUILDING_1”.

Locations are not officially designated as “ONSITE” or “OFFSITE” as they can be both in some
cases. However, each volume and magazine have onsite and offsite location attributes that must
be set to valid location objects.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–13

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
This permits defining any number of onsite or offsite locations across the domain. You can
optionally associate spaces with locations. Spaces are subdivisions within a location in which
volumes or magazines can be stored. The term "Space" replaces the term "Slot" in SLS/MDMS
V2 as that term was considered to be overused. In MDMS V3, a "Slot" is reserved for a numeric
slot number in a jukebox or magazine, whereas a “Space” can have a maximum of eight alpha-
numeric characters.

B.2.3.8 Media Types

In SLS/MDMS V2, media type, density, length and capacity were attributes of drives and vol-
umes. They were defined both in the TAPESTART.COM and volume records. With MDMS V3,
media types are defined as objects that contain the density, compaction, length, and capacity
attributes. Drives and volumes reference media types only. The other attributes are defined
within the media type object.

If you formerly had media types defined in TAPESTART.COM with different attributes, you
need to define multiple media types in MDMS V3.

Example: Consider the following TAPESTART.COM definitions:

MTYPE_1 := TK85K
DENS_1 :=
DRIVES_1 := 1MUA510:, 1MUA520:
MTYPE_2 := TK85K
DENS_2 := COMP
DRIVES_2 := 1MUA510:, 1MUA520:

In the preceding example, two media types are defined with the same name. In MDMS V3, you
need to define two distinct media types and allow both drives to support both the media types.
The equivalent commands in MDMS V3 are:

$ MDMS CREATE MEDIA_TYPE TK85K_N /NOCOMPACTION
$ MDMS CREATE MEDIA_TYPE TK85K_C /COMPACTION
$ MDMS CREATE DRIVE 1MUA510:/MEDIA_TYPES=(TK85K_N,TK85K_C)
$ MDMS CREATE DRIVE 1MUA520:/MEDIA_TYPES=(TK85K_N,TK85K_C)

B.2.3.9 Magazines

As discussed in the jukebox section, the concept of magazine is defined as set of volumes shar-
ing common placement and move schedules, rather than just being volumes loaded in a physical
magazine. In MDMS V2, all volumes physically located in magazines had to be bound to the
magazine slots for both the DLT-loader jukeboxes and TL820 style bin-packs (if moved as a
whole).

When converting from MDMS V2 to MDMS V3, the automatic conversion utility takes the
existing magazine definitions and creates magazines for MDMS V3. It is recommended that you
continue to use magazines in this manner until you feel comfortable eliminating them. If you do
eliminate them, you remove the dependency of moving volumes in the magazine at large.

For TL820 style jukeboxes, volumes will be moved through the ports. For DLT-loader style
jukeboxes, OPCOM requests will refer to individual volumes for movement. In this case, the
operator must take out the magazine from the jukebox, remove or insert volumes into it and
reload the magazine into the jukebox.

If you utilize magazines with the TL820-style jukeboxes, movement of magazines into the juke-
box can optionally be performed using jukebox positions. It implies that the magazine must be
placed in tower n, face n, level n instead of a start slot. For this placement to be supported, the
jukebox must be specified with a topology as explained in the Section B.2.3.6, “Jukeboxes”.
B–14 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
For single-magazine jukeboxes like the TZ887, the magazine can only be placed in one position
(start slot 0).

Like individual volumes, magazines can be set up for automatic movement to/from an offsite
location by specifying the offsite/onsite location and date for the magazine. All volumes in the
magazine will be moved. An automatic procedure is executed daily at a time specified by the
logical name MDMS$SCHEDULED_ACTIVITIES_START_HOUR or at 01:00 (default time).
However, you can also use the /SCHEDULE qualifier for MDMS V3 to initiate these move-
ments manually as follows:

$ MDMS MOVE MAGAZINE */SCHEDULE=OFFSITE ! Scheduled moves to offsite
$ MDMS MOVE MAGAZINE */SCHEDULE=ONSITE ! Scheduled moves to onsite
$ MDMS MOVE MAGAZINE */SCHEDULE ! All scheduled moves

B.2.3.10 Nodes

A node is an OpenVMS system capable of running MDMS V3. In a domain, a node object must
be created for every node running ABS or HSM. If the node runs DECnet, then every node
object must have a node name that must be same as the system’s DECnet Phase IV name
(SYS$NODE) , or it must be a unique name comprising a maximum of 31 characters.

If you want the node to support either DECnet-Plus (Phase V) or TCP/IP, or both, then define the
appropriate fullnames for the node as attributes of the node. The fullnames must not be specified
as the node name. For example, the following command specifies a node capable of supporting
all three network protocols:

$ MDMS CREATE NODE BOSTON -
$_ /DECNET_FULLNAME=CAP:BOSTON.AYO.CAP.COM -
$_ /TCPIP_FULLNAME=BOSTON.AYO.CAP.COM

A node can be designated as supporting/not supporting a database server. A node supporting a
database server must have direct access to the database files in the domain (DFS/NFS access is
not recommended). The first node on which you install MDMS V3 must be designated as a data-
base server.

Subsequent nodes might or might not be designated as database servers. Only one node at a time
can be the database server but if that node fails or is shut down, another designated database
server node will take over as the server.

B.2.3.11 Groups

MDMS V3 introduces the group object as a convenient mechanism for describing a group of
nodes that have some common attributes. In a typical environment, you might want to designate
a cluster alias as a group with the constituent nodes defined as attributes. However, the group
concept can be applied to other groups of nodes rather than just those in a cluster. You can define
as many groups as you want and individual nodes can also be defined in any number of groups.
However, you might not specify groups within groups, but you might specify nodes within
groups.

You can define groups as a set of nodes that have direct access to drives and jukeboxes. Then,
relate the group to the drive or jukebox using the “GROUPS” attribute. Other uses for groups
can be for the definition of users.

Example: If user “SMITH” is the user for both the “BOSTON” and “HUSTON” clusters, you
can define a group containing constituent nodes from both the “BOSTON” and “HUSTON”
clusters. You can then utilize this group as part of an authorized user for a volume pool.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–15

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.3.12 Pools

Pools retain the same purpose for MDMS V3 as for SLS/MDMS V2. They are used to validate
users for allocating free volumes. Pool authorization used to be defined through the old forms
interface.

With MDMS V3, pool authorization is defined through the pool object. A pool object must be
created for each pool in the domain.

Pool objects have two main attributes: authorized users and default users. Both sets of users must
be in the form NODE::USERNAME or GROUP::USERNAME. A pool can support a maximum
of 1024 characters of authorized and default users. An authorized user is an account using which
the user can allocate free volumes from the pool. A default user is an account using which the
user, in addition to allocating free volumes from the pool, can also specify that particular pool to
be used when a pool is not specified on allocation. As such, each default user must be specified
in only one pool, whereas users can be authorized for any number of pools.

B.2.3.13 Volumes

The volume object is the most critical object for both MDMS V3 and MDMS V2. Nearly all of
the attributes from MDMS V2 have been retained, although a few attributes have been renamed.
When converting from MDMS V2 to MDMS V3, all volumes in the old volume database are re-
created in the new MDMS V3 database. The following table lists attributes that are either not
supported or for which the support is changed.

You can create volumes in the MDMS V3 database using one of the following ways:

• Using the CREATE VOLUME command (or GUI equivalent), you can explicitly create vol-
umes in the database. This command gives you the maximum flexibility in specifying vol-
ume attributes.

Table B–2 Volume Attributes

Old Name New Name/Support

Density Unsupported, included in media type object

Flag State

Length Unsupported, included in media type object

Location Onsite Location

Notes Description

Offsite Offsite Date

Onsite Onsite Date

Other Side Unsupported, obsolete feature with RV64 only

Side Unsupported, obsolete feature with RV64 only

Slot Space

Zero Unsupported, can set counters individually
B–16 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
• Physically inserting volumes into a jukebox and then issuing the INVENTORY JUKE-
BOX/CREATE command that references a jukebox/slot range (MRD only), or a volume
range (DCSC only). Volume attributes can be set from an inherited volume or a media type
can be specified. You can later use the SET VOLUME to customize other attributes.

• Using the LOAD DRIVE/CREATE command to perform scratch loads in non-jukebox
drives. Volume attributes can be set from an inherited volume or the media type can be spec-
ified. You can later use the SET VOLUME command to customize other attributes.

Once a volume is created and initial attributes are set, it is not normally necessary to use the SET
VOLUME command to change the attributes. Rather, the attributes are automatically modified
when certain commands like the ALLOCATE VOLUME or the LOAD VOLUME commands
are issued. However, in some cases, the volume database and physical reality may get out of syn-
chronization. In such cases, you can use the SET VOLUME command to correct the database.

Note that several fields in the volume object are designated as "PROTECTED". MDMS uses
these fields to control the volume's operations within its environment. You need special privi-
leges to modify the protected fields; in the GUI you need to select the "Enable Protected" (dis-
played in the pop up menu when you right-click on the screen) to make these fields writable.
When changing a protected field, you must ensure that its new value is consistent with other
attributes. For example, if you are manually setting the volume's placement to jukebox, you must
first ensure that a jukebox name is defined.

Two key attributes in the volume object are "State” and "Placement". Following are the volume
states:

• Uninitialized: Default state for a volume that is just then created. A volume cannot be allo-
cated in this state. You must either initialize the volume using the MDMS INITIALIZE
command or set the volume to the “Free” state using the MDMS SET VOLUME/PREINI-
TIALIZED command.

• Free: Equivalent to the MDMS V2 “Free” state, a volume can be initialized in this state

• Allocated: Equivalent to the MDMS V2 “Allocated” state. An Allocated volume cannot be
deleted or re-used unless it is released.

• Transition: Equivalent to the MDMS V2 “Transition” state that forbids re-allocation for
some time called the Transition Time. Deallocating or releasing a volume will either place it
in the “Transition” state or the “Free” state, depending on the Transition time.

• Unavailable: Equivalent to the MDMS V2 “Down” state that removes a volume from use

The “PLACEMENT” attribute is a new attribute in MDMS V3. It describes a volume's current
placement. The volume can be placed in a drive, jukebox, magazine or onsite/offsite location.
The placement can also be "MOVING", which means that the volume is changing placements
but the change is not yet complete. Volume Load, Unload or Move commands cannot be issued
to a volume whose placement is shown as “Moving”. While a volume is moving, it is sometimes
necessary for an operator to determine its destination.

Example: When a volume is moved from a jukebox to an onsite location and space, the operator
can issue the SHOW VOLUME command for moving volumes to specific locations. The com-
mand provides the exact destination/location where the volume is supposed to be moved.

The new MDMS V3 CREATE VOLUME command replaces the previous Storage "ADD VOL-
UME" command. For maintaining consistency, most attributes are supported for both the CRE-
ATE VOLUME and SET VOLUME commands.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–17

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Similar to MDMS/SLS V2, volumes in MDMS/ABS V3 can be set up for the following:

• Automatic movement to/from an offsite location by specifying an offsite/onsite location and
date

• Automatic recycling using the scratch date to move from the “ALLOCATED” to “TRANSI-
TION” state

• Automatic recycling using the free dates to move from the “TRANSITION” to “FREE”
state

An automatic procedure is executed daily at a time specified by the logical name
MDMS$SCHEDULED_ACTIVITIES_START_HOUR or at 01:00 (default time). However,
MDMS V3 also allows these movements/state changes to be initiated manually using a
/SCHEDULE qualifier as follows:

$ MDMS MOVE VOLUME */SCHEDULE=OFFSITE ! Scheduled moves to offsite
$ MDMS MOVE VOLUME */SCHEDULE=ONSITE ! Scheduled moves to onsite
$ MDMS MOVE VOLUME */SCHEDULE ! All scheduled moves
$ MDMS DEALLOCATE VOLUME /SCHEDULE ! All scheduled deallocations

MDMS V3 continues to support the ABS volume set objects (those objects whose volume IDs
begins with "&+"). These volume set objects are normally hidden, but they can be displayed in
the output for the SHOW VOLUME and REPORT VOLUME commands when the
/ABS_VOLSET qualifier is used. In all other aspects, the MDMS V3 volume objects are equiv-
alent to the MDMS V2 volume objects.

B.2.3.14 Remote Devices

In MDMS V3, support for remote devices is handled through the Remote Device Facility (RDF),
in the same manner that was supported for SLS/MDMS V2. DECnet support on both the client
and target nodes is required when using RDF.

Note

RDF is supported on OpenVMS Alpha V8.3 but not supported on OpenVMS I64 V8.2-
1.

B.2.4 Procedures for Converting SLS/MDMS V2.x to ABS/MDMS V4.x

This section provides the following conversion procedures that you must execute in a sequence
for migrating from SLS/MDMS V2.x to ABS/MDMS V4.x:

• Converting SLS/MDMS V2.x Symbols and Database files to ABS/MDMS V4.x Database
objects. See Section B.2.4.1, “Converting SLS/MDMS V2.x Symbols and Database Files to
ABS/MDMS V4.x” for more information.

• Applying Prev3 Support, see Section B.2.4.2, “Applying Prev3 Support” for more informa-
tion.

• Converting SLS SBK Symbols to ABS Policy objects. See Section B.2.4.3, “Converting
SLS SBK Symbols to ABS Policy Objects” for more information.

Each conversion procedure in turn provides the pre-requisites (if any), the steps involved in the
conversions and the post-conversion verification details.
B–18 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.4.1 Converting SLS/MDMS V2.x Symbols and Database Files to ABS/MDMS V4.x

This section describes the procedure to convert TAPESTART.COM symbols and various
SLS/MDMS V2.x Database files into the new ABS/MDMS V4.x Database objects. The conver-
sion is automated as much as possible. However after the conversion, you might have to make
some corrections or add attributes to objects that were not present in SLS/MDMS V2.X.

Note

Before doing the conversion, to be familiar with the configuration requirements, read
the chapter on Media Management (Chapter 4) in the HP Archive Backup System for
OpenVMS, Guide to Operations. Also, ensure that ABS/MDMS is installed.

All phases of the conversion process must be executed on the first database node where you
installed MDMS V4. During this conversion process, you will get familar with all the phases of
the conversion:

B.2.4.1.1 Phases in SLS/MDMS V2.x to ABS/MDMS V4.x Conversion –

Following are the three phases in the SLS/MDMS V2.x to ABS/MDMS V4.x conversion:

1. Converting the symbols in SYS$MANAGER:TAPESTART.COM to MDMS Database
objects:

– The symbols in SYS$MANAGER:TAPESTART.COM are converted into a node spe-
cific command procedure:

MDMS$SYSTEM:MDMS$LOAD_DB_<nodename>.COM

The command procedure contains the MDMS commands to create objects in the
ABS/MDMS V4.x database. You can allow the command procedure to be executed as
part of the conversion process or you can execute the procedure later.

– The conversion process prompts you to restart the MDMS server as the server must be
active for the database to be populated with the converted objects. On providing your
consent, the conversion process automatically restarts the MDMS server.

– The command procedure, when executed, populates the MDMS database. The follow-
ing MDMS Database objects are created as part of the conversion:

– Drive

– Juke Box

– Domain

– Node

– Media Type

– Location

– Magazine

– Pool

– Volume
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–19

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Note

The device on which the SLS/MDMS V2.x databases are located must be provided for
the conversion to proceed further. In a mixed-architecture (Alpha/VAX) OpenVMS
Cluster, the SLS/MDMS V2.x TAPEMAST.DAT (volume database file), is typically
located on a shared device accessible by both the Alpha and VAX nodes. You need to
identify the device where the TAPEMAST.DAT file is located.

– During the conversion, any command that caused a conflict or a change in the object
when the MDMS$LOAD_DB_<nodename>.COM was executed, is logged into a node
specific conflicts file:

Format: MDMS$LOAD_DB_CONFLICTS_<nodename>.COM

To view the conflicts file, you need to give the complete file name:

MDMS$SYSTEM:MDMS$LOAD_DB_CONFLICTS_<nodename>.COM

For information on resolving conflicts, see Section B.2.4.1.3, “Resolving Conflicts dur-
ing the Conversion”.

Note

This conversion must be executed on every node that has a different TAPE-
START.COM and populates the MDMS database.

2. Adding the nodes from the Database Access Authorization file (VALIDATE.DAT) to the
Node database. This addition/part of the conversion is executed only once on the database
server node.

– The conversion process prompts you to restart the MDMS server as the server must be
active for the database to be populated with the node objects. On providing your con-
sent, the conversion process automatically restarts the MDMS server.

3. Converting the following SLS/MDMS V2.x database files to ABS/MDMS V4.x database
files:

– Pool Authorization file (POOLAUTH.DAT)

– Slot Definition file (SLOTMAST.DAT)

– Volume Database file (TAPEMAST.DAT)

– Magazine Database file (SLS$MAGAZINE_MASTER_FILE.DAT)

This conversion is executed only once on the database server node.

MDMS server should not be active during the conversion of the above-mentioned data-
base files. The conversion process informs you that the MDMS server must be shut-
down to proceed with the conversion. On providing your consent, the conversion
process automatically shuts down the server and complete the conversion.

Note

On any other node that does not use the same TAPESTART.COM as the database
node, in addition to converting the SBK (SLS System Backup) files, you also convert
the TAPESTART.COM.
B–20 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.4.1.2 Executing the Conversion Command Procedure –

This is an interactive command procedure wherein the conversion process prompts you for par-
ticular inputs. Based on the inputs received, it provides you the required information and also the
intended outputs.

The whole concept is about converting SLS/MDMS V2.x Symbols and Database objects into
ABS/MDMS V4.x Database objects. When the command procedure is executed, a brief on what
exactly are converted from SLS/MDMS V2.x and how they are converted is displayed. For more
information, see Section B.2.4.1.1, “Phases in SLS/MDMS V2.x to ABS/MDMS V4.x Conver-
sion”.

Note

SLS/MDMS V2.x DB server must be shut down before executing the conversion com-
mand procedure. Use the following command to shut down the SLS/MDMS V2.x DB
server: $ @SLS$SYSTEM:SLS$SHUTDOWN

To execute the conversion command procedure, type the following command at the DCL prompt
(this command procedure is copied to MDMS$ROOT:[SYSTEM] during the ABS/MDMS
installation):

$ @MDMS$SYSTEM:MDMS$CONVERT_V2_TO_V4

• The conversion procedure at every stage prompts you on whether you want to proceed with
the conversion or cancel it.

• The conversion procedure in order to execute or complete certain sections of the conversion
has to restart MDMS server. When informed, provide your consent and the conversion pro-
cess automatically restarts MDMS server to complete the intended task.

• The conversion procedure generates a conflicts file to log all the conflicts generated during
the conversion.

B.2.4.1.3 Resolving Conflicts during the Conversion –

The differences between SLS/MDMS V2.x and ABS/MDMS V4.x result in conflicts during the
conversion. Instead of stopping the conversion and prompting you to verify every conflict, the
conversion program generates a node-specific conflicts file and logs all the conflicts for every
conversion:

$ TYPE MDMS$LOAD_DB_CONFLICTS_<nodename>.COM

In the above-mentioned file name, <nodename> is replaced by the actual node name where the
conversion procedure is executed. The conflicts file provides you the commands that were exe-
cuted and which caused a change in the database. The change is flagged because there already
existed an object in the database or that particular command changed an attribute of the existing
object.

Note

The conflicts file must not be executed, instead you have to go through each and every
conflict logged, and resolve it.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–21

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Sample Conflicts File –

The following sample conflicts file shows the commands that created the conflict.

Conflicts file name: MDMS$SYSTEM:MDMS$LOAD_DB_CONFLICTS_NODE1.COM

$ MDMS SET DOMAIN/ONSITE_LOCATION=HEADQUARTERS/OFFSITE_LOCATION=ABC

$ MDMS SET DOMAIN /NETWORK_TIMEOUT=0-0:0:0

$ MDMS SET DOMAIN /SCRATCH_TIME=30-0:0:0

$ MDMS SET DOMAIN /TRANSITION_TIME=0-0:0:0

$ MDMS SET DOMAIN /MAXIMUM_SCRATCH_TIME=0-00:00:00

$ MDMS SET DOMAIN /DEALLOCATE_STATE=FREE

$ MDMS SET DOMAIN/MEDIA_TYPE=SLS_MEDIA

$ MDMS SET NODE
Test/DATABASE_SERVER/ENABLE/DECNET_FULLNAME=LOCAL:.Test/LOC=HEADQ

$ MDMS SET MEDIA_TYPE SLS_MEDIA/COMP

$ MDMS SET DRIVE 1ABC500/ADD/NODES=Test_1

$ MDMS SET DOMAIN/MEDIA_TYPE=SLS_MEDIA is one of the conflicts logged. It implies that two
media types cannot have the same name in ABS/MDMS V4.x though it is permitted in
SLS/MDMS V2.x. One of the media type name must be changed to resolve this conflict.

Table B–3 (Symbols in TAPESTART.COM and the Corresponding MDMS Objects) describes
the SLS/MDMS V2.x TAPESTART.COM Symbols and their equivalent ABS/MDMS V4.x
attributes or objects, and the possible conflict that can result if the TAPESTART.COM Symbol
definitions are not accepted in the ABS/MDMS V4.x environment.
B–22 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Table B–3 TAPESTART.COM Symbols and the Corresponding MDMS Objects

TAPESTART.COM
Symbol

MDMS V4 Attribute or
Object Possible Conflict

 ALLOCSCRATCH If defined, adds the
SCRATCH_TIME
attribute to the domain object.

If the ALLOCSCRATCH symbol is dif-
ferent in different TAPESTART.com
files, the modified ALLOCSCRATCH
value resulting in the conflict is added to
the conflicts file.

 DB_NODES If defined, creates a node object
for the nodes in the
DB_NODES list.

A conflict can be added if the node exists
and an attribute changed in a different
TAPESTART.COM file. Every drive
and jukebox definition in the TAPE-
START.COM can cause a node to be
created with a
/NODATABASE_SERVER qualifier. A
DB node will change the attribute to
database server, this can cause a conflict
to be added to the conflicts file.

 DCSC_n_NODES If defined, creates a node object
and adds the “NODE” attribute
to the DCSC jukebox.

All addition of nodes to jukeboxes cause
a conflict to be added to the conflicts
file.

DCSC_DRIVES If defined, creates a drive object
for DCSC.

When adding attributes, if an attribute is
found to be different, then that attribute
is added to the conflicts file.

 DENS_x If defined, adds the density or
compaction attribute to a media
type. If the value is “COMP” or
“NOCOMP” then the compac-
tion attribute is defined as
“YES” or “NO”. If the density
is anything other than “COMP”
or “NOCOMP”, then the value
is placed in the “Density”
attribute.

If the DENS_x is different for the same
media type, then that DENS_x value is
added to the conflicts file.

 FRESTA If defined, adds the deallocate
state attribute to the domain
object.

If the FRESTA symbol is different in dif-
ferent TAPESTART.COM files, then
that Fresta value resulting in the conflict
is added to the conflicts file.

 LOC Creates a location object and
also sets the
“ONSITE_LOCATION”
attribute in domain object.

If the location object exists or is different
than the “ONSITE LOCATION”
attribute set in the domain object, then
that LOC value resulting in the conflict
is added to the conflicts file. This con-
flict can result if you have different LOC
symbols in two TAPESTART.COM
files.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–23

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
TAPESTART.COM
Symbol

MDMS V4 Attribute or
Object Possible Conflict

 MAXSCRATCH If defined, adds the maximum
scratch time attribute to the
domain object.

If the MAXSCRATCH symbol is differ-
ent in different TAPESTART.COM
files, then that MAXSCRATCH value
resulting in the conflict is added to the
conflicts file.

 MTYPE_x Creates a media type object for
each MTYPE_x.

If the media type is duplicated, the dupli-
cate media type name is added to the
conflicts file. In SLS/MDMS V2.x, you
can have the same media type name with
Compaction and Nocompaction
attributes set. But, in ABS/MDMS V4.x,
you cannot have duplicate media types.
You need to change the name of one of
the media type and enter it into the data-
base again. You might have to change
ABS or HSM and the respective volume,
and drive objects to reflect the media
type change.

NET_REQUEST_TIM
EOUT

If defined, adds the
“NETWORK_TIMEOUT”
attribute to the domain object.

If the NET_REQUEST_TIMEOUT is
different in different TAPE-
START.COM files, then that TIMEOUT
value resulting in the conflict is added to
the conflicts file.

 PROTECTION Adds the default protection to
the domain object.

If the PROTECTION is different in dif-
ferent TAPESTART.COM files, then that
“PROTECTION” attribute resulting in
the conflict is added to the conflicts file.

 QUICKLOAD When drives are created, the
“QUICKLOAD” attribute is
added as automatic reply.

If the drive’s automatic reply is changed,
then the modified attribute resulting in
the conflict is added to the conflicts file.

 TAPE_JUKEBOXES Creates a jukebox object for
each jukebox in the list.

If the jukebox is already defined and any
of the attributes change, the changed
attribute resulting in the conflict is added
to the conflicts file.

 TAPEPURGE_MAIL If defined, adds the “MAIL”
attribute to the domain
object.

If the TAPEPURGE_MAIL is dif-
ferent in different TAPESTART.COM
files, then that TAPEPURGE_MAIL
value resulting in the conflict is
added to the conflicts file.

 TOPERS If defined, adds the
“OPCOM CLASS” attribute
to the domain object.

 If the TOPERS symbol is different
in different TAPESTART.COM files,
then that TOPERS symbol resulting
in the conflict is added to the con-
flicts file.

 TRANS_AGE If defined, adds the “TRAN-
SITION TIME” attribute to
the domain object.

 If the TRANS_AGE symbol is dif-
ferent in different TAPESTART.COM
files, then that TRANS_AGE sym-
bol resulting in the conflict is added
to the conflicts file.
B–24 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.4.1.4 Verifying Objects and their Attributes after the Conversion –

There are possibilities that the object’s attributes are modified after the conversion due to the dif-
ferences between MDMS V2.x and MDMS V4.x. Ensure that the attributes you want are set for
each of the objects.

Table B–4 (Verifying Objects and their Attributes after the Conversion) lists the objects, their
attributes that must be set and appropriate descriptions for the same.

TAPESTART.COM
Symbol

MDMS V4 Attribute or
Object Possible Conflict

 VLT Creates a location object and
also sets the
“OFFSITE_LOCATION”
attribute in the domain
object.

If the object exists or is different
than the “OFFSITE_LOCATION”
attribute in the domain object, then
that VLT value resulting in the con-
flict is added to the conflicts file.
The conflict can result if you have
different VLT symbols in two Tape-
start.Com files.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–25

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Table B–4 Verifying Objects and their Attributes after the Conversion

 Object Attribute Description/Verification

 Drive Drive Ensure that all the drives are defined during the conversion. In
the MDMS V3 domain, you can have only one drive with a
given name. But, in MDMS V2.x, you could have two drives
with the same name provided they were in different TAPE-
START.COM files. Ensure that all drives in your domain are in
the database.

Example: You can create two drives named “DRIVE1” and
“DRIVE2”.
• “DRIVE1” has the device name as “1MUA520”

and the node name as “NODE1”.

• “DRIVE2” has the device name as “1MUA520”
and the node name as “NODE2”.

Every time a node is added to the drive, a conflict is added to
the conflict file. This prompts you to verify if the node really
belongs to this drive or if you need to create another drive.

 Description This attribute is left blank during the conversion. Ensure that
you provide the appropriate description after the conversion.

 Device Ensure that only the device name is displayed after the conver-
sion. The node name must not be a part of the device name.

 Nodes Ensure that the list of node(s) displayed are the node(s) that can
communicate with the drive.

 Disabled The conversion program enables all the drives. If you want the
drive disabled, then set the “DISABLED” attribute to “YES”.

State Ensure that the drive is in the appropriate state. If not, set the
“STATE” attribute to the appropriate value. You can also verify
the state by issuing the following command:

$ MDMS SHOW DRIVE <drive_name>/CHECK

Automatic reply This attribute is set from the QUICKLOAD symbol
(SLS/MDMS V2.x). Ensure that it is the intended drive behav-
ior.

 RW media types The conversion program, as and when it finds a media type(s),
immediately adds it to the drive. Make sure the one that is
added is the correct read-write media type(s) for the drive.

 RO Media
Types

There is no read-only media type(s) in MDMS V2.x. So, it is
not added to the drives during the conversion. If needed, you
can add read-only media type(s) to the drive object.

 Access The conversion program is not aware of the access type that
must be set. Hence, it sets the access to “ALL”. Ensure that it is
the access type that you want to be set for the drive.

 Jukebox Ensure that the jukebox name displayed is the one that the drive
belongs to.

 Drive Number Ensure that the drive number displayed is the one that is used
for the robot commands on the drive.
B–26 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
 Object Attribute Description/Verification

 Domain Description Ensure that the description displayed is appropriate for the
domain. The default description is: Default MDMS Domain.

 Mail Ensure that the account displayed is the intended recepient for
the e-mails sent when a volume reaches its scratch date and
MDMS deallocates it. If you do not want any e-mails sent, then
leave the “Mail” field blank.

The default recepient is “SYSTEM”.

 Offsite location Ensure that the offsite location displayed is the default location
for the objects that you create. This default value is set from the
value defined for the VLT symbol in the TAPESTART.COM. It
can be different in different TAPESTART.COM files.

Onsite location Ensure that the onsite location displayed is the default location
for the objects that you create.

 Default media
type

Ensure that the media type displayed is the default media type
you want to be assigned to volumes that do not have a media
type specified when they are created.

Deallocate state Ensure that the deallocate state displayed is the default state you
want volumes to move to, once they reach their scratch date.
The state can be modified every time you convert the TAPE-
START.COM on a new node.

Opcom classes Ensure that the Opcom Classe(s) displayed is the one that
should receive all the MDMS Opcom messages. The Opcom
Class can be modified every time you convert the TAPE-
START.COM on a new node.

Protection Ensure that the protection displayed is the default protection
that is assigned to volumes for which the protection is not spec-
ified.

 Maximum
scratch time

Ensure that the maximum scratch time value displayed is the
default value to be assigned for volumes in your domain. The
maximum scratch time can be modified every time you convert
the TAPESTART.COM on a new node.

Scratch time Ensure that the scratch time value displayed is the default value
to be assigned for volumes in your domain. The scratch time
can be modified every time you convert the TAPESTART.COM
on a new node.

 Transition time Ensure that the transition time value displayed is the default
value assigned to volumes in your domain. The transition time
can be modified every time you convert the TAPESTART.COM
on a new node.

Network time-
out

Ensure that the network timeout value displayed is the default
timeout value that you want. The network timeout value can be
modified every time you convert the TAPESTART.COM on a
new node.

Location Description Ensure that you provide the appropriate description for the loca-
tion after the conversion is completed. By default, the descrip-
tion is not provided during the conversion.

Spaces Ensure that you set the spaces after the conversion is completed.
By default, the spaces are not set during the conversion.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–27

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
 Object Attribute Description/Verification

 In location If the location is in a higher level location, ensure that you set
this attribute as it is not set during the conversion.

 Media type Media type Ensure that all the media types that were there before the con-
version are available after the conversion also. In MDMS V3,
media types with duplicate names are not allowed, in the sense,
you can have only one media type with the same name.

For example, if you had two media types with the same name in
MDMS V2.x, the second media type (duplicate media type) is
not created in the MDMS V3 database during the conversion.

Description Ensure that you provide the appropriate description for the
media type after the conversion is completed. By default, the
description is not provided during the conversion.

Density The density is only changed when the DENS_x symbol in the
TAPESTART.COM is assigned a value other than “COMP” or
“NOCOMP”. Ensure that the assigned value is set during the
conversion.

Compaction The compaction is set to “YES” if the DENS_x symbol in the
TAPESTART.COM file is set as “COMP”. The compaction
attribute is set to “NO” if the DENS_x symbol is set as
“NOCOMP”. Ensure that the assigned value is set during the
conversion.

Capacity If the DENS_x value is not defined as “COMP” or
“NOCOMP”, then the capacity is set to the DENS_x value
specified in the TAPESTART.COM. Ensure that the assigned
value is set during the conversion.

Jukebox Description Ensure that you provide the appropriate description for the
jukebox after the conversion is completed. By default, the
description is not provided during the conversion.

 Nodes Ensure that the list of node(s) displayed are the node(s) that can
communicate with the robot.

Location Ensure that the location displayed is where the jukebox is resid-
ing.

Disabled The conversion program enables all the jukeboxes. If you want
a particular jukebox disabled, set the “DISABLED” attribute to
“YES”.

 Autoreply The conversion program sets the “AUTOREPLY” attribute to
“YES” which means that the jukebox will automatically reply
to all Opcom messages. Ensure that this is the intended behav-
ior of the jukebox.

Access The conversion program is not aware of the access type that
must be set. Hence, it sets the access to “ALL”. Ensure that this
is the access type that you want to be set for the jukebox.

Control If MRD is controlling the robot, then ensure that the control is
set to “MRD”. If the robot is controlled by “DCSC”, then
ensure that the control is set to “DCSC”.

 Robot Ensure that the robot name displayed is the one that is used by
the jukebox.
B–28 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
 Object Attribute Description/Verification

Slot count You need to set the slot count manually. The conversion pro-
gram cannot identify the number of slots and provides the avail-
able number directly without verification.

Usage Ensure that the usage is appropriately set for the type of juke-
box that you have as the conversion program cannot identify
whether a jukebox does/does not use a magazine. If the jukebox
uses magazine, then you have to manually configure the juke-
box to include the magazine usage. The default setting is
“NOMAGAZINE”.

 Magazine Description Ensure that you provide the appropriate description for the
magazine after the conversion is completed. By default, the
description is not provided during the conversion.

Offsite location The old magazine record does not have an offsite location. So,
you need to provide the appropriate offsite location.

Offsite date The old magazine record does not have an offsite date. So, you
need to provide the appropriate offsite date.

Onsite location The old magazine record does not have an onsite location. So,
you need to provide the appropriate onsite location.

Offsite date The old magazine record does not have an offsite date. So you
need to provide the appropriate offsite date.

Node Description Ensure that you provide the appropriate description for the
node(s) after the conversion is completed. By default, the
description is not provided during the conversion.

DECnet-Plus
fullname

The conversion program does not provide the DECnet-Plus
fullname as the node’s TAPESTART.COM does not support
DECnet-Plus. If the node on which the conversion is completed
uses DECnet-Plus, then you need to provide the appropriate
DECnet-Plus fullname.

TCP/IP
fullname

The conversion program does not provide the TCP/IP fullname
as the node’s TAPESTART.COM does not support TCP/IP. If
the node on which the conversion is completed uses TCP/IP,
then you need to provide the appropriate TCP/IP fullname.

Disabled The conversion program sets the “DISABLED” attribute to
“NO”, inturn enabling access to the node. Ensure that you want
the particular node to be enabled.

Database server If the “DATABASE SERVER” attribute is set to “YES”, then
the node on which the conversion is completed has the potential
to become a database server.

The logical MDMS$DATABASE_SERVERS must have the
particular node name in its definition of nodes, in the domain
object. This definition is defined in
SYS$STARTUP:MDMS$SYSTARTUP.COM.

Location Ensure that this is the location that the node belongs to. During
the conversion, it might have been changed depending on the
TAPESTART.COM or the default location set in the domain
object when it was created.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–29

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.4.1.5 Upgrading the Domain to MDMS V4.x –

Upgrading your SLS/MDMS V2 domain starts with the nodes, which have been defined as data-
base servers in symbol DB_NODES in file TAPESTART.COM. See HP Archive Backup System
for OpenVMS Installation Guide for details on how to execute the following steps:

1. Shut down all SLS/MDMS database servers in your SLS/MDMS domain.

2. Install version MDMS V4 on nodes that were acting as database servers previously.

3. When the new servers are up-and-running, veify and if possible change the configuration
and database entries so that they match your previous SLS/MDMS V2 setup.

4. Edit SYS$MANAGER:MDMS$SYSTARTUP.COM and ensure that:

– Logical name MDMS$DATABASE_SERVERS includes the current node’s DECnet
(Phase IV) node name.

– Logical name MDMS$PREV3_SUPPORT is set to TRUE to enable the SLS/MDMS
V2 support function in the new server.

– Logical name MDMS$VERSION3 is set to TRUE to direct ABS and/or HSM to use
the new MDMS V4 interface.

If you had to change any of the previous logical name settings, you have to restart the
server by executing the following command procedure :

$ @SYS$STARTUP:MDMS$STARTUP RESTART

You can type the server's logfile to verify that the DECnet listener for object SLS$DB
has been successfully started.

 Object Attribute Description/Verification

Opcom classes The Opcom class is defined in the domain object as an Opcom
class when the node was created. Ensure that this is the Opcom
class for this particular node.

Transports Ensure that the transport displayed is the one that you want for
this particular node. The conversion program cannot identify
the transports that you want and hence takes only the defaults.

POOL Description Ensure that you provide the appropriate description for the
pool(s) after the conversion is completed. By default, the
description is not provided during the conversion.

Authorized
users

Ensure that the comma separated list contains the names of all
the authorized users for the pool. The format for specifying an
authorized user must be:

NODE::user

Default users Ensure that you specify the default users for the pool as the con-
version program does not provide the default users list. The for-
mat for specifying a default user must be:

NODE::user.

VOLUME The conversion program provides all the necessary attributes.
Type the following command to view the complete volume
attributes.:

MDMS SHOW VOLUME <Volume_Name>/FULL
B–30 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
5. To support load, unload and operator requests from old SLS/MDMS clients, you have to
edit SYS$MANAGER:TAPESTART.COM and change the line which defines DB_NODES
to the following:

$ DB_NODES = ""

This prevents a SLS/MDMS V2 server from starting the old database server process
SLS$TAPMGRDB.

6. Start ABS or HSM..

B.2.4.2 Applying Prev3 Support

Prev3 Support is provided to enable SLS/MDMS V2.x users to restore and view the SLS backed
up data in ABS/MDMS V4.x environment. After the migration, you will be using SLS as the cli-
ent to restore and view the data as and when needed.

The Prev3 Support is mapped to the logical “MDMS$PREV3_SUPPORT” in SYS$MAN-
AGER:MDMS$SYSTARTUP.COM. This logical is by default set to “FALSE”. In order to
enable the Prev3 Support, you need to set the logical to “TRUE”.

$ ed SYS$MANAGER:MDMS$SYSTARTUP.COM

$ DEFINE/SYSTEM/NOLOG MDMS$SUPPORT_PRE_V3 -

 "TRUE"

Then, you need to shut down and restart MDMS followed by SLS. See Appendix C, “Prev3 Sup-
port” for more information.

Note

In case you want to use SLS along with ABS/MDMS for some time (on the same sys-
tem), retain the “MDMS$PREV3_SUPPORT” in SYS$MANAGER:MDMS$SYS-
TARTUP.COM as “FALSE”. This ensures that both ABS and SLS work in the same
environment but with no knowledge of each other.

You can consider this logical setting if you want to have a test environment where you
will be using SLS and simultaneously working on ABS to understand its functionalities
(like the Save and Restore processes executed in ABS/MDMS). By doing this, you will
have sufficient time to analyze the differences in the common functionalities executed
by two different Backup applications and also gain more clarity on the migration.

In case you want to convert the volume database back to MDMS V2.x, then ensure
that the Prev3 Support logical is set to “FALSE” after you complete the volume data-
base conversion. This will enable both SLS and ABS to work in parallel on the same
node. For more information, see Appendix B, “Prev3 Support”, “Using SLS/MDMS
and ABS/MDMS Simultaneously”.

B.2.4.3 Converting SLS SBK Symbols to ABS Policy Objects

This section describes the procedure for converting the SLS SBK symbols to ABS Policy
objects. The SLS SBK attributes are converted into the following ABS Policy objects:

• Storage Class (Archive)

• Execution Environment

• Save Request(s)
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–31

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
The conversion pre-requisistes are explained in detail. The SBK symbols and the corresponding
ABS object attributes are also listed in Table B–1, “SBK Symbols in ABS Terminology” for
your reference.

B.2.4.3.1 Pre-requsites for the Conversion –

The following sub-sections provide pointers to tasks that need to be accomplished before pro-
ceeding with the conversion of SLS SBK files to ABS Policy objects. For a smooth conversion,
ensure that you are aware of your site requirements and backup management policies.

Converting MDMS V2.x Symbols and Databases to MDMS V4.x Database
Objects –

The first step in migrating from SLS to ABS environment is to convert the SLS/MDMS V2.x
Symbols and Databases into ABS/MDMS V4.x Database objects. For more information, see
Section B.2.4.1, “Converting SLS/MDMS V2.x Symbols and Database Files to ABS/MDMS
V4.x”. Note that this version of ABS (T4.4) and all future versions require the accompanying
version of MDMS that is included in the installation kit.

Determining Use of SLS –

The next step in migrating from SLS to ABS is to identify the need for SLS and to know that
ABS is at par with SLS. The following are the three major functionalities in SLS:

• Taking System Backups

• Taking Standby Archiving

• Taking User Backups

ABS provides the same functionality as SLS SBK files and User Backups. However, ABS can-
not provide the same function as SLS Standby Archiving.

If you use SLS SBK files (as many sites do), then converting to ABS is relatively simple. If you
use SLS User Backups, converting to ABS is slightly more involved, but is still straightforward.
If you use SLS Standby Archiving, ABS does not provide the equivalent functionality.

Determining Valid SBK Files –

At many sites, only few of the SBK files located in the SLS$SYSBAK are actually used for reg-
ular backups. The other SBK files available are a result of experimentation or are outdated.

In order to simplify the conversion of SLS SBK files to ABS Policy objects, you need to identify
the SBK files that are active or in use. Some pointers to select valid SBK files:

• SBK files that are regularly scheduled for taking data backups by SLS
The DAYS_1 symbol is defined for scheduling automatic backups.

• SBK files that are manually executed by yourself or the Operator
If the DAYS_1 symbol is left blank or is commented out, then those SBK files will be man-
ually executed by yourself or the Operator.

It is important to determine whether SBK files that are not scheduled for taking automatic back-
ups are at least manually executed. If not, they are the prime candidates to be considered as out-
dated or unused.

Once you have identified the obsolete or unused SBK files, you can remove them from
SLS$SYSBAK (take backup of these files before removing them in case they are required in the-
future).
B–32 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Installing SLS SBK Files to ABS Policy Objects Conversion Utility –

After you have cleaned the SLS$SYSBAK directory to contain only those SBK files you actu-
ally want to convert, install the appropriate conversion utility provided as part of the ABS kit.
Two separate conversion utilities are provided for OpenVMS VAX and Alpha architectures:

• SLSTOVABS<Version>, example: SLSTOVABSA043

• SLSTOAABS<Version>, example: SLSTOAABSA043

You need to determine the OpenVMS architecture being used on the node where you want to
execute the conversion and then install the appropriate utility. The conversion is managed by
SLS_CONVERT.COM that is provided when the conversion utility is installed.

• To install the conversion utility on OpenVMS VAX, issue the following command:

$ @SYS$UPDATE:VMSINSTAL SLSTOVABS<Version> ABS$SYSTEM:

Example: $ @SYS$UPDATE:VMSINSTAL SLSTOVABSA043 ABS$SYSTEM:

• To install the conversion utility on OpenVMS Alpha, issue the following command:

$ @SYS$UPDATE:VMSINSTAL SLSTOAABS<Version> ABS$SYSTEM:

Example: $ @SYS$UPDATE:VMSINSTAL SLSTOAABSA043 ABS$SYSTEM:

It is also an interactive installation procedure and is on similar lines with ABS installation, where
you are prompted to provide appropriate details for the installation to complete. The conversion
utility is installed into ABS$SYSTEM:SLS_CONVERT.COM. A sub-directory called
SLS_CONVERSION is created under ABS$ROOT. In addition, the logical name
ABS$SLS_CONVERSION is defined to point to the work directory for the conversion effort.

B.2.4.3.2 Executing SLS SBK Files to ABS Policy Objects Conversion –

Once you have installed the conversion utility, issue the following command to convert the
selected SBK Symbols to ABS Policy objects:

$ @ABS$SYSTEM:SLS_CONVERT <SBK File_Name> ! Conversion of a single SBK file

$ @ABS$SYSTEM:SLS_CONVERT * ! Conversion of all SBK files

Note

SLS/MDMS V2.x must be restarted before executing the conversion utility. Use the fol-
lowing command to restart SLS/MDMS V2.x: @SYS$STARTUP:SLS$STARTUP

The conversion utility when executed requires a SBK file name or a “*” as the input parameter.
The asterisk symbol is used when you want to convert all the SBK files to ABS DCL Command
procedures. If you want to convert a single SBK file, you must specify the SBK file name with-
out the “_SBK.COM” or “SLS$SYSBAK” on the command line. See Section B.2.4.3.3, “Com-
mand Syntax” for more information.

The conversion utility creates a DCL command procedure for every SBK file. Each command
procedure will be named the same as the SBK file but substituting “SBK” with “ABS”. For
example, if the SBK file “Example1_SBK.COM” is converted, the output command procedure
will be “ABS$SLS_CONVERSION:Example1_ABS.COM”.

Each command procedure will have the ABS Policy objects defined from the respective symbols
in the SBK file. Modifications are not made to your ABS Policy Configuration directly. This
allows you to experiment with the conversion utility safely, without affecting either the execu-
tion of your SLS SBK files or starting the ABS Save requests inadvertently.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–33

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.4.3.3 Command Syntax –

$ @ABS$SYSTEM:SLS_CONVERT <wildcard_SBK_spec> [<match1>] [<match2>…]

<wildcard_SBK_spec>

This parameter identifies the set of SBK files to be converted by this command. The string given
must not include SLS$SYSBAK: or the _SBK.COM suffix. For example, if you want to convert
the SBK file “SLS$SYSBAK:Example*_SBK.COM”, you must issue the command:

$ @ABS$SYSTEM:SLS_CONVERT Example*

<match1> … <match7>

These optional parameters allow you to search the SBK files defined by the
<wildcarded_SBK_spec> and only process those files that contain all the given strings. Since the
SLS_CONVERT command procedure uses a /MATCH=AND on the Search command, the
strings must all appear on the same line in the SBK file.

Sample Conversion –

$ @ABS$SYSTEM:SLS_CONVERT *

Building list of SBK's from SLS$SYSBAK:*_SBK.COM;0

Processing SLS$ROOT:[SYSBAK]SLS_ABS_Example1_SBK.COM;1...

Processing SLS$ROOT:[SYSBAK]SLS_ABS_Example2_SBK.COM;1...

Processing SLS$ROOT:[SYSBAK]SLS_ABS_Example3_SBK.COM;1...

Processing SLS$ROOT:[SYSBAK]SLS_ABS_Example4_SBK.COM;1...

Processing SLS$ROOT:[SYSBAK]SLS_ABS_Example5_SBK.COM;1...

SLS_CONVERT: All specified files have been processed.

SLS_CONVERT: Cleanup being performed...

B.2.4.3.4 Evaluating the ABS DCL Command Procedures –

After executing the conversion utility, you can view one ABS DCL command procedure created
for each SBK file that was converted, in the ABS$SLS_CONVERSION directory. The output
command procedure contains:

• A block of comments indicating that the file was produced by the conversion utility and the
date, and time of the conversion.

• Name of the SBK file represented in the command file.

• The list of SBK parameters that are not converted by the conversion utility and the reason
for the same.

• An ABS CREATE STORAGE command to create a Storage Class (Archive). It corresponds
to the MDMS Create Archive command.

• An ABS CREATE ENVIRONMENT command to create an Execution Environment.

• One or more ABS Save commands and ABS SET SAVE commands to create one or more
Save requests.
B–34 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
• The creation of a Prologue command file. The Prologue command file must be integrated
with any of the site specific prologue command files to complete the functions defined by
the SBK.

• The creation of an Epilogue command file. The Epilogue command file must be integrated
with any of the site specific epilogue command files to complete the functions defined by
the SBK.

The conversion utility attempts to duplicate the backup policy reflected in each SBK file.
Though the command procedures can be executed immediately, it is highly recommended that
you review the individual file’s contents before executing them. It is to ensure that there are no
errors and the ABS Policy objects to be created accurately reflect the intended backup policy.

Sample ABS DCL Command Procedure –

$ EDIT ABS$ROOT:[SLS_CONVERSION]Example_ABS.COM

$!--

$! SLS SBK files represented here:

$! SLS_ABS_Example_SBK

$!$! SBK Symbols not yet converted:

$! REPLY_MSG - please add to PROLOG and EPILOG

$!--

$! Unsupported SBK Symbols:

$! NEXT_JOB - use POLYCENTER Schedule Dependencies

$! SUMMARY_FILE - use the ABS REPORT SAVE/FULL

$! MNTFLAGS - ABS controls the way tapes are mounted

$! SAVESET_GEN - ABS controls the name of savesets

$! DENSITY - This is unsupported in ABS

$! REEL_SIZE - This is unsupported in ABS

$! QUICKLOAD - Set this parameter in TAPESTART.COM

$! PREALLOC - This is unsupported in ABS

$! AUTOSEL - ABS always auto-selects new tapes

$! CONTLOADOPT - ABS requires all tapes to be labelled

$! UNATTENDED_BACKUPS - ABS always executes unattended

$! SBUPDT_Q - ABS Catalog updates are done in a detached process

$! PROGRESS - This is unsupported in ABS

$! LOG_FILE - ABS controls the name of the log file

$! LISTING_GEN - ABS controls the name of the listing file

$! PRINT_Q - ABS will not print the listing file
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–35

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
$!--

$! All commands and qualifiers have been shortened

$! to 4 characters or fewer to avoid DCL Command

$! Line length limitations.

$!--

$ Create the GENERIC catalog

$ MC SYS$SYSTEM:ABS$CATALOG_OBJECT -

CREATE GENERIC -

BRIEF -

ABS -

YES -

ABS$CATALOG

$ Create a new Storage Class

$! Comments:

$! Naming Storage Class using SBK CONTINUE symbol

$! Create will fail if it already exists

$! Assuming Storage Class parameters are consistent

$! Using nodename from NODE_1 for Execution Node

$! ACL Comments:

$! Owner (ABS) will be given full access

$! Ignoring Owner and Group access in PROTECTION

$!

$ ABS Cre Sto 1 -

/OWN=ABS -

/EXEC="UNO" -

/MED="" -

/TYP="SLS_MEDIA" -

/DRI=(UNO$MKA100) -

/CAT="GENERIC" -

/RET=60

$ ABS Set Sto 1 -
B–36 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
/ACC=(USER="SYSTEM",ACC="READ+SHOW+WRITE+SET")

$ ABS Set Sto 1 -

/ACC=(USER="*::*",ACC="READ+SHOW")

$!--

$! Create a new Environment

$! Comments:

$! REPLY_MSG Not Yet Implemented

$ ABS Cre Env SLS_ABS_Example_ABS_ENV -

 /OW=ABS -

 /DRI=1 -

 /LIS=BR -

 /PROF=(USER=ABS,PRIV="BYPASS")

$!--

$! Create new Save Request(s)

$! Comments:

$! Defining source node as NODE_1 = UNO

$ ABS Save/Name=SLS_ABS_Example_ABS_SEL_1 -

 /STO="1" -

 /ENV="SLS_ABS_Example_ABS_ENV" -

 /SCH=Never -

SYS$SYSDEVICE:[APARNA]*.COM;*/OBJECT="VMS Files" -

 /SOURCE_NODE="UNO" -

 /AGENT_QUAL="/EXPIRED/BEFORE=TODAY"

$! Comments:

$! /BEFORE qualifier not implemented - copied as is

$!--

$! The Save Requests were not able to be scheduled automatically because one
or more of the following conditions were true:

$! More than one DAYS_n was specified in the SBK

$! The DAYS_n specified day names (e.g. MONDAY) which is not supported by
ABS

$! The list below identifies the DAYS_n in the SBK and the equivalent POLY-
CENTER Scheduler syntax.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–37

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
$! Original SBK DAYS parameter TUESDAY

$! is equivalent to Scheduler qualifiers:

$! /START="05:00:00"

$! /DAYS=(TUESDAY)

$! /INTERVAL="NONE"

$!--

$! Create Prolog Command File

$! This command file should be integrated with the Execution Environment's
Prolog Command file. It will be executed prior to the ABS job, and define the
Load Timeout parameters, as well as the SLS symbols which might be used in
the customer's prolog and epilog commands.

$! Comments:

$! QUICKLOAD_RETRIES converted to ABS$<SC>_LOAD_TIMEOUT

$! Used estimate of 20 seconds per retry for conversion

$!

$ OPEN/WRITE PrologComFile ABS$SLS_CONVERSION:SLS_ABS_Example_ABS_PROLOG.COM

$ WRITE PrologComFile -

 "$ DEFINE/JOB ABS$1_LOAD_TIMEOUT 1600"

$ WRITE PrologComFile -

 "$ @ABS$SLS_CONVERSION:SLS_SYMBOLS.COM"

$ WRITE PrologComFile "$ EXIT"

$ Close PrologComFile

$! End of Prolog Command File Creation

$!--

$! Create the Epilog Command File

$! This Epilog Command File should be integrated with the Environment's Epi-
log command file. This will be executed after the ABS Save Request com-
pletes, and will issue appropriate STORAGE commands to set such volume
attributes as NOTES, ONSITE_DATE, and OFFSITE date.

$! Comments:

$! Only TAPE_LABELS = 3 is supported

$! Setting TAPE_LABELS to 3 (print labels after job)

$!

$ OPEN/WRITE EpilogComFile ABS$SLS_CONVERSION:SLS_ABS_Example_ABS_EPILOG.COM
B–38 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
$ WRITE EpilogComFile -

 "$ MyVol = F$TRNLNM(""ABS_OS_VOLUME_SET_1"")"

$ WRITE EpilogComFile -

 "$ STORAGE LABEL 'MyVol"

$ WRITE EpilogComFile -

 "$ STORAGE SET VOLUME 'MyVol /NOTES=""SYSTEM BACKUP"""

$! LISTING_GEN is not supported

$! ABS Listing Files are named ABS$LISTINGS:<RequestName>_<stream>.LIS

$! PRINT_Q is not supported

$! Please use your own PRINT command here, if desired

$ WRITE EpilogComFile "$ EXIT"

$ CLOSE EpilogComFile

$! End of Epilog command file creation

$! End of Command Procedure

$ EXIT

It is recommended that you go through every line in the command procedure and understand the
conversion. Some of the important points that you need to verify in the command procedure are:

• Naming conventions used in the conversion as it can differ from what is exepected

• Errors in converting the SBK policy

• Possible ABS Policy consolidation

B.2.4.3.5 Consolidating ABS Policy Objects –

Before executing the command procedures to create the ABS Policy objects, you should try to
consolidate Storage Classes and Execution Environments. You can also combine the Save
requests if warranted by the intended policy. In some cases, breaking a Save request into several
sub-requests is better for various reasons like reducing the nightly backup time, simplifying an
overall backup policy, or backing up different objects at different intervals.

Attempts are not made to consolidate the Storage Classes and Execution Environments, or to
overlay the Save requests for more optimum performance.

Consolidating Storage Classes –

Consolidating the Storage Classes is done by comparing the parameters of pairs of Storage
Classes. For each pair of Storage Class, you can determine whether they can be combined or left
unchanged. Note that in all cases, you can decide that one or the other parameter is correct for
both and consolidate based upon that decision. See Table B–5, (Storage Class (Archive) Parame-
ter) to view the list of Storage Class parameters and their matching criteria.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–39

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Table B–5 Storage Class (Archive) Parameter

Based on the intended use of the Archive Class, only the Administrator at a site can actually
determine if two separate Archive Classes can be consolidated.

Consolidating Execution Environments –

Consolidating Execution Environments is done by comparing the parameters of pairs of Envi-
ronments. For each pair of Environments, you can determine whether they can be combined or
left as is. If your decision indicates that the parameters do match and when combined can serve
the same purpose, then consolidate them. See Table B–6, (Execution Environment Parameter) to
view the list of Environment parameters and their matching criteria.

Storage Class Parameter Matching Criteria

Name Provide a meaningful name

Type of Media Should match

Tape Pool Should match

Media Location Should match

Access Control Alright if not matching, select the best to be used in the intended
Archive Class

Owner Both should be ABS

Retention Alright if not matching, select the best to be used in the intended
Archive Class

Volume Set Not set, can leave as is

Consolidation Alright if not matching, select the best to be used in the intended
Storage Class (Archive)

Catalog Alright if not matching

Maximum Saves Always set to “1” from the conversion utility

Drive List Alright if not matching, select the best to be used in the intended
Storage Class (Archive)
B–40 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Table B–6 Execution Environment Parameter

Based on the intended use of the Environment, only the Administrator at a site can actually
determine if two separate Environments can be consolidated.

B.2.4.3.6 Implementing the ABS Policies –

The DCL command procedure for every SBK file that is converted contains the ABS DCL Com-
mands to create a Storage Class (Archive), an Execution Environment and a single or multiple
Save requests. After you have examined the raw output command files from the conversion util-
ity and completed the consolidations or modifications that seem appropriate, the command files
can simply be executed using the “at the rate” sign (@) operator at the DCL prompt

$ @ABS$ROOT:[SLS_CONVERSION]<DCL Command Procedure file name>

Example:

$ @ABS$ROOT:[SLS_CONVERSION]SLS_ABS_Example_ABS.COM;1

Save Request SLS_ABS_Example_ABS_SEL_1 has been successfully created.

Note

To execute the command procedure, the user account must be granted the
ABS_BYPASS privilege. Type the following command at the DCL prompt to grant the
privilege: $MC AUTHORIZE GRANT/ID ABS_BYPASS <USER_NAME>.

Environment Parameter Matching Criteria

Name Provide a meaningful name

Data Safety Alright if not matching, select the best to be used in the intended
Environment

Listing option Alright if not matching, HP recommends not producing listings

Span FileSystems Should match

Links Option Should match

Action Should match

Profile Will always be set as ABS from the conversion utility. Select the
best PRIVILEGES to be used in the intended Environment.

Notification Alright if not matching, select the best to be used in the intended
Environment

Lock Should match

Drive count Alright if not matching, select the best to be used in the intended
Environment

Retry Limit Alright if not matching, select the best to be used in the intended
Environment

Prologue Should match or can be combined

Epilogue Should match or can be combined
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–41

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Each command procedure when executed creates the following:

• Creates a Catalog (the catalog created will be the same for all the DCL command proce-
dures. Hence, you need to comment out the catalog creation commands in the subsequent
command procedures for the procedures to execute successfully).

• Creates a Storage Class

• Creates an Execution Environment

• Creates one or more Save requests and associated schedules

• Can create a Prologue command procedure

• Can create an Epilogue command procedure

The Prologue and Epilogue command procedures are created in the ABS$SLS_CONVERSION
directory and will have the same name as that of the corresponding save request, and are
appended with the “_PROLOG” or “_EPILOG” suffix.

Example: If you convert the Example1_SBK.COM, the following Prologue and Epilogue com-
mand files are created:

• ABS$SLS_CONVERSION:Example1_ABS_PROLOG.COM

• ABS$SLS_CONVERSION:Example1_ABS_EPILOG.COM

B.2.4.3.7 Integrating the Prologue and Epilogue Commands –

If you need the features implemented in the Prologue or Epilogue command procedures, you
must integrate them into the Prologue and Epilogue command procedures that you have (if any).
There are some commands that are not directly supported by ABS; such commands are written
into the Prologue and Epilogue command procedures to be implemented later, if required.

Example: ABS does not support the symbols “Offsite Date” or “Onsite Date” given in the SBK
file. However, by issuing the appropriate MDMS SET VOLUME command, these symbols can
be implemented. The conversion utility writes these commands into the Prologue or Epilogue
command files.

Both the Execution Environment and the Save request can have Prologue and Epilogue com-
mands associated with them. They can usually be the execution of a site specific command pro-
cedure. If you want the features implemented in the Prologue or the Epilogue command
procedures (produced by the conversion utility), you have to execute them from your site spe-
cific command procedure.

Naming Conventions Used –

• STORAGE CLASS (ARCHIVE)

The name of the Storage Class created will be the value of the CONTINUE symbol (if defined in
the SBK file) appended by the suffix “_SC”. If the CONTINUE symbol is not defined, the name
of the Storage Class will be the same as the SBK file name appended by the “_SC” suffix.

• ENVIRONMENT

The name of the Environment created will be the same as the SBK file name followed by the
“_ENV” suffix. When a Save request specifies a Storage Class, the default Environment used
will be the same name as the Storage Class followed by the “_ENV” suffix. Thus, the Environ-
ment that is created should be the default choice.
B–42 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
• SAVE

The name of the Save request(s) created will be same as the SBK file, appended by the
“_FULL”, “_INC” or “_SEL” suffix. The appended suffix indicates the type of backup that was
performed in SLS.

Each SBK file when converted can produce a single or multiple Save requests. This discretion of
generating a single or multiple Save requests depends on the following conditions:

• QUALIFIERS_n differ in the type of operation (see Example 12–1, “Qualifiers_n differing
in the type of operation”)

• More than 24 include specifications are found in a single SBK file (see Example 12–2,
“More than 24 Include Specifications”)

Example 12–1 Qualifiers_n differing in the type of operation

• SBK file name: Example1_SBK.COM

• Include Specifications:

– Files_1:== Disk$User1:[Example]*.*

– Files_2:== Disk$User1:[Example]*.txt

• Qualifiers_n:

– Qualifiers_1:== /Image ! Full backup

– Qualifiers_2:== /Since=Backup ! Incremental backup

In the preceding example, the nature of backup operations performed are different. One type of
Save request when executed takes the entire disk backup whereas the other type of Save request
when executed takes only differential/incremental backup.

After the DCL command procedure “Example1_ABS.COM” is executed, the following ABS
Policy objects are created:

• Archive class: Example_ABS_SC

• Environment: Example_ABS_ENV

• Save:

– Example_ABS_FULL_1

– Example_ABS_INCR_1

Two Save requests are created from a single DCL command procedure to implement the Save
Policy object. This is because in ABS, a Save request can either perform a Full backup, Incre-
mental backup or a Selective backup and not a combination involving any of them.

If all the QUALIFIERS_n specify the same type of operation and there are fewer than 24
FILES_n specified, then the conversion utility produces a DCL command procedure, which
when executed provides a single Save request.

Example 12–2 More than 24 Include Specifications

• SBK file name: Example2_SBK.COM

• Include Specifications:

– Files_1:== Disk$User1:[Example]*.*

– Files_2:== Disk$User1:[Example]*.Txt
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–43

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
– .

– .

– Files_24:== Disk$User1:[Example]*.Com

– .

– .

– .

– Files_27:== Disk$User1:[Example1]*.Dat

More than 27 include specifications are provided.

• Qualifiers_n:

– Qualifiers_n:== /Image ! Full backup

After the DCL command procedure “Example2_ABS.COM” is executed, the following ABS
Policy objects are created:

• Archive class: Example2_ABS_SC

• Environment: Example2_ABS_ENV

• Save:

– Example2_ABS_FULL_1

– Example2_ABS_FULL_2

Two Save requests are created for a single DCL command procedure to implement the Save Pol-
icy object. This is because in ABS, a Save request can have a maximum of 24 include specifica-
tions. The remaining include specifications are included in the subsequent Save request that is
created. The first Save request “Example2_ABS_FULL_1” executes the backup for all the 24
include specifications. The next Save request “Example2_ABS_FULL_2” executes the backup
for the remaining three include specifications.

Note

The conversion utility had a limit of 9 include specification for a single Save request.
This limit is removed in ABS/MDMS T4.4 conversion utility to combine the 24 include
specifications in a single Save request. Currently ABS/MDMS supports 24 include
specifications in a Save request.

B.2.4.3.8 ABS Policy Attributes in SBK Terminology –

This section provides information on the ABS Policy objects’ parameters, their corresponding
SBK Symbols and the meaning of those parameters. Refer to the following tables for better
understanding of how the parameters are mapped to the respective Symbols in the SBK files.

• Table B–7, “ABS Storage Class Parameter and SLS SBK Equivalent” lists the ABS Storage
Class parameters and their equivalent SBK symbols.

• Table B–8, “ABS Execution Environment Parameter and SLS SBK Equivalent” lists the
ABS Execution Environment parameters and their equivalent SBK symbols.

• Table B–9, “ABS Save Request Parameter and SLS SBK Equivalent” lists ABS Save
request parameters and their equivalent SBK symbols.
B–44 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Table B–7 ABS Storage Class Parameter and SLS SBK Equivalent

Table B–8 ABS Execution Environment Parameter and SLS SBK Equivalent

Storage Class
Parameter SBK Equivalent Meaning

Name CONTINUE Common name that can be referenced by multi-
ple Save requests

Archive Type <None> Determines if the Storage Class is tape based
(type is MDMS) or disk based (type is FILES-
11)

Owner <None> Determines the NODE::USER of the Storage
Class owner. The owner will always have the
CONTROL access.

ACL PROTECTION Determines access to the backed up data. ABS
provides full ACL based access. SLS only pro-
vides OpenVMS-style System, Owner, Group
and World access.

Tape Pool TAPE_POOL MDMS pool from where volumes are allocated
for backups

Type of Media MEDIA_TYPE MDMS media type to be allocated for backups

Retain Value SCRATCH_DAYS Number of days the backed up data will be saved
before the tapes are recycled. Note that a Save
request can specify a retention shorter or equal
to the value in the Storage Class.

Consolidation CONTINUE Set of parameters that determine how the backup
savesets will be consolidated onto tapes. For
example, if the Consolidation Interval is set to
seven days, savesets will be appended onto a
volume set for seven days before a new volume
set is created.

Catalog HISTORY_SET Name of the catalog that stores data about the
files that are backed up and their location

Maximum Saves <None> Number of simultaneous Save requests that can
be written into the Storage Class. Also, deter-
mines the number of MDMS volume sets that
are simultaneously active in the Storage Class.

Media Location <None> MDMS onsite location field to match when allo-
cating volumes for backups.

Drive List DRIVE_TYPE List of specific drives to be used for backup
operations in the Storage Class. Normally, it
must be managed through the MDMS drive
objects.

Environment
Parameter SBK Equivalent Meaning

Name <None> Identifies the Environment to be referenced by the
Save requests

Owner <None> Identifies the owner for the Environment.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–45

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Environment
Parameter SBK Equivalent Meaning

ACL <None> Identifies access to the Environment

Data Safety QUALIFIERS Bitmask that contains the data safety options to be
applied during the backup. Data safety options
include CRC checking and full data verification.

Listing Option LISTING_GEN
FULL

Determines whether a listing file is produced and if
it is a “FULL” or a “BRIEF” listing.

Span Filesys Opt. <None> For UNIX type of file systems, determines whether
the entire file system is backed up, even if it spreads
across multiple physical devices.

Links Only <None> For UNIX type of file systems, determines whether
ABS takes backup of only the logical links or the
data as well.

Compression <None> For UNIX type of file systems, determines the type
of compression to be applied on the savesets.

Action QUALIFIERS Determines the action to be taken on the original
data objects (example - on the files backed up).
Options include None, Record Backup Date, or
Delete.

Profile PRIVS Determines the username, privileges and access
rights used during the backup operation. The special
keyword “<REQUESTER>” indicates that the
backup operations must be performed with the user-
name, privileges and access rights of the person
issuing the ABS SAVE command.

Notification REPLY_MSG
STATUS_MAIL

Determines when and how the notification is cre-
ated, and also the operator who is notified.

Locking Option QUALIFIERS Determines the extent to which the inter-locking is
done between the backup in progress and an active
file system. Options include Ignore File Writers and
Hot Backup.

Drive Count N_DRIVES Determines the number of tape drives to be used
during the backup operations.

Retry Count <None> Determines how many times a failed backup must
be retried.

Interval <None> Determines how often a failed backup must be
retried.

Prologue Command PRE_PROCESS_FI
RST

Command that must be executed when the backup
starts, contrast to the Save request Prologue.

Epilogue Command POST_PROCESS_
LAST

Command that must be executed when the backup
completes, contrast to the Save request Epilogue.
B–46 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Table B–9 ABS Save Request Parameter and SLS SBK Equivalent

Save Request
Parameter SBK Equivalent Meaning

Name SBK File name Identifies the group of backup operations to be per-
formed.

Type of Save QUALIFIERS Determines the type of backup executed; whether
it is Full, Incremental or Selective (individual file)
backup.

Source Node NODE_n Identifies the Node where the data resides.

Include Spec
(Include Specification)

FILES_n Identifies the data to be backed up. Multiple
include specifications can be given on a single
Save request, and each can have a different Object
Type.

Object Type BACKUP_TYPE Identifies the type of data to be backed up. ABS
supports different data types. Some of them
include OpenVMS Files, UNIX Files, and Oracle
RDB Databases.

Agent Qual.
(Agent Qualifiers)

QUALIFIERS Allows backup agent specific qualifiers to be
added to the command that is used to take data
backup.

Since Date QUALIFIERS Determines if data objects to be backed up must be
selected based on creation/modification date.

Before Date QUALIFIERS Determines if data objects to be backed up must be
selected based on creation/modification date.

Exclude Specification QUALIFIERS Determines selected data objects to be excluded
from the backup.

Storage Class (Archive)
Name

<None> Provides the Storage Class name into which the
data is backed up.

Environment <None> Provides the name of the Execution Environment
that needs to be used for the backup operations.

Start Time TIME_n Indicates the time at which the Save request must
start each time it is scheduled for taking backups.
Note that an SBK can provide multiple DAYS_n
and TIME_n parameters but an ABS Save request
is restricted to a single Start Time and Interval.

Scheduling Interval DAYS_n Identifies the repeat interval for the Save request.
ABS provides a variety of predefined simple inter
vals, such as Daily, Weekly, Monthly, as well as
several “complex” intervals, such as Weekly Full
with Daily Incremental, and log based schedules.
See the information on "Log-n Backup Schedules"
in ABS for a full description of log based sched-
ules.

Explicit Interval DAYS_n

Prologue Command PRE_PROCESS_E
ACH

Command that must be executed before each
backup operation within the Save request starts,
contrast to the Environment’s Prologue.

Epilogue Command POST_PROCESS_
EACH

Command that must be executed after each backup
operation within the Save request completes, con-
trast to the Environment’s Epilogue.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–47

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.4.3.9 Disabling the SLS SBK Files –

It is very important to note that once you have executed the DCL Command procedures, the
ABS Save requests will be executing according to their schedules. It means that you will be per-
forming both SLS and ABS backups if you do not disable the SLS SBK files.

The SLS SBK files can be disabled by leaving their DAYS_n and TIME_n qualifiers blank or by
commenting out these qualifiers. This causes SLS to no longer schedule the SBK files for execu-
tion.

Since SLS and ABS use different media management subsystems, it is highly recommended that
you do not use both products on the same node. If you do, you will find that the SLS and MDMS
volume databases can become unsynchronized. There can also be contention and other unex-
pected troubles with drives and jukeboxes. If you want to stage your SLS to ABS conversion
across the network, the following approach is recommended:

• Define your database server as your first set of nodes to convert; these nodes will execute
the MDMS database server.

• Perform the MDMS conversion on these nodes (see Section B.2.4.1, “Converting
SLS/MDMS V2.x Symbols and Database Files to ABS/MDMS V4.x”).

• Perform the ABS conversion on these nodes (see Section B.2.4.3, “Converting SLS SBK
Symbols to ABS Policy Objects”).

• On other client nodes still running SLS, define the symbol DB_NODES in the TAPE-
START.COM to point to nodes in the ABS/MDMS database server.

After the conversion on the server node, MDMS V4.x will start managing the volume, magazine
and slot databases but the client systems are still able to use SLS as the backup paradigm. It is
recommended that you convert the remainder of your systems to ABS/MDMS V4.x as early as
possible, because some of the more unusual features of SLS/MDMS V2.x are not supported by
the new ABS/MDMS V4.x database server.

B.2.4.3.10 Converting User Backup policy –

The conversion utility does not convert User Backup policy automatically. It is only intended to
make converting SBK files easier or automatic.

Note

There is no automatic way to set up archives for the entire user population or for a
large set of users. The only way to accomplish the task is by creating a DCL command
procedure and issuing the correct ABS DCL commands.

B.2.4.3.11 Monitoring ABS Activity –

After implementing your backup policy in ABS, you should carefully monitor the activities of
ABS until you are confident that your policy is being executed as intended. There are three ways
to monitor ABS activity:

• View the schedules (MDMS SHOW SCHEDULE or MDMS SHOW SAVE *).

• Set up Notification criteria on the Environments to send you e-mail when ABS operations
complete. The e-mail will contain the name of the job and the final status.

• Examine the ABS Log files. All ABS Log files are created in the ABS$LOG: directory and
are given the same name as the Save request.

• For catalog operations, you can do the following:
B–48 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
– Monitor the Staging Log files
These are named ABS$LOG:<Catalog_Name>_<Stream>.LOG

– Monitor the Catalog cleanup log files
These are named ABS$LOG:ABS$CATALOG_CLEANUP.LOG

B.2.5 Troubleshooting SLS/MDMS V2.x to ABS/MDMS V4.x Errors

Startup Issues –

The equivalent for SLS$ROOT:[000000]TAPESTARTnodename.COM is found in
MDMS$LOG:MDMS$STARTUP_nodename.LOG. Verify this log file for issues that could have
come up when the product was started. Note that as with SLS, turning on the Opcom can reveal
problems such as the syntax errors and licensing issues.

Save and Restore Issues –

SLS users are used to reading log files for system backups found in the directory
SLS$SYSBAK_LOGS. In the same manner ABS/MDMS will put its log files in the directory
ABS$LOG. Saves and Restores can be checked for normal completion by scanning their associ-
ated log files. The log files by default are named the same as the SAVE policy itself. A helpful
trick to monitor these logs is to use the command:

$TYPE/TAIL/CONT

This command takes you to the end of the file as the log buffer is dumped to disk.

History or Catalog Issues –

• ABS$CATALOG:Catalog_n.LOG
This log tracks the processing of staging files for catalogs. Check this file if data recently
backed up is not showing up in the appropriate catalog. The SLS equivalent are the
SLS$SBUPDT.LOG files found in SLS$MAINTENANCE_LOGS.

• ABS$CATALOG:ABS$CATALOG_CLEANUP.LOG
This log records the information about the daily cleanup of catalogs and removal of obsolete
records. Check this file if you suspect that your catalogs are not cleaned as volumes free up.
In SLS you will have checked the files, SLS$DATA:SYSCLN.LOG and
SLS$DATA:CLEANUP.LOG.

Miscellaneous Logs (no SLS Equivalents) –

• ABS$CATALOG:ABS$COORD_CLEANUP_nodename.LOG
The ABS coordinator is responsible for a number of different functions. Should there be a
suspected problem with the coordinator, this log will be a starting point for troubleshooting.

• MDMS$LOG:MDMS$LOGFILE_DBSERVER.LOG
Tracks events that have happened on the system and also the errors due to the
MDMS$SERVER process. There are other files in the MDMS$LOGFILE directory, as well
as additional settings for more in depth troubleshooting that are useful in particular trouble-
shooting situations. HP Services will guide you to use these additional settings if the need
arises.

Storage Report on Volume Database does not Work after the Conversion –

$ STORAGE REPORT VOL VOL,DRIVE,STATUS,MEDIA

%SLS-E-MBXASSIGN, error assigning channel to SLS$MAILBOX mailbox

-SYSTEM-W-NOSUCHDEV, no such device available

%SLS-F-NOMFACES, unable to access master file\
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–49

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Reason –

After the conversion, the volume database that is active is with the MDMS V4.X database.

Suggestion –

If you want to view the entire Volume(s) details, type the following command at the DCL
prompt:

$ MDMS SHOW VOLUME <VOLUME_NAME>/FULL

For a brief listing, type the following command at the DCL prompt:

$ MDMS SHOW VOLUME <VOLUME_NAME>/BRIEF

Conversion Failing when Multiple Versions of the DAT Files exist in the Pri-
mast Directory –

Following is a snap shot of the SLS/MDMS V2.x to ABS/MDMS V4.x conversion process

Renaming the following files:

SLS$MASTER:POOLAUTH.DAT;* to SLS$MASTER:POOLAUTH.DAT_OLD;*

 SLS$MASTER:SLOTMAST.DAT;* to SLS$MASTER:SLOTMAST.DAT_OLD;*

 SLS$MASTER:TAPEMAST.DAT;* to SLS$MASTER:TAPEMAST.DAT_OLD;*

 SLS$MASTER:SLS$MAGAZINE_MASTER_FILE.DAT;* to

 SLS$MASTER:SLS$MAGAZINE_MASTER_FILE.DAT_OLD;*

Press Enter to continue:

%RENAME-I-RENAMED, 2DKA0:[SLS$FILES.PRIMAST]POOLAUTH.DAT;1 renamed to
2DKA0:[SLS$FILES.PRIMAST]POOLAUTH.DAT_OLD;1

%RENAME-I-RENAMED, 2DKA0:[SLS$FILES.PRIMAST]SLOTMAST.DAT;2 renamed to
2DKA0:[SLS$FILES.PRIMAST]SLOTMAST.DAT_OLD;2

%RENAME-E-OPENOUT, error opening 2DKA0:[SLS$FILES.PRIMAST]TAPE-
MAST.DAT_OLD;2 as output

-RMS-E-ENT, ACP enter function failed

-SYSTEM-W-DUPFILENAME, duplicate file name

%RENAME-E-OPENOUT, error opening 2DKA0:[SLS$FILES.PRIMAST]TAPE-
MAST.DAT_OLD;1 as output

-RMS-E-ENT, ACP enter function failed

-SYSTEM-W-DUPFILENAME, duplicate file name

Reason –

The above-mentioned error is seen if multiple versions of the same DAT file are present in the
Primast directory.
B–50 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
Solution –

Follow these steps:

1. Rename the existing *.Dat_old files to *.Dat in the SLS$ROOT:[PRIMAST] directory.

2. Purge the *.Dat files.

3. Execute the conversion again.

PoolAuth.Dat File Locked During the Conversion –

Following is a snap shot of the SLS/MDMS V2.x to ABS/MDMS V4.x conversion process

Renaming the following files:

SLS$MASTER:POOLAUTH.DAT;* to SLS$MASTER:POOLAUTH.DAT_OLD;*

Opening file 2DKA0:[SLS$FILES.PRIMAST]POOLAUTH.DAT; failed with:

%RMS-E-FLK, file currently locked by another user

Reason –

The above-mentioned error is seen if SLS is still active on other Client nodes and the conversion
is executed on the Database server node. The Client nodes will still be accessing the DAT files
(in the PRIMAST directory) on the Database server node.

Solution –

Shutdown SLS on all the other nodes connected to the server and execute the conversion again.

SLS SBK Symbols to ABS Policy Objects Conversion Fails –

$ @ABS$SYSTEM:SLS_CONVERT SLS_ABS_SIMPLE

No SBK files match the specification: SLS$SYSBAK:SLS_Example_SBK.COM;0

Enter wildcard SBK specification: :

Reason –

The above-mentioned error is seen if you try to convert SLS SBK symbols to ABS Policy
objects without starting SLS. The logical SLS$SYSBAK is set only when SLS is started.

Solution –

Start SLS and do the conversion again.
Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X B–51

Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
B.2.6 Converting MDMS V4.x to a V2.x Volume Database

This section describes how to convert back the ABS/MDMS V4.x volume database to
SLS/MDMS V2.x volume database.

For some reason, you need to convert back to SLS/MDMS V2.x, a conversion command proce-
dure is provided to do the conversion. The conversion procedure converts back only the volume
database. If you have added new objects after the conversion, you need to add these objects back
to TAPESTART.COM manually or to the following SLS/MDMS V2.x database files:

• Database authorization file (VALIDATE.DAT)

• Pool Authorization file (POOLAUTH.DAT)

• Slot Definition file (SLOTMAST.DAT)

• Volume Database file (TAPEMAST.DAT)

• Magazine Database file (SLS$MAGAZINE_MASTER_FILE.DAT)

To execute the conversion command procedure, type the following command at the DCL prompt
(this command procedure is copied to MDMS$ROOT:[SYSTEM] during the ABS/MDMS
installation):

$ @MDMS$SYSTEM:MDMS$CONVERT_V4_TO_V2

This is also an interactive command procedure that provides introduction to the conversion and
also guides you through the conversion. The conversion procedure prompts you to provide par-
ticular inputs based on which you are provided the required information and also the intended
output. The intended output here will be the conversion of volume database from MDMS V4 to
MDMS V2 environment.
B–52 Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X

C
Prev3 Support

Prev3 Support is provided to enable SLS/MDMS V2.x users to restore SLS data that was previ-
ously backed up, even after migrating to ABS/MDMS V4.x. While using the Prev3 Support, you
will use SLS as the client to restore the necessary data as and when required.

The Prev3 Support is a logical MDMS$PREV3_SUPPORT in the SYS$MAN-
AGER:MDMS$SYSTARTUP.COM. It is by default set to “FALSE”. In order to enable the
Prev3 Support, you need to set this logical to “TRUE”.

When the logical is set to “FALSE” (the default value), both SLS/MDMS V2.x and ABS/MDMS
V4.x can operate on the same node without interferring with each other’s settings. This is
explained in the following “Using SLS/MDMS and ABS/MDMS Simultaneously”:

C.1 Using SLS/MDMS and ABS/MDMS Simultaneously
Both SLS/MDMS and ABS/MDMS can be used on the same system (with no knowledge of each
other). Each product will maintain separate volume databases. This is accomplished by defining
the logical MDMS$PREV3_SUPPORT to “FALSE”.

In SYS$STARTUP:MDMS$SYSTARTUP.COM, set the logical MDMS$PREV3_SUPPORT to
“FALSE”. Setting the logical to “FALSE” ensures that there are no interference between the two
applications.

When ABS/MDMS and SLS/MDMS are configured to run without knowledge of each other,
caution must be taken when defining jukeboxes and drives to both environments. Database dis-
crepancies can potentially result.

C.1.1 Defining the Prev3 Support Logical

1. Edit SYS$MANAGER:MDMS$SYSTARTUP.COM and define the logical as:

$ DEFINE/SYSTEM/NOLOG MDMS$SUPPORT_PRE_V3 -

 "FALSE"

2. Shutdown SLS and MDMS

$ @SLS$SYSTEM:SLS$SHUTDOWN

$ @SYS$STARTUP:MDMS$SHUTDOWN

3. Restart MDMS and then SLS

$ @SYS$STARTUP:MDMS$STARTUP

$ @SYS$STARTUP:SLS$STARTUP
Prev3 Support C–1

Prev3 Support
C.1 Using SLS/MDMS and ABS/MDMS Simultaneously
C.1.1.1 Processes Existing on the System after the Logical is Set

SLS/MDMS 2.9* code stream:

SLS$TAPMGRDB Database server

SLS$TAPMGRRQ

SLS$TAPMGRUT Seen at product startup and midnight processing

SLS$OPCOM

ABS/MDMS 3.*,4.* code stream:

MDMS$SERVER Can be database server or client process

ABS$COORD_CLEAN

ABS$POLICY 3.* ABS process

C.1.1.2 Creating Separate Pools for SLS and ABS

Caution

Crossing volumes between the two applications must be achieved carefully when run-
ning SLS and ABS/MDMS together on the same node. Be sure that each application
knows only of its volumes that it can use.

After identifying the volumes in the jukebox that will be designated for use by SLS and
ABS/MDMS applications, do the following:

• Create a pool in ABS/MDMS called “SLS” and place all of the volumes to be used by SLS
in this pool.

• Create a pool in SLS called “ABS” and place all the volumes to be used by ABS in this
pool.

The purpose of creating separate pools is to set aside volumes in each application that the
other application will use. This prevents the allocation and use of SLS volumes by ABS and
vice-a-verse.

Though the jukebox will be loaded with both the volumes, inventory and allocations will over-
look those volumes they are not aware off.

C.1.1.3 Examining the RDF Settings

Depending on which product is started last determins whether RDF will be executed from the
SLS/MDMS or the ABS/MDMS environment. You can determine what environment is in use by
examining the logical TTI_RDEV:

SLS logical definition:

$ SHOW LOG TTI_RDEV

 "TTI_RDEV" = "SLS$ROOT:[TTI_RDEV]" (LNM$SYSTEM_TABLE)

ABS/MDMS logical definition:

$ SHOW LOG TTI_RDEV

 "TTI_RDEV" = "MDMS$ROOT:[TTI_RDEV.ALPHA]" (LNM$SYSTEM_TABLE)
C–2 Prev3 Support

Prev3 Support
C.2 Using SLS as the Client for ABS/MDMS
 or

 "TTI_RDEV" = "MDMS$ROOT:[TTI_RDEV.VAX]" (LNM$SYSTEM_TABLE)

C.2 Using SLS as the Client for ABS/MDMS
When the Prev3 Support logical is set to “TRUE”, then SLS/MDMS V2.x will start using the
ABS/MDMS V4.x volume database; in the sense, SLS/MDMS will be the client that can be used
to restore and view SLS backed up data when needed.

SLS/MDMS can be configured to use the ABS/MDMS volume database. This can be accom-
plished by defining the logical MDMS$PREV3_SUPPORT to “TRUE”. This functionality is
provided for encouraging customers to migrate from SLS to MDMS. It helps in ensuring that the
database remains intact even after moving ABS/MDMS.

With MDMS$SUPPORT_PRE_V3 set to "TRUE", the SLS$TAPMGRDB process is eliminated
and replaced by the MDMS$SERVER process. The SLS RQ process is led to believe that it is
communicating to SLS processes, but in fact it is communicating to specific functions in the
MDMS$SERVER process. Below is an explanation on how this is achieved.

With the logical defined to “TRUE”, the MDMS$SERVER starts listening on the following two
DECnet objects:

• SLS$DB - the object the SLS$RQ process connects to for database access

• SLS$DBX - the object the SLS$RQ process connects to to find out the SLS$DB process in
the cluster (or even a single node)

When a SLS command is issued, it communicates with the SLS$DBX object to find out the data-
base server node. Then, the SLS RQ process connects to the SLS$DB object on that node, which
in turn executes another function in the MDMS$SERVER process to get the task done. This
internal function aids in mapping the SLS message to the corresponding MDMS message and
then provides the output to SLS (in the format that SLS understands).

C.2.1 Defining the Prev3 Support Logical

1. Edit SYS$MANAGER:MDMS$SYSTARTUP.COM and define the logical as:

$ DEFINE/SYSTEM/NOLOG MDMS$SUPPORT_PRE_V3 -

 "TRUE"

2. Shutdown SLS and MDMS

$ @SLS$SYSTEM:SLS$SHUTDOWN

$ @SYS$STARTUP:MDMS$SHUTDOWN

3. Restart MDMS first and then SLS

$ @SYS$STARTUP:MDMS$STARTUP

$ @SYS$STARTUP:SLS$STARTUP

Caution

Make sure ABS/MDMS is started before starting SLS, else SLS will get the lock on the
SLS$DB object.
Prev3 Support C–3

Prev3 Support
C.2 Using SLS as the Client for ABS/MDMS
C.2.1.1 Processes Existing on the System after the Logical is Set

SLS/MDMS 2.9* code stream:

SLS$TAPMGRRQ

SLS$TAPMGRUT Seen at product startup and midnight processing

SLS$OPCOM

ABS/MDMS 3.*,4.* code stream:

MDMS$SERVER Can be database server or client process

ABS$COORD_CLEAN

ABS$POLICY 3.* ABS process

C.2.1.2 Examining the RDF Settings

Since SLS has started later TTI_RDEV definition will be as follows:

$ SHOW LOG TTI_RDEV

 "TTI_RDEV" = "SLS$ROOT:[TTI_RDEV]" (LNM$SYSTEM_TABLE)

In case you want to use the RDF in ABS/MDMS environment, comment out the following lines
in SLS$SYSTEM:LOADER.COM:

$ @SLS$SYSTEM:SLS$START_RDF

$ if (.not. $status)

$ then

$ tapestart_log = "SLS$ROOT:[000000]TAPESTART''F$GETSYI("NODENAME")'.LOG"

$ request "RDF startup failed during SLS startup. See ''tapestart_log'
log

$ endif

Also, comment out the following lines written for RDF shutdown in SLS$SYSTEM:SHUT-
DOWN.COM:

$SHUT_RDF:

$ CTX = ""

$ I = F$CONTEXT("PROCESS",CTX,"PRCNAM","--RDserver--","EQL")

$ PID = F$PID(CTX)

$ If (PID .nes. "") Then @TTI_RDEV:RDSERVER_SHUTDOWN

$!

$ WAIT 00:00:10
C–4 Prev3 Support

Prev3 Support
C.2 Using SLS as the Client for ABS/MDMS
$ CTX = ""

$ I = F$CONTEXT("PROCESS",CTX,"PRCNAM","--RDserver--","EQL")

$ PID = F$PID(CTX)

$ If (PID .eqs. "")

$ then

$ CTX = ""

$ I = F$CONTEXT("PROCESS",CTX,"PRCNAM","--RDclient--","EQL")

$ PID = F$PID(CTX)

$ If (PID .nes. "") Then @TTI_RDEV:RDCLIENT_SHUTDOWN

$ endif

C.2.1.3 Supported STORAGE Commands

Following are the Storage commands that are supported even after the SLS/MDMS V2.x to
ABS/MDMS V4.x conversion:

• Show Commands (SHOW VOLUME, SHOW MAGAZINE, SHOW JUKE, SHOW VER-
SION)

• BIND/UNBIND commands

• ADD (ADD MAGAZINE, ADD VOLUME) commands

• SET (SET VOLUME) commands
Prev3 Support C–5

D
Upgrading from ABS V2.X/V3.X to V4.x

Environment

D.1 Introduction
This appendix describes the various conversion activities that are needed when upgrading to
ABS/MDMS V4.x from previous versions of ABS. These upgrades from V2.x or V3.x are
described under different headings for your reference.

For upgrading from ABS V2.x/V3.x to the latest version, separate procedures are provided that
guide you to through the upgrade process. It also covers converting specific catalog format,
RMS and RDB policy databases.

D.2 Upgrading from ABS/MDMS V2.x/V3.x to V4.x
This section on upgrading from ABS/MDMS V2.x/V3.x provides details on the version specific
upgrade command procedures that must be executed to upgrade to an ABS/MDMS V4.x ver-
sion. It also involves converting the catalog formats, RMS and RDB policy databases.

D.2.1 Converting ABS/MDMS V2.x to ABS/MDMS V4.x

ABS V2.x uses TAPESTART.COM, Volume and Magazine databases, and various data files for
Media Management. It also uses ABS Policy database for the ABS objects. You might want to
convert the media information into the MDMS databases or create new objects. In ABS/MDMS
V4.x, the ABS Policy Engine has been moved into the MDMS server. To upgrade to ABS V4.x,
the ABS 2.x or 3.x Policy database information must be exported to the MDMS database. You
also need to do some catalog modifications.

Note

If you are using an ABS RDB policy database, it must be converted to an RMS data-
base before exporting the data to the V4.x format. The RDB conversion must be done
before updating to V4.x. See Section D.2.5, “Converting ABS V2.x/V3.x RDB Policy
Database to ABS V4.x (MDMS Server Database)”.

• To convert TAPESTART.COM, Volume and Magazine databases into ABS/MDMS V4.x
databases, use the command procedure MDMS$SYSTEM:
MDMS$CONVERT_V2_TO_V3. See Section D.2.2, “Converting ABS V3.0B and MDMS
2.x to ABS/MDMS V4.x” for more information.

• To convert ABS catalogs, use SYS$SYSTEM:ABS$CATALOG_UPGRADE.EXE. See
Section D.2.4, “Converting ABS V2.x Catalogs to V4.x Format” for more information.

• To convert the ABS RDB database to an RMS database, see Section D.2.5, “Converting
ABS V2.x/V3.x RDB Policy Database to ABS V4.x (MDMS Server Database)” for more
information.
Upgrading from ABS V2.X/V3.X to V4.x Environment D–1

Upgrading from ABS V2.X/V3.X to V4.x Environment
D.2 Upgrading from ABS/MDMS V2.x/V3.x to V4.x
• To convert the ABS Policy database to V4.x format, use SYS$SYSTEM:
ABS$CONVERT_V3_TO_V4.EXE. See Section D.2.6, “Converting ABS V3.x RMS Pol-
icy Database to ABS V4.x (MDMS Server Database)” for more information.

D.2.2 Converting ABS V3.0B and MDMS 2.x to ABS/MDMS V4.x

MDMS V2.x uses TAPESTART.COM, Volume and Magazine databases. You might want to con-
vert them into the MDMS databases or create new objects. ABS V3.0B uses the ABS policy
databases which must be moved to the MDMS database.

• To convert TAPESTART.COM, Volume and Magazine databases into MDMS V4.x, use the
command procedure MDMS$SYSTEM: MDMS$CONVERT_V2_TO_V4. See Section
B.2.4.1, “Converting SLS/MDMS V2.x Symbols and Database Files to ABS/MDMS V4.x”
for more information.

• To convert the ABS policy database into the V4.x format, use ABS$SYSTEM:
ABS$CONVERT_V3_TO_V4.EXE. See Section D.2.6, “Converting ABS V3.x RMS Pol-
icy Database to ABS V4.x (MDMS Server Database)” for more information.

D.2.3 Converting ABS/MDMS V3.1x or 3.2x to ABS/MDMS V4.x

MDMS V3.x needs no conversion to work with ABS/MDMS V4.x. ABS V3.1 or V3.2 uses the
ABS policy database that must be moved into the MDMS database.

• To convert the ABS Policy database to V4.x format, use ABS$SYSTEM:
ABS$CONVERT_V3_TO_V4.EXE.

D.2.4 Converting ABS V2.x Catalogs to V4.x Format

If you are upgrading from ABS V2.1, 2.1A or 2.1B, you must convert the catalog format before
using them in ABS V4.x. The catalog upgrade utility upgrades catalogs from their previous for-
mats to the new V4.x formats and also deletes expired summary records from those catalogs.
The log file ABS_LOG:ABS_CATALOG_V22_UPGRADE.LOG is generated with information
about all of the catalog entries that are modified or deleted.

The catalog upgrade has an update parameter called “p1” that requires the name of the catalog
you want to upgrade, as the input.

You can use the catalog upgrade to upgrade a single ABS catalog or all the ABS catalogs. To
upgrade a single ABS catalog, specify the catalog name as to the input to the “p1” parameter. To
upgrade all the catalogs, enter an asterisk “*” as the wildcard character or leave the “p1” param-
eter blank.

Follow these steps to execute the utility:

1. Define the following symbol:

$ CATALOG_UPGRADE :== $ABS_SYSTEM:ABS$CATALOG_UPGRADE.EXE

2. Enter one of the following commands:

$ CATALOG_UPGRADE ! upgrades all ABS catalogs
$ CATALOG_UPGRADE * !equivalent to example above
$ CATALOG_UPGRADE ABS_CATALOG ! Upgrades a catalog named ABS_CATALOG
D–2 Upgrading from ABS V2.X/V3.X to V4.x Environment

Upgrading from ABS V2.X/V3.X to V4.x Environment
D.2 Upgrading from ABS/MDMS V2.x/V3.x to V4.x
Note

The ABS cagtalogs must be inactive while the catalog upgrade utility is executed. The
catalog that is being upgraded will be locked; no save, restore, or lookup operations
are allowed while the upgrade is in progress.

D.2.5 Converting ABS V2.x/V3.x RDB Policy Database to ABS V4.x (MDMS Server
Database)

If you are still using an RDB Policy database, the command procedure to convert it to RMS is
available in the previous versions of ABS. You need to extract the command procedure from one
of the earlier ABS kits or contact HP Customer Support for assistance.

Note

The ABS V2.x/V3.x RDB Policy database conversion must be done prior to updating
to V4.x.

Follow these steps to convert ABS V2.x or 3.x RDB Policy database to V4.x.

1. Before updating to V4.x, convert the RDB Policy database to RMS Policy database using
the conversion programs provided with the ABS V3.1A or V3.2 kits.

$ @ ABS$SYSTEM:ABS$CONVERT_TO_RMS

2. Convert the RMS Policy database to MDMS database as described in Section D.2.6, “Con-
verting ABS V3.x RMS Policy Database to ABS V4.x (MDMS Server Database)” for more
information.

D.2.6 Converting ABS V3.x RMS Policy Database to ABS V4.x (MDMS Server Data-
base)

Before upgrading to V4.x, type “ABS SHOW <Object_name>/FULL. This command provides
the required objects’ details in an output file, which you can use for reference after the upgrade.
Then upgrade to V4.x and execute the following steps to convert the ABS policy database to
V4.x:

Pre-requisites

Before executing the conversion, ensure that the following are verified:

• The old ABS Policy database files (ABS$DATABASE:EPCOT.DB%) are not being used at
present.

• ABS V4.x and MDMS V4.x are configured and running on all the Clients and Servers.

Run the SYS$SYSTEM: ABS$CONVERT_V3_TO_V4.EXE utility to convert the ABS 3.x
database to MDMS Database. The utility exports only the highest version of the Policy object.
Details of new MDMS objects created are logged in ABS$CONVERT_V3_TO_V4.LOG.
Upgrading from ABS V2.X/V3.X to V4.x Environment D–3

Upgrading from ABS V2.X/V3.X to V4.x Environment
D.2 Upgrading from ABS/MDMS V2.x/V3.x to V4.x
Sample Conversion –

$ RUN SYS$SYSTEM:ABS$CONVERT_V3_TO_V4.EXE

Enter the Path of ABS V3.x Policy Database Files [ABS$DATABASE:] :

Converting ARCHIVE Objects...

Converting ENVIRONMENT Objects...

Converting SAVE Objects...

Converting RESTORE Objects...$

Additional Information –

The additional information on backing up of Oracle database, managing history files and run-
ning SLS and ABS/MDMS simultaneously help you to manage the backups effectively.

Backing up Oracle Database –

Oracle RDB backups are available in ABS/MDMS as it was in SLS. When a Save request in cre-
ated, select the appropriate DATA_SELECT_TYPE for the version and the area of RDB that you
want to backup. This will automatically create the SELECTION policy. The backup must be
scheduled as any other ABS/MDMS backup. Though not required, it would be a good practice to
create a CATALOG for only these types of backups.

Note

ABS/MDMS can also backup up Oracle 8i and 9i databases. However, this functional-
ity is not available in SLS. Refer to Chapter 9, “System Backup to Tape for Oracle
Databases” on how to set up the Oracle database.

Managing the SLS data in History Files.

Currently there is no functionality for reading the SLS history files from ABS/MDMS and initi-
ating a backup. Two scenarios are available for recovering pre ABS/MDMS data from SLS:

• Keep an instance of SLS running for history lookups only. The SLS and ABS licenses will
support this environment. Once information is located in SLS, initiate a restore manual
restore command using the Backup utility.

• Capture data from SLS volumes and feed data directly into ABS catalogs. This can prove to
be a large task so it is important to consider which backups may need to be restored mostly
commonly.
To catalog existing savesets, create a SAVE policy as follows:

– MDMS CREATE SAVE mysaveset_catalog –

– /INCLUDE=yourtape:*-

– /DATA_TYPE=VMS_SAVESET-

– /ARCHIVE=my_archive-

– /ENVIRONMENT=my_environment

– /START=your_start_time
The data from the tape will be written to the catalog designated by the ARCHIVE Pol-
icy.
D–4 Upgrading from ABS V2.X/V3.X to V4.x Environment

E
ABS/MDMS Support for Fibre Channel

E.1 Introduction
The following section describes the support by the ABS/MDMS for the Fibre Channel (FC) con-
nected devices. It discusses the configurations supported and restrictions if any.

Fibre Channel, a highly-reliable, gigabit interconnect technology allows concurrent, guaranteed
delivery communications among workstations, mainframes, servers, data storage systems, and
other peripherals using SCSI and IP protocols. FC offers significant speed, distance and cost
advantages. Computer and storage systems can be separated and distributed efficiently with FC.

The ability to easily share resources amongst systems is both a major benefit and a possible
source of problems.

This section assumes basic level of familiarity with FC protocol and configuration and adminis-
tration of FC connected device. Refer chapter 7, Configuring Fibre Channel as an OpenVMS
Cluster Storage Interconnect, of the Guidelines for OpenVMS Cluster Configurations manual
(April 2001) for details on

• Tape and Medium Changer Device Names

• Configuring a Fibre Channel Tape Device

• Changing the Name of an Existing Fibre Channel Tape Device

• Moving a Physical Tape Device on Fibre Channel

• Serving a Fibre Channel Tape Device

• Replacing a Fibre Channel Tape Device

• Determining the Physical Location of a Fibre Channel Tape Device

OpenVMS V7.3 documentation are available online at http://www.openvms.hp.com:8000/

E.2 Issues with sharing FC connected devices
Hosts on the fabric can be configured as a single cluster or as multiple clusters and/or non-clus-
tered nodes. Devices connected over the FC can potentially be visible to all the servers on the
storage area network. For the purposes of this paper, we will assume that all of the systems are
running OpenVMS so that communications between non-clustered systems will be well defined.

Note

Fibre Channel is not directly supported on VAX computers. However, VAX computers
within a VMScluster can access FibreChannel devices that are (T)MSCP-Served by
one or more Alpha computers within the same VMScluster. SMS software supports
this configuration and provides access and control of robot device(s) not directly visi-
ble by the VAX computers.
ABS/MDMS Support for Fibre Channel E–1

ABS/MDMS Support for Fibre Channel
E.3 FC connected tape devices, medium changers (robots) and SMS Products
This introduces the issue of different servers writing over each other or intertwined writes if the
access to the device is not synchronized. Currently, there is no OpenVMS resource lock mecha-
nism that spans the domain of the SAN and all of the possibly heterogeneous systems connected
to it.

The OpenVMS operating system neither supports sharing of single devices across different oper-
ating systems nor between OpenVMS nodes not within the same VMScluster. The HSG access
path setting for each device and/or FC switch zoning can be used to ensure that each HSG stor-
age device is accessible to only one cluster or one non-clustered system.

E.3 FC connected tape devices, medium changers (robots) and
SMS Products

The SCSI tapes and libraries are connected to the Fibre Channel by a Fibre-to-SCSI bridge
known as the Modular Data Router (MDR). Open VMS currently support MDR connected to a
switch and configured in SCSI Command Controller (SCC) mode. Network Storage Router
(NSR) M2402 by HP is a key component in a complete data protection solution.

It allows multiple host servers to communicate with a SCSI tape device over a Fibre Channel
link making backup speeds five times faster. HSM has been tested and qualified with Network
Storage Router (NSR) M2402.

Tape and medium changer devices are automatically named and configured using the SYSMAN
IO FIND and IO AUTOCONFIGURE commands as described in Guidelines for OpenVMS
Cluster Configurations manual (April 2001) Manual. Fibre Channel tape names are in the form
2MGAn. The letter for the controller is always A, allocation class is set as 2. The device mne-
monic for tapes is MG and GG for medium changers. The device unit n is automatically gener-
ated by OpenVMS. Tape and medium changer names are automatically kept consistent within a
single OpenVMS Cluster system. Once any node in the cluster names a tape device, all other
nodes in the cluster automatically choose the same name for that device. The chosen device
name remains the same through all subsequent reboot operations in the cluster.

If multiple non-clustered Alpha systems on a SAN need to access the same tape device on the
Fibre Channel, then the application software must provide synchronized device access.

E.3.0.1 HP Media Device Management System (MDMS) for OpenVMS:

MDMS V3.2 and above supports sharing of tape device and juke box (media changer) across
non-clustered nodes as long all the nodes are in a single MDMS domain and use MDMS to allo-
cate the drive. You must specify all the nodes or groups of nodes who can directly access the
Drive or Jukebox (through FC). The accessibility attribute is defined by using the /NODE or
/GROUP qualifiers in the DCL command set for MDMS or by using the MDMS GUI. MDMS
presently supports sharing of a tape device across a maximum of 32 clusters.

Due to the VMS algorithm of discovery and naming the device, it may happen that the same
tape, media changer device may be visible as different device name on nodes in different clus-
ters. This would introduce the problem of nodes, that see the device with a different name than
that specified in the DEVICE field of MDMS drive database, not able to access the device. One
way of configuring such FC served devices is by manually editing the SYS$SYS-
TEM:SYS$DEVICES.DAT file on the clusters sharing the device so as to make the device name
the same. Please refer OpenVMS Cluster Configuration Manual for details.

E.3.0.2 HP Archive Backup System (ABS) for OpenVMS:

ABS uses MDMS to allocate tape devices, hence ABS supports the entire configuration sup-
ported by MDMS. ABS V3.2 and above provides for FC connected tape storage support.
E–2 ABS/MDMS Support for Fibre Channel

ABS/MDMS Support for Fibre Channel
E.4 Multipathing
Comment:

• Other than the unique naming convention for FC devices, the application (such as listed
above) does not see the FC connected storage resource as being any different than a similar
direct connected SCSI device. The FC as seen from a high level application is merely a
communication channel, whose protocol is provided by the device driver and host bus
adapter, or the Modular Data Router.

• MDMS V3.2 and above only controls the access to the share tape storage for the ABS,
HSM, and SSM if the operator makes use of MDMS to allocate the tape drive. Further

• MDMS must be running on at least one node of each cluster or standalone system that
shares the tape library. All this within the same MDMS Domain only.

• The tape drives must be set to NOSHARE.

• Any system outside of the MDMS Domain that shares the tape device is unprotected, and
can cause a conflict.

• FC environment doesn't have any universal manager who maintains the information of
devices. Since VMS does not manage the allocation of drive across two or more clusters,
MDMS polls the nodes listed in the drive object to ensure that none of the nodes listed in the
drive list has allocated the device. In case the node listed is unreachable, then MDMS
returns a drive check error. MDMS will not allow other nodes to access the drive without
knowing the status of drive on one node as it may possibly lead to a dataloss scenario.

A possible workaround is suggested bwlow:

The customer needs to create an MDMS GROUP object. The GROUP object should consist
of all the NODEs accessing the DRIVE/JUKEBOX and the DRIVE/JUKEBOX objects
should have the GROUP listed in the DRIVE/JUKEBOX objects.

At the time of system bootup the following command needs to be executed.

$ MDMS SET GROUP xyx/NODE=node_name/ADD

At the time of the system shutdown the following needs to be executed.

$ MDMS SET GROUP xyx/NODE=node_name/REMOVE

The above workaround is applicable only when the node is shutting down normally. In case
the node is not reachable when there is a network issue due to reasons other than a normal
node shutdown (E.g. Due to a node crash or due to a network cable issue) the above
workaround will not be applicable.

Another alternative the system administrator can consider is to remove the NODE name
from the DRIVE object in case of the customer wants to shutdown one of the nodes in a FC
environment.

E.4 Multipathing
Multipathed configurations are possible with FC as well as SCSI storage interconnect.

SMS Products support the multipathed configurations supported by Open VMS. Current version
of OpenVMS 7.3 does not support multipathing on tape devices connected to FC using MDR.

Multipathing is transparent to ABS and MDMS.

E.4.1 Configurations Tested

The following configurations have been tested on FC connected devices.
ABS/MDMS Support for Fibre Channel E–3

ABS/MDMS Support for Fibre Channel
E.5 Bibliography
MDMS:

OpenVMS: 7.2-2, 7.3, 7.3-1

MDMS Version: V3.2, V4.0, V4.1

Tape devices and libraries connected on FC through MDR + FC SAN Switch + KGPSA Host
Bus Adapter to an Alpha computer.

Clustered and Non-Clustered configuration.

ABS:

OpenVMS: 7.2-2, 7.3, 7.3-1

ABS Version: V3.2, V4.0, V4.1

MDMS Version: V3.2, V4.0, V4.1

Tape devices and libraries connected on FC through MDR + FC SAN Switch + KGPSA Host
Bus Adapter to an Alpha computer. Clustered and Non-Clustered configuration.

SMS Products support only the FC connected devices and configuration that are supported by
Open VMS V7.2-2 and above. Please refer Open VMS documentation for details on the sup-
ported HBAs, firmware version, devices, systems, and software version. HP recommends that
you monitor the Fibre Channel web site (http://www.openvms.compaq.com/openvms/fibre/) and
the HP support web site (http://www.compaq.com/support/) for updates for the operating system
version you are running.

E.5 Bibliography
Fibre Channel Industry Association web site, http://www.fibrechannel.com/

OpenVMS V7.3, V7.3-1
or OpenVMS V7.2-2
with MDMS V4.3

KFPSA
HBA

OpenVMS V7.3, V7.3-1
or OpenVMS V7.2-2
with MDMS V4.3

KFPSA
HBA

 Fiber Channel Switch

Modular Data Router/
Network Storage Router

Tape Library

SCSI 2
Disk Drive

Cluster 1 Cluster 2
E–4 ABS/MDMS Support for Fibre Channel

ABS/MDMS Support for Fibre Channel
E.5 Bibliography
Guidelines for OpenVMSCluster Configurations, April 2001

Open VMS Fibre Channel Web Site, http://www.openvms.compaq.com/openvms/fibre/

HP Enterprise Storage Web Site, http://www.compaq.com/storage/

OpenVMS Host Storage Management Software Products Web Site, http://www.openvms.com-
paq.com/openvms/storage.html
ABS/MDMS Support for Fibre Channel E–5

Index

Numerics

100 times per day 3-34

A

ABS 1-1
catalogs 2-1
policy objects 2-1

ABS Operational Environment 2-1
ABS_CATALOG 3-2
ABS_EXECUTION_ENVIRONMENT 3-13
ABS_NODE_NAME 3-13
ABS_OS_DMT_n 3-25
ABS_OS_INCREMENTAL_LEVEL_n 3-25
ABS_OS_LAST_RVN_n 3-26
ABS_OS_OBJECT_SET_n 3-25
ABS_OS_OBJECT_TYPE_n 3-25
ABS_OS_SAVESET_FORMAT_n 3-26
ABS_OS_SAVESET_NAME_n 3-26
ABS_OS_START_FILE_POSITION_n 3-26
ABS_OS_START_RVN_n 3-25
ABS_OS_STATUS_n 3-26
ABS_OS_VOLUME_SET_n 3-25
ABS_OUTPUT_DEVICE 3-13
ABS_RESTORE_REQUEST_NAME 3-13
ABS_SAVE_REQUEST_NAME 3-13
ABS_STORAGE_CLASS 3-13
Action 3-11
After Schedule 3-31
after schedule when 3-31
Agent Qualifiers 3-28
ALL 3-31
ANNUALLY 3-22
ANSI-imposed maximum 3-2
Archive 3-16
archive 3-16
Archive Backup System 1-1
Archive Type 3-2
archive type 3-3, 3-4, 3-26
Archives 2-3
authorized users 3-4

B

Backup agent 2-1, 2-6
backup agent 3-28
Base Date 3-16

Before Date 3-17, 3-28
BIWEEKLY 3-22
BRIEF 3-14

C

Catalog 2-1, 2-5, 3-2, 3-4, 3-18
creating

SLS type 3-5
staging type 3-5

improving performance 3-8
Catalog Commands 9-16

for Oracle database lookup 9-17
for System Backup to Tape 9-9

Catalog Conversion B-28
Catalogs 3-4
Combining Dates, Days and Months 3-33
Command 3-31
Command Syntax B-20
COMPLETE 3-14
Complex Backup Schedules 3-23
Compression 3-12
Conflict Options 3-29
Consolidation 3-2
consolidation criteria 3-2, 3-3
consolidation interval 3-2
Conversion Overview B-1
Convert the MDMS Database B-11
Converting ABS V2.x Catalogs to V4.0 Format B-28
Converting ABS V2.x/V3.x RDB Policy Database to
ABS V4.0 (MDMS Server Database) B-29
Converting ABS V3.x RMS Policy Database to ABS
V4.0 (MDMS Server Database) B-29
Converting SLS System Backups to ABS B-11
Converting SLS/MDMS V2.X Symbols and Database B-
2
Converting User Backup policy B-18
CRC 3-12
CUSTOM 3-23, 3-30
Custom 3-20, 3-30

D

DAILY 3-21
Data Safety 3-12
DATA TYPE 3-18, 3-29
Data Type 3-18, 3-29
Database

catalog 2-5
Database Management Services 1-1
database names 3-18
Date Archived 3-17
Index–1

Date Specifications 3-32
Date Type 3-28
Dates 3-32
Day Specifications 3-32
Days 3-32
DCL 1-2
default archives 3-1
default consolidation criteria 3-3
default domain media type. 3-4
default environments 3-11
default onsite location 3-4
default retry interval 3-13
DEFAULT_ENV 3-11
Defaults 9-19

Archive Name 9-19
Catalog Name 9-19
I/O Block Size 9-19

Delete Interval 3-20
DELETE_FILE 3-12
Destination 3-3, 3-20
destination 3-2
Determine your use of SLS B-11
DISASTER_RECOVERY_ENV 3-11
DISK 3-2
disk names 3-18
Disk, File, Path and Database Specification Formats 3-
19, 3-30
domain 3-4
drive 3-4
Drive Count 3-12
Drives 3-3
drives 3-4

E

Environment 3-20
environment 3-11, 3-16
Environment Name 3-11
Environment policy 2-4, 2-5
Environments 2-4, 3-11
Epilogue 3-12, 3-25
ERROR 3-15
EXCLUDE 3-18, 3-29, 3-33
Exclude 3-18, 3-29, 3-33
execution node 3-24
Expiration Date 3-3
EXPLICIT 3-23
Explicit 3-20, 3-30
EXPLICIT INTERVAL 3-20, 3-30
Explicit Interval 3-20, 3-24
EXTERNAL 2-7

F

FATAL 3-15, 3-31
file names 3-18
Frequency 3-20
frequency. 3-16
FULL 3-14
full backups 3-3
FULL_BACKUP 3-12

G

get 2-1
Groups 3-24
GZIP Compression 3-12

I

INCLUDE 3-18, 3-26, 3-28, 3-29, 3-33
Include 3-18, 3-29, 3-33
Incremental 3-24
incremental backups 3-3
inherit 3-1
inherit restore requests 3-1
inherting attributes 3-1
Interfaces

CLI 2-7
GUI 2-7

INTERNAL 2-7
INTERVAL 3-2
Interval 3-13
Introduction B-1

J

jukeboxes 3-4

K

Keep 3-20

L

Links Only 3-14
Listing Option 3-14
Location 3-4
location 3-2, 3-3, 3-4
Lock 3-14
LOG-2 3-23
LOG-3 3-23
Logical 9-19

MDMS$SBT_ ARCHIVE 9-20
2-Index

MDMS$SBT_ ARCHIVE_n 9-20
MDMS$SBT_ CATALOG 9-20
MDMS$SBT_IO_ BLOCK_SIZE 9-20
MDMS$SBT_TRACE_LEVEL 9-8, 9-20, 9-21

Logical Names 3-13
Logical Names in Save/Restore Prologues and Epilogues
3-25

M

MAIL 3-14
Maximum Saves 3-4
MDMS 1-1, 2-6
MDMSview 1-2
Media Management Services 1-1
Media Type 3-4
media type 3-2, 3-3, 3-4
Media, Device and Management Services 1-1, 2-6
Monitor ABS Activity B-18
Month Specifications 3-32
MONTHLY 3-22
Months 3-32

N

NEVER 3-23
NEW VERSION 3-29
next start date 3-17
No compression 3-12
NO_CHANGE 3-11
Nodes 3-24
nolock 3-14
NONE 3-31
NORMAL 3-14
Notification 3-14
NTclient

large disk considerations 11-9

O

ON DEMAND 3-21
ONE TIME ONLY 3-20, 3-21
OPCOM 3-14
Oracle Databases 9-1

Backing up to Tape 9-2
See System Backup to Tape 9-1

Oracle Rdb Database 3-29
Oracle Rdb Database Options 3-18
Oracle Rdb Databases 3-19, 3-30
Oracle Rdb Storage Area 3-18, 3-29
Oracle Rdb Storage Areas 3-19, 3-30
Oracle's Recovery Manager 9-12

Oracle’s Recovery Manager
Specifying a Catalog 9-14
Specifying an I/O Block Size 9-14
Specifying Archives for Duplex Backups 9-15
Using with System Backup to Tape 9-12

Output Command File naming and contents B-20
OVERLAPPED 3-26
OVERLAY VERSION 3-29

P

path names 3-18
Policy

objects 2-1
Policy Database B-29
Policy objects 2-1

environment policy 2-4, 2-5
restore request 2-2
save request 2-2
storage policy 2-3

Pool 3-4
pool 3-2, 3-4
Privileges 9-3

authorizing for SBT 9-3
Profile 3-15
Prologue 3-12, 3-25

Q

QUARTERLY 3-22

R

Rdb Databases 3-28
Rdb Storage Areas 3-28
RECORD_DATE 3-11
Relationships Between ABS Objects 3-16
REPLACE VERSION 3-29
Request

restore 2-2
save 2-2

Reschedule 3-26
Restore Name 3-16
Restore request 2-2
restore request 3-15
Restores 2-2, 3-15
Restoring from SLS History Sets B-18
Restrictions 9-20

Doing Parallel Backups 9-20
granting for SBT 9-3
Piece Name Length Greater than 254 Characters 9-

21
Index–3

RETAIN VERSION 3-29
Retention Days 3-3
retry interval 3-13
Retry Limit 3-13
Rights 9-3

Granting for SBT 9-3

S

Save Name 3-16
Save request 2-2
save request 3-15
Saves 2-2, 3-15
SAVESETS 3-2
schedule 3-16
SCHEDULER 2-7
Schedules 2-5, 3-30
Scheduling 9-18

System Backup to Tape Operations 9-16
Scheduling Services 1-1
scratch pool 3-4
Security Services 1-1
SELECTIONS 3-18, 3-26, 3-28
Selections 2-4, 3-26, 3-28
selections 3-16
SEMI_ANNUALLY 3-22
Sequence Option 3-26
SEQUENTIAL 3-26
Since Date 3-17, 3-28
Skip Time 3-16
skip time 3-17
SLS V2.x to ABS V4.0 Conversion Process B-11
source location 3-20
SOURCE NODE 3-19, 3-24, 3-29
Source Node 3-18, 3-29
Span Filesystems 3-14
START 3-14
Start Date 3-16
start date 3-17
Storage policy 2-3
SUCCESS 3-31
System 9-1
System Backup to Tape 9-1

Archive Name 9-19
Catalog Name 9-19
Configuring 9-9
Creating an Archive 9-9
Creating an ORACLE_DB Catalog 9-9
Defaults 9-19
Defining the logical

MDMS$SBT_TRACE_LEVEL 9-8
Editing Oracle’s Command Procedures 9-3

Editing Oracle’s Link Option File 9-3
I/O Block Size 9-19
Introduction 9-1
Linking with the Oracle Server 9-2
Logicals 9-19, 9-20
Logicals Names 9-19
Privileges 9-3
Relinking the ORA_RDBMS

executables 9-6
Restrictions 9-20
Rights 9-3
Specifying a Catalog 9-14
Specifying an I/O Block Size 9-14
Specifying Archives for Duplex Backups 9-15
Testing the Configuration of 9-11
Testing with Oracle’s Recovery Manager 9-2
Troubleshooting 9-21
Using the logical MDMS$SBT_TRACE_LEVEL

9-21
Using the MDMS Scheduler with 9-18
Using the Show Catalog Command 9-16
Using with Oracle’s Recovery Manager 9-12
What versions of Oracle supported 9-1

System backups
NTclient 11-9
UNIX client 11-9

SYSTEM_BACKUPS_ENV 3-11

T

TAPE 3-2
Times 3-34
two archives 3-3, 3-16
TYPE 3-14

U

UNIX client
large disk considerations 11-9

UNIX Compression 3-12
UNIX Files 3-18, 3-28, 3-29
UNIX files 3-19, 3-24, 3-30
UNIX_BACKUPS_ENV 3-11, 3-12
Use of Base Date, Start Date and Skip Time 3-17
USER_BACKUPS_ENV 3-11

V

VMS Files 3-18, 3-19, 3-28, 3-29, 3-30
volume set 3-2, 3-4
Volume Sets 3-4
VOLUMES 3-2
4-Index

volumes 3-4

W

WARNING 3-14, 3-31
WEEKLY 3-22
WEEKLY FULL, DAILY INCREMENTAL 3-21
WHEN 3-14
Windows Files 3-19, 3-28, 3-29
Windows files 3-19, 3-24, 3-30

X

XOR 3-12
Index–5

	Preface
	1
	Introduction
	2
	Overview
	2.1 ABS Operational Environment
	2.2 ABS Objects
	2.2.1 Saves
	2.2.2 Restores
	2.2.3 Archives
	2.2.4 Environments
	2.2.5 Selections
	2.2.6 Schedules

	2.3 ABS Catalogs
	2.4 Backup Agent
	2.5 Media, Device and Management Services (MDMS)
	2.6 User Interfaces
	2.7 Scheduler Options
	2.8 MDMS Objects
	2.8.1 Domain
	2.8.2 Drives
	2.8.3 Groups
	2.8.4 Jukeboxes
	2.8.5 Locations
	2.8.6 Magazines
	2.8.7 Media Types
	2.8.8 Nodes
	2.8.9 Pools
	2.8.10 Volumes

	2.9 Getting Started

	3
	Saving and Restoring Data
	3.1 Archives
	3.1.1 Archive Name
	3.1.2 Archive Type
	3.1.3 Catalog
	3.1.4 Consolidation
	3.1.5 Destination
	3.1.6 Drives
	3.1.6.1 Drive selection

	3.1.7 Expiration Date and Retention Days
	3.1.8 Location
	3.1.9 Maximum Saves
	3.1.10 Media Type
	3.1.11 Pool
	3.1.12 Volume Sets

	3.2 Catalogs
	3.2.1 Catalog Name
	3.2.2 Catalog Node
	3.2.3 Type
	3.2.4 Directory
	3.2.5 Staging
	3.2.6 Catalog Save Entries
	3.2.7 Catalog File Entries
	3.2.8 Improving Catalog Performance
	3.2.8.1 Catalog File Sizes
	3.2.8.2 Catalog File Maintenance
	3.2.8.3 Catalog Cleanup
	3.2.8.4 Staging Catalog

	3.3 Cataloging Existing Savesets
	3.4 Environments
	3.4.1 Environment Name
	3.4.2 Action
	3.4.3 Compression
	3.4.4 Data Safety
	3.4.5 Drive Count
	3.4.6 Prologue and Epilogue
	3.4.7 Retry Limit and Interval
	3.4.8 Links Only and Span Filesystems
	3.4.9 Listing Option
	3.4.10 Lock
	3.4.11 Notification
	3.4.12 Profile

	3.5 Saves and Restores
	3.5.1 Save Name or Restore Name
	3.5.2 Archive
	3.5.3 Base Date, Start Date and Skip Time
	3.5.4 Before Date, Since Date and Date Archived (Restore Only)
	3.5.5 Catalog (Restore Only)
	3.5.6 Include, Exclude, Data Type and Source Node
	3.5.7 Delete Interval and Keep
	3.5.8 Destination (Restore Only)
	3.5.9 Environment
	3.5.10 Frequency and Explicit Interval
	3.5.11 Incremental
	3.5.12 Nodes and Groups
	3.5.13 Prologue and Epilogue
	3.5.14 Reschedule
	3.5.15 Selections
	3.5.16 Sequence Option (Saves Only)
	3.5.17 Skipping schedule operations on Holidays
	3.5.17.1 HOLIDAYS.DAT Record Format
	3.5.17.2 Example: HOLIDAYS.DAT File

	3.6 Selections
	3.6.1 Agent Qualifiers
	3.6.2 Before Date, Since Date and Date Type (Saves Only)
	3.6.3 Conflict Options (Restore Only)
	3.6.4 Include, Exclude, Data Type and Source Node

	3.7 Schedules
	3.7.1 After Schedule
	3.7.2 Command
	3.7.3 Restriction
	3.7.4 Dates, Days and Months
	3.7.5 Include and Exclude
	3.7.6 Times

	4
	Media Management
	4.1 MDMS Domain Configuration
	4.2 Domain
	4.2.1 ABS Rights
	4.2.2 Application Rights
	4.2.3 Check Access
	4.2.4 Deallocate State
	4.2.5 Default Rights
	4.2.6 Mail Users
	4.2.7 Maximum Scratch Time
	4.2.8 Media Type
	4.2.9 Offsite Location
	4.2.10 Onsite Location
	4.2.11 OPCOM Classes
	4.2.12 Operator Rights
	4.2.13 Protection
	4.2.14 Relaxed Access
	4.2.15 Request ID
	4.2.16 Scheduler Type
	4.2.17 Scratch Time
	4.2.18 SYSPRV
	4.2.19 Transition Time
	4.2.20 User Rights

	4.3 Drives
	4.3.1 Access
	4.3.2 Automatic Reply
	4.3.3 Device
	4.3.4 Disabled
	4.3.5 Drive Number
	4.3.6 Groups
	4.3.7 Jukebox
	4.3.8 Media Types
	4.3.9 Nodes
	4.3.10 Read-Only Media Types
	4.3.11 Shared
	4.3.12 Stacker
	4.3.13 State
	4.3.14 Allocate Drive (DCL Only)
	4.3.15 Deallocate Drive (DCL Only)
	4.3.16 Load Drive
	4.3.17 Unload Drive

	4.4 Groups
	4.4.1 Nodes

	4.5 Jukeboxes
	4.5.1 Access
	4.5.2 ACS ID
	4.5.3 Automatic Reply
	4.5.4 Cap Size
	4.5.5 Control
	4.5.6 Disabled
	4.5.7 Groups
	4.5.8 Library ID
	4.5.9 Location
	4.5.10 LSM ID
	4.5.11 Nodes
	4.5.12 Robot
	4.5.13 Slot Count
	4.5.14 State
	4.5.15 Threshold
	4.5.16 Topology
	4.5.17 Usage
	4.5.18 Inventory Jukebox

	4.6 Locations
	4.6.1 Parent Location
	4.6.2 Spaces

	4.7 Magazines
	4.7.1 Jukebox, Start Slot and Position
	4.7.2 Onsite and Offsite Locations and Dates
	4.7.3 Slot Count
	4.7.4 Spaces
	4.7.5 Move Magazine(s)

	4.8 Media Types
	4.8.1 Capacity
	4.8.2 Compaction
	4.8.3 Density
	4.8.4 Length

	4.9 Node
	4.9.1 Database Server
	4.9.2 Disabled
	4.9.3 OPCOM Class
	4.9.4 Transports and Full Names

	4.10 Pools
	4.10.1 Authorized Users
	4.10.2 Default Users
	4.10.3 Threshold

	4.11 Volumes
	4.11.1 Allocation Fields - Account, Username, UIC and Job
	4.11.2 Allocation and Movement Dates
	4.11.3 History Dates
	4.11.4 State
	4.11.5 Media Types
	4.11.6 Pool
	4.11.7 Previous and Next Volumes
	4.11.8 Placement - Jukebox, Magazine, Locations, Drive
	4.11.9 Formats - Brand, Format, Block Factor, Record Size
	4.11.10 Protection
	4.11.11 Counters
	4.11.12 Allocate Volume
	4.11.13 Allocate Volume(s) by Selection Criteria
	4.11.14 Deallocate Volume
	4.11.15 Bind Volume
	4.11.16 Unbind Volume
	4.11.17 Load Volume
	4.11.18 Unload Volume
	4.11.19 Move Volume(s)
	4.11.20 Initialize Volume(s)

	5
	Security
	5.1 MDMS Rights
	5.2 Access Control
	5.3 Implementing a Security Strategy

	6
	User Interfaces
	6.1 Graphical User Interface
	6.1.1 Starting MDMSView
	6.1.1.1 OpenVMS Systems
	6.1.1.2 Windows Systems

	6.1.2 Look and Feel
	6.1.3 Logging In
	6.1.4 Selecting A View
	6.1.5 Creating Objects
	6.1.6 Showing and Modifying Objects
	6.1.7 Deleting Objects
	6.1.8 Viewing Relationships Between Objects
	6.1.9 Performing Operations on Objects
	6.1.10 Running Save And Restore Requests
	6.1.11 Showing Current Operations
	6.1.12 Reporting on Volumes
	6.1.13 Viewing MDMS Audit and Event Logging
	6.1.14 Errors
	6.1.15 Help

	6.2 DCL Interface
	6.2.1 Syntax Overview
	6.2.2 Object Lists
	6.2.3 Qualifier List
	6.2.4 Inherit
	6.2.5 Symbols
	6.2.6 Help and Reference

	6.3 User Interface Restrictions

	7
	Preparing For Disaster Recovery
	7.1 Disaster Recovery for OpenVMS Systems
	7.1.1 Backup of Your System Disk
	7.1.2 Backup of MDMS$ROOT
	7.1.3 Backup of ABS$ROOT

	7.2 Prolog and Epilog Procedure
	7.2.1 Restoring The System Disk
	7.2.2 Restoring Remaining Savesets

	7.3 Non-OpenVMS Systems
	7.4 Thoughts on Save and Restore Procedures

	8
	Remote Devices
	8.1 RDF Installation
	8.2 Configuring RDF
	8.3 Using RDF with MDMS
	8.3.1 Starting Up and Shutting Down RDF Software
	8.3.2 The RDSHOW Procedure
	8.3.3 Command Overview
	8.3.4 Showing Your Allocated Remote Devices
	8.3.5 Showing Available Remote Devices on the Server Node
	8.3.6 Showing All Remote Devices Allocated on the RDF Client Node

	8.4 Monitoring and Tuning Network Performance
	8.4.1 DECnet Phase IV
	8.4.2 DECnet-Plus (Phase V)
	8.4.3 Changing Network Parameters
	8.4.4 Changing Network Parameters for DECnet (Phase IV)
	8.4.5 Changing Network Parameters for DECnet-Plus(Phase V)
	8.4.6 Resource Considerations
	8.4.7 Controlling RDF’s Effect on the Network
	8.4.8 Surviving Network Failures

	8.5 Controlling Access to RDF Resources
	8.5.1 Allow Specific RDF Clients Access to All Remote Devices
	8.5.2 Allow Specific RDF Clients Access to a Specific Remote Device
	8.5.3 Deny Specific RDF Clients Access to All Remote Devices
	8.5.4 Deny Specific RDF Clients Access to a Specific Remote Device

	8.6 RDserver Inactivity Timer
	8.7 RDF Error Messages

	9
	System Backup to Tape for Oracle Databases
	9.1 Linking System Backup to Tape with the Oracle Server
	9.1.1 Testing Oracle's Recovery Manager before linking System Backup to Tape
	9.1.2 Authorizing privileges and granting rights to the Oracle server account
	9.1.3 Editing Oracle's Link Option File and Command Procedures
	9.1.3.1 Editing Oracle8i Link Option File and Command Procedures
	9.1.3.2 Editing Oracle9i Link Option file and Command Procedures

	9.1.4 Shutdown the database
	9.1.5 Relinking the ORA_RDBMS: executables
	9.1.6 Startup the database
	9.1.7 Retesting Oracle's Recovery Manager

	9.2 Configuring Oracle9i Release 2 (9.2.0.2) with SBT
	9.2.1 Testing Oracle's Recovery Manager before Setting Up System Backup to Tape
	9.2.2 Authorizing Privileges and Granting Rights to the Oracle Server Account
	9.2.3 Logical definition for SYS$SHARE:MDMS$SBTSHR_MA64_9I2.EXE

	9.3 Defining the Logical MDMS$SBT_TRACE_LEVEL
	9.4 Configuring System Backup to Tape in the Archive Backup System
	9.4.1 Creating an ORACLE_DB Catalog
	9.4.2 Creating an Archive

	9.5 Testing the Configuration of SBT
	9.6 Using System Backup to Tape with Oracle's Recovery Manager
	9.6.1 Specifying SBT Shared Library
	9.6.2 Specifying an Archive
	9.6.3 Specifying a Catalog
	9.6.4 Specifying an I/O Block Size
	9.6.5 Specifying Archives for Duplex Backups
	9.6.6 Using logical MDMS$SBT_RESTORE_SINGLE_CHANNEL

	9.7 Using the Show Catalog Command
	9.8 Using the MDMS Scheduler
	9.9 System Backup to Tape Defaults
	9.9.1 Archive Name
	9.9.2 Catalog Name
	9.9.3 I/O Block Size
	9.9.4 MDMS$SBT_RESTORE_SINGLE_CHANNEL=TRUE
	9.9.5 System Backup to Tape Logicals Names

	9.10 System Backup to Tape Restrictions
	9.10.1 Doing Parallel Backups
	9.10.2 Piece Name Length Greater than 254 Characters
	9.10.3 Using RDF Drives with SBT
	9.10.4 Backup with Oracle Dead Connection enabled

	9.11 Troubleshooting Tips
	9.11.1 Using the logical MDMS$SBT_TRACE_LEVEL
	9.11.2 Fatal Internal Error
	9.11.3 Check ORA_DUMP:SBTIO.LOG for Errors
	9.11.4 Using Tape I/O Slaves

	9.12 Support for Oracle RDB database
	9.12.1 RMU Commands that accept /LIBRARIAN Qualifier
	9.12.2 BACKUP/RESTORE Using PLAN Files
	9.12.2.1 PARAMETERS Passed for the PLAN file

	9.12.3 Logicals to be specified for use with SBT
	9.12.4 SBT Restrctions for Oracle RDB Database

	10
	Virtual Library System (VLS)
	10.1 Introduction
	10.2 Features
	10.3 Qualification
	10.4 Restrictions while using VLS

	11
	Architecture
	11.1 The Server Process
	11.1.1 The Database (DB) Server
	11.1.1.1 Database
	11.1.1.2 Becoming a DB Server
	11.1.1.3 Finding another DB Server
	11.1.1.4 Failover of the DB Server
	11.1.1.5 Role of the DB server

	11.1.2 Server Communications

	11.2 Scheduler Interface
	11.2.1 Option INT_QUEUE_MANAGER
	11.2.2 Option EXT_QUEUE_MANAGER
	11.2.3 Option EXT_SCHEDULER

	11.3 Catalogs
	11.3.1 Catalog Sizes

	11.4 Coordinator
	11.4.1 Coordinator Cleanup
	11.4.2 Volume Sets

	12
	Troubleshooting
	12.1 Save and Restore Requests
	12.1.1 Notification of Save/Restore Completion
	12.1.2 Log Files
	12.1.3 Logical Names
	12.1.4 Alpha Stack Size Logical
	12.1.5 Fast Skip Errors
	12.1.6 Volume Set Locking and Coordinator Cleanup Process

	12.2 Media Management
	12.2.1 Log Files
	12.2.2 OPCOM
	12.2.3 MDMS Requests
	12.2.4 Scheduling Problems
	12.2.4.1 Internal Scheduling
	12.2.4.2 External Scheduling
	12.2.4.3 Scheduler Scheduling

	12.2.5 MDMS Scheduled Activities

	12.3 MDMSView GUI
	12.3.1 Running MDMSView GUI After ABS/MDMS Installation
	12.3.2 Windows Java Path
	12.3.3 MDMSView Log Screen
	12.3.4 MDMSView Command Window
	12.3.5 MDMS$LOGFILE_*.LOG

	12.4 ABS Catalogs
	12.4.1 Staging Unpack
	12.4.2 Volume_Set Catalog Cleanup

	12.5 Windows and Unix Clients
	12.5.1 Windows Log File
	12.5.2 Windows Quotas
	12.5.3 Permission Denied Errors
	12.5.4 UBS FAILURE
	12.5.5 Considerations for Saving Large Disks on UNIX and Windows Clients
	12.5.6 Files Larger than 2gb

	12.6 RDF (Remote Device Facility)
	12.7 Information Required When Reporting Problems

	A
	Configuration Example
	B
	Migrating from SLS/MDMS V2.X to ABS/MDMS V4.X
	B.1 Introduction
	B.2 SLS/MDMS V2.x to ABS/MDMS V4.x Migration
	B.2.1 Why Convert from SLS/MDMS V2.x to ABS/MDMS V4.x?
	B.2.1.1 Advantages of using ABS
	B.2.1.2 Restrictions

	B.2.2 SLS and ABS/MDMS Comparisons
	B.2.2.1 Comparing SLS SBK Symbols and ABS Equivalent Backup Attributes

	B.2.3 Operational Differences between MDMS V2 and MDMS V3
	B.2.3.1 Architecture
	B.2.3.2 MDMS Interfaces
	B.2.3.3 Rights and Privileges
	B.2.3.4 MDMS Domain
	B.2.3.5 Drives
	B.2.3.6 Jukeboxes
	B.2.3.7 Locations
	B.2.3.8 Media Types
	B.2.3.9 Magazines
	B.2.3.10 Nodes
	B.2.3.11 Groups
	B.2.3.12 Pools
	B.2.3.13 Volumes
	B.2.3.14 Remote Devices

	B.2.4 Procedures for Converting SLS/MDMS V2.x to ABS/MDMS V4.x
	B.2.4.1 Converting SLS/MDMS V2.x Symbols and Database Files to ABS/MDMS V4.x
	B.2.4.2 Applying Prev3 Support
	B.2.4.3 Converting SLS SBK Symbols to ABS Policy Objects

	B.2.5 Troubleshooting SLS/MDMS V2.x to ABS/MDMS V4.x Errors
	B.2.6 Converting MDMS V4.x to a V2.x Volume Database

	C
	Prev3 Support
	C.1 Using SLS/MDMS and ABS/MDMS Simultaneously
	C.1.1 Defining the Prev3 Support Logical
	C.1.1.1 Processes Existing on the System after the Logical is Set
	C.1.1.2 Creating Separate Pools for SLS and ABS
	C.1.1.3 Examining the RDF Settings

	C.2 Using SLS as the Client for ABS/MDMS
	C.2.1 Defining the Prev3 Support Logical
	C.2.1.1 Processes Existing on the System after the Logical is Set
	C.2.1.2 Examining the RDF Settings
	C.2.1.3 Supported STORAGE Commands

	D
	Upgrading from ABS V2.X/V3.X to V4.x Environment
	D.1 Introduction
	D.2 Upgrading from ABS/MDMS V2.x/V3.x to V4.x
	D.2.1 Converting ABS/MDMS V2.x to ABS/MDMS V4.x
	D.2.2 Converting ABS V3.0B and MDMS 2.x to ABS/MDMS V4.x
	D.2.3 Converting ABS/MDMS V3.1x or 3.2x to ABS/MDMS V4.x
	D.2.4 Converting ABS V2.x Catalogs to V4.x Format
	D.2.5 Converting ABS V2.x/V3.x RDB Policy Database to ABS V4.x (MDMS Server Database)
	D.2.6 Converting ABS V3.x RMS Policy Database to ABS V4.x (MDMS Server Database)

	E
	ABS/MDMS Support for Fibre Channel
	E.1 Introduction
	E.2 Issues with sharing FC connected devices
	E.3 FC connected tape devices, medium changers (robots) and SMS Products
	E.3.0.1 HP Media Device Management System (MDMS) for OpenVMS:
	E.3.0.2 HP Archive Backup System (ABS) for OpenVMS:

	E.4 Multipathing
	E.4.1 Configurations Tested

	E.5 Bibliography

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

