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Preface

This book describes the constructs and rules of the HP COBOL programming
language, which is a Hewlett-Packard Company implementation of COBOL
(COmmon Business-Oriented Language) for the OpenVMS and Tru64 UNIX
platforms. It includes information about language syntax and semantics, as well
as information about adherence and extensions to various COBOL standards.

This documentation set also includes the HP COBOL User Manual and,
optionally, the HP COBOL DBMS Database Programming Manual.

HP COBOL is the new name for what has formerly been known as Compaq
COBOL, DEC COBOL, DIGITAL COBOL, and VAX COBOL. HP COBOL,
unmodified, refers to the following products:

HP COBOL for OpenVMS Industry Standard 64
HP COBOL for OpenVMS Alpha
HP COBOL for Tru64 UNIX
HP COBOL for OpenVMS VAX

Any references to the former names in product documentation or other
components should be construed as references to the HP COBOL names.

Intended Audience
This manual is intended for experienced applications programmers who have a
thorough understanding of the COBOL language and some familiarity with their
operating system. This is not a tutorial manual.

If you are a new COBOL user, you may need to read introductory COBOL
textbooks or take COBOL courses.

Structure of This Document
This manual is organized as follows:

• Chapter 1 presents the elements of the COBOL language, describes two
format options for a COBOL program, and explains how the remaining
chapters organize and present the COBOL general formats.

• Chapter 2 describes the organization of a COBOL program. It presents the
general format for the four COBOL divisions and introduces the concept of
contained programs. This chapter shows the relationship between a program
name and a source file name.

• Chapter 3 describes the general format and contents of the Identification
Division. It explains how to identify a COBOL program and its source listing.

• Chapter 4 describes the general format and contents of the Environment
Division. It explains how to describe the program’s physical environment.
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• Chapter 5 describes the general format and contents of the Data Division. It
explains how to describe data the program receives, creates, manipulates, and
produces as output.

• Chapter 6 describes the general format and contents of the Procedure
Division. It describes COBOL verbs, which process the files and data in the
Environment and Data Divisions.

• Chapter 7 describes the general format and use of the intrinsic functions.

• Chapter 8 describes the general format of the COPY and REPLACE
statements.

• Appendix A lists the HP COBOL reserved words, which are words that cannot
be used as system names or user-defined names.

• Appendix B lists the ASCII, EBCDIC, and NATIVE character sets.

• Appendix C lists the exception condition values that can appear in File Status
data items.

• Appendix D contains individual presentation rules and tables for each type of
report group.

• Appendix E describes RTL routines for accessing the RAB and FAB structures
on OpenVMS systems.

• The Glossary contains an alphabetical listing of common HP COBOL terms
and their definitions.

• The Index indexes and references terms and concepts in this manual.

Associated Documents
The following documents contain additional information directly related to
various topics covered in this manual:

HP COBOL User Manual
This manual describes how to use features of the HP COBOL language to develop
programs on the Tru64 UNIX operating system or the OpenVMS operating
systems on Alpha, I64, and VAX.

Release Notes
Consult the HP COBOL release notes for your installed version for late
corrections and new features.

On the OpenVMS Alpha, I64, or VAX operating system, the release notes are in:

SYS$HELP:COBOLnnn.RELEASE_NOTES (ASCII text)
SYS$HELP:COBOLnnn_RELEASE_NOTES.PS

Where nnn is the version and release number.

On the Tru64 UNIX operating system, the release notes are in:

/usr/lib/cmplrs/cobol/relnotes

Compaq COBOL for Tru64 UNIX Systems Installation Guide
This manual provides instructions for installing HP COBOL on the Tru64 UNIX
operating system.

HP COBOL for OpenVMS Alpha and I64 Systems Installation Guide
This manual provides instructions for installing HP COBOL on the OpenVMS
Alpha and OpenVMS I64 operating systems.
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Compaq COBOL for OpenVMS VAX Systems Installation Guide
This manual provides instructions for installing HP COBOL on the OpenVMS
VAX operating system.

HP COBOL DBMS Database Programming Manual
This manual provides information on using HP COBOL for database
programming with Oracle CODASYL DBMS on the OpenVMS Alpha, the
OpenVMS I64, or OpenVMS VAX operating systems.

The OpenVMS Calling Standard and other manuals in the OpenVMS
Documentation Set
This set contains information about using the features of the OpenVMS I64,
OpenVMS Alpha, and OpenVMS VAX operating systems and their tools.

The Tru64 UNIX Documentation Set
This set contains introductory and detailed information about using the features
of the Tru64 UNIX operating system and its tools.

The Alpha Architecture Reference Manual
This manual is available from Digital Press.

Related Documents
For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

Conventions Used in This Document
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity servers

• OpenVMS I64

• I64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following table lists the conventions used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

♦ A diamond signals the end of a section of system-specific
information. The beginning of a system-specific section is
identified in the text or header as Alpha (meaning OpenVMS
Alpha and Tru64 UNIX Alpha, and excluding OpenVMS VAX);
or as OpenVMS (meaning both OpenVMS Alpha, OpenVMS
I64 and OpenVMS VAX); or as Tru64 UNIX.

RECORD KEY IS Underlined uppercase words are required when used in a
general format. Uppercase words not underlined are optional.
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Convention Meaning

sortfile Lowercase words used in a general format are generic terms
that indicate entries you must provide.� � Braces used in a general format enclose lists from which you
must choose only one item. For example:� SEQUENTIAL

RANDOM
DYNAMIC

�

� � Brackets used in a general format enclose optional items from
which you can choose none or one. For example:�

RECORD
ALL RECORDS

�

� 		 		 
 Choice indicators, vertical lines inside a set of braces, used in a
general format enclose lists from which you must choose one or
more items, using each item chosen only once. For example:��


				 COMMON

INITIAL

				
��
�

. . . A horizontal ellipsis indicates that the item preceding the
ellipsis can be repeated. For example:

� switch-name � . . .

.

.

.

A vertical ellipsis indicates that not all of the statements are
shown.

format of examples Program examples are shown in terminal format, rather than
in ANSI standard format.

special-character words The following symbols, when used in a general format,
constitute required special-character words:

Plus sign ( + )
Minus sign ( - )
Single ( = ) and double ( = = ) equal signs
Less than ( < ) or greater than ( > ) symbols
Less than or equal to ( <= ) and greater than or equal to
( >= ) symbols
Period ( . )
Colon ( : )
Single ( * ) and double ( ** ) asterisks
Slash ( / )
Left parenthesis ( ( ) or right parenthesis ( ) )

quotation mark The term quotation mark is used to refer to the double
quotation mark character (").

apostrophe The term apostrophe is used to refer to the single quotation
mark character (’ ).
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Convention Meaning

user input In examples, user input (what you enter) is shown as
monospaced text.

extensions Hewlett-Packard extensions to the 1985 ANSI COBOL
Standard are color coded in blue or gray. Note that the term
extension in this manual means a Hewlett-Packard extension
to the ANSI COBOL Standard. (Some of these extensions
are included in the X/Open® CAE Standard for the COBOL
language.)

report file Bold type indicates a new term.

italics Italic type indicates important information, complete titles
of manuals, or variables. Variables include generic terms
(lowercase variable elements in syntax) when referred to in
text; and information that varies in system output (error
number) and in command lines (BASIC file-name) in text.

full-file-name This syntax term refers to the name of a file and the device
and directory, or path, in which it is located. For example:

DISK2$:[HOME.PUBLIC]FILENAME.TXT; (OpenVMS file
specification)

/disk2/home/public/filename.txt (Tru64 UNIX
file specification)

compiler option This term refers to command-line qualifiers (OpenVMS Alpha
and I64 systems) or flags (Tru64 UNIX systems). For example:

/LIST (OpenVMS qualifier )
-list (Tru64 UNIX flag )

COBOL This term refers to language information common to ANSI-85
COBOL, HP COBOL, and HP COBOL for OpenVMS VAX.

Enter A boxed symbol indicates that you must press a key on the
terminal; for example, Enter indicates that you press the Enter
key.

Tab This symbol indicates a nonprinting tab character.

Ctrl/x The symbol Ctrl/x indicates that you hold down the key labeled
CTRL while you press another key, for example, Ctrl C or Ctrl O.

$ The dollar sign ( $ ) represents the OpenVMS system prompt.

% The percent sign ( % ) represents the Tru64 UNIX system
prompt.

References
The following table shows certain references and their respective meanings in
this manual:

Reference Meaning

Alpha OpenVMS Alpha or Tru64 UNIX Alpha operating system

OpenVMS OpenVMS Alpha, OpenVMS I64, or OpenVMS VAX operating
system

Tru64 UNIX Tru64 UNIX Alpha operating system

VAX OpenVMS VAX operating system

Tru64 UNIX was formerly known as DEC OSF/1 or as DIGITAL UNIX. HP
COBOL was formerly known as Compaq COBOL, DIGITAL COBOL, or DEC
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COBOL. HP COBOL for OpenVMS VAX was formerly known as Compaq COBOL
for OpenVMS VAX, VAX COBOL or as DIGITAL VAX COBOL.

Acknowledgement
COBOL is an industry language and is not the property of any company or group
of companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the
CODASYL COBOL Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by
any contributor, or by the committee, in connection therewith.

The authors and copyright holders of the copyrighted material used herein are
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for the UNIVAC (R) I and II, Data Automation Systems, copyrighted 1958,
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copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted 1960 by
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They have specifically authorized the use of this material, in whole or in part, in
the COBOL specifications. Such authorization extends to the reproduction and
use of COBOL specifications in programming manuals or similar publications.

How to Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698
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1
Overview of the COBOL Language

This chapter provides information about the structure and language of COBOL
source programs. It describes the elements of the COBOL language, reference
formats, and language organization.

The COBOL language consists of the following components:

• Programs

• Divisions

• Sections

• Paragraphs

• Sentences

• Statements

• Clauses

• Entries

• Words

• Characters

A separately compiled COBOL program is a program that, together with
its contained programs (if present), is compiled separately from all other
programs. Each COBOL program is divided into four parts, called divisions:
the Identification Division, Environment Division, Data Division, and Procedure
Division. Divisions can contain sections, which in turn can contain paragraphs.
Paragraphs can contain sentences, clauses, statements, or entries.

The building blocks of these language components include the COBOL character
set, character-strings, separators, punctuation, and literals.

A COBOL program is a string of characters that is syntactically correct according
to the COBOL language rules.

1.1 The COBOL Character Set
The COBOL character set, shown in Table 1–1, is used to form character-
strings and separators.

The only components of a COBOL program that can contain characters
outside this set are nonnumeric literals, comment-entries, and comment lines.
Appendix B specifies the more inclusive computer character sets these elements
can use.
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Table 1–1 The COBOL Character Set

Character Meaning

0, 1, . . . , 9 digit

A, B, . . . , Z letter

a, b, . . . , z lowercase letter (equivalent to letter)

+ plus sign

- minus sign (hyphen)

* asterisk

/ slash (stroke, virgule)

\ backslash

= equal sign

$ currency sign

> greater than symbol

< less than symbol

: colon

_ underline (underscore)

space

Tab horizontal tab

( left parenthesis

) right parenthesis

, comma (decimal point)

; semicolon

. period (decimal point, full stop)

" quotation mark (double quotation mark)

’ apostrophe (single quotation mark)

{ left brace

} right brace

[ left bracket

] right bracket

« double left-angle brackets

» double right-angle brackets

Except in nonnumeric literals, the compiler treats lowercase letters as if they
were uppercase. Therefore, a program can contain COBOL words without regard
to case.1 For example, the compiler recognizes the COBOL words in each of the
following pairs as identical:

WORKING-STORAGE Working-Storage
Input input
file-a FILE-A
INSPECT InSpect

1 On Tru64 UNIX the case sensitivity of the system affects COBOL’s case insensitivity
in a few situations. See the PROGRAM-ID paragraph in Chapter 3, and the section on
CALL in Chapter 6. Also refer to the HP COBOL User Manual for a description of the
-names lowercase, -names uppercase, and -names as_is flags.
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1.2 Character Strings
A character-string is a character or a sequence of contiguous characters that
form a COBOL word, a literal, a PICTURE character-string, or a comment-entry.
Separators delimit character-strings. The following sections describe these topics
in detail.

1.2.1 COBOL Words
A COBOL word is a character-string of not more than 31 characters that forms
one of the following:

• A user-defined word

• A system-name

• A reserved word

• A function-name

A user-defined word or system-name cannot be a reserved word. However, a
program can use the same COBOL word as both a user-defined word and a
system-name. The compiler determines the word’s class from its context.

1.2.1.1 User-Defined Words
A user-defined word is a COBOL word that you must supply to satisfy the
format of a clause or statement. This word consists of characters selected from
the set A to Z, 0 to 9, the currency sign ( $ ), underline ( _ ), and hyphen ( - ).
Throughout this manual, and except where specific rules apply, the hyphen ( - )
and the underline ( _ ) are treated as the same character in a user-defined word.
The underline ( _ ), however, can begin or end a user-defined word, and the hyphen
( - ) cannot. By convention, names containing a currency sign ( $ ) are reserved for
Hewlett-Packard.

Table 1–2 provides brief descriptions of the COBOL user-defined words.

Table 1–2 COBOL User-Defined Words

User-Defined Word Purpose

Alphabet-Name Assigns a name to a character set, collating sequence, or both. Alphabet-names
must be defined in the SPECIAL-NAMES paragraph. (See SPECIAL-NAMES in
Chapter 4, Environment Division.)

Class-Name Relates a name to a specified set of characters listed in that clause. (See
SPECIAL-NAMES in Chapter 4, Environment Division.)

Condition-Name Assigns a name to a value, set of values, or range of values in the complete set
of values that a data item can have. Data items with one or more associated
condition-names are called conditional variables.

Data Division entries define condition-names. Names assigned in the SPECIAL-
NAMES paragraph to the "on" or "off" status of switches are also condition-names.

Data-Name Names a data item described in a data description entry. When specified in a
general format, data-name cannot be reference modified, subscripted, indexed, or
qualified unless specifically allowed by the rules for that format.

(continued on next page)
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Table 1–2 (Cont.) COBOL User-Defined Words

User-Defined Word Purpose

File-Name Names a file connector. A file connector is a storage area that contains
information about a file and is the link between:

• A file-name and a physical file

• A file-name and its associated storage area

File description entries and sort-merge file description entries describe file
connectors.

Index-Name Names an index associated with a specific table.

Level-Number Is a one- or two-digit number that describes a data item’s special properties or its
position in the structure of a record. (See Sections 5.1.1 and 5.1.2.)

Library-Name Names a COBOL library used in a source program compilation. (See the COPY
statement in Chapter 8.)

Mnemonic-Name Associates a name with a system-name, such as CONSOLE, SYSERR,
ARGUMENT-NUMBER, ENVIRONMENT-NAME, C01, OR SWITCH-8. (See
SPECIAL-NAMES in Chapter 4.)

Paragraph-Name Names a Procedure Division paragraph. (See Section 2.1.3.) Paragraph-names
are equivalent only if they are identical; that is, if they are composed of the same
sequence and number of digits and/or characters.

For example:

START-UP START-UP Equivalent

START-UP STARTUP Different

Start-up START-UP Equivalent

001-START-UP 01-START-UP Different

017 017 Equivalent

017 17 Different

Program-Name Identifies a COBOL source program. (See the PROGRAM-ID paragraph in
Chapter 3, and the section on CALL in Chapter 6, for a description of case-
sensitivity on the Tru64 UNIX operating system. Also refer to the HP COBOL
User Manual for a description of the -names lowercase, -names uppercase,
and -names as_is flags.)

Record-Name Names a data item described with level-number 01 or 77.

Report-Name Names a report produced by the Report Writer Control System (RWCS). (See the
REPORT clause in Chapter 5.)

Screen-Name (Alpha,
I64)

Names a screen item defined in the SCREEN SECTION of a program. (See the
Screen Description (Alpha, I64) section of Chapter 5.)♦

Section-Name Names a Procedure Division section. Section-names are equivalent only if they
are identical; that is, when they are composed of the same sequence and number
of digits and/or characters. (See Section 2.1.2.)

Segmented-Key-
Name

Identifies a segmented key, which is a concatenation of one or more (up to
eight) data items (segments) within a record associated with an indexed file.
A segmented key is a form of primary or alternate key. It offers flexibility in
defining record description entries for indexed files. (Refer to the section on
segmented keys in the HP COBOL User Manual.)

Segment-Number Is a 1- or 2-digit number that classifies a Procedure Division section for
segmentation. In HP COBOL programs, segment-numbers specify independent
and fixed segments. (See Section 6.7.)

(continued on next page)
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Table 1–2 (Cont.) COBOL User-Defined Words

User-Defined Word Purpose

Symbolic-Character Identifies a user-defined figurative constant.

Text-Name Identifies library text in a COBOL library. (See the COPY statement in
Chapter 8.)

Within a given program, but excluding any contained program, the user-defined
words are grouped into the following disjoint sets:

alphabet-names
class-names
condition-names, data-names, and record-names
file-names
index-names
library-names
mnemonic-names
paragraph-names
program-names
report-names
screen-names
section-names
segmented-key-names
symbolic-characters
text-names

All user-defined words in a program, except segment-numbers and level-numbers,
can belong to only one of these sets. User-defined words in each set must
be unique, except as described in the rules for uniqueness of reference. (See
Section 6.2).

Except for section-names, paragraph-names, segment numbers, and level-
numbers, all user-defined words must contain at least one alphabetic character.
Segment-numbers and level-numbers need not be unique. Any segment-number
or level-number can be the same as any other segment-number or level-number.

1.2.1.2 System-Names
System-names are COBOL words that refer to the program’s operating
environment. The same COBOL word can be used in a program as both a
user-defined word and a system-name. The compiler determines the word’s class
from its context.

The system-names are as follows:

ALPHA
ASCII
CARD-READER
CONSOLE
CONTIGUOUS
CONTIGUOUS-BEST-TRY
C01
DEFERRED-WRITE
EBCDIC
EXTENSION
FILL-SIZE
I64
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LINE-PRINTER
LOCK-HOLDING
MASS-INSERT
OPERATOR
PAPER-TAPE-PUNCH
PAPER-TAPE-READER
PREALLOCATION
PRINT-CONTROL
SWITCH
VAX
WINDOW

1.2.1.3 Reserved Words
A reserved word can be used only as specified in the general formats. It cannot
be a user-defined word. (See Appendix A for a list of reserved words.)

The three types of reserved words follow:

• Required words

• Optional words

• Special-purpose words

Required Word
A required word must be used when its format is used in a program.

The two types of required words are keywords and special character words.
In general formats, keywords are uppercase and underlined. Arithmetic operators
and relation characters are special character words; they are not underlined in
the general format.

In the following sample format, the keywords are COMPUTE, ROUNDED, SIZE,
ERROR, NOT, and END-COMPUTE. The equal sign (=) is a special-character
word.

COMPUTE { rsult [ ROUNDED ] } . . . = arithmetic-expression

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-COMPUTE �

Optional Words
In general formats, uppercase words that are not underlined are optional words.
They can make a program more human-readable, but have no semantic effect. In
the previous sample format, ON is an optional word.

Special-Purpose Words
The two types of special-purpose words are figurative constants and special
registers. Figurative constants name and refer to specific constant values and
are described in detail in Section 1.2.3. Special registers name and refer to special
storage areas that the compiler provides. The HP COBOL special registers
are primarily used to store information related to or produced by specific HP
COBOL features. Table 1–3 shows the special registers, their usage, and their
descriptions.
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Table 1–3 Special Registers

Special Register Usage—Description

RETURN-CODE (Alpha,
I64)

X/OPEN—Names an HP COBOL special register that may be
used to set a return value for a calling program or to retrieve
the value returned from a called program. It is represented
by PIC S9(9) USAGE IS COMP. It is implicitly defined with
GLOBAL scope.

The RETURN-CODE register is initialized with the platform-
specific success code. On OpenVMS Alpha and OpenVMS I64,
it is initialized to one. On Tru64 UNIX it is initialized to zero.

The RETURN-CODE special register can be set by a called
program, prior to the execution of a STOP RUN or EXIT
PROGRAM statement, to pass a value to the calling program
or the execution environment. For a calling program, it can
be read, subsequent to the CALL, to obtain the value of the
RETURN-CODE set by the called program.

On Tru64 UNIX the main program sets the shell variable
status to the value of the RETURN-CODE. On OpenVMS
Alpha and OpenVMS I64 the main program sets the symbol
$STATUS to the value of the RETURN-CODE.

If you use the GIVING phrase on the CALL statement or
on the Procedure Division header, specifying a data item as
its argument, this data item (instead of RETURN-CODE)
receives the return value. Note that you can specify the special
register RETURN-CODE as the argument to GIVING, in
which case RETURN-CODE receives the return value. For
more information on the relationship between the GIVING
phrase and the RETURN-CODE special register, see Table 6–7
in Chapter 6.

Because the reserved word RETURN-CODE is one of the
X/Open reserved words, you cannot use the noxopen keyword
in the reserved_words compiler option if you want to use the
RETURN-CODE special register. <STOPPED>

For related information, see Section 6.8 for the syntax and
description of the GIVING phrase of the Procedure Divison
header; and the CALL statement for the syntax and description
of CALL GIVING. ♦

LINAGE-COUNTER LINAGE files—A line counter that the compiler provides when
a file description entry contains a LINAGE clause. Its value
is the number of the current record within the page body.
(See the LINAGE clause in Chapter 5.) The implicit size of
LINAGE-COUNTER is nine decimal digits represented by
PIC S9(9) COMP. You can qualify LINAGE-COUNTER with
a file-name. Procedure Division statements and the SOURCE
clause of the Report Section can access the value of LINAGE-
COUNTER but cannot change its value. LINAGE-COUNTER
is global if file-name is global and external if file-name is
external.

(continued on next page)
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Table 1–3 (Cont.) Special Registers

Special Register Usage—Description

PAGE-COUNTER REPORT WRITER—A page counter that the compiler provides
for each report in the Report Section of the Data Division.
You can qualify PAGE-COUNTER with a report-name. Its
value is the number of the current page within a report. The
implicit size of PAGE-COUNTER is six unsigned decimal digits
represented by PIC 9(6) COMP. The Report Writer Control
System (RWCS) maintains the value of PAGE-COUNTER and
uses this value to number the pages of a report. The SOURCE
clause of the Report Section can reference PAGE-COUNTER.
The values in PAGE-COUNTER range from 1 to 999999 and
can be altered by Procedure Division statements.

LINE-COUNTER REPORT WRITER—A line counter that the compiler generates
for each report in the Report Section of the Data Division. It
may be qualified by a report-name. Its value is the number of
the current line within a page. (See PAGE-COUNTER.) The
implicit size of LINE-COUNTER is six unsigned decimal digits
represented by PIC 9(6) COMP. The Report Writer Control
System (RWCS) maintains the value of LINE-COUNTER and
uses this value to determine the vertical positioning of a report.
The SOURCE clause of the Report Section can reference LINE-
COUNTER. The values in LINE-COUNTER range from 0 to
999999. Procedure Division statements can access the values
in LINE-COUNTER; however, only the RWCS can change its
value.

RMS-STS1

(OpenVMS)
RMS—Contains the primary RMS status value of an I/O
operation. (RMS-STV contains the secondary value.) RMS-STS
provides additional information on COBOL File Status values
resulting from I/O operations.2 It is represented by PIC S9(9)
USAGE IS COMP. You must qualify RMS-STS with a file-
name. If the file-name is global, RMS-STS is also global. If the
file-name is external, RMS-STS is also external.

Before the program opens the file for the first time, the value
of RMS-STS is undefined. After your program executes an
OPEN or CLOSE statement, RMS-STS is set to the value of
the STS field in the associated file access block (FAB). After
executing a READ, WRITE, REWRITE, DELETE, START, or
UNLOCK statement, RMS-STS is set to the value of the STS
field in the associated record access block (RAB).

1Procedure Division statements can access the values or strings stored in the RMS special registers;
however, only the RMS facility can change the contents of the registers. Refer to the HP COBOL User
Manual for programming examples. For an explanation and a listing of RMS STS and STV values,
refer to the OpenVMS System Messages and Recovery Procedures Reference Manual, an archived
manual available on the OpenVMS Documentation CD-ROM, or the online OpenVMS Help Message
utility. Refer to the OpenVMS Record Management Services Reference Manual for information on
RMS. (RMS is on OpenVMS systems only.)
2The FILE STATUS data item (see Section 6.6.8, I-O Status) provides the primary source of status
information for the file I-O verbs, and RMS-STS and RMS-STV provide supplementary information.

(continued on next page)
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Table 1–3 (Cont.) Special Registers

Special Register Usage—Description

RMS-STV1

(OpenVMS)
RMS—Contains the secondary (RMS-STS is primary) RMS
status value of an I/O operation. The interpretation of this
value is dependent on the value in RMS-STS. It is represented
by PIC S9(9) USAGE IS COMP. You must qualify RMS-STV
with a file-name. If the file-name is global, RMS-STV is also
global. If the file-name is external, RMS-STV is also external.

The value in RMS-STV is undefined prior to the initial OPEN
of the file. After your program executes an OPEN or CLOSE
statement, RMS-STV is set to the value of the STV field in the
associated FAB. After executing a READ, WRITE, REWRITE,
DELETE, or START statement, RMS-STV is set to the value of
the STV field in the associated RAB.

RMS-FILENAME1

(OpenVMS)
RMS—Names the complete RMS filename. It consists of 255
alphanumeric characters represented by PIC X(255) USAGE
IS DISPLAY. You must qualify it with a file-name. If the
file-name is global, RMS-FILENAME is also global. If the
file-name is external, RMS-FILENAME is also external.

Before the program opens the file for the first time, the
value of RMS-FILENAME is undefined. For each COBOL
OPEN statement, RMS-FILENAME is set to the complete
RMS file specification string of file-name: for example,
DBB1:[COBOL]MASTER.DAT.

RMS-CURRENT-STS1

(OpenVMS)
RMS—Names an HP COBOL exception condition register.
It contains the primary RMS status value of the most
recent RMS I/O operation, regardless of the file operated
on. (RMS-CURRENT-STV contains the secondary value.) It is
represented by PIC S9(9) USAGE IS COMP. Since this register
can contain the primary RMS status value for any file, you
must not qualify it with a file-name.

After your program executes any RMS I/O operation, it sets
RMS-CURRENT-STS to the value contained in RMS-STS for
that file.

RMS-CURRENT-STV1

(OpenVMS)
RMS—Names an HP COBOL exception condition register. It
contains the secondary RMS status value of the most recent
RMS I/O operation, regardless of the file operated on. (RMS-
CURRENT-STS contains the primary value.) It is represented
by PIC S9(9) USAGE IS COMP. Since this register can contain
the secondary RMS status value for any file, you must not
qualify it with a file-name. After your program executes any
RMS I/O operation, it sets RMS-CURRENT-STV to the value
contained in RMS-STV for that file.

1Procedure Division statements can access the values or strings stored in the RMS special registers;
however, only the RMS facility can change the contents of the registers. Refer to the HP COBOL User
Manual for programming examples. For an explanation and a listing of RMS STS and STV values,
refer to the OpenVMS System Messages and Recovery Procedures Reference Manual, an archived
manual available on the OpenVMS Documentation CD-ROM, or the online OpenVMS Help Message
utility. Refer to the OpenVMS Record Management Services Reference Manual for information on
RMS. (RMS is on OpenVMS systems only.)

(continued on next page)
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Table 1–3 (Cont.) Special Registers

Special Register Usage—Description

RMS-CURRENT-
FILENAME1

(OpenVMS)

RMS—Names an HP COBOL exception condition register. It
contains the complete RMS file specification string of the file
most recently operated on by an I/O statement. It consists
of 255 alphanumeric characters represented by PIC X(255)
USAGE IS DISPLAY. Since this register can contain the
file-name for any file, you must not qualify it with a file-name.

After your program executes any I/O operation, it sets RMS-
CURRENT-FILENAME to the string contained in RMS-
FILENAME for that file.

1Procedure Division statements can access the values or strings stored in the RMS special registers;
however, only the RMS facility can change the contents of the registers. Refer to the HP COBOL User
Manual for programming examples. For an explanation and a listing of RMS STS and STV values,
refer to the OpenVMS System Messages and Recovery Procedures Reference Manual, an archived
manual available on the OpenVMS Documentation CD-ROM, or the online OpenVMS Help Message
utility. Refer to the OpenVMS Record Management Services Reference Manual for information on
RMS. (RMS is on OpenVMS systems only.)

♦

1.2.1.4 Function-Names
A function-name is the name of a function as shown in Table 7–1, Intrinsic
Functions. Note that function-names are not reserved words and may appear in
a different context in a program as a user-defined word or a system-name.

1.2.2 Literals
A literal is a character-string whose value is specified by: ( 1 ) the ordered set of
characters it contains, or ( 2 ) a reserved word that is a figurative constant.

HP COBOL provides two types of literals: numeric and nonnumeric. Numeric
literals include floating-point literals and nonnumeric literals include hexadecimal
and national literals. Floating-point, hexadecimal, and national literals are
Hewlett-Packard extensions. The following two sections describe literals in
detail.

1.2.2.1 Numeric Literals
A numeric literal is a character string of 1 to 33 characters on Alpha and I64 or
1 to 20 characters on VAX, selected from the digits 0 to 9, the plus sign ( + ), the
minus sign ( - ), and the decimal point ( . ).

The value of a numeric literal is the algebraic quantity represented by the
characters in the literal.

Syntax Rules

1. A numeric literal must contain at least 1 digit and not more than 31 digits on
Alpha and I64 or 18 digits on VAX.

2. A numeric literal must not contain more than one sign character, which must
be the leftmost character. If the literal is unsigned, its value is positive.

3. A numeric literal must not contain more than one decimal point. The decimal
point is treated as an assumed decimal point. It can be used anywhere in the
literal except as the rightmost character.

If a numeric literal contains no decimal point, it is an integer.
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4. The compiler treats a numeric literal enclosed in quotation marks as a
nonnumeric literal.

Table 1–4 provides examples of numeric literals.

Table 1–4 Numeric Literals

Literal Value

12 12

0.12000 0.12

-123456789012345678 -123456789012345678

000000003 3

-34.455445555 -34.455445555

0 0

+0.000000000001 +0.000000000001

+0000000000001 +1

Floating-Point Literals
A floating-point literal, a Hewlett-Packard extension to numeric literals, is a
character-string whose value is specified by 4 to 37 characters on Alpha and I64
or 4 to 24 characters on VAX, selected from the digits 0 to 9, the plus sign ( + ), the
minus sign ( - ), the decimal point ( . ), and the letter E (uppercase or lowercase).

You can use floating-point literals to achieve a wider range of numeric literal
values.

Syntax Rules

1. A floating-point literal must be between 4 and 37 (Alpha, I64) or 24 (VAX)
characters in length.

2. A floating-point literal must contain the following characters:

At least 1 digit to the left of the E

A decimal point to the left of the E

An E (uppercase or lowercase)

At least 1 digit to the right of the E

3. The maximum number of characters to the left of the E is 33 (Alpha, I64) or
20 (VAX), of which no more than 31 (18 on VAX) can be digits.

4. The maximum number of characters to the right of the E is 4 (Alpha, I64) or
3 (VAX), of which no more than 3 (2 on VAX) can be digits.

5. A floating-point literal must not contain more than two sign characters as
follows:

The first character of the literal

The first character following the E

6. If the first character of the literal is not a sign character, the literal is positive.

7. If the first character following the E is not a sign character, the value of the
numeric component following the E is positive.
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8. A floating-point literal must contain only one decimal point that can appear
only to the left of the E.

9. A comma must be used in place of the decimal point, if the DECIMAL POINT
IS COMMA clause is specified.

The value of a floating-point literal is the algebraic quantity represented by the
characters in the literal that precede the E multiplied by ten raised to the power
of the algebraic quantity represented by the characters in the literal following
the E.

Table 1–5 provides a few examples of floating-point literals.

Table 1–5 Floating-Point Literals

Literal Value

1.6e5 160000.0

3.2E-3 0.0032

-1.e4 -10000.0

0.002e+6 2000.0

-.8E-2 -0.008

1.2.2.2 Nonnumeric Literals
A nonnumeric literal is a character-string of 0 to 256 characters. It is delimited
on both ends by quotation marks ( " ) or apostrophes ( ’ ). A nonnumeric literal
delimited by apostrophes is treated in the same manner as a nonnumeric literal
delimited by quotation marks.

The value of a nonnumeric literal is the value of the characters in the character-
string. It does not include the quotation marks (or apostrophes) that delimit the
character-string. All other punctuation characters in the nonnumeric literal are
part of its value.

The compiler truncates nonnumeric literals to a maximum of 256 characters.

Syntax Rules

1. A space, left parenthesis, or pseudo-text delimiter (= =) must immediately
precede the opening quotation mark (or apostrophe).

2. The closing quotation mark (or apostrophe) must be immediately
followed by one of the following:

• Space

• Comma

• Semicolon

• Period

• Right parenthesis

• Pseudo-text delimiter

3. If a nonnumeric literal is delimited by quotation marks ( " ), two consecutive
quotation mark characters in the literal represent one quotation mark
character.
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4. If a nonnumeric literal is delimited by apostrophes ( ’ ), two consecutive
apostrophes in the literal represent one apostrophe ( ’ ).

Table 1–6 provides examples of nonnumeric literals. In these examples, s
represents a space character.

Table 1–6 Nonnumeric Literals

Literal Value

"ABC" ABC

"01" 01

"s01" s01

"D""E""F" D"E"F

"a.b" a.b

’GHI’ GHI

’02’ 02

’s02’ s02

’c.d’ c.d

"""" "

’""’ ""

’’’’ ’

"’’" ’’

’J""K’ J""K

"J""""K" J""K

’J’’’’K’ J’’K

"J’’K" J’’K

’L’’M’’N’ L’M’N

"L’M’N" L’M’N

’O"P"Q’ O"P"Q

"O""P""Q" O"P"Q

’R""S""T’ R""S""T

"R""""S""""T" R""S""T

’U’’’’V’’’’W’ U’’V’’W

"U’’V’’W" U’’V’’W

Hexadecimal Literals
A hexadecimal literal (a Hewlett-Packard extension to nonnumeric literals) is a
character string of 2 to 256 hexadecimal digits. On the left it is delimited by the
separator X (or x) immediately followed by a quotation mark ( " ) or apostrophe
( ’ ); on the right it is delimited by a matching quotation mark or apostrophe. For
example:

03 HEX_VAL PIC X VALUE X"00".

The character string consists only of pairs of hexadecimal digits representing a
byte value ranging from 00 to FF; hence, only the characters 0 to 9, A to F, and a
to f are valid.
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The value of a hexadecimal literal is the composite value of the paired
hexadecimal representations. The compiler truncates hexadecimal literals to
a maximum of 128 hexadecimal representations (pairs of hexadecimal digits).

A hexadecimal literal can be used interchangeably wherever a nonnumeric literal
can appear in HP COBOL syntax. (Thus, hexadecimal literals cannot be used as
operands in arithmetic statements.)

Syntax Rules

1. A space, left parenthesis, or pseudo-text delimiter (= =) must immediately
precede the opening character X (or x).

2. The closing quotation mark or apostrophe must be immediately followed by
one of the following:

• Space

• Comma

• Semicolon

• Period

• Right parenthesis

• Pseudo-text delimiter

Table 1–7 provides examples of hexadecimal literals.

Table 1–7 Hexadecimal Literals

Literal Value

X"00" NUL

x"0D" CR

x"2424" $$

X’7b7a’ {z

National Literals
National literals can be from 0 to 128 2-byte characters (hence 256 bytes). The
syntax is:

VALUE N"".

National literals are made available when /NATIONALITY=JAPAN or
-nationality japan is specified.

1.2.3 Figurative Constants
Figurative constants name and refer to specific constant values generated by
the compiler. The singular and plural forms of figurative constants are equivalent
and interchangeable. Table 1–8 lists the figurative constants.
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Table 1–8 Figurative Constants

Figurative Constant Value

ZERO, ZEROS, ZEROES Represent the value zero, or one or more occurrences of the character 0 from
the computer character set, depending on context. In the following example, the
first use of the word ZERO represents a zero value; the second represents six 0
characters:

03 ABC PIC 9(5) VALUE ZERO.
03 DEF PIC X(6) VALUE ZERO.

SPACE, SPACES Represent one or more space characters from the computer character set.

HIGH-VALUE,
HIGH-VALUES

Represent one or more occurrences of the character with the highest ordinal
position in the program collating sequence. For example, HIGH-VALUE for the
native collating sequence is hexadecimal FF.

The value of HIGH-VALUE depends on the collating sequence specified by
clauses in the OBJECT-COMPUTER and SPECIAL-NAMES paragraphs.
For example, if the program collating sequence is ASCII, HIGH-VALUE
is hexadecimal 7F (hexadecimal FF for EBCDIC). For more information,
see OBJECT-COMPUTER and SPECIAL-NAMES sections in Chapter 4,
Environment Division.

LOW-VALUE,
LOW-VALUES

Represent one or more occurrences of the character with the lowest ordinal
position in the program collating sequence (hexadecimal 00 for the native
collating sequence).

The value of LOW-VALUE depends on the program collating sequence specified
by clauses in the OBJECT-COMPUTER and SPECIAL-NAMES paragraphs.
For more information, see the OBJECT-COMPUTER and SPECIAL-NAMES
sections in Chapter 4, Environment Division.

QUOTE, QUOTES Represent one or more occurrences of the quotation mark character. QUOTE or
QUOTES cannot be used in place of a quotation mark to bound a nonnumeric
literal. The following examples are not equivalent:

QUOTE abcd QUOTE
"abcd"

ALL Literal Represents one or more occurrences of the string of characters making up
the literal. The literal must be either nonnumeric, a symbolic-character, or a
figurative constant other than ALL literal. For a figurative constant, the word
ALL is redundant and serves only to enhance readability.1

Symbolic-character Represents one or more occurrences of the character specified as the value
of symbolic-character. (See SPECIAL-NAMES in Chapter 4, Environment
Division.)

1The reserved word ALL, not followed by a literal, can be a subscript of an identifier that is a function argument. (The
function must allow a variable number of arguments in this argument position; see Chapter 7.)

When a figurative constant represents a string of one or more characters, the
string’s length depends on its context:

• The string’s length can vary for a figurative constant in a VALUE IS clause,
or for one associated with another data item (for example, when the figurative
constant is moved to or compared with another data item). Proceeding from
left to right, the compiler repeats the string of characters that represents the
figurative constant. It repeats them, character by character, until the size
of the resultant string equals that of the associated data item. This is done
before and independent of the application of any JUSTIFIED clause specified
for the data item.
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• When a figurative constant is not associated with another data item
(for example, when it is in a DISPLAY, STRING, STOP, or UNSTRING
statement), the length of the string is one occurrence of the ALL literal or one
character in all other cases.

A figurative constant is valid wherever the word literal (or its abbreviation, "lit")
appears in a general format or its associated rules. However, ZERO (ZEROS or
ZEROES, plural) is the only valid figurative constant for literals restricted to
numeric characters.

The actual characters associated with HIGH-VALUE, HIGH-VALUES, LOW-
VALUE, and LOW-VALUES depend on the program collating sequence. For more
information, see OBJECT-COMPUTER and SPECIAL-NAMES in Chapter 4,
Environment Division.

1.2.4 PICTURE Character-Strings
A PICTURE character-string defines the size and category of an elementary
data item. It can consist of the currency symbol ( $ ) and certain combinations of
characters in the COBOL character set. (See PICTURE.)

A punctuation character that is part of a PICTURE character-string is not
considered to be a punctuation character. Instead, the compiler treats it as a
symbol within the PICTURE character-string.

1.2.5 Separators
A separator delimits character-strings. It can be one character or two contiguous
characters formed according to the rules in Table 1–9.

Table 1–9 Separators

Separator Usage Rules

Space The space can be a separator or part of a separator.

• Where a space is used as a separator or part of a separator, more than one
space can be used.

• A space can immediately precede any separator except:

As specified by the rules for reference formats (see Section 1.3)

The closing quotation mark of a nonnumeric literal; the space is then
considered part of the nonnumeric literal rather than a separator

• A space can immediately follow any separator except the opening quotation
mark of a nonnumeric literal. After an opening quotation mark, the space
is considered part of the nonnumeric literal rather than a separator.

Comma and Semicolon The comma and semicolon are separators when they immediately precede a
space. In this case, the comma and semicolon are interchangeable with each
other and with the separator space. They can be used anywhere in a source
program that a separator space can be used.

(continued on next page)
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Table 1–9 (Cont.) Separators

Separator Usage Rules

Period The period is a separator when it immediately precedes a space or a return
character. It can be used only where allowed by:

• Statement and sentence structure definitions (see Section 6.1)

• Reference format rules (see Section 1.3)

Parentheses Parentheses can be used only in balanced pairs of left and right parentheses to
delimit:

• Subscripts

• Indexes

• Arithmetic expressions

• Conditions

• Reference modification

• Boolean expressions

• Intrinsic function argument lists

Quotation Marks
Apostrophes

An opening quotation mark or apostrophe must be immediately preceded
by a separator space or a left parenthesis. A closing quotation mark (" ) or
apostrophe ( ’ ) must be immediately followed by one of the separators: space,
comma, semicolon, period, or right parenthesis.

Horizontal Tab The horizontal tab aligns statements or clauses on successive columns of the
source program listing. It is interchangeable with the separator space. When
the compiler detects a tab character (other than in a nonnumeric literal),
it generates one or more space characters consistent with the tab character
position in the source line. (See Section 1.3.)

Pseudo-Text
Delimiter

The pseudo-text delimiter is two contiguous equal signs ( = = ), both of which
must be on the same source line. A space must immediately precede an opening
pseudo-text delimiter. One of the following separators must immediately follow
a closing pseudo-text delimiter: spaces, commas, semicolons, or periods.

Pseudo-text delimiters can be used only in balanced pairs. They delimit pseudo-
text. (See Chapter 8.)

Colon The separator colon delimits operands in reference modification. It is required
when shown in a general format. (See Section 6.2.3.)

1.3 Source Reference Format
The HP COBOL compiler recognizes two source program formats: ANSI and
terminal.

• ANSI format conforms to the American National Standard COBOL reference
format.

• Terminal format is a concise Hewlett-Packard specified format. It shortens
source program lines by allowing horizontal tab characters and carriage
returns. In terminal format, you do not use the ANSI format sequence
numbers or identification area.

By default, the compiler expects terminal-format source lines. The compiler
expects ANSI format only when the command line includes the ansi compiler
option.
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The reference format rules for spacing take precedence over all other spacing
rules.

1.3.1 ANSI Format
The ANSI source reference format describes COBOL programs in terms of
character positions on an input line. A source program line has 80 character
positions as shown in Figure 1–1.

Figure 1–1 Source Program Line

12111094321 80797877747372...1413 76758765

Margin
L C A B R

Margin Margin Margin Margin

Sequence Number
Area

Indicator
Area

Area A Area B Identification Area

VM-0581A-AI

Margin L
Immediately to the left of the leftmost character position.

Margin C
Between character positions 6 and 7.

Margin A
Between character positions 7 and 8.

Margin B
Between character positions 11 and 12.

Margin R
Between character positions 72 and 73.

Sequence Number Area
The six character positions between Margin L and Margin C. The contents can be
any characters from the computer character set.

The compiler does not check the uniqueness of the contents. However, the
compiler does check for the ascending sequence of the contents if the compiler
command line includes the sequence compiler option.

Indicator Area
The seventh character position. The character in this position directs the
compiler to interpret the source line in one of the following ways:

Character Source Line Interpretation

space ( ) Default. The compiler processes the line as normal COBOL text.

hyphen ( - ) Continuation line. The compiler processes the line as a continuation
of the previous source line.
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Character Source Line Interpretation

asterisk ( * ) Comment line. The compiler ignores the contents of the line.
However, the source line appears on the program listing.

slash ( / ) New listing page. The compiler treats the line as a comment line.
However, it advances the program listing to the top of the next page
before printing the line.

A-Z, a-z Conditional compilation lines. The compiler processes the line
as normal COBOL text if you specify the DEBUGGING MODE
clause in the SOURCE-COMPUTER paragraph, or if you specify the
conditionals compiler option in the command line. If you do not
specify either, the compiler processes this line as a comment line.

Area A
The four character positions between Margin A and Margin B. Area A contains
division headers, section headers, paragraph headers, paragraph-names, level
indicators, and certain level-numbers.

Area B
The 61 character positions between Margin B and Margin R. Area B contains all
other COBOL text.

Identification Area
The eight character positions immediately following Margin R. The compiler
ignores the contents of the identification area. However, the contents appear on
the source program listing.

Line Continuation
Sentences, entries, phrases, and clauses that continue in Area B of subsequent
lines are called continuation lines. The line being continued is called the
continued line.

A hyphen in a line’s indicator area causes its first nonblank character in Area
B to be the immediate successor of the last nonblank character of the preceding
line. This continuation excludes intervening comment lines and blank lines.

However, if the continued line ends with a nonnumeric literal without a closing
quotation mark, the first nonblank character in Area B of the continuation
line must be a quotation mark. The continuation starts with the character
immediately after the quotation mark. All spaces at the end of the continued line
are part of the literal. Area A of the continuation line must be blank.

If the indicator area is blank:

• The compiler treats the first nonblank character on the line as if it followed a
space.

• The compiler treats the last nonblank character on the preceding line as if it
preceded a space.
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ANSI Format Example

001010 01 NUMERIC-CONTINUATION.
001020 03 NUMERIC-LITERAL PIC 9(16) VALUE IS 123
001030- 4567890123456.
001040 01 NONNUMERIC-CONTINUATION.
001050 03 NONNUMERIC-LITERAL PIC X(40) VALUE IS "AB
001060- "CDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmn".
001070 PROCEDURE DIVISION.
001080 SENTENCE-CONTINUATION.
001090 IF NUMERIC-LITERAL NOT = SPACES
001100 DISPLAY "NUMERIC-LITERAL NOT = SPACES"
001110 ELSE
001120 DISPLAY NUMERIC-LITERAL.

Lines 001020 and 001030 show continuation of a numeric literal. Lines 001050
and 001060 continue a nonnumeric literal. A sentence that spans four lines
begins on line 001090.

Blank Lines
A blank line contains no characters other than spaces between Margin C and
Margin R. Blank lines can be anywhere in a source program or library text.

Comment Lines
A comment line is any source line with an asterisk ( * ) or slash ( / ) in its indicator
area. Area A and Area B can contain any characters from the computer character
set. Comment lines can be anywhere in a source program or library text.

Conditional Compilation Lines
A conditional compilation line is any source line after the OBJECT COMPUTER
paragraph that includes one of these uppercase or lowercase alphabetic characters
in its indicator area: A to Z, a to z. The compiler processes the line as normal
COBOL text if you specify the DEBUGGING MODE clause in the SOURCE
COMPUTER paragraph.

The compiler processes the line as normal COBOL text if you include the
appropriate conditionals compiler option in the command line.

If you specify neither, the compiler processes this line as a comment line.

Lines conditioned by one letter can be compiled or treated as comments
independently of other conditional compilation lines. On OpenVMS systems,
for instance, if you compile with /CONDITIONALS=(A,B), lines conditioned with
A and B compile while those conditioned by other letters are treated as comments.

See Chapter 8 for additional information on the interaction between conditional
compilation lines and the COPY statement.

Pseudo-Text
Pseudo-text character-strings and separators can start in either Area A or Area
B. However, if there is a hyphen in the indicator area of a line that follows the
opening pseudo-text delimiter, Area A of the line must be blank.

The normal rules for line continuation apply to the formation of text-words.

Pseudo-text is described in Chapter 8.
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Short Lines and Tab Characters
If the source program input medium is not punched cards, carriage return and
horizontal tab characters can shorten source lines.

The compiler recognizes the end of the input line as Margin R. Tab characters,
other than those in nonnumeric literals, cause the compiler to generate enough
space characters to position the next character at the next tab stop. The
compiler’s tab stops are at character positions 8, 12, 20, 28, 36, 44, 52, 60,
68, and 76.

The following example shows how the compiler interprets carriage return and
horizontal tab characters in a source program:

Shortened ANSI Format Source Line

000100*The following record description shows the source line format Return

000110 01 TabRECORD-A. Return

000120 Tab Tab03 GROUP-A. Return

000130 Tab Tab Tab05 ITEM-A TabPIC X(10). Return

000140* TabThe tab character in the nonnumeric literal Return

000150* Tabon the next line is stored as one character Return

000160 Tab Tab Tab05
ITEM-B TabPIC X VALUE IS " Tab". Return

000170 Tab Tab03 ITEM-C Tab TabPIC X(10). Return

000180D01 TabRECB REDEFINES RECORD-A TabPIC X(21). Return

Source Line as Interpreted by the Compiler

000100*The following record description shows the source line format
000110 01 RECORD-A.
000120 03 GROUP-A.
000130 05 ITEM-A PIC X(10).
000140* The tab character in the nonnumeric literal
000150* on the next line is stored as one character
000160 05 ITEM-B PIC X VALUE IS " Tab".
000170 03 ITEM-C PIC X(10).
000180D01 RECB REDEFINES RECORD-A PIC X(21).

Use more tab characters only when necessary. Compiler error diagnostics result
if you use tab characters beyond the permissible character positions for a COBOL
statement or entry. The following example shows how the compiler treats source
program lines 000004 and 000005. Line 000004: contains one too many tab
characters, which places paragraph-name P0 out of Area A.

Shortened ANSI Format Source Line

000001 TabIDENTIFICATION DIVISION.
000002 TabPROGRAM-ID. ANSI-TEST.
000003 TabPROCEDURE DIVISION.
000004 Tab TabP0.
000005 Tab TabSTOP RUN.

Listing File Result on OpenVMS Alpha, I64

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ANSI-TEST.
000003 PROCEDURE DIVISION.
000004 P0.
.........^
%COBOL-F-UNDEFSYM, Undefined name
at line number 4 in file DISK:[DIRECTORY]ANSI.COB;1
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000005 STOP RUN.
........^
%COBOL-W-SYN6, Missing paragraph header
at line number 5 in file DISK:[DIRECTORY]ANSI.COB;1 ♦

Listing File Result on OpenVMS VAX

1 000001 IDENTIFICATION DIVISION.
2 000002 PROGRAM-ID. ANSI-TEST.
3 000003 PROCEDURE DIVISION.
4 000004 P0.

1
%COBOL-F-ERROR 349, (1) Undefined name

5 000005 STOP RUN.
1

%COBOL-W-ERROR 325, (1) Missing paragraph header ♦

Listing File Result on Tru64 UNIX

000001 IDENTIFICATION DIVISION.
000002 PROGRAM-ID. ANSI-TEST.
000003 PROCEDURE DIVISION.
cobol: Severe: dwork/t.cob, line 4: Undefined name
000004 P0.
--------^
cobol: Warning: dwork/t.cob, line 5: Missing paragraph header
000005 STOP RUN. ♦
--------^

Note

The previous error messages have no additional online explanations. If a
diagnostic message has a further explanation, an asterisk ( * ) is displayed
(to the left of the error message). On OpenVMS Alpha and I64 systems,
the HP COBOL online help file lists and describes error messages that
have further explanations.

1.3.2 Terminal Format
The HP COBOL terminal format shortens program preparation time and
reduces storage space for source programs. This format eliminates the sequence
number and identification areas. It also combines the indicator area with Area A.
Except for the differences described in this section, the rules for ANSI format also
apply to terminal-format source programs.

In terminal format, the compiler recognizes the following valid indicator area
characters in the first character position:

( - ) hyphen
( * ) asterisk
( / ) slash

The compiler also recognizes the following conditional compilation line characters
as valid indicator area characters in the first and second character positions:

(\x) backslash and x

where x can be any uppercase or lowercase alphabetic character.

Area A then begins in character position 2 (or 3 if using \x). Otherwise, Area A
begins in the first character position.
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Area B begins four character positions to the right of the beginning of Area A. It
ends when the compiler detects a carriage return, or at Margin R.

The maximum length of a terminal-format source line is 256 characters. The
compiler’s tab stops are immediately to the right of Margin B, and every eight
character positions to the right, until the end of the line.

Note

The maximum length of the source line on the program listing is 125
characters, including the sequence field. The compiler processes the
complete source line but displays only the first 125 characters on the
listing. It also replaces all nonprintable ASCII characters with periods (or
other symbols depending on the device) in the listing file. (Refer to the
HP COBOL User Manual.)

The following example shows source lines in terminal format. It is equivalent to
the ANSI-format source line examples in the previous section.

*The following record description shows the source line format Return

01 TabRECORD-A. Return

Tab03 GROUP-A. Return

Tab Tab05 ITEM-A TabPIC X(10). Return

* TabThe tab character in the nonnumeric literal Return

* Tabon the next line is stored as one character Return

Tab Tab05 ITEM-B TabPIC X VALUE IS " Tab". Return

Tab03 ITEM-C Tab TabPIC X(10). Return

\D01 TabRECB REDEFINES RECORD-A TabPIC X(21). Return

1.4 Sample Entry Format
The following format is used to describe most entries in this manual. Each
COBOL division or major topic begins a new chapter and each entry begins on a
new page. The entries are in functional or alphabetical order.

Entry-Name
Function
The function paragraph describes the function or the effect of the entry.

General Format
A general format shows the specific arrangement of elements in the entry. If
there is more than one arrangement, the formats are numbered. All clauses
(mandatory and optional) must be used in the sequence shown in the format.
However, the syntax rules sometimes allow exceptions.

generic-term
Following the general format are definitions of its generic terms. These terms
appear in the rules in italic type.

Syntax Rules
Syntax rules define or clarify the arrangement of words or elements. They can
also impose further restrictions or relax restrictions implied by the general
format.

General Rules
General rules define or clarify the meaning (or relationship of meanings) of an
element or set of elements. They also define the semantics of an entry, describing
its effects on program compilation or execution.
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Technical Notes
Technical notes describe, in system-specific terms, any system-specific behavior,
and any other HP COBOL behavior of note not described in the rules. They
define relationships between the COBOL program and the operating system and
its components.

Additional References
Additional references point to other relevant information in this manual, the HP
COBOL User Manual, and other Hewlett-Packard documentation sets.

Examples
Examples show the use of a statement, clause, or other entry. The HP COBOL
User Manual contains other examples in application contexts.

The following example shows a general format:

General Format

identification-division
[ environment-division ]
[ data-division ]
[ procedure-division ]
[ source-program ] ...
[ end-program-header ]

Additional References

• Chapter 3, Identification Division

• Chapter 4, Environment Division

• Chapter 5, Data Division

• Chapter 6, Procedure Division
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2
Organization of a COBOL Program

A COBOL source program is a syntactically correct set of COBOL statements
that:

• Mark the beginning of the program

• Describe its physical environment

• Describe the data the program creates, receives as input, manipulates, and
produces as output

• Specify the processing of the program’s files and data

General Format

identification-division
[ environment-division ]
[ data-division ]
[ procedure-division ]
[ source-program ]...
[ end-program-header ]

identification-division
represents a COBOL Identification Division.

environment-division
represents a COBOL Environment Division.

data-division
represents a COBOL Data Division.

procedure-division
represents a COBOL Procedure Division.

source-program
represents a contained (nested) COBOL source program. A COBOL source
program may be nested; more than one source program may be present in a
single source file.

end-program-header
represents a COBOL END PROGRAM header.

Syntax Rule
The end-program-header must be present if either:

1. The COBOL source program contains one or more other COBOL source
programs.

2. The COBOL source program is contained within another COBOL source
program.
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3. The COBOL source program precedes another separately compiled program.

General Rules

1. The appropriate division header indicates the beginning of a division.

2. The following indicates the end of a division:

a. Another division header

b. An Identification Division header that indicates the start of another
source program

c. The end-program-header

d. The physical position at which no further source lines occur

3. A COBOL source program may contain other COBOL source programs.

4. A COBOL source program that is directly or indirectly contained within
another program is called a contained or nested program. It may reference
certain resources in the containing program.

5. A separately compiled program has a nesting level number of 1. If this
program contains other source-programs, it is the outermost containing
program.

6. A contained program has a nesting level number greater than 1.

Additional References

• Identification Division

• Environment Division

• Data Division

• Procedure Division

• END PROGRAM Header

2.1 Program Structure
Figure 2–1 shows the basic structure of a COBOL program, which is organized in
divisions, sections, paragraphs, sentences, and entries.

Figure 2–1 Structure of a COBOL Program

IDENTIFICATION DIVISION.
PROGRAM-ID. program-name.
AUTHOR.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.
SECURITY.
OPTIONS.

(continued on next page)
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Figure 2–1 (Cont.) Structure of a COBOL Program

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.
SPECIAL-NAMES.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

DATA DIVISION.
SUBSCHEMA SECTION.
subschema entries and keeplist entries

FILE SECTION.
file and record description entries
report file description entries
sort-merge file and record description entries

WORKING-STORAGE SECTION.
record description entries

LINKAGE SECTION.
record description entries

REPORT SECTION.
report and report group description entries.

SCREEN SECTION. (Alpha, I64)
screen description entries (Alpha, I64)

PROCEDURE DIVISION.
DECLARATIVES.
sections
paragraphs
sentences

END DECLARATIVES.
.
.
.

sections
paragraphs
sentences
.
.
.

END PROGRAM header

2.1.1 Division Header
A division header identifies and marks the beginning of a division. It is a
specific combination of reserved words followed by a separator period. Division
headers start in Area A.

Except for the COPY and REPLACE statements, and the END PROGRAM
header (see END PROGRAM in Chapter 6), the statements, entries, paragraphs,
and sections of a COBOL source program are grouped into four divisions in this
order:

1. IDENTIFICATION DIVISION.

2. ENVIRONMENT DIVISION.

3. DATA DIVISION.

4. PROCEDURE DIVISION.
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The end of a COBOL source program is indicated either by the END PROGRAM
header (END PROGRAM) or by the end of that program’s Procedure Division.

Only these items can immediately follow a division header:

• Another division header

• A section header

• A paragraph header or paragraph-name

• A comment line

• A blank line

• A DECLARATIVES header for the USE procedure sections (after the
PROCEDURE DIVISION header only)

• A PROGRAM-ID paragraph (after the IDENTIFICATION DIVISION header
only)

Only this item can immediately follow a DECLARATIVES header:

• A section header for a USE procedure

Note

The PROCEDURE DIVISION header can contain a USING and GIVING
phrase. (See Section 6.8.)

2.1.2 Section Header
A section header identifies and marks the beginning of a section in the
Environment, Data, and Procedure Divisions. In the Environment and Data
Divisions, a section header is a specific combination of reserved words followed by
a separator period. In the Procedure Division, a section header is a user-defined
word followed by the word SECTION (and an optional segment-number). A
separator period always follows a section header. Section headers start in Area A.

The valid section headers follow for each division.

In the Environment Division:

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
REPORT SECTION.
SCREEN SECTION. (Alpha, I64)

In the Procedure Division:

user-name SECTION [ segment-number ].

Only these items can immediately follow a section header:

• A division header

• Another section header

• A paragraph header or paragraph-name
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• A comment line

• A USE statement (in the DECLARATIVES part of the Procedure Division
only)

• A blank line

• A DATA DIVISION entry (in the Data Division)

2.1.3 Paragraph, Paragraph Header, Paragraph-Name
A paragraph consists of a paragraph header or paragraph-name (depending on
the division) followed by zero, one, or more entries (or sentences).

A paragraph header is a reserved word followed by a separator period.
Paragraph headers identify paragraphs in the Identification and Environment
Divisions.

The paragraph headers are as follows:

Identification
Division

Environment
Division

PROGRAM-ID. SOURCE-COMPUTER.

AUTHOR. OBJECT-COMPUTER.

INSTALLATION. SPECIAL-NAMES.

DATE-WRITTEN. FILE-CONTROL.

DATE-COMPILED. I-O-CONTROL.

SECURITY.

OPTIONS.

A paragraph-name is a user-defined word followed by a separator period.
Paragraph-names identify paragraphs in the Procedure Division.

Paragraph headers and paragraph-names start in Area A of any line after the
first line of a division or section.

The first entry or sentence of a paragraph begins either:

• On the same line as the paragraph header or paragraph-name

• In Area B of the next nonblank line that is not a comment line

Successive sentences or entries begin in Area B of either:

• The same line as the preceding entry or sentence

• The next nonblank line that is not a comment line

2.2 Data Division Entries
A Data Division entry begins with a level indicator or level-number and is
followed, in order, by:

1. A space

2. The name of a data item, file connector, or screen item

3. A sequence of independent descriptive clauses

4. A separator period
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The level indicators are as follows:

• FD (for file description entries)

• SD (for sort-merge file description entries)

• RD (for report file description entries)

Level indicators can begin anywhere to the right of Area A.

Entries that begin with level-numbers are called either data description or screen
description entries, depending on their context. The level-number values are 01
to 49, 66, 77, and 88 for data description items and 01 to 49 for screen description
entries. Level-numbers 01 to 09 can be represented as one- or two-digit numbers.

All data description entries and screen description entries can begin anywhere
to the right of Margin A. However, indentation has no effect on level-number
magnitude; it merely enhances readability.

2.3 Declaratives
Declaratives specify USE procedures to be executed only when certain
conditions occur. You must write USE procedures at the beginning of the
Procedure Division in consecutive sections. The key word DECLARATIVES
begins the DECLARATIVES part of the Procedure Division; the pair of key words
END DECLARATIVES ends it. Each of these reserved word phrases must be on
a line by itself, starting in Area A; and be followed by a separator period. For
example:

PROCEDURE DIVISION.
DECLARATIVES.
IOERROR SECTION.
USE AFTER ... .
PAR-1.

.

.

.
END DECLARATIVES.

When you specify USE procedures, you must divide the remainder of the
Procedure Division into sections.
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3
Identification Division

Function
The Identification Division marks the beginning of a COBOL program. It also
identifies a program and its source listing.

General Format

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name

�
�� IS

��


				 COMMON

INITIAL

				
��
� PROGRAM

�
��

� WITH IDENT ident-string � .

[ AUTHOR. [ comment-entry ] . . . ]

* [ INSTALLATION. [ comment-entry ] . . . ]

* [ DATE-WRITTEN. [ comment-entry ] . . . ]

[ DATE-COMPILED. [ comment-entry ] . . . ]

* [ SECURITY. [ comment-entry ] . . . ]

[ OPTIONS.

�
� ARITHMETIC IS

�
NATIVE
STANDARD


 �
� ] (Alpha, I64)

* These paragraphs are not described in individual entries; they follow the same
format as the AUTHOR paragraph and are for documentation only.

Syntax Rules

1. The Identification Division must be the first entry in a COBOL program.

2. The Identification Division must begin with the IDENTIFICATION DIVISION
header. The header consists of the reserved words IDENTIFICATION
DIVISION followed by a separator period.

3. The PROGRAM-ID paragraph must immediately follow the
IDENTIFICATION DIVISION header.
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PROGRAM-ID Paragraph

PROGRAM-ID
Function
The PROGRAM-ID paragraph identifies a program and assigns selected program
attributes.

General Format

PROGRAM-ID. program-name�
�� IS

��


				 COMMON

INITIAL

				
��
� PROGRAM

�
��

� WITH IDENT ident-string � .

program-name
is a user-defined word that names the program.

Syntax Rules

1. The PROGRAM-ID paragraph must be present in every program.

2. program-name must contain 1 to 31 characters and follow the rules for
user-defined words.

3. Programs contained within a separately compiled program must have a
unique program-name.

4. The optional COMMON clause may be used only if the program is contained
within another program.

5. ident-string must be a nonnumeric literal 1 to 31 characters in length.

6. The optional IDENT clause cannot be used in a contained program.

General Rules

1. program-name is a user-defined word that identifies a COBOL program and
its source listing. It appears as the first word in the first line of every page in
the compiler source listing.

2. program-name represents the object program entry point.

3. If an executable image includes more than one separately compiled program,
each separately compiled program must have a unique program-name.

4. The COMMON clause specifies a common program. A common program is
contained within another program but may be called from programs other
than that directly containing it.

5. Files associated with a called program’s internal file connectors are not in the
open mode:

a. The first time the program is called

b. The first time the program is called after execution of a CANCEL
statement referring to the program

c. Every time the program is called, if it has the INITIAL attribute
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PROGRAM-ID Paragraph

On all other entries, the status and positioning of files in a called program are
the same as when the program last exited.

6. The INITIAL clause specifies an initial program. Whenever the program is
called, it and any programs contained within it are placed in their initial
state, and the internal data in each program is initialized.

7. On OpenVMS, the IDENT clause specifies a literal string that is used for
identification purposes. This string is written to the object file as the "module
version."

When the /ANALYSIS_DATA qualifier is included on the COBOL command,
the string is written to the analysis data file as the module ident. ♦

8. On Tru64 UNIX systems, program-name is case-sensitive. By default,
program-name is converted to lowercase for all separately compiled program
units. Any calls from other programs (HP COBOL as well as other languages)
must specify the routine to be called in lowercase.

However, if the names option is set to uppercase on the command line, calls
from other programs must specify the routine to be called in uppercase. If the
names option is set to as_is, the effect on program-name is as if uppercase
were specified. (The as_is setting is used for calling non-COBOL programs
with mixed case.) ♦

Additional Reference
See Section 6.2.6, Scope of Names.

Examples
PROGRAM-ID. PROGA.

PROGRAM-ID. SUBR1 INITIAL.

PROGRAM-ID. COMPUTE-PAY WITH IDENT "JOB6a-V1.1". (OpenVMS)

PROGRAM-ID.
WRITEMASTERREPORT.

PROGRAM-ID. PAYROLL IS COMMON.
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AUTHOR Paragraph

AUTHOR
Function
The AUTHOR paragraph is for documentation only.

General Format

AUTHOR. [ comment-entry ] . . .

comment-entry
is a user-supplied comment about the program’s author.

Syntax Rules

1. comment-entry can consist of any combination of characters from the computer
character set.

2. comment-entry can span several lines in Area B. However, they cannot be
continued by using a hyphen in the indicator area.

3. The end of comment-entry is the line before the next entry in Area A.

Examples
AUTHOR. JOHN SMITH.

AUTHOR. This program was written by John Smith
1226 Main St.
Merrimack, NH 03054

AUTHOR.
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DATE-COMPILED Paragraph

DATE-COMPILED
Function
The DATE-COMPILED paragraph provides the compilation date in the source
program listing file.

General Format

DATE-COMPILED. [ comment-entry ] . . .

comment-entry
is user-supplied information about the date compiled.

Syntax Rules

1. comment-entry can consist of any combination of characters from the computer
character set.

2. comment-entry can span several lines in Area B. However, it cannot be
continued by using a hyphen in the indicator area.

3. The end of comment-entry is the line before the next entry in Area A.

General Rule
The paragraph-name DATE-COMPILED causes the current date to be inserted
in your source program listing during compilation. Therefore, if a DATE-
COMPILED paragraph is present in your source program, it will be replaced
with a paragraph of the following form:

DATE-COMPILED. dd-mmm-yyyy.
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OPTIONS Paragraph

OPTIONS (Alpha, I64)
Function
The OPTIONS paragraph specifies information for use by the compiler in
generating executable code for a source unit.

General Format

OPTIONS. [ arithmetic-clause ] .

arithmetic-clause
specifies the method used in developing the intermediate results. The format is:

ARITHMETIC IS
�

NATIVE
STANDARD




Syntax Rule
The period appearing in the general format after the arithmetic-clause may be
omitted if the arithmetic-clause is not specified.

General Rules

1. The ARITHMETIC clause in the OPTIONS paragraph applies to the source
element in which it is specified and to all source elements contained in that
source element unless overridden by an ARITHMETIC clause in an OPTIONS
paragraph in a contained source element.

2. If the NATIVE phrase is specified, the techniques used in handling arithmetic
expressions and arithmetic statements shall be those specified for native
arithmetic in the appendix on compatibility in the HP COBOL User Manual.

3. If the STANDARD phrase is specified, the techniques used in handling
arithmetic expressions and arithmetic statements shall be those specified for
standard arithmetic in the ANSI Standard for COBOL. (Refer to the appendix
on compatibility in the HP COBOL User Manual.)

4. If the ARITHMETIC clause is not specified in this source element or a
containing source element, it is as if the ARITHMETIC clause were specified
with the NATIVE phrase. ♦
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4
Environment Division

Function
The Environment Division describes the program’s physical environment. It
also specifies input-output control and describes special control techniques and
hardware characteristics.

ENVIRONMENT DIVISION.

�
�������

CONFIGURATION SECTION.

� SOURCE-COMPUTER. [ source-computer-entry ] �

� OBJECT-COMPUTER. [ object-computer-entry ] �

� SPECIAL-NAMES. [ special-names-entry ] �

�
�������

�
��������

INPUT-OUTPUT SECTION.�
� FILE-CONTROL.

�
� file-control-entry � . . .

� �
�

� I-O-CONTROL. [ input-output-control-entry ] �

�
��������

The Environment Division can contain two sections:

• Configuration Section (see Section 4.1, CONFIGURATION Section)

• Input-Output Section (see Section 4.2, INPUT-OUTPUT Section)

Syntax Rules

1. The Environment Division follows the Identification Division.

2. The general format defines the order of appearance of Environment Division
entries.

3. A contained program cannot include a Configuration Section.

General Rule
Explicit or implicit Configuration Section entries in a program containing other
programs apply to each contained program.
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4.1 CONFIGURATION Section
The Configuration Section can contain three paragraphs:

• SOURCE-COMPUTER paragraph (see SOURCE-COMPUTER)

• OBJECT-COMPUTER paragraph (see OBJECT-COMPUTER)

• SPECIAL-NAMES paragraph (see SPECIAL-NAMES)

The Configuration Section must not be stated in a program that is contained
within another program. If Configuration Section entries are stated in a program
that contains other programs, they apply to each contained program.
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SOURCE-COMPUTER Paragraph

SOURCE-COMPUTER
Function
The SOURCE-COMPUTER paragraph specifies the computer on which the
source program is to be compiled.

SOURCE-COMPUTER.�
����
���
�


ALPHA
I64
VAX
computer-type

���
�� [ WITH DEBUGGING MODE ] .

�
����

computer-type
is a user-defined word that names the computer.

Syntax Rule
ALPHA, I64, and VAX are system-names. They are not reserved words, and are
for documentation only.

General Rules

1. If the WITH DEBUGGING MODE clause is not used, this paragraph is for
documentation only.

2. All clauses of the SOURCE-COMPUTER paragraph apply to the program
that specifies them. They also apply to any program contained within that
program.

3. If you include the WITH DEBUGGING MODE clause in a program, or if you
specify the conditionals command-line option, all conditional compilation
lines are compiled. Otherwise, the compiler treats all conditional compilation
lines as comment lines. (See Section 1.3.1 for additional information about
source line interpretation.)
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OBJECT-COMPUTER Paragraph

OBJECT-COMPUTER
Function
The OBJECT-COMPUTER paragraph describes the computer on which the
program is to execute.

OBJECT-COMPUTER.

�
���������������������

���
�


ALPHA
I64
VAX
computer-type

���
��

�
�� MEMORY SIZE integer

��



WORDS
CHARACTERS
MODULES

��
�
�
��

� PROGRAM COLLATING SEQUENCE IS alpha-name �

� SEGMENT-LIMIT IS segment-number � .

�
���������������������

computer-type
is a user-defined word that names the computer.

integer
is a numeric literal that has no digits to the right of the assumed decimal point.

alpha-name
is the name of a collating sequence defined in the ALPHABET clause of the
SPECIAL-NAMES paragraph.

segment-number
is an integer from 1 to 49.

Syntax Rule
ALPHA, I64, and VAX are system-names. They are not reserved words, and are
for documentation only.

General Rules

1. All clauses of the OBJECT-COMPUTER paragraph apply to the program
that explicitly or implicitly specifies them. They also apply to any program
contained within that program.

2. The MEMORY SIZE clause is for documentation only. It has no effect on
program execution.

3. The PROGRAM COLLATING SEQUENCE clause causes the program to
use the collating sequence of alpha-name to determine the truth value of
nonnumeric comparisons in:

• Relation conditions

• Condition-name conditions

• Report description entries, the CONTROL clause
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4. The PROGRAM COLLATING SEQUENCE clause also applies to nonnumeric
merge and sort keys. However, the COLLATING SEQUENCE phrase
in a MERGE or SORT statement takes precedence over the PROGRAM
COLLATING SEQUENCE clause.

5. If there is no PROGRAM COLLATING SEQUENCE clause, the program uses
the NATIVE collating sequence.

6. The SEGMENT-LIMIT clause is for documentation only.

Additional References

• SPECIAL-NAMES Paragraph

• SD (Sort-Merge File Description)

• Section 6.5.1, Relation Conditions

• Section 6.5.3, Condition-Name Condition

• Section 6.7, Segmentation

Additionally, refer to the information on SORT and MERGE statements in the
HP COBOL User Manual.

Examples

1. Computer name only:

OBJECT-COMPUTER. Alpha.

2. No computer name (if the computer is not specified, then no other clause can
appear):

OBJECT-COMPUTER.

3. With PROGRAM COLLATING SEQUENCE clause:

OBJECT-COMPUTER. Alpha
PROGRAM COLLATING SEQUENCE IS ALPH-A.

The SPECIAL-NAMES paragraph must define ALPH-A.

4. With PROGRAM COLLATING SEQUENCE clause:

OBJECT-COMPUTER. Alpha
SEQUENCE IS EBCDIC.

The SPECIAL-NAMES paragraph must define EBCDIC.

If EBCDIC refers to the EBCDIC collating sequence, the SPECIAL-NAMES
paragraph must contain the following clause:

ALPHABET EBCDIC IS EBCDIC
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SPECIAL-NAMES Paragraph

SPECIAL-NAMES
Function
The SPECIAL-NAMES paragraph: ( 1 ) associates compiler features and logical
names (on OpenVMS systems) or environment variables (on Tru64 UNIX
systems) with user-defined mnemonic-names, ( 2 ) provides a way to reference
command-line arguments and (on Tru64 UNIX) environment variables or
(on OpenVMS) logical names with user-defined mnemonic names, ( 3 ) defines
symbolic-characters, ( 4 ) specifies the currency sign, ( 5 ) selects the decimal point,
( 6 ) relates alphabet-names to character sets or collating sequences, ( 7 ) relates
class-names to character sets, ( 8 ) provides for cursor positioning for an ACCEPT
(Format 5) statement, and ( 9 ) provides information on the cause of termination
of an ACCEPT (Format 5) statement.

General Format

SPECIAL-NAMES . [

�
���������������������������������������������������

�����������
���������


CARD-READER
PAPER-TAPE-READER
CONSOLE
LINE-PRINTER
PAPER-TAPE-PUNCH
SYSIN (Alpha, I64)
SYSOUT (Alpha, I64)
SYSERR (Alpha, I64)

�����������
����������

IS device-name

�
��

ARGUMENT-NUMBER IS argument-number (Alpha, I64)
ARGUMENT-VALUE IS argument-value (Alpha, I64)
ENVIRONMENT-NAME IS environment-name (Alpha, I64)
ENVIRONMENT-VALUE IS environment-value (Alpha, I64)

�
��

C01 IS top-of-page-name

SWITCH switch-num

���������������
�������������


IS switch-name
[ ON STATUS IS cond-name ]
[ OFF STATUS IS cond-name]

IS switch-name
[ OFF STATUS IS cond-name]
[ ON STATUS IS cond-name ]

ON STATUS IS cond-name [ OFF STATUS IS cond-name ]
OFF STATUS IS cond-name [ ON STATUS IS cond-name ]

���������������
��������������

�
���������������������������������������������������
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SPECIAL-NAMES Paragraph

�
��������������������

ALPHABET alpha-name IS

����������������
��������������


ASCII
STANDARD-1
STANDARD-2
NATIVE
EBCDIC�����
���


first-literal

�
��
�

THRU
THROUGH



last-literal

{ ALSO lit } . . .

�
��
�����
����

. . .

����������������
���������������

�
��������������������

. . .

�
�����

SYMBOLIC CHARACTERS���
�

�

{ symbol-char } . . .
� IS

ARE

�
{ char-val } . . .

�
. . . [ IN alpha-name ]

���
�� . . .

�
����� . . .

�
������

CLASS class-name IS���
�
 first-literal

�
� �

THRU
THROUGH



last-literal

�
�
���
�� . . .

�
������ . . .

[ CURRENCY SIGN IS char ]

[ CURRENCY SIGN IS

��


				 char

literal-7 [WITH PICTURE SYMBOL literal-8]

				
��
� ] . . . (Alpha, I64)

[ DECIMAL-POINT IS COMMA ]

[ CURSOR IS cursor-position] (Alpha, I64)

[ CRT STATUS IS crt-status-code ] (Alpha, I64) . ]

device-name
is a user-defined word for a device. Only the ACCEPT and DISPLAY statements
can refer to it.

argument-number
is a user-defined word that contains the current argument position indicator
number when used with DISPLAY, or the count of command line arguments when
used with ACCEPT. Only the ACCEPT and DISPLAY statements can refer to it.

argument-value
is a user-defined word that contains the value of the current command line
argument as indicated by the current ARGUMENT-NUMBER. Only the ACCEPT
and DISPLAY statements can refer to it.

environment-name
is a user-defined word that contains the name of an environment variable or
system logical. Only the ACCEPT and DISPLAY statements can refer to it.
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environment-value
is a user-defined word that contains the value of the environment variable or
logical named by the current ENVIRONMENT-NAME. Only the ACCEPT and
DISPLAY statements can refer to it.

top-of-page-name
is a user-defined word for the top of a page. Only the WRITE statement can refer
to it.

switch-num
is the number of a program switch. Its value can range from 1 to 16.

switch-name
is a mnemonic-name for the program switch.

cond-name
is a condition-name for the on or off status of the switch. It always possesses the
global attribute. Its truth value is true when the STATUS phrase matches the
status of the switch, false when it does not.

alpha-name
is the user-defined word for a character set, collating sequence, or both. It always
possesses the global attribute.

first-literal
is a literal. It specifies either: ( 1 ) the value of one or more alphabet characters,
or ( 2 ) the first in a range of values.

last-literal
is a literal. It specifies the last in a range of values.

lit
is a literal. It specifies an alphabet character value.

symbol-char
is a user-defined word that names the symbolic-character. It always possesses
the global attribute. The same symbol-char cannot appear more than once in the
SYMBOLIC CHARACTERS clause.

char-val
is an integer that indicates the ordinal position of a character in the native
character set.

class-name
is the user-defined word for a class. It always possesses a global attribute.

char
is a one-character nonnumeric literal that specifies the currency symbol. It cannot
be a symbolic-character or figurative constant.

literal-7 (Alpha, I64)
is an alphanumeric literal. It cannot be a figurative constant.

literal-8 (Alpha, I64)
is an alphanumeric literal consisting of a single character. It cannot be a
figurative constant. No two occurrences of literal-8 can have the same value.
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cursor-position (Alpha, I64)
is a data item declared in the Working-Storage Section of the program. It is
either an elementary unsigned numeric integer either four or six characters in
length, described as USAGE IS DISPLAY, or a group item either four or six
characters in length, consisting of two elementary unsigned data items.

crt-status-code (Alpha, I64)
is a group data item three characters in length, declared in the Working-Storage
Section of the program. ♦

Syntax Rules

1. In the first-literal phrase of the ALPHABET or CLASS clauses:

• If alpha-name is in the PROGRAM COLLATING SEQUENCE clause, the
ALPHABET clause cannot specify any character more than once.

• If the ALSO or THRU phrase appears, first-literal must be one character
long.

• Numeric literals must be unsigned integers from 1 to 256.

• If last-literal or lit is nonnumeric, it must be one character long.

• THRU and THROUGH are equivalent.

2. If the first-literal phrase appears, alpha-name cannot be referenced in a
CODE-SET clause.

3. The following are accessible only by ACCEPT and DISPLAY statements:

argument-count
argument-value
environment-name
environment-value

General Rules

1. All clauses of the SPECIAL-NAMES paragraph apply to the program defining
them and to all programs contained within that program.

device-name Clause

2. The device-name clause associates a device with a user-defined word (device-
name).

On Tru64 UNIX, the device name is derived from an environment variable, if
that environment variable exists. Otherwise, the defaults are as follows:

System-Name Tru64 UNIX Environment Variable

Tru64 UNIX
Default File
Name

CARD-READER COBOL_CARDREADER stdin
PAPER-TAPE-READER COBOL_PAPERTAPEREADER stdin
CONSOLE COBOL_CONSOLE stderr
LINE-PRINTER COBOL_LINEPRINTER stdout
PAPER-TAPE-PUNCH COBOL_PAPERTAPEPUNCH stdout
SYSIN COBOL_INPUT stdin
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System-Name Tru64 UNIX Environment Variable

Tru64 UNIX
Default File
Name

SYSOUT COBOL_OUTPUT stdout
SYSERR COBOL_ERROR stderr

The input device for the ACCEPT statement is derived from COBOL_INPUT,
if defined, and defaults to stdin. The output device for the DISPLAY
statement is derived from COBOL_OUTPUT, if defined, and defaults to
stdout. ♦
On OpenVMS, the file-name is derived from a logical name if that logical
name exists. Otherwise, the defaults are as follows:

System-Name
OpenVMS
Logical Name

OpenVMS
Default File Name

CARD-READER COB$CARDREADER SYS$INPUT
PAPER-TAPE-READER COB$PAPERTAPEREADER SYS$INPUT
CONSOLE COB$CONSOLE SYS$ERROR
LINE-PRINTER COB$LINEPRINTER SYS$OUTPUT
PAPER-TAPE-PUNCH COB$PAPERTAPEPUNCH SYS$OUTPUT
SYSIN (Alpha, I64) COB$INPUT SYS$INPUT
SYSOUT (Alpha, I64) COB$OUTPUT SYS$OUTPUT
SYSERR (Alpha, I64) COB$ERROR SYS$ERROR

The input device for the ACCEPT statement is derived from COB$INPUT, if
defined, and defaults to SYS$INPUT. The output device for the DISPLAY
statement is derived from COB$OUTPUT, if defined, and defaults to
SYS$OUTPUT. (See the ACCEPT and DISPLAY statements in Chapter 6,
Procedure Division, and refer to the HP COBOL User Manual for more
information.) ♦

top-of-page-name Clause

3. The system-name C01 refers to the first line of a logical page. Only the
ADVANCING phrase of the WRITE statement can refer to the top-of-page-
name equated to C01. (See the WRITE statement in Chapter 6, Procedure
Division.)

SWITCH Clause

4. The ON STATUS (or OFF STATUS) phrase of the SWITCH clause associates
the status of switch-name with a corresponding cond-name. The program uses
a switch-status condition in the Procedure Division to test the switch.

Switches can also be read from the OpenVMS logical name COB$SWITCHES
or the Tru64 UNIX environment variable COBOL_SWITCHES.

The compiler interprets SWITCH n and SWITCH-n (where n represents
a number from 1 to 8) as identical clauses. For example, SWITCH 1 is
equivalent to SWITCH-1.

Refer to the HP COBOL User Manual for more information on using switches.
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ALPHABET Clause

5. The ALPHABET clause relates a name to a character code set, collating
sequence, or both.

The ALPHABET clause specifies:

• A character code set, when alpha-name is in a CODE-SET clause in the
FILE-CONTROL paragraph or file description entry.

• A collating sequence, when alpha-name is in: ( 1 ) the PROGRAM
COLLATING SEQUENCE clause in the OBJECT-COMPUTER paragraph
or ( 2 ) the COLLATING SEQUENCE phrase of a SORT or MERGE
statement.

6. ASCII refers to the character set defined in American National Standard
X3.4-1968, ‘‘Code for Information Interchange.’’

7. STANDARD-1 refers to the ASCII character set.

8. STANDARD-2 refers to the international version of the ISO 7-bit code. It
is defined in International Standard 646, ‘‘7-Bit Coded Character Set for
Information Processing Interchange.’’

9. NATIVE refers to the native character set. It consists of 256 characters.
The lowest-valued 128 characters are the ASCII character set. The highest-
valued 128 characters are reserved for later standardization and definition by
Hewlett-Packard.

10. EBCDIC refers to the EBCDIC character set or collating sequence. It is
defined in Appendix B, Character Sets.

11. The character with the highest ordinal position in the program collating
sequence equals the figurative constant HIGH-VALUE, except when
this figurative constant is specified as a literal in the SPECIAL-NAMES
paragraph. If more than one character has the highest position, HIGH-
VALUE is the last character you specify.

12. The character with the lowest ordinal position in the program collating
sequence equals the figurative constant LOW-VALUE, except when this
figurative constant is specified as a literal in the SPECIAL-NAMES
paragraph. If more than one character has the lowest position, LOW-VALUE
is the first character you specify.

Literals in the ALPHABET Clause

13. The value of each numeric literal specifies the ordinal number of a character
in the native character set. For example, 66 refers to the ASCII character A.

14. The value of each nonnumeric literal specifies the actual character in the
native character set.

15. If the literal contains more than one character, the compiler interprets each
character from left to right. It assigns each a successive ascending position in
the collating sequence or character code set.

16. The order of appearance of literals in the ALPHABET clause specifies each
character’s ordinal number in ascending sequence. If the ALPHABET clause
defines a character code set, the ordinal number identifies the character’s
relative position in the set.
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17. Any unspecified characters in the native collating sequence have higher
positions in the new collating sequence than all specified characters. The
relative order of the unspecified characters is the same as in the native
collating sequence.

For example, the following clauses are equivalent:

ALPHABET XYZ IS 2 4

ALPHABET XYZ IS 2 4 1 3 5 6 7

ALPHABET XYZ IS 2 4 1

THROUGH Phrase

18. The THROUGH phrase specifies a set of contiguous characters in the native
character set. The first character is first-literal; the last character is last-
literal.

19. The compiler assigns each character in the set a successive ascending position
in the collating sequence or character code set.

20. The THROUGH phrase can specify the set of contiguous characters in
either ascending or descending order. For example, ‘‘L’’ THRU ‘‘H’’ assigns
successively higher numbers to L, K, J, I, and H.

21. The ALSO phrase assigns first-literal and each lit to the same position in the
collating sequence or character code set. For example, ‘‘A’’ ALSO ‘‘$’’ causes
the characters A and $ to be equivalent in comparisons when the associated
alpha-name is in the PROGRAM COLLATING SEQUENCE clause.

SYMBOLIC CHARACTERS Clause

22. Each symbol-char corresponds to the char-val in the same relative position.
In the following example, CARRIAGE-RET corresponds to 14 and ESCAPE to
28:

SYMBOLIC CHARACTERS CARRIAGE-RET ESCAPE ARE 14 28

23. If the IN phrase is not specified, symbol-char represents the character, in the
native character set, that has the ordinal position specified by char-val.

Note

The ordinal position is one greater than the internal representation of
the character. For example, the character A is in ordinal position 66. Its
internal representation is decimal 65 (hexadecimal 41).

24. If the IN phrase is specified, char-val represents the character that has the
ordinal position specified by the IN alpha-name phrase.

CLASS Clause

25. The CLASS clause relates a name to a specified set of characters in that
clause. class-name can be referenced only in a class condition. The characters
specified by the values of the literals in this clause define the set of characters
of which this class-name consists.

26. The value of each numeric literal specifies the ordinal number of a character
in the native character set. This value must not exceed the value that
represents the number of characters in the native character set.
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27. The value of each nonnumeric literal specifies the actual character in the
native character set. If the nonnumeric literal contains multiple characters,
each character in the literal is included in the set of characters identified by
class-name.

28. The THROUGH phrase specifies a set of contiguous characters in the native
character set. The first character is first-literal; the last character is last-
literal. The characters specified by a given THROUGH phrase can be
specified in ascending or descending order.

CURRENCY SIGN Clause

29. In the CURRENCY SIGN clause, char specifies the PICTURE clause currency
symbol. It can be any printable character from the computer character set
except:

• 0 through 9

• A, B, C, D, P, R, S, V, X, Z, the lowercase characters a to z, or the space

• Asterisk ( * ), plus sign ( + ), minus sign ( - ), comma ( , ), period ( . ),
semicolon ( ; ), quotation mark ( " ), equal sign ( = ), slash ( / ), left
parenthesis ( ( ), or right parenthesis ( ) )

30. The CURRENCY SIGN clause cannot contain a symbolic-character or
figurative constant.

31. If there is no CURRENCY SIGN clause, the default currency sign used for
the PICTURE clause is the "$" symbol.

On OpenVMS, if you define the logical name SYS$CURRENCY at DCL
command level prior to compilation, the quoted character string to which you
define it will be the currency string. To do this, prior to compiling the COBOL
program, issue the following DCL command:

$ DEFINE SYS$CURRENCY "quoted-character-string"

The COBOL compiler will utilize the first character of this string as the
currency symbol for the program.

Subsequently, the system default value of SYS$CURRENCY can be restored
for the process with the following DCL command:

$ DEASSIGN SYS$CURRENCY ♦

The default currency sign can also be established based on the nationality
compiler option, depending on the keyword, as follows:

US (default) The default currency sign and symbol are the
dollar sign ($), and Japanese language support
features are disabled.

JAPAN The default currency sign and symbol are the
Yen sign ( ¥ ) (which is not overridden by a
SYS$CURRENCY definition), and Japanese
language support features are enabled,
including national character user-defined-words,
data items (PIC N), and literals (N"").
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CURRENCY SIGN Clause (Alpha, I64)

32. To use CURRENCY SIGN IS literal-7, you must compile the program with the
/RESERVED_WORDS=200X qualifier. Without that qualifier, you can specify
only CURRENCY SIGN IS char, and specify it only once.

33. The CURRENCY SIGN IS literal-7 clause specifies a currency string that
is placed into numeric-edited data items when they are used as receiving
items and de-edited from a data item when the data item is used as a sending
item that has a numeric or numeric-edited receiving item. The clause also
determines which symbol shall be used in a picture character string to
specify the presence of this currency string. This symbol is referred to as the
currency symbol.

literal-7 represents the value of the currency string.

If the CURRENCY SIGN clause is specified with the PICTURE SYMBOL
phrase, literal-8 is the currency symbol; if the clause is specified without the
PICTURE SYMBOL phrase, literal-7 is the currency symbol, and it must be
one character in length.

If the currency symbol is a lowercase letter, it is treated as its uppercase
equivalent.

34. If the PICTURE SYMBOL phrase is not specified, literal-7 must consist of a
single character that is not one of the following:

• 0 through 9

• A, B, C, D, E, N, P, R, S, V, X, Z, or the lowercase equivalents; or the
space

• Asterisk ( * ), plus sign ( + ), minus sign ( - ), comma ( , ), period ( . ),
semicolon ( ; ), quotation mark ( " ), equal sign ( = ), slash ( / ), left
parenthesis ( ( ), or right parenthesis ( ) )

35. If the PICTURE SYMBOL phrase is specified, literal-7 can have any length
and:

• Must contain at least one nonspace character, and

• Can consist of any characters from the computer’s character set except
for the digits 0 through 9 and the characters asterisk ( * ), plus sign ( + ),
minus sign ( - ), comma ( , ), and period ( . )

36. literal-8 can be any character from the computer’s character set except for the
following:

• 0 through 9

• A, B, C, D, E, N, P, R, S, V, X, Z, or the lowercase equivalents; or the
space

• Asterisk ( * ), plus sign ( + ), minus sign ( - ), comma ( , ), period ( . ),
semicolon ( ; ), quotation mark ( " ), equal sign ( = ), slash ( / ), left
parenthesis ( ( ), or right parenthesis ( ) ) ♦

DECIMAL-POINT IS COMMA Clause

37. The DECIMAL-POINT IS COMMA clause exchanges the functions of the
comma and period in: ( 1 ) the PICTURE clause character-string and ( 2 )
numeric literals.
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CURSOR IS Clause (Alpha, I64)

38. The CURSOR IS clause specifies the initial position of the cursor at the start
of an ACCEPT (Format 5) statement. If cursor-position is within an input or
update field on the screen, then the initial cursor position is at the start of
that field. If the CURSOR IS clause is not specified, or if cursor-position is not
within an input or update field on the screen, the cursor’s initial position is at
the start of the first input or update field of the screen. The cursor-position is
updated upon completion of the ACCEPT statement to contain the position of
the cursor when the ACCEPT terminated.

39. In the CURSOR IS clause, if cursor-position is four characters in length,
the first two characters represent the line number, and the second two the
column number. If cursor-position is six characters in length, the first three
characters represent the line number, and the second three the column
number.

CRT STATUS IS Clause (Alpha, I64)

40. If the CRT STATUS IS clause is specified, crt-status-code is updated after
every ACCEPT (Format 5) statement. The first two characters are a
termination code that indicates the cause of the termination of the ACCEPT
operation. (The third character is currently not defined, and is reserved for
future use.) The termination codes are explained in Table 4–1.

Command Line Arguments (Alpha, I64)
41. The ARGUMENT-NUMBER and ARGUMENT-VALUE clauses are used to

process command line arguments. The DISPLAY statement is used to select
and modify the values, and the ACCEPT statement is used to retrieve the
values.

Environment Variables and System Logicals (Alpha, I64)
42. The ENVIRONMENT-NAME and ENVIRONMENT-VALUE clauses are

used to process environment variables and system logicals. The DISPLAY
statement is used to select and modify the values, and the ACCEPT statement
is used to retrieve the values.

Table 4–1 CRT STATUS Termination Codes (Alpha, I64)

First Character Second Character Meaning

‘0’ ‘0’ Terminator key pressed by the operator;
normal completion

‘0’ ‘1’ Auto-skip out of the last field; normal
completion

‘1’ x‘00’—x‘1A’ User-defined function key number for
F1–F20 and the Find through Next
keys1

‘9’ x‘00’ No items falling within the screen1

1The second character contains a hexadecimal value. An example of how to examine this value is
given in the Examples section.

♦
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Additional References

• OBJECT-COMPUTER Paragraph

• CODE-SET Clause

• Section 6.2.6, Scope of Names

• Section 6.5.4, Switch-Status Condition

• ACCEPT Statement

• DISPLAY Statement

• SET Statement

• Appendix B, Character Sets

Examples

1. device-name clause:

CARD-READER IS THE-CARDS
CONSOLE IS LOCAL-USER

On Tru64 UNIX, this example allows ACCEPT and DISPLAY statements
to use THE-CARDS to refer to the environment variable COBOL_
CARDREADER and LOCAL-USER to refer to the environment variable
COBOL_CONSOLE. ♦
On OpenVMS, this example allows ACCEPT and DISPLAY statements to
use THE-CARDS to refer to the logical name COB$CARDREADER and
LOCAL-USER to refer to the logical name COB$CONSOLE. ♦

2. Top-of-page-name clause:

C01 IS STARTING-NEW-FORM

The following WRITE statement causes the line to appear on the first line of
a new page:

WRITE REPORT-REC AFTER STARTING-NEW-FORM.

3. SWITCH clause:

SWITCH 1 IS FIRST-SWITCH ON IS ONE-ON OFF IS ONE-OFF
SWITCH-4 ON FOUR-ON

(Procedure Division statements can use the condition-names defined in the
SWITCH clause. The SET statement can change the status of a switch.)

The following results assume that switch 1 is on and switch 4 is off:

Condition
Truth
Value

IF FOUR-ON false
IF ONE-ON true
IF NOT ONE-OFF true
IF ONE-ON AND NOT FOUR-ON true

4. ALPHABET clause:

ALPHABET EB-CONV IS EBCDIC
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If a file’s SELECT clause contains a CODE-SET IS EB-CONV clause, this
ALPHABET clause causes translation from EBCDIC to the native character
set when the program reads data from the file.

5. User-defined collating sequence:

ALPHABET ALPH-B IS
"A" THRU "Z"
"9" THRU "0"
" " ALSO "/" ALSO "\"
","

This ALPHABET clause defines a collating sequence in which uppercase
letters are lower than numeric characters. The space, slash ( / ), and backslash
( \ ) characters have the same position in the collating sequence. The comma
is the next higher character. It is implicitly followed by the rest of the
character set.

The following Procedure Division conditional statements show the effect of
this ALPHABET clause when the OBJECT-COMPUTER paragraph contains
the PROGRAM COLLATING SEQUENCE IS ALPH-B clause:

Statements
Truth
Value

MOVE ‘‘A’’ TO ITEMA.
MOVE ‘‘9’’ TO ITEMB.
IF ITEMA < ITEMB true
MOVE ‘‘ ’’ TO ITEMA.
MOVE ‘‘\’’ TO ITEMB.
IF ITEMA = ITEMB AND ITEMB > ‘‘Z’’ true
MOVE ‘‘1’’ TO ITEMA.
MOVE ‘‘9’’ TO ITEMB.
IF ITEMA < ITEMB false

6. User-defined collating sequence with numeric literals:

ALPHABET ALPH-C IS 128 THRU 1

This clause inverts the positions of the ASCII characters.

The following Procedure Division statements assume that the OBJECT-
COMPUTER paragraph contains the SEQUENCE IS ALPH-C clause:

Statements
Truth
Value

MOVE ‘‘A’’ TO ITEMA.
MOVE ‘‘B’’ TO ITEMB.
IF ITEMA < ITEMB false
MOVE ‘‘9’’ TO ITEMA.
IF ITEMA < ‘‘2’’ true
MOVE ‘‘HELLO’’ TO ITEMA.
IF ITEMA > SPACES false

7. SYMBOLIC CHARACTERS clause:

SYMBOLIC CHARACTERS ESCAPE POUND DOUB-L ARE 28 36 55.
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The following DISPLAY statement displays the literal ‘‘Enter value’’ in double
width on an ANSI terminal.

DISPLAY "Enter value" ESCAPE POUND DOUB-L.

8. CURRENCY SIGN clause:

a. The following example applies to any system, and (if on Alpha or I64)
regardless of whether /RESERVED_WORDS=200X is specified when the
program is compiled:

CURRENCY SIGN "G"
.
.
.

01 ITEMA PIC X(5).
01 ITEMB PIC X(5).
01 ITEMC PIC GG,GG9.99.
01 ITEMD PIC ZZZ.ZZ9,99.
01 ITEME PIC ZZZ,.

The following MOVE statements show the effect of the CURRENCY SIGN
clause (the character s represents a space):

Statement
ITEMC
Result

MOVE 12.34 TO ITEMC sssG12.34
MOVE 100 TO ITEMC ssG100.00
MOVE 1000 TO ITEMC G1,000.00

b. The following example applies only on Alpha and I64 and only if
/RESERVED_WORDS=200X is specified when the program is compiled:

CURRENCY SIGN IS "G"
CURRENCY SIGN IS "USD" WITH PICTURE SYMBOL "U"
CURRENCY SIGN IS "DM" WITH PICTURE SYMBOL "D"
CURRENCY SIGN IS "M".

.

.

.
01 ITEMA PIC GG,GG9.99.
01 ITEMB PIC U,UUU,UU9.99.
01 ITEMC PIC DD,DD9.99.
01 ITEMD PIC MMM,MM9.99.

Statement Result

MOVE 12.34 TO ITEMA ITEMA = sssG12.34
MOVE 1000 TO ITEMB ITEMB = USD1,000.00
MOVE 12.34 TO ITEMC ITEMC = ssDM12.34
MOVE 1000 TO ITEMD ITEMD = sM1,000.00

9. DECIMAL-POINT IS COMMA clause:

01 ITEMA PIC X(5).
01 ITEMB PIC X(5).
01 ITEMC PIC GG,GG9.99.
01 ITEMD PIC ZZZ.ZZ9,99.
01 ITEME PIC ZZZ,.
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The following MOVE statements show the effect of the DECIMAL-POINT IS
COMMA clause (the character s represents a space):

Statement
ITEMD
Result

MOVE 1 TO ITEMD ITEMD = ssssss1,00
MOVE 1000 TO ITEMD ITEMD = ss1.000,00
MOVE 1,1 TO ITEMD ITEMD = ssssss1,10
MOVE 12 TO ITEME ITEME = s12,

10. CURSOR IS clause (Alpha, I64):

SPECIAL-NAMES.
CURSOR IS CURSOR-POSITION.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 CURSOR-POSITION.
02 CURSOR-LINE PIC 99.
02 CURSOR-COL PIC 99.

In this example, the cursor’s position is defined by data items containing
a two-digit line number (CURSOR-LINE) and a two-digit column number
(CURSOR-COL).

11. CRT STATUS IS clause (Alpha, I64):

SPECIAL-NAMES.

SYMBOLIC CHARACTERS
FKEY-10-VAL

ARE 11

CRT STATUS IS CRT-STATUS.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 CRT-STATUS.
03 KEY1 PIC 9.
03 KEY2 PIC X.

88 FKEY-10 VALUE FKEY-10-VAL.
03 FILLER PIC X.
.
.
.
ACCEPT MENU-SCREEN.

IF KEY1 EQUAL "0"
PERFORM OPTION_CHOSEN

ELSE IF KEY1 EQUAL "1" AND FKEY-10
DISPLAY "You pressed the F10 key; exiting..." LINE 22.

The first two characters (KEY1 and KEY2) constitute the code that shows the
cause of termination of an ACCEPT operation. (See Table 4–1.) Note that the
SPECIAL-NAMES paragraph provides for the capturing of the F10 function
key. ♦
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4.2 INPUT-OUTPUT Section
The INPUT-OUTPUT Section can contain two paragraphs:

• FILE-CONTROL paragraph (see FILE-CONTROL)

• I-O-CONTROL paragraph (see I-O-CONTROL)

The FILE-CONTROL paragraph can contain the following clauses:

• ACCESS MODE clause

• ASSIGN clause

• BLOCK CONTAINS clause

• CODE-SET clause

• LOCK MODE clause (Alpha, I64)

• ORGANIZATION clause

• PADDING CHARACTER clause

• RECORD DELIMITER clause

• RESERVE clause

The I-O-CONTROL paragraph can contain the following clauses:

• APPLY clause

• SAME AREA clause

• RERUN clause

• MULTIPLE FILE clause

This section first describes the FILE-CONTROL paragraph and its clauses, then
it describes the I-O-CONTROL paragraph.
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FILE-CONTROL
Function
The FILE-CONTROL paragraph declares the program’s data files.

General Format

FILE-CONTROL.

Format 1�
�����������������������������������������������������������������

SELECT [ OPTIONAL ] file-name

����������������
��������������


ASSIGN TO
� EXTERNAL (Alpha, I64)

DYNAMIC (Alpha, I64)

�
file-spec (OpenVMS)

ASSIGN TO
� EXTERNAL

DYNAMIC

� ���
�


data-name
literal
DISK
PRINTER

���
��

ASSIGN TO � MULTIPLE �

�
REEL
UNIT



� FILE � (Tru64 UNIX)

����������������
���������������

�
RESERVE reserve-num

� AREA
AREAS

� �

�
� ORGANIZATION IS � SEQUENTIAL

�

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �

* � CODE-SET IS alpha-name �

� PADDING CHARACTER IS pad-char �

� RECORD DELIMITER IS STANDARD-1 �

* � ACCESS MODE IS SEQUENTIAL ��
�� LOCK MODE IS

�
AUTOMATIC � WITH LOCK ON RECORD �

EXCLUSIVE

�
(Alpha, I64)

�
��

* � FILE STATUS IS file-stat � .

�
�����������������������������������������������������������������
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Format 2 (Alpha, I64)

�
���������������������������������������������������������

SELECT [ OPTIONAL ] file-name

����������
��������


ASSIGN TO
� EXTERNAL (Alpha, I64)

DYNAMIC (Alpha, I64)

�
file-spec (OpenVMS)

ASSIGN TO
� EXTERNAL

DYNAMIC

� ���
�


data-name
literal
DISK
PRINTER

���
��

����������
���������

�
RESERVE reserve-num

� AREA
AREAS

� �

� ORGANIZATION IS � LINE SEQUENTIAL

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �

* � CODE-SET IS alpha-name �

� PADDING CHARACTER IS pad-char �

� RECORD DELIMITER IS STANDARD-1 �

* � ACCESS MODE IS SEQUENTIAL ��
�� LOCK MODE IS

�
AUTOMATIC � WITH LOCK ON RECORD �

EXCLUSIVE

�
(Alpha, I64)

�
��

* � FILE STATUS IS file-stat � . ♦

�
���������������������������������������������������������
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Format 3�
��������������������������������������������������������������

SELECT � OPTIONAL � file-name

����������
��������


ASSIGN TO
� EXTERNAL (Alpha, I64)

DYNAMIC (Alpha, I64)

�
file-spec (OpenVMS)

ASSIGN TO
� EXTERNAL

DYNAMIC

� ���
�


data-name
literal
DISK
PRINTER

���
�� (Alpha, I64)

����������
���������

�
RESERVE reserve-num

� AREA
AREAS

� �

� ORGANIZATION IS � RELATIVE

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �

� RECORD DELIMITER IS STANDARD-1 �

*

�
����� ACCESS MODE IS

�����
���


SEQUENTIAL � RELATIVE KEY IS rel-key ��
RANDOM
DYNAMIC



RELATIVE KEY IS rel-key

�����
����

�
�����

�
��� LOCK MODE IS

���
�


MANUAL WITH LOCK ON MULTIPLE RECORDS

AUTOMATIC � WITH LOCK ON RECORD �

EXCLUSIVE

���
��

�
��� (Alpha, I64)

* � FILE STATUS IS file-stat �

�
��������������������������������������������������������������

.
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Format 4�
�������������������������������������������������������������������������

SELECT [ OPTIONAL ] file-name

����������
��������


ASSIGN TO
� EXTERNAL (Alpha, I64)

DYNAMIC (Alpha, I64)

�
file-spec (OpenVMS)

ASSIGN TO
� EXTERNAL

DYNAMIC

� ���
�


data-name
literal
DISK
PRINTER

���
�� (Alpha, I64)

����������
���������

�
RESERVE reserve-num

� AREA
AREAS

� �

� ORGANIZATION IS � INDEXED

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �

� RECORD DELIMITER IS STANDARD-1 �

*

�
�� ACCESS MODE IS

� SEQUENTIAL
RANDOM
DYNAMIC

� �
��

*

�
� RECORD KEY IS

� rec-key
seg-key = {seg} . . .

�
[ WITH DUPLICATES ]

�
ASCENDING
DESCENDING

� �
�

*

�
� ALTERNATE RECORD KEY IS

� alt-key
seg-key = {seg} . . .

�
[ WITH DUPLICATES ]

�
ASCENDING
DESCENDING

� �
� . . .

�
��� LOCK MODE IS

���
�


MANUAL WITH LOCK ON MULTIPLE RECORDS

AUTOMATIC � WITH LOCK ON RECORD �

EXCLUSIVE

���
��

�
��� (Alpha, I64)

* � FILE STATUS IS file-stat � .

�
�������������������������������������������������������������������������
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Format 5�
������������

SELECT file-name����������
��������


ASSIGN TO
� EXTERNAL (Alpha, I64)

DYNAMIC (Alpha, I64)

�
file-spec (OpenVMS)

ASSIGN TO
� EXTERNAL

DYNAMIC

� ���
�


data-name
literal
DISK
PRINTER

���
�� (Alpha, I64)

����������
���������

.

�
������������

Format 6�
�������������������������������������������������

SELECT file-name����������
��������


ASSIGN TO
� EXTERNAL (Alpha, I64)

DYNAMIC (Alpha, I64)

�
file-spec (OpenVMS)

ASSIGN TO
� EXTERNAL

DYNAMIC

� ���
�


data-name
literal
DISK
PRINTER

���
�� (Alpha, I64)

����������
���������

�
RESERVE reserve-num

� AREA
AREAS

� �

�
� ORGANIZATION IS � SEQUENTIAL

�

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �

* � CODE-SET IS alpha-name �

� PADDING CHARACTER IS pad-char �

� RECORD DELIMITER IS STANDARD-1 �

* � ACCESS MODE IS SEQUENTIAL �

* � FILE STATUS IS file-stat � .

�
�������������������������������������������������

Note

*Clauses marked with an asterisk (*) can be in either the SELECT clause
of the Environment Division or the file description entry of the Data
Division. They cannot be in both places for the same file.

file-name
is the internal name of a file connector. Each file-name must have a file
description (or Sort-Merge File Description) entry in the Data Division. The
same file-name cannot appear more than once in the FILE-CONTROL paragraph.
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Syntax Rules
All Formats

1. SELECT is optional in the FILE-CONTROL paragraph.

2. If SELECT is used in the FILE-CONTROL paragraph, it must be the first
clause. Other clauses may follow it in any order.

3. Each file described in the Data Division must be specified only once in the
FILE-CONTROL paragraph.

4. On OpenVMS for every format, the first form of ASSIGN TO (marked
"OpenVMS ONLY") is available only on the OpenVMS Alpha and OpenVMS
I64 operating systems and only if the default /STANDARD=NOXOPEN
qualifier is in effect.

The second form of ASSIGN TO is available on the OpenVMS Alpha and
OpenVMS I64 systems if the /STANDARD=XOPEN qualifier is in effect. ♦

Format 6—Report Files

5. Each SELECT clause specifying a Report File must have a file description
entry containing a REPORT clause in the Data Division of the same program.

General Rules
Formats 1, 2, 3, and 4—Sequential, Line Sequential, Relative, or Indexed Files

1. You must specify an OPTIONAL phrase for files opened in INPUT, I-O, or
EXTEND mode that need not be present when the program runs.

2. The rules for the OPEN statement describe the effects of the OPTIONAL
phrase.

3. If the file connector referenced by file-name is an external file connector, all
file control entries in the run unit that reference this file connector must have
the following characteristics:

• The same specification for the OPTIONAL phrase

• A consistent full-file-name

• The same values for reserve-num, smallest-block, and blocksize

• The same organization

Format 6—Report Files

4. If the file connector referenced by file-name is an external file connector, all
file control entries in the run unit that reference this file connector must have
the following characteristics:

• A consistent full-file-name

• The same value for reserve-num

• Sequential organization

• The same CODE-SET clause
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Additional References

• OPEN statement in Chapter 6, Procedure Division

• BLOCK CONTAINS and CODE-SET clauses in this chapter

• FILE STATUS, ACCESS MODE, RECORD KEY, and ALTERNATE RECORD
KEY clauses in Chapter 5, Data Division

Examples
The following examples assume that the VALUE OF ID clause is not in any
associated file description entry.

1. Sequential file:

SELECT FILE-A
ASSIGN TO "INFILE".

This example refers to a file with sequential organization. The word INFILE
is equivalent to the nonnumeric literal ‘‘INFILE’’. If there is no VALUE OF ID
clause, the program accesses a file named INFILE.DAT on OpenVMS Alpha
and I64 systems, or a file named INFILE on Tru64 UNIX systems.

2. Indexed file:

SELECT OPTIONAL FILE-A
ASSIGN TO "INFILE"
ORGANIZATION INDEXED.

In this example, the SELECT clause specifies that the indexed file need not
be present when the program opens it for INPUT, I-O, or EXTEND.

3. Sort or merge file:

SELECT SORT-FILE
ASSIGN TO "SDFILE".

4. Report file:

SELECT SUMMARY-REPORT
ASSIGN TO "OUTFIL"
FILE STATUS IS REPORT-ERRORS.
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ASSIGN
Function
The ASSIGN clause associates a file with a partial or complete file specification.

Format 1 (OpenVMS)

ASSIGN TO
�

EXTERNAL
DYNAMIC

�
file-spec ♦

Format 2 (Alpha, I64)

ASSIGN TO

���
�


data-name
literal
DISK
PRINTER

���
��

Format 3 (Tru64 UNIX)

ASSIGN TO � MULTIPLE �

�
REEL
UNIT



� FILE � ♦

file-spec
on OpenVMS is either a nonnumeric literal or a COBOL word formed according
to the rules for user-defined names. It represents a partial or complete file
specification. It must conform to the rules for file specifications as defined by
RMS. ♦

data-name
is the name of a COBOL data item that contains a partial or complete file
specification.

literal
is a nonnumeric literal containing a partial or complete file specification.

DISK (Alpha, I64)
uses the file specification declared in the optional VALUE OF ID clause as the file
name. If the VALUE OF ID clause is not present, file-name-1 is used as the file
name in the current directory.

PRINTER (Alpha, I64)
creates a print file as if the PRINT-CONTROL phrase of the APPLY clause
were specified in the I-O CONTROL paragraph. A print file should contain only
printable characters and line and page advancing information written using the
ADVANCING clause of the WRITE verb.

REEL or UNIT (Tru64 UNIX)
creates the file on a magnetic tape using the ANSI standard format as defined
by American National Standard X3.27-1978 (Level 3), Magnetic Tape Labels and
File Structure for Information Interchange. ♦

4–28 Environment Division



FILE-CONTROL Paragraph: ASSIGN Clause

Syntax Rules

1. data-name cannot be DISK or PRINTER.

2. EXTERNAL and DYNAMIC are allowed for syntax compatibility with other
COBOL vendors. They are treated as documentation only.

3. Format 1 is available only on the OpenVMS operating system and only if the
default /STANDARD=NOXOPEN qualifier is in effect. ♦
Format 2 is available on Alpha and I64 if the /STANDARD=XOPEN qualifier
is in effect. ♦
On Tru64 UNIX, format 2 is the default. ♦

General Rules

1. If there is no VALUE OF ID clause in the file description entry, or that clause
contains no file specification, the file specification in the ASSIGN clause is the
file specification.

2. If there is a file specification in an associated VALUE OF ID clause, the
ASSIGN clause contains the default file specification. File specification
components in the VALUE OF ID clause override those in the ASSIGN
clause.

3. On OpenVMS, if file-spec is not a literal, the compiler:

• Translates hyphens in the COBOL word to underline characters

• Treats the word as if it were enclosed in quotation marks

4. file-spec may contain a logical name. ♦

5. If you specify ASSIGN TO unquoted string, you need not specify this name in
the WORKING-STORAGE section. For example:

ASSIGN TO TEST1

This assignment would use "TEST1.DAT" on OpenVMS Alpha and I64. ♦
On Tru64 UNIX systems, you would specify:

ASSIGN TO "TEST1.DAT"

or:

ASSIGN TO TEST1
...
WORKING-STORAGE SECTION.
01 TEST1 PIC X(9) VALUE IS "TEST1.DAT".

6. The file specification derived from one or both of the ASSIGN and VALUE OF
ID clauses might refer to an environment variable.

7. On Tru64 UNIX systems, "" is not a valid file specification. ♦

8. On all platforms, file-spec must conform to the rules of the operating system
where the run-time I-O occurs.

For indexed files, file-spec must conform to the rules of the ISAM package
being used. Some older versions of ISAM on Tru64 UNIX may have a 10-
character maximum for file-spec length. ♦

Environment Division 4–29



FILE-CONTROL Paragraph: ASSIGN Clause

Format 3
For files assigned to magnetic tape using ASSIGN TO REEL clause:

9. If the length of the file name exceeds 17 characters, it is truncated. Any
lowercase characters in a file name are uppercased and others outside the
ANSI-"a" character set are converted to ’Z’.

An "a" character is one of the set of the digits 0,1..9, the uppercase letters
A,B..Z, and the following special characters:

SP ! " % & ’ ( ) * + , - . / : ; < = > ?

10. Magnetic tape files must be ORGANIZATION SEQUENTIAL and either fixed
or variable length record format.

Technical Notes

• On all platforms, leading and trailing spaces and tabs are removed from file
specifications before the OPEN statement executes.

• When a COBOL OPEN statement executes on an OpenVMS system, the RMS
facility:

Removes spaces and tab characters from the file specification

Translates lowercase letters in the file specification to uppercase

Performs logical name translation

• .DAT is the default file type if one is not specified on an OpenVMS system. ♦

• On Tru64 UNIX, the suffixes added to indexed file names on a Tru64 UNIX
system are .idx and .dat. ♦

• On Tru64 UNIX, file specifications are case sensitive.

• Embedded spaces are allowed in file specifications on Tru64 UNIX systems.
Thus "file name a" and "Monthly Report" are valid file specifications.

• When a COBOL OPEN statement executes on a Tru64 UNIX system, HP
COBOL attempts to match the file specification against an environment
variable with the same spelling declared in the current login environment. If
an exact match is found, the value of the matching environment variable
becomes the file specification. Otherwise, the file specification remains
unchanged. ♦

Additional Reference
See VALUE OF ID clause in Chapter 5, Data Division. For information on
defining a file connector, refer to the Processing Files and Records chapter in the
HP COBOL User Manual.
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BLOCK CONTAINS
Function
On OpenVMS systems, the BLOCK CONTAINS clause specifies the size of a
physical record. ♦

On Tru64 UNIX systems, block size for INDEXED organization is for
documentation purposes only. ♦

General Format

BLOCK CONTAINS [ smallest-block TO ] blocksize
� RECORDS

CHARACTERS

�

smallest-block
is an integer literal. It specifies the minimum physical record size.

blocksize
is an integer literal. It specifies the exact or maximum physical record size.

Syntax Rule
The BLOCK CONTAINS clause can be in the file’s Data Division file description
entry. However, it cannot be in both the SELECT clause and the file description
entry for the same file.

General Rules

1. The BLOCK CONTAINS clause specifies physical record size.

2. The compiler ignores smallest-block.

3. The RECORDS phrase specifies physical record size in terms of logical
records.

• For a fixed-length record magnetic tape file, each physical record except
the last contains blocksize records.

• For a variable-length record magnetic tape file, the compiler computes the
physical record size. It equals the size of the largest logical record, plus
any overhead bytes, multiplied by blocksize.

4. The CHARACTERS phrase specifies physical record size in terms of
characters.

The physical record size is the maximum of: ( 1 ) blocksize bytes, and ( 2 ) the
size of the largest logical record; plus any overhead bytes for variable-length
records.

5. If there is no BLOCK CONTAINS clause, physical record size assumes a
default value.

The physical record size is the size of the largest record plus any overhead
bytes.

6. The size of physical records (in characters) must be a multiple of four.
Otherwise, the I/O system rounds up the physical record size to the next
multiple of four.
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CODE-SET
Function
The CODE-SET clause specifies the representation of data on external media.

General Format

CODE-SET IS alpha-name

alpha-name
is the name of a character set defined in the SPECIAL-NAMES paragraph. It
cannot be described with literals in the ALPHABET clause.

Syntax Rules

1. The CODE-SET clause can be in the file’s Data Division file description entry.
However, it cannot be in both the SELECT clause and the file description
entry for the same file.

2. The CODE-SET clause applies only to files with sequential organization.

General Rules

1. The CODE-SET clause identifies alpha-name as the character set used to
represent the file data externally.

2. alpha-name specifies how to convert character codes in the file to and from
native character codes.

3. Code conversion occurs during execution of an input or output operation.
Conversion occurs as if the data were USAGE DISPLAY.

4. Successful OPEN statement execution establishes the character set for
code conversion. The set used is the one specified by alpha-name in the
FILE-CONTROL paragraph implied by the OPEN statement.

5. If there is no CODE-SET clause, no character conversion occurs during
input-output operations. The native character set is the default.

Additional Reference
See the SPECIAL-NAMES paragraph.

Example
In this example, the CODE-SET clause specifies that the data in INFILE is coded
in the EBCDIC character code set as specified by an alphabet named EB. The
SPECIAL-NAMES paragraph defines EB as the EBCDIC character set.

SPECIAL-NAMES.
ALPHABET EB IS EBCDIC.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INFILE ASSIGN TO INFILE
CODE-SET IS EB.
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LOCK MODE (Alpha, I64)
Function
The LOCK MODE clause specifies a locking technique to use for a file. LOCK
MODE is part of the X/Open COBOL standard.

General Format

LOCK MODE IS

�������
�����


MANUAL WITH LOCK ON MULTIPLE RECORDS

AUTOMATIC

�
� WITH

�
LOCK ON RECORD
ROLLBACK


 �
�

EXCLUSIVE

�������
������

Syntax Rules

1. X/Open standard and Hewlett-Packard standard syntax cannot both be
specified for the same file connector. Hence, if LOCK MODE is specified, the
ALLOWING, APPLY LOCK-HOLDING, and REGARDLESS phrases cannot
be specified for that file.

2. The WITH LOCK ON RECORD clause is for documentation purposes only.

3. The LOCK MODE IS MANUAL clause is not available for sequential or line
sequential files.

General Rules

1. When you specify LOCK MODE IS AUTOMATIC or LOCK MODE IS
MANUAL, an OPEN statement (without the WITH LOCK phrase) opens
the file in shareable mode. The LOCK MODE clause can be overridden by the
WITH LOCK phrase of the OPEN statement.

2. When you specify LOCK MODE IS EXCLUSIVE, a successful OPEN
statement opens the file in exclusive mode. The OPEN statement cannot
override LOCK MODE IS EXCLUSIVE.

3. If you omit the LOCK MODE clause, opening the file causes it to become
exclusive, unless you open it for INPUT, in which case the file becomes
shareable.

4. When you specify LOCK MODE IS AUTOMATIC for a file, a record lock is
acquired by the successful execution of the READ statement and released on
the successful execution of a subsequent I/O statement.

If you specify LOCK MODE IS MANUAL, a record lock is acquired by the
READ WITH LOCK statement.

5. On Tru64 UNIX, the ROLLBACK phrase is used by ACMSxp applications to
specify a recoverable file. You must compile with the -tps option to specify a
recoverable file. ♦

6. A file that is opened in exclusive mode cannot be opened by any other access
stream.

7. A file that is in shareable mode can be opened by any number of access
streams that do not require exclusive use.

8. A file that does not reside on a mass storage device cannot be opened in
shareable mode. ♦
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ORGANIZATION
Function
The ORGANIZATION clause specifies a file’s logical structure.

On Alpha and I64 systems, the ORGANIZATION IS LINE SEQUENTIAL clause
specifies a variant of sequential files compatible with the system text editor. ♦

General Format

� ORGANIZATION IS �

���
�


SEQUENTIAL
LINE SEQUENTIAL (Alpha, I64)
RELATIVE
INDEXED

���
��

General Rules

1. File organization is established when the file is created. It cannot be
subsequently changed.

2. If there is no ORGANIZATION clause, the default is SEQUENTIAL.

3. On Alpha and Itanium systems, when LINE SEQUENTIAL organization is
specified, the file is treated as consisting of variable length records, with each
record containing one line of data. A line is a sequence of characters ending
with a record terminator (\n or x’0A’). The terminator is not counted in the
length of the record.

4. On Alpha and Itanium systems, a file with LINE SEQUENTIAL organization
should only contain printable characters and the record terminator.

5. On Alpha and Itanium systems, a file with LINE SEQUENTIAL organization
may not be opened in I-O mode. ♦

6. All programs that open an existing file must specify the same organization
with which the file was created.

Note

On Tru64 UNIX, a third-party product is required for INDEXED run-time
support. Refer to the Release Notes for the latest details on how to obtain
the INDEXED run-time support. ♦
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PADDING CHARACTER
Function
The PADDING CHARACTER clause specifies the character to be used to pad
blocks in sequential files.

General Format

PADDING CHARACTER IS pad-char

pad-char
is a one-character nonnumeric literal or the data-name of a one-character data
item. The data-name can be qualified.

General Rule
The PADDING CHARACTER clause is for documentation only.
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RECORD DELIMITER (OpenVMS)
Function
The RECORD DELIMITER clause indicates the method of determining the length
of a variable record on the external medium. It is for documentation only.

General Format

RECORD DELIMITER IS STANDARD-1

General Rule
On OpenVMS, STANDARD-1 is the I/O system (OpenVMS Record Management
System [RMS]) default for tape files. It is the method used for determining the
length of a variable-length record. This method is specified in the American
National Standard X3.27-1978, ‘‘Magnetic Tape Labels and File Structure for
Information Interchange,’’ and International Standard 1001 1979, ‘‘Magnetic Tape
Labels and File Structure for Information Interchange.’’

Additional Reference
For OpenVMS systems, refer to the OpenVMS Record Management Services
Reference Manual for more information. ♦

4–36 Environment Division



FILE-CONTROL Paragraph: RESERVE Clause

RESERVE
Function
On OpenVMS systems, the RESERVE clause specifies the number of input-output
buffers for a file. ♦

On Tru64 UNIX systems, RESERVE is for documentation purposes only. ♦

General Format

RESERVE reserve-num
� AREA

AREAS

�

reserve-num
is an integer literal from 1 to 127. It specifies the number of input-output areas
for the file.

General Rule
On OpenVMS systems, if there is no RESERVE clause, the number of input-
output areas equals the I/O system default.

Technical Note
For OpenVMS systems, two DCL commands change and display the defaults for
block count: SET RMS DEFAULT and SHOW RMS DEFAULT. The number of
areas is stored in the MBF field of the RAB.

Additional References
Refer to the RMS documentation for field RAB$B_MBF. ♦
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I-O-CONTROL
Function
The I-O-CONTROL paragraph specifies the input-output techniques to use for a
file.

On Tru64 UNIX systems, a number of the elements in the I-O-CONTROL
paragraph are for documentation only. See the Technical Notes for more
information. ♦

General Format

I-O-CONTROL. [

�
���������������������

APPLY������������������
����������������


																					

DEFERRED-WRITE
EXTENSION extend-amt
FILL-SIZE
LOCK-HOLDING
MASS-INSERT�

CONTIGUOUS
CONTIGUOUS-BEST-TRY

�
PREALLOCATION preall-amt

PRINT-CONTROL
WINDOW window-ptrs

																					

������������������
�����������������

ON { file-name } . . .

�
���������������������

. . .

�
�����

SAME

� RECORD
SORT
SORT-MERGE

�
AREA FOR {same-area-file} {same-area-file} . . .

�
����� . . .

�
��������������

RERUN

[ ON file-name ] EVERY��������
������


���
�
 [ END OF ]

�
REEL
UNIT



rec-count RECORDS

���
�� OF file-name

clock-count CLOCK-UNITS
condition-name

��������
�������

�
��������������

. . .

� MULTIPLE FILE TAPE CONTAINS

� multiple-file [ POSITION pos-integer ] � . . .

�
. . . . ]
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extend-amt
is an integer from 0 to 65,535. It specifies the number of blocks in each extension
of a disk file.

file-name
is the internal name of a file connector. Each file-name must have a file
description (or Sort-Merge File Description) entry in the Data Division. The
same file-name cannot appear more than once in the FILE-CONTROL paragraph.

preall-amt
is an integer from 0 to 4,294,967,295. It specifies the number of blocks to initially
allocate when the program creates a disk file.

window-ptrs
is an integer from 0 to 127. Its value can also be 255. It specifies the number of
retrieval pointers in the window that maps the disk file.

same-area-file
names a file described in a Data Division file description entry to share storage
areas with every other same-area-file.

rec-count
is an integer specifying the number of records to process before writing the rerun
information.

clock-count
is an integer specifying an interval of time to elapse before writing the rerun
information.

condition-name
names a switch status which, when set, causes the rerun information to be
written. The switch is defined in the SPECIAL-NAMES paragraph of Section 4.1,
CONFIGURATION Section.

multiple-file
is a file described in a Data Division file description. It specifies that the file
shares storage on a reel/unit device with other files. No more than 255 files can
be specified.

pos-integer
is an integer from 1 to 255. It specifies the relative location of a file on a tape
that contains multiple files.

Syntax Rules

1. The I-O-CONTROL clauses can appear in any order.

2. As the following table shows, each phrase of the APPLY clause can refer only
to some file types.

Phrase File Type

EXTENSION Disk file
FILL-SIZE Indexed organization
LOCK-HOLDING Disk file
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Phrase File Type

MASS-INSERT Indexed organization
PREALLOCATION Disk file
PRINT-CONTROL Sequential organization
WINDOW Disk file

3. More than one APPLY clause can refer to the same file-name.

4. The phrases of the APPLY clause can appear in any order. However, each
phrase can be used only once for each file-name.

5. You can specify the LOCK-HOLDING phrase only if you specify the
ALLOWING option of the OPEN statement.

6. The RERUN and MULTIPLE FILE clauses cannot refer to a sort or merge
file.

7. In the SAME AREA clause, SORT and SORT-MERGE are equivalent.

8. If same-area-file refers to a sort or merge file, you must use the SORT,
SORT-MERGE, or RECORD phrase.

9. A program can contain more than one SAME clause. However, the following
conditions apply:

• A same-area-file cannot be in more than one SAME RECORD AREA
clause.

• A same-area-file that refers to a sort or merge file cannot be in more than
one SAME SORT AREA or SAME SORT-MERGE AREA clause.

same-area-files cannot have the global or the external attribute if the
program specifies the SAME RECORD AREA phrase.

10. Files specified in a MULTIPLE FILE TAPE clause must be sequential.

11. A file cannot be specified in more than one MULTIPLE FILE TAPE clause.

General Rules
APPLY Clause

1. An APPLY clause remains active for a file-name until the image terminates.

2. If the file connector referenced by file-name is an external file connector, all
file control entries in the run unit that reference this file must have the same
APPLY clause.

3. The DEFERRED-WRITE phrase causes a physical write operation to occur
only when the input-output buffer for file-name is full. If there is no
DEFERRED-WRITE phrase, a physical write occurs each time an output
statement executes for file-name.

4. The EXTENSION phrase specifies the number of disk blocks to be added each
time a file is extended. The I/O system extends a file when it needs more file
space to add a record.

If extend-amt equals zero, the I/O system extends the file by its default value.

5. The FILL-SIZE phrase causes the I/O system to use the fill size specified
when an indexed file is created to fill the file’s buckets. If there is no FILL-
SIZE phrase, the I/O system fills buckets completely. The FILL-SIZE phrase
applies only to indexed files.

4–40 Environment Division



I-O-CONTROL Paragraph

6. The LOCK-HOLDING phrase declares the Hewlett-Packard standard manual
record-locking attribute for a sequential, relative, or indexed file in a file-
sharing environment on disk.

Once a record is manually locked (see the READ, REWRITE, START, and
WRITE statements in Chapter 6, Procedure Division), it remains locked until
one of the following occurs:

• An UNLOCK statement executes.

• A CLOSE statement executes for the subject file.

• The image terminates.

Usage of the APPLY LOCK-HOLDING option requires additional syntax
for the OPEN, READ, REWRITE, START, and WRITE verbs. Table 4–2
summarizes the additional syntax required for Procedure Division I/O
statements accessing a file possessing the manual record-locking attribute.

7. X/Open standard and Hewlett-Packard standard syntax cannot both be
specified for the same file connector. Hence, APPLY LOCK-HOLDING
cannot be specified if LOCK MODE was specified for that file in the SELECT
statement.

Table 4–2 Required Manual Record-Locking Phrases (Hewlett-Packard
Standard)

Procedure Division Options Required by the Manual Record-
Locking Facility (Hewlett-Packard Standard)

I/O
Operation ALLOWING . . .

*REGARDLESS OF
LOCK

OPEN X N/A
READ X X
REWRITE X N/A
START X X
WRITE X N/A

Legend:

X—Required
N/A—Not Applicable
*—If the ALLOWING option is not specified

8. The MASS-INSERT phrase is for documentation only. It has no effect on
program execution.

9. On OpenVMS the PREALLOCATION phrase causes the I/O system to allocate
preall-amt disk blocks when it creates the file.

• The CONTIGUOUS phrase specifies that the preallocated disk blocks
must be contiguous. If the I/O system cannot find preall-amt contiguous
disk blocks, the OPEN operation fails.

• The CONTIGUOUS-BEST-TRY phrase causes the I/O system to try to
preallocate disk blocks contiguously. If the I/O system cannot find preall-
amt contiguous disk blocks, it preallocates disk blocks in the largest
possible contiguous areas.
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10. The PRINT-CONTROL phrase specifies that the file has print file format.
Additionally, the PRINT-CONTROL phrase applies only to sequentially
organized files.

The PRINT-CONTROL phrase is redundant if:

• The file description entry contains a LINAGE clause

• The program contains a WRITE statement with the ADVANCING phrase
for the file

• The Report Writer Control System is in effect

11. The WINDOW phrase causes the I/O system to use window-ptrs number of
retrieval pointers in mapping the files. window-ptrs must fall in the range
of 0 to 127 inclusive or be equal to 255. If window-ptrs is 255, then the I/O
system attempts to map the entire file. ♦

SAME AREA Clause

12. The SAME AREA clause is for documentation only.

SAME RECORD AREA Clause

13. The SAME RECORD AREA clause causes two or more files named by same-
area-file to share the same memory area for the current logical records.

14. If you specify the SAME RECORD AREA clause, more than one same-area-file
(or all of them) can be open at the same time.

15. Any record in the shared area becomes the current logical record of:

• Each same-area-file of the SAME RECORD AREA clause open in
OUTPUT mode

• The most recently read same-area-file of the SAME RECORD AREA
clause open in INPUT mode

The logical records start with the same leftmost character position. Thus, the
SAME RECORD AREA clause is equivalent to an implicit redefinition of the
shared area.

SAME SORT (SORT-MERGE) AREA Clause

16. The SAME SORT (SORT-MERGE) AREA clause is for documentation only.

RERUN Clause

17. The RERUN clause is for documentation only. It has no effect on program
execution.

MULTIPLE FILE TAPE Clause

18. The MULTIPLE FILE TAPE clause specifies the location of a file or files on a
reel/unit device. The location of the file or files can be specified as a relative
location by providing a multiple-file series. The specific file location can be
specified by the POSITION phrase.

19. The MULTIPLE FILE TAPE clause specifies the location of a file or files
when more than one file shares the same physical reel of tape. If the files
in the multiple-file sequence are listed in consecutive order, the POSITION
phrase is not required. If the files in the multiple-file sequence are not listed
in consecutive order, the position of the file or files (relative to the beginning
of the tape) must be specified in the POSITION phrase.
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20. Only those multiple-files referenced by the program need to be specified in a
MULTIPLE FILE TAPE clause.

21. If a file is specified with a POSITION phrase of a MULTIPLE FILE TAPE
clause, subsequent files listed in that MULTIPLE FILE TAPE clause which
are not specified with a POSITION phrase are assumed to be in the next
higher position.

22. Only one file listed in a MULTIPLE FILE TAPE clause sequence can be open
at any one time.

23. If, at run-time, the run-time system determines that the files referenced are
not located on a reel device, the MULTIPLE FILE TAPE clause is ignored.

Technical Notes

• On Tru64 UNIX systems, many elements of the I-O-CONTROL paragraph
are for documentation only. They are accepted and ignored by the compiler.
These elements are as follows:

DEFERRED-WRITE
EXTENSION
FILL-SIZE
CONTIGUOUS
CONTIGUOUS-BEST-TRY
PREALLOCATION
PRINT-CONTROL
WINDOW ♦

• On OpenVMS, the following notes describe the effects of APPLY clause
phrases on parameters in the RMS file access block (FAB) and RMS record
access block (RAB) associated with file-name on OpenVMS Alpha and I64
systems. The FAB and RAB fields are described in the OpenVMS Record
Management Services Reference Manual.

– The DEFERRED-WRITE phrase sets the DFW bit in the FOP field of the
FAB.

– The EXTENSION phrase stores extend-amt in the DEQ field of the FAB.

– The FILL-SIZE phrase sets the LOA bit in the ROP field of the RAB.

– The LOCK-HOLDING phrase sets the ULK bit in the ROP field of the
RAB.

– The PREALLOCATION phrase stores preall-amt in the ALQ field of the
FAB.

– The CONTIGUOUS phrase sets the CTG bit in the FOP field of the FAB.

– The CONTIGUOUS-BEST-TRY phrase sets the CBT bit in the FOP field
of the FAB.

– The PRINT-CONTROL phrase sets bits in two FAB fields:

* The PRN bit in the RAT field

* The VFC bit in the RFM field

– The WINDOW phrase stores window-ptrs in the RTV field of the FAB. ♦
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Additional References

• RESERVE clause

• Technical Notes for the DELETE statement in Chapter 6, Procedure Division

• OPEN statement in Chapter 6, Procedure Division

• READ statement in Chapter 6, Procedure Division

• REWRITE statement in Chapter 6, Procedure Division

• START statement in Chapter 6, Procedure Division

• UNLOCK statement in Chapter 6, Procedure Division

• WRITE statement in Chapter 6, Procedure Division

Additionally, refer to the HP COBOL User Manual for more information.
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Data Division

This chapter describes the logical and physical concepts that apply to the Data
Division. In addition, this chapter presents the general formats for all Data
Division entries and clauses, describes their basic elements, and lists rules of use.

The Data Division defines the data processed by your COBOL program in both
physical and logical terms. It also specifies whether the data is contained in files,
a database, Oracle CDD/Repository, or is developed only for local use in your
program.

The File and Report Sections of your program define data contained in files. A
file description, sort-merge file description, or report file description entry creates
a logical structure, or file connector, that refers to the physical file. It also can
contain clauses that define physical file characteristics. A file description or
sort-merge file description entry must be associated with at least one record
description entry. A record description entry is a set of one or more data
description entries, organized in a hierarchical structure which logically defines
a set of related data within the file. The data description entries specify all
the data used in your program. You logically define the record hierarchy by
the level numbers you use for the data description entries (or entry) within the
record description entry. Your logical link to a record or to a field in a record is
the data-name you assign in a corresponding data description entry. The clauses
in a data description entry also specify physical data attributes, such as storage
format and initial values.

A report description entry must be associated with a report group description,
which specifies both the logical hierarchy of data in the report and the data’s
physical attributes.

A screen description entry describes a video form or a portion of a video form.

The Working-Storage and Linkage Sections also contain data description entries,
which describe characteristics of data developed for use in your program.

The following sections explain in more detail how a COBOL program specifies
physical and logical characteristics. Additionally, the following sections describe
how record descriptions impose logical structures on data, and how the physical
attributes of data affect the way data is stored and manipulated.

5.1 Logical Concepts of Data Storage
Because a record description is a logical, rather than a physical structure, a
program can define more than one record description for the same data. However,
this redefinition does not mean that the physical data changes in any way.
Multiple record descriptions for the same data all apply to one physical data unit
on the file medium.
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When you refer to a data-name in a Procedure Division statement, you are
referring to a logical unit, either a logical record or a logical subset of that
record. When your COBOL source statements execute, the logical units to which
they refer are mapped to physical units on media. The logical units are then
manipulated according to their physical attributes.

The correspondence between a logical record and a physical record is not
necessarily a one-to-one correspondence. The term physical record applies to a
data unit that is media dependent and defined by the I/O system. On OpenVMS
systems, the I/O system is called OpenVMS Record Management Services (RMS).
A logical record may correspond to one physical record, either alone or grouped
with other logical records. Or, on disk, a logical record may need more than one
physical record to contain it.

Several COBOL clauses (in the Environment and Data Divisions) describe the
relationships between logical records and physical records. Programs can then
access data as logical entities with little regard to the physical data definitions
that the I/O system requires.

During program execution, data transfer between the program and a physical
record can involve translation if the SELECT clause contains a CODE-SET
clause.

5.1.1 Record Description Entries
Logical records do not have to be subdivided; however, they often are. Subdivision
can continue for each of the record’s parts, allowing progressively more detailed
data definition.

The basic subdivision of a record is the elementary data item (or elementary
item), which you define by specifying a PICTURE clause (except for COMP-1 or
COMP-2). As the term implies, elementary items are never subdivided. A logical
record consists of one or more sets of elementary items, or is itself an elementary
item.

A group data item (or group item) is a data set within a record that contains
other subordinate data items. The lowest-level group item is always a named
sequence of one or more elementary items. Group items can combine to form
more inclusive group items. Therefore, an elementary item can be subordinate to
more than one group item in the record.

Figure 5–1 represents a personnel record that illustrates how elementary
and group items can be related in a record hierarchy. The record contains
three group items directly subordinate to the top level: Identification Data,
History, and Payroll Data. The first group item, Identification Data, directly
contains two elementary items, Name and Job Title, and two other group items,
Employee Number and Address. The group item, Employee Number, contains
two elementary items: Department Code and Badge Number. The group item,
Address, contains four elementary items: Street, City, State, and ZIP Code. The
elementary item, City, belongs to three group items. It is subordinate to Address,
Identification Data, and Personnel Record. The second group item, History,
directly contains three elementary items: Hire Date, Last Promotion Date, and
Termination Date. The third group item, Payroll Data, also directly contains two
elementary items: Current Salary and Previous Salary.
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Figure 5–1 Hierarchical Record Structure

Personnel Record

Identification Data

Employee Number

Department Code

Badge Number

Name

Address

Street
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History
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Last Promotion Date

Termination Date

Payroll Data

Current Salary

Previous Salary

(record level group item)

(group item)

(elementary item)

(group item)

(group item)

(group item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)

(group item)

VM-0583A-AI

5.1.2 Level-Numbers
Record description entries use a system of level-numbers to specify the
hierarchical organization of elementary and group items. Level-numbers that
specify hierarchical structure can range from 01 to 49.

The record is the most inclusive data item; that is, there is no hierarchical
relationship between one record description entry and any other. However, there
is a hierarchical relationship between a group item and its subordinate group or
elementary items. The level-number for records is 01. Less inclusive data items
have greater (although not necessarily consecutive) level-numbers.

All items subordinate to a group item must have level-numbers greater than the
group’s level-number. In a record description, a group item is delimited by the
next level-number that is less than or equal to that group’s level number.

Figure 5–2 shows how level-numbers specify hierarchical structure and how
the presence of the PICTURE clause defines an elementary item. Although line
indentation can make record descriptions easier to read, it does not affect record
structure; only the level-number values specify the hierarchy. The ellipsis ( . . . )
indicates that parts of the program line have been omitted.
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Figure 5–2 Level-Number Record Structure

01  PERSONNEL-RECORD.

03  IDENTIFICATION-DATA.

05  EMPLOYEE-NUMBER.

07  DEPARTMENT-CODE

07  BADGE-NUMBER

05  NAME

05  ADDRESS.

07  STREET

07  CITY

07  STATE

07  ZIP-CODE

05  JOB-TITLE

03  HISTORY.

04  HIRE-DATE

04  LAST-PROMOTION-DATE

04  TERMINATION-DATE

03  PAYROLL-DATA.

05  CURRENT-SALARY

05  PREVIOUS-SALARY

(record)

(group item)

(elementary item)

(group item)

(group item)

(group item)

(elementary item)

(elementary item)

(elementary item)

(elementary item)
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PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

PIC ...

Three special level-numbers—66, 77, and 88—neither specify hierarchical
structure nor actually indicate level. Rather, they define special types of data
entries:

• Level-number 66 identifies RENAMES items, which regroup other data items.
See the RENAMES clause for more information.

• Level-number 77 specifies noncontiguous (elementary) items in the Working-
Storage and Linkage Sections. These data items are not subdivisions of other
items and cannot be subdivided. For all other purposes, they are identical to
level 01 elementary entries.

• Level-number 88 associates condition-names with values of a corresponding
data item (the conditional variable).

See Chapter 1, Overview of the COBOL Language, for more information on
condition-names.

5.1.3 Multiple Record Description Entries for the Same Data
Example 5–1 shows a sample file description entry (FD) that contains three
record description entries. The three record description entries define three
logical templates the program can impose on a record to access data from it.

The three record description entries in Example 5–1, T1, T2, and RECORD-
TYPE, each define a fixed-length record of 30 characters. Once the program reads
a record, it can use the last two characters (REC-TYPE) to determine which
record description entry to use.
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Example 5–1 Multiple Record Definition Structure

FD MASTER-FILE.
01 T1.

02 T1-ACCOUNT-NO PIC 9(6).
02 T1-TRAN-CODE PIC 99.
02 T1-NAME PIC X(13).
02 T1-BALANCE PIC 9(5)V99.
02 REC-TYPE PIC XX.

01 T2.
02 T2-ACCOUNT-NO PIC 9(6).
02 T2-ADDRESS.

03 T2-STREET PIC X(15).
03 T2-CITY PIC X(7).

02 REC-TYPE PIC XX.
01 RECORD-TYPE.

02 PIC X(28).
02 REC-TYPE PIC XX.

5.2 Physical Concepts of Data Storage
COBOL programs describe files and data in physical terms for storage on
input-output media. The physical description of data includes the following
information:

• The mapping and grouping of logical records within the structure of the file
storage medium

• The unit used to transfer records to and from your program

• The size and storage format of an elementary data item

The size of a physical record and the way it is recorded depend on the hardware
device involved in an input or output operation. For example, tape and disk
media store physical records differently. On tape, a physical record is written
between interrecord gaps. On disk, a physical record is written in multiple units
of a fixed number of bytes, which is determined by the hardware and operating
system involved.

On OpenVMS systems, the term used for a physical record differs according
to file organization. A physical record in a sequential file is called a block. A
physical record in a relative or indexed file is called a bucket. A block or bucket
corresponds to the unit used by the I/O system software to transfer records from
a file to your program (and vice versa). The number of records (in logical terms)
actually transferred by an input-output operation depends on the following:

• The block size specified by the BLOCK CONTAINS clause (tape files only)

• The number of logical records contained in a physical record

The maximum physical record size depends on file organization and device. On
OpenVMS systems, the maximum physical record sizes for sequential files on
tape devices and for sequential, indexed, and relative files on disk are shown in
terms of number of bytes in Table 5–1.
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Table 5–1 Maximum Physical Record Size for Tape and Disk Devices

Type of File Magnetic Tape Devices Disk

Sequential 65,535 bytes 65,024 bytes

Indexed N/A 32,234 bytes

Relative N/A 32,255 bytes ♦

Note

A compile-time informational diagnostic appears if the physical record
size exceeds 65,024 bytes for a sequential file. However, HP COBOL
programs are device-independent. Therefore, a fatal run-time error can
also occur if the file is assigned to disk when the program runs.

5.2.1 Categories and Classes of Data
The size and storage format of an elementary data item depend upon what class
and category of data it represents and how that data can be used. A data item’s
PICTURE clause determines its class and category. The item’s PICTURE clause
and USAGE clause, in combination, specify its size and storage format. See the
PICTURE and USAGE clauses for more information.

When an arithmetic or data-movement statement transfers data into an
elementary item, the category of the item affects the way the data is positioned
in storage. The COBOL Standard Alignment Rules (see Section 5.2.2) specify the
relationship between category and positioning.

Depending on the symbols contained in its PICTURE clause, every elementary
item belongs to one of the classes and categories of data items shown in Table 5–2.
COMP-1, COMP-2, index data items, and index-names do not have PICTURE
clauses; the format of these elementary items is specified by the compiler and
they belong to the numeric category.

The class of a group item is treated as alphanumeric regardless of the class of
elementary items subordinate to it. Therefore, your program statements should
not specify a group item when a numeric item is expected or required.
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Table 5–2 Classes and Categories of Data Items

Level Class Category

Alphabetic Alphabetic

Elementary Numeric Numeric

Alphanumeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Group Alphanumeric

Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

5.2.2 COBOL Standard Alignment Rules
The COBOL Standard Alignment Rules specify how characters are positioned in
an elementary data item. Positioning depends on the item’s category:

1. For a numeric receiving data item:

• The data is aligned by decimal point. It is moved to the receiving
character positions with zero fill or truncation, if necessary.

• When an assumed decimal point is not explicitly specified, the data item
is treated as if it had an assumed decimal point immediately after its
rightmost character. It is then aligned by decimal point as described in
the preceding list item.

2. For a numeric edited receiving data item, the data is aligned by decimal point
with zero fill or truncation, if necessary. Editing requirements can replace
leading zeros with some other symbol.

3. For receiving data items that are alphabetic, alphanumeric edited, or
alphanumeric (without editing), the data is aligned at the leftmost character
position in the data item, with space fill or truncation to the right, if
necessary.

If the JUSTIFIED clause applies to the receiving item, the rules for the
JUSTIFIED clause override rule 3. See the JUSTIFIED clause for more
information.

5.2.3 Additional Alignment Rules for Record Allocation
As stated in Section 5.2.2, the COBOL Standard Alignment Rules specify
data positioning only within elementary data items. Hewlett-Packard defines
additional alignment rules that affect the positioning of:

• Records on the file media

• Group items within a record

• Elementary items within a group item
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On Alpha and I64 systems, HP COBOL offers the option of allocating subordinate
record items along performance-optimal boundaries through the use of the
alignment compiler option or directives (or the SYNCHRONIZED clause). If you
select one of these options, subordinate data items will be aligned automatically
along optimal boundaries for their data type. The compiler may have to skip one
or more bytes before assigning a location to the next data item. These skipped
bytes, called fill bytes, are spaces between one data item and the next. Refer
to the HP COBOL User Manual for information on using alignment compiler
options and directives.

If you do not select one of these Alpha- and I64-only alignment options, the HP
COBOL compiler will locate the data item at the next unassigned byte location.

The presence of fill bytes can make a record’s structure different from what you
might expect. In particular, if a record contains many items requiring alignment,
its size can increase significantly. If, unaware of the fill bytes, you tried to move a
group item containing fill bytes to a single data item, right-end truncation would
occur. You would not have this problem, however, if you moved the record into
another identically defined group item. The method the compiler uses to allocate
storage ensures that identically described group items have the same structure,
even when their subordinate items are aligned on their required boundaries. ♦

Figure 5–3 shows alignment boundaries for a record. The boundary is the
leftmost location of the 1-, 2-, 4-, or 8-byte area. All boundaries are relative to the
beginning of the record as byte number 0.

Figure 5–3 Record Alignment Boundaries
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221111111111000000 200 20 0

8

BBBBBBBBBBBBBBBBBB BBB BB B

2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte 2-byte2-byte 2-byte

4-byte 4-byte 4-byte 4-byte4-byte 4-byte

8-byte 8-byte 8-byte

The HP COBOL compiler allocates storage for data items within records
according to the rules of the major-minor equivalence technique. The major-
minor equivalence technique ensures that identically defined group items have
the same structure, even when their subordinate items are aligned. Therefore,
group moves always produce predictable results. This technique is based on the
following two rules:

• Location Equivalence—The leftmost location of a group item is the same as
the leftmost location of its first subordinate item.

• Boundary Equivalence—The HP COBOL compiler aligns a group item on a
boundary that is as large as the largest boundary for any aligned data item
within its scope.
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Location Equivalence
Location equivalence forces a group (major) item to the same storage location as
its first subordinate (minor) item. This forced positioning occurs regardless of the
boundary alignment of either the group or subordinate item.

Refer to the HP COBOL User Manual chapter on aligning binary data for
information on how location equivalence allocates storage.

The following example results in the major-minor location format:

01 ITEM-A.
03 ITEM-B.

05 ITEM-C PIC 9(4) COMP SYNCHRONIZED.
03 FILLER PIC X.
03 ITEM-D.

05 ITEM-E PIC 9(4) COMP SYNCHRONIZED.
03 ITEM-F PIC X.

The following example (omitting SYNCHRONIZED) results in the left-right
location format:

01 ITEM-A.
03 ITEM-B.

05 ITEM-C PIC 9(4) COMP.
03 FILLER PIC X.
03 ITEM-D.

05 ITEM-E PIC 9(4) COMP.
03 ITEM-F PIC X.

Table 5–3 compares the major-minor technique of storage allocation with the
left-to-right technique that assigns locations to a group item before its subsidiary
items. Note that major-minor storage allocation adds a fill byte before ITEM-D.
This forces location equivalence with ITEM-E, which is explicitly aligned by the
SYNCHRONIZED clause.

Table 5–3 Comparison of Major-Minor and Left-Right Locations

Data Item
Major-Minor
Location

Left-Right
Location

ITEM-A 00 00

ITEM-B 00 00

ITEM-C 00 00

FILLER 02 02

ITEM-D 04 03

ITEM-E 04 03

ITEM-F 06 05

The following diagram also shows the storage allocation for the record ITEM-A
in Table 5–3 using both techniques. A hyphen ( - ) represents fill bytes caused by
explicit alignment; an asterisk ( * ) represents the FILLER data item.
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Regardless of the record allocation technique, an elementary move always
produces the expected result. For example:

MOVE ITEM-C TO ITEM-E

Effect on Group Moves
A group move may produce an unexpected result, as in the following two
situations:

• If ITEM-A of the major-minor location format is moved to ITEM-A of the left-
right location format, the fill byte of the major-minor location format overlays
the first byte of ITEM-E in the left-right location format; then the first byte
of ITEM-E in the major-minor location format overlays the second byte of
ITEM-E in the left-right location format, and the second byte of ITEM-E in
the major-minor location format overlays ITEM-F in the left-right location
format. Finally, ITEM-F in the major-minor location format is truncated.

• A different set of unexpected results occurs if a group move is done in the
reverse direction. If ITEM-A of the left-right location format is moved to
ITEM-A of the major-minor location format, the first byte of ITEM-D of the
left-right location format is moved to the fill byte of the major-minor location
format. Then the second byte of ITEM-E in the left-right location format is
moved to the first byte of ITEM-E in the major-minor location format, and
ITEM-F of the left-right location format is moved to the second byte of ITEM-
E in the major-minor location format. Finally, ITEM-F is filled with a space
because of the padding rule.

Boundary Equivalence
Boundary equivalence forces a group item to a boundary determined by the
alignment of its subordinate items.

Within a record, a group item aligns on a boundary as large as the forced
alignment boundary of any data item that:

• Is subordinate to the group

• Redefines the group

• Is subordinate to a data item that redefines the group

Refer to the HP COBOL User Manual chapter on alignment for more information
about boundary equivalence.

Figure 5–4 shows how the compiler determines the boundary where each item
begins when you specify the no-alignment compiler option.
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Figure 5–4 Effect of Boundary and Location Equivalence Rules on Sample
Record

01  ITEM-A.
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Figure 5–5 graphically represents Figure 5–4. It shows the result of location and
boundary equivalence applied to the description of record ITEM-A. A hyphen ( - )
indicates fill bytes.

Figure 5–5 Storage Allocation for Sample Record

33322211000
96284062840

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

PPPPPPPPJJJJJJJJJDDDDDDDDDDDC

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA A

B

D - - - - - - -- - -

VM-0587A-AI

RRRRQQQQLLLLLLLKKFFFFFFF--EE

SSSSSSSSMMMMMMMMMIIIIHHG

ONNNNNNNN

F

-

Note the location of ITEM-D. Location equivalence requires only that it have the
same location as ITEM-E, its first subordinate item. ITEM-E requires only 2-byte
boundary alignment. However, another of ITEM-D’s subordinate items, ITEM-
F, contains ITEM-I, which must be aligned on a 4-byte boundary. Therefore,
boundary equivalence forces ITEM-D to a 4-byte boundary as well, causing two
fill bytes between ITEM-E and ITEM-F.
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This example shows how boundary equivalence helps make group moves
predictable:

01 ITEM-A.
03 ITEM-B.

05 ITEM-C PIC X.
05 ITEM-D PIC 9(8) COMP SYNC.

03 ITEM-E PIC X.
03 ITEM-F.

05 ITEM-G PIC X.
05 ITEM-H PIC 9(8) COMP SYNC.

03 ITEM-I PIC XX.

The descriptions of ITEM-B and ITEM-F are equivalent. Therefore, you would
not expect the following sentence to change the values of ITEM-C and ITEM-D:

MOVE ITEM-B TO ITEM-F
MOVE ITEM-F TO ITEM-B.

Figure 5–6 shows how storage for the record would be allocated without and
with boundary equivalence. A hyphen ( - ) indicates fill bytes caused by the
SYNCHRONIZED clause. A plus sign ( + ) represents fill bytes resulting from
boundary equivalence.

Figure 5–6 Storage Allocation Without and With Boundary Equivalence
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Without boundary equivalence, ITEM-B occupies 8 bytes, and ITEM-F occupies
7 bytes. Moving the contents of ITEM-B to ITEM-F truncates the last byte
of ITEM-D. Moving the contents of ITEM-F to ITEM-B pads the last byte of
ITEM-D with a space character.

In contrast, boundary equivalence eliminates this unforeseen result. The
elementary items occupy the same relative positions in each group. Therefore, the
structures of ITEM-B and ITEM-F are the same, and the results of both group
and elementary moves are predictable.
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Examples
The following series of examples show major-minor storage allocation. The notes
after each example indicate its significant features. A hyphen ( - ) represents fill
bytes.

Example 1
WORKING-STORAGE SECTION.
01 ITEM-A.

03 ITEM-B PIC X.
03 ITEM-C.

05 ITEM-D.
07 ITEM-E PIC 999 COMP SYNC.
07 ITEM-F PIC X(10).

05 ITEM-G REDEFINES ITEM-D.
07 ITEM-H PIC 9(14) COMP SYNC.
07 ITEM-I PIC XXXX.

01 ITEM-J.
03 ITEM-K.

05 ITEM-L PIC 999 COMP SYNC.
05 ITEM-M PIC X(10).

03 ITEM-N REDEFINES ITEM-K.
05 ITEM-O PIC 9(14) COMP SYNC.
05 ITEM-P PIC XXXX.
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In this example:

• The relative locations of records (01-level items) in the Working-Storage and
Linkage Sections are neither defined nor predictable.

• The structures of ITEM-J (a record) and ITEM-C (a group item within a
record) are identical.

Example 2
WORKING-STORAGE SECTION.
01 ITEM-A.

03 ITEM-B PIC X.
03 ITEM-C.

05 ITEM-D OCCURS 3 TIMES.
07 ITEM-E PIC X.
07 ITEM-F PIC 9999 COMP SYNC.
07 ITEM-G PIC X.

03 ITEM-H PIC X.
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In this example:

• A fill byte is added after each occurrence of ITEM-D to maintain 2-byte
boundary alignment of the next occurrence.

• ITEM-D is 5 bytes long. The fill byte following ITEM-D is not included in its
length.

• ITEM-C is 18 bytes long. Its length includes the fill bytes associated with its
subordinate items.

• The record ITEM-A is 21 bytes long.

Example 3
WORKING-STORAGE SECTION.
01 ITEM-A.

03 ITEM-B PIC X.
03 ITEM-C.

05 ITEM-D OCCURS 3 TIMES.
07 ITEM-E PIC X.
07 ITEM-F PIC 9999 COMP SYNC.

03 ITEM-H PIC X.

4

-
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In this example:

• ITEM-G is omitted.

• ITEM-D is 4 bytes long. No fill bytes are added, since the next occurrence is
already aligned on a 2-byte boundary.

• ITEM-C is 12 bytes long.

• The record ITEM-A is 15 bytes long.
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5.2.4 Alpha and I64 Alignment and Padding
The Hewlett-Packard OpenVMS Calling Standard for the Tru64 UNIX, OpenVMS
Alpha, and OpenVMS I64 systems specify Alpha natural data alignment and
padding. You invoke this alignment by adding the alignment padding compiler
option to the compile command line, or by using pad align directives in your
source code. (Refer to the HP COBOL User Manual for additional information on
the command.)

The Alpha natural alignments and field sizes that apply to elementary COBOL
data fields are shown in Table 5–4.

Table 5–4 Alpha Alignment and Padding

Data Types Alignment Starting Position Pictures Usages

8-bit character string Byte boundary A, X, 9,
Edited

Display

16-bit integer Word boundary, multiple of 2 9(4) COMP

32-bit integer Longword boundary, multiple of 4 9(8) COMP

Single-precision real COMP-1

64-bit integer Quadword boundary, multiple of 8 9(16) COMP

Double-precision real COMP-2

These alignments and field sizes apply to elementary data items. However, they
are extended to group data items at all level numbers by requiring that the
alignment of the group data item conforms to the alignment of the largest natural
alignment of any elementary data item that is subordinate to the group-item.
Every intermediate group data item in HP COBOL is a candidate for Alpha
natural alignment and padding. Every higher-level data item is padded to be
the smallest multiple of the largest natural alignment of any of its subordinate
elementary data items that contains the data structure. The alignment and
padding can be determined in all cases by following the tree structure through as
many levels as required until the elementary data item with the largest natural
alignment is found. All elementary data items are aligned and sized within their
data structures according to Table 5–4. ♦
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5.3 DATA DIVISION General Format and Rules
Function
The Data Division describes data the program creates, receives as input,
manipulates, and produces as output.

General Format

DATA DIVISION.

�
�������������

FILE SECTION.

�
file-description-entry � record-description-entry � . . .

�
. . .

� report-file-description-entry � . . .�
sort-merge-file-description-entry � record-description-entry � . . .

�
. . .

�
�������������

�
WORKING-STORAGE SECTION. � record-description-entry � . . .

�
�

LINKAGE SECTION. � record-description-entry � . . .
�

�
� REPORT SECTION.

�
report-description-entry � report-group-description-entry � . . .

� �
�

�
SCREEN SECTION. � screen-description-entry � . . .

�
(Alpha, I64)

Syntax Rules

1. The Data Division follows the Environment Division.

2. The reserved words DATA DIVISION, followed by a period ( . ) separator
character identify and begin the Data Division.

General Rules

1. The Data Division is subdivided into sections. These sections must be in the
following order:

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
REPORT SECTION.
SCREEN SECTION. (Alpha, I64)

File Section

2. The File Section defines the structure of data files. It begins with the File
Section header containing the reserved words FILE SECTION, followed by a
period ( . ) separator character.

3. File description entries and sort-merge file description entries follow the File
Section header. They can be in any order.
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4. The file description entry consists of a level indicator (FD), a file-name, and a
series of independent clauses.

5. The FD clause specifies the following:

• How the file records data

• The sizes of logical and physical records

• The names of data records (except for report files)

• The number of lines on a logical printer page

6. An FD entry, followed by one or more record description entries, defines
a sequential, relative, or indexed file. Record description entries must
immediately follow the associated FD entry.

7. No record description entries may follow the report file description entry.

8. The sort-merge file description entry consists of a level indicator (SD), a
file-name, and a series of independent clauses.

9. An SD clause specifies the following:

• How the file records data

• The sizes of logical and physical records

• The names of data records

10. An SD entry specifies the sizes and names of data records for a sort-merge file
referred to by SORT and MERGE statements.

11. An SD entry, followed by one or more record description entries, defines a file.
Record description entries must immediately follow the associated SD entry.

Working-Storage Section

12. The Working-Storage Section describes records and subordinate data items.
These records are not parts of files; rather, the program develops and
processes them internally.

13. The Working-Storage Section also describes data items assigned values by the
source program.

14. The Working-Storage Section consists of a section header, followed by record
description entries.

15. The section header consists of the reserved words WORKING-STORAGE
SECTION, followed by a period ( . ) separator character.

16. A record description entry groups data items that bear a hierarchical
relationship to each other. Unrelated data items in the Working-Storage
Section can be described as records that are individual elementary items.

17. Record description clauses can be used in the File Section, the Working-
Storage Section, or the Linkage Section.

18. The VALUE IS clause can specify the initial value of any item in the Working-
Storage Section except index data items (described by the USAGE IS INDEX
clause) and index-names (described by the INDEXED BY phrase of the
OCCURS clause).
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19. If the VALUE IS clause does not specify an initial value, the default initial
value for an item depends on the type of data item:

Data Item Type Default Initial Value

Numeric Zero

Index-name Occurrence number one

Index data item Undefined

Tables Undefined

All others Spaces

Linkage Section

20. The Linkage Section is used only in a called program.

21. The Linkage Section describes data available through the calling program;
both the calling and called programs can access this data.

22. To access calling program data items through the Linkage Section, the called
program must have a Procedure Division header USING phrase.

23. The structure of the Linkage Section is the same as that of the Working-
Storage Section. It consists of a section header followed by record description
entries. The section header consists of the reserved words LINKAGE
SECTION followed by a period ( . ) separator character.

Report Section

24. The Report Section defines report files. It begins with the Report Section
header: the reserved words REPORT SECTION, followed by a period ( . )
separator character.

25. Report description entries follow the Report Section header.

26. The report description entry consists of a level indicator (RD), a report name,
and a series of independent clauses.

27. An RD clause specifies the following:

• Identifying characters to be prefixed to each print line in a report

• The physical structure and organization of a report

• The name of the report

28. An RD entry, followed by one or more report group description entries, defines
a report. Report group description entries must immediately follow the
associated report description entry.

29. A report group description entry defines a report group. It specifies the
characteristics of a report group and the individual items within a report
group.

Screen Section (Alpha, I64)

30. The Screen Section describes a video form and specifies the attributes,
behavior, size, and location of each screen item within the video form. The
Screen Section is for use with ACCEPT and DISPLAY statements. ♦
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Additional References

• VALUE IS clause

• CALL statement in Chapter 6

• User-defined words in Section 1.2.1, COBOL Words

• REPORT clause

• Refer to the chapter describing alignment in the HP COBOL User Manual.
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FD: File Description Entry
Sequential, Line Sequential, Relative, Indexed, and Report File Descriptions

FD (File Description)—Sequential, Line Sequential(Alpha, I64),
Relative, Indexed, and Report File
Descriptions

Function
A file description entry describes the physical structure, identification, record
names, and names for sequential, line sequential (Alpha, I64), relative, indexed,
and report files. It also specifies the internal or external attributes of a file
connector and the local or global attributes of a file-name.

General Formats
Format 1—Sequential or Line Sequential (Alpha, I64) Files

FD file-name

� IS EXTERNAL �

� IS GLOBAL �

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �

�
��������

RECORD

��������
������


CONTAINS � shortest-rec TO � longest-rec CHARACTERS

IS VARYING IN SIZE

� FROM shortest-rec � � TO longest-rec � CHARACTERS

� DEPENDING ON depending-item �

��������
�������

�
��������

�
� LABEL

�
RECORDS ARE
RECORD IS


 �
STANDARD
OMITTED


 �
�

�
VALUE OF ID IS

� quoted-literal-string
data-name

� �

�
� DATA

�
RECORDS ARE
RECORD IS



� rec-name � . . .

�
�

�
�������

LINAGE IS page-size LINES

� WITH FOOTING AT footing-line �

� LINES AT TOP top-lines �

� LINES AT BOTTOM bottom-lines �

�
�������

* � CODE-SET IS alpha-name �

*
�

� ACCESS MODE IS � SEQUENTIAL
�
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* � FILE STATUS IS file-stat �.
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Format 2—Relative Files

FD file-name

� IS EXTERNAL �

� IS GLOBAL �

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �

�
��������

RECORD

��������
������


CONTAINS � shortest-rec TO � longest-rec CHARACTERS

IS VARYING IN SIZE

� FROM shortest-rec � � TO longest-rec � CHARACTERS

� DEPENDING ON depending-item �

��������
�������

�
��������

�
� LABEL

�
RECORDS ARE
RECORD IS


 �
STANDARD
OMITTED


 �
�

�
VALUE OF ID IS

� quoted-literal-string
data-name

� �

�
� DATA

�
RECORDS ARE
RECORD IS



{ rec-name } . . .

�
�

*

�
����� � ACCESS MODE IS �

�����
���


SEQUENTIAL � RELATIVE KEY IS rel-key ��
RANDOM
DYNAMIC



RELATIVE KEY IS rel-key

�����
����

�
�����

* � FILE STATUS IS file-stat �.

Format 3—Indexed Files

FD file-name

� IS EXTERNAL �

� IS GLOBAL �

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �
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�
��������

RECORD

��������
������


CONTAINS � shortest-rec TO � longest-rec CHARACTERS

IS VARYING IN SIZE

� FROM shortest-rec � � TO longest-rec � CHARACTERS

� DEPENDING ON depending-item �

��������
�������

�
��������

�
� LABEL

�
RECORDS ARE
RECORD IS


 �
STANDARD
OMITTED


 �
�

�
VALUE OF ID IS

� quoted-literal-string
data-name

� �

�
� DATA

�
RECORDS ARE
RECORD IS



� rec-name � . . .

�
�

*

�
�� � ACCESS MODE IS �

� SEQUENTIAL
RANDOM
DYNAMIC

� �
��

*

�
� RECORD KEY IS

� rec-key
seg-key = {seg} . . .

�
[ WITH DUPLICATES ]

�
ASCENDING
DESCENDING

� �
�

*

�
� ALTERNATE RECORD KEY IS

� alt-key
seg-key = {seg} . . .

�
[ WITH DUPLICATES ]

�
ASCENDING

DESCENDING

� �
� . . .

* � FILE STATUS IS file-stat �.

Format 4—Report Files

FD file-name

� IS EXTERNAL �

� IS GLOBAL �

*

�
BLOCK CONTAINS � smallest-block TO � blocksize

� RECORDS
CHARACTERS

� �

�
����������

RECORD

���������
�������


CONTAINS � shortest-rec TO � longest-rec CHARACTERS

IS VARYING IN SIZE

� FROM shortest-rec � � TO longest-rec � CHARACTERS

� DEPENDING ON depending-item �

���������
��������

�
����������
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�
� LABEL

�
RECORDS ARE
RECORD IS


 �
STANDARD
OMITTED


 �
�

�
VALUE OF ID IS

� quoted-literal-string
data-name

� �

*
�

� ACCESS MODE IS �SEQUENTIAL
�

�
REPORT IS
REPORTS ARE



� report-name � . . .

* � CODE-SET IS alpha-name �

* � FILE STATUS IS file-stat � .

*Clauses marked with an asterisk (*) can be in either the SELECT clause of the
Environment Division or the file description entry of the Data Division. They
cannot be in both places for the same file.

Syntax Rules
Formats 1, 2, 3, and 4—All Files

1. The level indicator FD identifies the start of a file description entry. It must
precede file-name.

2. The clauses following file-name can appear in any order.

3. A period ( . ) separator character must terminate a file description entry.

4. On OpenVMS, the file name written to disk (see the ASSIGN clause in
Chapter 4) has the file type .DAT added if no other file type is specified in the
corresponding file specification. ♦

Format 1—Sequential or Line Sequential (Alpha, I64) Files

5. file-name can refer only to a sequential file.

6. One or more record description entries must follow the file description entry.

Format 2—Relative Files

7. file-name can refer only to a relative file.

8. If a START statement refers to file-name, the file description must include the
RELATIVE KEY phrase within the ACCESS MODE clause.

9. One or more record description entries must follow the file description entry.

Format 3—Indexed Files

10. file-name can refer only to an indexed file.

11. On Tru64 UNIX, for information on file-names for indexed files, see the
ASSIGN clause in Chapter 4.♦

12. alt-key cannot have the same leftmost character position as that of rec-key or
any other alt-key for the same file.

13. One or more record description entries must follow the file description entry.
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Format 4—Report Files

14. file-name can refer only to a report file.

15. No record description entries may follow the file description entry for a report
file.

16. Only the CLOSE statement and the OPEN statement with the OUTPUT or
EXTEND phrase may reference this file description entry.

General Rules
Formats 1, 2, 3, and 4—All Files

1. A file description entry associates file-name with a file connector.

2. On OpenVMS, if the file description entry contains the EXTERNAL clause,
the RMS special registers RMS-STS, RMS-STV, and RMS-FILENAME are
external registers.

3. If the file description entry contains the GLOBAL clause, the RMS special
registers RMS-STS, RMS-STV, and RMS-FILENAME are global registers. ♦

Format 1—Sequential and Line Sequential (Alpha, I64) Files

4. If the file description entry contains the LINAGE clause and the EXTERNAL
clause, the LINAGE-COUNTER special register is an external data item.

5. If the file description entry contains the LINAGE clause and the GLOBAL
clause, the special register LINAGE-COUNTER is a global name.

Format 3—Indexed Files

6. If the file description entry contains the EXTERNAL clause, the segmented
key seg-key has the external attribute.

7. If the file description entry contains the GLOBAL clause, the segmented key
seg-key is a global name.

Refer to the HP COBOL User Manual for examples of the file description entry
formats.
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SD (Sort-Merge File Description)
Function
A sort-merge file description entry describes a sort or merge file’s physical
structure, identification, and record names.

General Format

SD file-name�
��������

RECORD

��������
������


CONTAINS � shortest-rec TO � longest-rec CHARACTERS

IS VARYING IN SIZE

� FROM shortest-rec � � TO longest-rec � CHARACTERS

� DEPENDING ON depending-item �

��������
�������

�
��������

�
� DATA

�
RECORDS ARE
RECORD IS



� rec-name � . . .

�
� .

Syntax Rules

1. The level indicator SD identifies the start of a sort-merge file description. It
must precede file-name.

2. The clauses following file-name can appear in any order.

3. A period ( . ) separator character must terminate a sort-merge file description
entry.

4. One or more record description entries must follow the sort-merge file
description entry.

General Rule
No input-output statements can refer to a file-name in a sort-merge file
description.

Examples
Refer to the HP COBOL User Manual for examples of the sort-merge file
description entry.
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RD (Report Description)
Function
The Report Description names a report, specifies any identifying characters to be
prefixed to each print line in the report, and describes the physical structure and
organization of that report. It also determines whether a report-name is a local
name or global name.

General Format

RD report-name

� IS GLOBAL �

� CODE report-code ��
� �

CONTROL IS
CONTROLS ARE


 �
{ control-name } . . .

FINAL [ control-name ] . . .


 �
�

�
��������������

PAGE
�

LIMIT IS
LIMITS ARE

�
page-size

�
LINE
LINES

�

� HEADING heading-line �

� FIRST DETAIL first-detail-line �

� LAST DETAIL last-detail-line �

� FOOTING footing-line �

�
��������������

.

Syntax Rules

1. report-name must appear in one and only one REPORT clause.

2. The clauses following report-name may appear in any order. report-name is
the highest permissible qualifier that can be specified for LINE-COUNTER,
PAGE-COUNTER, and all data-names in the Report Section.

General Rules

1. If the Report Description entry contains the GLOBAL clause, report-name
and the special registers LINE-COUNTER and PAGE-COUNTER are global
names.

2. The reserved word PAGE-COUNTER references a special register that the
compiler creates for each report in the Report Section.

3. In the Report Section, a reference to PAGE-COUNTER can appear only in a
SOURCE clause. In the Procedure Division, PAGE-COUNTER can be used
anywhere an integer data item can appear.

4. If more than one PAGE-COUNTER exists in a program, PAGE-COUNTER
must be qualified by a report-name wherever it is referenced in the Procedure
Division.

In the Report Section, an unqualified reference to PAGE-COUNTER is
qualified implicitly by the name of the report containing the reference.
Whenever the PAGE-COUNTER of a different report is referenced, PAGE-
COUNTER must be explicitly qualified by the other report’s report-name.
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5. The INITIATE statement causes the Report Writer Control System to set the
PAGE-COUNTER of the referenced report to one.

6. PAGE-COUNTER is automatically incremented by one each time the Report
Writer Control System executes a page advance.

7. Procedure Division statements may alter the contents of PAGE-COUNTER.

8. The reserved word LINE-COUNTER references a special register that the
compiler creates for each report in the Report Section.

9. In the Report Section, a reference to LINE-COUNTER can appear only in a
SOURCE clause. In the Procedure Division, LINE-COUNTER can be used
anywhere a data item with an integer value can appear. However, only the
Report Writer Control System can change the contents of LINE-COUNTER.

10. If there is more than one LINE-COUNTER in a program, Procedure Division
references to LINE-COUNTER must be qualified by a report-name.

In the Report Section, an unqualified reference to LINE-COUNTER is
qualified implicitly by the name of the report containing the reference.
Whenever the LINE-COUNTER of a different report is referenced, LINE-
COUNTER must be explicitly qualified by the other report’s report-name.

11. The INITIATE statement causes the Report Writer Control System to set
the LINE-COUNTER of the referenced report to zero. The Report Writer
Control System also automatically resets LINE-COUNTER to zero each time
it executes a page advance.

12. The execution of SUPPRESS statements and the processing of nonprintable
report groups do not change the value of LINE-COUNTER.

13. At the time each print line is presented, the value of LINE-COUNTER
represents the line number on which the print line is presented. After the
presentation of the report group, the value of LINE-COUNTER is governed
by the Report Writer Presentation Rules and Tables.

Additional References

• LINE NUMBER (Alpha, I64) clause

• REPORT clause

• FD (File Description)

• Appendix D, Report Writer Presentation Rules and Tables

Example
The following is an example of a global Report Description entry:

FILE SECTION.
FD WEEKLY-REPORTS . . .

REPORTS ARE PAYROLL-REPORT
PAYROLL-IRS.

REPORT SECTION.
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RD PAYROLL-REPORT
IS GLOBAL
CODE "AA"
CONTROL GRAND-TOT

SITE-TOT
DEPT-TOT
GROUP-TOT

PAGE LIMITS ARE 60 LINES
HEADING 2
FIRST DETAIL 9
LAST DETAIL 55
FOOTING 58.

RD PAYROLL-IRS
CODE "BB" . . .

The previous example uses the CODE clause to flag PAYROLL-REPORT records
from other records (see PAYROLL-IRS) included in the same file (WEEKLY-
REPORTS). The entry defines four control totals. GRAND-TOT is the most
major control total; it will be printed only at the end of the report. SITE-TOT,
DEPT-TOT, and GROUP-TOT are major, intermediate, and minor control totals,
respectively. These totals are printed whenever the Report Writer Control System
(RWCS) processes a control break. The entry also defines a report page with 60
lines. On each page the RWCS is to print PAYROLL-REPORT headings beginning
on line 2, detail lines from lines 9 to 55, and footings beginning on line 58.
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Data Description
Function
A data description entry specifies the characteristics of a data item.

General Formats
Format 1

level-number
� data-name

FILLER

�
� REDEFINES other-data-item �

� IS EXTERNAL �

� IS GLOBAL ��
� �

PICTURE
PIC



IS character-string

�
�

�
�������������������������������������������������������������

[USAGE IS]

������������������������������������������������������������
����������������������������������������������������������


BINARY

BINARY-CHAR (Alpha, I64)
�

SIGNED
UNSIGNED




BINARY-SHORT (Alpha, I64)
�

SIGNED
UNSIGNED




BINARY-LONG (Alpha, I64)
�

SIGNED
UNSIGNED




BINARY-DOUBLE (Alpha, I64)
�

SIGNED
UNSIGNED



COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2
COMPUTATIONAL-3
COMP-3
COMPUTATIONAL-5 (Alpha, I64)
COMP-5 (Alpha, I64)
COMPUTATIONAL-X (Alpha, I64)
COMP-X (Alpha, I64)
DISPLAY
FLOAT-SHORT (Alpha, I64)
FLOAT-LONG (Alpha, I64)
FLOAT-EXTENDED (Alpha, I64)
INDEX
PACKED-DECIMAL
POINTER
POINTER-64 (Alpha, I64)

������������������������������������������������������������
�����������������������������������������������������������

�
�������������������������������������������������������������
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�
� [SIGN IS]

�
LEADING
TRAILING



[SEPARATE CHARACTER]

�
�

�
��������������������������

OCCURS table-size TIMES�
� �

ASCENDING
DESCENDING



KEY IS � key-name � . . .

�
� . . .

�
INDEXED BY � ind-name � . . .

�

OCCURS min-times TO max-times TIMES DEPENDING ON depending-item�
� �

ASCENDING
DESCENDING



KEY IS � key-name � . . .

�
� . . .

�
INDEXED BY � ind-name � . . .

�

�
��������������������������

�
� �

SYNCHRONIZED
SYNC


 �
LEFT
RIGHT

� ��
�
� �

JUSTIFIED
JUST



RIGHT

�
�

� BLANK WHEN ZERO ��
�� VALUE IS

� lit
EXTERNAL external-name
REFERENCE data-name

� �
�� .

Format 2

66 new-name RENAMES rename-start

�
� �

THRU
THROUGH



rename-end

�
� .

Format 3

88 condition-name

�
VALUE IS
VALUES ARE
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�����������
���������


� EXTERNAL external-name
REFERENCE data-name

low-val

�

�
�� �

THRU
THROUGH


 � EXTERNAL external-name
REFERENCE data-name

high-val

� �
��

�����������
����������

. . . .

Syntax Rules

1. level-number in Format 1 can be any number from 01 to 49, or 77.

2. Data description clauses can appear in any order, with two exceptions:

• The optional data-name or FILLER clause must immediately follow
level-number.

• The optional REDEFINES clause must immediately follow the optional
data-name or FILLER clause.

3. The EXTERNAL clause can appear in a level 01 or 77 data description entry
in the Working-Storage Section.

4. The GLOBAL clause can appear in a level 01 or 77 data description entry in
the Working-Storage Section, or in a level 01 data description entry in the
File Section.

5. The EXTERNAL and REDEFINES clauses cannot be in the same data
description entry.

6. data-name must appear in any Format 1 entry that contains the EXTERNAL
clause or GLOBAL clause, or in the record descriptions of a file description
entry that contains the EXTERNAL or GLOBAL clause.

7. There must be a PICTURE clause for all elementary items except the
following:

• An index data item

• A COMP-1 or COMP-2 data item

• The subject of a RENAMES clause

• A POINTER data item

In these cases, there must be no PICTURE clause.

8. The words THRU and THROUGH are equivalent.

9. The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO
clauses can appear only in Data Description entries for elementary items.

General Rules

1. Each condition-name requires a separate Format 3 entry. The level 88 entry
associates one or more values, or ranges of values, with condition-name.

All condition-name entries for an associated data item (the conditional
variable) must immediately follow that item’s data description entry.

Any condition-name associated with a global conditional variable is global.

A condition-name can be associated with a data item at any level except:

• Another condition-name
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• A level 66 item

• A group that contains items with JUSTIFIED, SYNCHRONIZED, or
USAGE (other than USAGE IS DISPLAY) clauses

• An index data item

2. Multiple level 01 data description entries subordinate to an FD or SD entry
implicitly redefine the same area.
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Report Group Description
Function
The report group description entry specifies the characteristics of a report group
and of the individual items within a report group.

General Formats

Format 1

01 � group-data-name ��
�� LINE NUMBER IS

�
line-num � ON NEXT PAGE �

PLUS line-num-plus

� �
��

�
�� NEXT GROUP IS

� next-group-line-num
PLUS next-group-line-num-plus
NEXT PAGE

� �
��

TYPE IS

������������������������������������
����������������������������������


�
REPORT HEADING
RH



�

PAGE HEADING
PH



�

CONTROL HEADING
CH


 �
control-head-name
FINAL



�

DETAIL
DE



�

CONTROL FOOTING
CF


 �
control-foot-name
FINAL



�

PAGE FOOTING
PF



�

REPORT FOOTING
RF




������������������������������������
�����������������������������������

�
� USAGE IS � DISPLAY

�
.

Format 2

level-number � group-data-name ��
� LINE NUMBER IS

�
line-num [ ON NEXT PAGE ]
PLUS line-num-plus


 �
�

�
� USAGE IS � DISPLAY

�
.
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Format 3

level number � group-data-name �

� BLANK WHEN ZERO �

� COLUMN NUMBER IS column-num �

� GROUP INDICATE ��
� �

JUSTIFIED
JUST



RIGHT

�
�

�
�� LINE NUMBER IS

�
line-num � ON NEXT PAGE �

PLUS line-num-plus

� �
��

�
PICTURE
PIC



IS character-string

�
� � SIGN IS �

�
LEADING
TRAILING



SEPARATE CHARACTER

�
�

���������������
�������������


SOURCE IS source-name
VALUE IS lit��


 SUM � sum-name � . . .
�

UPON � detail-report-group-name � . . .
� ��
� . . .

�
� RESET ON

�
control-foot-name
FINAL


 �
�

���������������
��������������

�
� USAGE IS � DISPLAY

�
.

Syntax Rules
All Formats

1. The report group description entry can appear only in the Report Section.

2. Except for the group-data-name clause, which when present must
immediately follow level-number, the clauses may be in any sequence.

3. The description of a report group may consist of one, two, or three hierarchical
levels:

a. The first entry that describes a report group must be a Format 1 entry.

b. Both Format 2 and Format 3 entries may be immediately subordinate to
a Format 1 entry.

c. At least one Format 3 entry must be immediately subordinate to a Format
2 entry.

d. Format 3 entries must define elementary data items.
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4. In the Report Section, the USAGE clause is used only to declare the usage of
printable items.

a. If the USAGE clause appears in a Format 1 or Format 2 entry, at least
one subordinate entry must define a printable item.

b. In Format 3, the USAGE clause must define a printable item.

5. An entry containing a LINE NUMBER clause must not have a subordinate
entry that also contains a LINE NUMBER clause.

Format 1

6. group-data-name is required only when:

a. A GENERATE statement references a DETAIL report group.

b. An UPON phrase of a SUM clause references a DETAIL report group.

c. A USE BEFORE REPORTING sentence references a DETAIL report
group.

d. The name of a CONTROL FOOTING report group qualifies a reference to
a sum counter.

If specified, group-data-name can be used as a sum counter qualifier and can
be referenced only by:

• GENERATE statements

• UPON phrases of the SUM clause

• USE BEFORE REPORTING declaratives

Format 2

7. level-number can be any integer from 02 to 48 inclusive.

8. A Format 2 entry must contain at least one optional clause.

9. In a Format 2 entry, group-data-name is optional. It can only qualify a sum
counter reference.

Format 3

10. level-number can be any integer from 02 to 49 inclusive.

11. A GROUP INDICATE clause can appear only in a DETAIL report group.

12. A SUM clause can appear only in a CONTROL FOOTING report group.

13. An entry containing a COLUMN NUMBER clause but no LINE NUMBER
clause must be subordinate to an entry containing a LINE NUMBER clause.

14. group-data-name is optional but can be specified in any entry. group-data-
name can be referenced only if the entry defines a sum counter.

15. A LINE NUMBER clause must not be the only clause specified. Refer to
Syntax Rule 3d.

16. An entry containing a VALUE clause must also have a COLUMN NUMBER
clause.

17. A printable item is a data item whose size and content are specified by an
elementary report entry.

18. An elementary report entry contains a COLUMN NUMBER clause, a
PICTURE clause, and a SOURCE, SUM, or VALUE clause.
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19. Figure 5–7 shows all permissible clause combinations for Format 3. You read
the table from left to right along the selected row.

Figure 5–7 Format 3 Clause Combinations
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General Rules

1. Format 1 is the Report Group entry. The report group is defined by the
contents of this entry and all of its subordinate entries.

2. The BLANK WHEN ZERO clause, the JUSTIFIED clause, and the PICTURE
clause for Report Writer are the same as those in the Data Description
Section.

Examples
The HP COBOL User Manual contains examples of each report group description
entry format.

Data Division 5–37



Screen Description Entry

Screen Description (Alpha, I64)
Function
A screen description entry describes a video form or a portion of a video form and
specifies the attributes, behavior, size, and location of screen items within the
video form. The screen description entry is referenced in the Procedure Division
by the ACCEPT and DISPLAY statements.

General Formats

Format 1 (Group Screen Item)

level-number
� screen-name

FILLER

�
� BLANK SCREEN �

� FOREGROUND-COLOR IS color-num-1 �

� BACKGROUND-COLOR IS color-num-2 �

� AUTO �

� SECURE �

� REQUIRED ��
� USAGE IS � DISPLAY

�
�
� � SIGN IS �

�
LEADING
TRAILING



� SEPARATE CHARACTER �

�
�

� FULL � .

Format 2 (Elementary Screen Item)

level-number
� screen-name

FILLER

�
�
� BLANK

�
LINE
SCREEN


 �
�

� BELL �

� BLINK ��
� ERASE

�
EOL
EOS


 �
�

�
HIGHLIGHT
LOWLIGHT

�

� REVERSE-VIDEO �

� UNDERLINE �
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�
LINE NUMBER IS � PLUS �

� identifier-1
integer-1

� �

�
COLUMN NUMBER IS � PLUS �

� identifier-2
integer-2

� �

� FOREGROUND-COLOR IS color-num-1 �

� BACKGROUND-COLOR IS color-num-2 �

VALUE IS literal-1 .

Format 3 (Elementary Screen Item)

level-number
� screen-name

FILLER

�
�
� BLANK

�
LINE
SCREEN


 �
�

� BELL �

� BLINK ��
� ERASE

�
EOL
EOS


 �
�

�
HIGHLIGHT
LOWLIGHT

�

� REVERSE-VIDEO �

� UNDERLINE ��
LINE NUMBER IS � PLUS �

� identifier-1
integer-1

� �

�
COLUMN NUMBER IS � PLUS �

� identifier-2
integer-2

� �

� FOREGROUND-COLOR IS color-num-1 �

� BACKGROUND-COLOR IS color-num-2 ��
PICTURE
PIC



IS picture-string-1

��������
������


USING identifier-3�����
���


							
FROM

� identifier-4
literal-1

�
TO identifier-5

							

�����
����

��������
�������
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�
� USAGE IS � DISPLAY

�

� BLANK WHEN ZERO ��
� �

JUSTIFIED
JUST



RIGHT

�
�

�
� � SIGN IS �

�
LEADING
TRAILING



� SEPARATE CHARACTER �

�
�

� AUTO �

� SECURE �

� REQUIRED �

� FULL � .

Syntax Rules
All Formats

1. level-number can be any number from 01 to 49.

2. Each elementary screen description entry must contain at least one of the
following clauses:

BELL
BLANK
COLUMN
LINE
PICTURE
VALUE

3. If the FOREGROUND-COLOR, BACKGROUND-COLOR, or SIGN clauses
are specified in both the group screen description entry and the subordinate
description entry for a screen item, then the subordinate screen description
entry’s clauses will take effect.

4. screen-name assigns a name to the screen item described in the screen
description entry and must conform to the rules for user-defined names. If
either the optional screen-name or the key word FILLER is specified, it must
be the first word following the level number in each screen description entry.

5. If both screen-name and FILLER are omitted, the screen item being described
is treated as though FILLER had been specified, and cannot be referenced in
an ACCEPT or DISPLAY statement.

6. Each level 01 item must have a screen name.

7. A screen item can be referenced only in an ACCEPT or DISPLAY statement.

8. color-num-1 and color-num-2 are integers in the range 0–7. color-num-1 and
color-num-2 represent specific colors as described in Table 5–5:
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Table 5–5 Color Table

Color Color Value Color Color Value

Black 0 Red 4
Blue 1 Magenta 5
Green 2 Yellow/Brown 6
Cyan 3 White 7

9. The USING phrase is equivalent to the combination of FROM and TO
phrases, each specifying the same identifier.

10. identifier-3, identifier-4 and identifier-5 must be defined in the File, Working-
Storage, or Linkage Section.

11. identifier-1 and identifier-2 must be described as elementary unsigned
numeric integer data items.

12. literal-1 must be a nonnumeric literal.

13. For a description of picture-string-1, see the PICTURE Clause section of this
chapter.

General Rules
All Formats

1. An input screen item is one whose description contains a TO clause.

2. An output screen item is one whose description contains a FROM clause.

3. A literal screen item is one whose description contains a VALUE clause.

4. An update screen item is one whose description contains a USING clause.

5. An input-output screen item is one whose description contains both a FROM
phrase and a TO phrase that may or may not reference the same identifier.
The rules for update screen items also apply to input-output screen items.

6. The LINE and COLUMN clauses should not be specified within a screen
description entry in such a way that fields overlap on the screen or fall
beyond the screen boundaries.

Format 1

7. Format 1 is used for group screen items.

8. All clauses within a group screen description entry are inherited by
subordinate screen description entries with the exception of the BLANK
SCREEN clause.

9. If the SECURE clause is specified, it applies to each subordinate input screen
item.

10. If the AUTO, FULL, or REQUIRED clauses are specified, they apply to each
subordinate input and update screen item.

11. If the BACKGROUND-COLOR, FOREGROUND-COLOR, or SIGN clauses
are specified, they apply to each subordinate input, output, and update screen
item.
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Format 2

12. Format 2 is used to describe a literal screen item.

Format 3

13. Format 3 is used to describe input, output, or update screen items. ♦
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ACCESS MODE
Function
The ACCESS MODE clause specifies the order of access for a file’s records.

General Format

Format 1—Sequential File

� ACCESS MODE IS � SEQUENTIAL

Format 2—Relative File

� ACCESS MODE IS �

�����
���


SEQUENTIAL � RELATIVE KEY IS rel-key ��
RANDOM
DYNAMIC



RELATIVE KEY IS rel-key

�����
����

Format 3—Indexed File

� ACCESS MODE IS �

� SEQUENTIAL
RANDOM
DYNAMIC

�

rel-key
is the file’s RELATIVE KEY data item.

Syntax Rules

1. rel-key must be the data-name of an unsigned integer data item whose
description does not contain a PICTURE symbol ( P ). It can be qualified but
cannot be in a record description entry for the same file-name.

2. The ACCESS MODE clause can be in the file’s SELECT clause. However, it
cannot be in both the SELECT clause and file description entry for the same
file.

3. If the USING or GIVING phrases of a SORT or MERGE statement contain
the name of the file, the ACCESS MODE RANDOM clause cannot be used for
the file.

4. If rel-key is associated with an external file connector, rel-key must reference
the same data item in every program in the run unit.

5. If a START statement references a relative file, the program must specify the
RELATIVE KEY phrase for that file.

General Rules
All Formats

1. If there is no ACCESS MODE clause, the access mode is sequential.

2. For sequential access, the sequence in which the program accesses the records
depends on the organization of the file, as follows:

• Sequential files—The sequence is the same as that established by the
execution of WRITE statements that created or extended the file.
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• Relative files—The sequence is the order of ascending relative record
numbers of the file’s existing records.

• Indexed files—The sequence is the sort order (ascending or descending) of
record key values in the established Key of Reference.

Formats 2 and 3

3. For random access, the value of rel-key (for relative files) or a Record Key
data item (for indexed files) indicates the record to be accessed.

4. For dynamic access, the program can access records sequentially and
randomly.

Format 2

5. Relative record numbers uniquely identify records in relative files. A record’s
relative record number identifies its ordinal position in the file. The first
record in the file has a relative record number of 1. Subsequent records have
consecutively higher relative record numbers.

6. The Relative Key data item associated with the execution of an
Input/Output statement is rel-key in the file description entry (or SELECT
clause) associated with the statement.
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ALTERNATE RECORD KEY
Function
The ALTERNATE RECORD KEY clause specifies an alternate access path to
indexed file records.

General Format

ALTERNATE RECORD KEY IS
� alt-key

seg-key = {seg} . . .

�
� WITH DUPLICATES �

�
ASCENDING
DESCENDING

�

alt-key
is the Record Key for the file. It is the data-name of a data item in a record
description entry for the file. It can be qualified, but it cannot be a group item
that contains a variable-occurrence data item. The data item must be described
as one of the following:

• Alphanumeric item

• Alphabetic item

• Group item

• Unsigned numeric display item

• COMP-3 integer

• COMP integer

seg-key
is a segmented-key name that represents the concatenation of one or more (up to
eight) occurrences of seg.

seg
is the data-name of a data item in a record description entry for the file. It can be
qualified, but it cannot be a group item that contains a variable-occurrence data
item. The data item must be described as one of the following:

• Alphanumeric item

• Alphabetic item

• Group item

• Unsigned numeric display item

Syntax Rules

1. The ALTERNATE RECORD KEY clause can be in the file’s SELECT clause.
However, for the same file, it cannot be in both the SELECT clause and file
description entry.

2. alt-key or the segments of seg-key cannot have the same leftmost character
position as that of the Prime Record Key data item or any other alt-key or
segment of seg-key for the same file.
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General Rules

1. seg-key is the concatenation of all specified key segments in the order
specified.

2. seg-key can be referenced only in a READ (Format 3) or START statement.

3. When a program creates an indexed file with one or more ALTERNATE
RECORD KEY clauses, each subsequent program referencing this indexed file
must:

• Use the same data description for alt-key or the segments of seg-key.

• Define the same relative location in the record as alt-key or the segments
of seg-key.

• Specify the same number (or less) of ALTERNATE RECORD KEY clauses.

On Tru64 UNIX systems, you can specify a different number of keys than
was specified when the file was created, if the relaxed key check option
(-relax_key_checking) is used. ♦

• Maintain the same order of ALTERNATE RECORD KEY clauses.

• Specify the same order of keys (ASCENDING or DESCENDING) in each
ALTERNATE RECORD KEY clause as the order used when the file was
created.

4. The DUPLICATES phrase specifies that two or more records in the file can
have duplicate values in the same alt-key or the segments of seg-key. If
there is no DUPLICATES phrase, two records cannot have the same value in
corresponding Alternate Record Keys.

On OpenVMS, if the program was compiled with the /CHECK=DUPLICATE_
KEYS qualifier on the command line, and the duplicate key specification on a
file’s FD (in other words, specified in the WITH DUPLICATES phrase) does
not match that of the actual file, a run-time diagnostic will be issued when an
attempt is made to open the file with an OPEN statement.

The /CHECK=DUPLICATE_KEYS qualifier is not supported for remotely
accessed files. Duplicate keys, key length, and number of keys are not
checked for remote files, that is, files accessed over the network. ♦
On Tru64 UNIX systems, DUPLICATES must match the specification for
DUPLICATES when the file was created, unless the relaxed key check option
is used. ♦

5. If a file has more than one record description entry, only one of these record
description entries must describe alt-key or the segments of seg-key. The
character positions referenced by alt-key or the segments of seg-key in that
record description are implicitly referenced in all other record description
entries for the file.

6. A file can have up to 254 Alternate Record Keys.

7. If the associated file connector is an external file connector, all File
Description entries in the run unit that are associated with the file connector
must define the same data description entry for alt-key or the segments of
seg-key, with the same relative location within the record.
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8. Each key can be specified as ASCENDING or DESCENDING (ASCENDING
is the default). In an ASCENDING key, lower key values occur toward the
beginning of the sorted file. In a DESCENDING key, higher key values occur
toward the beginning of the sorted file.

Additional Reference

• RECORD KEY clause

• SORT statement in Chapter 6

• MERGE statement in Chapter 6
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AUTO
Function
In the context of ACCEPT, the AUTO clause moves the cursor to the next field
when the last character of an input or update field that was defined with the
AUTO clause is entered.

General Format

AUTO

Syntax Rule
The AUTO clause cannot be specified in the description of a literal screen item.

General Rules

1. If the AUTO clause is specified at group level, it applies to each input and
update screen item in that group.

2. The AUTO clause is significant in the context of an ACCEPT.

3. The AUTO clause is ignored in the description of an output screen item.

4. If there is only one field to input, or if the field is the last one of the screen,
the ACCEPT statement is completed when the last character of the field is
entered.

Additional Reference

ACCEPT statement in Chapter 6
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BACKGROUND-COLOR (Alpha, I64)
Function
The BACKGROUND-COLOR clause specifies the background color for the screen
item.

General Format

BACKGROUND-COLOR IS color-num

color-num
is an integer in the range 0–7 specifying a color as follows:

Color Color Value Color Color Value

Black 0 Red 4
Blue 1 Magenta 5
Green 2 Yellow/Brown 6
Cyan 3 White 7

Syntax Rule
The BACKGROUND-COLOR clause can be specified in any screen description
entry.

General Rules

1. The BACKGROUND-COLOR clause is effective only with color screens.

2. If the BACKGROUND-COLOR clause is omitted, the initial default
background color is black.

3. If the clause is specified at group level, it applies to all subordinate screen
items.

4. If the BLANK SCREEN clause is specified and the BACKGROUND-COLOR
clause is specified or inherited, then when a DISPLAY statement displays
the screen item, the specified color becomes the default background color.
It remains the default background color until another screen item with this
combination of options is displayed (whether in the same DISPLAY statement
or in another).

Technical Note
The colors in the list above are supported only on terminals and workstations
that support the ANSI Standard color sequences. 1

Additional References

• ACCEPT statement in Chapter 6

• DISPLAY statement in Chapter 6 ♦

1 This does not include the VT100, VT200, VT300, and VT400 series terminals. On
workstations that emulate these terminal types, this restriction may not apply.
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BELL
Function
The BELL clause sounds the workstation or terminal audio tone.

General Format

BELL

Syntax Rule
The BELL clause can be specified only for elementary screen description entries.

General Rule
The audio tone sounds when a DISPLAY statement displays a screen item whose
description contains a BELL clause.

Additional Reference

DISPLAY statement in Chapter 6
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BLANK
Function
The BLANK clause clears a screen line or clears the whole screen before
displaying the screen item.

General Format

BLANK
�

LINE
SCREEN




Syntax Rules

1. The BLANK SCREEN clause can be specified for any screen description entry.

2. The BLANK LINE clause can be specified only for elementary screen
description entries.

General Rules

1. The BLANK SCREEN clause executes before a screen item displays, no
matter where it appears in the screen item’s description. When the BLANK
SCREEN clause is specified, the screen is cleared and the cursor is placed at
line 1, column 1.

2. When BLANK LINE is specified in an elementary screen item’s description,
blanking begins at column 1 of the specified line and continues through to the
end of the line.

3. If neither the BLANK clause nor the ERASE clause (Alpha, I64) is specified,
only the particular character positions corresponding to the screen item are
modified when the item is displayed. The remainder of the screen content is
not changed.

4. The BLANK SCREEN clause returns the screen to the initial defaults
for background and foreground color if the BACKGROUND-COLOR and
FOREGROUND-COLOR clauses are not specified, respectively.

5. The BLANK clause is ignored in an ACCEPT statement.

Additional Reference
DISPLAY statement in Chapter 6
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BLANK WHEN ZERO
Function
The BLANK WHEN ZERO clause replaces zeros with spaces when a data item’s
value is zero. In the context of the Screen Section, it displays spaces when the
value of a screen item to be displayed on the screen is zero.

General Format

BLANK WHEN

� ZERO
ZEROES
ZEROS

�

Syntax Rules

1. The BLANK WHEN ZERO clause can be used only for a numeric or numeric
edited elementary item.

2. A data item or screen item containing the BLANK WHEN ZERO clause must
be implicitly or explicitly described with DISPLAY usage.

3. The syntax for a data item allows the spelling ZERO or ZEROES or ZEROS.
The syntax for a screen item allows the spelling ZERO only.

General Rules

1. The BLANK WHEN ZERO clause causes a data item or screen item to contain
spaces when its value is zero.

2. When the data item or screen item has a numeric PICTURE string, the
BLANK WHEN ZERO clause makes the item’s category numeric edited.

3. The BLANK WHEN ZERO clause is ignored in the description of an input
screen item.

Additional Reference
DISPLAY statement in Chapter 6
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BLINK (Alpha, I64)
Function
The BLINK clause displays characters on the screen with the blink on character
attribute.

General Format

BLINK

Syntax Rule
The BLINK clause can be specified only in an elementary screen description
entry.

General Rule
Blinking is only detectable when any of the following conditions are true:

• Nonspace characters are displayed.

• The underline and/or reverse-video attributes are specified.

• The terminal screen is set to light background.

Additional References

• DISPLAY statement in Chapter 6

• ACCEPT statement in Chapter 6 ♦
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CODE
Function
The CODE clause specifies a two-character literal that identifies each print line
as belonging to a specific report.

General Format

CODE report-code

report-code
must be a two-character nonnumeric literal.

Syntax Rule
If the CODE clause is specified for any report in a file, it must be specified for all
reports in that file.

General Rules

1. When the CODE clause is specified, report-code is automatically placed in the
first two character positions of each Report Writer logical record.

2. The positions occupied by report-code are not included in the description of
the print line, but are included in the logical record size.

Additional Reference
RD (Report Description)

Example
The following file contains three reports:

FILE SECTION.
FD REPORT-FILE

LABEL RECORDS ARE STANDARD
REPORTS ARE REPORT1

REPORT2
REPORT3.

REPORT SECTION.
RD REPORT1 . . .

CODE "AA".

RD REPORT2 . . .
CODE "BB".

RD REPORT3 . . .
CODE "CC".
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COLUMN NUMBER
Function
In a report group description, the COLUMN NUMBER clause identifies a
printable item and specifies the position of the item on a print line. In a screen
description, the COLUMN NUMBER clause specifies the horizontal screen
coordinate for a screen item.

General Formats

Format 1 (Report Description)

COLUMN NUMBER IS column-num

Format 2 (Screen Description)

COLUMN NUMBER IS [ PLUS ]
� identifier-1

integer-1

�

column-num
is a positive integer greater than zero.

identifier-1
is an elementary unsigned numeric integer data item. It cannot be subscripted.

integer-1
is an unsigned integer value.

Syntax Rules (Report Description)

1. The COLUMN NUMBER clause can be specified only at the elementary level
within a report group. The COLUMN NUMBER clause, if present, must
appear in a Format 3 Report Group Description entry, or be subordinate to
an entry that contains a LINE NUMBER clause in a Format 2 Report Group
Description entry.

2. A printable item is a data item whose size and content is specified by an
elementary report entry.

3. An elementary report entry contains a COLUMN NUMBER clause, a
PICTURE clause, and a SOURCE, SUM, or VALUE clause.

4. Each printable item within a given print line must be defined in ascending
column number order such that each printable item occupies a unique
sequence of contiguous character positions.

Syntax Rules (Screen Description)

1. The COLUMN clause can be specified only in an elementary screen
description entry.

2. identifier-1 cannot be subscripted.

General Rules (Report Description)

1. The presence of a COLUMN NUMBER clause indicates that these items, if
present, are to be presented on the print line:

• The object of a SOURCE clause

• The object of a VALUE clause
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• The sum counter in a SUM clause

The absence of a COLUMN NUMBER clause indicates that the entry is not
printable.

2. Column number 1 is the leftmost position of the print line.

3. column-num specifies the column number of the leftmost character position of
the printable item.

4. The Report Writer Control System supplies space characters for all positions
of a print line not occupied by printable items.

General Rules (Screen Description)

1. The COLUMN clause, in conjunction with the LINE clause, establishes the
starting position for a screen item. This position is an offset from the starting
screen coordinates specified in the ACCEPT or DISPLAY statement. The
COLUMN clause specifies the horizontal coordinate.

2. The COLUMN clause without the PLUS phrase specifies the absolute column
position of the screen item.

3. The COLUMN clause with the PLUS phrase specifies a column number
relative to that at which the preceding item ends, regardless of whether or
not the ACCEPT or DISPLAY statement displays the preceding item on the
screen.

4. A setting of COLUMN 1 is assumed in screen description entries that specify
the LINE clause but omit the COLUMN clause.

5. If both the LINE clause and the COLUMN clause are omitted, the following
apply:

• If no previous elementary screen item is defined, LINE 1 COLUMN 1 is
assumed.

• If a previous screen item is defined, the ending line of that previous
item and COLUMN PLUS 1 is assumed. The screen item then starts
immediately following the preceding screen item.

Additional References

• Report Group Description

• LINE NUMBER (Alpha, I64) clause

• ACCEPT statement in Chapter 6

• DISPLAY statement in Chapter 6

Examples (Report Description)

1. The following is an example of the COLUMN NUMBER clause in a LINE
NUMBER clause:

02 LINE 10 COLUMN 1 PIC X(11) VALUE "TOTAL ITEMS".

1 2 3 4
column: 1234567890123456789012345678901234567890

TOTAL ITEMS
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2. The following is an example of the COLUMN NUMBER clause subordinate to
a LINE NUMBER clause:

02 LINE 5 ON NEXT PAGE.
03 COLUMN 1 PIC X(10) VALUE "(Id Number".
03 COLUMN 12 PIC 9999 VALUE 1234.
03 COLUMN 16 PIC X VALUE ")".
03 COLUMN 18 PIC X(11) VALUE "TOTAL SALES".
03 TSAL COLUMN 30 PIC $$$$,$$$.99- VALUE 123456.78.

1 2 3 4
column: 123456789012345678901234567890123456789012345

(Id Number 1234) TOTAL SALES $123,456.78
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CONTROL
Function
The CONTROL clause establishes the levels of the control hierarchy for the
report.

General Format

�
CONTROL IS
CONTROLS ARE


 ���
�


� control-name � . . .

FINAL � control-name � . . .

���
��

control-name
is any data-name in the Subschema, File, Working-Storage, or Linkage Section.

Syntax Rules

1. control-name can be qualified.

2. Each occurrence of control-name must identify a different data item.

3. control-name must not have a variable-occurrence data item subordinate to it.

4. If the associated report file connector is an external file connector, control-
name must reference the same external data item in all programs in the run
unit.

General Rules

1. The word FINAL specifies the most major control item. From here, the
hierarchy descends to control-name, which is the major control; to the next
recurrence of control-name, which is an intermediate control; and so forth to
the last recurrence of control-name, which is the minor control.

2. A control break is a change in the value of a control-name.

3. FINAL is used when the most inclusive control group in the report is not
associated with a control-name.

4. The first time a GENERATE statement is executed, the Report Writer Control
System (RWCS) saves the values of all control data items associated with
that report. After that, every time a GENERATE statement is executed, the
RWCS tests those control data items to see if their values have changed. If
so, a control break occurs. This control break is associated with the highest
level control item whose value has changed.

5. Control breaks cause the RWCS to present appropriate CONTROL HEADER
and CONTROL FOOTING report groups for printing. Figure 5–8 shows
the report groups the RWCS processes ( X ) when you define FINAL, major,
intermediate, or minor control-name in a CONTROL HEADING or CONTROL
FOOTING phrase in a Report Group Description entry. For example, if
the value in a major control-name changes, the RWCS processes all major,
intermediate, and minor control groups specified in CONTROL HEADING
and CONTROL FOOTING report groups.
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Figure 5–8 Control Break Levels and Their Printed Report Groups
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6. The RWCS tests for a control break by comparing the contents of each control
data item with the prior contents of each control data item that were saved
when the previous GENERATE statement for the same report was executed.
The RWCS applies the inequality relation test as follows:

• If the control data item is a numeric data item, the relation test is for the
comparison of two numeric operands.

• If the control data item is an index data item, the relation test is for the
comparison of two index data items.

• If the control data item is other than as described in Figure 5–8, the
relation test is for the comparison of two nonnumeric operands.

Additional References

• Report Group Description

• Section 6.5.1, Relation Conditions

Examples

1. This example prints a total record count from TOTAL-LINE at the end of the
report because control is FINAL. It is a major control break and prints only
once.

WORKING-STORAGE SECTION.
01 RECORD-COUNT PIC 9(9) VALUE 0.

REPORT SECTION.
RD MASTER-REPORT . . .

CONTROL IS FINAL.

01 DETAIL-LINE TYPE IS DETAIL . . .
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01 TOTAL-LINE TYPE IS CONTROL FOOTING FINAL.
02 COLUMN 20 PIC X(17) VALUE "TOTAL RECORDS: ".
02 COLUMN 40 PIC ZZZ,ZZZ,ZZ9 SOURCE RECORD-COUNT.

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT . . .
OPEN OUTPUT . . .
INITIATE MASTER-REPORT.

010-READ-FILE.
READ . . . AT END GO TO 999-EOJ.
GENERATE DETAIL-LINE.
ADD 1 TO RECORD-COUNT.
GO TO 010-READ-FILE.

999-EOJ.
TERMINATE MASTER-REPORT.
CLOSE . . .
STOP RUN.

2. In the following example, a report defines four control totals in the control
clause. The source of these control totals is in an input file—INPUT-
FILE. The file is presorted in ascending sequence by MAJOR-CONTROL,
INTERMEDIATE-CONTROL, and MINOR-CONTROL. The RWCS will
monitor these fields in the input file for any changes. If a new record contains
data different from the previous record read, the RWCS triggers a control
break.

In this example, if the value in MINOR-CONTROL changes, a break
occurs and the RWCS processes the minor control report group CONTROL
FOOTING MINOR-CONTROL. If the value in INTERMEDIATE-CONTROL
changes, a break occurs and the RWCS processes the intermediate and
minor control report groups CONTROL FOOTING INTERMEDIATE-
CONTROL and CONTROL FOOTING MINOR-CONTROL. If the value in
MAJOR-CONTROL changes, a break occurs and the RWCS processes the
major, intermediate, and minor control report groups CONTROL FOOTING
MAJOR-CONTROL, CONTROL FOOTING INTERMEDIATE-CONTROL, and
CONTROL FOOTING MINOR-CONTROL.

FILE SECTION.

FD INPUT-FILE . . .
01 INPUT-RECORD.

02 MAJOR-CONTROL PIC . . .
02 . . .
02 MINOR-CONTROL PIC . . .
02 . . .
02 INTERMEDIATE-CONTROL PIC . . .
02 . . .

FD REPORT-FILE . . .
REPORT IS SUMMARY-REPORT.

REPORT SECTION.
RD SUMMARY-REPORT . . .

CONTROLS ARE FINAL
MAJOR-CONTROL
INTERMEDIATE-CONTROL
MINOR-CONTROL.

01 DETAIL-LINE TYPE IS DETAIL . . .

01 TYPE IS CONTROL FOOTING FINAL . . .
01 TYPE IS CONTROL FOOTING MINOR-CONTROL . . .
01 TYPE IS CONTROL FOOTING MAJOR-CONTROL . . .
01 TYPE IS CONTROL FOOTING INTERMEDIATE-CONTROL . . .
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Data-Name
Function
data-name specifies a data item that your program can explicitly reference.
FILLER specifies an item that cannot be explicitly referenced.

General Format� data-name
FILLER

�

data-name

Syntax Rules

1. In the File, Working-Storage, and Linkage Sections, data-name or the key
word FILLER (if present) must be the first word after the level-number in
each data description entry.

2. In the Report Section, data-name need not appear in a report group
description entry and the key word FILLER must not be used.

General Rules

1. If there is no data-name or FILLER clause, the compiler treats the data item
as a FILLER item.

2. The key word FILLER can name a data item. However, a program cannot
explicitly refer to FILLER items.

3. The key word FILLER can name a conditional variable. A program cannot
refer to the conditional variable. However, it can refer to the value of the
conditional variable by referring to its associated condition-names.

4. In the Report Section, data-name must be used when:

a. data-name represents a report group to be referred to by a GENERATE or
a USE statement in the Procedure Division.

b. Reference will be made to the sum counter in the Procedure Division or
Report Section.

c. The UPON phrase of the SUM clause references a DETAIL report group.

d. data-name provides sum counter qualification.

5. If this clause is omitted, the Report Writer Control System does not allow
explicit references to the data item.

Examples

1. Elementary FILLER items:

In this example, the program can refer only to the group item, ITEMA.

01 ITEMA.
03 FILLER PIC X(10) VALUE SPACES.
03 PIC X(2) VALUE "AB".
03 PIC 9 VALUE 6.
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2. Group FILLER items:

In this example, the program can refer to any elementary item. However,
it cannot refer to the record or to the group item that contains ITEMC and
ITEMD.

01 FILLER.
03 ITEMA PIC X(4).
03 ITEMB PIC 9(7).
03 FILLER.

05 ITEMC PIC X.
05 ITEMD PIC 9(8)V99.

03 ITEME PIC X.

3. Report Writer items:

In this Report Writer example, the program can refer to DL-NAME and
DETAIL-LINE, but not to the data beginning in LINE 10, COLUMN 25. Note
that FILLER cannot be used in place of a Report Writer data-name.

01 DETAIL-LINE TYPE IS DETAIL.
02 LINE 10.

03 DL-NAME COLUMN 1 SOURCE INPUT-NAME.
03 COLUMN 25 SOURCE INPUT-ADDRESS.
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DATA RECORDS
Function
The DATA RECORDS clause documents the names of a file’s record description
entries.

General Format

DATA
�

RECORD IS
RECORDS ARE



� rec-name � . . .

rec-name
is the name of a data record. It must be defined by a level 01 data description
entry subordinate to the file description entry.

Syntax Rule
The order of appearance of multiple rec-name entries is not significant.

General Rule
The DATA RECORDS clause is for documentation only.
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ERASE (Alpha, I64)
Function
The ERASE clause clears from the starting cursor position to the end of either
the line or the screen.

General Format

ERASE
�

EOL
EOS




Syntax Rule
The ERASE clause can be specified only for elementary screen description
entries.

General Rules

1. Blanking begins at the starting position of the screen item in whose
description the ERASE EOL clause is included, and continues to the end
of the line.

2. Blanking begins at the starting position of the screen item in whose
description the ERASE EOS clause is included, and continues through to
the end of the screen.

3. If you specify neither the BLANK nor the ERASE clause, only the particular
character positions corresponding to the screen item are modified when the
element is displayed. The rest of the screen content remains the same.

4. The ERASE clause is ignored in an ACCEPT statement.

Additional References
DISPLAY statement in Chapter 6
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EXTERNAL
Function
The EXTERNAL clause specifies that a data item or a file connector in a defining
program is common to other programs in the run unit if the program defines it
identically. The group and elementary data items of an external data record and
files associated with an external file connector are available to every program in
the image that describes them.

General Format

IS EXTERNAL

Syntax Rules

1. The EXTERNAL clause can appear only in file description entries or in record
description entries in the Working-Storage Section.

2. In a record description entry, only level numbers 01 and 77 can specify the
EXTERNAL clause.

3. A program and any program it contains, cannot define identical data-names
if their data description entries or file description entries have EXTERNAL
clauses.

4. The VALUE clause or the REDEFINES clause cannot be in a data description
entry that contains or is subordinate to, an entry that contains the
EXTERNAL clause.

5. When using the SAME RECORD AREA clause for several files, the Record
Description entries or the file description entries for these files must not
include the EXTERNAL clause.

6. Entries that contain the EXTERNAL clause must be named.

General Rules

1. Data in a record either subordinate to an external FD, or named by the
subject of the EXTERNAL clause, is external. Any program in the image that
describes and optionally redefines this data may access and process this data
subject to the following general rules.

2. If two or more programs in the image describe the same external data record,
the associated data description entries (except the GLOBAL clause) must be
identical. All subordinate data-names, data items, and redefinitions must also
be identical.

3. A program that describes an external data record can contain a Data
Description entry that redefines the complete external record. This
redefinition need not be the same in other programs in the image.

4. Use of the EXTERNAL clause does not imply that the associated file-name or
data-name is a global name.

5. The file connector associated with a file description entry is an external file
connector.

6. If two or more programs in an image describe the same external file connector,
the clauses associated with the description of that file must be functionally
identical and any data items referenced by those clauses must be external.
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Technical Notes

• Each external sequential file becomes a print format file.

• Each external data record becomes a PSECT (on OpenVMS systems) or a
global (on Tru64 UNIX systems), whose name is the 01-level record.

Each file connector for external files becomes a PSECT (on OpenVMS
systems) or a global (on Tru64 UNIX systems), whose name is the name
of the file. The records associated with this file become external data records.

External record items and files are implemented as overlayable shared
PSECTs (on OpenVMS systems) or globals (on Tru64 UNIX systems).
Therefore, the same storage area is shared among all separately compiled
programs for that named external record or file. The PSECT or global is
created for compatibility with BASIC COMMON/MAP and FORTRAN labeled
COMMON.

On OpenVMS, for more information on overlayable PSECTs, refer to the
LINK documentation in the OpenVMS documentation set. ♦
On Tru64 UNIX, for more information on globals, refer to the ld
documentation in the Tru64 UNIX documentation set. ♦

• On Tru64 UNIX systems, an external data item is case-sensitive. By default,
an external data item is converted to lowercase for all separately compiled
program units. Other programs (HP COBOL as well as other languages)
must specify the data item in lowercase.

However, if the names option is set to uppercase on the command line, other
programs must specify the data item in uppercase. If the names option is set
to as_is, the effect on an external data item is as if uppercase were specified.
(The as_is setting is used for calling non-COBOL programs with mixed case.)
♦

Additional References

• GLOBAL clause

• REDEFINES clause

Examples
In the following Working-Storage entries, the data items in RECORD-A are
available to any program in the run unit that also describes RECORD-A and its
data items. RECORD-B and the data items in it are not available to any other
program.

01 RECORD-A EXTERNAL.
03 ITEMA PIC X.
03 ITEMB PIC X(22).
03 ITEMC PIC 999.

01 RECORD-B.
03 ITEMA PIC X(12).
03 ITEMD PIC X.
03 ITEME PIC 9(18).
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FILE STATUS Clause

FILE STATUS
Function
The FILE STATUS clause specifies a data item to contain the status of an
input/output operation.

General Format

FILE STATUS IS file-stat

file-stat
is the data-name of a two-character alphanumeric Working-Storage Section, or
Linkage Section data item. file-stat is the file’s FILE STATUS data item.

Syntax Rules

1. file-stat can be qualified.

2. The FILE STATUS clause can be in the file’s SELECT clause or in its file
description entry. However, it cannot be in both the SELECT clause and the
file description entry for the same file.

3. If the FILE STATUS clause is associated with an external file connector,
file-stat must reference the same data item in all programs in the run unit.

General Rule
After the execution of every I-O statement that refers to the specified file, a value
is moved to file-stat. This value indicates the file’s I-O status after the execution
of the I-O statement.

Additional References

• Appendix C, File Status Values

• Section 6.6.8, I-O Status
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FOREGROUND-COLOR (Alpha, I64)
Function
The FOREGROUND-COLOR clause specifies the foreground color for a screen
item.

General Format

FOREGROUND-COLOR IS color-num

color-num
is an integer in the range 0–7 specifying a color as follows:

Color Color Value Color Color Value

Black 0 Red 4
Blue 1 Magenta 5
Green 2 Yellow/Brown 6
Cyan 3 White 7

Syntax Rule
The FOREGROUND-COLOR clause can be specified in any screen description
entry.

General Rules

1. The FOREGROUND-COLOR clause is effective only with color screens.

2. If the FOREGROUND-COLOR clause is omitted, the initial default
foreground color is white.

3. If the clause is specified at group level, it applies to all subordinate screen
items.

4. If the BLANK SCREEN clause is specified and the FOREGROUND-COLOR
clause is specified or inherited, then when a DISPLAY statement displays
the screen item, the specified color becomes the default foreground color.
It remains the default foreground color until another screen item with this
combination of options is displayed (whether in the same DISPLAY statement
or in another).

5. If the HIGHLIGHT clause is also specified, foreground and background colors
are brightened and lightened; for example, black may become grey and brown
may become yellow.

Technical Note
The colors in the list above are supported only on terminals and workstations
that support the ANSI Standard color sequences. 1

Additional References

• ACCEPT in Chapter 6

• DISPLAY in Chapter 6 ♦

1 This does not include the VT100, VT200, VT300, and VT400 series terminals. On
workstations that emulate these terminal types, this restriction may not apply.
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FULL (Alpha, I64)
Function
The FULL clause specifies that a screen item must be left either completely
empty or it must be entirely filled with data.

General Format

FULL

Syntax Rules

1. If the FULL clause is specified in a screen description entry, the JUSTIFIED
clause cannot be specified.

2. The FULL clause is valid only in the description of an input or update screen
item.

General Rules

1. If the FULL clause is specified at group level, it applies to all subordinate
input or update screen items.

2. The FULL clause is effective during the execution of any ACCEPT statement
when the cursor enters the screen item. Until this clause is satisfied, the
operator cannot leave the field and normal terminator keystrokes are rejected.

3. To satisfy the FULL clause for an alphanumeric screen item, either the field
must contain all spaces, or both the first and last character positions must
contain nonspace characters.

4. To satisfy the FULL clause for a numeric or numeric edited screen item,
either the value must be zero or there must be no digit position in which zero
suppression has taken effect.

5. For update fields, the FULL clause can be satisfied by the contents of
the identifier or literal referenced in the FROM or USING phrase of the
PICTURE clause, as well as by operator-keyed data.

6. The FULL clause is not effective if a function key terminates the accept
operation.

7. Specifying the FULL and REQUIRED clauses together requires that the user
must always entirely fill the field.

8. The FULL clause is ignored for an elementary output field.

Additional Reference
ACCEPT statement in Chapter 6 ♦
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GLOBAL
Function
The GLOBAL clause specifies that data-name, file-name, or report-name is
available to every program contained within the program that declares it.

General Format

IS GLOBAL

Syntax Rules

1. The GLOBAL clause can appear only in file description entries, Report
Description entries, a data description entry whose level number is 01, in
the File or Working-Storage Section, or a data description entry whose level
number is 77, in the Working-Storage Section.

2. In the same Data Division, the GLOBAL clause must not appear in Data
Description entries that contain identical data-names.

3. If you use the SAME RECORD AREA clause for several files, the Record
Description entries or the file description entries for these files must not
include the GLOBAL clause.

4. Entries that contain the GLOBAL clause must be named.

General Rules

1. Any data-name, file-name, or report-name specifying the GLOBAL clause is a
global name. All data items subordinate to a global data-name or file-name
are global names. All condition-names associated with a global name are
global names.

2. A statement in a program contained directly or indirectly within a program
that describes a global name may reference the name without describing it
again.

3. If the GLOBAL clause is used in a data description entry that contains the
REDEFINES clause, the global attribute applies only to the subject of the
REDEFINES clause.

Technical Note
Each global sequential file becomes a print format file.

Additional Reference
Section 6.2.6, Scope of Names
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GROUP INDICATE
Function
The GROUP INDICATE clause specifies that the associated printable item is
presented only on the first occurrence of its DETAIL report group after a control
break or page advance.

General Format

GROUP INDICATE

Syntax Rule
The GROUP INDICATE clause must be specified only in a DETAIL report group
entry that defines a printable item.

General Rules

1. If the program contains a GROUP INDICATE clause, the compiler suppresses
printing of the printable item and supplies spaces, except:

a. On the first presentation of the DETAIL report group

b. On the first presentation of the DETAIL report group after every page
advance

c. On the first presentation of the DETAIL report group after every control
break

2. If the program specifies neither the PAGE clause nor the CONTROL clause
in a Report Description entry, then the first time a DETAIL report group is
presented a GROUP INDICATE printable item is also presented. Thereafter,
spaces are supplied for indicated items with SOURCE or VALUE clauses.

Additional Reference
Appendix D, Report Writer Presentation Rules and Tables

Example
The following example shows the effect of the GROUP INDICATE clause on a
printable item (SOURCE I-NAME).
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ZK−6150−GE

01  DETAIL−LINE TYPE IS DETAIL

02  COLUMN 1 PIC X(15)

02  COLUMN 20 PIC 9(6)

LINE IS PLUS 1.

SOURCE I−NAME.

SOURCE I−INV−NO.

01  DETAIL−LINE TYPE IS DETAIL

02  COLUMN 1 PIC X(15)

02  COLUMN 20 PIC 9(6)

LINE IS PLUS 1.

SOURCE I−NAME.

SOURCE I−INV−NO.

***********************************

***********************************

*

*

GROUP INDICATE

Without the With the

Sample Program

With the
GROUP INDICATE

Sample Report

GROUP INDICATE
Clause

GROUP INDICATE
Clause

Clause

Invoice
Number

123456

123456789012345678901234567890
1 2 3

123456

123456

123456

123456

123456

123456

123456

123456

123456

123456

123456

Without the
GROUP INDICATE

Clause

Invoice
Number

123456

123456789012345678901234567890
1 2 3

123456

123456

123456

123456

123456

123456

123456

123456

123456

123456

123456

Provinchet R.

Blare R.

Hendrexon B.

Name

Provinchet R.

Provinchet R.

Provinchet R.

Provinchet R.

Blare R.

Blare R.

Blare R.

Hendrexon B.

Hendrexon B.

Name

Provinchet R.

Blare R.

Hendrexon B.
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HIGHLIGHT Clause

HIGHLIGHT (Alpha, I64)
Function
The HIGHLIGHT clause specifies that the field is to appear on the screen with
the highest intensity.

General Format

HIGHLIGHT

Syntax Rule
The HIGHLIGHT clause can be specified only for an elementary screen
description entry.

Additional References

• ACCEPT in Chapter 6

• DISPLAY in Chapter 6 ♦
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JUSTIFIED Clause

JUSTIFIED
Function
The JUSTIFIED clause specifies nonstandard data positioning in a screen item or
another receiving item.

General Format�
JUSTIFIED
JUST



RIGHT

Syntax Rules

1. The JUSTIFIED clause can be used only for elementary items and
alphanumeric data items. It cannot be used for index data items, numeric
data items, or edited data items.

2. JUST is the abbreviated form of JUSTIFIED.

General Rules

1. If a COBOL statement transfers data to a receiving item whose data
description contains the JUSTIFIED clause, the Run-Time System:

• Truncates the excess leftmost characters if the sending item is larger than
the receiving item.

• Aligns the data at the rightmost character position of the receiving item
if the sending item is smaller than the receiving item. (Spaces fill the
excess leftmost character positions.)

2. If there is no JUSTIFIED clause, data movement follows the rules for aligning
data in elementary items (Standard Alignment Rules).

Additional References

• MOVE statement in Chapter 6

• Section 5.2.2, COBOL Standard Alignment Rules

Examples
The Procedure Division entry for the MOVE statement contains examples using
this clause.
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LABEL RECORDS Clause

LABEL RECORDS
Function
The LABEL RECORDS clause specifies the presence or absence of labels.

General Format

LABEL
�

RECORDS ARE
RECORD IS


 �
STANDARD
OMITTED




General Rule
The LABEL RECORDS clause is for documentation only.
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Level-Number

Level-Number
Function
The level-number shows the position of a data item or screen item within the
hierarchical structure of a logical record or a report group or a screen description.
It also identifies entries for condition-names and the RENAMES clause.

General Format

level-number

Syntax Rules

1. The level-number must be the first element in a data description entry or a
screen description entry.

2. Data description entries that are subordinate to a file description (FD) entry
have level-numbers 01 to 49, 66, or 88.

3. Data description entries in the Working-Storage and Linkage Sections have
level-numbers 01 to 49, 66, 77, or 88.

4. Report group description entries in the Report Section have level-numbers 01
to 49 only. See the Report Group Description entry for additional rules for
Report Writer level-numbers.

5. Screen description entries in the Screen Section have level-numbers 01 to 49
only. See the Screen Description (Alpha, I64) entry for additional rules for
Screen Section level-numbers.

General Rules

1. The level-number 01 identifies the first entry in a record description, report
group description, or screen description entry.

2. Multiple level 01 entries subordinate to a file description entry represent
implicit redefinitions of the same area.

3. Multiple level 01 entries subordinate to a report description entry do not
represent implicit redefinitions of the same area.

4. Level-number 66 identifies a RENAMES entry. It can be used only in a
Format 2 data description entry.

5. Level-number 77 identifies a noncontiguous data item entry in the Working-
Storage and Linkage Sections. The level 77 entry can have no subordinate
data description entries except level 88 items.

6. Level-number 88 defines a condition-name associated with a conditional
variable. It can be used only in a Format 3 data description entry.

7. Level-numbers 66, 77, and 88 do not imply a hierarchical position.
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Additional References

• RD (Report Description) entry

• Data Description entry

• Report Group Description entry

• RENAMES clause

• Section 1.2.1.1 in Section 1.2.1, COBOL Words

• Section 5.1.1, Record Description Entries

• Screen Description (Alpha, I64) entry
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LINAGE
Function
The LINAGE clause specifies the number of lines on a logical page. It can also
specify the size of the logical page’s top and bottom margins and the line where
the footing area begins in the page body.

General Format

LINAGE IS page-lines LINES

� WITH FOOTING AT footing-line �

� LINES AT TOP top-lines �

� LINES AT BOTTOM bottom-lines �

page-lines
is a positive integer or the data-name of an elementary unsigned integer numeric
data item. Its value must be greater than zero. It specifies the number of lines
that can be written or spaced on the logical page. If page-lines is a data-name, it
can be qualified.

footing-line
is a positive integer or the data-name of an elementary unsigned integer numeric
data item. Its value must be greater than zero, but cannot be greater than page-
lines. footing-line specifies the line number where the footing area begins in the
page body. If footing-line is a data-name, it can be qualified.

top-lines
is an integer or the data-name of an elementary unsigned integer numeric data
item. Its value can be zero. top-lines specifies the number of lines in the top
margin of the logical page. If top-lines is a data-name, it can be qualified.

bottom-lines
is an integer or the data-name of an elementary unsigned integer numeric data
item. Its value can be zero. bottom-lines specifies the number of lines in the
bottom margin of the logical page. If bottom-lines is a data-name, it can be
qualified.

General Rules

1. The LINAGE clause specifies the number of lines on a logical page.

2. Logical page size is the sum of the values specified in all phrases except
FOOTING. If there is no LINES AT TOP or LINES AT BOTTOM phrase,
the default value of top-lines or bottom-lines is zero. If there is no FOOTING
phrase, the default value of footing-line equals the value of page-lines.

3. Logical and physical page sizes are not necessarily the same.

4. The page body is the logical page area in which the program can write or
space lines. Its size equals the value of page-lines.

5. The footing area is the area of the logical page between footing-line and
page-lines, inclusive.
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6. When the program opens the file by executing an OPEN statement with the
OUTPUT phrase, it uses the values of page-lines, top-lines, and bottom-lines
to define the logical page sections. When these values are integers, they apply
to all logical pages the program writes to the file during its execution.

7. When page-lines, top-lines, and bottom-lines are data-names, their values
affect OPEN and WRITE statement execution as follows:

• When the program executes an OPEN statement with the OUTPUT
phrase for the file, the values specify the number of lines in each of the
associated sections of the first logical page.

• When the program executes a WRITE statement with the ADVANCING
PAGE phrase, or when a page overflow condition occurs, the values specify
the number of lines in each of the associated sections of the next logical
page.

8. The value of footing-line defines the footing area for the first logical page
when the program executes an OPEN statement with the OUTPUT phrase
for the file. The value defines the footing area for the next logical page when:
( a ) the program executes a WRITE statement with the ADVANCING PAGE
phrase or, ( b ) a page overflow condition occurs.

9. For each file with a LINAGE clause, the program has a corresponding special
register called LINAGE-COUNTER. At any time, the value in LINAGE-
COUNTER is the line number in the current page body at which the device is
positioned. Other open modes (Input, I-O, and Extend) are not permitted and
have unpredictable results.

10. LINAGE-COUNTER is global if a file description entry specifies the GLOBAL
clause and the LINAGE clause.

11. LINAGE-COUNTER is a 9-digit numeric special register. Procedure Division
statements can refer to LINAGE-COUNTER but cannot change its value.

12. If the program has more than one LINAGE-COUNTER, all Procedure
Division references to it must be qualified by file-name.

13. Execution of a WRITE statement for a file with the LINAGE clause changes
the value of the associated LINAGE-COUNTER:

• If the WRITE statement has the ADVANCING PAGE phrase, its execution
resets LINAGE-COUNTER to one. (The resetting operation implicitly
increments the value of LINAGE-COUNTER to exceed the value of
page-lines.)

• If the WRITE statement has the ADVANCING LINES phrase,
its execution increments LINAGE-COUNTER by the value in the
ADVANCING phrase.

• If the WRITE statement does not have the ADVANCING phrase, it
increments LINAGE-COUNTER by one.

14. Execution of an OPEN statement for the file sets its LINAGE-COUNTER to
one.

15. Each logical page follows the preceding logical page with no spacing between
them.
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16. If the file connector associated with this file description entry is an external
file connector, all file description entries in the run unit associated with this
file connector must have the following features:

• A LINAGE clause, if any file description entry has a LINAGE clause

• The same corresponding integer values for page-lines, footing-lines,
top-lines, and bottom-lines

• The same corresponding external data items referenced by page-lines,
footing-lines, top-lines, and bottom-lines

Technical Notes

• On OpenVMS, the LINAGE clause causes a file to be in print-file format.
When a WRITE statement positions the file to the top of the next logical
page, device positioning occurs by line spacing rather than by page ejection or
form feed.

The default DCL PRINT command causes the insertion of a form-feed
character when a form nears the end of a page. Therefore, when the default
PRINT command refers to a LINAGE file, unexpected page spacing can result.

The /NOFEED compiler option to the PRINT command suppresses the
insertion of form-feed characters and prints LINAGE files correctly. For
example:

$ PRINT/NOFEED full-file-name

• The /NOVFC compiler option can be used on OpenVMS Alpha and I64 to
produce a Stream_LF record-formatted print file. The default (/VFC) behavior
is to produce a VFC record-formatted file. ♦

• HP COBOL on Tru64 UNIX systems writes LINAGE files with blank lines
to simulate WRITE ADVANCING behavior. These blank lines would not be
produced on an OpenVMS Alpha or I64 system. When you input a LINAGE
file, you must compensate for the difference. For example, use an extra initial
READ statement (on Tru64 UNIX systems) to skip over the leading blank line
in the LINAGE file. ♦

Additional References

• GLOBAL clause

• WRITE statement in Chapter 6

Example
The following example specifies a logical page whose size is 26 lines:

FD PRINT-FILE
VALUE OF ID IS "REPORT1.LIS"
LINAGE IS 16 LINES WITH FOOTING AT 13
LINES AT TOP 4 LINES AT BOTTOM 6.

In this example, the first line to which the page can be positioned is the fifth line.
The end-of-page condition occurs when a WRITE statement causes the LINAGE-
COUNTER value to be in the range 13 to 16. The page overflow condition occurs
when a WRITE statement causes the LINAGE-COUNTER value to exceed 16.
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Figure 5–9 shows the logical page areas resulting from the example.

Figure 5–9 Logical Page Areas Resulting from a LINAGE Clause
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LINE NUMBER Clause

LINE NUMBER (Alpha, I64)
Function
The LINE NUMBER clause specifies vertical positioning information for a report
group, or specifies the vertical screen coordinate for a screen item.

General Formats

Format 1 (Report Description)

LINE NUMBER IS

�
line-num � ON NEXT PAGE �

PLUS line-num-plus

�

Format 2 (Screen Description)

LINE NUMBER IS [ PLUS ]
� identifier-1

integer-1

�

line-num
is a nonnegative integer. line-num represents an absolute line number on a
logical page and establishes a print line for a Report Writer report group.

line-num-plus
is a positive integer. line-num-plus represents a relative line number on a logical
page and establishes a print line for a Report Writer report group.

identifier-1
is an elementary unsigned numeric integer data item. It cannot be subscripted.

integer-1
is an unsigned integer value.

Syntax Rules (Report Description)

1. Neither line-num nor line-num-plus can exceed three significant digits.

The PAGE clause defines the length of a logical page and the vertical
subdivisions within which each report group is presented. Neither line-
num nor line-num-plus may specify a line outside of the PAGE clause limits.
See PAGE clause for more information.

2. Within a given Report Group Description, an entry containing a LINE
NUMBER clause must not contain a subordinate entry that also contains
a LINE NUMBER clause.

3. Within a given Report Group Description, all absolute LINE NUMBER
clauses must precede all relative LINE NUMBER clauses.

4. Within a given Report Group Description, successive absolute LINE
NUMBER clauses must specify integers in ascending order. The integers
need not be consecutive.

5. If a given Report Description (RD) does not contain a PAGE clause, the
program may specify only relative LINE NUMBER clauses in any Report
Group Description within that report.

6. Within a given Report Group Description, a NEXT PAGE phrase may appear
only once. If present, it must be the first LINE NUMBER clause in that
Report Group Description.
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7. A LINE NUMBER clause with the NEXT PAGE phrase may appear only in
the description of a CONTROL HEADING, DETAIL, CONTROL FOOTING,
or REPORT FOOTING report group.

8. Every entry defining a printable item must either contain a LINE NUMBER
clause or be subordinate to an entry that contains a LINE NUMBER clause.
See the COLUMN NUMBER clause for more information.

9. The first LINE NUMBER clause in a PAGE FOOTING report group must
define an absolute line-num value.

10. line-num-plus may be zero. If line-num-plus is zero, the line will be printed
on the same line as the previous print line (overprint); however, line-num-plus
cannot be zero for the first print line of a report group.

Syntax Rules (Screen Description)

1. The LINE clause can be specified only in an elementary screen description
entry.

2. identifier-1 cannot be subscripted.

General Rules (Report Description)

1. To establish each print line for a report group, a program must specify the
LINE NUMBER clause.

2. Before presenting the print line, the Report Writer Control System (RWCS)
causes line positioning as specified by a LINE NUMBER clause.

3. The NEXT PAGE phrase defines the line number of a new page on which to
present the report group.

4. For a complete specification on how to determine the first print line for a
report group, see Appendix D, Report Writer Presentation Rules and Tables.
A partial summary of these rules follows:

If a relative clause is not the first LINE NUMBER clause in a report group,
then the line number on which its print line is presented is determined by the
sum of the following:

• The line number from the previous print line of the report group

• line-num-plus of the relative LINE NUMBER clause

If the first LINE NUMBER clause in the Report Group Description entry
is relative and a PAGE clause is specified, the first print line for the report
group is determined as follows. See the PAGE clause for the definitions of
page-size, heading-line, first-detail-line, last-detail-line, and footing-line.

a. REPORT HEADING

The RWCS presents this group on a line number whose value is the sum
of line-num of the first LINE NUMBER clause and heading-line minus 1.

b. PAGE HEADING

If a REPORT HEADING report group has been presented on the page
on which this report group is to appear, the RWCS presents the PAGE
HEADING relative to the final LINE-COUNTER setting of the REPORT
HEADING.

If no REPORT HEADING has been presented on the page, the RWCS
presents this report group on the line number whose value is the sum of
line-num of the first LINE NUMBER clause and heading-line minus 1.
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c. DETAIL, CONTROL HEADING, or CONTROL FOOTING

If the value in LINE-COUNTER is less than first-detail-line, the RWCS
presents the report group on first-detail-line.

If the value in LINE-COUNTER is greater than or equal to first-detail-
line and if this is the first body group to print on the page, the RWCS
presents the report group on the line corresponding to the value in
LINE-COUNTER.

If the value in LINE-COUNTER is greater than or equal to first-detail-
line and if this is not the first body group to print on the page, the RWCS
presents the report group on the line whose value is the sum of LINE-
COUNTER and line-num of the first LINE NUMBER clause of the current
CONTROL HEADING, DETAIL, or CONTROL FOOTING report group.

d. PAGE FOOTING

Not applicable. The first LINE NUMBER clause of a PAGE FOOTING
report group must contain an absolute line number reference.

e. REPORT FOOTING

If a PAGE FOOTING report group has been presented on the current
page, the RWCS presents the REPORT FOOTING report group on the
line whose value is the sum of the current value in LINE-COUNTER and
line-num of the first LINE NUMBER clause of the REPORT FOOTING
report group.

If no PAGE FOOTING report group has been presented on the current
page, the RWCS presents the REPORT FOOTING report group on the
line whose value is the sum of footing-line and line-num of the first LINE
NUMBER clause of the REPORT FOOTING report group.

General Rules (Screen Description)

1. The LINE clause, in conjunction with the COLUMN clause, establishes the
starting position for a screen item. This position is an offset from the starting
screen coordinates specified in the ACCEPT or DISPLAY statement. The
LINE clause specifies the vertical coordinate.

2. The LINE clause without the PLUS phrase specifies the absolute line number.

3. The LINE clause with the PLUS phrase specifies a line number relative
to that at which the preceding item ends, regardless of whether or not the
ACCEPT or DISPLAY statement displays the preceding item on the screen.

4. If the LINE clause is omitted, the following apply:

• If no previous screen item is defined, LINE 1 is assumed.

• If a previous screen item is defined, the ending line of that previous item
is assumed.

Additional References

• COLUMN NUMBER clause

• PAGE clause

• Appendix D, Report Writer Presentation Rules and Tables

• ACCEPT statement in Chapter 6

• DISPLAY statement in Chapter 6
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LOWLIGHT (Alpha, I64)
Function
The LOWLIGHT clause specifies that the field is to appear on the screen with the
lowest intensity. When only two levels of intensity are available, normal intensity
and LOWLIGHT will be the same.

General Format

LOWLIGHT

Syntax Rule
The LOWLIGHT clause can be specified only for an elementary screen description
entry.

Additional Reference

• ACCEPT in Chapter 6

• DISPLAY in Chapter 6
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NEXT GROUP
Function
The NEXT GROUP clause specifies information for the vertical positioning of the
next report group on a logical page following the presentation of the last line of a
report group.

General Format

NEXT GROUP IS

� next-group-line-num
PLUS next-group-line-num-plus
NEXT PAGE

�

next-group-line-num
is a positive, 1- to 3-digit integer value greater than zero. It represents an
absolute line number on a logical page and establishes a print line for the next
Report Writer report group.

next-group-line-num-plus
is a positive, 1- to 3-digit integer value. It represents a relative line number on a
logical page and establishes a print line for the next Report Writer report group.

Syntax Rules

1. A Report Group entry must not contain a NEXT GROUP clause unless the
description of that Report Group contains at least one LINE NUMBER clause.

2. next-group-line-num and next-group-line-num-plus must not exceed three
significant digits.

3. If a Report Description entry omits the PAGE clause, all Report Group
Description entries within that report can specify a relative NEXT GROUP
clause only.

4. A PAGE FOOTING Report Group must not specify the NEXT PAGE phrase of
the NEXT GROUP clause.

5. A PAGE HEADING and REPORT FOOTING Report Group must not specify
the NEXT GROUP clause.

General Rules

1. Page positioning occurs after the presentation of the Report Group in which
the NEXT GROUP clause appears.

2. To determine a new value for LINE-COUNTER, the Report Writer Control
System (RWCS) uses the vertical positioning information from the NEXT
GROUP clause along with information from the TYPE and PAGE clauses, and
the value in LINE-COUNTER. See Appendix D, Report Writer Presentation
Rules and Tables.

3. The RWCS ignores the NEXT GROUP clause on a CONTROL FOOTING
Report group when it detects a control break at a level other than the highest
level.

4. The NEXT GROUP clause of a CONTROL HEADING, DETAIL, and
CONTROL FOOTING report group refers to the next CONTROL HEADING,
DETAIL, and CONTROL FOOTING to be presented, and therefore can
affect the location at which the next CONTROL HEADING, DETAIL, and
CONTROL FOOTING report group is presented. See Appendix D.
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5. The NEXT GROUP clause of a REPORT HEADING report group can affect
the location at which the PAGE HEADING report group is presented. See
Appendix D.

6. The NEXT GROUP clause of a PAGE FOOTING report group can affect the
location at which the REPORT FOOTING report group is presented. See
Appendix D.

Additional References

• General Rules (Report Description) (General Rule 4) of the LINE NUMBER
(Alpha, I64) clause

• Appendix D, Report Writer Presentation Rules and Tables
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OCCURS
Function
The OCCURS clause defines tables and provides the basis for subscripting and
indexing. It eliminates the need for separate entries for repeated data items.

General Format
Format 1

OCCURS table-size TIMES

�
� �

ASCENDING
DESCENDING



KEY IS � key-name � . . .

�
� . . .

�
INDEXED BY � ind-name � . . .

�

Format 2

OCCURS min-times TO max-times TIMES DEPENDING ON depending-item

�
� �

ASCENDING
DESCENDING



KEY IS � key-name � . . .

�
� . . .

�
INDEXED BY � ind-name � . . .

�

table-size
is an integer that specifies the exact number of occurrences of a table element.

min-times
is an integer that specifies the minimum number of occurrences of a table
element. Its value must be greater than or equal to zero.

max-times
is an integer that specifies the maximum number of occurrences of a table
element. Its value must be greater than min-times.

key-name
is the data-name of an entry that contains the OCCURS clause or an entry
subordinate to it. key-name can be qualified. Each key-name after the first must
name an entry subordinate to the entry that contains the OCCURS clause.
The values in each key-name are the basis of the ascending or descending
arrangement of the table’s repeated data.

ind-name
is an index-name. It associates an index with the table and allows indexing in
table element references.

depending-item
is the data-name of an elementary unsigned integer data item. Its value specifies
the current number of occurrences. depending-item can be qualified.
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Syntax Rules

1. The subject of the entry is the data-name that contains the OCCURS clause.

2. A key-name cannot contain an OCCURS clause. However, this rule does not
apply to the first key-name if it is the subject of the entry.

3. There can be no OCCURS clauses between the data description entries for
key-names and the subject of the entry.

4. In the OCCURS clause of the data description entry, key-name cannot be
subscripted or indexed.

5. There must be an INDEXED BY phrase if any Procedure Division statements
contain indexed references to the subject of the entry or to any of its
subordinates.

6. The INDEXED BY phrase implicitly defines ind-name. The program cannot
define ind-name elsewhere.

7. The subject of a Format 2 OCCURS clause can be followed, in the same record
description, only by data description entries subordinate to it.

8. The OCCURS clause cannot be used in a data description entry that has the
following:

• A level-number of 01, 66, 77, or 88

• A subordinate variable occurrence data item (Format 2 OCCURS clause)

9. The data item defined by depending-item cannot occupy any character position
in the range delimited by the following:

• The character position defined by the subject of the OCCURS clause

• The last character position defined by the record description entry
containing the OCCURS clause

10. Each ind-name must be a unique word in the program.

11. If the OCCURS clause is in a record description entry containing the
GLOBAL clause, depending-item must refer to a global item described in
the same Data Division.

12. If the OCCURS clause is in a record description entry containing the
EXTERNAL clause, depending-item must refer to an external item described
in the same Data Division.

General Rules

1. The OCCURS clause defines tables and provides the basis for subscripting
and indexing.

2. Except for the OCCURS clause itself, all data description clauses associated
with the subject of the OCCURS clause apply to each occurrence of the item.

3. Format 1 specifies that the subject of the entry has a fixed number of
occurrences.

4. Format 2 specifies that the subject of the entry has a variable number of
occurrences. min-times and max-times specify the minimum and maximum
number of occurrences. Only the number of the subject’s occurrences is
variable; its size is fixed.

The value of depending-item must fall in the range min-times to max-times.
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The contents of data items with occurrence numbers exceeding the current
value of depending-item are unpredictable.

5. If a group item with a subordinate entry that has a Format 2 OCCURS clause
is a sending item, the operation uses only the part of the table area specified
by depending-item at the start of the operation.

If the group is a receiving item, the part of the table used is determined by
the location of depending-item. If depending-item is included in the group,
then the operation uses the maximum length of the group. If depending-item
is not included in the group, then the operation uses only the part of the table
area specified by depending-item.

6. The KEY IS phrase indicates that the repeated data is arranged in ascending
or descending order according to the values in the data items named by
key-name. The rules for operand comparison determine the ascending or
descending order. The position of each key-name in the list determines its
significance. The first is the most significant, and the last is least significant.

7. If a Format 2 OCCURS clause is in a record description entry and the
associated file description entry has the VARYING phrase of the RECORD
clause, the records are variable length.

If the RECORD clause does not have the DEPENDING ON phrase, the
program must set the OCCURS clause depending-item to the number of
occurrences before executing a RELEASE, REWRITE, or WRITE statement.
The depending-item value determines the length of the record to be written.

Technical Note
If the subject of the OCCURS clause (or any of its subordinates) has the
SYNCHRONIZED clause, the length of the subject of the OCCURS clause, or
the group containing it, could increase. SYNCHRONIZED clause alignment can
add fill bytes to the group containing the subject of the OCCURS clause and to
the subject itself.

Additional References

• SEARCH statement in Chapter 6

• Section 5.2.3, Additional Alignment Rules for Record Allocation

• Section 6.5.1.1, Comparison of Numeric Operands section in Chapter 6

• Section 6.5.1.2, Comparison of Nonnumeric Operands section in Chapter 6

Examples

1. One-dimensional table:

This record description entry describes a 20-character record. The record
contains 10 occurrences of ITEMB, a 2-character data item.

01 ITEMA.
03 ITEMB OCCURS 10 TIMES PIC XX.

2. Two-dimensional table:

This record description entry describes a 320-character record. The record
contains 8 occurrences of ITEMB, a 40-character data item. ITEMB contains
10 occurrences of ITEMC, a 4-character data item. Each ITEMC contains 2
data items: ITEMD and ITEME.
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01 ITEMA.
03 ITEMB OCCURS 8 TIMES.

05 ITEMC OCCURS 10 TIMES.
07 ITEMD PIC X.
07 ITEME PIC XXX.

ITEMB ( 1 ) refers to a 40-character data item, the first 10 occurrences of
ITEMC. Similarly, ITEMB ( 5 ) refers to the fifth group of 10 occurrences of
ITEMC.

ITEME (3,4) refers to ITEME in the fourth occurrence of ITEMC in the third
occurrence of ITEMB:

ITEMB (1)    DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
ITEMB (2)    DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
ITEMB (3)    DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
ITEMB (4)    DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
ITEMB (5)    DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
ITEMB (6)    DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
ITEMB (7)    DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE
ITEMB (8)    DEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEEDEEE

ZK−1422A−GE

3. Variable occurrence data item:

When ITEMA is a receiving item, its size is 2128 characters. When it is a
sending item, its size can vary from 70 to 2128 characters, depending on the
value in ITEMC.

Each ITEME is 42 characters long. Its size cannot change. The only effect of
the value of ITEMC is to determine the number of ITEME occurrences.

There are 10 occurrences of ITEMH and ITEMI in each occurrence of ITEME.

01 ITEMA.
03 ITEMB PIC X(6).
03 ITEMC PIC 99.
03 ITEMD PIC X(20).
03 ITEME OCCURS 1 TO 50 TIMES DEPENDING ON ITEMC.

05 ITEMF PIC XX.
05 ITEMG OCCURS 10 TIMES.

07 ITEMH PIC X.
07 ITEMI PIC XXX.
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PAGE
Function
The PAGE clause defines the length of a logical page and the vertical subdivisions
within which report groups are presented.

General Format

PAGE
�

LIMIT IS
LIMITS ARE

�
page-size

�
LINE
LINES

�

� HEADING heading-line �

� FIRST DETAIL first-detail-line �

� LAST DETAIL last-detail-line �

� FOOTING footing-line �

page-size
is a 1- to 3-digit integer. It defines the number of lines available on a logical page.

heading-line
is a 1- to 3-digit integer. It defines the first line number for a REPORT HEADING
or PAGE HEADING report group on the logical page.

first-detail-line
is a 1- to 3-digit integer. It defines the first line number for a CONTROL
HEADING, DETAIL, and CONTROL FOOTING report group on the logical
page.

last-detail-line
is a 1- to 3-digit integer. It defines the last line number for a CONTROL
HEADING or DETAIL report group on the logical page.

footing-line
is a 1- to 3-digit integer. It defines the last line number for a CONTROL
FOOTING report group and the first line number for the PAGE FOOTING
report group on the logical page.

Syntax Rules

1. The HEADING, FIRST DETAIL, LAST DETAIL, and FOOTING phrases may
be written in any order.

2. page-size must not exceed three significant digits and must be greater than or
equal to footing-line.

3. heading-line must be greater than or equal to one.

4. first-detail-line must be greater than or equal to heading-line.

5. last-detail-line must be greater than or equal to first-detail-line.

6. footing-line must be greater than or equal to last-detail-line.

7. The rules in Table 5–6 summarize the rules presented in Appendix D, Report
Writer Presentation Rules and Tables. They indicate the vertical subdivision
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of the page in which each type of report group may appear when the PAGE
clause is specified.

a. To present a REPORT HEADING report group on a page by itself (NEXT
GROUP NEXT PAGE), define the REPORT HEADING clause to be in the
vertical subdivision of the page extending from heading-line to page-size,
inclusive.

To present a REPORT HEADING report group on a page with other
report groups, define the REPORT HEADING clause to be in the vertical
subdivision of the page extending from heading-line to first-detail-line
minus one, inclusive.

b. A PAGE HEADING clause must be defined in the vertical subdivision
of the page extending from heading-line to first-detail-line minus one,
inclusive.

c. A CONTROL HEADING or DETAIL clause must be defined in the vertical
subdivision of the page extending from first-detail-line to last-detail-line,
inclusive.

d. A CONTROL FOOTING clause must be defined in the vertical subdivision
of the page extending from first-detail-line to footing-line, inclusive.

e. A PAGE FOOTING clause must be defined in the vertical subdivision of
the page extending from footing-line plus one to page-size, inclusive.

f. To present a REPORT FOOTING report group on a page by itself, define
the REPORT FOOTING clause in the vertical subdivision of the page
extending from heading-line to page-size, inclusive.

To present a REPORT FOOTING report group on a page with other report
groups, define the REPORT FOOTING clause in the vertical subdivision
of the page extending from footing-line plus one to page-size.

8. All report groups must be defined such that they can be presented on one
logical page. The Report Writer Control System (RWCS) never splits a
multiline report group across logical page boundaries.

General Rules

1. REPORT HEADING and PAGE HEADING report groups may not be
presented on or beyond the first-detail-line.

2. PAGE FOOTING and REPORT FOOTING report groups must follow the
footing-line.

3. If the PAGE clause is specified, the following implicit default values are
assumed for any omitted phrases:

a. If the HEADING phrase is omitted, heading-line equals one.

b. If the FIRST DETAIL phrase is omitted, first-detail-line equals heading-
line.

c. If the LAST DETAIL and FOOTING phrases are both omitted, last-detail-
line and footing-line equal page-size.

d. If the FOOTING phrase is specified and the LAST DETAIL phrase is
omitted, last-detail-line equals footing-line.

e. If the LAST DETAIL phrase is specified and the FOOTING phrase is
omitted, footing-line equals last-detail-line.

Data Division 5–93



PAGE Clause

4. If the PAGE clause is omitted, the report consists of a single page of infinite
length with relative line numbering.

5. If a REPORT HEADER report group is to appear on a page with other report
groups, the first line following the heading report groups (REPORT HEADER
and PAGE HEADER) must be blank.

6. If a REPORT FOOTING report group is to appear on a page with other report
groups, the first line preceding the footing report groups (PAGE FOOTING
and REPORT FOOTING) must be blank.

Additional References

• General Rules (Report Description) (General Rule 4) of the LINE NUMBER
(Alpha, I64) clause

• Appendix D, Report Writer Presentation Rules and Tables

Table 5–6 shows the page regions established by the PAGE clause.
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Table 5–6 Page Regions Established by the PAGE Clause

Region Boundaries

Report Groups that
Can Be Presented in a
Region

First Line Number
of the Region

Last Line Number
of the Region

Line Positioning for the First
Report Group Within the Region

Report Heading
Described with NEXT
GROUP NEXT PAGE

Report Footing
Described with LINE
line-num NEXT PAGE

heading-line page-size LINE-NUMBER
plus
heading-line minus 1

Page Heading

Report Heading Not
Described with NEXT
GROUP NEXT PAGE

heading-line first-detail-line
minus 1

LINE-NUMBER
plus
heading-line minus 1

Control Heading first-detail-line last-detail-line If LINE-COUNTER is greater
than or equal to first-detail-
line, position on LINE-
COUNTER plus 1

Detail If LINE-COUNTER is less
than first-detail-line, position
on first-detail-line

Control Footing first-detail-line footing-line Same as preceding

Page Footing footing line page-size

Report Footing Not
Described with LINE
line-num NEXT PAGE

plus 1 LINE-NUMBER
plus footing-line
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PICTURE
Function
The PICTURE clause specifies the general characteristics and editing
requirements of an elementary item, including an elementary screen item.

General Formats

Format 1�
PICTURE
PIC



IS character-string

Format 2 (Screen Section)

�
PICTURE
PIC



IS character-string

��������
������


USING identifier-3�����
���


							
FROM

� identifier-4
literal-1

�
TO identifier-5

							

�����
����

��������
�������

Syntax Rules (Both Formats)

1. You can use the PICTURE clause only for an elementary item.

2. character-string contains allowable combinations of characters in the COBOL
character set. These characters are called the symbols of the PICTURE
character-string.

3. character-string can contain from 1 to 255 symbols.

4. PIC is an abbreviation for PICTURE.

5. The asterisk ( * ), when used as a zero suppression symbol, and the BLANK
WHEN ZERO clause cannot be used in the same entry.

Syntax Rule (Format 1)

6. The PICTURE clause is required for every elementary item except an item
specified by the USAGE IS BINARY-CHAR, BINARY-SHORT, BINARY-
LONG, BINARY-DOUBLE, COMP-1, COMP-2, FLOAT-SHORT, FLOAT-
LONG, FLOAT-EXTENDED, POINTER, or INDEX clause and the subject of
a RENAMES clause. Data description entries for these items cannot contain
a PICTURE clause.

Syntax Rules (Format 2)

7. The PICTURE clause for a numeric screen item must either define a numeric
edited item or must contain only ‘‘9’’s and an optional ‘‘S’’.

8. Each PICTURE clause in a screen description entry must contain a FROM or
a TO phrase, or both, or a USING phrase.

9. In a screen description entry, if the PICTURE clause is specified, the VALUE
clause cannot be specified.

10. identifier-3, identifier-4, and identifier-5 must be defined in the File, Working-
Storage, or Linkage Section.
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General Rules (Both Formats)

1. The PICTURE clause categorizes a data item or screen item and determines
what the item can contain. In the case of a PICTURE clause containing
all Xs, the USAGE clause determines whether the item is alphanumeric
or numeric. Table 5–7 shows the valid contents of both character-string
and the item itself for each category. The general rules following this table
supplement the information it contains.

Table 5–7 Summary of PICTURE Clause Rules

Category of
Receiving Item PICTURE of Receiving Item

Valid Contents of
Sending Item Examples

Alphabetic Must contain one or more As. One or more alphabetic
characters.

AA
A( 9 )

Numeric Must contain at least one 9.
May contain P’s, one S, and
one V. If USAGE IS COMP-5
or USAGE IS COMP-X, may
contain all Xs.

One or more numeric
characters.

S9(4)V99
9PPP
SPP9

Alphanumeric Must contain combinations of
As, Xs, and 9s. Can be all Xs.
Cannot be all As or all 9s.

One or more characters
in computer character
set.

XX99XX
AAXA(4)

Alphanumeric
Edited

Must contain at least one A or
X. Must also contain at least
one B, 0, or /. Can contain one
or more 9s.

One or more characters
in computer character
set.

XXBXXB9(4)
XX/99/00
9(6)/X

Numeric
Edited

Must contain at least one 0,
B, /, Z, *, +, (comma), ., –, CR,
DB, or cs. Can contain Ps,
9s, and one V. Must describe
1 to 31 digit positions, which
can be represented by 9s, zero
suppression symbols (Z, *), and
floating insertion symbols (+,
–, cs).

One or more numeric
characters.

*,***.**
ZZ,ZZZ/9(4)
$$,$$$DB
$9,999CR
ZZZCR
**.**

Note

COMP-1 and COMP-2 data items are numeric. However, their data
description entries cannot have a PICTURE clause.

2. In an alphanumeric item definition, each character position is treated as if it
were represented by an X, even though A or 9 may be specified.

3. Some PICTURE symbols represent character positions and some do not.
An item’s size is determined by adding up all the symbols that represent a
character position. For example, a numeric item with a PICTURE of 999V99
has a size of five characters. The symbol V does not count toward the item’s
size.
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4. character-string can contain a repeat count to represent consecutive
occurrences of the following symbols: A, the comma ( , ), X, 9, P, Z, *,
B, /, 0, +, –, and the currency symbol (cs). The repeat count must be an
unsigned, nonzero integer enclosed in parentheses. For example, S9(6)V9(4)
is equivalent to S999999V9999. However, character-string can contain no
more than one of the following symbols: S, V, a period ( . ), CR, and DB.

5. The PICTURE clause symbols and their functions appear in Table 5–8.

Table 5–8 PICTURE Clause Symbols

Picture Clause
Symbol Function

A Represents a character position that can contain only an alphabetic character.
An alphabetic character belongs to the set of characters: A to Z, a to z, and the
space.
Can occur more than once.
Counts toward the size of the item.

B Represents a character position into which a space is inserted.
Can occur more than once.
Counts toward the size of the item.

N For USAGE IS DISPLAY, represents a character position that can contain
any 2-byte character from the national character set. This is available only if
/NATIONALITY=JAPAN or -nationality japan is specified.

P Specifies an assumed decimal scaling position, defining the location of the
decimal point when one is not specified in character-string.
Can occur more than once, but only as a contiguous string of Ps at either the
leftmost or rightmost end (not both) of character-string. The assumed decimal
point character ( V ) is redundant when specified. However, when it is specified,
V can appear to the left of the leftmost P or to the right of the rightmost P.
Does not count toward the size of the item. However, each P counts toward the
maximum number of digit positions ( 31 ) in a numeric or numeric edited item.
Cannot be used if an explicit decimal point ( . ) appears in character-string.

(continued on next page)
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Table 5–8 (Cont.) PICTURE Clause Symbols

Picture Clause
Symbol Function

In certain operations that refer to an item with P characters in character-
string, the compiler treats each P position as if it contained the value zero. For
example, an item with PICTURE 99PPP can have 100 unique values that range
from 0 to 99,000 (0, 1000, 2000, . . . , 99,000). An item with PICTURE PP9 can
have 10 unique values (0, .001, .002, . . . .009). These operations are any of the
following:

• Any operation requiring a numeric sending operand

• A MOVE statement where the sending operand is
numeric and its PICTURE character-string contains the
symbol P

• A MOVE statement where the sending operand is
numeric edited and its PICTURE character-string
contains the symbol P, and the receiving operand is
numeric or numeric edited

• A comparison operation where both operands are
numeric

In all other operations, the compiler ignores the digit positions specified with
the symbol P and does not count them toward the size of the operand.

S Indicates the presence of an operational sign, but does not specify the sign
representation or position.
Can occur only once, as the leftmost character in character-string.
Does not count toward the size of the item unless the data or screen description
entry contains a SIGN IS SEPARATE clause. If the SIGN clause does not
appear in the item’s data description, S is equivalent to SIGN IS TRAILING.

V Specifies the location of the assumed decimal point.
Can occur only once.
Does not count toward the size of the item.
Cannot be used if an explicit decimal point ( . ) appears in the PICTURE.

X For USAGE IS DISPLAY, represents a character position that can contain any
character from the computer character set. For USAGE IS COMP-5 or USAGE
IS COMP-X, represents a byte of computer storage.
Can occur more than once.
Counts toward the size of the item.

Z Represents a leading digit position that is replaced by a space when its value
and the value of the digits to its left are zero.
Can occur more than once.
Counts toward the size of the item.
Use of Z excludes the use of the asterisk ( * ) for zero suppression and
replacement.

9 Represents a digit position that can contain only the digits 0 to 9.
(continued on next page)
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Table 5–8 (Cont.) PICTURE Clause Symbols

Picture Clause
Symbol Function

Can occur more than once.
Counts toward the size of the item.

0 Represents a character position into which 0 is inserted.
Can occur more than once.
Counts toward the size of the item.

/ Represents a character position into which a slash ( / ) is inserted.
Can occur more than once.
Counts toward the size of the item.

, Represents a character position into which a comma ( , ) is inserted. †
Can occur more than once.
Counts toward the size of the item.

. Represents a character position into which a decimal point ( . ) is inserted. It
also represents the decimal point for alignment purposes. †
Can occur only once.
Counts toward the size of the item.
Cannot be used if V or P appears in character-string.

+ – Represents the editing sign control symbols, the plus sign ( + ) and minus sign
( - ).
Each can occur more than once.
Each counts as one character toward the size of the item.
character-string can contain either a plus sign (+) or minus ( - ), but not both.
Also, the use of either character excludes the use of both CR and DB.

CR DB Represents the editing sign control symbols, credit (CR) and debit (DB).
Each can occur only once, as the two rightmost character positions.
Each counts as two characters toward the size of the item.
character-string can contain either CR or DB, but not both. Also, the use
of either excludes the use of the plus sign ( + ) and minus sign ( - ) as fixed
insertion characters.

* Represents a leading digit position that is replaced by an asterisk ( * ) when its
value and the values of all digit positions to its left are zero.
Can occur more than once.
Counts toward the size of the item.
Use of an asterisk ( * ) excludes the use of Z for zero suppression and
replacement.

†When a program contains the DECIMAL POINT IS COMMA clause, the functions and rules for the period ( . ) and
comma ( , ) are exchanged. In other words, the rules that apply to the period apply to the comma, and vice versa.

(continued on next page)
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Table 5–8 (Cont.) PICTURE Clause Symbols

Picture Clause
Symbol Function

cs Represents a character position into which the currency symbol is inserted.
This symbol is either the currency sign ( $ ) or the character specified in
the CURRENCY SIGN clause of the SPECIAL-NAMES paragraph or (on
OpenVMS) the character specified at DCL command level in the definition of
the SYS$CURRENCY logical name.
Can occur more than once.
Counts as one character toward the size of the item.

General Rules (Format 2)

6. The USING, FROM, and TO phrases have meaning only when the screen
item’s name or a screen name in its hierarchy, is specified in an ACCEPT or
DISPLAY statement.

7. When data is to be transferred to the screen from one data item, possibly
edited, and stored in a different data item, both the FROM and TO phrases
must be used in the PICTURE clause of the screen item.

8. When data is to be transferred to the screen, possibly modified, and stored in
the same data item (as when reading, modifying, and rewriting records of a
file), the USING phrase must be used in the PICTURE clause of the screen
item.

9. identifier-3, identifier-4, identifier-5, and literal-1 need not be the same length
as the screen item containing the PICTURE clause.

10. Transfers between identifier-3, identifier-4, identifier-5, and literal-1, on the
one hand, and the screen item are made in accordance with the rules of the
MOVE statement. (See the MOVE Statement in Chapter 6.)

11. When the FROM phrase is specified:

a. On DISPLAY statement execution, data is transferred from identifier-4
or literal-1, after being edited in accordance with character-string, and
displayed on the screen. The display begins at the screen position defined
either implicitly or explicitly by the LINE and COLUMN clauses and the
starting screen coordinates specified in the DISPLAY statement.

b. The FROM phrase has no meaning in the execution of an ACCEPT
statement.

12. When the TO phrase is specified:

a. At ACCEPT statement completion, the data entered into the field on the
screen is transferred to identifier-5, after being edited in accordance with
the picture string specified for identifier-5.

b. The TO phrase has no meaning in the execution of a DISPLAY
statement.

13. When the USING phrase, or the FROM and TO phrases are specified:

a. On DISPLAY statement execution, data is transferred from identifier-3,
identifier-4, or literal-1 as described in rule 11a above.
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b. On ACCEPT statement execution, data is transferred from identifier-
3, identifier-4, or literal-1 as described in rule 11a above. At ACCEPT
statement completion, the data entered into the screen item is transferred
to identifier-3 or identifier-5 as described in rule 12a above.

Editing Rules

1. There are two PICTURE clause editing methods: insertion editing and
suppression and replacement editing. Each method has the following
variations:

Editing Method Variations in Each Method

Insertion Simple insertion editing, special insertion
editing, fixed insertion editing, or floating
insertion editing

Suppression and
Replacement

Zero suppression and replacement with
spaces, or zero suppression and replacement
with asterisks

2. The types of editing that a program can perform on an item depend on the
item’s category:

Category Types of Editing
Valid Editing
Characters

Alphabetic None None
Numeric None None
Alphanumeric None None
Alphanumeric Edited Simple insertion 0, B, and /
Numeric Edited All All, subject to Editing Rule 3

3. Floating insertion editing and editing by zero suppression and replacement
are mutually exclusive. That is, a PICTURE clause can use one type of
editing or the other, but not both.

Furthermore, a PICTURE clause can use only one type of replacement symbol
for zero suppression. The space ( Z ) and asterisk ( * ) symbols cannot appear
in the same PICTURE clause.

Simple Insertion Editing

4. A comma ( , ) space ( B ), zero ( 0 ), and slash ( / ) are symbols you can use
in simple insertion editing. They indicate an item position to contain the
character they represent. These symbols count toward the size of the item.

If the comma is the last symbol in character-string, the PICTURE clause must
be the last clause of the data description entry. In this case, a comma followed
by a period (,.) are the last two characters of the data description entry.
However, if the DECIMAL-POINT IS COMMA clause is in the SPECIAL-
NAMES paragraph, the data description entry ends with two consecutive
periods.
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Special Insertion Editing

5. The period ( . ) is the only symbol used in special insertion editing. It
represents the item position to contain the actual decimal point; however,
it also represents the decimal point for alignment purposes. Therefore, the
assumed decimal point ( V ) and the actual decimal point ( . ) cannot be used in
the same character-string. The period counts toward the size of the item.

If the period is the last symbol in character-string, the PICTURE clause
must be the last clause of the data description entry. In this case, the data
description entry ends with two periods. However, if the DECIMAL-POINT
IS COMMA clause is in the SPECIAL-NAMES paragraph, a comma followed
by period ( ,. ) are the last two characters of the data description entry.

Fixed Insertion Editing

6. The currency symbol (cs) and the editing sign control symbols (+, –, CR, and
DB) are the symbols used in fixed insertion editing. character-string can
contain only one currency symbol and only one of the editing sign control
symbols as fixed insertion characters.

CR and DB each represent two character positions, which must be the two
rightmost positions.

The plus sign ( + ) and minus sign ( - ) must be either the leftmost or rightmost
character position that counts toward the size of the item.

The currency symbol (cs) must be the leftmost character position that counts
toward the size of the item; however, a plus sign ( + ) or minus sign ( - ) can
precede it.

Fixed insertion editing causes the insertion symbol to occupy the same
position in the edited item as in character-string. Table 5–9 shows that the
results of using editing sign control symbols depend on the item’s value.

Table 5–9 Using Sign Control Symbols in Fixed Insertion Editing

Result
Editing Symbol in
PICTURE Character-String

Item
Positive or Zero

Item
Negative

+ + –
– space –
CR 2 spaces CR
DB 2 spaces DB

Floating Insertion Editing

7. The currency symbol (cs), the plus sign ( + ), and the minus sign ( - ) are
the symbols used in floating insertion editing. They are mutually exclusive
in character-string. That is, if any floating insertion symbol appears in
character-string, no other floating insertion symbol can appear.

To indicate floating insertion editing, you must use a string of at least two
floating insertion symbols. You can include simple insertion symbols either
within the floating string or immediately to the right of the floating string.
These simple insertion symbols are treated as part of the floating string. That
is, they appear in results only when the value of the item is large enough to
include the position occupied by the simple insertion symbol. You can append
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the fixed insertion symbols CR or DB immediately to the right of a floating
string.

The leftmost symbol of the floating insertion string represents the leftmost
position in which a floating insertion character can appear. This character
position cannot be filled by a digit.

The second floating symbol from the left represents the leftmost limit of the
numeric data the item can store. Nonzero numeric characters can replace all
symbols at or to the right of this limit.

You can use the floating insertion symbol in only two ways. It can represent
the following:

a. Any or all leading numeric character positions to the left of the decimal
point

In this case, run-time results show a single insertion character in the
position immediately preceding either the first nonzero digit in the item or
the decimal point, whichever appears leftmost in the data. For example,
an item whose PICTURE is $$$.99 and whose value is zero appears as
$.00.

b. All numeric character positions in the PICTURE character-string

In this case, you must specify at least one insertion symbol to the left
of the decimal point. When the item has a nonzero value, run-time
results are the same as when all the insertion symbols are to the left of
the decimal point. However, when the item has a zero value, run-time
results show neither a floating insertion character nor the decimal point.
For example, a item whose PICTURE is $$$.$$ and whose value is zero
appears as spaces.

If the floating insertion symbol is a plus sign ( + ) or minus sign ( - ), the
actual character inserted depends on the value of the item. Table 5–10
shows the possible results of using editing sign control symbols in floating
insertion editing.

Table 5–10 Using Sign Control Symbols in Floating Insertion Editing

Result
Editing Symbol in
PICTURE Character-String

Item
Positive or Zero

Item
Negative

+ + –
– space –

To avoid truncation, the minimum size of character-string must be the sum
of:

• The number of characters in the sending item

• The number of simple, special, or fixed insertion characters edited into
the receiving item

• One, for the floating insertion character
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Zero Suppression and Replacement Editing

8. One or more occurrences of the space symbol ( Z ) or the asterisk ( * ) define
a floating suppression string, which can suppress leading zeros in numeric
character positions. The space symbol ( Z ) causes spaces to replace the zeros;
an asterisk ( * ) causes asterisks to replace the zeros.

The suppression symbols are mutually exclusive. That is, character-string can
contain either the space symbol ( Z ) or the asterisk ( * ), but not both.

Each suppression symbol counts toward the size of the item.

You can include simple insertion symbols either within the floating string or
immediately to its right. These simple insertion symbols are treated as part
of the floating string. That is, they appear in results only when the value of
the item is large enough to include a position occupied by a simple insertion
symbol.

You can use zero suppression symbols to represent either:

• Any or all leading numeric character positions to the left of the decimal
point

• All numeric character positions on both sides of the decimal point

For example, both ZZZ9.99 and ZZ.ZZ are valid character-strings, but
ZZZ.Z9 is not.

The following actions occur if the suppression symbols represent any or all
leading numeric character positions to the left of the decimal point:

• The replacement character replaces any leading zero in the data that
corresponds to a suppression symbol in the string.

• Suppression ends at either the first nonzero digit in the data represented
by the suppression string or at the decimal point, whichever appears first
in the data.

The following events occur if the suppression symbols represent all numeric
positions in character-string:

• If the value of the data is not zero, the result is the same as if all
suppression symbols were to the left of the decimal point. That is, zeros
to the right of the decimal point are not suppressed.

• If the value is zero and the suppression symbol is a Z, all character
positions in the edited item (including any editing characters) contain
spaces.

• If the value is zero and the suppression symbol is an asterisk ( * ), all
character positions in the edited item (including any insertion editing
characters other than the decimal point) contain asterisks. The decimal
point appears in the item.

9. The plus sign (+), minus sign ( - ), asterisk ( * ), space ( Z ), and currency symbol
(cs) are mutually exclusive when they are used as floating replacement
characters. That is, if any one of these symbols appears as a floating
replacement character, none of the other symbols can appear as a floating
replacement character in the same PICTURE clause.
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PICTURE Symbol Precedence Rules

1. character-string must contain either:

• At least one of the symbols A, X, Z, 9, or asterisk ( * )

• At least two of the symbols plus sign ( + ), minus sign ( - ), or currency
symbol (cs)

2. Figure 5–10 summarizes the rules for combining symbols to form character-
strings more complex than the basic possibilities listed in rule 1. The table
shows that the use of one symbol in a character-string excludes the use of
certain others before or after it.

The table uses the following conventions:

• A Y at an intersection means the symbols at the top of the column (First
Symbol) can precede the symbols at the left of the row (Second Symbol).

• Braces ({ }) enclose symbols that are mutually exclusive.

• The currency symbol appears as cs.

• Symbols appear twice in a column or row when their rules of use depend
upon their location in a character-string. These double entry symbols are
as follows:

Fixed insertion symbols (+ and –)

Floating symbols Z, asterisk ( * ), plus sign ( + ), minus sign ( - ), and
currency symbol (cs)

P

The uppermost entry in a column (or the leftmost entry in a row)
represents symbol use left of the actual or implied decimal point position.
The second entry represents symbol use to the right of the decimal point.
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Figure 5–10 PICTURE Symbol Precedence Rules
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Additional References

• SIGN clause

• MOVE statement in Chapter 6

• ACCEPT statement in Chapter 6

• DISPLAY statement in Chapter 6

Examples
The Procedure Division entry for the MOVE statement contains examples that
illustrate this clause.
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RECORD
Function
The RECORD clause specifies the number of character positions in either a fixed-
or variable-length record. If the number of character positions does not vary,
the RECORD clause specifies the minimum and maximum number of character
positions in a variable-length record.

General Format

Format 1

RECORD CONTAINS � shortest-rec TO � longest-rec CHARACTERS

Format 2

RECORD IS VARYING IN SIZE

� FROM shortest-rec � � TO longest-rec � CHARACTERS

� DEPENDING ON depending-item �

shortest-rec
is an integer that specifies the minimum number of character positions in a
variable-length record. Its value must be greater than or equal to zero.

longest-rec
is an integer greater than shortest-rec. It specifies the maximum number of
character positions in a variable-length record or the size of a fixed-length record.

depending-item
is the data-name of an elementary unsigned integer data item in the Working-
Storage or Linkage Section. It specifies the number of character positions for
an output operation, and it contains the number of character positions after a
successful input operation.

Syntax Rules

1. No record description entry for a file can specify the following:

• Fewer character positions than shortest-rec

• More character positions than longest-rec

2. In a sort-merge file description entry, the first shortest-rec character positions
of the record must be large enough to include all keys specified in any SORT
or MERGE statement for the sort or merge file.

3. For an indexed file, the first shortest-rec character positions of the record
must be large enough to include all record keys.

4. If the DEPENDING ON phrase is present and if the associated file connector
is an external file connector, depending-item must have the external attribute
and must specify the same data-name in all file description entries associated
with the external file connector.
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General Rules
Both Formats

1. The absence of a RECORD clause is the same as a Format 1 RECORD clause
with no shortest-rec phrase and with longest-rec equal to the greatest number
of character positions described for any of the file’s records.

2. The number of characters described by a record description entry is the sum
of both of the following:

• The number of character positions in all elementary items excluding
redefinitions and renamings

• The number of fill bytes added because of alignment requirements

If the record description entry contains a table definition, the sum includes
the number of character positions in the maximum number of table elements.

3. If the associated file connector is an external file connector, all file description
entries in the run unit associated with that file connector must define the
same values for shortest-rec and longest-rec. If the RECORD clause is not
specified, all record description entries associated with this file connector
must be the same length.

Format 1

4. If there is no shortest-rec phrase, Format 1 specifies fixed-length records.
longest-rec then specifies the number of character positions in each record of
the file.

5. If there is a shortest-rec phrase, Format 1 specifies variable-length records,
the same as Format 2 without the DEPENDING phrase.

6. For variable-length records:

• The maximum record size for a READ or RETURN operation is the
number of character positions described in the largest record description
entry for the file.

• During execution of a RELEASE, REWRITE, or WRITE statement, the
number of character positions in a record equals the number of character
positions in the record description entry referred to by the statement.

• If all record description entries for the file describe records of the same
size, RELEASE, REWRITE, and WRITE statements for the file transfer
fixed-length records in variable-length format.

Format 2

7. Format 2 specifies variable-length records.

8. If the clause does not contain shortest-rec, the minimum number of character
positions in any of the file’s records is the least number of character positions
described by a record description entry for the file.

9. If the clause does not contain longest-rec, the maximum number of character
positions in any of the file’s records is the greatest number of character
positions described by a record description entry for the file.

10. If there is a DEPENDING phrase, the program must set depending-item to
the number of character positions in the record before executing a RELEASE,
REWRITE, or WRITE statement for the file.
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11. After successful execution of a READ or RETURN statement for the file, the
value of depending-item indicates the number of character positions in the
accessed record.

12. The depending-item value is not changed by executions of:

• DELETE and START statements

• Unsuccessful READ and RETURN statements

13. For RELEASE, REWRITE, and WRITE statement execution, determining
the number of character positions in the record depends partly upon whether
or not the record contains a variable occurrence item (an item described by
the OCCURS clause or one that is subordinate to another item so described).
During execution of these statements, three rules determine the number of
character positions in the record:

• If there is a depending-item, its value specifies the number of character
positions.

• If there is no depending-item and the record does not contain a variable
occurrence item, the number of character positions described by the record
description entry specifies the number of character positions.

• If there is no depending-item and the record contains a variable
occurrence item, the number of character positions is the sum of the
character positions in the fixed part of the record and the table elements
specified by the OCCURS clause depending-item when the output
statement executes.

Additional References

• EXTERNAL clause

• SYNCHRONIZED clause

• USAGE clause

• Data Description
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RECORD KEY
Function
The RECORD KEY clause specifies the Prime Record Key access path to indexed
file records.

General Format

RECORD KEY IS
� rec-key

seg-key = {seg} . . .

�
� WITH DUPLICATES �

�
ASCENDING
DESCENDING

�

rec-key
is the Record Key for the file. It is the data-name of a data item in a record
description entry for the file. It can be qualified, but it cannot be a group item
that contains a variable-occurrence data item. The data item must be described
as one of the following:

• Alphanumeric item

• Alphabetic item

• Group item

• Unsigned numeric display item

• COMP-3 integer

• COMP integer

seg-key
is a segmented-key name that represents the concatenation of one or more (up to
eight) occurrences of seg.

seg
is the data-name of a data item in a record description entry for the file. It can be
qualified, but it cannot be a group item that contains a variable-occurrence data
item. The data item must be described as one of the following:

• Alphanumeric item

• Alphabetic item

• Group item

• Unsigned numeric display item

Syntax Rule
The RECORD KEY clause is required for indexed files. It can be in either the file
description entry or in the file’s Environment Division SELECT clause. However,
it cannot be in both the SELECT clause and the file description entry for the
same file.

General Rules

1. seg-key is the concatenation of all specified key segments in the order
specified.

2. seg-key can be referenced only in a READ (Format 3) or START statement.

3. The RECORD KEY clause specifies the Prime Record Key for a file.

4. The order of keys, whether ASCENDING or DESCENDING, must be the
same as the order used when the file was created.
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5. Each key can be specified as ASCENDING or DESCENDING (ASCENDING
is the default). In an ASCENDING key, lower key values occur toward the
beginning of the sorted file. In a DESCENDING key, higher key values occur
toward the beginning of the sorted file.

6. The data description of rec-key, or the segments of seg-key, and their relative
locations in the record, must be the same as those used when the file was
created.

7. Only one record description entry for the file must describe rec-key or the
segments of seg-key. The Prime Record Key has the same character positions
in every record of the file.

8. If the associated file connector is an external file connector, all File
Description entries in the run unit that are associated with that file connector
must define the same data description entry for rec-key or the segments of
seg-key with the same relative location within the record.

9. The DUPLICATES phrase specifies that two or more records in the file can
have duplicate values in the same rec-key or the segments of seg-key. If
there is no DUPLICATES phrase, two records cannot have the same value in
corresponding Prime Record Key.

On OpenVMS, if the program was compiled with the /CHECK=DUPLICATE_
KEYS qualifier on the command line, and the duplicate key specification on a
file’s FD (in other words, specified in the WITH DUPLICATES phrase) does
not match that of the actual file, a run-time diagnostic will be issued when an
attempt is made to open the file with an OPEN statement. ♦
On Tru64 UNIX systems, DUPLICATES must match the specification for
DUPLICATES when the file is created, unless the relaxed key check option is
used. ♦

Additional Reference

ALTERNATE RECORD KEY
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REDEFINES
Function
The REDEFINES clause allows different data description entries to describe the
same storage area.

General Format

level-number
� data-name

FILLER

�
REDEFINES other-data-item

other-data-item
is a data-name. It identifies the data description entry that first defines the
storage area.

Note

Level-number, data-name, and FILLER are not part of the REDEFINES
clause. They are included in the general format only to clarify the relative
position of the clause.

Syntax Rules

1. The subject of the REDEFINES clause is the data-name or FILLER in a
Format 1 data description entry.

2. The REDEFINES clause must immediately follow its subject.

3. The level-numbers of the subject of the REDEFINES clause and other-data-
item must be the same. However, they cannot be either 66 or 88.

4. The REDEFINES clause cannot be used in a level 01 entry in the File Section.

5. The data description entry for other-data-item cannot contain an OCCURS
clause. However, other-data-item can be subordinate to an item whose data
description entry contains an OCCURS clause. In that case, the reference to
other-data-item in the REDEFINES clause cannot be subscripted or indexed.

6. Neither the original definition nor the redefinition can contain a variable
occurrence data item.

7. If other-data-item is either an external record or anything other than a level
01 entry, the number of character positions it contains must be greater than
or equal to the number in the subject of the REDEFINES clause. If other-
data-item is a level 01 entry, and is not an external record, its description
need not follow this rule; that is, other-data-item can contain fewer character
positions than the subject of the REDEFINES clause.

8. Other-data-item cannot be qualified even if it is not unique. The reference to
other-data-item is unique without qualification because of the placement of
the REDEFINES clause.

9. A program can have multiple redefinitions of the same character positions.
However, they must all refer to other-data-item, the data-name that originally
defined the area.

10. The redefining entries cannot contain VALUE clauses except in condition-
name entries.
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11. No entry with a level-number lower than that of other-data-item can occur
between the data description entry for other-data-item and the redefinition.

12. The entries redefining the storage area must immediately follow those
that originally defined it. There can be no intervening entries that define
additional storage areas.

General Rules

1. Storage allocation starts at the location of other-data-item. Storage allocation
continues until it defines the number of character positions in the data item
referred to by the subject of the REDEFINES clause.

2. If more than one data description entry defines the same character position,
the program can refer to the character position using the data-name
associated with any of those data description entries.

Additional References

• Data Description entry

• Section 5.2.3, Additional Alignment Rules for Record Allocation

Example
This example shows the following:

• A sample program containing multiple redefinitions of the same area

• The results of the sample program statements

• The allowable subscripts and the contents for each data item in the program
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 1 IDENTIFICATION DIVISION.
 2 PROGRAM−ID. REDEFINES−TEST.
 3 DATA DIVISION.
 4 WORKING−STORAGE SECTION.
 5 01  ITEMA.
 6     03  FILLER PIC X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
 7     03  FILLER PIC X(10) VALUE "0123456789".
 8 01  REDEFINES ITEMA.
 9     03  ITEMB  OCCURS 36 TIMES PIC X.
10 01  REDEFINES ITEMA.
11     03  ITEMC.
12         05 ITEMD OCCURS 26 TIMES PIC X.
13     03  REDEFINES ITEMC.
14         05  ITEME OCCURS 13 TIMES.
15             07  ITEMF PIC XX.
16             07  REDEFINES ITEMF.
17                 09  ITEMG PIC X.
18                 09  ITEMH PIC X.
19     03  ITEMI.
20         05  ITEMJ OCCURS 5 TIMES PIC XX.
21 PROCEDURE DIVISION.
22 XXX.                                 

                                           RESULTS
                                            
23     DISPLAY ITEMA.             ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
24     DISPLAY ITEMB(1).          A
25     DISPLAY ITEMB(26).         Z
26     DISPLAY ITEMB(27).         0
27     DISPLAY ITEMB(36).         9
28     DISPLAY ITEMC.             ABCDEFGHIJKLMNOPQRSTUVWXYZ
29     DISPLAY ITEMD(1).          A
30     DISPLAY ITEMD(26).         Z
31     DISPLAY ITEME(1).          AB
32     DISPLAY ITEME(13).         YZ
33     DISPLAY ITEMF(1).          AB
34     DISPLAY ITEMF(13).         YZ
35     DISPLAY ITEMG(1).          A
36     DISPLAY ITEMG(13).         Y
37     DISPLAY ITEMH(1).          B
38     DISPLAY ITEMH(13).         Z
39     DISPLAY ITEMI.             0123456789
40     DISPLAY ITEMJ(1).          01
41     DISPLAY ITEMJ(5).          89
42     STOP RUN.
                                  

ZK−1425A−GE
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ZK−6153−GE

3332211
6406352851 2 3 4

33
53

3
2

3
1

2
7

2
9

2
8

2
4

2
5

2
0

2
1

2
2

1
6

1
7

1
8

1
3

1
49

1
0

1
16 7

ITEMB

ITEMG

1
2851 2 3 4

1
39

1
0

1
16 7

ITEMH B D F H J L N P R T V X Z

1
2851 2 3 4

1
39

1
0

1
16 7

A C E G I K M O Q S U W Y

ITEMI 0123456789

ITEMA ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

Name Item Contents and Subscript Range

A 986 753 421Z 0YW XVUTRP QONMLKJH IGE FDCB

ITEMC

* Subscript Not Applicable

ABCDEFGHIJKLMNOPQRSTUVWXYZ

22111
63952851 2 3 4

2
4

2
5

2
0

2
1

2
2

1
6

1
8

1
3

1
49

1
0

1
16 7

ITEMD A ZYW XVUTR SPONMLKJH IGE FDCB

YZWXUVSTQROPMNKLIJGHCDABITEME

1312111098765421

YZWXUVSTQROPMNKLIJGHEFABITEMF

1312111098765431

67452301ITEMJ

4321

1
9

S

1
7

Q

EF

3

CD

2

89

5

*

*

*
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RENAMES Clause

RENAMES
Function
The RENAMES clause groups elementary items in alternative or overlapping
ways.

General Format

66 new-name RENAMES rename-start

�
� �

THRU
THROUGH



rename-end

�
�

new-name
is the data-name of the item being described. It identifies an alternate grouping
of one or more items in a record.

rename-start
is the data-name of the leftmost data item in the area. It can be qualified.

rename-end
is the data-name of the rightmost data item in the area. It can be qualified.

Note

Level-number 66 and new-name are not part of the RENAMES clause.
They are in the general format only to clarify the relationship.

Syntax Rules

1. A logical record can have any number of RENAMES entries.

2. All RENAMES entries referring to data items in a logical record must
immediately follow the last data description entry of the record description
entry.

3. The program cannot qualify data-names with new-name.

4. The program can qualify new-name only by the names of the associated level
01, FD, or SD entries.

5. The data description entries for rename-start and rename-end:

• Cannot have an OCCURS clause

• Cannot be subordinate to an item whose data description entry has an
OCCURS clause

6. rename-start and rename-end must be the names of elementary items or
groups of elementary items in the same logical record. They cannot be the
same data-name.

7. A level 66 entry cannot rename another level 66 entry. Nor can it rename a
level 88, level 01, or level 77 entry.

8. None of the items in the range, including rename-start and rename-end, can
be variable occurrence data items.

9. The words THRU and THROUGH are equivalent.
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10. rename-end cannot be subordinate to rename-start. The beginning of rename-
end cannot be to the left of the beginning of rename-start. The end of
rename-end must be to the right of the end of rename-start.

General Rules

1. If rename-end is used, new-name includes all elementary items:

• Starting with rename-start, if rename-start is an elementary item or the
first elementary item in rename-start, or if rename-start is a group item

• Ending with rename-end, if rename-end is an elementary item or the last
elementary item in rename-end, or if rename-end is a group item

2. If rename-end is not used, all data attributes for rename-start become data
attributes for new-name. In this case, you are renaming a single data item. If
that item is a group item, new-name is also treated as a group item. If that
item is an elementary item, new-name is also treated as an elementary item.

Additional Reference
Data Description

Example
In the following example, the box RESULTS displays the values given when using
the RENAMES clause:

WORKING−STORAGE SECTION.
01  AA.
    02  BB  PIC XX   VALUE "$$".
    02  F   PIC X    VALUE "=".
    66  B−CODE RENAMES BB.

01  A.
    02  B   PIC XX   VALUE "1−".
    02  C   PIC XX   VALUE "2−".
    02  D   PIC XX   VALUE "3−".
    02  E   PIC X(9) VALUE "Blast Off".
    66  F   RENAMES B THROUGH E.
PROCEDURE DIVISION.                               RESULTS  
000−BEGIN.
    DISPLAY BB.                                      $$
    DISPLAY B−CODE.                                  $$
    DISPLAY B.                                       1−
    DISPLAY C.                                       2−
    DISPLAY D.                                       3−
    DISPLAY E.                                       Blast Off
    DISPLAY F OF A.                                  1−2−3−Blast Off
    STOP RUN.

ZK−1424A−GE
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REPORT
Function
The REPORT clause in a file description entry ( FD ) specifies the Report
Description ( RD ) report names that comprise a report file.

General Format�
REPORT IS
REPORTS ARE



� report-name � . . .

Syntax Rules

1. Each report-name in the REPORT clause must be the subject of a Report
Description entry ( RD ) in the Report Section of the same program. report-
name can appear in only one REPORT clause.

2. report-names can appear in any order.

3. The file-name in a file description entry for a Report File can be referenced
only by the OPEN statement with the OUTPUT or EXTEND phrase or by the
CLOSE statement.

General Rules

1. More than one report-name in a REPORT clause indicates that the file
contains more than one report.

2. After executing an INITIATE statement and before executing a TERMINATE
statement for the same report file, the report file is under the control of the
Report Writer Control System (RWCS). While a report file is under control of
the RWCS, no input/output statement may reference that report file.

3. If the associated file connector is an external file connector, every file
description entry in the run unit associated with that file connector must
describe it as a report file.

Technical Note
On OpenVMS, the DCL PRINT command inserts a form-feed character when a
form is within four lines from the bottom. This positions the report to the top of
the next logical page.

Report Writer files are written in print format. Line spacing positions the report
to the top of the next logical page.

Therefore, use the PRINT/NOFEED command to suppress the insertion of form-
feed characters and to print your Report Writer files correctly. For example:

$ PRINT/NOFEED full-file-name ♦

Additional References

• FD (File Description)

• RD (Report Description)
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REQUIRED (Alpha, I64)
Function
The REQUIRED clause specifies that in the context of an ACCEPT statement,
the user must enter at least one character in the input or update field.

General Format

REQUIRED

Syntax Rule
The REQUIRED clause cannot be specified in the description of a literal screen
item.

General Rules

1. If the REQUIRED clause is specified at group level, it applies to each input
and update screen item in that group.

2. The REQUIRED clause takes effect during the execution of any ACCEPT
statement when the cursor enters the screen item. Until this clause
is satisfied, the operator cannot leave the field and normal terminator
keystrokes are rejected.

3. To satisfy this clause, alphanumeric screen items must contain at least one
nonspace character, and numeric screen items must have a nonzero value.

4. For update fields, the REQUIRED clause can be satisfied by the contents
of the identifier or literal referenced in the FROM or USING phrase of the
PICTURE clause, as well as by operator-keyed data.

5. The REQUIRED clause is not effective if a function key is used to terminate
the accept operation.

6. The specification of the FULL and REQUIRED clauses together requires that
the field must always be filled entirely by the user.

7. The REQUIRED clause is ignored for an output field.

Additional Reference
ACCEPT statement in Chapter 6 ♦
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REVERSE-VIDEO (Alpha, I64)
Function
The REVERSE-VIDEO clause specifies that the field is displayed with the default
or specified foreground and background colors exchanged.

General Format

REVERSE-VIDEO

Syntax Rule
The REVERSE-VIDEO clause can be specified only for elementary screen items.

Additional Reference

• ACCEPT statement in Chapter 6

• DISPLAY statement in Chapter 6 ♦
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SECURE (Alpha, I64)
Function
The SECURE clause suppresses the display of input characters on the screen.

General Format

SECURE

Syntax Rule
The SECURE clause can only be specified for an input screen item.

General Rules

1. If the SECURE clause is specified at group level, it applies to each input
screen item in that group.

2. When the SECURE clause is used, characters introduced for the input field
do not appear on the screen, yet the cursor moves as usual.

Additional Reference
ACCEPT statement in Chapter 6 ♦
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SIGN
Function
The SIGN clause specifies the operational sign’s position and type of
representation.

For screen description entries, the SIGN clause specifies the position of the sign
character in the field. The sign character always occupies a separate position in
the field, regardless of whether or not you specify SEPARATE.

General Formats

Format 1 (Data Description and Screen Description Entries)

� SIGN IS �

�
LEADING
TRAILING



� SEPARATE CHARACTER �

Format 2 (Report Group Description Entries)

� SIGN IS �

�
LEADING
TRAILING



SEPARATE CHARACTER

Syntax Rules
Format 1

1. The SIGN clause can be used only in a numeric data description entry or
screen description entry whose PICTURE contains the S symbol, or for a
group item containing such entries.

2. The data items to which the SIGN clause applies must have display usage.

3. If a file description entry has a CODE-SET clause, all signed numeric data
description entries associated with the file description entry must contain the
SIGN IS SEPARATE clause.

General Rules
Both Formats

1. The SIGN clause specifies the operational sign’s position and type of
representation. It applies to a numeric data description entry or screen
description entry or to each numeric data description entry or screen
description entry subordinate to a group.

2. The SIGN clause applies only to numeric data description entries or screen
description entries whose PICTURE clause contains the S symbol. S indicates
the presence of an operational sign. However, S does not specify the sign’s
representation or, necessarily, its position.

3. If you specify the SIGN clause for both a group item and a group item
subordinate to it, the SIGN clause for the subordinate group overrides the
group item SIGN clause.

4. If you specify the SIGN clause for both a group item and an elementary
numeric item subordinate to it, the SIGN clause for the elementary item
overrides the group item SIGN clause.
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5. A numeric data description entry or screen description entry to which no
optional SIGN clause applies, but whose PICTURE contains an S symbol, has
an operational sign.

• The numeric data description entry is equivalent to an entry that contains
the SIGN IS TRAILING clause without the SEPARATE CHARACTER
phrase.

• The screen description entry is equivalent to an entry that contains the
SIGN IS TRAILING with the SEPARATE CHARACTER phrase.

6. If you specify the SEPARATE CHARACTER phrase (or it is implied):

• The operational sign is the leading (or trailing) character of the
elementary numeric data item. The sign does not share this position
with a digit.

• The S symbol in the PICTURE counts toward data or screen item size.
That is, it represents a character position.

• The operational sign for positive is the plus sign (+).

• The operational sign for negative is the minus sign ( - ).

7. Every numeric data item whose PICTURE contains the S symbol is a signed
numeric data item. If you specify the SIGN clause for such an item, necessary
conversions for computations or comparisons occur automatically.

Format 1 (Data Description)

8. If you do not specify the SEPARATE CHARACTER phrase:

• The operational sign is associated with the leading (or trailing) digit
position of the elementary numeric item. The sign shares this character
position with a digit.

• The S symbol in the PICTURE does not count toward the size of the item.
That is, it does not represent a character position.

• The character in the operational sign position represents both a numeric
digit and the item’s algebraic sign. Table 5–11 shows the characters
representing positive and negative signs for all numeric digits. Where
more than one character appears, the first is the character generated as
the result of machine operations.

Table 5–11 Positive and Negative Signs for All Numeric Digits

Digit Values Positive Sign Negative Sign

0 {, [, ?, or 0 }, ], :, or !
1 A or 1 J
2 B or 2 K
3 C or 3 L
4 D or 4 M
5 E or 5 N
6 F or 6 O

(continued on next page)
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Table 5–11 (Cont.) Positive and Negative Signs for All Numeric Digits

Digit Values Positive Sign Negative Sign

7 G or 7 P
8 H or 8 Q
9 I or 9 R
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SOURCE Clause

SOURCE
Function
The SOURCE clause identifies a data item to be sent to an associated printable
item defined within a Report Group Description entry.

General Format

SOURCE IS source-id

source-id
names an elementary item in the Data Division.

Syntax Rules

1. If source-id is a Report Section item it must be either:

• A PAGE-COUNTER

• A LINE-COUNTER

• A sum counter that is part of the report within which the SOURCE clause
appears

2. The Report Writer Control System (RWCS) moves the contents of source-id to
the printable item. source-id definitions must conform to the rules for sending
items in the MOVE statement.

General Rule
The RWCS executes implicit MOVE statements specified by the SOURCE clauses
when it formats the print lines (just before it presents them).

Additional References

• COLUMN NUMBER clause (printable item)

• TYPE clause

• MOVE statement in Chapter 6
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SUM Clause

SUM
Function
The SUM clause establishes a Report Writer sum counter and names the data
items to be summed.

General Format

��

 SUM � sum-name � . . .

�
UPON � detail-report-group-name � . . .

� ��
� . . .

�
� RESET ON

�
control-foot-name
FINAL


 �
�

sum-name
names a numeric data item with an optional sign in the Subschema, File,
Working-Storage, or Linkage Sections, or another sum counter in the Report
Section.

detail-report-group-name
names a DETAIL report group.

control-foot-name
must reference a control-name in the report’s CONTROL clause.

Syntax Rules

1. A SUM clause can appear only in the description of a CONTROL FOOTING
report group.

2. If there is no UPON phrase, any sum-name in the SUM clause that is itself
a sum counter must be defined either in the same report group that contains
this SUM clause or in a report group at a lower level in the control hierarchy
of this report.

If there is an UPON phrase, sum-name must not reference a sum counter.

3. If the associated report file connector is an external file connector and if
sum-name references a numeric data item in the Subschema, File, Working-
Storage, or Linkage Sections, then sum-name must reference the same
external data item in all programs in the run unit.

4. detail-report-group-name must be a control-name in a CONTROL clause and
must be the name of a DETAIL report group described in the same report as
the CONTROL FOOTING report group in which the SUM clause appears.

5. detail-report-group-name may be qualified by a report-name.

6. control-foot-name must not be at a lower control level than the associated
control level for the report group in which the RESET phrase appears.

If FINAL appears in the RESET phrase, FINAL must also appear in the
CONTROL clause for this report.

7. The highest permissible qualifier for sum-name is the report-name.
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General Rules

1. The SUM clause establishes a sum counter. At run time, the Report Writer
Control System (RWCS) adds the value in each sum-name to the sum counter.
This addition is consistent with the rules for arithmetic statements.

2. The UPON phrase provides for selective subtotalling. Subtotalling occurs
each time the RWCS processes the DETAIL report group referenced by
detail-report-group-name.

3. If there is a RESET phrase, the RWCS will set the sum counter to zero when
the RWCS is processing the designated level of control hierarchy. If there
is no RESET phrase, the RWCS will set the sum counter in the CONTROL
FOOTING report group to zero when the RWCS processes that report group.

The RWCS initially sets sum counters to zero during the execution of the
INITIATE statement for the report containing the sum counter.

4. The size of the sum counter is equal to the number of receiving character
positions defined in the PICTURE clause that accompanies the SUM clause in
the description of the elementary item.

5. Only one sum counter exists for an elementary report entry, regardless of the
number of SUM clauses specified in the elementary report entry.

6. If the elementary report entry for a printable item contains a SUM clause,
the sum counter serves as a source data item. On a control break, the RWCS
moves the data from the sum counter to the printable item for presentation
according to the rules of the MOVE statement.

7. If a data-name appears as the subject of an elementary report entry that
contains a SUM clause, the data-name is the name of the sum counter; the
data-name is not the name of a printable item that the entry may also define.

8. Procedure Division statements can alter the contents of sum counters.

9. During the execution of GENERATE and TERMINATE statements, the
RWCS adds the values in sum-name to a sum counter.

10. The RWCS adds each individual sum-name into the sum counter when it
processes the CONTROL FOOTING report group defining the sum counter.

Technical Notes

• The three categories of sum counter accumulation are as follows:

Subtotalling

Crossfooting

Rolling forward

Subtotalling occurs only during execution of GENERATE statements and
after any control break processing but before processing of the DETAIL
report group. Crossfooting and rolling forward occur during the processing of
CONTROL FOOTING report groups.

• Subtotalling accumulates numeric data fields (sum-names) into a sum counter.
sum-name must not reference a sum counter when subtotalling. If the
SUM clause contains the UPON phrase, sum-names are subtotalled when
a GENERATE statement executes for a DETAIL report group. If there is no
UPON phrase, sum-names are subtotalled when any GENERATE data-name
statement is executed for the report in which the SUM clause appears.
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• Crossfooting accumulates sum counters (sum-name) from the same CONTROL
FOOTING report group into another sum counter. It is a horizontal sum of
sums.

Crossfooting occurs when a control break takes place and when the
CONTROL FOOTING report group is processed.

Crossfooting is performed according to the sequence in which sum counters
are defined within the CONTROL FOOTING report group. That is, all
crossfooting into the first sum counter defined in the CONTROL FOOTING
report group is completed, and then all crossfooting into the second sum
counter defined in the CONTROL FOOTING report group is completed. This
procedure repeats until all crossfooting operations are completed.

When one of the sum-names is the sum counter defined by the Data
Description entry in which that sum clause appears, the initial value of
that sum counter is used in the summing operation.

• Rolling forward accumulates sum counters (sum-name) defined in lower level
CONTROL FOOTING report groups into another sum counter. It is a vertical
sum of sums. A sum counter in a lower level CONTROL FOOTING report
group is rolled forward when a control break occurs and at the time the lower
level CONTROL FOOTING report group is processed.

• If two or more sum-names specify the same sum counter, then the sum
counter is added as many times as the sum counter is referenced in the SUM
clause. It is permissible for two or more of the sum-names to specify the same
DETAIL report group. When a GENERATE data-name statement for such a
DETAIL report group is given, the incrementing occurs repeatedly, as many
times as the sum-name appears in the UPON phrase.

Additional References

• GENERATE statement in Chapter 6

• TYPE clause

• Section 6.6.1, Arithmetic Operations

• Section 6.6.7, Overlapping Operands and Incompatible Data
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SYNCHRONIZED
Function
The SYNCHRONIZED clause specifies elementary item alignment on word
boundary offsets relative to a record’s beginning. These offsets are related to the
size and usage of the item being stored.

General Format�
� �

SYNCHRONIZED
SYNC


 �
LEFT
RIGHT

� ��
Syntax Rules

1. SYNC is an abbreviation for SYNCHRONIZED.

2. The SYNCHRONIZED clause can be used only for an elementary item.

General Rules

1. The SYNCHRONIZED clause aligns a data item in a record so that no other
data item occupies any character positions between the required boundaries
to the left and right of the data item.

2. If the number of character positions needed to store the data item is less than
the number of positions between the required boundaries, no other data items
occupy the unused positions.

However, the unused character positions are included in the size of those
group items:

• To which the elementary item belongs

• In which the elementary item is not the first subordinate item

The first elementary item in a group item always aligns on the same
boundary as the group item. In this case, any unused character positions
do not affect the size of that group item.

3. The size of a SYNCHRONIZED data item equals the number of character
positions between its natural boundaries. Therefore, the LEFT and RIGHT
phrases have the same effect; they are equivalent to each other, and to the
SYNCHRONIZED clause with neither the LEFT nor RIGHT phrases.

4. The SYNCHRONIZED clause does not change the size or operational sign
position of the data item it specifies.

5. Each occurrence of the data item is synchronized if the clause applies to a
data item whose data description entry also has an OCCURS clause, or to a
data item subordinate to another data item whose data description entry has
an OCCURS clause.

Technical Notes

• The SYNCHRONIZED clause does not affect the alignment of DISPLAY data
items.

• The SYNCHRONIZED clause explicitly aligns COMP, COMP-1, COMP-2,
POINTER, and INDEX data items on boundaries that are related to the size
of the item.
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One word COMP items are aligned on 2-byte boundaries, longword items on
4-byte boundaries, and quadword items on 8-byte boundaries. All boundaries
are relative to the beginning of the record containing the data item.

• The following table shows the alignment for each data type that the
SYNCHRONIZED clause affects:

Data Type Boundary

COMP (1 to 4 digits) 2-byte
COMP (5 to 9 digits) 4-byte
COMP (10 to 18 digits) 8-byte
COMP (19 to 31 digits) 16-byte
COMP-1 4-byte
COMP-2 8-byte
INDEX 4-byte
POINTER 4-byte (OpenVMS)
POINTER 8-byte (Tru64 UNIX)

Additional Reference

Section 5.2.3, Additional Alignment Rules for Record Allocation

Data Division 5–131



TYPE Clause

TYPE
Function
The TYPE clause identifies the report group type and indicates when the Report
Writer Control System (RWCS) is to process it.

General Format

TYPE IS

������������������������������������
����������������������������������


�
REPORT HEADING
RH



�

PAGE HEADING
PH



�

CONTROL HEADING
CH


 �
control-head-name
FINAL



�

DETAIL
DE



�

CONTROL FOOTING
CF


 �
control-foot-name
FINAL



�

PAGE FOOTING
PF



�

REPORT FOOTING
RF




������������������������������������
�����������������������������������

control-head-name
names a control-name in the CONTROL clause.

control-foot-name
names a control-name in the CONTROL clause.

Syntax Rules

1. RH is an abbreviation for REPORT HEADING.
PH is an abbreviation for PAGE HEADING.
CH is an abbreviation for CONTROL HEADING.
DE is an abbreviation for DETAIL.
CF is an abbreviation for CONTROL FOOTING.
PF is an abbreviation for PAGE FOOTING.
RF is an abbreviation for REPORT FOOTING.

2. These report groups may appear no more than once in the description of a
report:

• REPORT HEADING

• PAGE HEADING

• CONTROL HEADING FINAL

• CONTROL FOOTING FINAL

• PAGE FOOTING

• REPORT FOOTING
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3. The TYPE DETAIL report group may appear more than once in the
description of a report.

4. If the TYPE clause specifies a CONTROL HEADING or CONTROL FOOTING
report group, the control-head-name, control-foot-name, or FINAL entries
must be specified in the CONTROL clause of the corresponding Report
Description entry. For each control-name or FINAL phrase in the CONTROL
clause of a Report Description entry, you can specify one CONTROL
HEADING report group and one CONTROL FOOTING report group.
However, the RWCS does not require either a CONTROL HEADING report
group or a CONTROL FOOTING report group for each control-name or
FINAL phrase in the CONTROL clause of a Report Description.

5. PAGE HEADING and PAGE FOOTING report groups may appear only if the
corresponding Report Description entry specifies a PAGE clause.

6. In CONTROL FOOTING, PAGE HEADING, PAGE FOOTING, and REPORT
FOOTING report groups, SOURCE clauses and USE statements must not
reference any of the following:

• Formats 2 and 3 Report Group Description data items containing a control
data item

• Data items subordinate to a control data item

• A redefinition or renaming of any part of a control data item

7. In PAGE HEADING and PAGE FOOTING report groups, SOURCE clauses
and USE statements must not reference either control-head-name or control-
foot-name.

8. When the Procedure Division specifies a GENERATE report-name statement,
the corresponding Report Description entry must define no more than
one DETAIL report group. If there are no GENERATE group-data-name
statements in the Procedure Division, the RWCS does not require a DETAIL
report group. If there are multiple TYPE DETAIL report groups in the report,
the GENERATE group-data-name statement must be used.

General Rules

1. The Report Writer Control System (RWCS) processes DETAIL report groups
as a direct result of the GENERATE statement. If a report group specified in
the GENERATE statement is not a TYPE DETAIL report group, a summary
report is produced. If a report group specified in the GENERATE statement
is a TYPE DETAIL report group, a detailed report is produced.

2. The RWCS executes the following procedures (a to f) when it processes a
DETAIL report group in response to a GENERATE statement.

When the description of a report includes exactly one DETAIL report group,
the detail-related processing that the RWCS executes in response to a
GENERATE report-name statement is described in procedures a to d. The
RWCS performs these procedures as though a GENERATE group-data-name
statement were being executed.

When the description of a report includes no DETAIL report groups,
the detail-related processing that the RWCS executes in response to a
GENERATE report-name statement is described in procedures a and b. These
procedures are performed as though the description of the report included
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exactly one DETAIL report group, and a GENERATE detail-report-group
statement were being executed.

a. The RWCS performs any control break processing.

b. The RWCS performs any subtotalling that has been designated for the
DETAIL report group.

c. If there is a USE BEFORE REPORTING procedure referring to the
data-name of the report group, the RWCS executes the USE procedure.

d. If a SUPPRESS statement has been executed, or if the report group is not
printable, no further processing is done for the report group.

e. If the RWCS processes a DETAIL report group as a consequence of the
GENERATE report-name statement, no further processing is done for the
report group.

f. If neither procedure d nor procedure e applies, the RWCS formats the
print lines and presents the DETAIL report group.

3. To detect and trigger control breaks for a specific report, the RWCS:

a. Establishes the initial values of control data items as the prior values
when the INITIATE statement executes.

b. Compares the prior values to the current values of control data items
when a GENERATE statement executes. If the current values do not
compare to the prior values, a control break occurs. If a control break
occurs, the current values are saved as prior values and steps c, d, and e
are performed.

c. Presents the CONTROL FOOTING and CONTROL HEADING report
groups associated with the control break. The CONTROL FOOTING
report groups presented are at a less major level than the level at which
the control break occurred. The CONTROL HEADING report groups
presented are in the order of major level to break level.

d. Processes any PAGE HEADING and PAGE FOOTING report groups when
it must start a new page to present a CONTROL HEADING, DETAIL, or
CONTROL FOOTING.

e. Repeats steps b, c, and d until the last control break is processed.

4. The prior values (refer to General Rule 3) may be referenced by the program:

• During the control break processing of a CONTROL FOOTING report
group. Any references to control data items in a USE procedure or
SOURCE clause associated with that CONTROL FOOTING report group
are supplied with prior values.

• When a TERMINATE statement executes. The RWCS makes the prior
values available to the SOURCE clause or the USE procedure references
in CONTROL FOOTING report groups as though the control break had
been detected in the highest control data-name.

• At the time the RWCS processes the report group. All other data item
references within report groups and their USE procedures access the
current values contained within the data items.

5. The RWCS presents the REPORT HEADING report group only once for each
report, as the first report group of that report. It is processed when the first
GENERATE statement is executed.
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6. The RWCS presents the PAGE HEADING report group as the first report
group on each page of the report, except for the following conditions:

• A page containing only a REPORT HEADING report group.

• A page containing only a REPORT FOOTING report group.

• A page containing a REPORT HEADING report group that is not the only
report group on the page. In this case, the PAGE HEADING report group
is the second report group on the page.

7. The RWCS processes the CONTROL HEADING report group at the end of a
control break for a specific control-head-name.

The CONTROL HEADING FINAL report group is presented only once for
each report, as the first body group (CONTROL HEADING, DETAIL, and
CONTROL FOOTING) of that report. Other CONTROL HEADING report
groups are presented when the RWCS detects a control break on the control-
head-name during the execution of GENERATE statements. Control break
processing for any CONTROL HEADING report group occurs with the highest
control level of the break and includes all lower levels.

8. The RWCS presents CONTROL FOOTING report group at the beginning of a
control break for a specific control-foot-name.

The CONTROL FOOTING FINAL report group is presented only once
for each report, as the last body group (CONTROL HEADING, DETAIL,
and CONTROL FOOTING) of that report. If, during the execution of a
GENERATE statement, the RWCS detects a control break, control break
processing for any CONTROL FOOTING report group occurs with the highest
control level of the break and includes all lower levels. Upon execution of
the TERMINATE statement, the RWCS processes all CONTROL FOOTING
report groups if the GENERATE statement has executed at least once.

9. The RWCS processes the PAGE FOOTING report group as the last report
group on each page of the report, except for the following conditions:

• A page containing only a REPORT HEADING report group.

• A page containing only a REPORT FOOTING report group.

• A page containing a REPORT FOOTING report group that is not to be the
only report group on the page. In this case, the PAGE FOOTING report
group is the second to the last report group on the page.

10. The RWCS processes the REPORT FOOTING report group, if defined,
only once per report and as the last report group of that report. During
the execution of a TERMINATE statement, the RWCS processes the
corresponding REPORT FOOTING report group if at least one GENERATE
statement is executed for the report.

11. The RWCS checks for these three conditions before it processes a REPORT
HEADING, PAGE HEADING, CONTROL HEADING, PAGE FOOTING, or a
REPORT FOOTING report group:

• If there is a USE BEFORE REPORTING procedure referencing the
data-name of the report group, the USE procedure executes.

• If a SUPPRESS statement has been executed, or if the report group is not
printable, there is no further processing for the report group.
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• If a SUPPRESS statement has not been executed and the report group
is printable, the RWCS formats the print lines and presents the report
group according to the presentation rules for that type of report group.

12. The RWCS executes the following procedures when it processes a CONTROL
FOOTING report group.

Control breaks occur during the processing of a GENERATE statement. The
GENERATE rules specify that the RWCS produces the CONTROL FOOTING
report groups beginning at the minor level, and proceeding upwards, through
and including the highest control level. Although no CONTROL FOOTING
report group has been defined for a given control data-name, the RWCS
will still have to execute procedure 12f if a RESET phrase within the report
description specifies that control data-name.

a. Sum counters are crossfooted. All sum counters defined in this report
group that are operands of SUM clauses in the same report group are
added to their sum counters.

b. Sum counters are rolled forward. All sum counters defined in the report
group that are operands of SUM clauses in higher level CONTROL
FOOTING report groups are added to the higher level sum counters.

c. If there is a USE BEFORE REPORTING group-data-name declarative
procedure, the RWCS executes the USE procedure.

d. If a SUPPRESS statement has been executed, or if the report group is not
printable, the RWCS executes procedure 12f.

e. If a suppress statement has not been executed and the report group is
printable, the RWCS formats the print lines and presents the report
group according to the presentation rules for CONTROL FOOTING report
groups.

f. The RWCS resets those sum counters that are to be reset when the RWCS
processes this level in the control hierarchy.

Additional References

• CONTROL clause

• Data-Name

• LINE NUMBER (Alpha, I64) clause (General Rule 4)

• SUM clause

• TERMINATE statement in Chapter 6

• Appendix D, Report Writer Presentation Rules and Tables
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UNDERLINE
Function
The UNDERLINE clause specifies that each character of the field is underlined
when it is displayed on the screen.

General Format

UNDERLINE

Syntax Rule
The UNDERLINE clause may be specified only for elementary screen items.
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USAGE
Function
The USAGE clause specifies the internal format of a data item or screen item.

General Format

� USAGE IS �

������������������������������������������������������������
����������������������������������������������������������


BINARY

BINARY-CHAR (Alpha, I64)
�

SIGNED
UNSIGNED




BINARY-SHORT (Alpha, I64)
�

SIGNED
UNSIGNED




BINARY-LONG (Alpha, I64)
�

SIGNED
UNSIGNED




BINARY-DOUBLE (Alpha, I64)
�

SIGNED
UNSIGNED



COMPUTATIONAL
COMP
COMPUTATIONAL-1
COMP-1
COMPUTATIONAL-2
COMP-2
COMPUTATIONAL-3
COMP-3
COMPUTATIONAL-5 (Alpha, I64)
COMP-5 (Alpha, I64)
COMPUTATIONAL-X (Alpha, I64)
COMP-X (Alpha, I64)
DISPLAY
FLOAT-SHORT (Alpha, I64)
FLOAT-LONG (Alpha, I64)
FLOAT-EXTENDED (Alpha, I64)
INDEX
PACKED-DECIMAL
POINTER
POINTER-64 (Alpha, I64)

������������������������������������������������������������
�����������������������������������������������������������

Syntax Rules

1. BINARY is a synonym for COMPUTATIONAL and COMP.

On Alpha and I64 systems, except for restrictions on the PICTURE
clause, COMPUTATIONAL-5 and COMPUTATIONAL-X are synonyms for
COMPUTATIONAL and COMP. ♦

2. COMP is an abbreviation for COMPUTATIONAL.

3. COMP-1 is an abbreviation for COMPUTATIONAL-1.

4. COMP-2 is an abbreviation for COMPUTATIONAL-2.

5. COMP-3 is an abbreviation for COMPUTATIONAL-3.

6. PACKED-DECIMAL is a synonym for COMPUTATIONAL-3 and COMP-3.
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7. On Alpha and I64 systems, COMP-5 is an abbreviation for
COMPUTATIONAL-5.

8. On Alpha and I64 systems, COMP-X is an abbreviation for
COMPUTATIONAL-X.

9. On Alpha and I64 systems, FLOAT-SHORT is a synonym for
COMPUTATIONAL-1.

10. On Alpha and I64 systems, FLOAT-LONG and FLOAT-EXTENDED are
synonyms for COMPUTATIONAL-2. ♦

11. You can use the USAGE clause in any data description entry with a level-
number other than 66 or 88.

12. If the USAGE clause is in the data description for a group item, it can also
be in data description entries for subordinate elementary and group items.
However, the usage of a subordinate item must be the same as that in the
group item data description entry.

13. The PICTURE character-string of a COMP or COMP-3 item can contain only
the following symbols:

• 9

• S

• V

• P

14. On Alpha and I64 systems, the PICTURE character-string of a COMP-5 or
COMP-X item can contain only the following symbols:

• 9

• S

• X (but not in combination with 9 or S) ♦

15. An index data item reference can appear in only:

• A SEARCH or SET statement

• A relation condition

• The USING phrase of the Procedure Division header

• The USING phrase of the CALL statement

16. A report description entry or a screen description entry can only specify
USAGE IS DISPLAY.

17. The data description entry for a USAGE IS INDEX data item cannot contain
any of the following clauses:

• BLANK WHEN ZERO

• JUSTIFIED

• PICTURE

• VALUE IS

18. An elementary item with the USAGE IS INDEX clause cannot be a
conditional variable; that is, the elementary item’s value cannot be specified
by level 88 items.
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19. The data description entry of a BINARY-CHAR, BINARY-SHORT, BINARY-
LONG, BINARY-DOUBLE, COMP-1, COMP-2, POINTER, or POINTER-64
item cannot have a PICTURE clause. However, they are numeric and signed.

20. The subject of a data description entry containing the USAGE IS POINTER
clause must not include any of the following clauses:

• BLANK WHEN ZERO

• JUSTIFIED

• PICTURE

General Rules

1. You can specify the USAGE clause in the data description entry for a group
item. In this case, it applies to each elementary item in the group. However,
you cannot reference the group item in any operations that do not permit
alphanumeric operands. See rules 4 and 8 for more information.

2. The USAGE clause specifies the representation of an elementary data item in
storage. It does not affect the way that the program uses the item. However,
the rules for some Procedure Division statements restrict the USAGE clause
of statement operands.

3. A BINARY-CHAR, BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE,
COMP, COMP-1, COMP-2, COMP-3, COMP-5, COMP-X, FLOAT-SHORT,
FLOAT-LONG, or FLOAT-EXTENDED item can represent a value used in
computations. The PICTURE clauses for COMP and COMP-3 items must
be numeric. The PICTURE clauses for COMP-5 and COMP-X items may be
numeric or X.

4. A POINTER data item can represent an address value used in computations.
The compiler internally treats this item as a binary integer. References to
a POINTER item are allowed in the same context as references to a COMP
integer.

5. If the data description entry for a group item specifies BINARY-CHAR,
BINARY-SHORT, BINARY-LONG, BINARY-DOUBLE, COMP, COMP-1,
COMP-2, COMP-3, COMP-5, COMP-X, FLOAT-SHORT, FLOAT-LONG,
FLOAT-EXTENDED, POINTER, or POINTER-64 usage, the usage applies to
elementary items in the group. It does not apply to the group itself; and the
program cannot use the group item in computations.

6. The USAGE IS DISPLAY clause specifies that the data item is in Standard
Data Format.

7. If no USAGE clause applies to an elementary item, its usage is DISPLAY.

8. If the USAGE IS INDEX clause applies to an elementary item, the
elementary item is called an index data item. It contains a value that must
correspond to an occurrence number of a table element.

9. If the data description entry for a group item specifies USAGE IS INDEX,
all elementary items in the group are index data items. However, the group
itself is not an index data item.

10. When a MOVE or input-output statement refers to a group that contains
an index data item, the index data item is not converted to another format
during the operation. Conversion will occur when the CONVERSION option
is specified on ACCEPT or DISPLAY.
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11. The USAGE IS POINTER clause can be used only in a File, Working-Storage,
or Linkage Section data description entry.

12. On OpenVMS Alpha and I64 systems, the USAGE IS POINTER-64 clause
is provided for limited use in interfacing with applications in languages
requiring a 64-bit pointer. See Technical Notes. ♦

Technical Notes

1. The way a data item is represented in the Data Division of a COBOL program
determines whether it will be stored as an integer, floating-point, packed
decimal, display numeric, or character string (text) data type. Tables 5–12
and 5–13 show the following:

• COBOL data description entries and their corresponding data types

• The allocated storage in bytes for each entry; allocated storage is the same
on Tru64 UNIX and OpenVMS Alpha and I64 (except for POINTER)

Table 5–12 gives the corresponding data types for unscaled data items, and
Table 5–13 gives the data types for scaled data items.

For example, a data item described as PIC S9(4) USAGE IS DISPLAY SIGN
IS TRAILING is stored in 4 bytes of storage as a right overpunch value.

Note

The default USAGE for a data item is DISPLAY. Therefore, you do not
need to specify the USAGE clause for display numeric, alphabetic, and
alphanumeric data items.

Table 5–12 Unscaled Data Items, Allocated Storage, and Corresponding Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

PIC S9(n)
[n <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY n Right (trailing) overpunch

PIC S9(n)
[n <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY TRAILING n Right (trailing) overpunch

PIC S9(n)
[n <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY LEADING n Left (leading) overpunch

(continued on next page)
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Table 5–12 (Cont.) Unscaled Data Items, Allocated Storage, and Corresponding Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

PIC S9(n)
[n <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY TRAILING
SEPARATE

n+1 Right (trailing) separate

PIC S9(n)
[n <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY LEADING
SEPARATE

n+1 Left (leading) separate

PIC 9(n)
[n <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY n Unsigned numeric

PIC 9(n)
[n <= 4]

COMP
COMP-5
(Alpha, I64)
COMP-X
(Alpha, I64)

2 Word integer1

PIC 9(n)
[5 <= n <= 9]

COMP
COMP-5
(Alpha, I64)
COMP-X
(Alpha, I64)

4 Longword integer1

PIC 9(n)
[10 <= n <=
18]

COMP
COMP-5
(Alpha, I64)
COMP-X
(Alpha, I64)

8 Quadword integer1

1The generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the source data item.

(continued on next page)
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Table 5–12 (Cont.) Unscaled Data Items, Allocated Storage, and Corresponding Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

PIC 9(n)
[19 <= n <=
31] (Alpha,
I64)

COMP
COMP-5
COMP-X

16 Octaword integer1 (Alpha, I64)

PIC S9(n)
[n <= 4]

COMP
COMP-5
(Alpha, I64)
COMP-X
(Alpha, I64)

2 Word integer

PIC S9(n)
[5 <= n <= 9]

COMP
COMP-5
(Alpha, I64)
COMP-X
(Alpha, I64)

4 Longword integer

PIC S9(n)
[10 <= n <=
18]

COMP
COMP-5
(Alpha, I64)
COMP-X
(Alpha, I64)

8 Quadword integer

PIC S9(n)
[19 <= n <=
31] (Alpha,
I64)

COMP
COMP-5
COMP-X

16 Octaword integer (Alpha, I64)

PIC X(n)
[n <= 2]
(Alpha, I64)

COMP-5
COMP-X

2 Word integer1 (Alpha, I64)

PIC X(n)
[3 <= n <= 4]
(Alpha, I64)

COMP-5
COMP-X

4 Longword integer1 (Alpha, I64)

1The generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the source data item.

(continued on next page)
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Table 5–12 (Cont.) Unscaled Data Items, Allocated Storage, and Corresponding Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

PIC X(n)
[5 <= n <= 8]
(Alpha, I64)

COMP-5
COMP-X

8 Quadword integer1 (Alpha, I64)

Not applicable INDEX 4 Longword integer

Not applicable POINTER 4 Longword integer (OpenVMS)
POINTER 8 Quadword integer (Tru64

UNIX)
POINTER-64
(Alpha, I64)

8 Quadword integer (OpenVMS
Alpha, I64)

Not applicable BINARY-
CHAR
UNSIGNED
(Alpha, I64)

2 Word integer 1 (Alpha, I64)

Not applicable BINARY-
SHORT
UNSIGNED
(Alpha, I64)

2 Word integer 1 (Alpha, I64)

Not applicable BINARY-
LONG
UNSIGNED
(Alpha, I64)

4 Longword integer 1 (Alpha, I64)

Not applicable BINARY-
DOUBLE
UNSIGNED
(Alpha, I64)

8 Quadword integer 1 (Alpha,
I64)

1The generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the source data item.

(continued on next page)
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Table 5–12 (Cont.) Unscaled Data Items, Allocated Storage, and Corresponding Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

Not applicable BINARY-
CHAR
SIGNED
(Alpha, I64)
BINARY-
CHAR (Alpha,
I64)

2 Word integer (Alpha, I64)

Not applicable BINARY-
SHORT
SIGNED
(Alpha, I64)
BINARY-
SHORT
(Alpha, I64)

2 Word integer (Alpha, I64)

Not applicable BINARY-
LONG
SIGNED
(Alpha, I64)
BINARY-
LONG (Alpha,
I64)

4 Longword integer (Alpha, I64)

Not applicable BINARY-
DOUBLE
SIGNED
(Alpha, I64)
BINARY-
DOUBLE
(Alpha, I64)

8 Quadword integer (Alpha, I64)

Not applicable COMP-1 4 F_floating
S_format2 (Alpha, I64)

Not applicable COMP-2 8 D_floating
G_floating (Alpha, I64)
T_format2 (Alpha, I64)

2On OpenVMS Alpha and I64 systems, the data type depends on the /FLOAT qualifier. On Tru64 UNIX systems, it is
always S format for COMP-1, and always T format for COMP-2. Refer to the HP COBOL User Manual Appendix B,
describing compatibility with HP COBOL for OpenVMS VAX for information on the /FLOAT=IEEE qualifier.

(continued on next page)
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Table 5–12 (Cont.) Unscaled Data Items, Allocated Storage, and Corresponding Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

PIC 9(n)
[n <= 31
(Alpha, I64) or
18 (VAX)]

COMP-3 (n+1)/2
rounded
up

Packed decimal1

PIC S9(n)
[n <= 31
(Alpha, I64) or
18 (VAX)]

COMP-3 (n+1)/2
rounded
up

Packed decimal

PIC X(n)
[n <=
268,435,455]

DISPLAY n
ASCII text

PIC A(n)
[n <=
268,435,455]

DISPLAY n
ASCII text

1The generated code treats this data type as a positive value in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the source data item.

Table 5–13 Scaled Data Items, Allocated Storage, and Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

PIC S9(n)V9(s)
[(n+s) <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY n+s Right (trailing)
overpunch

PIC S9(n)V9(s)
[(n+s) <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY TRAILING n+s Right (trailing)
overpunch

(continued on next page)
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Table 5–13 (Cont.) Scaled Data Items, Allocated Storage, and Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

PIC S9(n)V9(s)
[(n+s) <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY LEADING n+s Left (leading)
overpunch

PIC S9(n)V9(s)
[(n+s) <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY TRAILING
SEPARATE

n+s+1 Right (trailing)
separate

PIC S9(n)V9(s)
[(n+s) <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY LEADING
SEPARATE

n+s+1 Left (leading)
separate

PIC 9(n)V9(s)
[(n+s) <= 31
(Alpha, I64) or
18 (VAX)]

DISPLAY n+s Unsigned numeric

PIC 9(n)V9(s)
[(n+s) <= 4]

COMP 2 Word integer1

PIC 9(n)V9(s)
[5 <= (n+s) <=
9]

COMP 4 Longword integer1

PIC 9(n)V9(s)
[10 <= (n+s)
<= 18]

COMP 8 Quadword integer1

PIC 9(n)V9(s)
[19<= (n+s)
<= 31] (Alpha,
I64)

COMP 16 Octaword integer1 (Alpha, I64)

1The generated code treats this data type as a positive operand in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the data type.

(continued on next page)
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Table 5–13 (Cont.) Scaled Data Items, Allocated Storage, and Data Types

PICTURE
Clause USAGE Clause SIGN Clause

Allocated
Storage
in Bytes

Standard
Data Type

PIC S9(n)V9(s)
[(n+s) <= 4]

COMP 2 Word integer

PIC S9(n)V9(s)
[5 <= (n+s) <=
9]

COMP 4 Longword integer

PIC S9(n)V9(s)
[10 <= (n+s)
<= 18]

COMP 8 Quadword integer

PIC S9(n)V9(s)
[19 <= (n+s)
<= 31]

COMP 16 Octaword integer (Alpha, I64)

PIC 9(n)V9(s)
[(n+s) <= 31
(Alpha, I64) or
18 (VAX)]

COMP-3 (n+s+1)/2
rounded
up

Packed decimal1

PIC S9(n)V9(s)
[(n+s) <= 31
(Alpha, I64) or
18 (VAX)]

COMP-3 (n+s+1)/2
rounded
up

Packed decimal

1The generated code treats this data type as a positive operand in all contexts except when it is a receiving-field operand.
In this case, the compiler stores the absolute value of the data type.

2. The OpenVMS Alpha operating system (as of Version 7.0) and OpenVMS I64
can dynamically allocate data in 64-bit address space. HP COBOL does not
support data in 64-bit address space, but limited use of it may be made with
the USAGE IS POINTER-64 clause on OpenVMS Alpha and I64. You might
need to describe a data item as USAGE IS POINTER-64 if your program
interfaces with an application in another language that requires a 64-bit
pointer. Then you would use the SET statement or a VALUE clause to assign
the address of a static COBOL variable to the pointer variable. The pointer
variable can be passed to a routine whose interface definition requires a 64-bit
pointer.

You can also use an appropriate system service or the Run-Time Library
routine LIB$GET_VM_64 to allocate data and store the address in the pointer
variable. Because COBOL does not support dynamic allocation, there is no
way to dereference the pointer and access the allocated data. However, you
can pass the pointer to other languages that require a 64-bit pointer in 64-bit
address space. ♦
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Additional References

• PICTURE clause

• VALUE IS clause (Format 3) Alpha Architecture Reference Manual, available
from Digital Press.
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VALUE IS
Function
The VALUE IS clause defines the values associated with condition-names, the
initial value of Working-Storage Section data items, the value of Report Section
printable items, the compile-time initialization of variables to the address of data,
external constants, and the constant values of literal screen items.

General Format

Format 1

VALUE IS lit

Format 2

88 condition-name�
VALUE IS
VALUES ARE



�����������
���������


� EXTERNAL external-name
REFERENCE data-name
low-val

�

�
�� �

THRU
THROUGH


 � EXTERNAL external-name
REFERENCE data-name
high-val

� �
��

�����������
����������

. . .

Format 3

VALUE IS
� REFERENCE data-name

numeric-integer-lit

�
Format 4

VALUE IS EXTERNAL external-name

lit
is a numeric or nonnumeric literal. In a screen description entry, it is a
nonnumeric literal.

external-name
names a COBOL link-time bound constant. It must define a word or longword
integer value. See Technical Notes for more information.

data-name
names a data item in the File or Working-Storage or Subschema Section. data-
name may be qualified.

low-val
is a numeric or nonnumeric literal. It is the lowest value in a range of values
associated with a condition-name in a level 88 data description entry.

high-val
is a numeric or nonnumeric literal. It is the highest value in a range of values
associated with a condition-name in a level 88 data description entry.
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numeric-integer-lit
is a positive numeric integer literal.

Syntax Rules

1. The words THRU and THROUGH are equivalent.

2. You must associate a signed numeric literal with either of the following:

a. A data item that has a signed numeric PICTURE character-string

b. A COMP-1 or COMP-2 data item

3. If you specify a numeric literal value:

a. It must fall in the range of values defined by the data item’s PICTURE
clause.

b. It must not require truncation of nonzero digits; that is, it cannot have
nonzero digits in positions represented by Ps in the item’s PICTURE
clause.

4. If you specify a nonnumeric literal value, it must not exceed the size defined
by the data item’s PICTURE clause.

5. The Format 1, 3, and 4 VALUE IS clause cannot be used in any entry that is
part of the description or redefinition of an external data record.

6. The Format 3 VALUE IS clause is allowed only for an item containing the
USAGE IS POINTER phrase.

7. The subject of the associated data description entry in a Format 4 VALUE IS
clause must define a word or longword data item.

8. In a screen description entry, the VALUE clause can be specified only at the
elementary level.

General Rules

1. The VALUE IS clause must be consistent with other clauses in the data
description of both the item and all subordinate items. The following rules
apply:

• If the category of the item is numeric, all literals in the VALUE IS clause
must be numeric. lit is aligned in the data item according to Standard
Alignment Rule 1.

• If the category of the item is alphabetic, alphanumeric, alphanumeric
edited, or numeric edited, all VALUE IS clause literals must be
nonnumeric. lit is aligned in the data item as if the data item were
defined as alphanumeric. Editing characters in the PICTURE clause
count toward data item size but have no effect on initialization. Therefore,
if lit applies to an edited item, it must be in an edited form; Standard
Alignment Rule 3 applies.

• The BLANK WHEN ZERO clause does not directly affect initialization.
However, the BLANK WHEN ZERO clause can change the category of the
data item. If the category of the data item changes, the rules that apply
change accordingly.

• The JUSTIFIED clause does not affect initialization.
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2. In the File Section, the VALUE IS clause can apply only to condition-name
entries. That is, you can use the clause only for level 88 data items. In the
Linkage Section, VALUE IS produces a warning for the other 88 data items.

3. Format 2 applies only to condition-name entries.

4. If a VALUE IS clause is specified in a data description entry that contains
an OCCURS clause with a DEPENDING ON phrase, every occurrence of the
associated data item is set to the maximum value.

A data item is associated with a variable occurrence data item in any of the
following cases:

• It is a group data item that contains a variable occurrence data item.

• It is a variable occurrence data item.

• It is subordinate to a variable occurrence data item.

If a VALUE IS clause is associated with the data item referenced by a
DEPENDING ON phrase, that value is considered to be placed in the data
item after the variable occurrence data item is initialized.

5. If a VALUE IS clause is specified in a data description entry that contains an
OCCURS clause, or in an entry that is subordinate to an OCCURS clause,
every occurrence of the associated data item is assigned the specified value.
(This applies to General Formats 1, 3, and 4.)

Condition-Name Rules for Format 2

6. The VALUE IS clause is required in a condition-name entry. The condition-
name entry can contain only the condition-name itself and the VALUE IS
clause.

7. The characteristics of a condition-name are implicitly the same as those of its
conditional variable.

8. When using the EXTERNAL option, the associated conditional variable must
be a word or longword COMP data item.

9. When using the REFERENCE option, the associated conditional variable
must be POINTER usage.

10. If the THRU phrase is used, each low-val, external-name, and data-name
must be less than the corresponding high-val, external-name, and data-name.

Rules for Other Data Description Entries

11. A Working-Storage Section VALUE IS clause takes effect only when the
program enters its initial state.

12. The VALUE IS clause initializes the data item to the value of lit.

13. If a data item’s data description entry does not have a VALUE IS clause, the
initial contents of the data item are the following:

• Zero, for numeric items

• Undefined, for index data items, and data items whose descriptions
include or are subordinate to an OCCURS clause

• Spaces, for all other items
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14. In the Report Section, if an elementary report entry contains a VALUE IS
clause but does not contain a GROUP INDICATE clause, the printable item
assumes the specified value each time the Report Writer Control System
(RWCS) prints the Report Group. However, if the entry contains the GROUP
INDICATE clause, the RWCS presents the specified value only when certain
run-time conditions exist. See the description of the GROUP INDICATE
clause for more information.

15. The VALUE IS clause cannot be used in a data description entry that has
a REDEFINES clause or is subordinate to a data description entry with a
REDEFINES clause.

16. The VALUE IS clause can be in a data description entry for a group item. In
this case:

• lit must be a figurative constant or nonnumeric literal.

• The group area is initialized as if the group were an elementary
alphanumeric data item.

• Initialization of group items is not affected by the characteristics of the
group’s subordinate group or elementary items.

• The VALUE IS clause cannot be used in data description entries for the
group’s subordinate group or elementary items.

17. The VALUE IS clause cannot be used in the data description entry for a group
that contains subordinate items with any of the following clauses:

• JUSTIFIED

• SYNCHRONIZED

• USAGE (other than USAGE IS DISPLAY)

18. The VALUE IS clause cannot be used in the report group description entry for
a group that contains subordinate items with a JUSTIFIED clause.

19. The Format 3 VALUE IS clause results in the compile-time initialization of its
data description entry to the address of data-name or to numeric-integer-lit.
Use this clause to pass arguments to non-COBOL procedures requiring an
address rather than a user-defined word.

20. In Format 4, external-name must be the name of an external symbol (a symbol
in another program unit) that is known to the linker when the program is
linked.

21. The Format 4 VALUE IS clause results in the linker storing the value of
external-name at the storage location defined by the data description entry
containing the VALUE IS EXTERNAL clause.

Technical Notes

• external-name is a COBOL word formed according to the rules for user-defined
names. The compiler translates hyphens in the COBOL word to underscore
characters.

• external-name names a constant whose value is unknown at compile time but
known at link time.
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• Although the VALUE IS clause is not valid in the LINKAGE SECTION, the
compiler allows such a specification, as a Hewlett-Packard extension. The
clause, when specified in the LINKAGE SECTION, has no effect on program
execution, and is flagged with an informational Hewlett-Packard extension
diagnostic.

Additional References

• PROGRAM-ID paragraph in Chapter 3

• PICTURE clause

• USAGE clause

• Section 1.2.1.1 in Section 1.2.1

• Section 5.2.2, COBOL Standard Alignment Rules

Examples

1. The following is an example of initializing alphanumeric data items:

01 ITEMA PIC X(20) VALUE IS "12345678901234567890".
01 ITEMB PIC XX VALUE IS "NH".

2. The following is an example of initializing numeric data items:

01 ITEMX PIC S9999 VALUE IS -39.
01 ITEMZ PIC 9 VALUE ZERO.

3. The following is an example of assigning condition-name values:

01 ITEMC PIC 99.
88 VAL1 VALUE IS 4.
88 VAL2 VALUE IS 5 THRU 9 12.
88 VAL3 VALUES ARE 10 14 THRU 23 27 29 30.
88 VAL4 VALUES ARE 0 THRU 49, 51 THRU 99.
88 VAL5 VALUES ARE 0 10 20 30 40 50.

4. The VALUE IS EXTERNAL clause allows a COBOL program to equate a
mnemonic system constant to a value representing a return status code
rather than the numeric equivalent. The following are some examples of this
clause:

On OpenVMS

WORKING-STORAGE SECTION.
*
* System Services
*
01 BADHEADER PIC S9(9) COMP

VALUE IS EXTERNAL SS$_BADFILHDR.
01 BADNAME PIC S9(9) COMP

VALUE IS EXTERNAL SS$_BADFILENAME.
01 NORMAL PIC S9(9) COMP

VALUE IS EXTERNAL SS$_NORMAL.
*
* Record Management Services
*
01 RMSDEV PIC S9(9) COMP

VALUE IS EXTERNAL RMS$_DEV.
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*
* Database
*
01 DBMDBBUSY PIC S9(9) COMP

VALUE IS EXTERNAL DBM$_DBBUSY.
01 DBMEND PIC S9(9) COMP

VALUE IS EXTERNAL DBM$_END.
*
* Run-Time Library
*
01 LIBINVARG PIC S9(9) COMP

VALUE IS EXTERNAL LIB$_INVARG.
01 LIBINVSCRPOS PIC S9(9) COMP

VALUE IS EXTERNAL LIB$_INVSCRPOS.

PROCEDURE DIVISION.

OPEN . . .
IF RMS-STS = BADHEADER PERFORM . . .
IF RMS-STS = BADNAME PERFORM 100-FIX-NAME.

5. The following example shows the VALUE IS REFERENCE clause:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEM-LIST.

02 ITEM-PROCESS-NAME.
03 PIC S9(4) COMP VALUE 15.
03 PIC S9(4) COMP VALUE EXTERNAL JPI$_PRCNAM.
03 POINTER VALUE REFERENCE PROCESS-NAME.
03 POINTER VALUE REFERENCE PROCESS-NAME-LENGTH.

02 ITEM-USER-NAME.
03 PIC S9(4) COMP VALUE 12.
03 PIC S9(4) COMP VALUE EXTERNAL JPI$_USERNAME.
03 POINTER VALUE REFERENCE USER-NAME.
03 PIC S9(9) COMP VALUE 0.

02 ITEM-CPU-TIME.
03 PIC S9(4) COMP VALUE 4.
03 PIC S9(4) COMP VALUE EXTERNAL JPI$_CPUTIM.
03 POINTER VALUE REFERENCE CPU-TIME.
03 PIC S9(9) COMP VALUE 0.

02 ITEM-TURMINAL.
03 PIC S9(4) COMP VALUE 7.
03 PIC S9(4) COMP VALUE EXTERNAL JPI$_TERMINAL.
03 POINTER VALUE REFERENCE TURMINAL.
03 POINTER VALUE REFERENCE TURMINAL-LENGTH.

02 TERMINATOR-ENTRY PIC S9(9) COMP VALUE 0.

01 PROCESS-NAME PIC X(15) VALUE SPACES.
01 PROCESS-NAME-LENGTH PIC S9(4) COMP VALUE 0.
01 USER-NAME PIC X(12) VALUE SPACES.
01 CPU-TIME PIC S9(9) COMP VALUE 0.
01 TURMINAL PIC X(7) VALUE SPACES.
01 TURMINAL-LENGTH PIC S9(4) COMP VALUE 0. ♦
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VALUE OF ID
Function
The VALUE OF ID clause specifies, replaces, or completes a file specification.

General Format

VALUE OF
�

ID
FILE-ID



IS
� file-name

data-name

�

file-name
is a nonnumeric literal. It contains the full or partial file specification.

data-name
is the data-name of an alphanumeric Working-Storage Section data item. It
contains the full or partial file specification.

General Rules

1. Each file specification field in file-name augments the specification in the
ASSIGN clause of the SELECT statement.

2. A file specification field in the VALUE OF ID clause overrides the
corresponding field in the SELECT statement. If a file specification field
is either in the SELECT statement or in the VALUE OF ID clause (but not in
both), it becomes part of the file specification.

3. On Tru64 UNIX systems, if you specify a VALUE OF ID clause with which
you specified an OpenVMS logical, you must use an environment variable, as
follows:

VALUE OF ID "DISK1"

Define the environment variable using one of the following:

% setenv DISK1
% setenv DISK1 /usr/data/
% setenv DISK1 /usr/data/test1.dat ♦

4. The number of bytes in the string making up file-name or data-name must
not exceed 255.

Technical Notes

• file-name is a complete or partial file specification. The resultant file
specification must adhere to the rules for file specifications as defined by
the file system.

• If the associated file connector is an external file connector, all file description
entries in the run unit that are associated with that file connector must define
the same file specification. For a data-name it must be external and reference
the same data item in all programs defining the file.

Additional References

• ASSIGN

• HP COBOL User Manual, on exception condition handling

• On OpenVMS, OpenVMS Record Management Services Reference Manual in
the OpenVMS documentation set ♦
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6
Procedure Division

This chapter includes the general formats for all Procedure Division statements,
describes their basic elements, and explains how to use them.

6.1 Verbs, Statements, and Sentences
A COBOL verb is a reserved word that expresses an action to be taken by the
compiler or the object program. A verb and its operands make up a COBOL
statement. One or more statements terminated by a separator period form a
COBOL sentence.

At the statement level, actions can be further differentiated: actions taken by
the object program can be conditional or unconditional. In some cases, the verb
in the statement defines whether the action is conditional or unconditional. One
verb, IF, always defines a conditional action. Other verbs, such as READ, can
define conditional action when you use phrases with them that make the action
conditional. PERFORM and MOVE are examples of verbs that always define
unconditional action. Most often, however, whether an action is conditional or
unconditional depends on not only which verb, but also which phrases you use in
the statement.

There are four types of COBOL statements:

• Compiler-directing statements specify an action taken by the compiler
during compilation. See Section 6.1.1 for more information.

• Imperative statements specify an unconditional action taken by the object
program at run time. See Section 6.1.2 for more information.

• Conditional statements specify a conditional action taken by the object
program at run time. See Section 6.1.3 for more information.

• Delimited-scope statements specify their explicit scope terminator. See
Section 6.1.4 for more information.

Table 6–1 shows the four types of COBOL statements. It also shows that the
imperative statements are further subdivided into nine categories and specifies
the verbs that each category includes. When associated phrases are not specified,
the verb alone defines the category. For compiler-directing and conditional
statements, type and category are synonymous.
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Table 6–1 Types and Categories of COBOL Statements

Type Category Verb

Compiler-Directing Compiler-Directing COPY
REPLACE
USE
RECORD

Conditional Conditional ACCEPT ([NOT] AT END or
[NOT] ON EXCEPTION)

ADD ([NOT] ON SIZE ERROR)
CALL ([NOT] ON EXCEPTION or

[NOT] ON OVERFLOW)
COMPUTE ([NOT] ON SIZE ERROR)
DELETE ([NOT] INVALID KEY)
DISPLAY ([NOT] ON EXCEPTION)
DIVIDE ([NOT] ON SIZE ERROR)
EVALUATE
IF
MULTIPLY ([NOT] ON SIZE ERROR)
READ ([NOT] AT END or

[NOT] INVALID KEY)
RETURN([NOT] AT END)
REWRITE ([NOT] INVALID KEY)
SEARCH(AT END)
START ([NOT] INVALID KEY)
STRING ([NOT] ON OVERFLOW)
SUBTRACT ([NOT] ON SIZE ERROR)
UNSTRING ([NOT] ON OVERFLOW)
WRITE ([NOT] INVALID KEY or

[NOT] END-OF-PAGE)

Imperative Arithmetic ADD ( 1 )
COMPUTE ( 1 )
DIVIDE ( 1 )
INSPECT (TALLYING)
MULTIPLY ( 1 )
SUBTRACT ( 1 )

Data-Movement ACCEPT (DATE, DAY, DAY-OF-WEEK or TIME)
INITIALIZE
INSPECT (REPLACING or CONVERTING)
MOVE
SET (TO TRUE)
STRING ( 5 )
UNSTRING ( 5 )

Ending STOP

(continued on next page)
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Table 6–1 (Cont.) Types and Categories of COBOL Statements

Type Category Verb

Imperative Input-Output ACCEPT (identifier or CONTROL KEY IN
identifier)
CLOSE
DELETE ( 3 )
DISPLAY
OPEN
READ ( 4 )
REWRITE ( 3 )
SET (TO ON or TO OFF)
START ( 3 )
STOP (literal)
UNLOCK
WRITE ( 6 )

Inter-Program
Communications

CALL ( 2 )
CANCEL

Procedure-Branching ALTER
CALL
CONTINUE
EXIT
GO TO
PERFORM

Table-Handling SEARCH
SET (TO, UP BY, or DOWN BY)
SORT

Ordering MERGE
RELEASE
RETURN
SORT

Report Writing GENERATE
INITIATE
SUPPRESS
TERMINATE

(continued on next page)
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Table 6–1 (Cont.) Types and Categories of COBOL Statements

Type Category Verb

Delimited-Scope Delimited-Scope ACCEPT (END-ACCEPT)
ADD (END-ADD)
CALL (END-CALL)
COMPUTE (END-COMPUTE)
DELETE (END-DELETE)
DIVIDE (END-DIVIDE)
EVALUATE (END-EVALUATE)
IF (END-IF)
MULTIPLY (END-MULTIPLY)
PERFORM (END-PERFORM)
READ (END-READ)
RETURN (END-RETURN)
REWRITE (END-REWRITE)
SEARCH (END-SEARCH)
START (END-START)
STRING (END-STRING)
SUBTRACT (END-SUBTRACT)
UNSTRING (END-UNSTRING)
WRITE (END-WRITE)

Legend:

( 1 ) Without the optional [NOT] ON SIZE ERROR phrase
( 2 ) Without the optional [NOT] ON EXCEPTION or [NOT] ON OVERFLOW phrase
( 3 ) Without the optional [NOT] INVALID KEY phrase
( 4 ) Without the optional [NOT] AT END or [NOT] INVALID KEY phrase
( 5 ) Without the optional [NOT] ON OVERFLOW phrase
( 6 ) Without the optional [NOT] INVALID KEY or [NOT] END-OF-PAGE phrase

Like statements, COBOL sentences also can be compiler-directing, imperative,
or conditional. Sentence type depends upon the types of statements the sentence
contains. Table 6–2 summarizes the contents of the three types of COBOL
sentences. The remaining text in this section describes each type of statement
and sentence in greater detail.

Table 6–2 Contents of COBOL Sentences

Type Contents of Sentence

Imperative One or more consecutive imperative statements ending with a
period

Conditional One or more conditional statements, optionally preceded by an
imperative statement, terminated by the separator period

Compiler-Directing Only one compiler-directing statement ending with a period

6.1.1 Compiler-Directing Statements and Sentences
A compiler-directing statement causes the compiler to take an action during
compilation. The verbs COPY, REPLACE, RECORD, and USE define compiler-
directing statements. A compiler-directing sentence can contain other statements
but it must contain only one compiler-directing statement. The compiler-directing
statement must be the last statement in the sentence and must be followed
immediately by a period.
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6.1.2 Imperative Statements and Sentences
An imperative statement specifies an unconditional action for the program. It
must contain a verb and the verb’s operands, and cannot contain any conditional
phrases. For example, the following statements are imperative:

OPEN INPUT FILE-A

COMPUTE C = A + B

However, the following statement is not imperative because it contains the
phrase, ON SIZE ERROR, which makes the program’s action conditional:

COMPUTE C = A + B ON SIZE ERROR PERFORM NUM-TOO-BIG.

In the Procedure Division rules, an imperative statement can be a sequence
of consecutive imperative statements. The sequence must end with: ( 1 ) a
separator period or ( 2 ) any phrase associated with a statement that contains the
imperative statement. For example, the following sentence contains a sequence of
two imperative statements following the AT END phrase.

READ FILE-A AT END PERFORM NO-MORE-RECS
DISPLAY "No more records." END-READ.

An imperative sentence contains only imperative statements and ends with a
separator period.

6.1.3 Conditional Statements and Sentences
A conditional statement determines a condition’s truth value. (A truth value is
either a yes or no answer to the question, ‘‘Is the condition true?’’.) The statement
uses the truth value generated by the program to determine subsequent program
action.

Conditional statements are as follows:

• An EVALUATE, IF, RETURN, or SEARCH statement

• An ACCEPT statement with the [NOT] AT END or [NOT] ON EXCEPTION
phrase

• A DISPLAY statement with the [NOT] ON EXCEPTION phrase

• A READ statement with the [NOT] AT END or [NOT] INVALID KEY phrase

• A WRITE statement with the [NOT] INVALID KEY or [NOT] END-OF-PAGE
phrase

• A DELETE, REWRITE, or START statement with the [NOT] INVALID KEY
phrase

• An arithmetic statement (ADD, COMPUTE, DIVIDE, MULTIPLY,
SUBTRACT) with the [NOT] ON SIZE ERROR phrase

• A STRING or UNSTRING statement with the [NOT] ON OVERFLOW phrase

• A CALL statement with the [NOT] ON EXCEPTION or [NOT] ON
OVERFLOW phrase

A conditional sentence is a conditional statement that ends with a separator
period. It can include an optional preceding imperative statement. For example,
the following sentence is conditional even though it contains the imperative
statement, GO TO PROC-A:

READ FILEA AT END GO TO PROC-A.
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The program interprets this sentence to mean ‘‘If not at the end of the file, read
the next record; otherwise, go to PROC-A.’’

6.1.4 Scope of Statements
Scope terminators delimit the scope of some Procedure Division statements.

The scope of statements contained (nested) in other statements can also terminate
implicitly. When statements are contained in other statements, a separator period
(that terminates the sentence) terminates all nested statements as well.

In the following example, the separator period terminates the IF, MOVE, and
PERFORM statements:

IF ITEMA = ITEMB
MOVE ITEMC TO ITEMB
PERFORM PROCA.

In the following example, the ELSE phrase of the IF statement terminates the
scope of the READ and the first MOVE statements:

IF ITEMA = ITEMB
READ FILEA

AT END MOVE ITEMC TO ITEMB
ELSE

MOVE ITEMD TO ITEME.

A delimited-scope statement is a special category of statement used in
structured programming. A delimited-scope statement is any statement that
includes its explicit scope terminator. See Section 6.3.4 for a list of explicit scope
terminators.

A delimited-scope statement can be nested in another delimited-scope statement
with the same verb. Then, each explicit scope terminator terminates the
statement that begins with the closest unpaired preceding occurrence of the
verb.

In the following example, the END-IF after the ADD statements (line 8)
terminates the IF on line 5. The END-IF after the SUBTRACT (line 10)
terminates the IF on line 3. The scope of the first IF statement (line 1) is
terminated by the separator period on line 11.

1. IF ITEMA = ITEMB

2. MULTIPLY ITEMH BY ITEMI

3. IF ITEMI > 18

4. MOVE ITEMC TO ITEMD

5. IF ITEMD > ITEME

6. ADD ITEME TO ITEMF

7. ADD ITEMG TO ITEMH

8. END-IF

9. SUBTRACT 6 FROM ITEMH

10. END-IF

11. PERFORM PROCA.
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6.2 Uniqueness of Reference
Every user-defined name in a COBOL program names a resource. (See the
section on User-Defined Words in Section 1.2.1.) To use a resource, however, a
statement in a COBOL program must contain a reference that uniquely identifies
that resource. Qualification, reference modification, and subscripting or indexing
allow unique and unambiguous references to that resource. Qualified procedure-
names allow uniqueness of reference to procedures, and qualified condition-names
allow uniqueness of reference to condition-names.

When you assign the same name in separate (contained) programs to two or
more occurrences of a resource, certain conventions apply that limit the scope of
names. Name scoping and scope of names are COBOL language terms that
describe the methods for resolving references to user-defined words in a contained
program environment. (See Section 6.2.6, Scope of Names.)

Some user-defined words can be made available to every program in the run unit.
(See the EXTERNAL clause in Chapter 5.) These words are called external data.
Other user-defined words can be made available to programs contained within
the program that defines that resource. (See the GLOBAL clause in Chapter 5.)
These words are called global data.

6.2.1 Qualification
A reference to a user-defined word is unique if one or more of the following
conditions exists:

• No other name has the same spelling, including hyphenation.

• It is part of a REDEFINES clause. (The reference following the word
REDEFINES is unique because of the placement of the REDEFINES clause.)
See the Syntax Rules for the REDEFINES clause.

• Scoping rules make it unique. (See Section 6.2.6, Scope of Names.)

A nonunique name within a hierarchy of names can be used in more than one
place in your program. Unless you are redefining it, you must refer to this
nonunique name using one or more higher-level names in the hierarchy. These
higher-level names are called qualifiers. Using them to achieve uniqueness of
reference is called qualification.

To make your reference unique, you need not specify all available qualifiers for a
name, only those necessary to eliminate ambiguity.

Consider the following two record descriptions:

01 REC1.
05 ITEMA PIC XX.
05 ITEMB PIC X(20).

01 REC2.
05 GROUP1.

10 ITEMA PIC 9(5).
10 ITEMB PIC X(3).

05 GROUP2.
10 ITEMC PIC X(4).
10 ITEMD PIC X(8).

ITEMA and ITEMB appear in both record descriptions. Therefore, you must
use qualifiers when you refer to these items in Procedure Division statements.
For example, all of the following references to ITEMA are unique: ITEMA OF
GROUP1, ITEMA OF REC1, ITEMA IN GROUP1 OF REC2.
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Regardless of the preceding, you cannot use the same data-name as:

• The name of an external record and as the name of any other external data
item in any program contained within or containing the program describing
the external data record

• The name of an item possessing the global attribute and as the name of any
other data item in the program describing the global data item

When a program is contained within a program or contains another program,
specific conventions apply. (See Section 6.2.6.)

The general formats for qualification are as follows:

Format 1

� data-name-1
condition-name

�
���������
�������


��


�

IN
OF



data-name-2

��
� . . .

�
� �

IN
OF



file-name

�
�

�
IN
OF



file-name

���������
��������

Format 2

paragraph-name
�

IN
OF



section-name

Format 3

text-name
�

IN
OF



library-name

Format 4

LINAGE-COUNTER
�

IN
OF



file-name

Format 5�
PAGE-COUNTER
LINE-COUNTER


 �
IN
OF



report-name

Format 6

data-name-3

���������
�������


�
IN
OF



data-name-4

�
� �

IN
OF



report-name

�
�

�
IN
OF



report-name

���������
��������

Format 7

screen-name-1

��


�

IN
OF



screen-name-2

��
� . . .
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Format 8 (OpenVMS)� RMS-STS
RMS-STV
RMS-FILENAME

� �
IN
OF



file-name

♦

The following syntax rules apply to qualification:

1. Each reference to a nonunique, user-defined name must use a sequence of
qualifiers that eliminates ambiguity from the reference.

2. A name can be qualified even if it does not need qualification. If more than
one set of qualifiers ensures uniqueness, any set can be used.

3. IN and OF are equivalent.

4. In Format 1, each qualifier must be either the name associated with a
level indicator, the name of a group to which the item being qualified is
subordinate, or the name of a condition variable with which the condition-
name being qualified is associated. (See Section 6.2.5.) Qualifiers must be
ordered from least- to most-inclusive levels in the hierarchy.

5. In Format 7, each qualifier must be the name of a group to which the item
being qualified is subordinate. Qualifiers must be ordered from least- to
most-inclusive levels in the hierarchy.

6. In Format 1, data-name-2 can be a record-name.

7. If the program contains explicit references to a paragraph-name, the
paragraph-name cannot appear more than once in the same section. When a
section-name qualifies a paragraph-name, the word SECTION cannot appear.
A paragraph-name need not be qualified in a reference from within the same
section. You cannot reference a paragraph-name or section-name from any
other program.

8. On OpenVMS, in Format 3, a COPY statement that accesses an OpenVMS
Librarian library-record must qualify text-name with library-name. ♦

9. In Format 3, on Tru64 UNIX systems, the library-name for the COPY
statement will direct COPY to access the text-name file from the library-name
subdirectory. ♦
See Chapter 8 for information on the COPY statement.

10. If the program has more than one file description entry with a LINAGE
clause, every reference to LINAGE-COUNTER must be qualified.

11. If the program has more than one report description entry, every Procedure
Division reference to LINE-COUNTER must be qualified.

12. In the Report Section, an unqualified reference to LINE-COUNTER is
qualified implicitly by the name of the report in whose report description
entry the reference is made. Whenever the LINE-COUNTER of a different
report is referenced, LINE-COUNTER must be qualified explicitly by the
report name associated with the different report.

13. If the program has more than one report description entry, every Procedure
Division reference to PAGE-COUNTER must be qualified.
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14. In the Report Section, an unqualified reference to PAGE-COUNTER is
qualified implicitly by the name of the report in whose report description
entry the reference is made. Whenever the PAGE-COUNTER of a different
report is referenced, PAGE-COUNTER must be qualified explicitly by the
report name associated with the different report.

15. On OpenVMS, if the program has more than one file description entry, every
reference to RMS-STS, RMS-STV, and RMS-FILENAME must be qualified. ♦

6.2.2 Subscripts and Indexes
Occurrences of a table are not individually named. You refer to them by using
a subscript or index to specify their location relative to the table’s beginning.
Subscripting is a general operation; indexing is a special form of subscripting.

Unless otherwise specified by the rules for a statement, subscripts and indexes
are evaluated once, at the beginning of a statement. If a statement contains rules
describing the evaluation of subscripts, those rules also apply to the evaluation of
indexes.

Subscripting
Subscripts can appear only in references to individual elements in a list, or table,
of like elements that do not have individual data-names. (See the OCCURS
clause in Chapter 5.)

The general format for subscripting is as follows:

Format 1� data-name
condition-name

�
( { arithmetic-expression} . . . )

Format 2

argument (

���
�


ALL
integer-1
data-name [ {+ | –} integer-2 ]
index-name [ {+ | –} integer-3 ]

���
�� . . . )

All restrictions in the rules for subscripting also apply to indexing (See
the following subsection describing Indexing.) The following rules apply to
subscripting:

1. A subscript can be represented by any arithmetic expression.

2. In Format 2, argument is an intrinsic function argument that is allowed to
be repeated a variable number of times. Note that Format 1 also applies to
intrinsic function arguments, but not with ALL subscripts. When ALL is
specified as a subscript, the effect is as if each table element associated with
that subscript position were specified. (For a list of the intrinsic functions
that permit arguments with ALL subscripts, and for more information, see
Chapter 7.) Also in Format 2, data-name is the data-name of a numeric
integer elementary item.

3. Identifiers in subscript arithmetic expressions must refer to elementary
numeric data items.

4. The lowest valid subscript value is 1. This value points to the first element of
the table. Subscript values 2, 3, and so on, point to the next consecutive table
elements.
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5. The highest valid subscript value is the maximum number of occurrences of
the item specified in the OCCURS clause.

6. The subscript or set of subscripts that identifies the table element is delimited
by a balanced pair of left and right parentheses.

7. Each table element reference must include subscripting. However, the
reference cannot include subscripting when it is one of the following:

• The subject of a SEARCH statement

• In a REDEFINES clause

• In the KEY IS phrase of an OCCURS clause

8. The subscript or set of subscripts follows the table element’s data-name. The
data-name is then called a subscripted data-name or an identifier.

9. The number of subscripts following a table element reference must equal the
number of dimensions in the table; that is, there must be a subscript for each
OCCURS clause in the hierarchy that contains the table element and one for
the table element itself.

10. A data-name can have up to 48 subscripts.

11. Subscripts must appear in the order of successively less inclusive dimensions
of the table.

12. An arithmetic expression in a subscript cannot begin with a left parenthesis
if the preceding arithmetic expression ends with a data-name.

Note

Use the check compiler option with the bounds keyword for run-time
upper- and lower-bound subscript range verification. The default action is
not to check. For more information, refer to the COBOL online help file
for your particular platform.

In the following examples, references to ITEME require two subscripts. The
first subscript refers to the occurrence number of the most inclusive dimension,
ITEMD (that contains ITEME).

Example 6–1 Subscripting Example

WORKING-STORAGE SECTION.
01 ITEMA PIC 99 COMP VALUE IS 3.
01 ITEMB PIC 99 COMP VALUE IS 5.
01 ITEMC VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWX".

03 ITEMD OCCURS 4 TIMES.
05 ITEME OCCURS 6 TIMES PIC X.

IDENTIFIER VALUE

ITEME (4,3) U

ITEME (ITEMA,ITEMB) Q

ITEME (ITEMA * 2 - 4, ITEMB - 2) I

ITEME (ITEMA * ITEMB / 15, (ITEMA + ITEMB) / 4) B
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Indexing
Indexing is a special subscripting procedure. In indexing, you use the INDEXED
BY phrase of the OCCURS clause to assign an index-name to each table level.
You then refer to a table element using the index-name as a subscript.

The general format for indexing follows:

� data-name
condition-name

�
(

����
��


, index-name

� � +
–

�
literal-2

�

, literal-1

����
��� . . . )

All the restrictions in the rules for subscripting apply to indexing. (See
Subscripting.) The following rules apply only to indexing:

1. You must give index-name an initial value before using it. You can do this
in:

• A SET statement

• A SEARCH statement with the ALL phrase

• A PERFORM statement with the VARYING phrase

Furthermore, only the statements in the previous list can change the value of
index-name.

2. Indexing can be either direct or relative. Direct indexing means that the
value of index-name or literal-1 is the occurrence number. Relative indexing
means that the occurrence number is the value of index-name plus or minus
literal-2. literal-2 must be an unsigned integer.

Note

Use the check compiler option with the bounds keyword for run-time
upper- and lower-bound index range verification. The default is not to
check. For more information, refer to the COBOL online help file for your
particular platform.
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Example 6–2 is similar to Example 6–1 that illustrates subscripting. However,
this example shows the use of index-names in references to the table, initializing
indexes with the SET statement, and storing index-name values in index data
items.

Example 6–2 Indexing Example

WORKING-STORAGE SECTION.
01 ITEMA USAGE IS INDEX.
01 ITEMB USAGE IS INDEX.
01 ITEMC VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWX".

03 ITEMD OCCURS 4 TIMES
INDEXED BY DX.
05 ITEME OCCURS 6 TIMES

INDEXED BY EX PIC X.
PROCEDURE DIVISION.
PARA.

SET DX TO 4.
SET EX TO 1.
DISPLAY ITEMD (DX). !
DISPLAY ITEME (DX, EX). "
DISPLAY ITEME (DX - 3, EX) #
SET ITEMA TO DX.
SET ITEMB TO EX.

This example produces the following results:

! : STUVWX

" : S

# : A

6.2.3 Reference Modification
Reference modification defines a subset of a data item by specifying its leftmost
character and length.

General Format�
data-name
FUNCTION function-name [ ( {argument} . . . ) ]



( leftmost-character-position : [ length ] )

data-name must refer to a data item whose usage is DISPLAY.

function-name must refer to an alphanumeric function.

The specifications for leftmost-character-position and length must be arithmetic
expressions.

Each character of a data item has an ordinal number corresponding to its
position. The leftmost position is number 1; successive positions to the right
are numbered 2, 3, 4, and so on. If the data-name’s data description entry has a
SIGN IS SEPARATE clause, the sign position is assigned an ordinal number in
the data item.

For a data item defined as numeric, numeric edited, alphanumeric, alphabetic,
or alphanumeric edited, reference modification operates as if the data item were
redefined as an alphanumeric data item the same size as that referred to by
data-name.
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Unless otherwise specified by the rules for a statement, reference modification
is evaluated only once, at the beginning of a statement. Reference modification
is evaluated immediately after subscripting or indexing evaluation. Rules that
describe the evaluation of subscripting for the various statements also apply to
the evaluation of reference modification.

The components of reference modification define the data item as follows:

• The evaluation of leftmost-character-position specifies the ordinal position of
the data item’s leftmost character. This position is relative to the leftmost
character of the data item referred to by data-name. Evaluation of leftmost-
character-position must result in an integer that is not less than 1, or greater
than the number of characters in the data item referred to by data-name.

• The evaluation of length specifies the size of the unique data item. The
evaluation must result in a positive integer. The sum of leftmost-character-
position and length minus the value 1 must not exceed the number of
characters in the data item referred to by data-name.

• If there is no length, the data item extends:

From and including the character identified by leftmost-character-position
of the data item referred to by data-name

To and including the rightmost character of the data item referred to by
data-name

The resulting unique data item is treated as an elementary item without
the JUSTIFIED clause. It has the same class and category as the data item
referred to by data-name. However, the categories numeric, numeric edited, and
alphanumeric edited are considered category alphanumeric.

Reference modification is valid anywhere an alphanumeric identifier is allowed
unless specific rules for a general format prohibit it.

Note

Use the check compiler option with the bounds keyword for run-time
upper- and lower-bound reference modification range verification. The
default is not to check. For more information, refer to the COBOL online
help file for your particular platform.

Examples
WORKING-STORAGE SECTION.
01 ITEMA PIC X(15) VALUE IS "ABCDEFGHIJKLMNO".
01 ITEMB PIC 99 VALUE IS 10.

IDENTIFIER VALUE

ITEMA (2:3) BCD

ITEMA (ITEMB:2) JK

ITEMA (ITEMB / 2:ITEMB - 6) EFGH

ITEMA (ITEMB:) JKLMNO
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6.2.4 Identifiers
In Procedure Division rules, the term identifier means the complete specification
of a data item. The term refers to all words required to make your reference to
the item unique.

To reference a data item that is a function, a function-identifier is used. For
information on functions, see Chapter 7.

The general formats for identifiers are as follows:

Format 1

data-name [ qualification ] [ subscripting ] [ reference modification ]

Format 2

data-name [ qualification ] [ indexing ] [ reference modification ]

Format 3

FUNCTION function-name [ ( {argument} . . . ) ] [ reference modification ]

For more information on the methods of uniquely specifying data items, see the
following:

• Section 6.2.1, Qualification

• Section 6.2.2, Subscripts and Indexes

• Section 6.2.3, Reference Modification

• Section 6.2.6, Scope of Names

6.2.5 Ensuring Unique Condition-Names
If the name you use as a condition-name appears in more than one place in your
program, it can be made unique through qualification, indexing, or subscripting.
Your condition-name also is unique when the scope of names conventions by
themselves ensure this as described in Section 6.2.6, Scope of Names.

The first qualifier for a condition-name can be the name of the item with which
it is associated (the conditional variable). When qualifying condition-names, you
must use the name of the conditional variable itself or the names of items that
contain it.

References to a condition-name must have the same combination of subscripting
or indexing that you use for the conditional variable.

The formats you use to ensure unique condition-names are the same as those
used for an identifier, except condition-name replaces data-name.

In Procedure Division rules, the term condition-name refers to a condition-
name along with any qualification and subscripting or indexing needed to avoid
ambiguity.

6.2.6 Scope of Names
A contained COBOL program can refer to a user-defined word in its containing
program if the user-defined word has the global attribute. (See Section 1.2.1.1 in
Section 1.2.1.) Some user-defined words always have the global attribute, some
never have the attribute (that is, they are local), and some might or might not,
depending on the use of the GLOBAL clause. The following rules explain how to
use different kinds of user-defined words and what kinds of local and global name
scoping to expect.
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1. The following types of user-defined words are always local and can be
referenced only by statements and entries in the program declaring them:

• Paragraph-name

• Section-name

2. These user-defined words are always local when you define them in the
Report Section. Only those statements and entries in the program containing
the entries can reference them.

• Condition-name

• Data-name

• Record-name

3. The following user-defined word is always local when you define it in the
Screen Section. Only those statements and entries in the program containing
the entries can reference it.

• Screen-name

4. Because you cannot specify a Configuration Section for a program contained
within another program, the following types of user-defined words are always
global when declared in the Configuration Section. You can reference them
only by statements and entries either in the program that contains the
Configuration Section or in any program contained within that program.

• Alphabet-name

• Condition-name (declared in the Special Names paragraph)

• Mnemonic-name

• Symbolic-character-name

• Switch-name

• Class-name

5. The following user-defined words are global if you specify the GLOBAL
clause:

• Condition-name (declared in the Data Division)

• Data-name

• File-name

• Index-name

• Record-name

• Report-name

• Segmented-key-name (if you specify the GLOBAL clause on the
corresponding file-name)

Specific conventions for declarations and references apply to these types of
user-defined words whenever the previous conditions do not apply.
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Whenever duplicate names exist, a program always references the resource in its
own program. If the resource is not in the referencing program, the following two
conventions are used:

• Conventions for resolving program-name references

• Conventions for resolving other references

The next two sections describe these conventions.

6.2.6.1 Conventions for Resolving Program-Name References
The PROGRAM-ID paragraph of the Identification Division declares the program-
name; a user-defined word to identify the program. Only the CALL and CANCEL
statements and the END PROGRAM header can reference a program-name.

A run unit can contain multiple programs with duplicated program-names.
However, when two programs have duplicate program-names, one of the two
programs must directly or indirectly be contained within a separately compiled
program that does not contain the program with the duplicated program-name.

The following rules regulate the scope of program-name:

1. Within a run unit, any separately compiled program can reference any other
separately compiled program.

2. If a program-name does not have the COMMON attribute and it is contained
directly within another program, the contained program can be referenced
only by statements included in the directly containing program.

For example, in the run unit consisting of the three separately compiled
programs illustrated in Example 6–3, Example 6–4, and Example 6–5:

• MAIN-PROGRAM (See ! in Example 6–3) directly contains program
PROG-NAME-A # and indirectly contains PROG-NAME-B %, PROG-
NAME-C &, PROG-NAME-D ’, and PROG-NAME-F ).

• PROG-NAME-B (See +? in Example 6–4.)

• PROG-NAME-E (See +@ in Example 6–5.)

The CALL ‘‘PROG-NAME-B’’ statement in PROG-NAME-A (See $ in
Example 6–3.) references PROG-NAME-B % in the same separately compiled
program (MAIN-PROGRAM) because PROG-NAME-B % is directly contained
in PROG-NAME-A. All other CALL ‘‘PROG-NAME-B’’ statements (" and (
and +> in Example 6–3 and +A in Example 6–5) all reference PROG-NAME-B
+? in Example 6–4, the second separately compiled program.
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Example 6–3 Separately Compiled Program 1

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM. !
.
.
.

CALL "PROG-NAME-B". "
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-A. #
.
.
.

CALL "PROG-NAME-B". $
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. %
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-C. &
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-D. ’
.
.
.

CALL "PROG-NAME-B". (
.
.
.
END PROGRAM PROG-NAME-D.
END PROGRAM PROG-NAME-C.
END PROGRAM PROG-NAME-B.
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-F. )
.
.
.

CALL "PROG-NAME-B". +>
.
.
.
END PROGRAM PROG-NAME-F.
END PROGRAM PROG-NAME-A.
END PROGRAM MAIN-PROGRAM.
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Example 6–4 Separately Compiled Program 2

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. +?
.
.
.

Example 6–5 Separately Compiled Program 3

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-E. +@
.
.
.

CALL "PROG-NAME-B". +A
.
.
.

3. If a program-name has the COMMON attribute and it is contained directly
within another program, the contained program can be referenced only by the
following:

• Statements in the directly containing program

• Statements in any programs, directly or indirectly contained within the
directly containing program, except statements in the program with the
COMMON attribute and in any program it directly or indirectly contains

For example, in the run unit consisting of the three separately compiled
programs illustrated in Example 6–6, Example 6–7, and Example 6–8:

• MAIN-PROGRAM (see ! in Example 6–6) directly contains PROG-
NAME-A #, and indirectly contains PROG-NAME-B (IS COMMON) %,
PROG-NAME-C &, PROG-NAME-D ’, PROG-NAME-F ), and PROG-
NAME-G +?.

• PROG-NAME-B (See +A in Example 6–7.)

• PROG-NAME-E (See +B in Example 6–8.)

The CALL ‘‘PROG-NAME-B’’ statement in PROG-NAME-A (See $ in
Example 6–6) references PROG-NAME-B IS COMMON % because it is
directly contained in PROG-NAME-A. The CALL ‘‘PROG-NAME-B’’ statement
in PROG-NAME-F (See +> in Example 6–6) references PROG-NAME-B
IS COMMON % because PROG-NAME-F is directly contained in PROG-
NAME-A. The CALL ‘‘PROG-NAME-B’’ statement in PROG-NAME-G (See
+@ in Example 6–6) references PROG-NAME-B IS COMMON % because
PROG-NAME-G is indirectly contained in PROG-NAME-A. The remaining
CALL ‘‘PROG-NAME-B’’ statements (" and ( in MAIN-PROGRAM and +C
in PROG-NAME-E) all reference the separately compiled program, PROG-
NAME-B +A.
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Example 6–6 Separately Compiled Program 1

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM. !
.
.
.

CALL "PROG-NAME-B". "
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-A. #
.
.
.

CALL "PROG-NAME-B". $
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B IS COMMON. %
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-C. &
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-D. ’
.
.
.

CALL "PROG-NAME-B". (
.
.
.
END PROGRAM PROG-NAME-D.
END PROGRAM PROG-NAME-C.
END PROGRAM PROG-NAME-B.
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-F. )
.
.
.

CALL "PROG-NAME-B". +>
.
.
.
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-G. +?
.
.
.

CALL "PROG-NAME-B". +@
.
.

(continued on next page)
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Example 6–6 (Cont.) Separately Compiled Program 1

.
END PROGRAM PROG-NAME-G.
END PROGRAM PROG-NAME-F.
END PROGRAM PROG-NAME-A.
END PROGRAM MAIN-PROGRAM.

Example 6–7 Separately Compiled Program 2

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. +A
.
.
.

Example 6–8 Separately Compiled Program 3

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-E. +B
.
.
.

CALL "PROG-NAME-B". +C
.
.
.

6.2.6.2 Conventions for Resolving Other References
When a source program declares condition-names, data-names, file-names,
record-names, report-names, and segmented-key-names, only the declaring source
program can reference these names. The only exception is when names have the
GLOBAL attribute and the program contains other programs.

For example, when a program such as PROG-NAME-A (See ! in Example 6–9)
contains other programs (PROG-NAME-B +> and PROG-NAME-C ,C), each
program can define the same user-defined word. When such duplicated names
are referenced, the rules for qualification of names (see Section 6.2.1) apply; and,
if necessary, the following three hierarchical rules resolve any ambiguity:

1. References in a program to names defined in that program are resolved within
the program. For example:

• The following names: ", #, $, and % are both defined and referenced
within PROG-NAME-A.

• The following names: +?, +@, +A, +B, and +C are both defined and referenced
within PROG-NAME-B.

• The following names: ,D and ,E are both defined and referenced within
PROG-NAME-C.

2. A program cannot reference any condition-name, data-name, file-name,
record-name, or report-name defined in a program it contains. For example,
statements in PROG-NAME-A (See &, ’, (, and )) cannot reference items
in either PROG-NAME-B or PROG-NAME-C. Statements in PROG-NAME-B
(see +D through ,B) cannot reference items in PROG-NAME-C.
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3. If a program contains another program, any GLOBAL names defined in the
containing program can be referenced by the following:

• Statements in a directly contained program, provided that the directly
containing program does not declare the same user-defined word, in
which case, rule 1 applies. For example, compare the Procedure Division
statement MOVE EXAMPLE1 . . . ,? with MOVE EXAMPLE2 . . . ,@ in
the same contained program.

• Statements in an indirectly contained program, provided that neither
the indirectly containing program nor any program in between declare
the same name as a GLOBAL name. For example, compare the
Procedure Division statement MOVE EXAMPLE3 . . . ,G with MOVE
EXAMPLE2 . . . ,F in the same contained program.

Example 6–9 Resolving References to Miscellaneous Names

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-A. !
DATA DIVISION.
FILE SECTION.
FD FILE-NAME . . . "
01 RECORD-NAME . . . #
FD GLOBAL-FILE-NAME . . . IS GLOBAL . . .
WORKING-STORAGE SECTION.
01 EXAMPLE1 . . . IS GLOBAL . . .
01 EXAMPLE2 . . . IS GLOBAL . . .
01 EXAMPLE3 . . . IS GLOBAL . . .
01 SWITCH-STATUS. $

88 ON VALUE IS "1".
88 OFF VALUE IS "0".

01 DATA-NAME . . . %
PROCEDURE DIVISION.

MOVE DATA-NAME TO . . . &
IF SWITCH-STATUS IS ON . . . ’
MOVE RECORD-NAME TO . . . (
OPEN INPUT FILE-NAME . . . )

(continued on next page)
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Example 6–9 (Cont.) Resolving References to Miscellaneous Names

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. +>
DATA DIVISION.
FILE SECTION.
FD FILE-NAME . . . +?
01 RECORD-NAME . . . +@
WORKING-STORAGE SECTION.
01 SWITCH-STATUS. +A

88 ON VALUE IS "1".
88 OFF VALUE IS "0".

01 DATA-NAME . . . +B
01 EXAMPLE2 . . . +C
01 EXAMPLE3 . . . IS GLOBAL . . .
01 EXAMPLE4 . . . IS GLOBAL . . .
PROCEDURE DIVISION.

MOVE DATA-NAME TO . . . +D
IF SWITCH-STATUS IS ON . . . +E
MOVE RECORD-NAME TO . . . +F
OPEN INPUT FILE-NAME . . . +G
OPEN OUTPUT GLOBAL-FILE-NAME. ,>
MOVE EXAMPLE1 . . . ,?
MOVE EXAMPLE2 . . . ,@
MOVE EXAMPLE3 . . . ,A
MOVE EXAMPLE4 . . . ,B

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-C. ,C
WORKING-STORAGE SECTION.
01 EXAMPLE2 . . . ,D
01 EXAMPLE4 . . . ,E
PROCEDURE DIVISION.

OPEN OUTPUT GLOBAL-FILE-NAME.
MOVE EXAMPLE1 . . .
MOVE EXAMPLE2 . . . ,F
MOVE EXAMPLE3 . . . ,G
MOVE EXAMPLE4 . . .

END PROGRAM PROG-NAME-C.
END PROGRAM PROG-NAME-B.
END PROGRAM PROG-NAME-A.

If a data item possesses either or both the EXTERNAL or GLOBAL attributes
and includes a table defining an index-name, that index-name also possesses
either or both attributes.

If the file associated with a segmented key possesses either or both the
EXTERNAL or GLOBAL attributes, that segmented key also possesses either
or both attributes.

6.2.7 External and Internal Data
External data is associated with a run unit. Any program in the run unit
describing the external data can reference that data. (See the EXTERNAL clause
in Chapter 5.) There is only one representation of an external data object.

Internal data is associated with a specific program.

External and internal data can have global names. (See the GLOBAL clause in
Chapter 5.)
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6.3 Explicit and Implicit Specifications
The four types of explicit and implicit specifications follow:

• Procedure Division references

• Control transfers

• Attributes

• Scope terminators

6.3.1 Explicit and Implicit Procedure Division References
A source program can refer to data items explicitly or implicitly in Procedure
Division statements.

An explicit reference occurs when the name of the item is in a Procedure Division
statement or copied into the Procedure Division by a COPY statement.

An implicit reference occurs under the following conditions:

• When a Procedure Division statement refers to an item whose name does not
appear in the statement.

• During PERFORM statement execution. The PERFORM statement’s control
mechanism can initialize, change, and evaluate an index or data item referred
to in the VARYING, AFTER, and UNTIL phrases. These implicit references
occur only if the PERFORM statement execution involves the data item.

6.3.2 Explicit and Implicit Control Transfers
The mechanism that controls program flow implicitly transfers control from one
statement to another in the order in which the statements appear in the source
program. The transfer occurs in this sequence unless an explicit control transfer
overrides it, or there is no next executable statement.

A program can contain both explicit and implicit changes to the control transfer
mechanism.

Implicit control transfer can also occur when normal program flow changes
without executing a procedure-branching statement. For example:

• A paragraph can execute under the control of another COBOL statement
(such as PERFORM, USE, SORT, and MERGE). If the paragraph is the last
in the controlling statement’s range, an implied control transfer occurs from
the last statement in the paragraph to the controlling statement’s control
mechanism.

An implicit control transfer occurs between the control mechanism of a
PERFORM statement that causes iterative execution and the first paragraph
in its range. The transfer occurs for each iterative execution of the paragraph.

• When a SORT or MERGE statement executes, an implicit control transfer
occurs to associated input or output procedures.

• When the execution of a statement causes the execution of a Declaratives
Section, the control transfer is implicit. Another implicit control transfer
occurs after execution of the Declaratives Section.
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• If the Procedure Division does not have any Declaratives Sections, the
program’s first executable statement is the first executable statement in the
Procedure Division. Otherwise, the program’s first executable statement is
the first executable statement after the declaratives part of the Procedure
Division.

An explicit control transfer is a change to the implicit control transfer mechanism
caused only by execution of either:

• A procedure-branching statement

• A conditional statement

The EXIT procedure-branching statement causes an explicit control transfer only
when it has the PROGRAM phrase.

The Procedure Branching statement ALTER does not cause an explicit control
transfer. However, it affects the explicit control transfer of the associated GO TO
statement.

The term next executable statement refers to the next COBOL statement to
which control transfers according to these rules and those associated with each
language element.

There is no next executable statement when the program has no Procedure
Division. This is also the case after:

• The last statement in a Declaratives Section, when the paragraph in which it
appears is not executing under the control of another COBOL statement

• The last statement in a program, when the paragraph in which it appears is
not executing under the control of another COBOL statement

• A STOP RUN or EXIT PROGRAM statement, when execution control
transfers outside of the COBOL program containing the statement

• An END PROGRAM header

When there is no next executable statement and control does not transfer out of
the program, program control flow is undefined. However, an EXIT PROGRAM
statement implicitly executes when the program is under the control of a CALL
statement.

6.3.3 Explicit and Implicit Attributes
An explicit attribute is an attribute the program explicitly specifies. If the
program does not explicitly specify an attribute, the attribute assumes a default;
it is then an implicit attribute.

For example, a program need not specify USAGE for a data item. If it does not,
the data item’s implicit usage is DISPLAY.

6.3.4 Explicit and Implicit Scope Terminators
Scope terminators delimit the scope of some Procedure Division statements as
described in Section 6.1.4.

The following are explicit scope terminators:

END-ACCEPT END-ADD END-CALL

END-COMPUTE END-DELETE END-DIVIDE
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END-EVALUATE END-IF END-MULTIPLY

END-PERFORM END-READ END-RETURN

END-REWRITE END-SEARCH END-START

END-STRING END-SUBTRACT END-UNSTRING

END-WRITE

The following are implicit scope terminators:

• At the end of a sentence the separator period terminates the scope of all
previously unterminated statements.

• In a statement containing another statement the next phrase of the
containing statement after the end of the contained statement terminates
the scope of all unterminated contained statements. Examples are ELSE and
WHEN.

6.4 Arithmetic Expressions
Whenever the term arithmetic expression appears in Procedure Division rules,
it refers to one of the following:

• An identifier of a numeric elementary item

• A numeric literal

• A figurative constant ZERO (ZEROS, ZEROES)

• Two or more of the above separated by arithmetic operators

• Two or more arithmetic expressions separated by arithmetic operators

• An arithmetic expression enclosed in parentheses

A unary operator (a sign) can precede any arithmetic expression.

The identifiers and literals in an arithmetic expression must represent either of
the following:

• Numeric elementary items

• Numeric literals on which arithmetic can be performed

Evaluation rules for arithmetic expressions depend on whether the mode of
arithmetic in effect is native or standard.

6.4.1 Arithmetic Operators
Arithmetic expressions can use five binary and two unary arithmetic operators.
A space must precede each operator and follow each binary operator.

The operators are as follows:

Binary Arithmetic Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division
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Binary Arithmetic Operator Meaning

** Exponentiation

Unary Arithmetic Operator Meaning

+ The effect of multiplication by +1

- The effect of multiplication by -1

6.4.2 Formation and Evaluation of Arithmetic Expressions
The following rules apply regardless of the mode of arithmetic that is in effect.

Parentheses can be used to specify the order in which elements in an arithmetic
expression are evaluated. Expressions within parentheses are evaluated first.
If you nest sets of parentheses, evaluation starts with the innermost set of
parentheses and proceeds to the outermost set.

If the arithmetic expression contains no parentheses, the compiler evaluates
arithmetic operators in the following hierarchical order:

First Unary plus and minus

Second Exponentiation

Third Multiplication and division

Fourth Addition and subtraction

This order also applies within a single set of parentheses.

If two or more operators are at the same hierarchical level, and parentheses do
not specify the sequence of operations, evaluation proceeds from left to right.

Parentheses can eliminate ambiguities in logic when there are consecutive
operations at the same hierarchical level, or change the normal hierarchical
sequence of evaluation.

Consider the following expression:

(3 * ITEMA - 2) / ((4 + ITEMB) * -ITEMA - ITEMC ** 2)

The order of evaluation is as follows:

1. 4 + ITEMB

2. -ITEMA

3. 3 * ITEMA

4. (The results of step 3) - 2

5. ITEMC ** 2

6. (The results of step 1) * (the results of step 2)

7. (The results of step 6) - (the results of step 5)

8. (The results of step 4) / (the results of step 7)

Each left parenthesis in an arithmetic expression must have a matching right
parenthesis, and each right parenthesis must have a matching left parenthesis.
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If the first operator in an arithmetic expression is a unary operator, a left
parenthesis ( ( ) must immediately precede it when the arithmetic expression
immediately follows an identifier or another arithmetic expression. For example:

CALL "OTHERPROG" USING ITEMA (-ITEMB) ITEMC.

The following rules apply to the evaluation of exponentiation:

1. If the value of an expression to be raised to a power is zero, the exponent
value must be greater than zero. Otherwise, the size error condition exists.
(See Section 6.6.4.)

2. If the evaluation yields both a positive and negative real number, the positive
number is the result.

3. If the evaluation yields no real number, the size error condition exists.

If the evaluation of the arithmetic expression results in an attempted division by
zero, the size error condition exists.

When a statement with an arithmetic expression does not refer to a resultant
identifier, the compiler stores the results of the arithmetic expression in an
intermediate data item. (See Section 6.6.1.)

6.4.3 Standard Arithmetic (Alpha, I64)
When a floating-point data item is an operand in an arithmetic expression or an
arithmetic statement, the rules for evaluation are described in Section 6.4.4.1.1

When standard arithmetic is in effect, the following rules apply:

1. Any operand of an arithmetic expression that is not already contained in a
standard intermediate data item is converted into a standard intermediate
data item.

2. The size error condition is raised if the value is too large or too small to be
contained in a standard intermediate data item.

A standard intermediate data item is of the class numeric and the category
numeric. It is the unique value zero or an abstract, signed, normalized decimal
floating-point temporary data item.

A standard intermediate data item has the unique value of zero or a
value whose magnitude is in the range 10**-100 through 10**99 - 10**67,
that is, (.100 000 000 000 000 000 000 000 000 000 00E-99) through
(.999 999 999 999 999 999 999 999 999 999 99E+99)2 inclusive, with a precision
of 32 decimal digits.

When the value of a standard intermediate data item is not zero, the fraction
contains no digits to the left of the decimal point and contains a digit other than
zero to the immediate right of the decimal point.

A standard intermediate data item is rounded to 31 digits in the situations listed
below.

1. When a standard intermediate data item is compared.

1 A floating-point data item has one of these usages: COMP-1, COMP-2, FLOAT-SHORT,
FLOAT-LONG, or FLOAT-EXTENDED.

2 The blanks are added for readability.
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2. When a standard intermediate data argument is the argument of a function
and there is no equivalent arithmetic expression defined for the rules of
the function, unless otherwise specified in the rules for a function or unless
situation 1, above, applies.

3. When a standard intermediate data item is being moved to a resultant-
identifier for which the ROUNDED phrase has not been specified. Rounding
of a standard intermediate data item may cause the size error condition to be
raised.3

When a standard intermediate data item is being moved to a resultant-identifier
for which the ROUNDED phrase is specified, the number of digits to which
rounding occurs is as specified in the ROUNDED phrase.

When arithmetic expressions using addition, subtraction, multiplication, division,
exponentiation, unary plus, and unary minus are evaluated, the exact result
is truncated to 32 significant digits, normalized, and stored in a standard
intermediate data item.

6.4.4 Native Arithmetic (Alpha, I64)
When a floating-point data item is an operand in an arithmetic expression
or an arithmetic statement, the rules for evaluation are those described in
Section 6.4.4.1.

When native arithmetic is in effect, the following rules apply:

1. If the result of an arithmetic expression can be represented without loss
of significance in 38 decimal digits or less, then decimal or computational
operations are used to evaluate the expression.

2. When it is possible for an expression to produce more than 38 decimal digits,
an intermediate data item is selected based on the MATH_INTERMEDIATE
qualifier.

The compiler assumes that all possible digit positions of a variable are
significant.

6.4.4.1 FLOAT Arithmetic (Alpha, I64)
A double-precision binary floating-point intermediate data item is selected when
/MATH_INTERMEDIATE=FLOAT is specified. On OpenVMS Alpha and I64 this
is a G_floating or T_floating data item; on Tru64 UNIX, this is a T_floating data
item. Refer to the Alpha Architecture Reference Manual for more information on
floating-point data types and operations.

A G_floating data item has a sign bit, an 11-bit binary exponent, and a
normalized 53-bit fraction with the redundant most significant fraction bit not
represented. The magnitude of a G_floating data item is in the approximate
range 0.56 * 10**-308 through 0.9 * 10**308. The precision of a G_floating data
item is approximately one part in 2**52, typically 15 decimal digits.

A T_floating data item has a sign bit, an 11-bit binary exponent, and a 52-bit
fraction. HP COBOL generates code that uses the finite, normalized, floating-
point range capabilities of T_floating. The magnitude of a T_floating data item is
in the approximate range 2.2 * 10**-308 through 1.8 * 10**308. The precision of
a T_floating data item is approximately one part in 2**52, typically 15 decimal
digits.

3 These rules are intended to eliminate excessive rounding and to ensure that rounding
occurs once at the end of the evaluation of nested arithmetic expressions.
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When the destination of an arithmetic statement is a floating-point data item,
normal rounding takes place.

When an arithmetic expression references a floating-point operand, floating-point
operations are used to evaluate the expression, and the result is represented in
a floating-point intermediate data item. Floating-point operations use normal
rounding; implicit conversions to integer are chopped. HP COBOL provides
support for finite (normalized) floating-point values only.

When arithmetic expressions using addition, subtraction, multiplication, division,
exponentiation, unary plus, and unary minus are evaluated, the exact result
is truncated to 53 significant bits, normalized, and stored in a floating-point
intermediate data item.

6.4.4.2 CIT3 Arithmetic (Alpha, I64)
A decimal floating-point intermediate data item is selected when the qualifier
/MATH_INTERMEDIATE=CIT3 is specified.

A CIT3 intermediate data item has the unique value of zero or a value
whose magnitude is in the range 10**-100 through 10**99 - 10**81, that
is, (.100 000 000 000 000 000E-99) through (.999 999 999 999 999 999E+99)4

inclusive, with a precision of 18 decimal digits.

When a CIT3 intermediate data item is being moved to a resultant-identifier for
which the ROUNDED phrase is specified, the number of digits to which rounding
occurs is as specified in the ROUNDED phrase; when the ROUNDED phrase is
not present, no rounding takes place.

When arithmetic expressions addition, subtraction, multiplication, division,
exponentiation, unary plus, and unary minus are evaluated, the exact result is
truncated to 18 significant digits, normalized, and stored in a CIT3 intermediate
data item.

6.4.4.3 CIT4 Arithmetic (Alpha, I64)
A decimal floating-point intermediate data item is selected when /MATH_
INTERMEDIATE=CIT4 is specified.

A CIT4 intermediate data item has the unique value of zero or a value
whose magnitude is in the range 10**-100 through 10**99 - 10**67,
that is, (.100 000 000 000 000 000 000 000 000 000 00E-99) through
(.999 999 999 999 999 999 999 999 999 999 99E+99)1 inclusive, with a precision
of 32 decimal digits.

Rounding rules for CIT4 arithmetic are the same as those described in
Section 6.4.3.

When arithmetic expressions using addition, subtraction, multiplication, division,
exponentiation, unary plus, and unary minus are evaluated, the exact result is
truncated to 32 significant digits, normalized, and stored in a CIT4 intermediate
data item. ♦

4 The blanks are added for readability.
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6.5 Conditional Expressions
A conditional expression specifies a condition the program must evaluate to
determine the path of program flow. If the condition is true, the program takes
one path; if it is false, the program takes another path. The IF, EVALUATE,
PERFORM UNTIL, PERFORM VARYING, and SEARCH statements use
conditional expressions. Any statement that can contain another imperative
statement can contain a conditional expression.

A conditional expression can be either a simple or a complex condition. The types
of simple conditions are the relation, class, condition-name, switch-status, sign,
and success/failure conditions. Complex conditions are formed by using logical
operators (AND, OR, NOT) with simple conditions. You can enclose conditions
within any number of paired parentheses. However, embedding conditions this
way has no effect on whether they are considered simple or complex.

6.5.1 Relation Conditions
A relation condition states a relation between two operands. The program
compares the operands to determine whether the stated relation is true or false.
The first operand is called the condition’s subject. The second operand is called its
object. Either operand can be an identifier, a literal, or the value of an arithmetic
expression. The set of words that specifies the type of comparison is called the
relational operator.

The format for a relation condition is as follows:

Subject Relational Operator Object

� identifier-1
literal-1
arithmetic-expression-1

�

���������������������������������
�������������������������������


IS [ NOT ] GREATER THAN

IS [ NOT ] >

IS [ NOT ] LESS THAN

IS [ NOT ] <

IS [ NOT ] EQUAL TO

IS [ NOT ] =

IS GREATER THAN OR EQUAL TO

IS >=

IS LESS THAN OR EQUAL TO

IS <=

���������������������������������
��������������������������������

� identifier-2
literal-2
arithmetic-expression-2

�

You can compare two numeric operands regardless of their USAGE. However, if
one or both of the operands are not numeric, they must have the same USAGE.
If either operand is a group item, then the comparison is treated as nonnumeric,
since group items are always considered alphanumeric.

You must refer to at least one variable in a relation condition; you cannot refer
only to literals.
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A space must precede and follow each word in the relational operator. However,
NOT and the key word or relation character that follows NOT are treated as a
unit.

The following relational operators are equivalent:

• IS NOT GREATER THAN is equivalent to IS LESS THAN OR EQUAL TO

• IS NOT LESS THAN is equivalent to IS GREATER THAN OR EQUAL TO

Table 6–3 specifies valid true conditions that correspond to each relational
operator.

Table 6–3 Relational Operators and Corresponding True Conditions

Relational Operator True Condition

IS GREATER THAN
IS > THAN

Subject is greater than object.

IS NOT GREATER THAN
IS NOT > THAN

Subject is either less than or equal to object.

IS LESS THAN
IS < THAN

Subject is less than object.

IS NOT LESS THAN
IS NOT < THAN

Subject is either greater than or equal to object.

IS EQUAL TO
IS = TO

Subject is equal to object.

IS NOT EQUAL TO
IS NOT = TO

Subject is either greater than or less than object.

IS GREATER THAN OR EQUAL
TO
IS >=

Subject is greater than or equal to object.

IS LESS THAN OR EQUAL TO
IS <=

Subject is less than or equal to object.

The following two sections specify the rules that apply to numeric and
nonnumeric comparisons in relation conditions.

6.5.1.1 Comparison of Numeric Operands
When both operands are numeric, their algebraic values are compared. The
program performs the necessary conversion if the data descriptions of the
operands specify different USAGE. When you use operands that are literals or
arithmetic expressions, their length (in terms of the number of digits represented)
is not significant.

Unsigned numeric operands are assumed to be positive for comparison. A zero
value is always treated the same way, whether or not the operand contains a
sign.

6.5.1.2 Comparison of Nonnumeric Operands
When one (or both) of the operands is nonnumeric, each operand is considered
a string of alphanumeric characters. Therefore, the operands are compared
according to the program’s collating sequence. (See the OBJECT-COMPUTER
paragraph in Chapter 4.)
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If one of the operands is numeric, it must be either an integer literal or a data
item described as an integer. The data item must be implicitly or explicitly
described with USAGE DISPLAY. The treatment of the numeric data item is
further affected by the following:

• If the nonnumeric operand is an elementary data item or a nonnumeric
literal, the numeric data item is treated as though it were moved to an
elementary alphanumeric data item of the same size. The content of this
alphanumeric data item is then compared to the nonnumeric operand.

• If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size. The content of this
group item is then compared to the nonnumeric operand.

• When a numeric operand contains a sign, its sign is part of the string only if
the other operand is a group item. Otherwise, the sign is removed and is not
part of the comparison.

The two operands are compared character by character, beginning at the left end
of each string. When the operation finds an unequal character pair, it uses that
pair to evaluate the comparison. The greater operand is the one that contains
the character with the higher collating sequence position. If the operands are of
unequal size, the shorter operand is treated as if it were extended on the right
with spaces to make it the same size as the other. Therefore, ABCD is greater
than ABC (unless the program’s collating sequence dictates otherwise).

Comparisons of Index-Names or Index Data Items
A program can compare the following:

• Two index-names

• One index-name and one literal or data item (other than an index data item)

• One index-name and one index data item

• Two index data items

6.5.2 Class Condition
The class condition tests whether the contents of an operand are numeric or
alphabetic. It also determines if an alphabetic operand contains only uppercase
characters, only lowercase characters, or if an operand is in conformance with
class-name. The general format is as follows:

identifier IS � NOT �

�������������
�����������


NUMERIC

ALPHABETIC

ALPHABETIC-LOWER

ALPHABETIC-UPPER

class-name

�������������
������������

The identifier must reference a data item whose usage is explicitly or implicitly
DISPLAY or COMP-3. If the identifier is a function-identifier, it must reference
an alphanumeric function.
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The following rules apply to the NUMERIC test:

1. The test is true when the operand contains only the characters 0 to 9 and the
operational sign (subject to the next rule); otherwise, it is false.

2. The operand must contain an operational sign if its PICTURE clause specifies
a sign. If the PICTURE clause does not specify a sign, the operand must not
contain one. If the operand contains a sign that is not specified, or if a sign is
specified and the operand does not contain one, the NUMERIC test is false.

3. You cannot use the test for an operand described as alphabetic or a group
item containing signed elementary items.

The following rules apply to the ALPHABETIC test:

1. The test is true when the operand contains only the characters A to Z, a to z,
and the space; otherwise, it is false.

2. You cannot use the ALPHABETIC test for an operand described as numeric.

The ALPHABETIC-LOWERCASE test is true when the operand contains only the
characters a to z, and the space; otherwise, it is false.

The ALPHABETIC-UPPERCASE test is true when the operand contains only the
characters A to Z, and the space; otherwise, it is false.

The class-name test is true when the operand consists entirely of the characters
listed in the definition of class-name in the SPECIAL-NAMES paragraph. The
class-name test must not be used with an item whose data description describes
the item as numeric.

NOT and the key word following it are treated as a unit. For example, NOT
NUMERIC is a test for determining that the operand is nonnumeric.

6.5.3 Condition-Name Condition
The condition-name condition determines if a data item contains a value
assigned to one of that item’s condition-names. The term conditional variable
refers to the data item. condition-name refers to a level 88 entry associated with
that item.

The general format for this condition is:

condition-name

The condition is true if one of the values corresponding to condition-name equals
the value of the associated conditional variable. The data description for a
variable can associate condition-name with one or more ranges of values. In
this case, the condition tests to determine if the value of the variable falls in the
specified range (end values included).

The following example illustrates testing condition-names associated with both
one value and a range of values:
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WORKING-STORAGE SECTION.
01 STUDENT-REC.

05 YEAR-ID PIC 99.
88 FRESHMAN VALUE IS 1.
88 SOPHOMORE VALUE IS 2.
88 JUNIOR VALUE IS 3.
88 SENIOR VALUE IS 4.
88 GRADUATE VALUE IS 5 THRU 10.
.
.
.

PROCEDURE DIVISION.
.
.
.

IF FRESHMAN . . .
IF SOPHOMORE . . .
IF JUNIOR . . .
IF SENIOR . . .
IF GRADUATE . . .

Condition-Name
Test Is True When the Value of the
Conditional Variable YEAR-ID Equals:

FRESHMAN 1

SOPHOMORE 2

JUNIOR 3

SENIOR 4

GRADUATE 5, 6, 7, 8, 9, or 10

When your program evaluates a conditional variable and its condition-name,
the procedure is the same as the one used with the relation condition. (See
Section 6.5.1.)

6.5.4 Switch-Status Condition
The switch-status condition tests the on or off setting of an external logical
program switch. Its general format is as follows:

condition-name

You use the SWITCH clause of the SPECIAL-NAMES paragraph to associate
condition-name with a logical switch setting. (See the SPECIAL-NAMES
paragraph in Chapter 4.) The condition is true if the switch setting in effect
during program execution is the same one assigned to condition-name.

Note

The translated value of the OpenVMS Alpha or I64 logical name
COB$SWITCHES or the Tru64 UNIX environment variable COBOL_
SWITCHES specifies logical program switch settings. (Refer to the
description of program switches in the HP COBOL User Manual.)
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6.5.5 Sign Condition
The sign condition determines if the algebraic value of an arithmetic expression
is less than, greater than, or equal to zero.

Its general format is as follows:

arithmetic-expression IS � NOT �

�����
���


POSITIVE

NEGATIVE

ZERO

�����
����

An operand is defined as:

• POSITIVE, if its value is greater than zero

• NEGATIVE, if its value is less than zero

• ZERO, if its value equals zero

arithmetic-expression must contain at least one reference to a variable.

NOT and the key word following it are treated as a unit. For example, NOT
ZERO tests for a nonzero condition.

6.5.6 Success/Failure Condition
The success/failure condition tests the return status codes of COBOL and
non-COBOL procedures for success or failure conditions.

General Format

status-code-id IS

� SUCCESS

FAILURE

�

status-code-id
must be a COMP integer represented by PIC 9(1 to 9) COMP or PIC S9(1 to 9)
COMP.

You can use the SET statement to initialize or alter the status of status-code-id.

The SUCCESS class condition is true if you specify status-code-id IS SUCCESS
and status-code-id is in a SUCCESS state. Otherwise, the SUCCESS class
condition is false.

The FAILURE class condition is true if you specify status-code-id IS FAILURE
and status-code-id is in a FAILURE state. Otherwise, the FAILURE class
condition is false.

status-code-id is in the SUCCESS state when the low-order bit of status-code-id is
1. It is in the FAILURE state when its low-order bit is 0.
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Examples

1. On OpenVMS, calling a non-COBOL procedure:

WORKING-STORAGE SECTION.
01 RMS-EOF PIC S9(9) COMP VALUE EXTERNAL RMS$_EOF.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION.
A000-BEGIN.

.

.

.
CALL "LIB$GET_SCREEN"

USING BY DESCRIPTOR INPUT-TEXT, PROMPT,
BY REFERENCE OUT-LEN,

GIVING RETURN-STATUS.
IF RETURN-STATUS = RMS-EOF PERFORM CTRL-Z-TRAP-ROUTINE.
IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.
.
.
. ♦

2. Calling a COBOL procedure:

IDENTIFICATION DIVISION.
PROGRAM-ID. MAIN-PROGRAM.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION.

.

.

.
CALL "SUB" GIVING RETURN-STATUS.
IF RETURN-STATUS IS FAILURE PERFORM FAILURE-ROUTINE.
.
.
.

IDENTIFICATION DIVISION.
PROGRAM-ID. SUB.

.

.

.
WORKING-STORAGE SECTION.
01 RETURN-STATUS PIC S9(9) COMP.
PROCEDURE DIVISION GIVING RETURN-STATUS.

.

.

.
IF A = B

SET RETURN-STATUS TO SUCCESS
ELSE

SET RETURN-STATUS TO FAILURE.
.
.
.
EXIT PROGRAM.

END PROGRAM SUB.
END PROGRAM MAIN-PROGRAM.
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6.5.7 Complex Conditions
You form complex conditions by combining or negating other conditions. The
conditions being combined or negated can be either simple or complex.

The logical operators AND and OR combine conditions. The logical operator NOT
negates conditions. A space must precede and follow each logical operator in your
program.

The truth value of a complex condition depends upon the following:

• The truth value of each condition it contains

• The effect of the logical operators

Table 6–4 shows the effect of each logical operator in complex conditions.

Table 6–4 How Logical Operators Affect Evaluation of Conditions

Logical
Operator Meaning and Effect

AND Logical conjunction. The truth value is true if both connected conditions
are true. It is false if one or both connected conditions are false.

OR Logical inclusive OR. The truth value is true if one or both connected
conditions are true. It is false if both conditions are false.

NOT Logical negation or reversal of truth value. The truth value is true if the
original condition is false. It is false if the original condition is true.

Negated Simple Conditions
The logical operator NOT negates a simple condition. The truth value of a
negated simple condition is the opposite of the simple condition’s truth value.
Thus, the truth value of a negated simple condition is true only if the simple
condition’s truth value is false. It is false only if the simple condition’s truth
value is true.

The format for a negated simple condition is as follows:

NOT simple-condition

Combined and Negated Combined Conditions
A combined condition results from connecting conditions with one of the logical
operators AND or OR.

The general format is as follows:

condition

���
�

� AND

OR

�
condition

���
�� . . .

In the general format, condition can be one of the following:

• A simple condition

• A negated simple condition

• A combined condition

• A negated combined condition; that is, NOT followed by a combined
condition enclosed in parentheses
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• Valid combinations of the preceding conditions (see Table 6–5)

You can use matched pairs of parentheses in a combined condition. You do not
need to write parentheses if the condition combines two or more conditions with
the same logical operator (either AND or OR). In this case, the parentheses
have no effect on the condition’s evaluation. However, you might have to use
parentheses if you use a mixture of AND, OR, and NOT logical operators. In this
case, the parentheses can affect the condition’s evaluation.

When the relevant parentheses are missing from a complex condition, the
evaluation order of the logical operators determines the conditions to which the
specified logical operators apply and implies the equivalent parentheses. The
evaluation order is NOT, AND, OR. Thus, specifying:

a OR NOT b AND c

implies and is equivalent to specifying:

a OR ((NOT b) AND c)

(See also Section 6.5.9.)

Table 6–5 shows the permissible combinations of conditions, logical operators, and
parentheses.

Table 6–5 Combinations of Conditions, Logical Operators, and Parentheses

In a Conditional
Expression In a Left-to-Right Element Sequence

Element

Can
Element
Be First?

Can
Element
Be Last?

Element, When Not
First, Can Immediately
Follow

Element, When Not Last, Can
Immediately Precede

simple-
condition

Yes Yes OR, NOT, AND, ( OR, AND, )

OR or AND No No simple-condition, ) simple-condition, NOT, (

NOT Yes No OR, AND, ( simple-condition, (

( Yes No OR, NOT, AND, ( simple-condition, NOT, (

) No Yes simple-condition, ) OR, AND, )

For example, Table 6–5 shows whether or not the following element pairs can
occur in your program:

Element
Pair Permitted?

OR NOT Yes

NOT OR No

NOT ( Yes

NOT NOT No

6.5.8 Abbreviated Combined Relation Conditions
When you combine simple or negated simple conditions in a consecutive sequence,
you can abbreviate any of the relation conditions except the first. You do this by
either:

• Omitting the subject of the relation condition
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• Omitting both the subject and the relational operator of the condition

• Ensuring that a relation condition in the consecutive sequence contains a
subject (or subject and relational operator) that is common with the preceding
relation condition

• Ensuring that there are no parentheses in the consecutive sequence

The general format for abbreviated combined relation conditions is as
follows:

relation-condition

���
�

� AND

OR

�
� NOT � � relational-operator � object

���
�� . . .

The evaluation of a sequence of combined relation conditions proceeds as if
the last preceding subject appears in place of the omitted subject and the last
preceding relational operator appears in place of the omitted relational operator.
The result of these substitutions must form a valid condition. (See Table 6–5.)

When the word NOT appears in a sequence of abbreviated conditions, its
treatment depends upon the word that follows it. NOT is considered part of
the relational operator when immediately followed by: GREATER, >, LESS, <,
EQUAL, or =. Otherwise, NOT is considered a logical operator that negates the
relation condition.

Table 6–6 shows abbreviated combined (and negated combined) relation
conditions and their expanded equivalents:

Table 6–6 Expanded Equivalents for Abbreviated Combined Relation Conditions

Abbreviated Combined
Relation Condition Expanded Equivalent

a > b AND NOT < c OR d ((a > b) AND (a NOT < c)) OR (a NOT < d)

a NOT = b OR c (a NOT = b) OR (a NOT = c)

NOT a = b OR c (NOT (a = b)) OR (a = c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

a / b NOT = c AND NOT d ((a / b) NOT = c) AND (NOT ((a / b) NOT = d))

NOT (a NOT > b AND c AND NOT d) NOT ((((a NOT > b) AND (a NOT > c)) AND (NOT (a NOT >
d))))

6.5.9 Condition Evaluation Rules
Parentheses can specify the evaluation order in complex conditions. Conditions in
parentheses are evaluated first. In nested parentheses, evaluation starts with the
innermost set of parentheses. It proceeds to the outermost set.

Conditions are evaluated in a hierarchical order when there are no parentheses
in a complex condition. This same order applies when all sets of parentheses are
at the same level (none are nested). The hierarchy is shown in the following list:

1. Values for arithmetic expressions

2. Truth values for simple conditions, in this order:

a. Relation

b. Class
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c. Condition-name

d. Switch-status

e. Sign

f. Success/failure

3. Truth values for negated simple conditions

4. Truth values for combined conditions, in this order:

a. AND logical operators

b. OR logical operators

5. Truth values for negated combined conditions

In the absence of parentheses, the order of evaluation of consecutive operations at
the same hierarchical level is from left to right.

6.6 Common Rules and Options for Data Handling
This section describes the rules and options that apply when statements handle
data. Data handling includes the following:

• Arithmetic operations

• Multiple receiving fields in arithmetic statements

• The ROUNDED phrase

• The ON SIZE ERROR phrase

• The CORRESPONDING phrase

• The ON EXCEPTION phrase

• Overlapping operands and incompatible data

• I/O status

• The INVALID KEY phrase

• The AT END phrase

• The FROM phrase

• The INTO phrase

6.6.1 Arithmetic Operations
The arithmetic statements begin with the verbs ADD, COMPUTE, DIVIDE,
MULTIPLY, and SUBTRACT. When an operand in these statements is a data
item, its PICTURE must be numeric and specify no more than 31 digit positions
on Alpha or I64 (18 on VAX). However, operands do not have to be the same size,
nor must they have the same USAGE. Conversion and decimal point alignment
occur throughout the calculation.

When you write an arithmetic statement, you specify one or more data items
to receive the results of the operation. These data items are called resultant
identifiers. However, the evaluation of each arithmetic statement can also use
an intermediate data item. An intermediate data item is a compiler-supplied
signed numeric data item that the program cannot access. It stores the results
of intermediate steps in the arithmetic operation before moving the final value to
the resultant identifiers.
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When the final value of an arithmetic operation is moved to the resultant
identifiers, it is transferred according to MOVE statement rules. Rounding and
size error condition checking occur just before this final move. (See the MOVE
statement, Section 6.6.4, ON SIZE ERROR Phrase, and Section 6.6.3, ROUNDED
Phrase.)

6.6.2 Multiple Receiving Fields in Arithmetic Statements
An arithmetic statement can move its final result to more than one data item.
In this case, the statement is said to have multiple receiving fields (or
multiple results). The statement operates as if it had been written as a series
of statements. The following example illustrates these steps. The first statement
in the example is equivalent to the four that follow it. (Temp is an intermediate
data item.)

ADD a, b, c TO c, d (c), e

ADD a, b, c GIVING temp
ADD temp TO c
ADD temp TO d (c)
ADD temp TO e

6.6.3 ROUNDED Phrase
The ROUNDED phrase allows you to specify rounding at the end of an arithmetic
operation. The rounding operation adds 1 to the absolute value of the low-order
digit of the resultant identifier if the absolute value of the next least significant
(lower-valued) digit of the intermediate data item is greater than or equal to 5.

When the PICTURE string of the resultant identifier represents the low-order
digit positions with the P character, rounding or truncation is relative to the
rightmost integer position for which the compiler allocates storage. Therefore,
when PIC 999PPP describes the item, the value 346711 is rounded to 347000.

If you do not use the ROUNDED phrase, any excess low-order digits in the
arithmetic result are truncated when the result is moved to the resultant
identifiers.

6.6.4 ON SIZE ERROR Phrase
The ON SIZE ERROR phrase allows you to specify an action for your program to
take when a size error condition exists.

The NOT ON SIZE ERROR phrase allows you to specify an action for your
program to take when a size error condition does not exist.

The format is as follows:

� NOT � ON SIZE ERROR stment

stment is an imperative statement.

Size error checking occurs after decimal point alignment. Rounding occurs before
size error checking. Also, truncation of rightmost digits occurs before size error
checking.

A size error condition is caused by the following:

• Division by zero or invalid evaluation of exponentiation (see Section 6.4.2).
Both actions terminate the arithmetic operation.

• The absolute value of an arithmetic operation’s result exceeds the value that
is specified by the PICTURE clause of one or more of the resultant identifiers.
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• Evaluation of an arithmetic expression would cause the new value to be
outside the allowed range for the intermediate data item.

In the second case above, the size error condition affects the contents of only those
resultant identifiers for which the size error exists.

When a size error condition occurs and the statement contains an ON SIZE
ERROR phrase:

1. When standard arithmetic is in effect, the values of those resultant identifiers
for which the size error exists are the same as before the operation began;
when native arithmetic is in effect, those values are undefined.

2. The values of those resultant identifiers for which no size error exists are the
same as they would have been if the size error condition had not occurred for
any of the resultant identifiers.

3. The imperative statement in the ON SIZE ERROR phrase executes.

4. The NOT ON SIZE ERROR phrase, if specified, is ignored.

5. Control is transferred to the end of the arithmetic statement unless control
has been transferred by executing the imperative statement of the ON SIZE
ERROR phrase.

6. When a size error occurs in any arithmetic statement with multiple results,
your program must analyze the results to determine where the size error
occurred.

When a size error condition occurs and the statement does not contain an ON
SIZE ERROR phrase:

1. The values of those resultant identifiers for which the size error exists are
undefined.

2. The NOT ON SIZE ERROR phrase, if specified, is ignored.

3. Control is transferred to the end of the arithmetic statement.

When a size error condition does not occur:

1. The ON SIZE ERROR phrase, if specified, is ignored.

2. The imperative-statement in the NOT ON SIZE ERROR phrase, if specified,
is executed.

3. Control is transferred to the end of the arithmetic statement unless control
has been transferred by executing the imperative statement of the NOT ON
SIZE ERROR phrase.

If you use the ADD or SUBTRACT statements with the CORRESPONDING
phrase, any individual operation can cause a size error condition. In this
instance, the imperative statement in the ON SIZE ERROR phrase executes
after all the individual additions or subtractions are complete.

6.6.5 CORRESPONDING Phrase
The CORRESPONDING phrase allows you to specify group items as operands in
order to use their corresponding subordinate items in an operation. See the ADD
, SUBTRACT, and MOVE statements.

The following rules apply to the identifiers of operands in a statement containing
the CORRESPONDING phrase:

1. All identifiers must refer to group items.
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2. The data description entries of these identifiers can contain a REDEFINES or
OCCURS clause.

3. Identifiers can be subordinate to a data description entry that has a
REDEFINES or OCCURS clause.

4. You cannot specify identifiers with level-number 66, 77 or 88, or the USAGE
IS INDEX clause.

5. Identifiers cannot be reference-modified.

The following rules describe the requirements for correspondence between data
items subordinate to the identifiers. In these rules, identifier-1 refers to the
sending group item and identifier-2 refers to the group in which results of the
operation are stored.

1. Data items subordinate to both identifier-1 and identifier-2 must have the
same data-name.

2. All possible qualifiers for a data item contained in identifier-1 (up to but
not including identifier-1), must be identical to all possible qualifiers for the
matching item in identifier-2 (up to but not including identifier-2).

3. In an ADD or SUBTRACT statement, the CORRESPONDING phrase affects
only elementary numeric data items. Other data items do not take part in
the operation.

4. In a MOVE statement, either the sending or receiving subordinate item can
be a group item, but both cannot be. The classes of the data items in any
corresponding pair can be different, but the resulting move must be legal
according to the MOVE statement rules. (See the MOVE statement.)

5. The CORRESPONDING phrase disallows data items with the following:

• Level-number 66

• Level-number 88

• A data description entry containing a REDEFINES, OCCURS, or USAGE
IS INDEX clause

A data item subordinate to one that is not eligible for correspondence is also
disallowed.

6. FILLER data items and their subordinates are disallowed.

7. Neither identifier-1 nor identifier-2 can be reference modified.

6.6.6 ON EXCEPTION Phrase
The ON EXCEPTION phrase allows execution of an imperative statement when
an exception (or error) condition occurs.

The NOT ON EXCEPTION phrase allows execution of an imperative statement
when an exception condition (or any other error condition) does not occur.

The format is as follows:

� NOT � ON EXCEPTION stment

stment is an imperative statement.

The ON EXCEPTION phrase of the CALL statement prevents control transfer of
the CALL and triggers the execution of the imperative statement related to the
CALL.
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The ON EXCEPTION phrase of the ACCEPT statement (Formats 3 and 4)
allows you to handle data entry errors when data is accepted into a numeric
data field using ACCEPT WITH CONVERSION. For additional information, see
the ACCEPT statement.

The ON EXCEPTION phrase allows execution of an imperative statement when
an ACCEPT statement (Format 5) terminates unsuccessfully. When there is
an applicable CRT STATUS clause, unsuccessful termination is indicated by a
value of ’1’ or ’9’ in the first character of the CRT STATUS data item (see the
SPECIAL-NAMES section of Chapter 4).

When an exception condition occurs and the statement contains an ON
EXCEPTION phrase:

1. The imperative statement associated with the ON EXCEPTION phrase is
executed.

2. The NOT ON EXCEPTION phrase, if specified, is ignored.

3. Control is transferred to the end of the statement unless control has been
transferred by executing the imperative statement of the ON EXCEPTION
phrase.

When an exception condition occurs and the statement does not contain an ON
EXCEPTION phrase:

1. The NOT ON EXCEPTION phrase, if specified, is ignored.

2. The program terminates abnormally.

When an exception condition does not occur:

1. The imperative statement associated with the NOT ON EXCEPTION phrase,
if specified, is executed.

2. The ON EXCEPTION phrase, if specified, is ignored.

3. Control is transferred to the end of the statement unless control has
been transferred by executing the imperative statement of the NOT ON
EXCEPTION phrase.

6.6.7 Overlapping Operands and Incompatible Data
When statements refer to data items, two conditions can occur that can make
program results unpredictable.

Undefined results occur when a sending and receiving item in an arithmetic
statement or an INITIALIZE, INSPECT, MOVE, SET, STRING, or UNSTRING
statement share a part of their storage areas.

Procedure Division references to a data item are undefined when a data item’s
contents are incompatible with the class of data defined by the item’s PICTURE
clause, or (if the item is a function) its function definition. Conditional statements
containing the class condition allow you to do the following:

• Determine whether or not an item contains numeric or alphabetic data.

• Specify corrective action when it does not.

See Section 6.5.2 for more information on class condition.
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6.6.8 I-O Status
If a file description entry has a FILE STATUS clause, a value is placed in the
two-character FILE STATUS data item during execution of the following I/O
statements:

• CLOSE

• DELETE

• OPEN

• READ

• REWRITE

• START

• UNLOCK

• WRITE

The two characters from the FILE STATUS data item combine to form a file
status value. The first character (Status Key 1), which occupies the leftmost
character position in the item, represents a specific class of I/O operation
(0–success, 1–at end, 2–invalid key, 3–permanent error, 4–logic error, or 9–
Hewlett-Packard defined). The second character (Status Key 2), which occupies
the rightmost position, provides additional information about the result of an I/O
operation. In combination, Status Key 1 and Status Key 2 indicate the status of
an I/O operation. For example, if you are interested in duplicate keys, you check
for File Status 02.

When Status Key 1 contains 1, the AT END phrase executes. When Status Key
1 contains 2, the INVALID KEY phrase executes. When Status Key 1 contains
3, 4, or 9 the Declarative USE procedure executes. Any applicable USE AFTER
EXCEPTION procedure executes after the FILE STATUS value is set.

Figure 6–1 shows the possible combinations of Status Keys 1 and 2. In the figure,
X indicates a valid combination of keys.
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Figure 6–1 Possible Combinations of Status Keys 1 and 2

VM-0596A-AI

1 (0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

X

No Further
Information

Sequence
Error

Duplicate
Key

No Record
Found

Boundary
Violation

File Not
Present

No Valid
Next Record

File not
Found

Close
Error

Open
Error

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
Successful
Completion
(0)

At End
(1)

Invalid
Key
(2)

Permanent
Error
(3)

Logic
Error
(4)

HP- Defined
(9)

X

X

XX

XX

X

X

Key 2
Status
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Status Key 1 indicates one of the following conditions when an input-output
operation ends:

0 Successful Completion. The input-output statement executed successfully.

1 At End. A sequential READ statement unsuccessfully executed because of the
following:

The file has no next logical record.

An optional file was not present.

The program did not establish a valid next record.

2 Invalid Key. The input-output statement executed unsuccessfully because of
one of the following conditions:

Sequence Error

Duplicate Key

No Record Found

Boundary Violation on a relative or indexed file

Optional File Not Present

3 Permanent Error. The input-output statement executed unsuccessfully
because of a boundary error for a sequential file. This value can also indicate
an input-output error, such as data check, parity error, or transmission error.

4 Logic Error. The input-output statement was unsuccessfully executed as
a result of an improper sequence of input-output operations that were
performed on the file or as a result of violating a limit set by the user.
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9 Hewlett-Packard defined. The input-output statement executed
unsuccessfully because of a condition defined by Hewlett-Packard.

Status Key 2
Status Key 2 further describes the result of the input-output operation as follows:

• If no further information about the input-output operation is available, Status
Key 2 contains 0.

• When Status Key 1 contains 0 (indicating successful completion), Status Key
2 can contain a 2, 4, 5, or 7.

2 Applies to a REWRITE, WRITE, or READ statement.

For REWRITE and WRITE statements it means that the record just
written created a duplicate key value for at least one alternate record
key for which duplicates are allowed.

For READ statements it means that the record just read has duplicate
key values for the current key of reference.

4 Applies to a READ statement. It means the size of the record read does
not agree with the size defined in the program.

5 Applies to the OPEN statement. It means that the optional file was not
present when the OPEN statement executed. If the open mode is I-O or
EXTEND, the file has been created.

7 Applies to the CLOSE and OPEN statements. It means one of the
following:

The program tried to execute a CLOSE REEL/UNIT, a CLOSE NO
REWIND, or a CLOSE FOR REMOVAL statement for a file on a
nonreel/unit medium.

The program tried to execute an OPEN NO REWIND statement for a
file on a nonreel/unit medium.

• When Status Key 1 contains 1 (indicating an at end condition), Status Key 2
describes the condition’s cause:

0 Indicates that the file has no next logical record or it indicates that a file
you specified as optional is not present.

4 Means that the relative record number of the record read was too big for
the relative key data item.

• When Status Key 1 contains 2 (indicating an invalid key condition), Status
Key 2 describes the condition’s cause as follows:

1 Indicates a sequence error for a sequential access indexed file. This
means that the program changed the prime record key value between a
successfully executed READ statement and the next REWRITE statement
for the file. This value can also indicate that the program violated sort
order sequence requirements for successive record key values. (See the
WRITE statement.)

2 Indicates a duplicate key value. The program tried to write or rewrite a
record that would have created a duplicate key in an indexed file. This
value can also mean that the program tried to write a record that would
have created a duplicate in a relative file.
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3 Means that the program could not find a record. The program tried to
access a record identified by a key, but the record does not exist in the file,
or the file you specified as optional is not present.

4 Indicates a boundary violation. The program tried to write beyond the
boundaries defined for the file by the I/O system OpenVMS Record
Management Services (RMS) on OpenVMS Alpha and I64 systems), or
the program attempted a sequential WRITE statement and the number of
significant digits in the relative record number is larger than the size of
the relative key data item.

• When Status Key 1 contains 3 (indicating a permanent error condition),
Status Key 2 describes the condition causes as follows:

0 Indicates that no more information is available. This value results from
any input-output error that cannot be described by any other combination
of values in Status Keys 1 and 2. For example, "filename too long" is
indicated this way.

4 Indicates a boundary violation on a sequential file. This means that the
program tried to write to a disk that was full.

5 Indicates that the program tried to open a file that does not exist.

7 Indicates that the program tried to create a file on a device that is not
appropriate for the OPEN statement mode.

8 Indicates that the program tried to open a file that is closed with a lock.

9 Indicates a conflict of file attributes. The attributes of the file that
the program attempted to open do not match the attributes of the file
described in the program. The attributes that are checked are BLOCK
SIZE, ORGANIZATION, INDEX KEYS, and MAXIMUM RECORD SIZE.
(Refer to the Tru64 UNIX reference page or COBOL online help for
information on the effect of the relaxed key checking option.)

• When Status Key 1 contains 4 (indicating an error in the program’s logic),
Status Key 2 describes the condition’s cause:

1 Indicates that the program tried to open a file that is already open.

2 Indicates that the program tried to close a file that either: (a) is already
closed, or (b) has not been opened during the program’s execution.

3 Indicates that the program tried to execute either: (a) a DELETE or
REWRITE statement without first successfully executing a READ or
START statement, or (b) an UNLOCK RECORD statement without first
establishing a current record.

4 Indicates that the program attempted to REWRITE a record that is not
the same size as the record being replaced.

6 Indicates that the program did not establish a valid next record.

The values 10 and 46 can occur for the same READ operation when a
program is in an infinite loop. In this case, the FILE STATUS data item
contains the following sequence of values:

00, 00, . . . , 00, 10, 46, 46, . . . , 46

7 Indicates the program tried a READ or START operation on a file
that: (a) has not been opened, or (b) has been opened in a mode that
is incompatible with the operation.
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8 Indicates the program attempted a WRITE operation on a file that:
(a) has not been opened, or (b) has been opened in a mode that is
incompatible with the operation.

9 Indicates the program tried a DELETE or REWRITE on a file that:
(a) has not been opened, or (b) has been opened in a mode that is
incompatible with the operation.

• When Status Key 1 contains 9 (indicating a Hewlett-Packard defined
condition), Status Key 2 further describes the condition, as follows:

0 Means that the record your program is reading has been locked by
another access stream. Because the record is available in the record area,
the input operation is successful. This condition results from using the
REGARDLESS option. Without the REGARDLESS option, the same
scenario causes a Status Key 2 value of 2.

1 Indicates that a file is locked. The access stream tried to open a file that
had been locked by another program.

2 Means that a record is locked. The program tried to access a record that
had been locked by another access stream.

In this case, the record is not available in the record area, so the input
operation is unsuccessful.

5 Means that the program tried to open a file when there was not enough
space on the device.

8 Indicates that an unspecified error occurred when the program attempted
to close a file.

Appendix C lists all the possible file status values that can appear in the FILE
STATUS data item, along with the I-O status condition corresponding to each
value.

6.6.9 AT END Phrase
The AT END phrase specifies the action your program takes when an at end
condition occurs (when Status Key 1 contains 1).

The NOT AT END phrase specifies the action your program takes if an at end (or
any other error condition) does not occur.

The format is as follows:

� NOT � AT END stment

stment is one or more imperative statements.

When a program detects the end of a file, the condition is called the at end
condition. The at end condition might occur as a result of ACCEPT, READ,
RETURN, or SEARCH statement execution. (For additional information, see the
previously mentioned statements.)

When an at end condition occurs and the statement contains an AT END phrase:

1. The imperative statement associated with the AT END phrase, if specified,
executes.

2. The NOT AT END phrase, if specified, is ignored.
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3. Control is transferred to the end of the ACCEPT, READ, RETURN, or
SEARCH statement unless control has been transferred by executing the
imperative statement of the AT END phrase.

When an at end condition occurs and the statement does not contain an AT END
phrase:

1. If the at end condition is associated with a READ statement, the applicable
USE AFTER EXCEPTION procedure, if specified, executes.

2. If the at end condition is associated with an ACCEPT, RETURN, or SEARCH
statement, any USE procedure associated with that file is not applicable.

3. The NOT AT END phrase, if specified, is ignored.

When an at end condition does not occur, and no other exception condition exists:

1. The AT END phrase, if specified, is ignored.

2. The imperative statement associated with the NOT AT END phrase, if
specified, is executed. Otherwise, control is transferred to the end of the
ACCEPT, READ, RETURN, or SEARCH statement.

When an at end condition does not occur, and another exception condition does
exist:

• The applicable USE AFTER EXCEPTION procedure, if specified, executes
and control is then transferred according to the rules of the USE statement.

• If there is no applicable USE AFTER EXCEPTION procedure, the imperative
statement associated with the NOT AT END phrase, if specified, is executed,
unless the exception condition causes the run unit to terminate abnormally.

• If there is neither a USE AFTER EXCEPTION procedure nor a NOT AT END
phrase, then control is transferred to the end of the statement, unless the
exception condition causes the run unit to terminate abnormally.

6.6.10 INVALID KEY Phrase
The INVALID KEY phrase specifies the action your program takes when an
invalid key condition is detected (when Status Key 1 contains 2) for the file being
processed.

The NOT INVALID KEY phrase specifies the action your program takes when
an invalid key condition (or any other error condition) is not detected for the file
being processed.

The format is as follows:

� NOT � INVALID KEY stment

stment is one or more imperative statements.

The invalid key condition occurs when the I/O system cannot complete a COBOL
DELETE, READ, REWRITE, START, or WRITE statement because of one of the
following conditions:

• Sequence error

• Duplicate key when the COBOL program did not specify this condition

• No record found

• Boundary violation on a relative or indexed file
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• Optional file not present

(For more information on these conditions, refer to Section 6.6.8.) When the
invalid key condition occurs, execution of the statement that produced the
condition is unsuccessful, and the file is unaffected. (For additional information,
see the previously mentioned statements.)

When the invalid key condition occurs:

1. A value that indicates the invalid key condition is placed in the FILE STATUS
data item for the file.

2. If the statement that caused the condition has the INVALID KEY phrase:

a. Any USE AFTER EXCEPTION procedure is not executed.

b. The imperative statement associated with the INVALID KEY phrase
executes.

c. The NOT INVALID KEY phrase, if specified, is ignored.

d. Control is transferred to the end of the I-O statement unless control has
been transferred by executing the imperative statement of the INVALID
KEY phrase.

3. If the statement that caused the condition does not have an INVALID KEY
phrase:

a. The NOT INVALID KEY phrase, if specified, is ignored.

b. Control is transferred to the applicable USE AFTER EXCEPTION
procedure for the file.

When an invalid key condition does not occur, and no other exception condition
exists:

1. The INVALID KEY phrase, if specified, is ignored.

2. The imperative statement associated with the NOT INVALID KEY phrase, if
specified, is executed. Otherwise, control is transferred to the end of the I/O
statement.

When an invalid key condition does not occur, and another exception condition
does exist:

• The applicable USE AFTER EXCEPTION procedure, if specified, executes
and control is then transferred according to the rules of the USE statement.

• If there is no applicable USE AFTER EXCEPTION procedure, the imperative
statement associated with the NOT INVALID KEY phrase, if specified, is
executed, unless the exception condition causes the run unit to terminate
abnormally.

• If there is neither a USE AFTER EXCEPTION procedure nor a NOT
INVALID KEY phrase, then control is transferred to the end of the statement,
unless the exception condition causes the run unit to terminate abnormally.
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6.6.11 FROM Phrase
Format 1

record-name FROM identifier

record-name and identifier must not refer to the same storage area.

The result of executing a RELEASE, REWRITE, or WRITE statement with the
FROM phrase is equivalent to: ( 1 ) executing the statement ‘‘MOVE identifier
TO record-name’’ according to the rules of the MOVE statement without the
CORRESPONDING phrase, followed by ( 2 ) executing the same RELEASE,
REWRITE, or WRITE statement without the FROM phrase.

After statement execution ends, the data in the area referenced by identifier is
available to the program. The data is not available in the area referenced by
record-name, unless there is an applicable SAME clause. (See I-O-CONTROL, the
REWRITE statement, and the WRITE statement.)

6.6.12 INTO Phrase
The INTO phrase implicitly moves a current record from the record storage area
into an identifier.

The format is as follows:

file-name INTO identifier

A READ or RETURN statement can have the INTO phrase if either of the
following conditions is true:

• Only one record description is subordinate to the file description entry.

• All record-names associated with file-name and the data item associated with
identifier describe a group item or an elementary alphanumeric item.

Executing a READ or RETURN statement with the INTO phrase is equivalent to:
( 1 ) executing the same statement without the INTO phrase, then ( 2 ) moving
the current record from the record area to the area specified by identifier.
The move occurs according to the rules of the MOVE statement without the
CORRESPONDING phrase. The move does not occur for an unsuccessful
execution of the READ or RETURN statement.

Subscript or index evaluation occurs after the input operation and immediately
before the move.

The record is available to the program in both the record area and the area
associated with the identifier.

6.7 Segmentation
HP COBOL programs execute in a virtual memory environment. Therefore,
programs need not manage physical memory by overlaying Procedure Division
code. HP COBOL provides support for segmentation only for compatibility
with existing applications developed on older hardware such as the PDP-11.
You should not use segmentation in newly written COBOL programs since
segmentation results in the generation of extra code which might impact
performance.

Segmentation controls the assignment of Procedure Division sections to fixed
or independent segments. The optional segment-number in the section header
determines the type of segment.
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General Format

section-name SECTION [ segment-number ] .

section-name
names a Procedure Division section.

segment-number
must be an integer in the range 0 to 99. If there is no segment-number in a
section header, the implied segment-number is 0.

segment-number classifies a segment into fixed segments or independent
segments. Sections with segment-numbers from 0 to 49 are in fixed segments.
Those with segment-numbers from 50 to 99 are in independent segments.

Sections in the Declaratives part of the Procedure Division must have segment-
numbers less than 50.

A segment consists of all sections that have the same segment-number.

Both fixed and independent segments are in their initial state the first time
entered. A fixed segment appears to reside in memory at all times and is,
therefore, in its last used state each time it is entered.

The state of an independent segment depends on how and when it receives
control. On subsequent control transfers, HP COBOL resets the segment’s
ALTERed GO TO statements to their initial states whenever an independent
segment is entered in one of the following ways:

1. Explicitly, by means of a GO TO statement with a target within the section.

2. Explicitly, by means of an out-of-line PERFORM statement in another
segment whose range is within the section.

3. Implicitly, when a SORT or MERGE statement in another segment specifies
an input or output procedure within the section.

4. Implicitly, by transfer of control between consecutive statements from a
segment with a different segment-number.

6.8 General Formats and Rules for Statements
Function
The Procedure Division contains the routines that process the files and data
described in the Environment and Data Divisions.

General Format
Format 1

PROCEDURE DIVISION
�

USING � data-name � . . .
�

� GIVING identifier � .
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�
���������

DECLARATIVES.

���
�


section-name SECTION � segment-number � .
declarative-sentence [ paragraph-name .
[ sentence ] . . . ] . . .

���
�� . . .

END DECLARATIVES.

�
���������

�����
���


section-name SECTION � segment-number �.�
paragraph-name . � sentence � . . .

�
. . .

�����
����

. . .

Format 2

PROCEDURE DIVISION
�

USING � data-name � . . .
�

� GIVING identifier � .

�
paragraph-name . � sentence � . . .

�
. . .

Syntax Rules

1. The Procedure Division follows the Data Division.

2. The Procedure Division must begin with the Procedure Division header.

3. The end of the Procedure Division is indicated by one of the following:

• The Identification Division header of another source program

• The END PROGRAM header

• The physical position in the Procedure Division after which no further
processing occurs

4. A procedure consists of either:

• One or more successive sections

• One or more successive paragraphs

5. If one paragraph is in a section, all paragraphs must be in sections.

6. A procedure-name refers to a paragraph or section in the source program. It
is either paragraph-name (which can be qualified) or section-name.

7. A section consists of a section header followed by zero or more successive
paragraphs. A section ends immediately before the next section or at the
end of the Procedure Division. In the declaratives part of the Procedure
Division, a section can also end at the key words END DECLARATIVES. See
Section 2.3 for more information on declaratives.

8. A paragraph consists of a paragraph-name followed by a separator period, and
by zero or more successive sentences. A paragraph ends immediately before
the next paragraph-name or section-name or at the end of the Procedure
Division. In the declaratives part of the Procedure Division, a paragraph can
also end at the key words END DECLARATIVE. See Section 2.3 for more
information on declaratives.
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9. sentence contains one or more statements terminated by a separator period.

10. A statement is a syntactically valid combination of words and symbols that
begins with a COBOL verb.

11. identifier is the word or words necessary to refer uniquely to a data item.

Procedure Division Header

12. The Procedure Division header identifies and begins the Procedure Division.
It consists of the reserved words PROCEDURE DIVISION and optional
USING and GIVING phrases followed by a separator period.

13. The USING phrase is required only if the program is invoked by a CALL
statement with a USING phrase.

14. The Procedure Division header USING phrase identifies the names used in
the program to refer to arguments from the calling program. In the calling
program, the USING phrase of the CALL statement identifies the arguments.
The data items in the two USING phrase lists correspond positionally.

15. Each data-name in the USING phrase must be defined in the Linkage Section
with a level-01 or level-77 entry.

16. Each data-name cannot appear more than once in the USING phrase.

17. In the USING phrase, data-name cannot have the external attribute.

18. In the USING phrase, the data description for data-name cannot contain a
REDEFINES clause. However, the data description can be the object of a
REDEFINES clause.

19. The Procedure Division header GIVING phrase specifies a function result of
the program. The identifier must refer to an elementary integer numeric data
item with COMP, COMP-1, or COMP-2 usage and no scaling positions. The
identifier cannot be subscripted, but it can be qualified.

Procedure Division Body

20. The Procedure Division body consists of all Procedure Division text following
the Procedure Division header.

General Rules

1. References to USING phrase data-names operate according to data
descriptions in the called program’s Linkage Section, regardless of the
descriptions in the calling program.

2. The called program can refer, in its Procedure Division, to a Linkage Section
data item only if the data item satisfies one of these conditions:

• It is in the Procedure Division header USING phrase.

• It is subordinate to data-name that is in the Procedure Division header
USING phrase.

• Its definition includes a REDEFINES or RENAMES clause, the object of
which is in the Procedure Division header USING phrase.

• It is subordinate to an item that satisfies the previous conditions.

• It is a condition-name or index-name associated with a data item that
satisfies any of the previous conditions.
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3. On Alpha and I64 systems, when a called program returns control to the
calling program, the return value is made available to the calling program in
the data item specified in its CALL statement GIVING phrase. The value is
moved to that data item according to the rules for the MOVE statement. If
the calling program does not specify a GIVING phrase, then the return value
is made available in the calling program’s RETURN-CODE special register.
Note that the value in the called program’s RETURN-CODE is not returned
to the caller.

4. On Alpha and I64 systems, if no GIVING phrase is specified in the called
program, the value in the RETURN-CODE special register is made available
to the calling program in the data item specified in the calling program’s
CALL statement GIVING phrase. The value is moved according to the rules
for the MOVE statement. If the calling program does not specify a CALL
GIVING phrase, the value in the called program’s RETURN-CODE special
register is made available to the calling program in the calling program’s
RETURN-CODE special register.

Table 6–7 shows the relationship between the GIVING phrase and RETURN-
CODE.

Table 6–7 Relation of GIVING Phrase to RETURN-CODE Special Register (Alpha, I64)

Calling program has
CALL GIVING X

Called program has
PROCEDURE DIVISION
GIVING Y

Called program puts
result in

Calling program gets
result in

YES YES Y (also RETURN-CODE) X (moved from Y)

YES NO RETURN-CODE X (moved from called
program’s RETURN-
CODE)

NO YES Y (also RETURN-CODE) RETURN-CODE (moved
from Y)

NO NO RETURN-CODE RETURN-CODE (moved
from called program’s
RETURN-CODE)

Technical Notes

1. On Alpha and I64 systems, because the reserved word RETURN-CODE
is one of the X/Open reserved words, you cannot use the compilation flag
-rsv noxopen (for Tru64 UNIX systems) or the corresponding qualifier
/RESERVED_WORDS = NOXOPEN (for OpenVMS systems) if your program
uses the RETURN-CODE special register.

2. On Alpha and I64 systems, HP COBOL supports passing status to the
operating system for RETURN-CODE and PROCEDURE DIVISION GIVING
when EXIT PROGRAM or STOP RUN is executed. ♦
Four of the data types supported by PROCEDURE DIVISION GIVING can be
used to communicate status to the operating system. Following is a summary
of what is supported for both RETURN CODE and PROCEDURE DIVISION
GIVING:
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RETURN-CODE (Alpha and I-64 only*)
EXIT PROGRAM /STA=V3 yes
EXIT PROGRAM /STA=85 yes
STOP RUN yes
PROCEDURE DIVISION GIVING
EXIT PROGRAM /STA=V3 yes
EXIT PROGRAM /STA=85 yes
STOP RUN yes*
Data Types
COMP-1,COMP-2 no
PIC 9(04) COMP no
PIC S9(04) COMP no
PIC 9(09) COMP yes
PIC S9(09) COMP yes
PIC 9(18) COMP yes
PIC S9(18) COMP yes
PIC 9(31) COMP no
PIC S9(31) COMP no

*Refer to the appendix on compatibility in the
HP COBOL User Manual for differences on VAX.

This support is subject to the limitations on status handling imposed by the
operating system. If PIC S9(18) COMP or PIC 9(18) COMP is used, the high-
order 32 bits are truncated before the status is passed on to the operating
system.

To display the operating system status information, do the following:

[UNIX] echo $status
[OpenVMS] show symbol $status

Additional References

• CALL statement

• USE statement

• Section 6.7, Segmentation

Example
The following is an example of a Procedure Division header:

WORKING-STORAGE SECTION.
01 RETURN-RESULT PIC 9(8) COMP.
LINKAGE SECTION.
01 ARG1.

03 ARG2 PIC X(6).
03 ARG3 PIC S9(6) COMP.

01 ARG4 PIC X(4).
PROCEDURE DIVISION USING ARG1 ARG4 GIVING RETURN-RESULT.

.

.

.
MOVE 17 TO RETURN-RESULT.
EXIT PROGRAM.
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ACCEPT
Function
The ACCEPT statement makes low-volume data available to the program. The
Hewlett-Packard extensions to the ACCEPT statement (Formats 3, 4, and 5) are
COBOL language additions that facilitate video forms design and data handling.
The WITH CONVERSION phrase and some other options in Format 1 are also
Hewlett-Packard extensions.

Format 6 retrieves the number of arguments on the program run command
line, Format 7 reads those command line arguments into designated program
variables, and Format 8 reads environment variables and logicals into designated
program variables.

General Format

Format 1

ACCEPT dest-item � FROM input-source � � WITH CONVERSION �

� AT END stment �

� NOT AT END stment2 �

� END-ACCEPT �

Format 2

ACCEPT dest-item FROM

���������
�������


DATE [ YYYYMMDD ]

DAY [ YYYYDDD ]

DAY-OF-WEEK

TIME

���������
��������
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Format 3

ACCEPT dest-item�����������������������������������������������������������������������������������
���������������������������������������������������������������������������������


																																																																																					

FROM LINE NUMBER

������
����


line-num

line-id
�

PLUS � plus-num �

�

PLUS � plus-num �

������
�����

FROM COLUMN NUMBER

������
����


column-num

column-id
�

PLUS � plus-num �

�

PLUS � plus-num �

������
�����

ERASE � TO END OF �

�
SCREEN
LINE



WITH BELL
UNDERLINED
BOLD
WITH BLINKING

PROTECTED

�
�����������������

����������������
��������������


																		

SIZE
� prot-size-lit

prot-size-item

�
WITH AUTOTERMINATE

WITH NO BLANK

WITH EDITING

WITH FILLER prot-fill-lit

																		

����������������
���������������

�
�����������������

WITH CONVERSION

REVERSED

WITH NO ECHO

DEFAULT IS

�����
���


def-src-lit

def-src-item

CURRENT VALUE

�����
����

CONTROL KEY IN key-dest-item

																																																																																					

�����������������������������������������������������������������������������������
����������������������������������������������������������������������������������

�
���
���
�


� ON EXCEPTION stment � � NOT ON EXCEPTION stment2 �

� AT END stment � � NOT AT END stment2 �

���
��

�
���
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� END-ACCEPT �

Format 4

ACCEPT CONTROL KEY IN key-dest-item������������������������������
����������������������������


																																	

FROM LINE NUMBER

������
����


line-num

line-id
�

PLUS � plus-num �

�

PLUS � plus-num �

������
�����

FROM COLUMN NUMBER

������
����


column-num

column-id
�

PLUS � plus-num �

�

PLUS � plus-num �

������
�����

ERASE � TO END OF �

� SCREEN

LINE

�

WITH BELL

																																	

������������������������������
�����������������������������

�
���
���
�


� ON EXCEPTION stment � � NOT ON EXCEPTION stment2 �

� AT END stment � � NOT AT END stment2 �

���
��
�
���

� END-ACCEPT �

Format 5 (Alpha, I64)

ACCEPT screen-name�
�������

AT

�������
�����


									
LINE NUMBER

� line-id
line-num

�

COLUMN NUMBER
� column-id

column-num

�
									

�������
������

�
�������

� ON EXCEPTION stment �

� NOT ON EXCEPTION stment2 �

� END-ACCEPT �
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Format 6 (Alpha, I64)

ACCEPT dest-item FROM arg-count � END-ACCEPT �

Format 7 (Alpha, I64)

ACCEPT dest-item FROM arg-value

� ON EXCEPTION stment3 �

� NOT ON EXCEPTION stment5 �

� END-ACCEPT �

Format 8 (Alpha, I64)

ACCEPT dest-item � FROM envlog-value �

� ON EXCEPTION stment4 �

� NOT ON EXCEPTION stment5 �

� END-ACCEPT � ♦

dest-item
is the identifier of a data item into which data is accepted.

input-source
is a mnemonic-name defined in the SPECIAL-NAMES paragraph of the
Environment Division.

stment
is an imperative statement executed when the relevant condition (at end or on
exception) occurs.

stment2
is an imperative statement executed when the relevant condition (not at end or
not on exception) occurs.

stment3
is an imperative statement executed when an attempt is made to read beyond the
last argument on the command line, or if the command line argument does not
exist.

stment4
is an imperative statement executed if the name of a referenced environment
variable or logical has not been set, or if the referenced environment variable or
logical does not exist.

stment5
is an imperative statement executed if the exception condition does not exist.

line-num
is a numeric literal that specifies a line position on the terminal screen. line-num
must be a positive integer; it cannot be zero.
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line-id
is the identifier of a data item that provides a line position on the terminal screen.
It must be a positive integer; it cannot be zero.

plus-num
is a numeric literal that increments the current value for line or column position,
or that increments the value of line-id or column-id. plus-num can be zero or a
positive integer.

column-num
is a numeric literal that specifies a column position on the terminal screen.
column-num must be a positive integer; it cannot be zero.

column-id
is the identifier of a data item that provides a column position on the terminal
screen. It must be a positive integer; it cannot be zero.

prot-size-lit
is a numeric literal that specifies the maximum length of the video screen field
into which data can be typed. prot-size-lit must be a positive integer; it cannot be
zero.

prot-size-item
is the identifier of a numeric integer data item that specifies the maximum length
of the video screen field into which data can be typed. prot-size-item must be a
positive integer; it cannot be zero.

prot-fill-lit
is a single character alphanumeric literal that is used to initialize each character
position of a protected video screen field into which data can be typed.

def-src-lit
is a nonnumeric literal or a figurative constant. However, it cannot be the
figurative constant ALL literal.

def-src-item
is the identifier of an alphanumeric data item.

key-dest-item
is the identifier of a data item that defines a control key. key-dest-item must
specify an alphanumeric data item at least four characters in length.

screen-name
is the name of a screen item defined in the SCREEN SECTION of the program.

arg-count
is a mnemonic name associated with ARGUMENT-NUMBER in the SPECIAL-
NAMES paragraph in the Environment Division. It represents the number of
arguments present on the run command line.

arg-value
is a mnemonic name associated with ARGUMENT-VALUE in the SPECIAL-
NAMES paragraph in the Environment Division. It contains the value of the
argument on the run command line specivied by the current argument position
indicator.
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envlog-value
is a mnemonic name associated with ENVIRONMENT-VALUE in the SPECIAL-
NAMES paragraph in the Environment Division. It contains the value of a
selected environment variable or system logical.

Syntax Rules
Format 3

1. You cannot specify a phrase more than once for any dest-item.

2. When you use the DEFAULT phrase and the PROTECTED phrase without
the SIZE option, the size of def-src-item or def-src-lit must be less than or
equal to the size of dest-item.

3. When you use the DEFAULT phrase and the PROTECTED phrase with the
SIZE option, the size of def-src-item and def-src-lit must be less than or equal
to prot-size-lit. If prot-size-item is specified and the specified size at run time
is less than the length of def-src-item or def-src-lit, reprompting occurs.

4. The FILLER phrase cannot be used with the EDITING phrase. If both are
present, the FILLER phrase is ignored.

Format 4

5. You cannot specify a phrase more than once for any key-dest-item.

Format 6 (Alpha, I64)

6. dest-item must reference a data item described as an unsigned integer.

Formats 7 and 8 (Alpha, I64)

7. dest-item must reference an alphanumeric data item. ♦

General Rules
Format 1

1. The ACCEPT statement transfers data from input-source. The transferred
data replaces the contents of dest-item.

2. The ACCEPT statement transfers a stream of characters with no editing
or conversion, unless the WITH CONVERSION phrase is specified. Data
transfer begins with the leftmost character position of dest-item and continues
to the right.

3. If the data does not completely fill dest-item, remaining character positions
are filled with spaces. If the data is too long for dest-item, it is truncated on
the right.

4. The ACCEPT statement treats dest-item as alphanumeric, regardless of its
class, unless the WITH CONVERSION phrase is specified.

5. If there is no FROM phrase, the ACCEPT statement transfers data from the
default system input device.

Format 2

6. The ACCEPT statement transfers data to dest-item according to the MOVE
statement rules.

7. DATE, DAY, DAY-OF-WEEK, and TIME are not actual data items. Therefore,
the source program must not describe them.

6–64 Procedure Division



ACCEPT Statement

8. DATE has three elements. From left to right, they are as follows:

• Year of century (four digits if you specify YYYYMMDD, two digits if you
do not)

• Month of year (two digits)

• Day of month (two digits)

The ACCEPT statement operates as if DATE were described in the program
as an eight-digit or six-digit, unsigned, elementary, numeric integer data item
(PIC 9(8) or PIC 9(6)).

For example, June 3, 1997 is expressed as 19970603 or 970603.5

9. DAY has two elements. From left to right, they are as follows:

• Year of century (four digits if you specify YYYYDDD, two digits if you do
not)

• Day of year (three digits)

The ACCEPT statement operates as if DAY were described in the program as
a seven-digit or five-digit, unsigned, elementary, numeric integer data item
(PIC 9(7) or (PIC 9(5)).

For example, the fifteenth day of 1998 is expressed as 1998015 or 98015.†

The YYYYMMDD and YYYYDDD options are Hewlett-Packard extensions.

10. DAY-OF-WEEK is a one-digit item that represents the day of the week.

The ACCEPT statement operates as if DAY-OF-WEEK were described in the
program as a one-digit, unsigned, elementary numeric integer data item.

The values of DAY-OF-WEEK range from 1 (for Monday) to 7 (for Sunday).

11. TIME represents elapsed time after midnight, as shown on a 24-hour clock.
It has four, two-digit elements. From left to right, they are as follows:

• Hours

• Minutes

• Seconds

• Hundredths of a second ♦
The ACCEPT statement operates as if TIME were described in the program
as an eight-digit, unsigned elementary numeric integer data item (PIC 9(8)).

The time 6:13 PM is expressed as 18130000. The minimum and maximum
values of TIME are 00000000 and 23595999.

Formats 3 and 4

12. The ACCEPT statement transfers data from a video terminal. The data
replaces the contents of dest-item (Format 3), or key-dest-item (Format 4).
Format 3 can also update key-dest-item.

13. The presence of either the LINE NUMBER phrase or the COLUMN
NUMBER phrase implies NO ADVANCING. The cursor remains on the
character position immediately following the position of the last input
character or in the position immediately following the rightmost position
in the protected area. (For example, ACCEPT . . . PROTECTED SIZE 10

5 HP COBOL also supports four-digit years using the CURRENT-DATE intrinsic function
(see Chapter 7.) Hewlett-Packard recommends the use of four-digit years.
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LINE 1 COLUMN 1, leaves the cursor at line 1, column 11, no matter what
is typed in.) This is the default starting position of the next data item the
program will input from or display upon the terminal.

14. If you do not use either the LINE NUMBER phrase or the COLUMN
NUMBER phrase, data is accepted according to positioning rules for the
Format 1 ACCEPT statement.

Formats 3, 4, and 5

15. The execution of certain extended ACCEPTs when the input source is
assigned to a file (for example, in batch mode on OpenVMS systems), is a
restriction. Syntax and actions that result in outputs from the ACCEPT
operation (positioning, erasing, setting character attributes, reprompting, and
protecting) to a nonvideo terminal are not supported and are ignored.

LINE NUMBER Phrase (Formats 3 and 4)

16. The LINE NUMBER phrase positions the cursor on a specific line of the video
screen for data input.

17. If the LINE NUMBER phrase does not appear, but the COLUMN NUMBER
phrase does, then data is accepted from the current line position and specified
column position.

18. If line-num or the value of line-id is greater than the bottommost line position
of the current screen, program results are undefined. (See Technical Notes.)
Scrolling results if relative positioning is attempted past the bottom of the
screen.

19. If you use line-id without its PLUS option, the line position is the value of
line-id.

20. If you use line-id with its PLUS option, the line position is the sum of plus-
num and the value of line-id.

21. If you use the PLUS option without line-id, the line position is the sum of
plus-num and the value of the current line position.

22. If you use the PLUS option, but you do not specify plus-num, then PLUS 1 is
implied.

23. Data input results are undefined if your program generates a value for line-id
that is one of the following:

• Zero

• Negative

• Greater than the bottommost line position of the current screen

COLUMN NUMBER Phrase (Formats 3 and 4)

24. The COLUMN NUMBER phrase positions the cursor on a specific column of
the video screen.

25. If the COLUMN NUMBER phrase does not appear, but the LINE NUMBER
phrase does, then data is accepted from column 1 of the specified line position.

26. If you use column-id without its PLUS option, the column position is the
value of column-id.

27. If you use column-id with its PLUS option, the column position is the sum of
plus-num and the value of column-id.
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28. If you use the PLUS option without column-id, the column position is the sum
of plus-num and the value of the current column position.

29. If you use the PLUS option, but do not specify plus-num, PLUS 1 is implied.

30. Data input results are undefined if the program generates a value for column
position that is one of the following:

• Zero

• Negative

• Greater than the last column position on the screen

LINE NUMBER and COLUMN NUMBER Phrases (Format 5) (Alpha, I64)

31. The LINE NUMBER and COLUMN NUMBER phrases together give the
starting screen coordinates.

32. The position of each screen item within the referenced screen-name is offset
from the LINE and COLUMN positions.

33. If either LINE or COLUMN is not specified, the default value is 1. ♦

ERASE Phrase (Formats 3 and 4)

34. The ERASE phrase erases all, or part, of a line (or screen) before accepting
data. You must specify SCREEN or LINE with the ERASE phrase.

35. If you use the TO END option, the ERASE phrase erases the line (or screen)
from the implied, or stated, cursor position to the end of the line (or screen).

36. If you do not use the TO END option, the ERASE phrase erases the entire
line (or screen).

BELL Phrase (Formats 3 and 4)

37. The BELL phrase rings the terminal bell before accepting data.

CONTROL KEY Phrase (Formats 3 and 4)

38. If you use the CONTROL KEY phrase, the characters representing PF keys
and arrow keys, as well as TAB and RETURN, are legal terminator keys and
can be accepted from the terminal. (See Technical Notes.)

39. key-dest-item stores the terminator key code; unused character positions, if
any, are filled with spaces. (See Technical Notes.)

ON EXCEPTION Phrase (Formats 3 and 4)

40. The ON EXCEPTION phrase allows execution of an imperative statement
when an exception (or error) condition occurs. ON EXCEPTION takes effect
when illegal numeric data has been entered or there is an overflow on the left
or right of the decimal point when CONVERSION is specified.

41. ON EXCEPTION can be used to detect numeric data entry errors only when
accepting numeric data while CONVERSION is being used.

42. ON EXCEPTION can be used to detect end-of-file in any Format 3 or Format
4 ACCEPT statement.

43. ON EXCEPTION and AT END are mutually exclusive. If ON EXCEPTION is
specified, the end-of-file indication is also a control key.
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44. A DISPLAY statement within an ACCEPT ON EXCEPTION must be
terminated (with, for example, END-DISPLAY) on Alpha and I64 systems. (If
you are concerned with the different VAX behavior, refer to the appendix on
compatibility in the HP COBOL User Manual.)

NOT ON EXCEPTION Phrase (Formats 3 and 4)

45. The NOT ON EXCEPTION phrase allows execution of an imperative
statement when an exception (or error) condition does not occur.

ON EXCEPTION Phrase (Format 5, Alpha, I64)

46. The ON EXCEPTION phrase allows execution of an imperative statement
when the ACCEPT statement terminates unsuccessfully. When there is an
applicable CRT STATUS clause, unsuccessful termination is indicated by a
value of ’1’ or ’9’ in the first character of the CRT STATUS data item (see the
SPECIAL-NAMES section of Chapter 4).

NOT ON EXCEPTION Phrase (Format 5, Alpha, I64)

47. The NOT ON EXCEPTION phrase allows execution of an imperative
statement when the ACCEPT statement terminates successfully. When there
is an applicable CRT STATUS clause, successful termination is indicated by
a value of ’0’ in the first character of the CRT STATUS data item (see the
SPECIAL-NAMES section of Chapter 4). ♦

NOT ON EXCEPTION Phrase (Formats 3 and 4; and Formats 5, 7, and 8, Alpha,
I64)

48. A DISPLAY statement within an ACCEPT [NOT] ON EXCEPTION statement
must be terminated (with, for example, END-DISPLAY).

AT END Phrase (Formats 3 and 4)

49. The AT END phrase allows execution of an imperative statement when an
end-of-file condition occurs.

50. AT END and ON EXCEPTION are mutually exclusive.

51. If AT END is specified, the end-of-file indication is also a control key. If you
do not specify AT END or ON EXCEPTION, and end-of-file is entered, an
error condition occurs.

NOT AT END Phrase (Formats 3 and 4)

52. The NOT AT END phrase allows execution of an imperative statement when
an end-of-file condition (or other error) does not occur.

Format 3
UNDERLINED Phrase (Format 3)

53. The UNDERLINED phrase echoes input characters to the terminal with the
underscore on character attribute.

54. When you use the UNDERLINED phrase with the PROTECTED phrase, the
input field is underlined prior to accepting data.
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BOLD Phrase (Format 3)

55. The BOLD phrase echoes input characters to the terminal with the bold on
character attribute.

56. When you use the BOLD phrase with the PROTECTED phrase, the input
field is visibly bolded prior to accepting data only if: ( 1 ) the underlined or
reversed attributes are also specified, or ( 2 ) the video terminal screen is set
to light background.

BLINKING Phrase (Format 3)

57. The BLINKING phrase echoes input characters to the terminal with the blink
on character attribute.

58. When you use the BLINKING phrase with the PROTECTED phrase, the
input field is visibly blinked prior to accepting data only if: ( 1 ) the underlined
or reversed attributes are also specified, or ( 2 ) the video terminal screen is
set to light background.

REVERSED Phrase (Format 3)

59. The REVERSED phrase echoes input characters to the terminal with the
reverse video on character attribute.

60. When you use the REVERSED phrase with the PROTECTED phrase, the
input field appears in reverse video prior to accepting data.

CONVERSION Phrase (Formats 1 and 3)

61. The CONVERSION phrase allows you to accept data into a field and achieve
the same results as you would with the MOVE statement for non-floating-
point items, and provides conversion from display, display scaled or E-notation
to floating point in the case of floating-point data items. It enables validation
of the accepted data and facilitates editing and alignment of data within
dest-item. The effect of the CONVERSION phrase on data handling depends
on the category of dest-item. (Numeric data can be described by any USAGE
clause.)

62. When dest-item is numeric or numeric edited (other than floating point), the
CONVERSION phrase:

• Converts input numeric data to a numeric literal (TRAILING SEPARATE
SIGNED DISPLAY DECIMAL)

• Moves the result to dest-item (using MOVE statement rules)

63. When dest-item is floating point, the CONVERSION phrase:

• Converts input data to floating point (COMP-1 or COMP-2 as
appropriate).

• Moves the converted result to the destination as if a numeric literal
equivalent to the input data was moved to the destination with the
MOVE statement.

64. When dest-item is numeric or numeric edited (other than floating point), and
you use the CONVERSION phrase, valid input characters are as follows:

• 0 to 9

• Period ( . ), unless DECIMAL POINT IS COMMA is specified

• Comma ( , ), if DECIMAL POINT IS COMMA is specified
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• Space (leading and trailing)

• Sign (+ or -)

The terminal operator can input space characters only as leading and trailing
spaces. If this occurs, space characters are simply ignored during numeric
conversion.

However, the operator cannot input space characters between numeric
characters, between numeric characters and a decimal point, or between a
sign and any other input character. When this occurs, the input data is
invalid, and an error condition results.

The operator can input only one sign character and one decimal point
character.

When the operator inputs a sign character, it must precede or follow all
numeric characters and the decimal point.

The default sign character is a plus sign ( + ).

The default number of decimal places is zero.

65. When dest-item is floating point, and you use the CONVERSION phrase,
valid input characters are as follows:

• <zero or more blanks>

• <‘‘+’’, ‘‘-’’, or null>

• <zero or more decimal digits>

• <‘‘.’’ or null> if DECIMAL POINT IS COMMA then <‘‘,’’ or null>

• <zero or more decimal digits>

• <exponent or null> where exponent is:
<‘‘E’’ or ‘‘e’’>

<zero or more blanks>
<‘‘+’’ or ‘‘-’’ or null>

or
<‘‘+’’ or ‘‘-’’>>
<zero or more decimal digits>>

For example:

2.5E2
-0.08e4
10.0E-1
-2.14158E0

Note that numbers can be expressed in several ways. For example, the number
257.0 can be represented in any of the following ways:

257e0 2.57E2 0.000257E+6 2570E-1

66. When you use the CONVERSION phrase and dest-item is numeric, data
input results in a conversion error condition if the operator enters any of the
following:

• For fixed point numeric, too many characters on either side of the decimal
point. (The PICTURE clause of dest-item determines this overflow
condition.)

6–70 Procedure Division



ACCEPT Statement

• For floating-point numeric, an exponent outside the valid range:

For IEEE double format (T_floating format) and G_floating format,
the valid range is +308 to -308.

For IEEE single format (S_floating format), D_floating format, and
F_floating format, the valid range is +38 to -38.

• Invalid numeric data (for both fixed and floating-point numeric).

When one of these error conditions occurs, and you do not specify the ON
EXCEPTION phrase: ( 1 ) the contents of dest-item do not change, ( 2 ) the
terminal bell rings, ( 3 ) the input field is erased, and ( 4 ) the ACCEPT
statement executes again. The input field is not erased if the EDITING
phrase is used.

When one of these error conditions occurs, and you do specify the ON
EXCEPTION phrase: ( 1 ) the contents of dest-item do not change, ( 2 ) the
input field is left as if no error occurred, and ( 3 ) the imperative statement of
the ON EXCEPTION phrase executes.

67. When dest-item is not numeric, the CONVERSION phrase moves input
characters to dest-item as an alphanumeric string (MOVE statement rules
apply). Therefore, data can be accepted into an alphanumeric edited field,
or a reference modified field, and the JUSTIFIED clause, if it applies to
dest-item, can take effect.

An overflow condition is not an error condition when dest-item is
alphanumeric; in this case, right-end truncation occurs. However, you can
specify the PROTECTED and SIZE phrases to limit the amount of input data
when dest-item is alphanumeric.

68. When you use the CONVERSION phrase, and the operator types the
terminator key prior to any data input:

• ZEROES (or spaces if BLANK WHEN ZERO is specified) are moved to a
numeric or numeric edited dest-item, if you do not specify the DEFAULT
phrase.

• SPACES are moved to an alphanumeric or alphanumeric edited dest-item,
if you do not specify the DEFAULT phrase.

• However, the default value is moved to dest-item, if you do specify the
DEFAULT phrase.

If the default value is not a valid value for dest-item, an error condition
results. If ON EXCEPTION is used, an exception path is followed. If ON
EXCEPTION is not used, an automatic reprompt for data occurs.

69. If you do not use the CONVERSION phrase, data is transferred to dest-item
according to Format 1 ACCEPT statement rules when CONVERSION is not
specified.

PROTECTED Phrase (Format 3)

70. The PROTECTED phrase limits the number of characters that can be entered
from the terminal.

71. If you do not specify the PROTECTED phrase, the cursor remains on the
character position immediately following the position of the last input
character. This is the default starting position of the next data item you
input from or display upon the terminal.
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However, if you use the PROTECTED phrase to delimit the field of a data
item, the cursor moves to the character position immediately following the
last position of the input field. In this case, the default starting position of
the next data item is always to the right of the input field, as determined by
the SIZE phrase or PICTURE clause.

72. When you specify the PROTECTED phrase without the AUTOTERMINATE
phrase:

• If the operator attempts to type beyond the rightmost position of the input
field: ( 1 ) the terminal bell rings, ( 2 ) the cursor remains on the position
to the right of the rightmost position, and ( 3 ) character entry attempts
beyond the rightmost position are not echoed to the terminal screen.

• If the operator attempts to delete beyond the leftmost position of the
input field: ( 1 ) the terminal bell rings, and ( 2 ) the cursor remains on the
leftmost position.

73. If you use the PROTECTED phrase without the SIZE phrase, the maximum
number of characters that the operator can enter is as follows:

• The number of characters in a fixed point dest-item

• Thirteen, if dest-item is COMP-1 F_floating format or IEEE S_floating
format

• Twenty two, if dest-item is COMP-2 D_floating or G_floating format or
IEEE T_floating format

For non-floating-point numeric items, the maximum number of characters
allows for entry of sign and decimal point characters when these are
implied by dest-item’s PICTURE clause. For example, if PIC S9(4)V99 is
the PICTURE clause for dest-item, all of the following character strings are
valid input:

2222.22
2222
.22
+2222.22
222.22-
-02.2

Although the sign does not represent a character position (and does not count
toward item size), a space in the input field is allocated for it. A space is also
allocated for the implied decimal point.

74. When you use the PROTECTED phrase without the NO BLANK or FILLER
phrase, the input field is filled with spaces prior to accepting data. If you also
use the UNDERLINED, REVERSED, BOLD, or BLINKING phrase, those
spaces have the specified character attributes.

75. If you use the PROTECTED phrase on a field that causes the cursor to
position past the last column position of the screen, the results are undefined.

76. If you do not use the PROTECTED phrase, an overflow condition is treated
according to rules for the Format 1 ACCEPT statement.
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SIZE Phrase (Format 3)

77. You can use the SIZE phrase only when you also specify the PROTECTED
phrase.

78. The SIZE phrase specifies the number of characters in the input field. It
allows you to specify fewer or more characters than are specified in the
PICTURE clause for dest-item.

79. Data input results are undefined if the program generates a value for prot-
size-item that is zero or negative.

AUTOTERMINATE Phrase (Format 3)

80. You can use the AUTOTERMINATE phrase only when you also specify the
PROTECTED phrase.

81. The AUTOTERMINATE phrase terminates a protected ACCEPT as soon
as the maximum number of characters has been entered. If the maximum
number is entered, you should not enter a legal terminator. If you enter the
maximum number of characters and a terminator, the terminator is retained
in the terminal driver type-ahead buffer and will terminate the next ACCEPT
statement. If you enter fewer than the maximum number of characters,
a legal terminator is required to terminate the ACCEPT statement. The
maximum number of characters is determined by the same rules that apply
to the PROTECTED phrase.

82. If you do not use the AUTOTERMINATE phrase, the ACCEPT statement is
terminated when you enter a legal terminator key.

NO BLANK Phrase (Format 3)

83. You can use the NO BLANK phrase only when you also specify the
PROTECTED phrase.

84. The NO BLANK phrase specifies that the input field is not to be changed until
you enter the first keystroke. Once you enter a keystroke, the remainder of
the field is filled with spaces or filler (or the default value, if the EDITING
and DEFAULT phrases are used) using any character attributes specified on
the ACCEPT statement.

EDITING Phrase (Format 3)

85. You can use the EDITING phrase only when you also specify the
PROTECTED phrase.

86. On OpenVMS systems, the EDITING phrase enables keys to perform field
editing functions, described in Table 6–8.

Table 6–8 Field Editing Keys for OpenVMS Systems

Key Description

Left,
Ctrl/D

Move left.

Right,
Ctrl/F

Move right.

(continued on next page)
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Table 6–8 (Cont.) Field Editing Keys for OpenVMS Systems

Key Description

Ctrl/H,
F12

Move to beginning of line.

Ctrl/E Move to end of line.
Ctrl/A,
F14

Toggle insert and overstrike mode.

Ctrl/K Erase to end of line.
Ctrl/U Erase to beginning of line.
Ctrl/M,
TAB,
CR

Terminate input.

Ctrl/Z End-of-file termination. ♦

On Tru64 UNIX systems, the EDITING phrase enables the keys described in
Table 6–9.

Table 6–9 Field Editing Keys for Tru64 UNIX Systems

Key Description

Left,
Ctrl/B

Move left

Right,
Ctrl/F

Move right

Ctrl/H Erase previous character
F12,
Ctrl/A

Move to beginning of line

Ctrl/E Move to end of line
F14,
Ctrl/T

Toggle insert and overstrike mode

Ctrl/K Erase to end of line
Ctrl/U Erase to beginning of line
Ctrl/M,
TAB,
CR

Terminate input

Ctrl/D End of file termination ♦

87. In insert editing, each new character is entered where the cursor indicates
and the cursor moves to the right. The rest of the field also moves one
character position to the right. A character moved beyond the last character
position of the field is lost. The delete key causes the character to the left of
the cursor to be deleted. The rest of the field moves one character position to
the left, and space is inserted in the last position of the field.

In overstrike editing, each new character replaces the one where the cursor
is positioned and the cursor moves to the right. The delete key causes the
character to the left of the cursor to be replaced by a space and the cursor
moves to the left.
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88. When program execution begins, overstrike or insert editing is used, according
to your terminal’s current setting. The same editing mode is used for all
ACCEPT statements with the EDITING phrase until the next use of the
switch-mode function.

89. The EDITING phrase affects the syntax and semantics of other phrases. For
more information, see the sections on NO BLANK, FILLER, CONVERSION,
NO ECHO, DEFAULT, CURRENT VALUE, and CONTROL KEY.

FILLER Phrase (Format 3)

90. You can use the FILLER phrase only when you also specify the PROTECTED
phrase.

91. The FILLER phrase initializes each character position of the input field
with the character specified in prot-fill-lit. As you enter characters, the filler
characters are replaced by your input. If you strike the delete key after you
have entered data, the position made available by the delete operation is
refilled with the character specified in prot-fill-lit. When you terminate the
ACCEPT operation, any remaining filler characters are replaced by space
characters.

92. When you use the FILLER phrase with the NO BLANK phrase, the input
field is filled with the character specified in prot-fill-lit, after you have entered
the first character.

93. The FILLER phrase is not allowed to be used with the EDITING phrase. If
both are present, the FILLER phrase is ignored.

NO ECHO Phrase (Format 3)

94. The NO ECHO phrase suppresses the display of input characters on the
screen.

95. When you do not use the NO ECHO phrase, valid input characters are
displayed on the screen as they are typed.

96. When the EDITING phrase is used, the field editing functions still take place,
but the display field is not modified.

DEFAULT Phrase (Format 3)

97. The DEFAULT phrase specifies default input values when no characters
are entered from the terminal. Null input is signaled by entering a legal
terminator key that is not preceded by data. (See the general rules for the
CONTROL KEY phrase.)

98. When the null input condition occurs, def-src-lit or the value of def-src-item is
moved to dest-item according to theMOVE rules. When the move occurs, the
specified default value is not displayed on the terminal screen.

99. Conversion of the DEFAULT item will occur if CONVERSION is specified.

100. When the EDITING phrase is used, the default value is displayed in the
input field. The value can be blank-filled on the right or truncated, depending
on the relative lengths of the default value and the input field.

101. When the EDITING phrase is used and a terminator is entered, the contents
of the input field are moved to dest-item according to the MOVE rules.
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CURRENT VALUE Phrase (Format 3)

102. The CURRENT VALUE phrase can be used only when you specify the
DEFAULT phrase.

103. The CURRENT VALUE phrase specifies that the default input value is the
initial value of the ACCEPT destination item.

104. The value of the ACCEPT destination item is the same as it was before the
execution of the ACCEPT statement if all the following conditions exist:

You specify the CURRENT VALUE phrase.

The EDITING phrase is not used.

The default path is taken.

105. When you use the EDITING phrase, dest-item can be alphabetic,
alphanumeric, or non-floating-point numeric. In this case, the input field
is always updated to be what is on the screen. It cannot be numeric edited,
alphanumeric edited, COMP-1, or COMP-2; if it is, the program will ignore
the DEFAULT and CURRENT VALUE phrases.

CONTROL KEY Phrase (Format 3)

106. When you use the CONTROL KEY phrase in Format 3, the operator must
terminate data input with a legal terminator key. Ctrl/Z is a legal terminator
if ON EXCEPTION or AT END is specified.

107. When you do not use the CONTROL KEY phrase in Format 3, the operator
can terminate data input only with RETURN or TAB.

108. When the EDITING phrase is used, the keys which invoke field editing
functions do not terminate the ACCEPT statement and are not stored in
key-dest-item.

Format 4

109. When any key other than a valid control key is entered: ( 1 ) the contents of
key-dest-item do not change, and ( 2 ) the terminal bell rings. This occurs until
a proper control key is entered.

Format 5

110. The end-of-file indication is considered a normal, successful termination.

111. The data in each field is converted and validated as you leave the field. The
updated value is displayed in the field if the SECURE clause is not specified.

Conversion occurs in the following instances:

• If the field is not numeric and the JUSTIFIED clause is specified, the
data is right-justified.

• If the field is numeric or numeric edited, the data is formatted according
to the PICTURE, SIGN, and BLANK WHEN ZERO clauses. This
formatting is always successful because only the following characters
from the data are formatted:

0–9

Period (.), if DECIMAL POINT IS COMMA is not specified

Comma (,), if DECIMAL POINT IS COMMA is specified

Sign (+, �, DB, db, CR, or cr)
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Note that only the first occurrence of the period, comma and sign is
accepted; multiple occurrences are ignored. Also, to the left and right of
the decimal point excess leftmost digits and excess rightmost digits are
truncated, respectively.

Validation occurs when the FULL or REQUIRED clauses are specified.

112. The default value for each field is displayed when the operator enters the
field for the first time during an ACCEPT statement. The default value is
determined as follows:

• If the USING clause is specified, the default is the current value of the
USING item.

• If the TO and FROM clauses are specified, the default is the current value
of the FROM item.

• If only the TO clause is specified:

The default is ZEROES (or SPACES if BLANK WHEN ZERO is
specified) for numeric and numeric edited items.

The default is SPACES for alphabetic, alphanumeric, and
alphanumeric edited items.

113. If the operator types a terminator key prior to entering data in every field,
the default value for each untouched field is moved to the field’s destination
item.

114. The operator is limited to entering the number of characters specified by
the PICTURE clause. If the operator attempts to type beyond the rightmost
position of the field: (1) the cursor remains on the position to the right of the
rightmost position and (2) the last character of the field is overwritten with
the new character.

115. There are special keys that allow the operator to edit data within a field and
to move among the fields within a screen. Except where noted otherwise, the
operator is allowed to move among the fields in the order in which the fields
are defined within the Screen Description Entry.

The keys defined on OpenVMS Alpha and I64 systems are described in
Table 6–10.

Table 6–10 SCREEN SECTION Keys for OpenVMS Alpha and I64 Systems

Key Description

Left,
Ctrl/B,
Ctrl/D

Move left (if not at beginning of field, move left within field; if
at beginning of field, move to previous field).

Right,
Ctrl/F

Move right (if not at end of field, move right within field; if at
end of field, move to next field).

Up Move to the nearest field that is positioned above the current
cursor position; this movement ignores the order in which fields
are defined within the Screen Description Entry and is based
simply on the location of items on the screen.

(continued on next page)
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Table 6–10 (Cont.) SCREEN SECTION Keys for OpenVMS Alpha and I64
Systems

Key Description

Down Move to the nearest field that is positioned below the current
cursor position; this movement ignores the order in which fields
are defined within the Screen Description Entry and is based
simply on the location of items on the screen.

Ctrl/P,
Ctrl/L

Move to previous field.

TAB,
Ctrl/N,
Ctrl/I

Move to next field.

Ctrl/H,
Ctrl/W

Move to beginning of line (if at beginning of line within a
multiple-line field, move to beginning of previous line).

Ctrl/E Move to end of text (if at end of text within a multiple-line field,
move to end of text on next line).

Ctrl/A,
Ctrl/T

Toggle insert and overstrike mode (if $ SET NOCONTROL=T).

Ctrl/K Erase to end of line (always performed in insert mode).
Ctrl/U,
Ctrl/X

Erase to beginning of line (always performed in insert mode).

CR,
Ctrl/M,
Ctrl/Z

Terminate input. ♦

The keys defined on Tru64 UNIX systems are described in Table 6–11.

Table 6–11 SCREEN SECTION Keys for Tru64 UNIX Systems

Key Description

Left,
Ctrl/B,
Ctrl/D

Move left (if not at beginning of field, move left within field; if
at beginning of field, move to previous field).

Right,
Ctrl/F

Move right (if not at end of field, move right within field; if at
end of field, move to next field).

Up Move to the nearest field that is positioned above the current
cursor position; this movement ignores the order in which fields
are defined within the Screen Description Entry and is based
simply on the location of items on the screen.

Down Move to the nearest field that is positioned below the current
cursor position; this movement ignores the order in which fields
are defined within the Screen Description Entry and is based
simply on the location of items on the screen.

Ctrl/P,
Ctrl/L

Move to previous field.

(continued on next page)
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Table 6–11 (Cont.) SCREEN SECTION Keys for Tru64 UNIX Systems

Key Description

TAB,
Ctrl/N,
Ctrl/I

Move to next field.

Ctrl/A,
Ctrl/H,
Ctrl/W

Move to beginning of line (if at beginning of line within a
multiple-line field, move to beginning of previous line).

Ctrl/E Move to end of text (if at end of text within a multiple-line field,
move to end of text on next line).

Ctrl/T Toggle insert and overstrike mode.
Ctrl/K Erase to end of line (always performed in insert mode).
Ctrl/U,
Ctrl/X

Erase to beginning of line (always performed in insert mode).

CR,
Ctrl/M

Terminate input. ♦

116. The description of insert and overstrike editing for the EDITING Phrase
(Format 3) also applies here.

Formats 6, 7, and 8

117. When a Format 6 ACCEPT statement is specified, the value of arg-count is
moved to dest-item. This represents the number of arguments on the program
run command line (see ARGUMENT-NUMBER in the SPECIAL-NAMES
paragraph in Chapter 4).

118. When the current argument position indicator is zero, it refers to the zeroth
command line argument, in other words the command that invoked the
COBOL program.

119. When a Format 7 ACCEPT statement is specified, the value of the command
line argument indicated by the current argument position indicator is moved
to dest-item (see ARGUMENT-VALUE in the SPECIAL-NAMES paragraph in
Chapter 4).

120. The current argument position indicator is determined by the following:

• In the absence of a Format 4 DISPLAY, the initial value of the current
argument position indicator is 1.

• The current argument position indicator is incremented by 1 after
execution of a Format 7 ACCEPT statement.

121. When a Format 8 ACCEPT statement is specified, the value of envlog-
value is moved to dest-item (refer to ENVIRONMENT-VALUE and
ENVIRONMENT-NAME in the SPECIAL-NAMES paragraph in Chapter 4).
This value represents the value of the environment variable or system logical
named by the current ENVIRONMENT-NAME item.

122. stment3 is executed if an attempt is made to read beyond the last argument
on the command line, or if the argument does not exist.

123. stment4 is executed if the name of the environment variable or logical has
not been set by a Format 5 DISPLAY, or if the environment variable or logical
does not exist.
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124. stment5 is executed if the exception condition does not exist.

Technical Notes
All Formats

1. On OpenVMS systems, if the data transfer is from a terminal, Ctrl/Z is
equivalent to an end-of-file indication. ♦

2. On Tru64 UNIX systems, if the data transfer is from a terminal, Ctrl/D is
equivalent to an end-of-file indication. ♦

Format 1

3. An ACCEPT statement without the FROM phrase takes input from the
default input device (the keyboard). To take input from a file on Tru64 UNIX
systems, the environment variable COBOL_INPUT can be used to specify
a text file containing input data. To take input from a file on OpenVMS
systems, the logical COB$INPUT or SYS$INPUT can be used to specify a text
file containing input data.

Alternatively, input device redirection (<) can be used on Tru64 UNIX systems
to name an input file.

4. An ACCEPT statement that includes the FROM phrase transfers data
from the file-device-name associated with the SPECIAL-NAMES paragraph
description of input-source.

5. On OpenVMS systems, the object of a logical name is not necessarily a
device. Therefore, no open mode is implied. As a result, input-source can
be associated with any device-name in the SPECIAL-NAMES paragraph.
For example, input-source can refer to PAPER-TAPE-PUNCH as well as
PAPER-TAPE-READER. ♦

6. An end-of-file indication during ACCEPT statement execution with an AT
END phrase causes control to transfer to the AT END imperative statement.

7. An end-of-file indication during ACCEPT statement execution without the AT
END phrase is an error. The program terminates abnormally.

8. The ACCEPT statement fills dest-item with spaces if the input is an empty
record (for example, a carriage return only).

9. On Tru64 UNIX, you can enter a maximum of 256 characters during a Format
1 ACCEPT statement. ♦

Formats 3 and 4

• The Hewlett-Packard extensions to the ACCEPT and DISPLAY statements
support data input and display only on VT100 and later terminal types,
including emulators of these terminal types.

• On OpenVMS Alpha and I64 systems, control sequences from
SMGTERMS.TXT are used to accomplish cursor positioning, screen erasure,
and video attributes. Refer to the chapter on support for non Hewlett-Packard
terminals of the OpenVMS RTL Screen Management (SMG$) Manual if you
wish to customize SMGTERMS.TXT. ♦

• You should accept data only from input fields that are within screen
boundaries. That is, the terminal operator should see all the characters
entered (assuming the NO ECHO, CONVERSION, and PROTECTED phrases
are not specified). If you accept data from an input field that positions the
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cursor outside screen boundaries, the result is not an error condition, but your
program might produce unexpected results.

Values for screen boundaries depend on the terminal attributes. Refer to the
appropriate terminal user’s guide for more information on screen boundaries.

• Line positioning can be a one- or two-step process. The first (or only) step
is absolute positioning, which is using the value of line-num or line-id to
determine the line position. The second step is relative positioning, which
is adding the value of plus-num to line-id to determine the line position.
Relative positioning beyond the bottom line of the current screen results in
scrolling.

For example, suppose that the screen for which you are programming has
a maximum of 24 lines and you need to scroll the screen up one line before
accepting data. The following sample statements illustrate how to use relative
positioning to accomplish this operation (assume ITEMA has a value of 14,
and the current line position is 20):

ACCEPT DEST-EXAMPLE FROM LINE NUMBER PLUS 5.
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMA PLUS 11.

The following sample statements would produce undefined results because
absolute line positioning is beyond the bottom of the screen (assume ITEMB
has a value of 25):

ACCEPT DEST-EXAMPLE FROM LINE NUMBER 25.
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMB.
ACCEPT DEST-EXAMPLE FROM LINE NUMBER ITEMB PLUS 0.

The last ACCEPT statement illustrates that use of the PLUS option does not
necessarily mean that scrolling will always occur. Absolute line positioning
always occurs before the relative positioning specified by the PLUS option. In
this case, line-id (ITEMB) has a value of 25. Therefore, the line position is
outside the screen boundary before the PLUS option executes, and program
results are undefined.

• When you use the CONTROL KEY phrase, key-dest-item stores the terminator
key code. The HP COBOL User Manual contains information on these key
code values in its description of programming video forms.

• In Formats 3 and 4, the maximum number of characters in dest-item or
key-dest-item is 1024.

• When you use the CONTROL KEY phrase with the PROTECTED WITH
AUTOTERMINATE phrase, and the maximum number of characters is
entered to terminate the ACCEPT statement, key-dest-item is filled with
spaces.

• The ALPHABET clause has no effect on the CONVERSION clause for either
ACCEPT or DISPLAY.

• Unexpected behavior can occur when an ACCEPT statement with the
EDITING, PROTECTED, and DEFAULT IS CURRENT phrases and without
the CONVERSION phrase is executed. The behavior occurs when a numeric
data item has a negative scale factor or is signed. To avoid this behavior, it is
suggested that the CONVERSION phrase be used in these circumstances.
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Additional References

• SPECIAL-NAMES section in Chapter 4

• HP COBOL User Manual sections on using command-line arguments and
environment variables

• Section 6.1.4, Scope of Statements

• DISPLAY

• MOVE statement

Examples
In the following examples, the character s represents a space. The examples
assume that the time is just after 2:15 P.M. on October 7, 1992. The Environment
and Data Divisions contain the following entries:

SPECIAL-NAMES.
CONSOLE IS IN-DEVICE.

DATA DIVISION.
01 ITEMA PIC X(6).
01 ITEMB PIC 99V99.
01 ITEMC PIC 9(8).
01 ITEMD PIC 9(5).
01 ITEME PIC 9(6).
01 ITEMF PIC 9.
01 ITEMG COMP-1.
01 ITEMH PIC S9(5) COMP.

1. ACCEPT ITEMA.

Input ITEMA

COMPUTER COMPUT
VAX VAXsss
12.6 12.6ss

2. ACCEPT ITEMB FROM IN-DEVICE.

Input ITEMB Equivalent to

1623 1623 16.23
4 4sss Invalid data
60000 6000 60.00
-1.2 -1.2 Invalid data
1.23 1.23 Invalid data
COMPUTER COMP Invalid data

3. ACCEPT ITEMB WITH CONVERSION.

Input ITEMB Equivalent to

1623 1623 16.23
4 4sss 04.00
60000 6000 60.00
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Input ITEMB Equivalent to

-1.2 -1.2 01.20
1.23 1.23 01.23
COMPUTER COMP Invalid data

STATEMENT RESULT

ACCEPT ITEME FROM DATE. ITEME = 921007
ACCEPT ITEMC FROM TIME. ITEMC = 14150516 (OpenVMS and

Tru64 UNIX)
ACCEPT ITEMD FROM DAY. ITEMD = 92280
ACCEPT ITEMF FROM DAY-OF-WEEK. ITEMF = 3
ACCEPT ITEMA FROM TIME. ITEMA = 141505
ACCEPT ITEME FROM TIME. ITEME = 150516
ACCEPT ITEMD FROM DAY-OF-WEEK. ITEMD = 00003
ACCEPT ITEMG WITH CONVERSION.

Input Result Equivalent to

.123E-02 0.00123
-12.3E+02 -1230
1004E-07 1.004000E-04

4. ACCEPT ITEMH WITH CONVERSION.

Input Result Equivalent to

27 27
-44 -44

Additional examples containing Hewlett-Packard extensions to the ACCEPT
statement (Formats 3, 4, and 5) are described in the HP COBOL User Manual.
Refer to the description of programming video forms.

Also, examples containing extensions to the ACCEPT statement (Formats 6, 7
and 8) that access command line arguments are described in the HP COBOL User
Manual.
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ADD
Function
The ADD statement adds two or more numeric operands and stores the sum in
one or more receiving fields.

General Format

Format 1

ADD { num } . . . TO { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-ADD �

Format 2

ADD num . . . TO { num } GIVING { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-ADD �

Format 3

ADD
�

CORRESPONDING
CORR



grp-1 TO grp-2 [ ROUNDED ]

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-ADD �

num
is a numeric literal or the identifier of an elementary numeric item.

rsult
is the identifier of an elementary numeric item. However, in Format 2, rsult can
be an elementary numeric edited item. It is the resultant identifier.

stment
is an imperative statement executed when a size error condition has occurred.

stment2
is an imperative statement executed when no on size error condition has occurred.

grp-1
is the identifier of numeric group item.

grp-2
is the identifier of numeric group item.

Syntax Rule
CORR is an abbreviation for CORRESPONDING.

6–84 Procedure Division



ADD Statement

General Rules

1. In Format 1, the values of the operands before the word TO are added
together. This total is then added to each occurrence of rsult.

2. In Format 2, the values of the operands before the word GIVING are added.
The sum is then stored in each rsult.

3. In Format 3, data items in grp-1 are added to and stored in the corresponding
data items in grp-2.

Additional References

• Section 6.1.4, Scope of Statements

• Section 6.6.1, Arithmetic Operations

• Section 6.6.2, Multiple Receiving Fields in Arithmetic Statements

• Section 6.6.3, ROUNDED Phrase

• Section 6.6.4, ON SIZE ERROR Phrase

• Section 6.6.5, CORRESPONDING Phrase

• Section 6.6.7, Overlapping Operands and Incompatible Data

Examples
Each of the examples assume the following data descriptions and initial values:

INITIAL VALUES

03 ITEMA PIC 99 VALUE 85. 85
03 ITEMB PIC 99 VALUE 2. 2
03 ITEMC VALUE "123".

05 ITEMD OCCURS 3 TIMES 1 2 3
PIC 9.

1. TO phrase: RESULTS

ADD 2 ITEMB TO ITEMA. ITEMA = 89

2. SIZE ERROR clause:

ADD 38 TO ITEMA ITEMB ITEMA = 85
ITEMB = 40

ON SIZE ERROR
MOVE 0 TO ITEMB. ITEMB = 0

(When the SIZE ERROR condition occurs, the value of the affected resultant
identifier does not change. The SIZE ERROR condition occurs on ITEMA but
not on ITEMB.)

3. NOT ON SIZE ERROR clause:

ADD 14 TO ITEMA ITEMA = 99
ON SIZE ERROR

MOVE 0 TO ITEMB.
NOT ON SIZE ERROR

MOVE 1 TO ITEMB. ITEMB = 1

(If the SIZE ERROR condition had occurred, the value of ITEMA would have
been 85 and ITEMB would have been 0.)
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4. Multiple receiving fields:

ADD 1 TO ITEMB ITEMD (ITEMB). ITEMB = 3
ITEMD (3) = 4

(The operations proceed from left to right. Therefore, the subscript for ITEMD
is evaluated after the addition changes its value.)

5. GIVING phrase:

ADD ITEMB ITEMD (ITEMB) GIVING ITEMA. ITEMA = 4

6. END-ADD:

IF ITEMB < 10
ADD 7 ITEMB TO ITEMD (ITEMB) ITEMD (2) = 2
ON SIZE ERROR
MOVE 0 TO ITEMB ITEMB = 0

END-ADD
ADD 1 TO ITEMB. ITEMB = 1

(The first ADD terminates with END-ADD. If the SIZE ERROR condition had
not occurred, the second ADD statement would have executed anyway; the
value of ITEMB would have been 3.)
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ALTER
Function
The ALTER statement changes the destination of a GO TO statement.

General Format

ALTER { proc TO � PROCEED TO � new-proc } . . .

proc
is the name of a paragraph that contains one sentence: a GO TO statement
without the DEPENDING phrase.

new-proc
is a procedure-name.

General Rules

1. The ALTER statement changes the destination of the GO TO statement in
proc.

2. When the changed GO TO executes, it transfers control to new-proc instead of
the procedure it previously referred to.

However, when the GO TO statement is in an independent segment (segment-
number 50 to 99), the GO TO statement could return to its initial state under
some circumstances.

3. A GO TO statement in a section with a segment-number greater than 49
cannot be changed by an ALTER statement in a section with a different
segment-number.

Additional References

• Section 6.7, Segmentation

• GO TO statement
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Examples
The examples assume the following Procedure Division code:

PROC-AA.
DISPLAY "PROC-A".

PROC-A.
GO TO PROC-BB.

PROC-BB.
DISPLAY "PROC-B".

PROC-B.
GO TO PROC-DD.

PROC-CC.
DISPLAY "PROC-C".

PROC-C.
GO TO PROC-FF.

PROC-DD.
DISPLAY "PROC-D".

PROC-D.
GO TO PROC-CC.

PROC-EE.
DISPLAY "PROC-E".

PROC-E.
GO TO.

PROC-FF.
DISPLAY "PROC-F".

PROC-F.
EXIT.

1. As written.

Output
PROC-A
PROC-B
PROC-D
PROC-C
PROC-F

2. ALTER PROC-A TO PROC-EE PROC-E TO PROC-CC.

Output
PROC-A
PROC-E
PROC-C
PROC-F

3. ALTER PROC-D TO PROC-EE PROC-C TO PROC-AA.

Output
PROC-A
PROC-B
PROC-D
PROC-E
error at PROC-E
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CALL
Function
The CALL statement transfers control to another program in the executable
image.

General Format—Call

CALL prog-name

�
��������������������������

USING����������
��������


������
����


�����
���


� BY REFERENCE �

BY CONTENT
BY DESCRIPTOR (OpenVMS)
BY VALUE

�����
����

{ arg } . . .

������
�����

OMITTED

����������
���������

�
�������

�����
���


���
�


BY REFERENCE
BY CONTENT
BY DESCRIPTOR (OpenVMS)
BY VALUE

���
�� { arg } . . .

�����
����

OMITTED

�
�������

. . .

�
��������������������������

� GIVING function-res ����
�


� ON EXCEPTION stment � � NOT ON EXCEPTION stment2 �

� ON OVERFLOW stment � � NOT ON OVERFLOW stment2 �

���
��

� END-CALL �

prog-name
is a nonnumeric literal or the identifier of an alphanumeric data item. It is the
name of the program to which control transfers.

arg
is the argument. It identifies the data that is available to both the calling and
called programs. It is any data item described in the File Section, Working-
Storage Section, or Linkage Section, or it is a nonnumeric literal. It must not be
a function-identifier.

function-res
is the identifier of an elementary integer numeric data item with COMP, COMP-
1, or COMP-2 usage and no scaling positions. function-res can be subscripted,
and it can be qualified. When control returns to the calling program, function-res
can contain a function result.

stment
is an imperative statement executed for an on exception or an overflow condition.
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stment2
is an imperative statement executed for a not on exception or a not on overflow
condition.

Syntax Rules

1. prog-name must be from 1 to 31 characters long. It can contain the characters
"A" to "Z", "a" to "z", "0" to "9", and hyphen ( - ), dollar sign ( $ ), and underline
( _ ).

2. prog-name is the entry-point in the called program. For COBOL programs,
prog-name is the program-name specified in the PROGRAM-ID paragraph.

3. The same arg can appear more than once in the USING phrase.

4. The maximum number of arguments is 255.

5. If there is no initial argument-passing mechanism (REFERENCE, VALUE,
CONTENT, or, for DESCRIPTOR), BY REFERENCE is the default.

6. An argument-passing mechanism applies to every arg following it until a new
mechanism (if any) appears.

7. The CALL statement has a USING phrase only if a USING phrase is in the
Procedure Division header of the called program. Both USING phrases must
have the same number of arguments.

8. If arg is a nonnumeric literal, only BY REFERENCE, BY CONTENT, or for
OpenVMS systems, BY DESCRIPTOR can be used.

9. OMITTED, a reserved word, indicates the absence of a specific argument.
OMITTED does not change the default argument-passing mechanism; it
generates BY VALUE 0 for the omitted argument.

10. If the argument-passing mechanism is BY VALUE, arg must be either: ( a )
an integer numeric literal in the range -2**31 to +2**31-1, ( b ) a COMP-1
data item, or ( c ) a word or longword integer COMP data item.

General Rules

1. The program whose name is specified by prog-name is the called program.
The program containing the CALL statement is the calling program.

2. When the CALL statement executes, the contents of prog-name are
interpreted as follows:

• Hyphens are treated as underline characters.

• Lowercase letters are treated as uppercase (See the Technical Notes
relating to case sensitivity later in this section).

• Leading and trailing spaces and tab characters are ignored.

3. The CALL statement transfers control to the called program.

4. Two or more programs in the run unit can have the same prog-name. The
scope of names conventions for program-names resolve the CALL statement
references to duplicate prog-names. (See the section on Conventions for
Resolving Program-Name References.)

5. If prog-name is an identifier, the CALL statement can transfer control only to
HP COBOL programs.

6. The ON EXCEPTION phrase is interchangeable with the ON OVERFLOW
phrase.
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7. If prog-name is not in the executable image and there is an ON EXCEPTION
phrase, any NOT ON EXCEPTION phrase is ignored, stment executes, and
control is transferred to the end of the CALL statement.

8. If prog-name is in the executable image, and there is an ON OVERFLOW
phrase or ON EXCEPTION phrase, both phrases are ignored. Control
is transferred either to the end of the CALL statement or, if NOT ON
EXCEPTION is specified, to stment2. After stment2 executes, control is
transferred to the end of the CALL statement.

9. If prog-name is not in the executable image and there is no ON EXCEPTION
phrase, an error condition exists; the program terminates abnormally.

10. If the called program does not have the initial attribute, it, and each program
directly or indirectly contained in it, is in its initial state: ( a ) the first time
it is called in an image, and ( b ) the first time it is called after a CANCEL to
the called program.

On all other entries, the state of the called program is the same as when it
was last exited. The program state includes internal data.

11. If the called program has the initial attribute, it, and each program directly
or indirectly contained in it, is in its initial state every time it is called.

12. Files associated with a called program’s internal file connectors are not in the
open mode:

• The first time the program is called

• The first time the program is called after execution of a CANCEL
statement referring to the program

• Every time the program is called, if it has the initial attribute

On all other entries, the status and positioning of such files in a called
program are the same as when the program was last exited.

13. The process of calling a program or exiting from a called program does not
alter the status or positioning of a file associated with any external file
connector.

14. The arguments’ order of appearance in the USING phrases of the CALL
statement and the called program’s Procedure Division header determine
correspondence between the data-names used by the calling and called
programs. Data-names correspond by position in the USING phrase, not
by name.

No correspondence exists for index-names. If a table is passed as an
argument, the index associated with that table in the called program will
be the one specified in the INDEXED BY phrase in the called program, not
the index specified in the calling program.

15. The arguments in the CALL statement USING phrase are made available to
the called program when the CALL executes.

16. Called programs can contain CALL statements. However, a called program
must not execute a CALL statement that directly or indirectly calls the calling
program.
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17. The CALL statement can make data available to the called program by four
argument-passing mechanisms:

• REFERENCE—The address of (pointer to) arg is passed to the called
program. This is the default mechanism: arguments are passed BY
REFERENCE if there is no explicit mechanism in the CALL statement.

• CONTENT—The address of a temporary data item that contains the
contents of arg is passed to the called program.

• On OpenVMS, DESCRIPTOR—The address of (pointer to) the data item’s
descriptor is passed to the called program.

The parameter-passing mechanism BY DESCRIPTOR is not supported on
Tru64 UNIX systems, because the Tru64 UNIX calling standard does not
define such a mechanism. Programs that include BY DESCRIPTOR will
receive a compile-time diagnostic. ♦

• VALUE—The value of arg is passed to the called program. If arg is a
data-name, its description in the Data Division can be either:

COMP usage with no scaling positions; the picture can specify no
more than nine digits

COMP-1 usage

Note that OMITTED, an HP COBOL reserved word, is equivalent to BY
VALUE 0 and can be used in place of that BY VALUE argument-passing
mechanism.

18. If the called program is a COBOL program, the CALL statement can pass
arguments only BY REFERENCE or BY CONTENT. If the called program is
a non-COBOL program, the mechanism for each arg in the CALL statement
USING phrase must be the same as the mechanism for each data-name in
the called program’s argument list.

19. If the BY REFERENCE phrase is either specified or implied for a parameter,
the called program references the same storage area for the data item as the
calling program. This mechanism ensures that the contents of the parameter
in the calling program are always identical with the contents of the parameter
in the called program.

20. If the BY CONTENT phrase is either specified or implied for a parameter, a
copy of arg is moved to a temporary memory location, and the address of the
temporary memory location is passed to the called program. This mechanism
ensures that the called program cannot change the original contents of arg.
However, the called program can change the value of the temporary memory
location.

21. The data description of each arg in the calling program must be identical to
each arg in the called program. The compiler does not convert, extend, or
truncate any arg passed to a called program.

22. On Alpha and I64 systems, if the GIVING phrase of the CALL statement is
not specified, the function result is made available in the RETURN-CODE
special register when control returns to the calling program. ♦

23. If the GIVING phrase is specified, the function result is made available in
function-res when control returns to the calling program.
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Technical Notes

• On Alpha and I64 systems, because the reserved word RETURN-CODE is one
of the X/Open reserved words, you cannot use the reserved words compiler
option with the noxopen setting if you want to use the RETURN-CODE
special register.

For more information on the relationship between the GIVING phrase and
the RETURN-CODE special register, see Table 6–7 in this chapter. ♦

• On Tru64 UNIX systems, the linker is case sensitive, whereas the COBOL
language is case insensitive. When prog-name in a CALL statement is a
literal, and you are calling a program in a case-sensitive language (such as
C), you might need to use a form of the names option when you compile.

If you do not specify the names option on the command line, the default
setting is lowercase, which causes the HP COBOL compiler to force all
external names to be lowercase. Hence, there is no problem when you call a
C program whose name contains no uppercase letters. If the name consists of
all uppercase letters, use the uppercase setting of the names option. If it is
mixed-case (for example, "Cprog") use the as_is setting. When you use names
as_is, only literals in the CALL program name are affected.♦

• On OpenVMS, calls to the OpenVMS RTL routines LIB$ESTABLISH and
LIB$REVERT, which are used to establish and cancel a condition handler,
respectively, are handled specially by the HP COBOL compiler. Calls to these
routines are intercepted and processed by the HP COBOL compiler at compile
time (not runtime). ♦

• CALL identifier (CALL data name) requires that all modules be specified to
link the run unit. Since there are no link-time references to routines to be
called with CALL identifier, the linkers on OpenVMS and Tru64 UNIX do not
resolve these references at link time. Instead, the references are dynamically
resolved at run-time using modules which have been explicitly linked into the
run unit.

Additional References

• Section 6.8, General Formats and Rules for Statements

• PROGRAM-ID paragraph in Chapter 3

• Section 6.1.4, Scope of Statements

• Subsection Section 6.2.6.1, Conventions for Resolving Program-Name
References in Section 6.2.6, Scope of Names

• HP COBOL User Manual chapter on interprogram communication, including
cobcall, cobcancel, and cobfunc references

Refer to the HP OpenVMS Calling Standard for more information.

Examples

1. Passing arguments by reference:

CALL "DATERTN" USING ITEMA ITEMB ITEMC.

2. On OpenVMS, mixing argument-passing mechanisms: Reference arguments
are ITEMA, ITEMD, and ‘‘PAYROLL’’. Descriptor arguments are ITEMB,
ITEMC, ITEMD, ‘‘TOTALS’’, and ITEMF. The value arguments are ITEME
and ‘‘995.99’’. ITEMD is passed twice—by reference and by descriptor. The
content arguments are ITEMG and ‘‘SUMMARY FLAG’’.
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CALL "NEWPROG" USING ITEMA
BY DESCRIPTOR ITEMB ITEMC "TOTALS"
BY REFERENCE ITEMD "PAYROLL"
BY VALUE ITEME 995.99
BY DESCRIPTOR ITEMD ITEMF
BY CONTENT ITEMG "SUMMARY FLAG". ♦

3. Mixing argument-passing mechanisms: Reference arguments are ITEMA,
ITEMD, and ‘‘PAYROLL’’. The value arguments are ITEME and ‘‘995.99’’.
The content arguments are ITEMG and ‘‘SUMMARY FLAG’’.

CALL "NEWPROG" USING ITEMA
BY REFERENCE ITEMD "PAYROLL"
BY VALUE ITEME 995.99
BY CONTENT ITEMG "SUMMARY FLAG".

4. Calling a program whose name is selected at run time:

MOVE "PROG009" TO PROG-TO-CALL.
.
.
.
CALL PROG-TO-CALL USING ITEMA.

5. Receiving a function result:

CALL "PROG010" USING ITEMA ITEMB "XYZ"
GIVING ITEMC.
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CANCEL
Function
The CANCEL statement returns the named program to its initial state.

General Format

CANCEL { prog-name } . . .

prog-name
is a nonnumeric literal or the identifier of an alphanumeric data item. It contains
the program-name of the program to be canceled.

Syntax Rules

1. prog-name must be from 1 to 31 characters long. It can contain the characters
A to Z, a to z, 0 to 9, dollar sign ( $ ), hyphen ( - ), and underline ( _ ).

2. prog-name must be the name of an HP COBOL program.

General Rules

1. Two or more programs in the run unit can have the same prog-name. The
scope of names conventions for prog-names resolve the CANCEL statement
references to duplicate prog-names. (See the section on Conventions for
Resolving Program-Name References.)

2. Using the scope of names conventions (See Section 6.2.6 ), if prog-name is
called again after the CANCEL statement successfully executes, prog-name,
and all programs contained within it, are in their initial state.

3. prog-name must be callable by the program that contains the CANCEL
statement.

4. The program named by prog-name must not refer directly or indirectly to any
program that: ( a ) has been called, and ( b ) has not yet executed an EXIT
PROGRAM statement.

5. When the CANCEL statement executes, the contents of prog-name are
interpreted as follows:

• Hyphens are treated as underline characters.

• Lowercase letters are treated as uppercase.

• Leading and trailing spaces and tab characters are ignored.

6. A called program can be canceled in three ways:

• By being named in a CANCEL statement

• When the executable image ends

• When an EXIT PROGRAM statement executes if the program has the
initial attribute

7. When canceling a program these items do not change: ( a ) the contents of its
data items in external data records, and ( b ) the status and positioning of a
file associated with any external file connector.

8. During the execution of a CANCEL statement, an implicit CLOSE statement
without any optional phrases executes for each file in the open mode that is
associated with an internal file connector in prog-name.
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Additional References

• PROGRAM-ID paragraph in Chapter 3

• Section 6.1.4, Scope of Statements

• Section 6.2.6, Scope of Names

• CALL statement

• HP COBOL User Manual cobcall, cobcancel, cobfunc references

Examples

1. CANCEL "PROG10".

2. CANCEL THE-PROG.

3. CANCEL SUB-PROG-A "PROG12" SUB-PROG-B.
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CLOSE
Function
The CLOSE statement ends processing of reels (or units) and files. It can also
perform rewind, lock, and removal operations.

General Format

Format 1—Sequential or Line Sequential File

CLOSE

������������
����������


file-name

�
���������

�
REEL
UNIT


 � FOR REMOVAL

WITH NO REWIND

�

WITH

� NO REWIND

LOCK

�

�
���������

������������
�����������

. . .

Format 2—Relative or Indexed File (Alpha, I64)

CLOSE { file-name [WITH LOCK]} . . . ♦

file-name
is the name of a file described in the Data Division. It cannot be a sort or merge
file.

Syntax Rules

1. The REEL or UNIT phrase can be used only for sequential and line sequential
files.

2. The words REEL and UNIT are equivalent.

General Rules

1. A CLOSE statement can execute only for an open file.

2. Executing a CLOSE statement updates the value of the FILE STATUS data
item associated with the file.

3. The TERMINATE statement must be executed before a CLOSE statement
can reference a report file.

4. If an optional file is not present, standard end-of-file processing does not
occur.

5. The WITH NO REWIND and FOR REMOVAL phrases have no effect at
execution time if they do not apply to the file’s storage medium, except as
specified in General Rule 2.

6. When the CLOSE statement applies to an output or extend file described with
the LINAGE clause, end-of-page processing occurs before the file is closed.

7. After successful CLOSE statement execution (without the REEL or UNIT
phrase), the file’s record area is no longer available. After unsuccessful
execution, record area availability is undefined.

8. After successful CLOSE statement execution (without the REEL or UNIT
phrase), the file is no longer: ( a ) in the open mode or ( b ) associated with the
file connector.
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9. If the CLOSE statement has more than one file-name, the statement executes
as if there were a separate CLOSE statement for each file-name.

10. In the file-sharing environment, CLOSE statement execution unlocks all locks
for file-name.

11. If both the REEL/UNIT and WITH NO REWIND phrases are specified in the
same CLOSE statement, the WITH NO REWIND phrase is ignored.

12. To show the effects of CLOSE statements, all files are categorized as follows:

• Nonreel: a file for which the concepts of rewind and reel have no meaning
because of its input or output medium (for example, a terminal device)

• Sequential single-reel: a sequential file contained entirely on one reel

• Sequential multireel: a sequential file contained on more than one reel

• Nonsequential: a file with other than sequential organization, whose
medium is on a mass storage device

13. For files specified with a MULTIPLE FILE TAPE clause the NO REWIND
phrase, if any, is ignored.

14. Table 6–12 summarizes CLOSE statement results. Symbol definitions follow
the table.

Where definitions differ for input, output, and input-output files, separate
definitions appear. Otherwise, a definition applies to files in all open modes.

Table 6–12 Effects of CLOSE Statement Formats on Files by Category

File Category
CLOSE
Statement
Format Nonreel

Sequential
Single-Reel

Sequential
Multireel Nonsequential

CLOSE C C,G C,G,A C
CLOSE WITH LOCK C,E C,G,E C,G,E,A C,E
CLOSE WITH NO
REWIND

C,H C,B C,B,A X

CLOSE REEL F F,G F,G X
CLOSE REEL FOR
REMOVAL

F F,D,G F,D,G X

A Previous reels unaffected

For input and input-output files: All reels in the file before the current
reel are processed according to the standard reel swap procedure.
However, reels controlled by an earlier CLOSE REEL/UNIT statement
are not affected. If other reels in the file follow the current reel, they are
not processed.

For output files: All reels in the file before the current reel are processed
according to the standard reel swap procedure. However, reels controlled
by an earlier CLOSE REEL/UNIT statement are not affected.

B No rewind of current reel

The position of the current reel remains the same.
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C Close file

The file is closed.

D Reel/unit removal

The current reel rewinds and is logically removed from the run unit
However, the run unit can access the reel again in its proper order of
reels in the file. To do this, the executable image must subsequently
execute the following:

• A CLOSE statement without the REEL/UNIT phrase for the file

• An OPEN statement for the file

E File lock

The executable image cannot open the file again in its current
execution.

F Close reel/unit

For input and input-output files, if the current reel is the last or only reel
for the file:

• A reel swap does not occur.

• The Current Volume Pointer remains the same.

• The File Position Indicator denotes that there is no next logical
record.

If another reel follows the current reel for the file:

• A reel swap occurs.

• The Current Volume Pointer points to the next reel for the file.

• The File Position Indicator points to the next record in the file.
If there are no records for the current volume, another reel swap
occurs.

For output files (reel/unit media), a reel swap occurs. The Current Volume
Pointer points to the new reel.

Executing the next WRITE statement for the file transfers a logical record
to the new reel of the file.

For output files (nonreel/unit media), execution of this statement is
considered successful. The file remains in the open mode and no action
takes place, except as specified in General Rule 2.

G Rewind

The current reel (or device) is positioned to its physical beginning.

H Optional phrases ignored

The CLOSE statement is executed as if none of the optional phrases are
present.

X Invalid

This is an invalid combination of CLOSE option and file category. It
results in FILE STATUS data item value 30.
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Technical Note
CLOSE statement execution can result in these FILE STATUS data item values:

File Status Meaning

00 Successful
07 CLOSE statement with NO REWIND, REEL/UNIT, or FOR

REMOVAL phrase referenced a file on a nonreel/unit medium
30 Any other CLOSE error
42 File never opened, already closed, or not currently open

Additional Reference
See Section 6.6.8, I-O Status for more information.
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COMPUTE
Function
The COMPUTE statement evaluates an arithmetic expression and stores the
result in one or more data items.

General Format

COMPUTE { rsult [ ROUNDED ] } . . .
� =

EQUAL

�
arithmetic-expression

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-COMPUTE �

rsult
is the identifier of an elementary numeric item or elementary numeric edited
item. It is the resultant identifier.

arithmetic-expression
is an expression as described in Section 6.4, Arithmetic Expressions.

stment
is an imperative statement executed when a size error condition has occurred.

stment2
is an imperative statement executed when no size error condition has occurred.

General Rules

1. The arithmetic expression is evaluated. Its value then replaces the current
value of each occurrence of rsult, from left to right.

2. If the arithmetic-expression consists of a single identifier or literal, the
COMPUTE statement behaves like a MOVE statement with the single
identifier or literal acting as the source operand and each result operand
acting as a destination operand.

3. For any rsult specification that includes the word rounded, the value of the
expression is rounded before being moved to rsult.

Additional References

• Section 6.1.4, Scope of Statements

• Section 6.6.1, Arithmetic Operations

• Section 6.6.2, Multiple Receiving Fields in Arithmetic Statements

• Section 6.6.3, ROUNDED Phrase

• Section 6.6.4, ON SIZE ERROR Phrase

• Section 6.6.7, Overlapping Operands and Incompatible Data
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Examples
Each of the examples assume these data descriptions and initial values:

INITIAL VALUES

03 ITEMA PIC 999V99 VALUE 2. 2.00
03 ITEMB PIC 999V99 VALUE 3. 3.00
03 ITEMC PIC 999V99 VALUE 4. 4.00
03 ITEMD PIC 999V99 VALUE 5. 5.00

RESULTS

1. No rounding:

COMPUTE ITEMC = ITEMC = 2.82
(ITEMA + 6) ** (.1 * ITEMD).

2. With rounding:

COMPUTE ITEMC ROUNDED = ITEMC = 2.83
(ITEMA + 6) ** (.1 * ITEMD).

3. The ON SIZE ERROR phrase:

COMPUTE ITEMB = (ITEMA * ITEMD) ** 3 ITEMB = 3.00
ON SIZE ERROR
MOVE 100 TO ITEMC. ITEMC = 100.00

4. The NOT ON SIZE ERROR phrase:

COMPUTE ITEMB = (ITEMA * ITEMD) ** 2 ITEMB = 100.00
ON SIZE ERROR
MOVE 100 TO ITEMC

NOT ON SIZE ERROR
MOVE 200 TO ITEMC. ITEMC = 200.00
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CONTINUE
Function
The CONTINUE statement indicates that no executable statement is present. It
causes an implicit control transfer to the next executable statement.

General Format

CONTINUE

Syntax Rule
The CONTINUE statement can be used wherever a conditional or imperative
statement can be used.

General Rule
The CONTINUE statement causes an implicit control transfer to the next
executable statement.

Example
READ FILE-A
INVALID KEY
CONTINUE.

MOVE . . .

This example shows how CONTINUE can replace an INVALID KEY imperative
statement. Control passes to the MOVE statement whether or not the INVALID
KEY condition occurs.
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DELETE
Function
The DELETE statement logically removes a record from a mass storage file.

General Format

DELETE file-name RECORD

� INVALID KEY stment �

� NOT INVALID KEY stment2 �

� END-DELETE �

file-name
is the name of a relative or indexed file described in the Data Division. It cannot
be the name of a sequential or line sequential file or a sort or merge file.

stment
is one or more imperative statements executed for an invalid key condition.

stment2
is one or more imperative statements executed for a not invalid key condition.

Syntax Rules

1. There cannot be an INVALID KEY phrase or a NOT INVALID KEY phrase
for a DELETE statement that references a file in sequential access mode.

2. There must be an INVALID KEY phrase if: ( a ) the file is not in sequential
access mode and ( b ) there is no applicable USE AFTER EXCEPTION
procedure.

General Rules

1. The file must be open in I-O mode when the DELETE statement executes.

2. For a file in sequential access mode, a successfully executed READ statement
must be the last input-output statement executed for the file before the
DELETE statement. The I/O system logically removes the record that the
READ statement accessed.

3. For a relative file in random or dynamic access mode, the I/O system logically
removes the record identified by the file’s RELATIVE KEY data item. If the
file does not contain that record, an invalid key condition exists.

4. For an indexed file in random access mode, the I/O system (logically removes
the record identified by the file’s primary record key data item. If the file does
not contain that record, an invalid key condition exists.

5. For an indexed file in dynamic access mode, the behavior depends on the
DUPLICATES phrase of the RECORD KEY clause of the SELECT statement.
If the primary key allows duplicates, Rule 2 applies. If the primary key does
not allow duplicates, Rule 4 applies.

6. After successful DELETE statement execution, the identified record has been
logically removed from the file. It is no longer accessible.
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7. DELETE statement execution does not affect the contents of the record
area. It also does not affect the contents of the data item referred to in the
DEPENDING ON phrase of the file’s RECORD clause.

8. For sequential access files, DELETE statement execution does not affect the
File Position Indicator.

9. For dynamic access files, the File Position Indicator can point to the record
to be deleted before the DELETE statement executes. In this case, once the
DELETE statement executes, the File Position Indicator:

• Points to a relative file’s next existing record

• Points to an indexed file’s next existing record, as established by the Key
of Reference

• Indicates the at end condition if the file has no next record

In all other cases, the File Position Indicator is not affected by the execution
of a DELETE statement.

10. DELETE statement execution updates the value of the FILE STATUS data
item for the file.

11. If there is an applicable USE AFTER EXCEPTION procedure, it executes
whenever an input or output condition occurs that would result in a nonzero
value in the first character of a FILE STATUS data item. However, it
does not execute if the condition is invalid key, and there is an INVALID
KEY phrase. If the condition is not invalid key and no applicable USE
AFTER EXCEPTION Declarative procedure exists, the run unit terminates
abnormally.

See the rules for the INVALID KEY phrase, Section 6.6.10.

Technical Notes

• In a Hewlett-Packard standard file-sharing environment for relative files,
records that are manually locked and then deleted retain a lock on the
deleted record. This affects a subsequent WRITE from a different access
stream (either from a different file connector in the same run-unit or from
a file connector in a different run-unit). A WRITE statement under such
conditions gets a file status 92 (record locked by another program). All other
statements will treat a record that was locked and subsequently deleted in
the same manner as a record that was not locked and subsequently deleted.

• DELETE statement execution can result in the following FILE STATUS data
item values:
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File
Status

Access
Method Meaning

00 All Successful
23 Rand,

Dyn
Record not in file (invalid key)

43 Seq No previous READ or record not locked by prior READ
or START

49 All File not open, or incompatible open mode
92 All Record locked by another program
30 All All other permanent errors

• If the current record to be deleted is not locked by the current stream,
the delete results in a permanent error. On OpenVMS systems, RMS-STS
indicates the record is not locked.

Additional References

• Section 6.1.4, Scope of Statements

• Section 6.6.8, I-O Status

• Section 6.6.10, INVALID KEY Phrase

• OPEN statement

• USE statement
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DISPLAY
Function
The DISPLAY statement transfers low-volume data from the program to the
default system output device or to the object of a mnemonic-name. The WITH
CONVERSION phrase in Format 1 contains a Hewlett-Packard extension to the
DISPLAY statement. The Hewlett-Packard extensions to Formats 2 and 3 are
COBOL language additions that facilitate video forms design and data handling.

Format 4 sets a program variable to the current command line argument number
(to read with a Format 7 ACCEPT), Format 5 sets the name of an environment
variable or system logical, and Format 6 sets the value of an environment
variable or system logical.

General Formats—DISPLAY

Format 1

DISPLAY����������
��������


src-item

�
��������

�������
�����


									

WITH CONVERSION

UPON output-dest

WITH NO ADVANCING

									

�������
������

�
��������

����������
���������

. . . [ END-DISPLAY (Alpha, I64) ]
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Format 2

DISPLAY�����������������������������������������������������������
���������������������������������������������������������


src-item

�
���������������������������������������������������������

��������������������������������������������������������
������������������������������������������������������


																																																										

AT LINE NUMBER����
��


line-num

line-id
�

PLUS � plus-num �

�
PLUS [ plus-num ]

����
���

AT COLUMN NUMBER������
����


column-num

column-id
�

PLUS � plus-num �

�

PLUS � plus-num �

������
�����

ERASE � TO END OF �

� SCREEN

LINE

�

WITH BELL

UNDERLINED

BOLD

WITH BLINKING

REVERSED

WITH CONVERSION

WITH NO ADVANCING

																																																										

��������������������������������������������������������
�������������������������������������������������������

�
���������������������������������������������������������

�����������������������������������������������������������
����������������������������������������������������������

. . .

[ END-DISPLAY (Alpha, I64) ]
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Format 3 (Alpha, I64)

DISPLAY screen-name�
�������

AT

�������
�����


									
LINE NUMBER

� line-id
line-num

�

COLUMN NUMBER
� column-id

column-num

�
									

�������
������

�
�������

[ END-DISPLAY ]

Format 4 (Alpha, I64)

DISPLAY arg-position UPON argument-number
[ END-DISPLAY ]

Format 5 (Alpha, I64)

DISPLAY envlog-name UPON environment-name
[ END-DISPLAY ]

Format 6 (Alpha, I64)

DISPLAY envlog-value UPON environment-value

�
����
���
�

					

ON EXCEPTION stment

NOT ON EXCEPTION stment2

					
���
��

�
����

[ END-DISPLAY ] ♦

src-item
is a literal or the identifier of a data item. The literal can be any figurative
constant.

arg-position
is a literal or identifier that specifies the desired argument position (on the run
command line). It must be an unsigned integer.

argument-number
is a mnemonic name associated with ARGUMENT-NUMBER in the SPECIAL-
NAMES paragraph in the Environment Division, representing the current
argument position.

environment-name
is a mnemonic name associated with ENVIRONMENT-NAME in the SPECIAL-
NAMES paragraph in the Environment Division, representing the name of an
environment variable or system logical.

environment-value
is a mnemonic name associated with ENVIRONMENT-VALUE in the SPECIAL-
NAMES paragraph in the Environment Division, representing the contents of the
variable associated with the ENVIRONMENT-NAME.

envlog-name
references an alphanumeric data item, or is a nonnumeric literal.
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envlog-value
references an alphanumeric data item, or is a nonnumeric literal.

output-dest
is a mnemonic-name defined in the SPECIAL-NAMES paragraph of the
Environment Division.

line-num
is a numeric literal that specifies a line position on the terminal screen. line-num
must be a positive integer. It cannot be zero.

line-id
is the identifier of a data item that provides a line position on the terminal screen.
It must be a positive integer; it cannot be zero.

plus-num
is a numeric literal that increments the current value for line or column position,
or that increments the value of line-id or column-id. plus-num can be zero or a
positive integer.

column-num
is a numeric literal that specifies a column position on the terminal screen.
column-num must be a positive integer. It cannot be zero.

column-id
is the identifier of a data item that provides a column position on the terminal
screen. It must be a positive integer; it cannot be zero.

screen-name
is the name of a screen item defined in the SCREEN SECTION of the program.

stment
is an imperative statement executed if an exception condition exists; for Format
6, this means the name of the environment variable or logical has not been set by
DISPLAY, or not enough space can be allocated to store the environment variable
or logical.

stment2
is an imperative statement executed if the exception condition does not exist.

Syntax Rules
All Formats

1. In a DISPLAY statement, the number of src-item entries cannot exceed 254.

2. Each DISPLAY phrase can be specified only once for any src-item.

Formats 1 and 2

3. The WITH NO ADVANCING phrase can be specified only once per DISPLAY
statement. It must be specified last (or just preceding END-DISPLAY, if used)
if multiple src-item entries or options are specified in the statement.

Format 1

4. The UPON phrase can be specified only once per DISPLAY statement.
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General Rules
Formats 1 and 2

1. The UPON and WITH NO ADVANCING phrases apply to all instances of
src-item.

2. All phrases other than UPON and WITH NO ADVANCING apply to the
immediately preceding src-item only.

3. If there is a WITH NO ADVANCING phrase, the DISPLAY statement does
not transfer any device positioning information after the last src-item value.

CONVERSION Phrase (Formats 1 and 2)

4. The CONVERSION phrase allows you to display data in a field and achieve
data conversion, sign, and decimal point placement. How the CONVERSION
phrase affects data handling depends on the category of src-item. (Numeric
data can be described by any USAGE clause.)

5. Numeric items do not require the CONVERSION phrase to be displayed
correctly with conversion if you specify /DISPLAY_FORMATTED (on
OpenVMS Alpha and I64) or -display_formatted (on Tru64 UNIX) when
you compile. (For more information on the qualifier, refer to the HP COBOL
User Manual.)

6. The CONVERSION phrase or the /DISPLAY_FORMATTED (OpenVMS Alpha
and I64) qualifier displays nonnumeric items and numeric edited items
without change.

7. The CONVERSION phrase or the /DISPLAY_FORMATTED (OpenVMS Alpha
and I64) qualifier displays non-floating-point numeric items according to the
following rules:

• The size of the displayed field is determined from the PICTURE character
string.

• Leading zeroes are displayed only when they immediately precede a
decimal point.

• If the sign is negative, a minus sign ( - ) is displayed. If the sign is
positive, a space character is displayed. If the item is unsigned, no sign
position is displayed.

• Items with DISPLAY usage (for example, PIC 99, or PIC S99V99) are
displayed after including a space, when needed, for a decimal point or
sign or both.

If you specify the SIGN TRAILING SEPARATE clause for the data item,
the sign is displayed as a trailing sign. Otherwise, the sign is displayed
as a leading sign.

• Items other than DISPLAY (for example, PIC 99 COMP, or PIC S9V999
COMP SYNC) are displayed after conversion to DISPLAY usage SIGN
LEADING.

• Nonprinting numeric values are not human-readable on the terminal
display unless the CONVERSION phrase or the /DISPLAY_FORMATTED
qualifier (on OpenVMS Alpha and I64) or -display_formatted (on Tru64
UNIX) is specified.
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8. On OpenVMS, the CONVERSION phrase or /DISPLAY_FORMATTED
(OpenVMS Alpha, I64), or -display_formatted (on Tru64 UNIX), displays
floating-point items as follows:

• The floating-point data item is converted from internal floating point
to E-notation representation. (E-notation consists of a mantissa and,
optionally, an exponent.)

The E-notation is described as follows:

Size of mantissa COMP-1 has 7 digits (F-floating, S-floating) plus
decimal point and sign
COMP-2 has 15 digits (G-floating, T-floating) or 16
digits (D-floating) plus decimal point and sign

Sign of mantissa Sign shown only for negative, space if positive
Form of mantissa d.dddddd for COMP-1

d.dddddddddddddd for COMP-2 (G-floating,
T-floating)
d.ddddddddddddddd for COMP-2 (D-floating)
‘‘.’’ replaced by ‘‘,’’ if DECIMAL POINT IS COMMA

Size of exponent 2 decimal digits for COMP-1 (F-floating, S-floating)
2 decimal digits for COMP-2 (D-floating)
3 decimal digits for COMP-2 (G-floating, T-floating)

Range of exponent -38 to +38 (base 10) for COMP-1 (F-floating, S-
floating)
-38 to +38 (base 10) for COMP-2 (D-floating)
-308 to +308 (base 10) for COMP-2 (G-floating,
T-floating)

Form of exponent E begins exponent sign shown for negative and
positive; all digits shown (for example, E+01)

• The size of the displayed field is 13 characters for COMP-1, and 22
characters for COMP-2. ♦

9. The CONVERSION phrase or the /DISPLAY_FORMATTED qualifier (on
OpenVMS Alpha or I64) or -display_formatted (on Tru64 UNIX) displays
floating-point items as follows:

• The floating-point data item is converted from internal floating point
to E-notation representation. (E-notation consists of a mantissa and,
optionally, an exponent.)

• The size of the displayed field is 13 characters for COMP-1 and 22
characters for COMP-2.

• On Tru64 UNIX systems, the E-notation is described as follows:

Size of mantissa COMP-1 has 7 digits (plus decimal point and sign).
COMP-2 has 16 digits (plus decimal point and sign).

Sign of mantissa Sign shown only for negative; space if positive.
Form of mantissa d.dddddd for COMP-1.

d.ddddddddddddddd for COMP-2.
‘‘.’’ replaced by ‘‘,’’ if DECIMAL POINT IS COMMA.

Size of exponent 3 decimal digits for COMP-1 and COMP-2.
Range of exponent -308 to +308 (base 10) for COMP-1 and COMP-2.
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Form of exponent E begins exponent sign shown for negative and
positive; both digits shown (for example, E+01). ♦

On OpenVMS Alpha and I64 systems, compiled with the appropriate
option on the /FLOAT qualifier, the E-notation is described as follows:

Size of mantissa COMP-1 has 7 digits (F-floating, S-floating) plus
decimal point and sign.
COMP-2 has 15 digits (G-floating, T-floating) or 16
digits (D-floating) plus decimal point and sign.

Sign of mantissa Sign shown only for negative; space if positive.
Form of mantissa d.dddddd for COMP-1 (F-floating, S-floating)

d.dddddddddddddd for COMP-2 (G-floating,
T-floating.)
d.ddddddddddddddd for COMP-2 (D-floating).
‘‘.’’ replaced by ‘‘,’’ if DECIMAL POINT IS COMMA.

Size of exponent 2 decimal digits for COMP-1 (F-floating, S-floating).
2 decimal digits for COMP-2 (D-floating).
3 decimal digits for COMP-2 (G-floating, T-floating).

Range of exponent -38 to +38 (base 10) for COMP-1 (F-floating, S-
floating).
-38 to +38 (base 10) for COMP-2 (D-floating).
-308 to +308 (base 10) for COMP-2 (G-floating,
T-floating).

Form of exponent E begins exponent sign shown for negative and
positive; all digits shown (for example, E+01). ♦

Format 1

10. The DISPLAY statement transfers data from each src-item (in its order of
appearance in the statement) to output-dest.

11. No editing or conversion occurs during DISPLAY execution unless there is an
applicable WITH CONVERSION phrase.

12. If src-item is a figurative constant, only one occurrence is displayed.

13. When there is more than one src-item, sending item size is the sum of the
src-item sizes.

14. If there is no UPON phrase, the DISPLAY statement transfers data to the
default system output device.

15. If there is no WITH NO ADVANCING phrase, the DISPLAY statement
transfers device positioning information. It resets the output-dest position to
the leftmost position on the next line.

16. If DECIMAL POINT IS COMMA is specified, comma replacement occurs upon
display.

Format 2

17. The presence of either the LINE NUMBER phrase or the COLUMN
NUMBER phrase implies NO ADVANCING; that is, no line feed or carriage
return is generated automatically following data output. The cursor remains
on the character position immediately following the position of the last
character displayed. This is the default starting position for the next data
item you input from or display upon the terminal.
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18. If you specify neither the LINE NUMBER phrase, the COLUMN NUMBER
phrase, nor the WITH NO ADVANCING phrase, data is output according to
Format 1 positioning rules for the DISPLAY statement. That is, a line feed
and carriage return are generated automatically following data display.

LINE NUMBER Phrase (Format 2)

19. The LINE NUMBER phrase positions the cursor on a specific line of the video
screen prior to displaying.

20. If the LINE NUMBER phrase does not appear but the COLUMN NUMBER
phrase does, then data is displayed to the current specified column position.

21. If line-num or the value of line-id is greater than the bottommost line position
of the current screen, program results are undefined.

22. If you use line-id without its PLUS option, the line position is the value of
line-id.

23. If you use line-id with its PLUS option, the line position is the sum of plus-
num and the value of line-id.

24. If you use the PLUS option without line-id, the line position is the sum of
plus-num and the value of the current line position.

25. If you use the PLUS option, but you do not specify plus-num, then PLUS 1 is
implied.

26. Data output results are undefined if your program generates a value for
line-id that is one of the following:

• Zero

• Negative

• Greater than the bottommost line position of the current screen

COLUMN NUMBER Phrase (Format 2)

27. The COLUMN NUMBER phrase positions the cursor on a specific column of
the video screen.

28. If the COLUMN NUMBER phrase does not appear but the LINE NUMBER
phrase does, then data is displayed to column 1 of the specified line position.

29. If you use column-id without its PLUS option, the column position is the
value of column-id.

30. If you use column-id with its PLUS option, the column position is the sum of
plus-num and the value of column-id.

31. If you use the PLUS option without column-id, the column position is the sum
of plus-num and the value of the current column position.

32. If you use the PLUS option, but do not specify plus-num, PLUS 1 is implied.

33. Data output results are undefined if the program generates a value for
column position that is one of the following:

• Zero

• Negative

• Greater than the last column position on the screen
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LINE NUMBER and COLUMN NUMBER Phrases (Format 3)

34. The LINE NUMBER and COLUMN NUMBER phrases together give the
starting screen coordinates.

35. The position of each screen item within the referenced screen-name is offset
from the LINE and COLUMN positions.

36. If either LINE or COLUMN is not specified, the default value is 1.

ERASE Phrase (Format 2)

37. The ERASE phrase erases all, or part, of a line (or screen) before displaying
data. You must specify SCREEN or LINE.

38. If you use its TO END option, the ERASE phrase erases the line (or screen)
from the implied, or stated, cursor position to the end of the line (or screen).

39. If you do not use its TO END option, the ERASE phrase erases the entire line
(or screen).

BELL Phrase (Format 2)

40. The BELL phrase rings the terminal bell before displaying data.

UNDERLINED Phrase (Format 2)

41. The UNDERLINED phrase displays characters on the screen with the
underscore on character attribute.

BOLD Phrase (Format 2)

42. The BOLD phrase displays characters on the screen with the bold on
character attribute. The BOLD attribute is only detectable when any of
the following conditions are true:

• Nonspace characters are displayed.

• The underlined or reversed attributes are specified.

• The terminal screen is set to light background.

BLINKING Phrase (Format 2)

43. The BLINKING phrase displays characters on the screen with the blink on
character attribute. The BLINKING attribute is only detectable when any of
the following conditions are true:

• Nonspace characters are displayed.

• The underlined or reversed attributes are specified.

• The terminal screen is set to light background.

REVERSED Phrase (Format 2)

44. The REVERSED phrase displays characters on the screen with the reverse
video on character attribute.

Formats 4, 5, and 6

45. When a Format 4 DISPLAY statement is specified, the value stored in arg-
position is moved to argument-number. This updates the current argument
position indicator for the command line (see ARGUMENT-NUMBER in the
SPECIAL-NAMES paragraph in Chapter 4). This points to the selected
argument to be read by a Format 7 ACCEPT statement.
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46. arg-position must be in the range 0 to 99 and can refer to arguments,
switches, and flags that appear on the run command line of the COBOL
program. When the current argument position indicator is zero, it refers to
the zeroth command line argument, in other words the command that invoked
the COBOL program.

47. When a Format 5 DISPLAY statement is specified, the value stored in
envlog-name is moved to environment-name (see ENVIRONMENT-NAME
in the SPECIAL-NAMES paragraph in Chapter 4). The updated value of
environment-name becomes the environment variable or logical to be accessed
by subsequent Format 6 DISPLAY and Format 8 ACCEPT statements.

48. environment-value, when used with a Format 6 DISPLAY, receives the value
stored in envlog-value. The environment variable or logical is the one named
by a Format 5 DISPLAY statement (see ENVIRONMENT-VALUE in the
SPECIAL-NAMES paragraph in Chapter 4).

49. stment is executed if the name of the environment variable or logical has not
been set by a Format 5 DISPLAY, or if the environment variable or logical
does not exist.

50. stment2 is executed if the exception condition does not exist.

Technical Notes
Format 1

1. On OpenVMS, the DISPLAY statement transfers data through the I/O system
(RMS), using the Variable with Fixed-Length Control (VFC) format. ♦

2. A DISPLAY statement without the UPON phrase transfers data to the
default output device (the terminal). To transfer data to a file on Tru64 UNIX
systems, the environment variable COBOL_OUTPUT can be used to specify
a text file containing output data. To transfer data to a file on OpenVMS
systems the logical COB$OUTPUT or SYS$OUTPUT can be used to specify a
text file containing output data.

Alternatively, output device redirection (>) can be used on Tru64 UNIX
systems to name an output file.

3. A DISPLAY statement that includes the UPON phrase transfers data to the
file-device-name associated with the SPECIAL-NAMES paragraph description
of output-dest.

4. Because the object of a logical name (on OpenVMS systems) is not necessarily
a device, no open mode is implied. As a result, output-dest can be associated
with any device-name in the SPECIAL-NAMES paragraph. For example,
output-dest can refer to PAPER-TAPE-READER as well as PAPER-TAPE-
PUNCH.

Format 2

5. Format 2 is a Hewlett-Packard extension to the standard COBOL use of the
DISPLAY statement.

6. The Hewlett-Packard extensions to the ACCEPT and DISPLAY statements
support data input and display only on the VT100 and later terminal types,
including emulators of these terminal types.

6–116 Procedure Division



DISPLAY Statement

7. The UNDERLINED, BOLD, BLINKING, and REVERSED character
attributes are not available on VT100 terminals without the advanced video
option.

8. You should display data only on fields that are within screen boundaries.
That is, the terminal operator should see all the characters displayed. If
data is displayed on fields that position the cursor outside screen boundaries,
it does not result in an error condition. However, your program might not
produce the results you expect.

Values for screen boundaries depend on the terminal type and the column
mode in which it is operating. Refer to the appropriate terminal user’s guide
for more information on screen boundaries.

9. Line positioning can be a one- or two-step process. The first (or only) step
is absolute positioning, which is using the value of line-num or line-id to
determine the line position. The second step is relative positioning, which is
adding the value of plus-num to line-id to determine the line position.

The following sample statements would produce undefined results because
they use absolute line positioning to reach a line beyond the bottom of the
screen (assume ITEMB has a value of 25):

DISPLAY SRC-EXAMPLE AT LINE NUMBER 25.
DISPLAY SRC-EXAMPLE AT LINE NUMBER ITEMB.
DISPLAY SRC-EXAMPLE AT LINE NUMBER ITEMB PLUS 0.

The last DISPLAY statement illustrates that use of the PLUS option does
not necessarily mean that relative positioning will always occur. When you
specify line-id, absolute line positioning always occurs before a PLUS option
can execute. In this case, line-id (ITEMB) is specified, and it has a value
of 25. Therefore, the line position is outside the screen boundary before the
PLUS option executes, and program results are undefined.

10. When there is more than one src-item, each specific src-item is displayed, after
application of any phrases specific to that src-item, in order of occurrence in
the DISPLAY statement.

Formats 2 and 3

11. On OpenVMS, control sequences from SMGTERMS.TXT are used to
accomplish cursor positioning, screen erasure, and video attributes. Refer
to the Support for Non-HP Terminals chapter of the OpenVMS RTL Screen
Management (SMG$) Manual if you wish to customize SMGTERMS.TXT. ♦

All Formats

12. HP COBOL parses the contents of the data being displayed to determine
how they affect the terminal and the cursor position. The parsing of control
sequences is performed according to the DEC STD 138-0 Registry of Control
Functions for Character Imaging Devices. HP COBOL does not modify the
control sequences in any way; if an invalid control sequence is found, HP
COBOL does not attempt to correct the sequence.

Therefore when you display an escape or control sequence, the entire sequence
must be displayed in one operation:

If you use DISPLAY Format 1, the complete sequence must be contained
in one or more src-items within one DISPLAY statement.

If you use DISPLAY Format 2, the complete sequence must be contained
in one src-item.
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If you use DISPLAY Format 3, the complete sequence must be contained
within one elementary screen item.

13. A DISPLAY statement used in an ACCEPT [NOT] ON EXCEPTION
statement must be terminated (with, for example END-DISPLAY) on Alpha
and I64 systems. If you are concerned with the different VAX behavior, refer
to the appendix on compatibility in the HP COBOL User Manual.

Additional References

• SPECIAL-NAMES section in Chapter 4

• HP COBOL User Manual sections on using command line arguments and
environment variables

Examples
In the example results, the character ‘‘s’’ represents a space. The examples
assume a maximum screen size of 24 lines. They also assume the following
Environment and Data Division entries:

SPECIAL-NAMES.
LINE-PRINTER IS ERR-REPORTER.

01 ITEMA PIC X(6) VALUE "ITEMS ".
01 ITEMB PIC X(8) VALUE "VALID".
01 ITEMC PIC X(5) VALUE "TODAY".
01 ITEMD PIC 99 VALUE 2.
01 ITEME PIC X(10) VALUE "MONDAY".

RESULT:

1. DISPLAY ITEMC. TODAY

2. DISPLAY ITEMD UPON ERR-REPORTER. 02

3. DISPLAY ITEMD ITEMA "ARE" ITEMB. 02ITEMSsAREVALIDsss

4. DISPLAY ITEMD SPACE ITEMA "AREs" ITEMB. 02sITEMSsAREsVALIDsss

5. DISPLAY ITEMC "sISs" NO ADVANCING.
DISPLAY ITEME.
DISPLAY ITEME.

TODAYsISsMONDAYssss
MONDAYssss

The following program uses Hewlett-Packard DISPLAY extensions (Format 2).
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IDENTIFICATION DIVISION.
PROGRAM-ID. EXAMPLES.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEMF COMP-1.
01 ITEMG COMP-2 .
01 ITEMH PIC S9(9) COMP VALUE IS 123456789.
01 ITEMI PIC S9(9) COMP-3.
PROCEDURE DIVISION.
01.

MOVE 101.000000000 TO ITEMF.
MOVE .109999999 TO ITEMG.
MOVE 123456789 TO ITEMI.
DISPLAY

ITEMF WITH CONVERSION LINE PLUS
ITEMG WITH CONVERSION LINE PLUS
ITEMH WITH CONVERSION LINE PLUS
ITEMI WITH CONVERSION LINE PLUS
.
.
.

The HP COBOL User Manual contains additional examples using Hewlett-
Packard extensions to the DISPLAY statement. Refer to the chapters that
describe screen handling, command line variables, environment variables and
logicals.
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DIVIDE
Function
The DIVIDE statement divides one or more numeric data items by another and
sets the value of the data items equal to the quotient, optionally storing the
remainder.

General Format

Format 1

DIVIDE num INTO { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-DIVIDE �

Format 2

DIVIDE num INTO num GIVING { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-DIVIDE �

Format 3

DIVIDE num BY num GIVING { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-DIVIDE �

Format 4

DIVIDE num INTO num GIVING rsult [ ROUNDED ] REMAINDER remaind

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-DIVIDE �

Format 5

DIVIDE num BY num GIVING rsult [ ROUNDED ] REMAINDER remaind

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-DIVIDE �
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num
is a numeric literal or the identifier of an elementary numeric item.

rsult
is the identifier of an elementary numeric item or an elementary numeric edited
item. However, in Format 1, rsult must be an elementary numeric item. It is the
resultant identifier.

stment
is an imperative statement executed when a size error condition has occurred.

stment2
is an imperative statement executed when no size error condition has occurred.

remaind
is the identifier of an elementary numeric item or an elementary numeric edited
item.

General Rules
Format 1

1. The value of num is divided into the value of the first rsult. This quotient
replaces the current value of the first rsult. The process repeats for each of
the other occurrences of rsult.

Format 2

2. The value of the first num is divided into the value of the second. This
quotient replaces the current value of each rsult.

Format 3

3. The value of the first num is divided by the value of the second. This quotient
replaces the current value of each rsult.

Formats 4 and 5

4. These formats produce a remainder (remaind) from the division operation.
The remainder is the result of subtracting the product of the quotient (rsult)
and the divisor from the dividend.

If rsult refers to a numeric edited item, the quotient is an equivalent unedited
intermediate field. For example, if you describe rsult with the PICTURE
-ZZ.99, the compiler uses an intermediate field with the implicit PICTURE
S99V99.

When the ROUNDED phrase is present, the remainder computation uses an
intermediate quotient field that is truncated rather than rounded.

5. The computation described in rule 4 determines the accuracy of remaind. It
includes decimal point alignment and truncation (not rounding) required by
the description of remaind.

6. When the ON SIZE ERROR phrase is present:

• If the size error occurs on rsult, the contents of both rsult and remaind
are unchanged.

• If the size error occurs on remaind, its contents are unchanged.
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Additional References

• Section 6.1.4, Scope of Statements

• Section 6.6.1, Arithmetic Operations

• Section 6.6.2, Multiple Receiving Fields in Arithmetic Statements

• Section 6.6.3, ROUNDED Phrase

• Section 6.6.4, ON SIZE ERROR Phrase

• Section 6.6.7, Overlapping Operands and Incompatible Data

Examples
The following example shows a run-time message issued for an illegal attempt to
divide by zero:

%COB-E-DIVBY-ZER, divide by zero; execution continues

Each of the examples assume the following data descriptions and initial values.
The initial values are listed in the righthand column:

INITIAL VALUES

03 ITEMA PIC 99V99 VALUE 9. 9.00
03 ITEMB PIC 99V99 VALUE 24. 24.00
03 ITEMC PIC 99V99 VALUE 8. 8.00
03 ITEMD PIC 99 VALUE 12. 12
03 ITEME PIC 99V99 VALUE 3. 3.00
03 ITEMF PIC 99 VALUE 47. 47
03 ITEMG PIC 9 VALUE 9. 9
03 ITEMH PIC 9 VALUE 2. 2
03 ITEMI PIC 99 VALUE 4. 4

In each of the following examples, the righthand column shows the results of the
DIVIDE operation.

1. Without GIVING phrase or rounding: RESULTS

DIVIDE ITEMA INTO ITEMB. ITEMB = 2.66

2. With rounding:

DIVIDE ITEMA INTO ITEMB ROUNDED. ITEMB = 2.67

3. GIVING phrase:

DIVIDE ITEMA INTO ITEMB ITEMD = 2
GIVING ITEMD.

4. GIVING phrase with rounding:

DIVIDE ITEMA INTO ITEMB ITEMD = 3
GIVING ITEMD ROUNDED.

5. BY phrase:

DIVIDE ITEMA BY ITEMB ITEMD = 0
GIVING ITEMD.

6. REMAINDER phrase:

DIVIDE ITEMA INTO ITEMB ITEMD = 2
GIVING ITEMD REMAINDER ITEMC. ITEMC = 6.00
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7. REMAINDER phrase with rounding:

DIVIDE ITEMA INTO ITEMB ITEMD = 3
GIVING ITEMD ROUNDED REMAINDER ITEMC. ITEMC = 6.00

8. Effects of decimal alignment on quotient and remainder:

DIVIDE ITEMA INTO ITEMB ITEME = 2.66
GIVING ITEME REMAINDER ITEMC. ITEMC = .06

9. Effects of decimal alignment on remainder and quotient with rounding:

DIVIDE ITEMA INTO ITEMB ITEME = 2.67
GIVING ITEME ROUNDED REMAINDER ITEMC. ITEMC = .06

10. The ON SIZE ERROR phrase: (IF ON SIZE ERROR occurs on an occurrence
of rsult, the contents of that occurrence of rsult are unchanged.)

DIVIDE ITEME INTO ITEMF
GIVING ITEMG ITEMD ITEMD = 15
ON SIZE ERROR ITEMG = 9
MOVE 0 TO ITEMH. ITEMH = 0

11. The ON SIZE ERROR phrase:

(IF ON SIZE ERROR occurs on remaind, the contents of remaind are
unchanged.)

DIVIDE ITEMD INTO ITEMF
GIVING ITEMI REMAINDER ITEMG ITEMI = 3
ON SIZE ERROR ITEMG = 9
MOVE 0 TO ITEMH. ITEMH = 0

12. The NOT ON SIZE ERROR phrase:

DIVIDE ITEMD INTO ITEMF ITEMI = 3
GIVING ITEMI REMAINDER ITEMC ITEMC = 11.00
ON SIZE ERROR

MOVE 0 TO ITEMH
NOT ON SIZE ERROR

MOVE 1 TO ITEMH. ITEMH = 1
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EVALUATE
Function
The EVALUATE statement selects a program action based on the evaluation of
one or more conditions.

General Format

EVALUATE

� subj-item
TRUE
FALSE

� �
�� ALSO

� subj-item
TRUE
FALSE

� �
�� . . .

������������������������������������
����������������������������������


����������������������������������
��������������������������������


WHEN�����������
���������


ANY
cond
TRUE
FALSE

� NOT � obj-item

�
� �

THRU
THROUGH



obj-item

�
�

�����������
����������

�
�������������

ALSO�����������
���������


ANY
cond
TRUE
FALSE

[NOT] obj-item

�
� �

THRU
THROUGH



obj-item

�
�

�����������
����������

�
�������������

. . .

����������������������������������
���������������������������������

. . . stment1

������������������������������������
�����������������������������������

. . .

� WHEN OTHER stment2 �

� END-EVALUATE �

subj-item
is an identifier, an arithmetic or conditional expression, or a literal other than the
figurative constant ZERO.

cond
is a conditional expression.

obj-item
is a literal, an identifier, or an arithmetic expression.

stment1
is an imperative statement.

stment2
is an imperative statement.
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Syntax Rules

1. Before the first WHEN phrase: ( a ) subj-item and the words TRUE and
FALSE are called subjects, and ( b ) all subjects comprise the subject set.

2. In a WHEN phrase: ( a ) ANY, TRUE, FALSE, and the operands are called
objects, and ( b ) all objects in a single WHEN phrase comprise an object set.

3. The number of objects in the object set must equal the number of subjects in
the subject set.

4. The words THROUGH and THRU are equivalent.

5. Two obj-items connected by a THROUGH phrase:

• Must be of the same class

• Combine to form one object

6. Each object in an object set must correspond to the subject by appearing in
the same ordinal position as in the subject set. For each pair:

• The obj-item must be a valid operand for comparison to the subject.

• TRUE, FALSE, or cond as an object must correspond only to TRUE,
FALSE, or a conditional expression as the subject.

• ANY can correspond to any type of subject.

7. Conditional expressions can be simple or complex conditions.

General Rules
Evaluation Procedure

1. The EVALUATE statement operates as if each subject and object were
evaluated and assigned one of the following:

• A numeric or nonnumeric value

• A range of numeric or nonnumeric values

• A truth value

The statement assigns values according to the following rules:

Condition Value Assigned

a. An identifier for a subject,
or for an object without the
NOT or THROUGH phrases

Value and class of the identifier’s data
item.

b. A literal for a subject, or for
an object without the NOT or
THROUGH phrases

Value and class of the literal.

c. The figurative constant ZERO
for an object without the NOT
or THROUGH phrases

Value and class of the corresponding
subject.

d. An arithmetic expression
for a subject, or for an
object without the NOT or
THROUGH phrases

Numeric value, according to the rules
for evaluating arithmetic expressions.
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Condition Value Assigned

e. A conditional expression for
a subject or a conditional
expression for an object

Truth value, according to the rules for
evaluating conditional expressions.

f. TRUE or FALSE as a subject
or object

Truth value: true for the word TRUE
and false for the word FALSE.

g. ANY for an object No further evaluation.
h. THROUGH phrase for an

object without the NOT
phrase

The range of values is all values that,
when compared to the subject, are
greater than or equal to the first obj-
item and less than or equal to the
second obj-item. If the first obj-item is
greater than the second obj-item, there
are no values in the range.

i. Object with the NOT phrase All values not equal to the value (or
range of values) that would be assigned
without the NOT phrase.

Comparison Procedure

2. After values have been assigned to each subject and object, comparison
begins. It proceeds as if the values were compared to determine if any WHEN
phrase satisfies the subject set.

3. EVALUATE compares each object in the object set of the first WHEN phrase
to the subject in the same ordinal position in the subject set. The comparison
is satisfied if one of the following conditions is true:

• The items being compared are assigned numeric or nonnumeric values or
a range of numeric or nonnumeric values; and the value assigned to the
subject equals the value, or one of the range of values, assigned to the
object, according to the rules for comparison.

• The items being compared are assigned identical truth values.

• The word ANY represents the object.

4. If the comparison is satisfied for every object in an object set, the WHEN
phrase containing that object set is selected.

5. If the comparison is not satisfied for every object in an object set, the object
set does not satisfy the subject set.

6. The comparison procedure is repeated for each object set, in order of
appearance, until one of these conditions occur:

• A WHEN phrase is selected by satisfying the subject set.

• A WHEN OTHER phrase is selected.

• There are no more object sets.

• The END-EVALUATE statement is reached.

• A separator period is reached.
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Execution Procedure

7. If a WHEN phrase is selected, execution continues with stment1.

8. If no WHEN phrase is selected, and a WHEN OTHER phrase is present,
execution continues with stment2.

9. EVALUATE statement execution ends when one of the following conditions
occurs:

• Execution reaches the end of the selected WHEN phrase.

• Execution reaches the end of the WHEN OTHER phrase.

• No WHEN phrase is selected and there is no WHEN OTHER phrase.

• Execution reaches END-EVALUATE.

• Execution reaches a separator period.

Additional References

• Section 6.1.4, Scope of Statements

• Section 6.4, Arithmetic Expressions

• Section 6.5, Conditional Expressions

• Section 6.5.1, Relation Conditions

• Section 6.6.1, Arithmetic Operations

Examples
In these examples, the results are shown as either data item values or procedure
branches. However, stment can be any imperative statement, including multiple
statements.

1. One condition.

EVALUATE ITEMA
WHEN "A01" MOVE 1 TO ITEMB
WHEN "A02" THRU "C16" MOVE 2 TO ITEMB
WHEN "C20" THRU "L86" MOVE 3 TO ITEMB
WHEN "R20" ADD 1 TO R-TOT

GO TO PROC-A
WHEN OTHER MOVE 0 TO ITEMB
END-EVALUATE.

Samples:

ITEMA Result

‘‘A15’’ ITEMB = 2
‘‘P80’’ ITEMB = 0
‘‘F01’’ ITEMB = 3
‘‘M19’’ ITEMB = 0
‘‘A01’’ ITEMB = 1
‘‘R20’’ PROC-A

2. Multiple conditions. This example shows how EVALUATE can represent a
decision table.
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EVALUATE LOW-STOK WEEK-USE LOC-VNDR ON-ORDER
WHEN "Y", 16 THRU 999, ANY, "N" GO TO RUSH-ORDER
WHEN "Y", 16 THRU 999, ANY, "Y" GO TO NORMAL-ORDER
WHEN "Y", 8 THRU 15, "N", "N" GO TO RUSH-ORDER
WHEN "Y", 8 THRU 15, "N", "Y" GO TO NORMAL-ORDER
WHEN "Y", 8 THRU 15, "Y", "N" GO TO NORMAL-ORDER
WHEN "Y", 0 THRU 7, ANY, "N" GO TO NORMAL-ORDER
WHEN "N", ANY, ANY, "Y" GO TO CANCEL-ORDER
END-EVALUATE.

Samples:

LOW-STOK WEEK-USE LOC-VNDR ON-ORDER Result

‘‘Y’’ 38 ‘‘N’’ ‘‘Y’’ NORMAL-ORDER
‘‘N’’ 20 ‘‘Y’’ ‘‘Y’’ CANCEL-ORDER
‘‘N’’ 12 ‘‘Y’’ ‘‘N’’ next statement
‘‘Y’’ 12 ‘‘Y’’ ‘‘N’’ NORMAL-ORDER
‘‘Y’’ 12 ‘‘Y’’ ‘‘Y’’ next statement
‘‘Y’’ 40 ‘‘N’’ ‘‘N’’ RUSH-ORDER

3. Relation conditions and arithmetic expressions.

EVALUATE-ITEM-ROUTINE.
*
* After the imperative statement in the selected WHEN phrase
* executes (for example PERFORM PROC-A), control then
* transfers to the first statement following the end of the
* EVALUATE statement (MOVE A TO B).
*

EVALUATE ITEMA > 6 AND < 30, 8 * ITEMB - 1
WHEN TRUE, 5 * ITEMC PERFORM PROC-A
WHEN FALSE, ITEMC PERFORM PROC-B
WHEN ITEMC > 12, -1 PERFORM PROC-C
WHEN TRUE, NOT 7 THRU 40 PERFORM PROC-D
WHEN OTHER PERFORM PROC-E

END-EVALUATE.
MOVE A TO B.

Samples:

ITEMA ITEMB ITEMC Result

12 2 3 PROC-A
25 0 14 PROC-C
30 0 14 PROC-E
6 3 23 PROC-B
14 0 5 PROC-D
5 0 11 PROC-C

Consider how the EVALUATE statement works using the values in the previous
sample:

1. The value of the first subject is a truth value (General Rule 1e). ITEMA is
not greater than 6 and less than 30; therefore, the value of the first subject is
false.

6–128 Procedure Division



EVALUATE Statement

2. The value of the second subject is a numeric value (General Rule 1d):
8 * 0-1 = -1.

3. When the first WHEN phrase is evaluated:

• The value of the first object is a truth value (General Rule 1f): true.

• The value of the second object is a numeric value: 55.

• The value of the first object does not equal that of the first subject.
Furthermore, the values of the second object and subject do not match.
Therefore, this WHEN phrase is not selected (General Rule 5).

4. When the second WHEN phrase is evaluated:

• The value of the first object is a truth value (General Rule 1f): false.

• The value of the second object is a numeric value: 11.

• The value of the first object equals that of the first subject. However,
the values of the second object and subject do not match. Therefore, this
WHEN phrase is not selected (General Rule 5).

5. When the third WHEN phrase is evaluated:

• The value of the first object is a truth value (General Rule 1f). Because
the value of ITEMC is not greater than 12, the value of this object is false.

• The value of the second object is a numeric value: -1.

• The value of the first object equals that of the first subject. The values of
the second object and subject also match. Therefore, this WHEN phrase
is selected (General Rule 4).

6. The statement following the third WHEN phrase is PERFORM PROC-C.
Control transfers to that procedure, and the EVALUATE statement ends.
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EXIT
Function
The EXIT statement provides a common logical end point for a series of
procedures.

General Format

EXIT

Syntax Rule
The EXIT statement must appear in a sentence by itself and be the only sentence
in the paragraph.

General Rule
The EXIT statement associates a procedure-name with a point in the program. It
has no other effect on program compilation or execution.

Example
REPORT-INVALID-ADD.

DISPLAY " ".
DISPLAY "INVALID ADDITION".
DISPLAY "RECORD ALREADY EXISTS".
DISPLAY "UPDATE ATTEMPT: " UPDATE-REC.
DISPLAY "EXISTING RECORD: " OLD-REC.

REPORT-INVALID-ADD-EXIT.
EXIT.
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EXIT PROGRAM
Function
The EXIT PROGRAM statement marks the logical end of a called program.

General Format

EXIT PROGRAM

Syntax Rules

1. If the EXIT PROGRAM statement is in a consecutive sequence of imperative
statements, it must be the last statement in that sequence.

2. The EXIT PROGRAM statement cannot appear in a GLOBAL USE procedure.

General Rules

1. If EXIT PROGRAM executes in a program that is not a called program, it
causes execution to continue with the next executable statement. Refer to
the HP COBOL User Manual for information on how the v3 setting of the
standard compiler option affects the EXIT PROGRAM statement.

2. If the EXIT PROGRAM statement executes in a called program without the
INITIAL clause in its PROGRAM-ID paragraph, execution continues with the
next executable statement after the CALL statement in the calling program.

The state of the calling program does not change; it is the same as when the
program executed the CALL statement. However, the contents of data items
and the positioning of data files shared by the calling and called programs
can change.

The state of the called program does not change. However, the called program
is considered to have reached the ends of the ranges of all PERFORM
statements it executed. Therefore, an error does not occur if the called
program is entered again during image execution.

3. When EXIT PROGRAM executes in a called program with the INITIAL
attribute, the actions described in General Rule 2 also apply. In addition,
executing the EXIT PROGRAM statement is equivalent to executing a
CANCEL statement that names the called program.

4. Special handling of the EXIT PROGRAM statement is performed when you
specify the standard compiler option with the v3 setting on the compiler
command line. Refer to the HP COBOL User Manual for more information.

Example
TEST-RETURN.

IF ITEMA NOT = ITEMB
MOVE ITEMA TO ITEMB
EXIT PROGRAM.
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GENERATE
Function
The GENERATE statement directs the Report Writer Control System (RWCS)
to produce a report according to the Report Description entry (RD) in the Report
Section of the Data Division.

General Format

GENERATE report-item

report-item
names either a report-name in a Report Description entry, or the group-data-
name of a TYPE IS DETAIL report group.

Syntax Rules

1. If report-item references a group-data-name, it must name a TYPE DETAIL
report group. Group-data-name can be qualified by report-name.

2. If report-item references a report-name, its report description must contain:

• A CONTROL clause

• At least one CONTROL HEADING, DETAIL, or CONTROL FOOTING
report group

• No more than one DETAIL report group

General Rules

1. An INITIATE statement must be executed before a GENERATE statement is
executed for a specific report.

2. The RWCS produces a summary report if all of the GENERATE statements
for a report reference report-name. A summary report contains no TYPE IS
DETAIL report groups.

3. The RWCS produces a detail report if a GENERATE statement references a
DETAIL report group.

4. To detect and trigger control breaks for a specific report, the RWCS:

• Saves the initial values within control data items as prior values when
the GENERATE statement executes.

• Compares the prior values to the current values of control data items
when subsequent GENERATE statements execute. Only if the current
values change does a control break occur. If a control break occurs, the
current values are saved as prior values.

• Repeats the preceding step until the last control break is processed.

5. The RWCS automatically processes any PAGE HEADING and PAGE
FOOTING report groups when it must start a new page to present a
CONTROL HEADING, DETAIL, or CONTROL FOOTING.

6. When the first GENERATE statement for a specific report is executed, the
RWCS processes these report groups, if present in the report description, in
this order:

a. The REPORT HEADING report group.

b. The PAGE HEADING report group.
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c. All CONTROL HEADING report groups from major to minor.

d. For GENERATE group-data-name statements (detail reporting), the
RWCS presents the specific DETAIL report group for processing.

e. For GENERATE report-name statements (summary reporting), the RWCS
does not present the DETAIL report group for processing; however, the
RWCS does perform all other DETAIL report group functions.

7. When subsequent GENERATE statements are executed for a specific report,
the RWCS:

• Checks for control breaks. The rules governing the inequality of control
data items are identical to the rules for relation conditions. If a control
break occurs, the RWCS:

a. Enables the CONTROL FOOTING USE procedures and CONTROL
FOOTING SOURCE clauses. This allows program access to the
control data item values that the RWCS uses to detect a given control
break.

b. Processes the CONTROL FOOTING report groups starting with the
minor. Only CONTROL FOOTING report groups less major than the
highest level at which a control break occurs are processed.

c. Processes the CONTROL HEADING report groups in the order major
to minor. Only the CONTROL HEADING report groups less major
than the highest level at which a control break occurs are processed.

• Processes the GENERATE statement. For GENERATE group-data-name
statements (detail reporting), the RWCS processes the specific DETAIL
report group. For GENERATE report-name statements (summary
reporting), the RWCS does not present the DETAIL report group for
processing; however, the RWCS does perform all other DETAIL report
group functions.

8. No GENERATE statements can reference a file after executing a
TERMINATE statement for the same file.

Additional References

• TYPE clause in Chapter 5

• USE statement
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GO TO
Function
The GO TO statement transfers control from one part of the Procedure Division
to another.

General Format

Format 1

GO TO � proc-name �

Format 2

GO TO { proc-name } . . . DEPENDING ON num

proc-name
is a procedure-name.

num
is the identifier of an elementary numeric item described with no positions to the
right of the assumed decimal point.

Syntax Rules

1. A Format 1 GO TO statement that is in a consecutive sequence of imperative
statements in a sentence must be the last statement in the sentence.

2. If an ALTER statement refers to a paragraph, the paragraph must consist of
only a paragraph header followed by a Format 1 GO TO statement.

3. A Format 1 GO TO statement without proc-name can only be in a single-
statement paragraph.

General Rules
Format 1

1. The GO TO statement transfers control to proc-name.

2. If there is no proc-name, the GO TO statement cannot execute before an
ALTER statement changes its destination.

Format 2

3. The GO TO statement transfers control to the proc-name in the ordinal
position indicated by the value of num.

No transfer occurs, and control passes to the next executable statement if the
value of num is one of the following:

• Not greater than zero

• Greater than the number of proc-names in the statement

Examples

1. Format 1:

GO TO ENDING-ROUTINE.
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2. Format 2:

GO TO FRESHMAN
SOPHOMORE
JUNIOR
SENIOR
DEPENDING ON YEAR-LEVEL.

MOVE . . .

Sample Results

YEAR-LEVEL Transfers to

1 FRESHMAN label
2 SOPHOMORE label
3 JUNIOR label
4 SENIOR label
5 MOVE statement
0 MOVE statement
-10 MOVE statement
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IF
Function
The IF statement evaluates a condition. The condition’s truth value determines
the program action that follows.

General Format

IF condition THEN

� { stment-1 } . . .

NEXT SENTENCE

� �
����

ELSE { stment-2 } . . . [ END-IF ]

ELSE NEXT SENTENCE

END-IF

�
����

stment-1
is an imperative or conditional statement. An imperative statement can precede
a conditional statement.

stment-2
is an imperative or conditional statement. An imperative statement can precede
a conditional statement.

Syntax Rules

1. The ELSE NEXT SENTENCE phrase is optional if it immediately precedes a
separator period.

2. If the END-IF phrase is specified, the NEXT SENTENCE phrase must not be
specified.

General Rules

1. The scope of an IF statement ends with any of the following:

• An END-IF phrase at the same nesting level

• A separator period

• An ELSE phrase associated with an IF statement at a higher nesting
level

2. If the condition is true, the following control transfers occur:

• If there is a stment-1, it executes.

stment-1 can contain a procedure branching or conditional statement.
Control then transfers according to the rules of the statement.

Otherwise, the ELSE phrase (if any) is ignored. Control passes to the end
of the IF statement.

• If you use NEXT SENTENCE instead of stment-1, the ELSE phrase (if
any) is ignored. Control passes to the next executable sentence.

3. If the condition is false, the following control transfers occur:

• stment-1 or its substitute NEXT SENTENCE is ignored. If stment-2 is
used, it executes.

stment-2 can contain a procedure branching or conditional statement.
Control then transfers according to the rules of the statement. Otherwise,
control passes to the end of the IF statement.

6–136 Procedure Division



IF Statement

• If there is no ELSE phrase, stment-1 is ignored. Control passes to the end
of the IF statement.

• If the ELSE NEXT SENTENCE phrase is present, stment-1 is ignored.
Control passes to the next executable sentence.

4. An IF statement can appear in either or both stment-1 and stment-2. In this
case, the IF statement is considered nested, because its scope is entirely
within the scope of another IF statement.

5. IF statements within IF statements are paired combinations, beginning with
IF and ending with ELSE or END-IF; this pairing proceeds from left to right.
Thus, an ELSE or END-IF phrase applies to the first preceding unpaired IF.

Additional References

• Section 6.1, Verbs, Statements, and Sentences

• Section 6.1.4, Scope of Statements

• Section 6.5, Conditional Expressions

Examples

1. No ELSE phrase:

IF ITEMA < 20
MOVE "X" TO ITEMB.

ITEMA ITEMB

4 ‘‘X’’
35 ?
19 ‘‘X’’

2. With ELSE phrase:

IF ITEMA > 10
MOVE "X" TO ITEMB

ELSE
GO TO PROC-A.

ADD . . .

ITEMA
Next
Statement ITEMB

96 ADD ‘‘X’’
8 PROC-A ?

3. With NEXT SENTENCE phrase:

(In each case, the next executable statement is the ADD statement.)
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IF ITEMA < 10 OR > 20
NEXT SENTENCE

ELSE
MOVE "X" TO ITEMB.

ADD . . .

ITEMA ITEMB

5 ?
17 ‘‘X’’
35 ?

4. Nested IF statements:

IF ITEMA > 10
IF ITEMA = ITEMC
MOVE "X" TO ITEMB

ELSE
MOVE "Y" TO ITEMB

ELSE
GO TO PROC-A.

ADD . . .

Input
Values

Output
Value

ITEMA ITEMC
Next
Statement ITEMB

12 6 ADD ‘‘Y’’
12 12 ADD ‘‘X’’
8 8 PROC-A ?

5. END-IF:

(In this example, the initial value of ITEMD is 5.)

IF ITEMA > 10
IF ITEMA = ITEMC
ADD 1 TO ITEMD
MOVE "X" TO ITEMB

END-IF
ADD 1 TO ITEMD.

ITEMA ITEMC ITEMB ITEMD

4 6 ? 5
15 6 ? 6
13 13 ‘‘X’’ 7
7 7 ? 5
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INITIALIZE
Function
The INITIALIZE statement sets selected types of data fields to predetermined
values.

General Format

INITIALIZE { fld-name } . . .

�
����������������

REPLACING

���������������
�������������


�������������
�����������


ALPHABETIC

ALPHANUMERIC

NUMERIC

ALPHANUMERIC-EDITED

NUMERIC-EDITED

�������������
������������

DATA BY val

���������������
��������������

. . .

�
����������������

fld-name
is the identifier of the receiving area data item.

val
is the sending area. It can be a literal or the identifier of a data item.

Syntax Rules

1. The phrase after the word REPLACING is the category phrase.

2. The category of the data item referred to by val must be consistent with that
in the category phrase. The combination of categories must allow execution of
a valid MOVE statement.

3. The same category cannot be repeated in a REPLACING phrase.

4. The description of fld-name or any item subordinate to it cannot contain the
OCCURS clause DEPENDING phrase.

5. Neither fld-name nor val can be index data items.

6. fld-name cannot contain a RENAMES clause.

General Rules

1. The key word that follows the word REPLACING corresponds to a category of
data. (See the section on Categories and Classes of Data in the Data Division
chapter.)

2. fld-name can be an elementary or group item. If it is a group item, the
INITIALIZE statement operates on the elementary items within the
group item. For a table within a group item, INITIALIZE operates on the
elementary items within the table.
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3. Whether fld-name is an elementary item or a group item, if the REPLACING
phrase is specified, all data movement operations occur as if they resulted
from a series of MOVE statements with elementary item receiving areas:

• If the receiving area is a group item, INITIALIZE affects only those
subordinate elementary items whose category matches a category phrase.
General Rule 6 describes the effect on elementary items when there is no
REPLACING phrase.

• INITIALIZE affects all eligible elementary items, including all
occurrences of table items in the group.

• If the receiving area is an elementary item, that item is initialized only if
it matches a category phrase.

4. INITIALIZE does not affect index data items and FILLER data items.

5. INITIALIZE does not affect items subordinate to fld-name that contain a
REDEFINES clause. Nor does it affect data items subordinate to those items.
However, fld-name itself can have a REDEFINES clause or be subordinate to
a data item that does.

6. When there is a REPLACING phrase, val is the sending field for each of the
implicit MOVE statements.

7. When there is no REPLACING phrase, the sending field for the implicit
MOVE statements is as follows:

• SPACES, if the data item category is alphabetic, alphanumeric, or
alphanumeric edited

• ZEROS, if the data item category is numeric or numeric edited

8. INITIALIZE operates on each fld-name in the order it appears in the
statement. When fld-name is a group item, INITIALIZE operates on its
eligible subordinate elementary items in the order they are defined in the
group.

9. If fld-name occupies the same storage area as val, the execution result of
this statement is undefined. (See the section on Overlapping Operands and
Incompatible Data.)

Additional References

• MOVE statement

• Section 6.6.7, Overlapping Operands and Incompatible Data

Examples
In the examples’ results, a hyphen ( - ) means that the value of the data item is
unchanged; s represents the character space. The examples assume this data
description:
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01 ITEMA.
03 ITEMB PIC X(4).
03 ITEMC.

05 ITEMD PIC 9(5).
05 ITEME PIC $$$9.99.
05 ITEMF PIC XX/XX.

03 ITEMG.
05 ITEMH PIC 999.
05 ITEMI PIC XX.
05 ITEMJ PIC 99.9.

03 ITEMK PIC X(4) JUSTIFIED RIGHT.

1. INITIALIZE ITEMA.

2. INITIALIZE ITEMB ITEMG.

3. INITIALIZE ITEMA REPLACING ALPHANUMERIC BY "ABCDE".

4. INITIALIZE ITEMG REPLACING NUMERIC BY 9.

5. INITIALIZE ITEMA REPLACING NUMERIC-EDITED BY 16.

6. INITIALIZE ITEMA REPLACING ALPHANUMERIC-EDITED BY "ABCD".

7. INITIALIZE ITEMA REPLACING ALPHANUMERIC BY "99".

ITEMB ITEMD ITEME ITEMF ITEMH ITEMI ITEMJ ITEMK

1. ssss 00000 ss$0.00 ss/ss 000 ss 00.0 ssss
2. ssss – – – 000 ss 00.0 –
3. ABCD – – – – AB – BCDE
4. – – – – 009 – – –
5. – – s$16.00 – – – 16.0 –
6. – – – AB/CD – – – –
7. 99ss – – – – 99 – ss99
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INITIATE
Function
The INITIATE statement causes the Report Writer Control System (RWCS) to
begin processing a report.

General Format

INITIATE { report-name } . . .

report-name
names a report defined by a Report Description entry ( RD ) in the Report Section
of the Data Division.

General Rules

1. The INITIATE statement does not automatically open a report file. The
program must execute either an OPEN OUTPUT or an OPEN EXTEND
statement before it can execute an INITIATE statement.

2. Upon execution of the INITIATE statement, the RWCS sets all sum counters,
LINE-COUNTER, and PAGE-COUNTER to zero.

3. If the INITIATE statement has more than one report-name, the statement
executes as if there were a separate INITIATE statement for each report-
name.

4. A program must execute a TERMINATE statement before it can execute
another INITIATE statement for the same report-name.

Additional Reference
USE statement
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INSPECT
Function
The INSPECT statement counts or replaces occurrences of single characters or
groups of characters in a data item.

General Format

Format 1

INSPECT src-string TALLYING

����������������
��������������


tally-ctr FOR�������������
�����������


CHARACTERS

�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

�
ALL
LEADING


 ���
�
 compare-val

�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

���
�� . . .

�������������
������������

. . .

����������������
���������������

. . .

Format 2

INSPECT src-string REPLACING

�������������
�����������


CHARACTERS BY replace-char

�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

� ALL
LEADING
FIRST

� ���
�
 compare-val BY replace-val

�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

���
�� . . .

�������������
������������

. . .
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Format 3

INSPECT src-string TALLYING

����������������
��������������


tally-ctr FOR�������������
�����������


CHARACTERS

�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

�
ALL
LEADING


 ���
�
 compare-val

�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

���
�� . . .

�������������
������������

. . .

����������������
���������������

. . .

REPLACING

�������������
�����������


CHARACTERS BY replace-char

�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

� ALL
LEADING
FIRST

� ���
�
 compare-val BY replace-val

�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

���
�� . . .

�������������
������������

. . .

Format 4

INSPECT src-string CONVERTING compare-chars TO convert-chars�
� �

BEFORE
AFTER



INITIAL delim-val

�
� . . .

src-string
is the identifier of a group item or an elementary data item with DISPLAY usage.
INSPECT operates on the contents of this data item.

tally-ctr
is the identifier of an elementary numeric data item.

delim-val
is the character-string that delimits the INSPECT operation. Its content
restrictions are the same as those for compare-val.

compare-val
is the character-string INSPECT uses for comparison. It is a nonnumeric literal
(or figurative constant other than ALL literal) or the identifier of an elementary
alphabetic, alphanumeric, or numeric data item with DISPLAY usage.
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replace-char
is the one-character item that replaces all characters. Its content restrictions are
the same as those for compare-val.

replace-val
is the character-string that replaces occurrences of compare-val. Its content
restrictions are the same as those for compare-val.

compare-chars
is the string that contains the individual characters that convert to those in
convert-chars. It is the same kind of item as compare-val.

convert-chars
is the string that contains the individual characters to which the characters in
compare-chars convert. It is the same kind of item as compare-val.

Syntax Rules
All Formats

1. If compare-val, delim-val, replace-char, or compare-chars is a figurative
constant, it refers to an implicit one-character data item.

2. A compare-val of an ALL or LEADING phrase, and a CHARACTERS, FIRST,
or CONVERTING phrase can have no more than one BEFORE and one
AFTER phrase following it.

Format 2

3. The sizes of the data referred to by replace-val and compare-val must be
equal. When replace-val is a figurative constant, its size equals that of the
data referred to by compare-val.

4. When there is a CHARACTERS phrase, the size of the data referred to by
delim-val must be one character.

Format 3

5. A Format 3 INSPECT statement is equivalent to a Format 1 statement
followed by a Format 2 statement. Therefore, Syntax Rules 3 and 4 apply to
the REPLACING clause of Format 3.

Format 4

6. The sizes of the data referred to by convert-chars and compare-chars must be
equal. When convert-chars is a figurative constant, its size equals that of the
data referred to by compare-chars.

7. The same character cannot appear more than once in the data referred to by
compare-chars.

General Rules
All Formats

1. Inspection includes: ( a ) comparison, ( b ) setting boundaries for the BEFORE
and AFTER phrases, and ( c ) tallying or replacing. Inspection starts at the
leftmost character position of the src-string data item. It proceeds to the
rightmost character position, as described in General Rules 3 to 5.
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2. If src-string, compare-val, delim-val, replace-val, compare-chars, or convert-
chars refers to a data item, the INSPECT statement treats the contents of the
item according to the category implied by its data description.

a. For an alphabetic or alphanumeric item—INSPECT treats the data item
as a character-string.

b. For an alphanumeric edited, numeric edited, or unsigned numeric item—
INSPECT treats the data item as though:

• The data item were redefined as alphanumeric.

• The INSPECT statement were written to refer to the redefined data
item. (See General Rule 2a.)

c. For a signed numeric item—INSPECT treats the data item as though it
were moved to an unsigned numeric data item of the same length. It then
applies General Rule 2b.

3. If the size of src-string is zero characters, inspection does not occur.

4. If the size of compare-val is zero characters, compare-val does not match in
any src-string comparison.

5. If any identifier is subscripted or is a function-identifier, the subscript
or function-identifier is evaluated only once as the first operation in the
execution of the INSPECT statement.

6. During inspection of src-string, each matched occurrence of compare-val is:

a. Tallied (Formats 1 and 3)

b. Replaced by replace-char or replace-val (Formats 2 and 3)

7. The comparison operation determines which occurrences of compare-val are
tallied or replaced:

a. INSPECT processes the operands of the TALLYING and REPLACING
phrases in the order they appear, from left to right. The first compare-
val is compared to the same number of contiguous characters, starting
with the leftmost character position in src-string. compare-val and the
compared characters in src-string match if they are equal, character for
character. Otherwise, they do not match.

b. If the comparison of the first compare-val does not produce a match, the
comparison repeats for each successive compare-val until either:

• A match results

• There is no next compare-val

When there is no next compare-val, INSPECT determines the leftmost
character position in src-string for the next comparison. This position is
to the immediate right of the leftmost character position for the preceding
comparison. The comparison cycle starts again with the first compare-val.

c. For each match, tallying, replacing, or both occur, as described in General
Rules 9 to 17. INSPECT determines the leftmost character position in
src-string for the next comparison. This position is to the immediate
right of the rightmost character position that matched in the preceding
comparison. The comparison cycle starts again with the first compare-val.
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d. Inspection ends when the rightmost character position of src-string has
either:

• Participated in a match

• Served as the leftmost character position

e. When the CHARACTERS phrase is present, INSPECT does not perform
any comparison on the contents of src-string. The cycle described in
General Rules 6a to 6d operates as if:

• Inspection compares a one-character data item to each character in
src-string

• A match occurs for each comparison

8. The BEFORE phrase determines the character position in src-string that will
be the final leftmost position in the comparison operation.

a. Comparison occurs on src-string only:

• From its leftmost character position

• To, but not including, the first occurrence of delim-val

b. The position of the first occurrence of delim-val in src-string is determined
before the first comparison operation.

c. If delim-val does not occur in src-string, the comparison operation
proceeds as if there were no BEFORE phrase.

9. The AFTER phrase determines the character position in src-string that will
be the first leftmost position in the comparison operation.

a. Comparison occurs on src-string only:

• From the character position to the immediate right of the rightmost
character position of delim-val’s first occurrence

• To the rightmost position of src-string

b. The position of the first occurrence of delim-val in src-string is determined
before the first comparison operation.

c. If delim-val is not in src-string, no match occurs, and inspection causes no
tallying or replacement.

Format 1

10. Executing the INSPECT statement does not initialize the value of tally-ctr.

11. If the ALL phrase is present, the value of tally-ctr is incremented by one for
each occurrence of compare-val in src-string.

12. If the LEADING phrase is present, the value of tally-ctr is incremented by
one for each contiguous occurrence of compare-val in src-string. The leftmost
occurrence of compare-val must be at the position where comparison begins in
the first comparison cycle. Otherwise, no tallying occurs.

13. If the CHARACTERS phrase is present, the value of tally-ctr is incremented
by one for each character matched in src-string (see General Rule 6e).
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Format 2

14. The adjectives ALL, LEADING, and FIRST apply to succeeding BY phrases
until the next adjective appears.

15. If the CHARACTERS phrase is present, each character matched in src-string
is replaced by replace-char (see General Rule 6e).

16. When ALL is present, each occurrence of compare-val in src-string is replaced
by replace-val.

17. When LEADING is present, each contiguous occurrence of compare-val in
src-string is replaced by replace-val. The leftmost occurrence of compare-val
must be at the position where comparison begins in the first comparison cycle.
Otherwise, no replacement occurs.

18. When FIRST is present, the leftmost occurrence of compare-val in src-string
is replaced by replace-val.

Format 3

19. A Format 3 INSPECT statement executes as if there were two successive
INSPECT statements with the same src-string. Execution proceeds as if:

• The first statement were a Format 1 statement with TALLYING phrases
identical to those in the Format 3 statement

• The second statement were a Format 2 statement with REPLACING
phrases identical to those in the Format 3 statement

The General Rules for Formats 1 and 2 apply to the corresponding phrases in
the Format 3 statement.

Format 4

20. A Format 4 statement executes as if:

• It were a Format 2 INSPECT statement with a series of ALL phrases, one
for each character of compare-chars

• compare-val in each ALL phrase referred to a single character of compare-
chars

• replace-val in each ALL phrase referred to a single character of replace-
chars

The individual characters of compare-chars and replace-chars correspond by
ordinal position in the data items.

Additional Reference

• MOVE

Examples
In the following examples, the initial values of COUNT1 and COUNT2 are zero.

1. TALLYING phrase with BEFORE option:
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INSPECT ITEMA TALLYING COUNT1 FOR LEADING "L" BEFORE "A",
COUNT2 FOR LEADING "A" BEFORE "L".

ITEMA COUNT1 COUNT2

LARGE 1 0
ANALYST 0 1

2. TALLYING phrase and REPLACING LEADING phrase with AFTER option:

INSPECT ITEMA TALLYING COUNT1 FOR ALL "L" "R"
REPLACING LEADING "A" BY "E" AFTER INITIAL "L".

ITEMA COUNT1 ITEMA

CALLAR 3 CALLAR
SALAMI 1 SALEMI
LATTER 2 LETTER

3. REPLACING ALL phrase with BEFORE option:

INSPECT ITEMA REPLACING ALL "A" BY "G" BEFORE "X".

ITEMA ITEMA

ARXAX GRXAX
HANDAX HGNDGX
HANDAA HGNDGG

4. TALLYING and REPLACING ALL phrases:

INSPECT ITEMA TALLYING COUNT1 FOR CHARACTERS AFTER "J"
REPLACING ALL "A" BY "B".

ITEMA COUNT1 ITEMA

ADJECTIVE 6 BDJECTIVE
JACK 3 JBCK
JUJMAB 5 JUJMBB

5. REPLACING ALL phrase:

INSPECT ITEMA REPLACING ALL "X" BY "Y", "B" BY "Z",
"W" BY "Q" AFTER "R".

ITEMA ITEMA

RXXBQWY RYYZQQY
YZACDWBR YZACDWZR
RAWRXEB RAQRYEZ

6. REPLACING CHARACTERS phrase:
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INSPECT ITEMA REPLACING CHARACTERS BY "B" BEFORE "A".

ITEMA ITEMA

12RXZABCD BBBBBABCD
12RXZBBCD BBBBBBBBB

7. REPLACING ALL phrase:

INSPECT ITEMA REPLACING ALL "A" BY "X" ALL "R" BY "X"
AFTER "XXL".

ITEMA ITEMA

AALRRRA XXLRRRX
AXXLRRR XXXLXXX

8. CONVERTING phrase:

INSPECT ITEMA CONVERTING "SIR" TO "DTA"
AFTER QUOTE BEFORE "@".

ITEMA ITEMA

TIRMS"SRXIL@STAR TIRMS"DAXTL@STAR
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MERGE
Function
The MERGE statement takes two or more identically sequenced files and
combines them according to the key values you specify. During the process, it
makes records available, in merged order, to routines in OUTPUT PROCEDURE
or to an output file.

General Format

MERGE mergefile

��

 ON

�
DESCENDING
ASCENDING



KEY { mergekey } . . .

��
� . . .

� COLLATING SEQUENCE IS alpha �

USING infile { infile } . . .�����
���


OUTPUT PROCEDURE IS first-proc

�
� �

THRU
THROUGH



end-proc

�
�

GIVING { outfile } . . .

�����
����

mergefile
is a file-name described in a sort-merge file description (SD) entry in the Data
Division.

mergekey
is the data-name of a data item in a record associated with mergefile.

alpha
is an alphabet-name defined in the SPECIAL-NAMES paragraph of the
Environment Division.

infile
is the file-name of an input file. It must be described in a file description (FD)
entry in the Data Division.

first-proc
is the section-name or paragraph-name of the output procedure’s first (or only)
section or paragraph.

end-proc
is the section-name or paragraph-name of the output procedure’s last section or
paragraph.

outfile
is the file-name of an output file. It must be described in a file description (FD)
entry in the Data Division.
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Syntax Rules

1. MERGE statements can appear anywhere in the Procedure Division except
in:

• DECLARATIVES

• Sections of a SORT or MERGE statement’s INPUT or OUTPUT
PROCEDURE

2. If mergefile contains variable length records, infile records must not be smaller
than the smallest record in mergefile nor larger than the largest.

3. If mergefile contains fixed-length records, infile records must not be larger
than the largest record described for mergefile.

4. If outfile contains variable length records, mergefile records must not be
smaller than the smallest record in outfile nor larger than the largest.

5. If outfile contains fixed-length records, mergefile records must not be larger
than the largest record described for outfile.

6. Each mergekey must be described in records associated with mergefile.

7. mergekey can be qualified.

8. mergekey cannot be a group that contains variable occurrence data items.

9. The description of mergekey cannot contain an OCCURS clause or be
subordinate to one that does.

10. mergefile can have more than one record description. However, mergekey need
not be described in more than one of the record descriptions. The character
positions referenced by mergekey are used as the key for all the file’s records.

11. The words THRU and THROUGH are equivalent.

12. If outfile is an indexed file, the first mergekey must be in the ASCENDING
phrase. It must specify the same character positions in its record as the
prime record key for outfile.

General Rules

1. The MERGE statement merges all records in the infile files.

2. If mergefile contains fixed-length records, any shorter infile records are space-
filled on the right after the last character. Space-filling occurs before the infile
record is released to mergefile.

3. The leftmost mergekey is the major key, and the next mergekey is the
next most significant key. The significance of mergekey data items is not
affected by how they are divided into KEY phrases. Only left-to-right order
determines significance.

4. The ASCENDING phrase causes the merged sequence to be from the lowest
mergekey value to the highest.

5. The DESCENDING phrase causes the merged sequence to be from the
highest mergekey value to the lowest.

6. Merge sequence follows the rules for relation condition comparisons.
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7. When the contents of all key data items of one record equal the contents of
the corresponding key data items in another record, the order of return from
the merge:

• Follows the order of the associated input files in the MERGE statement

• Causes all records with equal key values from one input file to be returned
before any are returned from another

8. The MERGE statement determines the comparison collating sequence
for nonnumeric mergekey items when it begins execution. If there is a
COLLATING SEQUENCE phrase in the MERGE statement, MERGE
uses that sequence. Otherwise, it uses the collating sequence that was
established for the program as a whole in the PROGRAM COLLATING
SEQUENCE clause of the OBJECT-COMPUTER paragraph. If you do
not specify the collating sequence in either the MERGE statement or the
OBJECT-COMPUTER paragraph, the program uses the NATIVE collating
sequence.

9. The results of the merge are undefined unless the records in the infile
files are ordered as described in the MERGE statement’s ASCENDING or
DESCENDING KEY clause.

10. The MERGE statement transfers all records in infile to mergefile. When the
MERGE statement executes, infile must not be open.

11. For each infile, the MERGE statement:

• Begins file processing as if the program had executed an OPEN statement
with the INPUT phrase.

• Obtains the logical records and releases them to the merge operation.
MERGE obtains each record as if the program had executed a READ
statement with the NEXT and AT END phrases.

• Terminates file processing as if the program had executed a CLOSE
statement with no optional phrases.

These implicit OPEN, READ, and CLOSE operations cause associated USE
procedures to execute if an exception condition occurs.

12. OUTPUT PROCEDURE consists of one or more sections that are as follows:

• Contiguous in the source program

• Not a part of any other procedure

13. When the MERGE statement enters the OUTPUT PROCEDURE range, it is
ready to select the next record in merged order. Statements in the OUTPUT
PROCEDURE range must execute at least one RETURN statement to make
records available for processing.

14. The OUTPUT PROCEDURE can consist of any procedure needed to select,
modify, or copy the next record made available by the RETURN statement in
merged order from the file referenced by mergefile.

15. The range of the OUTPUT PROCEDURE additionally includes all statements
executed as a result of a CALL, EXIT, GO TO, or PERFORM statement.
The range of the OUTPUT PROCEDURE also includes all statements in
the Declaratives Section that can be executed if control is transferred from
statements in the range of the OUTPUT PROCEDURE.
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16. The range of the OUTPUT PROCEDURE must not contain MERGE, SORT,
or RELEASE statements.

17. If the MERGE statement is in a fixed segment, the OUTPUT PROCEDURE
range must be either:

• Completely in fixed segments

• Completely contained in one independent segment

18. If the MERGE statement is in an independent segment, the OUTPUT
PROCEDURE range must be either:

• Completely in fixed segments

• Completely contained in the same independent segment as the MERGE
statement itself

19. If OUTPUT PROCEDURE is used, control passes to its sections during
execution of the MERGE statement. When control passes to the last
statement in the OUTPUT PROCEDURE range, the MERGE statement
ends. Control then transfers to the next executable statement after the
MERGE statement.

20. During execution of statements in the OUTPUT PROCEDURE range—or any
USE AFTER EXCEPTION procedure implicitly invoked during the MERGE
statement—no statement outside the range can manipulate the files or record
areas associated with infile or outfile.

21. If there is a GIVING phrase, the MERGE statement writes all merged records
to each outfile. This transfer is an implied MERGE statement OUTPUT
PROCEDURE. Therefore, when the MERGE statement executes, outfile must
not be open.

22. The MERGE statement begins outfile processing as if the program had
executed an OPEN statement with the OUTPUT phrase.

23. The MERGE statement gets the merged logical records and writes them to
each outfile. MERGE writes each record as if the program had executed a
WRITE statement with no optional phrases.

For relative files, the value of the relative key data item is 1 for the first
returned record, 2 for the second, and so on. When the MERGE statement
ends, the value of the relative key data item indicates the number of outfile
records.

24. The MERGE statement terminates outfile processing as if the program had
executed a CLOSE statement with no optional phrases.

25. These implicit OPEN, WRITE, and CLOSE operations cause associated
USE procedures to execute if an exception condition occurs. If the MERGE
statement tries to write beyond the boundaries of outfile, the applicable USE
AFTER EXCEPTION procedure executes. If control returns from the USE
procedure, or if there is no USE procedure, outfile processing terminates as if
the program had executed a CLOSE statement with no optional phrases.

26. If outfile contains fixed-length records, any shorter mergefile records are
space-filled on the right after the last character. Space-filling occurs before
the mergefile record is released to outfile.
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Additional References

• OBJECT-COMPUTER paragraph in Chapter 4

• SPECIAL-NAMES paragraph in Chapter 4

• I-O-CONTROL paragraph in Chapter 4

• USE statement
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MOVE
Function
The MOVE statement transfers data to one or more data areas. The editing rules
control data transfer.

General Format

Format 1

MOVE

� src-item

lit

�
TO { dest-item } . . .

Format 2

MOVE

� CORRESPONDING

CORR

�
src-item TO dest-item

src-item
is an identifier that represents the sending area.

lit
is a literal that represents the sending area.

dest-item
is an identifier that represents the receiving area.

Syntax Rules

1. CORR is an abbreviation for CORRESPONDING.

2. In the CORRESPONDING phrase, both src-item and dest-item must be group
items, and there can be only one dest-item.

3. If any dest-item is numeric or numeric edited, lit cannot be any of the
following:

• HIGH-VALUE

• HIGH-VALUES

• LOW-VALUE

• LOW-VALUES

• SPACE

• SPACES

• QUOTE

• QUOTES

4. If lit is the figurative constant ALL literal and the usage of dest-item is
COMP-1 or COMP-2, the MOVE statement uses only one occurrence of literal.

5. No operand can be an index data item.
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General Rules

1. In Format 2, when the CORRESPONDING phrase is present, selected
items in src-item are moved to selected items in dest-item. The rules for
the CORRESPONDING option control these moves. The results are the same
as if the MOVE statement were replaced by separate MOVE statements for
each pair of corresponding items in src-item and dest-item.

2. In Format 1, the MOVE statement moves the sending area to the first dest-
item, then to each additional dest-item, in the same order in which they
appear in the statement.

3. If src-item is reference-modified, subscripted, or indexed, or is a function-
identifier, the reference modifier, subscript, index, or function-identifier is
evaluated once, immediately before the move to the first dest-item.

4. Subscript or index evaluation for a dest-item occurs immediately before the
move to that item.

5. The length of src-item is evaluated once, immediately before the move to the
first dest-item.

6. The length of each dest-item is evaluated immediately before the move to that
item.

7. The result of the first of the following MOVE statements is equivalent to
the three that follow. The word temp represents an intermediate result item
supplied by the compiler.

MOVE ITEMA (ITEMB) TO ITEMB, ITEMC (ITEMB).

MOVE ITEMA (ITEMB) TO temp.
MOVE temp TO ITEMB.
MOVE temp TO ITEMC (ITEMB).

Elementary Moves

8. A move is elementary when dest-item is an elementary item, and the sending
area is either an elementary data item or a literal.

a. An elementary item belongs to one of these categories, depending on its
PICTURE clause:

• Numeric

• Alphabetic

• Alphanumeric

• Numeric edited

• Alphanumeric edited

b. Numeric literals are numeric. Nonnumeric literals are alphanumeric.

c. The figurative constant ZERO is numeric when moved to a numeric or
numeric edited item. Otherwise, it is alphanumeric.

d. The figurative constant SPACE is alphabetic.

e. All other figurative constants are alphanumeric.

9. These rules apply to elementary moves between categories:

a. The figurative constant SPACE, or an alphanumeric edited or alphabetic
data item, cannot be moved to a numeric or numeric edited data item.
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b. A numeric literal, the figurative constant ZERO, or a numeric or numeric
edited data item, cannot be moved to an alphabetic data item.

c. A noninteger numeric literal or data item cannot be moved to an
alphanumeric or alphanumeric edited data item.

d. All other elementary moves are valid.

Editing, De-Editing, and Data Conversion During Elementary Moves

10. Editing, de-editing, or other required internal data conversions occur during
elementary moves. They are controlled by the description of dest-item.

11. When dest-item is alphanumeric or alphanumeric edited, alignment and
space-filling occur according to the Standard Alignment Rules.

If lit or src-item is signed numeric, the operational sign is not moved. If the
operational sign occupies a separate character position:

a. The sign character is not moved.

b. The size of lit or src-item is considered to be one less than its actual size
(in terms of Standard Data Format characters).

If the sending operand is numeric and contains the PICTURE symbol ( P ),
all digit positions specified with this symbol are considered to have the value
zero and are counted in the size of the sending operand.

12. When dest-item is numeric or numeric edited, decimal point alignment and
zero-filling occur according to the Standard Alignment Rules.

a. When dest-item is a signed numeric item, the sign from lit or src-item is
placed in it. If the sending item is unsigned, a positive sign is placed in
dest-item.

b. When dest-item is an unsigned numeric item, the absolute value of lit or
src-item is moved.

c. When lit or src-item is alphanumeric, the move occurs as if the sending
item were described as an unsigned numeric integer.

d. When src-item is numeric edited, the compiler de-edits it before moving it
to dest-item. Src-item can be signed.

13. When dest-item is alphabetic, justification and space-filling occur according to
the Standard Alignment Rules.

Nonelementary Moves

14. A nonelementary move occurs as if it were an alphanumeric-to-alphanumeric
elementary move. However, there is no internal data conversion. The move
is not affected by individual elementary or group items in either src-item or
dest-item, except as noted in the General Rules for the OCCURS clause.

Summary
Table 6–13 summarizes the valid types of MOVE statements. References after
slash marks show the applicable General Rule. For example, moving a numeric
edited item to an alphabetic item is invalid because of General Rule 9b.
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Table 6–13 Valid MOVE Statements

Category of Receiving Data Item (dest-item)

Category of Sending
Data Item
(lit or src-item) Alphabetic

Alphanumeric
Edited
Alphanumeric

Numeric Integer
Numeric Noninteger
Numeric Edited

Alphabetic Yes/13 Yes/11 No/9a
Alphanumeric Yes/13 Yes/11 Yes/12
Alphanumeric Edited Yes/13 Yes/11 No/9a
Numeric Integer No/9b Yes/11 Yes/12
Numeric Noninteger No/9b No/9c Yes/12
Numeric Edited No/9b Yes/11 Yes/12

Additional References

• Section 5.2.2, COBOL Standard Alignment Rules

• OCCURS clause in Chapter 5

• PICTURE clause in Chapter 5

• SIGN clause in Chapter 5

• Section 6.6.5, CORRESPONDING Phrase

Examples
The following examples show the result of executing the statement:

MOVE ITEMA TO ITEMB.

An s indicates a space character.

• Numeric edited receiving item:

(The PICTURE of ITEMA is S9999V99.)

ITEMA
Value

ITEMB
PICTURE

ITEMB
Contents

a. +0023.00 ZZZZ.99 ss23.00
b. -0036.93 ++++.99 s-36.93
c. +1234.56 Z,ZZZ.99 1,234.56
d. +1234.56 Z,ZZZ.99- 1,234.56s
e. +1234.56 Z,ZZZ.99+ 1,234.56+
f. -1234.56 $,$$$,$$$.99DB sss$1,234.56DB
g. -1234.56 $,$$$.99- s$234.56-
h. +0001.25 $,$$$.99 sss$1.25
i. -0001.25 $,$$$.99 sss$1.25
j. +0000.00 $,$$9.99 sss$0.00
k. +0000.00 $,$$$.$$ ssssssss
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• Alphanumeric receiving item:

(The PICTURE of ITEMA is X(4).)

ITEMA
Value

ITEMB
Description

ITEMB
Contents

a. ABCD PIC X(4) ABCD
b. ABCD PIC X(6) ABCDss
c. ABCD PIC X(6) JUST ssABCD
d. ABCs PIC X(6) JUST ssABCs
e. ABCD PIC XXX ABC
f. ABCD PIC XX JUST CD

• Alphanumeric edited receiving item:

(The PICTURE of ITEMA is X(7).)

ITEMA
Value

ITEMB
Description

ITEMB
Contents

a. 063080s XX/99/XX 06/30/80
b. 30JUN80 99BAAAB99 30sJUNs80
c. 6374823 XXXBXXX/XX/X 637s482/3s/s
d. 123456s 0XB0XB0XB0XB 01s02s03s04s

• Numeric edited sending item:

ITEMA
PICTURE

ITEMA
Value

ITEMB
PICTURE

ITEMB
Value

a. Z,ZZZ.99- 1,234.56- 999.999- 234.560-
b. ZZZ,ZZZ.99- ss1,234.56- $$$,$$$.99- s$1,234.56-
c. $$$,$$$.99CR s$1,234.56CR $$$,$$$.99- s$1,234.56-
d. $$$,$$$.99DB s$1,234.56DB ZZZ,ZZZ.99CR ss1,234.56CR
e. +++++.99 +1234.56 ZZZZZ.99+ s1234.56+
f. ++++++.99 s-1234.56 ZZZZZZ.99- ss1234.56-
g. �����.99 -1234.56 ZZZZZ.99DB s1234.56DB
h. ������.99 ss1234.56 $$,$$$.99 $1,234.56
i. $$$$.99- $123.45- /XXBXXBXXBXX/ /$1s23s.4s5-/
j. $$$$.99- $123.45- /99B99B99B99/ /00s00s01s23/
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MULTIPLY
Function
The MULTIPLY statement multiplies two numeric operands and stores the
product in one or more data items.

General Format

Format 1

MULTIPLY num BY { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-MULTIPLY �

Format 2

MULTIPLY num BY num GIVING { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-MULTIPLY �

num
is a numeric literal or the identifier of an elementary numeric item.

rsult
is the identifier of an elementary numeric item. However, in Format 2, rsult can
be an elementary numeric edited item. It is the resultant identifier.

stment
is an imperative statement executed when an on size error condition has occurred.

stment2
is an imperative statement executed when no on size error condition has occurred.

General Rules

1. In Format 1, the value of num is multiplied by the value of the first rsult.
The product replaces the current value of the first rsult. The process repeats
for each succesive occurrence of rsult.

2. In Format 2, the values of the two operands before the word GIVING are
multiplied together. The product replaces the current value of each rsult.

Additional References

• Section 6.1.4, Scope of Statements

• Section 6.6.1, Arithmetic Operations

• Section 6.6.3, ROUNDED Phrase

• Section 6.6.4, ON SIZE ERROR Phrase
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• Section 6.6.7, Overlapping Operands and Incompatible Data

• Section 6.6.2, Multiple Receiving Fields in Arithmetic Statements

Examples
Each of the examples assume these data descriptions and beginning values:

INITIAL VALUES

03 ITEMA PIC S99 VALUE 4. 4
03 ITEMB PIC S99 VALUE -35. -35
03 ITEMC PIC S99 VALUE 10. 10
03 ITEMD PIC S99 VALUE 5. 5

1. Without GIVING phrase: RESULTS

MULTIPLY 2 BY ITEMB. ITEMB = -70

2. SIZE ERROR phrase:

(When the SIZE ERROR condition occurs, the values of the affected resultant
identifiers do not change.)

MULTIPLY 3 BY ITEMB
ON SIZE ERROR ITEMB = -35

MOVE 0 TO ITEMC. ITEMC = 0

3. NOT ON SIZE ERROR phrase:

MULTIPLY 2 BY ITEMB
ON SIZE ERROR ITEMB = -70

MOVE 0 TO ITEMC
NOT ON SIZE ERROR

MOVE 1 TO ITEMC. ITEMC = 1

4. END-MULTIPLY and MULTIPLY results with SIZE ERROR:

(The stment in the SIZE ERROR phrase executes if any operation causes
a size error condition. The first MULTIPLY statement terminates with
END-MULTIPLY. The second MULTIPLY executes whether or not the SIZE
ERROR condition occurs.)

MULTIPLY 4 BY ITEMA ITEMB ITEMC
ON SIZE ERROR
MOVE 1 TO ITEMD

END-MULTIPLY
MULTIPLY 2 BY ITEMA ITEMB ITEMC
ON SIZE ERROR
ADD 1 TO ITEMD

END-MULTIPLY.

After First
MULTIPLY

After Second
MULTIPLY

ITEMA = 16 ITEMA = 32
ITEMB = -35 ITEMB = -70
ITEMC = 40 ITEMC = 80
ITEMD = 1 ITEMD = 1
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If the initial value of ITEMB had been -20, a SIZE ERROR condition
would not have occurred during the first MULTIPLY. However, the second
MULTIPLY would have caused the condition:

After First
MULTIPLY

After Second
MULTIPLY

ITEMA = 16 ITEMA = 32
ITEMB = -80 ITEMB = -80
ITEMC = 40 ITEMC = 80
ITEMD = 5 ITEMD = 6
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OPEN
Function
The OPEN statement creates an access stream to the file, makes the file available
to the program, begins the processing of a file, and specifies file sharing.

General Format
Format 1—Sequential, Line Sequential, Relative, or Indexed Files

OPEN

��������������������������������������������������
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�
INPUT
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file-name � WITH NO REWIND �

�
����������

WITH LOCK (Alpha, I64)

ALLOWING

��������
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NO OTHERS���
�

					

READERS
WRITERS
UPDATERS

					
���
��

ALL
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. . .

�
EXTEND
I-O
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WITH LOCK (Alpha, I64)
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READERS
WRITERS
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���
��

ALL

��������
�������

�
����������
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. . .
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�������������������������������������������������

. . .

Format 2—Report Writer Files

OPEN
�

OUTPUT { file-name [ WITH NO REWIND ] } . . .
EXTEND { file-name } . . .



. . .

file-name
is the name of a file described in the Data Division. It cannot be the name of a
sort or merge file.

Leading and trailing blanks are removed from file specifications on all platforms
before an OPEN is attempted. Embedded blanks and tabs are removed on
OpenVMS systems only.
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Syntax Rules
Format 1—Sequential, Line Sequential (Alpha, I64), Relative, or Indexed Files

1. The NO REWIND phrase can be used only for files with sequential
organization.

2. The I-O phrase can be used only for mass storage files.

3. The I-O phrase cannot be used with LINE SEQUENTIAL.

4. The EXTEND phrase can be used for sequential access mode files only.

5. The WITH LOCK phrase cannot be used with the ALLOWING phrase,
because it is invalid to specify both X/Open standard (WITH [NO] LOCK
or LOCK MODE) and Hewlett-Packard standard (LOCK-HOLDING,
ALLOWING, or REGARDLESS) file sharing for the same file connector.

Format 2—Report Writer Files

6. file-name must be in a file description entry containing a REPORT clause.

General Rules
All Files

1. Successful OPEN statement execution:

• Creates an access stream to the file

• Makes the file available to the program

• Puts the file in an open mode

• Associates the file with file-name through the file connector

2. An executable image can open a file-name more than once with the INPUT,
OUTPUT, I-O, and EXTEND phrases. After the first OPEN statement, each
later OPEN for the same file-name must follow the execution of a CLOSE
statement for the file-name. However, the CLOSE statement must not have a
REEL, UNIT, or LOCK phrase.

3. The OPEN statement does not get or release the first data record.

4. For an OPEN statement with the INPUT, I-O, or EXTEND phrases, file-
name’s file description entry must be equivalent to that used when the file
was created.

5. The NO REWIND phrase applies only to sequential single-reel/unit files. If
the concept of rewinding does not apply to the file’s storage medium, then the
open is successful and an I-O status is set.

6. If the file’s storage medium allows rewinding, and:

• There is neither an EXTEND nor a NO REWIND phrase, then OPEN
statement execution positions the file at its beginning.

• There is a NO REWIND phrase, then the OPEN statement does not
reposition the file. The file must already be positioned at its beginning
before the OPEN statement executes.

7. Successful execution of an OPEN statement sets the Current Volume Pointer
to:

• The first or only reel/unit for an available input or input-output file

• The reel/unit containing the last logical record for an extend file
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• The new reel/unit for an unavailable output, input-output, or extend file

8. If more than one file-name is in the OPEN statement, execution is the same
as if there were a separate OPEN statement for each file-name.

9. A file’s maximum record size is established when the file is created and must
not subsequently be changed.

Format 1—Sequential, Line Sequential (Alpha, I64), Relative, or Indexed Files

10. A file is available if it is both:

• Physically present

• Recognized by the I-O system

Table 6–14 shows the result of opening available and unavailable sequential,
relative, and indexed files.

Table 6–14 Opening Available and Unavailable Sequential, Line Sequential
(Alpha, I64), Relative, and Indexed Files

Open Mode File Is Available File Is Unavailable

INPUT Normal open Error

INPUT
(Optional File)

Normal open Normal open
The first read causes the at
end condition or invalid key
condition

I-O Normal open Error

I-O
(Optional File)

Normal open The OPEN creates the file

OUTPUT Creates a new version of
the file
See General Rule 24

The OPEN creates the file

EXTEND Normal open Error

EXTEND
(Optional File)

Normal open The OPEN creates the file

11. Successful OPEN statement execution makes the file’s record area available
to the program. If the file connector is an external file connector, the file has
only one record area for the executable image.

12. When a file is not in an open mode, no statement that references the file can
execute either implicitly or explicitly, except for:

• A MERGE statement
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• An OPEN statement

• A SORT statement with the USING or GIVING phrase

13. An OPEN statement for a file must successfully execute before any allowable
input-output statement executes for the file. Table 6–15 shows allowable
input-output statements by file organization, access mode, and open mode for
sequential, line sequential, relative, and indexed files.

Table 6–15 Allowable Input-Output Statements for Sequential, Line Sequential (Alpha, I64),
Relative, and Indexed Files

Open Mode

File
Organization

Access
Mode Statement INPUT OUTPUT I-O EXTEND

SEQUENTIAL SEQUENTIAL READ
REWRITE
WRITE
UNLOCK

Yes
No
No
Yes

No
No
Yes
Yes

Yes
Yes
No
Yes

No
No
Yes
Yes

LINE
SEQUENTIAL
(Alpha, I64)

SEQUENTIAL READ
REWRITE
WRITE
UNLOCK

Yes
No
No
Yes

No
No
Yes
Yes

No
No
No
No

No
No
Yes
Yes

RELATIVE SEQUENTIAL DELETE
READ
REWRITE
START
WRITE
UNLOCK

No
Yes
No
Yes
No
Yes

No
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
No
Yes

No
No
No
No
Yes
Yes

RANDOM DELETE
READ
REWRITE
WRITE
UNLOCK

No
Yes
No
No
Yes

No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes

No
No
No
No
No

DYNAMIC DELETE
READ
READ NEXT
REWRITE
START
WRITE
UNLOCK

No
Yes
Yes
No
Yes
No
Yes

No
No
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No
No

(continued on next page)
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Table 6–15 (Cont.) Allowable Input-Output Statements for Sequential, Line Sequential (Alpha,
I64), Relative, and Indexed Files

Open Mode

File
Organization

Access
Mode Statement INPUT OUTPUT I-O EXTEND

INDEXED SEQUENTIAL DELETE
READ
REWRITE
START
WRITE
UNLOCK

No
Yes
No
Yes
No
Yes

No
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
No
Yes

No
No
No
No
Yes
Yes

RANDOM DELETE
READ
REWRITE
WRITE
UNLOCK

No
Yes
No
No
Yes

No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes

No
No
No
No
No

DYNAMIC DELETE
READ
READ NEXT
READ PRIOR
REWRITE
START
WRITE
UNLOCK

No
Yes
Yes
Yes
No
Yes
No
Yes

No
No
No
No
No
No
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

No
No
No
No
No
No
No
No

14. If the file opened with the INPUT phrase is an optional file that is not
present, the OPEN statement sets the File Position Indicator to indicate this
condition.

15. An OPEN statement with the EXTEND phrase positions the file immediately
after its last logical record. The definition of last logical record differs by file
organization:

• For sequential and line sequential files, it is the last record written in the
file.

• For relative files, it is the currently existing record with the highest
relative record number.

• For indexed files in ascending sort order, it is the currently existing record
with the highest prime record key value.

For indexed files in descending sort order, it is the currently existing
record with the lowest prime record key.

• For Report Writer files, the last logical record is the last record written in
the file.

16. Files for which the LINAGE clause has been specified must not be opened in
the EXTEND mode.
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17. The I-O phrase opens a mass storage file for both input and output operations.

18. The ALLOWING phrase specifies a file-sharing option for the file.

Automatic record-locking is the system default.

The ALLOWING phrase, which specifies Hewlett-Packard standard manual
record-locking, must be used if the program names this file in the LOCK-
HOLDING syntax of the I-O-CONTROL paragraph.

19. When LOCK MODE IS AUTOMATIC or LOCK MODE IS MANUAL is
specified and WITH LOCK is not specified, the file is shareable, and can be
opened by more than one access stream (except for files opened in OUTPUT
mode, which cannot be shared).

20. The NO OTHERS option or WITH LOCK option specifies exclusive file access
by this access stream. The access stream created by the OPEN ALLOWING
NO OTHERS or OPEN WITH LOCK statement has exclusive access to the
file and, therefore, no other concurrent access stream can access (or open) the
file.

21. The READERS option permits read-only access to the file for concurrent
access streams.

However, on Tru64 UNIX systems, the ALLOWING READERS phrase is
minimally supported for indexed files, and should not be used. Refer to the
description of file handling for indexed files in the HP COBOL User Manual,
in the section on sharing files. ♦

22. The ALL, WRITERS, and UPDATERS phrases allow concurrent access
streams access to the file.

23. If there is no ALLOWING phrase or WITH LOCK phrase, the default file-
sharing behavior for files depends on the open mode and whether X/Open
standard (Alpha or I64) or Hewlett-Packard standard file sharing is in effect.

For files opened in input mode:

• Hewlett-Packard standard—The default is ALLOWING READERS (see
General Rule 21 for the exception).

• X/Open standard (Alpha, I64)—The default is to make the file fully
shareable.

For files opened in modes other than input mode, the default is always to
make the file exclusive. (Also see General Rule 24.)

The selection of X/Open (Alpha, I64) or Hewlett-Packard standard file-sharing
default behavior is made as follows by the compiler:

• On Alpha and I64, if X/Open standard syntax (LOCK MODE or WITH
[NO] LOCK) has been specified for file-name prior to the OPEN statement,
the compiler interprets the statement according to the X/Open standard.
♦

• If Hewlett-Packard standard syntax (LOCK-HOLDING, ALLOWING,
or REGARDLESS) has been specified for file-name prior to the OPEN
statement, the compiler interprets the statement according to the
Hewlett-Packard standard.
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• If no file-sharing syntax (LOCK-HOLDING, ALLOWING, REGARDLESS,
LOCK MODE, or WITH [NO] LOCK) has been specified for file-
name prior to the OPEN statement, then the compiler uses the
/STANDARD=[NO]XOPEN qualifier on OpenVMS Alpha and I64 (or
the Tru64 UNIX equivalent -std [no]xopen flag) to determine whether
the OPEN INPUT statement is interpreted as X/Open or Hewlett-Packard
standard: a setting of xopen selects the X/Open standard, whereas a
setting of noxopen selects the Hewlett-Packard standard.

Any subsequent I-O locking syntax for the same file connector in your
program must be consistent: X/Open standard locking (Alpha, I64) and
Hewlett-Packard standard locking (implicit or explicit) cannot be mixed for
the same file connector.

24. On Tru64 UNIX systems, files opened in OUTPUT mode adhere to the same
file-sharing protocols as do files opened in the EXTEND and I-O modes.
Access can be denied or granted depending on the file lock requested and the
file lock held. ♦
On OpenVMS systems, file sharing is limited for OUTPUT mode. A higher-
numbered version is always created by default. ♦
On Alpha and I64 systems, if X/Open standard file sharing is in effect, files
opened in OUTPUT mode cannot be shared. ♦

25. On Tru64 UNIX systems, when two file connectors in one process concurrently
access the same physical file, a file-locked condition is not generated. ♦
On OpenVMS systems, when two file connectors in one process concurrently
access the same physical file, a file-locked condition might be generated. ♦

26. For files specified with a MULTIPLE FILE TAPE clause:

• The NO REWIND phrase, if specified, is ignored.

• Any required rewinding or positioning of the reel (or device) is
accomplished according to the relative position of the file as specified
in the MULTIPLE FILE TAPE clause.

27. An OPEN OUTPUT statement for a file specified with a POSITION phrase
of a MULTIPLE FILE TAPE clause is invalid unless the tape contains all the
files at positions prior to the position specified.

28. An OPEN OUTPUT statement for a file specified with a POSITION phrase of
a MULTIPLE FILE TAPE clause is invalid if the tape already contains a file
at the position specified.

29. An OPEN INPUT statement for a file specified with a POSITION phrase of
a MULTIPLE FILE TAPE clause is invalid unless the tape contains a file
at that position, as well as all the files at the positions prior to the position
specified.

30. A file specified in a MULTIPLE FILE TAPE clause cannot be opened in either
I-O or EXTEND mode.
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Format 2—Report Writer Files

31. A file is available if it is physically present and recognized by the I-O system.

Table 6–16 shows the results of opening available and unavailable Report
Writer files.

Table 6–16 Opening Available and Unavailable Report Writer Files

Open Mode File Is Available File Is Unavailable

OUTPUT Creates a new version
of the file

The OPEN creates the file

EXTEND Normal OPEN The OPEN is unsuccessful
EXTEND
(optional file)

Normal OPEN The OPEN creates the file

32. Successful OPEN statement execution makes the file’s record area available
to the Report Writer Control System. If the file connector is an external file
connector, the file has only one record area for the executable image.

33. When a file is not in an open mode, no statement that references the file can
execute either implicitly or explicitly, except for the OPEN statement.

34. An OPEN statement for a file-name must execute successfully before an
INITIATE statement executes for the file. Table 6–17 shows allowable Report
Writer statements by file organization and open mode for Report Writer
files.

Table 6–17 Allowable Statements for Report Writer Files

Open Mode

Statement OUTPUT EXTEND

INITIATE Yes Yes
GENERATE Yes Yes
SUPPRESS Yes Yes
TERMINATE Yes Yes
All other I-O statements No No (for record I-O only)

Technical Notes

• OPEN statement execution can result in these FILE STATUS data item
values:

File Status Meaning

00 Open is successful.
05 Optional file not present.
07 No rewind on non-reel device.
35 File not found.
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File Status Meaning

37 An open in I-O mode is attempted for a nonmass storage file, or
an open is attempted for nonmass storage file that was declared
as a relative or indexed file.

38 An open is attempted on a file closed with lock.
39 A mismatch exists between the current program’s description of

an index key and the existent file’s description of the key, or (for
OpenVMS systems) there is a conflict of maximum record size or
record type.

41 File is already open
91 Open is unsuccessful; file locked by another access stream.
95 No file space on device.
30 All other permanent errors.

You must use the I-O-CONTROL statement APPLY PREALLOCATION with
a value greater than 0 (the default is 0) to enable the detection of "device full"
(file status 95) with the OPEN statement.

• Attempts to specify both X/Open standard and Hewlett-Packard standard
file-sharing syntax for the same file connector are invalid. When the compiler
cannot detect such attempts because they occur in different compilation units,
the run-time system detects and reports the violations (file status 30). This
holds for explicit and implicit usage.

Additional References

• LOCK MODE clause in the FILE-CONTROL paragraph in Chapter 4

• I-O-CONTROL paragraph in Chapter 4

• CLOSE statement

• USE statement
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PERFORM
Function
The PERFORM statement executes one or more intra-program procedures. It
returns control to the end of the PERFORM statement when all procedures have
completed execution.

General Formats
Format 1

PERFORM

�
�� first-proc

�
� �

THRU
THROUGH



end-proc

�
�
�
��

� stment END-PERFORM �

Format 2

PERFORM

�
�� first-proc

�
� �

THRU
THROUGH



end-proc

�
�
�
�� repeat-count TIMES

� stment END-PERFORM �

Format 3

PERFORM

�
�� first-proc

�
� �

THRU
THROUGH



end-proc

�
�
�
��

�
� WITH TEST

�
BEFORE
AFTER


 �
� UNTIL cond

� stment END-PERFORM �

Format 4

PERFORM

�
�� first-proc

�
� �

THRU
THROUGH



end-proc

�
�
�
��
�
� WITH TEST

�
BEFORE
AFTER


 �
�

VARYING var FROM init BY increm UNTIL cond

� AFTER var FROM init BY increm UNTIL cond � . . .

� stment END-PERFORM �

first-proc
is a procedure-name that identifies a paragraph or section in the Procedure
Division. The set of statements in first-proc is the first (or only) set of statements
in the PERFORM range.
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end-proc
is a procedure-name that identifies a paragraph or section in the Procedure
Division. The set of statements in end-proc is the last set of statements in the
PERFORM range.

stment
is an imperative statement.

repeat-count
is a numeric integer literal or the identifier of a numeric integer elementary item.
It controls how many times the statement set (or sets) executes.

cond
can be any conditional expression.

var
is an index-name or the identifier of a numeric integer elementary data item.
Its value is changed by increm each time all statements in the PERFORM range
execute.

init
is a numeric literal, index-name, or the identifier of a numeric elementary data
item. It specifies the value of var before any statement in the PERFORM range
executes.

increm
is a nonzero numeric literal or the identifier of a numeric elementary data item.
It systematically changes the value of var each time the program executes all
statements in the PERFORM range.

Syntax Rules
All Formats

1. If there is no first-proc, the PERFORM statement must contain stment and
the END-PERFORM phrase. If there is a first-proc, the statement cannot
have the END-PERFORM phrase.

2. If either first-proc or end-proc is placed in the Declaratives part of the
Procedure Division, both must also be placed in the same DECLARATIVES
section.

3. The words THRU and THROUGH are equivalent and interchangeable.

Formats 3 and 4

4. If there is no TEST BEFORE or TEST AFTER phrase, TEST BEFORE is the
default.

Format 4

5. If there is no first-proc, there can be no AFTER phrase.

6. If var is an index-name:

• init must be an integer data item or a positive integer literal

• increm must be an integer data item or a nonzero integer literal

7. If init is an index-name:

• var must be an integer data item
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• increm must be an integer data item or a positive integer literal

General Rules
All Formats

1. When first-proc appears, the statement is an out-of-line PERFORM statement.
Otherwise, it is an in-line PERFORM statement.

2. The statements in the range of first-proc to end-proc for an out-of-line
PERFORM are the statement set. For an in-line PERFORM, the statement
set is contained within the scope of the PERFORM...END-PERFORM syntax.

3. Unless restricted to in-line or out-of-line statements, all General Rules apply
to both types of PERFORM statements. An in-line PERFORM statement
operates according to the general rules for an out-of-line PERFORM, except
for periods, which are not allowed within the body of the PERFORM. The
statements in the in-line PERFORM execute in place of the statements in the
range of first-proc to end-proc.

4. When the PERFORM statement executes, control transfers to the first
statement of first-proc. However, for Format 2, 3, or 4 PERFORM statements,
transfer of control depends on evaluation of the specified condition.

Transfer of control occurs only once for each PERFORM statement executed.
When transfer of control does occur, after the statement set executes, control
implicitly transfers back to the to the end of the perform statement as
follows:

• If first-proc is a paragraph-name and there is no end-proc, the return is
after the last statement of first-proc.

• If first-proc is a section-name and there is no end-proc, the return is after
the last statement of the last paragraph of first-proc.

• If end-proc is a paragraph-name, the return is after the last statement of
end-proc.

• If end-proc is a section-name, the return is after the last statement of the
last paragraph of end-proc.

• If the statement is an in-line PERFORM, execution ends after the last
statement of the statement set.

5. first-proc and end-proc need not be related except that first-proc is the
beginning and end-proc is the last in a consecutive series of operations.

GO TO and PERFORM statements can occur between first-proc and end-proc.
If there are two or more logical paths to the return point, end-proc can be a
paragraph, consisting of the EXIT statement, to which all these paths must
lead.

6. If a statement other than a PERFORM statement, transfers control to the
statement set, at the end of the statement set, control transfers through the
last statement of the set to the next executable statement following the set as
if no PERFORM statement referenced the set.

7. The range of a PERFORM statement consists of all statements executed as
a result of executing the PERFORM. It continues through execution of the
implicit control transfer to the end of the PERFORM statement.

Procedure Division 6–175



PERFORM Statement

8. The range of the PERFORM statement additionally includes all statements
executed as a result of a CALL, EXIT, GO TO, or PERFORM statement.
The range the PERFORM statement also includes all statements in the
Declaratives Section that can be executed if control is transferred from
statements in the range of the PERFORM statement.

9. Statements executed as the result of a control transfer caused by an EXIT
PROGRAM statement are not part of the range when:

• The EXIT PROGRAM statement is specified in the same program as the
PERFORM statement, and

• The EXIT PROGRAM statement is within the range of the PERFORM
statement.

10. A PERFORM statement in a fixed 6 segment can have only one of the
following in its range:

• Sections and paragraphs completely contained in one or more
nonindependent segments

• Sections and paragraphs completely contained in one independent
segment

However, the PERFORM statement range also includes any Declarative
procedures activated during its execution.

11. A PERFORM statement in an independent 1 segment can have only one of
the following in its range:

• Sections and paragraphs completely contained in one or more
nonindependent segments

• Sections and paragraphs completely contained in the same independent
segment as the PERFORM statement itself

However, the PERFORM statement range also includes any Declarative
procedures activated during its execution.

12. first-proc and end-proc cannot name sections or paragraphs in any other
program in the executable image. Statements in other programs are in a
PERFORM statement’s range only if the range includes a CALL statement.

13. A PERFORM statement range can contain another PERFORM statement. In
that case, the included PERFORM statement’s sequence of procedures must
be either totally included in, or excluded from, the logical sequence of the first
PERFORM statement.

For example:

• An active PERFORM statement whose execution point is in the range of
another active PERFORM statement must not allow control to pass to the
exit of the other active PERFORM.

• Two or more active PERFORM statements cannot have a common exit.

Use the check compiler option with the perform keyword to verify at run time
that there is no recursive activation of a PERFORM.

Figure 6–2 shows valid and invalid nested PERFORM statements.

6 Segmentation is described in Section 6.7. HP COBOL supports segmentation for
compatibility with existing applications only. Hewlett-Packard recommends that you do
not use segmentation in new applications.
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14. Undocumented results might occur when end-proc precedes first-proc or when
first-proc and end-proc are not in the same program segment.

Figure 6–2 Valid and Invalid Nested PERFORM Statements

VM-0597A-AI

PERFORM proc-a THRU proc-m

PERFORM proc-f THRU proc-j

proc-x

proc-a

proc-d

proc-f

proc-j

proc-m

proc-x

proc-a

proc-d

proc-h

proc-m

proc-f

proc-j

proc-x

proc-a

proc-f

proc-m

proc-j

proc-d

proc-x

proc-a

proc-f

proc-h

proc-m

This combination is valid.

The range of the second

PERFORM is totally contained

in the range of the first.

This combination is valid.

The range of the second

PERFORM is totally outside

the range of the first PERFORM.

This combination is valid.

The first PERFORM is no longer

active when the second

PERFORM executes.

This combination is invalid.

The second active PERFORM

has the same exit as the

first active PERFORM.

PERFORM proc-a THRU proc-m

PERFORM proc-f THRU proc-j

PERFORM proc-a THRU proc-m

PERFORM proc-f THRU proc-j

PERFORM proc-a THRU proc-m

PERFORM proc-h THRU proc-m

proc-x

proc-a

proc-b

proc-c

proc-m

proc-f

PERFORM proc-a THRU proc-m

PERFORM proc-c THRU proc-f

This combination is valid

if proc-m is not in the

      range of the second

PERFORM. For example, proc-c

may transfer control to proc-f

without executing proc-m.

Otherwise, this combination

is invalid.

logical
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Format 1

15. Format 1 is the basic PERFORM statement. The statement sets in the
PERFORM range execute once. Control then passes to the end of the
PERFORM statement.

Format 2

16. The statement sets execute the number of times specified by repeat-count. If
the value of repeat-count is zero or negative when the PERFORM statement
executes, control passes to the end of the PERFORM statement.

During PERFORM statement execution, changing the value of repeat-count
does not change the number of times the statement sets execute.

Format 3

17. The statement sets execute until cond is true. Control then transfers to the
end of the PERFORM statement.

18. If cond is true when the PERFORM statement executes:

• If there is a TEST BEFORE phrase or one is implied, there is no transfer
to first-proc; control passes to the end of the PERFORM statement.

• If there is a TEST AFTER phrase, the PERFORM statement tests cond
after the statement set executes.

Format 4

19. The Format 4 PERFORM statement systematically changes the value of var
during its execution.

20. If var is an index-name, its value, when the PERFORM statement execution
begins, must equal the occurrence number of an element in its table.

21. If init is an index-name, var must equal the occurrence number of an element
in the table associated with init. As the value of the var index changes during
PERFORM execution, it cannot contain a value outside the range of its table.
However, when the PERFORM statement ends, the var index can contain a
value outside the range of the table by one increment or decrement value.

22. increm must not be zero.

23. init must be positive when var is an index-name and init is an identifier.

24. If there is a TEST BEFORE phrase (or one is implied), and one var is varied
(see Figure 6–3):

• var is set to the value of init when the PERFORM statement begins to
execute.

• If cond is false, the statement set executes once. The value of var changes
by the increment or decrement value (increm), and cond is evaluated
again. This cycle continues until cond is true. Control then transfers to
the end of the PERFORM statement.

• If cond is true when the PERFORM statement begins executing, control
transfers to the end of the PERFORM statement.
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Figure 6–3 PERFORM . . . VARYING with the TEST BEFORE Phrase and One
Condition

CONDITION-A
true

exit

false

PERFORM PROC-A THRU PROC-B

TEST BEFORE
VARYING ITEMA

FROM ITEMB BY ITEMC
UNTIL CONDITION-A

VM-0598A-AI

Execute PROC-A
through PROC-B

Add the current
value of ITEMC

to ITEMA.

Set ITEMA to
current value

of ITEMB

25. If there is a TEST BEFORE phrase (or one is implied), and the PERFORM
statement has two vars (see Figure 6–4):

• The first and second vars are set to the value of the first and second init
when the PERFORM statement begins to execute.

• If the first cond is true, control transfers to the end of the PERFORM
statement.

• If the second cond is false, the statement set executes once. The second
var changes by the value of increm, and the second cond is evaluated
again. This cycle continues until the second cond is true.

• When the second cond is true, the value of the first var changes by the
value of the first increm, and the second var is set to the value of the
second init. The first cond is reevaluated. The PERFORM statement
ends if the first cond is true. Otherwise, the cycle continues until cond is
true.
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Figure 6–4 PERFORM . . . VARYING with the TEST BEFORE Phrase and Two
Conditions

CONDITION-B
true

VM-0599A-AI

PERFORM PROC-A THRU PROC-B
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VARYING ITEMA

AFTER ITEMD
FROM ITEME BY ITEMF
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FROM ITEMB BY ITEMC
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false

Set ITEMA to
current value

of ITEMB

CONDITION-A
true

false

exit

Execute PROC-A
through PROC-B

Add the current
value of ITEMF

to ITEMD

Set ITEMD to
current value

of ITEME

of ITEME
current value
Set ITEMD to

Add the current
value of ITEMC

to ITEMA

26. At the end of a PERFORM statement with the TEST BEFORE phrase:

• The value of the first var exceeds the last-used value by one increment
or decrement value. However, if cond was true when the PERFORM
statement began, var contains the current value of init.

• The value of each other var equals the current value of its associated
init.

27. If there is a TEST AFTER phrase and one var is varied (see Figure 6–5):

• var is set to the value of init when the PERFORM statement starts to
execute.
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• The statement set executes once. Then, cond is evaluated. If it is false,
the value of var changes by the increment or decrement value (increm),
and the statement set executes again. This cycle continues until cond is
true. Control then transfers to the end of the PERFORM statement.

Figure 6–5 PERFORM . . . VARYING with the TEST AFTER Phrase and One
Condition

PERFORM PROC-A THRU PROC-B

TEST AFTER
VARYING ITEMA

FROM ITEMB BY ITEMC
UNTIL CONDITION-A

VM-0600A-AI

Add the current
value of ITEMC
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CONDITION-A

Execute PROC-A
through PROC-B

true
exit

false

Set ITEMA to
current value

of ITEMB
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28. If there is a TEST AFTER phrase, and two vars are varied (see Figure 6–6):

• The first and second vars are set to the value of the first and second init
when the PERFORM statement starts to execute.

• The statement set executes. The second cond is then evaluated. If it is
false, the second var changes by the value of increm, and the statement
set executes again. This cycle continues until the second cond is true.

• When the second cond is true, the first cond is evaluated. If it is false, the
value of the first var changes by the value of the first increm, the second
var is set to the value of the second init, and the statement set executes
again. The PERFORM statement ends if the first cond is true. Otherwise,
the cycle continues until cond is true.
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Figure 6–6 PERFORM . . . VARYING with the TEST AFTER Phrase and Two
Conditions

VM-0601A-AI
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29. At the end of a PERFORM statement with the TEST AFTER phrase, the
value of each var is the same as at the end of the most recent statement set
execution.

30. During execution of the sets of statements in the range, any change to var,
increm, or init affects PERFORM statement operation.

31. When there is more than one var, var in each AFTER phrase goes through a
complete cycle each time var in the preceding AFTER (or VARYING) phrase
is varied.
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Additional References

• Section 6.1.4, Scope of Statements

• Section 6.5, Conditional Expressions

• SET statement

• Online help, check compiler option

Examples
In the examples’ results, s represents a space. The examples assume these Data
Division and Procedure Division entries:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 ITEMA VALUE "ABCDEFGHIJ".

03 CHARA OCCURS 10 TIMES PIC X.
01 ITEMB VALUE SPACES.

03 CHARB OCCURS 10 TIMES PIC X.
01 ITEMC PIC 99 VALUE 1.
01 ITEMD PIC 99 VALUE 7.
01 ITEME PIC 99 VALUE 4.
01 ITEMF VALUE SPACES.

03 ITEMG OCCURS 4 TIMES.
05 ITEMH OCCURS 5 TIMES.

07 ITEMI PIC 99.

PROCEDURE DIVISION.

.

.

.

PROC-A.
MOVE CHARA (ITEMC) TO CHARB (ITEMC).

PROC-B.
MOVE CHARA (ITEMC) TO CHARB (10).

PROC-C.
ADD 2 TO ITEMC.

PROC-D.
MULTIPLY ITEMC BY ITEMD

GIVING ITEMI (ITEMC, ITEMD).

1. Performing one procedure (Format 1):

PERFORM PROC-A.

ITEMB = Asssssssss

2. Performing a range of procedures (Format 1):

PERFORM PROC-A THRU PROC-B.

ITEMB = AssssssssA

3. Performing a range of procedures (Format 2):

PERFORM PROC-A THRU PROC-C
3 TIMES.

ITEMB = AsCsEssssE
ITEMC = 07
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4. Performing a range of procedures (Format 4):

PERFORM PROC-A THRU PROC-B
VARYING ITEMC FROM 1 BY 1

UNTIL ITEMC > 5.

ITEMB = ABCDEssssE
ITEMC = 06

5. Testing the UNTIL condition after execution (Format 4):

PERFORM PROC-A THRU PROC-B
TEST AFTER
VARYING ITEMC FROM 1 BY 1

UNTIL ITEMC > 5.

ITEMB = ABCDEFsssF
ITEMC = 06

6. Performing a range of procedures varying a data item by a negative amount
(Format 4):

PERFORM PROC-A THRU PROC-B
VARYING ITEMC FROM ITEMD BY -1
UNTIL ITEMC < ITEME.

ITEMB = sssDEFGssD
ITEMC = 03

7. In-line PERFORM (Format 4):

PERFORM
VARYING ITEMC FROM 1 BY 2
UNTIL ITEMC > 7
MOVE CHARA (ITEMC) TO CHARB (ITEMC)
MOVE CHARA (ITEMC) TO CHARB (ITEMC + 3)

END-PERFORM.

ITEMB = AsCAECGEsG

8. Varying two data items (Format 4):

PERFORM PROC-D
VARYING ITEMC FROM 1 BY 1 UNTIL ITEMC > 4
AFTER ITEMD FROM 1 BY 1 UNTIL ITEMD > 5.

ITEMG ( 1 ) = 01s02s03s04s05s
ITEMG ( 2 ) = 02s04s06s08s10s
ITEMG ( 3 ) = 03s06s09s12s15s
ITEMG ( 4 ) = 04s08s12s16s20s
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READ
Function
For sequential access files, the READ statement makes the next logical record
available. For random access files, READ makes a specified record available.

General Format

Format 1—Sequential, Line Sequential, Relative, or Indexed Files

READ file-name

� NEXT
PREVIOUS (Alpha, I64)
PRIOR (Alpha, I64)

�
RECORD � INTO dest-item �

�
������

WITH [NO] LOCK (Alpha, I64)
REGARDLESS OF LOCK

ALLOWING

� UPDATERS
READERS
NO OTHERS

�
�
������

� AT END stment �

� NOT AT END stment2 �

� END-READ �

Format 2—Relative Files

READ file-name RECORD � INTO dest-item ��
������

WITH [NO] LOCK (Alpha, I64)
REGARDLESS OF LOCK

ALLOWING

� UPDATERS
READERS
NO OTHERS

�
�
������

� INVALID KEY stment �

� NOT INVALID KEY stment2 �

� END-READ �

Format 3—Indexed Files

READ file-name RECORD � INTO dest-item ��
������

WITH [NO] LOCK (Alpha, I64)
REGARDLESS OF LOCK

ALLOWING

� UPDATERS
READERS
NO OTHERS

�
�
������

� KEY IS key-data �

� INVALID KEY stment �

� NOT INVALID KEY stment2 �
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� END-READ �

file-name
is the name of a file described in the Data Division. It cannot be a sort or merge
file.

dest-item
is the identifier of a data item that receives the record accessed by the READ
statement.

stment
is an imperative statement executed when the relevant condition (at end or
invalid key) occurs.

stment2
is an imperative statement executed when the relevant condition (not at end or
not invalid key) occurs.

key-data
is the data-name of a data item specified as a record key for file-name or the
segmented-key name specified as a record key for file-name. It can be qualified.

Syntax Rules

1. Format 1 must be used for a sequential access mode file.

2. There must be a NEXT phrase for dynamic access mode files to retrieve
records sequentially.

3. READ file-name PRIOR and READ file-name PREVIOUS are equivalent
syntax.

4. Format 2 can be used for random or dynamic access mode files to retrieve
records randomly.

5. The KEY phrase can be used only for indexed files.

6. To use the REGARDLESS or ALLOWING options the program must specify
these entries:

• APPLY LOCK-HOLDING clause of the I-O-CONTROL paragraph

• ALLOWING option of the OPEN statement

7. There must be an INVALID KEY or AT END phrase when there is no
applicable USE AFTER EXCEPTION procedure for the file.

8. The storage area associated with dest-item and the record area associated
with file-name cannot be the same storage area.

9. On Alpha and I64 systems, the WITH [NO] LOCK phrase is X/Open standard
syntax. It is invalid to specify both X/Open standard and Hewlett-Packard
standard (LOCK-HOLDING, ALLOWING, OR REGARDLESS) file-sharing
syntax for the same file connector. Hence, the WITH [NO] LOCK phrase
cannot be used with the ALLOWING or REGARDLESS phrase. ♦
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General Rules

1. The file must be open in the INPUT or I-O mode when the READ statement
executes.

2. For sequential access mode files, the NEXT phrase is optional. It has no effect
on READ statement execution.

3. READ PRIOR can only be used with an INDEXED file whose organization is
INDEXED and whose access mode is DYNAMIC. The file must be opened for
INPUT or I-O.

4. Executing a Format 1 READ statement can cause the following to occur:

• The record pointed to by the File Position Indicator becomes available in
the file’s record area.

• For sequential and relative files, the File Position Indicator points to the
file’s next existing record.

• For indexed files, the File Position Indicator points to the next existing
record established by the file’s Key of Reference.

• If the file has no next record, the File Position Indicator indicates that no
next logical record exists.

5. The READ statement updates the value of the FILE STATUS data item for
the file.

6. A record is available before any statement executes after the READ.

7. More than one record description can describe a file’s logical records. The
records then share the same record area in storage. Sharing a record area is
equivalent to implicit redefinition.

READ statement execution does not change the contents of data items in
the record area beyond the range of the current data record. The contents of
those items are undefined.

8. A Format 1 READ statement can recognize the end of reel/unit during
its execution. If it has not reached the logical end of the file, the READ
statement performs a reel/unit swap. The Current Volume Pointer points to
the file’s next reel/unit.

9. During execution of a Format 2 READ statement, the File Position Indicator
can indicate that an optional file is not present. The invalid key condition
then exists, and READ statement execution is unsuccessful.

10. When a Format 1 READ statement executes, the File Position Indicator can
indicate that:

• There is no next logical record.

• No valid next record has been established.

• An optional file is not present.

• The number of significant digits in the relative record number is larger
than the relative key data items.

When the READ statement detects the no valid next record condition, the
READ is unsuccessful.
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When the READ statement detects one of the above conditions, not including
the no valid next record condition:

• It updates the FILE STATUS data item for the file to indicate the at end
condition.

• If the READ statement has an AT END phrase, control transfers to
stment. No USE AFTER EXCEPTION procedure for the file executes.

• If there is no AT END phrase, a USE AFTER EXCEPTION procedure
must be associated with the file. Control transfers to that procedure.
Control returns from the USE AFTER EXCEPTION procedure to the next
executable statement after the end of the READ statement.

When the at end condition occurs, execution of the READ statement is
unsuccessful.

11. After the unsuccessful execution of a READ statement, the contents of the
file’s record area are undefined. If an optional file is not present, the File
Position Indicator is unchanged; otherwise, it indicates that no valid next
record has been established. For indexed files, the Key of Reference is
undefined.

12. READ PRIOR retrieves a record from an Indexed file which logically precedes
the one which was made current by the previous file access operation, if such
a logically previous record exists.

13. For a relative or indexed file in dynamic access mode, a Format 1 READ
statement with the NEXT phrase retrieves the file’s next logical record. For
an indexed file, when the Key of Reference has ascending sort order, the next
logical record is the next record with a key value equal to or greater than the
previous key value. When the Key of Reference has descending sort order, the
next logical record is the next record with a key value equal to or less than
the previous key value.

14. For a relative file, a Format 1 READ statement updates the contents of the
file’s RELATIVE KEY data item. The data item contains the relative record
number of the available record.

15. For a relative file, a Format 2 READ statement sets the File Position
Indicator to the record whose relative record number is in the file’s
RELATIVE KEY data item. Execution then continues as specified in General
Rule 3.

If the record is not in the file, the invalid key condition exists, and READ
statement execution is unsuccessful.

16. When your program sequentially accesses an indexed file for records with
duplicate record key values in the Key of Reference, those records are made
available to your program in the same order in which they were created.
The duplicate values can be created by execution of WRITE or REWRITE
statements.

17. For an indexed file, a Format 2 READ statement with the KEY phrase
establishes key-name as the Key of Reference for the retrieval. For a dynamic
access mode file, the same Key of Reference applies to later retrievals by
Format 1 READ statement executions for the file. The Key of Reference
continues in effect until a new Key of Reference is established.
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18. For an indexed file, a Format 2 READ statement without the KEY phrase
establishes the prime record key as the Key of Reference for the retrieval.
For a dynamic access mode file, the same Key of Reference applies to later
retrievals by Format 1 READ statement executions for the file. The Key of
Reference continues in effect until a new Key of Reference is established.

19. For an indexed file, a Format 2 READ statement compares the value in the
Key of Reference with the value in the corresponding data item in the file’s
records. The comparison continues until the READ statement finds the first
record with an equal value. The READ statement sets File Position Indicator
to the record. Execution then continues as specified in General Rule 3.

If the READ statement cannot identify a record with an equal value, the
invalid key condition exists. READ statement execution is then unsuccessful.

20. The Format 2 READ verb can use the KEY IS syntax to establish the key
field within the file record which is the Key of Reference. An immediately
subsequent READ PRIOR will follow the order of the Key of Reference
to access the logically previous record in the file according to that Key
of Reference. If the KEY IS syntax is not used, the Key of Reference is
understood to be the file’s primary key field.

21. When a successful READ PRIOR has occurred and the Key of Reference
has ascending order, the record retrieved can have the same key value or
a smaller key value than the preceding record for the Key of Reference. If
the Key of Reference has descending order, the record retrieved can have
the same key value or a higher key value for the Key of Reference. The
retrieved record can have the same key value if duplicate values for the Key
of Reference exist on the file.

22. When a READ PRIOR has been executed and a logically previous record does
not exist, a File Status value of 10 indicating END-OF-FILE is returned. A
READ PRIOR which is done immediately after Opening the file will produce
the END-OF-FILE status.

23. If the number of character positions in the record being read is less than
the minimum size specified by the record description entries for the file, the
record area to the right of the last valid character read is undefined.

If the number of character positions in the record being read is greater than
the maximum size specified by the record description entries for the file, the
record is truncated on the right to the maximum size.

In both cases, the READ operation is successful and the I-O status is set to
indicate a record length conflict has occurred.

24. The REGARDLESS and ALLOWING options can be used only in a Hewlett-
Packard standard manual record-locking environment. To create a manual
record-locking environment, an access stream must specify the APPLY LOCK-
HOLDING clause of the I-O-CONTROL paragraph.

25. On Tru64 UNIX and OpenVMS, the REGARDLESS option enables an
access stream to read a record regardless of any record locks held by other
concurrent access streams. READ REGARDLESS holds no lock on the record
read.

This statement generates a soft record lock condition if the record is locked
by another access stream. This condition results in a File Status value
of 90 and invokes an applicable USE procedure, if any. Execution of the
READ REGARDLESS statement is considered successful and program
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execution resumes at the next statement following the READ REGARDLESS
statement.♦
However, on Tru64 UNIX systems, the soft lock condition (file status 90) is
not recognized for indexed files. A READ REGARDLESS statement for a
record locked by another process performs the requested read operation on
the record and returns a file status of 00. ♦

26. The ALLOWING UPDATERS and WITH NO LOCK options permit other
concurrent access streams in a manual record-locking environment to
simultaneously READ, DELETE, START, and REWRITE the current record.
These options hold no locks on the current record.

27. The ALLOWING READERS option permits other concurrent access streams
in a Hewlett-Packard standard, manual record-locking environment to
simultaneously read the current record. This option holds a read-lock on
each such record read. No access stream can update the current record until
it is unlocked.

On Tru64 UNIX systems, for indexed files, the ALLOWING READERS phrase
has some limitations, which are described in the HP COBOL User Manual
(see the section on indicating access allowed to other streams in the chapter
on sharing files). ♦

28. The ALLOWING NO OTHERS or WITH LOCK option locks the record read
by the current access stream. No other concurrent access stream can access
this record until it is unlocked. Only this access stream can update this
record. This option applies to files opened in I-O mode. See general rule 29.

29. For files opened for input, a READ statement does not acquire a record lock,
regardless of the locking syntax specified. This applies to X/Open standard
and Hewlett-Packard standard locking.

30. If there is an applicable USE AFTER EXCEPTION procedure, it executes
whenever an input condition occurs that would result in a nonzero value in
the first character of a FILE STATUS data item. However, it does not execute
if: ( a ) the condition is invalid key, and there is an INVALID KEY phrase or
( b ) the condition is at end, and there is an AT END phrase.

31. If no exception condition exists, the record is made available in the record
area. Control is transferred to the end of the READ statement; however, if
stment2 is specified, stment2 executes before control is transferred to the end
of the READ statement.

Technical Note

• READ statement execution can result in these FILE STATUS data item
values:

File
Status

File
Organization

Access
Method Meaning

00 All All Read is successful; record is available;
lock acquired as requested

02 Ind All Read is successful; duplicate key
detected

04 All All Record read larger or smaller than
record area
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File
Status

File
Organization

Access
Method Meaning

10 All Seq No next logical record (at end), optional
file not present (at end), or no valid next
record (at end)

14 Rel Seq Relative record number too large for
relative key data item (at end)

23 Ind, Rel Rand Record not in file (invalid key) or
optional file not present (invalid key)

46 All Seq No valid next record
47 All All File not open, or incompatible open

mode
90 All All Record locked by another user; record

is available in record area; no lock is
acquired (soft lock for Hewlett-Packard
standard locking only)

92 All All Record locked by another user; record is
not available; no lock is acquired (hard
lock)

30 All All All other permanent errors

• On Alpha and I64 systems, use START before initiating a sequence of either
READ NEXT statements or READ PRIOR/READ PREVIOUS statements.
You should use START, if you switch between READ NEXT and READ
PRIOR/READ PREVIOUS or vice versa.

• On Alpha and I64 systems, the order of duplicate key values for a descending
key is not necessarily the same as the order of duplicate key values for READ
PRIOR/READ PREVIOUS used with an ascending key defined as the same
file record location as the descending key.

Additional References

• LOCK MODE clause in the FILE-CONTROL paragraph in Chapter 4

• I-O-CONTROL paragraph in Chapter 4

• Section 6.1.4, Scope of Statements

• Section 6.6.8, I-O Status

• Section 6.6.10, INVALID KEY Phrase

• Section 6.6.9, AT END Phrase

• Section 6.6.12, INTO Phrase

• OPEN statement

• UNLOCK statement

• USE statement
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RECORD (OpenVMS Only)
Function
The RECORD statement creates an Oracle CDD/Repository dependency
relationship between an HP COBOL program and the Oracle CDD/Repository
entity referred to by the RECORD statement.

General Format

RECORD DEPENDENCY path-name � TYPE IS relation-type � � IN DICTIONARY �

path-name
is a partial or complete Oracle CDD/Repository path name. It specifies a
dictionary entity in CDO format.

relation-type
is a valid Oracle CDD/Repository protocol. It specifies the type of relationship
to be created between the HP COBOL program and the CDO dictionary entity
specified in the path name. The default relationship type is CDD$COMPILED_
DEPENDS_ON.

Syntax Rules

1. A space must precede the word RECORD.

2. The RECORD statement must be terminated by the separator period.

General Rules

1. path-name refers to the Oracle CDD/Repository path for a dictionary entity.
The entity must be in CDO format.

2. The RECORD statement creates an Oracle CDD/Repository relationship
between the HP COBOL program through a compiled module entity (see
Technical Notes) and the dictionary entity specified in the path name. This
relationship information is then stored in Oracle CDD/Repository.

3. The RECORD statement is ignored unless the /DEPENDENCY_DATA
compiler option is specified.

4. If the RECORD statement is in a contained program, the relationship created
is between the outermost containing program and the entity specified in the
path name.

Technical Notes

1. The path-name can be a nonnumeric literal or COBOL word formed according
to the rules for user-defined names. It represents a complete or partial Oracle
CDD/Repository path name specifying an Oracle CDD/Repository entity. If
path-name is not a literal, the compiler translates hyphens in the COBOL
word to underscore characters.

The resultant path name must conform to all rules for forming Oracle
CDD/Repository path names.

2. The relation-type can be a nonnumeric literal or COBOL word formed
according to the rules for user-defined names. It must be a valid Oracle
CDD/Repository protocol type. For example:

• CDD$COMPILED_DEPENDS_ON is an example of a COBOL word that
is a valid Oracle CDD/Repository protocol type.
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• "CDD$COMPILED_DERIVED_FROM" is an example of a nonnumeric
literal that is also a valid Oracle CDD/Repository protocol type.

3. The RECORD statement creates a relationship between an Oracle
CDD/Repository compiled module dictionary entity and the dictionary entity
specified in the path name. A compiled module entity is automatically created
and stored in Oracle CDD/Repository when the /DEPENDENCY_DATA
compiler option is specified. The name of the compiled module entity is the
program-name from the PROGRAM-ID paragraph, with hyphens translated
to underscores.

Additional References

• The description of Oracle CDD/Repository in the HP COBOL User Manual

• Oracle CDD/Repository Documentation Set ♦
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RELEASE
Function
The RELEASE statement transfers records to the initial phase of a sort operation.

General Format

RELEASE rec � FROM src-area �

rec
is the name of a logical record in a sort-merge file description (SD) entry. It can
be qualified.

src-area
is the identifier of the data item that contains the data.

Syntax Rules

1. A RELEASE statement can be used only in an input procedure in the same
program as the SORT verb. The input procedure must be associated with a
SORT statement for the sort or merge file that contains rec.

2. If src-area is a function-identifier, it must reference an alphanumeric function.
When src-area is not a function-identifier, rec and src-area must not reference
the same storage area.

General Rules

1. See the FROM Phrase section for a list of rules.

2. The RELEASE statement transfers the contents of rec to the first phase of
the sort.

3. After the RELEASE statement executes, the record is no longer available
in rec unless the associated sort or merge file-name is in a SAME RECORD
AREA clause. In that case, the record is available to the program as a
record of the sort-merge file-name. It is also available as a record of all other
file-names in the same SAME RECORD AREA clause.

Additional References

• I-O-CONTROL paragraph in Chapter 4

• Section 6.6.11, FROM Phrase phrase
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RETURN
Function
The RETURN statement obtains sorted records from a sort operation. It also
returns merged records in a merge operation.

General Format

RETURN smrg-file RECORD � INTO dest-area �

AT END stment

� NOT AT END stment2 �

� END-RETURN �

smrg-file
is the name of a file described in a sort-merge file description (SD) entry.

dest-area
is the identifier of the data item to which the returned smrg-file record is moved.

stment
is an imperative statement executed for an at end condition.

stment2
is an imperative statement executed for a not at end condition.

Syntax Rules

1. A RETURN statement can be used only in an output procedure in the same
program as the SORT verb. The output procedure must be associated with a
SORT or MERGE statement for smrg-file.

2. The storage area associated with dest-area and the record area associated
with smrg-file cannot be the same storage area.

General Rules

1. See the INTO Phrase section for a list of rules.

2. When more than one record description describes the logical records for
smrg-file, the records share the same storage area. The contents of storage
positions beyond the range of the returned record are undefined when the
RETURN statement ends.

3. Before the output procedure executes, the File Position Indicator is updated.
It points to the record whose key values make it first in the file. If there are
no records, the File Position Indicator indicates the at end condition.

4. The RETURN statement makes the next record (pointed to by the File
Position Indicator) available in the record area for smrg-file.

5. The File Position Indicator is updated to point to the next record in smrg-file.
The key values in the SORT or MERGE statement determine the next record.

6. If smrg-file has no next record, the File Position Indicator is updated to
indicate the at end condition.
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7. If the File Position Indicator indicates the at end condition when the
RETURN statement executes, stment executes and control is transferred to
the end of the RETURN statement. If the NOT AT END phrase is specified,
it is ignored. The contents of the smrg-file record areas are undefined.

8. If the File Position Indicator does not indicate an at end condition when the
RETURN statement executes, after the record is made available and after
executing any implicit move resulting from the presence of an INTO phrase,
control is transferred to stment2, if specified. Otherwise, control is transferred
to the end of the RETURN statement.

9. When the at end condition occurs:

• RETURN statement execution is unsuccessful.

• The File Position Indicator is not changed.

10. See the Scope of Statements section for a description of scope terminators
such as END-RETURN.

Additional References

• Section 6.1.4, Scope of Statements

• I-O-CONTROL paragraph in Chapter 4

• Section 6.6.9, AT END Phrase

• Section 6.6.12, INTO Phrase
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REWRITE
Function
The REWRITE statement logically replaces a mass storage file record.

General Format

Format 1—Sequential Files

REWRITE rec-name � FROM src-item �

� ALLOWING NO OTHERS �

� END-REWRITE �

Format 2—Relative or Indexed Files

REWRITE rec-name � FROM src-item �

� ALLOWING NO OTHERS �

� INVALID KEY stment �

� NOT INVALID KEY stment2 �

� END-REWRITE �

rec-name
is the name of a logical record in the Data Division File Section. It can be
qualified.

src-item
is the identifier of the data item that contains the data.

stment
is an imperative statement executed for an invalid key condition.

stment2
is an imperative statement executed for a not invalid key condition.

Syntax Rules

1. To use the ALLOWING option, the program must include these entries:

• APPLY LOCK-HOLDING clause of the I-O-CONTROL paragraph

• ALLOWING clause of the OPEN statement

2. The INVALID KEY and the NOT INVALID KEY phrases cannot be specified
in a REWRITE statement that refers to a sequential file or to a relative file
with sequential access mode.

3. For a relative file with random or dynamic access mode, or for an indexed file,
the REWRITE statement must have an INVALID KEY phrase when there is
no applicable USE AFTER EXCEPTION procedure for the file.

4. If src-item is a function-identifier, it must reference an alphanumeric function.
When src-item is not a function-identifier, rec-name and src-item must not
reference the same storage area.
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5. The ALLOWING clause is Hewlett-Packard standard file-sharing syntax, and
cannot be used for a file connector that has had X/Open standard file-sharing
syntax (WITH [NO] LOCK or LOCK MODE) specified.

General Rules
All Files

1. The file associated with rec-name must be a mass storage file. It must be
open in the I-O mode when the REWRITE statement executes.

Because line sequential files (Alpha, I64) cannot be opened in I-O mode,
REWRITE cannot be used with line sequential files. ♦

2. For sequential access mode files, the last input-output statement executed
for the file before the REWRITE statement must be a successfully executed
READ statement. The REWRITE statement logically replaces the record
accessed by the READ.

3. The READ must lock the record for the REWRITE statement to be
successful.

4. The record in rec-name is no longer available after the REWRITE statement
successfully executes unless the associated file-name is in a SAME RECORD
AREA clause. In this case, the record is also available to record areas of other
file-names in the SAME RECORD AREA clause.

5. The REWRITE statement does not affect the File Position Indicator.

6. The REWRITE statement updates the value of the FILE STATUS data item
for the file.

7. The ALLOWING option can be used only in a Hewlett-Packard standard,
manual record-locking environment. To create a manual record-locking
environment, the program must OPEN file-name with an ALLOWING option
and specify the APPLY LOCK-HOLDING phrase of the I-O-CONTROL
paragraph.

8. The ALLOWING option locks the current record rewritten by the current
access stream. No other concurrent access stream can access this record until
it is unlocked.

However, on Tru64 UNIX systems, for indexed files the REWRITE statement
with the ALLOWING clause does not acquire a record lock. ♦

9. See the FROM Phrase section for a list of rules for the FROM phrase.

Sequential Files

10. The record named by rec-name must be the same size as the record being
replaced.

Relative Files

11. For a random or dynamic access mode file, the REWRITE statement logically
replaces the record specified in the RELATIVE KEY data item for rec-name’s
file. If the record is not in the file, the invalid key condition exists. The
update does not occur, and the data in the record area is not affected.
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Indexed Files

12. For a sequential access mode file, the prime record key specifies the record to
be replaced. The values of the prime record keys in the record to be replaced
and the last record read from (or positioned in) the file must be equal.

13. For a random access mode file, the prime record key specifies the record to
replace. If the program specifies duplicates on the prime record key, then
it can replace only the first occurrence of a key value using random access
mode. Replacing subsequent records with the same prime key value is done
by sequentially positioning to the desired record in sequential or dynamic
access mode.

14. For indexed files in dynamic access mode, the presence of DUPLICATES on
the prime record key determines the behavior. If DUPLICATES are allowed,
Rule 11 applies. If DUPLICATES are not allowed, Rule 12 applies.

15. For a record with an alternate record key:

• When the REWRITE does not change the value of an alternate record key,
the order of retrieval is unchanged when the key is the Key of Reference.

• When duplicate key values are allowed, and the value of an alternate
record key changes, the later retrieval order of the record changes when
the key is the Key of Reference. The record’s logical position is last in
the group of records with the same value in the alternate record key that
changed.

16. Any of the following occurrences cause the invalid key condition:

• The access mode is sequential, and the values in the prime record keys of
the record to replace and the last record read from (or positioned in) the
file are not equal.

• The value in the prime record key does not equal that of any record in the
file.

• The value in an alternate record key whose definition does not have a
DUPLICATES clause equals that of a record already in the file.

The update does not occur, and the data in the record area is not affected.

17. If there is an applicable USE AFTER EXCEPTION procedure, it executes
whenever an input or output condition occurs that would result in a
nonzero value in the first character position of a FILE STATUS data item.
However, the INVALID KEY phrase (if present) supersedes a USE AFTER
EXCEPTION procedure when there is an invalid key condition. In this case,
the USE AFTER EXCEPTION procedure does not execute.

See the rules for the INVALID KEY phrase, Section 6.6.10.

18. The number of character positions in the record to be updated must not be
less than the lowest or greater than the highest number of character positions
allowed by the RECORD VARYING clause. In either case, the REWRITE
statement is unsuccessful and the following occurs:

• The updating operation does not take place.

• The contents of the record area remain unaffected.

• The I-O status of the file is set to a value that indicates the cause of the
condition.
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Technical Notes

• REWRITE statement execution can result in these FILE STATUS data item
values:

File
Status

File
Organization

Access
Method Meaning

00 All All Rewrite is successful.
02 Ind All Created duplicate primary or alternate

key.
21 Ind Seq Primary key changed after read.
22 Ind All Duplicate primary or alternate key

(invalid key).
23 Ind, Rel Rand Record not in file (invalid key).
43 All Seq No previous read or record not locked by

prior READ or START.
44 All All Invalid record size.
49 All All File not open, or incompatible open

mode.
92 Ind, Rel All Record locked by another user; record is

not available.
30 All All All other permanent errors.

Additional References

• I-O-CONTROL paragraph in Chapter 4

• Section 6.1.4, Scope of Statements

• Section 6.6.8, I-O Status

• Section 6.6.10, INVALID KEY Phrase

• Section 6.6.11, FROM Phrase

• OPEN statement

• READ statement

• UNLOCK statement

• USE statement
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SEARCH
Function
The SEARCH statement searches for a table element that satisfies a condition. It
sets the value of the associated index to point to the table element.

General Formats

Format 1

SEARCH src-table � VARYING pointr � � AT END stment ������
���


{ WHEN cond stment } . . . END-SEARCH��

 WHEN cond

�
stment . . . [END-SEARCH]
NEXT SENTENCE


 ��
� . . .

�����
����

Format 2

SEARCH ALL src-table � AT END stment �

WHEN

��

 elemnt

� IS EQUAL TO
IS =

�
arg

cond-name

��
�

�
�� AND

��

 elemnt

� IS EQUAL TO
IS =

�
arg

cond-name

��
�
�
�� . . .

�
stment . . . � END-SEARCH �

NEXT SENTENCE

�

src-table
is a table identifier.

pointr
is an index-name or the identifier of a data item described as USAGE INDEX, or
an elementary numeric data item with no positions to the right of the assumed
decimal point.

cond
is any conditional expression.

stment
is an imperative statement.

elemnt
is an indexed data-name. It refers to the table element against which the
argument is compared.

arg
is the argument tested against each elemnt in the search. It is an identifier, a
literal, or an arithmetic expression.
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cond-name
is a condition-name.

Syntax Rules
Both Formats

1. src_table must not be subscripted, indexed, or reference modified. However,
its description must contain an OCCURS clause with the INDEXED BY
phrase.

2. If the END-SEARCH phrase is specified, the NEXT SENTENCE phrase must
not be specified.

Format 2

3. src_table must contain the KEY IS phrase in its OCCURS clause.

4. Each cond-name must be defined as having only one value. The data-name
associated with cond-name must be in the KEY IS phrase of the OCCURS
clause for src-table.

5. Each elemnt:

• Can be qualified

• Must be indexed by the first index-name associated with src-table, in
addition to other indexes or literals required for uniqueness

• Must be in the KEY IS phrase of the OCCURS clause for src-table

6. Neither arg nor any identifier in its arithmetic expression can either:

• Be used in the KEY IS phrase of the OCCURS clause for src-table

• Be indexed by the first index-name associated with src-table

7. When elemnt or the data-name associated with cond-name is in the KEY
phrase of the OCCURS clause for src-table, each preceding data-name (or
associated cond-name) in that phrase must also be referenced.

General Rules
Both Formats

1. After executing a stment that does not end with a GO TO statement, control
passes to the end of the SEARCH statement.

2. src_table can be subordinate to a data item that contains an OCCURS clause.
In that case, an index-name must be associated with each dimension of
the table through the INDEXED BY phrase of the OCCURS clause. The
SEARCH statement modifies the setting of only the index-name for src-table
(and pointr, if there is one).

A single SEARCH statement can search only one dimension of a table;
therefore, you must execute SEARCH statements repeatedly to search
through a multidimensional table. Before each execution, SET statements
must execute to change the values of index-names that need adjustment.
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Format 1

3. The Format 1 SEARCH statement searches a table serially, starting with the
current index setting.

a. The index-name associated with src-table can contain a value that
indicates a higher occurrence number than is allowed for src-table. If
the SEARCH statement execution starts when this condition exists, the
search terminates immediately. If there is an AT END phrase, stment
then executes. Otherwise, control passes to the end of the SEARCH
statement.

b. If the index-name associated with src-table indicates a valid src-table
occurrence number, the SEARCH statement evaluates the conditions
in the order they appear. It uses the index settings to determine the
occurrence numbers of items to test.

If no condition is satisfied, the index-name for src-table is incremented
to refer to the next occurrence. The condition evaluation process repeats
using the new index-name settings. However, if the new value of the
index-name for src-table indicates a table element outside its range, the
search terminates as in General Rule 3a.

When a condition is satisfied:

• The search terminates immediately.

• The stment associated with the condition executes.

• The index-name remains set at the occurrence that satisfied the
condition.

4. If there is no VARYING phrase, the index-name used for the search is the first
index-name in the OCCURS clause for src-table. Other src-table index-names
are unchanged.

5. If there is a VARYING phrase, pointr can be an index-name for src-table.
(pointr is named in the INDEXED BY phrase of the OCCURS clause for
src-table.) The search then uses that index-name. Otherwise, it uses the first
index-name in the INDEXED BY phrase.

6. pointr also can be an index-name for another table. (pointr is named in the
INDEXED BY phrase in the OCCURS clause for that table entry.) In this
case, the search increments the occurrence number represented by pointr
by the same amount, and at the same time, as it increments the occurrence
number represented by the src-table index-name.

7. If pointr is an index data item rather than an index-name, the search
increments it by the same amount, and at the same time, as it increments the
src-table index-name. If pointr is not an index data item or an index-name,
the search increments it by one when it increments the src-table index-name.

8. Example 3, "Serial search with two WHEN phrases," illustrates the operation
of a Format 1 SEARCH statement with two WHEN phrases.
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Format 2

9. A SEARCH ALL operation yields predictable results only when:

• The data in the table has the same order as described in the KEY IS
phrase of the OCCURS clause for src-table.

• The contents of the keys in the WHEN phrase identify a unique table
element.

10. SEARCH ALL causes a nonserial (or binary) search. It ignores the initial
setting of the src-table index-name and varies its setting during execution.

11. If the WHEN phrase conditions are not satisfied for any index setting in the
allowed range, control passes to the AT END phrase stment, if there is one,
or to the end of the SEARCH statement. In either case, the setting of the
src-table index-name is not predictable.

12. If all the WHEN phrase conditions are satisfied for an index setting in the
allowed range, control passes to either stment or the next sentence, whichever
is in the statement. The src-table index-name then indicates the occurrence
number that satisfied the conditions.

13. The index-name used for the search is the first index-name in the OCCURS
clause for src-table. Other src-table index-names are unchanged.

Additional References

• On Alpha and I64, SORT statement (Format 2, for table sorting), useful for
SEARCH ALL (which presumes a sorted table) ♦

• OCCURS statement

• Section 6.1.4, Scope of Statements

• Section 6.5, Conditional Expressions

Examples
The examples assume these Data Division entries:

01 CUSTOMER-REC.
03 CUSTOMER-USPS-STATE PIC XX.
03 CUSTOMER-REGION PIC X.
03 CUSTOMER-NAME PIC X(15).

01 STATE-TAB.
03 FILLER PIC X(153)

VALUE
"AK3AL5AR5AZ4CA4CO4CT1DC1DE1FL5GA5HI3

- "IA2ID3IL2IN2KS2KY5LA5MA1MD1ME1MI2MN2
- "MO5MS5MT3NC5ND3NE2NH1NJ1NM4NV4NY1OH2
- "OK4OR3PA1RI1SC5SD3TN5TX4UT4VA5VT1WA3
- "WI2WV5WY4".
01 STATE-TABLE REDEFINES STATE-TAB.

03 STATES OCCURS 51 TIMES
ASCENDING KEY IS STATE-USPS-CODE
INDEXED BY STATE-INDEX.
05 STATE-USPS-CODE PIC XX.
05 STATE-REGION PIC X.

01 STATE-NUM PIC 99.
01 STATE-ERROR PIC 9.
01 NAME-TABLE VALUE SPACES.

03 NAME-ENTRY OCCURS 8 TIMES
INDEXED BY NAME-INDEX.
05 LAST-NAME PIC X(15).
05 NAME-COUNT PIC 999.
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1. Binary search:

(The correctness of this statement’s operation depends on the ascending order
of key values in the source table.)

INITIALIZE-SEARCH.
MOVE "NH" TO CUSTOMER-USPS-STATE.

SEARCH ALL STATES
AT END

MOVE 1 TO STATE-ERROR
GO TO SEARCH-END

WHEN STATE-USPS-CODE (STATE-INDEX) = CUSTOMER-USPS-STATE
MOVE 0 TO STATE-ERROR
MOVE STATE-REGION (STATE-INDEX) TO CUSTOMER-REGION.

SEARCH-END.
DISPLAY " ".
DISPLAY "Customer State index number = " STATE-INDEX WITH CONVERSION
" Region = " STATE-REGION (STATE-INDEX)
" State Error Code = " STATE-ERROR.

Following are the results of the binary search:

Customer State index number = 31 Region = 1 State Error Code = 0

2. Serial search with WHEN phrase:

INITIALIZE-SEARCH.
MOVE "2" TO CUSTOMER-REGION.

SEARCH-LOOP.
SEARCH STATES

AT END
MOVE 1 TO STATE-ERROR
GO TO SEARCH-END

WHEN STATE-REGION (STATE-INDEX) = CUSTOMER-REGION
MOVE 0 TO STATE-ERROR
DISPLAY STATE-USPS-CODE (STATE-INDEX)

" " STATE-INDEX WITH CONVERSION
" " STATE-ERROR.

SET STATE-INDEX UP BY 1.
GO TO SEARCH-LOOP.

SEARCH-END.

The following lists the results of this serial search:

IA 13 0
IL 15 0
IN 16 0
KS 17 0
MI 23 0
MN 24 0
NE 30 0
OH 36 0
WI 49 0

6–206 Procedure Division



SEARCH Statement

3. Serial search with two WHEN phrases:

INITIALIZE-SEARCH.
MOVE 1 TO CUSTOMER-REGION.
MOVE "NH" TO CUSTOMER-USPS-STATE.

DISPLAY "States in customer’s region:".

SEARCH-LOOP.
SEARCH STATES

AT END
GO TO SEARCH-END

WHEN STATE-USPS-CODE (STATE-INDEX) = CUSTOMER-USPS-STATE
SET STATE-NUM TO STATE-INDEX

WHEN STATE-REGION (STATE-INDEX) = CUSTOMER-REGION
DISPLAY STATE-USPS-CODE (STATE-INDEX)

" " WITH NO ADVANCING.
SET STATE-INDEX UP BY 1.
GO TO SEARCH-LOOP.

SEARCH-END.
DISPLAY " "
DISPLAY "Customer state index number = " STATE-NUM.

The following lists the results of the serial search with two WHEN phrases:

States in customer’s region:
CT DC DE MA MD ME NJ NY PA RI VT

Customer state index number = 31

4. Updating a table in a SEARCH statement:

GET-NAME.
DISPLAY "Enter name: " NO ADVANCING.
ACCEPT CUSTOMER-NAME.
SET NAME-INDEX TO 1.
SEARCH NAME-ENTRY
AT END
DISPLAY " Table full"
SET NAME-INDEX TO 1
PERFORM SHOW-TABLE 8 TIMES
STOP RUN

WHEN LAST-NAME (NAME-INDEX) = CUSTOMER-NAME
ADD 1 TO NAME-COUNT (NAME-INDEX)

WHEN LAST-NAME (NAME-INDEX) = SPACES
MOVE CUSTOMER-NAME TO LAST-NAME (NAME-INDEX)
MOVE 1 TO NAME-COUNT (NAME-INDEX).

GO TO GET-NAME.
SHOW-TABLE.

DISPLAY LAST-NAME (NAME-INDEX) " " NAME-COUNT (NAME-INDEX).
SET NAME-INDEX UP BY 1.

The following lists the results of updating a table in a SEARCH statement:

Enter name: CRONKITE
Enter name: GEORGE
Enter name: PHARES
Enter name: CRONKITE
Enter name: BELL
Enter name: SMITH
Enter name: FRANKLIN
Enter name: HENRY
Enter name: GEORGE
Enter name: ROBBINS
Enter name: BELL
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Enter name: FRANKLIN
Enter name: SMITH
Enter name: BELL
Enter name: SMITH

Table full
CRONKITE 002
GEORGE 002
PHARES 001
BELL 003
SMITH 003
FRANKLIN 002
HENRY 001
ROBBINS 001
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SET
Function
The SET statement sets values of indexes associated with table elements. It can
also change the value of a conditional variable, change the status of an external
switch, and store the address of a COBOL identifier reference at run time.

General Format

Format 1

SET { rsult } . . . TO val

Format 2

SET { indx } . . .
�

UP BY
DOWN BY



increm

Format 3

SET { cond-name } . . . TO TRUE

Format 4

SET

��

 { switch-name } . . . TO

�
ON
OFF


 ��
� . . .

Format 5

SET {pointer-id} . . . TO REFERENCE OF identifier

Format 6

SET status-code-id TO
�

SUCCESS
FAILURE




rsult
is an index-name, the identifier of an index data item, or an elementary numeric
data item described as an integer.

val
is a positive integer, which can be signed. It can also be an index-name (or the
identifier of an index data item) or an elementary numeric data item described as
an integer.

indx
is an index-name.

increm
is an integer, which can be signed. It can also be the identifier of an elementary
numeric data item described as an integer.

cond-name
is a condition-name that must be associated with a conditional variable.

switch-name
is the name of an external switch defined in the SPECIAL-NAMES paragraph.
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pointer-id
is a data-name whose data description entry must contain the USAGE IS
POINTER clause.

identifier
is a data item in the File, Working-Storage, Linkage, or Subschema Section.

status-code-id
is a word or longword integer data item represented by PIC S9(1) to S9(9) COMP
or PIC 9(1) to 9(9) COMP.

Syntax Rule
No two occurrences of cond-name can refer to the same conditional variable.

General Rules
Formats 1 and 2

1. Index-names are associated with a table in the table’s OCCURS clause
INDEXED BY phrase.

2. If rsult is an index-name, its value after SET statement execution must
correspond to an occurrence number of an element in the associated table.

3. If val is an index-name, its value before SET statement execution must
correspond to an occurrence number of an element in the table associated
with rsult.

4. The value of indx, both before and after SET statement execution, must
correspond to an occurrence number of an element in the table associated
with indx.

Format 1

5. The SET statement sets the value of rsult to refer to the table element whose
occurrence number corresponds to the table element referred to by val. If val
is an index data item, no conversion occurs.

6. If rsult is an index data item, val cannot be an integer. No conversion occurs
when rsult is set to the value of val.

7. If rsult is not an index data item or an index-name, val can only be an
index-name.

8. When there is more than one rsult, SET uses the original value of val in each
operation. Subscript or index evaluation for rsult occurs immediately before
its value changes.

9. Table 6–18 shows the validity of operand combinations. An asterisk ( * )
means that no conversion occurs during the SET operation.
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Table 6–18 Validity of Operand Combinations in Format 1 SET Statements

Sending Item
Receiving Item

Integer Data Item Index Index Data Item

Integer Literal Invalid/Rule 7 Valid/Rule 5 Invalid/Rule 6
Integer Data Item Invalid/Rule 7 Valid/Rule 5 Invalid/Rule 6
Index Valid/Rule 7 Valid/Rule 5 Valid/Rule 6*
Index Data Item Invalid/Rule 7 Valid/Rule 5* Valid/Rule 6*

Format 2

10. The SET statement increments (UP) or decrements (DOWN) indx by a value
that corresponds to the number of occurrences increm represents.

11. When there is more than one indx, SET uses the original value of increm in
each operation.

Format 3

12. SET moves the literal in the VALUE clause for cond-name to its associated
conditional variable. The transfer occurs according to the rules for elementary
moves. If the VALUE clause contains more than one literal, the first is moved.

Format 4

13. SET changes the status of each switch-name in the statement.

14. The ON phrase changes the status of switch-name to on.

15. The OFF phrase changes the status of switch-name to off.

16. The SET statement changes the switch status only for the image in which it
executes. When the image terminates, the status of each external switch is
the same as when the image began.

Format 5

17. The address of identifier is evaluated and stored in pointer-id.

Format 6

18. Specifying the SUCCESS option sets status-code-id to the SUCCESS state
(the low-bit of status-code-id is set to 1).

19. Specifying the FAILURE option sets status-code-id to the FAILURE state (the
low-bit of status-code-id is set to 0).

Additional References

• SPECIAL-NAMES paragraph in Chapter 4

• Section 6.5.4, Switch-Status Condition

• Section 6.5.6, Success/Failure Condition

• MOVE statement

• PERFORM statement

• SEARCH statement
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Examples
The examples assume these Environment and Data Division entries:

SPECIAL-NAMES.
SWITCH 1 UPDATE-RUN ON STATUS IS DO-UPDATE
SWITCH 3 REPORT-RUN ON STATUS IS DO-REPORT

OFF STATUS IS SKIP-REPORT
SWITCH 4 IS NEW-YEAR ON STATUS IS BEGIN-YEAR

OFF IS CONTINUE-YEAR.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 YEAR-LEVEL PIC 99.

88 FRESHMAN VALUE 1.
88 SOPHOMORE VALUE 2.
88 JUNIOR VALUE 3.
88 SENIOR VALUE 4.
88 FIRST-MASTERS VALUE 5.
88 MASTERS VALUE 5,6.
88 FIRST-DOCTORAL VALUE 7.
88 DOCTORAL VALUE 7,8.
88 NON-DEGREE-UNDERGRAD VALUE 9.
88 NON-DEGREE-GRAD VALUE 10.
88 UNDERGRAD VALUE 9, 1 THROUGH 4.
88 GRAD VALUE 10, 5 THROUGH 8.

01 COURSES-AVAILABLE.
02 OCCURS 100 TIMES INDEXED BY COURSE-INDEX.

03 COURSE-NAME PIC X(10).
03 COURSE-INSTRUCTOR PIC X(20).
03 COURSE-LOCATION PIC X(10).
03 COURSE-CODE PIC 9(5).

01 POINTER-VAL USAGE IS POINTER.
01 THREE-DIMENSIONAL-TABLE.

02 X OCCURS 5 TIMES INDEXED BY I.
03 Y OCCURS 7 TIMES INDEXED BY J.

04 Z PIC X(17) OCCURS 3 TIMES.
01 K PIC S9(9) COMP.
01 RETURN-STATUS PIC S9(9) COMP.
01 DECREMENT-VALUE PIC 9 VALUE 1.

1. Format 1—Initializing COURSE-INDEX.

SET COURSE-INDEX TO 5.

2. Format 2—Adding to or subtracting from the index-name COURSE-INDEX.

SET COURSE-INDEX UP BY 1.

SET COURSE-INDEX DOWN BY DECREMENT-VALUE.

3. Format 3—Initializing a conditional variable:

YEAR-LEVEL

SET SOPHOMORE TO TRUE 02
SET MASTERS TO TRUE 05
SET GRAD TO TRUE 10
SET NON-DEGREE-GRAD TO TRUE 10

4. Format 4—Setting external switches. The truth value shows the result of the
IF statements:
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TRUTH VALUE

SET UPDATE-RUN TO ON.
SET REPORT-RUN TO OFF.
SET NEW-YEAR TO ON.
IF DO-UPDATE . . . true
IF DO-REPORT . . . false
IF CONTINUE-YEAR . . . false
SET REPORT-RUN TO ON.
IF DO-REPORT . . . true
IF SKIP-REPORT . . . false

5. Format 5—Setting POINTER-VAR to the address of the subscripted table
item named Z(I,J,K).

SET POINTER-VAR TO REFERENCE OF Z(I,J,K).

6. Format 6—On OpenVMS Alpha and I64, initializing RETURN-STATUS to
FAILURE before calling subprogram SUBPROGA and a Run-Time Library
Procedure, then checking for SUCCESS from each.

.

.

.
SET RETURN-STATUS TO FAILURE.
CALL "SUBPROGA" GIVING RETURN-STATUS.
IF RETURN-STATUS IS SUCCESS

THEN
GO TO A0200-PARA

ELSE
DISPLAY "SUBPROGA failed"
STOP RUN.

A0200-PARA.
SET RETURN-STATUS TO FAILURE.
CALL "SCR$SET_CURSOR" USING BY VALUE 4, 22 GIVING RETURN-STATUS.
IF RETURN-STATUS IS SUCCESS

THEN
DISPLAY "UPDATE ROUTINE COMPLETED"

ELSE
DISPLAY "Cursor positioning failed"
STOP RUN.

.

.

.

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROGA.

.

.

.
01 PROGRAM-STATUS PIC S9(9) COMP.

.

.

.
PROCEDURE DIVISION GIVING PROGRAM-STATUS.
A000-BEGIN.

.

.

.

IF . . . SET PROGRAM-STATUS TO SUCCESS
ELSE SET PROGRAM-STATUS TO FAILURE.

EXIT PROGRAM. ♦
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SORT
Function
The SORT statement (Format 1) creates a sort file by executing input procedures
or transferring records from an input file. It sorts the records in the sort file
using one or more keys that you specify. Finally, it returns each record from the
sort file, in sorted order, to output procedures or an output file.

SORT (Format 2) orders the elements in a table. This is especially useful for
tables used with SEARCH ALL. The table elements are sorted based on the keys
as specified in the OCCURS for the table unless you override them by specifying
keys in the SORT statement. If no key is specified, the table elements are the
SORT keys.

Format 1

SORT sortfile

���
�
 ON

� DESCENDING

ASCENDING

�
KEY { sortkey } . . .

���
�� . . .

� WITH DUPLICATES IN ORDER �

� COLLATING SEQUENCE IS alpha ������
���


INPUT PROCEDURE IS first-proc

�
� �

THRU
THROUGH



end-proc

�
�

USING { infile } . . .

�����
����

�����
���


OUTPUT PROCEDURE IS first-proc

�
� �

THRU
THROUGH



end-proc

�
�

GIVING { outfile } . . .

�����
����

Format 2 (Alpha, I64)

SORT table-name

�
�� ON

� DESCENDING

ASCENDING

�
KEY { sortkey } . . .

�
�� . . .

� WITH DUPLICATES IN ORDER �

� COLLATING SEQUENCE IS alpha � . ♦

sortfile
is a file-name described in a sort-merge file description (SD) entry in the Data
Division.

sortkey
(Format 1) is the data-name of a data item in a record associated with sortfile.
(Format 2) is the data-name of a data item in the table-name table.
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first-proc
is the section-name or paragraph-name of the first (or only) section or paragraph
of the INPUT or OUTPUT procedure range.

end-proc
is the section-name or paragraph-name of the last section or paragraph of the
INPUT or OUTPUT procedure range.

infile
is the file-name of the input file. It must be described in a file description (FD)
entry in the Data Division.

outfile
is the file-name of the output file. It must be described in a file description (FD)
entry in the Data Division.

table-name (Alpha, I64)
is a table described with OCCURS in the Data Division. ♦

alpha
is an alphabet-name defined in the SPECIAL-NAMES paragraph of the
Environment Division.

Syntax Rules
All Formats

1. You can use SORT statements anywhere in the Procedure Division except in:

• Declaratives (Format 1)

• SORT or MERGE statement input or output procedures

2. sortkey can be qualified.

3. sortkey cannot be in a group item that contains variable occurrence data
items.

4. The sortkey description cannot contain an OCCURS clause or be subordinate
to a data description entry that does.

Format 1

5. If sortfile contains variable-length records, infile records must not be smaller
than the smallest in sortfile nor larger than the largest.

6. If sortfile contains fixed-length records, infile records must not be larger than
the largest record described for sortfile.

7. If outfile contains variable-length records, sortfile records must not be smaller
than the smallest in outfile nor larger than the largest.

8. If outfile contains fixed-length records, sortfile records must not be larger than
the largest record described for outfile.

9. sortfile can have more than one record description. However, sortkey needs to
be described in only one of the record descriptions. The character positions
referenced by sortkey are used as the key for all the file’s records.

10. The words THRU and THROUGH are equivalent.

Procedure Division 6–215



SORT Statement

11. If outfile is an indexed file, the first sortkey must be in the ASCENDING
phrase. It must specify the same character positions in its record as the
prime record key for outfile.

Format 2 (Alpha, I64)

12. table-name may be qualified and must have an OCCURS clause in its data
description entry. If table-name is subject to more than one level of OCCURS
clauses, subscripts must be specified for all levels with OCCURS INDEXED
BY.

13. table-name is a key data-name, subject to the following rules:

• The data item identified by a key data-name must be the same as, or
subordinate to, the data item referenced by table-name.

• Key data items may be qualified.

• The data items identified by key data-names must not be variable-length
data items.

• If the data item identified by a key data-name is subordinate to table-
name, it must not be described with an OCCURS clause, and it must not
be subordinate to an entry that is also subordinate to table-name and
contains an OCCURS clause.

14. The KEY phrase may be omitted only if the description of the table referenced
by table-name contains a KEY phrase. ♦

General Rules
All Formats

1. The first sortkey you specify is the major key, the next sortkey you specify
is the next most significant key, and so forth. The significance of sortkey
data items is not affected by how you divide them into KEY phrases. Only
first-to-last order determines significance.

2. The ASCENDING phrase causes the sorted sequence to be from the lowest to
highest sortkey value.

3. The DESCENDING phrase causes the sorted sequence to be from the highest
to the lowest sortkey value.

4. Sort sequence follows the rules for relation condition comparisons.

5. The DUPLICATES phrase affects the return order of records or table
elements whose corresponding sortkey values are equal.

• When there is a USING phrase, return order is the same as the order of
appearance of infile names in the SORT statement.

• When there is an INPUT PROCEDURE, return order is the same as the
order in which the records were released.

• When table elements are returned, the order is the relative order of the
contents of these table elements before sorting.

6. If there is no DUPLICATES phrase, the return order for records or table
elements with equal corresponding sortkey values is unpredictable.
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7. The SORT statement determines the comparison collating sequence for
nonnumeric sortkey items when it begins execution. If there is a COLLATING
SEQUENCE phrase in the SORT statement, SORT uses that sequence.
Otherwise, it uses the program collating sequence described in the OBJECT-
COMPUTER paragraph.

Format 1

8. If sortfile contains fixed-length records, any shorter infile records are space-
filled on the right, following the last character. Space-filling occurs before the
infile record is released to sortfile.

9. The INPUT PROCEDURE range consists of one or more sections or
paragraphs that:

• Appear contiguously in the source program

• Do not form a part of an OUTPUT PROCEDURE range

10. The statements in the INPUT PROCEDURE range must include at least one
RELEASE statement to transfer records to sortfile.

11. The INPUT PROCEDURE range can consist of any procedure needed to
select, modify, or copy the next record made available by the RELEASE
statement to the file referenced by sortfile.

12. The range of the INPUT PROCEDURE additionally includes all statements
executed as a result of a CALL, EXIT, GO TO, or PERFORM statement.
The range of the INPUT PROCEDURE also includes all statements in the
Declaratives Section that can be executed if control is transferred from
statements in the range of the INPUT PROCEDURE.

13. The INPUT PROCEDURE range must not contain MERGE, RETURN, or
SORT statements.

14. If there is an INPUT PROCEDURE phrase, control transfers to the first
statement in its range before the SORT statement sequences the sortfile
records. When control passes the last statement in the INPUT PROCEDURE
range, the records released to sortfile are sorted.

15. During execution of the INPUT or OUTPUT procedures, or any USE AFTER
EXCEPTION procedure implicitly invoked during the SORT statement, no
outside statement can manipulate the files or record areas associated with
infile or outfile.

16. If there is a USING phrase, the SORT statement transfers all records in
infile to sortfile. This transfer is an implied SORT statement input procedure.
When the SORT statement executes, infile must not be open.

17. For each infile, the SORT statement:

• Initiates file processing as if the program had executed an OPEN
statement with the INPUT phrase.

• Gets the logical records and releases them to the sort operation. SORT
obtains each record as if the program had executed a READ statement
with the NEXT and AT END phrases.

• Terminates file processing as if the program had executed a CLOSE
statement with no optional phrases. The SORT statement ends file
processing before it executes any output procedure.
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These implicit OPEN, READ, and CLOSE operations cause associated USE
procedures to execute when an exception condition occurs.

18. OUTPUT PROCEDURE consists of one or more sections or paragraphs that:

• Appear contiguously in the source program

• Do not form part of an INPUT PROCEDURE range

19. When the SORT statement begins the OUTPUT PROCEDURE phrase, it
is ready to select the next record in sorted order. The statements in the
OUTPUT PROCEDURE range must include at least one RETURN statement
to make records available for processing.

20. When the MERGE statement enters the OUTPUT PROCEDURE range, it is
ready to select the next record in merged order. Statements in the OUTPUT
PROCEDURE range must execute at least one RETURN statement to make
records available for processing.

21. The OUTPUT PROCEDURE can consist of any procedure needed to select,
modify, or copy the next record made available by the RETURN statement in
sorted order from the file referenced by sortfile.

22. The range of the OUTPUT PROCEDURE additionally includes all statements
executed as a result of a CALL, EXIT, GO TO, or PERFORM statement.
The range of the OUTPUT PROCEDURE also includes all statements in the
Declarative USE procedures that can be executed if control is transferred
from statements in the range of the OUTPUT PROCEDURE.

23. The OUTPUT PROCEDURE range must not include MERGE, RELEASE, or
SORT statements.

24. If there is an OUTPUT PROCEDURE phrase, control passes to the first
statement in its range after the SORT statement sequences the records
in sortfile. When control passes the last statement in the OUTPUT
PROCEDURE range, the SORT statement ends. Control then transfers to
the next executable statement after the SORT statement.

25. If there is a GIVING phrase, the SORT statement writes all sorted records to
each outfile. This transfer is an implied SORT output procedure. When the
SORT statement executes, outfile must not be open.

26. The SORT statement initiates outfile processing as if the program had
executed an OPEN statement with the OUTPUT phrase. The SORT
statement does not initiate outfile processing until after INPUT PROCEDURE
execution.

27. The SORT statement obtains the sorted logical records and writes them
to each outfile. SORT writes each record as if the program had executed a
WRITE statement with no optional phrases.

For relative files, the value of the relative key data item is 1 for the first
returned record, 2 for the second, and so on. When the SORT statement ends,
the value of the relative key data item indicates the number of outfile records.

28. The SORT statement terminates outfile processing as if the program had
executed a CLOSE statement with no optional phrases.
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29. These implicit OPEN, WRITE, and CLOSE operations can cause associated
USE procedures to execute if they are present. If a USE procedure is present,
processing terminates after the USE procedure has completed execution. If
a USE procedure is not present, processing terminates as if the program had
executed a CLOSE statement with no optional phrases.

30. If outfile contains fixed-length records, any shorter sortfile records are space-
filled on the right, after the last character. Space-filling occurs before the
sortfile record is released to outfile.

31. If the SORT statement is in a fixed segment, its input and output procedures
must be completely in either:

• Fixed segments

• One independent segment

32. If the SORT statement is in an independent segment, its input and output
procedures must be completely in either:

• Fixed segments

• The same independent segment as the SORT statement itself

Format 2 (Alpha, I64)

33. The SORT statement sorts the table referenced by table-name and presents
the sorted table in table-name either in the order determined by the
ASCENDING or DESCENDING phrases, if specified, or in the order
determined by the KEY phrase associated with table_name.

34. To determine the relative order in which the table elements are stored after
sorting, the contents of corresponding key data items are compared according
to the rules for comparison of operands in a relation condition, starting with
the most significant key data item.

• If the contents of the corresponding key data items are not equal and
the key is associated with the ASCENDING phrase, the table element
containing the key data item with the lower value has the lower
occurrence number.

• If the contents of the corresponding key data items are not equal and the
key is associated with the DESCENDING phrase, the table element
containing the key data item with the higher value has the lower
occurrence number. ♦

Additional References

• OBJECT-COMPUTER paragraph in Chapter 4

• SPECIAL-NAMES paragraph in Chapter 4

• I-O-CONTROL paragraph in Chapter 4

• Section 6.5.1, Relation Conditions

• Section 6.7, Segmentation

• USE statement

• HP COBOL User Manual, chapter on using SORT and MERGE statements
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Examples (Alpha, I64)
The following examples all illustrate the use of table sorting (Format 2). For
examples on Format 1 sorting, refer to the HP COBOL User Manual.

The first example is a simple sort in which the table is sorted by the key
definitions in the OCCURS clause of data item tabl. elem-item2 is the major
key (ascending) and elem-item1 is the secondary key (descending). A SEARCH
ALL statement is used.

identification division.
program-id. EXAMPLE1.
data division.
working-storage section.
01 group-item.

05 tabl occurs 10 times
ascending elem-item2
descending elem-item1
indexed by ind.

10 elem-item1 pic x.
10 elem-item2 pic x.

procedure division.
1. display "Example 1".
move "13n3m3p3o3x1x1x1x1x1" to group-item.
sort tabl.
search all tabl

at end
display "not found"

when elem-item1 (ind) = "m"
if (elem-item1 (ind - 1) = "n")
and (elem-item1 (ind + 1) = "1")

display "elem-item1 is descending order - 2nd key"
else

display "sort failed"
end-if

end-search.
exit program.
end program EXAMPLE1.

The following example is also a simple sort in which the table is sorted by the key
definitions in the OCCURS clause of data item tabl. elem-item2 is the major key
(ascending) and elem-item1 is the secondary key (descending). A SEARCH ALL
statement is used.

identification division.
program-id. EXAMPLE2.
data division.
working-storage section.
01 group-item.

05 tabl occurs 10 times.
10 elem-item1 pic x.
10 elem-item2 pic x.

procedure division.
2. display "Example 2".
move "13n3m3p3o3x1x1x1x1x1" to group-item.
sort tabl ascending.
if tabl (1) = "13"
and tabl (2) = "m3"

display "tabl is ascending order"
else

display "sort failed"
end-if.
exit program.
end program EXAMPLE2.
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This following example is a simple sort in which the table is sorted in ascend-
ing order using each entire element of the table (data item tabl) to determine the
sequence.

identification division.
program-id. EXAMPLE3.
data division.
working-storage section.
01 group-item.

05 tabl occurs 10 times
ascending elem-item3
descending elem-item1.

10 elem-item1 pic x.
10 elem-item2 pic x.
10 elem-item3 pic x.

procedure division.
3. display "Example 3".
move "13bn3cm3ap3do3fx1ex1ix1hx1gx1a" to group-item.
sort tabl descending elem-item2 elem-item3.
if tabl (1) = "o3f"
and tabl (2) = "p3d"

display "tabl is descending order"
else

display "sort failed"
end-if.
exit program.
end program EXAMPLE3.

The following example sorts only the third instance of tabl2, that is,
tabl1(3). The qualified data item, elem-item1 of group2 is its key. In normal
PROCEDURE DIVISION reference, elem-item1 of group2 requires two levels
of subscripting/indexing, whereas here it has none. Similarly, tabl2 normally
requires one level of subscripting, but cannot be subscripted as data-name2 in
the SORT statement. Instead it uses the value of t1-ind for determining which
instance is sorted.

identification division.
program-id. EXAMPLE4.
data division.
working-storage section.
01 group-item.

05 tabl1 occurs 3 times
indexed by t1-ind t2-ind.

10 tabl2 occurs 5 times.
15 group1.

20 elem-item1 pic x.
15 group2.

20 elem-item1 pic 9.
procedure division.
4. display "Example 4".
move "x5z4y6z6x4a3b2b1a2c1j7j8k8l7j9" to group-item.
set t1-ind to 3.
sort tabl2 descending elem-item1 of group2.
if group1 (3 1) = "j"
and group2 (3 1) = "9"
and tabl1 (1) = "x5z4y6z6x4"
and tabl1 (2) = "a3b2b1a2c1"

display "tabl1 (3) is descending order"
else

display "sort failed"
end-if.
exit program.
end program EXAMPLE4. ♦
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START
Function
The START statement establishes the logical position of the File Position
Indicator in an indexed or relative file. The logical position affects subsequent
sequential record retrieval.

General Format

START file-name

�
������������������������

KEY

�����������������������
���������������������


IS EQUAL TO
IS =
IS GREATER THAN
IS >
IS NOT LESS THAN
IS NOT <
IS GREATER THAN OR EQUAL TO
IS >=
IS LESS THAN (Alpha, I64)
IS < (Alpha, I64)
IS LESS THAN OR EQUAL TO (Alpha, I64)
IS <= (Alpha, I64)
IS NOT GREATER THAN (Alpha, I64)
IS NOT > (Alpha, I64)

�����������������������
����������������������

key-data

�
������������������������

�
����

REGARDLESS OF LOCK

ALLOWING

� UPDATERS
READERS
NO OTHERS

�
�
����

� INVALID KEY stment �

� NOT INVALID KEY stment2 �

� END-START �

file-name
is the name of an indexed or relative file with sequential or dynamic access. It
cannot be the name of a sort or merge file.

key-data
is one of the following:

• The data-name specified as a record key

• The segmented-key name specified as a record key

• The leftmost part of a record key

• The relative key for file-name

It can be qualified.

stment
is an imperative statement executed for an invalid key condition.
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stment2
is an imperative statement executed for a not invalid key condition.

Syntax Rules

1. To use the REGARDLESS or ALLOWING options, the program must include
these entries:

• APPLY LOCK-HOLDING clause of the I-O-CONTROL paragraph

• ALLOWING option of the OPEN statement

2. There must be an INVALID KEY phrase if file-name does not have an
applicable USE AFTER EXCEPTION procedure.

3. For a relative file, key-data must be the file’s RELATIVE KEY data item.

4. For an indexed file, key-data can be either:

• A record key for the file.

• A data item subordinate to the description of a record key for the file. The
data item must have the same leftmost character position as the record
key, and must be one of the following:

A group, alphanumeric, or alphabetic item

An unsigned numeric display item

A COMP-3 integer or a COMP integer

All the data types in the preceding list except alphanumeric are Hewlett-
Packard extensions.

5. The REGARDLESS and ALLOWING options are Hewlett-Packard standard
syntax, and cannot be used for a file connector that has had (on Alpha and
I64) X/Open standard syntax (WITH [NO] LOCK or LOCK MODE) specified.

General Rules
All Files

1. The file must be open in the INPUT or I-O mode when the START statement
executes.

2. If there is no KEY phrase, the implied relational operator is EQUAL.

3. START statement execution does not change: ( a ) the contents of the record
area or ( b ) the contents of the data item referred to in the DEPENDING ON
phrase of the file’s RECORD clause.

4. The comparison specified by the KEY phrase relational operator occurs
between a key for a record in the file and a data item. If the file is indexed,
and the operand sizes are unequal, the comparison operates as if the longer
one was truncated on the right to the size of the shorter.

5. START LESS can only be used with a file whose organization is INDEXED
and whose access mode is DYNAMIC. The file must be opened for INPUT or
I-O.

6. For indexed files, the file system compares the Key of Reference according
to the native collating sequence and the sort order of the Key of Reference.
The comparisons IS GREATER THAN, IS GREATER THAN OR EQUAL TO,
and IS NOT LESS THAN refer to the logical record order, according to the
sort order of the key. For example, if the sort order is descending, the KEY
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GREATER THAN key-data phrase positions the file at the next record whose
key is less than key-data.

All other numeric or nonnumeric comparison rules apply.

The File Position Indicator is set to the first logical record in the file whose
key satisfies the comparison.

If no record in the file satisfies the comparison:

• The invalid key condition exists.

• START statement execution is unsuccessful.

• The File Position Indicator denotes that no valid next record is
established.

7. On Alpha and I64 systems, START LESS, LESS OR EQUAL, and NOT
GREATER set the file position indicator by making reference to the logical
record order in the same manner as START GREATER, GREATER OR
EQUAL and NOT LESS. ♦

8. The START verb can use the KEY IS syntax to establish the key field within
the file record which is the Key of Reference. An immediately subsequent
READ PRIOR will follow the order of the Key of Reference to access the
logically previous record in the file according to that Key of Reference. If the
KEY IS syntax is not used, the Key of Reference is understood to be the file’s
primary key field.

9. On Alpha and I64 systems, when a successful START LESS, LESS OR
EQUAL or NOT GREATER has occurred and the Key of Reference has
ascending order, the record pointed to by the file position indicator can have
the same key value or a smaller key value than the preceding record for the
Key of Reference. If the Key of Reference has descending order, the record
pointed to can have the same key value or a higher key value for the Key of
Reference. The record pointed to can have the same key value if duplicate
values for the Key of Reference exist on the file.

10. On Alpha and I64 systems, when an unsuccessful START LESS, LESS OR
EQUAL or NOT GREATER has occurred the key of reference is undefined
and a File Status value of 23 is returned, which indicates the INVALID KEY
condition, or record not found. ♦

11. The START statement updates the FILE STATUS data item for the file.

12. If the File Position Indicator denotes that an optional file is not present when
the START statement executes, the invalid key condition exists. START
statement execution is then unsuccessful.

13. The REGARDLESS and ALLOWING options can be used only in a manual
record-locking environment. To create a manual record-locking environment,
an access stream must specify the APPLY LOCK-HOLDING clause of the
I-O-CONTROL paragraph.

14. The REGARDLESS option allows an access stream to position to a record
regardless of any record locks held by other concurrent access streams. The
START REGARDLESS option holds no lock on the record positioned to.

This statement generates a soft record lock condition if the record that
is pointed to is locked by another access stream. This condition results
in a File Status value of 90 and invokes an applicable USE procedure,
if any. Execution of the START REGARDLESS statement is considered
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successful and execution resumes at the next statement following the START
REGARDLESS statement.

However, on Tru64 UNIX systems, the soft lock condition (file status 90) is
not recognized for indexed files. A START REGARDLESS statement for a
record locked by another process performs the requested operation on the
record and returns a file status of 00. ♦

15. On OpenVMS, the ALLOWING UPDATERS option permits other concurrent
access streams in the manual record-locking environment to simultaneously
READ, DELETE, START, and REWRITE the current record. This option
holds no lock on the current record.

16. The ALLOWING READERS option permits other concurrent access streams
in the manual record-locking environment to simultaneously READ the
current record. This option holds a read-lock on each such record read. No
access stream can update the current record until it is unlocked.♦

17. On OpenVMS, the ALLOWING NO OTHERS option locks the current record.
No other concurrent access stream can access this record until it is unlocked.
Only this access stream can update this record. ♦

18. On Tru64 UNIX systems, for indexed files the START statement (with or
without the ALLOWING phrase) does not detect or acquire a record lock on
the current record. ♦

19. On Alpha and I64 systems, if X/Open file sharing is in effect, the START
statement does not detect or acquire a lock. ♦

20. If Hewlett-Packard standard record locking is in effect and the ALLOWING
or REGARDLESS option is not specified, the default behavior for a START
statement is that a lock is acquired if the file is opened in I-O mode and locks
are detected in any mode.

21. On Alpha and I64, if ALLOWING or REGARDLESS is not specified, there is
potential for ambiguity regarding Hewlett-Packard standard record locking
or X/Open standard record locking. The selection of X/Open standard (rule
19) or Hewlett-Packard standard (rule 20) behavior is made as follows by the
compiler:

• If (on Alpha and I64) X/Open standard syntax (LOCK MODE or WITH
(NO) LOCK) has been specified for file-name prior to the START
statement, the compiler interprets the statement according to the X/Open
standard.

• If Hewlett-Packard standard syntax (LOCK-HOLDING, ALLOWING,
or REGARDLESS) has been specified for file-name prior to the START
statement, the compiler interprets the statement according to the
Hewlett-Packard standard.

• If no file-sharing syntax (LOCK-HOLDING, ALLOWING, REGARDLESS,
LOCK MODE, or WITH [NO] LOCK) has been specified for file-
name prior to the START statement, then the compiler uses the
/STANDARD=[NO]XOPEN qualifier on OpenVMS Alpha and I64 (or the
Tru64 UNIX equivalent -std [no]xopen flag) to determine whether the
START statement is interpreted as X/Open or Hewlett-Packard standard:
a setting of xopen selects the X/Open standard, whereas a setting of
noxopen selects the Hewlett-Packard standard.
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Any subsequent I-O locking syntax for the same file connector in your
program must be consistent: X/Open standard locking (Alpha, I64) and
Hewlett-Packard standard locking (implicit or explicit) cannot be mixed for
the same file connector.

Relative Files

22. The comparison described in General Rule 4 uses the data item referred to by
the RELATIVE KEY phrase in the file’s ACCESS MODE clause.

Indexed Files

23. The START statement establishes a Key of Reference as follows:

• If there is no KEY phrase, the file’s prime record key becomes the Key of
Reference.

• If there is a KEY phrase, and key-data is a record key for the file, that
record key becomes the Key of Reference.

• If there is a KEY phrase, and key-data is not a record key for the file, the
record key whose leftmost character corresponds to the leftmost character
of key-data becomes the Key of Reference.

The Key of Reference establishes the record ordering for the START
statement. (See General Rule 4.) If the execution of the START statement is
successful, later sequential READ statements use the same Key of Reference.

24. If there is a KEY phrase, the comparison described in General Rule 4 uses
the contents of key-data.

25. If there is no KEY phrase, the comparison described in General Rule 4 uses
the data item referred to in the file’s RECORD KEY clause.

26. If START statement execution is not successful, the Key of Reference is
undefined.

27. If there is an applicable USE AFTER EXCEPTION procedure, it executes
whenever an input or output condition occurs that would result in a nonzero
value in the first character of a FILE STATUS data item. However, it does
not execute if the condition is invalid key and there is an INVALID KEY
phrase.

See the rules for the INVALID KEY phrase, Section 6.6.10.

Technical Notes

• START statement execution can result in these FILE STATUS data item
values:

File
Status Meaning

00 Start is successful
23 Record not in file or optional file not present (invalid key)
47 File not open, or incompatible open mode
90 Record locked by another user; record available; soft lock
92 Record locked by another user; record not available; hard lock
30 All other permanent errors
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Additional References

• LOCK MODE clause in the FILE-CONTROL paragraph in Chapter 4

• LOCK-HOLDING phrase in APPLY Clause in I-O-CONTROL paragraph in
Chapter 4

• Section 6.1.4, Scope of Statements

• Section 6.5.1.1, Comparison of Numeric Operands

• Section 6.5.1.2, Comparison of Nonnumeric Operands

• Section 6.6.8, I-O Status

• Section 6.6.10, INVALID KEY Phrase

• OPEN statement

• READ statement

• UNLOCK statement

• USE statement
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STOP
Function
The STOP statement permanently terminates or temporarily suspends image
execution.

General Format

STOP
� RUN

disp

�

disp
is any literal, or any figurative constant except ALL literal.

Syntax Rule
If a STOP RUN statement is in a consecutive sequence of imperative statements
in a sentence, it must be the last statement in that sequence.

General Rules

1. STOP RUN terminates image execution.

2. STOP disp temporarily suspends the image. It displays the value of disp on
the user’s standard display device. If the user continues the image, execution
resumes with the next executable statement.

Technical Notes

1. STOP RUN causes all open files to be closed before control returns to the
operating system prompt.

2. STOP disp returns control to the operating system command language
interpreter level without terminating the image as follows:

• On Tru64 UNIX systems, STOP disp resumes execution when a carriage
return is entered. ♦

• On Open VMS systems, control returns to DCL. The user can continue
image execution with a CONTINUE command, which returns control to
the program at the next executable statement. ♦

Additional Reference (OpenVMS)
Refer to the OpenVMS User’s Manual and the OpenVMS DCL Dictionary for
more information on the Digital Command Language (DCL). ♦
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STRING
Function
The STRING statement concatenates the partial or complete contents of one or
more data items into a single data item.

General Format

STRING

��

 { src-string } . . . DELIMITED BY

�
delim
SIZE


 ��
� . . .

INTO dest-string � WITH POINTER pointr �

� ON OVERFLOW stment �

� NOT ON OVERFLOW stment2 �

� END-STRING �

src-string
is a nonnumeric literal or identifier of a DISPLAY data item. It is the sending
area.

delim
is a nonnumeric literal or the identifier of a DISPLAY data item. It is the
delimiter of src-string.

dest-string
is the identifier of a DISPLAY data item. It cannot be reference modified.
dest-string is the receiving area that contains the result of the concatenated
src-strings.

pointr
is an elementary numeric data item described as an integer. It points to the
position in dest-string to contain the next character moved.

stment
is an imperative statement executed for an on overflow condition.

stment2
is an imperative statement executed for a not on overflow condition.

Syntax Rules

1. pointr cannot define the assumed decimal scaling position character ( P ) in its
PICTURE clause.

2. Literals can be any figurative constant other than ALL literal.

3. The description of dest-string cannot: ( a ) have a JUSTIFIED clause or ( b )
indicate an edited data item.

4. The size of pointr must allow it to contain a value one greater than the size of
dest-string.
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General Rules

1. delim specifies the characters to delimit the move.

2. If the size of delim is zero characters, it never matches a src-string delimiter.

3. If src-string is a variable-length item, SIZE refers to the number of characters
currently defined for it.

4. When src-string or delim is a figurative constant, its size is one character.

5. The STRING statement moves characters from src-string to dest-string
according to the rules for alphanumeric to alphanumeric moves. However, no
space-filling occurs.

6. When the DELIMITED phrase contains delim:

• The contents of each src-string are moved to dest-string in the sequence in
which they appear in the statement.

• Data movement begins with the leftmost character and continues to the
right, character by character.

• Data movement ends when the STRING operation:

a. Reaches the end of src-string

b. Reaches the end of dest-string

c. Detects the characters specified by delim

7. No data movement occurs if the size of src-string is zero characters.

8. When the DELIMITED phrase contains the SIZE phrase:

• The contents of each src-string are moved to dest-string in the same
sequence in which they appear in the statement.

• Data movement begins with the leftmost character and continues to the
right, character by character.

• Data movement ends when the STRING operation either:

a. Has transferred all data in each src-string

b. Reaches the end of dest-string

• If src-string is a variable-length data item, the STRING statement moves
the number of characters currently defined for the data item.

9. When the POINTER phrase appears, the program must set pointr to an
initial value greater than zero before executing the STRING statement.

10. When there is no POINTER phrase, the STRING statement operates as if
pointr were set to an initial value of 1.

11. When the STRING statement transfers characters to dest-string, the moves
operate as if:

• The characters were moved one at a time from src-string.

• Each character were moved to the position in dest-string indicated by
pointr (if pointr does not exceed the length of dest-string).

• The value of pointr were increased by one before moving the next
character.
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12. When the STRING statement ends, only those parts of dest-string referenced
during statement execution change. The rest of dest-string contains the same
data as before the STRING statement executed.

13. Before it moves each character to dest-string, the STRING statement tests the
value of pointr.

If pointr is less than 1 or greater than the number of character positions in
dest-string, the STRING statement:

• Moves no further data to dest-string

• Executes the ON OVERFLOW phrase stment

• Transfers control to the end of the STRING statement if there is no ON
OVERFLOW phrase

If pointr is not less than 1 or not greater than the number of character
positions in dest-string after the data is transferred, the STRING statement:

• Executes the NOT ON OVERFLOW phrase stment2 and then transfers
control to the end of the STRING statement

• Transfers control to the end of the STRING statement if the NOT ON
OVERFLOW phrase is not specified

14. Subscript evaluation for dest-string and pointr occurs at the beginning of the
statement.

Additional References

• Section 6.1.4, Scope of Statements

• MOVE statement

Examples
The examples assume the following data description entries:

WORKING-STORAGE SECTION.
01 TEXT-STRING PIC X(30).
01 INPUT-MESSAGE PIC X(60).
01 NAME-ADDRESS-RECORD.

03 CIVIL-TITLE PIC X(5).
03 LAST-NAME PIC X(10).
03 FIRST-NAME PIC X(10).
03 STREET PIC X(15).
03 CITY PIC X(15).

* Assume CITY ends with "/"
03 STATE PIC XX.
03 ZIP PIC 9(5).

01 PTR PIC 99.
01 HOLD-PTR PIC 99.
01 LINE-COUNT PIC 99.
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• Using both delimiters and SIZE:

DISPLAY " ".
DISPLAY NAME-ADDRESS-RECORD.
MOVE SPACES TO TEXT-STRING.
STRING CIVIL-TITLE DELIMITED BY " "

" " DELIMITED BY SIZE
FIRST-NAME DELIMITED BY " "
" " DELIMITED BY SIZE
LAST-NAME DELIMITED BY SIZE
INTO TEXT-STRING.

DISPLAY TEXT-STRING.
DISPLAY STREET.
MOVE SPACES TO TEXT-STRING.
STRING CITY DELIMITED BY "/"
", " DELIMITED BY SIZE
STATE DELIMITED BY SIZE
" " DELIMITED BY SIZE
ZIP DELIMITED BY SIZE

INTO TEXT-STRING.
DISPLAY TEXT-STRING.

Results
Mr. Smith Irwin 603 Main St. Merrimack/ NH03054
Mr. Irwin Smith
603 Main St.
Merrimack, NH 03054

Miss Lambert Alice 1229 Exeter St.Boston/ MA03102
Miss Alice Lambert
1229 Exeter St.
Boston, MA 03102

Mrs. Gilbert Rose 8 State Street New York/ NY10002
Mrs. Rose Gilbert
8 State Street
New York, NY 10002

Mr. Cowherd Owen 1064 A St. Washington/ DC20002
Mr. Owen Cowherd
1064 A St.
Washington, DC 20002

6–232 Procedure Division



STRING Statement

• Using the POINTER phrase:

MOVE 0 TO LINE-COUNT.
MOVE 1 TO PTR.

GET-WORD.
IF LINE-COUNT NOT < 4
DISPLAY " " TEXT-STRING
GO TO GOT-WORDS.

ACCEPT INPUT-MESSAGE.
DISPLAY INPUT-MESSAGE.

SAME-WORD.
MOVE PTR TO HOLD-PTR.
STRING INPUT-MESSAGE DELIMITED BY SPACE
", " DELIMITED BY SIZE
INTO TEXT-STRING
WITH POINTER PTR
ON OVERFLOW

STRING " " DELIMITED BY SIZE
INTO TEXT-STRING
WITH POINTER HOLD-PTR

DISPLAY " " TEXT-STRING
MOVE SPACES TO TEXT-STRING

ADD 1 TO LINE-COUNT
MOVE 1 TO PTR
GO TO SAME-WORD.

GO TO GET-WORD.
GOT-WORDS.

EXIT.

Results
This
example
demonstrates
how

This, example, demonstrates,
the
STRING
statement
can

how, the, STRING, statement,
construct
text
strings

can, construct, text,
using
the
POINTER
phrase

strings, using, the, POINTER,
phrase,
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SUBTRACT
Function
The SUBTRACT statement subtracts one, or the sum of two or more, numeric
items from one or more items. It stores the difference in one or more items.

General Format
Format 1

SUBTRACT { num } . . . FROM { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-SUBTRACT �

Format 2

SUBTRACT { num } . . . FROM num GIVING { rsult [ ROUNDED ] } . . .

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-SUBTRACT �

Format 3

SUBTRACT
�

CORRESPONDING
CORR



grp-1 FROM grp-2 [ ROUNDED ]

� ON SIZE ERROR stment �

� NOT ON SIZE ERROR stment2 �

� END-SUBTRACT �

num
is a numeric literal or the identifier of an elementary numeric item.

rsult
is the identifier of an elementary numeric item. However, in Format 2, rsult can
be an elementary numeric edited item. It is the resultant identifier.

stment
is an imperative statement executed when a size error condition has occurred.

stment2
is an imperative statement executed when no size error condition has occurred.

grp-1
is the identifier of a group item.

grp-2
is the identifier of a group item.

Syntax Rule
CORR is an abbreviation for CORRESPONDING.

6–234 Procedure Division



SUBTRACT Statement

General Rules

1. In Format 1, the values of the operands before the word FROM are summed.
This total is then subtracted from each rsult.

2. In Format 2, the values of the operands before the word FROM are summed.
This total is subtracted from the num following the word FROM. The result
replaces the current value of each rsult.

3. In Format 3, data items in grp-1 are subtracted from and stored in the
corresponding data items in grp-2.

Additional References

• Section 6.1.4, Scope of Statements

• Section 6.6.1, Arithmetic Operations

• Section 6.6.2, Multiple Receiving Fields in Arithmetic Statements

• Section 6.6.3, ROUNDED Phrase

• Section 6.6.4, ON SIZE ERROR Phrase

• Section 6.6.5, CORRESPONDING Phrase

• Section 6.6.7, Overlapping Operands and Incompatible Data

Examples
Each of the examples assume these data descriptions and initial values.

INITIAL VALUES

03 ITEMA PIC S99 VALUE -85. -85
03 ITEMB PIC 99 VALUE 2. 2
03 ITEMC VALUE "123".

05 ITEMD OCCURS 3 TIMES 1 2 3
PIC 9.

03 ITEME PIC S99 VALUE -95. -95

1. Without GIVING phrase: RESULTS

SUBTRACT 2 ITEMB FROM ITEMA. ITEMA = -89

2. SIZE ERROR clause:

(When the size error condition occurs and the SIZE ERROR clause is
specified, the values of the affected resultant identifiers do not change.)

SUBTRACT 14 FROM ITEMA, ITEME ITEMA = -99
ON SIZE ERROR ITEME = -95
MOVE 0 TO ITEMB. ITEMB = 0

3. NOT ON SIZE ERROR clause:

SUBTRACT 14 FROM ITEMA ITEMA = -99
ON SIZE ERROR
MOVE 9 TO ITEMB.

NOT ON SIZE ERROR
MOVE 1 TO ITEMB. ITEMB = 1
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4. Multiple receiving fields:

(The operations proceed from left to right. Therefore, the subscript for ITEMB
is evaluated after the subtraction changes its value.)

SUBTRACT 1 FROM ITEMB ITEMD (ITEMB). ITEMB = 1
ITEMD (1) = 0

5. GIVING phrase:

SUBTRACT ITEME ITEMD (ITEMB) FROM ITEMA ITEMB = 8
GIVING ITEMB.

6. END-SUBTRACT:

(The first SUBTRACT terminates with END-SUBTRACT. If the SIZE ERROR
condition had not occurred, the second SUBTRACT statement would have
executed anyway: the value of ITEMA would have been -86.)

SUBTRACT 10 ITEMB FROM ITEMD (ITEMB) ITEMD (2) = 2
ON SIZE ERROR ITEMA = 0

MOVE 0 TO ITEMA
END-SUBTRACT.

SUBTRACT 1 FROM ITEMA. ITEMA = -1

(The following example shows the usefulness of END-SUBTRACT inside
an IF statement. Without it, there would be no way to code the DISPLAY
statements.)

IF ITEMB < 3 AND > 1
SUBTRACT 1 FROM ITEMD(ITEMB)

ON SIZE ERROR
MOVE 0 TO ITEMA

END-SUBTRACT
DISPLAY ’yes’

ELSE
DISPLAY ’no’.
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SUPPRESS
Function
The SUPPRESS statement causes the Report Writer Control System (RWCS) to
inhibit the presentation of a report group.

General Format

SUPPRESS PRINTING

Syntax Rule
The SUPPRESS statement can appear only in a USE BEFORE REPORTING
Declarative procedure.

General Rules

1. The SUPPRESS statement inhibits only the presentation of a report-group-
name (a 01-level Report Group Description entry).

2. Each time the presentation of a report group is to be inhibited, the program
must execute a SUPPRESS statement.

3. The SUPPRESS statement directs the Report Writer Control System (RWCS)
to inhibit the processing of these report group functions:

• The presentation of the print lines

• The processing of all LINE clauses

• The processing of the NEXT GROUP clause

• The adjustment of LINE-COUNTER

4. The SUPPRESS statement does not inhibit the processing of sum counters or
control breaks.

Additional References

• Section 6.6.7, Overlapping Operands and Incompatible Data

• USE statement

Example
PROCEDURE DIVISION.
DECLARATIVES.
DET SECTION.

USE BEFORE REPORTING DETAIL-LINE.
DETA-1.

IF SORTED-NAME = NAME
ADD A TO B
SUPPRESS PRINTING.

IF NAME = SPACES SUPPRESS PRINTING.
END DECLARATIVES.
MAIN SECTION.

.

.

.
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TERMINATE
Function
The TERMINATE statement causes the Report Writer Control System (RWCS) to
complete the processing of the specified report.

General Format

TERMINATE { report-name } . . .

report-name
names a report defined by a Report Description entry in the Report Section of the
Data Division.

General Rules

1. If the TERMINATE statement includes more than one report-name, the
statement executes as if there were a separate TERMINATE statement for
each report-name.

2. The program cannot execute a TERMINATE statement unless an INITIATE
statement was executed before the TERMINATE statement for that report,
and the program did not already execute a TERMINATE statement for that
report.

3. If the program did not execute a GENERATE statement, the execution of a
TERMINATE statement does not cause the RWCS to produce any of its report
groups or perform any of the related processing.

4. The TERMINATE statement causes the RWCS to:

• Produce all CONTROL FOOTING report groups beginning with the minor
CONTROL FOOTING report group.

• Produce the REPORT FOOTING report group.

The RWCS makes the prior set of control data item values available to
these two report groups and to any associated USE procedure. This action
simulates a control break at the most major level.

5. The RWCS automatically processes the PAGE HEADING and PAGE
FOOTING report groups, if present, when it must advance the report to
a new page to present a CONTROL HEADING, DETAIL, or CONTROL
FOOTING report group.

6. The TERMINATE statement does not automatically close a report file; the
program must close the file. The program must terminate the report before
the CLOSE statement can close the report file.

Additional Reference
USE statement.
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UNLOCK
Function
The UNLOCK statement removes a record lock from the current record or from
all locked records in the file. On Alpha and I64 systems, the X/Open standard
UNLOCK statement always removes the record lock from all locked records in
the file.

Format 1—Hewlett-Packard Standard

UNLOCK file-name
�

RECORD
ALL RECORDS

�

Format 2—X/Open Standard (Alpha, I64)

UNLOCK file-name
�

RECORD
RECORDS

�
♦

file-name
is the name of a sequential, relative, or indexed file described in the Data
Division.

Syntax Rules

1. For Format 1, if the UNLOCK statement does not include the RECORD
or the ALL RECORDS option, the singular RECORD option is the default.
(However, see General Rule 3.)

2. For Format 2, the RECORD and RECORDS options have the same effect: to
unlock all currently locked records. This behavior also is the default if neither
option is specified.

General Rules

1. The first access stream to lock a record owns the record lock for that record.

2. Only the owner of a record lock can unlock the record.

3. For Format 1, implicitly (by default) or explicitly specifying the RECORD
option unlocks the current record. Therefore, you must specify ALL
RECORDS explicitly to unlock all the record locks held on file-name.

The single exception to this rule for Format 1 is that for indexed files the
RECORD option (implicitly or explicitly) is unsupported on Tru64 UNIX
systems. The ALL RECORDS phrase is assumed. ♦

4. For Format 2, whether you specify the RECORD option or the RECORDS
option, the effect is the same: to unlock all record locks held on file-name by
the current access stream.

5. If an access stream attempts to unlock a record (or records) in a file
containing no record locks, the statement is considered successful and
execution resumes at the statement following the UNLOCK statement.

6. Because both formats of the UNLOCK statement include the UNLOCK RECORD
and UNLOCK forms, the compiler determines whether to interpret these forms
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of the statement as X/Open standard (on Alpha and I64) or Hewlett-Packard
standard as follows:

• If on Alpha and I64 X/Open standard syntax (LOCK MODE or WITH
(NO) LOCK) has been specified for file-name prior to the UNLOCK
statement, the compiler interprets the statement according to the X/Open
standard.

• If Hewlett-Packard standard syntax (LOCK-HOLDING, ALLOWING, or
REGARDLESS) has been specified for file-name prior to the UNLOCK
statement, the compiler interprets the statement according to the
Hewlett-Packard standard.

• If no file-sharing syntax (LOCK-HOLDING, ALLOWING, REGARDLESS,
LOCK MODE, or WITH [NO] LOCK) has been specified for file-
name prior to the UNLOCK statement, then the compiler uses the
/STANDARD=[NO]XOPEN qualifier on OpenVMS Alpha and I64 (or the
Tru64 UNIX equivalent -std [no]xopen flag) to determine whether the
START statement is interpreted as X/Open or Hewlett-Packard standard:
a setting of xopen selects the X/Open standard, whereas a setting of
noxopen selects the Hewlett-Packard standard.

Any subsequent I-O locking syntax for the same file connector in your
program must be consistent: X/Open standard locking and Hewlett-Packard
standard locking (implicit or explicit) cannot be mixed for the same file
connector.

Technical Notes

• UNLOCK statement execution can result in these FILE STATUS data item
values:

File
Status

File
Organization

Access
Method Meaning

00 All All Unlock is successful
93 All All No current record
94 All All File not open, or incompatible open

mode
30 All All All other permanent errors

Additional References

• LOCK-HOLDING phrase in APPLY Clause in I-O-CONTROL paragraph in
Chapter 4

• LOCK MODE phrase in SELECT clause in File Control paragraph in
Chapter 4

• Technical Notes for DELETE statement

• OPEN statement
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Hewlett-Packard Standard Examples
These examples assume only one access stream for the image. The following
examples refer to this partial program:

CONFIGURATION SECTION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO "CLIENT.DAT"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS MASTER-KEY
FILE STATUS IS FILE-STAT.

I-O-CONTROL.

*
* This APPLY clause is required syntax for manual record locking
*

APPLY LOCK-HOLDING ON MASTER-FILE.

DATA DIVISION.
FD MASTER-FILE

LABEL RECORDS STANDARD.
01 MASTER-RECORD.

.

.

.
PROCEDURE DIVISION.
A100-BEGIN.

*
* The ALLOWING phrase enables file sharing
*

OPEN I-O MASTER-FILE ALLOWING ALL.
.
.
.

A900-END-OF-JOB.

1. Unlocking the record lock on the current record by taking the default
RECORD option:

READ MASTER-FILE KEY IS MASTER-KEY
ALLOWING NO OTHERS.

REWRITE MASTER-RECORD ALLOWING NO OTHERS.
UNLOCK MASTER-FILE.

2. Explicitly unlocking the record lock on the current record:

READ MASTER-FILE KEY IS MASTER-KEY
ALLOWING NO OTHERS.

.

.

.
UNLOCK MASTER-FILE RECORD.

3. Unlocking all records in MASTER-FILE:
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PERFORM A100-READ-MASTER UNTIL
MASTER-KEY = ID-KEY

OR
MASTER-KEY > ID-KEY.

.

.

.
UNLOCK MASTER-FILE ALL RECORDS.
.
.
.

A100-READ-MASTER.
READ MASTER-FILE ALLOWING NO OTHERS.
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X/Open Standard Example (Alpha, I64)
The following example shows the use of X/Open standard syntax:

SELECT employee-file ASSIGN TO "EMPFIL"
ORGANIZATION IS INDEXED
ACCESS MODE IS DYNAMIC
RECORD KEY IS employee-id
LOCK MANUAL LOCK ON MULTIPLE RECORDS
FILE STATUS IS emp-stat.

.

.

.
* The file is implicitly shareable via the SELECT specification.

OPEN I-O employee-file.

PERFORM UNTIL emp-stat = end-of-file
READ employee-file NEXT RECORD

WITH LOCK

IF employee-job-code = peon-code
PERFORM find-boss-record

ENDIF
.
.
.

REWRITE employee-record

* This will unlock this record and the boss’s
* record found earlier.

UNLOCK employee-file RECORDS

END-PERFORM.

FIND-BOSS-RECORD.
START employee-file

KEY > employee-job-code.
READ employee-file NEXT WITH LOCK.
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UNSTRING
Function
The UNSTRING statement separates contiguous data in a sending field and
stores it in one or more receiving fields.

General Format

UNSTRING src-string�
� DELIMITED BY � ALL � delim

�
OR � ALL � delim

�
. . .

�
�

INTO
�

dest-string � DELIMITER IN delim-dest � � COUNT IN countr �



. . .

� WITH POINTER pointr �

� TALLYING IN tally-ctr �

� ON OVERFLOW stment �

� NOT ON OVERFLOW stment2 �

� END-UNSTRING �

src-string
is the identifier of an alphanumeric class data item. It cannot be reference
modified. Src-string is the sending field.

delim
is a nonnumeric literal or the identifier of an alphanumeric data item. It is the
delimiter for the UNSTRING operation.

dest-string
is the identifier of an alphanumeric, alphabetic, or numeric DISPLAY data item.
It is the receiving field for the data from src-string.

delim-dest
is the identifier of an alphanumeric data item. It is the receiving field for
delimiters.

countr
is the identifier of an elementary numeric data item described as an integer. It
contains the count of characters moved.

pointr
is the identifier of an elementary numeric data item described as an integer. It
points to the current character position in src-string.

tally-ctr
is the identifier of an elementary numeric data item described as an integer. It
counts the number of dest-string fields accessed during the UNSTRING operation.

stment
is an imperative statement executed for an on overflow condition.
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stment2
is an imperative statement executed for a not on overflow condition.

Syntax Rules

1. Literals can be any figurative constant other than ALL literal.

2. pointr must be large enough to contain a value one greater than the size of
src-string.

3. The DELIMITER IN and COUNT IN phrases can appear only if there is a
DELIMITED BY phrase.

4. countr, pointr, dest-string, and tally-ctr cannot define the assumed decimal
scaling position character P in their PICTURE clauses.

General Rules

1. countr represents the number of characters in src-string isolated by the
delimiters for the move to dest-string. The count does not include the
delimiter characters.

2. When delim is a figurative constant, its length is one character.

3. When the ALL phrase is present:

• One occurrence, or two or more contiguous occurrences, of delim (whether
or not they are figurative constants) is treated as only one occurrence.

• One occurrence of delim is moved to delim-dest when there is a
DELIMITER IN phrase.

4. When any examination finds two contiguous delimiters, the current dest-
string is filled with:

• Spaces, if its class is alphabetic or alphanumeric

• Zeros, if its class is numeric

5. delim can contain any characters in the computer character set.

6. Each delim is one delimiter. When delim contains more than one character,
all its characters must be in src-string (in contiguous positions and the given
order) to qualify as a delimiter.

7. When the DELIMITED BY phrase contains an OR phrase, an OR condition
exists between all occurrences of delim. Each delim is compared to src-
string. If a match occurs, the character in src-string is a single delimiter. No
character in src-string can be part of more than one delimiter.

8. Each delim applies to src-string in the order it appears in the UNSTRING
statement.

9. When execution of the UNSTRING statement begins, the current receiving
field is the first dest-string.

10. If there is a POINTER phrase, the string of characters in src-string is
examined, beginning with the position indicated by pointr. Otherwise,
examination begins with the leftmost character position.

11. If there is a DELIMITED BY phrase, examination proceeds to the right until
the UNSTRING statement detects delim. (See General Rule 6.)
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12. If there is no DELIMITED BY phrase, the number of characters examined
equals the size of the current dest-string. However, if the sign of dest-string is
defined as occupying a separate character position, UNSTRING examines one
less character than the size of dest-string. If dest-string is a variable-length
data item, its current size determines the number of characters examined.

13. If the UNSTRING statement reaches the end of src-string before detecting the
delimiting condition, examination ends with the last character examined.

14. The characters examined (excluding delim) are:

• Treated as an elementary alphanumeric data item

• Moved to the current dest-string according to the MOVE statement rules

15. When there is a DELIMITER IN phrase, the delimiter is:

• Treated as an elementary alphanumeric data item

• Moved to delim-dest according to the MOVE statement rules

If the delimiting condition is the end of src-string, delim-dest is space-filled.

16. The COUNT IN phrase causes the UNSTRING statement to:

• Count the number of characters examined (excluding the delimiter).

• Move the count to countr according to the elementary move rules.

17. When there is a DELIMITED BY phrase, UNSTRING continues examining
characters immediately to the right of the delimiter. Otherwise, examination
continues with the character immediately to the right of the last one
transferred.

18. After data transfers to dest-string, the next dest-string becomes the current
receiving field.

19. The process described in General Rules 12 to 18 repeats until either:

• There are no more characters in src-string.

• The last dest-string has been processed.

20. The UNSTRING statement does not initialize pointr or tally-ctr. The program
must set their initial values before executing the UNSTRING statement.

21. The UNSTRING statement adds one to pointr for each character it examines
in src-string. When UNSTRING execution ends, pointr contains a value equal
to its beginning value plus the number of characters the statement examined
in src-string.

22. At the end of an UNSTRING statement with the TALLYING phrase, tally-ctr
contains a value equal to its beginning value plus the number of dest-string
fields the statement accessed.

23. An overflow condition can arise from either of these conditions:

• When the UNSTRING statement begins, the value of pointr is less than
one or greater than the number of characters in src-string.

• During UNSTRING execution, all dest-string fields have been processed,
and there are unexamined src-string characters.
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24. When an overflow condition occurs, if there is a NOT ON OVERFLOW phrase,
this phrase is ignored and the UNSTRING operation ends. If there is an ON
OVERFLOW phrase, stment executes. Otherwise, control passes to the end of
the UNSTRING statement.

25. At the end of the UNSTRING operation, when an overflow condition does not
exist, the ON OVERFLOW phrase is ignored and the UNSTRING operation
ends if a NOT ON OVERFLOW phrase does not exist. If there is a NOT ON
OVERFLOW phrase, stment2 executes. After stment2 executes, control is
passed to the end of the UNSTRING statement.

26. If there is a DELIMITED BY phrase and the size of dest-string is zero
characters, no characters are moved. However, delim-dest contains the
matched delimiter and countr contains the character count.

27. If there is no DELIMITED BY phrase and the size of dest-string is zero
characters, no characters are moved. The value of pointr does not change.
UNSTRING continues with the next dest-string.

28. If the size of delim is zero characters, delim does not match any characters in
src-string.

Additional References

• Section 6.1.4, Scope of Statements

• MOVE statement

Examples
The examples assume these data descriptions:

WORKING-STORAGE SECTION.
01 INMESSAGE PIC X(20).
01 THEDATE.

03 THEYEAR PIC XX JUST RIGHT.
03 THEMONTH PIC XX JUST RIGHT.
03 THEDAY PIC XX JUST RIGHT.

01 HOLD-DELIM PIC XX.
01 PTR PIC 99.
01 FIELD-COUNT PIC 99.
01 MONTH-COUNT PIC 99.
01 DAY-COUNT PIC 99.
01 YEAR-COUNT PIC 99.

• With OVERFLOW phrase:

DISPLAY "Enter a date: " NO ADVANCING.
ACCEPT INMESSAGE.
UNSTRING INMESSAGE
DELIMITED BY "-" OR "/" OR ALL " "
INTO THEMONTH DELIMITER IN HOLD-DELIM

THEDAY DELIMITER IN HOLD-DELIM
THEYEAR DELIMITER IN HOLD-DELIM

ON OVERFLOW MOVE ALL "0" TO THEDATE.
INSPECT THEDATE REPLACING ALL " " BY "0".
DISPLAY THEDATE.

Procedure Division 6–247



UNSTRING Statement

Results
Enter a date: 6/13/87
870613
Enter a date: 6-13-87
870613
Enter a date: 6-13 87
870613
Enter a date: 6/13/87/2
000000
Enter a date: 1-2-3
030102

• With POINTER and TALLYING phrases:

DISPLAY "Enter two dates in a row: " NO ADVANCING.
ACCEPT INMESSAGE.
MOVE 1 TO PTR.
PERFORM DISPLAY-TWO 2 TIMES.
GO TO DISPLAYED-TWO.

DISPLAY-TWO.
MOVE SPACES TO THEDATE.
MOVE 0 TO FIELD-COUNT.
UNSTRING INMESSAGE
DELIMITED BY "-" OR "/" OR ALL " "
INTO THEMONTH DELIMITER IN HOLD-DELIM

THEDAY DELIMITER IN HOLD-DELIM
THEYEAR DELIMITER IN HOLD-DELIM

WITH POINTER PTR
TALLYING IN FIELD-COUNT.

INSPECT THEDATE REPLACING ALL " " BY "0".
DISPLAY THEDATE " " PTR " " FIELD-COUNT.

DISPLAYED-TWO.
EXIT.

Results
Enter two dates in a row: 6/13/87 8/15/87
870613 09 03
870815 21 03
Enter two dates in a row: 10 15 87-1 1 88
871015 10 03
880101 21 03
Enter two dates in a row: 6/13/87-12/31/87
870613 09 03
871231 21 03
Enter two dates in a row: 6/13/87-12/31
870613 09 03
001231 21 02
Enter two dates in a row: 6/13/87/12/31/87
870613 09 03
871231 21 03
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• With COUNT phrase:

DISPLAY "Enter two dates in a row: " NO ADVANCING.
ACCEPT INMESSAGE.
MOVE 1 TO PTR.
PERFORM DISPLAY-TWO 2 TIMES.
GO TO DISPLAYED-TWO.

DISPLAY-TWO.
MOVE SPACES TO THEDATE.
MOVE 0 TO FIELD-COUNT MONTH-COUNT DAY-COUNT YEAR-COUNT.
UNSTRING INMESSAGE
DELIMITED BY "-" OR "/" OR ALL " "
INTO THEMONTH DELIMITER IN HOLD-DELIM COUNT MONTH-COUNT

THEDAY DELIMITER IN HOLD-DELIM COUNT DAY-COUNT
THEYEAR DELIMITER IN HOLD-DELIM COUNT YEAR-COUNT

WITH POINTER PTR
TALLYING IN FIELD-COUNT.

INSPECT THEDATE REPLACING ALL " " BY "0".
DISPLAY THEDATE " " PTR " " FIELD-COUNT

" : " MONTH-COUNT "-" DAY-COUNT "-" YEAR-COUNT.
DISPLAYED-TWO.

EXIT.

Results
Enter two dates in a row: 6/13/87 8/15/87
870613 09 03 : 01-02-02
870815 21 03 : 01-02-02
Enter two dates in a row: 10 15 87-1 1 88
871015 10 03 : 02-02-02
880101 21 03 : 01-01-02
Enter two dates in a row: 6/13/87-12/31/87
870613 09 03 : 01-02-02
871231 21 03 : 02-02-02
Enter two dates in a row: 6/13/87-12/31
870613 09 03 : 01-02-02
001231 21 02 : 02-02-00
Enter two dates in a row: 6/13/87/12/31/87
870613 09 03 : 01-02-02
871231 21 03 : 02-02-02
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USE
Function
The USE statement specifies Declarative USE procedures to handle input/output
exceptions and errors. It can also specify procedures to be executed before the
program processes a specific report group.

General Formats
Format 1

USE � GLOBAL � AFTER STANDARD
�

EXCEPTION
ERROR



PROCEDURE

ON

�������
�����


� file-name � . . .
INPUT
OUTPUT
I-O
EXTEND

�������
������

.

Format 2

USE � GLOBAL � BEFORE REPORTING group-data-name .

file-name
is the name of a file connector described in a file description entry in a Data
Division. It cannot refer to a sort or merge file.

group-data-name
is the name of a report group in a report group description entry in a Data
Division. It must not appear in more than one USE statement.

Syntax Rules
All Formats

1. A USE statement can be used only in a sentence immediately after a section
header in the Procedure Division declaratives area. It must be the only
statement in the sentence. The rest of the section can contain zero, one, or
more paragraphs to define the USE procedures.

2. The USE statement itself does not execute. It defines the conditions that
cause execution of the USE procedure.

Format 1

3. The ERROR and EXCEPTION syntax are equivalent and interchangeable.

Format 2

4. Of the four Report Writer Procedure Division verbs (SUPPRESS, GENERATE,
INITIATE, or TERMINATE), only the SUPPRESS statement can appear in
a USE BEFORE REPORTING procedure. A PERFORM statement in a USE
BEFORE REPORTING procedure must not have GENERATE, INITIATE, or
TERMINATE statements in its range.

The USE procedure must not alter the value of any control data item.
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General Rules
All Formats

1. At run time, two special precedence rules apply for the selection of a USE
procedure when a program is contained within another program. In applying
these rules, only the first qualifying USE procedure is selected for execution.
The order of precedence for the selection of a USE procedure is as follows:

• First, select the applicable USE procedure within the program containing
the statement that caused the qualifying condition.

• If a USE procedure is not found in the program using the previous
rule, the Run-Time System searches all programs directly or indirectly
containing that program for a USE GLOBAL procedure. This search
continues until the Run-Time System either: ( a ) finds an applicable
USE GLOBAL procedure, or ( b ) finds the outermost containing program,
if there is no applicable USE GLOBAL procedure. Either condition
terminates the search.

2. A Declarative USE procedure cannot refer to a non-Declarative procedure.
However, only the PERFORM statement can transfer execution control from:

• A Declarative USE procedure to another Declarative USE procedure

• A non-Declarative procedure to a Declarative USE procedure

3. After a USE procedure executes, control returns to the next executable
statement in the invoking routine, if one is defined. Otherwise, control
transfers according to the rules for Explicit and Implicit Transfers of Control.

4. A program must not execute a statement in a USE procedure that would
cause execution of a USE procedure that had been previously executed and
had not yet returned control to the routine that invoked it.

Format 1

5. A USE procedure executes automatically:

• After the system’s input-output exception processing completes

• When an invalid key or at end condition results from an input-output
statement that has no INVALID KEY or AT END clause

6. If there is an applicable USE AFTER EXCEPTION procedure, it executes
whenever an input or output condition occurs that would result in a nonzero
value in the first character of a FILE STATUS data item. However, it does
not execute if: ( a ) the condition is invalid key and there is an INVALID KEY
phrase, or ( b ) the condition is at end, and there is an AT END phrase.

7. One input-output exception cannot cause more than one USE AFTER
EXCEPTION procedure to execute.

8. More than one USE AFTER EXCEPTION procedure can relate to an input-
output operation when there is one procedure for file-name and another for
the applicable open mode. In this case, only the procedure for file-name
executes. This rule applies only to USE procedures in the same program.

9. If no applicable USE procedures are found in the local program, then
containing programs are searched upwards for: ( a ) USE GLOBAL procedures
for the file, and then ( b ) for USE GLOBAL procedures for the input-output
type.
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10. A USE AFTER EXCEPTION procedure specifying an open mode applies to an
input-output operation only when all of the following are true:

– The open mode (INPUT, OUTPUT, I-O, or EXTEND) specified in the USE
AFTER EXCEPTION procedure is identical to the open mode in effect
(that is, the open mode established by the OPEN statement).

– The file is open or in the process of being opened.

– There is no file-name declarative procedure for that file within the same
program.

11. If an input-output error occurs for a file that is not open or not in the process
of being opened, the only applicable USE procedure is a file-name USE
procedure.

Format 2

12. The Report Writer Control System (RWCS) executes the USE BEFORE
REPORTING procedure before it processes the named group-data-name
report group. Only during the processing of the report group does the RWCS
change prior values, execute control breaks, adjust LINE-COUNTER and
PAGE-COUNTER, and present the report group.

Additional References

• Section 6.2.6, Scope of Names

• Section 6.3.1, Explicit and Implicit Procedure Division References

• Description of exception handling in the HP COBOL User Manual.

Example
***************************************************************
* This example assumes that SELECT and FD statements exist
* for FILE1-SEQ, FILE1-RAN, FILE1-DYN and FILE1-EXT.
* All three USE procedures are local to the program
* that hosts this fragment.
* At run-time if there is an exception on opening FILE1-RAN
* or FILE1-DYN, FILE1-ERR section can be invoked.
* If there is an exception on opening FILE1-SEQ, INPUT-ERR
* section can be invoked. Since there is no USE procedure
* declared for the EXTEND mode or for FILE1-EXT,
* an exception on opening that file will cause an abnormal
* termination of the program. Also, since FILE1-SEQ in the
* fragment is not opened for OUTPUT mode, the OUTPUT-ERR USE
* procedure is not eligible to be invoked here.
***********************************************************

PROCEDURE DIVISION.
DECLARATIVES.
INPUT-ERR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON INPUT.
INP-1.
DISPLAY "INVOKED USE PROCEDURE FOR INPUT".
OUTPUT-ERR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON OUTPUT.
OUT-1.
DISPLAY "INVOKED USE PROCEDURE FOR OUTPUT".
FILE1-ERR SECTION.
USE AFTER STANDARD ERROR PROCEDURE ON FILE1-RAN, FILE1-DYN.
FILE1-1.
DISPLAY "INVOKED USE PROCEDURE FOR FILES".

END DECLARATIVES.
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MAIN-PROGRAM SECTION.
P0. DISPLAY "***ENTERED USE TEST PROGRAM FRAGMENT***".

OPEN INPUT FILE1-SEQ.

OPEN OUTPUT FILE1-RAN.

OPEN I-O FILE1-DYN.

OPEN EXTEND FILE1-EXT.

. . .
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WRITE
Function
The WRITE statement releases a logical record to an output or input-output file.
It can also position lines vertically on a logical page.

General Formats

Format 1—Sequential or Line Sequential Files

WRITE rec-name � FROM src-item �

� ALLOWING NO OTHERS ��
�����
�

BEFORE
AFTER



ADVANCING

����
��


advance-num
� LINE

LINES

�
top-of-page-name
PAGE

����
���

�
�����

�
� AT

�
END-OF-PAGE
EOP



stment

�
�

�
� NOT AT

�
END-OF-PAGE
EOP



stment2

�
�

� END-WRITE �

Format 2—Relative or Indexed Files

WRITE rec-name � FROM src-item �

� ALLOWING NO OTHERS �

� INVALID KEY stment �

� NOT INVALID KEY stment2 �

� END-WRITE �

rec-name
is the name of a logical record described in the Data Division File Section. The
logical record cannot be in a sort-merge file description entry.

src-item
is the identifier of the data item that contains the data.

advance-num
is an integer or the identifier of an unsigned data item described as an integer.
Its value can be zero.

top-of-page-name
is a mnemonic-name equated to C01 in the SPECIAL-NAMES paragraph of the
Environment Division. It represents top-of-page and is equivalent to the PAGE
phrase.
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stment
is an imperative statement executed when the relevant condition (end-of-page or
invalid key) occurs.

stment2
is an imperative statement executed when the relevant condition (not at end-of-
page or not invalid key) occurs.

Syntax Rules

1. Format 1 must be used for sequential files.

2. Format 2 must be used for relative and indexed files.

3. If the file description entry containing rec-name has a LINAGE clause, the
WRITE statement cannot have an ADVANCING top-of-page-name phrase.

4. If there is an END-OF-PAGE phrase, the file description entry containing
rec-name must have a LINAGE clause.

5. The words END-OF-PAGE and EOP are equivalent.

6. In Format 2, there must be an INVALID KEY phrase if there is no applicable
USE AFTER EXCEPTION procedure for the file.

7. To use the ALLOWING option, the program must include these entries:

• LOCK-HOLDING clause of the I-O-CONTROL paragraph

• ALLOWING option of the OPEN statement

8. If src-item is a function-identifier, it must reference an alphanumeric function.
When src-item is not a function-identifier, rec-name and src-item must not
reference the same storage area.

9. The ADVANCING PAGE and END-OF-PAGE phrase cannot be used in the
same WRITE statement.

10. ADVANCING cannot be used with LINE SEQUENTIAL (Alpha, I64).

11. The ALLOWING clause is Hewlett-Packard standard file-sharing syntax, and
cannot be used for a file connector that has had X/Open standard file-sharing
syntax (WITH [NO] LOCK or LOCK MODE) specified.

General Rules
All Files

1. The record is no longer available in rec-name after a WRITE statement
successfully executes. However, if the associated file-name is in a SAME
RECORD AREA clause, the record is available in rec-name. In this case, the
record is also available in the record areas of other file-names in the same
SAME RECORD AREA clause.

2. The FROM Phrase section lists the rules for the FROM phrase.

3. For mass storage files, the WRITE statement does not affect the File Position
Indicator.

4. The WRITE statement updates the value of the FILE STATUS data item for
the file.

5. A file’s maximum record size is set when it is created. It cannot be changed
later.
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6. On a mass storage device, the number of characters required to store a logical
record in a file depends on file organization and record type. (See Technical
Notes.)

7. WRITE statement execution releases a logical record to the I-O system.

8. The ALLOWING NO OTHERS option can be used only in a Hewlett-Packard
standard manual record-locking environment. To create a manual record-
locking environment, the program must open file-name with an ALLOWING
option and specify the APPLY LOCK-HOLDING phrase of the I-O-CONTROL
paragraph. If you use manual locking (APPLY LOCK-HOLDING), then the
ALLOWING NO OTHERS clause on the WRITE statement is required.

9. The ALLOWING NO OTHERS option locks the current record. No other
concurrent access stream can access this record until it is unlocked.

However, on Tru64 UNIX systems, for indexed files the WRITE statement
with the ALLOWING clause does not acquire a record lock. ♦

10. If there is an applicable USE AFTER EXCEPTION procedure, it executes
whenever an input or output condition occurs that would result in a nonzero
value in the first character of a FILE STATUS data item. However, it does
not execute if: ( a ) the condition is invalid key, and ( b ) there is an INVALID
KEY phrase.

See the rules for the INVALID KEY phrase, Section 6.6.10.

11. The number of character positions in the record to be written must not
be less than the lowest or greater than the highest number of character
positions allowed by the RECORD VARYING clause. In either case, the
WRITE statement is unsuccessful and the following occurs:

• The WRITE operation does not take place.

• The contents of the record area remain unaffected.

• The I-O status of the file is set to a value that indicates the cause of the
condition.

Sequential or Line Sequential (Alpha, I64) Files

12. The file must be open in the OUTPUT or EXTEND mode when the WRITE
statement executes. (See Table 6–15.)

13. The sequence of records in a sequential file is set by the order of WRITE
statement executions that create the file. The relationship does not change,
except when records are added to the end of the file.

14. For a sequential file open in the extend mode, the WRITE statement adds
records to the end of the file as if the file were open in the output mode. If the
file has records, the first record written after execution of an OPEN statement
with the EXTEND phrase is the successor of the file’s last record.

15. When a program tries to write beyond a sequential file’s externally defined
boundaries (for example,attempting to write to a full disk device), an
exception condition exists as follows:

• The contents of the record area are unaffected.

• The value of the FILE STATUS data item for the file indicates a boundary
violation.

• If a USE AFTER EXCEPTION procedure applies to the file, it executes.
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• If there is no applicable USE AFTER EXCEPTION procedure, the
program terminates abnormally.

16. If the end of a reel/unit is recognized, and the WRITE does not exceed the
externally defined file boundaries:

• A reel/unit swap occurs.

• The Current Volume Pointer points to the file’s next reel/unit.

17. If the program reaches the end of the logical page during execution of a
WRITE statement with the END-OF-PAGE phrase, stment executes. The
LINAGE clause associated with the file specifies the logical end.

18. An end-of-page condition is reached when a WRITE statement with the END-
OF-PAGE phrase causes printing or spacing in the footing area of the page
body.

This condition occurs when the WRITE statement causes the LINAGE-
COUNTER to equal or exceed the value in the LINAGE clause FOOTING
phrase. stment then executes after rec-name is written to the file.

If this statement does not occur and the NOT END-OF-PAGE is specified, rec-
name is written to the file, file status is updated, and control is transferred to
stment2.

19. An automatic page overflow condition occurs when the page body cannot
fully accommodate a WRITE statement (with or without the END-OF-PAGE
phrase).

This condition occurs when WRITE statement execution would cause the
LINAGE-COUNTER to exceed the number of lines in the page body specified
in the LINAGE clause. When this happens, the line is presented on the
logical page before or after (depending on the phrase) device positioning.
The device is positioned to the first line that can be written on the next
logical page (as described in the LINAGE clause). stment then executes after
rec-name is written to the file.

20. If there is no LINAGE clause FOOTING phrase, the WRITE statement
operates as if the FOOTING phrase value was beyond the limits of the page.
That is, the end-of-page condition occurs after the specified number of lines
per page are written. No space is reserved for a footing.

21. If there is a FOOTING phrase, and a WRITE statement would cause the
LINAGE-COUNTER to exceed both the number of lines in a logical page and
the value in the LINAGE clause FOOTING phrase, the WRITE statement
operates as if there were no FOOTING phrase.

Relative Files

22. The file must be open in the OUTPUT, I-O, or EXTEND mode when the
WRITE statement executes. (See Table 6–15.)

23. When a relative file with sequential access mode is open in the output mode,
the WRITE statement releases a record to the I-O system. The first record
has a relative record number of 1. Subsequent records have relative record
numbers of 2, 3, 4, and so on. If rec-name has an associated RELATIVE
KEY data item, the WRITE places the relative record number of the released
record into it.

Procedure Division 6–257



WRITE Statement

24. When a relative file with sequential access mode is open in the extend mode,
the WRITE statement releases a record to the I-O system. The first record
has a relative record number one greater than the highest relative record
number existing in the file. Subsequent records have consecutively higher
relative record numbers. If rec-name has an associated RELATIVE KEY data
item, the WRITE statement places the relative record number of the released
record into it.

25. When a relative file with random or dynamic access mode is open in the
output mode, the program must place a value in the RELATIVE KEY data
item before executing the WRITE statement. The value is the relative record
number to associate with the record in rec-name. The WRITE statement
releases the record to the I-O system.

26. When a relative file is open in the I-O mode and the access mode is random
or dynamic, the program must place a value in the RELATIVE KEY data
item before executing the WRITE statement. The value is the relative record
number to associate with the record in rec-name. Executing a Format 2
WRITE statement releases the record to the I-O system.

27. The invalid key condition exists when:

• The access mode is random or dynamic, and the RELATIVE KEY data
item specifies a record that already exists in the file.

• The program tries to write a record beyond the externally defined file
boundaries.

• The number of significant digits in the relative record number is larger
than the size of the relative key data item described for the file.

28. When the program detects an invalid key condition, WRITE statement
execution is unsuccessful. The following results occur:

• The contents of the current record area are not affected.

• The WRITE statement sets the FILE STATUS data item for the file to
indicate the cause of the condition.

• Program execution continues according to the rules for the invalid key
condition.

See the rules for the INVALID KEY phrase, Section 6.6.10.

Indexed Files

29. The file must be open in the OUTPUT, I-O, or EXTEND mode when the
WRITE statement executes. (See Table 6–15.)

30. Executing a Format 2 WRITE statement releases a record to the I-O system.
The contents of the record keys enable later record access based on any
defined key.

31. When the file description entry has a RECORD KEY IS clause, the prime
record key value is unique unless the DUPLICATES phrase is specified.
When a program later accesses these records sequentially, the retrieval order
is the same as the order in which they were written in the program.

32. The program must set the value of the prime record key data item before
executing the WRITE statement.
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33. If the file is open in the sequential access mode, the program must release
records in ascending or descending order of prime record key values,
depending on the sort order specified in the RECORD KEY clause. If the
file is open in the extend mode, the first released record must have a prime
record key value that logically follows the last record in the file according to
the prime key sort order.

34. If the file is open in the random or dynamic access mode, the program can
release records in any order.

35. When the file description entry has an ALTERNATE RECORD KEY clause,
the alternate record key value is unique unless the program specifies
the DUPLICATES phrase. When a program later accesses these records
sequentially, the retrieval order is the same as the order in which they were
written in the program.

36. The invalid key condition occurs for any of the following:

• The file is open in the sequential access mode and in the OUTPUT or
EXTEND mode, and the prime record key value does not logically follow
the prime record key value of the previous record.

• The file is open in the OUTPUT, EXTEND, or I-O mode, the prime record
key value duplicates an existing record’s prime record key value, and the
program does not specify duplicates on the prime record key.

• The file is open in the OUTPUT, EXTEND, or I-O mode, and the value of
an alternate record key (for which duplicates are not allowed) duplicates
the value of the corresponding data item in an existing record.

• The program tries to write a record beyond the externally defined file
boundaries.

37. When the program detects an invalid key condition, WRITE statement
execution is unsuccessful. The following results occur:

• The contents of the current record area are not affected.

• The WRITE statement sets the FILE STATUS data item for the file to
indicate the cause of the condition.

• Program execution continues according to the rules for the invalid key
condition.

See the rules for the INVALID KEY phrase, Section 6.6.10.
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• WRITE statement execution can result in these FILE STATUS data item
values:

File
Status

File
Organization

Access
Method Meaning

00 All All Write is successful
02 Ind All Created duplicate primary or alternate

key
21 Ind Seq Attempted key value not in prime key

sort order (invalid key)
22 Ind, Rel All Duplicate key (invalid key)
24 Ind, Rel All Boundary violation (relative or indexed

files) or relative record number is too
large for relative key data item (invalid
key)

34 Seq Seq Boundary violation (sequential files)
44 All All Boundary violation. An attempt was

made to write a record that is larger
than the largest or smaller than the
smallest record allowed

48 All All File not open, or incompatible open
mode

92 Ind, Rel All Record locked by another process
30 All All All other permanent errors

In order to detect "device full" (file status 34) on a sequential WRITE
operation, each WRITE needs to be followed by a call to SYS$FLUSH to
ensure that an attempt has been made to write any buffered records to disk.
For more information, at the OpenVMS system prompt, type

HELP RMS $FLUSH

Additional References

• LOCK-HOLDING Phrase in APPLY Clause in I-O-CONTROL paragraph in
Chapter 4

• Section 6.1.4, Scope of Statements

• Section 6.6.8, I-O Status

• Section 6.6.10, INVALID KEY Phrase

• Section 6.6.11, FROM Phrase

• OPEN statement

• UNLOCK statement
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Function
The END PROGRAM header indicates the end of the named COBOL source
program. Alternatively, the end of a named COBOL source program can be
indicated by the end of the program’s Procedure Division.

General Format

END PROGRAM program-name.

program-name
must contain 1 to 31 characters and follow the rules for user-defined words. It
must be identical to a program-name declared in a preceding PROGRAM-ID
paragraph.

Syntax Rules

1. An inside PROGRAM-ID/END PROGRAM pair must be contained within the
outside pair.

2. The END PROGRAM header must be present in every program that either
contains or is contained within another program.

3. The END PROGRAM header indicates the end of a specific COBOL source
program.

4. The END PROGRAM header starts in Area A.

5. The only COBOL statements that can follow an END PROGRAM header are
as follows:

• An Identification Division header of another program

• Another END PROGRAM header

The last END PROGRAM header must reference the outermost containing
program.

6. If a program includes an END PROGRAM header and if it is not contained
in another program, the next COBOL statement, if any, must be the
Identification Division header of another program to be compiled.

Additional Reference
PROGRAM-ID paragraph in Chapter 3

Examples

1. This separately compiled program (PROG-NAME-A) ! contains one program
(PROG-NAME-B) ".

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-A. !
PROCEDURE DIVISION.

. . .

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. "
PROCEDURE DIVISION.

. . .

END PROGRAM PROG-NAME-B.
END PROGRAM PROG-NAME-A.

Procedure Division 6–261



2. This separately compiled program (PROG-NAME-A) $ contains eight other
programs % through +@. Also, & is contained within %, and ’ is contained
within &. ), +>, and +? are contained within (. %, (, and +@ are directly
contained within $.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-A. $

. . .

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-B. %

. . .

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-C. &

. . .

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-D. ’

. . .

END PROGRAM PROG-NAME-D.
END PROGRAM PROG-NAME-C.
END PROGRAM PROG-NAME-B.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-F. (

. . .

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-G. )

. . .

END PROGRAM PROG-NAME-G.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-H. +>

. . .

END PROGRAM PROG-NAME-H.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-I. +?

. . .

END PROGRAM PROG-NAME-I.
END PROGRAM PROG-NAME-F.

IDENTIFICATION DIVISION.
PROGRAM-ID. PROG-NAME-J. +@

. . .

END PROGRAM PROG-NAME-J.
END PROGRAM PROG-NAME-A.
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7
Intrinsic Functions

Data processing problems frequently require the use of values not directly
accessible in the data storage associated with a program. These data values must
be derived through operations on other data. Instead of having to write code to
specify many common operations step by step, the programmer can use intrinsic
functions. An intrinsic function is treated as a temporary elementary data item
that contains a temporary data value to be derived automatically at the time of
reference during execution of the program.1

The uses of the intrinsic functions can be summarized briefly in the following
listing by category:

CATEGORY FUNCTIONS

Scientific/Mathematical ACOS, ASIN, ATAN, COS, FACTORIAL, LOG, LOG10,
MOD, REM, SIN, SQRT, SUM, TAN

Relational MAX, MIN, ORD-MAX, ORD-MIN

String Manipulation LOWER-CASE, NUMVAL, NUMVAL-C, REVERSE,
UPPER-CASE

Date Manipulation CURRENT-DATE, DATE-OF-INTEGER,
DATE-TO-YYYYMMDD, DAY-TO-YYYYDDD,
DAY-OF-INTEGER, INTEGER-OF-DATE,
INTEGER-OF-DAY, TEST-DATE-YYYYMMDD,
TEST-DAY-YYYYDDD, WHEN-COMPILED,
YEAR-TO-YYYY

Statistical/Accounting ANNUITY, MEAN, MEDIAN, MIDRANGE,
PRESENT-VALUE, RANGE,
STANDARD-DEVIATION, VARIANCE

Other ARGCOUNT (OpenVMS), CHAR, INTEGER,
INTEGER-PART,
LENGTH, ORD, RANDOM

Later in this chapter (in Function Descriptions) you will find a comprehensive
table (Table 7–1) of functions, including their types, arguments, and values
returned. Following the table are complete descriptions, including formats, of the
individual functions in alphabetic order.

1 With an intrinsic function, the data value that it returns does not persist after the call
is complete, unless the data value is moved to a user-declared field.
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Description
A call to an intrinsic function is constructed as a function-identifier made up
of the word FUNCTION and a name, as well as any applicable arguments and
modifiers. The name is one of those shown in Table 7–1. An argument (see
the description in the argument section) is selected according to application
requirements.

A function-identifier is a syntactically correct combination of character strings
and separators that uniquely references the data item resulting from the
evaluation of a function. Although intrinsic functions are treated as elementary
data items, they cannot be receiving operands.

A function-identifier that references an alphanumeric function can generally be
specified wherever a sending identifier is permitted and wherever a reference to
a function is not specifically prohibited by general-format rules. (For example,
the rules for the CALL statement prohibit a function from being referenced in a
CALL statement as an argument.) An integer or numeric function can be used
anywhere an arithmetic expression (defined in Section 6.4) can be used.

General Format

FUNCTION function-name [({argument} . . . )] [reference-modifier]

function-name
is one of the names listed in the first column of Table 7–1. A function-name must
be specified as part of a function-identifier. Most function-names are not reserved
words,2 and can be used in a program outside the context of a function.

argument
is an identifier, a literal, or an arithmetic expression. It complies with the specific
rules governing the number, class, and category of arguments for the function. If
it is an identifier, it can be subscripted, qualified, or reference-modified, and it
can be a function-identifier. Functions may have between 0 and 250 arguments
as specified by the definition of each function. The arguments in an argument list
may be separated by a comma.3 Arguments are evaluated individually, from left
to right.

Most intrinsic functions require one or more arguments. The programmer must
specify arguments of the proper type and number and within the legal constraints
for the function; otherwise, the result of the statement may be undefined.

reference-modifier
can be specified only for alphanumeric functions. It specifies the beginning
character position to be selected in the resulting data item and optionally
the length of the resulting data item. (For more information on reference
modification, see Section 6.2.3.)

2 The exceptions are the function-names LENGTH, RANDOM, and SUM, which are
reserved words. Note that FUNCTION is also a reserved word.

3 Whereas in other contexts, the comma, semicolon, and space can be used interchangeably
as separators, the comma has special relevance in the argument lists of intrinsic functions.
It is sometimes necessary to use commas as separators between arguments to resolve
ambiguity.
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Functions and Subscripting
An argument of an intrinsic function that permits a variable number of
arguments can be a generically subscripted table or portion of a table. Generic,
or ALL, subscripting (available only for intrinsic function arguments) is the use
of the word ALL to specify all elements in one or more dimensions of a table.
(A table element is a data item that contains or is subordinate to an OCCURS
clause; if it is an OCCURS DEPENDING ON clause, the range of values is
determined by the object of the clause.) Additional arguments, if any, of the
function may or may not be table names. The evaluation of an ALL subscript
must result in at least one argument; otherwise the result of executing the
statement is undefined.

The order of the implicit specification of each occurrence of a table element is
from left to right. This process is spelled out in detail in the following paragraph:

The first (or leftmost) specification is the identifier with each subscript specified
by ALL replaced by one, and the next specification is the same identifier with
the rightmost subscript specified by ALL incremented by one. This process
continues with the rightmost ALL subscript being incremented by one for each
implicit specification until the rightmost ALL subscript has been incremented
through its range of values. If there are any additional ALL subscripts, the
ALL subscript immediately to the left of the rightmost ALL is incremented by
one, the rightmost ALL is reset to one, and the process of varying the rightmost
ALL subscript is repeated. The ALL subscript to the left of the rightmost ALL
subscript is incremented by one through its range of values. For each additional
ALL subscript, this process is repeated in turn until the leftmost ALL subscript
has been incremented by one through its range of values. If the ALL subscript
is associated with an OCCURS DEPENDING ON clause, the range of values is
determined by the object of that clause.

Also see the definition of subscript in the Glossary.

The reference modifier (if any) of an argument with an ALL subscript applies to
each of the implicitly specified elements of the table. See Chapter 6, Procedure
Division for the general format of ALL subscripting.

When one subscript of a multidimensional table is ALL, every other subscript
must be one of the following:

Another ALL subscript
A positive integer literal
The data-name of a numeric integer elementary item (optionally followed by a
plus or minus sign and an integer literal)
An index-name (optionally followed by a plus or minus sign and an integer
literal)

The functions that permit generic subscripting of arguments are the following:

MAX
MEAN
MEDIAN
MIDRANGE
MIN
ORD-MAX
ORD-MIN
PRESENT-VALUE
RANGE
STANDARD-DEVIATION
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SUM
VARIANCE

See MAX and SUM for examples of generically subscripted arguments.

Function Descriptions
There are three types of functions, based on the type of their resultant values, as
follows:

• Alphanumeric—A function whose resultant value is composed of a string of
one or more characters from the computer’s character set, and whose implicit
usage is DISPLAY

• Integer—A function whose resultant value is a number that cannot have any
nonzero digits to the right of the decimal point

• Numeric—A function whose resultant value is a number that may have
nonzero digits to the right of the decimal point

Table 7–1 lists the intrinsic functions, along with their types, their arguments,
and the values they return. Complete descriptions of the functions, arranged
alphabetically, follow.

Table 7–1 Intrinsic Functions

Function
Number and Type
of Arguments

Function
Type

Value
Returned

ACOS 1 numeric, num Numeric Arccosine of num
ANNUITY 1 numeric, num, and

1 integer, int
Numeric Ratio of annuity paid for each

of int periods at interest of num
to initial investment of one
monetary unit

ARGCOUNT
(OpenVMS)

None Integer Number of arguments passed to
the COBOL program

ASIN 1 numeric, num Numeric Arcsine of num
ATAN 1 numeric, num Numeric Arctangent of num
CHAR 1 integer, int Alphanumeric Character in position int of

program collating sequence
COS 1 numeric, num Numeric Cosine of num
CURRENT-DATE None Alphanumeric Current date and time
DATE-OF-INTEGER 1 integer Integer Standard date equivalent

(YYYYMMDD) of integer date5

DATE-TO-
YYYYMMDD

1 or 2 integer Integer YYYYMMDD date converted
from YYMMDD date

DAY-OF-INTEGER 1 integer Integer YYYYDDD date equivalent of
integer date5

DAY-TO-YYYYDDD 1 or 2 integer Integer YYYYDDD date converted from
YYDDD date

FACTORIAL 1 integer, int Integer Factorial of int

5An integer date is a positive integer representing the number of days after December 31, 1600, in the Gregorian
calendar.

(continued on next page)
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Table 7–1 (Cont.) Intrinsic Functions

Function
Number and Type
of Arguments

Function
Type

Value
Returned

INTEGER 1 numeric, num Integer The greatest integer not greater
than num

INTEGER-OF-DATE 1 integer Integer Integer date5 equivalent of
standard date (YYYYMMDD)

INTEGER-OF-DAY 1 integer Integer Integer date5 equivalent of date
in YYYYDDD format

INTEGER-PART 1 numeric, num Integer Integer part of num
LENGTH 1 alphabetic

or numeric or
alphanumeric data
item, or 1 nonnumeric
literal

Integer Length of argument

LOG 1 numeric, num Numeric Natural logarithm of num
LOG10 1 numeric, num Numeric Logarithm to base 10 of num
LOWER-CASE 1 alphabetic or 1

alphanumeric
Alphanumeric All letters in the argument set

to lowercase
MAX 1 or more alphabetic

and/or alphanumeric,
or 1 or more integer
and/or numeric

Depends on
arguments6

Value of maximum argument

MEAN 1 or more numeric Numeric Arithmetic mean of arguments
MEDIAN 1 or more numeric Numeric Median of arguments
MIDRANGE 1 or more numeric Numeric Mean of minimum and

maximum arguments
MIN 1 or more alphabetic

and/or alphanumeric,
or 1 or more integer
and/or numeric

Depends on
arguments6

Value of minimum argument

MOD 2 integer, int-1 and
int-2

Integer Value of int-1 modulo int-2

NUMVAL 1 alphanumeric Numeric Numeric value of simple
numeric string

NUMVAL-C 1 or 2 alphanumeric Numeric Numeric value of numeric string
with optional commas and
currency sign

ORD 1 alphabetic or 1
alphanumeric

Integer Ordinal position of the argument
in collating sequence

5An integer date is a positive integer representing the number of days after December 31, 1600, in the Gregorian
calendar.
6A function that has only alphabetic and/or alphanumeric arguments is type alphanumeric. A function that has only
integer arguments is type integer. A function that has both integer and numeric arguments is type numeric.

(continued on next page)
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Table 7–1 (Cont.) Intrinsic Functions

Function
Number and Type
of Arguments

Function
Type

Value
Returned

ORD-MAX 1 or more alphabetic,
or 1 or more numeric,
or 1 or more
alphanumeric

Integer Ordinal position of maximum
argument

ORD-MIN 1 or more alphabetic,
or 1 or more numeric,
or 1 or more
alphanumeric

Integer Ordinal position of minimum
argument

PRESENT-VALUE 1 numeric, num-
1; and 1 or more
additional numeric,
num-2

Numeric Present value of a series of
future period-end amounts,
num-2, at a discount rate of
num-1

RANDOM 1 integer or none Numeric Pseudo-random number
RANGE 1 or more integer, or

1 or more numeric
Integer or
numeric
depending on
arguments

Value of maximum argument
minus value of minimum
argument

REM 2 numeric, num-1 and
num-2

Numeric Remainder of num-1/num-2

REVERSE 1 alphabetic or 1
alphanumeric

Alphanumeric Reverse order of the characters
of the argument

SIN 1 numeric, num Numeric Sine of num
SQRT 1 numeric, num Numeric Square root of num
STANDARD-
DEVIATION

1 or more numeric Numeric Standard deviation of arguments

SUM 1 or more integer or 1
or more numeric

Integer or
numeric
depending on
arguments

Sum of arguments

TAN 1 numeric, num Numeric Tangent of num
TEST-DATE-
YYYYMMDD

1 integer Integer 0,1,2, or 3, indicating whether
the date is a valid date in the
Gregorian calendar, and reason
if invalid

TEST-DAY-
YYYYDDD

1 integer Integer 0, 1, or 2, indicating whether the
Julian date is a valid date in the
Gregorian calendar, and reason
if invalid

UPPER-CASE 1 alphabetic or 1
alphanumeric

Alphanumeric All letters in the argument set
to uppercase

VARIANCE 1 or more numeric Numeric Variance of argument
WHEN-COMPILED None Alphanumeric Date and time program was

compiled

(continued on next page)
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Table 7–1 (Cont.) Intrinsic Functions

Function
Number and Type
of Arguments

Function
Type

Value
Returned

YEAR-TO-YYYY 1 or 2 integer Integer 4-digit year, converted from
2-digit year
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ACOS Function

ACOS
Description
The ACOS function returns a numeric value in radians that approximates the
arccosine of the argument.

General Format
FUNCTION ACOS (arg)

arg
is a numeric argument with a value greater than or equal to -1 and less than or
equal to +1.

Rules

1. The type of this function is numeric.

2. The returned value is the approximation of the arccosine of arg and is greater
than or equal to 0 and less than or equal to � (approximately 3.14159).

Example
COMPUTE RSULT = FUNCTION ACOS (.85).

The value returned and stored in RSULT (a numeric data item) is a number that
approximates the arccosine of .85.
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ANNUITY Function

ANNUITY
Description
The ANNUITY function (annuity immediate) returns a numeric value that
approximates the ratio of an annuity paid at the end of each period for the
number of periods specified (by the second argument) to an initial investment of
one. Interest is earned at the rate specified (by the first argument), and is applied
at the end of the period, before the payment.

General Format

FUNCTION ANNUITY (interest-rate num-periods)

interest-rate
is a numeric argument with a value greater than or equal to 0, representing the
interest rate applied at the end of the period before the payment.

num-periods
is a positive integer argument representing the number of periods.

Rules

1. The type of this function is numeric.

2. When the value of interest-rate is 0, the value of the function is the
approximation of 1 / num-periods.

3. When the value of interest-rate is not 0, the value of the function is the
approximation of
interest-rate / (1 –(1 + interest-rate) ** (– num-periods)).

Example
COMPUTE RSULT = FUNCTION ANNUITY (INTEREST-RATE, NUM-PERIODS).

INTEREST-RATE is a numeric data item, and NUM-PERIODS is a numeric
integer data item. If the value of INTEREST-RATE is 0 and the value of NUM-
PERIODS is 6, RSULT has a value approximating 1/6. If the value of INTEREST-
RATE is .11 and the value of NUM-PERIODS is 6, RSULT (a numeric data item)
has a value of approximately 0.2364.
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ARGCOUNT Function

ARGCOUNT (OpenVMS Only)
Description
The ARGCOUNT function returns a numeric integer equal to the number of
arguments passed to the HP COBOL program.

General Format

FUNCTION ARGCOUNT

Rules

1. The type of this function is integer.

2. The returned value represents the actual number of arguments passed to the
HP COBOL program that contains the function.

Example
IF FUNCTION ARGCOUNT = 3

PERFORM PROCESS-OPTIONAL-3RD-ARGUMENT.

If there are three arguments passed to the HP COBOL program containing the
ARGCOUNT function, a third argument supplied with the COBOL program
calling command will be parsed and processed.

Additional Reference
Refer to the Argument Information Register in the HP OpenVMS Calling
Standard. ♦
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ASIN Function

ASIN
Description
The ASIN function returns a numeric value in radians that approximates the
arcsine of the argument.

General Format

FUNCTION ASIN (arg)

arg
is a numeric argument with a value greater than or equal to -1 and less than or
equal to +1.

Rules

1. The type of this function is numeric.

2. The returned value is the approximation of the arcsine of arg and is greater
than or equal to -�/2 and less than or equal to +�/2. (� is approximately
3.14159.)

Example
COMPUTE RSULT = FUNCTION ASIN (.675).

The value returned and stored in RSULT (a numeric data item) is a number that
approximates the arcsine of .675.

Intrinsic Functions 7–11



ATAN Function

ATAN
Description
The ATAN function returns a numeric value in radians that approximates the
arctangent of the argument.

General Format

FUNCTION ATAN (arg)

arg
is a numeric argument.

Rules

1. The type of this function is numeric.

2. The returned value is the approximation of the arctangent of arg and is
greater than -�/2 and less than +�/2. (� is approximately 3.14159.)

Example
COMPUTE RSULT = FUNCTION ATAN (MEASUREMENT-IN-RADIANS).

MEASUREMENT-IN-RADIANS and RSULT are numeric data items. The value
returned and stored in RSULT is a number that approximates the arctangent of
the value of MEASUREMENT-IN-RADIANS.

7–12 Intrinsic Functions



CHAR Function

CHAR
Description
The CHAR function returns a one-character alphanumeric value that is a
character in the program collating sequence having the ordinal position equal
to the value of the argument.

General Format

FUNCTION CHAR (position)

position
is a positive integer argument representing the ordinal position of the desired
character in the program collating sequence, and having a value less than or
equal to the number of positions in the collating sequence.

Rules

1. The type of this function is alphanumeric.

2. The character returned as the function value is the character in the program
collating sequence. (See the information on the ALPHABET clause in
Chapter 4.)

3. If more than one character has the same position in the program collating
sequence, the character returned as the function value is that of the first
literal specified for that character position in the ALPHABET clause.

Example
MOVE FUNCTION CHAR (13) TO FORM-FEED-CH.

The character occupying the 13th position in the program collating sequence
(that is, a form feed in the default collating sequence) is returned and stored in
FORM-FEED-CH, which is an alphanumeric data item one character in length.
(The numeric representation of a character is not the same as its ordinal position.
Numeric representation starts at 0, whereas ordinals start at 1. Always add 1 to
the numeric value of the desired character.)
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COS Function

COS
Description
The COS function returns a numeric value that approximates the cosine of an
angle or arc, expressed in radians, that is specified by the argument.

General Format

FUNCTION COS (angle)

angle
is a numeric argument having the value of the measurement in radians of an
angle or arc.

Rules

1. The type of this function is numeric.

2. The returned value is the approximation of the cosine of angle, and is greater
than or equal to -1 and less than or equal to +1.

Example
COMPUTE COSIN-RSLT = FUNCTION COS (X).

X and COSIN-RSULT are numeric data items. If the value of X is 3, the
approximate cosine of an angle of 3 radians is moved to COSIN-RSLT.
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CURRENT-DATE Function

CURRENT-DATE
Description
The CURRENT-DATE function returns a 21-character alphanumeric value that
represents the calendar date and the time of day.

General Format

FUNCTION CURRENT-DATE

Rules

1. The type of this function is alphanumeric.

2. The contents of the character positions returned, numbered from left to right,
are as follows:

Character
Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.
5-6 Two numeric digits of the month of the year, in the range 01

through 12.
7-8 Two numeric digits of the day of the month, in the range 01

through 31.
9-10 Two numeric digits of the hours past midnight, in the range 00

through 23.
11-12 Two numeric digits of the minutes past the hour, in the range 00

through 59.
13-14 Two numeric digits of the seconds past the minute, in the range

00 through 59.
15-16 Two numeric digits of the hundredths of a second past the second,

in the range 00 through 99.
17-21 The value 00000. (Reserved for future use.)

Example
The COBOL syntax for this function (similar to the example) is common to all
platforms:

MOVE FUNCTION CURRENT-DATE TO RSULT.

199701101652313200000

This is a sample value returned by the example CURRENT-DATE function.
Reading from left to right, it shows

• The year, 1997

• The month, January

• The day of the month, the 10th
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CURRENT-DATE Function

• The time of day, 16:52 (4:52 P.M.)

• The seconds, 31, and the hundredths
of seconds, 32, after 16:52:31
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DATE-OF-INTEGER Function

DATE-OF-INTEGER
Description
The DATE-OF-INTEGER function converts a date from an integer date form
representing the number of days after December 31, 1600, to standard date form
(YYYYMMDD).

General Format

FUNCTION DATE-OF-INTEGER (num-days)

num-days
is a positive integer argument that represents a number of days succeeding
December 31, 1600, in the Gregorian calendar.

Rules

1. The type of this function is integer.

2. The returned value represents the ISO Standard date, in the form
YYYYMMDD, that is equivalent to the integer specified. YYYY is an integer
in the range 1601 through 9999. MM is an integer in the range 1 through 12.
DD is an integer in the range 1 through 31.

Example
COMPUTE RSULT = FUNCTION DATE-OF-INTEGER (20).

The value returned and stored in RSULT (a numeric integer data item) is

16010120

This value represents January 20, 1601, which is 20 days after December 31,
1600.
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DATE-TO-YYYYMMDD Function

DATE-TO-YYYYMMDD
Description
The DATE-TO-YYYYMMDD function converts a date in the form YYMMDD to
the form YYYYMMDD. An optional second argument, when added to the current
year (at the time the program executes), defines the ending year of a 100-year
interval. This interval determines to what century the two-digit year belongs.

General Format
FUNCTION DATE-TO-YYYYMMDD ( arg-1 [ arg-2 ] )

arg-1
is a nonnegative integer between 0 and 999999.

arg-2
is an integer. Its value, when added to the current year, must be between 1700
and 9999. If it is omitted, the default value is 50.

Rules

1. The type of this function is integer.

2. The returned value is an integer representing YYYYMMDD and is calculated
as follows:

YY = int(arg-1 / 10000)
mmdd = mod (arg-1, 10000)
return FUNCTION YEAR-TO-YYYY(YY, arg-2) * 10000 + mmdd

Example
IF FUNCTION DATE-TO-YYYYMMDD (801123, 50 ) = 19801123

DISPLAY "correct".
IF FUNCTION DATE-TO-YYYYMMDD (801123, 100 ) = 20801123

DISPLAY "correct".
IF FUNCTION DATE-TO-YYYYMMDD (801123, -100 ) = 18801123

DISPLAY "correct".

DATE-TO-YYYYMMDD implements a sliding window algorithm. To use it for a
fixed window, you can specify arg-2 as follows:

(fixed-ending-year - function numval (function current-date (1:4)))

If fixed-ending-year is 2100, then in 1999 arg-2 has the value 101. If arg-1 is
501123, the returned-value is 20501123. If arg-1 is 991123, the returned-value is
20991123.
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DAY-OF-INTEGER Function

DAY-OF-INTEGER
Description
The DAY-OF-INTEGER function converts a date from an integer date form
representing the number of days succeeding December 31, 1600, to a date form
(sometimes called "Julian") representing year and days (YYYYDDD).

General Format

FUNCTION DAY-OF-INTEGER (num-days)

num-days
is a positive integer argument that represents a number of days succeeding
December 31, 1600, in the Gregorian calendar.

Rules

1. The type of this function is integer.

2. The returned value is an integer of the form YYYYDDD, where YYYY
represents a year in the Gregorian calendar and DDD represents the day
of that year. YYYY is an integer in the range 1601 through 9999. DDD is an
integer in the range 1 through 366.

Example
COMPUTE RSULT = FUNCTION DAY-OF-INTEGER (28).

The value returned and stored in RSULT (a numeric integer data item) shows
the 28th day of the year 1601 (that is, 28 days succeeding December 31, 1600), as
follows:

1601028
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DAY-TO-YYYYDDD Function

DAY-TO-YYYYDDD
Description
The DAY-TO-YYYYDDD function converts a date in the form YYDDD to the form
YYYYDDD. An optional second argument, when added to the current year (at the
time the program executes), defines the ending year of a 100-year interval. This
interval determines to what century the two-digit year belongs.

General Format
FUNCTION DAY-TO-YYYYDDD ( arg-1 [ arg-2 ] )

arg-1
is a nonnegative integer between 0 and 99999.

arg-2
is an integer. Its value, when added to the current year, must be between 1700
and 9999. If it is omitted, the default value is 50.

Rules

1. The type of this function is integer.

2. The returned value is an integer representing YYYYDDD and is calculated as
follows:

YY = int(arg-1 / 1000)
ddd = mod (arg-1, 1000)
return FUNCTION YEAR-TO-YYYY(YY, arg-2) * 1000 + ddd

Example
IF FUNCTION DAY-TO-YYYYDDD (80111, 50 ) = 1980111

DISPLAY "correct".
IF FUNCTION DAY-TO-YYYYDDD (80111, 100 ) = 2080111

DISPLAY "correct".
IF FUNCTION DAY-TO-YYYYDDD (80111, -100 ) = 1880111

DISPLAY "correct".

DAY-TO-YYYYDDD implements a sliding window algorithm. To use it for a fixed
window, you can specify arg-2 as follows:

(fixed-ending-year - function numval (function current-date (1:4)))

If fixed-ending-year is 2100, then for 1999 arg-2 has the value 101. If arg-1 is
50111, the returned-value is 2050111. If arg-1 is 99111, the returned-value is
2099111.
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FACTORIAL Function

FACTORIAL
Description
The FACTORIAL function returns an integer that is the factorial of the argument
specified.

General Format

FUNCTION FACTORIAL (num)

num
is 0 or a positive integer argument whose value is less than or equal to 19.

Rules

1. The type of this function is integer.

2. If the value of the argument is 0, the value 1 is returned.

3. If the value of the argument is positive, its factorial is returned.

Example
COMPUTE RSULT = FUNCTION FACTORIAL (NUM).

NUM and RSULT are numeric integer data items. If NUM has the value of 5, the
value returned and stored in RSULT is 120.
(5! = 5 * 4 * 3 * 2 * 1 = 120.)
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INTEGER Function

INTEGER
Description
The INTEGER function returns the greatest integer value that is less than or
equal to the argument.

General Format

FUNCTION INTEGER (num)

num
is a numeric argument.

Rule
The type of this function is integer.

Example
COMPUTE RSULT = FUNCTION INTEGER (NUM).

If the value of NUM (a numeric data item) is -1.5, the value returned and stored
in RSULT (a numeric integer data item) is -2, because -2 is the greatest integer
that is less than or equal to -1.5. If the value of NUM is +1.5, the value returned
and stored in RSULT is +1, because +1 is the greatest integer that is less than or
equal to +1.5.
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INTEGER-OF-DATE Function

INTEGER-OF-DATE
Description
The INTEGER-OF-DATE function converts a date from standard date form
(YYYYMMDD) to an integer date form representing the number of days after
December 31, 1600.

General Format

FUNCTION INTEGER-OF-DATE (num)

num
is an integer argument of the form YYYYMMDD representing a date subsequent
to December 31, 1600.

Rules

1. The type of this function is integer.

2. The value of the argument is obtained from the calculation (YYYY * 10,000)
+ (MM * 100) + DD. YYYY represents the year in the Gregorian calendar,
and must be an integer in the range 1601 through 9999. MM represents a
month and is an integer in the range 1 through 12. DD represents a day and
is an integer in the range 1 through 31; the value of DD must be valid for the
specified month and year combination.

3. The returned value is an integer that is the number of days the specified date
succeeds December 31, 1600, in the Gregorian calendar.

Examples

1.

COMPUTE RSULT = FUNCTION INTEGER-OF-DATE (NUM).

NUM and RSULT are numeric integer data items. If NUM has the value
16010215 (that is, February 15, 1601), the value returned and stored in
RSULT is 46 (the 46th day after December 31, 1600).

2.

COMPUTE DAYS-IN-BILLING-CYCLE =
FUNCTION INTEGER-OF-DATE(THIS-ENDING-DATE) -
FUNCTION INTEGER-OF-DATE(LAST-ENDING-DATE)

DAYS-IN-BILLING-CYCLE, THIS-ENDING-DATE, and LAST-ENDING-
DATE are numeric integer items. If THIS-ENDING-DATE has the value
19970301 (representing March 1, 1997), and LAST-ENDING-DATE has the
value 19970201 (representing February 1, 1997), the value returned is 28.
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INTEGER-OF-DAY Function

INTEGER-OF-DAY
Description
The INTEGER-OF-DAY function converts a date in the Gregorian calendar from
year-day (YYYYDDD) form (sometimes called "Julian") to an integer date form
representing the number of days after December 31, 1600.

General Format

FUNCTION INTEGER-OF-DAY (num)

num
is an integer argument of the form YYYYDDD representing a date subsequent to
December 31, 1600.

Rules

1. The type of this function is integer.

2. The value of the argument is obtained from the calculation (YYYY * 1000)
+ DDD. YYYY represents the year in the Gregorian calendar, and must be
an integer in the range 1601 through 9999. DDD represents a day and is an
integer in the range 1 through 366; the value of DDD must be valid for the
specified year.

3. The returned value is an integer that is the number of days the specified date
succeeds December 31, 1600, in the Gregorian calendar.

Example
COMPUTE RSULT = FUNCTION INTEGER-OF-DAY (1601365).

The value returned and stored in RSULT (a numeric integer data item) is 365,
which is the number of days succeeding December 31, 1600, and which represents
December 31, 1601.
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INTEGER-PART Function

INTEGER-PART
Description
The INTEGER-PART function returns an integer that is the integer portion of
the argument.

General Format

FUNCTION INTEGER-PART (num)

num
is a numeric argument.

Rules

1. The type of this function is integer.

2. If the value of the argument is 0, the returned value is 0.

3. If the value of the argument is positive, the returned value is the greatest
integer less than or equal to the value of the argument.

4. If the value of the argument is negative, the returned value is the least
integer greater than or equal to the value of the argument.

Example
COMPUTE RSULT = FUNCTION INTEGER-PART (NUM).

NUM is a numeric data item, and RSULT is a numeric integer data item. If
NUM has the value 0, the value returned is 0. If NUM has the value +1.5, the
value returned is +1. If NUM has the value -1.5, the value returned is -1 (the
least integer greater than or equal to the value of -1.5).
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LENGTH Function

LENGTH
Description
The LENGTH function returns an integer equal to the length of the argument in
character positions.

General Format

FUNCTION LENGTH (arg)

arg
is a nonnumeric literal or a data item of any class or category.

Rules

1. The type of this function is integer.

2. The value returned is an integer equal to the length of the argument in
character positions. However, if the argument is a group data item containing
a variable occurrence data item, the returned value is an integer determined
by evaluation of the data item specified in the DEPENDING phrase of the
OCCURS clause for that variable occurrence data item. This evaluation is
accomplished according to the rules in the OCCURS clause dealing with the
data item as a sending data item.

3. The returned value includes implicit FILLER characters, if any.

4. For items that are not USAGE DISPLAY, the returned value represents the
allocated physical storage in bytes as described in Tables 5–12 and 5–13.

Examples

1.

COMPUTE RSULT = FUNCTION LENGTH ("J. R. Donaldson").

The value 15 is returned and stored in RSULT (a numeric integer data item).

2.

01 RECORD-SIZE PIC 9(9).
01 RECORD1.

05 REC-TYPE PIC 9(4) VALUE 23.
05 REC-CNT PIC 9(4) VALUE 50.
05 A-REC PIC X(30) OCCURS 1 TO 100 TIMES

DEPENDING ON REC-CNT.
.
.
.

COMPUTE RECORD-SIZE = FUNCTION LENGTH (RECORD1).
CALL ’SUBR’ USING RECORD1, RECORD-SIZE.

RECORD-SIZE is a numeric integer data item. The value returned by the
function and stored in RECORD-SIZE is 1508. (The computation is 4 + 4 +
(50 * 30) = 1508.)
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LOG Function

LOG
Description
The LOG function returns a numeric value that approximates the logarithm to
the base e (natural log) of the argument.

General Format

FUNCTION LOG (num)

num
is a positive numeric argument.

Rules

1. The type of this function is numeric.

2. The returned value is an approximation of the logarithm to the base e of the
argument.

Example
COMPUTE RSULT = FUNCTION LOG (NUM).

NUM and RSULT are numeric data items; the value of NUM must be greater
than 0. The value returned and stored in RSULT is an approximation of the
logarithm to the base e of NUM.
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LOG10 Function

LOG10
Description
The LOG10 function returns a numeric value that approximates the logarithm to
the base 10 of the argument.

General Format

FUNCTION LOG10 (num)

num
is a positive numeric argument.

Rules

1. The type of this function is numeric.

2. The returned value is an approximation of the logarithm to the base 10 of the
argument.

Example
COMPUTE RSULT = FUNCTION LOG10 (NUM).

NUM and RSULT are numeric data items; the value of NUM must be greater
than 0. The value returned and stored in RSULT is an approximation of the
logarithm to the base 10 of NUM.
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LOWER-CASE Function

LOWER-CASE
Description
The LOWER-CASE function returns a character string that is the same length
as the argument with each uppercase letter in the argument replaced by the
corresponding lowercase letter.

General Format

FUNCTION LOWER-CASE (string)

string
is an alphabetic or alphanumeric argument at least one character in length.

Rules

1. The type of this function is alphanumeric.

2. The returned value is the same character string as the argument, except
that each uppercase letter in the argument is replaced by the corresponding
lowercase letter.

Example
MOVE FUNCTION LOWER-CASE (STR) TO LC-STR.

If STR (an alphanumeric data item six characters in length) contains the value
"Autumn" the value returned and stored in LC-STR (also an alphanumeric data
item six characters in length) is "autumn"; if STR contains "fall98" the value
returned is unchanged ("fall98").
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MAX Function

MAX
Description
The MAX function returns the contents of the argument that contains the
maximum value.

General Format

FUNCTION MAX ({argument} . . . )

argument
is an alphabetic, alphanumeric, integer, or numeric argument.

Rules

1. The arguments must be all alphabetic, all alphanumeric, all integer, or all
numeric, except that integer and numeric arguments can be mixed and
alphabetic and alphanumeric arguments can be mixed.

2. The type of the function depends on the arguments, as follows:

Arguments Function Type

Alphabetic and/or alphanumeric Alphanumeric
Integer (all arguments) Integer
Numeric (some arguments might be integer) Numeric

3. The returned value consists of the contents of the argument having the
greatest value, as determined by comparisons made according to the rules for
simple conditions. (See Chapter 6.)

4. If more than one argument has the same value, and that value is the
maximum, the returned value consists of the contents of the leftmost of
these arguments.

5. If there is only one argument, the returned value consists of the contents of
that argument.

6. If the type of the function is alphanumeric, the size of the returned value is
the same as the size of the argument selected as the maximum.

Examples

1.

MOVE FUNCTION MAX ("A", "B", "C") TO MAX-LETTER-OUT.
MOVE FUNCTION MAX (1, 2, 3) TO MAX-NUMBER-OUT.

MAX-LETTER-OUT is alphabetic or alphanumeric, and receives the value
"C"; MAX-NUMBER-OUT is integer and receives the value 3.

2.

COMPUTE ITEMC = (ITEMA + FUNCTION MAX (ITEMB, 10)).

If ITEM A and ITEMB both contain the value 1, this statement results in
ITEMC having the value 11.

IF FUNCTION MAX (A, B, C) > 100 . . .

This is equivalent to the following more complex code:
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IF A >= B
IF A >= C

MOVE A TO TMP
ELSE

MOVE C TO TMP
ELSE

IF B >= C
MOVE B TO TMP

ELSE
MOVE C TO TMP.

IF TMP > 100 . . .

3. The following example shows generic subscripting with reference modification:

05 TABLE1 PIC X(7) OCCURS 3 TIMES.
.
.
.

MOVE "XAAAAAQ" TO TABLE1(1).
MOVE "XBBBBBQ" TO TABLE1(2).
MOVE "XCCCCCQ" TO TABLE1(3).
MOVE FUNCTION MAX(TABLE1(ALL)(2:5)) TO RSULT.

The value "CCCCC" is returned and stored in RSULT, an alphanumeric data
item. The reference modifier, (2:5), applies to each element implicitly specified
by the ALL subscript. Thus,

FUNCTION MAX(TABLE1(ALL)(2:5))

is equivalent to

FUNCTION MAX(TABLE1(1)(2:5),
TABLE1(2)(2:5),
TABLE1(3)(2:5))
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MEAN
Description
The MEAN function returns a numeric value that is the arithmetic mean
(average) of its arguments.

General Format

FUNCTION MEAN ({arg} . . . )

arg
is a numeric argument.

Rules

1. The type of this function is numeric.

2. The return value is the arithmetic mean of the arguments in the argument
list; that is, it is the sum of the arguments divided by the number of
arguments.

Examples

1.

COMPUTE AVERAGE-VALUE = FUNCTION MEAN (9, 2, 6, 7, 1).

The value returned and stored in AVERAGE-VALUE (a numeric data item) is
5 (the sum of the arguments divided by the number of arguments).

2.

COMPUTE MEAN-ANSWER = FUNCTION MEAN(A, B, C).

MEAN-ANSWER, A, B, and C are numeric data items. This code is
equivalent to

COMPUTE MEAN-ANSWER = (A + B + C ) / 3.
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MEDIAN
Description
The MEDIAN function returns the median value of a list of numbers, represented
by the arguments. This value is such that at least half of the values are greater
than or equal to the returned value, and at least half are less than or equal.

General Format

FUNCTION MEDIAN ({num} . . . )

num
is a numeric argument.

Rules

1. The type of this function is numeric.

2. If the number of arguments is odd, the returned value is the middle
occurrence in the sorted list.

3. If the number of arguments is even, the returned value is the arithmetic
mean of the values referenced by the two middle occurrences in the sorted
list.

4. The comparisons used to arrange the argument values in sorted order are
made according to the rules for simple conditions. (See Chapter 6.)

Examples

1.

COMPUTE RSULT = FUNCTION MEDIAN (1, 1, 9, 2, 1).

The value returned and stored in RSULT (a numeric data item) is 1.

2.

COMPUTE RSULT = FUNCTION MEDIAN (1, 1, 9, 2).

The value returned and stored in RSULT is 1.5.
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MIDRANGE
Description
The MIDRANGE (middle range) function returns a numeric value that is the
arithmetic mean (average) of the values of the minimum argument and the
maximum argument.

General Format

FUNCTION MIDRANGE ({num} . . . )

num
is a numeric argument.

Rules

1. The type of this function is numeric.

2. The returned value is the arithmetic mean of the greatest argument
value and the least argument value. The comparisons used to determine
the greatest and least values are made according to the rules for simple
conditions. (See Chapter 6.)

3. The values of the arguments that are neither the greatest nor the least in
value do not affect the value returned.

Example
COMPUTE RSULT = FUNCTION MIDRANGE (1, 2, 50, 4, 3).

The value returned and stored in RSULT (a numeric data item) is 25.5, which is
the arithmetic mean of the greatest and least arguments; that is, the sum of 50
and 1 divided by 2.
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MIN
Description
The MIN function returns the content of the argument that contains the
minimum value.

General Format

FUNCTION MIN ({argument} . . . )

argument
is an alphabetic, alphanumeric, integer, or numeric argument.

Rules

1. The arguments must be all alphabetic, all alphanumeric, all integer, or all
numeric, except that integer and numeric arguments can be mixed and
alphabetic and alphanumeric arguments can be mixed.

2. The type of the function depends on the arguments, as follows:

Arguments Function Type

Alphabetic and/or alphanumeric Alphanumeric
Integer (all arguments) Integer
Numeric (some arguments might be integer) Numeric

3. The returned value consists of the contents of the argument having the least
value, as determined by comparisons made according to the rules for simple
conditions. (See Chapter 6.)

4. If more than one argument has the same value, and that value is the
minimum, the returned value consists of the contents of the leftmost of
these arguments.

5. If there is only one argument, the returned value consists of the contents of
that argument.

6. If the type of the function is alphanumeric, the size of the returned value is
the same as the size of the argument selected as the minimum.

Example
COMPUTE ITEMC = (ITEMA + FUNCTION MIN (ITEMB, 10)).

If ITEMA and ITEMB both contain the value 1, this statement results in ITEMC
having the value 2.
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MOD
Description
The MOD function returns the value of argument-1 modulo argument-2.

General Format

FUNCTION MOD (argument-1 argument-2)

argument-1
is an integer argument.

argument-2
is an integer argument whose value cannot be 0.

Rules

1. The type of this function is integer.

2. The returned value is an integer value and is defined as the following:

argument-1 — (argument-2 * FUNCTION INTEGER (argument-1 / argument-2))

(The INTEGER function returns the greatest integer value that is less than
or equal to the argument. See INTEGER for more information.)

Example
COMPUTE RSULT = FUNCTION MOD (ARGUMENT-1, ARGUMENT-2).

ARGUMENT-1 and ARGUMENT-2 are numeric integer data items. Following are
the expected results for some values of ARGUMENT-1 and ARGUMENT-2:

ARGUMENT-1 ARGUMENT-2 RETURN

11 5 1
-11 5 4
11 -5 -4

-11 -5 -1
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NUMVAL
Description
The NUMVAL function returns the numeric value represented by the character
string specified by the argument. Leading and trailing spaces are ignored.

General Format

FUNCTION NUMVAL (arg)

arg
is an alphanumeric argument whose content has one of the following two
formats:

Format 1

[space]
� +

-

�
[space]

� digit [ . [digit]]
. digit

�
[space]

Format 2

[space]
� digit [ . [digit]]

. digit

�
[space]

�
��

+
-
CR
DB

�
�� [space]

where space is a string of 0 or more spaces, and digit is a string of 1 to 18 digits.

Rules

1. The type of this function is numeric.

2. The total number of digits in the argument must not exceed 18.

3. If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-
NAMES paragraph, a comma must be used in the argument rather than a
decimal point.

4. The returned value is the numeric value represented by the argument.

5. The number of digits returned is 18.

Examples

1.

COMPUTE RSULT = FUNCTION NUMVAL ("4540").

The value returned and stored in RSULT (a numeric data item) is 4540.

2.

MOVE "-123.49" TO OLD-ID.
COMPUTE NEW-ID = 2 + FUNCTION NUMVAL (OLD-ID).

OLD-ID is an alphanumeric data item, and NEW-ID is a numeric data item.
The value returned by the function is the numeric value -123.49, which is
added to 2, giving the sum -121.49, which is stored in NEW-ID.
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NUMVAL-C
Description
The NUMVAL-C function returns the numeric value represented by the character
string specified by the first argument. Any currency sign found in the character
string and any commas preceding the decimal point are ignored in determining
the result.

General Format

FUNCTION NUMVAL-C (arg-1 [arg-2])

arg-1
is an alphanumeric argument whose content has one of the following two
formats:

Format 1

[space]
� +

-

�
[space] [cs] [space]

� digit [, [digit] . . . [. [digit]]
. digit

�
[space]

Format 2

[space] [cs] [space]
� digit [, [digit] . . . [. [digit]]

. digit

�
[space]

�
��

+
-
CR
DB

�
�� [space]

where space is a string of 0 or more spaces, cs is a string of 1 or more characters
specified by arg-2, and digit is a string of 1 or more digits.

arg-2
is an alphanumeric argument.

Rules

1. The type of this function is numeric.

2. The total number of digits in the first argument must not exceed 18.

3. If the DECIMAL-POINT IS COMMA clause is specified in the SPECIAL-
NAMES paragraph, the functions of the comma and decimal point in the first
argument are reversed.

4. If the optional second argument is not specified, the character used for cs is
the currency symbol specified for the program.

5. The returned value is the numeric value represented by the first argument.

6. The number of digits returned is 18.

Example
COMPUTE RSULT = FUNCTION NUMVAL-C ("#1,000.00", "#").

The numeric value returned and stored in RSULT (a numeric data item) is 1000.
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ORD
Description
The ORD function returns an integer value that is the ordinal position of the
argument in the collating sequence for the program. The lowest ordinal position
is 1.

General Format

FUNCTION ORD (arg)

arg
is an alphabetic or alphanumeric argument one character in length.

Rules

1. The type of this function is integer.

2. The value returned is the ordinal position of the specified character in the
program collating sequence. (See the information on the ALPHABET clause
in Chapter 4.)

Example
COMPUTE POSITION = FUNCTION ORD (SINGLE-CHAR).

If SINGLE-CHAR (an alphabetic or alphanumeric data item) has the value
"A", the integer representing the ordinal position of "A" in the program collating
sequence (66 for native) is the value returned and stored in POSITION (a numeric
integer data item). (The numeric representation of a character is not the same as
its ordinal position. Numeric representation starts at 0, whereas ordinals start
at 1. Thus, the ordinal value of a character is always 1 greater than its numeric
value.)
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ORD-MAX
Description
The ORD-MAX function returns a value that is the ordinal number of the
argument that contains the maximum value.

General Format

FUNCTION ORD-MAX ({arg} . . . )

arg
is an alphabetic, alphanumeric, integer, or numeric argument.

Rules

1. The type of this function is integer.

2. The arguments must be all alphabetic, all alphanumeric, all integer, or all
numeric, except that integer and numeric arguments can be mixed and
alphabetic and alphanumeric arguments can be mixed.

3. The returned value is the ordinal number that corresponds to the position of
the argument having the greatest value in the argument series.

4. The comparisons used to determine the greatest value are made according to
the rules for simple conditions. (See Chapter 6.)

5. If more than one argument has the same greatest value, the number returned
corresponds to the position of the leftmost argument having that value.

6. If there is only one argument, the value returned is 1.

Example
COMPUTE RSULT = FUNCTION ORD-MAX (A, B, C).

A, B, and C are alphanumeric data items one character in length. If the value "A"
is in A, "B" is in B, and "C" is in C, the value returned and stored in RSULT (a
numeric data item) is 3, because the third argument, C, has the greatest value.
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ORD-MIN
Description
The ORD-MIN function returns a value that is the ordinal number of the
argument that contains the minimum value.

General Format

FUNCTION ORD-MIN ({arg} . . . )

arg
is an alphabetic, alphanumeric, integer, or numeric argument.

Rules

1. The type of this function is integer.

2. The arguments must be all alphabetic, all alphanumeric, all integer, or all
numeric, except that integer and numeric arguments can be mixed and
alphabetic and alphanumeric arguments can be mixed.

3. The returned value is the ordinal number that corresponds to the position of
the argument having the least value in the argument series.

4. The comparisons used to determine the least value are made according to the
rules for simple conditions. (See Chapter 6.)

5. If more than one argument has the same least value, the number returned
corresponds to the position of the leftmost argument having that value.

6. If there is only one argument, the value returned is 1.

Example
COMPUTE RSULT = FUNCTION ORD-MIN (A, B, C).

A, B, and C are alphanumeric data items one character in length. If the value
"A" is in A, "B" is in B, and "C" is in C, the value returned and stored in RSULT
(a numeric data item) is 1, because the first argument, A, has the least value.
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PRESENT-VALUE
Description
The PRESENT-VALUE function returns a value that approximates the present
value of a series of future period-end amounts at a discount rate. The discount
rate is specified by the first argument, and the future period-end amount(s) by
one or more subsequent arguments.

General Format

FUNCTION PRESENT-VALUE (rate {amt} . . . )

rate
is a numeric argument greater than -1 representing the discount rate.

amt
is a numeric argument representing a future period-end amount.

Rules

1. The type of this function is numeric.

2. The period-end amounts specified must be for periods of equal duration, and
the discount rate must be the rate per period (for example, if each period is a
year, then use the annual discount rate).

3. The returned value is an approximation of the summation of a series of
calculations with each term in the following form:

amt / (1 + rate) ** n

There is one term for each occurrence of amt. The exponent, n, is incremented
from 1 by 1 for each term in the series. If there are four arguments (rate,
amt-1, amt-2, amt-3), the calculation is as follows:

present-value = amt-1 / (1 + rate) ** 1 + amt-2 / (1 + rate) ** 2 + amt-3 / (1 + rate) ** 3

Example
COMPUTE RSULT = FUNCTION PRESENT-VALUE (DISCOUNT-RATE, 2000).

DISCOUNT-RATE and RSULT are numeric data items. If DISCOUNT-RATE
has the value 0.08, the value returned and stored in RSULT is approximately
1851.85.
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RANDOM
Description
The RANDOM function returns a numeric value that is a pseudo-random number
from a rectangular distribution.

General Format

FUNCTION RANDOM [(seed)]

seed
is an optional integer argument with the value of 0 or a positive integer, used
as the seed value to generate a sequence of pseudo-random numbers. The range
of seed values that results in unique sequences of pseudo-random numbers is 0
through 2147483647.

Rules

1. The type of this function is numeric.

2. If the optional seed argument is not specified by the first reference to this
function in the run unit, the seed value is 0.

3. If any subsequent reference to this function in the run unit does not specify
the seed argument, the value returned is the next number in the current
sequence of pseudo-random numbers.

4. If a subsequent reference to this function in the run unit does specify the seed
argument, a new sequence of pseudo-random numbers is started.

5. The returned value is greater than or equal to 0 and less than 1.

6. For a given seed value, the sequence of pseudo-random numbers is always the
same.

Example
COMPUTE RSULT-1 = FUNCTION RANDOM (12345).

.

.

.
COMPUTE RSULT-2 = FUNCTION RANDOM.

.

.

.
COMPUTE RSULT-3 = FUNCTION RANDOM (12345).

RSULT-1, RSULT-2, and RSULT-3 are numeric data items. Assuming the three
sentences in the example are in the same run unit, the values returned and
stored in RSULT-1 and RSULT-3 are the same. RSULT-2 has a different value
consisting of the next number in the sequence that was started by the first
reference to the function.
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RANGE
Description
The RANGE function returns a value that is equal to the value of the maximum
argument minus the value of the minimum argument.

General Format

FUNCTION RANGE ({num} . . . )

num
is a numeric or integer argument.

Rules

1. The type of this function depends upon the argument types, as follows:

Arguments Function Type

Integer (all arguments) Integer
Numeric (some arguments might be integer) Numeric

2. The returned value is equal to the greatest value in the series of arguments
minus the least value in the series.

3. The comparisons used to determine the greatest and least values are made
according to the rules for simple conditions. (See Chapter 6.)

4. If only one argument is specified, the value returned is 0.

Example
COMPUTE RSULT = FUNCTION RANGE (4, 8, 10).

The value returned and stored in RSULT (a numeric integer data item) is 6.
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REM
Description
The REM function returns a numeric value that is the remainder of the first
argument divided by the second argument.

General Format

FUNCTION REM (arg-1 arg-2)

arg-1
is a numeric or integer argument.

arg-2
is a numeric or integer argument whose value cannot be 0.

Rules

1. The type of this function is numeric.

2. The returned value is the remainder of the first argument divided by the
second argument, and is defined as the following expression:

arg-1 — (arg-2 * FUNCTION INTEGER-PART (arg-1 / arg-2))

(The INTEGER-PART function returns an integer that is the integer portion
of its argument. See INTEGER-PART . )

Examples

1.

COMPUTE RSULT = FUNCTION REM (3, 2).

The value returned and stored in RSULT (a numeric data item) is 1.

2.

COMPUTE RSULT = FUNCTION REM (4, 2).

The value returned and stored in RSULT is 0.
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REVERSE
Description
The REVERSE function returns a character string of exactly the same length
as the argument and whose characters are exactly the same as those of the
argument, except that they are in reverse order.

General Format

FUNCTION REVERSE (arg)

arg
is an alphabetic or alphanumeric argument at least one character in length.

Rules

1. The type of this function is alphanumeric.

2. If the argument is a character string of length n, the returned value is a
character string of length n.

3. When 1 is less than or equal to j and j is less than or equal to n, the character
in position j of the returned value is the character from position (n–j)+1 of the
argument.

Example
MOVE FUNCTION REVERSE (STR) TO RSULT.

STR and RSULT are alphanumeric data items four characters in length. If STR
contains the value "ABCD" then "DCBA" is the value returned and stored in
RSULT.

If the value "AB" is moved to the four-character data item STR, then STR will
actually contain "AB " with two trailing spaces. Then the REVERSE function
returns the value " BA" with two leading spaces.
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SIN
Description
The SIN function returns a numeric value that approximates the sine of an angle
or arc, expressed in radians, that is specified by the argument.

General Format

FUNCTION SIN (angle)

angle
is a numeric argument having the value of the measurement in radians of an
angle or arc.

Rules

1. The type of this function is numeric.

2. The returned value is the approximation of the sine of angle, and is greater
than or equal to -1 and less than or equal to +1.

Example
COMPUTE SIN-RSLT = FUNCTION SIN (X).

If the value of X is 3, the approximate sine of an angle of 3 radians is moved to
SIN-RSLT (a numeric data item).
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SQRT
Description
The SQRT function returns a numeric value that approximates the square root of
the argument.

General Format

FUNCTION SQRT (num)

num
is a numeric or integer argument whose value must be 0 or positive.

Rules

1. The type of this function is numeric.

2. The returned value is the absolute value of the approximation of the square
root of the argument.

Example
COMPUTE RSULT = FUNCTION SQRT (NUM).

NUM and RSULT are numeric data items. If NUM has the value 4, the value
returned and stored in RSULT is 2.
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STANDARD-DEVIATION
Description
The STANDARD-DEVIATION function returns a numeric value that
approximates the standard deviation of its arguments.

General Format

FUNCTION STANDARD-DEVIATION ({arg} . . . )

arg
is a numeric or integer argument.

Rules

1. The type of this function is numeric.

2. The returned value is the approximation of the standard deviation of the
argument series.

3. The returned value is calculated as follows:

a. The difference between each argument’s value and the arithmetic mean
(average) of the argument series is calculated and squared.

b. The values obtained are then added together. This sum is divided by the
number of values in the argument series.

c. The square root of the quotient obtained is then calculated. The returned
value is the absolute value of this square root.

4. If the argument series consists of only one value, the returned value is 0.

Example
COMPUTE RSULT = FUNCTION STANDARD-DEVIATION (A, B, C).

A, B, C, and RSULT are numeric data items. If A has the value 1, B has 2,
and C has 12, the standard deviation of these values (approximately 4.96655) is
returned and stored in RSULT.
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SUM
Description
The SUM function returns a value that is the sum of the arguments.

General Format

FUNCTION SUM ({arg} . . . )

arg
is an integer or numeric argument.

Rules

1. The type of this function depends on the argument types, as follows:

Arguments Function Type

Integer (all arguments) Integer
Numeric (some arguments might be integer) Numeric

2. The returned value is the sum of the arguments.

Examples

1.

COMPUTE RSULT = FUNCTION SUM (A, B, C).

A, B, C, and RSULT are numeric or numeric integer data items. If A has the
value +4, B -2, and C +1, the sum of +3 is the value returned and stored in
RSULT.

2.

COMPUTE TOTAL-OUT =
FUNCTION SUM(FUNCTION SQRT(X),

FUNCTION MOD(Y, Z),
A * B,
FUNCTION ACOS(1)).

This example shows functions used as arguments to another function. The
data items are all numeric or numeric integer. The value returned and stored
in TOTAL-OUT is the approximate value of the result of adding the values
returned by the functions SQRT, MOD, and ACOS to another arithmetic
expression, A * B.

3. The following example shows two arguments that are tables, with generic
(ALL) subscripting, and a third argument that is a literal:

FUNCTION SUM(A(ALL), B(ALL, 2), 4)

The number of subscripts shows that A is a one-dimensional table and B is
a two-dimensional table. If A has three occurrences, then A(ALL) is a set
consisting of the elements A(1), A(2), and A(3). If B has two occurrences in its
outer dimension, then B(ALL, 2) is a set consisting of the elements in B(1, 2)
and B(2, 2).
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If A has three elements altogether with the values 2 in A(1), 3 in A(2), and 3
in A(3), and if B has the values 9 in B(1, 2) and 3 in B(2, 2), then the value
returned is 24—the sum of 2, 3, 3 (from table A), 9, 3 (from table B), and 4
(the third argument).
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TAN
Description
The TAN function returns a numeric value that approximates the tangent of an
angle or arc, expressed in radians, that is specified by the argument.

General Format

FUNCTION TAN (arg)

arg
is a numeric or integer argument.

Rules

1. The type of this function is numeric.

2. The returned value is the approximate tangent of the angle specified.

Example
COMPUTE TAN-RSLT = FUNCTION TAN (X).

X and TAN-RSULT are numeric data items. If the value of X is 3, the
approximate tangent of an angle of 3 radians is moved to TAN-RSLT.
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TEST-DATE-YYYYMMDD Function

TEST-DATE-YYYYMMDD
Description
The TEST-DATE-YYYYMMDD function tests whether a standard date in the
form YYYYMMDD is a valid date in the Gregorian calendar.

General Format
FUNCTION TEST-DATE-YYYYMMDD ( arg )

arg
is an integer.

Rules

1. The type of this function is integer.

2. If the year is not within the range 1601 through 9999, the function returns a
1.

Otherwise, if the month is not within the range 1 through 12, the function
returns a 2.

Otherwise, if the number of days is invalid for the given month, the function
returns a 3.

Otherwise, the function returns a 0 to indicate the date is a valid date in the
form YYYYMMDD.

Example
IF FUNCTION TEST-DATE-YYYYMMDD (123456789) = 1

DISPLAY "correct - invalid year (12345)".
IF FUNCTION TEST-DATE-YYYYMMDD (19952020) = 2

DISPLAY "correct - invalid mm (20)".
IF FUNCTION TEST-DATE-YYYYMMDD (19950229) = 3

DISPLAY "correct - invalid dd (29)".
IF FUNCTION TEST-DATE-YYYYMMDD (20040229) = 0

DISPLAY "correct - valid YYYYMMDD".
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TEST-DAY-YYYYDDD
Description
The TEST-DAY-YYYYDDD function tests whether a Julian date in the form
YYYYDDD is a valid date in the Gregorian calendar.

General Format
FUNCTION TEST-DAY-YYYYDDD ( arg )

arg
is an integer.

Rules

1. The type of this function is integer.

2. If the year is not within the range 1601 through 9999, the function returns a
1.

Otherwise, if the number of days is invalid for the given year, the function
returns a 2.

Otherwise, the function returns a 0 to indicate the date is a valid date in the
form YYYYDDD.

Example
IF FUNCTION TEST-DAY-YYYYDDD (12345678) = 1

DISPLAY "correct - invalid year (12345)".
IF FUNCTION TEST-DAY-YYYYDDD (1995366) = 2

DISPLAY "correct - invalid ddd (366)".
IF FUNCTION TEST-DAY-YYYYDDD (2004366) = 0

DISPLAY "correct - valid YYYYDDD".
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UPPER-CASE
Description
The UPPER-CASE function returns a character string that is the same length
as the argument with each lowercase letter in the argument replaced by the
corresponding uppercase letter.

General Format

FUNCTION UPPER-CASE (string)

string
is an alphabetic or alphanumeric argument at least one character in length.

Rules

1. The type of this function is alphanumeric.

2. The returned value is the same character string as the argument, except
that each lowercase letter in the argument is replaced by the corresponding
uppercase letter.

Examples

1.

MOVE FUNCTION UPPER-CASE (STR) TO UC-STR.

If STR (an alphanumeric data item six characters in length) contains
the value "Autumn" the value returned and stored in UC-STR (also an
alphanumeric data item six characters in length) is "AUTUMN"; if STR
contains "FALL98" the value returned is unchanged ("FALL98").

2.

ACCEPT NAME-FIELD.
WRITE RECORD-OUT

FROM FUNCTION UPPER-CASE(NAME-FIELD).

The value in NAME-FIELD is made all-uppercase, unless it was already
all-uppercase, in which case it is unchanged. Any nonalphabetic characters
remain unchanged.
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VARIANCE
Description
The VARIANCE function returns a numeric value that approximates the variance
of its arguments.

General Format

FUNCTION VARIANCE ({arg} . . . )

arg
is an integer or numeric argument.

Rules

1. The type of this function is numeric.

2. The returned value is the approximation of the variance of the argument
series, and is defined as the square of the standard deviation of the argument
series. (For a definition of standard deviation, see the description of the
STANDARD-DEVIATION function.)

3. If the argument series consists of only one value, the returned value is 0.

Examples

1.

COMPUTE RSULT = FUNCTION VARIANCE (A).

The value returned and stored in RSULT is 0, because there is only one
argument.

2.

COMPUTE RSULT = FUNCTION VARIANCE (A, B, C).

If A has the value 1, B has 2, and C has 12, the value returned and stored
in RSULT is approximately 24.667. This represents the variance, which is
the square of the standard deviation of these arguments; the calculation is
described in the description of the STANDARD-DEVIATION function. In the
above examples, A, B, C, and RSULT are numeric data items.
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WHEN-COMPILED
Description
The WHEN-COMPILED function returns the date and time the program was
compiled.

General Format

FUNCTION WHEN-COMPILED

Rules

1. The type of this function is alphanumeric.

2. The returned value is the date and time of compilation of the source
program that contains this function. If the program is a contained program,
the returned value is the compilation date and time associated with the
separately compiled program in which it is contained.

3. The returned value denotes the same time as the compilation date and time
provided in the listing of the source program and in the generated object code
for the source program. The representation differs, and the precision can
differ, as shown in the second example.

4. The contents of the character positions returned, numbered from left to right,
are as follows:

Character
Positions Contents

1-4 Four numeric digits of the year in the Gregorian calendar.
5-6 Two numeric digits of the month of the year, in the range 01

through 12.
7-8 Two numeric digits of the day of the month, in the range 01

through 31.
9-10 Two numeric digits of the hours past midnight, in the range 00

through 23.
11-12 Two numeric digits of the minutes past the hour, in the range 00

through 59.
13-14 Two numeric digits of the seconds past the minute, in the range

00 through 59.
15-16 Two numeric digits of the hundredths of a second past the second,

in the range 00 through 99.
17-21 The value 00000. (Reserved for future use.)

Examples
MOVE FUNCTION WHEN-COMPILED TO VERSION-STAMP.

The value returned and stored in VERSION-STAMP (an alphanumeric data item)
is the date and time of the program’s compilation.

199701101652313200000

This is a sample value returned by the WHEN-COMPILED function. Reading
from left to right, it shows

• The year, 1997

• The month, January
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• The day of the month, the 10th

• The time of day, 16:52 (4:52 P.M.)

• The seconds, 31, and the hundredths
of seconds, 32, after 16:52:31

This compilation date and time as shown on the compiler listing (which does not
show hundredths of seconds) is as follows:

10-Jan-1997 16:52:31
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YEAR-TO-YYYY
Description
The YEAR-TO-YYYY function converts a two-digit year to a four-digit year.
An optional second argument, when added to the current year (at the time the
program executes), defines the ending year of a 100-year interval. This interval
determines to what century the two-digit year belongs.

General Format
FUNCTION YEAR-TO-YYYY ( arg-1 [ arg-2 ] )

arg-1
is a nonnegative integer between 0 and 99.

arg-2
is an integer. Its value, when added to the current year, must be between 1700
and 9999. If it is omitted, the default value is 50.

Rules

1. The type of this function is integer.

2. The returned value is an integer representing a four-digit year calculated as
follows:

max-year = current-yyyy + arg-2
if mod(max-year, 100) >= arg-1

return (arg-1 + 100 * int(max-year / 100))
else

return (arg-1 + 100 * int(max-year / 100) - 1)

Example
IF FUNCTION YEAR-TO-YYYY (80, 50 ) = 1980

DISPLAY "correct".
IF FUNCTION YEAR-TO-YYYY (80, 100 ) = 2080

DISPLAY "correct".
IF FUNCTION YEAR-TO-YYYY (80, -100 ) = 1880

DISPLAY "correct".

YEAR-TO-YYYY implements a sliding window algorithm. To use it for a fixed
window, you can specify arg-2 as follows:

(fixed-ending-year - function numval (function current-date (1:4)))

If fixed-ending-year is 2100, then for 1999 arg-2 has the value 101. If arg-1 is 50,
the returned-value is 2050. If arg-1 is 99, the returned-value is 2099.
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Source Text Manipulation

Source programs can copy frequently used COBOL text from a Tru64 UNIX
directory containing library files, an OpenVMS Librarian file, a COBOL library
file, or (for OpenVMS) Oracle CDD/Repository. The COPY statement can include
text without change, or it can change the text as it is copied into the source
program.

The COPY statement REPLACING phrase changes text in the copying process.
It matches arguments against the text to determine which text to replace. The
matching procedure operates on text-words.

The REPLACE statement changes text in the source program. It matches source
text to the pseudo-text specified in the REPLACE statement and changes the
specified text when a match is detected.

8.1 Text-Word Definition Rules
A text-word is a character or sequence of characters in a COBOL library, source
program, pseudo-text, or repository. It can be any of the following:

1. A literal, including the opening and closing quotation marks for nonnumeric
literals

2. A hexadecimal literal, including the opening and closing delimiters

3. A separator other than:

A space
A pseudo-text delimiter
The opening and closing quotation marks of a nonnumeric literal

4. Any other sequence of contiguous characters, bounded by separators, except:

Comment lines
Separators

Examples
These examples show how the compiler interprets COBOL text in terms of
text-words. The rule letters refer to the text-word definition rules.

Text Interpretation

MOVE One text-word (Rule 4).

MOVE ITEMA TO ITEMB Four text-words.

MOVE ITEMA TO ITEMB. Five text-words. The separator period is a text-word
(Rule 3).
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Text Interpretation

PIC S9(4)V9(6) Nine text-words. Each parenthesis is a separator, and
therefore a text-word. The nine text-words are PIC,
S9, (, 4, ), V9, (, 6, and ).

‘‘PIC S9(4)V9(6)’’ One text-word (Rule 1).

X‘‘4865784C6974’’ One text-word (Rule 2).

ITEMA. Two text-words. ITEMA and the separator period are
text words.

= =ITEMA. = = Two text-words. The pseudo-text delimiters are not
text-words (Rule 3). However, the separator period is
a text-word.

= =ITEMA.= = One text-word. The pseudo-text delimiters are not
text-words. The punctuation character period is part
of the character-string "ITEMA."; the period is not a
separator because a space does not follow it.
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COPY
Function
The COPY statement includes text in a COBOL program.

General Formats
Format 1

COPY text-name

�
� �

OF
IN



library-name

�
�

�
�������

REPLACING����
��

���
�


= =pseudo-text-1= =
identifier-1
literal-1
word-1

���
�� BY

���
�


= =pseudo-text-2= =
identifier-2
literal-2
word-2

���
��
����
��� . . .

�
�������

.

Format 2 (OpenVMS)

COPY record-name FROM DICTIONARY�
�������

REPLACING����
��

���
�


= =pseudo-text-1= =
identifier-1
literal-1
word-1

���
�� BY

���
�


= =pseudo-text-2= =
identifier-2
literal-2
word-2

���
��
����
��� . . .

�
�������

. ♦

text-name
is the name of a COBOL library file available during compilation; or, if library-
name is specified, is the name of a text record within the library file. (See
Technical Notes.)

library-name
is the directory that contains library files on the Tru64 UNIX system; or, on
OpenVMS, is the name of the OpenVMS Librarian library file that contains
text-name. (See Technical Notes.)

pseudo-text-1
identifier-1
literal-1
word-1
are text-matching arguments that the compiler compares against text-words in
the library text.

pseudo-text-2
identifier-2
literal-2
word-2
are replacement items that the compiler inserts into the source program.
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record-name (OpenVMS)
is a partial or complete Oracle CDD/Repository pathname. It specifies the Oracle
CDD/Repository record description to be copied into the source program. (See
Technical Notes.) ♦

Syntax Rules

1. A Format 1 COPY statement can be used anywhere that a character-string or
separator (other than a closing quotation mark) can be used in a program.

2. On OpenVMS, a Format 2 COPY statement can appear only in the File,
Working-Storage, or Linkage Sections. ♦

3. A space must precede the word COPY.

4. The COPY statement must be terminated by the separator period.

5. pseudo-text-1 must contain at least one text-word.

6. pseudo-text-2 can contain zero, one, or more text-words.

7. word-1 or word-2 can be any COBOL word.

8. pseudo-text-1 must not consist entirely of a separator comma or a separator
semicolon.

General Rules
Format 1

1. On Tru64 UNIX, when both text-name and library-name are specified, library-
name refers to the directory containing library files; text-name identifies a
specific file within the directory. ♦

2. On OpenVMS, when both text-name and library-name are specified, library-
name refers to an OpenVMS Librarian library file; text-name identifies a text
record within the library file. ♦

3. When only text-name is used, it identifies a file that contains library text.

4. Library text must follow the source reference format rules. Library text and
source program text formats must be the same; that is, both must be ANSI
format, or both must be terminal format.

5. On Tru64 UNIX, the COPY statement references source text from a directory
containing library files or from a COBOL library file. ♦

Format 2 (OpenVMS)

6. record-name refers to a record description stored in Oracle CDD/Repository.

7. The compiler translates the record description associated with record-name to
COBOL source text. If the source program containing the COPY statement
is in terminal format, the translated record description is in terminal format;
otherwise, the record description is translated to ANSI format. ♦

Both Formats

8. On OpenVMS, the COPY statement references source text from an OpenVMS
Librarian file, a COBOL library file, or the Oracle CDD/Repository.♦

9. The compiler evaluates the COBOL source program after processing all COPY
statements.

10. The COPY statement does not change the original source program text file.
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11. The COPY statement causes the compiler to copy the source text associated
with text-name into the program. The source text logically replaces the COPY
statement, beginning with the word COPY and ending with the punctuation
character period (inclusive).

12. If there is no REPLACING phrase, the compiler copies the source text without
modification.

13. If there is a REPLACING phrase, the compiler changes the source text as it
copies it. The compiler replaces each successfully matched occurrence of a
text-matching argument in the source text by the corresponding replacement
item.

14. For the purposes of matching, the compiler treats each text-matching
argument as pseudo-text that contains identifier-1, word-1, or literal-1.

15. The comparison operation starts with the leftmost source text text-word
and the first text-matching argument. The compiler compares the entire
text-matching argument to an equivalent number of consecutive source text
text-words.

16. A text-matching argument matches the source text only if the ordered
sequence of text-words that forms the text-matching argument is equal,
character for character, to the ordered sequence of source text text-words.

In the matching operation, the compiler treats each occurrence or combination
of the following items in source text as a single space:

• Separator comma

• Separator semicolon

• A sequence of one or more separator spaces

• A blank line

• A comment line

17. If no match occurs, the compiler repeats the comparison with each successive
text-matching argument in the REPLACING phrase until either:

• A match occurs.

• There are no more text-matching arguments.

18. If no match occurs after the compiler compares all text-matching arguments,
the compiler copies the leftmost source text text-word into the source
program. The next source text text-word then becomes the leftmost text-word
for the next cycle. The comparison cycle resumes with the first text-matching
argument in the REPLACING phrase.

19. If a match occurs between a text-matching argument and the source text, the
compiler inserts the replacement item into the source program. The source
text-word immediately after the rightmost replaced text-word then becomes
the leftmost text-word for the next cycle. The comparison cycle resumes with
the first text-matching argument in the REPLACING phrase.

20. The comparison cycle continues until the rightmost text-word in the source
text has been either:

• Matched and replaced

• Used as the leftmost library text-word in a comparison cycle
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21. The rules for Reference Format determine the sequence of text-words in the
source text and the text-matching arguments.

22. When the compiler inserts pseudo-text-2 into the source program, any
comment lines or blank lines within pseudo-text-2 are inserted without
modification. (See Example 5.)

23. The compiler copies any comment lines and blank lines in the source text
into the source program unchanged (see Example 1). However, the compiler
does not copy a comment line or blank line from the source text if it is in the
sequence of text-words that matches the text-matching argument.

24. The resultant source program cannot contain a COPY statement after the
compiler processes a COPY statement.

• Text copied from a source text cannot contain a COPY statement unless
the replacement operation changes the word COPY in the resultant source
text.

• The replacement item in the REPLACING phrase must not insert a COPY
statement into the source text.

25. The compiler cannot determine the syntactic correctness of source text, or the
source program, until all COPY statements are processed.

26. When the compiler copies a text-word from the source text, it places it in the
source program beginning in the same area as in the source text. That is,
a text-word that begins in Area A in the source text begins in Area A of the
source program after the copy operation. Similarly, a text-word that begins in
Area B in the source text begins somewhere in Area B of the source program.

27. When the compiler inserts a text-word from pseudo-text-2, it places it in the
source program beginning in the same area as in pseudo-text-2.

28. When the compiler inserts text from identifier-2, literal-2, or word-2, it places
the first text-word in the source program beginning in the same area as the
leftmost library text-word that matches the argument. It places all other
replacement text-words in the source program beginning in the same area as
they appear in the COPY statement.

29. Pseudo-text insertion can change parts of a single character-string. An
unmatched text-word and a replaced text-word can combine to form a
character-string. For example, the COPY statement can replace part of a
PICTURE character-string. (See Example 3.)

30. Conditional compilation lines are permitted within the library text and
pseudo-text. Text-words within a conditional compilation line participate in
the matching process as if the indicator area character of the line on which
they began was not present. A conditional compilation line is specified within
pseudo-text if it begins in the source program after the opening pseudo-text
delimiter, but before the matching closing pseudo-text delimiter.

31. The resultant text can occur on conditional compilation lines according to the
following precedence rules:

• If a COPY statement begins on a conditional compilation line, each line of
the resulting text appears on the same kind of line.

• If a library text-word that is not involved in a match begins on a
conditional compilation line, it appears in resulting text on the same
kind of line.
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• If the first library text-word that is involved in a match begins on a
conditional compilation line, the identifier-2, literal-2, word-2, or pseudo-
text-2 that replaces the first library text-word appears on the same kind of
line.

• If text-words within pseudo-text-2 begin on a conditional compilation line,
resulting text appears on the same kind of line.

Technical Notes
Format 1

1. If there is a library-name phrase, text-name is tr-name.

On OpenVMS systems, tr-name is defined as a user-defined name or
nonnumeric literal that matches the name of a text record in library-name.♦

2. library-name (or text-name, when there is no library-name phrase) represents
a complete or partial file specification, defined to be f-name: f-name is a
nonnumeric literal or a COBOL word formed according to the rules for
user-defined names.

3. On Alpha and I64 systems, the COBOL command-line qualifier /INCLUDE
(or -include) can be used at compile time to set up a search list for the COPY
command. Assume that the following conditions are all true:

• library-name is not used.

• text-name does not include a directory specification.

• /INCLUDE is specified.
Then the compiler searches for the text-name file in the following order:

1. The current working directory when the compiler is invoked

2. The directory specified after /INCLUDE (or -include)

If more than one directory is specified, they are searched in left to right
order. ♦

On Alpha and I64 systems, if library-name is used, and library-name does not
include a directory specification, the /INCLUDE qualifier causes a search for
a .TLB file, in the same search order. ♦
The first file encountered that matches the text-name terminates the search.

On Tru64 UNIX, /INCLUDE (or -include) can be used to set up a search list
for a text-name without a directory specification only if library-name is not
specified. ♦
If the default, /NOINCLUDE, is in effect, a file without a directory
specification is searched for only in the current default directory at compile
time.

The pathname(s) specified with /INCLUDE can be relative or absolute
directory specifications, logical names on OpenVMS Alpha or I64, or
environment variables on Tru64 UNIX.

4. If f-name or tr-name is not a literal, the compiler translates hyphens in the
word to underscore characters and treats it as if it were enclosed in quotation
marks.

5. When the COPY statement executes, the I/O system:

• Removes leading and trailing spaces and tab characters from f-name and
from tr-name
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• Translates lowercase letters to uppercase in f-name and in tr-name

6. The default file type for text-name, when text-name is f-name, is LIB. For
example, COPY CUSTFILE becomes COPY CUSTFILE.LIB.

7. On OpenVMS, the default file type for library-name is TLB. For example,
COPY "ACCOUNTS" OF CUSTLIB becomes COPY "ACCOUNTS" OF
CUSTLIB.TLB.♦

8. On all platforms, file names must conform to the rules of the operating system
where compilation occurs. For example:

• On Tru64 UNIX systems:

COPY "/usr/proj/empl/empl_file".

COPY "empl_file" IN "/usr/proj/empl". ♦

• On OpenVMS systems:

COPY "COPYDIR:EMPL_FILE.LIB".

COPY "EMPL_FILE" IN "EMPLLIB.TLB". ♦

Format 2 (OpenVMS)

11. record-name can be a nonnumeric literal or COBOL word formed according to
the rules for user-defined names. It represents a complete or partial Oracle
CDD/Repository pathname specifying the Oracle CDD/Repository record
description to be copied into the source program. If record-name is not a
literal, the compiler translates hyphens in the COBOL word to underline
characters.

The resultant pathname must conform to all rules for forming Oracle
CDD/Repository pathnames.

12. Table 8–1 shows the representation of Oracle CDD/Repository data types in
the HP COBOL compiler. It lists the data types that can be specified using
CDO with the corresponding COBOL data item picture. Note that COBOL
does not have an equivalent specification for some data types.

Table 8–1 Oracle CDD/Repository Data Types and HP COBOL Equivalents (OpenVMS)

Oracle CDD/Repository Data Type HP COBOL Equivalent

BIT l No equivalent1

SIGNED BYTE l s No equivalent1

UNSIGNED BYTE l s No equivalent1

D_FLOATING s COMP-2 (with /FLOAT=D_FLOAT)
D_FLOATING COMPLEX s No equivalent1

1COBOL has no equivalent for this data type. A warning diagnostic will be issued for such an item that is part of a
record description entry. The compiler will treat that item as if it had been specified as an alphanumeric data item that
occupies that same number of bytes.

l The total number of digits in the item.
s The decimal offset to l.

(continued on next page)
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Table 8–1 (Cont.) Oracle CDD/Repository Data Types and HP COBOL Equivalents (OpenVMS)

Oracle CDD/Repository Data Type HP COBOL Equivalent

DATE No exact equivalent2

F_FLOATING s COMP-1 (with /FLOAT=D_FLOAT or
/FLOAT=G_FLOAT)

F_FLOATING COMPLEX s No equivalent1

G_FLOATING s COMP-2 (with /FLOAT=G_FLOAT) on
Alpha, I64; no equivalent on VAX

G_FLOATING COMPLEX s No equivalent1

H_FLOATING s No equivalent1

H_FLOATING COMPLEX s No equivalent1

IEEE S_FLOATING COMP-1 (with /FLOAT=IEEE_FLOAT) on
Alpha, I64; no equivalent on VAX

IEEE T_FLOATING COMP-2 (with /FLOAT=IEEE_FLOAT) on
Alpha, I64; no equivalent on VAX

SIGNED LONGWORD l s S9( 9 ) COMP
UNSIGNED LONGWORD l s No exact equivalent3

UNSIGNED NUMERIC l s 9( m )V9( n )
SIGNED NUMERIC LEFT SEPARATE l s S9( m )V9( n ) LEADING SEPARATE
SIGNED NUMERIC LEFT OVERPUNCHED l s S9( m )V9( n ) LEADING
SIGNED NUMERIC RIGHT SEPARATE l s S9( m )V9( n ) TRAILING SEPARATE
SIGNED NUMERIC RIGHT OVERPUNCHED l s S9( m )V9( n ) TRAILING
SIGNED OCTAWORD l s S9( 31 ) COMP on Alpha, I64; no

equivalent on VAX
UNSIGNED OCTAWORD l s No exact equivalent3

PACKED NUMERIC l s S9( m )V9( n ) COMP-3
SIGNED QUADWORD l s S9(18) COMP
UNSIGNED QUADWORD l s No exact equivalent3

TEXT m CHARACTERS X( m )
UNSPECIFIED m BYTES X( m )
VARYING STRING m CHARACTERS No equivalent1

VIRTUAL FIELD Ignored4

SIGNED WORD l s S9( 4 ) COMP

1COBOL has no equivalent for this data type. A warning diagnostic will be issued for such an item that is part of a
record description entry. The compiler will treat that item as if it had been specified as an alphanumeric data item that
occupies that same number of bytes.
2COBOL has no exact equivalent for this data type. A warning diagnostic will be issued for such an item that is part of
a record description entry. The compiler will treat that item as if it had been specified as PIC S9(11)V9(7) COMP. (This
gives the item units of seconds.)
3COBOL has no exact equivalent for this data type. A warning diagnostic will be issued for such an item that is part
of a record description entry. The compiler will treat that item as if it had been specified as the corresponding unsigned
COMP data type.
4The HP COBOL compiler ignores this data item and all its phrases.

l The total number of digits in the item.
s The decimal offset to l.

(continued on next page)
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Table 8–1 (Cont.) Oracle CDD/Repository Data Types and HP COBOL Equivalents (OpenVMS)

Oracle CDD/Repository Data Type HP COBOL Equivalent

UNSIGNED WORD l s No exact equivalent3

POINTER POINTER
SEGMENTED STRING No equivalent1

ZONED No equivalent1

1COBOL has no equivalent for this data type. A warning diagnostic will be issued for such an item that is part of a
record description entry. The compiler will treat that item as if it had been specified as an alphanumeric data item that
occupies that same number of bytes.
3COBOL has no exact equivalent for this data type. A warning diagnostic will be issued for such an item that is part
of a record description entry. The compiler will treat that item as if it had been specified as the corresponding unsigned
COMP data type.

l The total number of digits in the item.
s The decimal offset to l.

The method for describing the assumed decimal point is different in the two
products. In a COBOL picture, the decimal position is directly indicated
by the symbol V or implied by the symbol P. In CDO, scaled numbers are
specified by two integers: ( 1 ) the first integer represents the total number of
decimal digits that the item represents, and ( 2 ) the second integer represents
the decimal offset to the first integer. These are indicated in Table 8–1 by l
and s, respectively.

For example, the COBOL data item described by PIC 9(4)V99 is equivalent
to the CDO entry UNSIGNED NUMERIC 6 DIGITS SCALE -2. Similarly,
the CDO entry SIGNED NUMERIC LEFT SEPARATE NUMERIC 6 DIGITS
SCALE 2 is equivalent to the COBOL description PIC S9(6)PP SIGN IS
LEADING SEPARATE. You can also represent digits to the right of the
decimal point in CDO with the FRACTIONS phrase. For example, instead of
UNSIGNED NUMERIC 6 DIGITS SCALE -2, you can also use UNSIGNED
NUMERIC 6 DIGITS 2 FRACTIONS.

13. One of the primary goals of Oracle CDD/Repository is to describe data in such
a way that data definitions can be shared among many different processors.
Many languages have different semantic interpretations for the same physical
data. Record descriptions in Oracle CDD/Repository must be able to describe
the physical characteristics of data unambiguously. In other words, the logical
view of the data must be separated from the physical description if different
processors are to access the same record description.

HP COBOL expects numeric literals and PICTURE character-strings to be
obtained from Oracle CDD/Repository in standard representation. Whether
or not a particular COBOL source program uses the DECIMAL-POINT IS
COMMA clause or the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph, the record description that was stored in Oracle CDD/Repository
must have used the period ( . ) to represent the decimal point in numeric
literals and PICTURE character-strings, the comma ( , ) to represent the
comma in PICTURE character-strings, and the currency symbol ( $ ) to
represent the currency symbol in PICTURE character-strings.
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When the COBOL source program contains the DECIMAL-POINT IS
COMMA clause, the HP COBOL compiler substitutes commas for decimal
points in numeric literals and PICTURE character-strings obtained from
Oracle CDD/Repository. It substitutes decimal points for commas in
PICTURE character-strings obtained from Oracle CDD/Repository.

When the COBOL source program contains the CURRENCY SIGN clause, the
HP COBOL compiler substitutes the currency symbol for the currency sign in
PICTURE character-strings obtained from Oracle CDD/Repository. ♦

Additional References

• Section 1.3, Source Reference Format

• Oracle CDD/Repository documentation set

Examples Using Format 1
The examples that follow copy library text from two library files:

• Contents of CUSTFILE.LIB:

01 TabCUSTOMER-REC.
Tab03 CUST-REC-KEY TabPIC X(03) VALUE "KEY".
Tab03 CUST-NAME TabPIC X(25).
Tab03 CUST-ADDRESS.
Tab 05 CUST-CUST-STREET TabPIC X(20).
Tab 05 CUST-CITY TabPIC X(20).
Tab 05 CUST-STATE TabPIC XX.
Tab 05 CUST-ZIP TabPIC 9(5).
* THE COMPILER IGNORES COMMENT LINES AND BLANK LINES

* FOR MATCHING PURPOSES
Tab03 CUST-ORDERS OCCURS XYZ TIMES.
Tab 05 CUST-ORDER TabPIC 9(6).
Tab 05 CUST-ORDER-DATE TabPIC 9(6).
Tab 05 CUST-ORDER-AMT TabPIC 9(R)V99.

• Contents of CPROC01.LIB:

TabADD CUST-ORDER-AMT (X) TO TOTAL-ORDERS.
TabCOMPUTE AVERAGE-ORDER = (TOTAL-ORDERS - CANCELED-ORDERS)
Tab / NUMBER-ORDERS.
TabMOVE CUST-REC-KEY
Tab OF CUSTOMER-REC TO CUST-ID (X).
TabMOVE CUST-REC-KEY
Tab OF KEY-HOLD TO NEW-KEY.

In the following examples, the original source program text is shown in lowercase
text. The text that is copied is shown in uppercase. (The messages in these
examples are in OpenVMS Alpha and I64 format.)

Example 8–1 shows the results of a COPY statement with no REPLACING
phrase. The compiler copies the library text without change. In this example,
syntax errors result from invalid library text.

Example 8–2 shows the results of replacing a word (‘‘xyz’’) by a literal ( 6 ).
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Example 8–1 COPY with No REPLACING Phrase

1 identification division.
2 program-id. cust01.
3 data division.
4 working-storage section.
5 copy custfile.

L 6 01 CUSTOMER-REC.
L 7 03 CUST-REC-KEY PIC X(03) VALUE "KEY".
L 8 03 CUST-NAME PIC X(25).
L 9 03 CUST-ADDRESS.
L 10 05 CUST-CUST-STREET PIC X(20).
L 11 05 CUST-CITY PIC X(20).
L 12 05 CUST-STATE PIC XX.
L 13 05 CUST-ZIP PIC 9(5).
L 14 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 15
L 16 * FOR MATCHING PURPOSES
L 17 03 CUST-ORDERS OCCURS XYZ TIMES.

1 2
%COBOL-F-SYN5 121, (1) Invalid OCCURS clause
%COBOL-W-RESTART 297, (2) Processing of source program resumes at this point
L 18 05 CUST-ORDER PIC 9(6).
L 19 05 CUST-ORDER-DATE PIC 9(6).
L 20 05 CUST-ORDER-AMT PIC 9(R)V99.

1
%COBOL-F-ERROR 178, (1) Invalid repetition factor

Example 8–2 Replacing a Word with a Literal

22 copy custfile replacing xyz by 6.
L 23 01 CUSTOMER-REC.
L 24 03 CUST-REC-KEY PIC X(03) VALUE "KEY".
L 25 03 CUST-NAME PIC X(25).
L 26 03 CUST-ADDRESS.
L 27 05 CUST-CUST-STREET PIC X(20).
L 28 05 CUST-CITY PIC X(20).
L 29 05 CUST-STATE PIC XX.
L 30 05 CUST-ZIP PIC 9(5).
L 31 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 32
L 33 * FOR MATCHING PURPOSES
LR 34 03 CUST-ORDERS OCCURS 6 TIMES.
L 35 05 CUST-ORDER PIC 9(6).
L 36 05 CUST-ORDER-DATE PIC 9(6).
L 37 05 CUST-ORDER-AMT PIC 9(R)V99.

1
%COBOL-F-PICREPEAT 178, (1) Invalid repetition factor

Example 8–3 shows the results of replacing a word (‘‘xyz’’) by a literal ( 6 ), and
pseudo-text by pseudo-text. The compiler recognizes R as a text-word because
parentheses enclose it. The other R characters are not text-words; they are part
of other text-words.

Example 8–4 shows the results of matching a nonnumeric literal. The opening
and closing quotation marks are part of the text-word.
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Example 8–3 Replacing a Word by a Literal and Pseudo-Text by Pseudo-Text

39 copy custfile replacing xyz by 6, ==r== by ==4==.
L 40 01 CUSTOMER-REC.
L 41 03 CUST-REC-KEY PIC X(03) VALUE "KEY".
L 42 03 CUST-NAME PIC X(25).
L 43 03 CUST-ADDRESS.
L 44 05 CUST-CUST-STREET PIC X(20).
L 45 05 CUST-CITY PIC X(20).
L 46 05 CUST-STATE PIC XX.
L 47 05 CUST-ZIP PIC 9(5).
L 48 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 49
L 50 * FOR MATCHING PURPOSES
LR 51 03 CUST-ORDERS OCCURS 6 TIMES.
L 52 05 CUST-ORDER PIC 9(6).
L 53 05 CUST-ORDER-DATE PIC 9(6).
LR 54 05 CUST-ORDER-AMT PIC 9(4)V99.

Example 8–4 Matching a Nonnumeric Literal

129 copy custfile replacing xyz by 6, ==r== by ==4==
130 "KEY" by "abc".

L 131 01 CUSTOMER-REC.
LR 132 03 CUST-REC-KEY PIC X(03) VALUE "abc" .
L 133 03 CUST-NAME PIC X(25).
L 134 03 CUST-ADDRESS.
L 135 05 CUST-CUST-STREET PIC X(20).
L 136 05 CUST-CITY PIC X(20).
L 137 05 CUST-STATE PIC XX.
L 138 05 CUST-ZIP PIC 9(5).
L 139 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 140
L 141 * FOR MATCHING PURPOSES
LR 142 03 CUST-ORDERS OCCURS 6 TIMES.
L 143 05 CUST-ORDER PIC 9(6).
L 144 05 CUST-ORDER-DATE PIC 9(6).
LR 145 05 CUST-ORDER-AMT PIC 9(4)V99.
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Example 8–5 shows the results of a multiple-line pseudo-text replacement item.
The replacement item starts after the pseudo-text delimiter on line 167 and ends
before the delimiter on line 169. The continuation area on the new line (172)
contains the same characters as line 168 in the pseudo-text replacement item.
This example is not a recommended use of the COPY statement. It only shows
the mechanics of the statement.

Example 8–5 Multiple-Line Pseudo-Text Replacement Item

166 copy custfile replacing xyz by 6, ==r== by ==4==
167 "KEY" by =="abc".
168 * cust-number is a new field
169 03 cust-number pic 9(8)==.

L 170 01 CUSTOMER-REC.
LR 171 03 CUST-REC-KEY PIC X(03) VALUE "abc".
LR 172 * cust-number is a new field
LR 173 03 cust-number pic 9(8).
L 174 03 CUST-NAME PIC X(25).
L 175 03 CUST-ADDRESS.
L 176 05 CUST-CUST-STREET PIC X(20).
L 177 05 CUST-CITY PIC X(20).
L 178 05 CUST-STATE PIC XX.
L 179 05 CUST-ZIP PIC 9(5).
L 180 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 181
L 182 * FOR MATCHING PURPOSES
LR 183 03 CUST-ORDERS OCCURS 6 TIMES.
L 184 05 CUST-ORDER PIC 9(6).
L 185 05 CUST-ORDER-DATE PIC 9(6).
LR 186 05 CUST-ORDER-AMT PIC 9(4)V99.

Example 8–6 shows the results of matching pseudo-text that includes separators.

The replacement phrase in line 210 fails to match the library text in line 212.
The text-matching argument contains one text-word: the 13 characters beginning
with c and ending with a period ( . ). The period is not a separator period, because
it is not followed by a space. This argument fails to match the two text-words on
line 212. The two text-words are: ( 1 ) CUSTOMER-REC and ( 2 ) the separator
period.

The replacement phrase in line 211 replaces library text on line 215. The text-
matching argument contains the same two text-words that are in the library text:
( 1 ) CUST-ADDRESS and ( 2 ) the separator period.
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Example 8–6 Matching Pseudo-Text That Includes Separators

209 copy custfile replacing xyz by 6, ==r== by ==4==
210 ==customer-rec.== by ==record-a.==
211 ==cust-address. == by ==customer-address.==.

L 212 01 CUSTOMER-REC.
L 213 03 CUST-REC-KEY PIC X(03) VALUE "KEY".
L 214 03 CUST-NAME PIC X(25).
LR 215 03 customer-address.
L 216 05 CUST-CUST-STREET PIC X(20).
L 217 05 CUST-CITY PIC X(20).
L 218 05 CUST-STATE PIC XX.
L 219 05 CUST-ZIP PIC 9(5).
L 220 * THE COMPILER IGNORES COMMENT LINES AND BLANK LINES
L 221
L 222 * FOR MATCHING PURPOSES
LR 223 03 CUST-ORDERS OCCURS 6 TIMES.
L 224 05 CUST-ORDER PIC 9(6).
L 225 05 CUST-ORDER-DATE PIC 9(6).
LR 226 05 CUST-ORDER-AMT PIC 9(4)V99.

227

Examples Using Format 2 (OpenVMS)
Figure 8–1 represents a hierarchical repository structure for Examples 8–7, 8–8,
and 8–9. It contains one repository directory and two repository objects.

Figure 8–1 Hierarchical Repository Structure (OpenVMS)

VM-0602A-AI

ANCHOR

USA SALES GERMANY

inventory payroll

In Figure 8–1, the repository is named SALES (USA and GERMANY are not
used). ANCHOR is the starting directory for the full repository pathname.
Repository directories are analogous to OpenVMS Alpha and I64 subdirectories.
They catalog other repository directories or repository objects, and they are
labeled by the paths through the hierarchy that lead to them.

The repository objects are named PAYROLL and INVENTORY. These objects are
the named record descriptions stored in Oracle CDD/Repository, and they form
the end-points of the repository hierarchy branches. The examples that follow
copy these record descriptions.

The full repository pathname provides a unique designation for every directory
and object in Oracle CDD/Repository hierarchy. It traces the paths from
ANCHOR to the directory or object.
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For information on how to create and maintain a hierarchical structure in Oracle
CDD/Repository, refer to the Oracle CDD/Repository documentation set.

Note

Not all Oracle CDD/Repository data types are valid HP COBOL data
types. See the Technical Notes.

Example 8–7 shows how to use a command file to create the repository directories
and objects shown in Figure 8–1 using CDO.

Example 8–7 Command File That Creates Oracle CDD/Repository Directories
and Objects in Figure 8-1 (OpenVMS)

define field name
datatype is text
size 30.

define field address
datatype is text
size is 40.

define field salesman_id
datatypes is text
size is 5.

define record salesman.
name.
address.
salesman_id.

end record.
define field ytd_sales

datatype is right overpunched numeric
size is 11 digits
scale -2.

define field ytd_commission
datatype is right overpunched numeric
size is 11 digits
scale -2.

define field curr_month_sales
datatype is right overpunched numeric
size is 11 digits
scale -2.

define field curr_month_commission
datatype is right overpunched numeric
size is 11 digits
scale -2.

define field curr_week_sales
datatype is right overpunched numeric
size is 11 digits
scale -2.

(continued on next page)
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Example 8–7 (Cont.) Command File That Creates Oracle CDD/Repository
Directories and Objects in Figure 8-1 (OpenVMS)

define field curr_week_commission
datatype is right overpunched numeric
size is 11 digits
scale -2.

define record payroll_record.
salesman.
ytd_sales.
ytd_commission.
curr_month_sales.
curr_month_commission.
curr_week_sales.
curr_week_commission.

end record.
define field part_number

datatype is right overpunched numeric
size is 6 digits.

define field quantity_on_hand
datatype is right overpunched numeric
size is 9 digits.

define field quantity_on_order
datatype is right overpunched numeric
size is 9 digits.

define field retail_price
datatype is right overpunched numeric
size is 8 digits
scale -2.

define field wholesale_price
datatype is right overpunched numeric
size is 8 digits
scale -2.

define field supplier
datatype is text
size is 5 characters.

define record inventory_record.
part_number.
quantity_on_hand.
quantity_on_order.
retail_price.
wholesale_price.
supplier.

end record.

Example 8–8 shows the results of copying the repository object PAYROLL in
Figure 8–1. The program defines the logical name payroll to be equivalent to the
full Oracle CDD/Repository pathname DEVICE:[DIRECTORY.ANCHOR]. Line 27
of the program shows the DCL command used to define the logical name and line
30 contains the COPY FROM DICTIONARY statement.

On OpenVMS Alpha and I64 systems, the COPY statement produces lines 31
to 44 in your program listing if you include the /COPY_LIST compiler option.
Line 32 is the resulting full Oracle CDD/Repository pathname used by the
compiler. Lines 31 and 33 are separator comment lines. Lines 34 to 44 are the
COBOL compiler-translated record description entries taken from the PAYROLL
repository object in Oracle CDD/Repository.
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Example 8–8 Using a Logical Name in a COPY Statement (OpenVMS)

1 IDENTIFICATION DIVISION.
2 PROGRAM-ID. TEST-CDD.
3 *
4 * Copy from CDD/Repository
5 * FILE SECTION
6 * Records: PERSONNEL
7 * INVENTORY
8 * PAYROLL
9 *
10 * WORKING-STORAGE SECTION
11 * Records: SYDNEY
12 * MAPLE
13 * FRENCH
14 *
15 ENVIRONMENT DIVISION.
16 INPUT-OUTPUT SECTION.
17 FILE-CONTROL.
18 SELECT SALES-CDD-FILE
19 ASSIGN TO "CDD.TMP".
20 DATA DIVISION.
21 FILE SECTION.
22 FD SALES-CDD-FILE.
23 *
24 * To create a logical name entry for the repository object
25 * PAYROLL, use this command:
26 *
27 * $ DEFINE PAYROLL_RECORD "DEVICE:[DIRECTORY.ANCHOR]SALES.PAYROLL"
28 *
29 *
30 COPY PAYROLL FROM DICTIONARY.

L 31 *
L 32 * _DEVICE:[DIRECTORY.ANCHOR]PAYROLL_RECORD
L 33 *
L 34 01 PAYROLL_RECORD.
L 35 02 SALESMAN.
L 36 03 NAME PIC X(30).
L 37 03 ADDRESS PIC X(40).
L 38 03 SALESMAN_ID PIC X(5).
L 39 02 YTD_SALES PIC S9(9)V9(2) SIGN TRAILING.
L 40 02 YTD_COMMISSION PIC S9(9)V9(2) SIGN TRAILING.
L 41 02 CURR_MONTH_SALES PIC S9(9)V9(2) SIGN TRAILING.
L 42 02 CURR_MONTH_COMMISSION PIC S9(9)V9(2) SIGN TRAILING.
L 43 02 CURR_WEEK_SALES PIC S9(9)V9(2) SIGN TRAILING.
L 44 02 CURR_WEEK_COMMISSION PIC S9(9)V9(2) SIGN TRAILING.

45
46 COPY "DEVICE:[DIRECTORY.ANCHOR]INVENTORY_RECORD" FROM DICTIONARY.

L 47 *
L 48 * _DEVICE:[DIRECTORY.ANCHOR]INVENTORY_RECORD
L 49 *
L 50 01 INVENTORY_RECORD.
L 51 02 PART_NUMBER PIC S9(6) SIGN TRAILING.
L 52 02 QUANTITY_ON_HAND PIC S9(9) SIGN TRAILING.
L 53 02 QUANTITY_ON_ORDER PIC S9(9) SIGN TRAILING.
L 54 02 RETAIL_PRICE PIC S9(6)V9(2) SIGN TRAILING.
L 55 02 WHOLESALE_PRICE PIC S9(6)V9(2) SIGN TRAILING.
L 56 02 SUPPLIER PIC X(5).

57
58

. . .

Example 8–9 shows the results of copying a repository object INVENTORY by
specifying its full Oracle CDD/Repository pathname.
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In Example 8–9, line 44 contains the COPY FROM DICTIONARY statement.
On OpenVMS Alpha and I64 systems, this COPY statement produces lines 45 to
54 in your program listing if you include the /COPY_LIST compiler option. Line
46 is the resulting full Oracle CDD/Repository pathname used by the compiler.
Lines 45 and 47 are separator comment lines. Lines 48 to 54 are the compiler-
translated record description entries taken from the inventory repository object in
Oracle CDD/Repository.

Example 8–9 Using a Full Pathname in a COPY Statement (OpenVMS)

44 COPY "DEVICE:[DIRECTORY.ANCHOR]SALES.INVENTORY" FROM DICTIONARY.
L 45 *
L 46 * DEVICE:[DIRECTORY.ANCHOR]SALES.INVENTORY
L 47 *
L 48 01 INVENTORY_RECORD.
L 49 02 PART_NUMBER PIC 9(6).
L 50 02 QUANTITY_ON_HAND PIC S9(9) SIGN TRAILING.
L 51 02 QUANTITY_ON_ORDER PIC S9(9) SIGN TRAILING.
L 52 02 RETAIL_PRICE PIC S9(6)V9(2) SIGN TRAILING.
L 53 02 WHOLESALE_PRICE PIC S9(6)V9(2) SIGN TRAILING.
L 54 02 SUPPLIER PIC X(5).

Figure 8–2 shows a nonhierarchical repository structure. In this example,
fields NAME and ADDRESS are used by both the EMPLOYEE-RECORD and
the CUSTOMER-RECORD. As such, they are defined in a separate directory
(COMMON_FIELD_DEFINITIONS). The fields PART and PART_NUMBER are
used exclusively by the INVENTORY_RECORD. As such, they are defined in the
INVENTORY directory. This functionality is only available in CDO formatted
repositories.

Figure 8–2 Nonhierarchical Repository Structure (OpenVMS)

ANCHOR

INVENTORY
RECORD

PART
PART-NUMBER

CUSTOMER
RECORD

BUSINESS_TYPE
CONTACT_PERSON

NAME
ADDRESS

EMPLOYEE
RECORD

DATE_OF_HIRE
SEX
DEPENDENTS

INVENTORY
DIRECTORY

CUSTOMER
DIRECTORY

COMMON_
FIELD_
DEFINITIONS
DIRECTORY

EMPLOYEE
DIRECTORY
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Example 8–10 shows how to use a CDO command file to create the directories and
objects shown in Figure 8–2 using CDO. The CDO file is executed from within
CDO using the following command:
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$ REPOSITORY
CDO>@FILENAME.CDO

Example 8–10 Command File That Creates Oracle CDD/Repository Directories
and Objects in Figure 8-2 (OpenVMS)

DEFINE DICTIONARY DEVICE:[DIRECTORY.ANCHOR].
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]
DEFINE DIRECTORY EMPLOYEE.
DEFINE DIRECTORY CUSTOMER.
DEFINE DIRECTORY INVENTORY.
DEFINE DIRECTORY COMMON_FIELD_DEFINITIONS.
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS
DEFINE FIELD NAME DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
DEFINE FIELD ADDRESS DATATYPE IS TEXT SIZE IS 47 CHARACTERS.
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]EMPLOYEE
DEFINE FIELD DATE_OF_HIRE DATATYPE IS UNSIGNED NUMERIC SIZE IS 8 DIGITS.
DEFINE FIELD SEX DATATYPE IS TEXT SIZE IS 1 CHARACTER.
DEFINE FIELD DEPENDENTS DATATYPE IS UNSIGNED NUMERIC SIZE IS 2 DIGITS.
DEFINE RECORD EMPLOYEE_RECORD.
[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS.NAME.
[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS.ADDRESS.
DATE_OF_HIRE.
SEX.
DEPENDENTS.
END RECORD.
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]CUSTOMER
DEFINE FIELD BUSINESS_TYPE DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
DEFINE FIELD CONTACT_PERSON DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
DEFINE RECORD CUSTOMER_RECORD.
[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS.NAME.
[DIRECTORY.ANCHOR]COMMON_FIELD_DEFINITIONS.ADDRESS.
BUSINESS_TYPE.
CONTACT_PERSON.
END RECORD.
SET DEFAULT DEVICE:[DIRECTORY.ANCHOR]INVENTORY
DEFINE FIELD PART DATATYPE IS TEXT SIZE IS 25 CHARACTERS.
DEFINE FIELD PART_NUMBER DATATYPE IS TEXT SIZE IS 10 CHARACTERS.
DEFINE RECORD INVENTORY_RECORD.
PART.
PART_NUMBER.
END RECORD. ♦

8–20 Source Text Manipulation



REPLACE Statement

REPLACE
Function
The REPLACE statement is used to replace source program text.

General Formats
Format 1

REPLACE � = =pseudo-text-1= = BY = =pseudo-text-2= = � . . .

Format 2

REPLACE OFF

pseudo-text-1
is a text-matching argument that the compiler compares against text-words in
the source text.

pseudo-text-2
is a replacement item that the compiler inserts into the source program.

Syntax Rules

1. A REPLACE statement can be inserted anywhere that a character-string can
be used. This statement must be preceded by a separator period unless it is
the first statement in a separately compiled program.

2. A REPLACE statement must be terminated by the separator period.

3. pseudo-text-1 must contain at least one text-word.

4. pseudo-text-2 can contain zero, one, or more text-words.

5. Character-strings within pseudo-text-1 and pseudo-text-2 can be continued.

6. pseudo-text-1 must not consist entirely of a separator comma or a separator
semicolon.

7. The word REPLACE is considered part of a comment-entry if it appears in
the comment-entry or in the place where a comment-entry can appear.

General Rules
Format 1

1. Each matched occurrence of pseudo-text-1 in the source program is replaced
by the corresponding pseudo-text-2.

Format 2

2. Any text replacement currently in effect is discontinued.

Both Formats

3. A REPLACE statement remains in effect until the next occurrence of a
REPLACE statement or until the end of a separately compiled program has
been reached.

4. Any occurrence of a REPLACE statement in a source program is processed
after all COPY statements in the source program have been processed.

5. pseudo-text-2 must not contain a REPLACE statement.
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6. The comparison operation starts with the leftmost source text word and
the first text-matching argument. The compiler compares the entire text-
matching argument to an equivalent number of consecutive source text-words.

7. A text-matching argument matches the source text only if the ordered
sequence of text-words that forms the text-matching argument is equal,
character for character, to the ordered sequence of source text-words.

In the matching operation, the compiler treats each occurrence or combination
of the following items in source text as a single space:

• Separator comma

• Separator semicolon

• A sequence of one or more separator spaces

8. If no match occurs, the compiler repeats the comparison operation with each
successive text-matching argument until a match is found or there are no
more text-matching arguments.

9. If no match occurs after the compiler has compared all of the text-matching
arguments, the next successive source text-word becomes the leftmost text-
word, and the comparison resumes with the first occurrence of pseudo-text-1.

10. If a match occurs between a text-matching argument and the source program
text, the compiler inserts the replacement text into the source program. The
source text-word immediately following the rightmost replaced text-word
becomes the leftmost text-word for the next cycle. The comparison cycle
resumes with the first occurrence of pseudo-text-1.

11. The comparison cycles continue until the rightmost text-word in the source
text that is within the scope of the REPLACE statement has been either:

• Matched and replaced

• Used as the leftmost source text-word in a comparison cycle

12. The rules for Reference Format determine the sequence of text-words in the
source text and the text-matching arguments.

13. The compiler ignores comment lines and blank lines in the source program
and in pseudo-text-1 for matching.

14. When the compiler inserts pseudo-text-2 in the source program, it inserts
comment lines and blank lines in pseudo-text-2 without modification.

15. Debugging lines are permitted in pseudo-text-1 and pseudo-text-2. The
compiler treats the comparison of debugging lines as if the conditional
compilation character does not appear in the indicator area.

16. The compiler cannot determine the syntactic correctness of source text or
the source program until all COPY and REPLACE statements have been
processed.

17. Text words that are inserted as a result of a processed REPLACE statement
are placed in the source program according to the rules for Reference Format.

18. When the compiler inserts text words of pseudo-text-2 into the source
program, additional spaces may be introduced between text words where
spaces already exist (including the assumed space between source lines).
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19. If additional lines are added to the source program as a result of a REPLACE
operation, the indicator area of the added lines contains the same character
as the line on which the text being replaced begins (unless that line contains
a hyphen, in which case the introduced line contains a space).

If a literal within pseudo-text-2 cannot be contained on a single line without
a continuation to another line in the resultant program and the literal
is not being placed on a debugging line, additional continuation lines are
introduced that contain the remainder of the literal. If replacement requires
the continued literal to be continued on a debugging line, the program is in
error.

Additional Reference
See Section 1.3, Source Reference Format.

Examples
In the following examples, uppercase words represent text-words that have been
replaced.

1. REPLACE statement with multiple replacement items:

8 working-storage section.
9 replace ==alpha== by ==NUM-1==
10 ==num== by ==ALPHA-1==.

R 11 01 NUM-1 pic 9(10).
R 12 01 ALPHA-1

13 pic x(10).
14 procedure division.

2. Multiple REPLACE statements:

A given occurrence of the REPLACE statement is in effect from the point at
which it is specified until the next occurrence of the REPLACE statement.
The new REPLACE statement supersedes the text-matching established by
the previous REPLACE statement.

7 working-storage section.
8 01 total pic 9(4)v99.
9 replace ==class== by ==CLASS1==
10 ==total== by ==ORDER-AMT==.
11 01 customer-rec.

R 12 03 CLASS1 pic x(02).
13 03 name pic x(25).
14 03 address.
15 05 street pic x(20).
16 05 city pic x(20).
17 05 state pic xx.
18 05 zip pic 9(5).
19 03 orders occurs 6 times.
20 05 order-numb pic 9(6).
21 05 order-date pic 9(6).

R 22 05 ORDER-AMT pic 9(4)v99.
23 procedure division.
24 replace ==class== by ==CLASS1==.
25 p0. add order-amt of orders(3) to total.

In the previous example, the word total on line 25 is not replaced because the
REPLACE statement on line 24 reestablished the text-matching arguments.

Source Text Manipulation 8–23



REPLACE Statement

3. REPLACE OFF:

Any text-matching currently in effect is turned off.

11 working-storage section.
12 replace ==add== by ==PIC 9(18)==.

R 13 01 a1 PIC 9(18).
R 14 01 a2 PIC 9(18).

15 procedure division.
16 replace off.
17 p0. add a1 to a2.

In the previous example, the word add on line 17 is not replaced because the
REPLACE statement on line 16 turned off all text-matching arguments.

4. COPY interaction:

In the following example, library text is copied from the library file
DATAFILE.LIB:

Contents of "DATAFILE.LIB":
01 customer-rec.

03 class pic x(02).
03 name pic x(25).
03 address.

05 street pic x(20).
05 city pic x(20).
05 state pic xx.
05 zip pic 9(5).

03 orders occurs 6 times.
05 order-number pic 9(6).
05 order-date pic 9(6).
05 order-amt pic 9(4)v99.

The text-matching specified by an active REPLACE statement occurs after
COPY (and COPY REPLACING) processing is complete.

7 working-storage section.
8 replace ==class== by ==CLASS1==.
9 copy datafile.

L 10 01 customer-rec.
L 11 03 CLASS1 pic x(02).
L 12 03 name pic x(25).
L 13 03 address.
L 14 05 street pic x(20).
L 15 05 city pic x(20).
L 16 05 state pic xx.
L 17 05 zip pic 9(5).
L 18 03 orders occurs 6 times.
L 19 05 order-number pic 9(6).
L 20 05 order-date pic 9(6).
L 21 05 order-amt pic 9(4)v99.

22 procedure division.
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HP COBOL Reserved Words

The reserved words listed in this appendix are both the default reserved words
and the words that on Alpha and I64 systems are reserved only if activated by the
COBOL command-line qualifier /RESERVED_WORDS=FOREIGN_EXTENSIONS
or /RESERVED_WORDS=200X.

The XOPEN reserved words, which on Alpha and I64 systems are reserved by
default, can be deactivated by the /RESERVED_WORDS=NOXOPEN qualifier.

These three categories of Alpha- and I64-only reserved words, which are activated
or deactivated by command-line qualifiers, are marked in this appendix as
follows:

[FOREIGN] Reserved only if activated by /RESERVED_WORDS=FOREIGN_
EXTENSIONS

[200X] Reserved only if activated by /RESERVED_WORDS=200X

[XOPEN] Reserved by default, but not reserved if deactivated by /RESERVED_
WORDS=NOXOPEN

Reserved Words

ACCEPT
ACCESS
ADD
ADDRESS [FOREIGN] (Alpha, I64)
ADVANCING
AFTER
ALL
ALLOWING
ALPHABET
ALPHABETIC
ALPHABETIC–LOWER
ALPHABETIC–UPPER
ALPHANUMERIC
ALPHANUMERIC–EDITED
ALSO
ALTER
ALTERNATE
AND
ANY
APPLY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR
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AUTO [XOPEN] (Alpha, I64)
AUTOMATIC
AUTOTERMINATE

BACKGROUND-COLOR [XOPEN] (Alpha, I64)
BATCH
BEFORE
BEGINNING
BELL [XOPEN] (Alpha, I64)
BINARY
BINARY-CHAR [200X] (Alpha, I64)
BINARY-DOUBLE [200X] (Alpha, I64)
BINARY-LONG [200X] (Alpha, I64)
BINARY-SHORT [200X] (Alpha, I64)
BIT
BITS
BLANK
BLINK [XOPEN] (Alpha, I64)
BLINKING
BLOCK
BOLD
BOOLEAN
BOTTOM
BY

CALL
CANCEL
CD
CF
CH
CHANGED [FOREIGN] (Alpha, I64)
CHARACTER
CHARACTERS
CLASS
CLOCK-UNITS
CLOSE
COBOL
CODE
CODE-SET
COL [200X] (Alpha, I64)
COLLATING
COLUMN
COMMA
COMMIT
COMMON
COMMUNICATION
COMP
COMP-1
COMP-2
COMP-3
COMP-4
COMP-5
COMP-6
COMP-X
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COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTATIONAL-4
COMPUTATIONAL-5
COMPUTATIONAL-6
COMPUTATIONAL-X
COMPUTE
CONCURRENT
CONFIGURATION
CONNECT
CONTAIN
CONTAINS
CONTENT
CONTINUE
CONTROL
CONTROLS
CONVERSION
CONVERTING
COPY
CORE-INDEX [FOREIGN] (Alpha, I64)
CORR
CORRESPONDING
COUNT
CRT
CURRENCY
CURRENT
CURSOR

DATA
DATE
DATE-COMPILED
DATE-WRITTEN
DAY
DAY-OF-WEEK
DB
DB-ACCESS-CONTROL-KEY
DB-CONDITION
DB-CURRENT-RECORD-ID
DB-CURRENT-RECORD-NAME
DB-EXCEPTION
DB-KEY
DB-RECORD-NAME
DB-SET-NAME
DB-STATUS
DB-UWA
DBCS [FOREIGN] (Alpha, I64)
DBKEY
DE
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LENGTH
DEBUG-LINE
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DEBUG-NAME
DEBUG-NUMERIC-CONTENTS
DEBUG-SIZE
DEBUG-START
DEBUG-SUB
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3
DEBUG-SUB-ITEM
DEBUG-SUB-N
DEBUG-SUB-NUM
DEBUGGING
DECIMAL-POINT
DECLARATIVES
DEFAULT
DELETE
DELIMITED
DELIMITER
DEPENDENCY
DEPENDING
DESCENDING
DESCRIPTOR
DESTINATION
DETAIL
DICTIONARY
DISABLE
DISCONNECT
DISP [FOREIGN] (Alpha, I64)
DISPLAY
DISPLAY-1 [FOREIGN] (Alpha, I64)
DISPLAY-6
DISPLAY-7
DISPLAY-9
DIVIDE
DIVISION
DOES
DOWN
DUPLICATE
DUPLICATES

ECHO
EDITING
EGI
EJECT [FOREIGN] (Alpha, I64)
ELSE
EMI
EMPTY
ENABLE
END
END-ACCEPT
END-ADD
END-CALL
END-COMMIT
END-COMPUTE
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END-CONNECT
END-DELETE
END-DISCONNECT
END-DIVIDE
END-ERASE
END-EVALUATE
END-FETCH
END-FIND
END-FINISH
END-FREE
END-GET
END-IF
END-KEEP
END-MODIFY
END-MULTIPLY
END-OF-PAGE
END-PERFORM
END-READ
END-READY
END-RECEIVE
END-RECONNECT
END-RETURN
END-REWRITE
END-ROLLBACK
END-SEARCH
END-START
END-STORE
END-STRING
END-SUBTRACT
END-UNSTRING
END-WRITE
ENDING
ENTER
ENTRY [FOREIGN] (Alpha, I64)
ENVIRONMENT
EOL [XOPEN] (Alpha, I64)
EOP
EOS [XOPEN] (Alpha, I64)
EQUAL
EQUALS
ERASE [XOPEN] (Alpha, I64)
ERROR
ESI
EVALUATE
EVERY
EXAMINE [FOREIGN] (Alpha, I64)
EXCEEDS
EXCEPTION
EXCLUSIVE
EXHIBIT [FOREIGN] (Alpha, I64)
EXIT
EXOR
EXTEND
EXTERNAL
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FAILURE
FALSE
FD
FETCH
FILE
FILE-CONTROL
FILLER
FINAL
FIND
FINISH
FIRST
FLOAT-EXTENDED [200X] (Alpha, I64)
FLOAT-LONG [200X] (Alpha, I64)
FLOAT-SHORT [200X] (Alpha, I64)
FOOTING
FOR
FOREGROUND-COLOR [XOPEN] (Alpha, I64)
FREE
FROM
FULL [XOPEN] (Alpha, I64)
FUNCTION

GENERATE
GET
GIVING
GLOBAL
GO
GOBACK [FOREIGN] (Alpha, I64)
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES
HIGHLIGHT [XOPEN] (Alpha, I64)

I-O
I-O-CONTROL
ID [FOREIGN] (Alpha, I64)
IDENT
IDENTIFICATION
IF
IN
INCLUDING
INDEX
INDEXED
INDICATE
INITIAL
INITIALIZE
INITIATE
INPUT
INPUT-OUTPUT
INSPECT
INSTALLATION
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INTO
INVALID
IS

JUST
JUSTIFIED

KANJI [FOREIGN] (Alpha, I64)
KEEP
KEY

LABEL
LAST
LD
LEADING
LEFT
LENGTH
LESS
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINKAGE
LOCALLY
LOCK
LOCK-HOLDING
LOW-VALUE
LOW-VALUES
LOWLIGHT [XOPEN] (Alpha, I64)

MANUAL
MATCH
MATCHES
MEMBER
MEMBERSHIP
MEMORY
MERGE
MESSAGE
MODE
MODIFY
MODULES
MOVE
MULTIPLE
MULTIPLY

NAMED [FOREIGN] (Alpha, I64)
NATIVE
NEGATIVE
NEXT
NO
NON-NULL
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NOT
NOTE [FOREIGN] (Alpha, I64)
NULL
NUMBER
NUMERIC
NUMERIC-EDITED

OBJECT-COMPUTER
OCCURS
OF
OFF
OFFSET
OMITTED
ON
ONLY
OPEN
OPTIONAL
OPTIONS [200X] (Alpha, I64)
OR
ORDER
OTHERWISE [FOREIGN] (Alpha, I64)

PACKED-DECIMAL
PADDING
PAGE
PAGE-COUNTER
PASSWORD [FOREIGN] (Alpha, I64)
PERFORM
PF
PH
PIC
PICTURE
PLUS
POINTER
POSITION
POSITIONING [FOREIGN] (Alpha, I64)
POSITIVE
PREVIOUS
PRINTING
PRIOR
PROCEDURE
PROCEDURES
PROCEED
PROGRAM
PROGRAM-ID
PROTECTED
PURGE

QUEUE
QUOTE
QUOTES

RANDOM
RD

A–8 HP COBOL Reserved Words



READ
READERS
READY
REALM
REALMS
RECEIVE
RECONNECT
RECORD
RECORD-NAME
RECORD-OVERFLOW [FOREIGN] (Alpha, I64)
RECORDING [FOREIGN] (Alpha, I64)
RECORDS
REDEFINES
REEL
REFERENCE
REFERENCE-MODIFIER
REFERENCES
REGARDLESS
RELATIVE
RELEASE
RELOAD [FOREIGN] (Alpha, I64)
REMAINDER
REMARKS [FOREIGN] (Alpha, I64)
REMOVAL
RENAMES
REORG-CRITERIA [FOREIGN] (Alpha, I64)
REPLACE
REPLACING
REPORT
REPORTING
REPORTS
REQUIRED [XOPEN] (Alpha, I64)
RERUN
RESERVE
RESET
RETAINING
RETRIEVAL
RETURN
RETURN-CODE [XOPEN] (Alpha, I64)
RETURNING [FOREIGN] (Alpha, I64)
REVERSE-VIDEO [XOPEN] (Alpha, I64)
REVERSED
REWIND
REWRITE
RF
RH
RIGHT
RMS-CURRENT-FILENAME
RMS-CURRENT-STS
RMS-CURRENT-STV
RMS-FILENAME
RMS-STS
RMS-STV
ROLLBACK

HP COBOL Reserved Words A–9



ROUNDED
RUN

SAME
SCREEN [XOPEN] (Alpha, I64)
SD
SEARCH
SECTION
SECURE [XOPEN] (Alpha, I64)
SECURITY
SEGMENT
SEGMENT-LIMIT
SELECT
SEND
SENTENCE
SEPARATE
SEQUENCE
SEQUENCE-NUMBER
SEQUENTIAL
SERVICE [FOREIGN] (Alpha, I64)
SET
SETS
SIGN
SIGNED [200X] (Alpha, I64)
SIZE
SKIP1 [FOREIGN] (Alpha, I64)
SKIP2 [FOREIGN] (Alpha, I64)
SKIP3 [FOREIGN] (Alpha, I64)
SORT
SORT-MERGE
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STANDARD
STANDARD-1
STANDARD-2
START
STATUS
STOP
STORE
STREAM
STRING
SUB-QUEUE-1
SUB-QUEUE-2
SUB-QUEUE-3
SUB-SCHEMA
SUBTRACT
SUCCESS
SUM
SUPPRESS
SYMBOL [200X] (Alpha, I64)
SYMBOLIC
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SYNC
SYNCHRONIZED

TABLE
TALLYING
TAPE
TENANT
TERMINAL
TERMINATE
TEST
TEXT
THAN
THEN
THROUGH
THRU
TIME
TIMES
TO
TOP
TRACE [FOREIGN] (Alpha, I64)
TRAILING
TRANSFORM [FOREIGN] (Alpha, I64)
TRUE
TYPE

UNDERLINE [XOPEN] (Alpha, I64)
UNDERLINED
UNEQUAL
UNIT
UNLOCK
UNSIGNED [200X] (Alpha, I64)
UNSTRING
UNTIL
UP
UPDATE
UPDATERS
UPON
USAGE
USAGE-MODE
USE
USING

VALUE
VALUES
VARYING
VFU-CHANNEL

WAIT
WHEN
WHERE
WITH
WITHIN
WORDS
WORKING-STORAGE
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WRITE
WRITERS

ZERO
ZEROES
ZEROS

+
-
*
/
**
>
< =
> =
< =
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B
Character Sets

ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

001 NUL 000 00 000 00 000 00

002 SOH 001 01 001 01 001 01

003 STX 002 02 002 02 002 02

004 ETX 003 03 003 03 003 03

005 EOT 004 04 055 37 004 04

006 ENQ 005 05 045 2D 005 05

007 ACK 006 06 046 2E 006 06

008 BEL 007 07 047 2F 007 07

009 BS 008 08 022 16 008 08

010 HT 009 09 005 05 009 09

011 LF 010 0A 037 25 010 0A

012 VT 011 0B 011 0B 011 0B

013 FF 012 0C 012 0C 012 0C

014 CR 013 0D 013 0D 013 0D

015 SO 014 0E 014 0E 014 0E

016 SI 015 0F 015 0F 015 0F

017 DLE 016 10 016 10 016 10

018 DC1 017 11 017 11 017 11

019 DC2 018 12 018 12 018 12

020 DC3 019 13 019 13 019 13

021 DC4 020 14 060 3C 020 14

022 NAK 021 15 061 3D 021 15

023 SYN 022 16 050 32 022 16

024 ETB 023 17 038 26 023 17

025 CAN 024 18 024 18 024 18

026 EM 025 19 025 19 025 19

027 SUB 026 1A 063 3F 026 1A

028 ESC 027 1B 039 27 027 1B
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ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

029 FS 028 1C 028 1C 028 1C

030 GS 029 1D 029 1D 029 1D

031 RS 030 1E 030 1E 030 1E

032 US 031 1F 031 1F 031 1F

033 space 032 20 064 40 032 20

034 ! 033 21 090 5A 033 21

035 " 034 22 127 7F 034 22

036 035 23 123 7B 035 23

037 $ 036 24 091 5B 036 24

038 % 037 25 108 6C 037 25

039 & 038 26 080 50 038 26

040 ’ 039 27 125 7D 039 27

041 ( 040 28 077 4D 040 28

042 ) 041 29 093 5D 041 29

043 * 042 2A 092 5C 042 2A

044 + 043 2B 078 4E 043 2B

045 , 044 2C 107 6B 044 2C

046 - 045 2D 096 60 045 2D

047 . 046 2E 075 4B 046 2E

048 / 047 2F 097 61 047 2F

049 0 048 30 240 F0 048 30

050 1 049 31 241 F1 049 31

051 2 050 32 242 F2 050 32

052 3 051 33 243 F3 051 33

053 4 052 34 244 F4 052 34

054 5 053 35 245 F5 053 35

055 6 054 36 246 F6 054 36

056 7 055 37 247 F7 055 37

057 8 056 38 248 F8 056 38

058 9 057 39 249 F9 057 39

059 : 058 3A 122 7A 058 3A

060 ; 059 3B 094 5E 059 3B

061 < 060 3C 076 4C 060 3C
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ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

062 = 061 3D 126 7E 061 3D

063 > 062 3E 110 6E 062 3E

064 ? 063 3F 111 6F 063 3F

065 @ 064 40 124 7C 064 40

066 A 065 41 193 C1 065 41

067 B 066 42 194 C2 066 42

068 C 067 43 195 C3 067 43

069 D 068 44 196 C4 068 44

070 E 069 45 197 C5 069 45

071 F 070 46 198 C6 070 46

072 G 071 47 199 C7 071 47

073 H 072 48 200 C8 072 48

074 I 073 49 201 C9 073 49

075 J 074 4A 209 D1 074 4A

076 K 075 4B 210 D2 075 4B

077 L 076 4C 211 D3 076 4C

078 M 077 4D 212 D4 077 4D

079 N 078 4E 213 D5 078 4E

080 O 079 4F 214 D6 079 4F

081 P 080 50 215 D7 080 50

082 Q 081 51 216 D8 081 51

083 R 082 52 217 D9 082 52

084 S 083 53 226 E2 083 53

085 T 084 54 227 E3 084 54

086 U 085 55 228 E4 085 55

087 V 086 56 229 E5 086 56

088 W 087 57 230 E6 087 57

089 X 088 58 231 E7 088 58

090 Y 089 59 232 E8 089 59

091 Z 090 5A 233 E9 090 5A

092 [ 091 5B 091 5B

093 \ 092 5C 224 E0 092 5C
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ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

094 ] 093 5D 093 5D

095 ^ 094 5E 095 5F 094 5E

096 _ 095 5F 109 6D 095 5F

097 ` 096 60 121 79 096 60

098 a 097 61 129 81 097 61

099 b 098 62 130 82 098 62

100 c 099 63 131 83 099 63

101 d 100 64 132 84 100 64

102 e 101 65 133 85 101 65

103 f 102 66 134 86 102 66

104 g 103 67 135 87 103 67

105 h 104 68 136 88 104 68

106 i 105 69 137 89 105 69

107 j 106 6A 145 91 106 6A

108 k 107 6B 146 92 107 6B

109 l 108 6C 147 93 108 6C

110 m 109 6D 148 94 109 6D

111 n 110 6E 149 95 110 6E

112 o 111 6F 150 96 111 6F

113 p 112 70 151 97 112 70

114 q 113 71 152 98 113 71

115 r 114 72 153 99 114 72

116 s 115 73 162 A2 115 73

117 t 116 74 163 A3 116 74

118 u 117 75 164 A4 117 75

119 v 118 76 165 A5 118 76

120 w 119 77 166 A6 119 77

121 x 120 78 167 A7 120 78

122 y 121 79 168 A8 121 79

123 z 122 7A 169 A9 122 7A

124 { 123 7B 192 C0 123 7B

125 | 124 7C 106 6A 124 7C
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ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

126 } 125 7D 208 D0 125 7D

127 ~ 126 7E 161 A1 126 7E

128 DEL 127 7F 007 07 127 7F

129 128 80

130 129 81

131 130 82

132 131 83

133 132 84

134 133 85

135 134 86

136 135 87

137 136 88

138 137 89

139 138 8A

140 139 8B

141 140 8C

142 141 8D

143 142 8E

144 143 8F

145 144 90

146 145 91

147 146 92

148 147 93

149 148 94

150 149 95

151 150 96

152 151 97

153 152 98

154 153 99

155 154 9A

156 155 9B

157 156 9C
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ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

158 157 9D

159 158 9E

160 159 9F

161 160 A0

162 161 A1

163 162 A2

164 163 A3

165 164 A4

166 165 A5

167 166 A6

168 167 A7

169 168 A8

170 169 A9

171 170 AA

172 171 AB

173 172 AC

174 173 AD

175 174 AE

176 175 AF

177 176 B0

178 177 B1

179 178 B2

180 179 B3

181 180 B4

182 181 B5

183 182 B6

184 183 B7

185 184 B8

186 185 B9

187 186 BA

188 187 BB

189 188 BC
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ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

190 189 BD

191 190 BE

192 191 BF

193 192 C0

194 193 C1

195 194 C2

196 195 C3

197 196 C4

198 197 C5

199 198 C6

200 199 C7

201 200 C8

202 201 C9

203 202 CA

204 203 CB

205 204 CC

206 205 CD

207 206 CE

208 207 CF

209 208 D0

210 209 D1

211 210 D2

212 211 D3

213 212 D4

214 213 D5

215 214 D6

216 215 D7

217 216 D8

218 217 D9

219 218 DA

220 219 DB

221 220 DC
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ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

222 221 DD

223 222 DE

224 223 DF

225 224 E0

226 225 E1

227 226 E2

228 227 E3

229 228 E4

230 229 E5

231 230 E6

232 231 E7

233 232 E8

234 233 E9

235 234 EA

236 235 EB

237 236 EC

238 237 ED

239 238 EE

240 239 EF

241 240 F0

242 241 F1

243 242 F2

244 243 F3

245 244 F4

246 245 F5

247 246 F6

248 247 F7

249 248 F8

250 249 F9

251 250 FA

252 251 FB

253 252 FC
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ASCII EBCDIC NATIVE

Position Character Dec Hex Dec Hex Dec Hex

254 253 FD

255 254 FE

256 255 FF
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C
File Status Values

This appendix summarizes the values that can appear in FILE STATUS data
items. The entry for each statement describes specific causes for each condition.

You may receive different file status values depending upon whether you use
the standard compiler option with the v3 or 85 setting. Table C–1 lists all file
status values in numeric order for the default 85 setting. Table C–2 lists the
corresponding file status values for the v3 and 85 settings.

For more information about the standard compiler option, on a Tru64 UNIX
system, refer to the COBOL man page. On an OpenVMS system, invoke the
online help for COBOL.

Table C–1 I-O File Status Values for the Default -std 85 Flag or /STANDARD=85 Qualifier Option

File
Status

Input/Output
Statements

File
Organization

Access
Mode Meaning

00 All All All Successful

02 REWRITE
WRITE

Ind All Created duplicate alternate key

02 READ Ind All Detected alternate duplicate key

04 READ All All Record not size of user’s buffer

05 OPEN All All Optional file not present

07 CLOSE
OPEN

All All Invalid file organization or device

10 READ All Seq No next logical record or option file not
present (at end)

14 READ Rel All Relative record number too large

21 REWRITE Ind Seq Primary key changed after READ

21 WRITE Ind Seq Attempted nonascending key value (invalid
key)

22 REWRITE Ind All Duplicate alternate key (invalid key)

22 WRITE Ind, Rel Ran Duplicate key (invalid key)

23 DELETE
READ
REWRITE
START

Ind, Rel Ran Record not in file; optional file not present
(invalid key)

24 WRITE Ind, Rel All Boundary violation or relative record number
too large (invalid key)

30 All All All All other permanent errors

(continued on next page)
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Table C–1 (Cont.) I-O File Status Values for the Default -std 85 Flag or /STANDARD=85 Qualifier
Option

File
Status

Input/Output
Statements

File
Organization

Access
Mode Meaning

34 WRITE Seq Seq Boundary violation

35 OPEN All All File not found

37 OPEN All All Inappropriate device type

38 OPEN All All File previously closed with lock

39 OPEN All All Conflict of file attributes

41 OPEN All All File already opened

42 CLOSE All All File not opened

43 DELETE
REWRITE

All Seq No previous READ or START

44 REWRITE
WRITE

All All Invalid record size

46 READ All Seq No valid next record (at end)

47 READ
START

All All File not open, or incompatible open mode

48 WRITE All All File not open, or incompatible open mode

49 DELETE
REWRITE

All All File not open, or incompatible open mode

90 All All All Record locked by another user (record
available)

91 OPEN All All Open is unsuccessful; file locked by another
access stream

92 DELETE
READ
REWRITE
START
WRITE

All All Record locked by another user (record not
available)

93 UNLOCK All All No current record

94 UNLOCK All All File not open, or incompatible open mode

95 OPEN All All No file space on device
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Table C–2 I-O File Status Values for the V3 and 85 Options

I-O Error Condition
Status Value

V3 85

READ successful—record shorter than fixed file attribute. 00 04

CLOSE reel/unit attempted on nonreel/unit device. 00 07

READ fails—relative key digits exceed relative key. 00 14

WRITE fails—relative key digits exceed relative key. 00 24

OPEN I-O on file that is not mass storage. 00 37

WRITE fails—attempt to write a record of a different size than
in the file description.

00 44

READ fails—no next logical record (EOF detected). 13 10

READ fails—no next logical record (EOF on OPTIONAL file). 15 10

READ fails—no valid next record (already at EOF). 16 10

READ NEXT or sequential READ—no valid next record pointer. 161 461

READ or START fails—optional input file not present. 25 23

READ successful—record longer than fixed file attribute. 30 04

OPEN on relative or indexed file that is not mass storage. 30 37

REWRITE fails—attempt to rewrite record of different size. 30 44

CLOSE fails—file not currently open. 94 42

DELETE or REWRITE fails—previous I-O not successful READ. 93 43

OPEN fails—file previously closed with LOCK. 94 38

OPEN fails—file created with different organization. 94 39

OPEN fails—file created with different prime record key. 94 39

OPEN fails—file created with different alternate record keys. 94 39

OPEN fails—file currently open. 94 41

READ or START fails—file not opened INPUT or I-O. 94 47

WRITE fails—file not opened OUTPUT, EXTEND, or I-O. 94 48

DELETE or REWRITE fails—file not opened I-O. 94 49

OPEN INPUT on a nonoptional file—file not found. 97 35

1Refer to the description of the /STANDARD qualifier in the COBOL online help file, or the HP COBOL User Manual for
the description of the -std flag, for information about the No Valid Next Record Condition.
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D
Report Writer Presentation Rules and Tables

The tables and rules in this appendix specify the following:

• The permissible combinations of LINE NUMBER and NEXT GROUP clauses
for each type of report group

• The requirements for the use of these clauses

• The interpretation that the Report Writer Control System (RWCS) gives to
these clauses

D.1 Organization
There is an individual presentation rules table for each of the following types of
report groups: REPORT HEADING, PAGE HEADING, PAGE FOOTING, and
REPORT FOOTING. In addition, DETAIL report groups, CONTROL HEADING
report groups, and CONTROL FOOTING report groups are treated jointly in the
Body Group Presentation Rules Table.

Columns 1 and 2 of a presentation rules table list all of the permissible
combinations of LINE NUMBER and NEXT GROUP clauses for the designated
report group type. Consequently, to identify the set of presentation rules that
applies to a particular combination of LINE NUMBER and NEXT GROUP
clauses, read a presentation rules table from left to right along the selected row.

The applicable rules columns of a presentation rules table are divided into two
parts. The first part specifies the rules that apply if the report description
contains a PAGE clause, and the second part specifies the rules that apply if the
PAGE clause is omitted. The explanation of the rules named in the applicable
rules columns follows:

• Upper-limit rules and lower-limit rules:

These rules specify the vertical subdivisions of the page within which the
RWCS may present the specified report group when the PAGE clause is used.

• Fit test rules:

The fit test rules are applicable only to body groups when the PAGE clause is
included in the Report Description entry. Therefore, fit test rules are specified
only within the Body Group Presentation Rules Table. The RWCS applies
the fit test rules to determine whether the designated body group can be
presented on the page on which the report is currently positioned.

• First print line position rules:

The first print line position rules specify where on the page the RWCS
presents the first print line of the given report group.

The presentation rules tables do not specify where on the page the RWCS
presents the second and subsequent print lines (if any) of a report group; this
is determined by the general rules of the LINE NUMBER clause.
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• Next group rules:

The next group rules relate to the proper use of the NEXT GROUP clause.

• Final LINE-COUNTER setting rules:

These rules specify the values that the RWCS places in LINE-COUNTER
after presenting report groups.

D.2 LINE NUMBER Clause Notation
Column 1 of the presentation rules table uses a shorthand notation to describe
the sequence of LINE NUMBER clauses that may appear in the description of a
report group. The meaning of the abbreviations used in column 1 is as follows:

1. The letter A represents one or more absolute LINE NUMBER clauses that
appear in consecutive order within the sequence of LINE NUMBER clauses
in the Report Group Description entry. None of the absolute LINE NUMBER
clauses may have a NEXT PAGE phrase.

2. The letter R represents one or more relative LINE NUMBER clauses that
appear in consecutive order within the sequence of LINE NUMBER clauses
in the Report Group Description entry.

3. The letters NP represent one or more absolute LINE NUMBER clauses that
appear in consecutive order within the sequence of LINE NUMBER clauses
within the NEXT PAGE phrase appearing in the first, and only the first,
LINE NUMBER clause.

4. When two abbreviations appear together, they refer to a sequence of LINE
NUMBER clauses that consist of the two specified consecutive sequences.
For example, A R refers to a Report Group Description entry within which
the A sequence (defined in rule 1) is immediately followed by the R sequence
(defined in rule 2).

5. A blank entry indicates that the clause is absent from the Report Group
Description entry.

D.3 LINE NUMBER Clause Sequence Substitutions
Where A R is a permissible sequence in the presentation rules table, A is also
permissible, and the same presentation rules apply.

Where NP R is a permissible sequence in the presentation rules table, NP is also
permissible, and the same presentation rules apply.

D.4 Saved-Next-Group-Integer Description
Saved-next-group-integer is a data item that is addressable only by the RWCS.
When an absolute NEXT GROUP clause specifies a vertical positioning value
that cannot be accommodated on the current page, the RWCS stores that value in
saved-next-group-integer. After page-advance processing, the RWCS positions the
next body group using the value stored in saved-next-group-integer.
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D.5 REPORT HEADING Group Presentation Rules
Figure D–1 points to the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT
HEADING report group.

Figure D–1 REPORT HEADING Group Presentation Rules
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+

+
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5b3d
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* See the LINE NUMBER Clause Notation section for a description of the abbreviations in column 1.

*** A blank entry in an applicable rules column indicates the absence of the named rule for the given combination
of LINE NUMBER and NEXT GROUP clauses.

** A blank entry in column 1 or column 2 indicates that the named clause is totally absent from the Body Group
Description entry.

+ See the section on the LINE NUMBER clause.

++ See the section on the NEXT GROUP clause.

REPORT HEADING Group Presentation Rules

1. Upper-limit rule:

The first line number on which the REPORT HEADING report group can be
presented is the line number specified by the HEADING phrase of the PAGE
clause.
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2. Lower-limit rules:

a. The last line number on which the REPORT HEADING report group can
be presented is the line number that is obtained by subtracting 1 from the
first-detail-line value of the FIRST DETAIL phrase of the PAGE clause.

b. The last line number on which the REPORT HEADING report group
can be presented is the line number specified by page-size of the PAGE
clause.

3. First print line position rules:

a. The first print line of the REPORT HEADING report group is presented
on the line number specified by the integer of its LINE NUMBER clause.

b. The first print line of the REPORT HEADING report group is presented
on the line number obtained by adding the integer of the first LINE
NUMBER clause and the value obtained by subtracting 1 from the
heading-line value of the HEADING phrase of the PAGE clause.

c. The REPORT HEADING report group is not presented.

d. The first print line of the REPORT HEADING report group is presented
on the line number obtained by adding the contents of its LINE-
COUNTER (in this case, zero) to the integer of the first LINE NUMBER
clause.

4. Next group rules:

a. The NEXT GROUP integer must be greater than the line number on
which the final print line of the REPORT HEADING report group is
presented. In addition, the NEXT GROUP integer must be less than the
line number specified by first-detail-line of the FIRST DETAIL phrase of
the PAGE clause.

b. The sum of the NEXT GROUP integer and the line number on which the
final print line of the REPORT HEADING report group is presented must
be less than the value of first-detail-line of the FIRST DETAIL phrase of
the PAGE clause.

c. NEXT GROUP NEXT PAGE signifies that the REPORT HEADING report
group will appear by itself on the first page of the report. The RWCS
processes no other report group while positioned at the first page of the
report.

5. Final LINE-COUNTER setting rules:

a. After the REPORT HEADING report group is presented, the RWCS
places the NEXT GROUP integer into LINE-COUNTER as the final
LINE-COUNTER setting.

b. After the REPORT HEADING report group is presented, the RWCS
places the sum of these two items into LINE-COUNTER as the final
LINE-COUNTER setting:

• The NEXT GROUP integer

• The line number on which the final print line of the REPORT
HEADING report group was presented

c. After the REPORT HEADING report group is presented, the RWCS
places zero into LINE-COUNTER as the final LINE-COUNTER setting.
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d. After the REPORT HEADING report group is presented, the final LINE-
COUNTER setting is the line number on which the final print line of the
REPORT HEADING report group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable report
group.

D.6 PAGE HEADING Group Presentation Rules
Figure D–2 shows the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE
HEADING report group.

Figure D–2 PAGE HEADING Group Presentation Rules Table

VM-0605A-AI

* *

* * * Applicable Tables

* * * * If the PAGE Clause Is Specified

A      R

R

* See the section on LINE NUMBER Clause Notation for a description of the abbreviations in

** A blank entry in column 1 or column 2 indicates that the named clause is absent from the
PAGE HEADING Report Group Description entry.

column 1.

*** A blank entry in an applicable rules column indicates the absence of the named rule for the
given combination of LINE NUMBER and NEXT GROUP clauses.

**** If the PAGE clause is omitted from the Report Description entry, then a PAGE HEADING
report group cannot be defined.  (See the TYPE clause in the Data Division chapter.)
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PAGE HEADING Group Presentation Rules

1. Upper-limit rule:

If a REPORT HEADING report group has been presented on the page on
which the PAGE HEADING report group is to be presented, then the first
line number on which the PAGE HEADING report group can be presented
is one greater than the final LINE-COUNTER setting established by the
REPORT HEADING.

Otherwise, the first line number on which the PAGE HEADING report group
can be presented is the line number specified by the HEADING phrase of the
PAGE clause.
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2. Lower-limit rule:

The last line number on which the PAGE HEADING report group can be
presented is the line number obtained by subtracting 1 from the first-detail-
line value of the FIRST DETAIL phrase of the PAGE clause.

3. First print line position rules:

a. The first print line of the PAGE HEADING report group is presented on
the line number specified by the integer of its LINE NUMBER clause.

b. If a REPORT HEADING report group has been presented on the page on
which the PAGE HEADING report group is to be presented, then the sum
of the following two items defines the line number on which the first print
line of the PAGE HEADING report group is presented:

• The final LINE-COUNTER setting established by the REPORT
HEADING report group

• The integer of the first LINE NUMBER clause of the PAGE
HEADING report group

Otherwise, the sum of the following two items defines the line number
on which the first print line of the PAGE HEADING report group is
presented:

• The integer of the first LINE NUMBER clause of the PAGE
HEADING report group

• The value obtained by subtracting 1 from the heading-line value of
the HEADING phrase of the PAGE clause

c. The PAGE HEADING report group is not presented.

4. Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting is the line number on which the final
print line of the PAGE HEADING report group was presented.

b. LINE-COUNTER is unaffected by the processing of a nonprintable report
group.

D.7 Body Group Presentation Rules
Figure D–3 points to the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in CONTROL
HEADING, DETAIL, and CONTROL FOOTING report groups.
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Figure D–3 Body Group Presentation Rules
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* See the LINE NUMBER Clause Notation section for a description of the abbreviations in column 1.

*** A blank entry in an applicable rules column indicates the absence of the named rule for the given combination
of LINE NUMBER and NEXT GROUP clauses.

** A blank entry in column 1 or column 2 indicates that the named clause is absent from the REPORT
HEADING Group Description entry.

+ See the section on the LINE NUMBER clause.

++ See the section on the NEXT GROUP clause.
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Body Group Presentation Rules

1. Upper-limit rule:

The first line number on which a body group can be presented is the first-
detail-line value in the FIRST DETAIL phrase of the PAGE clause.

2. Lower-limit rules:
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The last line number on which a CONTROL HEADING report group or
DETAIL report group can be presented is the last-detail-line value in the
LAST DETAIL phrase of the PAGE clause.

The last line number on which a CONTROL FOOTING report group can
be presented is the line number specified by the footing-line value in the
FOOTING phrase of the PAGE clause.

3. Fit test rules:

a. If the value in LINE-COUNTER is less than the integer of the first
absolute LINE NUMBER clause, then the body group will appear on the
page on which the report is currently positioned.

Otherwise, the RWCS executes page-advance processing. After the PAGE
HEADING report group (if defined) has been processed, the RWCS
determines whether the saved-next-group-integer location was set when
the final body group was presented on the preceding page. (See final
LINE-COUNTER setting rule 6a.) If saved-next-group-integer was not so
set, the body group will be presented on the page on which the report is
currently positioned. If saved-next-group-integer was so set, the RWCS:

• Moves the saved-next-group-integer into LINE-COUNTER

• Resets saved-next-group-integer to zero

• Reapplies fit test rule 3a

b. If a body group has been presented on the page on which the report is
positioned, the RWCS computes a trial sum in a work location. The trial
sum is computed by adding:

• The contents of LINE-COUNTER

• The integers of all LINE NUMBER clauses of the report group

If the trial sum is not greater than the body group’s lower-limit integer,
then the report group is presented on the current page. If the trial sum
exceeds the body group’s lower-limit integer, then the RWCS executes
page-advance processing. After the PAGE HEADING report group (if
defined) has been processed, the RWCS reapplies fit test rule 3b.

If no body group has yet been presented on the page on which the report
is currently positioned, the RWCS determines whether the saved-next-
group-integer location was set when the final body group was presented
on the preceding page. (See final LINE-COUNTER setting rule 6a.)

If saved-next-group-integer was not set, the body group appears on the
page on which the report is currently positioned.

If saved-next-group-integer was set, the RWCS:

• Moves the saved-next-group-integer into LINE-COUNTER

• Resets saved-next-group-integer to zero

• Computes a trial sum in a work location

The trial sum is computed by adding:

• The contents of LINE-COUNTER

• The integer 1

• The integers of all but the first LINE NUMBER clause of the body
group

D–8 Report Writer Presentation Rules and Tables



If the trial sum is not greater than the body group’s lower-limit integer,
then the body group is presented on the current page. If the trial sum
exceeds the body group’s lower-limit integer, then the RWCS executes
page-advance processing. After the PAGE HEADING report group (if
defined) has been processed, the RWCS presents the body group on that
page.

c. If a body group has been presented on the page on which the report is
currently positioned, the RWCS executes page-advance processing. After
the PAGE HEADING report group (if defined) has been processed, the
RWCS reapplies Fit Test rule 3c.

If no body group has yet been presented on the page on which the report
is currently positioned, the RWCS determines whether the saved-next-
group-integer location was set when the final body group was presented
on the preceding page. (See final LINE-COUNTER setting rule 6a). If
saved-next-group-integer was not set, the body group will be presented
on the page on which the report is currently positioned. If saved-next-
group-integer was set, the RWCS moves saved-next-group-integer into
LINE-COUNTER and resets saved-next-group-integer to zero.

If the value in LINE-COUNTER is less than the integer of the first
absolute LINE NUMBER clause, the RWCS presents the body group
on the page on which the report is currently positioned. Otherwise, the
RWCS executes page-advance processing. After the PAGE HEADING
report group (if defined) has been processed, the RWCS presents the body
group on that page.

4. First print line position rules:

a. The first print line of the body group appears on the line number specified
by the integer of its LINE NUMBER clause.

b. The RWCS presents the first print line of the current body group on the
line immediately following the line indicated by the value contained in
LINE-COUNTER if these two conditions are true:

• The value in LINE-COUNTER is equal to or greater than the line
number specified by the first-detail-line value in the FIRST DETAIL
phrase of the PAGE clause.

• No body group has previously been presented on the page on which
the report is currently positioned.

The RWCS presents the first print line of the current body group on the
line that is obtained by adding the contents of LINE-COUNTER and the
integer of the first LINE NUMBER clause of the current body group if
these two conditions are true:

• The value in LINE-COUNTER is equal to or greater than the line
number specified by the first-detail-line value in the FIRST DETAIL
phrase of the PAGE clause.

• A body group has previously been presented on the page to which the
report is currently positioned.

If the value in LINE-COUNTER is less than the line number specified
by the first-detail-line value in the FIRST DETAIL phrase of the PAGE
clause, then the RWCS presents the first print line of the body group on
the line specified by the FIRST DETAIL phrase.

c. The body group is not presented.
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d. The line number on which the RWCS presents the first print line is the
sum of the contents of:

• LINE-COUNTER

• The integer of the first LINE NUMBER clause

5. Next group rule:

The integer of the absolute NEXT GROUP clause (next-group-line-num) must
specify a line number that is: ( a ) not less than that specified in the FIRST
DETAIL phrase of the PAGE clause, and ( b ) not greater than that specified
in the FOOTING phrase of the PAGE clause.

6. Final LINE-COUNTER setting rules:

a. If the body group that has just been presented is a CONTROL FOOTING
report group and if the CONTROL FOOTING report group is not
associated with the highest level at which the RWCS detected a control
break, then the final LINE-COUNTER setting is the line number on
which the final print line of the CONTROL FOOTING report group was
presented.

If the line number on which the final print line of the body group was
presented is less than the integer of the NEXT GROUP clause, then the
RWCS places the NEXT GROUP integer into LINE-COUNTER as the
final LINE-COUNTER setting. If the line number on which the final
print line of the body group was presented is equal to or greater than
the integer of the NEXT GROUP clause, then the RWCS places the
line number specified by the FOOTING phrase of the PAGE clause into
LINE-COUNTER as the final LINE-COUNTER setting. In addition, the
RWCS places the NEXT GROUP integer into the saved-next-group-integer
location.

b. If the body group that has just been presented is a CONTROL FOOTING
report group, and if the CONTROL FOOTING report group is not
associated with the highest level at which the RWCS detected a control
break, then the final LINE-COUNTER setting is the line number on
which the final print line of the CONTROL FOOTING report group was
presented.

For all other cases the RWCS computes a trial sum in a work location.
The trial sum is computed by adding:

• The integer of the NEXT GROUP clause

• The line number on which the final print line of the body group was
presented

If the sum is less than the line number specified by the footing-line value
in the FOOTING phrase of the PAGE clause, then the RWCS places that
sum into LINE-COUNTER as the final LINE-COUNTER setting.

If the sum is equal to or greater than the line number specified by the
footing-line value in the FOOTING phrase of the PAGE clause, then
the RWCS places that line number into LINE-COUNTER as the final
LINE-COUNTER setting.

c. The final LINE-COUNTER setting is the line number on which the final
print line of the CONTROL FOOTING report group was presented if:

• The body group that has just been presented is a CONTROL
FOOTING report group.
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• The CONTROL FOOTING report group is not associated with the
highest level at which the RWCS detected a control break.

For all other cases the RWCS places the line number specified by the
footing-line value in the FOOTING phrase of the PAGE clause into
LINE-COUNTER as the final LINE-COUNTER setting.

d. The final LINE-COUNTER setting is the line number on which the final
print line of the body group was presented.

e. LINE-COUNTER is unaffected by the processing of a nonprintable body
group.

f. The final LINE-COUNTER setting is the line number on which the RWCS
presents the final print line of the CONTROL FOOTING report group if:

• The body group that has just been presented is a CONTROL
FOOTING report group.

• The CONTROL FOOTING report group is not associated with the
highest level at which the RWCS detected a control break.

For all other cases the RWCS uses the sum of these two items as the final
LINE-COUNTER setting:

• The line number on which the final print line was presented

• The NEXT GROUP integer

D.8 PAGE FOOTING Group Presentation Rules
Figure D–4 shows the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a PAGE
FOOTING report group.

Report Writer Presentation Rules and Tables D–11



Figure D–4 PAGE FOOTING Group Presentation Rules
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*** A blank entry in an applicable rules column indicates the absence of the named rule for the
given combination of LINE NUMBER and NEXT GROUP clauses.

**** If the PAGE clause is omitted from the Report Description entry, then a PAGE FOOTING
report group cannot be defined.  (See the TYPE clause in the Data Division chapter.)
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The PAGE FOOTING Group Presentation Rules are:

1. Upper-limit rule:

The first line number on which the PAGE FOOTING report group can be
presented is the line number obtained by adding:

• The integer 1

• The value of footing-line in the FOOTING phrase of the PAGE clause

2. Lower-limit rule:

The last line number on which the PAGE FOOTING report group can be
presented is the line number specified by page-size of the PAGE clause.

3. First print line position rules:

a. The first print line of the PAGE FOOTING report group is presented on
the line specified by the integer of its LINE NUMBER clause.

b. The PAGE FOOTING report group is not presented.

4. Next group rules:

a. The NEXT GROUP integer must be greater than the line number
on which the final print line of the PAGE FOOTING report group is
presented. In addition, the NEXT GROUP integer must not be greater
than the line number specified by the page-size value of the PAGE clause.

b. The sum of the following two items must not be greater than the line
number specified by page-size of the PAGE clause:

• The NEXT GROUP integer
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• The line number on which the final print line of the PAGE FOOTING
report group is presented

5. Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting after the RWCS presents the PAGE
FOOTING report group is the NEXT GROUP integer.

b. The final LINE-COUNTER setting after the RWCS presents the PAGE
FOOTING report group is the sum of:

• The NEXT GROUP integer

• The line number on which the final print line of the PAGE FOOTING
report group was presented

c. After the PAGE FOOTING report group is presented, the final LINE-
COUNTER setting is the line number on which the final print line of the
PAGE FOOTING report group was presented.

d. LINE-COUNTER is unaffected by the processing of a nonprintable report
group.

D.9 REPORT FOOTING Group Presentation Rules
Figure D–5 points to the appropriate presentation rules for all permissible
combinations of LINE NUMBER and NEXT GROUP clauses in a REPORT
FOOTING report group.
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Figure D–5 REPORT FOOTING Group Presentation Rules
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+ See the section on the LINE NUMBER clause.

* See the LINE NUMBER Clause Notation section for a description of the abbreviations in column 1.

*** A blank entry in an applicable rules column indicates the absence of the named rule for the given combination
of LINE NUMBER and NEXT GROUP clauses.

** A blank entry in column 1 or column 2 indicates that the named clause is totally absent from the REPORT
FOOTING Group Description entry.

REPORT FOOTING Group Presentation Rules

1. Upper-limit rules:

a. The first line number on which the REPORT FOOTING report group
can be presented is one greater than the final LINE-COUNTER setting
established by the PAGE FOOTING report group if a PAGE FOOTING
report group has been presented on the page on which the report is
positioned.

Otherwise, the first line number on which the REPORT FOOTING report
group can be presented is the line number obtained by adding 1 and the
footing-line value of the PAGE clause.

b. The first line number on which the REPORT FOOTING report group can
be presented is the line number specified by the HEADING phrase of the
PAGE clause.
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2. Lower-limit rule:

The last line number on which the REPORT FOOTING report group can be
presented is the line number specified by the page-size value of the PAGE
clause.

3. First print line position rules:

a. The first print line of the REPORT FOOTING report group is presented
on the line specified by the integer of its LINE NUMBER clause.

b. If the RWCS presents a PAGE FOOTING report group on the page to
which the report is positioned, then the sum of the following two items
defines the line number on which the RWCS presents the first print line
of the REPORT FOOTING report group:

• The final LINE-COUNTER setting established by the PAGE
FOOTING report group

• The integer of the first LINE NUMBER clause of the REPORT
FOOTING report group

Otherwise, the sum of the following two items defines the line number on
which the RWCS presents the first print line of the REPORT FOOTING
report group:

• The integer of the first LINE NUMBER clause of the REPORT
FOOTING report group

• The line number specified by the footing-line value of the FOOTING
phrase of the PAGE clause

c. The NEXT PAGE phrase in the first absolute LINE NUMBER clause
directs the REPORT FOOTING report group to appear on a page on
which no other report group has been presented. The first print line of
the REPORT FOOTING report group is presented on the line number
specified by the integer of its LINE NUMBER clause.

d. The line number on which the RWCS presents the first print line is the
sum of:

• The contents of LINE-COUNTER

• The integer of the first LINE NUMBER clause

e. The REPORT FOOTING report group is not presented.

4. Final LINE-COUNTER setting rules:

a. The final LINE-COUNTER setting is the line number on which the RWCS
presents the final print line of the REPORT FOOTING report group.

b. LINE-COUNTER is unaffected by the processing of a nonprintable report
group.

Report Writer Presentation Rules and Tables D–15





E
RTL Routines for Accessing the RAB and FAB

Structures (OpenVMS Alpha and I64 Only)

In HP COBOL for OpenVMS Alpha and OpenVMS I64, when a file is successfully
opened, the file’s RAB pointer is placed in its RMS_STV field and its FAB pointer
is placed in the FABPTR field of the RAB. The two RTL routines documented
here (DCOB$RMS_CURRENT_RAB and DCOB$RMS_CURRENT_FAB) enable
HP COBOL programmers to access the RAB and FAB data structures on
OpenVMS Alpha and I64. However, the content and format of the RAB and
FAB are not covered by any external standards (such as the ANSI standard for
COBOL) and are subject to change.
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DCOB$RMS_CURRENT_FAB—Return address of the RMS FAB for
the current file (OpenVMS Alpha, I64)

Returns

VMS Usage: fab
type: longword (unsigned)
access: write only
mechanism: by reference

Arguments

None.

Description

DCOB$RMS_CURRENT_FAB returns the address of the RMS FAB structure for
the most recently used COBOL file connector. Some fields of the FAB are filled in
by the RMS SYS$OPEN routine.

This routine can be used to obtain the address of the RMS FAB structure. The
FAB is filled in by SYS$OPEN to reflect the actual attributes of the file in the
cases where the actual attributes differ from the attributes specified by the
COBOL file connector.

The FAB is a structure used internally by the HP COBOL run-time system to
implement COBOL semantics. Modification of the FAB can result in abnormal
program behavior, including unexpected program termination.

Example

See the example for DCOB$RMS_CURRENT_RAB.
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DCOB$RMS_CURRENT_RAB—Return address of the RMS RAB
for the current file (OpenVMS Alpha, I64)

Returns

VMS Usage: rab
type: longword (unsigned)
access: write only
mechanism: by reference

Arguments

None.

Description

DCOB$RMS_CURRENT_RAB returns the address of the RMS RAB structure for
the most recently used COBOL file connector.

This routine can be used to obtain the address of the RMS RAB structure. The
RAB describes attributes of the connection to a file.

The RAB is a structure used internally by the HP COBOL run-time system to
implement COBOL semantics. Modification of RAB fields can result in abnormal
program behavior, including unexpected program termination.

Example

*+
* PROGRAM : RMSEXAMPLE
*
* PROGRAM DESCRIPTION:
*
* This program is an example of use of DCOB$RMS_CURRENT_FAB
* and DCOB$RMS_CURRENT_RAB.
*
*-
IDENTIFICATION DIVISION.
PROGRAM-ID. RMSEXAMPLE.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT EMPLOYEE-FILE
ASSIGN TO "employee.dat"
ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD EMPLOYEE-FILE

BLOCK CONTAINS 2048 CHARACTERS.
01 EMPLOYEE.

03 NAME PIC X(30).
03 OFFICE PIC X(10).
03 PHONE PIC X(10).

WORKING-STORAGE SECTION.
01 EMPLOYEE-FAB USAGE IS POINTER.
01 EMPLOYEE-RAB USAGE IS POINTER.
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PROCEDURE DIVISION.
P0.
*
* Open the file to establish EMPLOYEE-FILE as the current file.
*

OPEN INPUT EMPLOYEE-FILE.

*
* Get the pointer to the RMS FAB structure for EMPLOYEE-FILE. Store
* the pointer in EMPLOYEE-FAB. Do the same for the RAB.
*

CALL "DCOB$RMS_CURRENT_FAB" GIVING EMPLOYEE-FAB.
CALL "DCOB$RMS_CURRENT_RAB" GIVING EMPLOYEE-RAB.

*
* Pass the address of the FAB to a subroutine that will use
* the contents.
*

CALL "PRINT-FIELDS" USING BY VALUE EMPLOYEE-FAB EMPLOYEE-RAB.

*
* CLOSE the file before exiting.
*

CLOSE EMPLOYEE-FILE.
STOP RUN.

END PROGRAM RMSEXAMPLE.
IDENTIFICATION DIVISION.
PROGRAM-ID. PRINT-FIELDS.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 TEMP-W.

03 TEMP-WORD PIC S9(4) COMP.
01 TEMP-W1 REDEFINES TEMP-W.

03 TEMP-B1 PIC X.
03 TEMP-B2 PIC X.

LINKAGE SECTION.
01 FAB.
05 FAB_ID PIC S9(9) COMP VALUE 20483.
05 FOP PIC S9(9) COMP.
05 STS PIC S9(9) COMP.
05 STV PIC S9(9) COMP.
05 ALQ PIC S9(9) COMP.
05 DEQ PIC S9(4) COMP.
05 FAC PIC X.
05 SHR PIC X.
05 CTX PIC S9(9) COMP.
05 RTV PIC X.
05 ORG PIC X.
05 RAT PIC X.
05 RFM PIC X.
05 JNL PIC S9(9) COMP.
05 XAB-ADD USAGE IS POINTER.
05 NAM-ADD USAGE IS POINTER.
05 FNA USAGE IS POINTER.
05 DNA USAGE IS POINTER.
05 FNS PIC X.
05 DNS PIC X.
05 MRS PIC S9(4) COMP.
05 MRN PIC S9(9) COMP.
05 BLS PIC S9(4) COMP.
05 FILLER PIC X(18).

01 RAB.
05 RAB_ID PIC S9(9) COMP VALUE 17409.
05 ROP PIC S9(9) COMP.
05 STS PIC S9(9) COMP.
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05 STV PIC S9(9) COMP.
05 RFA PIC S9(4) COMP OCCURS 3 TIMES.
05 RESERVED PIC S9(4) COMP.
05 CTX PIC S9(9) COMP.
05 RAC PIC X.
05 TMO PIC X.
05 USZ PIC S9(4) COMP.
05 RSZ PIC S9(4) COMP.
05 UBF PIC S9(9) COMP.
05 RBF PIC S9(9) COMP.
05 RHB PIC S9(9) COMP.
05 KBF PIC S9(9) COMP.
05 KSZ PIC X.
05 KRF PIC X.
05 MBF PIC X.
05 MBC PIC X.
05 BKT PIC S9(9) COMP.
05 FABPTR PIC S9(9) COMP.
05 XAB PIC S9(9) COMP.

PROCEDURE DIVISION USING FAB RAB.
*
* Convert the MBF PIC X value to a PIC S9(5) COMP VALUE.
*

MOVE 0 TO TEMP-WORD.
MOVE MBF TO TEMP-B1.

*
* Display the multibuffer count and file allocation.
*

DISPLAY "Multibuffer count is "
TEMP-WORD WITH CONVERSION " blocks".

DISPLAY "File allocation is " ALQ WITH CONVERSION.

EXIT PROGRAM.
END PROGRAM PRINT-FIELDS.

Output:

$
$ LINK RMSEXAMPLE
$ RUN RMSEXAMPLE
File allocation is 1206
$ ♦
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Glossary

access stream

A serial sequence of I-O operations on records in a sequential, relative, or indexed
file. Successful OPEN statement execution creates an access stream. A successful
explicit or implicit CLOSE statement terminates an access stream.

actual decimal point

The physical representation of the decimal point position in a data item. The
comma ( , ) or period ( . ) characters represent the decimal point.

allow mode

Specifies the access that the current record stream permits to other record
streams in a file-sharing environment.

alphabetic character

A character that belongs to the set that includes the uppercase letters (A to Z)
and the space. For the contents of data items, the set also includes the lowercase
letters (a to z).

alphanumeric character

Any character in the computer’s character set.

alphanumeric function

An intrinsic function whose value is composed of a string of one or more
characters from the computer character set.

alternate record key

A key, other than the prime record key, whose contents identify a record in an
indexed file.

application program

A sequence of instructions and routines, not part of the basic operating system,
designed to serve the specific needs of a user. Compare with run unit.

argument

An identifier, a literal, a table, or an arithmetic expression that specifies a
value to be used in the evaluation of an intrinsic function, or the execution of
a statement, or a parameter to be passed in a CALL statement. Most of the
intrinsic functions require one or more arguments.
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arithmetic operation

The process that results in a mathematically correct solution during:

• The execution of an arithmetic statement

• The evaluation of an arithmetic expression

ascending key

A key whose values determine the ordering of data. Ascending order starts
with the lowest key value and ends with the highest, according to the rules for
comparing data items.

assumed decimal point

A decimal point position in a data item. The assumed decimal point has logical
meaning but no physical representation. It does not occupy a character position
in the data item.

binary floating-point

A floating-point data type with a base of 2 and a fraction representing a fixed
number of bits.

bit

The smallest unit in the computer’s storage structure. A bit can express two
distinct alternatives.

body group

The generic name for a report group of type DETAIL, CONTROL HEADING, or
CONTROL FOOTING.

bottom margin

An empty area that follows the page body.

byte

An eight-bit unit of physical storage. In HP COBOL, a byte stores one character
position.

called program

A program that is the object of a CALL statement. A called program is linked
with the calling program to produce an executable image, or run unit.

calling program

A program that executes a CALL to another program.

CDD/Repository (OpenVMS)

See Oracle CDD/Repository.

character

The basic, indivisible unit of the COBOL language.

character data item

A data item that consists entirely of Standard Data Format characters.
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character position

The amount of physical storage needed to store one Standard Data Format
character whose usage is DISPLAY. In HP COBOL, a character position requires
one byte of storage.

clause

A subdivision of a COBOL sentence; an ordered set of consecutive COBOL
character-strings that specifies an attribute of an entry.

collating sequence

The character-ordering sequence for sorting, merging, and comparing.

column

A character position within a line on a video terminal screen or within a print
line. The columns are numbered from 1, by 1, starting at the leftmost character
position of the line and extending to the rightmost position of the line.

comment line

A source program line with an asterisk in the indicator area. Both Area A
and Area B can contain any characters from the computer character set. The
comment line is for documentation only. A special form of comment line contains
a slash ( / ) in the indicator area instead of an asterisk ( * ). It causes the display
device to advance to the top of the next page before printing the comment on the
source listing.

common program

A program that, despite being directly contained within another program, may be
called from any program directly or indirectly contained in that other program,
except the common program and any programs it directly or indirectly contains.

compile time

When the compiler translates a COBOL source program to an object program.

computer character set

The set of characters available on the computer. Most elements of a COBOL
program can contain characters only from a subset of the computer character set.
However, comment lines, comment-entries, and nonnumeric literals can contain
characters from the full computer character set.

computer-name

A system-name that identifies the computer on which the program will be
compiled or run.

concurrency

The simultaneous use of a sequential, relative, or indexed file by more than one
user.

concurrent run unit

A run unit that executes at the same time as the current run unit.
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condition

The status of an executing program for which a truth value can be determined.
When condition refers to language specifications or general formats, it is a
conditional expression that consists of:

• A simple condition (with or without enclosing parentheses)

• A combined condition consisting of a combination of simple conditions, logical
operators, and parentheses

conditional compilation line

In ANSI format, a line with uppercase or lowercase characters (A to Z, a to z)
in its Indicator Area. In terminal format, a line with a backslash ( \ ) and an
uppercase or lowercase character (A to Z, a to z) in its Indicator Area.

connective

A reserved word used to:

• Associate a data-name, paragraph-name, condition-name, or text-name with
its qualifier

• Link two or more operands written in a series

• Form conditions (logical connectives)

See also logical operator.

contained program

A contained program is a COBOL source program that is directly or indirectly
contained in another COBOL source program.

control break

A change in the value of a data item that is referenced in the CONTROL clause.
More generally, a change in the value of a data item that is used to control the
hierarchical structure of a report.

control break level

The relative position within a control hierarchy at which the most major control
break occurred.

control data item

A data item, a change in whose contents may produce a control break.

control data-name

A data-name that appears in a CONTROL clause and refers to a control data
item.

control footing

A report group that is presented at the end of the control group of which it is a
member.

control group

A set of body groups that is presented for a given value of a control data item or
of a FINAL clause. Each control group may begin with a CONTROL HEADING,
end with a CONTROL FOOTING, and contain DETAIL report groups.
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control heading

A report group that is presented at the beginning of the control group of which it
is a member.

control hierarchy

A designated sequence of report subdivisions defined by the positional order of
FINAL and the data-names within a CONTROL clause.

counter

A data item used for storing numbers or number representations, permitting
them to be: ( 1 ) increased or decreased by another number, or ( 2 ) changed or
reset to zero or an arbitrary positive or negative value.

currency sign

The character $ of the COBOL character set.

currency symbol

The character defined by the CURRENCY SIGN clause in the SPECIAL-NAMES
paragraph. If there is no CURRENCY SIGN clause, the currency symbol is
identical to the currency sign, unless (on OpenVMS) a different symbol is
specified as the definition of the DCL logical name SYS$CURRENCY.

current record

In sequential, relative, or indexed file processing, the record that is available in
the file’s record area.

data clause

A clause in a data description entry that describes an attribute of a data item.

data item

A unit of data (excluding literals) defined in a COBOL program or by the rules
for function evaluation.

decimal floating-point

A floating-point data type with a base of 10 and a fraction representing a fixed
number of decimal digits.

declarative sentence

A compiler-directing sentence consisting of a single USE statement.

de-edit

The logical removal of all editing characters from a numeric edited data item to
determine that item’s unedited numeric value.

delimiter

A character or sequence of contiguous characters that mark the end of a string of
characters. A delimiter separates a string of characters from the following string.
A delimiter is not part of the string of characters that it delimits.
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descending key

A key whose values determine the ordering of data. Descending order starts
with the highest key value and ends with the lowest, according to the rules for
comparing data items.

Dictionary (OpenVMS Only)

See Oracle CDD/Repository.

Dictionary Management Utility (DMU) (OpenVMS Only)

A special dictionary management utility of Oracle CDD/Repository that provides
facilities for examining and maintaining the Oracle CDD/Repository contents.

digit position

The amount of physical storage needed to store one digit. This amount can vary
depending on the usage specified in the data description entry that defines the
data item. When the data description entry specifies that usage is DISPLAY, a
digit position equals one character position.

dynamic access

An access mode in which a program can randomly or sequentially obtain records
from, or randomly place records into, a mass storage file. A program can use both
types of access during the scope of the same OPEN statement.

editing character

A PICTURE clause character used to format data for output. Editing characters
can be any of the following set of single characters or fixed two-character
combinations:

B space
0 zero
+ plus
- minus
CR credit
DB debit
Z zero suppress
* check protect
$ currency sign
, comma (decimal point)
. period (decimal point)
/ slash (stroke)

end of Procedure Division

The physical position in a source program after which no further procedures
appear.

END PROGRAM header

A combination of words, followed by a separator period, that indicates the end of
a source program. The End Program header is: END PROGRAM program-name.
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entry

Any descriptive set of consecutive clauses, terminated by a separator period, in
the Identification, Environment, or Data Division.

environment clause

A clause that is part of an Environment Division entry.

executable image

An image that is capable of being run in a process. When run, an executable
image is read from a file for execution in a process.

execution time

When a program runs.

explicit scope terminator

A reserved word that terminates the scope of a particular conditional statement.

expression

An arithmetic or conditional expression.

extend mode

The state of a file after a program opens it with the EXTEND phrase and before
the program closes it without the REEL or UNIT phrase.

external data item

A data item described as part of an external record in one or more programs of a
run unit. An external data item can be referenced from any program in which it
is described.

external data record

A record described in one or more programs of a run unit. Its data items can be
referenced from any program in which they are described.

external file connector

A file connector that is accessible to one or more object programs in the run unit.

external switch

A software flag that indicates that one of two alternate states exists. On Tru64
UNIX systems, the environment variable COBOL_SWITCHES represents
external switches. On OpenVMS systems, the logical name COB$SWITCHES
represents external switches.

file

A collection of logical records stored as a unit.

file clause

A clause that is part of a file description (FD) or sort-merge file description (SD).

file description entry

An entry in the File Section of the Data Division that starts with the level
indicator FD. The level indicator is followed, in order, by: ( 1 ) a file-name, and
( 2 ) a set of file clauses, as required.

Glossary–7



file organization

The permanent logical file structure defined when a file is created.

File Position Indicator

A conceptual entity for sequential, relative, and indexed files that points to the
next logical record. The File Position Indicator can also indicate that: (1) no next
logical record exists or has been established, or ( 2 ) an optional file is not present.

FILE SECTION

A Data Division section. The File Section contains file description, report file
description, and sort-merge file description entries and their associated record
descriptions.

fixed-length record

A record of a file whose file description or sort-merge description entry requires
that all records contain the same number of character positions.

floating-point

The floating-point data types represent approximations to quantities using a sign,
a fraction, and an exponent. Such a representation describes a value that is the
product of the fraction and the quantity derived by raising a base to the power of
the exponent.

A floating-point data item has one of these usages: COMP-1, COMP-2,
FLOAT-SHORT, FLOAT-LONG, or FLOAT-EXTENDED.

footing area

The position of the page body adjacent to the bottom margin.

format

A specific arrangement of a set of data.

function

An intrinsic function: a temporary elementary data item that represents a value
to be determined at the time the function is referenced during the execution of a
statement. The value can be alphanumeric, numeric, or integer, depending on the
function type.

function-identifier

A syntactically correct combination of character strings and separators that
references an intrinsic function. The data item represented by a function is
uniquely identified by the word FUNCTION, a function-name, and arguments, if
any. A function-identifier may include a reference-modifier. A function-identifier
that references an alphanumeric function may be specified anywhere in the
general formats that an identifier may be specified, subject to certain restrictions.
A function-identifier that references an integer or numeric function may be
referenced anywhere in the general formats that an arithmetic expression may be
specified, subject to certain restrictions.
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function-name

A COBOL word that is one of a list of words (see Table 7–1) that may be used
in COBOL source programs to name a mechanism to determine the value of
an intrinsic function. The same word, in a different context, may appear in a
program as a user-defined word or a system-name (or, in the case of LENGTH,
RANDOM, or SUM, as a reserved word).

high-order end

The leftmost character of a string of characters.

identifier

A syntactically correct combination of character strings and separators that
names a data item: either (1) a data-name, together with any qualifiers, reference
modifier, subscripts, and indexes required for uniqueness of reference, or (2)
a function-identifier. However, the rules for an identifier associated with a
general format may specifically prohibit reference modification, qualification,
subscripting, indexing, or reference to functions.

I-O mode

The state of a file after a program opens it with the I-O phrase, and before the
program closes it without the REEL or UNIT phrase.

image

An image consists of procedures and data bound together by the linker. There are
three types of images: executable, shareable, and system. See also run unit.

implementor-name

A system-name that refers to a feature available in HP COBOL.

implicit scope terminator

An implicit scope terminator can be either of the following:

• A separator period that ends the scope of any preceding unterminated
statement

• A phrase of a statement that, by its occurrence, ends the scope of any
statement in the preceding phrase

index

A computer storage area or register whose contents represent the identification of
an element in a table.

index data item

A data item in which a program can store the values associated with an
index-name. The USAGE IS INDEX clause defines an index data item.

indexed data-name

An identifier that consists of a data-name followed by one or more index-names in
parentheses.

indexed file

A file with indexed organization.
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indexed organization

The permanent logical file structure in which each record contains one or more
keys whose values identify it.

initial program

A program that is in its initial state whenever it is called. The initialization
process sets all local data items whose description includes a VALUE clause to
their defined values. Data items without a VALUE clause assume their default
values.

input file

A file opened in input mode.

input mode

The state of a file after a program opens it with the INPUT phrase, and before
the program closes it without the REEL or UNIT phrase.

input procedure

A set of statements that receives control during SORT statement execution. An
input procedure controls the release of records to the sort.

input-output file

A file opened in I-O mode.

integer

(1) A numeric literal that does not include any digit positions to the right of the
decimal point. (2) A numeric data item defined in the Data Division that does
not include any digit positions to the right of the decimal point. (3) A numeric
function whose definition provides that all digits to the right of the decimal point
are zero in the returned value for any possible evaluation of the function.

When the term integer appears in a general format, or in its associated rules,
integer must be a numeric literal that is an integer, and it cannot be signed or
zero unless explicitly allowed by the rules of the format.

integer function

An intrinsic function whose category is numeric and whose definition provides
that all digits to the right of the decimal point are zero in the returned value for
any possible evaluation of the function.

internal data

All data described in a program, except for external data items and external file
connectors. Items described in the Linkage Section of a program are treated as
internal data.

internal data item

A data item described in one program in a run unit. An internal data item may
have a global name.

internal file connector

A file connector that is accessible to only one object program in the run unit.
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intrarecord data structure

The entire collection of group and elementary data items from a logical record.
The collection is defined by a subset of contiguous data description entries
that describe that record. These data description entries include all entries
with level-numbers greater than that of the first data description entry for the
intrarecord data structure.

intrinsic function

An intrinsic function is treated as an elementary data item that represents
a temporary data value to be derived automatically at the time of reference.
HP COBOL has intrinsic functions for scientific/mathematical use, date
manipulation, relational use, statistical/accounting, and other purposes.

invalid key condition

At run time, a condition caused when the value of the key associated with an
indexed or relative file is determined to be invalid.

key

(1) A data item that identifies a record’s location, (2) a segmented key, or (3) a set
of data items that identifies the ordering of data.

Key of Reference

The key, either prime or alternate, currently being used to access records in an
indexed file.

key word

A reserved word or function-name whose presence is required when the format in
which the word appears is used in a source program.

level indicator

Two alphabetic characters that identify a specific type of file.

library text

A sequence of text words, comment lines, or the separator spaces and the
pseudo-text delimiters in a COBOL library.

line

See report line.

line number

An integer that denotes the vertical position of a line on a video terminal screen,
or on a page within a print file.

LINKAGE SECTION

The section in the Data Division of a called program that describes data items
available from the calling program. Both the calling and the called programs can
refer to these data items.

local name

A user-defined name that is declared in only one program and may be referenced
only from that program.
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locking

The HP COBOL facilities that allow concurrent use of a sequential, relative, or
indexed file without corrupting its records. The HP COBOL I/O system maintains
locks on a file, individual records, or both.

logical operator

One of the reserved words AND, OR, or NOT. In the formation of a condition,
either AND or OR, or both, can be used as logical connectives. NOT indicates
logical negation.

logical page

A conceptual entity consisting of the top margin, page body, and bottom margin.

logical record

The most inclusive data item. The level-number for a logical record is 01 or 77.
A record can be either an elementary or group item. See Report Writer logical
record, record occurrence, and record type.

low-order end

The rightmost character of a string of characters.

mass storage

A storage medium in which data can be organized and maintained both
sequentially and nonsequentially.

Mass Storage Control System (MSCS)

An input-output control system that directs or controls the processing of mass
storage files.

mass storage file

A collection of records assigned to a mass storage medium.

merge file

A collection of records to be merged by a MERGE statement. The merge file is
created and can be used only by the merge function.

native arithmetic

A mode of arithmetic in which the techniques used in handling arithmetic are
specified by the implementor.

native character set

The 256-character set that starts with the 128 characters of the ASCII character
set.

native collating sequence

The collating sequence of the ASCII character set.

next executable sentence

The next sentence to which control transfers after execution of the current
statement is complete.
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next record

The record that logically follows the current record of a file.

nonnumeric item

A data item whose description permits it to contain any combination of characters
from the computer character set. Certain categories of nonnumeric items can
contain only more restricted character sets.

nullity condition

The proposition, for which a truth value can be determined, that a specified data
item is null.

null state

The state of a data item that has no value.

numeric character

A character that belongs to the set of digits 0 to 9.

numeric function

An intrinsic function whose class and category are numeric but which for some
possible evaluation does not satisfy the requirements of an integer function.

numeric item

A data item whose description allows it to contain only digits. A signed numeric
item can also contain a plus sign ( + ), minus sign ( - ), or other representation of
an operational sign.

object of entry

A set of operands and reserved words in a Data Division entry that immediately
follows the subject of the entry.

object program

A set of executable machine-language instructions and other material designed
to interact with data to solve problems. Where there is no danger of ambiguity,
program means object program.

open mode

The state of a file after a program opens it and before the program closes it
without the REEL or UNIT phrase. The OPEN statement specifies the open
mode as INPUT, OUTPUT, I-O, or EXTEND.

operand

A component that is operated on. Any lowercase word in a statement or entry
format can be considered: ( 1 ) an operand and ( 2 ) an implied reference to the
data indicated by the operand.

operational sign

An algebraic sign associated with a numeric data item or numeric literal to
indicate whether its value is positive or negative.
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optional file

A file opened in INPUT, I-O, EXTEND, or OUTPUT mode whose presence is not
necessary each time the program executes. The program checks for the presence
or absence of the file.

Oracle CDD/Repository (OpenVMS Only)

The central repository of information about data elements, data structures,
and relationships between data structures for languages such as HP COBOL
for OpenVMS VAX, HP COBOL for OpenVMS, and more. It does not contain
actual data files. Rather, it contains record definitions. Oracle CDD/Repository is
available under a separate license from a third party.

output file

A file opened in either output or extend mode.

output mode

The state of a file after a program opens it with the OUTPUT or EXTEND
phrase, and before the program closes it without the REEL or UNIT phrase.

output procedure

A set of statements that receives control during the execution of a SORT
statement after the sort function ends. Also, a set of statements that receives
control during the execution of a MERGE statement after the merge function has
selected the next record in merged order.

padding character

An alphanumeric character used to fill the unused character positions in a
physical record.

page

A vertical division of a report representing a physical separation of report data,
the separation being based on internal reporting requirements and/or external
characteristics of the reporting medium.

page body

The part of the logical page in which lines can be written and/or spaced.

page footing

A report group that is presented at the end of a logical page as determined by the
Report Writer Control System.

page heading

A report group that is presented at the beginning of a logical page as determined
by the Report Writer Control System.

phrase

An ordered set of one or more consecutive COBOL character-strings that forms
part of a clause or procedural statement.

pointer

A place marker that identifies the record address of a storage segment.
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prime record key

A key that uniquely identifies a record in an indexed file.

printable group

A report group that contains at least one print line.

printable item

A data item, the extent and contents of which are specified by an elementary
report entry. This elementary report entry contains a COLUMN NUMBER
clause, a PICTURE clause, and a SOURCE, SUM, or VALUE clause.

procedure

A paragraph (or section) or group of logically successive paragraphs (or sections)
in the Procedure Division.

procedure-name

A user-defined word that names a paragraph or section in the Procedure Division.
It consists of a paragraph-name (which can be qualified), or a section-name.

pseudo-text

A sequence of text words, comment lines, or the separator space in a source
program, bounded by, but not including, pseudo-text delimiters.

pseudo-text delimiter

Two contiguous equal sign ( = ) characters that delimit pseudo-text.

punctuation character

A character from the following set:

, comma
; semicolon
: colon
. period (full stop)
" quotation mark
( left parenthesis
) right parenthesis

space
= equal sign
’ apostrophe

qualified data-name

An identifier that consists of one data-name followed by one or more OF (or IN)
phrases containing another data-name.

random access

An access mode in which the program-specified value of a key data item identifies
the logical record in a relative or indexed file.

record

See logical record.
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record access stream

See access stream.

record area

A storage area allocated to process the sequential, relative, and indexed record
described in a record description entry in the File Section.

record key

A key whose contents identify a record in an indexed file. Within an indexed file,
record key is either the prime record key or an alternate record key.

reference format

A standard way to describe COBOL source programs.

reference-modifier

A syntactically correct combination of character strings and separators that
defines a unique data item; it includes a delimiting left parenthesis separator,
the leftmost character position, a colon separator, optionally a length, and a
delimiting right parenthesis separator.

relation

See relational operator.

relation character

A character from the following set:

> Greater than
< Less than
= Equal to

relational operator

In a relation condition, the reserved words used to compare the values of two
operands. Valid relational operators are as follows:

IS [NOT] GREATER THAN
IS [NOT] >

Greater or not greater than

IS [NOT] LESS THAN
IS [NOT] <

Less or not less than

IS [NOT] EQUAL TO
IS [NOT] =

Equal or not equal to

IS GREATER THAN OR EQUAL TO
IS >=

Greater than or equal to

IS LESS THAN OR EQUAL TO
IS <=

Less than or equal to

relative file

A file with relative organization.

relative key

A key whose contents identify a logical record in a relative file.
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relative organization

The permanent logical file structure in which each record is uniquely identified
by positive integer value. The integer value specifies the record’s logical ordinal
position in the file.

repeating group

A group data item whose description contains an OCCURS clause. Also, a group
data item subordinate to a data item whose description contains an OCCURS
clause.

report clause

A clause in the Report Section of the Data Division that appears in a report
description entry or a report group description entry.

report description entry

An entry in the Report Section of the Data Division that is composed of the level
indicator RD, followed by a report-name, followed by a set of report clauses, as
required.

report file

An output file whose file description entry contains a REPORT clause. The
contents of a report file consist of records that are written under control of the
Report Writer Control System.

report footing

A report group that is presented only at the end of a report.

report group

In the Report Section of the Data Division, a 01 level-number entry and its
subordinate entries.

report group description entry

An entry in the Report Section of the Data Division that is composed of the
level-number 01, an optional data-name, a TYPE clause, and an optional set of
report clauses.

report heading

A report group that is presented only at the beginning of a report.

report line

A division of a report group representing one row of horizontal character
positions. Each character position of a report line is aligned horizontally by
the COLUMN clause of the report group description entry. Report lines are
numbered from 1, by 1, starting at the top of the logical page.

Report Section

The section of the Data Division that contains one or more report description
entries and their associated report group description entries.

Report Writer Control System (RWCS)

A run-time control system that produces a report according to the specifications
in a program’s Report Section.
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Report Writer logical record

A record that consists of the Report Writer print line and associated control
information necessary for the vertical positioning of the report line.

resource

A facility or service controlled by the operating system that can be used by an
executing program.

retrieval lock

An integrity lock that prevents a record from being changed in any way by a
concurrent run unit. A concurrent run unit can only read a record that has a
retrieval lock.

run unit

One or more object programs linked to form an executable image.

RWCS

See Report Writer Control System.

screen description entry

An entry in the Screen Section of the Data Division that is composed of a level
number followed by a screen-name, if required, and then followed by a set of
screen clauses, as required.

SCREEN SECTION (Alpha, I64)

A Data Division section. The Screen Section contains screen description entries,
which describe video forms. ♦

section

A set of zero, one, or more paragraphs or entries (called a section body) that
follows a section header. Each section consists of the section header and related
section body.

segmented key

A record key or alternate record key with up to eight segments, each of which is
a data-name of (1) an alphanumeric or numeric item, (2) a group item, or (3) an
unsigned numeric display item.

sequential access

An access mode in which logical records are obtained from or placed into a file
in consecutive sequence. The order in which records were written to the file
determines the predecessor-successor logical record sequence.

sequential file

A file with sequential organization.

sequential organization

The permanent logical file structure in which a record is identified by a
predecessor-successor relationship established when it is placed into the file.
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shareable image

An image that has all of its internal references resolved, but which must be
linked with one or more object modules to produce an executable image. A
shareable image file can be used to contain a library of routines. A shareable
image can be used by the system manager to create a global section.

sort file

A collection of records to be sorted by a SORT statement. The sort file is created
and can be used only by the sort function.

sort key

A data item that identifies the location of a record, or a set of data items that
serves to identify the ordering of data.

sort-merge file description entry

An entry in the File Section that consists of the level indicator SD, followed by:
( 1 ) a file-name, and ( 2 ) a set of file clauses, as required.

source item

An identifier designated by a SOURCE clause that provides the value of a
printable item.

special character

A character from the set:

+ plus sign
- minus sign (hyphen)
* asterisk
/ slash (stroke)
= equal sign
$ currency sign
, comma (decimal point)
; semicolon
. period (decimal point, full stop)
" quotation mark
( left parenthesis
) right parenthesis
> greater than symbol
< less than symbol
! exclamation point
# number sign
% percent
& ampersand
’ apostrophe
: colon
? question mark
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@ at sign
_ underline (underscore)
\ backslash

standard arithmetic

A mode of arithmetic in which the techniques used in handling arithmetic
expressions, arithmetic statements, the SUM clause, and certain integer and
numeric functions are specified in the draft International Standard.

Standard Data Format

A method of describing data as if the data appears on a printed page of infinite
length and breadth. It does not relate to the way that data is stored internally or
on an external medium.

standard intermediate data item

A temporary decimal floating-point data item used to hold arithmetic operands
when standard arithmetic is in effect.

statement

In the Procedure Division, a syntactically valid combination of words and symbols
that begins with a verb.

subject of entry

An operand or reserved word that appears immediately after the level indicator
or level-number in a Data Division entry.

subprogram

See called program.

subscript

An integer whose value identifies a table element.

A subscript can be the word ALL when the subscripted identifier is an
argument to an intrinsic function. (The function must allow a variable number
of arguments in this argument position. See Chapter 7.) ALL, or generic,
subscripting is the use of the word ALL to specify all elements in one or more
dimensions of a table.

subscripted data-name

An identifier that consists of a data-name followed by one or more subscripts
enclosed in parentheses.

sum counter

A signed numeric data item established by a SUM clause in the Report Section of
the Data Division. The sum counter is used by the Report Writer Control System
to contain the result of designated summing operations that take place during
production of a report.

system image

The image that is read into memory from disk when the system is started up.
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table

A set of logically consecutive data items defined with an OCCURS clause in the
Data Division.

table element

A data item that belongs to the set of repeated items comprising a table.

terminal operator

The individual who, at run time, enters data in response to program prompts.

top margin

An empty area that precedes the page body.

unary operator

A plus ( + ) or a minus ( - ) sign that precedes a variable or left parenthesis in an
arithmetic expression. It has the effect of multiplying the expression by +1 or -1.

unsuccessful execution

The attempted execution of a statement that does not result in the execution of
all its operations. The unsuccessful execution of a statement does not affect any
data referenced by that statement. However, it can affect status indicators.

update lock

An integrity lock that prevents a record from being used in any way in a
concurrent run unit.

variable

A data item whose value can be changed by program execution. A variable used
in an arithmetic expression must be a numeric elementary item.

variable-length record

A record associated with a file whose file description or sort-merge description
entry permits records to contain a varying number of character positions.

variable occurrence data item

A table element that is repeated a variable number of times. It must contain an
OCCURS DEPENDING ON clause in its data description entry or be subordinate
to an item that does.

word

A character-string of not more than 31 characters that forms a user-defined word,
a system-name, a reserved word, or a function-name.

WORKING-STORAGE SECTION

A Data Division section that describes Working-Storage data items. It consists of
Working-Storage noncontiguous items or Working-Storage records or both.
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Index

A
Abbreviated combined relation conditions, 6–39 to

6–40
definition, 6–40

ACCEPT statement, 6–59 to 6–83
reference to devices, 4–10

ACCESS MODE clause, 5–43
ACOS intrinsic function, 7–8
Additional reference

definition, 1–24
ADD statement, 6–84 to 6–86
Alignment, effect of SYNC clause, 5–130 to 5–131
Alignment and padding, 5–14
ALL literal, 1–15
ALPHABET clause, 4–11
ALPHABETIC test, 6–33
Alphabet-name

definition, 1–3
Alpha data alignment, 5–15
ALTERNATE RECORD KEY clause, 5–45

-relax_key_checking, 5–46
ALTER statement, 6–87
alt-key, 5–45
ANNUITY intrinsic function, 7–9
ANSI source reference format

definition, 1–18
APPLY clause, 4–39, 4–40 to 4–42
ARGCOUNT intrinsic function, 7–10
Arithmetic

standard, 6–28
Arithmetic, native, Glossary–12
Arithmetic, native and standard, 6–26, 6–29
Arithmetic, standard, Glossary–20
Arithmetic, standard intermediate data item,

Glossary–20
/ARITHMETIC=STANDARD qualifier, 6–28
Arithmetic expressions, 6–26 to 6–30

composition of, 6–26
data items in, 6–26
definition, 6–26
evaluation of, 6–27
literals in, 6–26
operators in, 6–26
use of parentheses in, 6–26
use of sign in, 6–26

Arithmetic operations
multiple receiving fields, 6–42
restrictions for operands, 6–41
rounding off results, 6–42
storing partial results, 6–41

Arithmetic operators, 6–26
definition, 6–26

Arithmetic statements
definition, 6–41

ASCENDING clause, 5–46
ASCII character set, 4–11, B–1
ASIN intrinsic function, 7–11
ASSIGN clause, 4–28 to 4–30
ATAN intrinsic function, 7–12
At end condition, 6–50

definition, 6–50
AUTHOR paragraph, 3–4
AUTO clause, 5–48
Automatic record locking, 6–169

B
BACKGROUND-COLOR clause, 5–49
BELL clause, 5–50
Binary search

of a table, 6–205
BINARY usage, 5–138
BLANK clause, 5–51
Blank lines, 1–20
Blanks

in file specification, 4–30
BLANK WHEN ZERO clause, 5–52
BLANK WHEN ZEROES, 5–52
BLINK clause, 5–53
Block

definition, 5–5
related to a record, 5–5

BLOCK CONTAINS clause, 4–31
Body Group Presentation Rules, table, D–6
Boundary equivalence, 5–8 to 5–14
Bucket

definition, 5–5
related to physical record, 5–5
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C
Called programs

Linkage Section of, 5–18
Procedure Division header of, 5–18

CALL statement, 6–89 to 6–94
CANCEL statement, 6–95
Categories of data items, 5–7
Character sets

and collating sequence, 4–11
ASCII, 4–11, B–1
COBOL, 1–1
computer, 1–1
EBCDIC, B–1
in ALPHABET clause, 4–11
Native, B–1

character-string
definition, 1–3

Character transfer
using the STRING statement, 6–229 to 6–233
using the UNSTRING statement, 6–244 to

6–249
CHAR intrinsic function, 7–13
/CHECK=BOUNDS qualifier, 6–11
/CHECK=DUPLICATE_KEYS qualifier, 5–46,

5–112
Class condition, 6–33 to 6–34

definition, 6–33
Class-name

definition, 1–3
CLOSE statement, 6–97 to 6–100
cobcall routine, 6–93
cobcancel routine, 6–93
cobfunc routine, 6–93
COBOL character set

definition, 1–1
COBOL language elements, 1–1
COBOL word

definition, 1–3
CODE clause, 5–54
CODE-SET clause, 4–32
Collating sequence

in ALPHABET clause, 4–11
specifying in a COBOL program, 4–4
when merging files, 6–153

Colon, 1–17
COLUMN NUMBER clause, 5–55
Combined condition

definition, 6–38
Combining files

See Merging files
Comma, as a separator, 1–16, 7–2
Command line arguments, 6–59

syntax, 4–7

Comment lines, 1–20
Comparing operands, 6–31

when alphabetic, 6–33
when nonnumeric, 6–32
when numeric, 6–32, 6–33

Compatibility
ASSIGN TO unquoted string, 4–29
case sensitivity, 4–30
/CHECK=DUPLICATE, 5–46, 5–112
descriptor, 6–92
parameter passing, 6–92
spaces in file specs, 4–30
tabs in file specs, 4–30
VALUE OF ID environment variable, 5–156
VALUE OF ID logical, 5–156

Compiler-directing sentence, 6–4
Compiler-directing statement, 6–4

definition, 6–1
Compiler options

/NATIONALITY=JAPAN, 1–14, 4–13
-nationality japan, 1–14, 4–13
-tps, 4–33

Compile-time environment, documenting, 4–3
Complex condition, 6–38

definition, 6–31
COMP SYNC data items, 5–130 to 5–131
COMPUTATIONAL-1 usage, 5–138
COMPUTATIONAL-2 usage, 5–138
COMPUTATIONAL-3 usage, 5–138
COMPUTATIONAL-5 usage, 5–138
COMPUTATIONAL usage, 5–138
COMPUTATIONAL-x usage, 5–138
COMPUTE statement, 6–101 to 6–102
Conditional compilation lines, 1–19, 1–20
Conditional expressions, 6–31 to 6–36

class condition, 6–33 to 6–34
combining, 6–38
complex conditions, 6–38
condition-name, 6–34 to 6–35
definition, 6–31
evaluation of, 6–40
negating, 6–38
relation condition, 6–31 to 6–33
sign condition, 6–36
success/failure condition, 6–36
switch-status condition, 6–35

Conditional sentence, 6–5
Conditional statement, 6–5

definition, 6–1
Conditional variables

definition, 6–34
relation to condition-names, 1–3

Condition-name
condition

definition, 6–34
Condition-name condition, 6–34 to 6–35
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Condition-names
associating values with, 5–4, 5–150 to 5–155
definition, 1–3
in general formats and rules, 6–15
in SWITCH clause, 4–10
qualifying, 6–15

Configuration Section
definition, 4–2

CONTINUE statement, 6–103
CONTROL clause, 5–58
COPY statement, 8–3
CORRESPONDING phrase

for arithmetic statements, 6–43
for the MOVE statement, 6–43

COS intrinsic function, 7–14
Counting characters in a data item, 6–143 to

6–150
CRT status

specifying CRT status, 4–15
CRT STATUS IS clause, 4–15
CURRENCY SIGN clause, 4–13
CURRENCY SIGN IS literal-7 clause, 4–14
CURRENT-DATE intrinsic function, 7–15
Cursor

specifying cursor address, 4–15
CURSOR IS clause, 4–15

D
Data description entry

definition, 5–1
elements of, 5–1
skeleton, 5–30 to 5–33

Data Division, 5–16
entries, 2–5

Data-handling operations
undefined results

from incompatible data, 6–45
from operand overlap, 6–45

Data items
assigning initial values to, 5–150 to 5–155
categories of, 5–7, 5–97
characteristics of, 5–30 to 5–33, 5–96 to 5–107
classes of, 5–7
contents and class incompatibility, 6–45
default initial values, 5–17
default USAGE of, 6–25
in arithmetic expressions, 6–26
index, 6–12
naming, 5–61 to 5–62
nonstandard data positioning in, 5–74
storage format for, 5–138 to 5–149

Data-name
definition, 1–3
in an identifier, 6–15

Data-name clause, 5–61 to 5–62

DATA RECORDS clause, 5–63
Data transfer

positioning rules for, 5–7
using the MOVE statement, 6–156 to 6–160

DATE-COMPILED paragraph, 3–5
DATE-OF-INTEGER intrinsic function, 7–17
DATE-TO-YYYYMMDD intrinsic function, 7–18
DAY-OF-INTEGER intrinsic function, 7–19
DAY-TO-YYYYDDD intrinsic function, 7–20
Decimal point

specifying as comma, 4–14
DECIMAL-POINT IS COMMA clause, 4–14
Declarative procedures

referencing with the USE statement, 6–250 to
6–253

Declaratives
definition, 2–6

DEFERRED-WRITE, 4–39
DEFERRED-WRITE phrase of the APPLY clause,

4–40
DELETE statement, 6–104 to 6–106
Delimited-scope statement, 6–6

definition, 6–1
DESCENDING clause, 5–46
DISPLAY statement, 6–107 to 6–119

reference to devices, 4–10
usage, 5–138

DIVIDE statement, 6–120 to 6–123
Division by zero, 6–43
Division header

definition, 2–3
Divisions

definition, 1–1
Duplicate keys check, 5–46, 5–112
DUPLICATES phrase, 5–46

E
EBCDIC character set, B–1
Editing rules

for PICTURE clause, 5–102
Editing symbols

in PICTURE clause, 5–98 to 5–102
Elementary data items

alternative groupings of, 5–117 to 5–118
definition, 5–2

Embedded spaces
in file specification, 4–30

END PROGRAM header, 6–261 to 6–262
ENVIRONMENT DIVISION

syntax and general rules, 4–1
Environment variables, 6–59
ERASE clause, 5–64
Error handling

with the USE statement, 6–250 to 6–253
EVALUATE statement, 6–124
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Example
definition, 1–24

EXIT PROGRAM statement, 6–131
EXIT statement, 6–130
Exponentiation, 6–28

results when invalid, 6–43
EXTENSION phrase of the APPLY clause, 4–40
EXTERNAL clause, 5–65
External data

definition, 6–7

F
FAB

See File access block
FACTORIAL intrinsic function, 7–21
FD

See File description
FD entries, 5–16
Figurative constants, 1–14 to 1–16

definition, 1–14
HIGH-VALUE, 1–15
LOW-VALUE, 1–15
QUOTE, 1–15
SPACE, 1–15
symbolic-character, 1–15

File access, 6–164 to 6–172
File access block (FAB), 4–43
File connector

definition, 1–4
FILE-CONTROL

ASSIGN, 4–28
BLOCK CONTAINS, 4–31
CODE-SET, 4–32
definition, 4–21
LOCK MODE, 4–33
ORGANIZATION, 4–34
PADDING CHARACTER, 4–35
paragraph, 4–21 to 4–27
RECORD DELIMITER, 4–36
RESERVE, 4–37

File description
clauses of, 5–17
complete entry skeleton, 5–20 to 5–25
function of entry, 5–1
structure of, 5–16

File formats
Indexed, 6–254, 6–258
Line Sequential, 6–254, 6–256
Relative, 6–254, 6–257
Sequential, 6–254, 6–256

File mapping, 4–42
File name

assigning file specification to, 4–28 to 4–30
File-name

definition, 1–4

File optimization, 4–38 to 4–44
File organization, 4–34

Indexed, 4–34
Line Sequential, 4–34
Relative, 4–34
Sequential, 4–34

Files
Indexed, 6–97
Line Sequential, 6–97
Relative, 6–97
Sequential, 6–97

File Section of Data Division, 5–16
File specification

assigning to a file-name
using VALUE OF ID clause, 5–156
with ASSIGN clause, 4–28 to 4–30

Spaces in, 4–30
Tabs in, 4–30

File status
data item, 6–46
/STANDARD=85 values, C–1
/STANDARD=V3 values, C–1
values, C–1 to C–3

FILE STATUS clause, 5–67
File structure in a COBOL program, 4–34
Fill bytes, def, 5–8
FILLER, 5–61 to 5–62
FILL-SIZE phrase of the APPLY clause, 4–40
Fixed insertion editing, 5–103
Fixed-length records, 5–108 to 5–110
Fixed segment

definition, 6–54
Floating insertion editing, 5–103
Floating-point literal

definition, 1–11
FOREGROUND-COLOR clause, 5–68
Format

of print files, 5–78 to 5–81
record (RECORD clause), 5–108 to 5–110

FROM phrase, 6–53
FULL clause, 5–69
Function-identifier, 7–2
Function-name, 7–2
Function-names, 1–10
Functions

definition, 1–23
Functions, intrinsic

See Intrinsic functions

G
General format

definition, 1–23
function of, 1–23

General rule
definition, 1–23
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GENERATE statement, 6–132
Generic term

definition, 1–23
GLOBAL clause, 5–70
Global data

definition, 6–7
GO TO statement, 6–134 to 6–135
Group data item, 5–2

definition, 5–2
GROUP INDICATE clause, 5–71
Group moves, 6–158
G_FLOATING, 5–145

H
Hexadecimal literal

definition, 1–13
HIGHLIGHT clause, 5–73
HIGH-VALUE figurative constant, 1–15, 4–11
Horizontal tab, 1–17

I
I64 data alignment, 5–15
IDENT clause, 3–3
Identification Division

syntax and general rules for, 3–1 to 3–6
Identifier, defined, 6–15
IF statement, 6–136 to 6–138
Imperative sentence, 6–5
Imperative statement, 6–5

definition, 6–1
/INCLUDE qualifier, 8–7
Indentation, relation to level-numbers, 5–3
Independent segment

definition, 6–54
Index data item, 6–12

comparing, 6–33
defining in program, 5–140

Indexed files, 6–97, 6–254
default number of I-O buffers for, 4–37
duplicate key, 5–46, 5–112
starting position in, 6–222 to 6–227

Indexes
setting values for, 6–202, 6–209 to 6–213

Indexing, 6–12 to 6–13
basis for, 5–88
in an identifier, 6–15

Index-names
comparing, 6–33
definition, 1–4
rules, 5–89
storing value of in a data item, 6–12

INDEX SYNC data items, 5–130 to 5–131
INDEX usage, 5–138
Initialization of data item values

in Linkage Section, 5–18
in Working-Storage Section, 5–17

INITIALIZE statement, 6–139
with group and elementary items, 6–139

INITIATE statement, 6–142
Input-output

of low-volume data, 6–59, 6–107
specifying buffers for, 4–37
status, 6–46 to 6–50

values for, 6–46
INPUT-OUTPUT Section

definition, 4–20
INSPECT statement, 6–143 to 6–150
INTEGER intrinsic function, 7–22
INTEGER-OF-DATE intrinsic function, 7–23
INTEGER-OF-DAY intrinsic function, 7–24
INTEGER-PART intrinsic function, 7–25
Intermediate data item

definition, 6–41
INTO phrase, of I-O statements, 6–53
Intrinsic functions, 7–1 to 7–59

ACOS, 7–8
ANNUITY, 7–9
ARGCOUNT, 7–10
ASIN, 7–11
ATAN, 7–12
CHAR, 7–13
COS, 7–14
CURRENT-DATE, 7–15
date manipulation, 7–1
DATE-OF-INTEGER, 7–17
DATE-TO-YYYYMMDD, 7–18
DAY-OF-INTEGER, 7–19
DAY-TO-YYYYDDD, 7–20
FACTORIAL, 7–21
function types

alphanumeric, 7–4
integer, 7–4
numeric, 7–4

INTEGER, 7–22
INTEGER-OF-DATE, 7–23
INTEGER-OF-DAY, 7–24
INTEGER-PART, 7–25
LENGTH, 7–26
LOG, 7–27
LOG10, 7–28
LOWER-CASE, 7–29
MAX, 7–30
MEAN, 7–32
MEDIAN, 7–33
MIDRANGE, 7–34
MIN, 7–35
MOD, 7–36
NUMVAL, 7–37
NUMVAL-C, 7–38
ORD, 7–39
ORD-MAX, 7–40
ORD-MIN, 7–41
other, 7–1
PRESENT-VALUE, 7–42
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Intrinsic functions (cont’d)
RANDOM, 7–43
RANGE, 7–44
relational, 7–1
REM, 7–45
REVERSE, 7–46
scientific/mathematical, 7–1
SIN, 7–47
SQRT, 7–48
STANDARD-DEVIATION, 7–49
statistical/accounting, 7–1
string manipulation, 7–1
SUM, 7–50
table, 7–4
TAN, 7–52
TEST-DATE-YYYYMMDD, 7–53
TEST-DAY-YYYYDDD, 7–54
UPPER-CASE, 7–55
VARIANCE, 7–56
WHEN-COMPILED, 7–57
YEAR-TO-YYYY, 7–59

Invalid key condition, 6–51
I-O-CONTROL, 4–38 to 4–44

definition, 4–38
paragraph, 4–38 to 4–44

I-O File status values, C–1
/STANDARD=85 qualifier (tab.), C–1
/STANDARD=85 values, C–1
/STANDARD=V3 qualifier (tab.), C–3
/STANDARD=V3 values, C–1

I-O status
See Input-output

J
JUSTIFIED clause, 5–74

and Standard Alignment Rules, 5–7

K
Keyword

definition, 1–6

L
LABEL RECORDS clause, 5–75
LENGTH intrinsic function, 7–26
Level-numbers, 5–3, 5–76 to 5–77

definition, 1–4
for records, 5–3
01 to 49, 5–3

LIB$ESTABLISH routine, 6–93
LIB$REVERT routine, 6–93
Library-name

definition, 1–4
Library text, copying into source program, 8–3

LINAGE clause, 1–7, 5–78 to 5–81
LINAGE-COUNTER, 5–79
Linear search of a table, 6–204
Line continuation, 1–19
LINE NUMBER clause, 5–82

Report Writer, D–2
sequence substitutions, D–2

Line Sequential files, 6–97, 6–254
I-O mode, 6–199
REWRITE, 6–199

Linkage Section, 5–18
Literals, 1–10 to 1–13

definition, 1–10
in arithmetic expressions, 6–26
numeric literals

scientific notation, 1–11
Location equivalence, 5–8 to 5–14
Locked records, deleting, 6–105
LOCK-HOLDING phrase of the APPLY clause,

4–41
Locking operations on files, 6–97 to 6–100
Locking records, 4–41
LOCK MODE clause, 4–33
LOG10 intrinsic function, 7–28
Logical data

characteristics, 5–1
LOG intrinsic function, 7–27
LOWER-CASE intrinsic function, 7–29
Lowercase letters, compiler treatment of, 1–2
LOWLIGHT clause, 5–85
LOW-VALUE

figurative constant, 1–15, 4–11

M
Magnetic tapes

REEL, 4–28
UNIT, 4–28

Major-minor equivalence technique
definition, 5–8

Major-minor storage allocation, 5–8 to 5–14
Manual record locking, 6–169
MASS-INSERT phrase of the APPLY clause, 4–41
/MATH_INTERMEDIATE=CIT3 qualifier, 6–30
MATH_INTERMEDIATE=CIT4 qualifier, 6–30
/MATH_INTERMEDIATE=FLOAT qualifier, 6–29
MAX intrinsic function, 7–30
MEAN intrinsic function, 7–32
MEDIAN intrinsic function, 7–33
Memory size, documenting in a COBOL program,

4–4
MEMORY SIZE clause of OBJECT-COMPUTER

paragraph, 4–4
MERGE statement, 6–151 to 6–155
Merging files, 5–26, 6–151 to 6–155

record transfer using the RETURN statement,
6–196 to 6–197
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MIDRANGE intrinsic function, 7–34
Millennium date change

ACCEPT statement, 6–65
CURRENT-DATE function, 7–15

MIN intrinsic function, 7–35
Mnemonic-name

definition, 1–4
MOD intrinsic function, 7–36
MOVE statement, 6–156 to 6–160
MULTIPLE FILE clause

I-O-CONTROL paragraph, 4–42
syntax rules for, 4–40

Multiple receiving fields
definition, 6–42

Multiple record definitions, 5–76
Multiple results

See Multiple receiving fields
MULTIPLY statement, 6–161 to 6–163

N
-nationality japan, 1–14, 4–13
/NATIONALITY=JAPAN, 1–14, 4–13
Name scoping

definition, 6–7
Naming

a COBOL program, 3–1 to 3–3
files in a COBOL program, 4–25, 4–39

/NATIONALITY=JAPAN, 4–13, 5–98
National literals, 1–14, 4–13
National literals (ex.), 1–14
Native character set, B–1
Negated combined condition

definition, 6–38
Negated simple condition

definition, 6–38
Next executable statement

definition, 6–25
NEXT GROUP clause, 5–86
Nonnumeric data transfer, 6–156 to 6–160
Nonnumeric literal

definition, 1–12
NOT ON SIZE ERROR phrase

description of, 6–42
Numeric data item

maximum number of digit positions, 5–98
Numeric data transfer, 6–156 to 6–160
Numeric edited data item

maximum number of digit positions, 5–98
Numeric literals

definition, 1–10
scientific notation, 1–11

NUMERIC test, 6–33
NUMVAL-C intrinsic function, 7–38
NUMVAL intrinsic function, 7–37

O
OBJECT-COMPUTER paragraph, 1–15, 4–3 to

4–5
definition, 4–4

OCCURS clause, 5–88 to 5–91
related to subscripting, 6–10

ON EXCEPTION phrase
for ACCEPT statement, 6–44
for CALL statement, 6–44

ON SIZE ERROR phrase
description of, 6–42

OPEN statement, 6–164 to 6–172
effect on LINAGE values, 5–79

Optional word
definition, 1–6

OPTIONS paragraph, 3–6
Oracle CDD/Repository Data Types and HP

COBOL Equivalents, 8–8
ORD intrinsic function, 7–39
ORD-MAX intrinsic function, 7–40
ORD-MIN intrinsic function, 7–41
ORGANIZATION clause, 4–34
Overlapping operands, 6–45

P
PACKED-DECIMAL usage, 5–138
Padding

for Alpha alignment, 5–15
for I64 alignment, 5–15

PADDING CHARACTER clause, 4–35
PAGE clause, 5–92
PAGE-COUNTER option

definition, 1–8
PAGE FOOTING Group Presentation Rules, table,

D–11
PAGE HEADING Group Presentation Rules, table,

D–5
Paragraph, 2–5

definition, 2–5
Paragraph header

definition, 2–5
Paragraph-name, 2–5

definition, 1–4
Parentheses, 1–17

in arithmetic expressions, 6–26, 6–27
PERFORM statement, 6–173 to 6–185
Period

as separator, 1–17
Physical data

characteristics, 5–1
PICTURE character-strings, 1–16
PICTURE clause, 1–16, 5–96 to 5–107

currency symbol, 4–13
editing methods, 5–102 to 5–105
symbol precedence rules, 5–106
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POINTER-64, 5–148
POINTER SYNC data items, 5–130 to 5–131
POINTER usage, 5–138
Preallocation of disk blocks, 4–41
PREALLOCATION phrase of the APPLY clause,

4–41
PRESENT-VALUE intrinsic function, 7–42
PRINT command

for LINAGE files, 5–80
/NOFEED qualifier, 5–80

PRINT-CONTROL phrase of the APPLY clause,
4–42

Print file
format, 4–42, 5–78 to 5–81

Procedure Division
transfer of control within, 6–24 to 6–25
USING phrase, 6–54

Program execution
terminating with STOP statement, 6–228

PROGRAM-ID paragraph, 3–2 to 3–3
Program-name

definition, 1–4
Pseudo-text, 1–20

delimiter, 1–17

Q
Qualification, 6–7 to 6–10

definition, 6–7
in an identifier, 6–15

Qualifiers
definition, 6–7
/INCLUDE, 8–7

Quotation marks, 1–17
QUOTE figurative constant, 1–15

R
RAB

See Record access block
RANDOM intrinsic function, 7–43
RANGE intrinsic function, 7–44
RD entries, 5–18
READ statement, 6–186 to 6–192
Record

as a logical concept, 5–1
as a physical concept, 5–2
defining length of, 5–108 to 5–110
deleting from files, 6–104 to 6–106

when manually locked, 6–105
unit of transfer for, 5–5

Record access
using the READ statement, 6–186 to 6–192
using the RELEASE statement, 6–195
using the RETURN statement, 6–196 to 6–197
using the START statement, 6–222 to 6–227

Record access block (RAB), 4–43
Record allocation, 5–8 to 5–14
RECORD clause, 5–108 to 5–110
RECORD DELIMITER clause, 4–36
Record description

function of entry, 5–1
hierarchical structure, 5–3
level-numbers, 5–3

RECORD KEY clause, 5–111
Record locking

automatic, 6–169
manual, 6–169

Record-name
definition, 1–4

RECORD statement, 6–193 to 6–194
Record transfer

using the WRITE statement, 6–254 to 6–260
Recoverable files

ROLLBACK, 4–33
REDEFINES clause, 5–113 to 5–116
Reference modification, 6–13
Relational operators

definitions, 6–31
Relation condition, 6–31 to 6–33

definition, 6–31
Relative files, 6–97, 6–254

default number of I-O buffers for, 4–37
starting position in, 6–222 to 6–227

Release notes
where to find, xiv

RELEASE statement, 6–195
REM intrinsic function, 7–45
Removal operations for file media, 6–97 to 6–100
RENAMES clause, 5–117 to 5–118
REPLACE statement, 8–21 to 8–24
Replacing characters in a data item, 6–143 to

6–150
Replacing records (with REWRITE statement),

6–198 to 6–201
REPORT clause, 5–119
Report description entry, 5–119
REPORT FOOTING Group Presentation Rules,

table, D–13
Report group description, 5–34
REPORT HEADING Group Presentation Rules,

table, D–3
Report-name

definition, 1–4
Report Section of Data Division, 5–18
Report Writer

organization, D–1
Report Writer presentation rules, tables, D–1
REQUIRED clause, 5–120
Required words, 1–6

definition, 1–6
RERUN clause of the I-O-CONTROL paragraph

general rules for, 4–42
syntax rules for, 4–40

Index–8



RESERVE clause, 4–37
Reserved words, 1–6 to 1–10

definition, 1–6
list of, A–1

/RESERVED_WORDS=200X, A–1
/RESERVED_WORDS=FOREIGN_EXTENSIONS,

A–1
/RESERVED_WORDS=[NO]XOPEN, A–1
Resultant identifiers

definition, 6–41
function of, 6–41

RETURN-CODE special register, 1–7, 6–57, 6–92
RETURN key, to shorten source lines, 1–21
RETURN statement, 6–196 to 6–197
REVERSE intrinsic function, 7–46
REVERSE-VIDEO clause, 5–121
Rewind operations for file media, 6–97 to 6–100
REWRITE statement, 6–198 to 6–201
RMS

file extension, 4–40
RMS-CURRENT-FILENAME register

definition, 1–10
RMS-CURRENT-STS register

definition, 1–10
RMS-CURRENT-STV register

definition, 1–10
RMS-FILENAME item

definition, 1–10
ROLLBACK, 4–33
Rounding off arithmetic results, 6–42
Run-time environment, documenting, 4–3 to 4–5

S
SAME AREA clause

I-O-CONTROL paragraph
general rules for, 4–42
syntax rules for, 4–40

SAME RECORD AREA clause of the
I-O-CONTROL paragraph, 4–42

SAME SORT AREA clause of the I-O-CONTROL
paragraph, 4–42

Saved-Next-Group-Integer
Report Writer, D–2

Scope of names
definition, 6–7

Scope of statements, 6–6
Screen description entry, 5–38
Screen Section of Data Division, 5–18
SD

See Sort-merge file description entries
SD entries, 5–17
SEARCH statement, 6–202 to 6–208
Section header

definition, 2–4
Section-name

definition, 1–4

SECURE clause, 5–122
seg-key, 5–45
Segmentation, 6–53 to 6–54
Segmented key, defined, 1–4
Segment-number

definition, 1–4
SELECT optional in FILE-CONTROL paragraph,

4–21, 4–26
Semicolon, as a separator, 1–16
Sentences, COBOL, 6–1

compiler-directing, 6–4
conditional, 6–5
definition, 6–1
imperative, 6–5

Separately compiled program
definition, 1–1

Separators, 1–16 to 1–17
definition, 1–16

Sequential files, 6–97, 6–254
default number of I-O buffers for, 4–37

Sequential search of a table, 6–204
Serial search of a table, 6–204
SET statement, 6–209 to 6–213
Shell variable status, 1–7
Sign

default for unsigned operands, 6–32
in arithmetic expressions, 6–26
specifying position of, 5–123 to 5–125
specifying representation of, 5–123 to 5–125

SIGN clause, 5–123 to 5–125
Sign condition, 6–36

definition, 6–36
Sign control symbols, 5–103

in fixed insertion editing, 5–103
in floating insertion editing, 5–104

Simple condition
definition, 6–31

Simple insertion editing, 5–102
SIN intrinsic function, 7–47
Size error condition

description of, 6–42
evaluation of exponentiation, 6–28

Sorting records, 5–26, 6–214 to 6–221
using the RELEASE statement, 6–195
using the RETURN statement, 6–196 to 6–197

Sort-merge file description entries, 5–26
clauses of, 5–17
structure of, 5–17

SORT statement, 6–214 to 6–221
with table, 6–214

SOURCE clause, 5–126
SOURCE-COMPUTER paragraph, 4–3

definition, 4–3
Source program

definition, 2–1
Source program reference format, 1–17
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SPACE figurative constant, 1–15
Spaces, 1–16

as delimiters
arithmetic operators, 6–26
of relational operators, 6–32

as zero replacements, 5–52
in file specification, 4–30

Special character word
definition, 1–6

Special insertion editing, 5–103
SPECIAL-NAMES paragraph, 1–15, 4–6 to 4–19

definition, 4–6
Special-purpose word

definition, 1–6
Special registers, 1–3, 1–5, 1–6 to 1–10

definition, 1–6
SQRT intrinsic function, 7–48
Standard Alignment Rules, 5–7
STANDARD-DEVIATION intrinsic function, 7–49
START statement, 6–222 to 6–227
Statements, COBOL, 6–1

compiler-directing, 6–4
conditional, 6–5
definition, 6–1
delimited-scope, 6–6
delimiting, 6–6
imperative, 6–5
options of, 6–41 to 6–45

Status Key 1, 6–47
Status Key 2, 6–48
status shell variable, 1–7
$STATUS symbol, 1–7
STOP statement, 6–228
Storage allocation, 5–8 to 5–14

for COMP SYNC items, 5–5 to 5–14
for group items, 5–2 to 5–14
major-minor technique, 5–8 to 5–14
when multiple entries describe the same area,

5–113 to 5–116
Storage format of a data item, 5–138 to 5–149
STRING statement, 6–229 to 6–233
Subscripting, 6–10 to 6–11

basis for, 5–88
in an identifier, 6–15

SUBTRACT statement, 6–234 to 6–236
Success/failure condition

definition, 6–36
SUM clause, 5–127
SUM intrinsic function, 7–50
SUPPRESS statement, 6–237
SWITCH clause, 4–10
Switches

specifying in SPECIAL-NAMES paragraph,
4–10

Switch-status condition, 6–35
definition, 6–35

Symbolic-character, 1–15
definition, 1–5

SYNCHRONIZED clause, 5–130 to 5–131
Syntax rules

definition, 1–23
purpose, 1–23

System logicals, 6–59
System-names, 1–5 to 1–6

definition, 1–5

T
-tps, 4–33
Tab character, 1–17
TAB key, use of in source file, 1–21
Table handling

binary search for a table element, 6–205
searching for a table element, 6–202 to 6–208
sequential search for a table element, 6–204

Tables
defining (OCCURS clause), 5–88 to 5–91
rules for indexing, 6–12 to 6–13
rules for subscripting, 6–10 to 6–11

Table sort, 6–214
Tabs

in file specification, 4–30
TAN intrinsic function, 7–52
Technical note

definition, 1–24
Terminal format

definition, 1–22
TERMINATE statement, 6–238
TEST-DATE-YYYYMMDD intrinsic function, 7–53
TEST-DAY-YYYYDDD intrinsic function, 7–54
Testing

for the sign of a value, 6–36
Text-name

definition, 1–5
Text-word

definition, 8–1
Transferring control in the Procedure Division,

6–24 to 6–25
with CALL statement, 6–89 to 6–94
with EXIT PROGRAM statement, 6–131
with GO TO statement, 6–134 to 6–135
with IF statement, 6–136 to 6–138
with MERGE statement, 6–151 to 6–155
with PERFORM statement, 6–173 to 6–185
with READ statement, 6–186 to 6–192

Truth value
definition, 6–5
of conditional expressions, 6–31

TYPE clause, 5–132
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U
Undefined results in a data-handling operation,

6–45
UNDERLINE clause, 5–137
Uniqueness of reference, 1–3, 6–7
UNLOCK statement, 6–239
UNSTRING statement, 6–244 to 6–249
UPPER-CASE intrinsic function, 7–55
USAGE clause, 5–138 to 5–149
USAGE IS BINARY-CHAR clause, 5–139
USAGE IS BINARY-DOUBLE clause, 5–139
USAGE IS BINARY-LONG clause, 5–139
USAGE IS BINARY-SHORT clause, 5–139
USAGE IS FLOAT-EXTENDED clause, 5–139
USAGE IS FLOAT-LONG clause, 5–139
USAGE IS FLOAT-SHORT clause, 5–139
USAGE IS POINTER-64, 5–148
USE AFTER EXCEPTION procedure

and invalid key condition, 6–52
User-defined words, 1–3

definition, 1–3
uniqueness of, 6–7

USE statement, 6–250 to 6–253
USING phrase, 6–56

of CALL statement, 6–90 to 6–92
of Procedure Division header, 5–18, 6–90 to

6–92

V
VALUE IS clause, 5–150 to 5–155

use in Linkage Section, 5–18
use in Working-Storage Section, 5–17

VALUE OF ID clause, 5–156
length limitation, 5–156

Variable-length records, 5–108 to 5–110
VARIANCE intrinsic function, 7–56
Verbs, COBOL, 6–1

definition, 6–1
Version 2.8—what’s new since V2.5

arithmetic, native and standard, 6–26, 6–29
Arithmetic, standard, 6–28
DISPLAY, terminating (within ACCEPT ON

EXCEPTION), 6–68
DISPLAY and END-DISPLAY, 6–107
DISPLAY and [NOT] ON EXCEPTION, 6–107
DISPLAY in an EXCEPTION for an ACCEPT,

6–68, 6–118
/DISPLAY_FORMATTED, 6–111
OPEN and APPLY PREALLOCATION to detect

"device full", 6–172
OpenVMS I64 support, xiv
status, passing to operating system (RETURN-

CODE and PROCEDURE DIVISION
GIVING), 6–57

table sort, 6–214

Version 2.8—what’s new since V2.5 (cont’d)
WRITE and SYS$FLUSH to detect "device full",

6–260

W
WHEN-COMPILED intrinsic function, 7–57
WINDOW phrase of the APPLY clause, 4–42
WITH IDENT clause, 3–3

example, 3–3
Working-Storage Section of Data Division, 5–17
WRITE statement, 6–254 to 6–260

effect on LINAGE values, 5–79

Y
Year 2000

ACCEPT statement, 6–65
CURRENT-DATE function, 7–15

YEAR-TO-YYYY intrinsic function, 7–59

Z
Zero suppression editing, 5–105
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