[

invent

Web Services Integration Toolkit for OpenVMS

Developer’s Guide

November 2007

This document contains information that will help you use the development tools in this release of WSIT for
OpenVMS.

Software Version
Web Services Integration Toolkit
Version 2.0

Hewlett-Packard Company
Palo Alto, Calif.

© 2007 Hewlett-Packard Development Company, L.P.
Intel, Intel Inside, and Itanium are trademarks of Intel Corporation in the U.S. and/or other countries.

Microsoft, Windows, Windows XP, Visual Basic, Visual C++, and Win32 are trademarks of Microsoft Corporation in the
U.S. and/or other countries.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from HP and/or its subsidiaries required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial
license.

Neither HP nor any of its subsidiaries shall be liable for technical or editorial errors or omissions contained herein. The
information in this document is provided “as is” without warranty of any kind and is subject to change without notice.
The warranties for HP products are set forth in the express limited warranty statements accompanying such products.
Nothing herein should be construed as constituting an additional warranty.

CONTENTS

INTRODUCTORY INFORMATION — FOR ALL USERS

1. USING THE WEB SERVICES INTEGRATION TOOLKIT FOR OPENVMS

[N W U Y
rwio=

— — —
No o

1.8

1.9

Overview

Preparing the Original (Legacy) Application
Exposing an OpenVMS 3GL Application: Typical Development Steps
Wrapping a 3GL Application: C Sample

1.4.1 Server/Application Build Procedure

1.4.2 Customizing the Build Environment
Wrapping an ACMS Application: ACMS Sample
Generating Sample Clients

Using ANT with the Web Services Integration Toolkit
1.7.1 Ant Setup

1.7.2 Configuring the wsit-ant-user.properties File
1.7.3 Using the wsit-ant-userbuild.xml Build File
1.7.4 Ant Property Descriptions

1.7.5 Ant Target Descriptions

1.7.6 Custom Ant Tasks
Using Distributed NetBeans with the Web Services Integration Toolkit
1.8.1 WSIT Build Templates

1.8.2 Using the WSIT-Supplied Ant Version
Security Considerations

1.9.1 Server Process Security

1.9.2 Per User Security

WSIT Tools and Parameters

1.10.1 In-Process/Out-of-Process Parameters
1.10.2 POJO/JSP Sample Client Parameters

2. DEPLOYMENT CONSIDERATIONS

2.1
2.2
2.3

24

2.5

Types of OpenVMS Applications
In-Process Deployment

Out-of-Process Deployment

2.3.1 Sessions
2.3.2 Application Reusability
2.3.3 Using Multiple Processes to Scale Applications
2.3.4 Specifying Out-of-Process Deployment Options
2.3.4.1 Out-of-Process Account Preparation and Requirements
Web Services Integration Toolkit Interfaces
2.4.1 Application Interfaces (User Supplied)
2.4.2 QOpenVMS Datatypes Supported by WSIT
2.4.3 Passing Mechanisms
2.4.4 JavaBean Interface (Generated by WSIT)
2.4.5 Datatype Mapping
2.4.5.1 String Datatype
2.4.6 Parameter Usages
Design Restrictions for Wrapped Applications
2.5.1 Stack Size Not Automatically Increased Based on Demand
2.5.2 Bit Data Types
2.5.3 Pointer Types Not Supported
2.5.4 Single Instantiated WSIT JavaBean Cannot Be Shared Among Multiple Threads
2.5.5 Languages Tested with the OBJ2IDL Tool

2.5.6 Tips and Hints for Supported Languages
2.5.7 Tips and Hints for OpenVMS Alpha Users
2.5.8 Programming with Nested Structures

ADVANCED INFORMATION — FOR EXPERIENCED USERS

3. ADVANCED OUT-OF-PROCESS CONFIGURATION

3.1 Case A: Not Reusable

3.2 Case B: Sequentially Reusable

3.3 Case C: Concurrently Reusable

3.4 Case D: Concurrently Reusable with Multiple Threads

4. MAPPING BLOBS AND OTHER UNFORMATTED DATA

5. USING TEMPLATES TO GENERATE CODE

5.1 Modifying Velocity Templates

5.2 Generating Code with IDL2CODE.JAR

5.3 Example 1: Writing a New Template

5.4 Example 2: Modifying an Existing Template

5.5 Example 3: Generating Helper Routines for the Original Application

6. MODIFYING IDL FILES

6.1 OpenVMS Interface Block
6.2 Enumeration Block
6.3 Enumerator Block
6.4 Typedef Block
6.5 Primitive Block
6.6 Structure Block
6.7 Field Block
6.7.1 Field Array Tag
6.8 Routine Block
6.9 Parameter Block
5.9.1 Parameter Array Tag
6.10 Example WSIT IDL File

APPENDIX

Program Listing - STOCK.C
Program Listing - STOCK. XML
Program Listing - StockCaller.Java
Program Listing - MATH.C
Program Listing - MATH.XML
Program Listing - mathcaller.java

nTmoow>

About Web Services Integration Toolkit for OpenVMS Documentation

This Developer’s Guide contains information about how to use the tools in the Web Services Integration
Toolkit for OpenVMS, and things to consider as you prepare your legacy application.

The Installation Guide and Release Notes includes system requirements and installation instructions for
OpenVMS, as well as release notes for the current release of the Web Services Integration Toolkit for
OpenVMS.

For the latest release information, refer to the Web Services Toolkit for OpenVMS web site at
http://www.hp.com/products/openvms/webservices/.

1 USING WEB SERVICES INTEGRATION TOOLKIT

1.1 Overview

The Web Service Integration Toolkit for OpenVMS (WSIT) contains a collection of integration tools. These
tools are easy to use, highly extensible, based on standards and built on open source technology. The
toolkit can be used to call OpenVMS applications written in 3GL languages, such as C, BASIC, COBOL,
FORTRAN, and ACMS from newer technologies and languages such as Java, Microsoft .NET, Java -RMI,
JMS, and web services.

The Web Service Integration Toolkit is focused on integrating at the API level. It generates a JavaBean
wrapper for a supplied OpenVMS application interface (API). At runtime, you can specify if the application
will be run in the process of the caller (in-process) or in separate processes (out-of-process) managed by
the WSIT runtime.

1.2 Preparing the Original (Legacy) Application

Using the Web Services Integration Toolkit for OpenVMS, as with all programmatic integration, requires
some upfront development work before you can begin performing the integration. Your existing application
is likely to have been written long ago and will benefit from having a wrapper expose a new and clean
interface. The new interface will expose the legacy implementation. Separating the interface from the
implementation provides encapsulation and the ability to easily extend and reuse the implementation.

Before you use the Web Services Integration Toolkit or any other integration technology, you must evaluate
the original application and design one or more interface classes to expose different features of the
business logic. These new interfaces should be tested with a simple client before you use the Web Services
Integration Toolkit. When you know that the interface classes are working properly, you can use WSIT to
extend the use of the new interface to the Java environment.

Test client wrapper || original

BXposing (legacy)
new application
interface

I
single non-java
hodule exposing
legacy code

nan-java
test class

[= newdy written code

After you have prepared the application, WSIT can extend the features of the new interface to Java as
shown in the following diagram.

Java bean | —s| WSIT s WSIT | | WIARPpEr s original
caller generated generated BXpOsing flegacy)
| iava bean SEMET FIE application
: WHARPET interface
I L 1 T
| : | |
| ! ! |

husiness class WiSIT generated files single non-ava

unanware of Module exposing

WWSIT legacy code

[]="WSIT generated
[= newely written code

1.3 Exposing an OpenVMS 3GL Application: Typical Development Steps

Following are the development steps required to use the Web Services Integration Toolkit to expose an
OpenVMS 3GL or ACMS application. Note that these steps are only required for the development phase. It
is expected that the application has been prepared as discussed in the previous section.

Note: These tools were renamed in a pre-V1.0 field test kit. See Chapter 3 in the Installation Guide and
Release Notes for a table containing the old and new file names.

1. Create XML IDL file (on 164)

Create an XML interface definition file (IDL) that describes the interface to be exposed. You create an XML
IDL file using the tool named OBJ2IDL.EXE (for 3GL languages) or STDL2IDL.JAR (for ACMS). Note:
OBJ2IDL.EXE runs on OpenVMS 164 only. If you are using WSIT on OpenVMS Alpha, see Section 2.5.5
for information about the HP TestDrive program.

2. Validate XML IDL file

Verify that the XML IDL file correctly describes the interface being exposed. If it does not, manually update
the XML IDL file until the interface definition is correct. VALIDATE.JAR allows you to verify that an XML IDL
file conforms to the openvms-integration.xsd schema.

3. Generate components

For the interface being exposed, generate one WSIT server interface wrapper and one WSIT Java Bean
using IDL2CODE.JAR. The generated source code must be built on the OpenVMS system that hosts the
application.

4. Use the generated code

Call the generated WSIT JavaBean from the technology of your choice, including BEA WLS, Apache Axis,
JMS, Java RMI, J2EE or another JavaBean.

1.4 Wrapping a 3GL Application: C Sample

The following steps demonstrate how to wrap a 3GL application using the math sample program found in
WSI$SROOT:[SAMPLES.C]. Other 3GL sample programs can be found in WSISROOT:[SAMPLES.COBOL]
and WSI$SROOT:[SAMPLES.BASIC]. (See Section 1.5 for information about a sample program that wraps
an ACMS application.)

The information in this section is also included in WSI$SROOT:[SAMPLES.CJMATH-SAMPLE.README.
Note: For demonstration purposes only, the steps below use the wsi$root:[samples.c] directory
as the default directory. HP recommends that you copy the contents of this directory into

your own local directory before performing these steps.

Step 1: Generate an Interface Definition with OBJ2IDL

The tool OBJ2IDL.EXE is used to generate an XML interface definition file (IDL). (For information about
manually reading or modifying an IDL, see Chapter 5.)

Establish a foreign command:
$ obj2idl = "SWSISROOT: [tools]obj2idl.exe"
Compile the wrapper that exposes the new interface:

$ set def WSISROOT: [samples.c]
$ cc/debug/noopt math.c

Note: Your code must be compiled with the /DEBUG option for the OBJ2IDL parser to work properly.
Use OBJ2IDL to generate an XML file with the interface definition:

$ obj2idl -f WSISROOT: [samples.c]lmath.obj

The tool OBJ2IDL creates the file math.xml. See the Appendix for a full listing of math.xml.

You should become familiar with the XML description of OpenVMS applications. Review the math.xml file

and notice the overall structure of the file. Following are the level 1 tags used to define an interface. These
tags contain lower level tags and more information.

<OpenVMSInterface>

<Primitives></Primitives> Define the fundamental types referenced in the interface.
<Routines></Routines> Define the callable routines of the interface.
<Structures></Structures> Define the structures of the interface.
<Typedefs></Typedefs> Define the type definitions of the interface.
</OpenVMSInterface>

Note: To view the XML file with coloring and a collapsible outline, use Internet Explorer.

Step 2: Validate the Generated XML File

The OBJ2IDL tool is sometimes unable to extract a complete interface definition from the supplied object
file. When the tool is missing data or has made assumptions, a comment is placed in the XML file below the
line of concern.

The file math.log is also generated from OBJ2IDL. Use this file to conveniently see an overview of the
comments within the XML file. (ACMS does not create a .log file.)

$ ty math.log

Generated IDL file: WSISROOT: [samples.c]lmath.xml
Tue Apr 5 11:22:37 2005

In this case the tool did not report any issues. However, even in cases where the log file has not generated
any error or warning, you should always review the XML file to ensure that the interface definition is exactly
correct. Itis very important that the XML IDL describe the interface accurately to generate correct code in
Step 3.

The validate.jar tool is provided to allow you to verify that an XML IDL file conforms to the openvms-
integration.xsd schema. Use this tool to validate all XML IDL files before they are passed to the IDL2CODE
tool. The IDL2CODE tool does not validate the XML IDL file.

The validate tool is an executable JAR file. To run the tool, you must supply two parameters: an XML IDL
file and the openvms-integration schema. For example:

$ java -jar wsiSroot:[tools]validate.jar -x wsiSroot:[samples.c]lmath.xml
-s wsiSroot: [tools]openvms-integration.xsd

Step 3: Generate WSIT Components with IDL2CODE

Use the tool IDL2CODE.JAR (also called the Generator) to create a server wrapper for the application and

a JavaBean client. This tool requires certain JAR files to be in the Java classpath. A command procedure is
supplied to add these files to the java$classpath logical. (The java$classpath logical lets you define a class

path using OpenVMS file specification syntax. Defining this logical overrides the classpath logical, if set.)

$ @WSISROOT: [tools]wsi-setenv - wsiS$dev

The New JAVASCLASSPATH is:

"JAVASCLASSPATH" = "WSISROOT: [LIB]WSIRTL.JAR" (LNMSJOB_86F82E00)
n [] n

"WSISROOT: [LIB]VELOCITY-DEP-1_4.JAR"

"WSISROOT: [TOOLS]IDL2CODE.JAR"

R 2N (I T |

To generate files for the math demo, use the following command. In this case, the tool is passed the
math.xml file and the application is named math. All generated files for the application are placed in a
subdirectory named generated.

$ create/dir [.generated]

$ java "com.hp.wsi.Generator" -i math.xml -a math -o [.generated]
File: ./generated/mathServer/build-math-server.com generated.
File: ./generated/mathServer/methIds.h generated.

File: ./generated/mathServer/structkeys.h generated.

File: ./generated/mathServer/math.wsi generated.

File: ./generated/mathServer/math.opt generated.

File: ./generated/mathServer/math-server.h generated.

File: ./generated/mathServer/math-server.c generated.

File: ./generated/math/build-math-jb.com generated.

File: ./generated/math/Imath.java generated.

File: ./generated/math/mathImpl.java generated.
*** Application math generated! ***

$

Step 4: Build the generated WSIT Components

Build the server:

This command procedure installs the server image after it has been built. This requires writing to the
WSI$ROOT:[DEPLOY] directory, which may be write protected on your system. (This is a security
measure. Have your system manager assist you if your account does not have the required privileges.)

$ set def WSISROOT: [samples.c.generated.mathserver]
$ @BUILD-MATH-SERVER
Begin server build procedure.
.configuring switches and compiler options
.compiling native server code
.linking shareable image
.installing server image
End server build procedure.

$
Build the client:

The JavaBean build procedure creates a JAR file that contains the WSI Java classes used to call the server
created earlier.

$ SET DEF WSISROOT: [samples.c.generated.math]
$ @BUILD-MATH-JB
Begin java bean build procedure.
The New JAVASCLASSPATH is:
"JAVASCLASSPATH" = "WSISROOT: [LIB]WSIRTL.JAR" (LNMSJOB_86D5AEQ0)
= "[]"
= "WSISROOT: [LIB]VELOCITY-DEP-1_4.JAR"
= "WSISROOT: [TOOLS]IDL2CODE.JAR"
.Compiling structure classes
.Compiling math Interface classes
..Creating math.JAR file from classes
End of JavaBean build procedure.

Step 5a: Run the Math Sample “In-Process”

You can run the math sample program in-process or out-of-process. In-process means that the application
will be run in the process of the caller. (Follow the instructions in step 5b instead of 5a if you want to run the
sample out-of-process.)

Add the math.jar file to the java$classpath.

$ @WSISROOT: [tools]wsi-setenv — WSISROOT: [samples.c.GENERATED.math]lmath. jar
The New JAVASCLASSPATH is:

"JAVA$CLASSPATH" = "WSIS$ROOT: [LIB]WSIRTL.JAR" (LNM$JOB_86F82E00)

= "[I"

= "WSISROOT: [LIB]VELOCITY-DEP-1_4.JAR"

= "WSISROOT: [TOOLS]IDL2CODE.JAR"

= "WSISROOT: [SAMPLES.C.GENERATED]MATH.JAR"

$

In the normal course of development, you would now need to write a JavaBean to call the math JavaBean
that was generated above. However, for the purpose of this demonstration, a JavaBean file named
mathcaller.java is provided in the directory WSISROOT:[samples.c]. See the Appendix for a source listing of
this file.

Compile the supplied JavaBean:

$ set def WSISROOT: [samples.c]
$ javac mathcaller.java

Run the supplied JavaBean:

$ java mathcaller

Sum of 10 and 15 is 25
Product of 10 and 15 is 150
$

Step 5b: Run the Math Sample “Out-of-Process”

You can run the math sample program either in-process or out-of-process. Out-of-process means that the
sample will be run in a separate process managed by the WSIT runtime. (Follow the instructions in step 5a
instead of 5b if you want to run the sample in-process.)

Add the math.jar file to the java$classpath.

$ @WSISROOT: [tools]wsi-setenv - WSISROOT: [samples.c.GENERATED.math]lmath. jar
The New JAVASCLASSPATH is:

"JAVASCLASSPATH" = "WSI$ROOT: [LIB]WSIRTL.JAR" (LNM$JOB_86F82E00)

= "[I"

= "WSISROOT: [LIB]VELOCITY-DEP-1_4.JAR"

= "WSISROOT: [TOOLS]IDL2CODE.JAR"

= "WSISROOT: [SAMPLES.C.GENERATED.MATH]MATH.JAR"

$

In the normal course of development, you would now need to write a JavaBean to call the math JavaBean
that was generated above. However, for the purpose of this demonstration, a JavaBean file named
mathcaller.java is provided in the directory WSISROOT:[samples.c]. See the Appendix for a source listing
of this file.

Modify the provided Java file:

To run the math sample out-of-process, make the following changes to mathcaller.java:

. Call a different constructor
o Call remove when done with server

These changed lines are underlined in the following listing of mathcaller.java.
$ type mathcaller.java

import math.*;

import java.io.*;

import com.hp.wsi.WsiIpcContext;

public class mathcaller {

/** Creates a new instance of Main */

public mathcaller() {

}

public static void main(String[] args) {

try {

mathImpl math = new mathImpl (new WsiIpcContext()) ;

int numl = 10;
int num2 = 15;

int result;

result = math.sum(numl, num2) ;

System.out.println("Sum of " + numl + " and " + num2 + "is " +
result) ;

result = math.product (numl, num2) ;
System.out.println("Product of " 4+ numl + " and " + num2 + "is " + result) ;

math.remove () ;

} catch (Exception e) {
System.out.println ("Exception thrown") ;
}

}
}

Important: Review WSISROOT:[DEPLOY]MATH.WSI. By default, the deployment configuration file is the
most restrictive. It assumes the application is not reusable, therefore it needs a new server process for
every client. After evaluating your application, you can modify math.wsi to scale the deployment
configuration for the application. See Chapter 2, Deployment Considerations, for more information.

Compile the supplied JavaBean:

$ set def WSISROOT: [samples.c]
$ javac mathcaller.java

Run the supplied JavaBean:
$ java mathcaller
Sum of 10 and 15 is 25

Product of 10 and 15 is 150
$

1.41 Server/Application Build Procedure

The Web Services Integration Toolkit generates a command procedure to build a server. The generated
command procedure, named build-<appname>-server.com, creates a shareable image named
<appnams.exe and copies it to the deployment directory WSISROOT:[DEPLOY]. The WSIT runtime loads
this shareable image to process requests from the WSIT generated JavaBean.

The shareable image <appnam>.exe is composed of three parts:

. The object file provided by the user (in the XML IDL file) to expose the application interface. For
example, wsi$root:[samples.clmath.obj located in wsi$root:[samples.clmath.xml.

. A WSIT object file named <appname>-server.obj which exposes the application interface with a set of
fixed WSIT entry points. The source file for this object file is <appname>-server.c.

. A WSIT shareable image containing common reusable procedures. This shareable image is named
SYSS$LIBRARY:WSISCOMMON.EXE.

10

This shareable image must provide entry points for the WSIT runtime to call. The entry points for all WSIT
applications are always the same. The entry points are as follows:

Symbol Name Symbol Type
WSISINIT PROCEDURE
WSISEXIT PROCEDURE
WSI$START_SESSION PROCEDURE
WSI$SEND_SESSION PROCEDURE
WSISACMS_SIGN_IN PROCEDURE
WSISACMS_SIGN_OUT PROCEDURE
WSI$VMS_LOGIN PROCEDURE
WSI$VMS_LOGOUT PROCEDURE
WSISINVOKE PROCEDURE
WSISINVOKE_DCL PROCEDURE
WSI$SGET_FILE PROCEDURE
WSISINFO_BLOCK DATA

WSI$DCL_PROC_MAPS DATA

WSISFILENAME_MAPS DATA

1.4.2 Customizing the Build Environment

In the default behavior described in the preceding section, the application’s interface object module is
expected to process the requests without calling others modules. While this approach allows WSIT
applications to be quickly prototyped, it is obviously not sufficient for “real” applications.

The application being wrapped will almost always be composed of many object modules, object libraries,
and/or shareable images. These object modules need to be packaged into a shareable image that includes
the WSIT files described above.

You can package the object modules in two ways, as follows:

. Add the few WSIT build elements to the existing application’s build environment. (This is the
recommended method.)

. Add the application files to the WSIT server build command procedure.

If you choose the recommended option above, the file <appname>.opt provides an overview of the files and
entry points that must be added to the new application’s shareable image.

If you decide to integrate the WSIT files into your application, remember that the application must be built as
a shareable image named <appnam>.exe and must be copied to the WSIT deployment directory
WSI$ROOT:[DEPLOY].

1.5 Wrapping an ACMS Application: ACMS Sample

The following steps demonstrate how to wrap an ACMS application using the sample program found in
WSI$SROOT:[SAMPLES.ACMS]. Sample programs written in 3GL languages can be found in
WSI$SROOT:[SAMPLES.C], WSI$SROOT:[SAMPLES.COBOL], and WSISROOT:[SAMPLES.BASIC]. (See
Section 1.4 for information about a sample program that wraps a C application.)

The information in this section is also included in WSI$SROOT:[SAMPLES.ACMS]ACMS-
SAMPLE.README.

11

Important: Before you run this sample program, make sure ACMS is properly configured and running on
your system.

This ACMS application exists in a nondistributed environment and illustrates some common functions of an

administrative system using an Rdb database. For example, in this system, a user adds a new employee
record to a master file or updates an existing employee record.

The following files (a modified version of the Getting Started tutorial included with ACMS for OpenVMS) are

installed by the Web Services Integration Toolkit for OpenVMS installation in the
WSI$ROOT:[SAMPLES.ACMS] directory:

acms-sample.readme; 1 acmscaller.java;1l ACMSEXAMPLE_SETUP.COM; 1
EMPLOYEE_INFO_APPI_WSI.ADF;1 WSI_ADD_EMPL_INFO.TDF;1
WSI_EMP_ INFO_TASK_GROUP.GDF;1 WSI_GET_EMPL_INFO.TDF;1

WSI_PUT_EMPL_INFO.TDF; 1
To run the Web Services Integration Toolkit ACMS sample program, perform the following steps.

Step 1: Execute the WSIT-supplied command file to set up the ACMS application

On the OpenVMS system on which you installed WSIT, log in using an account with SYSTEM privileges.
Create a directory to set up the application. For example:

$ create /dir [.acmsgenerated]

Set default to the newly created directory:

$ set def [.acmsgenerated]

Execute the following command:

$ @QWSISROOT: [samples.acms]acmsexample_setup.com

This assumes that the ACMS$EXAMPLES logical is present and correct on your system.
This DCL script does the following:

Creates a local data dictionary for this application

Defines a CDD (common dictionary data) record (using the supplied .CDO files)
Defines a CDD entry task

Builds the application, generating a STDL file (used to import ACMS task and structure

definitions)
. Starts the ACMS application

When prompted for a CDD directory, you can press Enter to accept the default (which will be under the
directory you just created and set default to), or you may choose another name or location.

For example:
CDD Directory? DKA100:[USER.ACMSGENERATED.DICTIONARY] :
The sample application is set up and started when you see the following:

$ACMSINS-S-ADBINS, Application
DISK: [USER.ACMSGENERATED] EMPLOYEE_INFO_APPL_BWX.ADB;

12

has been installed to ACMSSDIRECTORY

Step 2: Generate an interface definition with STDL2IDL.JAR

Use the STDL2IDL.JAR tool to generate an XML interface definition (IDL file) from the STDL file generated
in Step 1.

Run the STDL2IDL importer:

$ java -classpath WSISROOT: [TOOLS]stdl2idl.jar "com.hp.wsi.Import" -f
EMPLOYEE_INFO_APPL_WSI.STDL

Import File was successfully processed.

File: ./employee_info_appl_wsi.xml generated.

*** Files for Application employee_info_appl_wsi successfully generated! ***

Step 3: Review and validate the generated XML file

Because STDL files completely describe the ACMS application, the STDL2IDL tool is able to use the STDL
file to create a complete WSIT interface definition representation of that ACMS application. However, even
if the STDL2IDL tool specifies that the IDL generation was successful, you should review and validate the
generated XML file to ensure complete accuracy. The XML IDL must accurately describe the interface to
generate correct code in Step 4.

For this reason, WSIT includes the validate.jar tool to allow you to verify that an XML IDL file conforms to
the openvms-integration.xsd schema before it is passed to the IDL2CODE.JAR tool. (The IDL2CODE.JAR
tool does not validate the XML IDL file.) To run the validate.jar tool, supply two parameters: an XML IDL file
and the openvms-integration schema. For example:

$ java -jar wsiSroot:[tools]validate.jar

-x wsiSroot: [samples.acms]employee_info_appl_wsi.xml
-s wsiSroot: [tools]openvms-integration.xsd

Step 4: Generate WSIT components with IDL2CODE.JAR

Use the IDL2CODE.JAR tool to create a server wrapper for the application and a JavaBean client. This tool
requires certain Jar files to be in the Java classpath. A command procedure is supplied to add these files to
the java$classpath logical.

$ @WSISROOT: [tools]wsi-setenv - wsiS$dev

The New JAVASCLASSPATH is:

"JAVASCLASSPATH" = "WSISROOT: [LIB]WSIRTL.JAR" (LNMSJOB_86F82E00)
||[]||

"WSISROOT: [LIB]VELOCITY-DEP-1_4.JAR"

"WSISROOT: [TOOLS]IDL2CODE.JAR"

R0 (I T |

To generate files for the ACMS sample, use the following command. In this case we pass the tool the
employee_info_appl_wsi.xml file (generated above) and we call the application AcmsApp. We also place all
generated files for the application in a subdirectory named generated.

$ create/dir [.generated]

$ java "com.hp.wsi.Generator" -i employee_info_appl_wsi.xml -a AcmsApp -0
[.generated]
File: ./generated/AcmsAppServer/build-AcmsApp-server.com generated.

File: ./generated/AcmsAppServer/methIds.h generated.
File: ./generated/AcmsAppServer/structkeys.h generated.

13

File: ./generated/AcmsAppServer/AcmsApp.wsi generated.

File: ./generated/AcmsAppServer/AcmsApp.opt generated.

File: ./generated/AcmsAppServer/AcmsApp-server.h generated.
File: ./generated/AcmsAppServer/AcmsApp-server.c generated.
File: ./generated/AcmsApp/build-AcmsApp-jb.com generated.
File: ./generated/AcmsApp/IAcmsApp.java generated.

File: ./generated/AcmsApp/AcmsAppImpl.java generated.

File: ./generated/AcmsApp/CONTROL_WORKSPACE.java generated.
File: ./generated/AcmsApp/EMPLOYEE_INFO_WKSP.java generated.
*** Application AcmsApp generated! ***

$
Build the server:

The server build procedure links the generated server files with the user's application, which creates a
dynamically loadable shareable image.

$ set def [.generated]
$ @BUILD-ACMSAPP-SERVER
Begin server build procedure.
.configuring switches and compiler options
.compiling native server code
.linking shareable image
..installing server image
End server build procedure.

$
Build the client:

The JavaBean build procedure creates a JAR file that contains the WSIT Java classes used to call the
server created earlier.

$ @BUILD-ACMSAPP-JB

Begin Java bean build procedure.
The New JAVASCLASSPATH is:
"JAVASCLASSPATH" = "WSISROOT: [LIB]WSIRTL.JAR" (LNMSJOB_86F82E00)
= "[]"
"WSISROOT: [LIB]VELOCITY-DEP-1_4.JAR"
"WSISROOT: [TOOLS]IDL2CODE.JAR"
.Compiling structure classes
.Compiling acmsapp Interface classes
..Creating acmsapp.JAR file from classes
End of JavaBean build procedure.

Step 5: Run the ACMS Sample

Add the AcmsApp.jar file to the java$classpath.

$ @WSISROOT: [tools]wsi-setenv - disk:[directory]acmsapp.jar
The new JAVASCLASSPATH is:
"JAVASCLASSPATH" = "WSISROOT: [LIB]WSIRTL.JAR" (LNMS$SJOB_86F82E00)
= "[1"
= "WSISROOT: [LIB]VELOCITY-DEP-1_4.JAR"
= "WSISROOT: [TOOLS]IDL2CODE.JAR"
= "disk:[directory]ACMSAPP.JAR"

$

In the normal course of development, you would now need to write a client to call the AcmsApp JavaBean
that was generated above. However, for the purpose of this sample, a client file named acmscaller.java is
provided in the directory WSI$ROOT:[samples.acms].

Compile the supplied client:

$ set def WSISROOT: [samples.acms]
$ javac acmscaller.java

Run the supplied client:

$ java acmscaller

*EFFx*x% Creating JavaBean & Server ****xxkidx
*kkkhkkkkkhkkhk Kk Calling ACmSSignIn *kkhkkkkhkkkhkhkkhkkxkkhkkxkh k%)
%** Calling add and get empl_info tasks **x*
*kkkkkhkkhkkk Kk Calling Acmssignout *kkkkkkhkkkhkhkkhkkkhkxk k)
123456

John Adams

1 Beacon Hill

Boston

MA

01776

*AFFx*xx% Removing the JavaBean & Server *x*xx*kxxx
*kkkkkhkKkkkk k%K End ACMS Client *kkhkkkkhkkkhkkkkk k)

$

The output from the Java program shows the code that the client is executing, as well as the calls that it is
making into ACMS. The data displayed was first entered into an Rdb database via ACMS, then retrieved
using ACMS for display purposes.

1.6 Generating Sample Clients

The Web Services Integration Toolkit allows you to generate two kinds of sample clients: JSP and POJO
(Plain Old Java Object). The sample clients call the application in-process by default. See Section 1.10 for
information about loading your application in a separate process (out-of-process).

You can specify the type of client you want the WSIT generator (IDL2CODE) to generate by using the —C
parameter. Specifying —c S generates only the POJO command line client. Specifying —c J generates only
the JSP client, and —c SJ generates both kinds of clients.

For example, to generate sample clients for the C math application from Section 1.4, follow the same
sequence of steps from 1 to 4. At step 3, however, pass in the additional switch shown below.

Note: WSIT generated JSP samples require a server environment that supports the JSP V2.0. Examples
include Tomcat 5.5.9 and WebLogic Server V9.0.

$ java "com.hp.wsi.Generator" -i math.xml -a math -c¢ SJ -o [.generated]
File: ./generated/mathServer/build-math-server.com generated.

File: ./generated/mathServer/methIds.h generated.

File: ./generated/mathServer/structkeys.h generated.

File: ./generated/mathServer/math.wsi generated.

File: ./generated/mathServer/math.opt generated.

File: ./generated/mathServer/math-server.h generated.

File: ./generated/mathServer/math-server.c generated.

15

File: ./generated/math/build-math-jb.com generated.

File: ./generated/math/Imath.java generated.

File: ./generated/math/mathImpl.java generated.

File: ./generated/mathSamples/POJO/mathMain.java generated.

File: ./generated/mathSamples/POJO/build-math-PoJoClient.com generated.
File: ./generated/mathSamples/JSP/index.html generated.

File: ./generated/mathSamples/JSP/mathMethodList.html generated.

File: ./generated/mathSamples/JSP/mathPopulate.jsp generated.

File: ./generated/mathSamples/JSP/mathDoCall.jsp generated.

File: ./generated/mathSamples/JSP/build-math-JspClient.com generated.***
Application math generated! ***

$
Using the generated POJO client sample:

Normally this class will be written to integrate the WSIT generated JavaBean with the Java technology of
your choice.

The sample must first be built as shown below.

$ @wsiSroot:[tools]wsi-setenv - WSISROOT: [samples.c.generated.math]lmath. jar
$ set default WSISROOT: [samples.c.generated.mathSamples.P0OJO]
$ @build-math-PoJoClient
Begin client build procedure.
..Compiling mathMain client class
End of client build procedure.

To run this client, type the following at the command line:
$ java "math.mathMain"

The sample client is able to make calls to the methods of the generated JavaBean. There is a limitation
that only methods with primitive arguments can be called. To see which methods the sample client can call,
use the switch —m as shown below.

$ set default WSISROOT: [samples.c.generated.mathSamples.P0OJO]
$ java math.mathMain -m

The list of available methods within math are:

sum(int P1l, int P2)
product (int P1l, int P2)

(Methods that take structures or arrays as parameters are not callable from this command line interface.
These methods are denoted by the * next to them.)

To call the sum and product methods with arguments of 5 and 2, use the commands as shown below.

$ set default WSISROOT: [samples.c.generated.mathSamples.P0OJO]
$ java math.mathMain -m sum -pl 5 -p2 2
Calling mathImpl.sum:
Pl =5
P2 =2
Return value = 7
++ The client was successful ++
$ java math.mathMain -m product -pl 5 -p2 2

16

Calling mathImpl.product:

Pl =5

P2 = 2

Return value = 10

++ The client was successful ++
$

Using the generated JSP client sample:
Similar to the POJO sample, the JSP sample client must first be built as shown below.

$ @wsiSroot:[tools]wsi-setenv — WSISROOT: [samples.c.generated.math]lmath. jar
$ set default WSISROOT: [samples.c.generated.mathSamples.JSP]

$ @build-math-JSPClient

Begin JSP client build procedure.

Unpacking static files into current location.

Copying math.jar into local [.WEB-INF.lib] directory

Creating mathdsp.war file

End of JSP client build procedure.

To deploy this client:
Copy mathJsp.War into the deployment directory for your JSP server.

To deploy the JSP, copy the mathJdsp.war file to a web server servlet deployment directory. For example, if
you have installed Tomcat (CSWS_JAVA) on OpenVMS, the command is similar to the following:

$ copy mathJSP.war sys$Scommon: [apache.jakarta.tomcat.webapps]

After the war file has been copied, you can view the JSP pages by using a URL similar to the one shown
below. (Replace yourwebserver.hp.com with the actual name of your web server.) By default, Tomcat
listens on port 8080. If the system manger changed the port number, replace 8080 with the new number.

$ copy mathJSP.war sys$Scommon: [apache.jakarta.tomcat.webapps]

The POJO client is not supported when the —| switch is used on IDL2CODE.

Note: Web applications deployed as Java classes are seen and used immediately, but web applications
deployed as JAR files may require a Tomcat restart in order for them to be seen and used. For information
about restarting Tomcat, see the CSWS_JAVA (Tomcat) for OpenVMS documentation at

http://h71000.www7.hp.com/openvms/products/ips/apache/csws _java relnotes.html

The following screen captures illustrate the JSP sample client calling the C Math application.

Example Web Page 1: The mathJSP Application

17

math WSIT Application

The code in the math application example was generated by the Web Sendces intagration Toolkit for OpenViIS. It demonstrates how a3 web based interface
can be used o access an Open/iIE applcation written in 3 lanuage other than Java. The math application ks written In the C83 language. It is deployedin

thig directory wsiSroot{deployl. The SWSIT tools were used 10 generale JavaBeans wrappers for the malh application

H & o @ presermiteiee

aeginal

E":’" iy B

applicotion

(o —CO- [~ | [HEE
L [

s R

Intarioze

i

(]

[

[

[

i

[

i

]

of the math apphcation

L} L}
i (]
i Ll
i L
i L]
i Ll
L L]
i Ll
1 L}
i

ST ganarzieel fil& [ETEW TR
Maodels sxpasing

legoey coos

dka 1000 sulitvan kits mathimath.obj The abject madule axposing the application interface

gha 100 ulkvan ks mathimath xmil The interface description

walSroot [daployimath axg Thir ariginal legacy apphcation implementation with WSIT subs

dkaiilsulttean kits.math mathlmath jar & WEIT generaled jar file containing a java version of tha math intarface. Also contains
WSIT proxes

The ciassas inthis jar fle ara called by this JSF application
dka 100 sullvan kits math mathSamples jspimath|sp war (A war file contalning the J5Ps for this sample. This file ks deployed in 3 web sener for
example SYSSCOMMON [APACHE JAHARTA TOMCAT WEBAPPS]

Ta verify thal your WEIT and web Sérver @mdronmants are cormectly configurad 1o run the math agplication example. ciick “Validatle Erdronment” below
1 i

T vigw the migthads in the math application. click Rul‘l the math Application E-amﬂ!e' belgw
Hun the math Application Example

Far the |atest WEIT gacumeantation, see hitphp comdproductsiopamansiwsit!

Nole: This sample Is nol Intendad bo be used directly in 3 production environment A is piovided as a reference only. Very lite bounds chacking is done for
the felds that pou enter. i you hawe questions about VW3IT, please sand email 1o OpenyM3 WebSerdcas@hpcom

Tha WSIT Englnaenng Taam

Example Web Page 2: The MathJSP Application Methods

math WSIT Application - method list

from the math interface

sum {int number! int number2}

product {int numberi, int numberd}

math Hoaye

18

Example Web Page 3: The MathJSP Application Method Product

math WSIT Application -specify argument values

Applicaton: math
Class: mathlmp

Method: product (int number1, int numberz)

Please enter values for each argument

numberi int 3

number? int 5

Frﬁﬂ'.-JE

Back 1o Method List
math Homs

Example Web Page 4: The MathJSP Application Method Product Results

math WSIT Application -method call results

Application; math
Class: mathimpl

Method: product (int number1, int number2)
Input to method call

number1|int 3

number2|int 5

Cutput from method call

numberi|int "input parameter only”
number|int “input parameter only”
result int 15

Back

I'|'|§I:|'| Hgm&

1.7 Using ANT with the Web Services Integration Toolkit

The Web Services Integration Toolkit provides the capability to use Ant to automate the

tasks for exposing your application (described in Section 1.4). Ant is a powerful Java-based build
tool that is an open source Apache project. Ant is platform independent and highly extendable.

The build scripts are XML files containing targets and specifying tasks and properties.

For more information about Ant, see the web site for the Apache Ant Project at
http://ant.apache.org and the Ant Manual at http://ant.apache.org/manual/index.html.

1.7.1 Ant Setup

The Web Services Integration Toolkit includes its own binary distribution of Ant 1.6.5.

19

To set up Ant, establish the foreign command by entering the following command:
$ ant == “@WSISROOT: [tools.ant]ant.com”
1.7.2 Configuring the wsit-ant-user.properties File

Before you run Ant to build your application, you must configure the wsit-ant-user.properties
file by specifying a set of property values. Perform the following steps to complete the configuration:

1. Copy the wsit-ant-user.properties file from WSISROOQOT:[tools.ant] to your local directory
where you will be running the Ant build procedure.

2. Set the application type property to be one of the following, based on the kind of application
you are building:

3GL.with.OBJ
3GL.with.IDL
ACMS.with.STDL

For detailed Ant property descriptions, see Section 1.7.4.

3. Specify values for all required properties for the kind of application you are building, in the section
marked “BEGIN properties for ...”.

4. Specify values for properties in the section “BEGIN COMMON properties to customize.”
1.7.3 Using the wsit-ant-userbuild.xml Build File

After you have configured the properties, you can build the full WSIT application and any generated sample
clients by copying the wsit-ant-userbuild.xml file from wsi$root:[tools.ant] to your local directory and
executing the following command:

$ ant "-f wsit-ant-userbuild.xml"
Buildfile: wsit-ant-userbuild.xml

checkinput:
[echo] Verifying properties ...

getidl:
[echo] Calling obj2idl ...

obj2idl:
[echo] Creating XML IDL file ...
[0bj2idl] WSIT IDL Generator version is: V1.0

validate:
[echo] Validating XML IDL file ...
[jJava] XML file validated successfully

idl2code:

[1id1l2code] $%$WSI-I-GENCREOUT, The specified Output directory does not exist,
creating /WSISROOT/samples/c/generated

[1id1l2code] %$WSI-I-GENCREOUT, The specified Package directory does not exist,
creating /WSISROOT/samples/c/generated/math

[1id1l2code] $%$WSI-I-GENCREOUT, The specified Server directory does not exist,

20

creating /WSISROOT/samples/c/generated/mathServer
SWSI-I-GENCREOUT, The specified Samples directory does not exist,
/WSISROOT/samples/c/generated/mathSamples

[id1l2code]

[id1l2code]
generated.
[id1l2code]
[id1l2code]
generated.
[id1l2code]
[id1l2code]
[id1l2code]
[id1l2code]
[id1l2code]
[id1l2code]
[id1l2code]
[id1l2code]

File

File:
File:

File:
File:
File:
File:
File:
File:
File:

: /WSISROOT/samples/c/generated/mathServer/build-math-server.com

/WSISROOT/samples/c/generated/mathSamples/POJO

[idl2code] File:

generated.

[idl2code] File:

PoJoClient.com generated.

[id1l2code]

$WSI-I-GENCREOUT, The specified directory does not exist,

/WSISROOT/samples/c/generated/mathSamples/JSP

[id1l2code]
[id1l2code]
generated.
[id1l2code]
generated.
[id1l2code]
generated.
[id1l2code]
generated.
[id1l2code]
generated.
[id12code]
generated.
[id1l2code]

File:
File:

File:

File:

File:

File:

File:

$WSI-I-GENCREOUT, The specified directory does not exist,

/WSISROOT/samples/c/generated/mathSamples/JSP/WEB-INF

[idl2code] File:

generated.
[id1l2code]

buildserver:

[echo]
[echo]
[echo]
[exec]
[exec]
[exec]
[exec]
[exec]

*** Application math generated! ***

Buil
/WST
@bui
Begi

ding server
SROOT/samples/c/generated/mathServer
ld-math-server.com

n server build procedure.

.configuring switches and compiler options

.compiling native server code

.linking shareable image

.installing server image

[exec] End server build procedure.

buildjavabean:

/WSISROOT/samples/c/generated/mathServer/methIds.h generated.
/WSISROOT/samples/c/generated/mathServer/structkeys.h

/WSISROOT/samples/c/generated/mathServer/math.wsi generated.
/WSISROOT/samples/c/generated/mathServer/math.opt generated.
/WSISROOT/samples/c/generated/mathServer/math-server.h generated.
/WSISROOT/samples/c/generated/mathServer/math-server.c generated.
/WSISROOT/samples/c/generated/math/build-math-jb.com generated.

/WSISROOT/samples/c/generated/math/Imath.java generated.

/WSISROOT/samples/c/generated/math/mathImpl.java generated.
$WSI-I-GENCREOUT, The specified directory does not exist,

creating

/WSISROOT/samples/c/generated/mathSamples/POJ0O/mathMain. java

/WSISROOT/samples/c/generated/mathSamples/POJO/build-math-

creating

/WSISROOT/samples/c/generated/mathSamples/JSP/index.html generated.
/WSISROOT/samples/c/generated/mathSamples/JSP/sessiontimeout.html

/WSISROOT/samples/c/generated/mathSamples/JSP/mathMethodList. jsp

/WSISROOT/samples/c/generated/mathSamples/JSP/mathPopulate. jsp

/WSISROOT/samples/c/generated/mathSamples/JSP/mathDoCall. jsp

/WSISROOT/samples/c/generated/mathSamples/JSP/mathVerify.jsp

creating

/WSISROOT/samples/c/generated/mathSamples/JSP/WEB-INF /web.xml

/WSISROOT/samples/c/generated/mathSamples/JSP/build-math-JspClient.com

21

[echo] Building Java Bean
[exec] Begin java bean build procedure.

[exec] ..Compiling structure classes
[exec] ..Compiling math Interface classes
[exec] ..Creating math.JAR file from classes

[exec] End of JavaBean build procedure.

buildpojoclient:
[echo] Building Sample POJO Client
[javac] Compiling 1 source file to
WSISROOT/samples/c/generated/mathSamples/POJO
[jar] Building jar:
WSISROOT/samples/c/generated/mathSamples/POJO/mathClient. jar

[echo]
[echo] To run this client, type the following commands:
[echo]
[echo] $ @wsiSroot: [tools]wsi-setenv - wsiSdev
[echo] $ @wsiSroot: [tools]wsi-setenv -
/WSISROOT/samples/c/generated/math/math. jar
[echo] $ @wsiSroot: [tools]wsi-setenv -
/WSISROOT/samples/c/generated/mathSamples/POJO/mathClient.jar
[echo] $ java "math.mathMain"
[echo]
buildjspclient:

[echo] Building Sample JSP Client

[exec] Begin JSP client build procedure.

[exec] Unpacking static files into current location.

[exec] Copying math.jar into local [.WEB-INF.lib] directory

[exec] Creating mathjsp.war file

[exec] End of JSP client build procedure.

[exec] To deploy this client:

[exec] Copy WSISROOT: [SAMPLES.C.GENERATED.MATHSAMPLES.JSP]lmathjsp.war nto the
deployment

[exec] directory for your JSP server.

buildall:
[echo]
[echo] Completed building the math application
[echo]

BUILD SUCCESSFUL

Total time: 1 minute 1 second

$

To run a specific target only (for example, the help target), execute the following command in the directory
where the build file is located. (For detailed target descriptions, see Section 1.7.5.)

Note: The file wsit-ant-userbuild.xml cannot be used with versions of WSIT earlier than V1.1.
$ ant "-f wsit-ant-userbuild.xml help"

Buildfile: wsit-ant-userbuild.xml
help:

[echo]
[echo] [echo] Most useful targets:

22

[echo]

[echo] buildall : Executes all of the targets in this build file.

[echo] obj2idl : Creates IDL file from the 3GL application's object module
(IA64 only).

[echo] stdl2idl : Creates IDL file from the ACMS application's STDL file.

[echo] validate : Verifies the application's IDL file conforms to the
schema.

[echo] idl2code : Creates a WSIT server interface wrapper, a WSIT Java Bean
and sample client code.

[echo] buildserver : Builds a shareable image by linking the WSIT server

wrapper
with the application.

[echo] buildjavabean : Creates a jar file that contains the WSI Java classes to
call the server.

[echo] buildpojoclient : Builds the generated POJO client code to call the
application.

[echo] buildjspclient : Builds the generated JSP client code to call the
application.

[echo] Note: You will need to customize your property values in wsit-ant-

user.properties before running ant

[echo]

BUILD SUCCESSFUL
Total time: 2 seconds

$
1.7.4 Ant Property Descriptions

Required: Set the apptype property, which specifies application type, to one of the following values:

3GL.with.OBJ
3GL.with.IDL
ACMS.with.STDL
Name Description Value of apptype
A 3GL application based on an object (OBJ) file, 3GL.with.OBJ

compiled DEBUG (164 only, not supported on Alpha).

A 3GL application based on an IDL file that you have 3GL.with.IDL
apptype s
already written or generated.

An ACMS application based on the application's STDL | ACMS.with.STDL
file.

Properties for applications of type 3GL.with.OBJ. Required if apptype is set to 3GL.with.OBJ.

Name Description Value (example)

obj.file Specific location and name of object file (compiled debug) | /disk$ods5/math/source/math.obj
from which WSIT will generate IDL.

idl.file Specific location and name of idl file that WSIT will /disk$ods5/math/source/math.xml
generate using the target OBJ2IDL.

Properties for applications of type 3GL.with.IDL. Required if apptype is set to 3GL.with.IDL.

Name Description Value (example)
idl.file Specific location and name of idl file that WSIT will use to | /disk$ods5/math/source/math.xml
generate a JavaBean wrapper.

Properties for applications of type ACMS.with.STDL. Required if apptype is set to ACMS.with.STDL.

23

Name Description Value (example)

Stdl.file | Specific location and name of ACMS STDL file from /disk$ods5/math/source/math.stdl
which WSIT will generate IDL.

idl.file Specific location and name of idl file that WSIT will /disk$ods5/math/source/math.xml
generate using the target STDL2IDL.

Common properties for all types of applications. (Required)

Name Description Value (example)

appname | Specify your application name. Math

build.dir Specifiy the root of a directory that WSIT should use when /disk$ods5/math/generated
generating code.

Common properties for all types of applications. (Optional)

Name Description Value (actual)
sample.POJO | Specify if sample POJO client that illustrates how to call the WSIT | True/False
generated JavaBean should be generated.
sample.JSP Specify if sample JSP client that illustrates how to call the WSIT True/False
generated JavaBean should be generated.
1.7.5 Ant Target Descriptions
Name Description
buildall Executes all of the targets in this build file.
Obj2idl Creates IDL file from the 3GL application's object module (IA64 only).
stdlzidl Creates IDL file from the ACMS application's STDL file.
validate Verifies the application's IDL file conforms to the schema.
idl2code Creates a WSIT server interface wrapper, a WSIT Java Bean and sample client code.
buildserver Builds a shareable image by linking the WSIT server wrapper with the application.
buildjavabean Creates a jar file that contains the WSI Java classes to call the server.
buildpojoclient | Builds the generated POJO client code to call the application.
buildjspclient | Builds the generated JSP client code to call the application.
checkinput Verifies all properties have been correctly set.
getidl Determines if IDL file exists, if not calls appropriate target to generate it, and then
validates it.
Help Displays help information.
1.7.6 Custom Ant Tasks

WSIT defines custom ant tasks for the IDL2ZCODE, OBJ2IDL, and STDL2IDL tools.

1.7.6.1

IDL2CODE Task

Runs the Generator (IDL2CODE) to create a server wrapper for the application and a JavaBean client.

1.7.6.2 IDL2CODE Parameters

Attribute Description Type

idlfile Required. Filespec for XML IDL file describing the application to wrap. java.lang.String
appname Required. Name to be given to the WSIT generated application. java.lang.String

24

outdir Optional. Directory in which to generate the wrapper files. java.lang.String

authenticate | Optional. Force OpenVMS authentication to be used with this interface. boolean

javadoc Optional. Create JavaDoc based documentation for the generated boolean
interface.

tracinglevel Optional. Ouput tracing information at runtime, specify level 1 to 5. int

samplePOJO | Optional. Generate sample POJO client for the generated interface. boolean

sampleJSP Optional. Generate sample JSP client for the generated interface. boolean

1.7.6.3 OBJ2IDL Task

Runs the OBJ2IDL tool to generate an XML interface definition from a 3GL application’s object module (164
only).

1.7.6.4 OBJ2IDL Parameters

Attribute Description Type

obijfile Required. Filespec for the object module. java.lang.String

ouftfile Optional. Filespec for XML IDL output file. java.lang.String

mapfile Optional. Filespec for map file, default is java.lang.String
wsi$root:[tools]openvms-basetypes.xml.

version Optional. Display version information for this tool. boolean

1.7.6.5 STDL2IDL Task
Runs the STDL2IDL tool to generate an XML interface definition from an ACMS application’s STDL file.

1.7.6.6 STDL2IDL Parameters

Attribute Description Type

stdlfile Required. Name of the STDL file to parse. java.lang.String

idifile Optional. Filespec for XML IDL output file (relative paths are not java.lang.String
supported).

version Optional. Display version information for this tool. boolean

1.8 Using Distributed NetBeans with the Web Services Integration Toolkit

With the Web Services Integration Toolkit and Distributed NetBeans for OpenVMS working together, you
can do the following:

Edit text files generated by the WSIT tools using Distributed NetBeans and a remote FTP filesystem
Remotely compile your language source files

Remotely execute DCL command procedures

Remotely execute Ant scripts

For more information about remote operations and Distributed NetBeans in general, see the Distributed
NetBeans online help. The online help is available when you install Distributed NetBeans on your desktop
system, and from http://h71000.www7.hp.com/openvms/products/ips/netbeans/documents.html

1.8.1 WSIT Build Templates

25

The WSIT Build Template files are included with Distributed NetBeans so that you can use the NetBeans
template system to create your WSIT build script and property file from within Distributed NetBeans. To
create your WSIT Ant build script and property file using the template, perform the following steps:

1. Select the remote directory in the filesystem explorer where you would like to place the build template,
right mouse click and select New/All Templates.

2. Select WSIT Templates/WSIT-Build Ant Script Files. Click Next.

3. Name your script, and click OK.

Two files are created in your directory: an Ant build script that is named according to the previous step, and
a property file named wsit-ant-user.properties. You must now customize the property file for your
application. Follow the instructions in the property file to customize. In addition, you can customize the Ant
build script if desired.

Once you have completed your modifications to the build script and property file for your application, you
should modify the version of Ant that will used to remote execute your Ant script.

1.8.2 Using the WSIT-Supplied Ant Version

In order to remote execute your WSIT Ant build script, you must use the WSIT version of Ant when
executing your build scripts. You can change the Ant executor in the Distributed NetBeans IDE to point to
the WSIT version of Ant. To make that change in the IDE, perform the following steps.

Select Tools/Options.

Open Debugging and Execution/Execution Types/Remote Ant Script Execution.
Select the [...] button to the right of the Remote External Process property.
Change the value of the Process property to

Pon -~

pipe ant == "@WSISROOT: [tools.ant]ant.com" ; ant

5. Click OK.
6 Click Close on the Options dialog box.

1.9 Security Considerations

The Web Services Integrated Toolkit provides an easy to use set of utilities that can turn standalone
applications into distributed applications, making them more widely accessible. While this is great, this new
found accessibility may raise security concerns. Because of this, WSIT implements 2 different ways of
restricting access to a wrapped application and/or the system resources that the application accesses.

Depending on the environment and the granularity needed, you can either set a blanket setting within the
server process that all users are restricted to, or you can force all users to login using their own account.

Each is discussed below.

1.9.1 Server Process Security

In an application environment where the application’s generated JavaBean and server wrapper are run in
two different processes, you can specify under which OpenVMS account the server process is to run. You
do this by modifying the <Account> attribute within the deployment descriptor (.wsi file) associated with the
application, as shown in the following example. (The deployment descriptors can be found in the WSI
deployment directory, wsi$root:[deploy].)

<!-- Server Application Options -->
<Account>MyAccount</Account> <!-- Name of the account the server runs in -->

26

Note: When the <Account></Account > property is not specified within the application deployment
configuration file (.wsi), WSIT runs the out-of-process servers in the same account that the wsi$manager is
running from. In most cases, this is the SYSTEM account.

This method of restricting access has an application level granularity. This means that all of the
application’s server processes run under the specified account. For example, you can set up the Payroll
application to always run under the Payroll account regardless who is connecting to it.

The server process method of restricting access has both pros and cons, as follows:
Reasons to use server process security:

It is fast and easy to change during and after deployment.

All users of a given application have the same access to the system.
Requires no change to the client.

Users do not need their own account to use the application.

Potential problems with server process security:

Does not keep users from accessing the application itself.

Makes no distinction between users.

Specified accounts require minimum privileges.

Requires the JavaBean and server wrapper to run in two different processes.

1.9.2 Per User Security

If you need to restrict access to the application itself, or need a finer granularity in limiting access to system
resources, you can do that by using the optional per user security. You choose this at generation time by
specifying the —L switch on the IDL2ZCODE command line. When you specify this option, WSIT generates
an application with two additional methods in the interface, as follows:

OpenVmsLogin (username, password)
OpenVmsLogout ()

Note: POJO clients are not supported when the -L switch is used on the IDL2ZCODE command line.
Applications that have these methods in the interface can only be accessed after OpenVmsLogin() has
been successfully called. (The error “Must login first” is returned until a successful login occurs.) After the
user has successfully logged into an account, that account’s privileges and quotas are used when calling
into the application. This means that resources used by the application can be protected on a per user
basis.

The per user method of restricting access has both pros and cons, as follows:

Reasons to use per user security:

. Distinguishes between users, allowing better access control over resources.

. Can block access to the application itself.

. Works whether the JavaBean and server wrapper are in the same process or different processes.
Potential problems with per user security:

. Decision to use must be made at code generation time.

. Requires client to call Login and Logout methods.
. All users require an OpenVMS account in order to access the application.

27

1.10 WSIT Tools and Parameters

OBJ2IDL

Usage: obj2idl <parameters>

Required Parameters:

-f Specify the object file name along with its location

Optional Parameters:

-m Specify the map file name along with its location. Default is
wsi$root:[tools]openvms-basetypes.xml

-0 Specify the output file name along with its location.

-v Version information.

VALIDATE

Usage: validate <parameters>
Required Parameters:

-x xmlfile Location and name of the xml file to be validated.
-s schemafile Location and name of a schema file (usually .xsd) used to validate the XML.

IDL2CODE
Usage: idl2code <parameters>
Required Parameters:

-i <IDL filespec> XML IDL file describing the application to wrap.
-a <Application Name> Name to be given to the WSIT-generated application.

Optional Parameters:
-0 <Output Directory> Directory in which to generate the wrapper files.
-p <Velocity prop file> Velocity properties file to replace WSIT templates.

-l Require OpenVMS authentication to be used with this interface.

POJO clients do not work with the —| parameter. See Section 1.9.2 for more information.

- JavaDoc-based documentation for the generated interface.
-d <Tracing Level> Output tracing information while the generator is running, 1 -> 5.
-w Generate the Web Services interface classes.
-c <SlJ> Generate sample client(s) for the generated interface.
-V Print out the version number for this generator.
-h or —help Print this list of options.
1.10.1 In-Process/Out-of-Process Parameters

JSP and POJO (Plain Old Java Object) sample clients call the application in-process by default. To load
your application in a separate process (out-of-process), do the following:

. For a JSP sample client: Specify “outproc” as P1 on the command line when building the JSP sample
client.

. For a POJO sample client: Specify “-0” when running the POJO client.

1.10.2 POJO or JSP Sample Client Parameters

The optional switch —c is provided to tell the WSIT generator (IDL2CODE) to generate a sample client with
a command line interface (S) or generate a sample client with a JSP interface (J). These samples are

provided to make testing and development with WSIT easier.

Specifying —c S generates only the POJO command line client. Specifying —c J generates only the JSP
client, and —c SJ generates both kinds of clients.

29

2 DEPLOYMENT CONSIDERATIONS
2.1 Types of OpenVMS Applications
Applications running on OpenVMS systems can be roughly divided into two groups, as follows:

. Applications designed for a single client environment
. Applications that can be called by multiple clients

The first group, applications designed for a single client environment, are often older OpenVMS applications
that assume a timesharing runtime environment. The user logs into the OpenVMS system, which in turn
creates a process. The applications are typically executed entirely in the user’s process. In this design,
there is a single user (the client). There is an assumed one-to-one relationship between the client and the
application.

The second group, applications that can be called by multiple clients, are often newer OpenVMS
applications. These applications are designed to serially process multiple clients (one at a time), or to
concurrently process multiple clients (all at the same time).

When the Web Services Integration Toolkit exposes an OpenVMS application as a JavaBean, the
application becomes callable from the second (newer) design model in which multiple clients can call the
application from multiple processes or threads. You should understand in which group your wrapped
application belongs (the specific design model) and manage client access to the application accordingly.
WSIT provides a number of features to help in managing this interaction, which are discussed in the
following sections.

In the following sections, the term application is used to represent the original application being exposed.
The term client is used to represent the JavaBean caller which makes calls to the WSIT-generated
JavaBean.

2.2 In-Process Deployment

There are two ways in which you can deploy your application using WSIT: in-process deployment and out-
of-process deployment.

In-process deployment occurs when the application and the client are called from the same process, as
illustrated in the following diagram.

30

Process A

WSIT WSIT lnefel s original

generated = generated [~ ©XPosing | (|egacy)

L-:;m server application
an wrapper -‘

I !

business class WSIT generated files single non-java
unaware of Module exposing
WSIT legacy code

1= WSIT generated
1= newly written code

There are advantages and disadvantages to using in-process deployment.
Advantages: Fastest return time for client calls to application. No overhead added by the WSIT runtime.
Disadvantages: A crash will bring down all components in the process (client and application).

There are no WSIT deployment settings for in-process applications --

the interaction between the client and the application is not managed by the WIST runtime. In-process
deployment provides the fastest execution time, but it requires that the developer ensure that the client
does not establish an environment in which the application will fail.

For example, some J2EE application servers may use multiple threads to call the client. This requires that
the developer determine if the application can successfully operate in this environment. If the developer
determines that the application can only support one client at a time, then the client must use a mechanism
to order the calls before they are sent to the application (via the WSIT-generated objects).

If you do not specify out-of-process deployment settings (described in the following sections), your
application will run in-process by default.

2.3 Out-of-Process Deployment
Out-of-process deployment occurs when the client and application are run in different processes, as

illustrated in the following diagram. The WSIT runtime environment manages the interaction between the
two processes. You can customize this environment by modifying a deployment descriptor file.

31

Process A Process B

WSIT WsSIT e PReks original

| generated *| generated [—# €XPosing = (legacy)
I::a server Il application
an wrapper

i i
business class WSIT generaled files single non-java
unaware of Module exposing
WSIT legacy code

1= WSIT generated
[J= newly written code

There are advantages and disadvantages to using out-of-process deployment.

Advantages: Typically scales better than in-process deployments. Allows the use of the WSIT runtime
deployment properties.

Disadvantages: Adds complexity and overhead to every call.

Most older applications benefit from using an out-of-process deployment to avoid complex issues that
result from mixing older and newer environments. The WSIT deployment properties, described in the
following sections, allow out-of-process applications to choose from a wide variety of configurations.

2.3.1 Sessions
A session is the period of time in which a client uses an application. A session can last for:

. The duration of a single call
. The lifetime of the client

The type of session you use should mimic the original design of the application. For example, in older
timesharing applications, a session is often the entire time that the client uses the application. In newer
applications, the client may use a session to perform a specific task and then declare that it is finished with
the session.

WSIT allows the developer to specify when a session with an application begins and when it ends. The
WSIT-generated JavaBean has a constructor named <application-name>Impl. For example, the stock
sample has a constructor named stocklmpl. To establish an out-of-process deployment, call the constructor
with an instance of the class WsilpcContext. The WsilpcContext constructor can be called with one of three
different session types.

1. LIFETIME_SESSION: This is the default session type. The session begins when the applications Impl
object is created and the session ends when the remove method is called.

32

2. NO_SESSION: The session begins when a method call is made on the application and the session
ends when that call returns. The lifetime of the session is a single method call.

3. TX_SESSION: The session begins when the client logs into the application by calling the methods
AcmsSignin or OpenVMSLogin of the application Impl object. The session ends when the client calls the
methods AcmsSignOut or OpenVMSLogOut.

2.3.2 Application Reusability
The default configuration for all WSIT out-of-process applications is not reusable.

An application is not reusable when it can only be used for one client session. When the session is finished,
the application has created state that prevents it from being called again. The next client session requires a
new instance of the application.

An application can also be sequentially reusable, concurrently reusable, or concurrently reusable with
multiple threads. See Chapter 3 for more information about these types of applications.

2.3.3 Using Multiple Processes to Scale Applications

When deploying an application out-of-process, WSIT allows the creation of a process pool, which is a
collection of processes for the application that WSIT manages in the background to improve response time.
Each process is running the application. The XML tag <ProcessPooling> is used to configure the properties
of the pool.

. Use the tag <MaximumProcesses> to specify an upper limit for the largest number of processes that
WSIT can create for the application.

. Use the tag <MinimumProcesses> to specify a lower limit for the fewest number of processes that
WSIT should maintain for the application. The number specified will be the number of processes WSIT
starts initially.

. Use the tag <MinimumldieProcesses> to specify the number of non-busy processes to keep on an
ongoing basis. WSIT creates more processes as needed to maintain these free processes. WSIT does not
create more than <MaximumProcesses> of processes.

. Use the tag <MaxInactivitySeconds> to specify when a process should be removed from the pool and
run down. Specify the maximum number of seconds that an application can be idle before it is automatically
stopped.

2.3.4 Specifying Out-of-Process Deployment Options

Running your application out-of-process allows you to specify configuration options. These options are
contained in the XML file wsi$root:[deploylapplication-name.wsi.

The out-of-process configuration options are as follows:

Server Application Options Description

Account (Username) Name of the account you want the server to run in, which
determines the access rights and quotas that the server will
have. Requires NETMBX and TMPMBX privileges.
WorkingDirectory Working directory for the server component. This is important
if the server component opens files with names relative to
some assumed working directory of the application.

33

SetupCommandFile

File specification of a DCL command file you want to run
before the server component starts up.

ServerPath

Location and name of the server component (applications
sharable image). If only the name is provided the value of the
tag Working Directory is used as the location.

StackSize

Stack size to use for each thread within the server component.
The default value of 0 means use the default WSIT stack size.
The default size is calculated as (default pthread stack size *
1.5) OR (30,000 bytes), whichever is greater.

Reusable

Default is not reusable. Uncomment this option if the server
application is reusable, which means the server can be called
by more than one client sequentially. (See Advanced Out-of-
Process Configuration chapter.)

MaximumClients

Maximum number of clients handled per server. If the server is
not reusable, the default is 1. Modify MaximumClients if, in
addition to being reusable, the server application process can
handle multiple clients concurrently. If this property is greater
than 1, the order of client calls coming into the server process
is indeterminate. (See Advanced Out-of-Process Configuration
chapter.)

MaximumThreads

Maximum number of threads allowed to run concurrently. This
option is never greater than MaximumClients. If the serveris
not reusable, the default is 1. Modify MaximumThreads if, in
addition to being able to handle multiple clients, the server
application is also thread safe. (See Advanced Out-of-Process
Configuration chapter.)

Server Process Options

Description

MaximumProcesses

Defines the maximum number of server processes that are
allowed to run concurrently to handle client requests. The total
capacity of the application is MaximumProcesses multiplied
by MaximumClients. The default is 5.

MinimumProcesses

Minimum number of server processes that are automatically
started to service requests from clients. This value is never
greater than MaximumProcesses. The default is 0.

MinimumldleProcesses

Sets the number of server processes that will be maintained
as idle to serve requests from clients. As servers become
busy, new server processes are started to act as idle servers.
The number of idle server processes can reach (but never be
greater than) the number of MaximumProcesses.

MaxInactivitySeconds

Maximum number of seconds that a server can be idle before
it is automatically stopped. The default is 1000 seconds.

MaxStartupSeconds

Maximum number of seconds to wait for a process to startup.
Default is 45 seconds.

ClientsWaitForServer

Specifies whether a client request should wait for a server
process to become available. If set to 0 (the default), the client
request fails with an error if a server is unavailable. If set to 1,
the client waits for an available server. Waiting may appear to
be a hung client if no server processes become available.

2.3.41 Out-of-Process Account Preparation and Requirements

34

If you are specifying an account in which to run out-of-process servers, you may want the account to have a
minimal amount of privileges.

You can specify an account to run out-of-process servers that has only the NETMBX and TMPMBX
privileges. To use an account with these privileges, perform the following steps:

1. Create an identifier within the system UAF with the name WSI$SSERVER. (Perform this step one time
only.)

2. Grant the WSI$SERVER identifier to each account used to run a WSIT out-of-process server.

If you do not perform these steps, the privileges required by the account are as follows. These privileges
must be DEFAULT privileges.

BYPASS
SYSNAM
SYSPRV
IMPERSONATE
DETACH
TMPMBX

2.4 Web Services Integration Toolkit Interfaces

The primary goal of the Web Services Integration Toolkit is to take the interface exposed by a user’s
application and present it as a Java based interface. These interfaces are defined by their set of routine
calls, the parameters passed in and out of these routines, and the mechanisms used to pass those
parameters. The following sections discuss this in more detail, and provides a background on the actions
WSIT takes to wrap an application and provide it with a new interface.

2.4.1 Application Interfaces (User Supplied)

The Application’s Programming Interface (API) is where the work begins for WSIT. The application’s
interface, provided by the user, is parsed by the WSIT tools OBJ2IDL or STDL2IDL. These tools create a
WSIT-specific Interface Definition Language (IDL) file describing the application’s interface. This definition
includes the set of routines included within this interface. For each routine, the IDL describes the parameter
list in detail, including the parameter names, the parameter datatypes, and the passing mechanisms used to
pass these parameters.

2.4.2 OpenVMS Datatypes Supported by WSIT

The datatype specified for each parameter must be one of the following:

. a standard OpenVMS datatype (as defined by the OpenVMS Calling Standard)

. an array of these datatypes

. a structure composed of these datatypes

Internally, WSIT uses the Descriptor datatype definition values, DSC$K_DTYPE_*, to identify all datatypes.
However, depending on the language that you are using, these may more readily be recognized as float,
double, short, and so on. See the Datatype Mapping section for a table that lists all of the OpenVMS
datatypes that WSIT supports, along with their Java type mappings.

2.4.3 Passing Mechanisms

WSIT supports the three passing mechanisms described by the OpenVMS Calling Standard. This standard
does not dictate which passing mechanism must be used by a given language compiler. (Note that

35

language semantics and interoperability considerations might require different mechanisms in different
situations.) WSIT generates the code needed to pass each parameter using the mechanism specified
within the IDL file. The three passing mechanisms are as follows:

. By “Value”

An immediate value argument item contains the value of the data item. The argument item, or the value
contained in it, is directly associated with the parameter.

. By “Reference”

A reference argument item contains the address of a data item such as a scalar, string, array, or structure.
This data item is associated with the parameter.

. By “Descriptor”

A descriptor argument item contains the address of a descriptor, which contains structural information about
the argument's type (such as string length) and the address of a data item. This data item is associated with
the parameter.

An example of a C module whose interface has been parsed can be found in:
wsiSroot: [samples.c]lmath.c

The IDL generated from parsing math.c can be found in the Appendix.

2.4.4 JavaBean Interface (Generated by WSIT)

The previous section discussed what the user’s application exposes as an interface and how it gets
described. This section discusses the Java based interface that WSIT generates from that description of
the user's API. This includes how the OpenVMS datatypes map into Java types, as well as how WSIT
accommodates the different passing mechanisms.

For each routine that is exposed by the user’s application, a method is generated in the new Java based
interface. Although the generated methods are named the same as their routine counterparts, the casing
may be different to better accommodate Web Services based clients. The parameters for each method
have a 1-to-1 mapping to their user application counterparts. This mapping is discussed in the following
section.

2.4.5 Datatype Mapping

When defining the interface within WSIT, you do not regularly need to be concerned with most issues
related to datatype conversion. When you specify the OpenVMS datatypes for the parameters, WSIT
converts them to appropriate Java types. WSIT converts primitive types from OpenVMS to Java as
described in the mapping table below. WSIT also maps arrays of these types to Java arrays, and structures
comprising of these types to JavaBean style classes that encapsulate the mapped types.

OpenVMS Type Description Java Type Java In/Out Classes
DSCS$SK_DTYPE_BU unsigned byte byte ByteHolder
DSCS$SK_DTYPE_WU unsigned word short ShortHolder
DSC$SK_DTYPE_LU unsigned long int IntHolder

36

DSC$K_DTYPE_QU
DSCS$K_DTYPE_OU
DSC$K_DTYPE_B
DSCS$K_DTYPE_W
DSC$K_DTYPE_L
DSC$K_DTYPE_Q
DSCS$K_DTYPE_O
DSC$K_DTYPE_F
DSCS$K_DTYPE_G
DSC$K_DTYPE_D

DSCS$K_DTYPE_H

DSCS$K_DTYPE_FX

DSC$K_DTYPE_FS
DSCS$K_DTYPE_FT

DSC$K_DTYPE_T

DSC$K_DTYPE_VT

DSCS$K_DTYPE_NU

DSC$K_DTYPE_NL

DSCS$K_DTYPE_NLO

DSC$K_DTYPE_NR

DSCS$K_DTYPE_NRO

DSC$K_DTYPE_NZ

unsigned gquadword
unsigned octaword
Byte

Word

Long

quadword

octaword

32bit F float
64bit G float
64bit D float

128bit H float
128bit IEEE float
32bit IEEE float
64bit IEEE float
String 2

varying string

decimal string
unsigned

decimal string
left separate sign

decimal string
left overpunch
sign

decimal string
right separate
sign

decimal string
right overpunch
sign

decimal string
zoned

long
BigInteger
byte

short

int

long
BigInteger
float
double
double

doublel

doublel
float
double

string

string

BigDecimal

BigDecimal

BigDecimal

BigDecimal

BigDecimal

BigDecimal

LongHolder
BigIntegerHolder
ByteHolder
ShortHolder
IntHolder
LongHolder
BigIntegerHolder
FloatHolder
DoubleHolder
DoubleHolder

DoubleHolder*

DoubleHolder*

FloatHolder
DoubleHolder

StringHolder

StringHolder

BigDecimalHolder

BigDecimalHolder

BigDecimalHolder

BigDecimalHolder

BigDecimalHolder

BigDecimalHolder

DSCSK_DTYPE_P Packed-decimal BigDecimal | BigDecimalHolder

DSCSK_DTYPE_V aligned bit boolean BooleanHolder
DSCSK_DTYPE_ADT | Absolute Date & calendar CalendarHolder
Time

1128 bit floating point datatypes are mapped to doubles within Java, limiting their range and precision.
2 See Section 2.4.5.1 for a detailed description of the String datatype.

Note: All unsigned integer types are mapped to their signed counterparts when converted. This shifts the
range of values that can be represented by a given datatype. For example, an unsigned word, which has a
range of 0 to 65535, is mapped to a short, which has a range of 32767 to -32768. Be sure to account for
this in your client if the values are expected to exceed those of the signed counterpart.

2.4.5.1 String Datatype

There are three attributes associated with the string datatype (DSC$K_DTYPE_T) within the IDL, as
follows:

Size The string size required by the routine being called. WSIT truncates or pads as needed to make
the passed in string the size specified. (Note that a specified size of 0 means that the size is dynamic, and
that the called routine can handle any size string. It is assumed that the routine has some other way of
determining the size of the passed in string, such as another argument, or by using the null terminator.)

NullTerminatedFlag This flag specifies that a null terminator is to be put into the string after the last
significant character of the string. If a size is specified and padding is required, the padding occurs after
the null character. If a size is specified and truncation is required, then one extra byte is truncated to make
room for the null character.

FixedFlag This informational flag specifies how to interpret the size attribute. If a size is specified, then
this flag should be set to 1 to indicate that the string has a fixed size. If the size is 0, then this should be set
to 0 to specify that the string has a dynamic size. (Note that this attribute is not used by the WSIT
Generator.)

For example:

<Primitive Name = "AutoGen_NullTermString"
Size = "0O"
VMSDataType = "DSC$SK_DTYPE_ T"
NullTerminatedFlag = "1"
FixedFlag = "0"/>

2.4.6 Parameter Usages

The Application Interface section described how parameters are passed using specific passing
mechanisms. Although Java does not support these different passing mechanisms for passing parameters,
there is one aspect of the passing mechanism that does apply. The usage of a parameter describes how
the called routine intends to affect that parameter. The variations are as follows:

. In Only

In Only states that the called routine intends to only read the parameter and not modify or write to the

parameter. This is the default usage for the by “Value” passing mechanism, but may be used with by

38

“Reference” or by “Descriptor” if the developer is sure that the routine is not going to change the parameter
value.

. In/ Out

In / Out states that the called routine intends to both read, and then modify the contents of the specified
parameter. The caller of the routine must pick up the new value for the parameter on return. This is the
default usage for both the by “Reference” and by “Descriptor” passing mechanisms.

. Out Only

Out Only states that the called routine intends to only write to the specified parameter and not read it. As
with In/Out, the caller of this routine must pick up the new value for the parameter on return. This is
associated with either the by “Reference” or by “Descriptor” passing mechanisms.

If the usage of a parameter is In Only, then the generated Java method can take the Java type directly,
because it does not need to look for a modified parameter value. However, if the usage is In/Out or Out
Only, then the generated Java method must take a wrapper or “Holder” class for the mapped Java type.
This Holder class allows the client to retrieve the possibly modified parameter value. Each OpenVMS to
Java type mapping contains an associated Java Holder class for parameters that have a usage other than
In Only. (For more information, see the Mapping table in the previous section under the “Java in/out
classes” column.)

The supplied math sample (found in wsi$root:[samples.c]) has the following C based routine:
unsigned int sum (int numberl, int number2) ;

Based on the mapping above, the Java method generated for it is:

int Sum (int numberl, int number?2)

The Java client code is:

int result = myapp.Sum (56, 72);

If the above C routine was changed to take an in/out parameter, the code would be as follows:

void sum (int numberl, int number2, int *result);

Based on the mapping table above, the Java method generated is:

void Sum (int numberl, int number2, IntHolder result);

The Java client code is:

IntHolder result = new IntHolder();

myapp.Sum (56, 72, result);
int iresult = result.value;

2.5 Design Restrictions for Wrapped Applications
The Web Services Integration Toolkit is an API level wrapping tool. This means that an appropriate
programming interface into the application must be presented to the Toolkit for it to successfully work. This

includes items such as no terminal input in the exposed routines, using standard OpenVMS calling
mechanisms for passing arguments, and so on.

39

Beyond the standard restrictions mentioned above, the Web Services Integration Toolkit contains other
restrictions that you must be aware of when wrapping your application. These restrictions are discussed in
the sections below.

2.5.1 Stack Size Not Automatically Increased Based on Demand

Many legacy applications were designed to be hosted in a process used by a single user. This process
would have a single thread of execution that would benefit from the stack size automatically increasing
based on demand.

In modern multi-threaded environments, each thread has a separate stack that does not automatically
increase based on demand. After the size of the stack is set, it will not expand. It is very important that a
WSIT application understand how much stack space it requires. Note that WSIT itself uses very little stack
space, however, each application is unique. The application can specify a stack size in the WSI
deployment property <StackSize> .

2.5.2 Bit Data Types

WSIT does not support primitives with the types DSC$K_DTYPE_V and DSC$K_DTYPE_VU. This would
require the marshaling code to copy individual bits which is a feature that WSIT does not currently support.
Alternatives include the following:|

e Use a BLOB type DSC$K_DTYPE_BLOB. WSIT will not attempt to marshal the contents of a
BLOB so the application is in full control.

o Expose the Parameter or Structure Field as one or more bytes. With this approach, the Java client
can use bytes, and the legacy application can still use bits. This impact to the 3GL code is minimal.
When the 3GL routine receives a parameter with byte-based data, a simple assignment statement
can copy the bytes to bits. For Structures, the 3GL code would use a single call to copy the bytes
to bits. This routine would copy the byte-based structure fields to the bit-based structure fields.

An application can have the WSIT tool IDL2CODE generate this copy routine by adding a template
to the tool. For an example of this template see the sample in the directory
WSISROOT: [SAMPLES.TEMPLATES] .

2.5.3 Pointer Types Not Supported

Because of the distributed nature of WSIT-wrapped applications, pointer types are problematic because
their value is dependent on the process space in which they were created. Although pointers used within
the context of the Pass-by-Reference and Pass-by-Descriptor passing mechanisms are supported, all other
uses of pointers are not supported by WSIT.

The following table lists the common cases in which pointers are found, and identifies the pointers that are
supported and those that are not supported. (The descriptions are expressed in C syntax but are relevant
for all languages.)

Restriction Description
Routine parameters cannot be // This is not supported
defined as “pointer to pointer.” void myfunction(int **p)
However, a single pointer, // This is supported
commonly referred to as pass-by- void myfunction(int *p)

40

reference, is supported.

// For the structure buyerData:

User-defined structures cannot typedef struct _buyerData ({
contain pointers to other user- char buyer_name[MAX_STRING]; ;
defined structures. (*See Note at } buyerData;

end of table.)
// This is not supported
However, nested structures are typedef struct _customerData {
supported. buyerData *pbuyer;

} customerData;

// This is supported

typedef struct _customerData {
buyerData buyer;

} customerData;

Routine return values must be // For the structure buyerData:
returned by value and cannot be typedef struct _buyerData f{
user-defined structures. char buyer_name [MAX_STRING] ;;

} buyerData;
However, the interface can add a
special parameter to the routine to // This is not supported
return the same structure. buyerData * buy ()

// This is supported
int Dbuy(buyerData *return_value)

Note: If a structure contains a pointer to a type, WSIT passes the pointer as an integer without any regard
for the type. The application must handle the memory appropriately. This memory is only valid in the context
of the application being wrapped and is not valid in the generated Javabean.

2.5.4 Single Instantiated WSIT JavaBean Cannot Be Shared Among Multiple Threads

The WSIT runtime supports a many-to-one relationship between clients and backend servers. However,
each client must have its own instance of the JavaBean object (unless you manually add synchronization
code to the generated JavaBean class). The JavaBean object acts as the client's personal interface into
the backend server. It allows WSIT to make sure that each client gets the correct context within the server.
If a single JavaBean instantiation is shared among clients, they will also share a single server context. If
concurrent calls are then made without synchronization code put in place, this could lead to unexpected
results, including incorrect call data and memory management exceptions.

See Section 4.4, Modifying an Existing Template, for information about how to manually add
synchronization code.

2.5.5 Languages Tested with the OBJ2IDL Tool
The Web Services Integration Toolkit was written to wrap ACMS applications and any 3GL-based
applications that are callable using the defined OpenVMS calling standard. The WSIT runtime is language

neutral and supports all OpenVMS languages. The OBJ2IDL.EXE tool has only been tested with the
following languages:

e ACMS

41

. BASIC
. C
. COBOL

Other languages that adhere to the OpenVMS calling standard (including FORTRAN) should work, but have
had limited testing only.

2.5.6 Tips and Hints for Supported Languages

2.5.6.1 All Languages

The following issues apply to all WSIT-supported languages (ACMS, BASIC, C, and COBOL).
. The exception java.lang.UnsatisfiedLinkError: no WSI$SJNISHR may be generated:

If you have not started WSIT by calling SYS$STARTUP:WSI$STARTUP, an exception is thrown when you
run the generated JavaBean.

2.5.6.2 BASIC Language
The following issues apply to the BASIC language only.
. For formal parameters, passed by value, with types other than strings or signed decimal data:

OBJ2IDL.EXE defaults to a passing mechanism of reference and a usage of INJOUT. Modify the XML to
specify a passing mechanism of value and a usage of IN.

. For formal parameters, passed by descriptor:

OBJ2IDL.EXE does not recognize the type of the formal parameter. In such cases, the type defaults to a
null terminated string. Modify the XML to specify the correct type for the formal parameter. In some cases,
you may need to add the type (primitive or structure) to the XML.

. For formal parameters that are arrays, if the passing mechanism is descriptor:

OBJ2IDL.EXE does not recognize the arrays. Modify the XML to specify the array. (See the example of
syntax in the C language section.)

2.5.6.3 C Language

The following issues apply to the C language only.

. When passing a formal parameter of byte (type char) by reference:

If a char is being used to represent a single byte and is passed by reference as a formal parameter, then
the generated XML will specify the parameter as having a type of type="AutoGen_NullTermString”. Modify
the XML to specify type="char” which will properly resolve to a byte (DSC$K_DTYPE_B).

. For C applications, OBJ2IDL.EXE does not recognize formal parameters that are arrays:

42

For example, if an array of userstruct with size 3 is passed as a parameter, then the XML that is generated

will be as follows:

<Routine Name = "incrementArrayOfStructures" ReturnType = "signed int">
<Parameter Name = "array" Type = "userstruct" PassingMechanism = "Reference"
Usage = "IN/OUT"/>

</Routine>

Modify the XML to specify the array as follows:

<Routine Name = "incrementArrayOfStructures" ReturnType = "signed int">
<Parameter Name = "array" Type = "userstruct" PassingMechanism = "Reference"
Usage = "IN/OUT" ArrayDimension = "1">

<Array LowerBound = "O0" UpperBound = "2"/>

</Parameter>

</Routine>

2.5.6.4 COBOL Language
The following issues apply to the COBOL language only.
] For all formal parameters:

OBJ2IDL.EXE defaults the usage to IN/OUT.
OBJ2IDL.EXE defaults the passing mechanism to pass by reference.

2.5.7 Tips and Hints for OpenVMS Alpha Users

Using 164 generated XML IDL on Alpha: [f you are using the Web Services Integration Toolkit on an

OpenVMS Alpha system, you can generate your XML file on OpenVMS 164, and in most cases, copy it to

OpenVMS Alpha with few or no modifications.

OpenVMS Alpha users who do not have an 164 system can use an OpenVMS 164 system provided by the

HP TestDrive Program. This system has WSIT installed. To access this resource you must register (for
free) at http://www.testdrive.hp.com/accounts/register.shtml.

When using an 164 generated IDL on OpenVMS Alpha, be aware that some compilers may have different

default values on 164 than on Alpha. These differences need to be addressed. For example, the C compiler

uses a different VMSDataType for primitive types float and double:

C Primitive Default Value on 164 Default Value on Alpha
float DSCSK_DTYPE_FS DSCSK_DTYPE_F
double DSCSK_DTYPE_FT DSCSK_DTYPE_G

An application that uses a float must replace the following:

<Primitive Name = "float” Size = "4” VMSDataType = "DSCSK_DTYPE_FS"/>
with
<Primitive Name = "float" Size = "4" VMSDataType = "DSCSK_DTYPE_F"/>

An application that uses a double must replace the following:

<Primitive Name = "float” Size = "4” VMSDataType = "DSC$K_DTYPE_FT"/>

43

with
<Primitive Name = "float" Size = "4" VMSDataType = "DSC$K_DTYPE_G"/>

2.5.8 Programming with Nested Structures
When an application developer instantiates a WSIT structure, the entire structure object, including all
nested structure objects, are also instantiated. This allows WSIT to manage all memory associated with a

nested structure.

To populate the inner structure, you must first obtain a reference to it. After a reference is obtained, the get
and set methods for its fields can be called. For example:

TopLevelStructure mystruct = new TopLevelStructure ();
InnerStructure inner = mystruct.getInnerStructure ();

inner.setFieldl (“somevalue”) ;
inner.setField2 (“somevalue”) ;

If the Structure InnersStructure has a field that is also a Structure, you can obtain a reference by calling:

OtherStructure other = inner.getOtherStructure() ;

44

3 ADVANCED OUT-OF-PROCESS CONFIGURATION
This chapter is intended for experienced Web Services Integration Toolkit users.

Before you configure the out-of-process deployment file, identify your application’s level of reusability. If
your application is reusable, you can significantly reduce the number of processes needed to service the
clients.

Next, to determine if a single instance of an application can handle multiple clients, consider how you
maintain state and manage 1/O within your application. Applications are frequently designed to accumulate
state from call to call. For example, the first call opens a file, the second call reads from the file, and the
third call updates and writes back the modified record. In cases like this, multiple clients within the same
application may “step on” each other trying to access the same files using the same channels.

To help you determine your application’s level of reusability, the following sections describe four
applications, each with a different level of reusability or combination of reusability and multiple threads.

3.1 CASE A: NOT REUSABLE

This is the default configuration for all WSIT out-of-process applications.

An application is not reusable when it can only be used for one client session. When the session is
finished, the application has created state that prevents it from being called again. The next client session
requires a new instance of the application. This situation can exist in older applications that assume a single
long-lived client is their only client. To identify this situation look for global (or static) variables that are used
to identify stored client-specific data. The following figure shows an application that is not reusable:

Application Process A

start session creale process A
“““““ - WSIT SRR
Client call method 1~ Runtime call method 1 single thread
Process call method n call methed n
A - 7
end session
Firmmm s mms kill process A
_______________ *.
. Application Process B
start session create process A
L e - . =21 it o S -
Client call method 1 call methed 1 | single thread
Process call methad n call methad n
B - 7
end session
FEmemminiems kill process A
............... .

A new process is created for each session.

45

For example, an application may not be reusable if it has a global variable to hold a client account number
and the account number cannot be modified or reset with a subsequent call or other mechanism. If a
second session requires a different account number to be set, then the application is not reusable.
Deploying an application as not reusable is the most restrictive case and has the highest runtime overhead,
but is also the safest configuration. When an application is not reusable, WSIT ensures that the client
always receive a new instance of the application.

The order of events for a non-reusable application is as follows:

1. The client instantiates the WSIT-generated JavaBean. This starts a session with a free application.

2. WSIT assigns the client the exclusive use of a process that is running the application. The process may
be newly created or may have been previously created but never used.

3. The client uses the application as it desires. One or more calls are made as part of the session.

4. The client tells the WSIT runtime that it is finished with the session by calling the remove method of the
WSIT-generated JavaBean. This assumes that a session type of LIFETIME_SESSION is being used. A
non-reusable application should not use a NO_SESSION session because of the extremely high overhead
which occurs from creating and deleting a process for every method call.

5. WSIT deletes the process.

3.2 CASE B: SEQUENTIALLY REUSABLE

An application is sequentially reusable when it is able to process more than one client session, but
requires that exactly one session be active at a time. The application must initialize its state before

processing the next client session.

When an application is sequentially reusable, WSIT will not delete the application process when the client is
finished using it. WSIT ensures that only one client can have a session outstanding with the application.

The following figure shows an application that is sequentially reusable.

46

Application Process A

start session create process A
“““““ - WSIT ~UETE PR R
Client call method 1~ Runtime call method 1 single thread
Process call method n call methed n
A -
end session
start session
Client call method 1 call methed 1
Fm;&s& call methad n call methad n
_end session

WSIT serializes the client sessions.

For example, an application is serially reusable if it has a global variable to hold a client account number
and also a method to initialize (or modify) the account number. In this way, each client can call the initialize
method to erase the state of a previous client’s session.

The order of events for a sequentially reusable application is as follows:

1. The client instantiates the WSIT generated JavaBean. This starts a session with a free application.

2. WSIT assigns the client the exclusive use of a process that is running the application. The process
may be newly created or may have been previously created.

3. The client uses the application as it desires. One or more calls are made as part of the session.
4. The client tells the WSIT runtime it is finished with the session based on the type of session used.
5. WSIT places the application in a pool so that it is available for another client to use.

To deploy an application as sequentially reusable, make the following change to the file
wsi$root:[deploy]<application-name>.wsi:

. Uncomment the XML tags <Reusable> </Reusable>
3.3 CASE C: CONCURRENTLY REUSABLE
An application is concurrently reusable when it can be called from multiple clients without regard to the

order of the clients’ sessions. This type of application has a mechanism for keeping the state of each of
the clients separated. WSIT uses a single thread when forwarding the clients’ calls to the application. From

47

the application’s perspective, the clients’ sessions may be nested. This ensures that the application
processes one client call at a time.

The following figure shows an application that is concurrently reusable.

Application Process A

Client call method 1~ Runtime call method 1 = single thread
Process o)l method n call methed n

s allmethodn _ >3

end session
_start session

Client call method 1 = _call method 1 2
Process call method n call method n

B L -

end session

WSIT allows the methods calls from multiple sessions

to access the application without any ordering (concurrently).
However, all calls are serialized on o single thread

within the application.

For example, an application is concurrently reusable if its interface uses a context block to hold client data.
In this way, the logic in the application is generic in regard to the clients.

The order of events for a concurrently reusable application is as follows:

1. The client instantiates the WSIT-generated JavaBean. This starts a session with a free application.
2. WSIT assigns the client the use of a process that is running the application. The process may be
newly created or may have been previously created. Other instances of the client may also be using the
same application, but WSIT ensures that all method calls are made one at a time on the same thread.

3. The client uses the application as it desires. One or more calls are made as part of the session.

4. The client tells the WSIT runtime it is finished with the session based on the type of session used.

5. WSIT places the application in a pool so that it is available for another client to use.

To deploy an application as sequentially reusable make the following changes to the file
wsi$root:[deploy]<application-name>.wsi:

48

1. Uncomment the XML tags <Reusable> </Reusable>

2. Uncomment the XML tag <MaximumClients> and specify a number greater than one for the number
of client sessions that the application can process

34 CASE D: CONCURRENTLY REUSABLE WITH MULTIPLE THREADS

An application is concurrently reusable and thread-safe when it can be called from multiple clients, at
the same time, on multiple threads. WSIT allows multiple client sessions to call the application without
any attempt to serialize them. The application was designed to lock shared data when called by multiple
threads. It is also written in a language that is capable of generating thread-safe code. (For example,
COBOL and BASIC do not generate thread-safe code.)

To determine if the application can handle calls from different clients concurrently, consider the following:

. Are all of the application resources that are shared among clients protected in a thread-safe way? For
example, using global symbols can cause problems unless they are protected by a mutex or equivalent
concept.

. Is the language that was used to write the application thread-safe?

The following figure shows an application that is concurrently reusable with multiple threads.

Application Process A

| slort-sossion. Wwslr | -Srecleprocess A ,

4 ; single thread
Client call method 1 Runtime call method 1 [ot e
Process ol morod n s Pl g e

A call method n - call method n |'“l_=_3 single thread

_end session
start session
—————————— -
Client call methed 1 call methad 1
Fm;““' call methed n call methed n
_end session

WSIT allows the methods calls from multiple sessions
to access the application without any ordering.
The calls are randomly assigned a thread.

For example, an application is concurrently reusable and thread safe if its interface uses a context block to
hold client data, and all access to global data, such as a global queue of client context blocks, is protected
by a thread-safe locking mechanism such as a mutex.

49

The order of events for a concurrently reusable with multiple threads application is as follows:

1. The client instantiates the WSIT-generated JavaBean. This starts a session with a free application.
2. WSIT assigns the client the use of a process that is running the application. The process may be
newly created or may have been previously created. Other instances of the client may also be using the
same application. WSIT uses multiple threads to call the application.

3. The client uses the application as it desires. One or more calls are made as part of the session.

4. The client tells the WSIT runtime it is finished with the session based on the type of session used.

5. WSIT places the application in a pool so that it is available for another client to use.

To deploy an application as sequentially reusable make the following changes to the file
wsi$root:[deploy]<application-name>.wsi:

. Uncomment the XML tags <Reusable> </Reusable>

. Uncomment the XML tags <MaximumClients> </MaximumClients> and specify a number greater than
one for the number of client sessions that the application can process.

. Uncomment the XML tag <MaximumThreads> </MaximumThreads> and specify a number greater
than one for the number of threads that WSIT can use to call the application.

The number of threads allowed to run concurrently should be a percentage of the number of clients
specified. A good rule of thumb is to look at the average amount of time that each application call is
expected to take.

. If the calls are small and quick, then the number of threads allowed to run concurrently could be 25%
of the number of clients.

. If you expect calls to take longer, then you should use a larger value, such as 50 to 60%.
For example, if you specify ten clients per application, and each application call will take some time, then

allow six threads to run. Note that once a system is in place, this number should be monitored and adjusted
as needed.

50

4 MAPPING BLOBS AND OTHER UNFORMATTED
DATA

This chapter is intended for experienced Web Services Integration Toolkit users.

WSIT provides a clean way to define almost every OpenVMS primitive and aggregate type within the WSIT
IDL file. However, some applications may require a large non-typed chunk of memory to be exchanged
with it. This may be needed if you want to:

e Exchange a string larger than 65535 with your application
e Exchange a non-standard datatype with your application

In these cases, you define the parameter in the WSIT IDL as a Binary Large Object (BLOB).

Conceptually, a BLOB is a large chunk of memory whose contents is in a format unknown to the underlying
runtime. WSIT will not attempt to interpret it when passed into a routine. (The contents only have meaning
to the application’s java client(s) and user routine(s).) Internally, WSIT handles a BLOB like a resizable
array of bytes passed by descriptor. Because of this, the non-java application routine that is to receive a
BLOB must have the BLOB parameter defined as an array of bytes passed by descriptor.

An example C function prototype is as follows:
int myStringRtn (struct dsc$descriptor_a *pl);

Defining the BLOB parameter within the WSIT IDL is a simple matter of creating a BLOB primitive type,
then assigning the parameter to this new type:

<Primitives>
<Primitive Name = “myblob"
MemoryFreeByWSIT = “1”
VMSDataType = "DSCS$SK_DTYPE_BLOB" />
<Primitive Name = "int"
VMSDataType = "DSCSK_DTYPE_L"/>
</Primitives>

<Routines>
<Routine Name = "myStringRoutine"
ReturnType = "int">
<Parameter Name = "pl"
Type = “myblob"
PassingMechanism = "Descriptor"
Usage = "IN/OUT"/>
</Routine>
</Routines>

Notice that there is a new attribute named MemoryFreeByWSIT and it is set to 1. This tells the WSIT
runtime to deallocate this memory once it has finished returning the contents to Java. Unless you plan to
explicitly deallocate the new memory in a later call, you should let WSIT deallocate this memory for you on
return. If you are planning on handling deallocation yourself at a later time, then specify 0 for
MemoryFreeByWSIT, or don’t specify this property at all.

51

Note that when working with BLOBs, it is the responsibility of the user’s routine to correctly modify the array
descriptor which is passed in. If the array descriptor isn’t correctly updated to reflect the new size and
memory location, the WSIT runtime will not pass the BLOB back correctly. A sample C routine that handles
this is as follows:

int myStringRoutine (struct dscS$Sdescriptor_a *adx)

{

char *somestring =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890ABCDEFGHIJKLMNOPQR" ;

int status = 0;

int newarysize = 50;

char *newmem = NULL;

// Allocate memory for the new BLOB
newmem = malloc (newarysize);

// Fill in the new BLOB with some information
memcpy (newmem, somestring, newarysize-1);
newmem [newarysize-1] = ‘\0’;

//Tell WSIT about the memory...
adx->dsc$a_pointer = newmem;

adx->dsc$l_arsize = newarysize;

return status;

}

One benefit of treating BLOBs as byte arrays is that in Java, the String class contains constructors and
methods that make converting from a byte array to a String and back again a straightforward process.

*Note that WSIT requires the client to always pass in a valid array for BLOB parameters. [f an empty
ObjectHolder, or a null, is passed in to the routine WSIT will throw an exception.

5 USING TEMPLATES TO GENERATE CODE

This chapter is intended for experienced Web Services Integration Toolkit users.

The Web Services Integration Toolkit uses Velocity templates, which encapsulate language syntax to
specify the code that will be generated based on the IDL. Velocity is an open source Java-based template
engine provided by the Apache Jakarta project. The Velocity Template Language (VTL) is the scripting
language used in the Velocity engine.

The Web Services Integration Toolkit provides an optional extensibility feature — the ability to modify or
replace the Velocity templates that WSIT uses to generate code. (This feature is described in the following
sections.) You can change the template to generate different source code. You can also change the
template, for example, to improve performance or to add security to your specific application.

For more information about Velocity, see http://jakarta.apache.org/velocity/.

For more information about VTL, see http://jakarta.apache.org/velocity/user-guide.html and
http:/jakarta.apache.org/velocity/vil-reference-guide.html.

5.1 Modifying Velocity Templates

52

The Web Services Integration Toolkit (WSIT) provides a number of different tools that complement each
other in the process of wrapping existing OpenVMS applications. One of the tools in the toolkit is
IDL2CODE.JAR, also known as the WSIT generator.

The WSIT generator uses a mechanism based on Velocity templates. A set of template files are read, and
placeholders within those templates are replaced by application-specific values. This becomes the
generated code.

More specifically, the generator reads a WSIT-specific IDL description of the application to be wrapped,
then generates code based on this description. The generated wrapping code contains the following:

. Server wrapper component that builds against the existing application
. JavaBean component that provides the new interface into this application

The standard code that is generated out of the box has been tested and is robust enough to handle
most cases. However, you may want to tailor what is generated by IDL2CODE.JAR. The following
sections describe the process that IDL2ZCODE.JAR uses to generate code, and then describes how you can
modify what is generated.

Note: The Velocity templates are contained in the subdirectory WSISROOT:[TOOLS.TEMPLATES]. You
can modify the current set of Velocity template files, or you can add new template files.

5.2 Generating Code with IDL2CODE.JAR

The generation process occurs in four distinct phases. The first three phases offer you an opportunity to
modify what ultimately is generated. The phases are described in the following sections.

Templates
3
1 3 Generated
Generator
7y
J
2
3

Phase 1: Parse IDL File

53

In Phase 1, the generator reads the WSIT IDL file describing the application, parses it, and then populates
an object model representation of its contents. This object model is directly accessed by the templates and
template engine in later phases. The IDL should accurately reflect the interface to the application being
wrapped. This phase is your first opportunity to affect what is generated.

See Section 1.3, Exposing an OpenVMS 3GL Application, for more information.

Phase 2: Generate File List

In Phase 2, the generator generates a master list called Master.Ist of files to generate based on the
template file called Master.vm. (In the next phase, the generator steps through this list of files to generate
the actual files.) Modifying Master.vm allows you to change the list of files to generate, as well as to change
which templates to use in generating these files.

Each line within Master.vm and Master.Ist has the following format:

<Object> <Name> <Output Filename> <Template Filename> <Output Subdirectory>

where:

Object describes the component to which this generated file will belong. Object can have one of the
following values:

sSw File belongs to the server wrapper component
The generated file is placed into the subdirectory [.appnameServer]

JB File belongs to the JavaBean component
The generated file is placed into the subdirectory [.appname]

| File represents an interface within the JavaBean
The generated file is placed into the subdirectory [.appname]

S File represents a structure definition within the Javabean
The generated file is placed into the subdirectory [.appname]

C File is part of a generated sample client
The generated file is placed into the subdirectory [.appnameSamples...]

Name identifies the name of the object within the object model that this file represents.
Output filename is the filename of the file to be generated.
Template filename is the filename of the template to use in creating this file.

Output Subdirectory optionally specifies the subdirectory in which to generate the file.
(If used, it overrides the default subdirectory specification.)

Phase 3: Generate Files

In Phase 3, the generator reads the previously generated Master.Ist file, then generates the listed files.
Each line within Master.Ist contains an output filename and an associated template file to use in its

generation. It uses these mappings, along with this previously populated object model, to create the output
files.

54

You can modify the template files to change the contents of the individually generated files. The object
model can be accessed using Velocity identifiers.

Phase 4: Generate Javadocs (Optional)

In Phase 4, the generator optionally runs the Javadoc utility against the generated JavaBean files, creating
a set of .html files that document the generated interface.

5.3 Example 1: Writing a New Template

The following example shows you how to write a new template and add it to the master list so that it will be
used within the generation process.

This example assumes the following simple WSIT IDL:

<?xml version="1.0" encoding="UTF-8"?>

<OpenVMSInterface
xmlns="hp/openvms/integration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="hp/openvms/integration openvms-integration.xsd"
ModuleName="simple.OBJ"
Language="C89">

<Primitives>
<Primitive Name = "signed int"
Size = "4"
VMSDataType = "DSC$K_DTYPE_L"/>
</Primitives>
<Routines>
<Routine Name = "add"
ReturnType = "signed int">
<Parameter Name = "pl"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
<Parameter Name = "p2"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
</Routine>
</Routines>

</OpenVMSInterface>

Step 1: Write Template using Velocity

For this example, we will write a template file using Velocity that generates a log file containing the list of the
routines being exposed, along with their parameters. (Save the file as app-logfile.vm.) The completed file
will look similar to the following:

#set (Sserver = Sapplication.Server)

Logfile for ${application.Name}

#foreach(Sroutine in S$server.Routines)
${routine.Name}
Description: ${routine.Description}

55

Return Type: #if($Sroutine.Returnparam)
Sroutine.Returnparam.SWFormalDefinition#else void#end

#foreach(Sparam in Sroutine.Parameters)

${param.Name} ($param.SWFormalDefinition)
#end
#end

Note: The Velocity syntax that is used to pull information from the provided object model. Within WSIT:

. All templates are passed $application, which is a reference to the top level genConnection object.
. All structure type templates are passed $structure, which is a reference to the genStructure object.
. All interface templates are passed $interface, which is a reference to the geninterface object.

The template files located in WSISROOT:[TOOLS. TEMPLATES]show many different examples of using
these tags.

When you finish writing the template, place it where Velocity can find it. The path(s) that the Velocity
engine uses to find template files is specified in the file velocity.properties. You can modify this file to add
your directory to the search path, or you can copy your newly written template into a directory that is already
in the path.

Step 2: Modify Master.vm

Next, modify Master.vm to add the new file to the list of files that are generated. The new file that you
created in Step 1 is considered a server wrapper template file because it lists the interface as exposed by
the application.

Add the following line to Master.vm in the appropriate place. Type the line exactly as shown below. (Like
any other template file, the ${application.Name} placeholder is automatically replaced with the name of the
application, causing the generated file to contain the application name in its filename.)

SW S${application.Name} S${application.Name}.log app-logfile.vm

Step 3: Run IDL2CODE.JAR

Run the generator and review the newly generated files. If the run is successful, a log file that looks similar
to the following can be found in the [.ServerSimple] subdirectory.

Logfile for Simple

add
Description: This is the description for the add routine
Return Type: signed int

Pl (signed int)
P2 (signed int)

5.4 Example 2: Modifying an Existing Template

Example 1 showed you how to write and add your own new template. However, there may be cases in
which you want to directly modify the behavior of an existing WSIT template.

56

For instance, you may want to remove the restriction that every client needs to have its own instantiation of
the JavaBean interface class. The way to remove this restriction is to make sure that the generated
JavaBean class has appropriate synchronization code to serialize all calls through it. (This is not generated
by the default WSIT templates.) This example steps you through this simple process.

Step 1: Set Default Directory

Assuming the default location for the templates, set your default directory to
WSI$ROOT [tools.templates.javabean].

This is where you will find the templates used to generate the javabean files.

Step 2: Edit Files to Add Synchronize Keyword

Assuming that the templates have their default names, edit the files
INTERFACE-JAVA.VM and INTERFACEIMPL-JAVA.VM.

These files define the interface, and the implementation of the interface, for the newly generated
application.

For every public method definition within the two files, you must add the synchronized keyword. In
particular, add the synchronized keyword to the: AcmsSignin, AcmsSignOut, OpenVmsLogin,
OpenVmsLogout, and remove methods in each file.

Next, add the synchronized keyword to each method definition within $interface.Methods and
Sinterface.AcmsMethods.

For example:
Before:

public#if (Sroutine.Returnparam)
$dtutility.getJBtype (Sroutine.Returnparam.Datatype) #else void#end
${routine.WebServiceName} ($Sparamformal)

throws WsiException;

After:

Public synchronized#if (Sroutine.Returnparam)
$dtutility.getJBtype (Sroutine.Returnparam.Datatype) #else void#end

${routine.WebServiceName} ($Sparamformal)
throws WsiException;

Step 3: Run IDL2CODE.JAR

Run IDL2CODE.JAR to generate an application wrapper. The generated interface methods are
synchronized. All method calls to each JavaBean is serialized.

5.5 Example 3: Generating Helper Routines for the Original Application
Users of WSIT can extend the IDL2CODE tool. The IDL2CODE tool reads the users IDL file, populates an
in-memory object model and then runs templates over the data. These templates are written in the Apache

Velocity Template Language (VTL). To review the template that WSIT uses to generate code, see the
directory root WSISROOT: [TOOLS . TEMPLATES...] .

57

The list of templates to “run” is located in the file WSI$ROOT: [TOOLS . TEMPLATES] Master . vm.

You are free to add your own template to Master .vm. When doing so, you can have the WSIT IDL2CODE
tool generate any other code which you'd like. All of the files for this sample are located in the directory
WSISROOT: [SAMPLES.TEMPLATES].

The primary purpose of this template is to illustrate how you can easily leverage the WSIT object model.

This sample shows how you can generate custom routines by using the interface data that the WSIT
IDL2CODE tools reads from your IDL file. This sample generates special code to work around a WSIT
design restriction. The restriction is that WSIT does not support a Structure that contains Fields whose size
is not evenly divisible by eight (not based on a byte). The way this template solves the issue is by
generating a copy routine for these special structures. The copy routine will copy from a structure with
padded byte field to the original structure with bit fields.

With this helper routine being generated, the original code can simply call the copy routine with the
incoming padded structure and then receive a copy which is based on bit-fields. The original application
would only need to add a single line to their code to handle the translation.

For example, the sample uses an original structure with bit fields. The structure will be exposed with fields
padded to bytes. When a structure with bit fields is being processed by the IDL2CODE.JAR tool the
extension will generate a special routine. This routine will be able to copy the padded data structure to the
original structure. The prototype for this routine is as follows:

extern unsigned int COPY_MYSTRUCT (MYSTRUCT WITHBYTES *source, MYSTRUCT
*destination)

The structure definitions are shown below:

// This is the original structure that uses bit feilds.
typedef struct _MYSTRUCT {

unsigned int fieldl;

unsigned field2:1;

unsigned field3:1;

unsigned int field4;
} MYSTRUCT;

// This is the version of _MYSTRUCT that pads
// bit fields to byte fields to be passed accross
// WSIT
typedef struct _MYSTRUCT WITHBYTES ({
unsigned int fieldl;
unsigned char field2;
unsigned char field3;
unsigned int field4;
} MYSTRUCT_WITHBYTES;

The custom template file generates a separate copy routine for each structure in the WSIT IDL with a name
ending in _WITHBYTES. This can easily be modified as desired.

For example:
<Structure Name = "MYSTRUCT_ _WITHBYTES"
<TotalPaddedSize = "10">
<Field Name = "fieldl"
Type = "unsigned int"

58

Offset = "0"/>

<Field Name = "field2"
Type = "byte"
Offset = "4"/>
<Field Name = "field3"
Type = "byte"
Offset = "5"/>
<Field Name = "field4"
Type = "unsigned int"
Offset = "6"/>
</Structure>

When the IDL2CODE.JAR tool is run for the IDL above, it will generated the file

[.generatedappextension.appextensionServer]customer-extension.c . This file is the
custom extension and it contains the following generated code. Note: the code below can be in any
programming language.

extern unsigned int COPY_MYSTRUCT (MYSTRUCT WITHBYTES *source, MYSTRUCT
*destination)

{

source->fieldl;

source->field2;

source->field3;

source->field4;

destination->fieldl
destination->field?2
destination->field3
destination->field4

return 1;

}

With this helper routine being generated, the original code can simply call COPY_MYSTRUCT with the
incoming padded structure and then receive a copy which is based on bit-fields.

For more details look at the sample in the directory WSISROOT:[SAMPLES.TEMPLATES]

Directory WSISROOT: [SAMPLES.TEMPLATES]

appextension.opt;1 build-appextension-server.com;1l BUILD-TEMPLATE-
SAMPLE.COM; 1
codewithbits.c;1 customer-extension.vm; 1 datastructures.h;1

extension.xml; 1

A command procedure is provided to help you build the sample. Note that this file expects that the following
customer template has been added to the WSIT environment.

Use the following steps to add your own template to the WSIT environment:
1) SET DEFAULT WSI$SROOT:[TOOLS.TEMPLATES]
2) Copy new template to directory holding all server-side related templates.
$ COPY customer-extension.vm WSISROOT: [TOOLS.TEMPLATES.SERVERWRAPPER]

3) MODIFY the file WSI$ROOT: [TOOLS . TEMPLATES I Master.vm t0 include customer-
extension.vm in the list of templates to run with the OBJ2IDL tool.

Add the line below to the section named “! Server Wrapper Files”

59

SW ${application.Name} customer-extension.c customer-extension.vm

60

6 MODIFYING IDL FILES
This chapter is intended for experienced Web Services Integration Toolkit users.

To wrap an application, the Web Services Integration Toolkit generates and passes a description of the
application’s API that is to be wrapped. Although it is primarily the WSIT tools that interact with this
interface definition, there may be times when a developer wants to read or modify the IDL manually. For
this reason, consideration was given to the layout of the WSIT Interface Definition Language (IDL) file in
order to make it as easy as possible for a developer to manually read and modify it.

A WSIT IDL file is an XML file that has an easy to understand nested layout that allows a developer to
completely describe their application in a language-neutral way. It does this by allowing the definition of all
routines and structures that are to be exposed by the application. Within these routine and structure
definitions, all parameter and field datatypes are mapped (translated) into their OpenVMS equivalent
datatypes. In general, the mapping takes one of the following two forms:

“User datatype specification” — typedef translation[n] — Primitive translation — > OpenVMS
primitive (datatype)

or

“User datatype specification” — typedef translation[n] — Structure definition

Note: The [n] shows that any number of typedef translations may occur before the final translation to an
OpenVMS datatype (primitive) or structure definition.

The following sections describe how each component (routine, structure, and so on), and each type of
translation (mapping), is defined within the WSIT IDL file.

6.1 OpenVMS Interface Block

The <OpenVMSiInterface> block is the main block that encapsulates all of the blocks that collectively
describe the application’s interface. It has the following format:

<OpenVMSInterface
xmlns="hp/openvms/integration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="hp/openvms/integration
openvms-integration.xsd"
ModuleName="DISK: [MYDIR.STOCK]stock.OBJ"
Language="C89">

<Enumerations>
</Enumerations>

<Typedefs>
</Typedefs>

<Primitives>
</Primitives>

<Structures>
</Structures>

61

<Routines>
</Routines>

</OpenVMSInterface>

Except for the first line in the XML file, <?xml version="1.0" encoding="UTF-8"?>, all lines within
the WSIT IDL file reside within the <OpenVMSiInterface> block.

The properties within the <OpenVMSiInterface> tag (in bold above) are primarily generic header information
that is required, and is identical, for all WSIT IDL files. The two notable exceptions are the ModuleName
and Language properties, described in the following table:

Property Name Description

ModuleName For 3GL based applications, this is the fully qualified file
specification of the OBJ module that contains the application’s
interface. For ACMS based applications, this is the ACMS
application name.

Language This is the language in which the interface module was written in,
such as C89, BASIC, COBOL, and ACMS, ...

The blocks nested within the <OpenVMSiInterface> block (shown above), contain the collection of
definitions corresponding to that component or translation type.

For example, the <Routines> block contains all of the individual <Routine> blocks that describe the
exposed routines of an application. The <Structures> block contains the list of <Structure> definitions; the
<Primitives> block contains the list of <Primitive> or OpenVMS datatype translations; the <Typedefs> block
contains the list of <Typedef> definitions; and the <Enumerations> block contains the list of <Enumeration>
definitions.

All of the individual definition blocks and tags are described in greater detail in the following sections.
6.2 Enumeration Block
The collection of <Enumeration> blocks contains all of the constant definitions that are defined as

enumerations within the application. An <Enumeration> is made up of a name, an OpenVMS datatype, an
optional size in bytes, and the list of Name/Value pairs. The format of the block is as follows:

<Enumerations>
<Enumeration Name = “myenums”
VMSDataType = “DSC$K_DTYPE_L”
ByteSize = “4”>
[..see Enumerator block for more information..]
</Enumeration>
</Enumerations>

The properties of the <Enumerations> tag are defined as follows:

Property Name Description
Name The name given to this collection of enumerators.
VMSDataType The equivalent OpenVMS datatype of the enumeration. The

DSC$K_DTYPE_*values are used to specify them in a language
& application independent way.

ByteSize The size, in bytes, of the specified datatype.

6.3 Enumerator Block

62

Each Enumerator within an enumerator collection (an Enumeration) specifies a name/constant value pair.
These pairs make up the set of valid values for the Enumeration. The format of an Enumerator is as
follows:

<Enumeration ..>

<Enumerator Name = “PICSSIZEl” ConstantValue = “1”/>
<Enumerator Name = “PICSSIZE2” ConstantValue = “27/>
</Enumeration>
The properties within the <Enumerator> tag are as follows:
Property Name Description
Name The name given to the specified constant value.
ConstantValue The constant value associated with the specified name.

6.4 Typedef Block
The collection of <Typedef> blocks contains all of the typedef translations used within the application. Each
<Typedef> tag describes a user defined mapping of a type name to an equivalent type. In C, this looks
similar to the following:

typedef myint unsigned int;

Each <Typedef> tag has the following format:

<Typedef Name = “myint”
TargetName = “unsigned int”/>

Where each property is defined below:

Property Name Description

Name The user defined name associated with the typedef within the
application.

TargetName The equivelant datatype that this typedef maps to. This may
specify another typedef, a primitive, or a structure definition.

6.5 Primitive Block

The collection of <Primitive> blocks contains the datatype translations to their OpenVMS equivalents for all
datatypes used within an application. Each <Primitive> mapping contains the datatype, the OpenVMS
datatype (primitive) that it maps to, and any other information needed to completely describe that primitive.
For example, the format for a <Primitive> tag that describes a Packed Decimal is as follows:

<Primitive Name = "DSCS$SK_DTYPE P _5 2"
Size = "H"
Scale = "2*"
VMSDataType = "DSCSK_DTYPE_P" />

The properties of the <Primitive> tag are described below:

Property Name Description

Name The application or language specific name for the specified
datatype, such as unsigned int or PIC 9(8). See Note.

VMSDataType The equivalent OpenVMS datatype specification. The

63

DSC$K_DTYPE_*values are used to specify them in a language
neutral way.

Size The size in bytes of the primitive being defined. This is ignored for
datatypes whose size is constant, such as DSC$K_DTYPE_L. If
the datatype is a string, and the size is 0, then the string is
considered dynamically sized.

Scale Only used with scaled numeric datatypes, this property specifies
the scale factor for the primitive being defined. Note that a positive
scale factor specifies that the decimal point moves to the left. (The
example above would represent a number with the format of
123.45.)

FixedFlag Only used with string datatypes, this informational property
specifies that the string being defined is of fixed size. A value of 1
specifies fixed size, while a 0 specifies that the string is
dynamically sized.

NullTerminatedFlag Only used with string datatypes, this property specifies if a null
terminator should be appended to the end of the string. For fixed
length strings, the string will be truncated if needed in order to
append the null terminator. A value of 1 says to append a null,
while a value of 0 specifies no null.

Note For datatypes that are the same but differ in size and/or scale, the Primitive Name must be unique.
One way to do this is to embed the size and scale values into the Primitive Name itself. (See Packed
Decimal example above.)

6.6 Structure Block

The collection of <Structure> blocks contains all of the user defined structure (record) definitions. Each
<Structure> block represents a single user defined structure (record) definition. All parameters and fields
must eventually map to an OpenVMS primitive, or one of these structure definitions. The format of the
<Structure> block is as follows:

<Structures>
<Structure Name = "MyStruct"
TotalPaddedSize = "128">
[..See Field Block below for more information..]
</Structure>
</Structure>

The properties of the <Structure> tag are as follows:

Property Name Description

Name The user specified name given to this structure (record,
workspace, ...) definition.

TotalPaddedSize The size of the structure, including any padding added for
alignment purposes.

6.7 Field Block

Each <Field>...</Field> block describes a single field within a structure. The format of a <Field> block is as
follows:

<Structure .. >
<Field Name = "F1dl"
Type = "signed int"

64

Offset = "0"/>
<Field Name = "F1d2"
Type = "FixedStringl6"
Offset = "4"/>
<Field Name = "AryF1ld3"
Type = "signed int"
Offset = "20"
ArrayDimension = "1"
RowByColumn = "0">
<Array LowerBound = "0O"
UpperBound = "9"/>
</Field>
</Structure>

The properties of the <Field> tag are as follows:

Property Name Description

Name The user specified name given to this field

Type The language dependant or application specific datatype
associated with this field.

Offset The offset (within the structure) to the start of this field.

ArrayDimension If this field is an array of elements, this property specifies the
number of dimensions within the array.

RowByColumn If this field is a multi-dimensional array of elements, this property
specifies the ordering of the dimensions within memory. All
languages, besides Fortran, use a RowByColumn layout. Use a
“1” to specify RowByColumn, and a “0” to specify ColumnByRow
(Fortran).

<Array> Tag See below.

6.7 1 Field Array Tag

For fields and parameters that are arrays, the <Array> tag is used to specify dimension information for a
single dimension. The number of <Array> tags must match the number specified in the ArrayDimension
Field property above. The format of the Array tag is shown above.

The properties of the <Array> are as follows:

Property Name Description

LowerBound The user specified lower bound of this dimension.

UpperBound The user specified upper bound of this dimension. Note that the
upper bound must be larger than the lower bound.

6.8 Routine Block

The collection of <Routine> blocks contains all of the definitions for the routines being exposed by the
application. Each <Routine> block contains the complete description of a single exposed routine call,
including all parameter & return information. The format for the <Routines> block is as follows:

<Routines>
<Routine Name = “MyRoutine”
ReturnType = “unsigned int”
Description = “This is the description for my routine”>
[..Refer to the Parameter block section below for more information..]
<\Routine>
<\Routines>

65

The properties of the <Routine> tag are as follows:

Property Name

Description

Name The user specified name for this exposed routine.

ReturnType The language dependant or application specific datatype
associated with this routine’s return type.

Description A user specified description to be associated with this routine
definition.

MethodID Species a value to use as the internal method ID instead of the

one automatically generated for this routine. This is only useful in
rare cases for backwards compatibility within the generated
interface.

<Parameter> Tag

See below for more information.

6.9

Parameter Block

The <Parameter> Block is used to describe a single parameter within a routine’s parameter list. There will
be one <Parameter> tag for each parameter passed in or out of the routine. The <Parameter> block has

the following formats:

<Routine ..>

</Routine>

<Parameter

<Parameter

Name "Paraml"

Type "unsigned int"

PassingMechanism = "Value"

Usage = "IN"/>

Name "AryParam2"

Type = "__intlé6"

PassingMechanism = "Reference"

Usage = "IN/OUT"

ArrayDimension = "1"

RowByColumn = "1"

ArrayDescriptorType = "DSCSK_CLASS_A">

<Array LowerBound = "0O"
UpperBound = "10"/>

</Parameter>

<Parameter

Name "AryParam3"

Type "__intle"
PassingMechanism = "Descriptor"
Usage = "IN/OUT"
ArrayDimension = "1"
RowByColumn = "1"

ArrayDescriptorType = "DSCS$SK_CLASS_A">

</Parameter>

The <Parameter> tag has the following properties:

Property Name

Description

Name

The user specified name for this parameter.

Type

The language dependant or application specific datatype
associated with this parameter type.

PassingMechanism

The OpenVMS based passing mechanism used to pass this
parameter. It can be “Value”, “Reference”, or “Descriptor”.

Usage

This property specifies how this parameter will be effected by the
called routine. Itis either “IN”, which specifies that it doesn’t

66

modify the value, or “IN/OUT” which specifies that it does modify

this value.

ArrayDimension If this parameter is an array of elements, this property specifies the
number of dimensions within the array.

RowByColumn If this parameter is a multi-dimensional array of elements, this

property specifies the ordering of the dimensions within memory.
All languages, besides Fortran, use a RowByColumn layout. Use
a “1” to specify RowByColumn, and a “0” to specify ColumnByRow
(Fortran).

ArrayDescriptorType If this parameter is an array passed by descriptor, this property
specifies the descriptor class that should be used when passing
this array. The valid values for this property are,
“DSC$K_CLASS_A”, “DSCSK_CLASS_NCA”,
DSC$K_CLASS_VSA.

Resizable Special case only: If this parameter is specified as a single
dimensional byte array, passed by descriptor, with a usage of
“IN/OUT”, then setting this property to “1” defines this parameter
as a resizable byte array.

FreeMemory Special case only: If this parameter is defined as a resizable byte
array, then setting this property to “1” will specify that a freeing of
the array memory needs to take place after the call.

<Array> Tag See below for more information.

6.9.1 Parameter Array Tag

For field arrays, and parameter arrays that are passed by reference, the <Array> tag is used to specify
dimension information for a single dimension. For Parameter arrays that are passed by reference, the
number of <Array> tags must match the number specified in the ArrayDimension Parameter property
above. The format of the Array tag is shown above.

The properties of the <Array> are as follows:

Property Name Description

LowerBound The user specified lower bound of this dimension.

UpperBound The user specified upper bound of this dimension. Note that the
upper bound must be larger than the lower bound.

6.10 Example WSIT IDL File

<?xml version="1.0" encoding="UTF-8"?>

<OpenVMSInterface
xmlns="hp/openvms/integration"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="hp/openvms/integration openvms-integration.xsd"
ModuleName="disk$: [workshop.labl]lmath.obj"
Language="C89">

<Primitives>
<Primitive Name = "unsigned int"
Size = "4"
VMSDataType = "DSCS$SK_DTYPE_LU"/>
<Primitive Name = "signed int"
Size = "4"
VMSDataType = "DSCSK_DTYPE_L"/>
</Primitives>
<Routines>

67

<Routine Name = "sum"

ReturnType = "unsigned int">
<Parameter Name = "numberl"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
<Parameter Name = "number2"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
</Routine>
<Routine Name = "product"
ReturnType = "unsigned int">
<Parameter Name = "numberl"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
<Parameter Name = "number2"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
</Routine>

</Routines>
</OpenVMSInterface>

APPENDIX

This appendix contains program listings for the C sample program. Other sample programs can be found in
WSI$ROOT:[SAMPLES.ACMS], WSI$SROOT:[SAMPLES.COBOL], and
WSI$ROOT:[SAMPLES.FORTRAN].

A Program Listing - STOCK.C

S ty stock.c

//

// This is a sample file intended to be used to demonstrate the WSIT product.
// It defines 2 routines: (buy and sell). Each routine accepts 3 structures:
// buyerData, sellerData, tickerData.

//

// This code is intended only to illustrate the WSIT product and is not intended provide
// a usefull stock trading application.

//

//

#include <string.h>

#include <stdlib.h>

#include <stdio.h>

const MAX_ STRING = 20;

typedef struct _buyerData {
char buyer_name[MAX STRING] ;
unsigned int member_number;
unsigned int balance_dollars;
unsigned int number_shares_desired;
} buyerData;

typedef struct _sellerData {
char owner_name[MAX_ STRING] ;
unsigned int member_number;
unsigned int balance_dollars;
unsigned int number_shares_available;
} sellerData;

typedef struct _tickerData {

char symbol [MAX_STRING] ;

char company_name[MAX_ STRING] ;
} tickerData;

unsigned int buy (unsigned int max_price, tickerData *symbol, sellerData *pSeller,
buyerData *pBuyer) {

//

// Sell as many shares as possible

//

unsigned int shares_purchased = 0;

if (pSeller->number_shares_available >= pBuyer->number_shares_desired) {
shares_purchased = pBuyer->number_shares_desired;

} else {
shares_purchased = pSeller->number_shares_available;

}

pSeller->number_shares_available = pSeller->number_shares_available -
shares_purchased;

return shares_purchased;

69

unsigned int sell (unsigned int min_price,
buyerData *pBuyer) {

//

// Sell as many shares as possible
//

unsigned int shares_sold = 0;

tickerData *symbol, sellerData *pSeller,

if (pSeller->number_shares_available >= pBuyer->number_shares_desired) {
shares_sold = pBuyer->number_shares_desired;

} else {

shares_sold = pSeller->number_shares_available;

}

pSeller->number_shares_available =
shares_sold;

return shares_sold;

-

B Program Listing - STOCK.XML

<?xml version="1.0" encoding="UTF-8"?>
<OpenVMSInterface
xmlns="hp/openvms/integration"

pSeller->number_shares_available -

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="hp/openvms/integration openvms-integration.xsd"
ModuleName="wsiSroot: [samples.c]stock.obj"

Language="C89">

<Primitives>
<Primitive Name = "unsigned int"
Size = "4"
VMSDataType = "DSCSK_DTYPE_LU"/>
<Primitive Name = "AutoGen_FixedStringl9"
Size = "19"
VMSDataType = "DSC$K_DTYPE_T"
NullTerminatedFlag = "0"
FixedFlag = "1"/>
</Primitives>
<Typedefs>
<Typedef Name = "tickerData"
TargetName = "_tickerData"/>
<Typedef Name = "sellerData"
TargetName = "_sellerData"/>
<Typedef Name = "buyerData"
TargetName = "_buyerData"/>
</Typedefs>
<Structures>
<Structure Name = "_tickerData"
TotalPaddedSize = "40">
<Field Name = "symbol"
Type = "AutoGen_FixedStringl9o"
Offset = "0"/>
<Field Name = "company_ name"
Type = "AutoGen_FixedStringl9o"
Offset = "20"/>
</Structure>
<Structure Name = "_sellerData"
TotalPaddedSize = "32">
<Field Name = "owner_name"
Type = "AutoGen_FixedStringl9o"
Offset = "0"/>

70

</Structur

<Structure

</Structure>

</Structures

<Routines>
<Routine

</Routine>
<Routine

<Field ©Name = "member_number"

Type = "unsigned int"
Offset = "20"/>
<Field ©Name = "balance_dollars"
Type = "unsigned int"
Offset = "24"/>
<Field ©Name = "number_shares_available"
Type = "unsigned int"
Offset = "28"/>
e>
Name = "_buyerData"
TotalPaddedSize = "32">
<Field Name = "buyer_name"
Type = "AutoGen_FixedStringl9o"
Offset = "0"/>
<Field Name = "member_ number"
Type = "unsigned int"
Offset = "20"/>
<Field ©Name = "balance_dollars"
Type = "unsigned int"
Offset = "24"/>
<Field ©Name = "number_shares_desired"
Type = "unsigned int"
Offset = "28"/>
>
Name = "buy"
ReturnType = "unsigned int">
<Parameter Name = "max_price"
Type = "unsigned int"
PassingMechanism = "Value"
Usage = "IN"/>
<Parameter Name = "symbol"
Type = "tickerData"
PassingMechanism = "Reference"
Usage = "IN/OUT"/>
<Parameter Name = "pSeller"
Type = "sellerData"
PassingMechanism = "Reference"
Usage = "IN/OUT"/>
<Parameter Name = "pBuyer"
Type = "buyerData"
PassingMechanism = "Reference"
Usage = "IN/OUT"/>
Name = "sell"
ReturnType = "unsigned int">
<Parameter Name = "min_price"
Type = "unsigned int"
PassingMechanism = "Value"
Usage = "IN"/>
<Parameter Name = "symbol"
Type = "tickerData"
PassingMechanism = "Reference"
Usage = "IN/OUT"/>
<Parameter Name = "pSeller"
Type = "sellerData"
PassingMechanism = "Reference"
Usage = "IN/OUT"/>
<Parameter Name = "pBuyer"
Type = "buyerData"

71

PassingMechanism = "Reference"

Usage = "IN/OUT"/>

</Routine>

</Routines>
</OpenVMSInterface>

$

C Program Listing - StockCaller.Java

S type stockcaller.java

import stock.*;

import java.io.*;

import javax.xml.rpc.holders.StringHolder;
import javax.xml.rpc.holders.StructureHolder;

public class stockcaller {

/** Creates a new instance of Main */
public stockcaller () {

}

public static void main(String[] args) {

try {

_sellerData sellerData = new _sellerData("Mr Seller",

-

stockImpl stock = new stockImpl();

// create a seller object and place in holder

12345,

ObjectHolder seller = new ObjectHolder (sellerData);

// create a buyer object and place in holder
ObjectHolder buyer = new ObjectHolder

// create a ticker object and place in holder

_tickerData tickerData = new _tickerData("HPQ",

System.out.println("The sellers number_shares_available:

sellerData.getNumber_shares_available());
stock.buy (27, ticker, seller, buyer);

System.out.println("The sellers number_shares_available:

sellerData.getNumber_shares_available());

catch (Exception e) {
System.out.println ("Exception thrown");

D Program Listing — MATH.C

unsigned
return

}

unsigned
return

}

int sum (int numberl, int number2) {
numberl + number?2;

int product (int numberl, int number2) ({
numberl * number?2;

1000000,

_buyerData buyerData = new _buyerData ("Mr Buyer", 67890, 5000,
(buyerbData) ;

1000) ;

995) ;

"Hewitt Packard") ;
ObjectHolder ticker = new ObjectHolder (tickerData);

+

+

72

E Program Listing - MATH.XML

<?xml version="1.0" encoding="UTF-8"?>

<OpenVMSInterface
xmlns="hp/openvms/integration"
xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemalLocation="hp/openvms/integration openvms-integration.xsd"
ModuleName="DISKSODS5: [aaa.wsit .math]math.OBJ"
Language="C89">

<Primitives>
<Primitive Name = "unsigned int"
Size = "4"
VMSDhataType = "DSCSK_DTYPE_LU"/>
<Primitive Name = "signed int"
Size = "4"
VMSDataType = "DSC$K_DTYPE_L"/>
</Primitives>
<Routines>
<Routine Name = "sum"
ReturnType = "unsigned int">
<Parameter Name = "numberl"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
<Parameter Name = "number2"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
</Routine>
<Routine Name = "product"
ReturnType = "unsigned int">
<Parameter Name = "numberl"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
<Parameter Name = "number2"
Type = "signed int"
PassingMechanism = "Value"
Usage = "IN"/>
</Routine>
</Routines>
</OpenVMSInterface>

F Program Listing — mathcaller.java

import math. *;
import java.io.*;

public class mathcaller {
/** Creates a new instance of Main */
public mathcaller() {
}

public static void main(String[] args) {

try {
mathImpl math = new mathImpl () ;

int numl 10;
int num2 = 15;

73

int result;

result = math.sum(numl, num2);
System.out.println("Sum of " + numl + " and " + num2 + " is " + result);

result = math.product (numl, num2) ;
System.out.println("Product of " + numl + " and " + num2 + " is " +
result) ;

} catch (Exception e) {
System.out.println ("Exception thrown");
e.printStackTrace() ;

74

