HP BASIC for OpenVMS
User Manual

Order Number: AA-HY15F-TK

January 2005

This manual describes how to develop HP BASIC programs and use HP
BASIC features on HP OpenVMS Industry Standard 64 and HP OpenVMS
Alpha systems.

Revision/Update Information: = This revised manual supersedes the
Compaq BASIC OpenVMS Alpha and VAX
Systems User Manual, Version 1.4.

Software Version: HP BASIC Version 1.6
for OpenVMS Systems

Operating System and Version: OpenVMS 164 Version 8.2 or higher
OpenVMS Alpha Version 7.1 or higher
(with IEEE floating-point support)
OpenVMS Alpha Version 6.1 or higher
(without IEEE floating-point support)

Hewlett-Packard Company
Palo Alto, California

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties
for HP products and services are set forth in the express warranty statements accompanying
such products and services. Nothing herein should be construed as constituting an additional
warranty. HP shall not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Printed in the US

ZK5424
This manual is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Preface ..

Contents

Part| Developing BASIC Programs on OpenVMS Systems

1 Overview of HP BASIC

1.1
1.2

Language Constructs Supported
Advantages on OpenVMS

2 Developing HP BASIC Programs

2.1

2141
21.2
21.3

214
2.2

2.21
222
2.2.3
224
2.2.5
2.2.6
2.3

2.3.1

2.3.1.1
2.3.1.2
2.3.1.3

Compiling an HP BASIC Program
BASIC Command
BASIC Command Qualifiers
Declining Qualifiers and Their Recommended
Replacements
Compiler Listings.

Linking an HP BASIC Program
LINK Command. it
LINK Command Qualifiers
Linker Input Files
Linker Output Files
Using an Object Module Library
Linker Error Messages.,

Running an HP BASIC Program
Improving Run-Time Performance of HP BASIC
Programs

Dataltems.........
Qualifiers e
Statements.

XiX

3 Using the OpenVMS Debugger with BASIC

3.1 Overview of the Debugger 3-1
3.2 Compiling and Linking to Prepare for Debugging 3-1
3.3 Viewing Your Source Code, 3-2
3.3.1 Noscreen Mode i, 3-2
3.3.2 Screen Mode. 3-3
3.4 Controlling and Monitoring Program Execution.............. 34
3.41 Starting and Resuming Program Execution 34
3.4.2 Determining the Current Location of the Program

Counter i 3-6
3.4.3 Suspending Program Execution 3-7
3.4.4 Tracing Program Execution 3-9
3.4.5 Monitoring Changes in Variables 3-10
3.5 Examining and Manipulating Data 3-11
3.5.1 Displaying the Values of Variables 311
3.5.2 Changing the Values of Variables. 3-12
3.5.3 Evaluating Expressions 3-13
3.6 Stepping Into BASIC Routines. 3-13
3.6.1 Controlling Symbol References. 3-15
3.7 Sample Debugging Session. 3-15
3.8 Hints for Using the OpenVMS Debugger 3-17

Partll Compaq BASIC Programming Concepts

4 BASIC Concepts and Elements

4.1 Line Numbers 4-1
411 Programs with Line Numbers 4-1
412 Programs Without Line Numbers 4-2
41.3 Labels 4-3
41.4 Continuation of Long Program Statements 4-3
4.2 Identifying Program Units 4-4
4.3 BASIC Character Seto, 4-5
4.4 Program Documentation 4-5
4.5 Declarations and Data Types 4-6
451 Implicit Data Typing, 4-7
452 Explicit Data Typing 4-8
4.6 Constants 4-8
4.7 Variables 4-10
4.7.1 Floating-Point Variables. 4-10
4.7.2 Integer Variables 4-10
4.7.3 Packed Decimal Variables 4-11

4.7.4
475
4.7.6
4.8
4.9
4.10

String Variables
Subscripted Variables.
Initialization of Variables . .

Keywords and Reserved Words

Operands, Operators, and Expressions

Assignment Statements

5 Simple Input and Output

5.1
5.1.1
5.1.1.1
51.1.2
51.1.3
5.1.2
5.1.2.1
5.1.2.2
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2

6 Arrays

6.1
6.2
6.2.1
6.2.2
6.2.2.1
6.2.2.2
6.2.3
6.2.4
6.3
6.4
6.5
6.5.1
6.5.2
6.6
6.6.1
6.6.2
6.6.3

Program Input

Providing Input Interactively

INPUT Statement

INPUT LINE and LINPUT Statements
Enabling and Disabling the Question Mark Prompt
Providing Input from the Source Program
READ and DATA Statements......................

RESTORE Statement . .
Program Output............

Print Zones—The Comma and the Semicolon
Output Format for Numbers and Strings................

Terminal-Format Files

Opening and Closing a Terminal-Format File
Writing Records to a Terminal-Format File

Overview of Arrays
Creating Arrays Explicitly

Creating Arrays with the DECLARE Statement
Creating Arrays with the DIM Statement
Declarative DIM Statements
Executable DIM Statements
Creating Arrays with the COMMON Statement
Creating Arrays with the MAP Statement...............

Creating Arrays Implicitly

Determining the Bounds of an Array
Assigning and Displaying Array Values
Assigning Values with the LET Statement
Listing Array Elements with the PRINT Statement

Using MAT Statements
MAT Statement
MAT READ Statement. . . .

MAT INPUT [#] Statement

6-1
6-2
6-3
6—4
6-5
6-5
6-6
6-7
6—7
6-8
6-9
6-9
6-10
6-10
6-12
6-14
6-14

6.6.4
6.6.5
6.6.6
6.7
6.7.1
6.7.1.1
6.7.1.2
6.7.1.3
6.7.2
6.7.2.1
6.7.2.2
6.7.2.3

MAT LINPUT [#] Statement . . .
MAT PRINT [#] Statement

Matrix I/O Functions NUM and NUM2)

Matrix Operators
Arithmetic Matrix Operations . .
Assignment
Addition and Subtraction . . .
Multiplication.

Matrix Functions
TRN Function

INV Function

DET Function

7 Data Definition

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.7
7.7.2
7.7.21
7.7.2.2
7.7.3
7.7.4
7.7.5

Declarative Statements
DataTypes....................

Setting the Default Data Type and Size....................

Declaring Variables
Declaring Named Constants
Operations with Multiple Data Types

Allocating Dynamic and Static Storage

COMMON Statement.........
MAP Statement
Single Maps
Multiple Maps
FILLItems.................

Using COMMON and MAP Statements in Subprograms

Dynamic Mapping

8 Creating and Using Data Structures

8.1

8.1.1
8.1.2
8.1.3

vi

RECORD Statement
Grouping RECORD Components
RECORD Variants
Accessing RECORD Components

9 Program Control

10

9.1 Statement Modifiers.
9.1.1 IF Modifier e
9.1.2 UNLESS Modifier
9.1.3 FOR Modifier i
9.1.4 UNTIL Modifier i i
9.1.5 WHILE Modifier
9.1.6 Nesting Modifiers.
9.2 LoopS . o
9.2.1 FOR.NEXT LoOpS. .. .ot et e et i
9.2.2 WHILE.. NEXT Loopsiiiii i,
9.2.3 UNTIL.NEXT LoOpS . . .« v ot oo it e e et it e e i e e e
9.24 Nesting Loops i
9.3 Unconditional Branching (GOTO Statement)................
9.4 Conditional Branching
9.4.1 ON...GOTO...OTHERWISE Statement
9.4.2 IF.. THEN...ELSE Statement
9.4.3 SELECT...CASE Statement
9.5 EXIT and ITERATE Statements
9.6 Executing Local Subroutines
9.6.1 GOSUB and RETURN Statements
9.6.2 ON...GOSUB...OTHERWISE Statement.
9.7 Suspending and Halting Program Execution
9.7.1 SLEEP Statement
9.7.2 WAIT Statement
9.7.3 STOP Statement
9.74 END Statement
Functions

10.1 Built-In Functions
10.1.1 Numeric Functions.
10.1.1.1 ABSFunction.
10.1.1.2 INT and FIX Functions
10.1.1.3 SIN, COS, and TAN Functions.
10.1.1.4 SQR Function
10.1.1.5 LOG10 Function,
10.1.1.6 EXP Function.
10.1.1.7 RND Function
10.1.2 Data Conversion Functions
10.1.2.1 ASCII Function
10.1.2.2 CHRS$ Function

9-1
9-2
9-2
9-2
9-2
9-2
9-3
9-3
9-3
9-6
9-7
9-8
9-8
9-9
9-9
9-10
9-12
9-14
9-16
9-16
9-17
9-18
9-19
9-19
9-20
9-20

101
10-2
10-2
10-2
10-3
10-4
10-4
10-5
10-5
10-6
10-6
10-7

Vii

11

viii

10.1.3 String Numeric Functions

10.1.3.1 FORMATS$ Function
10.1.3.2 NUMS$ and NUM1$ Functions
10.1.3.3 VAL% and VAL Functions
10.1.4 String Arithmetic Functions
10.1.4.1 SUMS$ and DIF$ Functions
10.1.4.2 QUOS$, PLACES$, and PROD$ Functions
10.1.5 Date and Time Functions
10.1.5.1 DATE$ Function
10.1.5.2 DATE4$ Function
10.1.5.3 TIME$ Function.
10.1.5.4 TIME Function
10.1.6 Terminal Control Functions
10.1.6.1 CTRLC and RCTRLC Functions
10.1.6.2 ECHO and NOECHO Functions
10.1.6.3 INKEY$ Function
10.2 User-Defined Functions
10.2.1 Single-Line DEF Functions
10.2.2 Multiline DEF Functions

String Handling

1.1 Overview of Strings
11.2 Using Dynamic Strings
11.8 Using Fixed-Length Strings
11.4 Using String Virtual Arrays.............
11.5 Assigning StringData
11.5.1 LET Statement,
11.5.2 LSET Statement,
11.5.3 RSET Statement
11.5.4 MID$ Assignment Statement
11.6 Manipulating String Data with String Functions
11.6.1 LEN Function
11.6.2 POS Function.
11.6.3 SEGS FUnctiono vt i
11.6.4 MID$ FUnctiono v ettt e i
11.6.5 STRINGS Functiono ..
11.6.6 SPACE$ Function,
11.6.7 TRMS$ Function
11.6.8 EDITS FUNctiono v v vt

11.7 Manipulating String Data with Multiple Maps

10-7

10-8

10-8

10-9
10-10
10-11
10-11
10-13
10-14
10-14
10-14
10-15
10-15
10-16
10-16
10-17
10-18
10-18
10-20

111
1-2
11-3
11-4
1-5
11-5
11-6
1-7
11-8
11-9
11-9

11-10

11-12

11-14

11-15

11-16

11-16

11-16

11-18

12 Program Segmentation

12.1 HP BASIC Subprograms,
12.1.1 SUB Subprogramsc.uuiiineiinnennn..
12.1.2 FUNCTION Subprogramsc.ouven....
12.2 Declaring Subprograms and Parameters
12.3 Compiling Subprograms
12.4 Invoking Subprograms....................c. ...
12.4.1 Invoking SUB Subprograms.
12.4.2 Invoking FUNCTION Subprograms
12.5 Returning Program Status..............................

13 File Input and Output

13.1 Record Formats
13.1.1 Fixed-Length Records
13.1.2 Variable-Length Records
13.1.3 Stream Records
13.2 File Organizations 0.,
13.2.1 Terminal-Format Files
13.2.2 Sequential Files
13.2.3 Relative Files
13.2.4 Indexed Files
13.2.5 Virtual Files o
13.3 Record Access and Record Context........................
1834 I/Oand Record Buffers...........
13.5 Accessing the Contents of a Record
13.5.1 MAP Statement
13.5.2 MAP DYNAMIC and REMAP Statements
13.5.3 MOVE Statement.,
13.6 File and Record Operations
13.6.1 Opening Files. i
13.6.2 Creating Virtual Array Files
13.6.3 Locating Records
13.6.4 Reading Records.
13.6.5 Writing Records
13.6.6 Deleting Records i
13.6.7 Updating Records.
13.6.8 Controlling Record Access,
13.6.9 Gaining Access to Locked Records
13.6.10 Accessing Records by Record File Address
13.6.11 Transferring Data to Terminal-Format Files
13.6.12 Resetting the File Position

13-1
131
13-2
13-2
13-2
13-3
13-3
13-3
13-4
13-4
13-5
13-6
13-6
13—7
13—7
13-9
13-11
13-11
13-14
13—-14
13-16
13-19
13-21
13-21
13-23
13-25
13-27
13-29
13-29

13.6.13
13.6.14
13.6.15
13.6.16
13.7
13.7.1
13.7.2
13.7.3
13.8
13.8.1
13.8.2
13.8.3
13.8.4
13.8.5
13.8.6
13.8.7
13.8.8
13.8.9
13.8.10
13.8.11
13.8.12

Truncating Files
Renaming Files

Closing Files and Ending /O

Deleting Files . .

File-Related Functions

FSP$ Function .

RECOUNT Function,
STATUS, VMSSTATUS, and RMSSTATUS Functions
OPEN Statement Options
BUCKETSIZE Clausec.uuiiiiiiiannnnn .

BUFFER Clause

CONNECT Clausecovi i i i
CONTIGUOUS Clauseot oo it e e e e e i
DEFAULTNAME Clauseuuuiiineannn...
EXTENDSIZE Clause uiiiinio. ..
FILESIZE Clause.t

NOSPAN Clause

RECORDTYPE Clause ov e
TEMPORARY Clauseo i it i i e
USEROPEN Clause,
WINDOWSIZE Clause,

14 Formatting Output with the PRINT USING Statement

Overview of the PRINT USING Statement
Using Format Strings,

141
14.2
14.3
14.3.1
14.3.2
14.3.3
14.3.3.1
14.3.3.2
14.3.3.3
14.3.3.4
14.3.3.5
14.3.3.6
14.3.3.7
14.3.3.8
14.4
14.41
14.4.2
14.4.3
14.4.4

Printing Numbers .

Specifying the Number of Digits
Specifying Decimal Point Location
Printing Numbers with Special Symbols

Commas . . .
Asterisk-Fill

Fields

Currency Symbols
Negative Fields
E (Exponential) Format
Leading Zeros
Blank-If-Zero Fields
Debits and Credits

Printing Strings . . .

Left-Justified Format
Right-Justified Format

Centered Fields
Extended Fields

13-30
13-30
13-31
13-31
13-31
13-32
13-33
13-33
13-34
13-34
13-36
13-36
13-37
13-37
13-38
13-38
13-39
13-39
13-40
1340
1343

141
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-9

14-10

14-11

14-11

14-12

14-12

14-14

14-14

14-15

14-15

14.5

15 Handli

15.1
15.2
15.2.1
15.2.2
15.2.3
15.2.3.1
15.2.3.2
15.2.3.3
15.2.4
15.2.5
15.2.5.1
15.2.5.2
15.2.5.3
15.2.5.4
15.2.5.5
15.2.5.6
15.2.6
15.2.7
15.2.8
15.3

PRINT USING Statement Error Conditions

ng Run-Time Errors

Default Error Handling
User-Supplied Error Handlers
Protected Regions.
Handlers
Exiting from Handlers
RETRY Statement
CONTINUE Statement

EXIT HANDLER Statement
Selecting the Severity of Errors to Handle.
Identifying Errors
Determining the Error Number (ERR).
Determining the Error Line Number (ERL) . .

Determining Where the Error Occurred (ERN$)

Determining the Error Message Text (ERTS$) .
Determining OpenVMS Error Information. . .
Determining RMS Error Information.
Ctrl/C Trappingcoiiiineon..
Handling Errors in Multiple-Unit Programs
Forcing Errors

Using the ON ERROR Statements

16 Compiler Directives

16.1

16.2

16.2.1
16.2.2
16.2.3
16.2.4
16.2.5

16.4

16.4.1
16.4.2
16.4.3
16.4.4
16.4.5
16.4.6
16.5

Overview of Compiler Directives
Controlling the Compilation Listing..............
%TITLE and %SBTTL Directives.
9%IDENT Directive,
%PAGE Directive
%LIST and %NOLIST Directives
%CROSS and %NOCROSS Directives
16.3 Accessing External Source Files
Controlling Compilation
%LET Directive,
%VARIANT Directive
%ABORT Directive.
%PRINT Directive
%IF-%THEN-%ELSE-%END %IF Directive
%DEFINE and %UNDEFINE Directives

Record Dependency Relationships in CDD/Repository

151
15-2
15-3
15-4
15-6
15-8
15-8

15-10

1511

15-12

15-12

15-13

15-14

15-14

15-15

15-16

15-17

15-18

15-20

15-20

16-1
162
162
164
164
16-5
16-6
16—7
16-8
16-9
16-10
16-10
16-10
16-10
16—-12
16-12

Xi

17 Data Representation

171
17.1.1
17.1.2
17.1.3
171.4
17.2
17.2.1
17.2.2
17.2.3
17.2.4
17.2.5
17.2.6
17.3
17.4
17.41
17.4.2
17.5
17.6

Integer Format.........
Byte-Length Integer Format
Word-Length Integer Format
Longword Integer Format
Quadword Integer Format

Real Number Format
SINGLE Floating-Point Number Format (F_floating)
DOUBLE Floating-Point Number Format (D_floating)
GFLOAT Floating-Point Number Format (G_floating)
SFLOAT Floating-Point Number Format (S_floating)
TFLOAT Floating-Point Number Format (T_floating)
XFLOAT Floating-Point Number Format (X_floating)

Packed Decimal Number Format

String and Array Descriptor Format
Fixed-Length String Descriptor Format
Dynamic String Descriptor Format

Array Descriptors. e

Decimal Scalar String Descriptor (Packed Decimal String

Descriptor) oo e

Part lll Using HP BASIC Features on OpenVMS Systems

18 Advanced File Input and Output

Xii

18.1

18.1.1
18.1.2
18.1.3
18.1.4
18.1.5
18.1.6
18.1.7
18.1.8
18.1.9
18.2

18.2.1

RMS I/O to Magnetic Tapeo vt
Allocating and Mountinga Tape
Opening a Tape File for Qutput
Opening a Tape File for Input
Positioninga Tape,
Writing Records toa File
Reading Records froma File
Controlling Tape Output Format
Rewindinga Tape
ClosingaFile.........

Device-Specific I/O
Device-Specific I/O to Unit Record Devices.

171
171
17-2
17-2
172
17-3
17-3
17-4
17-6
17-6
177
177
17-8
17-9
17-10
17-10
17-11

17-11

18-1
18-2
18-2
18-3
18-3
18—4
18-5
18-5
18-6
18-6
18—7
18—7

18.2.2 Device-Specific I/O to Magnetic Tape Devices

18.2.2.1 Allocating and Mountinga Tape
18.2.2.2 Opening a Tape File for Output
18.2.2.3 Opening a Tape File for Input
18.2.2.4 Writing Recordstoa File
18.2.2.5 Reading Records froma File
18.2.2.6 Rewindinga Tape,
18.2.2.7 ClosingaTape
18.2.3 Device-Specific /O to Disks
18.2.3.1 Assigning and Mountinga Disk
18.2.3.2 Opening a Disk File for OQutput
18.2.3.3 Opening a Disk File for Input
18.2.3.4 Writing Records toa Disk File
18.2.3.5 Reading Records from a Disk File

18.3 1/O to Mailboxes.
184 Network I/O
18.4.1 Remote File Access

18.4.2 Task-to-Task Communication
18.4.3 Accessing a VAX Rdb/VMS Database

19 Using BASIC in the Common Language Environment

19.1 Specifying Parameter-Passing Mechanisms
19.1.1 Passing Parameters by Reference
19.1.2 Passing Parameters by Descriptor
19.1.3 Passing Parameters by Value.

19.1.4 HP BASIC Default

Parameter-Passing Mechanisms

19.1.5 Creating Local Copies i,

19.1.6 Passing Arrays. . .

19.2 Calling External Routines
19.2.1 Determining the Typeof Call
19.2.2 Declaring an External Routine and Its Arguments

19.2.3 Calling the Routine

19.3 Calling HP BASIC Subprograms from Other Languages
19.4 Calling System Routines
19.4.1 OpenVMS Run-Time Library Routines
19.4.2 System Service Routines
19.4.3 System Routine Arguments

19.4.4 Including Symbolic
19.4.5 Condition Values .

Definitions.

19.5 Examples of Calling System Routines

19.6 OpenVMS Calling Stan
19.7 Additional Information

dard.........

18-7
18-7
18-8
18-8
18-9
18-9
18-10
18-10
18-10
1811
1811
1811
1811
18-12
18-13
18-15
18-15
18-16
18-18

19-1
19-2
19-2
19-2
19-3
19-4
19-5
19-5
19-6
19-6
19-7
19-8
19-10
19-11
19-11
19-12
19-17
19-19
19-19
19-22
19-23

Xii

20 Libraries and Shareable Images

20.1 Overview of Libraries.ttt 20-1
20.2 System-Supplied Libraries 202
20.3 Creating User-Supplied Object Module Libraries............. 20-3
20.3.1 Accessing User-Supplied Object Module Libraries 20-3
20.4 ShareableImages............. ... 204
20.41 Accessing Shareable Images. 20-5

21 Using CDD/Repository with BASIC

21.1 Overview of CDD/Repository 21-1
21.2 CDD/Repository Conceptscuiiiiinennnn... 21-1
21.2.1 Dictionary Formats 21-2
21.2.2 Dictionary Path Names 21-2
21.2.3 Dictionary Entities. 21-4
21.2.4 Dictionary Relationships 21-4
21.2.5 Extracting CDD/Repository Data Definitions 21-4
21.3 Using CDD/Repository with BASIC 21-7
21.3.1 /DEPENDENCY_DATA Qualifier 21-7
21.3.2 Creating Relationships with Included Record Definitions . . . 21-8
21.4 Creating Relationships for Referenced Dictionary Entities 21-10
21.5 Specifying a CDD History List Entry 21-11
21.6 CDD/RepoSitory Arrays, 21-12
21.7 CDD/Repository Variantsuiinn.... 21-14
21.8 NAME FORBASIC Clauseuuuuiiiiiianeannn. 21-15
21.9 CDD/Repository Data Types. 21-16
21.9.1 Character String Data Types 21-21
21.9.2 Integer Data Types 21-22
21.9.3 Floating-Point Data Types 21-25
2194 Decimal String Data Types 21-27
21.9.5 Other Data Types. 21-29

22 Using DECwindows Motif Bindings with BASIC

22.1 Overview of DECwindows Motif Concepts 22-1
22.2 Using DECwindows Motif Bindings with BASIC 221
22.3 DECwindows Motif Programming Examples Using BASIC 22-3
22.4 Special Considerations for Handling Strings with DECwindows

Motif .. 22-4

Xiv

A Compile-Time Error Messages

AA Compile-Time Errors,

B Run-Time Messages

B.1 HP BASIC Run-Time Errors by Mnemonic
B.2 HP BASIC Run-Time Errors by Number
B.3 Errors Not Generated by HP BASIC

C Optional Programming Productivity Tools
CA1 Language Sensitive Editor (LSE) and Source Code Analyzer

(SCA) .
C.1.1 Preparing an SCA Library
Ci1.2 Compiling From Within LSE
C.1.3 HP BASIC Support for LSE and SCA Features

c.z2 CDD/RepoSitoryot e e
C.3 Database Management System (DBMS)....................
C4 Digital Test Manager for OpenVMS
C5 Code Management System for OpenVMS (CMS)

Index
Examples
9-1 Assigning Values to Consecutive Array Elements
9-2 Assigning Consecutive Multiples to Odd-Numbered Elements
Of ATray . .. o
13—1 Creating a USEROPEN Routine
19-1 BASIC Main Program
19-2 FORTRAN Subprogramc.c.vv.....
19-3 Calling System Servicesviiiinnnen...
19-4 Program Displaying the $QIOW System Service Routine . . .
211 CDD L. .. e
21-2 Translated RECORD Statement.

C-1
c-=2
c-=2
C-3
Cc+4
c4
c4
c4

9-5
1342
19-10
19-10
19-20
19-21
21-21
21-22

XV

Figures

7-1
171
17-2
17-3
17-4
17-5
17-6
177
17-8
17-9
17-10
17-11
17-12
17-13

Tables

XVi

2—1
3-1
4-1
61
6-2
7-1

101
10-2
111
1-2
131
13-2
13-3
13-4
141
14-2
19-1
19-2

Multiple Mapst 7-9
Byte-Length Integer Format 171
Word-Length Integer Format 17-2
Longword Integer Format 17-2
Quadword Integer Format 17-3
Single-Precision Real Number Format 17-4
Double-Precision Real Number Format 17-5
GFLOAT Floating-Point Number Format................ 17-6
SFLOAT Floating-Point Number Format 17-7
TFLOAT Floating-Point Number Format................ 177
XFLOAT Floating-Point Number Format................ 17-8
Fixed-Length String Descriptor Format 17-10
Dynamic String Descriptor Format 17-11
Decimal Scalar String Descriptor. 17-11
Natural Boundaries For Supported Data Types 2-19
Resultant Behavior of the STEP/INTO Command 3-15
Predefined Constants 4-9
MAT Statements 6-11
MAT Statement Keywords 6-12
FILL Item Formats, Representations, and Default

Allocations 7-10
String Arithmetic Functions 10-10
Precision of String Arithmetic Functions 10-10
String Modification 11-2
EDITS Optionsottt e i e e e 11-17
Record Context After a FIND Operation 13-16
Record Context After a GET Operation 13-17
Record Context After a PUT Operation 13-19
RMS Control Structures Set for the USEROPEN Clause. . . . 13-40
Format Characters for Numeric Fields 14-6
Format Characters for String Fields 14-13
Valid Parameter-Passing Mechanisms 19-3
Run-Time Library Facilities 19-11

19-3
19-4
21-1
21-2
B—1
B-2

System Services e
OpenVMS USages . ..ot ittt e
Supported CDD/Repository Data Types
Unsupported CDD/Repository Data Types
BASIC Run-Time Errors
Errors Not Generated by HP BASIC

XVii

Preface

This manual describes how to develop and use HP BASIC programs on
OpenVMS systems and describes BASIC language features.

Note

In this manual, the term OpenVMS refers to both OpenVMS 164 and
OpenVMS Alpha systems. If there are differences in the behavior of
the HP BASIC compiler on the two operating systems, those differences
are noted.

The term 164 BASIC refers to HP BASIC on OpenVMS 164 systems.
Alpha BASIC refers to HP BASIC on OpenVMS Alpha systems.
VAX BASIC refers to VAX BASIC on OpenVMS VAX systems.

Intended Audience

This manual is intended for programmers who compile, link, and execute

HP BASIC programs on OpenVMS systems. Users should have a working
knowledge of BASIC or another high-level programming language, the Digital
Command Language (DCL), and DCL command procedures.

Document Structure

This manual contains the following chapters and appendixes:

Part | Developing HP BASIC Programs on OpenVMS Systems

Chapter 1 provides a brief overview of HP BASIC.

Chapter 2 describes how to develop programs at DCL command level and
how to generate a compiler listing.

Chapter 3 describes how to use the OpenVMS Debugger to debug HP
BASIC programs.

Xix

XX

Part Il HP BASIC Programming Concepts

Chapter 4 explains how to get started with HP BASIC.
Chapter 5 explains simple input and output procedures.
Chapter 6 shows how to use arrays.

Chapter 7 explains data definitions.

Chapter 8 explains how to create user-defined data structures with the
RECORD statement.

Chapter 9 shows how to control the flow of program execution.
Chapter 10 explains how to use functions.

Chapter 11 explains how to handle strings.

Chapter 12 describes structured programming techniques.
Chapter 13 explains how to manage files.

Chapter 14 describes how to format output with the PRINT USING
statement.

Chapter 15 explains error-handling techniques.
Chapter 16 shows how to use compiler directives.

Chapter 17 describes how BASIC represents data.

Part lll Using HP BASIC Features on OpenVMS Systems

Chapter 18 describes additional I/O considerations on OpenVMS systems.

Chapter 19 describes OpenVMS System Services and Run-Time Library
routines.

Chapter 20 describes the use of user-supplied libraries and shareable
images.

Chapter 21 describes how to use CDD/Repository capabilities.
Chapter 22 describes using standard Motif Bindings with BASIC.

Appendixes

Appendix A lists compile-time error messages.
Appendix B lists run-time error messages.

Appendix C provides an overview of the optional productivity tools.

Related Documents

For more information about language elements, syntax, and reference
information, see the HP BASIC for OpenVMS Reference Manual.

Reader’s Comments

HP welcomes your comments on this manual. Please send comments to either
of the following addresses:

Internet openvmsdoc@hp.com

Postal Mail Hewlett-Packard Company
OSSG Documentation Group, ZK03-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

Conventions
The following product names may appear in this manual:
e HP OpenVMS Industry Standard 64 for Integrity Servers
e OpenVMS 164
e J64

All three names—the longer form and the two abbreviated forms—refer to the
version of the OpenVMS operating system that runs on the Intel® Itanium®
architecture.

The following typographic conventions might be used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold
down the key labeled Ctrl while you press another key or a
pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention
appears as brackets, rather than a box.

XXi

O

{}

bold type

italic type

UPPERCASE TYPE

XXii

A horizontal ellipsis in examples indicates one of the
following possibilities:

e Additional optional arguments in a statement have
been omitted.

e The preceding item or items can be repeated one or
more times.

e Additional parameters, values, or other information can
be entered.

A vertical ellipsis indicates the omission of items from a
code example or command format; the items are omitted
because they are not important to the topic being discussed.

In command format descriptions, parentheses indicate that
you must enclose choices in parentheses if you specify more
than one.

In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.

Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in
an assignment statement.

In command format descriptions, vertical bars separate
choices within brackets or braces. Within brackets, the
choices are optional; within braces, at least one choice is
required. Do not type the vertical bars on the command
line.

In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

Bold type represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

Italic type indicates important information, complete titles
of manuals, or variables. Variables include information
that varies in system output (Internal error number), in
command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code
for the device type).

Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

numbers

angle

array

chnl
chnl-exp
com

cond

cond-exp
const
data-type
decimal-var
decl-item
def

delim

equiv-name

err-num
exp

ext-routine

external-param

file-spec
func

int
int-const
int-exp

int-var

A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

Mnemonics and Other Terms Used in Syntax Diagrams

Angle in radians or degrees

Array; syntax rules specify whether the bounds or
dimensions can be specified

I/O channel associated with a file
Numeric expression that specifies a channel number
Specific to a COMMON block

Conditional expression; indicates that an expression can be
either logical or relational

Conditional expression
Constant value

Data type keyword
Decimal variable

Array, record, or variable
Specific to a DEF function
Delimiter

File specification, device, or logical name to be assigned a
logical name

Run-time error number

Expression

External function

External parameter

File specification

Specific to a FUNCTION subprogram
Integer value

Integer constant

Expression that represents an integer value

Variable that contains an integer value

xXiii

XXiv

label

lex
lex-exp
lex-var
line
line-num
lit
log-exp

log-name

macro-id
map
matrix

name

num
num-lit
param-list
pass-mech
prog-name

real

real-exp

real-var

rec-exp

rel-exp
relationship-type

replacement-token

routine
str
str-exp
str-lit
str-var

sub

Alphanumeric statement label

Lexical; used to indicate a component of a compiler directive
Lexical expression

Lexical variable

Statement line; may or may not be numbered

Statement line number

Literal value, in quotation marks

Logical expression

1- to 63-character logical name to be associated with equiv-
name

User identifier following the rules for BASIC identifiers
Specific to a MAP statement
Two-dimensional array

Name or identifier; indicates the declaration of a name or
the name of a BASIC structure, such as a SUB subprogram

Numeric value

Numeric literal

Parameter list, such as for a SUB subprogram
Valid BASIC passing mechanism

Program name

Floating-point value

Real expression

Real variable

Record expression; record number within a file
Relational expression

Oracle CDD/Repository protocol

Identifier, keyword, compiler directive, literal constant, or
operator

SUB subprogram or other callable procedure
Character string

Expression that represents a character string
String literal

Variable that contains a character string

Specific to a SUB subprogram

target Target point of a branch statement; either a line number or

a label
ung-str Unique string
unsubs-var Unsubscripted variable, as opposed to an array element
var Variable

XXV

Partl

Developing BASIC Programs on OpenVMS
Systems

Part I provides an overview of BASIC and describes how to develop and debug
BASIC programs. It shows you how to get started on the OpenVMS system
and how to develop programs both at DCL command level and within the VAX

BASIC Environment.

1

Overview of HP BASIC

BASIC is a powerful structured programming language designed for novice
and application programmers alike.

BASIC was originally developed for students with little or no programming
experience. Since then, BASIC has become one of the most widely used
programming languages and is available on almost every computer system.

The OpenVMS implementations of BASIC have evolved beyond the original
design but still support all of the traditional features of the original language
in addition to more recent programming techniques. HP BASIC has become
much more than a teaching tool and is used in a wide variety of sophisticated
applications.

1.1 Language Constructs Supported
HP BASIC supports the following language constructs:
¢ Code without line numbers (traditional line numbers are optional)
e Control structures, such as SELECT CASE
e Explicit variable declarations

e (Capabilities for handling dynamic strings

e Adaptable file-handling capabilities for terminal-format files, and the full
range of RMS facilities

¢ Global and local run-time error handling with WHEN ERROR blocks
e Compile-time directives

e A variety of data types, including packed-decimal, user-defined records,
and VAX and IEEE floating-point data types.

e Extensive error checking with meaningful error messages

e Thirty-one character names for variables, labels, functions, and
subprograms

Overview of HP BASIC 1-1

1.2 Advantages on OpenVMS

HP BASIC uses the OpenVMS operating system to its full advantage and is
integrated with many other HP products. In particular, HP BASIC supports:

e The OpenVMS systems standard calling procedures

e Record definitions included from the OpenVMS Common Data Dictionary
¢ Code analysis with the Performance and Coverage Analyzer (PCA)

e Creation of code with the Language-Sensitive Editor (LSE)

e Extensive online language help

e Exchange of data with other systems using DECnet

HP BASIC supports features of other versions of BASIC, including PDP-11
BASIC-PLUS-2. The /FLAG qualifier allows you to check whether programs
contain declining features that should be replaced with newer ones.

When you write programs in HP BASIC, you develop programs at the DCL
command level. You write your source program with a text editor, then
compile, link, and run the program with commands to the OpenVMS operating
system.

1-2 Overview of HP BASIC

2

Developing HP BASIC Programs

This chapter describes how to compile, link, and run an HP BASIC program.

For information about using a text editor to create and edit files, see the
OpenVMS User’s Manual.

2.1 Compiling an HP BASIC Program
The HP BASIC compiler performs the following functions:

e Detects errors in your source program

e Generates any appropriate error messages

¢ Generates machine language instructions from the source statements

e Groups these language instructions into an object module for the linker

To invoke the compiler, you use the DCL command BASIC. With the BASIC
command, you can specify command qualifiers. The next sections discuss the
BASIC command in detail as well as the command qualifiers available.

2.1.1 BASIC Command

When you compile your source program, use the BASIC command, which has
the following format:

BASIC [/qualifier...][file-spec [/qualifier...]],...

Iqualifier

Indicates a specific action to be performed by the compiler on all files or specific
files listed. When a qualifier appears directly after the BASIC command, it
affects all files listed.

file-spec

Indicates the name of the input source file that contains the program or module
to be compiled. You are not required to specify a file extension; the HP BASIC
compiler assumes the default file type .BAS.

Developing HP BASIC Programs 2-1

Most of the command qualifiers to the BASIC command affect all files specified
in the command line, no matter where the qualifiers are placed; these are
called global qualifiers. However, the qualifiers /LISTING, /OBJECT,
/DIAGNOSTICS, and /ANALYSIS_DATA are positional qualifiers; that is,
depending on their position in the command line, they can affect all or only
some of the specified files. The rules for positional qualifiers are as follows:

e If the positional qualifier is located directly following the command name,
it affects all the specified files.

e If the file specifications are separated by commas, then any positional
qualifier directly following a file specification affects only that file.

e If the file specifications are separated by plus signs, then any positional
qualifier directly following a list of file specifications affects only the
resulting appended file.

e The rightmost qualifier overrides any conflicting qualifier previously
specified in the command line.

The placement of these positional qualifiers causes BASIC to produce or not
produce listing files, object files, and diagnostics files. For example:

$ BASIC/LIST/OBJ PROG1/NOOBJ/DIAG, PROG2+PROG3/NOLIST

This command does the following:

e Compiles PROG1 and produces a listing file called PROG1.LIS
e Produces no object file for PROG1

e Produces a diagnostics file for PROG1 called PROG1.DIA

e Appends PROG2 and PROGS for compilation, producing a temporary
source file called PROG2

e Compiles the new PROG2 and produces an object file called PROG2.0BJ
¢ Produces no listing file for the new PROG2

HP BASIC does not require line numbers in either of the source files. The "+"
operator is treated as an OpenVMS append operator. HP BASIC appends and
compiles the separate files as if they were a single source file.

2-2 Developing HP BASIC Programs

2.1.2 BASIC Command Qualifiers

The following list shows the BASIC command qualifiers and their defaults. A
description of each qualifier follows the list.

The qualifiers that are “declining features” and no longer recommended are

separately described in Section 2.1.3.

Command Qualifier

/INOJANALYSIS_DATA [= file-specification]

/ARCHITECTURE = arch-type
/INOJAUDIT [= text-entry]

/INO]JCHECK [= (check-clause,...)]
/INO]JCROSS_REF [= [NO]JKEYWORDS]
/INO]DEBUG [= (debug-clause,...)]
/DECIMAL_SIZE = (d,s)
/INOJDEPENDENCY_DATA
/INO]DIAGNOSTICS [= file-specification]
/INOJFLAG [= flag-clause]
/INTEGER_SIZE = data-type
/INOJLINES

/INO]LISTING [= file-specification]
/INOJMACHINE_CODE

/INOJOBJECT [= file-specification]
/INOJOLD_VERSION [= CDD_ARRAYS]
/INOJOPTIMIZE [= LEVEL = n]
/REAL_SIZE = data-type
/INOJROUND_DECIMAL

/SCALE = n
/INO]JSEPARATE_COMPILATION
/INO]SHOW [= (show-item,...)]
/INOJSYNCHRONOUS_EXCEPTIONS
/TYPE_DEFAULT = default-clause
/VARIANT = int-const

/INO]JWARNINGS [= (warn-clause,...)]

Default

/NOANALYSIS_DATA
/ARCHITECTURE = GENERIC
/NOAUDIT

/CHECK = (BOUNDS,OVERFLOW)
/NOCROSS_REF

/DEBUG = (TRACEBACK,SYMBOLS)
/DECIMAL_SIZE = (15,2)
/NODEPENDENCY_DATA
/NODIAGNOSTICS

/FLAG = NODECLINING
/INTEGER_SIZE = LONG

/NOLINES

/NOLISTING (from terminal) /LISTING (batch)
/NOMACHINE_CODE

/OBJECT

/NOOLD_VERSION

/OPTIMIZE = LEVEL = 4
/REAL_SIZE = SFLOAT (I164)or SINGLE (Alpha)
/NOROUND_DECIMAL

/SCALE =0
/NOSEPARATE_COMPILATION
/SHOW
/NOSYNCHRONOUS_EXCEPTIONS
/TYPE_DEFAULT = REAL

/VARIANT =0

/WARNINGS = (INFORMATIONALS,
WARNINGS,

NOALIGNMENT)

/[[NO]JANALYSIS_DATA [= file-specification]

/NOANALYSIS_DATA (default)

The /ANALYSIS_DATA qualifier generates a file containing data analysis
information. This file has the file type .ANA. The Source Code Analyzer (SCA)
library uses these files to display cross-reference information and to analyze

source code.

Developing HP BASIC Programs 2-3

Remarks
e SCA must be installed.

GENERIC

HOST

EV4 (Alpha only)
EV5 (Alpha only)
EV56 (Alpha only)
PCA56 (Alpha only)]
EV6 (Alpha only)
EV67 (Alpha only)
ITANIUM2 (164 only)
MERCED (164 only)

/ARCHITECTURE [=

/ARCHITECTURE = GENERIC (default)
The /ARCHITECTURE qualifier specifies which version of the Itanium or
Alpha architecture to generate instructions for.

All Ttanium and Alpha processors implement a core set of instructions and,
in some cases, the following extensions: BWX (byte- and word-manipulation
instructions) and MAX (multimedia instructions).

OpenVMS Version 7.1 and subsequent releases include an instruction emulator.
This capability allows any Itanium or Alpha chip to execute and produce
correct results from Itanium or Alpha instructions, respectively, even if some of
the instructions are not implemented on the chip. Applications using emulated
instructions will run correctly, but might incur significant emulation overhead
at run time.

Remarks

e /ARCHITECTURE = GENERIC (default) generates instructions that are
appropriate for all Itanium or Alpha processors.

e /ARCHITECTURE = HOST generates instructions for the Itanium or Alpha
processor that the compiler is running on (for example, EV56 instructions
on an EV56 processor, and EV4 instructions on an EV4 processor).

e /ARCHITECTURE = EV4 generates instructions for the EV4 processor
(21064, 21064A, 21066, and 21068 Alpha chips).

Programs compiled with this option will not incur any emulation overhead
on any Alpha processor.

e /ARCHITECTURE = EV5 generates instructions for the EV5 processor
(some 21164 Alpha chips).

2-4 Developing HP BASIC Programs

Programs compiled with this option will not incur any emulation overhead
on any Alpha processor.

/ARCHITECTURE = EV56 generates instructions for the EV56 processor
(some 21164 Alpha chips). This option permits the compiler to generate any
EV4 instruction, plus any instructions contained in the BWX extension.

Programs compiled with this option might incur emulation overhead on
EV4 and EV5 processors.

Note that the EV5 and EV56 processor both have the same chip number:
21164.

/ARCHITECTURE = PCA56 generates instructions for the PCA56 processor
(21164PC Alpha chip). This option permits the compiler to generate any
EV4 instruction, plus any instructions contained in the BWX extension.
Note that currently HP BASIC does not generate any of the instructions in
the MAX extension to the Alpha architecture.

Programs compiled with this option might incur emulation overhead on
EV4 and EV5 processors.

/ARCHITECTURE = EV6 generates instructions for the EV6 processor
(21264 Alpha chip). This option permits the compiler to generate any EV4
instruction, any instructions contained in the BWX and MAX extensions,
plus any instructions added for the EV6 chip. These instructions include a
floating-point square root instruction (SQRT), integer/floating-point register
transfer instructions, and additional instructions to identify extensions and
processor groups.

Programs compiled with this option might incur emulation overhead on
EV4, EV5, EV56, and PCA56 processors.

/ARCHITECTURE = EV67 generates instructions for the EV67 processor
(21264A Alpha chip). This option permits the compiler to generate any
EV6 instruction, plus bit count instructions (CTLZ, CTPOP, and CTTZ).
However, HP BASIC does not generate any of the bit count instructions, so
EV67 is essentially identical to EV6.

Programs compiled with this option might incur emulation overhead on
EV4, EV5, EV56, and PCA56 processors.

/ARCHITECTURE = ITANIUM2 generates instructions for the Itanium
2 processor. This option permits the compiler to generate any Itanium 2
instructions.

/ARCHITECTURE = MERCED generates instructions for the Merced
processor. This option permits the compiler to generate any Merced
instructions.

Developing HP BASIC Programs 2-5

str-lit
/INO]JAUDIT [= { file-specification }]

/NOAUDIT (default)

The /AUDIT qualifier causes the compiler to include a history entry in
CDD/Repository when extracting a CDD/Repository definition. You can specify
either a string literal or a file specification with the /AUDIT qualifier. If you
specify a string literal, BASIC includes it as part of the history entry. If

you specify a file specification, BASIC includes up to the first 64 lines of the
specified file. When you specify /AUDIT, BASIC also includes the following
information about the CDD/Repository record extraction in the history entry:

¢ The name of the program module making the extraction

e The time and date of the extraction

e A note that access was made by way of a BASIC program

* A note that the access was an extraction

e The username and UIC of the process accessing CDD/Repository
Remarks

e /NOAUDIT causes the compiler not to include a history entry in
CDD/Repository when extracting a CDD/Repository definition.

[NO]BOUNDS
[NOJOVERFLOW [= ([NOJINTEGER,
/[INOJCHECK [= ([NOIDECIMAL)] ¢ ---)]
ALL
NONE

/CHECK = (BOUNDS,OVERFLOW) (default)
The /CHECK qualifier causes the compiler to test for arithmetic overflow and
for array references outside array boundaries when the program executes.

Remarks

e In Alpha BASIC, specifying /CHECK = NOBOUNDS causes bounds
checking not to be performed on array parameters received by descriptor.

e /CHECK = NOBOUNDS should only be used for thoroughly debugged
programs and when execution time is critical. The program is smaller
and runs faster, but no error is signaled for an array reference outside the
array boundaries. The program might get a memory management or access
violation error at run time.

2-6 Developing HP BASIC Programs

e /CHECK = OVERFLOW enables checking for integers and packed decimal
numbers.

e /CHECK = NOOVERFLOW disables overflow checking.

e /NOCHECK causes the compiler not to test for arithmetic overflow or for
array references outside array boundaries when the program executes.

e /CHECK = ALL is the same as /CHECK = (BOUNDS, OVERFLOW).
e /CHECK = NONE is the same as NOCHECK.

/[NOJCROSS_REFERENCE [= [NOJKEYWORDS]

/INOCROSS_REFERENCE (default)

The /CROSS_REFERENCE qualifier causes the compiler to generate a cross-
reference listing. The cross-reference list shows program symbols, classes, and
the program lines in which they are referenced.

Remarks

e /CROSS_REFERENCE = KEYWORDS specifies that the cross-reference
listing includes all references to BASIC keywords. In Alpha BASIC, if the
/LIST qualifier is not specified as well, /CROSS_REFERENCE is ignored.

e The default for /CROSS_REFERENCE is NOKEYWORDS. See Chapter 16
for more information about cross-reference listings.

e /NOCROSS_REFERENCE specifies that no cross-reference listing be
produced.

[NO]SYMBOLS
[NOJTRACEBACK)]
ALL T
NONE

/INO]DEBUG [= (

/DEBUG = (TRACEBACK,SYMBOLS) (default)

The /DEBUG qualifier causes the compiler to provide information for the
OpenVMS Debugger and the system run-time error traceback mechanism.
Neither TRACEBACK nor SYMBOLS affects a program’s executable code. For
more information about debugging, see Chapter 3.

Developing HP BASIC Programs 2-7

Remarks

e /NODEBUG causes the compiler to suppress information for the OpenVMS
Debugger and the system run-time error traceback mechanism.

e /DEBUG = ALL is the same as /DEBUG = (TRACEBACK,SYMBOLS).
e /DEBUG = NONE is the same as /NODEBUG.

/DECIMAL_SIZE = (d,s)

/DECIMAL_SIZE = (15,2) (default)

The /DECIMAL_SIZE qualifier lets you specify the default size for packed
decimal data. You specify the total number of digits in the number and the
number of digits to the right of the decimal point.

/DECIMAL_SIZE = (15,2) is the default. This default decimal size applies to all
decimal variables for which the total number of digits and digits to the right of
the decimal point are not explicitly declared. See the HP BASIC for OpenVMS
Reference Manual for more information about packed decimal numbers.

/[NO]IDEPENDENCY_DATA

/NODEPENDENCY_DATA (default)
The /DEPENDENCY_DATA qualifier generates a compiled module entity in
the CDD$DEFAULT for each compilation unit.

Remarks

e A compiled module entity is generated only if CDD/Plus Version 4.0 or
higher or CDD/Repository Version 5.0 or higher is installed on your system
and if your current CDD$DEFAULT is a CDO-format dictionary.

e You must specify this qualifier if you want INCLUDE %FROM %CDD
and %REPORT %DEPENDENCY directives to establish dependency
relationships.

e /NODEPENDENCY_DATA causes the compiler not to generate a compiled
module entity.

/[NO]DIAGNOSTICS [= file-spec]

/NODIAGNOSTICS (default)

The /DIAGNOSTICS qualifier creates a diagnostics file containing compiler
messages and diagnostic information. The diagnostics file is used by LSE to
display diagnostic error messages and to position the cursor on the line and
column where a source error exists.

2-8 Developing HP BASIC Programs

Remarks
¢ The Language-Sensitive Editor (LSE) must be installed.

e If you do not supply a file specification with the /DIAGNOSTICS qualifier,
the diagnostics file has the same name as its corresponding source file
and the file type .DIA. All other file specification attributes depend
on the placement of the qualifier in the command. See the OpenVMS
documentation set for more information.

e /NODIAGNOSTICS specifies that no diagnostics file is created.

[NO]JDECLINING
/[INOJFLAG [= { ALL } 1
NONE

/FLAG = NODECLINING (default)
The /FLAG qualifier lets you specify whether BASIC warns you about declining
features.

Remarks

e /NOFLAG causes the compiler to issue no warnings about declining
features.

e /FLAG = ALL is the same as /FLAG = DECLINING.
e /FLAG = NONE is the same as /INOFLAG.

BYTE
WORD
LONG
QUAD

/INTEGER_SIZE =

/INTEGER_SIZE = (LONG) (default)
The /INTEGER_SIZE qualifier lets you specify the default size for integer
data.

Remarks

e The default integer size (LONG) applies to all integer variables whose data
type is not explicitly declared. See the HP BASIC for OpenVMS Reference
Manual for more information about integer data types.

Developing HP BASIC Programs 2-9

/INO]JLINES

/NOLINES (default)
The /LINES qualifier makes line number information available for the ERL
function and the BASIC error reporter.

Remarks

e /NOLINES causes line number information to be unavailable for the ERL
function and the HP BASIC error reporter. Specifying /NOLINES makes
your program run faster and reduces program size. However, specifying
/NOLINES causes the following restrictions to be in effect:

— You cannot use the ERL function.

— No BASIC line number is given in run-time error messages.
/[NO]LISTING [= file-spec]
ILISTING (default in batch mode)

INOLISTING (default in interactive mode)
The /LISTING qualifier causes BASIC to produce a source listing file.
Remarks

e /LISTING = file-spec produces a file with an explicit file specification.
Omitting the file-spec produces a listing file with the same name as its
corresponding source file and a file type of .LIS.

e All other file specification attributes depend on the placement of the
qualifier in the command. See the OpenVMS User’s Manual for more
information.

e /LISTING only controls whether or not the compiler produces a listing file
and is the default in batch mode.

e /SHOW controls which parts of the listing are produced.

e /NOLISTING specifies that no source listing file be produced and is the
default at a terminal.

/INOJMACHINE_CODE

/NOMACHINE_CODE (default)
The /MACHINE_CODE qualifier specifies that the listing file includes the
compiler-generated object code.

2-10 Developing HP BASIC Programs

Remarks

e /MACHINE_CODE specifies that the compiler include a listing of the
compiler-generated object code in the listing file. If the /LISTING qualifier
is not specified as well, / MACHINE is ignored.

e /NOMACHINE_CODE specifies that the listing file not include compiler-
generated object code.

/[NO]JOBJECT [= file-spec]

/OBJECT (default)

The /OBJECT qualifier causes the compiler to produce an object module and
optionally specifies its file name. By default, the compiler generates object files
as follows:

e If you specify one source file, BASIC generates one object file.

e If you specify multiple source files separated by plus signs (+), BASIC
appends the files and generates one object file.

e If you specify multiple source files separated by commas (,), BASIC
compiles and generates a separate object file for each source file.

* You can use both plus signs and commas in the same command line to
produce different combinations of appended and separated object files.

Remarks

e /OBJECT = file-spec produces an object file with an explicit file
specification. Omitting file-spec causes the compiler to produce an object
file having the same name as its corresponding source file and the file type
.OBJ. All other file specification attributes depend on the placement of
the qualifier in the command. See the OpenVMS User’s Manual for more
information.

e /NOOBJECT suppresses the creation of an object file. During the early
stages of program development, you might find it helpful to suppress the
production of object files until your source program compiles without errors.

/[NOJOLD_VERSION [= CDD_ARRAYS]

/NOOLD_VERSION (default)

The /OLD_VERSION qualifier causes the compiler to change the lower bound
to zero and adjusts the upper bound of the array. For example,

Array 2:5 in CDD/Repository is translated by the compiler to be an array
with a lower bound of 0 and an upper bound of 3. The compiler issues an
informational message to confirm the array bounds.

Developing HP BASIC Programs 2-11

The /NOOLD_VERSION qualifier causes the compiler to extract an array from
the CDD/Repository with the bounds as specified in the data definition. For
example, Array 2:5 in CDD/Repository is translated by the compiler to be an
array with a lower bound of 2 and an upper bound of 5.

Remarks

e /OLD_VERSION [= CDD_ARRAYS] is provided for compatibility with
previous versions of BASIC.

e CDD/Repository assumes a default lower bound of 1, if none is specified.
Therefore, if no lower bound is specified, the compiler translates the
CDD/Repository array to have a lower bound of 1. For example, Array 5
in CDD/Repository is translated by HP BASIC to be an array with a lower
bound of 1 and an upper bound of 5.

0

1
LEVEL[={ 2
3
4 (default)

GENERIC (default)
HOST

EV4]
EV5
TUNE [= ggi@s]
EV6
EV67
ITANIUM2
MERCED

/INOJOPTIMIZE [=

JOPTIMIZE = LEVEL = 4 (default)

/OPTIMIZE = TUNE = GENERIC (default)

The /OPTIMIZE qualifier causes the compiler to optimize the program to
generate more efficient code for optimum run-time performance. Specifying
/NOOPTIMIZE causes the compiler to perform minimal optimizations.

The following list describes the /OPTIMIZE = LEVEL options:
¢ 0 has the same effect as /NOOPTIMIZE. Most optimizations are turned off.

¢ 1 has some optimizations (such as instruction scheduling).

2-12 Developing HP BASIC Programs

e 2 adds more optimizations (such as loop unrolling and split lifetime
analysis) to those in level 1.

e 3 adds more optimizations.

e 4 is the default level.
/OPTIMIZE = LEVEL = 4 is equivalent to /OPTIMIZE or not specifying the
qualifier. Level 4 is the maximum optimization level.

The /OPTIMIZE = TUNE qualifier selects processor-specific instruction tuning
for a specific implementation of the Itanium or Alpha architecture. Tuning for
a specific implementation can provide improvements in run-time performance.

Regardless of the setting of the /OPTIMIZE = TUNE qualifier, the generated
code will run correctly on all implementations of the Itanium or Alpha
architecture as appropriate. Note that code tuned for a specific target might
run more slowly on another target than generically-tuned code.

The following list describes the /OPTIMIZE = TUNE options:

e GENERIC (default) selects instruction tuning that is appropriate for all
implementations of the Itanium or Alpha architecture.

e HOST selects instruction tuning that is appropriate for the Itanium or
Alpha machine on which the code is being compiled.

e EV4 selects instruction tuning for the 21064, 21064A, 21066, and 21068
implementation of the Alpha architecture.

e EV5 selects instruction tuning for the 21164 implementation of the Alpha
architecture.

e KEV56 selects instruction tuning for the 21164 implementation of the Alpha
architecture.

e PCAb56 selects instruction tuning for the 21164PC implementation of the
Alpha architecture.

e EV6 selects instruction tuning for the 21264 implementation of the Alpha
architecture.

e EV67 selects instruction tuning for the 21264A implementation of the
Alpha architecture.

e ITANIUM2 selects instruction tuning for the Itanium 2 implementation of
the Itanium architecture.

e MERCED selects instruction tuning for the Merced implementation of the
Itanium architecture.

Developing HP BASIC Programs 2-13

Remarks

e Specify /NOOPTIMIZE if you specify /DEBUG when compiling a program.
/NOOPTIMIZE expedites and simplifies the debugging session by putting
the machine code in the same order as the lines in the source program.
Optimizations can cause unexpected and confusing behavior in a debugging
session.

e Specifying /OPTIMIZE, the default, usually makes programs run faster.
However, using /OPTIMIZE produces extra instructions to perform the
optimization, which might result in larger object modules and longer
compile times than the /NOOPTIMIZE qualifier.

e To speed compilations during program development, compile with
/NOOBJECT qualifier to check syntax, with /INOOPTIMIZE to check
for correct execution, and finally with /OPTIMIZE for the final check.

SINGLE
DOUBLE
GFLOAT
SFLOAT
TFLOAT
XFLOAT

/REAL_SIZE =

/REAL_SIZE = SFLOAT (164 default); SINGLE (Alpha default)
The /REAL_SIZE qualifier specifies the default size for floating-point data.

Remarks

e The default floating-point size applies to all floating-point variables whose
size is not explicitly declared.

See the HP BASIC for OpenVMS Reference Manual for more information about
floating-point data types.
/[INO]JROUND_DECIMAL

/NOROUND_DECIMAL (default)
The /ROUND_DECIMAL qualifier causes the compiler to round packed decimal
numbers rather than truncate them.

The /NOROUND_DECIMAL qualifier causes the compiler to truncate packed
decimal numbers rather than round them.

The /ROUND_DECIMAL qualifier causes the INTEGER function to round
rather than truncate the decimal part.

ISCALE = n

2-14 Developing HP BASIC Programs

/ISCALE = 0 (default)

The /SCALE qualifier specifies a scale factor from zero to six, inclusive. The
scale factor affects only double-precision numbers. The SCALE qualifier helps
to control accumulated round-off errors by multiplying floating-point values by
10 raised to the scale factor before storing them in variables. It is ignored for
all but VAX double-precision (DOUBLE) floating-point numbers.

Remarks

The /SCALE qualifier is provided for compatibility with existing programs
and with other implementations of BASIC. It is recommended that you do not
use this feature for new program development. Accumulated round-off errors
can be better controlled with packed decimal numbers. See the HP BASIC
for OpenVMS Reference Manual for more information about packed decimal
numbers.

/[NOJSEPARATE_COMPILATION

INOSEPARATE_COMPILATION (default)

The /SEPARATE_COMPILATION qualifier causes the compiler to place indi-
vidual compilation units in separate modules in the object file. /NOSEPARATE_
COMPILATION, the default, groups individual compilation units in a source
file as a single module in the object file.

When creating modules for use in an object library, consider using /SEPARATE _
COMPILATION to minimize the size of the routines included by the linker as
it creates the executable image. /SEPARATE_COMPILATION also reduces

the compiler virtual memory requirements when a source contains several
compilation units.

Remarks

e /SEPARATE_COMPILATION causes the compiler to place each routine in
a separate module within the output object.

e /NOSEPARATE_COMPILATION, in most cases, allows more interprocedu-
ral optimizations.

[NOJCDD_DEFINITIONS
[NOJENVIRONMENT
[NOJINCLUDE
/INOJSHOW [= ({ [NOJMAP yeen)]
[NOJOVERRIDE
ALL

NONE

Developing HP BASIC Programs 2-15

/SHOW = (CDD_DEFINITIONS, ENVIRONMENT, INCLUDE, MAP, NOOVERRIDE)
(default)

The /SHOW qualifier determines which parts of the compilation listing are
created.

Remarks

e The size value for dynamically mapped arrays is the size of the actual
array.

e /LISTING must be specified for /SHOW to be effective.

e CDD_DEFINITIONS controls whether the translation of a CDD/Repository
record is displayed in the listing.

e ENVIRONMENT lets you display all defaults that were in effect when the
program was compiled. This is the compilation listing equivalent of the
SHOW command in the environment.

e INCLUDE controls whether files accessed with the %2ZINCLUDE directive
are displayed in the listing.

e MAP determines whether the listing contains an allocation map. The
allocation map lists all program variables, their size, and their data type.

e OVERRIDE helps you debug code by disabling the effect of the %NOLIST
directive.

e /NOSHOW causes the compiler to display only the source listing.

e /SHOW = ALL is the same as /SHOW = (CDD_DEFINITIONS,
ENVIRONMENT, INCLUDE,MAP, OVERRIDE).

e /SHOW = NONE is the same as NOSHOW.
/[INO]JSYNCHRONOUS_EXCEPTIONS

/INOSYNCHRONOUS_EXCEPTIONS (default)

The default / NOSYNCHRONOUS_EXCEPTIONS qualifier allows the compiler
to reorder the execution of certain arithmetic instructions to improve
performance on the hardware. If a program generates an arithmetic exception,
such as an overflow or divide by zero, certain statements surrounding the
offending statement may or may not be executed as a result of this reordering.
Consider this example:

A =B
C=D/E
G=F

2-16 Developing HP BASIC Programs

If the value of E is zero, the second statement will generate a divide by zero
error. As a result of instruction reordering, it is possible that the assignment
A = B will not take place. Further, it is possible that the assignment G = F will
take place even though the previous statement generated an error.

The /SYNCHRONOUS_EXCEPTIONS qualifier disables reordering. Use this
qualifier for programs that rely on arithmetic exceptions to occur at precise
times during program execution.

The /SYNCHRONOUS_EXCEPTIONS qualifier impacts only arithmetic
exceptions and variable assignments in the immediate area of the excepting
statement.

Very few programs should require the /SYNCHRONOUS_EXCEPTIONS
qualifier to produce correct results.

INTEGER
REAL

DECIMAL
EXPLICIT

[TYPE_DEFAULT =

/[TYPE_DEFAULT = REAL (default)
The /TYPE_DEFAULT qualifier lets you specify the default data type for
numeric variables.

Remarks

e EXPLICIT specifies that all program variables must be explicitly declared
in DECLARE, EXTERNAL, COMMON, MAP, or DIM statements.

e INTEGER, REAL, or DECIMAL specify that only variables and data which
are not explicitly declared default to integer, real, or packed decimal.

e INTEGER_SIZE, REAL_SIZE, and DECIMAL_SIZE cause the compiler to
specify the actual size of variables and data.

/VARIANT = int-const

The /VARIANT qualifier lets you specify the value associated with the lexical
function %VARIANT. See Chapter 16 for more information about VARIANT
and the %VARIANT lexical function.

Developing HP BASIC Programs 2-17

Remarks
e If /VARIANT is not specified, the default value is 0.
e If/VARIANT is specified without a value, the default is 1.

[NOJWARNINGS
[NOJINFORMATIONALS
/INOJWARNINGS [= ({ [NOJALIGNMENT yeen)]
ALL
NONE

/WARNINGS = (INFORMATIONAL,WARNINGS,NOALIGNMENT) (default)
The /WARNINGS qualifier lets you specify whether BASIC displays
informational and warning messages.

Remarks

e /WARNINGS = NOWARNINGS causes the compiler to display informa-
tional messages but not warning messages.

e /WARNINGS = NOINFORMATIONALS causes the compiler to display
warning messages but not informational messages.

e /NOWARNINGS causes the compiler to suppress any informational or
warning messages.

e /WARNINGS = ALIGNMENT causes the compiler to flag all occurrences
of non-naturally aligned RECORD fields, variables within COMMONs and
MAPs, and RECORD arrays.

An aligned data item starts on an address that is natural for that

data type. Unaligned data accesses on Alpha can significantly reduce
performance. Table 2-1 lists the natural boundaries for the supported data
types.

2-18 Developing HP BASIC Programs

Table 2-1 Natural Boundaries For Supported Data Types

Data Type Natural Boundary
BYTE BYTE

DECIMAL BYTE

DOUBLE QUADWORD
DYNAMIC STRING BYTE

GFLOAT QUADWORD
LONG LONGWORD
QUAD QUADWORD
RECORD Depends on contents
RFA BYTE

SFLOAT LONGWORD
SINGLE LONGWORD
STATIC STRING BYTE

TFLOAT QUADWORD
WORD WORD

XFLOAT OCTAWORD

/WARNINGS = NOALIGNMENT, the default, causes the compiler not to
issue any warning messages about unaligned data.

The compiler naturally aligns all local variables and arrays, but it is the
responsibility of the BASIC programmer to naturally align COMMONSs,
MAPS, and RECORDs. The /WARNINGS = ALIGNMENT qualifier flags
all occurrences of non-naturally aligned items. This helps the programmer
identify and correct unaligned entities.

An entity can be unaligned in the following ways:

e The entity does not start on a natural boundary for its data type. There
are several actions a programmer can take to resolve this:

— Rearrange the RECORD, MAP, or COMMON so that all entities
start on natural boundaries.

— Force proper alignment with fill items, as needed.

Note that the natural alignment for a RECORD is equal to the largest
alignment required by any of its fields. As an example, if a RECORD
has a byte, long, and double field, the alignment of the RECORD would
be quadword.

Developing HP BASIC Programs 2-19

e For arrays of RECORDs and GROUPs, items can be unaligned if
the size of a RECORD or GROUP is not a multiple of the alignment
requirements of that RECORD or GROUP. For example, if a RECORD
has a natural alignment of quadword, the size of the RECORD must be
a multiple of eight. Otherwise, all array elements after the first might
start on an unaligned boundary. Avoid unaligned accesses by padding
the end of the RECORD with fill items.

e /WARNINGS = ALL is the same as /WARNINGS = (INFORMATIONAL,
WARNINGS, ALIGNMENT).

e /WARNINGS = NONE is the same as /NOWARNINGS.

2.1.3 Declining Qualifiers and Their Recommended Replacements

The following qualifiers are declining features:

/BYTE
/DOUBLE
/GFLOAT
/LONG
/SINGLE
/TIE
/WORD

It is recommended that you replace them with newer qualifiers, as follows:

Old Qualifier Recommended Replacement
/BYTE /INTEGER_SIZE = BYTE
/DOUBLE /REAL_SIZE = DOUBLE
/GFLOAT /REAL_SIZE = GFLOAT

/LONG /INTEGER_SIZE = LONG
/SINGLE /REAL_SIZE = SINGLE

/TIE Move to using entirely native code
/WORD /INTEGER_SIZE = WORD

See the description of the /[NOJFLAG = [NO]DECLINING qualifier in this
chapter. Also see the descriptions of the /INTEGER_SIZE and /REAL_SIZE
qualifiers in this chapter. The old qualifiers are described in the HP BASIC for
OpenVMS Reference Manual.

2-20 Developing HP BASIC Programs

2.1.4 Compiler Listings

A compiler listing provides information that can help you debug your HP
BASIC program. To generate a listing file, specify the /LISTING qualifier when
you compile your HP BASIC program interactively. For example:

$ BASIC/LISTING prog-nate

If the program is compiled as a batch job, the listing file is created by default;
specify the /INOLISTING qualifier to suppress creation of the listing file. By
default, the name of the listing file is the name of the source program followed
by the file type .LIS. You can include a file specification with the /LISTING
qualifier to override this default.

A compiler listing generated by the /LISTING qualifier has the following major
sections:

e Source Program Listing

The source program section contains the source code and line numbers
generated by the compiler.

e Cross Reference

The cross reference section is present if the /CROSS_REFERENCE
qualifier was specified. It contains cross references of variables, symbols,
and so forth.

e Allocation Map

The allocation map section contains summary information about program
sections, variables, and arrays.

e Qualifier Summary

The qualifier summary section lists the qualifiers used with the BASIC
command and the compilation statistics.

e Machine Code

The machine code section is present if the /MACHINE_CODE qualifier was
specified. It contains a symbolic representation of the machine instructions
generated for the program section.

Developing HP BASIC Programs 2-21

2.2 Linking an HP BASIC Program

On OpenVMS systems, the OpenVMS Linker (linker) simplifies the job of each
language compiler because the logic needed to resolve symbolic references need
not be duplicated. The main advantage to a system that has a linker, however,
is that individual program modules can be separately written and compiled,
and then linked together. This includes object modules produced by different
language compilers.

The linker performs the following functions:

¢ Resolves local and global symbolic references in the object code
e Assigns values to the global symbolic references

e Signals an error message for any unresolved symbolic reference
e Produces an executable image

When you link a program in development, in order to enable debugging,

use the /DEBUG qualifier with the LINK command. The /DEBUG qualifier
appends to the image all the symbol and line number information appended to
the object modules plus information about global symbols, and forces the image
to run under debugger control when you execute it (unless you then specify
/NODEBUG).

The LINK command produces an executable image by default; however, you
can also use the LINK command to obtain shareable images and system
images. The /SHAREABLE qualifier directs the linker to produce a shareable
image; the /SYSTEM qualifier directs the linker to produce a system image.
See Section 2.2.2 for a complete description of these and other LINK command
qualifiers.

For a complete discussion of the OpenVMS Linker, see the HP OpenVMS
Linker Utility Manual.

2.2.1 LINK Command

Once you have compiled your source program or module, you link it by using
the DCL command LINK. The LINK command combines your object modules
into one executable image, which can then be executed by the OpenVMS
system. A source program or module cannot run on the OpenVMS system until
it is linked. The format of the LINK command is as follows:

LINK[/command-qualifier]... {file-spec [/file-qualifier...]},...

2-22 Developing HP BASIC Programs

/command-qualifier
Specifies one or more output file options.

file-spec
Specifies the input file or files to be linked.

[file-qualifier
Specifies one or more input file options.

If you specify more than one input file, you must separate the input file
specifications with plus signs (+) or commas (,). By default, the linker creates
an output file with the name of the first input file specified and the file type
.EXE. When you link more than one file, list the file containing the main
program first. This way, the name of your output file will have the same name
as that of your main program module.

The following command line links the object files DANCE.OBJ, CHACHA.OBJ,
and SWING.OBJ to produce one executable image called DANCE.EXE:

$ LINK DANCE.OBJ, CHACHA.OBJ, SWING.OBJ

2.2.2 LINK Command Qualifiers

The LINK command qualifiers can be used to modify linker output, as well as
to invoke the debugging and traceback facilities. Linker output consists of an
image file and an optional map file. Image file qualifiers, map file qualifiers,
and debugging and traceback qualifiers are described in this section.

This section summarizes some of the most commonly used LINK command
qualifiers. For a complete list and description of LINK qualifiers, see the HP
OpenVMS Linker Utility Manual.

/BRIEF

The /BRIEF qualifier causes the linker to produce a summary of the image’s
characteristics and a list of contributing modules. This qualifier is used with
/MAP.

/[INOJCROSS_REFERENCE

/INOCROSS_REFERENCE (default)

The /CROSS_REFERENCE qualifier causes the linker to produce cross-
reference information for global symbols; the /NOCROSS_REFERENCE
qualifier causes the linker to suppress cross-reference information.

Developing HP BASIC Programs 2-23

/[[INO]DEBUG

/NODEBUG (default)

The /DEBUG qualifier causes the linker to include the OpenVMS Debugger
information in the executable image and generates a symbol table; the
/NODEBUG qualifier causes the linker to prevent debugger control of the
program. The default is /NODEBUG.

/INOJEXECUTABLE [= file-spec]

/EXECUTABLE (default)

The /EXECUTABLE qualifier causes the linker to produce an executable image;
the /NOEXECUTABLE qualifier suppresses production of an image file. If a
file-spec is given, the resulting image is given the name of the file-spec.

/FULL

The /FULL qualifier causes the linker to produce a summary of the image’s
characteristics, a list of contributing modules, listings of global symbols by
name and by value, and a summary of characteristics of image sections in the
linked image. This qualifier is used with /MAP.

/INO]JMAP [= file-spec]
/NOMAP (default interactive mode)

/MAP (default batch mode)

The /MAP qualifier causes the linker to generate a map file; the /NOMAP
qualifier suppresses the map. If a file-spec is given, the map file is given the
name of the file-spec.

/[INOJSHAREABLE

/NOSHAREABLE (default)
The /SHAREABLE qualifier causes the linker to create a shareable image; the
/NOSHAREABLE qualifier generates an executable image.

/[INO]JTRACEBACK

/TRACEBACK (default)

The /TRACEBACK qualifier causes the linker to generate symbolic traceback
information when error messages are produced; the /NOTRACEBACK qualifier
suppresses traceback information.

2-24 Developing HP BASIC Programs

2.2.3 Linker Input Files

You can specify the object modules to be included in an executable image in
any of the following ways:
e Specify input file specifications for the object modules.
If no file type is specified, the linker assumes that an input file is an object
file with the file type .OBJ.
e Specify one or more object module library files.

You can either specify the name of an object module library with the
/LIBRARY qualifier, or specify the names of object modules contained in
an object module library with the /INCLUDE qualifier. The uses of object
module libraries are described in Section 2.2.5.

e Specify an options file.

An options file can contain additional file specifications for the LINK
command as well as special linker options. You must use the /OPTIONS
qualifier to specify an options file. For more information about options files,
see the HP OpenVMS Linker Utility Manual.

The linker uses the following default file types for input files:

File File Type
Object module .OBJ
Object library .OLB
Options file .OPT

2.2.4 Linker Output Files

When you enter the LINK command interactively and do not specify any
qualifiers, the linker creates only an executable image file. By default, the
resulting image file has the same file name as the first object module specified,
and the file type .EXE.

In a batch job, the linker creates both an executable image file and a storage
map file by default. The default file type for map files is .MAP.

To specify an alternative name for a map file or image file, or to specify an
alternative output directory or device, you can include a file specification on
the /MAP or /EXECUTABLE qualifier. For example:

$ LINK UPDATE/MAP=TEST

Developing HP BASIC Programs 2-25

2.2.5 Using an Object Module Library

In a large development effort, the object modules for subprograms are often
stored in an object module library. By using an object module library, you

can make program modules contained in the library available to other
programmers. To link modules contained in an object module library, use

the /INCLUDE qualifier and specify the specific modules you want to link. For
example:

$ LINK GARDEN, VEGGIES/INCLUDE = (EGGPLANT, TOMATO,BROCCOLI,ONION)

This example directs the linker to link the object modules EGGPLANT,
TOMATO, BROCCOLI, and ONION with the main object module GARDEN.

Besides program modules, an object module library can also contain a symbol
table with the names of each global symbol in the library, and the name of the
module in which they are defined. You specify the name of the object module
library containing symbol definitions with the /LIBRARY qualifier. When you
use the /LIBRARY qualifier during a link operation, the linker searches the
specified library for all unresolved references found in the included modules
during compilation.

In the following example, the linker uses the library RACQUETS to resolve
undefined symbols in BADMINTON, TENNIS, and RACQUETBALL:

$ LINK BADMINTON, TENNIS, RACQUETBALL, RACQUETS/LIBRARY

You can define an object module library, such as LNK$LIBRARY, to be your
default library by using the DCL command DEFINE. The linker searches
default user libraries for unresolved references after it searches modules
and libraries specified in the LINK command. See the HP OpenVMS DCL
Dictionary for more information about the DEFINE command.

For more information about object module libraries, see the HP OpenVMS
Linker Utility Manual.
2.2.6 Linker Error Messages

If the linker detects any errors while linking object modules, it displays
messages indicating the cause and severity of the error. If any error or fatal
error conditions occur (errors with severities of E or F), the linker does not
produce an image file.

2-26 Developing HP BASIC Programs

The messages produced by the linker are descriptive, and you do not usually
need additional information to determine the specific error. Some common
errors that occur during linking are as follows:

An object module has compilation errors.

This error occurs when you attempt to link a module that has warnings
or errors during compilation. You can usually link compiled modules for
which the compiler generated messages, but you should verify that the
modules will actually produce the output you expect.

The input file has a file type other than .OBJ and no file type was specified
on the command line.

If you do not specify a file type, the linker assumes the file has a file type
of .OBJ by default. If the file is not an object file and you do not identify it
with the appropriate file type, the linker signals an error message and does
not produce an image file.

You tried to link a nonexistent module.

The linker signals an error message if you misspell a module name on the
command line or if the compilation contains fatal diagnostics.

A reference to a symbol name remains unresolved.

An error occurs when you omit required module or library names
from the command line and the linker cannot locate the definition

for a specified global symbol reference. For example, a main program
module OCEAN.OBJ calls the subprograms located in object modules
REEF.OBJ, SHELLS.OBJ, and SEAWEED.OBJ. However, the following
LINK command does not reference the object module SEAWEED.OBJ:

$ LINK OCEAN, REEF, SHELLS
This example produces the following error messages:

$LINK-W-NUDFSYMS, 1 undefined symbol

$LINK-I-UDFSYMS, SEAWEED

$LINK-W-USEUNDEF, module "OCEAN" references undefined symbol "SEAWEED"
$LINK-W-DIAGISUED, completed but with diagnostics

If an error occurs when you link modules, you can often correct the error by
reentering the command string and specifying the correct modules or libraries.

See the OpenVMS System Messages and Recovery Procedures Reference Manual
for a complete list of linker messages.

Developing HP BASIC Programs 2-27

2.3 Running an HP BASIC Program

After you link your program, use the DCL command RUN to execute it. The
RUN command has the following format:

RUN [/[INO]DEBUGQ] file-spec [/[NO]JDEBUG]

/[NO]DEBUG

The /INOIDEBUG qualifier is optional. Specify the /DEBUG qualifier to
request the debugger if the image is not linked with it. You cannot use
/DEBUG on images linked with the /NOTRACEBACK qualifier. If the image
is linked with the /DEBUG qualifier, and you do not want the debugger to
prompt, use the /NODEBUG qualifier. The default action depends on whether
the file is linked with the /DEBUG qualifier.

file-spec
The name of the file you want to execute.

The following example executes the image SAMPLE.EXE without invoking the
debugger:

$ RUN SAMPLE/NODEBUG
See Chapter 3 for more information about debugging programs.

During program execution, an image can generate a fatal error called an
exception condition. When an exception condition occurs, HP BASIC
displays an error message. Run-time errors can also be issued by other
facilities, such as the OpenVMS operating system. For more information about
run-time errors, see Appendix B.

2.3.1 Improving Run-Time Performance of HP BASIC Programs

Even with fast hardware and an optimizing compiler, you can still tune your
code for run-time performance. This section provides recommendations to
consider if further performance improvements are desirable.

To achieve the best performance for your application, it is important to let
both the hardware and the optimizer/code generator take advantage of their
full capabilities. This can be accomplished by minimizing, and in some cases
avoiding, the use of language features and qualifiers that block optimal
program execution.

2-28 Developing HP BASIC Programs

2.3.1.1 Data Iltems
Choose data types and align data items with the following in mind:

Align data items in MAP, COMMON, and RECORD statements. This is
the recommended first step to improve performance. For more information
on alignment, see Section 2.1.2 under /WARNING = ALIGNMENT.

Use LONG or QUAD data items instead of BYTE and WORD; accessing
LONG or QUAD items is faster than BYTE and WORD, which may require
multiple hardware instructions.

On Alpha, use GFLOAT or TFLOAT data items instead of DOUBLE;
operations are faster on GFLOAT and TFLOAT items. Operations on
DOUBLE operands are performed by converting to GFLOAT, performing
the operation in GFLOAT, and converting back to DOUBLE.

On Itanium, use IEEE data items instead of VAX floating-point data items.
VAX data type operands are converted to appropriate IEEE types before
being operated on.

Choose packed decimal lengths that are the most efficient while still
meeting the needs of the application. The most efficient sizes are the
default size of 15 digits (which fits exactly in a quadword) and 7 digits
(which fits exactly in a longword). If you use one of these preferred sizes, it
should be aligned on a quadword or longword boundary.

Use packed decimal only when it is the appropriate data type. For
example, do not use packed decimal to specify array subscripts, which
are integers.

Minimize mixed data type expressions, especially when you use packed
decimal.

2.3.1.2 Qualifiers

On your BASIC command line, consider the following when you specify
qualifiers:

Use overflow and bounds checking only if they are needed. (See

Section 2.1.2; bounds checking is needed if your program is not thoroughly
debugged.) Both of these /CHECK options are on by default and will hinder
performance.

The use of the /LINES qualifier can impede optimization. /LINES is
needed in Alpha BASIC only for the ERL function and to print BASIC line

numbers in run-time error messages. /NOLINES is the default in Alpha
BASIC.

Developing HP BASIC Programs 2-29

The default optimization level, /OPTIMIZATION = LEVEL = 4, provides
the highest level of optimization.

The /SYNCHRONOUS_EXCEPTIONS qualifier inhibits many optimiza-
tions. For more information on /SYNCHRONOUS_EXCEPTIONS, see
Section 2.1.2.

2.3.1.3 Statements
The statements used in a program can affect performance, as follows:

If you use error handling, the default ON ERROR GO BACK has the least
impact on performance. ON ERROR GOTO {target} and WHEN blocks
have a greater impact. If the application spends a large percentage of time
in one routine, consider writing the routine with default error handling, if
possible.

RESUME without a target impedes optimization. (This applies only to
RESUME statements that do not specify a target.)

A MOVE TO or FIELD statement limits optimizations in the entire routine
(SUB, FUNCTION, or main) where the statement is found. There is no
additional cost for any statement after the first.

OPTION INACTIVE = SETUP can dramatically minimize routine startup
times by omitting RTL calls that initialize and close down routines. For
small BASIC routines, the overhead of these RTL calls can be significant.
Use this option for routines that are frequently called.

If your routine contains any of the following elements, the compiler
provides an informational diagnostic and emits calls to the RTL
initialization and close-down routines:

CHANGE statements

DEF statements

Dynamic string variables
Executable DIM statements
EXTERNAL string functions
MAT statements

MOVE statements for an entire array
ON ERROR statements
READ statements

REMAP statements
RESUME statements
WHEN blocks

String concatenation
Built-in string functions
Virtual arrays

2-30 Developing HP BASIC Programs

Routines using OPTION INACTIVE = SETUP cannot perform I/O and
have no error-handling capabilities. If an error occurs in such a routine,
the error is resignaled to the calling routine.

Using OPTION INACTIVE = SETUP instructs the compiler not to emit
code to initialize local variables. This also improves run-time performance,
but impacts routines that rely upon the automatic initialization of local
variables.

CONTINUE without a target and RETRY can limit optimizations within
the scope of the WHEN blocks associated with the handler that contains
these statements. This impact can be significant if the handler is
associated with a large WHEN block. The code within the associated
WHEN blocks will be minimally optimized.

Developing HP BASIC Programs 2-31

3

Using the OpenVMS Debugger with BASIC

This chapter discusses OpenVMS Debugger information that is specific to the
BASIC language. For more information about the OpenVMS Debugger, see the
HP OpenVMS Debugger Manual. Online help is available during debugging
sessions.

3.1 Overview of the Debugger

A debugger is a tool to help you locate run-time errors quickly. It is used with
a program that has already been compiled and linked successfully, with no
errors reported, but that does not run correctly. For example, the output might
be obviously wrong, the program goes into an infinite loop, or the program
terminates prematurely. The debugger enables you to observe and manipulate
the program’s execution interactively, step by step, until you locate the point at
which the program stopped working correctly.

The OpenVMS Debugger is a symbolic debugger, which means that you can
refer to program locations by the symbols (names) you used for those locations
in your program—the names of variables, routines, labels, and so on. You do
not have to use virtual addresses to refer to memory locations.

The debugger recognizes the syntax, expressions, data typing, and other
constructs of BASIC.

3.2 Compiling and Linking to Prepare for Debugging

The following example shows how to compile and link a BASIC program
(consisting of a single compilation unit named INVENTORY) so that
subsequently you will be able to use the debugger:

$ BASIC/DEBUG INVENTORY
$ LINK/DEBUG INVENTORY

Using the OpenVMS Debugger with BASIC 3-1

The /DEBUG qualifier with the BASIC command instructs the compiler to
write the debug symbol records associated with INVENTORY into the object
module, INVENTORY.OBJ. These records allow you to use the names of
variables and other symbols declared in INVENTORY in debugger commands.
(If your program has several compilation units, you must compile each unit
that you want to debug with the /DEBUG qualifier.)

The /DEBUG qualifier with the LINK command instructs the linker to include
all symbol information that is contained in INVENTORY.OBJ in the executable
image. The qualifier also causes the OpenVMS image activator to start the
debugger at run time. (If your program has several object modules, you might
need to specify other modules in the LINK command.)

3.3 Viewing Your Source Code

The debugger provides two methods for viewing source code: noscreen mode
and screen mode. By default when you invoke the debugger, you are in
noscreen mode, but you might find that it is easier to view your source code
with screen mode. Both modes are described in the following sections.

3.3.1 Noscreen Mode

Noscreen mode is the default, line-oriented mode of displaying input and
output. To get into noscreen mode from screen mode, enter SET MODE
NOSCREEN. See the sample debugging session in Section 3.7 for a
demonstration of noscreen mode.

In noscreen mode, you can use the TYPE command to display one or more
source lines. For example, the following command displays line 3 of the module
that is currently executing:

DBG> TYPE 3
3: EXTERNAL SUB TRIPLE &
DBG>

The display of source lines is independent of program execution. You can use
the TYPE command to display source code from a module other than the one
currently executing. In that case, you need to use a directory specification to
specify the module. For example, the following command displays lines 16 to
21 of module TEST:

DBG> TYPE TEST\16:21

3-2 Using the OpenVMS Debugger with BASIC

3.3.2 Screen Mode

To invoke screen mode, press PF3. In screen mode, by default the debugger
splits the screen into three displays called SRC, OUT, and PROMPT.

--SRC: module SAMPLESMAIN -scroll-source-----------=-----==---—----

1: 10 | SAMPLE
2:
3: EXTERNAL SUB TRIPLE &
4: , PRINT_SUB
5:
6: WHEN ERROR USE HANDLER 1
-> 7 CALL TRIPLE

8: CALL PRINT SUB
9:

- OUT -output---------------------"-""-"--"-"-""~""

stepped to SAMPLESMAIN\%LINE 7

- PROMPT -error-program-prompt----------------------------
DBG> STEP
DBG>

The SRC display, at the top of the screen, shows the source code of the module
(compilation unit) that is currently executing. An arrow in the left column
points to the next line to be executed, which corresponds to the current location
of the program counter (PC). The line numbers, which are assigned by the
compiler, match those in a listing file.

Note

BASIC line numbers are treated as text by the debugger. In this
chapter, line numbers refer to the sequential line numbers generated
by the compiler. When a program includes or appends code from
another file, the included lines of code are also numbered in sequence
by the compiler. These line numbers are on the extreme left of a listing
file. An explanation of the listing file format is in Chapter 2.

The PROMPT display, at the bottom of the screen, shows the debugger prompt
(DBG>), your input, debugger diagnostic messages, and program output. In
the example, the debugger commands that have been issued are shown.

The OUT display, in the center of the screen, captures the debugger’s output in
response to the commands that you issue.

Using the OpenVMS Debugger with BASIC 3-3

The SRC and OUT displays are scrollable so that you can see whatever
information scrolls beyond the display window’s edge. Press KP8 to scroll
up and KP2 to scroll down. Press KP3 to change the display to be scrolled
(by default, the SRC display is scrolled). Scrolling a display does not affect
program execution.

If the debugger cannot locate source lines for the currently executing module,
it tries to display source lines in the next module down on the call stack for
which source lines are available and issues the following message:

$DEBUG-I-SOURCESCOPE, Source lines not available for .0\%PC.
Displaying source in a caller of the current routine.

Source lines might not be available for the following reasons:

e The PC is within a system routine, or a shareable image routine for which
no source code is available.

e The PC is within a routine that was compiled without the /DEBUG
compiler command qualifier (or with /NODEBUG).

e The source file was moved to a different directory after it was compiled (the
location of source files is embedded in the object modules). Use the SET
SOURCE command to direct the debugger to the new location.

3.4 Controlling and Monitoring Program Execution
This section discusses the following:
e Starting and resuming program execution with the GO command
e Stepping through the program’s code with the STEP command

¢ Determining the current location of the program counter (PC) with the
SHOW CALLS command

e Suspending program execution with breakpoints
¢ Tracing program execution with tracepoints
e Monitoring changes in variables with watchpoints

3.4.1 Starting and Resuming Program Execution

There are two commands for starting or resuming program execution: GO
and STEP. The GO command starts execution. The STEP command lets you
execute a specified number of source lines or instructions.

3-4 Using the OpenVMS Debugger with BASIC

GO Command

The GO command starts program execution, which continues until forced to
stop. You will probably use the GO command most often in conjunction with
breakpoints, tracepoints, and watchpoints. If you set a breakpoint in the path
of execution and then enter the GO command (or press the keypad comma
key that executes the GO command), execution will be suspended when the
program reaches that breakpoint. If you set a tracepoint, the path of execution
through that tracepoint will be monitored. If you set a watchpoint, execution
will be suspended when the value of the watched variable changes.

You can also use the GO command to test for an exception condition or an
infinite loop. If an exception condition that is not handled by your program
occurs, the debugger will take over and display the DBG> prompt so that you
can issue commands. If you are using screen mode, the pointer in the source
display will indicate where execution stopped. You can then use the SHOW
CALLS command (see Section 3.4.2) to identify the currently active routine
calls (the call stack).

In the case of an infinite loop, the program will not terminate, so the debugger
prompt will not reappear. To obtain the prompt, interrupt the program by
pressing Ctrl/Y and then issue the DCL command DEBUG. You can then look
at the source display and a SHOW CALLS display to locate the PC.

STEP Command

The STEP command (which you can use either by entering STEP or by pressing
KPO0) allows you to execute a specified number of source lines or instructions,
or to execute the program to the next instruction of a particular kind, for
example, to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In the
following example, the STEP command executes one line, reports the action
(“stepped to ... ”), and displays the line number (27) and source code of the
next line to be executed:

DBG> STEP

stepped to TEST\COUNTER\$LINE 27
27: X=X+ 1

DBG>

The PC is now at the first machine code instruction for line 27 of the
module TEST; line 27 is in COUNTER, a routine within the module TEST.
TEST\ COUNTER\ %LINE 27 is a directory specification. The debugger uses
directory specifications to refer to symbols. (However, you do not need to use
a path name in referring to a symbol, unless the symbol is not unique; in
that case, the debugger will issue an error message.) See the HP OpenVMS

Using the OpenVMS Debugger with BASIC 3-5

Debugger Manual or online help for more information about resolving multiply-
defined symbols.

You can specify a number of lines for the STEP command to execute. In the
following example, the STEP command executes three lines:

DBG> STEP 3

Note that only those source lines for which code instructions were generated by
the compiler are recognized as executable lines by the debugger. The debugger
skips over any other lines—for example, comment lines.

Also, if a line has more than one statement on it, the debugger will execute all
the statements on that line as part of the single step.

Using the STEP/OVER command to step over a GOSUB statement will still
proceed to the target of the GOSUB since this statement is just a special kind
of GOTO statement and not a routine call.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). To resume to the default
behavior, enter the SET STEP LINE command. Also by default, the debugger
steps over called routines—execution is not suspended within a called routine,
although the routine is executed. By entering the SET STEP INTO command,
you tell the debugger to suspend execution within called routines as well as
within the currently executing module. To resume the default behavior, enter
the SET STEP OVER command.

3.4.2 Determining the Current Location of the Program Counter

The SHOW CALLS command lets you determine the current location of the
program counter (PC) (for example, after returning to the debugger following a
Ctrl/Y interrupt). The command shows a traceback that lists the sequence of
calls leading to the currently executing routine. For example:

DBG> SHOW CALLS

module name routine name line rel PC abs PC
*TEST PRODUCT 18 00000009 0000063C
*TEST COUNTER 47 00000009 00000647
*MY_ PROG MY PROG 21 0000000D 00000653
DBG>

For each routine (beginning with the currently executing routine), the debugger
displays the following information:

e Name of the module that contains the routine

e Name of the routine

3-6 Using the OpenVMS Debugger with BASIC

e Line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

e Corresponding PC addresses (the relative PC address from the start of the
routine and the absolute PC address of the program)

This example indicates that execution is currently at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNTER (in module TEST), which was called from line 21 of routine

MY_PROG (in module MY_PROG).

3.4.3 Suspending Program Execution

The SET BREAK command lets you select breakpoints, which are locations
at which the program will stop running. When you reach a breakpoint, you
can enter commands to check the call stack, examine the current values of
variables, and so on.

A typical use of the SET BREAK command is shown in the following example:

DBG> SET BREAK COUNTER
DBG> GO

break at TEST\COUNTER
34: SUB COUNTER (LONG X,Y)
DBG>

In this example, the SET BREAK command sets a breakpoint on the
subprogram COUNTER; the GO command starts execution. When the
subprogram COUNTER is encountered, execution is suspended, the debugger
announces that the breakpoint at COUNTER has been reached (break at ...),
displays the source line (34) where execution is suspended, and prompts you for
another command. At this breakpoint, you can step through the subprogram
COUNTER, using the STEP command, and use the EXAMINE command (see
Section 3.5.1) to check on the current values of X and Y.

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers,
routine names, instructions, virtual memory addresses). With high-level
languages, you typically use routine names, labels, or line numbers, possibly
with directory specifications to ensure uniqueness.

Routine names and labels should be specified as they appear in the source code.
Line numbers may be derived from either a source code display or a listing
file. When specifying a line number, use the prefix %#LINE. (Otherwise, the
debugger will interpret the line number as a memory location.) For example,

Using the OpenVMS Debugger with BASIC 3-7

the next command sets a breakpoint at line 41 of the currently executing
module; the debugger will suspend execution when the PC is at the start of
line 41:

DBG> SET BREAK $LINE 41

Note that you can set breakpoints only on lines that resulted in machine code
instructions. The debugger warns you if you try to do otherwise (for example,
on a comment line). If you want to pick a line number in a module other
than the one currently executing, you need to specify the module’s name in a
directory specification. For example:

DBG> SET BREAK SCREEN IO\3LINE 58

You do not always have to specify a particular program location, such as

line 58 or COUNTER, to set a breakpoint. You can set breakpoints on events,
such as exceptions. You can use the SET BREAK command with a qualifier,
but no parameter, to break on every line, or on every CALL instruction, and so
on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL

You can conditionalize a breakpoint (with a WHEN clause) or specify that a list
of commands be executed at the breakpoint (with a DO clause on the debugger
command). For example, the next command sets a breakpoint on the label
LOOP3. The DO (EXAMINE TEMP) clause causes the value of the variable
TEMP to be displayed whenever the breakpoint is triggered.

DBG> SET BREAK LOOP3 DO (EXAMINE TEMP)
DBG> GO

break at COUNTER\LOOP3

37: LOOP3: FOR I = 1 TO 10
COUNTER\TEMP: 284.19
DBG>
To display the currently active breakpoints, enter the SHOW BREAK
command:

DBG> SHOW BREAK
breakpoint at SCREEN IO\%LINE 58
breakpoint at COUNTER\LOOP3

do (EXAMINE TEMP)

DBG>

3-8 Using the OpenVMS Debugger with BASIC

To cancel a breakpoint, enter the CANCEL BREAK command, specifying
the program location exactly as you did when setting the breakpoint. The
CANCEL BREAK/ALL command cancels all breakpoints.

3.4.4 Tracing Program Execution

The SET TRACE command lets you select tracepoints, which are locations
for tracing the execution of your program without stopping its execution.
After setting a tracepoint, you can start execution with the GO command and
then monitor the PC’s path, checking for unexpected behavior. By setting a
tracepoint on a routine, you can also monitor the number of times the routine
is called.

As with breakpoints, every time a tracepoint is reached, the debugger issues
a message and displays the source line. It can also display other information
that you have specified (as shown in the last example in this section, in which
the value of a specified variable is displayed). However, at tracepoints, unlike
breakpoints, the program continues executing, and the debugger prompt is not
displayed. For example:

DBG> SET TRACE COUNTER
DBG> GO

trace at TEST\COUNTER
34: SUB COUNTER (LONG X,Y)

When using the SET TRACE command, you specify address expressions,
qualifiers, and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier instructs the SET TRACE command to trace every line
and is a convenient means of checking the execution path. By default, lines are
traced within all called routines as well as the currently executing routine. If

you do not want to trace system routines or routines in shareable images, use
the /INOSYSTEM or /NOSHARE qualifiers. For example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE

Using the OpenVMS Debugger with BASIC 3-9

The /SILENT qualifier suppresses the trace message and source code display.
This is useful when you want to use the SET TRACE command to execute a
debugger command at the tracepoint. For example:

DBG> SET TRACE\SILENT $LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN IO\CLEAR\STATUS: "OFF’

3.4.5 Monitoring Changes in Variables

The SET WATCH command lets you set watchpoints that will be monitored
continuously as your program executes.

If the program modifies the value of a watched variable, the debugger suspends
execution and displays the old and new values.

DBG> SET WATCH TOTAL

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered. The debugger monitors watchpoints continuously
during program execution.

The next example shows what happens when your program modifies the
contents of a watched variable:

DBG> SET WATCH TOTAL
DBG> GO

watch of SCREEN_IO\TOTAL\%LINE 13
13: TOTAL = TOTAL + 1
old value: 16
new value: 17
break at SCREEN_IO.%LINE 14
14: CALL Pop_rtn(TOTAL)
DBG>

In this example, a watchpoint is set on the variable TOTAL and the GO
command starts execution. When the value of TOTAL changes, execution is
suspended. The debugger announces the event (watch of . ..), identifying
where TOTAL changed (line 13) and the associated source line. The debugger
then displays the old and new values and announces that execution has been
suspended at the start of the next line (14). (The debugger reports break

3-10 Using the OpenVMS Debugger with BASIC

at ..., but this is not a breakpoint; it is still the effect of the watchpoint.)
Finally, the debugger prompts for another command.

When a change in a variable occurs at a point other than the start of a source
line, the debugger gives the line number plus the byte offset from the start of
the line.

3.5 Examining and Manipulating Data

This section explains how to use the EXAMINE, DEPOSIT, and EVALUATE
commands to display and modify the contents of variables, and evaluate
expressions in BASIC programs.

3.5.1 Displaying the Values of Variables

To display the current value of a variable, use the EXAMINE command as
follows:

DBG> EXAMINE variable name

The debugger recognizes the compiler-generated data type of the specified
variable and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command:

Examine a string variable:

DBG> EXAMINE EMPLOYEE NAME
PAYROLL\EMPLOYEE NAME: "Peter C. Lombardi"
DBG>

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4

SIZE\LENGTH: 7

SIZE\AREA: 28

DBG>

Examine a two-dimensional array of integers (two rows and three columns):

DBG> EXAMINE INTEGER ARRAY
PROG2\INTEGER ARRAY

(0,0): 27
(0,1) 31
(0,2): 12
(1,0): 15
(1,1): 22
(1,2) 18
>

Using the OpenVMS Debugger with BASIC 3-11

Examine element 4 of a one-dimensional string array:

DBG> EXAMINE CHAR ARRAY (4)

PROG2\CHAR ARRAY (4): 'm’
DBG>

Note that the EXAMINE command can be used with any kind of address
expression (not just a variable name) to display the contents of a program
location. The debugger associates certain default data types with untyped
locations. You can override the defaults for typed and untyped locations if you
want the data to be interpreted and displayed in some other data format. The
debugger supports the data types and operators of BASIC including RECORDs
and RFAs.

See Section 3.5.3 for an explanation of how the EXAMINE and the EVALUATE
commands differ.

3.5.2 Changing the Values of Variables
To change the value of a variable, use the DEPOSIT command as follows:
DBG> DEPOSIT variable name = value
The DEPOSIT command is like an assignment statement in BASIC.

In the following examples, the DEPOSIT command assigns new values to
different variables. The debugger checks that the value assigned, which may
be a language expression, is consistent with the data type and dimensional
constraints of the variable.

Deposit a string value (it must be enclosed in quotation marks or apostrophes):
DBG> DEPOSIT PARTNUMBER = "WG-7619.3-84"

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT WIDTH + 10

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) = 'K’

You can specify any kind of address expression, not just a variable name,
with the DEPOSIT command (as with the EXAMINE command). You can
override the defaults for typed and untyped locations if you want the data to
be interpreted in some other data format.

3-12 Using the OpenVMS Debugger with BASIC

3.5.3 Evaluating Expressions

To evaluate a language expression, use the EVALUATE command as follows:
DBG> EVALUATE lang exp

The debugger recognizes the operators and expression syntax of the currently
set language. In the following example, the value 45 is assigned to the integer
variable WIDTH; the EVALUATE command then obtains the sum of the
current value of WIDTH plus 7:

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH + 7
52

DBG>

Following is an example of how the EVALUATE and the EXAMINE commands
are similar. When the expression following the command is a variable name,
the value reported by the debugger is the same for either command.

DBG> DEPOSIT WIDTH = 45
DBG> EVALUATE WIDTH

45

DBG> EXAMINE WIDTH
SIZE\WIDTH: 45

Following is an example of how the EVALUATE and EXAMINE commands are
different:

DBG> EVALUATE WIDTH + 7
52

DBG> EXAMINE WIDTH + 7
SIZE\WIDTH: 131584

With the EVALUATE command, WIDTH + 7 is interpreted as a language
expression, which evaluates to 45 + 7, or 52. With the EXAMINE command,
WIDTH + 7 is interpreted as an address expression: 7 bytes are added to the
address of WIDTH, and whatever value is in the resulting address is reported
(in this example, 131584).

3.6 Stepping Into BASIC Routines

This section provides details of the STEP/INTO command that are specific to
BASIC.

In the following example, the debugger is waiting to proceed at source

line 63. If you enter a STEP command at this point, the debugger will proceed
to source line 64 without stopping during the execution of the function call.
To step through the source code in the DEF function deffun, you must use the
STEP/INTO command. A STEP/INTO command entered while the debugger

Using the OpenVMS Debugger with BASIC 3-13

has stopped at source line 63 causes the debugger to display the source code
for deffun and stop execution at source code line 3.

DECLARE LONG FUNCTION deffun (LONG)
DECLARE LONG A
DEF LONG deffun (LONG x)
deffun = x
END DEF

Ul W N

->63 A = deffun (6%)
64 Print "The value of A is: "; A

The STEP/INTO command is useful for stepping into external functions and
DEF functions in HP BASIC. If you use this command to step into GOSUB

blocks, the debugger steps into Run-Time Library (RTL) routines, providing
you with no useful information.

In the following program, the debugger has suspended execution at source
line 8. If you now enter a STEP/INTO command, the debugger steps into the
relevant RTL code and informs you that no source lines are available.

1 10 RANDOMIZE

->8 GOSUB Print routine
9 STOP
20 Print routine:
21 IF Competition = Done
22 THEN PRINT "The winning ticket is #";Winning ticket
23 ELSE PRINT "The game goes on."
24 END IF
25 RETURN

As in the previous example, a STEP command alone will cause the debugger to
proceed directly to source line 9.

Table 3—1 summarizes the resultant behavior of the STEP/INTO command
when used to step into external functions, DEF functions, and GOSUB
blocks.

3-14 Using the OpenVMS Debugger with BASIC

Table 3—1 Resultant Behavior of the STEP/INTO Command

Action Results
STEP/INTO DEF function Steps into function
STEP/INTO DEF* function Steps into RTL
STEP/INTO external function or SUB routine? Steps into function
STEP/INTO GOSUB block Steps into RTL

1Unless the subroutine is compiled with the /NOSETUP qualifier or equivalent, it will appear to
step into RTL code, because an environment setup RTL routine is normally called as the very first
thing of the subroutine.

3.6.1 Controlling Symbol References

When using the OpenVMS Debugger, all HP BASIC variable and label names
within a single program unit must be unique; otherwise, the debugger will be
unable to determine the symbol to which you are referring.

3.7 Sample Debugging Session

This section shows a sample debugging session using a BASIC program that
contains a logic error.

The following program compiles and links without diagnostic messages from
either the compiler or the linker. However, after printing the headers, the
program is caught in a loop printing the same figures indefinitely.

1 10 !SAMPLE program for DEBUG illustration
2 DECLARE INTEGER Number

3 Print_headers:

4 PRINT "NUMBER", "SQUARE", "SQUARE ROOT"
5 PRINT

6 Print loop:

7 FOR Number = 10 TO 1 STEP -1

8 PRINT Number, Number”™2, SQR (Number)
9 Number = Number + 1

10 NEXT Number

11 PRINT

12 END

The following text shows the terminal dialogue for a debugging session, which
helps locate the error in the program SAMPLE. The callouts are keyed to
explanatory notes that follow the dialogue.

Using the OpenVMS Debugger with BASIC 3-15

$ BASIC/LIST/DEBUG SAMPLE @
$ LINK/DEBUG SAMPLE @
$ RUN SAMPLE

VAX DEBUG Version n.n

$DEBUG-I-INITIAL, language is BASIC module set to ’'SAMPLESMAIN' (3]
DBG>STEP 2 @
NUMBER SQUARE SQUARE ROOT
stepped to SAMPLESMAIN\%line 7
7: FOR Number = 10 TO 1 STEP -1 @
DBG> STEP 4 @
10 100 3.16228
stepped to SAMPLESMAIN\SLINE 7
7: FOR Number = 10 TO 1 STEP
DBG> EXAMINE Number @
SAMPLESMAIN\NUMBER: 10 O
DBG> STEP 4 ©
10 100 3.16228
stepped to SAMPLESMAIN\$LINE 7
7: FOR Number = 10 TO 1 STEP
DBG> EXAMINE Number (O
SAMPLESMAIN\NUMBER : 10 ®
DBG> DEPOSIT Number = 9 @
DBG> STEP 4 ®
9 81 3
stepped to SAMPLESMAIN\SLINE 7
7: FOR Number = 10 TO 1 STEP
DBG> EXAMINE Number @
SAMPLESMATIN\NUMBER : 9 ®
DBG> STEP
9 81 3
stepped to SAMPLESMAIN\$LINE 8
8: PRINT Number, Number®2, SOR (Number) @
DBG> STEP B
stepped to SAMPLESMAIN\SLINE 9
9: Number = Number + 1 @®

1
=

1
=

1
[y

DBG> EXIT @
The following explains the terminal dialogue in the above example:

Compile SAMPLE.BAS with the /LIST and /DEBUG qualifiers. The listing
file can be useful while you are in the debugging session.

Link SAMPLE.BAS with the /DEBUG qualifier.

The debugger identifies itself and displays the debugger prompt after you
invoke the debugger with the RUN command.

Step through 2 executable statements to the FOR statement.

0 o000 o

The headers print successfully and the program reaches the FOR
statement.

3-16 Using the OpenVMS Debugger with BASIC

Step through one iteration of the loop.

Request the contents of the variable Number.

The debugger shows the contents of the loop index to be 10.
Step through another iteration of the loop.

Examine the value of the loop index again.

The debugger shows that the loop index is still 10. The loop index has not
changed from its initial setting in the FOR statement.

Deposit the correct value into Number.

Step through another iteration of the loop.
Examine the contents of Number again.

Observe that the number has not been changed yet.

Step through just one statement to discover what is interfering with the
value of Number during execution of the loop.

Observe that this statement does not affect the value of Number.
Step through another statement in the loop.

Observe that this statement counteracts the change in the loop index.

OB 6066000 66800600

Exit from the debugger. You can now edit the program to delete
line 9 and reprocess the program. Alternatively, you could use the EDIT
command while in the debugger environment.

This debugging session shows that the FOR...NEXT loop index (Number) is not
being changed correctly. An examination of the statements in the loop shows
that the variable Number is being decreased by one during each execution of
the FOR statement, but incremented by one with each execution of the loop
statements. From this you can determine that the loop index will not change
at all and the program will loop indefinitely. To correct the problem, you must
delete the incorrect statement and recompile the source program.

3.8 Hints for Using the OpenVMS Debugger

A STEP at a statement that causes an exception might never return control to
the debugger. The debugger cannot determine what statement in the BASIC
source code will execute after the exception occurs. Therefore, set explicit
breaks if STEP is used on statements that cause exceptions.

Using the OpenVMS Debugger with BASIC 3-17

The following hints should help when you use the STEP command to debug
programs that handle errors:

¢ When you STEP at a statement that takes an error, the debugger will not
regain control unless the program reaches an explicit breakpoint or the
next statement that would have executed if no error had occurred. Set
explicit breaks if you want the program to stop in any other place.

e Use of the STEP command at a statement that takes an error does not
return control to the debugger when the program reaches the error handler
code. If you want the program to break when program execution enters an
error handler, explicitly set a breakpoint at the error handler. This applies
to both ON ERROR handlers and WHEN handlers.

e Ifyou are within a WHEN handler, a STEP at a statement that terminates
execution within the WHEN handler (CONTINUE, RETRY, END WHEN,
END HANDLER, EXIT HANDLER) will not stop unless program flow
reaches a point where an explicit breakpoint is set.

e STEP at a RESUME statement in an ON ERROR handler results in the
program execution stopping at the first line of non-error-handler code.

e Use SET BREAK/EXCEPTION at the beginning of the debugging session to
prevent unexpected errors from occurring. This breakpoint is not necessary
if you have set explicit breakpoints at all error handlers. However, use
of this command will break at all exceptions, allowing you to check that
you have the proper breakpoints to stop program execution following the
exception.

3-18 Using the OpenVMS Debugger with BASIC

Part I

Compaq BASIC Programming Concepts

Part II explains Compaq BASIC programming concepts including input and
output, arrays, data definition, program control, and functions.

4

BASIC Concepts and Elements

A BASIC program is a series of instructions for the compiler. These
instructions are built using the fundamental elements of BASIC. This chapter
describes these elements or building blocks.

4.1 Line Numbers
BASIC gives you the option of developing programs with line numbers or
without line numbers.

4.1.1 Programs with Line Numbers
If you use line numbers in your program, you must follow these rules:

¢ A line number must be a unique integer from 1 to 32767. HP BASIC does
not allow programs to have duplicate line numbers.

e A line number can contain leading zeros; however, embedded spaces, tabs,
and commas are invalid in line numbers.

e There must be a line number on the first line of the program.

e If a source file contains subprograms, then each subprogram must begin on
a numbered line.

In a multiple-unit program with line numbers, any comments following an
END, END SUB, or END FUNCTION statement become a part of the previous
subprogram during compilation unless they begin on a numbered line. This is
not the case in multiple-unit programs without line numbers.

Although line numbers are not required, you might want to use them on every
line that can cause a run-time error, depending on the type of error handling
you use. See Chapter 15 for more information about handling run-time errors.

BASIC Concepts and Elements 4-1

4.1.2 Programs Without Line Numbers

If you do not use line numbers in your program, follow these rules:
e Use a text editor to enter and edit the program.

¢ No line numbers are allowed anywhere in the program module.
e The ERL function is not allowed.

e REM statements are not allowed.

In a multiple-unit program without line numbers, any comments following an
END, END SUB, or END FUNCTION statement become a part of the next
subprogram during compilation (unless there is no next subprogram). This is
not the case in multiple-unit programs with line numbers.

You can avoid all of these restrictions by placing a line number on the first line
of your program; no additional line numbers are required. The line number
on the first program line causes the compiler to compile your program as a
program with line numbers.

When you write a program with or without line numbers, you can begin your
program statements in the first character position on a line.

To develop the following program, use a text editor, and observe the restrictions
previously listed:

!This is a short program that does not contain any
IBASIC line numbers.

!This program must be entered using a text editor;
lit cannot be entered directly into the environment.
|

PRINT "This program converts kilogram weight to pounds"
INPUT "How many kilograms";A

IThis is the conversion factor

B=2/2.2

PRINT "For ";A;" kilograms, the pound weight is ";B
END

Output

This program converts kilogram weight to pounds
How many kilograms? 11
For 11 kilograms, the pound weight is 5

You can use exclamation comment fields instead of REM statements to insert
comments into programs without line numbers. An exclamation point in
column 1 causes the HP BASIC compiler to ignore the rest of the line. You can
also identify program statements in programs without line numbers by using
labels.

4-2 BASIC Concepts and Elements

4.1.3 Labels

A label is a 1- to 31-character identifier that you use to identify a block

of statements. All label names must begin with a letter; the remaining
characters, if any, can be any combination of letters, digits, dollar signs ($),
underscores (_), or periods (.), but the final character cannot be a dollar sign.

Labels have the following advantages over line numbers:
e Meaningful label names provide documentation.
® You can use labels in programs with or without line numbers.

When you use a label to mark a program location, you must end the label with
a colon (:). The colon is used to show that the label name is being defined
instead of referenced. When you reference the label, do not include the colon.

In the following example, the label names end with colons when they mark a
location, but the colons are not present when the labels are referenced:

OPTION TYPE = EXPLICIT ! Require declarations
DECLARE INTEGER A

Outer loop:
IF A <> B
THEN
Inner loop:
IFB=C
THEN
A=A+1
GOTO Outer loop
ELSE
B=B+1
GOTO Inner loop
END IF
END IF

Labels have no effect on the order in which program lines are executed; they
are used to identify a statement or block of statements.
4.1.4 Continuation of Long Program Statements

If a program line is too long for one line of text, you can continue the program
line by placing an ampersand (&) at the end of the line. Note that only spaces
and tabs are valid between the ampersand and the carriage return.

BASIC Concepts and Elements 4-3

A single statement that spans several text lines requires an ampersand at the
end of each continued line. For example:

OPEN "SAMPLE.DAT" AS FILE #2%, &
SEQUENTIAL VARIABLE, &
RECORDSIZE 80%

In an IF... THEN... ELSE construction, ampersands (&) are not necessary. If a
continuation line begins with THEN or ELSE, then no ampersand is necessary.
Similarly, in a line following a THEN or an ELSE, there is no ampersand.

IF (AS = BS)
THEN

PRINT "The two values are equal"
ELSE

PRINT "The two values are different"
END IF

Several statements can be associated with a single program line. If there are
several statements on one line, they must be separated by backslashes (\).
For example:

PRINT A \ PRINT V \ PRINT G
Because all statements are on the same program line, any reference to this
program line refers to all three statements.

4.2 ldentifying Program Units

You can delimit a main program compilation unit with the PROGRAM and
END PROGRAM statements. This allows you to identify a program with a
name other than the file name. The program name must not duplicate the
name of a SUB, FUNCTION, or PICTURE subprogram. For example:

PROGRAM Sort_out

END PROGRAM

If you include the PROGRAM statement in your program, the name you specify
becomes the module name of the compiled source. This feature is useful when
you use object libraries because the librarian stores modules by their module
name rather than the file name. Similarly, module names are used by the
OpenVMS Debugger and the OpenVMS Linker.

For more information about PROGRAM units, see Chapter 12.

4-4 BASIC Concepts and Elements

4.3 BASIC Character Set
BASIC uses the full ASCII character set, which includes the following:
e The letters A to Z, both uppercase and lowercase
e The digits 0 to 9
e Special characters

See the HP BASIC for OpenVMS Reference Manual for a complete list of the
ASCII character set and character values.

The compiler does not distinguish between uppercase and lowercase letters,
except for letters inside quotation marks (called string literals) or letters in
a DATA statement. The compiler also does not process characters in a REM
statement or comment field.

You can use nonprinting characters in your program—for example, in string
literals and constants—but to do so you must do one of the following:

e Use a predefined constant such as ESC or DEL
e Use the CHR$ function to specify an ASCII value
See Section 4.6 for more information about predefined constants. See
Chapter 10 for more information about the CHR$ function.
4.4 Program Documentation

Documenting a program is the process of putting explanatory text (comments)
into your code to make the program more understandable. Program
documentation does not affect the way a program executes. You can add
comments throughout a program; however, programs that are neatly structured
need fewer comments. You can clarify your code by doing the following:

¢ Using meaningful variable names
¢ Including sufficient white space
¢ Indenting your program lines according to the structure of your code

A comment field starts with an exclamation point (!) and ends with another
exclamation point or a carriage return. The following example contains both
comments and program statements. Any text that follows an exclamation point
is ignored.

BASIC Concepts and Elements 4-5

PROGRAM sample

|

i+ Require that all variables be declared
| -

6PTION TYPE = EXPLICIT

|

i+ Set up error handler

| -

WHEN ERROR USE Error_routine
|

i+ Declarations

END PROGRAM

You can also mix comments and code on the same line. For example:

DECLARE &
INTEGER &
Print page, ! Current page number &
Print line, | Current line number &
Print_column ! Current column number

All text between the exclamation point and the carriage return is ignored,
with one exception: the ampersand is still recognized. This is a continuation
character that specifies that a single statement is being continued on the next
line. Only spaces and tabs are valid between the ampersand and the carriage
return.

Note

Although you can also terminate a comment field with an exclamation
point, this practice is not recommended. Any text that follows the
second exclamation point is treated as part of your program code.

4.5 Declarations and Data Types
Following are methods for creating variables and specifying data types:
¢ Implicit data typing
e Explicit data typing

4-6 BASIC Concepts and Elements

With implicit data typing, BASIC creates and specifies a data type for a
variable the first time you reference it in your program. With explicit data
typing, you must use one of four declarative statements (see Section 4.5.2) to
name and type your program values.

Following are the data types you can specify:
e Integer (INTEGER)

¢ Floating-point (REAL)

e String (STRING)

e Packed Decimal (DECIMAL)

e Record File Address (RFA)

Within the INTEGER and REAL data types there are further subdivisions:
BYTE, WORD, LONG, or QUAD for INTEGER and SINGLE, DOUBLE,
GFLOAT, SFLOAT, TFLOAT, or XFLOAT for REAL. Choosing one of these
subtypes lets you control the following:

e The amount of storage required for the value; its container size
e The range and precision that the value can accept

For more information about data types, see Chapter 8.

4.5.1 Implicit Data Typing

With implicit data typing, a data type for a variable is created and specified
the first time you reference it. You specify the data type of the variable by a
suffix on the variable name as follows:

e A percent sign suffix (%) specifies the INTEGER data type.
e A dollar sign suffix ($) specifies the STRING data type.
e Any other ending character specifies a variable of the default data type.

The default data type is SINGLE on Alpha BASIC and SFLOAT on 164 BASIC.
However, you can specify your own default at DCL command level or with the

OPTION statement in your program. For more information about establishing
default data types, see Chapter 2, as well as the OPTION statement in the HP
BASIC for OpenVMS Reference Manual.

The first time the variable is referenced, it creates a variable with that name
and data type and allocates storage for that variable.

BASIC Concepts and Elements 4-7

In the following example, two INTEGER variables are created, A% and B%.
Even though the values assigned to these variables are REAL,

the values are converted to INTEGER to match the data type specified for the
variables. The sum of these two values is therefore 30, not 30.6, as it would be
if the variables were named A and B.

$ =10.1

B% = 20.5
PRINT A% + B%
30

4.5.2 Explicit Data Typing

With explicit data typing, you use a declarative statement to name and specify
a data type for your program values.

BASIC provides the following declarative statements. These statements create
variables and allocate storage:

DECLARE
DIMENSION
COMMON
MAP

The statement you choose depends on the way in which you will use the
variables:

e DECLARE and DIMENSION allocate dynamic storage for variables;
storage is allocated when the program executes.

e COMMON and MAP statements allocate storage for variables statically;
storage is allocated when the program is compiled.

All declarative statements associate a data type with a variable. For more
information, see Chapter 7.

4.6 Constants

A constant is a value that does not change during program execution.
Constants can be either literals or named constants and can be of any data
type except RFA. You can use the DECLARE CONSTANT statement to create
named constants. Constants can be of the following types:

e Integer
¢ Floating-point

e Packed decimal

4-8 BASIC Concepts and Elements

e String

In addition, predefined constants are provided and are useful for the following:
e Formatting program output to improve clarity

e Making source code easier to understand

e Using nonprinting characters without having to look up their ASCII values

Table 4-1 lists the predefined constants.

Table 4-1 Predefined Constants

Decimal
ASCII
Constant Value Description
BEL (Bell) 7 Sounds the terminal bell
BS (Backspace) 8 Moves cursor one position to the left
HT (Horizontal Tab) 9 Moves cursor to the next horizontal tab stop
LF (Line Feed) 10 Moves cursor to the next line
VT (Vertical Tab) 11 Moves cursor to the next vertical tab stop
FF (Form Feed) 12 Moves cursor to the start of the next page
CR (Carriage Return) 13 Moves cursor to the beginning of the current line
SO (Shift Out) 14 Shifts out for communications networking, screen
formatting, and alternate graphics
SI (Shift In) 15 Shifts in for communications networking, screen
formatting, and alternate graphics
ESC (Escape) 27 Marks the beginning of an escape sequence
SP (Space) 32 Inserts one blank space in program output
DEL (Delete) 127 Deletes the last character entered
PI None Represents the number PI with the precision of the

default floating-point data type

These predefined constants simplify the task of using nonprinting characters
in your programs. For example, the following statement causes a bell to sound
on your terminal:

PRINT BEL

You can also create your own predefined constants with the DECLARE
CONSTANT statement.

BASIC Concepts and Elements 4-9

For more information about constants, see Chapter 7 and the HP BASIC for
OpenVMS Reference Manual.

4.7 Variables

A variable is a storage location that is referred to by a variable name.
Variable values can change during program execution. Each named location
can hold only one value at a time.

A variable name can have up to 31 characters. The name must begin with
a letter; the remaining characters, if any, can be any combination of letters,
digits, dollar signs ($), underscores (_), and periods (.).

Variables can be grouped in an orderly series (such as a list or table) under

a single name, called an array. You refer to a single variable in an array by
using one or more subscripts that specify the variable’s position in the array.
(See Section 4.7.5 for more information on arrays.)

4.7.1 Floating-Point Variables

A floating-point variable is a named location that stores a floating-point
value. The storage space required to hold the value depends on the variable’s
REAL subtype. For example, each SINGLE floating-point variable requires 32
bits (4 bytes) of storage, while each DOUBLE floating-point variable requires
64 bits (8 bytes) of storage.

Note that if any integer value is assigned to a floating-point variable,
the value is converted to a floating-point number.

4.7.2 Integer Variables

An integer variable is a named location that stores a whole number. The
storage space required to hold the value depends on the variable’s INTEGER
subtype. For example, each BYTE integer variable requires 8 bits (1 byte) of
storage, while each LONG integer variable requires 32 bits (4 bytes) of storage.

If you assign a floating-point value to an integer variable, the fractional portion
of the value is trunctated; it does not round to the nearest integer. In the
following example, the value -5, not -6, is assigned to the integer variable.

B% = -5.7

Although the integer data types QUAD, LONG, WORD, and BYTE allow

the minimum values -9223372036854775808, -2147483648, -32768, and -128,
respectively, you cannot use these constants explicitly, because HP BASIC
reports an integer overflow error while attempting to parse the literal constant.
To use these values, you must use either radix notation, such as —“32768”L, or
a constant expression. For example:

4-10 BASIC Concepts and Elements

DECLARE WORD CONSTANT Word const = -32767 - 1

4.7.3 Packed Decimal Variables

A packed decimal (DECIMAL data type) variable is made up of several
storage locations, the number of which depends on the declared size of the
variable. However, a packed decimal variable is still referred to by a single
variable name.

When you declare a packed decimal variable, you specify the total number of
digits and the number of digits to the right of the decimal place that you want.

The following statement creates a packed decimal variable named My_decimal,
which can contain up to 8 digits: 6 digits to the left of the decimal point and
2 digits to the right of the decimal point.

OPTION TYPE = EXPLICIT
DECLARE DECIMAL (8,2) My decimal

Packed decimal numbers are most useful for dollars-and-cents calculations.

4.7.4 String Variables

Unlike some of the numeric variables described so far, a string variable does
not correspond to a single location in memory because a string variable is more
likely to exceed a single location in memory. Therefore, the value of a string
variable can be contained in any number of memory locations. However, a
string variable is still referred to by a single name. For example:

DECLARE STRING Employee name

4.7.5 Subscripted Variables

A subscripted variable is a floating-point, integer, packed decimal, RFA, or
string variable that is part of an array. Chapter 6 describes arrays in more
detail.

An array is a set of data organized in one or more dimensions. A one-
dimensional array is called a list or vector. A two-dimensional array is
called a matrix. Arrays can have up to 32 dimensions.

When you create an array, its size is determined by the number of dimensions

and the maximum size, called the bound, of each dimension. Subscripts begin
by default with 0, not 1. That is, when calculating the number of elements in a
dimension, you count from zero to the bound specified.

BASIC Concepts and Elements 4-11

The following DECLARE statement creates an 11 by 11 array of integers.
Therefore, the array contains a total of 121 array elements.

DECLARE INTEGER My array (10, 10)

There are many applications where you need to reference data for a particular
range of values. You can specify a lower bound other than zero for your arrays.
The following example declares an array containing the birth rates for the
years from 1945 to 1985:

OPTION TYPE
SIZE

EXPLICIT, &
REAL SINGLE

DECLARE REAL Birth rates (1945 TO 1985)

Subscripts define the position of an element in an array; the expression
Birth_rates(1970) refers to the 26th value of the array Birth_rates. For more
information about arrays, see Chapter 6.

Note

By default, the compiler signals an error if a subscript is larger than
the allowable range. Also, the amount of storage that the system can
allocate depends on available memory. Therefore, very large arrays can
cause an internal allocation error.

4.7.6 Initialization of Variables

BASIC sets variables to zero or null values at the start of program execution.
Variables initialized include the following:

e Numeric variables and array elements (except those in MAP or COMMON
statements).

e String variables and array elements (except those in MAP or COMMON
statements).

e Variables in subprograms. Subprogram variables (except those in MAP or
COMMON statements) are initialized to zero or the null string each time
the subprogram is called.

e Arrays created with an executable DIMENSION statement. The array is
reinitialized each time the array is redimensioned.

4-12 BASIC Concepts and Elements

4.8 Keywords and Reserved Words

Keywords are elements of the BASIC language. Keywords that are not
reserved can be used as user identifiers such as labels, variable or constant
names, or names of MAP or COMMON areas. Depending upon the location of
the keyword in your program statement, the compiler will treat it as either a
keyword or a user identifier. Your programs use keywords and reserved words
to:

e Define data
e Perform operations

e Invoke functions

See the HP BASIC for OpenVMS Reference Manual for a list of keywords and
reserved words.

Keywords determine whether the statement is executable or nonexecutable.
Executable statements such as PRINT, GOTO, and READ perform operations.
Nonexecutable statements such as DATA, DECLARE, and REM describe the
characteristics and arrangement of data, usage information, and comments.

Every statement except LET must begin with a keyword. A keyword cannot
have embedded spaces or be split across lines of text. There must be a space or
tab between the keyword and any other variables or operators.

There are also phrases of keywords. In this case, the spacing requirements
vary.
4.9 Operands, Operators, and Expressions

An operand contains a value. An operand can be a scalar, subscripted
variable, named constant, literal, and so on. An operator specifies a procedure
to be carried out by one or more operands. An expression consists of operands
separated by operators.

The following are types of operators:

Arithmetic
String
Relational
Logical

When combined with operands, these operators can produce:
e Numeric expressions

e String expressions

BASIC Concepts and Elements 4-13

¢ (Conditional expressions

For more information about operands, operators, and expressions, see the HP
BASIC for OpenVMS Reference Manual.

4.10 Assignment Statements

The following statements assign values to variables:

e LET
e INPUT
e LINPUT

e INPUT LINE

LET and INPUT statements allow you to assign values to any type of variable,
while LINPUT and INPUT LINE allow you to assign values to string variables.
For example:

LET A = 1.25

LET is an optional keyword. You can assign a value to more than one
variable at a time, although this is not recommended. Instead, use a separate
assignment statement each time you assign a value to a variable.

Whenever you assign a value to a numeric variable, BASIC converts the value
to the data type of the variable. If you assign a floating-point value to an
integer variable, BASIC truncates the value at the decimal point. If you assign
an integer value to a floating-point variable, BASIC converts the value to
floating-point format.

You can also assign values to variables with the DATA and READ statements;
however, this method requires that you know all input data values while you
are coding your program.

The INPUT, LINPUT, and INPUT LINE statements all assign values in the
context of data being read into the program. These statements are discussed
in Chapter 5.

4-14 BASIC Concepts and Elements

O

Simple Input and Output

This chapter explains how to use BASIC statements to move data to and from
your program.

5.1 Program Input
BASIC programs receive data in the following ways:

¢ You can enter data interactively while the program runs. You do this with
the INPUT, INPUT LINE, and LINPUT statements.

e If you know all the information your program will require, you can enter
it as you write the program. You do this with the READ, DATA, and
RESTORE statements, or you can name constants with the known values.

e You can read data from files outside the program. You do this with the
INPUT #, INPUT LINE #, and LINPUT # statements.

The following sections describe how to use these statements in detail.

5.1.1 Providing Input Interactively

The INPUT, INPUT LINE, and LINPUT statements prompt a user for data
while the program runs.

5.1.1.1 INPUT Statement

The INPUT statement interactively prompts the user for data. You can use the
optional prompt string to clarify the input request by specifying the type and
number of data elements required by the program. This is especially useful
when the program contains many variables, or when someone else is running
your program. For example:

INPUT "PLEASE TYPE 3 INTEGERS" ;B% ,C% ,D%
A% = B% + C% + D%

PRINT "THEIR SUM IS"; A%

END

Simple Input and Output 5-1

Output

PLEASE TYPE 3 INTEGERS? 25,50,75
THEIR SUM IS 150

When your program runs, BASIC stops at each INPUT, LINPUT, or INPUT
LINE statement, prints a string prompt, if specified, and an optional question
mark (?)! followed by a space; it then waits for your input. By using either a
comma or semicolon, you can affect the format of your string prompt as follows:

e If you have a semicolon separating the input prompt string from the
variable, BASIC prints the question mark and space immediately after the
input prompt string.

e Ifyou have a comma separating the input prompt string from the variable,
BASIC prints the input prompt string, skips to the next print zone, and
then prints the question mark and space.

See Section 5.2.1 for more information about print zones. For more information
about formatting string prompts, see Section 5.1.1.3.

You must provide one value for each variable in the INPUT request. If you do
not provide enough values, BASIC prompts you again. For example:

INPUT A,B
END

Output

? 5

26

BASIC interprets a carriage return (null input) as a zero value for numeric
variables and as a null string for string variables. For example:

2 5 (e
> [Foun)

These responses assign the value 5 to variable A and zero to variable B. In
contrast, if you provide more values than there are variables, BASIC ignores
the excess.

In the following example, BASIC ignores the extra value (8). You can type
multiple values if you separate them with commas. Because commas separate
variables in the PRINT statement, BASIC prints each variable at the start of a
print zone.

! The SET NO PROMPT statement turns off the optional question mark; see
Section 5.1.1.3.

5-2 Simple Input and Output

INPUT A,B,
PRINT A,B,
END
Output

2 5,6,7,8

5 6 7

C
C

If you name a numeric variable in an INPUT statement, you must supply
numeric data. If you supply string data to a numeric variable, BASIC signals
“Illegal number” (ERR=52). If you supply a floating-point number for an
integer variable, BASIC signals “Data format error” (ERR=50).

If you name a string variable in an INPUT statement, you can supply either
numbers or letters, but BASIC treats the data you supply as a string.
Because digits and a decimal point are valid text characters, numbers can
be interpreted as strings. For example:

INPUT "Please type a number"; A$
PRINT AS

Output

Please type a number? 25.5
25.5

BASIC interprets the response as a 4-character string instead of as a numeric
value.

You can type strings with or without quotation marks. However, if you want to
input a string containing a comma, you should enclose the string in quotation
marks or use the INPUT LINE or LINPUT statement. If you do not, BASIC
treats the comma as a delimiter and assigns only part of the string to the
variable. If you use quotation marks, be sure to type both beginning and
ending marks. If you leave out the end quotation mark, BASIC signals “Data
format error” (ERR=50).

5.1.1.2 INPUT LINE and LINPUT Statements
The INPUT LINE and LINPUT statements prompt you for string data while
your program runs. You can respond with strings that contain commas,
semicolons, and quotation marks, which are characters that the INPUT
statement interprets as delimiters.

The INPUT LINE statement accepts and stores all characters, including
quotation marks, semicolons, and commas, up to and including the line
terminator or terminators. LINPUT accepts all characters up to, but not
including, the line terminator or terminators.

Simple Input and Output 5-3

In the following example, because both INPUT LINE and LINPUT treat your
input as a string literal, BASIC interprets quotation marks, commas, and
semicolons as characters, not as string delimiters. When A$ is input with
the INPUT LINE statement, the carriage return line terminator is stored as
part of the string. The first PRINT statement tells BASIC to print all three
variables on one line, starting each one in a new print zone. However, when
BASIC prints the three strings, it prints the carriage return character at the
end of string A$; this terminates the current line and causes B$ to begin on a
new line.

INPUT LINE A$
LINPUT BS

LINPUT C$

PRINT AS$, BS, C$
PRINT "DONE"

END

Output
? SINGLE, DOUBLE

? "GFLOAT"
? HFLOAT; REAL Data Types

SINGLE, DOUBLE
"GFLOAT" HFLOAT; REAL Data Types
DONE

The INPUT, INPUT LINE, and LINPUT statements can accept data from a
terminal or a terminal-format file. See Section 5.3 for information about I/O to
terminal-format files.

5.1.1.3 Enabling and Disabling the Question Mark Prompt

With the SET PROMPT statement, HP BASIC allows you to enable and disable
the question mark prompt.

By default, HP BASIC displays the question mark prompt. The following
example displays the default prompt string:

INPUT "Please input 3 integer values";A%, B%, C%

Output

Please input 3 integer values?

You can, however, disable the question mark prompt by specifying the SET NO
PROMPT statement.

SET NO PROMPT
INPUT "Please input 3 integer values";A%, B%, C%

5-4 Simple Input and Output

Output

Please input 3 integer values

When you disable the question mark prompt, you can specify your own prompt
at the end of each prompt string. The following example inserts a colon at the
end of the prompt string:

SET NO PROMPT
INPUT "Please enter your name: ";Employee name$

Output

Please enter your name:

Now, if the SET PROMPT statement is specified, BASIC displays both the
colon and a question mark.

SET PROMPT
INPUT "Please enter your name: ";Employee name$

Output

Please enter your name: ?

The SET [NO] PROMPT statement is valid for INPUT, LINPUT, INPUT
LINE, and MAT INPUT statements. If the prompt is disabled, any one of the
following commands reenables it:

e The SET PROMPT statement
e The CHAIN statement
e The NEW, OLD, RUN, or SCRATCH compiler command

5.1.2 Providing Input from the Source Program

The following sections describe the READ, DATA, and RESTORE statements.
To use READ and DATA statements, you must know what data is required
when writing the program. These statements do not stop to request data while
the program runs; therefore, your program runs faster than with the INPUT
statements.

The RESTORE statement lets you use the same data items more than once.

Simple Input and Output 5-5

5.1.2.1 READ and DATA Statements

The READ statement reads values from a data block. A data pointer keeps
track of the data read. Each time the READ statement requests data, BASIC
retrieves the next available constant from a DATA statement. The DATA
statement contains the values that the READ statement reads. In a DATA
statement, integer constants are whole numbers; they cannot be followed by
a percent sign. In the following example, BASIC signals an error because the
integer constants in the DATA statement contain percent signs:

10 WHEN ERROR USE catch it
DATA 1%, 2%, 3%
20 READ A%, B%, C%
END WHEN
400 HANDLER catch it
PRINT "ERROR NUMBER IS "; ERR
PRINT "ERROR AT LINE "; ERL
PRINT "ERROR MESSAGE IS "; ERTS (ERR)

END HANDLER
500 END
Output

ERROR NUMBER IS 50
ERROR AT LINE 20
ERROR MESSAGE IS %Data format error

A READ statement is not valid without at least one DATA statement. If your
program contains a READ statement but no DATA statement, BASIC signals
the compile-time error “READ without DATA”.

READ statements can appear either before or after their corresponding DATA
statements. The only restriction is that the DATA statements must be in the
same order as their corresponding READ statements.

You can have more than one DATA statement in a program. DATA statements
are ignored without at least one READ statement. You can use an ampersand
to continue a DATA statement. For example:

10 DATA "ABRAMS", BAKER, CHRISTENSON, &
DOBSON, "EISENSTADT", FOLEY

Comment fields are not allowed in DATA statements. For example, the
following statements cause A$ to contain the string “ABC |COMMENT”:

READ A$
DATA ABC !COMMENT

When you compile a program, BASIC creates one data block for each program
unit. Each data block is local to the program or subprogram containing it; this
means that you cannot share DATA statements between program modules.

5-6 Simple Input and Output

The data block contains the values in all DATA statements in that program
unit. These values are stored in line number order. Each time BASIC executes
a READ statement, it retrieves the next value in the data block.

BASIC signals an error if you do one of the following:

e Assign alphabetic characters to a numeric variable. BASIC signals “Data
format error” (ERR=50).

e Have more variables in the READ statements than there are values in the
DATA statements. BASIC signals “Out of data” (ERR=57).

BASIC ignores excess data in DATA statements.

The following example of READ and DATA mixes string and floating-point data
types. The first READ statement reads the first data item in the program:
“The circumference is”. The second READ statement reads the second data
item: 40.5.

DATA "The circumference is"
DATA 40.5

READ text$

READ radius

CIRCUMFERENCE = PI * radius * 2
PRINT text$; CIRCUMFERENCE

END

Output
The circumference is 254.469

5.1.2.2 RESTORE Statement

The RESTORE statement lets you read the same data more than once. It has
no effect without READ and DATA statements.

RESTORE resets the data pointer to the beginning of the first DATA statement
in the program unit. You can then read data values again. Consider the
following program:

10 READ B,C,D
20 RESTORE

30 READ E,F,G

40 DATA 6,3,4,7,9,2
50 END

The READ statement in line 10 reads the first three values in the DATA
statement:

B=6

C=3

D=4

Simple Input and Output 5-7

The RESTORE statement resets the pointer to the beginning of line 40. During
the second READ statement (line 30), the first three values are read again:

E=6
F=3
G=4
Without the RESTORE statement, line 30 would assign the following values:
E=7
F=9
G=2

5.2 Program Output

The PRINT statement displays data on your terminal during program
execution. BASIC evaluates expressions before displaying results. You can also
print and format data with the PRINT USING statement. For information
about the PRINT USING statement, see Chapter 14.

When you use the PRINT statement, HP BASIC does the following:

e Precedes positive numbers with a space and negative numbers with a
minus sign

e Prints a space after every number
e Prints strings without leading or trailing spaces

When an element in a list is not a simple variable or constant, BASIC
evaluates the expression before printing the value. For example:

A =45

B =55
PRINT A + B
END

Output
100

However, BASIC interprets text inside quotation marks as a string literal.

A =45

B =55

PRINT "A + B"
END

5-8 Simple Input and Output

Output
A+ B

The PRINT statement without an expression prints a blank line.

PRINT "This example leaves a blank line"
PRINT

PRINT "between two lines."

END

Output
This example leaves a blank line

between two lines.

5.2.1 Print Zones—The Comma and the Semicolon

A terminal line contains zones that are 14 character positions wide. The
number of zones in a line depends on the width of your terminal: a 72-
character line contains 5 zones, which start in columns 1, 15, 29, 43, and 57.
A 132-character line has additional print zones starting at columns 71, 85, 99,
and 113.

The PRINT statement formats program output into these zones in different
ways, depending on the character that separates the elements to be printed. If
a comma precedes the PRINT item, BASIC prints the item at the beginning of
the next print zone. If the last print zone on a line is filled, BASIC continues
output at the first print zone on the next line. For example:

INPUT 2 ,B ,C ,D ,E ,F
PRINT A ,B ,C ,D ,E ,F

END

Output

? 5,10,15,20,25, 30 [Retum]

5 10 15 20 25
30

BASIC skips one print zone for each extra comma between list elements. For
example, the following program prints the value of A in the first zone and the
value of B in the third zone:

A =25

B =10

PRINT "first zone",,"third zone"
PRINT A, ,B

END

Simple Input and Output 5-9

Output

first zone third zone
5 10

If you separate print elements with a semicolon, BASIC does not move to the
next print zone. In the following example, the first PRINT statement prints
two numbers. (Printed numbers are preceded by a space or a minus sign and
followed by one space.) The second PRINT statement prints two strings.

PRINT 10; 20
PRINT "ABC"; "XYZ"
END

Output

10 20
ABCXYZ

Whether you use a comma or a semicolon at the end of the PRINT statement,
the cursor remains at its current position until BASIC encounters another
PRINT or INPUT statement. In the following example, BASIC prints the
current values of X, Y, and Z on one line because a comma follows the last item
in the line PRINT X, Y:

INPUT X,Y,Z
PRINT X,Y,
PRINT 7
END

Output
? 5,10,15
5 10 15

The following example shows PRINT statements using a comma, a semicolon,
and no formatting character after the last print item:

INo comma after I%, so each element
!Prints on its own line

|

PRINT I% FOR I% = 1% TO 10%

PRINT

|

IA comma follows J%, so each
lelement prints in a separate zone
|

MARGIN 80%

PRINT J%, FOR J% = 1% TO 10%

PRINT

5-10 Simple Input and Output

!A semicolon follows K%, so print
lelements are packed together

|

PRINT K%; FOR K% = 1% TO 10%

END

Output

W O O oy Ul R W N

=
o

2 3 4 5
6 7 8 9 10
1 2 3 4 5 6 7 8 9 10

=

Commas and semicolons also let you control the placement of string output.
For example:

PRINT "first zone",,"third zone",,"fifth zone"
END

Output

first zone third zone fifth zone

The extra comma between strings causes BASIC to skip another print zone.
In the following example, the first string is longer than the print zone. When
the two strings are printed, the second string begins in the third print zone
because that is the next available print zone after the first string is printed.

PRINT "abcdefghijklmnopgrstuvwxyz", "pizza"
PRINT "first zone","second zone","third zone"

Output
abcdefghijklmnopgrstuvwxyz pizza
first zone second zone third zone

Simple Input and Output 5-11

5.2.2 Output Format for Numbers and Strings

BASIC prints strings exactly as you type them, with no leading or trailing
spaces. It does not print quotation marks unless they are delimited by another
matching pair. For example:

PRINT 'PRINTING "QUOTATION" MARKS'’
END

Output
PRINTING "QUOTATION" MARKS

BASIC follows these rules for printing numbers:

e When you print numeric fields, BASIC precedes each number with a space
or a minus sign and follows it with a space.

e BASIC does not print trailing zeros to the right of the decimal point. If all
digits to the right of the decimal point are zeros, BASIC omits the decimal
point as well.

e When you print LONG integers, BASIC prints up to 10 significant digits.
e When you print DECIMAL values, HP BASIC prints up to 31 digits.
HP BASIC follows these rules for printing floating-point numbers:

e If a floating-point number can be represented exactly by 6 decimal digits
(or fewer) and, optionally, a decimal point, BASIC prints it that way.

e When you print a floating-point number whose integer portion is 6 decimal
digits or less (for example, 1234.567), BASIC rounds the number to 6 digits
(1234.57). If the integer portion of the number is 7 decimal digits or larger,
BASIC rounds the number to 6 digits and prints it in E format. See the
HP BASIC for OpenVMS Reference Manual for more information about E
format.

e When you print a floating-point number with magnitude from 0.1
to 1, BASIC rounds it to 6 digits. When you print a floating-point number
with more than 6 digits, and with magnitude smaller than 0.1, BASIC
rounds it to 6 digits and prints it in E format.

The PRINT statement displays only up to 6 digits of precision for floating-point
numbers. This corresponds to the precision of the SINGLE or SFLOAT data
types. To display the extra digits in DOUBLE, GFLOAT, TFLOAT, or XFLOAT
numbers, you must use the PRINT USING statement. See Chapter 14 for
more information about the PRINT USING statement.

5-12 Simple Input and Output

The following example shows how BASIC prints various numbers with single
precision:

FOR I = 1 TO 20
PRINT 2*(-I),I,2"I

NEXT I

END

Output
.5 1 2
.25 2 4
.125 3 8
.0625 4 16
.03125 5 32
.015625 6 64
.78125E-02 7 128
.390625E-02 8 256
.195313E-02 9 512
.976563E-03 10 1024
.488281E-03 11 2048
.244141E-03 12 4096
.12207E-03 13 8192
.610352E-04 14 16384
.305176E-04 15 32768
.152588E-04 16 65536
.767939E-05 17 131072
.38147E-05 18 262144
.190735E-05 19 524288
.953674E-06 20 .104858E+07

5.3 Terminal-Format Files

Terminal-format files let you perform simple I/O to disk files. The records in
a terminal-format file must be accessed sequentially. That is, you must access
the records in the file one by one, from the first to the last. You can add new
records only at the end of the file.

Just as the INPUT, LINPUT, and INPUT LINE statements receive information
from a terminal, the INPUT #, LINPUT #, and INPUT LINE # statements
receive information from a terminal-format file. And, as the PRINT statement
sends information to the terminal, the PRINT # statement sends information
to a terminal-format file.

Terminal-format files are useful for creating files to be printed on a line
printer, or for supplying a program with moderate amounts of input. However,
if you want to use the same file for both input and output, you should not use
terminal-format files. Instead, use sequential, relative, or indexed files. For
more information, see Chapter 13.

Simple Input and Output 5-13

You do not have to use a program to create a terminal-format file. You can use
a text editor to create a file and insert data, then use a BASIC program to open
the file and retrieve the data.

5.3.1 Opening and Closing a Terminal-Format File

You use the OPEN statement to create a file, or to gain access to an existing
file. If you do not specify either FOR INPUT or FOR OUTPUT in the OPEN
statement, BASIC tries to open an existing file. If the file does not exist,
BASIC creates a new one.

The channel specification lets you associate a number with the file for as long
as the file is open. All I/O operations to or from the file use this number.

When you are finished accessing a file, you close it with the CLOSE
statement.

5.3.2 Writing Records to a Terminal-Format File

The following example receives information from a terminal, then writes the
information to a terminal-format file as a report:

PRINT "This program creates a daily sales report file named SALES.DAT"
OPEN "SALES.DAT" FOR OUTPUT AS FILE #4%
PRINT #4%, "Salesperson","Sales Area","Items Sold"
PRINT #4%
INPUT "How many salespersons for today’s report"; sales persons%
FOR I% = 1% TO sales persons%
INPUT "Salesperson’s name"; s_name$
INPUT "Sales area"; area$
INPUT "Number of items sold"; items sold%
PRINT #4%, s name$, area$, items sold%
NEXT I%
CLOSE #4%
END

Output

This program creates a daily sales report file named SALES.DAT
How many salespersons for today’s report? 3
Salesperson’s name? JONES

Sales area? NJ

Items sold? 5

Salesperson’s name? SMITH

Sales area? NH

Items sold? 6

Salesperson’s name? BAINES

Sales area? VT

Items sold? 8

5-14 Simple Input and Output

This program first prints a header explaining its purpose, then opens a
terminal-format file on channel 4. After this file is opened, the two

PRINT # statements place an explanatory header followed by a blank line into
the file.

The program then prompts you for the number of salespersons for which data
is to be entered. The FOR...NEXT loop prompts for the name, sales area, and
items sold for each salesperson. The FOR...NEXT loop executes only as many
times as there are salespersons. See Chapter 9 for more information about
FOR...NEXT loops.

After the data has been entered for each salesperson, the program writes
this information to the terminal-format file. Because the response to the first
question was 3, the FOR...NEXT loop executes three times.

After the last item has been printed to the file, the program closes the file and
ends. When you display the file with the DCL command TYPE, you see that
the information is printed under the proper headers. You can also print the file
on a line printer. The PRINT # statement formats the output in print zones as
the PRINT statement does.

$ TYPE SALES.DAT

Salesperson Sales Area Items Sold
JONES NJ 5
SMITH NH 6
BAINES VT 8

Simple Input and Output 5-15

6

Arrays

An array is a set of data that is ordered in any number of dimensions. This
chapter describes how to create and use HP BASIC arrays.

6.1 Overview of Arrays

A one-dimensional array is called a list or vector. A two-dimensional array is
called a matrix. HP BASIC arrays can have up to 32 dimensions, and a specific
type of HP BASIC arrays can be redimensioned at run time. In addition, you
can specify the data type of the values in an array by using data type keywords
or suffixes.

The subscript of an element in an array defines that element’s position in the
array. When you create an array, you specify:

¢ The number of dimensions that the array contains
e The range of values for the subscripts in each dimension of the array

BASIC arrays are zero-based by default; that is, when calculating the number
of elements in a dimension, you count from zero to the number of elements
specified. For example, an array with an upper bound of 10 and no specified
lower bound has 11 elements: 0 to 10, inclusive. The array My_array(3,3) has
16 elements: 0 to 3 in each dimension, or 42.

BASIC also lets you specify a lower bound for any or all dimensions in an
array, unless the array is a virtual array. By specifying lower and upper
bounds for arrays, you can make your array subscripts meaningful. For
example, the following array contains sales information for the years 1990 to
1999:

DECLARE REAL Sales data (1990 TO 1999)

To refer to an element in the array Sales_data, you need only specify the year
you are interested in. For example, to print the information for the year 1999,
you would enter:

PRINT Sales data(1999)

Arrays 6-1

You can create arrays either implicitly or explicitly. You implicitly create
arrays having any number of dimensions by referencing an element of the
array. If you implicitly create an array, BASIC sets the upper bound to 10
and the lower bound to zero. Therefore, any array that you create implicitly
contains 11 elements in each dimension.

The following example refers to the array Student_grades. If the array has not
been previously declared, BASIC will create a one-dimensional array with that
name. The array contains 11 elements.

Student grades(8) = "B"

You create arrays explicitly by declaring them in a DIM, DECLARE,
COMMON, or MAP statement, or record declaration. Note that if you

want to specify lower bounds for your array subscripts, you must declare the
array explicitly.

When you declare an array explicitly, the value that you give for the upper
bound determines the maximum subscript value in that dimension. If you
specify a lower bound, then that is the minimum subscript value in that
dimension. If you do not specify a lower bound, BASIC sets the lower bound in
that dimension to zero. You can specify bounds as either positive or negative
values. However, the lower bound of each dimension must always be less than
or equal to the upper bound for that dimension.

You can use MAT statements to create and manipulate arrays; however, MAT
statements are valid only on arrays of one or two dimensions. In addition, the
lower bounds of all dimensions in an array referenced in a MAT statement
must be zero.

6.2 Creating Arrays Explicitly

You can create arrays explicitly with four BASIC statements: DECLARE,
DIMENSION, COMMON, and MAP.

In addition, you can declare arrays as components of a record data type. See
Chapter 8 for more information about records.

Normally, you use the DECLARE statement to create arrays. However, you
might want to create the array with another BASIC statement as follows:

e Use the DIM statement to create virtual arrays and arrays that can be
redimensioned at run time.

e Use the COMMON statement to create arrays that can be shared among
program modules or to create arrays of fixed-length strings.

6-2 Arrays

e Use the MAP statement to create an array and associate it with a record
buffer, or to overlay the storage for an array, thus accessing the same
storage in different ways.

When you create an array, the bounds you specify determine the array’s size.
The maximum value allowed for a bound can be as large as 2147483467,
however, this number is actually limited by the amount of virtual storage
available to you. Very large arrays and arrays with many dimensions can
cause fatal errors at both compile time and run time.

The following restrictions apply to arrays:

e When referencing an array, you must use the same number of subscripts as
was specified when the array was created.

®* You can use identical names for a simple variable and an array; for
example, A% and A%(5,5). However, this is not a recommended
programming practice. If you use identical names for arrays with a
different number of subscripts, for example, A(5), and A(10,10), BASIC
prints the error “Inconsistent subscript usage” at compile time.

e If subscript checking is enabled, HP BASIC signals the error “Subscript out
of range” (ERR=55) if you reference an array element whose subscripts are
one of the following:

— Greater than the current upper bound of the array
— Less than the current lower bound of the array

— Less than zero where no lower bound was specified

6.2.1 Creating Arrays with the DECLARE Statement

The DECLARE statement creates and names variables and arrays. All
elements of arrays created with the DECLARE statement are initialized to
zero or the null string. The following statement creates a longword integer
array with 11 elements:

DECLARE LONG FIRST ARRAY (1980 TO 1990)

Note that the STRING data type with the DECLARE statement causes the
creation of an array of dynamic strings. To create an array of fixed-length
strings, declare the array in a COMMON or MAP statement or as part of a
RECORD structure.

Arrays 6-3

6.2.2 Creating Arrays with the DIM Statement

The DIM statement creates and names one or more arrays. Use the DIM
statement to create an array when you want to:

¢ Redimension the array at run time
e C(Create a virtual array

When creating arrays with the DIM statement, you specify the data type of the
array elements with a data type keyword, a special suffix on the array name,
or both. The array name can be any valid variable name. If you do not supply
a data type keyword, the data type is determined by the suffix of the array
name:

e If the array name ends with a dollar sign ($), the array stores string data.

e If the array name ends with a percent sign (%), the array stores integer
data.

e If the array name does not end with either a percent sign or a dollar
sign, the array stores data of the default type. The default type is single-
precision, floating-point unless you change the default. See Chapter 4 for
more information about default data types.

Even if the DIM statement contains a data type keyword, the array name can
still end in the appropriate data type suffix. This makes the data type of the
array immediately obvious.

The DIM statement can be either executable or declarative. If the specified
bounds are constants, the DIM statement is declarative. This means that the
storage is allocated at compile time, and the array cannot appear in any other
DIM statement.

However, if any of the specified bounds are variables (simple or subscripted),
the DIM statement is executable. This means that the storage for the array
is allocated at run time, and the array can be redimensioned with a DIM
statement any number of times.

Note

In the DIM statement, bounds can be either constants or variables
(simple or subscripted), but not expressions.

When an array is redimensioned with the executable DIM statement, the array
can become larger or smaller than it was. However, redimensioning an array
in this way causes it to be reinitialized, and all data in the array is lost.

6-4 Arrays

In contrast, MAT statements let you redimension an array to be the same size
or smaller than it was. However, MAT statements redimension arrays only
when assigning values or performing matrix I/O; therefore, the fact that MAT
statements reinitialize the array does not matter. See Section 6.6 for more
information about MAT statements.

6.2.2.1 Declarative DIM Statements

Declarative DIM statements have integer constants as bounds. The percent
sign is optional for bounds; however, BASIC signals the error “Integer
constant required” if a constant bound contains a decimal point. The following
statement creates a 101-element virtual array containing string data. The
elements of this array can each have a maximum length of 256 characters.

DIM #1%, STRING VIRT_ARRAY(lOO) = 256%
The following restrictions apply to the use of declarative DIM statements:

e A declarative DIM statement must lexically precede any reference to the
array it dimensions.

e The lower bounds of all virtual array dimensions must be zero.

¢ You must open a VIRTUAL file on the specified channel before you can
access elements of the virtual array.

6.2.2.2 Executable DIM Statements

Executable DIM statements have at least one variable bound. Bounds can be
constants or simple variables, but at least one bound must be a variable.
Executable DIM statements let you redimension an array at run time.

The bounds of the array can become larger or smaller, but the number of
dimensions cannot change. For example, you cannot redimension a four-
dimensional array to be five-dimensional.

The executable DIM statement cannot be used on arrays in COMMON, MAP,
DECLARE, or declarative DIM statements, nor on virtual arrays or arrays
received as formal parameters.

Whenever an executable DIM statement executes, it reinitializes the array. If
you change the values of an executable DIM statement, the initial values are
reset each time the DIM statement is executed.

Arrays 6-5

In the following example, the second DIM statement reinitializes the array
real_array; therefore, real_array(1%) equals zero in the second PRINT
statement:

X% = 10%

Y% = 20%

DIM real array (X%)

real array(l%) = 100
PRINT real array(1%)
)
1

DIM real array(Y%
PRINT real array(1%)
END

Output

100
0

You cannot reference an array named in an executable DIM statement until
after the DIM statement executes. If you reference an array element declared
in an executable DIM statement whose subscripts are larger than the bounds
specified in the last execution of the DIM statement, BASIC signals the run-
time error “Subscript out of range” (ERR = 55), provided subscript checking is
enabled.

6.2.3 Creating Arrays with the COMMON Statement

Create arrays with the COMMON statement when you need an array of fixed-
length strings, or when you want to share an array among program modules.
Program modules can share arrays in COMMON statements by defining a
common block with the same name.

The COMMON statements in the following programs create a 100-element
array of fixed-length strings, each element 10 characters long. Because the
main program and subprograms use the same common name, the storage
for these arrays is overlaid when the programs are linked; therefore, both
programs can read and write data to the array.

IMain Program
COMMON (ABC) STRING access_list (1 TO 100) = 10

| Subprogram

SUB SUB1
COMMON (ABC) STRING new list(1 TO 100) = 10

6—6 Arrays

6.2.4 Creating Arrays with the MAP Statement

Create arrays with the MAP statement only when you want the array to be
part of a record buffer, or when you want to overlay the storage containing the
array. Note that string arrays in maps are always fixed-length.

You associate the array with a record buffer by naming the map in the MAP
clause of the OPEN statement.

In the following example, the MAP statement creates two arrays:

an 11-element fixed-length string array named team and a 33-element array of
WORD integers named bowling_scores. Because the OPEN statement specifies
MAP ABC, the storage for these arrays is used as the record buffer for the
open file.

MAP (ABC) STRING team(10) = 20, WORD bowling scores(0 TO 32)
OPEN "BOWLING.DAT" AS FILE #1%, SEQUENTIAL VARIABLE, MAP ABC

6.3 Creating Arrays Implicitly
Create arrays implicitly as follows:
e By referencing an element of an array that has not been explicitly declared
e By using MAT statements

When you first create an implicit array, the lower bound is zero and the upper
bound is 10. An array created by referencing an element can have up to 32
dimensions in BASIC. An array created with a MAT statement can have only
one or two dimensions.

Note

The ability to create arrays implicitly exists for compatibility with
previous implementations of BASIC. However, it is better programming
practice to declare all arrays explicitly before using them.

If you reference an element of an array that has not been explicitly declared,
BASIC creates a new array with the name you specify. Arrays created by
reference have default subscripts of (0 TO 10), (0 TO 10, 0 TO 10), (0 TO 10, 0
TO 10, 0 TO 10), and so on, depending on the number of dimensions specified
in the array reference. For example, the following program implicitly creates
three arrays and assigns a value to one element of each:

Arrays 6-7

LET A(5,5,5) = 3.14159
LET B%(3) = 33
LET C$(2,2) = "Russell Scott"

The first LET statement creates an 11-by-11-by-11 array that stores floating-
point numbers and assigns the value 3.14159 to element (5,5,5). The second
LET statement creates an 11-element list that stores integers and assigns
the value 33 to element (3), and the third LET statement creates an 11-by-11
string array and assigns the value “Russell Scott” to element (2,2).

When you create an implicit numeric array by referring to an element, BASIC
initializes all elements (except the one assigned a value) to zero. For implicit
string arrays, BASIC initializes all elements (except the one assigned a value)
to a null string. When you implicitly create an array, you cannot specify

a subscript greater than 10. An attempt to do so causes BASIC to signal
“Subscript out of range” (ERR = 55), provided that subscript checking is
enabled.

Note that you cannot create an array implicitly, then redimension the array
with an executable DIM statement. The DIM statement must execute before
any reference to the array.

An array name cannot appear in a declarative statement after the array has
been implicitly declared by a reference. The following DECLARE statement is
therefore illegal and causes HP BASIC to signal the compile-time error “illegal
multiple definition of name NEW_ARRAY.”

new_array (5,5,5) =1
DECLARE LONG new array (15,10,5)

6.4 Determining the Bounds of an Array

BASIC provides two built-in functions, LBOUND and UBOUND, that allow
you to determine the lower and upper bounds, respectively, for any dimension
in an array.

The following example sets up four variables that contain the lower and
upper bounds of both dimensions of the array Sales_data. These variables
represent the years and months for which there is sales data available. The
two FOR...NEXT loops print all the sales information in the array, starting
with the first year and month, and ending with the last year and month.

6-8 Arrays

DECLARE Sales data (1900 TO 1999, 1 TO 12)

Month start% = LBOUND (Sales data, 2)
Year start% = LBOUND (Sales data, 1)
Month end% = UBOUND (Sales data, 2)
Year end% = UBOUND (Sales data, 1)
FOR Year% = Year start% TO Year end%

FOR Month% = Month start% TO Month end%
PRINT Sales data(Year%, Month%)
NEXT Month$%

NEXT Year%

Note

You cannot implicitly declare arrays with the LBOUND and UBOUND
functions. These functions can be used only with arrays that have been
previously declared.

6.5 Assigning and Displaying Array Values

The following sections explain how to access and write to BASIC arrays with
the LET and PRINT statements.

6.5.1 Assigning Values with the LET Statement

The LET statement assigns values to individual array elements. For example:

DIM voucher num%(100)
LET voucher num%(20) = 3253%

END

You can also assign values to a portion of an array with the LET statement and
a FOR..NEXT loop. In the following example, the FOR...NEXT loop assigns
zero to array elements (1,5) to (1,10), (2,5) to (2,10), and (3,5) to (3,10):

Arrays 6-9

DIM po_number% (100,100)

FOR I% = 1% TO 3%
FOR J% = 5% TO 10%
LET po_number% (I%,J%) = 0
NEXT J%
NEXT I%

o\°

END

6.5.2 Listing Array Elements with the PRINT Statement

You print individual array elements by naming those elements in the PRINT
statement. For example:

PRINT parts list$(35%)
With a FOR...NEXT loop, you can print all or part of an array. For example:

DIM capture ratio(10,10)

FOR Y% = 7% TO 10%
FOR X% = 7% TO 10%
PRINT capture ratio(X%,Y%)
NEXT X%
NEXT Y%

6.6 Using MAT Statements
Note

The MAT statements discussed in this section are not related to
the MAT GRAPH and MAT PLOT graphics statements. For more
information about these statements, see Programming with VAX
BASIC Graphics.

MAT statements let you assign values to or display entire arrays with a single
statement. They also let you do the following:

e Implicitly create arrays
e Assign names to arrays

e Specify array dimensions

6—10 Arrays

¢ Redimension existing arrays (to equal or smaller sizes)
e Assign element values

e Print the contents of arrays

e Perform matrix arithmetic

MAT statements are valid only on arrays of one or two dimensions. When
MAT statements execute, they use row and column zero to store intermediate
calculations. This means that MAT statements can overwrite data stored in
row and column zero of your arrays, and you should not depend on data in
these elements if your program uses MAT statements.

Note

MAT statements cannot be used with arrays that have lower bounds
other than zero. An attempt to specify a lower bound other than zero
for an array in a MAT statement results in a compile-time error.

The default subscripts for arrays created implicitly with MAT statements are
(10) or (10,10). The default is two dimensions. This means that if you create
an array with a MAT statement and do not specify any subscripts, BASIC
creates a two-dimensional, 11-by-11 array. If you specify a single subscript,
BASIC creates a one-dimensional array with 11 elements.

Table 6-1 lists MAT statements and explains their functions.

Table 6-1 MAT Statements

Statement Function

MAT Assigns values of zero, 1, or a null string to array elements.
Also copies the values of one array to another and performs
matrix arithmetic.

MAT READ Assigns DATA statement values to array elements.

MAT INPUT [#] Assigns values to array elements from your terminal or a
terminal-format file.

MAT LINPUT [#] Assigns string values to string array elements from your
terminal or from a terminal-format file.

MAT PRINT [#] Displays the contents of an array on your terminal, or writes
array element values to a terminal-format file.

In the following example, the first MAT statement creates the string array
z_array$ with eight rows and eight columns and assigns a null string to all

Arrays 6-11

elements. The second MAT statement redimensions the array to six rows and
six columns. The third MAT statement adds the values in each corresponding
element of arrays B and C and stores the values in the corresponding elements

of array A.
MAT z_array$ = NUL$(7,7)
MAT z_array$ = NUL$(5,5)

MAT A =B + C
END

6.6.1 MAT Statement

The MAT statement can create an array and optionally assign values to all
elements in that array. By specifying one of the MAT statement keywords, you
can initialize arrays in one of four ways. Table 6-2 lists the MAT statement
keywords and their functions.

Table 62 MAT Statement Keywords
MAT Keyword Function

ZER Sets the value of all elements in a numeric array to zero.

CON Sets the value of all elements in a numeric array to 1, except those
in row and column zero.

IDN Sets the array to the identity matrix, that is, it sets the value of all

elements in real or integer arrays to zero, except for those elements
on the diagonal from element (1,1) to element (n,n), where n is the
largest subscript in the array. The elements on the diagonal are set
to 1. IDN applies to square arrays only.

NULS$ Sets the value of all elements in a string array to the null string,
except those in row and column zero.

The array name can specify an existing array. MAT statements do not assign
values to row and column zero.

Note that the MAT statement does not require subscripts. In the case of

existing arrays:

e If you do not specify subscripts, BASIC does not change the current
subscripts.

e If you specify subscripts, BASIC redimensions the array to the specified
subscripts. When redimensioning arrays with MAT, you cannot increase
the total number of array elements (including those in row and column
Z€ero).

6-12 Arrays

When you are creating arrays with MAT:

e Ifyou do not supply subscripts, BASIC assigns two subscripts, each with a

value of 10.

e If you specify subscripts, they define the dimensions of the array being
implicitly created. Subscript values cannot exceed 10. Consider the
following example:

DIM A(10,10), B(15), C(20,20)

ISets all elements of A to 0

ISets elements of B to 1; redimensions B
IRedimensions C to 10x10 identity matrix

MAT A = ZER

MAT B = CON(10)
MAT C = IDN(10,10)
PRINT "ARRAY A:"
MAT PRINT A;
PRINT

PRINT "ARRAY B:"
MAT PRINT B;
PRINT

PRINT "ARRAY C:"
MAT PRINT C;
Output

ARRAY A:

000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
ARRAY B:

11 11 11
ARRAY C:

100 0 0 0
001 0 0 0 0
000 1 0 0 0
000 0 1 0 0
000 0 0 1 0
00 0 0 01
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0
000 0 0 0 0

O O OO OO oo oo

OO O PR OO0 O oo

[l OO OO OO OO oo

OO P OO OO O oo

Lol OO OO OO OO oo

OFP OO OO0 OoOoOo

Lol O O OO OO OO oo

P OO OOOOoOoOoOoOo

Arrays 6-13

6.6.2 MAT READ Statement

The MAT READ statement assigns values from DATA statements to array
elements. Subscripts define either the dimensions of the array being created or
the new dimensions of an existing array; subscripts are optional in MAT READ
statements.

If you do not provide enough data in DATA statements to fill the specified
array, BASIC leaves the remaining array elements unchanged. If you provide
more data values than there are array elements, BASIC assigns enough values
to fill the array and leaves the DATA pointer at the next value.

In the following example, BASIC fills matrix B with the first four DATA items,
fills matrix C with the next four DATA values, and leaves the DATA pointer at
the ninth value in the DATA list:

MAT READ B(2,2)
MAT READ C(2,2)
PRINT

PRINT "MATRIX B"
PRINT

PRINT

MAT PRINT B;
PRINT

PRINT "MATRIX C"
PRINT

PRINT

MAT PRINT C;
DATA 1,2,3,4,5,6,7,8,9,10
END

Output
MATRIX B

1 2
3 4
MATRIX C

5 6
7 8

6.6.3 MAT INPUT [#] Statement

The MAT INPUT statement assigns values from your terminal to array
elements. The MAT INPUT statement reads data from a terminal-format file
and writes it to an array. The optional subscripts in a MAT INPUT statement
define either the dimensions of the array being created implicitly or the new
dimensions of an existing array. If you are implicitly creating the array, the
value of a subscript cannot exceed 10.

6-14 Arrays

The MAT INPUT statement requests data from your terminal, as does the
INPUT statement; it prints a question mark (?) prompt that you can disable
with the SET NO PROMPT statement and then enable with the

SET PROMPT statement. However, you cannot include a string prompt with
the MAT INPUT statement.

When you enter a series of values separated by commas, BASIC enters the
values you supply into successive array elements by row, starting with element
(1,1) and filling row 1 before starting row 2. If you provide fewer data items
than there are elements, the remaining elements are unchanged. If you
provide more items than there are elements, BASIC ignores the excess.

The MAT INPUT statement takes values from an open file and assigns them to
the matrix elements by rows, starting with element (1,1). It fills the elements
in row 1 before starting row 2. The file can have one or more values in each
record; however, multiple values must be separated with commas.

In the following example, the open file on channel 3 contains the following
data: 1, 2, 3,4, 5,6, 7,8,9, 10, 11, 12, 13. The MAT INPUT statement reads
this data and uses it to fill the array A, filling in row 1 before beginning row 2.
The MAT INPUT B(2,2) statement dimensions array B to 9 elements (0 to 2 in
each dimension) and provides values for all the elements except those in row
and column zero.

MAT INPUT #3, A
PRINT

MAT PRINT A;
MAT INPUT B(2,2)
PRINT

MAT PRINT B;

Output
1 2 3
11 12 13
00 0

o

H O OO OoOoOooOo

B O OO0 oo oo
O OO OO OO O Ok
O OO OO OO oo u
OO O OO OO O OO
OO OO OO OoOOooJ
OO O OO OO O o
OO OO OO OO o \Vw
OO OO OO OO o

-
w

2
1 2
3 4

Note that the MAT PRINT statement does not print row and column zero. For
more information about the MAT PRINT statement, see Section 6.6.5.

Arrays 6-15

The MAT INPUT statement can also redimension an existing array.

DIM new array%(5,5)

MAT INPUT new array%(2,4)
MAT PRINT new_array%;
END

Output
?1,2,3,4,5,6,7,8

1234
5678

When entering values in response to MAT INPUT, you can enter an ampersand
(&) as the last character on the line and continue on the next line.

6.6.4 MAT LINPUT [#] Statement

The MAT LINPUT statement assigns string values to string array elements.
The MAT LINPUT statement reads string values from a terminal-format file
and writes them to a string array.

The MAT LINPUT statement prompts for individual array elements. It fills
the array by rows, starting with element (1,1). It assigns the line you supply
(including commas, semicolons, and quotation marks, but excluding the line
terminator) to an array element.

DIM emp nam$(5,5)

MAT LINPUT emp nam$(2,2)
PRINT emp nam$ (1,1
PRINT emp nams$ (
PRINT emp nam$ (
PRINT emp nams$ (
END

Output
? SMITH
? JONES
? WHITE
? BLACK
SMITH
JONES
WHITE
BLACK

By specifying the subscripts (2,2), MAT LINPUT redimensions the array to
nine elements and overwrites the old values (assigning the values in the same
manner as MAT INPUT;, see Section 6.6.3). BASIC then prompts for these
elements.

1)
1,2)
2,1)
2,2)

6—-16 Arrays

MAT LINPUT also excludes line terminators when assigning values to string
array elements. MAT LINPUT places the values from the open file into the
specified array, filling the array by rows, starting with element (1,1). If there
are more values in the file than there are array elements, BASIC ignores the
excess records. If there are fewer, BASIC assigns a null string to the remaining
elements.

The following program reads 50 records from the open disk file and assigns
them to the array named part_name$. If there are more than 50 records in the
file, BASIC ignores the excess records. If there are fewer than 50 records, then
BASIC fills the remaining elements of the array with the null string.

DIM part name$ (50)
MAT LINPUT #1%, part name$

6.6.5 MAT PRINT [#] Statement

The MAT PRINT statement prints some or all of an array’s elements, excluding
row and column zero. The MAT PRINT # statement takes values from an array
by row, starting with element (1,1), and writes each element to a sequential
record in the terminal-format file.

Subscripts are optional in MAT PRINT statements. If you do not specify
subscripts, MAT PRINT displays the entire array, excluding row and column
zero. If you specify subscripts, MAT PRINT displays the specified subset

of the array. In the case of the MAT PRINT # statement, the subscripts
determine how many array elements are written to the file. The MAT PRINT
[#] statement does not redimension an existing array.

If the last character in the MAT PRINT [#] array list is a semicolon, BASIC
begins each array row on a separate line. Data values on each line are packed
together with no intermediate spaces. However, if the last character in the
MAT PRINT [#] array list is a comma, BASIC begins each array row on a
separate line and each data value in a separate print zone.

If there is neither a comma nor a semicolon after the array name, BASIC prints
each array element on a separate line. In the following example, the first MAT
PRINT statement does not end in a comma or semicolon, so each element

is printed on a separate line. The second MAT PRINT statement prints the
elements twice, the first time starting each element in a new print zone, and
the second time leaving a space before and after each value. The MAT PRINT
statement sends the last two lines of output to a terminal-format file.

Arrays 6-17

MAT INPUT A(5)
PRINT

MAT PRINT A

PRINT

MAT PRINT A, A;

MAT PRINT #3, A, A;
END

Output
25

5

(Sa} Ul o O O o

6.6.6 Matrix I/0 Functions (NUM and NUM2)

MAT statements do not signal error messages when there are more data items
than array elements to contain them or when there are fewer data items than
array elements to contain them.

BASIC provides two functions that let you determine how much data the MAT
statements transfer: NUM and NUM2.

For two-dimensional arrays, the NUM function returns an integer value
specifying the row number of the last data item transferred, and the NUM2
function returns an integer value specifying the column number of the last
data item transferred. For one-dimensional arrays, the NUM function returns
the number of items entered, and the NUM2 function returns a zero.

With these functions, you can determine the number of items transferred
from a terminal-format file. Note, however, that you cannot use the NUM and
NUM2 functions to implicitly declare an array. In the following example, the
terminal-format file EMP.DAT contains the values 1 to 17, inclusive. When
these values are read with the MAT INPUT # statement, NUM and NUM2
represent the row and column number, respectively, of the last value read.

OPEN "EMP.DAT" FOR INPUT AS FILE #3%
DIM emp_name$(5,5)

MAT INPUT #3%, emp name$

PRINT NUM, NUM2

END

Output
4 2

6—-18 Arrays

6.7 Matrix Operators

BASIC provides a special set of MAT statements for array computations. These
statements enable you to add, subtract, and multiply matrices, and to assign
values to elements. Note that if you specify an array without subscripts (for
example, MAT A), the default is two dimensions.

BASIC also provides matrix functions to transpose and invert matrices and to
find the determinant of a matrix you invert.

Note

MAT operators do not operate on elements in row or column zero.

6.7.1 Arithmetic Matrix Operations

MAT operators perform matrix assignment, addition, subtraction, and
multiplication.

All of these operations use the keyword MAT, followed by an expression. If the
array has not been previously dimensioned, these operations create an array.
The created output array’s dimensions depend on the operation performed but
must be (10,10) or smaller.

Note

You can use the MAT operators on arrays larger than (10,10) if the
input and output arrays are explicitly created or received as a formal
parameter.

6.7.1.1 Assignment

You can assign all values in one array to another array with the MAT
statement. In the following example, each element of new_array is set to

the corresponding element in old_array. The dimensions of new_array are also
redimensioned to the dimensions of old_array.

MAT new_array = old array

Arrays 6-19

6.7.1.2 Addition and Subtraction

You can add the elements of two arrays. In the following statement, the
two input lists, first_list% and second_list%, must have identical dimensions.
The elements of the new list, sum_list%, equal the sum of the corresponding
elements in the input lists.

MAT sum list% = first list% + second list%

You can also subtract the elements of two arrays. The following program
subtracts one array from another:

DIM first array(30,30)
DIM second _array(30,30)
DIM difference array(30,30)

MAT difference array = first array - second array

Each element of difference_array is the arithmetic difference of the
corresponding elements of the input arrays.

6.7.1.3 Multiplication

You can multiply the elements of two arrays, provided that the number of
columns in the first array equals the number of rows in the second array. The
resulting array contains the dot product of the two input arrays.

DIM A(2 B(2,2), C(2,2)

2)1
1
2
3
4
5
6
7
8

MAT C = A * B
MAT PRINT C

19
22
43
50

You can also multiply a matrix by a scalar quantity. BASIC multiplies each
element of the input array by the scalar quantity you supply. The output array
has the same dimensions as the input array. Enclose the scalar quantity in
parentheses. The following example multiplies the elements of inch_array by
the inch-to-centimeter conversion factor and places these values in cm_array:

6—20 Arrays

DIM inch array(5), cm array(5)
MAT READ inch array
DATA 1,12,36,100,39.37

MAT cm_array = (2.54) * inch array

MAT PRINT cm_array,

END

Output

2.54 30.48 91.44 254 99.9998

6.7.2 Matrix Functions
BASIC provides the following matrix functions:

TRN
INV
DET

With these functions, you can transpose and invert matrices and find the
determinant of an inverted matrix.

6.7.2.1 TRN Function

The TRN function transposes a matrix. When you transpose a matrix, BASIC
interchanges the array’s dimensions. For example, a matrix with n rows and m
columns is transposed to a matrix with m rows and n columns. The elements
in the first row of the input matrix become the elements in the first column of
the output matrix. You cannot transpose a matrix to itself; MAT A = TRN(A) is
invalid.

The following example creates a 3-by-5 matrix, transposes it, and prints the
results:

DIM B(3,5)

MAT READ B

MAT A = TRN(B)

DATA 1,2,3,4,5
DATA 6,7,8,9,10
DATA 11,12,13,14,15
MAT PRINT B;

MAT PRINT A;

END

Arrays 6-21

Output
12345
6780910
11 12 13 14 15

6 11
7 12
8 13
9 14
10 15

U W N

6.7.2.2 INV Function

The INV function inverts a matrix. BASIC can invert a matrix only if its
subscripts are identical and it can be reduced to the identity matrix by
elementary row operations. The input matrix multiplied by the output matrix
(its inverse) always gives the identity matrix as a result.

MAT INPUT first array(3,3)

MAT PRINT first array;

PRINT

MAT inv array = INV (first array)
MAT PRINT inv_array;

PRINT

MAT mult array = first array * inv_array
MAT PRINT mult array;

PRINT

D = DET

PRINT D

Output
? 4,0,0,0,0,2,0,8,0
4 0 0

0 0 2

0 8

o o o o -
o
o

6—22 Arrays

6.7.2.3 DET Function
The DET function returns the determinant of a matrix. The DET function
returns a floating-point number that is the determinant of the last matrix

inverted. If you use the DET function before inverting a matrix, the value of
DET is zero.

Arrays 6-23

I

Data Definition

This chapter briefly describes how to define program objects, explicitly assign
data types, and allocate and use data storage.

7.1 Declarative Statements

You use declarative statements to define objects in a HP BASIC program.
Objects can be variables, arrays, constants, and user-defined functions within a
program module. They can also be routines, variables, and constants external
to the program module. Declarative statements always assign names to the
objects declared and usually assign other attributes, such as a data type, to
them. Declarative statements can also be used to define user-defined data
types (RECORD statements). See Chapter 8 for more information about the
RECORD statement.

You use declarative statements to assign data types to:
® Variables
e Arrays
e Named constants
e Values returned by functions
By declaring the objects used in your program, you make the program easier to
understand, modify, and debug.
7.2 Data Types

At its most fundamental level, a data type is a format for information storage.
All information is stored in the computer as bit patterns (groups of ones and
zeros). Data types specify how the computer should interpret these patterns.

HP BASIC programs allow five general data types: integer, floating-point,
string, packed decimal, and record. Each data type is suited for a particular
type of task. For example, integers are useful for numeric computations
involving whole numbers, strings provide a way to manipulate alphanumeric

Data Definition 7-1

characters, and packed decimal data is useful for manipulating numeric values
that require precise representation.

For more information about HP BASIC data types, see the HP BASIC for
OpenVMS Reference Manual.

7.3 Setting the Default Data Type and Size
There are two ways to set the default data type and size for your program:
e With the OPTION statement
e With the following qualifiers:
— /TYPE_DEFAULT
— /INTEGER_SIZE
— /REAL_SIZE
— /DECIMAL_SIZE

The OPTION statement can override the defaults set with qualifiers. For
example, the following statement sets the default integer type to be LONG:

OPTION SIZE = INTEGER LONG

You can have more than one OPTION statement in a program module;
however, OPTION statements can be preceded only by a SUB, FUNCTION,
REM, or another OPTION statement.

Note that the OPTION statement can also specify the following:
e Integer and packed decimal overflow checking

e Program optimization

¢ Rounding or truncation of packed decimal numbers

e Subscript checking

See the HP BASIC for OpenVMS Reference Manual for more information about
the OPTION statement.

The OPTION statement in the following example specifies that all program

variables must be explicitly typed and that all implicitly typed constants are
INTEGER. In addition, any variable typed as INTEGER is a LONG integer

and any variable typed as REAL is a DOUBLE floating-point number.

7-2 Data Definition

OPTION TYPE = EXPLICIT, | Variables must be declared &
CONSTANT TYPE = INTEGER, ! All implicit constants be integers &
SIZE = INTEGER LONG, ! 32-bit integers by default &
SIZE = REAL DOUBLE ! 64-bit floating-point
|

numbers by default
You can create variables of other data types by explicitly declaring them with
the DECLARE, COMMON, or MAP statement.

7.4 Declaring Variables

A variable is a named quantity whose value can change during program
execution. Variables may be implicitly or explicitly declared. HP BASIC
accepts the following types of variables:

¢ Floating-point
e Integer
e String
e RFA
e Packed decimal
e Record
For more information about declaring variables, see the HP BASIC for
OpenVMS Reference Manual.
7.5 Declaring Named Constants

A constant is a value that does not change during program execution. You can
declare named constants within a program unit with the DECLARE statement.
You can also refer to constants outside the program unit with the EXTERNAL
statement. In addition, BASIC provides notation for binary, octal, decimal, and
hexadecimal constants.

For more information about named constants, see the HP BASIC for OpenVMS
Reference Manual.

7.6 Operations with Multiple Data Types

When an expression contains operands of different data types, it is called a
mixed-mode expression. Before a mixed-mode expression can be evaluated,
the operands must be converted, or promoted, to a common data type. The
result of the evaluation can also be converted depending on the data type of
the variable to which it is assigned.

Data Definition 7-3

When assigning values to variables, HP BASIC converts the result of the
expression to the data type of the variable. If the value of the expression is
outside the allowable range of the variable’s data type, HP BASIC signals
“Integer error or overflow,” “Floating-point error or overflow,” or “DECIMAL
error or overflow.”

In general, HP BASIC promotes operands with different data types to the
lowest data type that can hold the largest and most precise possible value of
either operand’s data type. HP BASIC then performs the operation in that
data type, and yields a result of that data type. If the result of the expression
is assigned to a variable, HP BASIC converts the result to the data type of the
variable. For more information about multiple data types, see the HP BASIC
for OpenVMS Reference Manual.

7.7 Allocating Dynamic and Static Storage

HP BASIC programs allocate both dynamic and static storage. Dynamic
storage is allocated when the program executes, whereas the size of static
storage does not change during program execution.

Variables and arrays declared by the following means use dynamic storage:
e DECLARE statements

e DIMENSION statements

e Implicitly declared variables

Normally, string variables and arrays declared in these ways are dynamic
strings, and their length can change during program execution. However, if
you declare or dimension an array of a user-defined data type (a RECORD
name), then all string variables and arrays are fixed-length strings. See
Chapter 8 for more information about the RECORD statement.

Variables and arrays appearing in MAP or COMMON statements use static
storage. Hence all string variables appearing in MAP or COMMON statements
are fixed-length strings. MAP and COMMON statements create a named
storage area called a program section, or PSECT. MAP statements require a
map name, but in COMMON statements the name is optional. The PSECT
name is the same as the map or common name. If you do not specify a common
name, HP BASIC supplies a default PSECT name of $BLANK.

The remainder of this section explains how to use COMMON and MAP
statements for static storage.

7-4 Data Definition

7.7.1 COMMON Statement

The COMMON statement defines a named area of storage (called a PSECT).
Any HP BASIC subprogram can access the values in a common area by
specifying a common with the same name. An item in a COMMON statement
can be any one of the following:

e Numeric variable

e Numeric array

¢ Fixed-length string variable
e Array of fixed-length strings
e RECORD instance

e FILL item

e RFA item

The amount of storage reserved for a variable depends on its data type. You
can specify a length for string variables and string array elements that appear
in a COMMON statement. If you do not specify a length, the default is 16.
The following statement specifies 2 bytes for emp.code, 3 bytes for wage.code,
and 22 bytes for dep.code:

COMMON (code) STRING emp.code=2, wage.code=3, dep.code=22

In a single program module, multiple common areas with the same name
allocate storage end-to-end in a single PSECT. That is, HP BASIC concatenates
all common areas with the same name in the same program module, in order
of appearance. For example, the following statements allocate storage for five
LONG integers in a single PSECT named into:

COMMON (into) LONG call count, subl count, sub2 count
COMMON (into) LONG sub3 count, sub4 count

When you explicitly declare an array, HP BASIC allows you to specify both
upper and lower bound values. The value you supply as the upper bound
determines the maximum subscript value for a given dimension, and the value
you supply for the lower bound determines the minimum subscript value for a
given dimension.

For more information about specifying bounds with the COMMON statement,
see Chapter 6 and the HP BASIC for OpenVMS Reference Manual.

Data Definition 7-5

7.7.2 MAP Statement

The MAP statement, like the COMMON statement, creates a named area of
static storage. However, if a program module contains multiple maps with the
same name, the maps are overlaid on the same area of storage, rather than
being concatenated.

When used with the MAP clause of the OPEN statement, the storage allocated
by the MAP statement becomes the record buffer for that file. Variables in the
MAP statement correspond to fields in the file’s records.

A map item can be one of the following:
e Numeric variable

e Numeric array

¢ Fixed-length string variable

e Array of fixed-length strings

e RECORD instance

e FILL item

When you explicitly declare an array, HP BASIC allows you to specify both
upper and lower bound values. The value you supply as the upper bound
determines the maximum subscript value for a given dimension, and the value
you supply for the lower bound determines the minimum subscript value for a
given dimension.

For more information about specifying bounds with the MAP statement, see
Chapter 6 and the HP BASIC for OpenVMS Reference Manual.

7.7.2.1 Single Maps

You associate a map with a record buffer by referencing the map in the OPEN
statement.

The MAP statement must appear before any reference to map variables.
Changes to map variables do not change the actual records in the file. To
transfer the changed variables to the file, you must use the PUT or UPDATE
statement. For more information, see Chapter 13.

The following program example uses map variables to access fields in payroll
records:

7-6 Data Definition

WHEN ERROR USE eof handler
DECLARE INTEGER CONSTANT EOF = 11

MAP (PAYROL) STRING emp name, LONG wage class, &
STRING sal rev date, SINGLE tax_ytd
OPEN "payroll.dat" FOR INPUT AS FILE #4% &
,ORGANIZATION SEQUENTIAL &
,ACCESS READ &
,MAP PAYROL
OPEN "payrol.new" FOR OUTPUT AS FILE #5% &
,ORGANIZATION SEQUENTIAL &
,ACCESS WRITE &
,MAP payrol

PRINT "PAYROLL VERIFICATION"

get_loop:
WHILE 1% = 1%

GET #4
PRINT emp name, wage class, sal rev date, tax ytd
PRINT "YOU CAN CHANGE:"
PRINT "1. EMPLOYEE NAME"
PRINT "2. WAGE CLASS"
PRINT "3. REVIEW DATE"
PRINT "4. TAX YEAR-TO-DATE"
PRINT "5. DONE"

read_loop:
WHILE 1% = 1%
INPUT "CHANGES? ANSWER WITH YES OR NO" ; chng$
IF chng$ = "NO" THEN ITERATE get loop
ELSE INPUT "NUMBER" ;number$%

END IF

Data Definition 7-7

SELECT number%
CASE 1
INPUT "EMPLOYEE NAME"; emp name
CASE 2
INPUT "WAGE CLASS"; wage_class
CASE 3
INPUT "REVIEW DATE";sal rev date
CASE 4
INPUT "TAX YEAR-TO-DATE"; tax ytd
CASE 5
EXIT read loop
CASE ELSE
PRINT "Invalid response -- please try again"
END SELECT
NEXT
PUT #5
NEXT
END WHEN
HANDLER eof handler
IF ERR = EOF
THEN
PRINT "End of file"
ELSE
EXIT HANDLER
END IF
END HANDLER
END

7.7.2.2 Multiple Maps
When a program contains more than one map with the same name, the storage
allocated by these MAP statements is overlaid. This technique is useful for
manipulating strings. Figure 7-1 shows multiple maps and maps in use.

7-8 Data Definition

Figure 7-1 Multiple Maps

NAME$ = 40 BYTES ADDRESSS$ = 44 BYTES
AN A\
d N N
\ N\ v AN\ N\ v /
FIRST.NAMES$ LAST.NAMES$ STREET. STREETS CITY$
= = NUMBER$ = =
15 BYTES 25 BYTES = 16 BYTES 23 BYTES
5BYTES
ZK-5183-GE

When you use more than one map to access a record buffer, HP BASIC uses the
size of the largest map to determine the size of the record. (The RECORDSIZE
clause of the OPEN statement can override this map-defined record size. For
more information, see Chapter 13.)

You can also use multiple maps to interpret numeric data in more than one
way. The following example creates a map area named barray. The first
MAP statement allocates 26 bytes of storage in the form of an integer BYTE
array. The second MAP statement defines this same storage as a 26-byte
string named ABC. When the FOR...NEXT loop executes, it assigns values
corresponding to the ASCII values for the uppercase letters A to Z.

MAP (barray) BYTE alphabet (25)
MAP (barray) STRING ABC = 26
FOR I% = 0% TO 25%

alphabet (I%) = I% + 65%
NEXT I%
PRINT ABC
END

Output
ABCDEFGHIJKLMNOPQRSTUVWXYZ

7.7.3 FILL ltems

FILL items reserve space in map and common blocks and in record buffers
accessed by MOVE or REMAP statements. Thus, FILL items mask parts of
the record buffer and let you skip over fields and reserve space in or between
data elements.

Data Definition 7-9

FILL formats are available for all data types. Table 7-1 summarizes the FILL
formats and their default allocations if no data type is specified.

Table 7-1 FILL ltem Formats, Representations, and Default Allocations

FILL Format Representation Bytes Used
FILL Floating-point 4,8, 16, or 32
FILL(n) n floating-point elements 4n, 8n, 16n, or 32n
FILL% Integer (BYTE, WORD, LONG, or QUAD) 1,2,4,0r8
FILL%(n) n integer elements 1n, 2n, 4n, or 8n
FILLS String 16
FILLS$(n) n string elements 16n
FILL$ = m String m
FILL$(n) = m n string elements, m bytes each m*n

Note

In the applicable formats of FILL, n represents a repeat count, not an
array subscript. FILL(n), for example, represents n real elements, not
n+1.

You can also use data-type keywords with FILL and optional data type-
suffixes. The data-type and storage requirements are those of the last data
type specified. For example:

MAP (QED) STRING A, FILL$=24, LONG SSN, FILL%, REAL SAL, FILL(5)
This MAP statement uses data-type keywords to reserve space for:
e A 16-character string variable A

e 24 bytes of padding

¢ One LONG variable, SSN

e 4 bytes of padding

e One REAL variable, SAL

e Space for five floating-point numbers (10, 20, or 80 bytes of padding,
depending on the default size for floating-point numbers)

7-10 Data Definition

You can specify user-defined data types (RECORD names) for FILL items. In
the following example, the first line defines a RECORD of data type X. The
MAP statement contains a fill item of this data type, thus reserving space in
the buffer for one RECORD of type X.

RECORD X

REAL Y1, Y2(10)
END RECORD X
MAP (QED) X FILL

See Chapter 8 for more information about the RECORD statement.

7.7.4 Using COMMON and MAP Statements in Subprograms

The COMMON and MAP statements create a block of storage called a PSECT.
This common or map storage block is accessible to any subprogram. A HP
BASIC main program and subprogram can share such an area by referencing
the same common or map name.

The following example contains common blocks that define:

e A 16-character string field called A by the main program and X by the
subprogram

e A 10-character string field called B by the main program and Z by the
subprogram

e A 4-byte integer field called C by the main program and Y by the
subprogram

!In a main program
COMMON (Al) STRING A, B = 10, LONG C

!In a subprogram
COMMON (Al) STRING X, Z = 10, LONG Y

If a subprogram defines a common or map area with the same name as a
common or map area in the main program, it overlays the common or map
defined in the main program.

Multiple COMMON statements with the same name behave differently
depending on whether these statements are in the same program module. If
they are in the same program module, then the storage for each common area
is concatenated. However, if they are in different program units, then the
common areas overlay the same storage. The following COMMON statements

are in the same program module; therefore, they are concatenated in a single
PSECT. The PSECT contains two 32-byte strings.

Data Definition 7-11

COMMON (XYZ) STRING A
COMMON (XYZ) STRING B

32
32

In contrast, the following COMMON statements are in different program
modules, and thus overlay the same storage. Therefore, the PSECT contains
one 32-byte string, called A in the main program and B in the subprogram.

!In the main program
COMMON (XYZ) STRING A = 32

!In the subprogram
COMMON (XYZ) STRING B = 32

Although you can redefine the storage in a common section when you access
it from a subprogram, you should generally not do so. Common areas should
contain exactly the same variables in all program modules. To make sure
of this, you should use the %INCLUDE directive, as shown in the following
example:

COMMON (SHARE) WORD emp num, &
DECIMAL (8,0) salary, &
STRING wage class = 2

!In the main program
%$INCLUDE "COMMON.BAS"

!In the subprogram
$INCLUDE "COMMON.BAS"

If you use the %INCLUDE directive, you can lessen the risk of a typographical
error. For more information about using the %INCLUDE directive, see
Chapter 16.

If you must redefine the variables in a PSECT, you should use the MAP
statement or a record with variants for each overlay. When you use the MAP
statement, use the %INCLUDE directive to create identical maps before
redefining them, as shown in the following example. The map defined in
MAP.BAS is included in both program modules as a 40-byte string. This map
is redefined in the subprogram, allowing the subprogram to access parts of this
string.

7-12 Data Definition

MAP (REDEF) STRING full name = 40

!In the main program
%$INCLUDE "MAP.BAS"

!In the subprogram
%$INCLUDE "MAP.BAS"
MAP (REDEF) STRING first name=15, MI=1, last name=24

7.7.5 Dynamic Mapping

Dynamic mapping lets you redefine the position of variables in a static
storage area. This storage area can be either a map name or a previously
declared static string variable. Dynamic mapping requires the following HP
BASIC statements:

e A declarative statement, such as a MAP statement, allocating a fixed-
length storage area

e A MAP DYNAMIC statement, naming the variables whose positions can
change at run time

e A REMAP statement, specifying the new positions of the variables named
in the MAP DYNAMIC statement

The MAP DYNAMIC statement does not affect the amount of storage allocated.
The MAP DYNAMIC statement causes HP BASIC to create internal pointers
to the variables and array elements. Until your program executes the REMAP
statement, the storage for each variable and each array element named in the
MAP DYNAMIC statement starts at the beginning of the map storage area.

The MAP DYNAMIC statement is nonexecutable. With this statement, you
cannot specify a string length. All string items have a length of zero until the
program executes a REMAP statement.

The REMAP statement specifies the new positions of variables named in

the MAP DYNAMIC statement. That is, it causes HP BASIC to change the
internal pointers to the data. Because the REMAP statement is executable, it
can redefine the pointer for a variable or array element each time the REMAP
statement is executed.

With the MAP DYNAMIC statement, you can specify either a map name or
a previously declared static string variable. When you specify a map name,

a MAP statement with the same map name must lexically precede the MAP
DYNAMIC statement.

Data Definition 7-13

In the following example, the MAP statement creates a storage area named
emp_buffer. The MAP DYNAMIC statement specifies that the positions of
variables emp_name and emp_address within the map area can be dynamically
defined with the REMAP statement.

DECLARE LONG CONSTANT emp fixed info = 4 + 9 + 2

MAP (emp buffer) LONG badge, &
STRING social sec num = 9, &
BYTE name_length, &
address_length, &
FILL (60)
MAP DYNAMIC (emp buffer) STRING emp name, &
emp_address
WHILE 1%
GET #1
REMAP (emp buffer) STRING FILL = emp fixed info, &
emp_name = name_length, &
emp_address = address length
NEXT

At the start of program execution, the storage for badge is the first 4 bytes of
emp_buffer, the storage for social_sec_num is equal to 9 bytes, and together
name_length and address_length are equal to 2 bytes. The FILL keyword
reserves 60 additional bytes of storage. The MAP DYNAMIC statement defines
the variables emp_name and emp_address whose positions and lengths will
change at run time. When executed, the REMAP statement defines the FILL
area to be equal to emp_fixed_info and defines the positions and lengths of
emp_name and emp_address.

When you specify a static string variable, it must be either a variable
declared in a MAP or COMMON statement or a parameter declared in a
SUB, FUNCTION, PICTURE, or DEF. The actual parameter passed to the
procedure must be a static string variable defined in a COMMON, MAP, or
RECORD statement.

The following example shows the use of a static string variable as a parameter
declared in a SUB. The MAP DYNAMIC statement specifies the input
parameter, input_rec, as the string to be dynamically defined with the REMAP
statement. In addition, the MAP DYNAMIC statement specifies a string
array A whose elements will point to positions in input_rec after the REMAP
statement is executed. The REMAP statement defines the length and position
of each element contained in array A. The FOR...NEXT loop then assigns each
element contained in array A into array item, the target array.

7-14 Data Definition

SUB deblock (STRING input rec, STRING item())
MAP DYNAMIC (input rec) STRING A(1 TO 3)
REMAP (input rec) &

A(l) =5, &
A(2) = 3, &
A(3) =4
FOR I = LBOUND(A) TO UBOUND (A)
item(I) = A(I)
NEXT I
END SUB

Note that dynamic map variables are local to the program module in which
they reside; therefore, REMAP only affects how that module views the buffer.

For more information about using the MAP DYNAMIC and REMAP
statements, see the HP BASIC for OpenVMS Reference Manual.

Data Definition 7-15

8

Creating and Using Data Structures

A data structure is a collection of data items that can contain elements or
components of different data types.

The RECORD statement lets you create your own data structures. You use
the RECORD statement to create a pattern of a data structure, called the
RECORD template. Once you have created a template, you use it to declare
an instance of the RECORD, that is, a RECORD variable. You declare a
RECORD variable just as you declare a variable of any other type: with the
DECLARE statement or another declarative statement. A RECORD instance
is a variable whose structure matches that of the RECORD template.

The RECORD statement does not create any variables. It only creates a
template, or user-defined data type, that you can then use to create variables.

This chapter describes how to create and use data structures.

8.1 RECORD Statement

The RECORD statement names and defines a data structure. Once a data
structure (or RECORD) has been named and defined, you can use that
RECORD name anywhere that you can use a BASIC data type keyword. You
build the data structure using:

e Variables of any valid BASIC data type
e RECORD variables of previously defined RECORD data types
e Any combination of the two

The following example creates a RECORD called Employee. Employee is a
data structure that contains one LONG integer, one 10-character string, one
20-character string, and one 11-character string.

Creating and Using Data Structures 8-1

RECORD Employee
LONG Emp_number
STRING First name = 10
STRING Last name = 20
STRING Soc_sec_number = 11
END RECORD Empolyee

To create instances of this data structure, you use declarative statements. In
the following example, the first DECLARE statement creates a variable called
Emp_rec of data type Employee. The second DECLARE statement creates a
one-dimensional array called Emp_array that contains 1001 instances of the
Employee data type.

DECLARE Employee Emp rec
DECLARE Employee Emp array (1000)

Any reference to a RECORD component must contain the name of the
RECORD instance (that is, the name of the declared variable) and the name
of the elementary RECORD component you are accessing, separated by two
colons (::). For example, the following program assigns values to an instance of
the Employee RECORD template:

! Record Template
RECORD Employee

LONG Emp_number

STRING First name = 10
STRING Last name = 20
STRING Soc_sec_number = 11

END RECORD Employee
| Declarations

DECLARE Employee Emp rec
DECLARE STRING Social security
! Program logic starts here.

INPUT 'Employee number’; Emp rec::Emp number
INPUT 'First name’; Emp rec::First name
INPUT ‘Last name’; Emp rec::Last name
INPUT 'Social security’; Social security
IF Social security <> ""
THEN

Emp rec::Soc_sec number = Social security
END IF

8-2 Creating and Using Data Structures

PRINT

PRINT "Employee number is: "; Emp rec::Emp number
PRINT "First name is: "; Emp rec::First name
PRINT "Last name is: "; Emp_rec::Last name
PRINT "Social security is: "; Emp rec::Soc_sec number
END

When you access an array of RECORD instances, the array subscript should
immediately follow the name of the RECORD variable. The following example

shows an array of RECORD instances:

| Record Template
RECORD Employee

LONG Emp_number

STRING First name = 10
STRING Last name = 20
STRING Soc_sec number = 11

END RECORD
! Declarations

DECLARE Employee Emp array (10)
DECLARE INTEGER Index

DECLARE STRING Social security

! Program logic starts here.

FOR Index = 0 TO 10

::First_name

PRINT

INPUT 'Employee number’; Emp array(Index)::Emp number
INPUT 'First name’; Emp_array (Index)

INPUT ’'Last name’; Emp array (Index)

INPUT ‘Social security’; Social security
IF Social security <> ""

::Last _name

:Emp_number
:First name
:Last_name
::50c_sec_number

THEN
Emp array(Index)::Soc_sec number = Social security

END IF
NEXT Index
FOR Index = 0 TO 10
PRINT
PRINT "Employee number is: "; Emp array(Index):
PRINT "First name is: "; Emp array(Index) :
PRINT "Last name is: "; Emp array (Index) :
PRINT "Social security is: "; Emp array (Index)
NEXT Index
END

Creating and Using Data Structures 8-3

You can have a RECORD that contains an array. When you declare arrays, HP
BASIC allows you to specify both lower and upper bounds.

RECORD Grade record

STRING Student name = 30

INTEGER Quiz scores (1 TO 10) ! Array to hold ten quiz grades.
END RECORD
! Declarations

DECLARE Grade record Student grades (5)

!The Student grades array holds information on six students
1 (0 through 5), each of whom has ten quiz grades (1 through 10).

DECLARE INTEGER I,J
|Program logic starts here.

FOR I =0 TO 5 IThis loop executes once for each student.

PRINT
INPUT 'Student name’; Student grades(I)::Student name

FOR J = 1 TO 10 !This loop executes ten times for each student.

PRINT 'Score for quiz number’; J
INPUT Student grades(I)::Quiz_scores(J)

NEXT J
NEXT I

FOR I =0 TO 5

PRINT
PRINT 'Student name: ’; Student grades(I)::Student name

FOR J = 1 TO 10

PRINT ’'Score for quiz number’; J; ": ";
PRINT Student grades(I)::Quiz scores(J)

NEXT J
NEXT I
END
Because any reference to a component of a RECORD instance must begin with
the name of the RECORD instance, RECORD component names need not be
unique in your program. For example, you can have a RECORD component
called First_name in any number of different RECORD statements. References

to this component are unambiguous because every RECORD component
reference must specify the record instance in which it resides.

8-4 Creating and Using Data Structures

8.1.1 Grouping RECORD Components

A RECORD component can consist of a named group of instances, identified
with the keyword GROUP. You use GROUP to refer to a collection of RECORD
components, or to create an array of components that have different data types.
The GROUP name can be followed by a list of upper and lower bounds, which
define an array of the GROUP components. GROUP is valid only within a

RECORD block.

The declarations between the GROUP statement and the END GROUP

statement are called a GROUP block.

The following example declares a RECORD template of data type Yacht. Yacht
is made up of two groups: Type_of yacht and Specifications. Each of these
groups is composed of elementary RECORD components. BASIC also allows

groups within other groups.

RECORD Yacht

GROUP Type of yacht
STRING Manufacturer = 10
STRING Model = 10

END GROUP Type of yacht

GROUP Specifications
STRING Rig = 6
STRING Length over all = 3
DECIMAL(5,0) Displacement
DECIMAL(2,0) Beam
DECIMAL(7,2) Price

END GROUP Specifications

END RECORD Yacht

8.1.2 RECORD Variants

Sometimes it is useful to have different record components overlay the same
record field, in much the same way that multiple maps can overlay the same
storage. Such an overlay is called a RECORD variant. You use the keywords
VARIANT and CASE to set up RECORD variants.

The following example creates a RECORD template for any three kinds of

boats:

Creating and Using Data Structures 8-5

RECORD Boat

STRING Make = 10
STRING Model = 10
STRING Type of boat = 1

This field contains the value S, P, or C.
Value S causes the record instance to be
interpreted as describing a sailboat, value
P as describing a powerboat, and value C as
describing a canoce.

VARIANT

CASE | Sailboats
STRING Rig = 20

CASE | Powerboats

WORD Horsepower
CASE ! Canoes

WORD Length
WORD Weight

END VARIANT

END RECORD

The SELECT...CASE statement allows you to access one of several possible
RECORD variants in a particular RECORD instance. A RECORD component
outside the overlaid fields usually determines which RECORD variant is
being used in a particular reference; in this case, the determining RECORD
component is Type_of_boat. You can use this component in the SELECT
expression.

! Declarations

DECLARE Boat My boat

! Main program logic starts here

Input_boat_ information:

INPUT 'Make of boat’; My boat::Make

INPUT 'Model’ ; My boat::Model

PRINT 'Type of boat (S = Sailboat, P = Powerboat, C = Canoe)’;
INPUT My boat::Type of boat

SELECT My boat::Type of boat

CASE "S"
INPUT 'Sail rig’; My boat::Rig
CASE "P"

8-6 Creating and Using Data Structures

INPUT 'Horsepower’; My boat::Horsepower
CASE "C"

INPUT 'Length’; My boat::Length
INPUT 'Weight’; My boat::Weight

CASE ELSE
PRINT "Invalid type of boat, please try again."
END SELECT

The value of the Type_of _boat component determines the format of the variant
part of the record.

The following example is a more complex version of the same type of procedure.
This program prompts for the RECORD instance components in each variant.
When the user responds to the “Wage Class” prompt, the program branches to
one of three CASE blocks depending on the value of Wage_class.

IRecord templates
RECORD Emp_wage class
STRING Emp name = 30 ! Employee name string.

STRING Street = 15
STRING City = 20
STRING State = 2
DECIMAL(5,0) Zip

These components make up the
employee address field.

STRING Wage class = 1

VARIANT
CASE
GROUP Hourly ! Hourly workers.
DECIMAL (4,2) Hourly wage ! Hourly wage rate.
SINGLE Regular pay ytd | Regular pay year-to-date.
SINGLE Overtime pay ytd ! Overtime pay year-to-date.
END GROUP Hourly
CASE
GROUP Salaried ! Salaried workers.
DECIMAL(7,2) Yearly salary ! Yearly salary.
SINGLE Pay_ytd | Pay year-to-date.
END GROUP Salaried
CASE
GROUP Executive | Executives.
DECIMAL(8,2) Yearly salary | Yearly salary.
SINGLE Pay ytd | Pay year-to-date.
SINGLE Expenses_ytd | Expenses year-to-date.

Creating and Using Data Structures 8-7

END GROUP Executive
END VARIANT

END RECORD
| Declarations:

DECLARE Emp wage_class Emp

! Main Program logic starts here.

LINPUT "Name"; Emp::Emp name ! Use LINPUT statements for

LINPUT "Street"; Emp::Street ! string fields so the entire
| string is assigned to the

|

LINPUT "State"; Emp::State | variable.

INPUT "Zip Code"; Emp::Zip
LINPUT "Wage Class"; Emp::Wage class
SELECT Emp::Wage class

CASE "A"
INPUT 'Rate’;Emp::Hourly wage
INPUT 'Regular pay’;Emp::Regular pay ytd
INPUT 'Overtime pay’;Emp::Overtime pay ytd
CASE "B"
INPUT 'Salary’;Emp::Salaried::yearly salary
INPUT 'Pay YID';Emp::Salaried::pay ytd

CASE "C"
INPUT 'Salary’;Emp::Executive::yearly salary
INPUT 'Pay YTD’;Emp::Executive::pay ytd
INPUT 'Expenses’;Emp::Expenses_ytd

END SELECT

Variant fields can appear anywhere within the RECORD instance. When you
use RECORD variants, you imply that any RECORD instance can contain
any one of the listed variants. Therefore, if each variant requires a different
amount of space, BASIC uses the case that requires the most storage to
determine the space allocated for each RECORD instance.

8.1.3 Accessing RECORD Components

To access a particular elementary component within a RECORD that contains
other groups, you use the name of the declared RECORD instance, the group
name (or group names, if groups are nested), and the elementary component

name, each separated by double colons (::).

In the following example, the PRINT statement displays the Rig component
in the Specifications group in the variable named My_yacht. The RECORD
instance name qualifies the group name and the group name qualifies the
elementary RECORD component. The elementary component name, qualified
by all intermediate group names and by the RECORD instance name, is called

8-8 Creating and Using Data Structures

a fully qualified component. The full qualification of a component is called
a component path name.

DECLARE Yacht My yacht

PRINT My yacht::Specifications::Rig

Because it is cumbersome to specify the entire component path name, BASIC
allows elliptical references to RECORD components. GROUP names are
optional in the component path name unless:

e A RECORD contains more than one component with the same name
e The GROUP is an array
The rules for using elliptical references are as follows:

¢ You must always specify the RECORD instance, that is, the name of the
declared variable.

¢ You must always specify any dimensioned group.
¢ You may omit any other intermediate component names.
¢ You must specify the final component name.

The following example shows that using the complete component path name

is valid but not required. The assignment statement uses the fully qualified
component name; the PRINT statement uses an elliptical reference to the same
component, omitting Extended_family and Nuclear_family GROUP names.
Note that the Children GROUP name is required because the GROUP is an
array; the elliptical reference to this component must include the desired array
element, in this case the second element of the Children array.

| RECORD templates:
RECORD Family
GROUP Extended family

STRING Grandfather (1)
STRING Grandmother (1)

30 | Two-element fixed-length string
30 ! arrays for the names of maternal
! and paternal grandparents.

GROUP Nuclear family

STRING Father
STRING Mother

30 | Fixed-length strings for the names
30 ! of parents.

Creating and Using Data Structures 8-9

GROUP Children (10) ! An 1l-element array for the names and
! gender of children.
STRING Kid = 10
STRING Gender = 1

END GROUP Children
END GROUP Nuclear family
END GROUP Extended family

END RECORD
| Declarations

DECLARE Family My family
! Program logic starts here.

My family::Extended family::Nuclear family::Children(1)::Kid = "Johnny"
PRINT My family::Children(1)::Kid
END

Output
Johnny

! RECORD Templates.
RECORD Test

INTEGER Test integers(2) ! 3-element array of integers.
GROUP Group 1 ! Single GROUP containing:
REAL My number ! a real number and
STRING Group_ 1 string ! a 16-character (default) string
END GROUP
GROUP Group_2(5) ! A 6-element GROUP, each element containing:
INTEGER My number ! an integer and
DECIMAL Group 2 decimal ! a DECIMAL number.
END GROUP
END RECORD
! Declarations
DECLARE Test Array of test(10) ! Create an ll-element array of type Test...
DECLARE Test Single test ! ...and a separate single instance of type
| Test.

The minimal reference to the string Group_1_string in RECORD instance
Array_of _test is as follows:

Array of test(i)::Group 1 string

In this case, i is the subscript for array Array_of_test. Because the RECORD
instance is itself an array, the reference must include a specific array element.

8-10 Creating and Using Data Structures

Because Single_test is not an array, the minimal reference to string Group_1_
string in RECORD instance Single_test is as follows:

Single test::Group 1 string

The minimal reference for the REAL variable My_number in GROUP Group_1
in RECORD instance Array_of _test is as follows:

Array of test(i)::Group 1::My number

Here, i is the subscript for array Array_of_test. The minimal reference to the
REAL variable My_number in RECORD instance Single_test is as follows:

Single test::Group 1::My number

Because there is a variable named My_number in groups Group_1 and Group_
2, you must specify either Group_1::My_number or Group_2(i)::My_number.
In this case, extra component names are required to resolve an otherwise
ambiguous reference.

The minimal reference to the DECIMAL variable Group_2_decimal in
RECORD instances Array_of _test and Single_test are the fully qualified
references. In the following examples, i is the subscript for array Array_of test
and j is an index into the group array Group_2. Even though Group_2_decimal
is a unique component name within RECORD instance Single_test, the element
of array Group_2 must be specified. In this case, the extra components must
be specified because each element of GROUP Group_2 contains a component
named Group_2_decimal.

Array of test(i)::Group 2(j)::Group 2 decimal
Single test::Group 2(j)::Group 2 decimal

You can assign all the values from one RECORD instance to another RECORD
instance, as long as the RECORD instances are identical except for names.

In the following example, RECORD instances First_test1, Second_test1, and
the individual elements of array Array_of _test1 have the same form: an array
of four groups, each of which contains a 10-byte string variable, followed by
a REAL variable, followed by an INTEGER variable. Any of these RECORD
instances can be assigned to one another.
IRECORD Templates
RECORD Testl

GROUP Group 1(4)

STRING My string 1 = 10
REAL My real 1
INTEGER My integer 1

Creating and Using Data Structures 8-11

END GROUP
END RECORD
RECORD Test2

GROUP Group_2

STRING My string 2 = 10
REAL My real 2
INTEGER My integer 2

END GROUP

END RECORD
RECORD Test3

STRING My string 3 = 10

REAL My real 3
INTEGER My integer 3
END RECORD
|Declarations
DECLARE Testl First_testl, &
Second testl, &

Array of testl(3)
DECLARE Test2 First test2

DECLARE Test3 First test3, &
Array of test3(10)
|Program logic starts here

! A single RECORD instance is assigned to another single instance
First testl = Second testl

! An array element is assigned to a single instance

Second testl = Array of testl(2)

! And vice versa

Array of testl(2) = Second testl

Further, you can assign values from single RECORD instances to groups
contained in other instances.

In the following example, Array_of testl and First_testl do not have the same
form because Array_of testl is an array of RECORD 7TestI and First_test1 is
a single instance of RECORD 7Test1. Therefore, First_test1 and Array_of _testl
cannot be assigned to one another.

8-12 Creating and Using Data Structures

! A single instance is assigned to one group
Array of testl(3)::Group 1(2) = First testl

! An array element is assigned a value from
! a group contained in another array instance
Array of test3(5) = Array of testl(3)::Group 1(3)

The examples shown in this chapter explain the mechanics of using data
structures. See Chapter 12 for more information about using data structures as
parameters. See Chapter 13 for more information about using data structures
for file input and output.

Creating and Using Data Structures 8-13

9

Program Control

This chapter describes the HP BASIC control statements.

HP BASIC normally executes statements sequentially. Control statements let
you change this sequence of execution. HP BASIC control statements can alter
the sequence of program execution at several levels:

e Statement modifiers control the execution of a single statement.
¢ Loops or decision blocks control the execution of a block of statements.

e Branching statements such as GOTO and ON GOTO pass control to
statements or local subroutines.

e The EXIT and ITERATE statements explicitly control loops or decision
blocks.

e The SLEEP, WAIT, STOP and END control statements suspend or halt the
execution of your entire program.

9.1 Statement Modifiers

Statement modifiers are control structures that operate on a single
statement. Statement modifiers let you execute a statement conditionally
or create a loop. The following are BASIC statement modifiers:

IF
UNLESS
FOR
UNTIL
WHILE

A statement modifier affects only the statement immediately preceding it.
You can modify only executable statements; declarative statements cannot be
modified.

Program Control 9-1

9.1.1 IF Modifier

The IF modifier tests a conditional expression. If the conditional expression
is true, HP BASIC executes the statement. If it is false, HP BASIC does not
execute the modified statement but continues execution at the next program
statement. The following is an example of a statement using the IF modifier:

PRINT A IF (A < 5)

9.1.2 UNLESS Modifier

The UNLESS modifier tests a conditional expression. HP BASIC executes the
modified statement only if the conditional expression is false.

PRINT A UNLESS (A < 5)
This is equivalent to the following:

PRINT A IF A >= 5

9.1.3 FOR Modifier

The FOR modifier creates a loop on a single line. The following is an example
of a loop created using the FOR modifier:

A=A+ 1FOR I% = 1% TO 10%

9.1.4 UNTIL Modifier

The UNTIL modifier, like the FOR modifier, creates a single-line loop.
However, instead of using a formal loop variable, you specify the terminating
condition with a conditional expression. The modified statement executes
repeatedly as long as the condition is false. For example:

B =B+ 1UNTIL (A - B) < 0.0001

9.1.5 WHILE Modifier

The WHILE modifier repeats a statement as long as a conditional expression is
true. Like the UNTIL and FOR modifiers, the WHILE modifier lets you create
single-line loops. In the following example, HP BASIC replaces the value of

A with A/2, as long as the absolute value of A is greater than one-tenth. Note
that you can inadvertently create an infinite loop if the terminating condition
is never reached.

A=A / 2 WHILE ABS(A) > 0.1

9-2 Program Control

9.1.6 Nesting Modifiers

If you append more than one modifier to a statement, you are nesting
modifiers. HP BASIC evaluates nested modifiers from right to left. If the test
of the rightmost modifier fails, control passes to the next statement, not to the
preceding modifier on the same line.

In the following example, HP BASIC first tests the rightmost modifier of the
first PRINT statement. Because this condition is false, HP BASIC executes
the following PRINT statement and tests the rightmost modifier. Because this
condition is met, HP BASIC tests the leftmost modifier of the same PRINT
statement. This condition, however, is not met. Therefore, HP BASIC executes
the following PRINT statement. Because both conditions are met in the third
PRINT statement, HP BASIC prints the value of C.

A
B =10
C=15

PRINT "A =";A IF A
PRINT "B =";B UNLES
PRINT "C =";C IF B
END

Output
C=15

5

5 UNLESS C = 15
C=151IF B = 10
10 UNLESS C = 5

I w

9.2 Loops

Loops allow you to repeat the execution of a set of statements. This set
of statements is called a loop block. There are three types of HP BASIC
program loops:

FOR...NEXT
WHILE.. NEXT
UNTIL.. NEXT

Note that these types of loops can be nested, that is, lexically located one inside
another.

9.2.1 FOR...NEXT Loops

In a FOR...NEXT loop, you specify a loop control variable (the loop index)
that determines the number of loop iterations. This number must be a scalar
(unsubscripted) variable. When HP BASIC begins execution of a FOR..NEXT
loop, the starting and ending values of the loop control variable are known.

Program Control 9-3

The FOR statement assigns the control variable a starting value and an ending
value. You can use the optional STEP clause to specify the amount to be added
to the loop control variable after each loop iteration.

When a FOR loop block executes, the HP BASIC compiler performs the
following steps:

1. Evaluates the starting value and assigns it to the control variable.

2. Evaluates the ending value and the step value and assigns these results to
temporary storage locations.

3. Tests whether the ending value has been exceeded. If the ending value has
already been exceeded, HP BASIC executes the statement following the
NEXT statement. If the ending value has not been exceeded, HP BASIC
executes the statements in the loop.

4. Adds the step value to the control variable and transfers control to the
FOR statement, which tests whether the ending value has been exceeded.
Steps 3 and 4 are repeated until the ending value is exceeded.

Note that HP BASIC performs the test before the loop executes. When the
control variable exceeds the ending value, HP BASIC exits the loop, and then
subtracts the step value from the control variable. This means that after loop
execution, the value of the control variable is the value last used in the loop,
not the value that caused loop termination.

Example 9-1 assigns the values 1 to 10 to consecutive array elements 1 to
10 of New_array, and Example 9-2 assigns consecutive multiples of 2 to the
odd-numbered elements of New_array.

Example 9-1 Assigning Values to Consecutive Array Elements
FOR I% = 1% TO 10%

New array(I%) = I%
NEXT I%

9-4 Program Control

Example 9-2 Assigning Consecutive Multiples to Odd-Numbered Elements

of Array
FOR I% = 1% TO 10% STEP 2
New array(I%) = I% + 1%
NEXT I%

Note that the starting, ending, and step values can be run-time expressions.
You can have HP BASIC calculate these values when the program runs, as
opposed to using a constant value. For instance, the following example assigns
sales information to array Sales_data. The number of iterations depends on
the value of the variable Days_in_month, which represents the number of days
in that particular month.

FOR I% = 1% TO Days_in month
Sales data(I%) = Quantity sold
NEXT I%

Because the starting, ending, and step values can be numeric expressions,
they are not evaluated until the program runs. This means that you can have
a FOR...NEXT loop that does not execute. The following example prompts
the user for the starting, ending, and step values for a loop, and then tries to
execute that loop. The loop executes zero times because it is impossible to go
from 0 to 5 using a step value of -1.

counter% = 0%
INPUT "Start"; start%

INPUT "Finish"; finish%
INPUT "Step value"; step val%

FOR I% = start¥ TO finish% STEP step val%
counter% = counter% + 1%
NEXT I%

PRINT "This loop executed"; counter%; "times."

Output

Start? 0

Finish? 5

Step value? -1

This loop executed 0 times.

Whenever possible, you should use integer variables to control the execution
of FOR...NEXT loops because some decimal fractions cannot be represented
exactly in a binary computer, and the calculation of floating-point control
variables is subject to this inherent imprecision.

Program Control 9-5

In the following example, the first loop uses an integer control variable while
the second uses a floating-point control variable. The first loop executes

100 times and the second 99 times. After the ninety-ninth iteration of the
second loop, the internal representation of the value of Floating_point_variable
exceeds 10 and BASIC exits the loop. Because the first loop uses integer values
to control execution, HP BASIC does not exit the loop until Integer_variable
equals 100.

o\

Loop_count 1

0
Loop count 2 = 0

o\

FOR Integer variable = 1% to 100% STEP 1%
Loop count 1 = Loop count 1 + 1%
NEXT Integer variable

FOR Floating point variable = 0.1 to 10 STEP 0.1
Loop_count 2 = Loop_count_2 + 1%
NEXT Floating point variable

PRINT "Integer loop count:"; Loop count 1

PRINT "Integer loop end :"; Integer variable

PRINT "Real loop count: "; Loop count 2

PRINT "Real loop end: "; Floating point variable
Output

Integer loop count: 100

Integer loop end: 100

Real loop count: 99

Real loop end: 9.9

Although it is not recommended programming practice, you can assign a value
to a FOR...NEXT loop’s control variable while in the loop. This affects the
number of times a loop executes. For example, assigning a value that exceeds
the ending value of a loop will cause the loop’s execution to end as soon as HP
BASIC performs the termination test in the FOR statement. Assigning values
to ending or step variables, however, has no effect at all on the loop’s execution.

9.2.2 WHILE...NEXT Loops

A WHILE..NEXT statement uses a conditional expression to control loop
execution; the loop is executed as long as a given condition is true. A
WHILE...NEXT loop is useful when you do not know how many loop iterations
are required.

In the following example, the first statement instructs the user to input data
and then type DONE when finished. After the user enters the first piece of

input, HP BASIC executes the WHILE... NEXT loop. If the first input value is
not “DONE?”, the loop executes and prompts the user for another input value.

9-6 Program Control

Once the user enters this input value, the WHILE...NEXT loop once again
checks to see if this value corresponds to “DONE”. The loop will continue
executing until the user types “DONE” in response to the prompt.

INPUT 'Type "DONE" when finished’; Answer
WHILE (Answer <> "DONE")

INPUT "More data"; Answer
NEXT

Note that the NEXT statement in the WHILE...NEXT and UNTIL...NEXT
loops does not increment a control variable; your program must change a
variable in the conditional expression or the loop will execute indefinitely.

The evaluation of the conditional expression determines whether the loop
executes. The test is performed (that is, the conditional expression is
evaluated) before the first iteration; if the value is false (0), the loop does
not execute.

It can be useful to intentionally create an infinite loop by coding a
WHILE...NEXT loop whose conditional expression is always true. When
doing this you must take care to provide a way out of the loop. You can do this
with an EXIT statement or by trapping a run-time error. See Chapter 15 for
more information about trapping run-time errors.

9.2.3 UNTIL...NEXT Loops

The UNTIL...NEXT loop performs like a WHILE...NEXT loop, except that
the logical sense of the conditional expression is reversed; that is, the
UNTIL...NEXT loop executes until a given condition is true.

An UNTIL...NEXT loop executes repeatedly for as long as the conditional
expression is false. Note that in UNTIL...NEXT loops, the NEXT statement
does not increment a control variable. You must explicitly change a variable in
the conditional expression or the loop will execute indefinitely.

It is possible to code the WHILE...NEXT loop with a UNTIL...NEXT loop, as
shown in the following example. These loops are equivalent except for the
logical sense of the termination test (WHILE Answer <> “DONE” as opposed to
UNTIL Answer = “DONE”).

Program Control 9-7

INPUT 'Type "DONE" when finished.’; Answer
UNTIL (Answer = "DONE")

INPUT "More data"; Answer
NEXT

9.2.4 Nesting Loops

When a loop block is entirely contained in another loop block, it is called a
nested loop.

The following example declares a two-dimensional array and uses nested
FOR...NEXT loops to fill the array elements with sales information. The
inner loop executes 16 times for each iteration of the outer loop. This example
assigns a value to each of the 256 elements of the array.

DECLARE
INTEGER
Column_number,
Row_number
REAL
Sales info,

Two dim array (15%, 15%)

FOR Row_number = 0% TO 15%
FOR Column number = 0% to 15%
INPUT "Please enter the sales information";Sales info
Two dim array (Row number, Column number) = Sales info
NEXT Column number
NEXT Row_number

Note that in nested loops the inner loop is entirely contained in the outer loop;
nested loops cannot overlap.

9.3 Unconditional Branching (GOTO Statement)

The GOTO statement specifies which program line the HP BASIC compiler

is to execute next, regardless of that line’s position in the program. If the
statement at the target line number or label is nonexecutable (such as an
REM statement), HP BASIC transfers control to the next executable statement
following the target line number.

You can use a GOTO statement to exit from a loop; however, it is better
programming practice to use the EXIT statement.

9-8 Program Control

9.4 Conditional Branching

Conditional branching is the transfer of program control only when specified
conditions are met. There are three HP BASIC statements that let you
conditionally transfer control to a target statement in your program:

e ON..GOTO...OTHERWISE
e JF..THEN..ELSE
e SELECT...CASE

9.4.1 ON...GOTO...OTHERWISE Statement

The ON...GOTO...OTHERWISE statement tests the value specified after the
ON keyword. If the value is 1, HP BASIC transfers control to the first target
in the list; if the value is 2, control passes to the second target, and so on. If
the value is less than 1 or greater than the number of targets in the list, HP
BASIC transfers control to the target specified in the OTHERWISE clause. For
example:

Menu:
PRINT "Would you like to change:"
PRINT "1. First name"
PRINT "2. Last name"

INPUT CHOICE%
ON CHOICE% GOTO First name, Last name OTHERWISE Other choice

First name:
INPUT "First name"; firstnames
GOTO Done

Last name:
INPUT "Last name"; lastname$
GOTO Done

Other choice:
PRINT "Invalid choice"
PRINT "Let’s try again"
GOTO Menu

Done:
END

Note that if you do not supply an OTHERWISE clause and the control variable
is less than 1 or greater than the number of targets, BASIC signals “ON
statement out of range (ERR = 58)”.

Program Control 9-9

9.4.2 IF.. THEN...ELSE Statement

The IF...THEN...ELSE statement evaluates a conditional expression and

uses the result to determine which block of statements to execute next. If
the conditional expression is true, HP BASIC executes the statements in the
THEN clause. If the conditional expression is false, HP BASIC executes the
statements in the ELSE clause, if one is present. If the conditional expression
is false and there is no ELSE clause, HP BASIC executes the statement
immediately following the END IF statement.

In the following example, HP BASIC evaluates the conditional expression
number < 0. If the input value of number is less than zero, the conditional
expression is true. HP BASIC then executes the statements in the THEN
clause, skips the statement in the ELSE clause, and transfers control to the
statement following the END IF. If the value of number is greater than or
equal to zero, the conditional expression is false. HP BASIC then skips the
statements in the THEN clause and executes the statement in the ELSE
clause.

INPUT "Input number"; number

IF (number < 0)
THEN
number = - number
PRINT "That square root is imaginary"
PRINT "The square root of its absolute value is";
PRINT SOQR (number)
ELSE
PRINT "The square root is"; SQR (number)
END IF
END

Output

Input number? -9
That square root is imaginary
The square root of its absolute value is 3

Do not neglect to end an IF.. THEN...ELSE statement. After an IF block is
executed, control is transferred to the statement immediately following the
END IF. If there is no END IF, HP BASIC transfers control to the next line
number. Code between the keyword ELSE and the next line number becomes
part of the ELSE clause. If there are no line numbers, the HP BASIC compiler
ignores the remaining program code from the keyword ELSE to the end of the
program. Therefore, it is important to end IF statements.

9-10 Program Control

IF.. THEN...ELSE statements can be nested. In an inner nesting level, if an
END IF is not present, the BASIC compiler treats the presence of an ELSE
clause for an IF statement in an outer nesting level as an implicit END IF for
all unterminated IF statements at that point. For example, in the following
construction, the third ELSE terminates both inner IFs:

IF expression
THEN
IF expression
THEN
statement-list
ELSE
IF expression
THEN
statement-list
ELSE
statement-list
ELSE

In the following example, the first IF.. THEN.. ELSE statement is ended

by END IF, and works as expected. Because the second IF.. THEN... ELSE
statement is not terminated by END IF, the HP BASIC compiler assumes that
the last PRINT statement in the program is part of the second ELSE clause.

10 DECLARE INTEGER light bulb
DECLARE INTEGER circuit switch
DECLARE INTEGER CONSTANT Opened = 0
DECLARE INTEGER CONSTANT Closed = 1

PRINT "Please enter zero or one, corresponding to the circuit"
PRINT "switch being open or closed"
INPUT On_off val
(1) IF On_off val = Opened
THEN
PRINT "The light bulb is off."
ELSE
PRINT "The light bulb is on."
END IF
IF On_off val = Closed
THEN
PRINT "The light bulb is on."
ELSE
PRINT "The light bulb is off."
(2] PRINT "That’s all for now."
20 END

@ When you run the program, the first IF.. THEN...ELSE statement will
always execute correctly.

Program Control 9-11

® The final PRINT statement will execute only when the value of On_off _val
is 1 (that is, closed), because the compiler considers this PRINT statement
to be part of the second ELSE clause.

Output 1

Please enter zero or one, corresponding to the circuit
switch being open or closed

? 0

The light bulb is off.

The light bulb is off.

That’s all for now.

Output 2

Please enter zero or one, corresponding to the circuit
Switch being open or closed

? 1

The light bulb is on.

The light bulb is on.

Note that a statement in a THEN or ELSE clause can be followed by a
modifier. In this case, the modifying IF applies only to the statement that
immediately precedes it.

IFA=B
THEN

PRINT A IF A = 3
ELSE

PRINT B IF B > 0
END IF

9.4.3 SELECT...CASE Statement

The SELECT...CASE statement lets you specify an expression (the SELECT
expression), any number of possible values (cases) for the SELECT expression,
and a list of statements (a CASE block) for each case. The SELECT expression
can be a numeric or string value. CASE values can be single or multiple
values, one or more ranges of values, or relationships. When a match is
found between the SELECT expression and a CASE value, the statements

in the following CASE block are executed. Control is then transferred to the
statement following the END SELECT statement.

In the following example, the CASE values appear to overlap; that is, the
CASE value that tests for values greater than or equal to 0.5 also includes
the values greater than or equal to 1.0. However, HP BASIC executes the
statements associated with the first matching CASE statement and then
transfers control to the statement following END SELECT. In this program,
each range of values is tested before it overlaps in the next range. Because the

9-12 Program Control

compiler executes the first matching CASE statement, the overlapping values
do not matter.

DECLARE REAL Stock change

INPUT "Please enter stock price change";Stock change
SELECT Stock change

CASE <= 0.5
PRINT "Don’t sell yet."

CASE <= 1.0
PRINT "Sell today."

CASE ELSE
PRINT "Sell NOW!"

END SELECT
END

Output

Please enter stock price change? 2.1
Sell NOW!

If no match is found for any of the specified cases and there is no CASE ELSE
block, HP BASIC transfers control to the statement following END SELECT
without executing any of the statements in the SELECT block.

SELECT...CASE lets you use run-time expressions for both SELECT
expressions and CASE values. The following example uses HP BASIC built-in
string functions to examine command input:

! This program is a skeleton command processor.
It recognizes three VAX BASIC Environment commands:

!
!

! SAVE
! SCRATCH

[OLD

DECLARE INTEGER CONSTANT True
DECLARE INTEGER CONSTANT False

-1
0

DECLARE STRING CONSTANT Null_input = " IThis is the null string.
DECLARE STRING Command

! Main program logic starts here.
Command_loop:

WHILE True ! This loop executes until the user types only a
| carriage return in response to the prompt.

Program Control 9-13

PRINT

PRINT "Please enter a command (uppercase only)."
PRINT "Type a carriage return when finished."
INPUT Command

PRINT

SELECT Command

CASE Null input | If user types RETURN,
! exit from the loop
GOTO Done ! and end the program.

The next three cases use the SEGS and LEN string functions.
LEN returns the length of the typed string, and SEGS searches
the string literals ("SAVE", "SCRATCH", and "OLD") for a
match up to that length. Note that if the user types an "S",
it is interpreted as a SAVE command only because SAVE is the

|
|
|
|
1
| first case tested.

CASE SEGS ("SAVE", 1%, LEN (Command))
PRINT "That was a SAVE command."

CASE SEGS ("SCRATCH", 1%, LEN (Command))
PRINT "That was a SCRATCH command."

CASE SEGS("OLD", 1%, LEN (Command))
PRINT "That was an OLD command."

CASE ELSE
PRINT "Invalid command, please try again."

END SELECT
NEXT

Done:
END

9.5 EXIT and ITERATE Statements

This section describes the EXIT and ITERATE statements and shows their use
with nested control structures.

The ITERATE and EXIT statements let you explicitly control loop execution.
These statements can be used to transfer control to the top or bottom of a
control structure.

You can use EXIT to transfer control out of any of these structures:
e FOR..NEXT loops

e WHILE...NEXT loops

e UNTIL..NEXT loops

e JF.THEN...ELSE blocks

9-14 Program Control

e SELECT...CASE blocks
e SUB, FUNCTION, and PICTURE subprograms
e DEF functions, and programs

In the case of control structures, EXIT passes control to the first statement
following the end of the control structure.

You can use ITERATE to explicitly reexecute a FOR..NEXT, WHILE... NEXT,
or UNTIL...NEXT loop. EXIT and ITERATE statements can appear only
within the code blocks you want to leave or reexecute.

Executing the ITERATE statement is equivalent to transferring control to
the loop’s NEXT statement. The termination test is still performed when
the NEXT statement transfers control to the top of the loop. In addition,
transferring control to the NEXT statement means that a FOR loop’s control
variable is incremented by the STEP value.

Supplying a label for every loop lets you state explicitly which loop to leave or
reexecute. If you do not supply a label for the ITERATE statement, HP BASIC
reexecutes the innermost active loop. For example, if an ITERATE statement
(that does not specify a label) is executed in the innermost of three nested
loops, only the innermost loop is reexecuted.

In contrast, labeling each loop and supplying a label argument to the ITERATE
statement lets you reexecute any of the loops. A label name also helps
document your code. Because you must use a label with EXIT and it is
sometimes necessary to use a label with ITERATE, you should always label the
structures you want to control with these statements.

The following example shows the use of both the EXIT and ITERATE
statements. This program explicitly exits the loop if you type a carriage return
in response to the prompt. If you type a string, the program prints the length
of the string and explicitly reexecutes the loop.

DECLARE STRING User string

Read loop:
WHILE 1% = 1%
LINPUT "Please type a string"; User string

Program Control 9-15

IF User string == ""
THEN
EXIT Read loop
ELSE
PRINT "Length is ";LEN(User string)
ITERATE Read loop
END IF
NEXT
END

9.6 Executing Local Subroutines

In HP BASIC, a subroutine is a block of code accessed by a GOSUB or ON
GOSUB statement. It must be in the same program unit as the statement
that calls it. The RETURN statement in the subroutine returns control to the
statement immediately following the GOSUB.

The first line of a subroutine can be any valid HP BASIC statement, including
a REM statement. You do not have to transfer control to the first line of

the subroutine. Instead, you can include several entry points into the same
subroutine. You can also reference subroutines by using a GOSUB or ON
GOSUB statement to another subroutine.

Variables and data in a subroutine are global to the program unit in which the
subroutine resides.

9.6.1 GOSUB and RETURN Statements

The GOSUB statement unconditionally transfers control to a line in a
subroutine. The last statement in a subroutine is a RETURN statement,
which returns control to the first statement after the calling GOSUB. A
subroutine can contain more than one RETURN statement so you can return
control conditionally, depending on a specified condition.

The following example first assigns a value of 5 to the variable A, then
transfers control to the subroutine labeled Times_two. This subroutine replaces
the value of A with A multiplied by 2. The subroutine’s RETURN statement
transfers control to the first PRINT statement, which displays the changed
value. The program calls the subroutine two more times, with different values
for A. Each time, the RETURN transfers control to the statement immediately
following the corresponding GOSUB.

9-16 Program Control

A=25
GOSUB Times_two
PRINT A

A =15
GOSUB Times_two
PRINT A

A =25
GOSUB Times_two
PRINT A

GOTO Done

Times_two:
IThis is the subroutine entry point
A=A*2
RETURN

Done:
END

Output
10
30
50

Note that HP BASIC signals “RETURN without GOSUB?” if it encounters
a RETURN statement without first having encountered a GOSUB or ON
GOSUB statement.

9.6.2 ON...GOSUB...OTHERWISE Statement

The ON...GOSUB...OTHERWISE statement transfers control to one of several
target subroutines depending on the value of a numeric expression. A
RETURN statement returns control to the first statement after the calling
ON GOSUB. A subroutine can contain more than one RETURN statement so
that you can return control conditionally, depending on a specified condition.

HP BASIC tests the value of the integer expression. If the value is 1,
control transfers to the first line number or label in the list; if the value is
2, control passes to the second line number or label, and so on. If the control
variable’s value is less than 1 or greater than the number of targets in the
list, HP BASIC transfers control to the line number or label specified in the
OTHERWISE clause. If you do not supply an OTHERWISE clause and the
control variable’s value is less than 1 or greater than the number of targets,
BASIC signals “ON statement out of range (ERR=58)". For example:

Program Control 9-17

INPUT "Please enter first integer value"; First value%
INPUT "Please enter second integer value"; Second value%

Choice:
PRINT "Do you want to perform:"
PRINT "1. Multiplication"
PRINT "2. Division"
PRINT "3. Exponentiation"

INPUT Selection%

ON Selection% GOSUB Mult, Div, Expon OTHERWISE Wrong
GOTO Done

Mult:
Result% = First value% * Second value%
PRINT Result%
RETURN

Div:
Result$% = First value / Second value$
PRINT Result%
RETURN

Expon:
Result% = First value% ** Second value%
PRINT Result%
RETURN

Wrong:
PRINT "Invalid selection"
RETURN

Done:
END

9.7 Suspending and Halting Program Execution
The following HP BASIC statements suspend program execution:

SLEEP
WAIT

These statements cause HP BASIC either to suspend program execution for a
specified time or to wait a certain period of time for user input.

After execution of the last statement, a HP BASIC program automatically
halts and closes all files. However, you can explicitly halt program execution
by using one of the following statements:

STOP
END

9-18 Program Control

The STOP statement does not close files. It can appear anywhere in a
program. The END statement closes files and must be the last statement in a
main program.

9.7.1 SLEEP Statement

The SLEEP statement suspends program execution for a specified number
of seconds. The following program waits two minutes (120 seconds) after
receiving the input string, and then prints it:

INPUT "Type a string of characters"; C$
SLEEP 120%

PRINT CS$

END

The SLEEP statement is useful if you have a program that depends on another
program for data. Instead of constantly checking for a condition, the SLEEP
statement lets you check the condition at specified intervals.

9.7.2 WAIT Statement

You use the WAIT statement only with terminal input statements such as
INPUT, INPUT LINE, and LINPUT. For example, the following program
prompts for input, then waits 30 seconds for your response. If the program
does not receive input in the specified time, HP BASIC signals “Keyboard wait
exhausted (ERR=15)" and exits the program.

WAIT 30%
INPUT "You have 30 seconds to type your password"; PSW$
END

The WAIT statement affects all subsequent INPUT, INPUT LINE, LINPUT,
MAT INPUT, and MAT LINPUT statements. To disable a previously specified
WAIT statement, use WAIT 0%.

In the following example, the first WAIT statement causes the first INPUT
statement to wait 30 seconds for a response. The WAIT 0% statement disables
this 30-second requirement for all subsequent INPUT statements.

WAIT 30%

INPUT "You have 30 seconds to type your password"; PSWS$
WAIT 0%

INPUT "What directory do you want to go to"; DIRS

Program Control 9-19

9.7.3 STOP Statement

The STOP statement is a debugging tool that lets you check the flow of
program logic. STOP suspends program execution but does not close files.

When HP BASIC executes a STOP statement, it signals “STOP at line
<line-num>.”

If you compile, link, and execute a program containing a STOP statement,
HP BASIC displays a number sign (#) prompt when the STOP statement is
encountered. At this point, you can enter:

e CONTINUE (to continue program execution)
e EXIT (to return to DCL command level)

9.7.4 END Statement

The END statement marks the end of a main program. When HP BASIC
executes an END statement, it closes all files and halts program execution.

The END statement is optional in HP BASIC programs. However, it is good
programming practice to include it. The END statement must be the last
statement in the main program.

The END statement returns you to DCL command level.

9-20 Program Control

10

Functions

A function is a single statement or group of statements that perform
operations on operands and return the result to your program. HP BASIC has
built-in functions that perform numeric and string operations, conversions,
and date and time operations. This chapter describes only a selected group

of built-in functions. For a complete description of all HP BASIC built-in
functions, see the HP BASIC for OpenVMS Reference Manual.

This chapter also describes user-defined functions. HP BASIC lets you define
your own functions in two ways:

e With the DEF statement
e As separately compiled subprograms (external functions)

DEF function definitions are local to a program module, while external
functions can be accessed by any program module. You create local functions
with the DEF statement and optionally declare them with the DECLARE
statement. You create external functions with the FUNCTION statement and
declare them with the EXTERNAL statement. For more information about
creating external functions with the FUNCTION statement, see Chapter 12.

Once you create and declare a function, you can invoke it like a built-in
function.

10.1 Built-In Functions

The functions described in this section let you perform sophisticated
manipulations of string and numeric data. HP BASIC also provides algebraic,
exponential, trigonometric, and randomizing mathematical functions.

Functions 10-1

10.1.1

10.1.1.1

10.1.1.2

Numeric Functions

Numeric functions generally return a result of the same data type as the
function’s parameter. For example, if you pass a DOUBLE argument to any of
the trigonometric functions, they return a DOUBLE result.

If the format of a HP BASIC function specifies an argument of a particular
data type, HP BASIC converts the actual argument supplied to the specified
data type. For example, if you supply an integer argument to a function
that expects a floating-point number, HP BASIC converts the argument to a
floating-point number. Floating-point arguments that are passed to integer
functions are truncated, not rounded.

The following sections discuss the HP BASIC built-in numeric functions.

ABS Function

The ABS function returns a floating-point number that equals the absolute
value of a specified numeric expression. For example:

READ A,B
DATA 10,-35.3
NEW A = ABS(A)
PRINT NEW A; ABS(B)
END

Output
10 35.3

The ABS function always returns a number of the default floating-point data
type.

INT and FIX Functions

The INT function returns the floating-point value of the largest integer less
than or equal to a specified expression. The INT function always returns a
number of the default floating-point type.

The FIX function truncates the value of a floating-point number at the decimal
point. FIX always returns a number of the default floating-point type.

The following example shows the differences between the INT and FIX
functions. Note that the value returned by FIX(-45.3) differs from the value
returned by INT(-45.3).

PRINT INT(23.553); FIX(23.553)
PRINT INT(3.1); FIX(3.1)
PRINT INT(-45.3); FIX(-45.3)
PRINT INT(-11); FIX(-11)

END

10-2 Functions

Output

23 23
33
-46 -45
-11 -11

10.1.1.3 SIN, COS, and TAN Functions

The SIN, COS, and TAN functions return the sine, cosine, and tangents of an
angle in radians or degrees, depending on which angle clause you choose with
the OPTION statement. If you supply a floating-point argument to the SIN,
COS, and TAN functions, they return a number of the same floating-point type.
If you supply an integer argument, they convert the argument to the default
floating-point data type and return a floating-point number of that type.

The following example accepts an angle in degrees, converts the angle to
radians, and prints the angle’s sine, cosine, and tangent:

ICONVERT ANGLE (X) TO RADIANS, AND

!FIND SIN, COS AND TAN

PRINT "DEGREES", "RADIANS", "SINE", "COSINE","TANGENT"
FOR I% = 0% TO 5%

READ X
LET Y = X * 2 * PI / 360
PRINT
PRINT X ,Y ,SIN(Y) ,COS(Y) ,TAN(Y)
NEXT I%
DATA 0,10,20,30,360,45
END
Output
DEGREES RADIANS SINE COSINE TANGENT
0 0 0 1 0
10 .174533 .173648 .984808 .176327
20 .349066 .34202 .939693 .36397
30 .523599 .5 .866025 .57735
360 6.28319 .174846E-06 1 .174846E-06
45 .785398 707107 .707107 1

Note

As an angle approaches 90 degrees (PI/2 radians), 270 degrees (3*P1/2
radians), 450 degrees (5*PI/2 radians), and so on, the tangent of that
angle approaches infinity. If your program tries to find the tangent of
such an angle, HP BASIC signals “Division by 0” (ERR=61).

Functions 10-3

10.1.1.4 SQR Function
The SQR function returns the square root of a number. For example:

PRINT SQR (2)

Output
1.41421

10.1.1.5 LOG10 Function

A logarithm is the exponent of some number (called a base). Common
logarithms use the base 10. The common logarithm of a number n, for example,
is the power to which 10 must be raised to equal n. For example, the common
logarithm of 100 is 2, because 10 raised to the power 2 equals 100.

The LOGI10 function returns a number’s common logarithm. The following
example calculates the common logarithms of all multiples of 10 from 10 to
100, inclusively:

FOR I% = 10% TO 100% STEP 10%
PRINT LOG10 (I%)

NEXT I%

END

Output

.30103
47712
.60206
.69897
.77815
.8451

.90309
.95424

R el el e = W =

e}

If you supply a floating-point argument to LOG10, the function returns
a floating-point number of the same data type. If you supply an integer
argument, LOG10 converts it to the default floating-point data type and
returns a value of that type.

10-4 Functions

10.1.1.6

10.1.1.7

EXP Function

The EXP function returns the value of e raised to a specified power. The
following example prints the value of e and e raised to the second power:

READ A,B

DATA 1,2

PRINT ’'e RAISED TO THE POWER'; A; " EQUALS"; EXP(A)
PRINT ‘e RAISED TO THE POWER’; B; " EQUALS"; EXP(B)
END

Output

e RAISED TO THE POWER 1 EQUALS 2.71828
e RAISED TO THE POWER 2 EQUALS 7.38906

If you supply a floating-point argument to EXP, the function returns a floating-
point number of the same data type. If you supply an integer argument, EXP
converts it to the default floating-point data type and returns a value of that
type.

RND Function

The RND function returns a number greater than or equal to zero and less
than 1. The RND function always returns a floating-point number of the
default floating-point data type. The RND function generates seemingly
unrelated numbers. However, given the same starting conditions, a computer
always gives the same results. Each time you execute a program with the RND
function, you receive the same results.

PRINT RND, RND, RND, RND

END
Output 1

.76308 .179978 .902878 .88984
Output 2

.76308 .179978 .902878 .88984

With the RANDOMIZE statement, you can change the RND function’s
starting condition and generate random numbers. To do this, place a
RANDOMIZE statement before the line invoking the RND function. Note
that the RANDOMIZE statement should be used only once in a program.
With the RANDOMIZE statement, each invocation of RND returns a new and
unpredictable number.

RANDOMIZE
PRINT RND,RND,RND, RND
END

Functions 10-5

10.1.2

10.1.2.1

Output 1

.403732 .34971 .15302 .92462
Output 2
.404165 .272398 .261667 .10209

The RND function can generate a series of random numbers over any open
range. To produce random numbers in the open range A to B, use the following
formula:

(B-A) *RND + A
The following program produces 10 numbers in the open range 4 to 6:

FOR I% = 1% TO 10%

PRINT (6%-4%) * RND + 4
NEXT I%
END

Output

.52616
.35996
.80576
.77968
.77402
.95189
.76439
.37156
.2776

.53843

B U1 01 B 010 ol

Data Conversion Functions
HP BASIC provides built-in functions that can perform the following:

e Convert a 1-character string to the character’s ASCII value and vice versa

¢ Translate strings from one data format to another, for example, EBCDIC to
ASCII

The following sections describe some of these functions.

ASCII Function

The ASCII function returns the numeric ASCII value of a string’s first
character. The ASCII function returns an integer value from 0 to 255,
inclusive. For instance, in the following example, the PRINT statement prints
the integer value 66 because this is the ASCII value equivalent of an uppercase
B, the first character in the string:

10-6 Functions

test string$ = "BAT"
PRINT ASCII (test string$)
END

Output
66

Note that the ASCII value of a null string is zero.

10.1.2.2 CHRS$ Function

The CHR$ function returns the character whose ASCII value you supply. If
the ASCII integer expression that you supply is less than zero or greater than
255, HP BASIC treats it as a modulo 256 value. HP BASIC treats the integer
expression as the remainder of the actual supplied integer divided by 256.
Therefore, CHR$(325) is equivalent to CHR$(69) and CHR$(-1) is equivalent to
CHR$(255).

The following program outputs the character whose ASCII value corresponds
to the input value modulo 256:

PRINT "THIS PROGRAM FINDS THE CHARACTER WHOSE"
PRINT "VALUE (MODULO 256) YOU TYPE"

INPUT value%

PRINT CHRS (value$%)

END

Output 1

THIS PROGRAM FINDS THE CHARACTER WHOSE
VALUE (MODULO 256) YOU TYPE

? 69
E

Output 2

THIS PROGRAM FINDS THE CHARACTER WHOSE
VALUE (MODULO 256) YOU TYPE

? 1093
E

10.1.3 String Numeric Functions

Numeric strings are numbers represented by ASCII characters. A numeric
string consists of an optional sign, a string of digits, and an optional decimal
point. You can use E notation in a numeric string for floating-point constants.

The following sections describe some of the HP BASIC numeric string
functions.

Functions 10-7

10.1.3.1 FORMATS$ Function

The FORMATS$ function converts a numeric value to a string. The output
string is formatted according to a string you provide. The expression you give
this function can be any string or numeric expression. The format string must
contain at least one PRINT USING format field. The formatting rules are the
same as those for printing numbers with PRINT USING. See Chapter 14 for
more information about the PRINT USING statement and formatting rules.

A=5

BS = " #4"

7$ = FORMATS (A, BS)
PRINT Z$

END

Output
5.00

10.1.3.2 NUM$ and NUM1$ Functions

The NUMS$ function evaluates a numeric expression and returns a string of
characters formatted as the PRINT statement would format it. The returned
numeric string is preceded by one space for positive numbers and by a minus
sign (-) for negative numbers. The numeric string is always followed by a
space. For example:

PRINT NUM$ (7465097802134)
PRINT NUMS (-50)
END

Output

.74651E+13
-50

The NUM1$ function translates a number into a string of numeric characters.
NUM1$ does not return leading or trailing spaces or E format. The following
example shows the use of the NUM1$ function:

PRINT NUM1S$ (PI)

PRINT NUM1S$(97.5 * 30456.23 + 30385.1)
PRINT NUM1S(1E-38)

END

Output

3.14159
2999870
.00000000000000000000000000000000000001

10-8 Functions

10.1.3.3

NUM1$ returns up to 6 digits of accuracy for SINGLE and SFLOAT real
numbers, up to 16 digits of accuracy for DOUBLE numbers, up to 10 digits

of accuracy for LONG integers, and up to 19 digits of accuracy for QUAD
integers. NUM1$ returns up to 15 digits of accuracy for GFLOAT and TFLOAT
numbers and up to 33 digits of accuracy for XFLOAT numbers.

The following example shows the difference between NUM$ and NUM1$:

A$ = NUM$(1000000)
B$ = NUM1$(1000000)
PRINT LEN(A$); "/"; AS; "/
PRINT LEN(BS); "/"; BS; "/"

END
Output
8 / .1E+07 /

7 /1000000/

Note that A$ has a leading and trailing space.

VAL% and VAL Functions

The VAL% function returns the integer value of a numeric string. This numeric
string expression must be the string representation of an integer. It can
contain the ASCII characters 0 to 9, a plus sign (+), or a minus sign (-).

The VAL function returns the floating-point value of a numeric string. The
numeric string expression must be the string representation of some number.
It can contain the ASCII characters 0 to 9, a plus sign (+), a minus sign (-), or
an uppercase E.

The VAL function returns a number of the default floating-point data type. HP
BASIC signals “Illegal number” (ERR=52) if the argument is outside the range
of the default floating-point data type.

The following is an example of VAL and VAL%:

A = VAL("922"
B$ noQ"

C% = VAL% (BS)
PRINT A
PRINT C%

END

Output

922
100

Functions 10-9

10.1.4 String Arithmetic Functions

In BASIC, string arithmetic functions process numeric strings as arithmetic
operands. This lets you add (SUM$), subtract (DIF$), multiply (PROD$),
and divide (QUO$) numeric strings, and express them at a specified level of
precision (PLACES$).

String arithmetic offers greater precision than floating-point arithmetic

or longword integers and eliminates the need for scaling. However, string
arithmetic executes more slowly than the corresponding integer or floating-
point operations.

The operands for the functions can be numeric strings representing any integer
or floating-point value (E notation is not valid). Table 10—1 shows the string
arithmetic functions and their formats, and gives brief descriptions of what
they do.

Table 10-1 String Arithmetic Functions

Function Format Description
SUM$ SUM$(AS$,B$) B$ is added to AS$.
DIF$ DIF$(A$,B$) B$ is subtracted from A$.

PROD$ PROD$(A$,B$,P%) A$ is multiplied by B$. The product is expressed
with precision P%.

QUO$ QUO$(A$,B$,P%) A$ is divided by B$. The quotient is expressed with
precision P%.

PLACE$ PLACES$(A$,P%) A$ is expressed with precision P%.

String arithmetic computations permit 56 significant digits. The functions
QUO$, PLACE$, and PROD$, however, permit up to 60 significant digits.
Table 10-2 shows how HP BASIC determines the precision permitted by each
function and if that precision is implicit or explicit.

Table 10-2 Precision of String Arithmetic Functions

Function = How Determined How Stated
SUM$ Precision of argument Implicitly
DIF$ Precision of argument Implicitly
PROD$ Value of argument Explicitly
QUO$ Value of argument Explicitly
PLACE$ Value of argument Explicitly

10-10 Functions

10.1.4.1

10.1.4.2

SUMS$ and DIF$ Functions

The SUM$ and DIF$ functions take the precision of the more precise argument
in the function unless padded zeros generate that precision. SUM$ and DIF$
omit trailing zeros to the right of the decimal point.

The size and precision of results returned by the SUM$ and DIF$ functions
depend on the size and precision of the arguments involved:

e The sum or difference of two integers takes the precision of the larger
integer.

e The sum or difference of two decimal fractions takes the precision of the
more precise fraction.

e The sum or difference of two real numbers takes precision as follows:

— The sum or difference of the integer parts takes the precision of the
larger part.

— The sum or difference of the decimal fraction parts takes the precision
of the more precise part.

e Trailing zeros are trunctated.

QUOS$, PLACES, and PROD$ Functions

In the QUO$, PLACES$, and PROD$ functions, the value of the integer
expression argument explicitly determines numeric precision. That is, the
integer expression parameter determines the point at which the number is
rounded or truncated.

If the integer expression is between -5000 and 5000, rounding occurs according
to the following rules:

e For positive integer expressions, rounding occurs to the right of the decimal
point. For example, if the integer expression is 1, rounding occurs one
digit to the right of the decimal point (the number is rounded to the
nearest tenth). If the integer expression is 2, rounding occurs two digits
to the right of the decimal point (the number is rounded to the nearest
hundredth), and so on.

e For zero, rounding occurs to the nearest unit.

e For negative integer expressions, rounding occurs to the left of the decimal
point. For example, if the integer expression is -1, rounding occurs one
place to the left of the decimal point. In this case, HP BASIC moves the
decimal point one place to the left, then rounds to units. If the integer
expression is -2, rounding occurs two places to the left of the decimal point;

Functions 10-11

HP BASIC moves the decimal point two places to the left, then rounds to
units.

Note that when rounding numeric strings, HP BASIC returns only part of the
number.

If the integer expression is between 5001 and 15,000, the following rules apply:

e If the integer expression is 10,000, HP BASIC truncates the number at the
decimal point.

e If the integer expression is greater than 10,000 (10,000 plus n), HP BASIC
truncates the numeric string n places to the right of the decimal point.
For example, if the integer expression is 10,001 (10,000 plus 1), HP BASIC
truncates the number starting one place to the right of the decimal point.
If the integer expression is 10,002 (10,000 plus 2), HP BASIC truncates the
number starting two places to the right of the decimal point, and so on.

e If the integer expression is less than 10,000 (10,000 minus n) HP BASIC
truncates the numeric string n places to the left of the decimal point. For
example, if the integer expression is 9999 (10,000 minus 1), HP BASIC
truncates the number starting one place to the left of the decimal point.
If the integer expression is 9998 (10,000 minus 2), HP BASIC truncates
starting two places to the left of the decimal point, and so on.

The PLACE$ function returns a numeric string, truncated or rounded
according to an integer argument you supply.

The following example displays the use of the PLACE$ function with several
different integer expression arguments:

number$ = "123456.654321"
FOR I% = -5% TO 5%

PRINT PLACES (number$, I%)
NEXT I%
PRINT
FOR I% = 9995 TO 10005

PRINT PLACES (number$, I%)
NEXT I%

10-12 Functions

10.1.5

Output

1

12

123

1235

12346
123457
123456.7
123456.65
123456.654
123456.6543
123456.65432

1

12

123

1234

12345
123456
123456.6
123456.65
123456 .654
123456.6543
123456.65432

The PROD$ function returns the product of two numeric strings. The returned
string’s precision depends on the value you specify for the integer precision
expression.

AS = "-4.333"

BS = "7.23326"

s_product$ = PRODS (A$, BS$, 10005%)
PRINT s_products$

END

Output
-31.34171

Date and Time Functions

HP BASIC supplies functions to return the date and time in numeric or string
format. The following sections discuss these functions.

Note that you can also use certain system services and Run-Time Library
routines for more sophisticated date and time functions. See the HP OpenVMS
System Services Reference Manual and the VMS Run-Time Library Routines
Volume for more information.

Functions 10-13

10.1.5.1

10.1.5.2

10.1.5.3

DATES$ Function

The DATE$ function returns a string containing a day, month, and year in the
form dd-Mmm-yy. The date integer argument to the DATE$ function can have
up to six digits in the form yyyddd, where yyy specifies the number of years
since 1970 and ddd specifies the day of that year. If the numeric expression is
zero, DATE$ returns the current date.

PRINT DATES (0)
PRINT DATES$ (126)
PRINT DATES (6168)
END

Output

15-Jun-85
06-May-70
16-Jun-176

If you supply an invalid date (for example, day 370 of the year 1973), the
results are undefined.

See Section 10.1.5.2 for the recommended replacement for DATE$, which has a
two-digit year field in the result string.

DATE4$ Function

The DATE4$ function is strongly recommended as replacement for the DATE$
function to avoid problems in the year 2000 and beyond. It functions the same
as the DATE$ function except that the year portion of the result string contains
two more digits indicating the century. For example:

PRINT 32150, DATES (32150), DATE4S (32150)

Produces the following output:

32150 30-May-02 30-May-2002

See the description of the DATES$ function for more information.

TIMES$ Function

The TIME$ function returns a string displaying the time of day in the form
hh:mm AM or hh:mm PM. TIMES$ returns the time of day at a specified
number of minutes before midnight. If you specify zero in the numeric
expression, TIME$ returns the current time of day. For example:

10-14 Functions

10.1.5.4

PRINT TIMES
PRINT TIMES
PRINT TIMES
PRINT TIMES
END

Output

03:53 PM
11:59 PM
12:00 AM
11:59 AM

0)
1)
1440)
721)

TIME Function

The TIME function requests time and usage information from the operating
system and returns it to your program. The information returned by the TIME
function depends on the value of the argument passed to it. The values and
the information they return are as follows:

Value

Information Returned

0

_wWw N =

Returns the number of seconds elapsed since midnight
Returns the current job’s CPU time in tenths of a second
Returns the current job’s connect time in minutes
Returns zero

Returns zero

All other arguments to TIME are undefined and cause HP BASIC to signal
“Not implemented” (ERR=250).

10.1.6 Terminal Control Functions

HP BASIC provides several terminal control functions. These functions let

you:

Enable and disable Ctrl/C trapping

Enable and disable terminal echoing

Read a single keystroke from a terminal

Functions 10-15

10.1.6.1

10.1.6.2

CTRLC and RCTRLC Functions

The CTRLC function enables Ctrl/C trapping, and the RCTRLC function
disables Ctrl/C trapping. When Ctrl/C trapping is enabled, control is
transferred to the program’s error handler when Ctrl/C is detected at the
controlling terminal.

Ctrl/C trapping is asynchronous. The trap can occur in the middle of an
executing statement, and a statement so interrupted leaves variables in an
undefined state. For example, the statement A$ = “ABC”, if interrupted by
Ctrl/C, could leave the variable A$ partially set to “ABC” and partially left
with its previous contents.

For example, if you type Ctrl/C to the following program when Ctrl/C trapping
is enabled, an “ABORT” message prints to the file open on channel #1. This
lets you know that the program did not end correctly.

WHEN ERROR USE error handler
Y% = CTRLC

END WHEN
HANDLER error handler
IF ERR = 28 THEN PRINT #1%, "Abort"

END HANDLER

Note

When you trap Ctrl/C with an error handler, your program might be in
an inconsistent state; therefore, you should handle the Ctrl/C error and
exit the program as quickly as possible.

ECHO and NOECHO Functions

The NOECHO function disables echoing on a specified channel. Echoing is
the process by which characters typed at the terminal keyboard appear on the
screen.

If you specify channel #0 (your terminal) as the argument, the characters typed
on the keyboard are still accepted as input; however, they do not appear on the
screen.

The ECHO function enables echoing on a specified channel and cancels the
effect of the NOECHO function on that channel.

10-16 Functions

10.1.6.3

If you do not use these functions, ECHO is the default. The following program
shows a password routine in which the password does not echo:

Y% = NOECHO (0%)

INPUT "PASSWORD"; pword$

IF pword$=="PLUGH" THEN PRINT "THAT IS CORRECT"
END IF

Y% = ECHO(0%)

END

Note that the Y% = ECHO(0%) statement is necessary to turn the echo back
on. If this statement were not included, then all subsequent user inputs would
not echo to the terminal screen.

INKEY$ Function

The INKEY$ function reads a single keystroke from a terminal opened on a
specified channel and returns the typed character.

If you specify a channel that is not open, HP BASIC signals the error “I/O
channel not open” (ERR=9). If a file or a device other than a terminal is open
on the channel, HP BASIC signals the error “Illegal operation” (ERR=141).

Once you have specified a channel, HP BASIC allows you to specify an optional
WAIT clause. A WAIT clause followed by no value tells HP BASIC to wait
indefinitely for input to become available. A WAIT clause followed by a value
from 1 to 255 tells HP BASIC to wait the specified number of seconds for input.

DECLARE STRING

KEYSTROKE Inkey Loop: WHILE 1% KEYSTROKE = INKEYS(1%,WAIT)
SELECT KEYSTROKE
CASE '26'C

PRINT "Ctrl/Z to exit"
EXIT Inkey Loop
CASE CR,LF,VT, FF,ESC
PRINT "Line terminator"
CASE "PF1" TO "PF4"
PRINT "P key"
CASE "E1" TO "Ee"
PRINT "VT200 Function key"
CASE "KPQ" TO "KP9"
PRINT "Application keypad key"
CASE < SP
PRINT "Control character"
CASE '127'C
PRINT ""
CASE ELSE
PRINT "Character is "; KEYSTROKE
END SELECT
NEXT

Functions 10-17

10.2 User-Defined Functions

10.2.1

The DEF statement lets you create your own single-line or multiline functions.
In HP BASIC, a function name consists of the following:

e The letters FN

e From 1 to 28 letters, digits, underscores, or periods

e An optional percent sign or dollar sign

Integer function names must end with a percent sign (%), and string function
names must end with a dollar sign ($); therefore, the function name can have
up to 31 characters. If the function name ends with neither a percent sign nor
a dollar sign, the function returns a real number.

You can create user-defined functions using these function naming rules;
however, it is recommended that you use explicit data typing when defining
functions for new program development. See Chapter 12 for an example of an
explicitly declared function. Note that the function name must start with FN
only if the function is not explicitly declared, and a function reference lexically
precedes the function definition.

DEF functions can be either single-line or multiline. Whether you use
the single-line or multiline format for function definitions depends on the
complexity of the function you create. In general, multiline DEF functions
perform more complex functions than single-line DEF functions and are
suitable for recursive operations.

If you want to pass values to a function, the function definition requires a
formal parameter list. These formal parameters are the variables used to
calculate the value returned by the function. When you invoke a function, you
supply an actual parameter list; the values in the actual parameter list are
copied into the formal parameter at this time. DEF functions allow up to 255
formal parameters. You can specify variables, constants, or array elements as
formal parameters, but you cannot specify an entire array as a parameter to a
DEF function.

Single-Line DEF Functions

In a single-line DEF, the function name, the formal parameter list, and the
defining expression all appear on the same line. The defining expression
specifies the calculations that the function performs. You can pass up to
255 arguments to this function through the formal parameter list. These
parameters are variables local to the function definition, and each formal
parameter can be preceded by a data type keyword.

10-18 Functions

The following example creates a function named fnratio. This function has two
formal parameters: numer and denomin, whose ratio is returned as a REAL
value.

When the function is invoked, HP BASIC does the following:

e Copies the values 5.6 and 7.8 into the formal parameters numer and
denomin

e Evaluates the expression to the right of the equal sign

e Returns the value to the statement that invoked the function (the PRINT
statement)

The PRINT statement then prints the returned value.

DEF REAL fnratio (numer, denomin) = numer / denomin
PRINT fnratio(5.6, 7.8)
END
Output
.717949

Note that the actual parameters you supply must agree in number and data
type with those in the formal parameter list; you must supply numeric values
for numeric variables, and string values for string variables.

The defining expression for a single-line function definition can contain any
constant, variable, HP BASIC built-in function, or any user-defined function
except the function being defined. The following examples are valid function
definitions:

DEF FN A(X) = X"2 + 3 * X + 4

DEF FN B(X) = FN A(X) / 2 + FN A(X)
DEF FN C(X) = SOR(X+4) + 1

DEF CUBE(X) = X * 3

Note that the name of the last function defined does not begin with FN. This
is valid as long as no reference to the function lexically precedes the function
definition.

You can also define a function that has no formal parameters. The following
function definition uses three HP BASIC built-in functions to return an integer
corresponding to the day of the month:

e DATE$(0) returns a date string in the form dd-Mmm-yy.

e The SEG$ function strips out of this value the characters starting at
character position 1 up to and including the character at position 2 (the
day number).

Functions 10-19

10.2.2

e The VAL% function converts this resulting numeric string to an integer. In
this way, fnday_number returns the day of the month as an integer.

DEF INTEGER fnday number = VAL% (SEG$ (DATES (0%), 1%, 2%))

Multiline DEF Functions

The DEF statement can also define multiline functions. Multiline DEF
functions are useful for expressing complicated functions. Note that multiline
DEF functions do not have the equal sign and defining expression on the first
line. Instead, this expression appears in the function block, assigned to the
function name.

Note

If a multiline DEF function contains DATA statements, they are global
to the program unit.

Multiline function definitions can contain any constant, variable, HP BASIC
built-in function, or user-defined function. In HP BASIC, the function
definition can contain a reference to the function you are defining. Therefore,
a multiline DEF function can be recursive, or invoke itself; however, HP
BASIC does not detect infinitely recursive DEF functions during compilation.
If your program invokes an infinitely recursive DEF function, HP BASIC will
eventually signal a fatal run-time error, typically the error “Access violation.”

You can use either the END DEF or EXIT DEF statements to exit from a user-
defined function. The EXIT DEF statement is equivalent to an unconditional
transfer to the END DEF statement.

The following example shows a multiline DEF function that uses both the
EXIT and END DEF statements. The defining expression of the function is

in the ELSE clause. This assigns a value to the function if A is less than 10.
The second set of output shows what happens when A is greater than 10; HP
BASIC prints “OUT OF RANGE” and executes the EXIT DEF statement. The
function returns zero because control is transferred to the END DEF statement
before a value was assigned. In this way, this example tests the arguments
before the function is evaluated.

10-20 Functions

DEF fn discount (A)
IF A > 10
THEN
PRINT "OUT OF RANGE"
EXIT DEF
ELSE
fn discount = A*A
END IF
END DEF

INPUT Z
PRINT fn discount (Z)
END

Output 1
? 4
256

Output 2

? 12

OUT OF RANGE
0

If you do not explicitly declare the function with the DECLARE statement,
the restrictions for naming a multiline DEF function are the same as those
for the single-line DEF function; however, explicitly declaring a DEF function
can make a program easier to read and understand. For instance, Example
1 concatenates two strings and Example 2 returns a number in a specified
modulus.

DECLARE STRING FUNCTION concat (STRING, STRING) !Declare the function

DEF STRING concat (STRING Y, STRING Z)
concat = Y + Z !Define the function
FNEND

new string$ = concat (A$, B$) !Invoke the function

END

DECLARE REAL FUNCTION mdlo (REAL, INTEGER)
DEF mdlo(REAL argument, INTEGER modulus)
ICheck for argument equal to zero

EXIT DEF IF argument = 0

Functions 10-21

ICheck for modulus equal to zero, modulus equal to absolute
lvalue of argument, and modulus greater than absolute
lvalue of argument.

SELECT modulus

CASE = 0%
EXIT DEF

CASE > ABS(argument)
EXIT DEF

CASE = ABS(argument)
mdlo = argument
EXIT DEF

END SELECT

IIf argument is negative, set flag negative% and set argument
Ito its absolute value.
IF argument < 0
THEN argument = ABS(argument)
negative% = -1%
END IF
UNTIL argument < modulus
argument = argument - modulus

1If this calculation ever results in zero, mdlo returns zero
IF argument = modulus
THEN mdlo = 0
EXIT DEF
END IF
NEXT

!Argument now contains the right number, but the sign might be wrong.
IIf the negative argument flag was set, make the result negative.

IF negative$%

THEN mdlo = - argument
ELSE mdlo = argument
END IF
END DEF

INPUT "PLEASE INPUT THE VALUE AND THE MODULUS"; X,Y
PRINT mdlo(X,Y)
END

Output
PLEASE INPUT THE VALUE AND THE MODULUS? 7, 5
2

Because these functions are declared in DECLARE statements, the function
names do not have to conform to the traditional HP BASIC rules for naming

functions.

10-22 Functions

Recursion occurs when a function calls itself. The following example defines a
recursive function that returns a number’s factorial value:

DECLARE INTEGER FUNCTION factor (INTEGER)
DEF INTEGER factor (INTEGER F)
IF F <= 0%
THEN factor
ELSE factor
END IF
END DEF
INPUT "INPUT N TO FIND N FACTORIAL"; N%
PRINT "N! IS"; factor(N%)
END

Output

INPUT N TO FIND N FACTORIAL? 5
N! IS 120

1%
factor(F - 1%) * F

Any variable accessed or declared in the DEF function and not in the formal
parameter list is global to the program unit. When HP BASIC evaluates the
user-defined function, these global variables contain the values last assigned to
them in the surrounding program module.

To prevent confusion, variables declared in the formal parameter list should
not appear elsewhere in the program. Note that if your function definition
actually uses global variables, these variables cannot appear in the formal
parameter list.

You cannot transfer control into a multiline DEF function except by invoking
it. You should not transfer control out of a DEF function except by way of an
EXIT DEF or END DEF statement. This means that:

e If the DEF function contains an ON ERROR GOTO, GOTO, ON GOTO,
GOSUB, ON GOSUB, or RESUME statement, that statement’s target line
number must also be in that DEF function.

e An ON ERROR GO BACK statement can transfer control out of a DEF
function; however, a RESUME statement in an error handler outside the
DEF function cannot transfer control back into the DEF function.

e If the DEF function contains a handler, and was invoked from a protected
region, an EXIT HANDLER statement causes control to be transferred
to the specified handler for that protected region. However, if the DEF
function contains a handler but was not invoked from a protected region,
an EXIT HANDLER statement causes control to be transferred to the
default error handler.

Functions 10-23

e A subroutine cannot be shared by more than one DEF function; however,
if you rewrite the subroutine as a DEF function with no parameters, other
function definitions can share it.

A DEF function never changes the value of a parameter passed to it. Also,
because formal parameters are local to the function definition, you cannot
access the values of these variables from outside the DEF statement. These
variable names are known only inside the DEF statement.

In the following example, the variable first is declared only in the function
fn_sum. When HP BASIC sees the second PRINT statement, it assumes that
first is a new variable that is not declared in the main program. If you try

to run this example, HP BASIC signals the error “Explicit declaration of first
required.” If you do not specify the OPTION TYPE = EXPLICIT statement, HP
BASIC assumes that first is a new variable and initializes it to zero.

OPTION TYPE = EXPLICIT

DECLARE INTEGER A, B

DEF fn sum(INTEGER first, INTEGER second) = first + second
A =50

B =25

PRINT fn_sum(A, B)

PRINT first

END

10-24 Functions

11

String Handling

This chapter defines dynamic and fixed-length strings and string virtual
arrays, explains which you should choose for your application, and shows you
how to use them.

11.1 Overview of Strings

A string is a sequence of ASCII characters. BASIC allows you to use the
following types of strings:

¢ Dynamic strings
¢ Fixed-length strings
e String virtual arrays

Dynamic strings are strings whose length can change during program
execution. The length of a dynamic string variable can change or not,
depending on the statement used to modify it.

Fixed-length strings are strings whose length never changes. In other
words, their length remains static. String constants are always fixed-length.
String variables can be either fixed-length or dynamic. A string variable is
fixed-length if it is named in a COMMON, MAP, or RECORD statement. If

a string variable is not part of a map or common block, RECORD, or virtual
array, it is a dynamic string. When a string variable is fixed-length, its length
does not change, regardless of the statement you use to modify it. Table 11-1
provides more information about string modification.

Strings in virtual arrays have both fixed-length and dynamic attributes. String
virtual arrays have a specified maximum length from 0 to 512 characters.
During program execution, the length of an element in a string virtual array
can change; however, the length is always from 0 to the maximum string size
specified when the array was created. See Section 11.4 and Chapter 13 for
more information about virtual arrays.

String Handling 11-1

Table 11-1 String Modification

Changes Made to Changes Made to
Statement Fixed-Length Strings Dynamic Strings
LET Value Value and length
LSET Value Value
RSET Value Value
Terminal I/O Value Value and length

Statements’

ITerminal I/O statements include INPUT, INPUT LINE, LINPUT, MAT INPUT, and so on.

11.2 Using Dynamic Strings

Although dynamic strings are less efficient than fixed-length strings, they
are often more flexible. For example, to concatenate strings, you can use the
LET statement to assign the concatenated value to a dynamic string variable,
without having to be concerned about HP BASIC truncating the string or
adding trailing spaces to it. However, if the destination variable is fixed-
length, you must make sure that it is long enough to receive the concatenated
string, or HP BASIC truncates the new value to fit the destination string.
Similarly, if you use LSET or RSET to concatenate strings, you must ensure
that the destination variable is long enough to receive the data.

The LET, LSET, and RSET statements all operate on dynamic strings as well
as fixed-length strings. The LET statement can change the length of a dynamic
string; LSET and RSET do not. LSET and RSET are more efficient than LET
when changing the value of a dynamic string. For more information about
LSET and RSET, see Section 11.5.2 and Section 11.5.3.

In the following example, the first line assigns the value “ABC” to A$, the
second line assigns “XYZ” to B$, and the third line assigns six spaces to C§$.
These variables are dynamic strings. In the fourth line, LSET assigns A$

the value of A$ concatenated with B$. Because the LSET statement does

not change the length of the destination string variable, only the first three
characters of the expression A$ + B$ are assigned to A$. The fifth line uses
LSET to assign C$ the value of A$ concatenated with B$. Because C$ already
has a length of 6, this statement assigns the value “ABCXYZ” to it.

11-2 String Handling

LET AS
LET BS
LET C$
LSET AS
LSET C$
PRINT AS$
PRINT C$
END

Output

ABC
ABCXYZ

Like the LET statement, the INPUT, INPUT LINE, and LINPUT statements
can change the length of a dynamic string, but they cannot change the length
of a fixed-length string.

||ABC n

n XYZ n

n n
AS + BS
AS + BS

In this example, the first line assigns the null string to variable A$. The second
line uses the LEN function to show that the null string has a length of zero.
The third line uses the INPUT statement to assign a new value to A$, and the
fourth and fifth lines print the new value and its length.

|Declare a dynamic string
LET A$ - nn

PRINT LEN (AS)

INPUT AS$

PRINT A$

PRINT LEN(A$)

END

Output

0
? THIS IS A TEST
THIS IS A TEST
14

You should not confuse the null string with a null character. A null character
is one whose ASCII numeric code is zero. The null string is a string whose
length is zero.

11.3 Using Fixed-Length Strings

It is generally more efficient to manipulate a fixed-length string than a
dynamic string. Creating or modifying a dynamic string often causes HP
BASIC to create new storage, and this increases processor overhead.

String Handling 11-3

If a string variable is part of a map or common block, or virtual array, a LET,
INPUT, LINPUT, or INPUT LINE statement changes its value, but not its
length. In the following example, the MAP statement in the first line explicitly
assigns a length to each string variable. Because the LINPUT statements
cannot change this length, HP BASIC truncates values to fit the address and
city_state variables. Because the zip variable is longer than the assigned value,
HP BASIC left-justifies the assigned value and pads it with spaces. The sixth
line uses the compile-time constant HT (horizontal tab) to separate fields in
the employee record.

MAP (FIELDS) STRING full name = 10, &
address = 10, &
city state = 10, &
zip = 10

LINPUT "NAME"; full name

LINPUT "ADDRESS"; address

LINPUT "CITY AND STATE"; city state

LINPUT "ZIP CODE"; zip

EMPLOYEE RECORDS$ = full name + HT + address + HT &
+ city state + HT + zip

PRINT EMPLOYEE RECORD$

END

Output

NAME? JOE SMITH

ADDRESS? 66 GRANT AVENUE
CITY AND STATE? NEW YORK NY
ZIP? 01001

JOE SMITH 66 GRANT A NEW YORK N 01001

11.4 Using String Virtual Arrays

Virtual arrays are stored on disk. You create a virtual array by opening a disk
file and then using the DIM # statement to dimension the array on the open
channel. This section describes only string virtual arrays. See Chapter 13 for
more information about virtual arrays.

Elements of string virtual arrays behave much like dynamic strings, with the
following exceptions:

e When you create the virtual string array, you specify a maximum length
for the array’s elements. The length of an array element can never exceed
this maximum. If you do not supply a length, the default is
16 characters.

e A string virtual array element cannot contain trailing nulls.

11-4 String Handling

When you assign a value to a string virtual array element, HP BASIC pads
the value with nulls, if necessary, to fit the length of the virtual array element;
however, when you retrieve the virtual array element, HP BASIC strips all
trailing nulls from the string. Therefore, when you access an element in a
string virtual array, the string never has trailing nulls.

In the following example, the first two lines dimension a string virtual array
and open a file on channel #1. The third line assigns a 10-character string to
the first element of this string array, and to the variable A$. This 10-character
string consists of “ABCDE” plus five null characters. The PRINT statements
show that the length of A$ is 10, while the length of test(1) is only 5 because
HP BASIC strips trailing nulls from string array elements.

DIM #1%, STRING test(5)
OPEN "TEST" AS FILE #1%, ORGANIZATION VIRTUAL

AS$, test(1%) = "ABCDE" + STRINGS (5%, 0%)
PRINT "LENGTH OF A$ IS: "; LEN(AS)

PRINT "LENGTH OF TEST(1) IS: "; LEN(test(1%))
END

Output

LENGTH OF A$ IS: 10
LENGTH OF TEST(1) IS: 5

Although the storage for string virtual array elements is fixed, the length of a
string array element can change because HP BASIC strips the trailing nulls
whenever it retrieves a value from the array.

11.5 Assigning String Data

11.5.1

To assign string data, you use the LET, LSET, RSET, and MID$ statements.
The following sections describe how to use these statements.

LET Statement

The LET statement assigns string data to a string variable. The keyword
LET is optional. Again, LSET is more efficient than LET when changing a
dynamic string variable. In the following example, B is a string variable and
“ret_status” is a quoted string expression:

LET B = "ret status"

The LET statement changes the length of dynamic strings but does not
change the length of fixed-length strings. The following example first creates
a fixed-length string named ABC by declaring the string in a MAP statement.
The program then creates a dynamic string named XYZ by declaring it in

a DECLARE statement. The third line assigns a 3-character value to both
variable ABC and XYZ, then prints the value and the length of the string

String Handling 11-5

variables. Variable ABC continues to have a length of 10: the three characters
assigned, plus seven spaces for padding. The length of the dynamic variable
changes with the values assigned to it.

MAP (TEST) STRING ABC = 10
DECLARE STRING XYZ

ABC = "ABC"

XYZ = "XYZ"

PRINT ABC, LEN (ABC)

PRINT XYZ, LEN(XYZ)

ABC = "A"

XYZ = "X

PRINT ABC, LEN (ABC)

PRINT XYZ, LEN(XYZ)

Output

ABC 10
XYZ 3
A 10
X 1

11.5.2 LSET Statement

The LSET statement left-justifies data and assigns it to a string variable,
without changing the variable’s length. In the following example, ABC is a
string variable and “ABC” is a string constant:

LSET ABC = "ABC"

If the string expression’s value is shorter than the string variable’s current
length, LSET left-justifies the expression and pads the string variable with
spaces. In the following example, the LET statement creates the 5-character
string variable test$. The LSET statement in the second line assigns the string
XYZ to the variable test$ but does not change the length of test$. Because test$
has a length of 5, the LSET statement pads the string XYZ with two spaces
when assigning the value. The PRINT statement shows that test$ includes
these two spaces.

LET test$ = "ABCDE"
LSET test$ = "XYZ"
PRINT "'"; test$; "'"
END

11-6 String Handling

11.5.3

Output
'XYZ

LSET left-justifies a string expression longer than the string variable and
truncates it on the right as shown in the following example:

LET test$ = "ABCDE"
LSET test$ = "12345678"
PRINT test$

END

Output
12345

The LET statement creates the 5-character string variable test$. The LSET
statement in the second line assigns the characters “12345” to test$. Because
LSET does not change the string variable’s length, it truncates the last three
characters (678).

RSET Statement

The RSET statement right-justifies data and assigns it to a string variable
without changing the variable’s length. In the following example, C_R is a
string variable and “cust_rec” is a string constant:

RSET C R = "cust_rec"

RSET right-justifies a string expression shorter than the string variable and
pads it with spaces on the left. In the following example, the LET statement
creates the 5-character string variable test$. The RSET statement in the
second line assigns the string XYZ to test$ but does not change the length of
test$. Because test$ is five characters long, the RSET statement pads XYZ with
two spaces when assigning the value. The PRINT statement shows that test$
includes these two spaces.

LET test$ = "ABCDE"
RSET test$ = "Xyz"
PRINT nrn ’. tests; nrn
END

Output
rOXYZ

If the string expression’s value is longer than the string variable, RSET right-
justifies the string expression and truncates characters on the left to fit the
string variable as shown in the following example:

String Handling 11-7

11.5.4

LET test$ = "ABCDE"

RSET test$ = "987654321"
PRINT tests$

END

Output
54321

The LET statement creates a 5-character string variable, test$. The RSET
statement assigns “54321” to test$. RSET, which does not change the variable’s
length, truncates “9876” from the left side of the string expression.

Note that, when using LSET and RSET, padding can become part of the data.

LET AS = 12345’
LSET A$ = 'ABC’
LET BS = '12345678'

RSET B$ = A$
PRINT nrn ,.B$,. nrn
Output

' ABC '

MID$ Assignment Statement

You can replace a portion of a string with another string using the MID$
assignment statement. You specify a starting character position that indicates
where to begin the substitution. If you specify a starting character position
that is less than 1, HP BASIC assumes a starting character position of 1. In
addition, you can optionally specify the number of characters to substitute from
the source string expression. If you do not specify the number of characters

to substitute, HP BASIC attempts to insert the entire source expression.
However, the MID$ statement never changes the length of the target string
variable; therefore, the entire source expression might not fit into the available
space.

The following example shows the use of MID$ as an assignment statement. In
this example, “ABCD” is the input string, the starting character position is 1,
and the length of the segment to be replaced is 3 characters. Note that when
you use MID$ as an assignment statement, the length of the input string does
not change; therefore, the length of the result (“123D”) is equal to the length of
the input string.

DECLARE STRING old string, replace string
old string = "ABCD"

replace_string = "123"

PRINT old string

MID$ (old string,1,3) = replace string
PRINT old string

11-8 String Handling

Output

ABCD
123D

Keep these considerations in mind when you use the MID$ assignment
statement:

The length argument is optional. If not specified, the number of characters
replaced will be the minimum of the length of the replacement string and
the length of the input string minus the starting position value.

If the length of the segment is less than or equal to zero, HP BASIC
assumes a length of zero.

The length of the input string does not change regardless of the value of
the length of the segment.

11.6 Manipulating String Data with String Functions

When used with the LET statement, HP BASIC string functions let you
manipulate and modify strings. These functions let you:

11.6.1

Determine the length of a string (LEN)

Search for the position of a set of characters in a string (POS)

Extract segments from a string (SEG$, MID$)

Create a string of any length, made up of any single character (STRING$)
Create a string of spaces (SPACE$)

Remove trailing spaces and tabs from a string (TRM$)

Edit a string (EDIT$)

These functions are discussed in the following sections. See the HP BASIC
for OpenVMS Reference Manual for more information about each string’s
function.

LEN Function

The LEN function returns the number of characters in a string as an integer
value. For example:

LEN (spec)

String Handling 11-9

Spec is a string expression. The length of the string expression includes
leading and trailing blanks. In the following example, the variable Z$ is set
equal to “ABC XYZ”, which has a length of eight:

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
PRINT LEN(alpha$)

Z$ = I|ABCI| + n n + n |IXYZ|I
PRINT LEN (Z$)

END

Output

26

8

11.6.2 POS Function

The POS function searches a string for a group of characters (a substring). In
the following example, spec is the string to be searched, test is the substring
for which you are searching and 15 is the character position where HP BASIC
starts the search:

POS (spec, test, 15)

The position returned by POS is relative to the beginning of the string, not the
starting position of the search. For example, if you search the string “ABCDE”
for the substring “E”, it does not matter whether you specify a starting position
of 1, 2, 3, 4, or 5, HP BASIC still returns the value 5 as the position where the
substring was found.

If the function finds the substring, it returns the position of the substring’s
first character. Otherwise, it returns zero as in the following example:

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

Z$ = "DEFG"

X% = POS(ALPHAS,Z$,1%)
PRINT X%

Q$ = "TEST"

Y$ = POS (ALPHAS, Q%, 1%)
PRINT Y%

END

Output

4

0

If you specify a starting position other than 1, HP BASIC still returns the
position of the substring relative to the beginning of the string as shown in the
following example:

11-10 String Handling

alpha$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
7$ = "HIJ"

PRINT POS (ALPHAS, Z$, 7%)

END

Output
8

If you know that the substring is not near the string’s beginning, specifying a
starting position greater than one speeds program execution by reducing the
number of characters HP BASIC must search.

You can use the POS function to associate a character string with an integer
that you can then use in calculations. This technique is called a table look-
up. The following example prompts for a 3-character string, changes the string
to uppercase letters, and searches the table string to find a match. The WHILE
loop executes indefinitely until a carriage return is typed in response to the
prompt.

DECLARE STRING CONSTANT table = &
"JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDEC"
DECLARE STRING month, UPPER CASE MONTH, message
DECLARE INTEGER month length
DECLARE REAL month pos
PRINT "Please type the first three letters of a month"
PRINT "To end the program, type only Return";
Loop 1:
WHILE 1% = 1%
INPUT month
UPPER_CASE MONTH = EDITS (month, 32%)
month length = LEN(UPPER CASE MONTH)
EXIT Loop 1 IF month _length = 0%
IF month length =
THEN month pos = (OS(table UPPER CASE MONTH, 1) + 2) / 3
IF (month pos = 0%) OR (month pos <> FIX(month pos))
THEN MESSAGE = " Invalid abbreviation, try again"
ELSE MESSAGE = " is month number" + NUMS$ (MONTH_ POS)

END IF
ELSE MESSAGE = " Abbreviation not three characters, try again"
END IF
PRINT month; message
NEXT
END

String Handling 11-11

Output

Please type the first three letters of a month
To end the program, type only Return? Nov
Nov is month number 11

Keep these considerations in mind when you use POS:

e If you specify a starting position less than 1, POS assumes a starting
position of one.

e If you specify a starting position greater than the searched string’s length,
POS returns a zero (unless the substring is null).

e When searching for a null string:

— If you specify a starting position greater than the string’s length, POS
returns the string’s length plus one.

— If the string to be searched is also null, POS returns a value of one.

— If the specified starting position is less than or equal to 1, POS returns
a value of one.

— If the specified starting position is greater than one and less than or
equal to the string’s length plus 1, POS returns the specified starting
position.

Note that searching for a null string is not the same as searching for the null
character. A null string has a length of zero, while the null character has a
length of one. The null character is an ASCII character whose value is zero.

11.6.3 SEGS$ Function

The SEG$ function extracts a segment (substring) from a string. The original
string remains unchanged. In the following example, time is the input string,
13 is the position of the first character extracted, and 16 is the position of the
last character extracted:

SEGS (time, 13,16)

SEG$ extracts from the input string the substring that starts at the first
character position, up to and including the last character position. It returns
the extracted segment.

PRINT SEGS$ ("ABCDEFG", 3%, 5%)
END

11-12 String Handling

Output
CDE

If you specify character positions that exist in the string, the length of the
returned substring always equals (int-exp2 — int-expl + 1).

Keep these considerations in mind when you use SEG$:

e If the starting character position is less than 1, HP BASIC assumes a value
of 1.

e If the starting character position is greater than the ending character
position, or the length of the string, SEG$ returns a null string.

e If the ending character position is greater than the length of the string,
SEGS$ returns all characters from the starting character position to the end
of the string.

e If the starting character position is equal to the ending character position,
SEG$ returns the character at the starting position.

You can replace part of a string by using the SEG$ function with the string
concatenation operator (+). In the following example, when HP BASIC creates
C$, it concatenates the first two characters of A$, the 3-letter string XYZ, and
the last two characters of A$. The original contents of A$ do not change.

A$ = "ABCDEFG"

C$ = SEGS(AS, 1%, 2%) + "XYZ" + SEGS (RS, 6%, 7%)
PRINT C$

PRINT AS

END

Output
ABXYZFG
ABCDEFG

You can use similar string expressions to replace characters in any string. If
you do not change the length of the target string, use the MID$ assignment
statement to perform string replacement. A general formula to replace
characters in positions n through m of string A$ with characters in B$ is

as follows:

C$ = SEGS$(AS$,1%,n-1) + B$ + SEG$(A$,m+1,LEN(AS))

The following example replaces the sixth to ninth characters of the string
“ABCDEFGHIJK” with “123456”:

String Handling 11-13

A$ = "ABCDEFGHIJK"

B$ = "123456"

C$ = SEGS(AS,1%,5%) + BS + SEGS(AS,10%,LEN(AS))
PRINT C$

PRINT AS

PRINT BS

END

Output
ABCDE123456JK
ABCDEFGHIJK
123456

The following formulas are more specific applications of the general formula:
e To replace the first n characters of A$ with B$ use:
C$ = BS + SEG$(AS,n+1,LEN(AS))
e To replace all but the first n characters of A$ with B$ use:
C$ = SEG$(AS,1,n) + BS
e To replace all but the last n characters of A$ with B$ use:
C$ = BS + SEGS(AS,(LEN(AS)-n) + 1, LEN(AS))
e To replace the last n characters of A$ with B$ use:
C$ = SEG$(A$,1,LEN(AS)-r) + B
e To insert B$ in A$ after the nth character in A$ use:
C$ = SEG$(A$,1,n) + BS + SEGS(AS,n+1,LEN(AS))

11.6.4 MID$ Function

The MID$ function extracts a specified substring, beginning at a specified
character position and ending at a specified length. If you specify a starting
character position that is less than 1, HP BASIC automatically assumes a
starting character position of 1.

In the following example, the MID$ function uses the input string “ABCD”,
and extracts a segment consisting of 3 characters. Because HP BASIC
automatically assumes a starting character position of 1 when the specified
starting character position is less than 1, the string that is extracted begins
with the first character of the input string.

DECLARE STRING old string, new string
old string = "ABCD"

new string = MIDS$(old string, 0, 3)
PRINT new string

11-14 String Handling

Output
ABC

Keep these considerations in mind when you use MID$:

e If the position of the segment’s first character is greater than the input
string, MID$ returns a null string.

e If the length of the segment is greater than the length of the input string,
HP BASIC returns the string that begins at the specified starting character
position and includes all characters remaining in the string.

e If the length of the segment is less than or equal to zero, MID$ returns a
null string.

e If you specify a floating-point expression for the position of the segment’s
first character or for the length of the segment, HP BASIC truncates it to a
long integer.

11.6.5 STRINGS Function

The STRINGS$ function creates a character string containing multiple
occurrences of a single character. In the following example, 23 is the length of
the returned string, and 30 is the ASCII value of the character that makes up
the string. This value is treated modulo 256.

STRINGS (23,30)

The following example creates a 10-character string containing uppercase As,
which have ASCII value 65:

out$ = STRINGS (10%, 65%)
PRINT out$
END

Output
AAAAAAAAAA

Keep these considerations in mind when you use STRING$:

e If the length of the returned string is less than or equal to zero, STRING$
returns a null string.

e If the length of the returned string is greater than 65535, HP BASIC
signals an error.

String Handling 11-15

11.6.6 SPACES$ Function

The SPACE$ function creates a character string containing spaces. In this
example, 5 is the number of spaces in the string:

SPACES (5)

The following example creates a 9-character string which contains 3 spaces:

A$ = "ABC"

BS = "XYZ"

PRINT A$ + SPACES(3%) + BS
END

Output

ABC XVYZ

11.6.7 TRM$ Function

The TRMS$ function removes trailing blanks and tabs from a string. The input
string remains unchanged. In the following example, all trailing blanks that
appear in the string expression “ABCDE ” are removed once the TRM$ function

is invoked:
AS = "ABCDE n
BS = "XYz"

first$ = AS + BS
second$ = TRMS (AS) + BS
PRINT first$

PRINT second$

END

Output

ABCDE XYZ
ABCDEXYZ

The TRMS$ function is especially useful for extracting the nonblank characters
from a fixed-length string (for example, a COMMON or MAP, or a parameter
passed from a program written in another language).

11.6.8 EDITS Function

The EDIT$ function performs one or more string editing functions, depending
on the value of an argument you supply. The input string remains unchanged.
In the following example, stu_rec is a string expression and 32 determines the
editing function performed:

EDITS (stu_rec,32)

11-16 String Handling

Table 11-2 shows the action HP BASIC takes for a given value of the integer
expression.

Table 11-2 EDIT$ Options

Value of
Expression Effect

1 Discards each character’s parity bit (bit 7). Note that you should not
use this value for characters in the DEC Multinational character set.

2 Discards all spaces and tabs.
Discards all carriage returns, line feeds, form feeds, deletes, escapes,
and nulls.

8 Discards leading spaces and tabs.

16 Converts multiple spaces and tabs to a single space.

32 Converts lowercase letters to uppercase.

64 Converts left brackets ([) to left parentheses [(], and right brackets (])
to right parentheses [)].

128 Discards trailing spaces and tabs. (Same as TRM$ function.)

256 Suppresses all editing for characters within quotation marks. If the

string has only one quotation mark, HP BASIC suppresses all editing
for the characters following the quotation mark.

All values are additive; for example, by specifying 168, you can perform the
following:

e Discard leading spaces and tabs (value 8)
e Convert lowercase letters to uppercase (value 32)
e Discard trailing spaces and tabs (value 128)

The following example requests an input string, discards all spaces and tabs,
converts lowercase letters to uppercase, and converts brackets to parentheses:

LINPUT "PLEASE TYPE A STRING“;input_string$
new string$ = EDITS (input string$, 2% + 32% + 64%)
PRINT new_string$

END

Output

PLEASE TYPE A STRING? 88 abc[g|[5,5]
88ABC(5,5)

String Handling 11-17

11.7 Manipulating String Data with Multiple Maps

Mapping a string storage area in more than one way lets you extract a
substring from a string or concatenate strings. In the following example, the
three MAP statements reference the same 108 bytes of data:

MAP (emprec) first name$ = 10, &
last name$ = 20, &
street number$ = 6, &
street$ = 15, &
city$ = 20, &
state$ = 2, &
zip$ = 5, &
wage class$ = 2, &
date of review$ = 8, &
salary ytd$ = 10, &
tax_ytds = 10

MAP (emprec) full name$ = 30, &

addressS$S = 48, &
salary info$ = 30
MAP (emprec) employee record$ = 108

You can move data into a map in different ways. For instance, you can use
terminal input, arrays, and files. In the following example, the READ and
DATA statements are used to move data into a map:

READ EMPLOYEE RECORD$
DATA "WILLIAM DAVIDSON 2241 MADISON BLVD " &
"SCRANTON PA14225A912/10/78$13,325.77$925.31"

Because all the MAP statements in the previous example reference the same
storage area (emprec), you can access parts of this area through the mapped
variables as shown in the following examples:

Example 1

PRINT full name$
PRINT wage class$
PRINT salary ytd$

Output 1

WILLIAM DAVIDSON
A9
$13,325.77

Example 2

PRINT last name$
PRINT tax ytd$

11-18 String Handling

Output 2

DAVIDSON
$925.31

You can assign a new value to any of the mapped variables. The following

example prompts the user for changed information by displaying a menu of
topics. The user can then choose which topics need to be changed and then
separately assign new values to each variable.

Loop_1:
WHILE 1% =

1%

INPUT "Changes? (please type YES or NO)"; CHS
EXIT Loop 1 IF CH$ = "NO"

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
INPUT

CASE

CASE

CASE

CASE

CASE

CASE

lll'
ll2'
ll3'
ll4'
ll5'
ll6'
ll7'
ll8'
ll9'
"10.
"11.

FIRST NAME"
LAST NAME"
STREET NUMBER"
STREET"

CITY"

STATE"

ZIp"

WAGE CLASS"

DATE OF REVIEW"
SALARY YTD"
TAX YTD"

"CHANGE NUMBER"; NUMBER%
SELECT NUMBER%

1%
INPUT
2%
INPUT
3%
INPUT
4%
INPUT
5%
INPUT
6%

"FIRST NAME"; first names

"LAST NAME"; last name$

"STREET NUMBER"; street_number$
"STREET"; street$

"CITY"; city$

INPUT "STATE"; state$

CASE

CASE

CASE

CASE

CASE

CASE

END S

7%
INPUT
8%
INPUT
9%
INPUT
10%
INPUT
11%

"ZIP CODE"; zip$
"WAGE CLASS"; wage class$
"DATE OF REVIEW"; date_of_review$

"SALARY YTD"; salary ytds

INPUT "TAX YTD"; tax ytd$

ELSE

PRINT "Invalid choice"

ELECT

String Handling 11-19

NEXT
END

Output

Changes? (please type YES or NO)? YES
1. FIRST NAME
LAST NAME
STREET NUMBER
STREET

CITY

STATE

ZIP

WAGE CLASS

9. DATE OF REVIEW
10. SALARY YTD
11. TAX YTD

CHANGE NUMBER? 10

SALARY YTD? 14,277.08

Changes? (please type YES or NO)? YES
CHANGE NUMBER? 11

TAX YTD? 998.32

Changes? (please type YES or NO)? NO

See Chapter 7 and the HP BASIC for OpenVMS Reference Manual for more
information about the MAP statement.

0o ~J O\ Ul i W DN

11-20 String Handling

12

Program Segmentation

This chapter describes how to:
e Declare HP BASIC subprograms
e Write HP BASIC subprograms

Program segmentation is the process of dividing a program into small,
manageable routines and modules. In a segmented or modular program,
each routine or module usually performs only one logical function. You
can, therefore, design and implement a modular program faster than a
nonsegmented program. Program modularity also simplifies debugging and
testing, as well as program maintenance and transportability.

Subprograms processed by the HP BASIC compiler conform to the OpenVMS
Procedure Calling Standard. This standard prescribes how arguments are
passed, how values are returned, and how procedures receive and return
control. Because HP BASIC conforms to the OpenVMS Procedure Calling
Standard, an HP BASIC subprogram or main program can call or be called by
any procedure written in a language that also conforms to this standard. For
information about calling non-BASIC procedures, see Chapter 19.

12.1 HP BASIC Subprograms

HP BASIC has SUB and FUNCTION subprograms. Each of these subprograms
receives parameters and can modify parameters passed by reference or by
descriptor. The differences between SUB and FUNCTION subprograms are as
follows:

e FUNCTION subprograms must be declared with an EXTERNAL statement
in the calling program. Declaring SUB subprograms is optional.

e FUNCTION subprograms return a value; SUB subprograms do not return
a value.

All subprograms invoked by an HP BASIC program must have unique names.
A HP BASIC program cannot have different subprograms with the same
identifiers.

Program Segmentation 12-1

12.1.1

Subprograms can return a value to the calling program with parameters.
You can use subprograms to separate routines that you commonly use. For
example, you can use subprograms to perform file I/O operations, to sort data,
or for table lookups.

You can also use subprograms to separate large programs into smaller, more
manageable routines, or you can separate modules that are modified often. If
all references to system-specific features are isolated, it is easier to transport
the program to a different system. OpenVMS System Services and OpenVMS
Run-Time Library routines are specific to OpenVMS systems; therefore, you
should consider isolating references to them in subprograms. Chapter 19
describes how to access Run-Time Library routines and system services from
HP BASIC.

You should also consider isolating complex processing algorithms that are used
commonly. If complex processing routines are isolated, they can be shared by
many programs while the complexity remains hidden from the main program
logic. However, they can share data only if the following is true:

e Data is passed as a parameter from the CALL statement or function
invocation to the subprogram—see Section 12.2 for more information.

e Data is part of a MAP or COMMON block—see Chapter 6 for information
about using MAP and COMMON statements.

e Data is in a file—see Chapter 13 for more information about accessing data
from a file.

All DATA statements are local to a subprogram. Each time you call a
subprogram, HP BASIC positions the data pointer at the beginning of the
subprogram’s data.

The data pointer in the main program is not affected by READ or RESTORE
statements in the subprogram (in contrast with the RESTORE # statement,
which resets record pointers to the first record in the file no matter where

it is executed). Chapter 5 contains more information about the READ

and RESTORE statements. For more information about the RESTORE #
statement, see Chapter 13.

SUB Subprograms

A SUB subprogram is a program module that can be separately compiled and
that cannot return a value. A SUB subprogram is delimited by the SUB and
END SUB statements. You may use the EXTERNAL statement to explicitly
declare the SUB subprogram.

12-2 Program Segmentation

12.1.2

The END SUB statement does the following:

e Marks the end of the SUB subprogram

e Does not affect I/O operations or files

e Releases the storage allocated to local variables
e Returns control to the calling program

The EXIT SUB statement transfers control to the statement lexically
following the statement that invoked the subprogram. It is equivalent to
an unconditional branch to an END SUB statement.

The following SUB subprogram sorts two integers. If this SUB statement is
invoked with actual parameter values that are already in sorted order, the
EXIT SUB statement is executed and control returns to the calling program.

SUB sort out (INTEGER X, INTEGER Y)
DECLARE INTEGER temp
IFX>Y
THEN
temp = X
X=X
Y = temp
ELSE
EXIT SUB
END IF
END SUB

FUNCTION Subprograms

A FUNCTION subprogram is a program module that returns a value and can
be separately compiled. It must be delimited by the FUNCTION and END
FUNCTION statements. You use the EXTERNAL statement to name and
explicitly declare the data type of an external function.

The END FUNCTION statement does the following:

e Marks the end of a function subprogram

¢ Does not affect I/O operations or files

e Releases the storage allocated to local variables

e Optionally specifies a return value for the function

e Returns control to the calling program

Program Segmentation 12-3

The EXIT FUNCTION statement immediately returns program control to the
statement that invoked the function and optionally returns the function’s

return value. It is equivalent to an unconditional transfer to the END
FUNCTION statement.

You can specify an expression with both the END FUNCTION and EXIT
FUNCTION statements, which is another way of returning a function value.
This expression must match the function data type, and it supersedes any
function assignment. For more information, see the HP BASIC for OpenVMS
Reference Manual.

The following function returns the volume of a sphere of radius R. If this
function is invoked with an actual parameter value less than or equal to zero,
the function returns zero.

FUNCTION REAL Sphere volume (REAL R)

IFR <=0
THEN
Sphere_volume = 0.0
ELSE
Sphere volume = 4/3 * PI * R ** 3
END IF

END FUNCTION
The following example declares the FUNCTION subprogram and invokes it:

PROGRAM call sphere
EXTERNAL REAL FUNCTION SPHERE VOLUME (REAL)
PRINT SPHERE VOLUME (5.925)

END PROGRAM

Note that this module is compiled separately from the FUNCTION

subprogram. You can link these modules together to run the program from
DCL level.

12.2 Declaring Subprograms and Parameters

You declare a subprogram by naming it in an EXTERNAL statement in the
calling program. You may also declare the data type of each parameter. If the
subprogram is a function, the EXTERNAL statement also lets you specify the
data type of the returned value.

The following statements are subprogram declarations using the EXTERNAL
statement:

EXTERNAL SUB my sub (LONG, STRING)
EXTERNAL GFLOAT FUNCTION my func (GFLOAT, LONG, GFLOAT)
EXTERNAL REAL FUNCTION determinant (LONG DIM(,))

12-4 Program Segmentation

Note that the parameter lists contain only data type and dimension
information; they cannot contain any format or actual parameters. When the
external procedure is invoked, HP BASIC ensures that the actual parameter
data type matches the data type specified in the EXTERNAL declaration.
However, HP BASIC does not check to make sure that the parameters declared
in the EXTERNAL statement match those in the external routine. You must
ensure that these parameters match.

You can pass data of any HP BASIC data type to an HP BASIC subprogram,
including RFAs and RECORDs. HP BASIC allows you to pass up to 255
parameters, separated by commas. The data can be any one of the following:

¢ Constants

e Variables

e Expressions

¢ Functions

e Array elements

e Entire arrays (but not virtual arrays)

For passing constants, variables, functions, and array elements, name them in
the argument list. For example:

CALL SUBO1(varl, var2)
CALL SUBO2(PO_num%, Vouch, 66.67, Cust_list(S), FNA (B%))

However, when passing an entire array, you must use a special format. You
specify the array name followed by commas enclosed in parentheses. The
number of commas must be the number of array dimensions minus one.

For example, array_name() is a one-dimensional array, array_name(,) is a
two-dimensional array, array_name(,) is a three-dimensional array, and so on.

The following example creates a three-dimensional array, loads the array with
values, and passes the array to a subprogram as a parameter. The subprogram
can access and change values in array elements, and these changes remain in
effect when control returns to the main program.

Program Segmentation 12-5

PROGRAM fill array

OPTION TYPE = EXPLICIT
DECLARE LONG I,J,K, three d(10,10,10)

EXTERNAL SUB example sub (LONG DIM(,,))
FOR I = 0 TO 10
FOR J = 0 TO 10
FOR K = 0 TO 10
three d(I,J,K) = I +J + K
NEXT K
NEXT J
NEXT I

CALL example sub(three df,,))
END PROGRAM

SUB example sub(LONG X(, ,))

END SUB

If you do not specify data types for parameters, the default data type is
determined by:

e The last specified parameter data type

e An OPTION statement

e An HP BASIC compilation qualifier (for example, /REAL_SIZE=DOUBLE)
¢ The system default

The last specified parameter data type overrides all the other default data
types, the defaults specified in the OPTION statement override any compilation
qualifiers and system defaults, and so on. When you know the length of a
string or the dimensions of an array at compile time, you can achieve optimum
performance by passing them BY REF. When you call programs written in
other languages, the practice of declaring subprograms and specifying the
data types of parameters becomes more important because other languages
might not use the HP BASIC default parameter-passing mechanisms. For
more information about calling subprograms written in other languages, see
Chapter 19.

12-6 Program Segmentation

12.3 Compiling Subprograms

an HP BASIC source file can contain multiple program units. When you
compile such a file, HP BASIC produces a single object file containing the
code from all the program units. You can then link this object file to create an
executable image.

If the main program and subprograms are in separate source files, you can
compile them separately from the DCL level. The following command causes
HP BASIC to create MAIN.OBJ, SUB1.0BJ, and SUB2.0BJ by separating the
file names with commas:

$ BASIC main, subl, sub2

To link these programs, you must specify all object files as input to the
OpenVMS Linker.

Alternatively, you can compile multiple modules into a single object file at
the DCL command level by separating the file names with a plus sign (+) as
follows:

$ BASIC main+subl+sub2

The plus signs used to separate the file names instruct HP BASIC to create a
single object file called MAIN.OBJ from the three source modules. To link this
program, you specify only one input file to the linker.

When creating a multiple-unit program, follow these rules:

e If the source file contains line numbers, then the line numbers for each
subprogram must be numerically greater than the highest line number of
all preceding subprograms.

e Line numbers must be unique and no greater than 32767.

e Each subprogram must end with an END SUB or END FUNCTION
statement before the next subprogram begins.

e If the source file contains line numbers, then text following an END SUB
or END FUNCTION statement must begin on a numbered line.

e If the source file does not contain line numbers, then text following an
END SUB or END FUNCTION statement must begin on a new physical
line.

Note that in a multiple-unit program that contains line numbers, any
comments or statements following an END, END SUB, or END FUNCTION
statement become part of the preceding subprogram unless they begin on a
numbered line. In a multiple-unit program that does not contain line numbers,

Program Segmentation 12-7

however, any comments following an END, END SUB, or END FUNCTION
statement become part of the following subprogram if one exists.

In the following example, the function St¢rip changes all brackets to
parentheses in the string A$ or alpha, and strips all trailing spaces and
tabs:

PROGRAM scan
EXTERNAL STRING FUNCTION Strip (STRING)
AS = "USERSDISK: [BASIC.TRYOUTS]"
BS = Strip(AS)

PRINT BS
END PROGRAM
FUNCTION STRING Strip(STRING alpha)
IF (POS(alpha, "[", 1%)) > 0%
THEN Strip = EDITS (alpha, 128% +64%)
ELSE Strip = EDITS (alpha, 128%)
END IF

END FUNCTION

12.4 Invoking Subprograms

The following sections describe how to invoke subprograms and pass
parameters to subprograms.

12.4.1 Invoking SUB Subprograms

The CALL statement transfers control to a subprogram, and optionally passes
arguments to it. The parameters in the CALL statement specify variables,
constants, expressions, array elements, or entire arrays to be passed to the
subprogram. You can also specify a function in the argument list. HP BASIC
passes the value returned by the function to the subprogram. If possible,

HP BASIC converts the actual arguments to the data type specified in the
EXTERNAL statement. HP BASIC signals an error when the conversion is not
possible.

The following example shows an HP BASIC main program calling a BASIC
subprogram. The main program prompts for three integers: A, B, and C.

It then passes these variables as parameters to the SUB subprogram. The
subprogram prints the sum of these variables and returns control to the calling
program.

12-8 Program Segmentation

12.4.2

PROGRAM get input
OPTION TYPE = EXPLICIT
EXTERNAL SUB SUBO1(LONG, LONG, LONG)
DECLARE LONG A, B, C
INPUT "Please type three integers"; A, B, C
CALL SUBO1 (A, B, C)

END PROGRAM

SUB SUBO1 (LONG X, LONG Y, LONG Z)
PRINT "The sum is"; X + Y + Z
END SUB

Invoking FUNCTION Subprograms

The following example performs the same task as the SUB program; however,
this example uses a FUNCTION subprogram that returns the value to the
main program and the main program prints the result:

PROGRAM invoke funct
EXTERNAL LONG FUNCTION FUNO1 (LONG, LONG, LONG)
DECLARE LONG A, B, C
INPUT "Please type three integers"; A, B, C
PRINT "The sum is"; FUNO1(A, B, C)

END PROGRAM

FUNCTION LONG FUNO1l (LONG X, LONG Y, LONG Z)
FUNO1 = X + Y + Z
END FUNCTION

If you do not assign a value to the function name and you do not specify a
return value on an EXIT FUNCTION or END FUNCTION statement, the
function returns zero or the null string.

Note that when writing FUNCTION subprograms, you must specify a data
type for the function in both the main program EXTERNAL statement and the
subprogram FUNCTION statement. This data type keyword specifies the data
type of the value returned by the function subprogram. You should ensure that
the data type specified in an EXTERNAL FUNCTION statement matches the
data type specified in the FUNCTION statement.

If you declare a FUNCTION subprogram with an EXTERNAL statement and
use the CALL statement to invoke the function, it executes correctly but the
function value is not available. Note that BASIC still performs parameter
validation when you invoke a function with the CALL statement.

Note that you cannot use the CALL statement to invoke a string or packed
decimal function.

Program Segmentation 12-9

12.5 Returning Program Status

A PROGRAM unit lets you return a status from an HP BASIC image by
optionally including an integer expression with the END PROGRAM and
EXIT PROGRAM statements. After executing a program, you can examine
this status by checking the DCL symbol $STATUS. By default, HP BASIC
returns a status of 1, indicating success. Success is signaled with an odd
numbered status value, while an error is signaled with an even numbered
value. $STATUS contains the same value as the integer expression for the exit
status in the EXIT and END PROGRAM statements. Note that if a program
is terminated with an EXIT PROGRAM statement, the expression on the
EXIT PROGRAM statement overrides any expression on the END PROGRAM
statement.

In the following example, exit_status contains the status value returned by the
program. After program execution, $STATUS has the value of exit_status. You
can examine the value of $STATUS and display the corresponding message
text with the lexical function F$MESSAGE at DCL level, as shown in the
following example:

PROGRAM Venture
DECLARE INTEGER exit status, &
REAL capital
EXTERNAL LONG CONSTANT SS$ BADPARAM
EXTERNAL SUB play safe (INTEGER), &
minor risk (INTEGER),major risk (INTEGER)
Exit status = 1%
SET NO PROMPT
How_much:
INPUT "Enter the amount of your free capital $";capital
SELECT capital
CASE = 0
exit_status = SS$ BADPARAM
EXIT PROGRAM exit status
CASE < 5000
CALL play safe(capital)
CASE < 15000
CALL minor risk(capital)
CASE < 50000
CALL major_ risk(capital)
CASE ELSE
PRINT "I can’t cope with that amount, try again."
END SELECT
GOTO How_much

END PROGRAM exit status

12-10 Program Segmentation

After program execution, you can examine the status of the program at DCL
level:

$ SHOW SYMBOL $STATUS

$ STATUS = "%X10"

$ error text = FSMESSAGE (%X10)

$ SHOW SYMBOL error text

ERROR_TEXT = "SYSTEM-W-BADPARAM, bad parameter value"

The PROGRAM statement is always optional; EXIT PROGRAM and END
PROGRAM are legal without a matching PROGRAM statement. Without a
PROGRAM statement, these statements still exit the main compilation unit.
The EXIT PROGRAM and END PROGRAM statements are not valid within
SUB, FUNCTION, or PICTURE subprograms.

Program Segmentation 12-11

13

File Input and Output

This chapter explains BASIC file organizations and record operations that
are implemented through OpenVMS Record Management Services (RMS).
For a more thorough understanding of file organization and file and record
operations, see the OpenVMS Record Management Services Reference Manual.

RMS stores data in physical blocks. A block is the smallest number of bytes
BASIC transfers in a read or write operation. On disk, a block is 512 bytes.
On magnetic tape, it is 18 to 8192 bytes.

RMS stores one or more data records in each block. A data record can also
be divided into smaller units, called fields. A data record can be smaller than,
equal to, or larger than a disk block.

13.1 Record Formats

13.1.1

The format of a record determines how RMS stores the record in a block. You
specify the record format in an OPEN statement. The following are valid
BASIC record formats:

¢ Fixed-length records
e Variable-length records

e Stream records

Fixed-Length Records

Fixed-length records are all the same length. RMS stores fixed-length records
as they appear in the record buffer, including any spaces or null characters
following the data; this process is called padding. Processing these records
involves less overhead than other record formats; however, this format can use
disk storage space less efficiently than variable-length or stream records.

File Input and Output 13-1

13.1.2 Variable-Length Records

Variable-length records can have different lengths, but no record can exceed a
maximum size set for the file. When the record is written to a file, RMS adds
a record length header that contains the length of the record (excluding the
header) in bytes. When your program retrieves a record, this header is not
included in the record buffer. While variable-length records usually make more
efficient use of storage space than fixed-length records, manipulation of the
record length headers generates processor overhead.

13.1.3 Stream Records

BASIC interprets stream records as a continuous sequence, or stream, of bytes.
Unlike the fixed- and variable-length formats, stream records do not contain
control information such as record counts, segment flags, or other system-
supplied boundaries. Stream records are delimited by special characters or
character sequences called terminators. Note that stream record formats are
valid only in sequential files.

RMS defines the following types of stream record formats:

e STREAM records can be delimited by any special character (usually a
carriage return/line-feed pair).

e STREAM_LF records must be delimited by a line-feed character.
e STREAM_CR records must be delimited by a carriage return.

While you can access existing files of any one of these stream record formats,
BASIC creates new stream files only in the STREAM format; you can create
files of the other two stream record formats by modifying the RMS FAB control
structure in a USEROPEN routine. For more information about USEROPEN
routines, see Section 13.8.11.

13.2 File Organizations
HP BASIC provides the following file organizations:
¢ Terminal-format
e Sequential
e Relative
e Indexed

e Virtual

13-2 File Input and Output

13.2.1

13.2.2

13.2.3

If you do not specify a file organization when creating a file, the default is
a terminal-format file (a sequential file with variable-length records). The
following sections describe each type of file organization.

Terminal-Format Files

A terminal-format file is a sequential file of variable-length records.
Terminal-format files are the default; that is, you create a terminal-format
file when you do not specify a file organization when you open a file. You can
then use the PRINT, INPUT, INPUT LINE, and LINPUT statements to access
a terminal-format file. See Chapter 5 and Chapter 6 for more information
about terminal-format files.

Sequential Files

A sequential file contains records that are stored in the order they are
written. Sequential files can contain records of any valid BASIC record format:
fixed-length, variable-length, or stream. You usually read a sequential file
from the beginning; therefore, a sequential file is most useful when you access
the data sequentially each time you use it. You can also access sequential
fixed-length records randomly by specifying a record number if the file resides
on disk. In either case, sequential files can reside on both disk and magnetic
tape devices, and those stored on disk support shared access.

Relative Files

A relative file contains a series of cells that are numbered consecutively from
1 to n, where n represents the relative record number. Each cell can contain
only a single record. For fixed-length records, the length of each cell equals the
record length plus 1 byte. For variable-length records, the length of the cell
equals the maximum record size plus 3 bytes.

You can access records in a relative file either sequentially or randomly. The
relative record number is the key value in random access mode; that is, to
access a record in a relative file in random access mode, you must know the
relative record number of that record. You can add records to a relative file
either at the end of the file or into any empty cell.

Relative files are most useful when randomly accessed and when the record
can be identified by its cell number (for example, when inventory numbers
correspond to cell numbers). Relative files support shared access. You can
delete records from relative files, but not sequential files.

File Input and Output 13-3

13.2.4

13.2.5

Indexed Files

An indexed file contains data records that are sorted in ascending or
descending order according to a primary index key value. The index key

is a record field (or set of fields) that determines the order in which the records
are logically accessed. Keys must be variables declared in a MAP statement.
Keys can be any one of the following:

e Strings

e WORD integers

e LONG integers

®* Quadword integers

e Packed decimal numbers

String keys can also be segmented; the key can be composed of up to eight
string variables in a map. Quadword keys must be referenced using a record
or group exactly 8 bytes long.

Along with the primary index key value, you can also specify up to

254 alternate keys; RMS creates one index for each key you specify. For each
of these keys you can also specify either an ascending or descending collating
sequence. Each index is stored as part of the file, and each entry in the index
contains a pointer to a record. Therefore, each key you specify corresponds to a
sorted list of record pointers.

An indexed file of library books, for example, might be ordered by book title;
that is, the title of the book is the primary key for the file. The keys for
alternate indexes might include the author’s name and the book’s Library
of Congress number. Neither of these alternate indexes contains the actual
records; instead, they contain sorted pointers to the appropriate records.

Indexed files are most useful when randomly accessed or when you want to
access the records in more than one way.

Virtual Files

A virtual file is a random access file that stores one or more data records

or virtual array elements in each physical 512-byte disk block. You create a
virtual file by specifying ORGANIZATION VIRTUAL as part of the OPEN
statement. Apart from virtual arrays and compatibility with BASIC and
BASIC-PLUS-2, you should use sequential fixed-length instead of virtual files,
as they provide the same capabilities. See Section 13.5 for more information
about accessing the individual records in a disk block.

13-4 File Input and Output

13.3 Record Access and Record Context

Record access modes determine the order in which your program retrieves
or stores records in a file. They determine the record context: the current
record and the next record to be processed. When your program successfully
executes any record operation, the current record and next record pointers can
change. If a record operation is unsuccessful, these pointers do not change.

The record access modes valid for RMS are:
e Sequential access—valid on any file organization

e Random-by-record number access—valid on sequential fixed and all relative
files

e Random-by-key access—valid on indexed files

e Random-by-RFA (Record File Address) access—valid on any RMS file
located on disk

With sequential access, the next record is the next logical record in the file.

In the case of relative files, the next logical record is the next existing record
(deleted or never-written records are skipped). In the case of indexed files, the
next logical record is the record with the next ascending or descending value
in the current key of reference depending on that key’s collating sequence. You
can therefore access relative or indexed files sequentially by not specifying a
relative record number or key value.

You can also access sequential fixed-length and relative files randomly by
record number; that is, you can specify the record number of the record to be
retrieved. For relative files, this record number corresponds to the cell number
of the desired record.

You can access indexed files randomly by key. The key specification includes
a primary or alternate key and its value. BASIC retrieves the record
corresponding to that value in the particular key chosen.

You can access disk files of any organization by Record File Address (RFA);
this means that you specify an RFA variable whose value uniquely identifies
a particular record. The RFA requires six bytes of information. For more
information about RFAs, see Section 13.6.10.

File Input and Output 13-5

13.4 1/0 and Record Buffers

An T/O buffer is a storage area in your program that RMS uses to store
data for I/O operations. You do not have direct access to I/O buffers; they are
controlled entirely by RMS. The I/O buffer holds blocks of data transferred
from the device, and its size is always greater than or equal to that of the
record buffer. For more information about the amount of storage allocated for
I/O buffers, see the OpenVMS Record Management Services Reference Manual.

A record buffer is another storage area in your program. You have direct
access to and control of the record buffer. When your program reads a record
from a file, the information is transferred from the file to the I/O buffer in one
large chunk of data, and then the requested record is transferred to the record
buffer. When your program writes a record, data is transferred from the record
buffer to the I/O buffer, and then to the file either when the I/O buffer is full or
when other blocks need to be read in.

You can use MAP statements to create static record buffers and associate
program variables with areas (fields) of the buffer. Static record buffers are
buffers whose size does not change during program execution and whose
program variables are always associated with the same fields in the buffer.

You can create dynamic record buffers with either a MAP DYNAMIC or
a REMAP statement. These statements, when used after a MAP statement,
associate or reassociate a particular program variable with a different area
(field) of the record buffer; however, the total size of a record buffer does not
change during program execution.

Note

If you do not specify a map, you must use MOVE TO and

MOVE FROM statements to transfer data back and forth from the
record buffer to program variables; however, MOVE statements do not
transfer data to or from a file.

13.5 Accessing the Contents of a Record

HP BASIC provides the following methods for accessing the contents of a
record:

e MAP statement
e MAP DYNAMIC and REMAP statements (dynamic mapping)

13-6 File Input and Output

13.5.1

13.5.2

e MOVE statements
e FIELD statements

The FIELD statement is a declining feature and is not recommended for new
program development. It is recommended that you use either MAP statements,
dynamic mapping, or MOVE statements to access record contents.

MAP Statement

Normally, a record is divided into predetermined fields, the sizes of which are
known at compile time. The MAP statement creates the storage area for this
record and determines its total size. The following examples show how the
MAP statement creates the record storage area:

Example 1
RECORD name_addr
STRING last name = 15, &
street name = 30, &
INTEGER house num
END RECORD
MAP (student buffer) name addr student info

Example 2

MAP (Emp_rec)
STRING Emp_name = 25, &
LONG Badge, &
STRING Address = 25, &

STRING Department = 4

MAP DYNAMIC and REMAP Statements

There are situations where predetermined fields are not applicable or possible.
In these situations, you must perform record defielding in your program at
run time. Using the MAP DYNAMIC statement, you can specify the variables
in the map whose positions can change at run time. The REMAP statement
then specifies the new positions of the variables named in the MAP DYNAMIC
statement.

The following example shows how you can use MAP, MAP DYNAMIC, and
REMAP to deblock your record fields. The MAP statement allocates a storage
area of 2048 bytes and names it Emp_rec. The MAP DYNAMIC statement
specifies that the variables Emp_name, Badge, Address, and Department are
all located in Emp_rec, and that their positions can be changed at run time
with the REMAP statement. The REMAP statement then redefines these
variables to their appropriate sizes.

File Input and Output 13-7

MAP (Emp rec) FILL$ = 2048

MAP DYNAMIC (Emp_rec)
STRING Emp_name,
LONG Badge,
STRING Address,
STRING Department

REMAP (Emp_rec) FILL$ = Record offset,
Emp name = 25,
Badge,
Address = 25,
Department = 4

R R R R

2R R R

Note that when accessing virtual or sequential files, you can specify a RECORD
clause for the GET statement. The following example opens a virtual file with
each block containing 512 bytes. However, each block contains 4 logical records
that are 128 bytes long. Each of these logical records consists of a 20-character
first name field, a 44-character last name field, and a 64-character company
name field.

DECLARE WORD Record number
MAP (Virt) STRING FILL = 512

MAP DYNAMIC (Virt) STRING First name, &
Last_name, &
Company

OPEN "VIRT.DAT" FOR INPUT AS FILE #5, &

VIRTUAL, MAP Virt
Record number = 1%
WHEN ERROR IN
WHILE -1%
GET #5, RECORD Record number
FOR I% = 0% TO 3%
REMAP (Virt) STRING FILL = (I% * 128%), &
First name = 20, &
Last name = 44, &
Company = 64
PRINT First_name, Last name, Company
NEXT I%
Record number = Record number + 1%
NEXT
USE
IF ERR = 11%
THEN
PRINT "Finished"
CONTINUE 32767
ELSE EXIT HANDLER
END IF
END WHEN
END

13-8 File Input and Output

13.5.3

After the first 512-byte block is brought into memory, the FOR...NEXT loop
deblocks the data into 128-byte logical records. At each iteration of the
FOR...NEXT loop, the REMAP statement uses the loop variable to mask off
128-byte sections of the block.

For more information about the MAP DYNAMIC and REMAP statements, see
Chapter 7 and the HP BASIC for OpenVMS Reference Manual.

MOVE Statement

The MOVE statement defines data fields and moves them to and from the
record buffer created by HP BASIC. For example:

MOVE FROM #9%, AS$, Cost, Name$ = 30%, ID num%

This statement moves a record with four data fields from the record buffer to
the variables in the list as follows:

e A string field A$ with a default length of 16 characters
e A number field Cost of the default data type

e A second 30-character string field Name$

e An integer field ID_num%

Valid variables in the MOVE list are:

e Scalar variables

e Arrays

e Array elements

e FILL items

Because BASIC dynamically assigns space for string variables, the default
string length during a MOVE TO operation is the length of the string. The
default for MOVE FROM is 16 characters. An entire array specified in a
MOVE statement must include the array name, followed by n — 1 commas,
where n is the number of dimensions in the array. Note that these commas
must be enclosed in parentheses. You specify a single array element by
naming the array and the subscripts of that element. The following statement
moves three arrays from the program to the record buffer. A$ specifies a
1-dimensional string array, C specifies a 2-dimensional array of the default
data type, and D% specifies a 3-dimensional integer array. B(3,2) specifies the
element of array B that appears in row 3, column 2.

MOVE TO #5%, A$(), C(,), D%(,,), B(3,2)

File Input and Output 13-9

Successive MOVE statements to or from the buffer start at the beginning of the
record buffer. If a MOVE TO operation only partially fills the buffer, the rest
of the buffer is unchanged. You use the GET statement to read a record from
a file, and then you move the data from the buffer to variables and reference
the variables in your program. A MOVE TO operation moves data from the
variables into the buffer created by HP BASIC. A PUT or UPDATE statement
then moves the data from the buffer to the file.

The following program opens file MOV.DAT, reads the first record into the
buffer, and moves the data from the buffer into the variables specified in the
MOVE FROM statement:

DECLARE STRING Emp name, Address, Department
DECLARE LONG Badge

OPEN "MOV.DAT" AS FILE #1%, &

RELATIVE VARIABLE, &
ACCESS MODIFY, ALLOW NONE, &
RECORDSIZE 512%

GET #1%

MOVE FROM #1%, &
Emp name = 25, &
Badge, &
Address = 25, &
Department = 4

MOVE TO #1%, &
Emp name = 25, &
Badge, &
Address = 25, &

Department = 4

UPDATE #1%
CLOSE #1%
END

The MOVE TO statement moves the data from the named variables into the
buffer. The UPDATE statement writes the record back into file MOV.DAT. The
CLOSE statement closes the file.

13-10 File Input and Output

13.6 File and Record Operations

13.6.1

You can perform a variety of operations on files and on the records within a
file. The following is a list of all the file and record operations supported by
BASIC:

e Open a file for processing with the OPEN statement.

e Locate a record in a file with the FIND statement.

* Read a record from a file with the GET statement.

e Write a record to a file with the PUT statement.

¢ Delete a record from a file with the DELETE statement.

e Change the contents of a record field with the UPDATE statement.
® Unlock the last record accessed with the UNLOCK statement.

e Unlock all previously locked records with the FREE statement.

e Write data to a terminal-format file with the PRINT # statement.

¢ Reset the current record pointer to the beginning of a file with the
RESTORE # and RESET # statements.

e Delete all the records after a certain point; that is, truncate the records,
with the SCRATCH statement.

e Rename a file with the NAME AS statement.
¢ C(Close an open file with the CLOSE statement.
e Delete an entire file with the KILL statement.

Note that before you can perform any operations on the records in a file, you
must first open the file for processing.

Opening Files

The OPEN statement opens a file for processing, specifies the characteristics
of the file to RMS, and verifies the result. Opening a file with the specification
FOR INPUT specifies that you want to use an existing file. Opening a file with
the specification FOR OUTPUT indicates that you want to create a new file.

If you do not specify FOR INPUT or FOR OUTPUT, BASIC tries to open an
existing file. If no such file exists, a new file is created.

File Input and Output 13-11

Clauses to the OPEN statement allow you to specify the characteristics of a
file. All OPEN statement clauses concerning file or record format are optional
when you open an existing file; those attributes that are not specified default
to the attributes of the existing file. When you open an existing file, you must
specify the file name, channel number, and unless the file is a terminal-format
file, an organization clause. If you do not know the organization of the file you
want to open, you can specify ORGANIZATION UNDEFINED. If you specify
ORGANIZATION UNDEFINED, also specify RECORDTYPE ANY.

If you do not specify a map in the OPEN statement, the size of your program’s
record buffer is determined by the OPEN statement RECORDSIZE clause, or
by the record size associated with the file. If you specify both a MAP clause
and a RECORDSIZE clause in the OPEN statement, the specified record size
overrides the size specified by the MAP clause.

The following statement opens a new sequential file of stream format records:

OPEN "TEST.DAT" FOR OUTPUT AS FILE #1%, &
SEQUENTIAL STREAM

The following example creates a relative file and associates it with a static
record buffer. The MAP statement defines the record buffer’s total size and the
data types of its variables. When the program is compiled, BASIC allocates
space in the record buffer for one integer, one 16-byte string, and one double-
precision, floating-point number. The record size is the total of these fields, or
28 bytes. All subsequent record operations use this static buffer for I/O to the

file.

MAP (Inv_item) LONG Part number, &
STRING Inv_name = 16, &
DOUBLE Unit price

OPEN "INVENTORY.DAT" FOR OUTPUT AS FILE #1% &

,ORGANIZATION RELATIVE FIXED, ACCESS MODIFY &
,ALLOW READ, MAP Inv_item

The following OPEN statement opens a sequential file for reading only
(ACCESS READ). Because the OPEN statement does not contain a MAP
clause, a record buffer is created. This record buffer is 100 bytes long.

OPEN "CASE.DAT" AS FILE #1% &
,ORGANIZATION SEQUENTIAL VARIABLE &
,ACCESS READ &

,RECORDSIZE 100%

When you do not specify a MAP statement, your program must use MOVE TO
and MOVE FROM statements to move data between the record buffer and a
list of variables.

13-12 File Input and Output

The OPEN statement for indexed files must have a MAP clause. Moreover,

if you are creating an indexed file, a PRIMARY KEY clause is required. You
can create a segmented index key containing more than one string variable by
separating the variables with commas and enclosing them in parentheses. All
the string variables must be part of the associated map.

In the following example, the primary key is made up of three string variables.
This key causes the records to be sorted in alphabetical order according to the
user’s last name, first name, and middle initial.

MAP (Segkey) STRING First name = 15, MI = 1, Last name = 15

OPEN "NAMES.IND" FOR OUTPUT AS FILE #1%, &
ORGANIZATION INDEXED, &
PRIMARY KEY (Last name, First name, MI), &
MAP Segkey

Note that there are restrictions on the maximum record size allowed for
various file and record formats. See the OpenVMS Record Management
Services Reference Manual for more information.

You can use logical names to assign a mnemonic name to all or part of

a complete file specification, including node, device, and directory. The
advantage in using logical names is that programs do not depend on literal file
specifications. You can define logical names from the following:

e From DCL command level with the ASSIGN or DEFINE command
e From within a program with the SYSSCRELMN system service
BASIC supports any valid logical name as part of a file specification.

A logical name specifies a 1- to 255-character name to be associated with the
specified device or file specification. If the logical name specifies a device,
you must end the logical name with a colon. The following example defines a
logical name for a file specification:

$ ASSIGN DUAL: [SENDER] PAYROL.DAT PAYROLL DATA
This example defines a logical name for a physical device:
S ASSIGN DUA2: DISK2:

Once you define the logical name, you can reference that name in your
program. For example:

OPEN "PAYROLL DATA" FOR INPUT AS FILE #1%, &
ORGANIZATION SEQUENTIAL

OPEN "DISK2:[SORT DATA] SORT.LIS" FOR OUTPUT AS FILE #2%, &
SEQUENTIAL VARIABLE

File Input and Output 13-13

13.6.2

13.6.3

These OPEN statements do not depend on the availability of DUA1: or DUA2:
in order to work. If these devices are not available, you can redefine the logical
names so that they specify other disk drives before running the program. In
addition, you can redirect the entire file specification for PAYROLL_DATA to
point to the test or production version of the data.

Creating Virtual Array Files

BASIC virtual arrays let you define arrays that reside on disk. You use
them just as you would an ordinary array. You create a virtual array by
dimensioning an array with the DIM # statement, then opening a VIRTUAL
file on that channel. You access virtual arrays just as you do normal arrays.

The following DIM # statement dimensions a virtual array on channel #1. The
OPEN statement opens a virtual file that contains the array. The last program
line assigns a value to one array element.

DIM #1%, LONG Int array(10,10,10)
OPEN "VIRT.DAT" FOR OUTPUT AS FILE #1%, VIRTUAL

Int array(5,5,5) = 100%

Note that you cannot redimension virtual arrays with an executable DIM
statement. See Chapter 6 for more information about virtual arrays.

Locating Records

The FIND statement locates a specified record and makes it the current record.
Using the FIND statement to locate records can be faster than using a GET
statement because the FIND statement does not transfer any data to the
record buffer; therefore, it executes faster than a GET statement. However, if
you are interested in the contents of a record, you must retrieve it with a GET
operation.

The FIND statement sets the current record pointer to the record just found,
making it the target for a GET, UPDATE, or DELETE statement. (Note that
you must have write access to a record before issuing a PUT, UPDATE, or
DELETE operation.) A sequential FIND operation searches records in the
following order:

® Sequential files from beginning to end

e Relative files in ascending relative record or cell number order

13-14 File Input and Output

¢ Indexed files in ascending or descending order, based on the current key of
reference and the key’s collating sequence

For sequential fixed-length and relative files, you can find a particular record
by specifying a RECORD clause. This is called a random access FIND. You
can also perform a random access FIND for indexed files by specifying a key of
reference, a relational test, and a key value.

In the following example, the first FIND statement finds the first record whose
key value either equals or follows SMITH in the key’s collating sequence. The
second FIND statement finds the first record whose key value follows JONES
in the key’s collating sequence. Each record found by the FIND statement
becomes the current record. (Note that you can only have one current record at
a time.)

MAP (Emp) STRING Emp name, LONG Emp number, SSN

OPEN "EMP.DAT" AS FILE #1%, INDEXED, &
ACCESS READ, &
MAP Emp, &

PRIMARY KEY Emp name
FIND #1%, KEY #0% NXEQ "SMITH"
FIND #1%, KEY #0% NX "JONES"

The string expression can contain fewer characters than the key of the record
you want to find. However, if you want to locate a record whose string key field

exactly matches the string expression you provide, you must pad the string
expression with spaces to the exact length of the key of reference. For example:

FIND #5%, KEY #0% EQ "TOM "
FIND #5%, KEY #0% EQ "TOM"

The first FIND statement locates a record whose primary key field equals
“TOM ”. The second FIND statement locates the first record whose
primary key field begins with “TOM”.

Table 13-1 displays the status of the current record and next record pointers
after both a sequential and a random access FIND.

File Input and Output 13-15

13.6.4

Table 13-1 Record Context After a FIND Operation

Record Access File Current
Mode Type Record Next Record
Sequential FIND Sequential Record found Current record + 1
Relative Record found Next existing record
Indexed Record found Next record in current
key order
Random access FIND All Record found Unchanged

Note that a random access FIND operation locates the specified record and
makes it the current record, but the next record pointer does not change.

You can specify an ALLOW clause to the FIND statement if you have opened
the file with ACCESS MODIFY or ACCESS WRITE and have specified
UNLOCK EXPLICIT. The ALLOW clause lets you control the type of lock that
RMS puts on the records you access. ALLOW NONE specifies that no other
users can access this record (this is the default). ALLOW READ lets other
users read the record; however, they cannot perform UPDATE or DELETE
operations to this record. ALLOW MODIFY specifies that other users can
both read and write to this record. This means that other access streams can
perform GET, DELETE, or UPDATE operations to the specified record.

You can also specify a WAIT clause to the FIND statement; this clause allows
you to wait for a record to become available in the event that it is currently
locked by another process. In addition, you can specify a REGARDLESS
clause; this clause allows you to read a locked record. For more information
about the WAIT and REGARDLESS clauses, see Section 13.6.9.

Reading Records

The GET statement moves a record from a file to a record buffer and makes the
data available for processing. GET statements are valid on sequential, relative,
and indexed files. You should not use GET statements on terminal-format files
or virtual array files.

For sequential files, a sequential GET retrieves the next record in the file.
For relative files, a sequential GET retrieves the next existing record. For
indexed files, a sequential GET retrieves the record with the next ascending
or descending value in the current key of reference, depending on that key’s
collating sequence.

13-16 File Input and Output

Table 13—2 shows the current record and next record pointers after a GET
operation. Note that the values of these pointers vary, depending on whether
or not the previous operation was a FIND.

Table 13-2 Record Context After a GET Operation

Record Access File Current
Mode Type Record Next Record
Sequential GET Sequential Record found Current record + 1
with FIND
Relative Record found Next existing record
Indexed Record found Next record in current key
Sequential GET Sequential ~ Next record Next record + 1
without FIND
Relative Next existing Next existing record + 1
record
Indexed Next record in Record following next
current key record in current key
Random GET All Record specified Next record in succession

If you precede a sequential GET operation with a FIND operation, the current
record is the one located by FIND. If you do not perform a FIND operation
before a sequential GET operation, the current record is the next sequential
record.

The following example shows the use of the GET operation to sequentially
access records in an indexed file. The example opens an indexed file and
displays the first 25 records with serial numbers greater than AB2721 in
ascending primary key value order.

MAP (Bec) STRING Owner = 30%, LONG Vehicle number, &
STRING Serial number = 22%
OPEN "VEH.IDN" FOR INPUT AS FILE #2%, &

ORGANIZATION INDEXED, PRIMARY KEY Serial number, &
MAP Bec, ACCESS READ

GET #2%, KEY #0% EQ "AB2721"

FOR I% = 1% TO 25%

GET #2%
PRINT "Vehicle Number = ";Vehicle number
PRINT "Owner is: ";Owner
PRINT
NEXT I%

File Input and Output 13-17

The following example performs random GET operations by specifying a record

number:
MAP (Bec) STRING Owner = 30%, LONG Vehicle number, &
STRING Serial number = 22%
OPEN "VEH.IDN" FOR INPUT AS FILE #2%, &
ORGANIZATION SEQUENTIAL FIXED, &

MAP Bec, ACCESS READ

INPUT "Which record do you want";A%

WHILE (A% <> 0%)
GET #2%, RECORD A%
PRINT "The vehicle number is", Vehicle number
PRINT "The serial number is", Serial number
PRINT "The owner of vehicle";Vehicle number; "is", Owner
INPUT "Next Record";A%

NEXT

CLOSE #2%

END

You can specify an ALLOW clause in a GET statement if you have opened the
file with ACCESS MODIFY or ACCESS WRITE and UNLOCK EXPLICIT. The
ALLOW clause lets you control the type of lock RMS places on the retrieved
record. ALLOW NONE specifies that no other users can access this record
(this is the default). ALLOW READ lets other access streams have read access
to the record. That is, other users can retrieve the record, but cannot perform
DELETE, PUT, or UPDATE operations on it. ALLOW MODIFY lets other
access streams perform GET, DELETE, or UPDATE operations on the record.

If you are trying to access a locked record, BASIC signals “Record/bucket
locked” (ERR=154). However, if you only need to read this record, you can
override the lock with the REGARDLESS clause. The REGARDLESS clause
allows you to read a locked record. Use caution when using the REGARDLESS
clause because a record accessed in this way might be in the process of being
changed by another program.

Alternatively, you can also specify the WAIT clause on a GET statement; the
WALIT clause allows you to handle record locked conditions by waiting for the
record to become available. Note that if a WAIT clause is specified on a GET
operation to a unit-record device such as a terminal, the integer expression
indicates how long to wait for the I/O to complete, rather than how long to wait
on a record locked condition. For more information, see Section 13.6.9.

13-18 File Input and Output

13.6.5 Writing Records

For a file opened with ACCESS WRITE or ACCESS MODIFY, the PUT
statement moves data from the record buffer to a file using the I/O buffer.
PUT statements are valid on RMS sequential, relative, and indexed files. You
cannot use PUT statements on terminal-format files or virtual array files.

Sequential access is valid on RMS sequential, relative, and indexed files. For
sequential, variable, and stream files, a sequential PUT operation adds a
record at the end of the file. For sequential fixed and relative files, PUT writes
records sequentially or randomly depending on the presence of a RECORD
clause. For indexed files, RMS stores records in order of the primary key’s
collating sequence; therefore, you do not need to specify a random or sequential
PUT. Table 13-3 shows the record context after both random and sequential
PUT operations.

Table 13-3 Record Context After a PUT Operation

Record Access File Current

Mode Type Record Next Record
Sequential PUT Sequential None End of file
Sequential PUT Relative None Next record
Sequential PUT Indexed None Undefined
Random PUT Relative None Unchanged

After a PUT operation, the current record pointer has no value. However, the
value of the next record pointer changes depending on the file type and the
record access mode used with the PUT operation. In a sequential, stream, or
variable file, records can only be added at the end of the file; therefore, the
next record after PUT is the end of the file. In a relative, sequential, or fixed
file, the next record after a PUT operation is the next logical record.

The following example opens a sequential file with ACCESS APPEND
specified. For sequential files, this is almost identical to ACCESS WRITE.
The only difference is that, with ACCESS APPEND, BASIC positions the file
pointer after the last record in the file when it opens the file for processing. All

subsequent PUT operations append the new record to the end of the existing
file.

File Input and Output 13-19

MAP (Buff) STRING Code = 4%, Exp date = 9%, Type desig = 32%

OPEN "INV.DAT"FOR INPUT AS FILE #2%, &
ORGANIZATION SEQUENTIAL FIXED, ACCESS APPEND, &
MAP Buff

WHILE -1%

INPUT "What is the specification code";Code
INPUT "What is the expiration date";Exp date
INPUT "What is the designator";Type desig
PUT #2%

NEXT

If the current record pointer is not at the end of the file when you attempt a
sequential PUT operation to a sequential file, BASIC signals “Not at end of
file” (ERR=149).

In the following example, the PUT statement writes records to an indexed file.
In this case, the error message “Duplicate key detected” (ERR=134) indicates
that a record with a matching key field already exists, and you did not allow
duplicates on that key.

10 MAP (Purchase rec) STRING R num = 5, &
Dept name = 10, &
Pur dat = 9

20 OPEN "INFO.DAT"FOR OUTPUT AS FILE #2, &

ORGANIZATION INDEXED FIXED, ACCESS WRITE, &
PRIMARY KEY R num, MAP Purchase rec

30 WHILE -1%
INPUT "Requisition number";R num
INPUT "Department name";Dept name
INPUT "Date of purchase";Pur dat
PRINT
PUT #2%

NEXT

Requisition number? 2522A
Department name? COSMETICS
Date of purchase? 15-JUNE-1985

Requisition number? 2678D
Department name? AUTOMOTIVE
Date of purchase? 15-JUNE-1985

Requisition number? 4167C
Department name? AUTOMOTIVE
Date of purchase? 6-JANUARY-1985

Requisition number? 2522A
Department name? SPORTING GOODS
Date of purchase? 25-FEBRUARY-1985

13-20 File Input and Output

13.6.6

13.6.7

$BAS-F-DUPKEYDET, Duplicate key detected

-BAS-I-ON CHAFIL, on channel 2 for file USER$$SDISK: [MAGNUS]INFO.DAT;8 at
user PC 0017E593

-BAS-0-FROLINMOD, from line 30 in module DUPLICATES

-RMS-F-DUP, duplicate key detected (DUP not set)

Deleting Records

The DELETE statement removes a record from a file that was opened with
ACCESS MODIFY. After you have deleted a record you cannot retrieve it.
DELETE works with relative and indexed files only.

A successful FIND or GET operation must precede the DELETE operation.
These operations make the target record available for deletion. In the following
example, the FIND statement locates record 67 in a relative file and the
DELETE statement removes this record from the file. Because the cell itself
is not deleted, you can use the PUT statement to write a record into that cell
after deleting its contents.

FIND #1%, RECORD 67%
DELETE #1%

Note

There is no current record after a deletion. The next record pointer is
unchanged.

Updating Records

The UPDATE statement writes a new record at the location indicated by the
current record pointer. UPDATE is valid on RMS sequential, relative, and
indexed files.

UPDATE operates on the current record, provided that you have write access to
that record. In order to successfully update a variable-length record, you must
know the exact size of the record you want to update. BASIC has access to
this information after a successful GET operation. If you have not performed a
successful GET operation on the variable-length record, then you must specify
a COUNT clause in the UPDATE statement that contains the record size
information.

If you are updating a variable length record, and the record that you want
to write out is of different size than the record you retrieved, you must use a
COUNT clause.

File Input and Output 13-21

An UPDATE will fail with the exception “No current record” (ERR=131) if
you have not previously established a current record with a successful GET or
FIND. Therefore, when updating records you should include error trapping in
your program to make sure all GET operations execute successfully.

An UPDATE operation on a sequential file is valid only when:
e The file containing the record is on disk.
e The new record is the same size as the one it is replacing.

® You have established a current record through a GET or FIND operation.
Note that COUNT defaults to the size of the current record if a GET was
performed. If a FIND operation was used to locate the current record, then
you must supply a COUNT value.

The following program searches to find a record in which the L_name field
matches the specified Search_name$. Once this record is found and retrieved,
the Rm_num field of that record is updated; the program then prompts for
another Search_name$. If a match is not found, BASIC prints the message “No
such record” and prompts the user for another Search_name$. The program
ends when the user enters a null string for the Search_name$ value.

20 MAP (ARA) STRING L name = 60%, F name = 20%, Rm num = 8%
30 OPEN "STU.DAT"FOR INPUT AS FILE #9%, &
ORGANIZATION SEQUENTIAL FIXED, MAP AAA
50 INPUT "Last name";Search_name$
55 Search name$ = EDITS (Search name$, -1%)
60 IF Search name$ = ""
THEN GOTO 32010
END IF
65 RESTORE #9%
70 WHEN ERROR IN
75 GET #9% WHILE Search name$ <> L_name
USE
IF ERR=11
THEN

PRINT "No such record"
CONTINUE 50

ELSE
EXIT HANDLER

END IF
END WHEN
80 INPUT "Room number";Rm_num
90 UPDATE #9%
100 GOTO 50

32010 CLOSE #9%
32030 PRINT "Update complete"
32767 END

13-22 File Input and Output

13.6.8

Note

An UPDATE operation invalidates the value of the current record
pointer. The next record pointer is unchanged.

When you update a record in a relative variable file, the new record can be
larger or smaller than the record it replaces, provided that it is smaller than
the maximum record size set for the file. When you update a record in an
indexed variable file, the new record can also be larger or smaller than the
record it replaces. The updated record:

e (Can be no longer than the maximum record size, if specified
¢ Must include at least the primary key field
The following program updates a specified record on an indexed file:

MAP (UPD) STRING Enrdat = 8%, LONG Part num, Sh num, REAL Cost
OPEN "REC.ING"FOR INPUT AS FILE #8%, &
INDEXED, MAP UPD, PRIMARY KEY Part num
INPUT "Part number to update";A%
Loopl:
WHILE -1%
GET #8%, KEY #0%, EQ A%
INPUT "Revised Cost is";Cost
UPDATE #8%
INPUT "Next Record";A%
IF A% = 0%
THEN
EXIT Loopl
END IF
NEXT
CLOSE #8%
END

If the new record either omits one of the old record’s alternate key fields or
changes one of them, the OPEN statement must specify a CHANGES clause
for that key field when the file is created. Otherwise, BASIC signals the error
“Key not changeable” (ERR=130).

Controlling Record Access

When you open a file, BASIC allows you to specify how you will access the file
and what types of access you will allow other running programs while you have
the file open.

File Input and Output 13-23

If you open a file for read access only (ACCESS READ), BASIC by default
allows other programs to have unrestricted access to the file. You can restrict
access with an ALLOW clause only if the file’s security constraints allow you
write access to the file.

BASIC by default prevents access by other programs to any file you open with
ACCESS WRITE, ACCESS MODIFY, or ACCESS SCRATCH (sequential files
only). This default action is equivalent to specifying the OPEN statement
ALLOW NONE clause. To allow less restrictive access to the open file, specify
ALLOW READ or ALLOW MODIFY.

When a file is open for read access only and you have not restricted access to
other programs with ALLOW NONE, BASIC allows other programs to read
any record in the file including records that your program is concurrently
accessing. However, when you retrieve a record with the GET statement from
a file you have opened with the intent to modify, BASIC normally restricts
other programs from accessing that record. This restriction is called locking.

To allow other programs to access a record you have locked, you must release
the lock on the record in one of the following ways:

e Retrieve another record on the same channel. Unless you have opened the
file with the UNLOCK EXPLICIT clause (see the following discussion), this
action will unlock the previous record.

e Explicitly unlock the record with the UNLOCK or FREE statement. The
UNLOCK statement releases the current record. The FREE statement
releases all records locked on a given channel.

e Perform an UPDATE operation on the record. An UPDATE statement
causes the current record to be unlocked.

e (lose the file.

In addition to the capability of restricting access through the OPEN statement
ALLOW clause, BASIC allows programs to explicitly control record locking

on each record that is retrieved. To use explicit record locking on a file, the
OPEN statement must include an UNLOCK EXPLICIT clause. You may
then optionally specify an ALLOW clause on the GET and FIND statements.
The ALLOW clause on a GET or FIND statement specifies the type of access
allowed by other programs to the record while you are accessing it. The
following statement specifies that other programs may read but not modify the
records you have locked:

GET #1, ALLOW READ

13-24 File Input and Output

13.6.9

If you specify UNLOCK EXPLICIT when opening a file, all records that
you retrieve remain locked until you explicitly unlock them with a FREE,
UNLOCK, or CLOSE statement.

Gaining Access to Locked Records

If you are trying to access a record that is currently locked, one possible
solution is to use the REGARDLESS clause on the GET or FIND statement.
The REGARDLESS clause is useful when you are interested in having

only read access to the specified record. Be aware, however, that using the
REGARDLESS clause to read a locked record can lead to unexpected results
because the record you read can be in the process of being changed by another
program.

Another solution is to include a WAIT clause on the GET or FIND statement.
Note that you cannot specify a WAIT clause and a REGARDLESS clause on
the same statement line. By specifying the WAIT clause, you can tell RMS

to wait for a locked record to become available. You can optionally specify an
integer expression from 0 to 255 with the WAIT clause. This integer expression
indicates the number of seconds RMS should wait for a locked record to become
available. If the record does not become available within the specified number
of seconds, RMS signals the error “Keyboard wait exhausted” (ERR=15).

If you do not specify an integer expression with the WAIT clause, RMS waits
indefinitely for the record to become available. Once the record becomes
available, RMS delivers the record to the program.

Note that a deadlock condition can occur when you cause RMS to wait
indefinitely for a locked record. A deadlock condition occurs when two users
simultaneously try to access locked records in each other’s possession. When
a deadlock occurs, RMS signals the error, “RMS$_DEADLOCK?”. In turn, HP
BASIC signals the error, “Detected deadlock error while waiting for GET or
FIND” (ERR=193). To handle this error, you can either stop trying to access
the particular record, or, if you must access the record, free all locked records
(regardless of the channel) and then attempt the GET or FIND again. You
need to unlock all records because you cannot know which record the other
process wants.

File Input and Output 13-25

Note

If the timeout value specified in the WAIT clause is less than the
SYSGEN parameter DEADLOCK_WAIT, then a “Keyboard wait
exhausted” (ERR=15) message can indicate that either the record did
not become available during the specified time, or there is an actual
deadlock situation. However, if the timeout value is greater than the
SYSGEN parameter DEADLOCK_WAIT, the system correctly specifies
that a deadlock situation has occurred.

The following example uses the WAIT clause to overcome a record locked
condition and traps the resulting error condition:

MAP (worker) STRING first name = 10, &
last_name = 20, &
badge number = 6, &

LONG dept number

MAP (departments) STRING dept name = 10, &
LONG dept_code
OPEN "Employee data.dat" FOR INPUT AS FILE #1%, &
INDEXED FIXED, MAP worker, ACCESS MODIFY, &
PRIMARY badge number

OPEN "departments.dat" FOR INPUT AS FILE #2, &
INDEXED FIXED, MAP departments, ACCESS MODIFY, &
PRIMARY dept code

WHEN ERROR IN
WHILE -1%
GET #1, WAIT
WHEN ERROR USE time expired handler
GET #2%, KEY #0 EQ dept number, &
WAIT 10%
END WHEN
PRINT badge number, dept name
NEXT
USE
SELECT ERR
CASE = 11%
PRINT "End of file reached"
CLOSE 1%, 2%
CASE = 193%
PRINT "Deadlock detected"
UNLOCK #2%
RETRY
CASE ELSE
EXIT HANDLER
END SELECT
END WHEN

13-26 File Input and Output

HANDLER time expired handler
IF ERR = 15% OR ERR = 193%
THEN
PRINT "Department info not available for:"
PRINT "Employee ";badge number
PRINT "Going on to next record."
CONTINUE
ELSE
EXIT HANDLER
END IF
END HANDLER
END PROGRAM

The first WHEN ERROR block traps any deadlock conditions. The WHEN
ERROR handler unlocks the current record on channel #2 in case another
program is trying to access it and then retries the operation. The detached
handler for the second WHEN ERROR block traps timeout errors and deadlock
errors. If the desired information does not become available in the specified
amount of time, or a deadlock condition occurs, the employee’s badge number
is printed out with an appropriate message, and the GET statement tries to
retrieve the next record in the sequence.

13.6.10 Accessing Records by Record File Address

A Record File Address (RFA) uniquely specifies a record in a file. Accessing
records by RFA is therefore more efficient and faster than other forms of
random record access.!

Because an RFA requires six bytes of storage, BASIC has a special data type,
RFA, that denotes variables that contain RFA information. Variables of data
type RFA can be used only with the I/O statements and functions that use RFA
information, and in comparison and assignment statements. You cannot print
these variables or use them in any arithmetic operation. However, you can
compare RFA variables using the equal to (=) and not equal to (<>) relational
operators.

You cannot create named constants of the RFA data type. However, you can
assign values from one RFA variable to another, and you can use RFA variables
as parameters.

Accessing a record by RFA requires the following steps:

1. Explicitly declare the variable or array of data type RFA to hold the
address.

1 Record File Addresses do not exist for terminal-format files.

File Input and Output 13-27

2. Assign the address to the variable or array element. You can do this either
with the GETRFA function, or by reading a file of RFAs generated by
previous GETRFA functions or by the VMS Sort Utility.

3. Specify the variable in the RFA clause of a GET or FIND statement.

The GETRFA function returns the RFA of the last record accessed on a
channel. Therefore, you must access a record in the file with a GET, FIND,
or PUT statement before using the GETRFA function. Otherwise, GETRFA
returns a zero, which is an invalid RFA.

The following example declares an array of type RFA containing 100 elements.
After each PUT operation, the RFA of the record is assigned to an element

of the array. Once the RFA information is assigned to a program variable or
array element, you can use the RFA clause on a GET or FIND statement to
retrieve the record.

DECLARE RFA R array(l TO 100)

DECLARE LONG I

MAP (XYZ) STRING A = 80

OPEN "TEST.DAT" FOR OUTPUT AS FILE #1, &
SEQUENTIAL, MAP XYZ

FOR I = 1% TO 100%

PUT #1
R array(I) = GETRFA(1%)
NEXT I

You can use the RFA clause on GET or FIND statements for any file
organization; the only restriction is that the file must reside on a disk that is
accessible to the node that is executing the program. An RFA value is only
valid for the life of a specific version of a file. If a new version of a file is
created, the RFA values might change. If you attempt to access a record with
an invalid RFA value, HP BASIC signals a run-time error.

The following example continues the previous one. It randomly retrieves the
records in a sequential file by using RFAs stored in the array.

13-28 File Input and Output

DECLARE RFA R _array (1% TO 100%)

DECLARE LONG I

MAP (XYZ) STRING A = 80

OPEN "TEST.DAT" FOR OUTPUT AS FILE #1, &
SEQUENTIAL, MAP XYZ

FOR I = 1% TO 100%

PUT #1
R array(I) = GETRFA(1%)
NEXT I
WHILE -1%
PRINT "Which record would you like to see";
INPUT " (type a carriage return to exit)";Rec_num%
EXIT PROGRAM IF Rec num% = 0%
GET #1, RFA R _array(Rec_num%)
PRINT A
NEXT

13.6.11 Transferring Data to Terminal-Format Files

The PRINT # statement transfers program data to a terminal-format file. In
the following example, the INPUT statements prompt the user for three values:
S_name$, Area$, and Quantity%. Once these values are entered, the PRINT #
statement writes these values to a terminal-format file that is open on channel
#4.

FOR I% = 1% TO 10%
INPUT "Name of salesperson":S name$
INPUT "Sales district";Area$
INPUT "Quantity sold";Quantity%
PRINT #4%, S name$, Area$, Quantity%
NEXT I%

If you do not specify an output list in the PRINT # statement, a blank line
is written to the terminal-format file. A PRINT statement without a channel
number transfers program data to a terminal. See Chapter 5 for more
information.

13.6.12 Resetting the File Position

The RESTORE # statement resets the current record pointer to the beginning
of the file; it does not change the file. RESET # is a synonym for RESTORE.
For example:

RESTORE #3%, KEY #2%
RESET #3%

The RESTORE # statement restores the file in terms of the second alternate
key. The RESET # statement restores the file in terms of the primary key.

File Input and Output 13-29

The RESTORE # statement can be used by all RMS file organizations.
RESTORE without a channel number resets the data pointer for READ
and DATA statements but does not affect any files.

13.6.13 Truncating Files

The SCRATCH statement is valid only on sequential files. Although you
cannot delete individual records from a sequential file, you can delete all
records starting with the current record through to the end of the file. In order

to do this, you must first specify ACCESS SCRATCH when you open the file.

To truncate the file, locate the first record to be deleted. Once the current
record pointer points to this record, execute the SCRATCH statement. The
following program locates the thirty-third record and truncates the file
beginning with that record.

OPEN "MMM.DAT" AS FILE #2%, &
SEQUENTIAL FIXED, ACCESS SCRATCH

first bad record = 33%

FIND #2%, RECORD first bad record
SCRATCH #2%

CLOSE #2%

END

SCRATCH does not change the physical size of the file; it reduces the amount
of information contained in the file. (You can use the DCL command SET
FILE/TRUNCATE to truncate the excess file space.) Therefore, you can write
records with the PUT statement immediately after a SCRATCH operation.

13.6.14 Renaming Files

If the security constraints permit, you can change the name or directory of a
file with the NAME...AS statement. For example:

NAME "MONEY.DAT" AS "ACCOUNTS.DAT"
This statement changes the name of the file MONEY.DAT to ACCOUNTS.DAT.

Note

The NAME...AS statement can change only the name and directory of
a file; it cannot be used to change the device name.

You must always include an output file type because there is no default. If you
use the NAME...AS statement on an open file, the new name does not take
effect until you close the file.

13-30 File Input and Output

13.6.15 Closing Files and Ending I/O

All programs should close files before the program terminates. However, files
are automatically closed in the following situations:

e At an END, END PROGRAM, or EXIT PROGRAM statement

e When it completes the last statement in the program if no END statement
exists

e While executing a CHAIN statement

Files are not closed after executing a STOP, END SUB, END FUNCTION, or
END PICTURE statement.

The CLOSE statement closes files and disassociates these files and their
buffers from the channel numbers. If the file is a magnetic tape device and the
data is written to a tape, CLOSE writes trailer labels at the end of the file.
The following is an example of the CLOSE statement:

CLOSE #1%

B% = 4%

CLOSE #2%, B%, 7%

CLOSE I% FOR I% = 1% TO 20%

13.6.16 Deleting Files

If the security constraints permit, you can delete a file with the KILL
statement. For example:

KILL "TEST.DAT"

This statement deletes the file named TEST.DAT. Note that this statement
deletes only the most current version of the file. Do not omit the file type,
because there is no default. You can delete only one file at a time; to delete
all versions of a file matching a file specification, use the Run-Time Library
routine LIB$DELETE_FILE.

You can delete a file that is currently being accessed by other users; however,
the file is not deleted until all users have closed it. You cannot open or access
a file once you have deleted it.

13.7 File-Related Functions
The following built-in functions are provided for finding:
e The characteristics of the last file opened (FSP$)
e The number of bytes moved in the last I/O operation (RECOUNT)
e The file status (STATUS, VMSSTATUS, and RMSSTATUS)

File Input and Output 13-31

These functions are discussed in the following sections.

13.7.1 FSP$ Function

If you do not know the organization of a file, you can find out by opening the
file for input with the ORGANIZATION UNDEFINED and RECORDTYPE
ANY clauses. Your program can then use the FSP$ function to determine the
characteristics of that file. Your program must execute FSP$ immediately after
the OPEN FOR INPUT statement. For example:

RECORD FSP_data
VARIANT
CASE
BYTE Org
BYTE Rat
WORD Max record size
LONG File size
WORD Bucketsize blocksize
WORD Num_keys
LONG Max record number
CASE
STRING Ret string = 16
END VARIANT
END RECORD

DECLARE FSP data File chars

OPEN "FIL.DAT" FOR INPUT AS FILE #1%, &
ORGANIZATION UNDEFINED, &
RECORDTYPE ANY, ACCESS READ

File chars::Ret string = FSP$(1%)

The following list explains the above example:

¢ Rat returns the low byte that is the RMS record attributes (RAT) field.
e Org returns the high byte that is the RMS organization (ORG) field.

® Max_record_size returns the RMS maximum record size (MRS) field.

e File_size returns the RMS allocation quantity (ALQ) field.

e Bucketsize_blocksize returns the RMS bucket size (BKS) field for disk files
or the RMS block size (BLS) field for magnetic tape files.

e Num_keys returns the number of keys.

e Max_record_number returns the RMS maximum record number (MRN)
field if the file is a relative file.

Note that FSP$ returns zeros in bytes 9 to 12. For more information, see the
OpenVMS Record Management Services Reference Manual.

13-32 File Input and Output

13.7.2 RECOUNT Function

13.7.3

Read operations can transfer varying amounts of data. The system variable
RECOUNT contains the number of characters (bytes) read after each read
operation.

After a read operation from your terminal, RECOUNT contains the number of
characters transferred, including the line terminator. After accessing a record,
RECOUNT contains the number of characters in the record.

RECOUNT is reset by every read operation on any channel, including the
controlling terminal. Therefore, if you need to use the value of RECOUNT,
copy it to another variable before executing another read operation. RECOUNT
is undefined if an error occurs during a read operation.

RECOUNT is often used as the argument to the COUNT clause in the
UPDATE or PUT statement for variable-length files. The following sequence of
statements ensures that the output record on channel #5 is the same length as
the input record on channel #4:

GET #4%
bytes read% = RECOUNT

PUT #5%, COUNT bytes read%

STATUS, VMSSTATUS, and RMSSTATUS Functions

The STATUS function accesses the status longword that contains
characteristics of the last opened file. If an error occurs during an input
operation, the value of STATUS is undefined. If an error does not occur, the
six low-order bits of the returned value contain information about the type
of device accessed by the last input operation. These bits correspond to the
following devices:

e If bit O is set, the device type is a record-oriented device.

e Ifbit 1 is set, the device type is a carriage control device.

e Ifbit 2 is set, the device type is a terminal.

e If bit 3 is set, the device type is a directory oriented device.
e If bit 4 is set, the device type is a single directory device.

e Ifbit 5 is set, the device type is a sequential block-oriented device
(magnetic tape or TK50).

File Input and Output 13-33

Both the VMSSTATUS and RMSSTATUS functions are used to determine
which non-BASIC error caused a resulting BASIC error. In particular,
VMSSTATUS can be used for any non-BASIC errors, while RMSSTATUS is
used specifically for RMS errors. For more information about these functions,
see Chapter 15 and the HP BASIC for OpenVMS Reference Manual.

13.8 OPEN Statement Options

This section explains the OPEN statement keywords that enable you to control
how a file is created or opened. These keywords are:

BUCKETSIZE
BUFFER
CONNECT
CONTIGUOUS
DEFAULTNAME
EXTENDSIZE
FILESIZE
NOSPAN
RECORDTYPE
TEMPORARY
USEROPEN
WINDOWSIZE

13.8.1 BUCKETSIZE Clause

The BUCKETSIZE clause applies only to relative and indexed files. A bucket

is a logical storage structure that RMS uses to build and maintain relative and
indexed files on disk devices. A bucket consists of one or more disk blocks. The
default bucket size is the record size rounded up to a block boundary. Although
RMS defines the bucket size in terms of disk blocks, the BUCKETSIZE clause

specifies the number of records a bucket contains. For example:

OPEN "STOCK DATA.DAT" FOR OUTPUT AS FILE #1%, &
ORGANIZATION RELATIVE FIXED, BUCKETSIZE 12%

This example specifies a bucket containing approximately 12 records. RMS
reads in entire buckets into the I/O buffer at once, and a GET statement
transfers one record from the I/O buffer to your program’s record buffer.

When you open an existing relative or indexed file and specify a bucket size
other than that originally assigned to the file, BASIC signals the error, “File
attributes not matched” (ERR=160).

13-34 File Input and Output

Records cannot span bucket boundaries. Therefore, when you specify a bucket
size in your program, you must consider the size of the largest record in the
file. Note that a bucket must contain at least one record. Buckets in both
relative and indexed files contain information in addition to the records stored
in the bucket. You should take this into consideration.

There are two ways to establish the number of blocks in a bucket. The first
is to use the default. The second is to specify the approximate number of
records you want in each bucket. A bucket size based on that number is then
calculated.

The default bucket size assigned to relative and indexed files is as small as
possible. A small bucket size, however, is rarely desirable.

A default bucket size is selected depending on the:
¢ Record length

¢ File organization (relative or indexed)

¢ Record format

If you do not define the BUCKETSIZE clause in the OPEN statement, BASIC
does the following:

e Assumes that there is a minimum of one record in the bucket
e (Calculates a size
e Assigns the appropriate number of blocks

Note that when you specify a bucket size for files in your program, you must
keep in mind the space versus speed tradeoffs. A large bucket size increases
file processing speed because a greater amount of data is available in memory
at one time; however, it also increases the memory space needed for buffer
allocation and the processing time required to search the bucket. Conversely, a
small bucket size minimizes buffer requirements, but increases the number of
accesses to the storage device, thereby decreasing the speed of operations.

It is recommended that you use the DCL command EDIT/FDL to design files
used in production applications where performance is a concern.

File Input and Output 13-35

13.8.2 BUFFER Clause

The BUFFER clause applies to disk files of any organization. In the case of
sequential files, the BUFFER clause sets the number of blocks read in on each
disk access. For relative and indexed files, the BUFFER clause determines the
number of I/O buffers that are allocated. In general, the OpenVMS operating
system supplies adequate defaults for all file types; therefore, the BUFFER
clause is rarely necessary.

You can specify up to 127 buffers as either a positive or a negative number:

e If (0 < BUFFER < 127), RMS allocates enough space for the specified
number of buckets.

e If(-128 < BUFFER < 0), BASIC allocates the absolute value of the specified
number of buffers.

e If (BUFFER=0), BASIC allocates the process default for the particular file
organization and device—this value is usually adequate.

13.8.3 CONNECT Clause

The CONNECT clause can be used only on indexed files. CONNECT lets you
process different groups of records on different indexed keys or on the same key
without incurring all of the RMS overhead of opening the same file more than
once. For example, a program can read records in an indexed file sequentially
by one key and randomly by another. Each stream is an independent, active
series of record operations.

MAP (Indmap) WORD Emp num, &
STRING Emp_last name = 20, &
SINGLE Salary, &
STRING Wage_code = 2

OPEN "IND.DAT" FOR INPUT AS FILE #1%, &
ORGANIZATION INDEXED, &
MAP Indmap, &
PRIMARY KEY Emp num, &
ALTERNATE KEY Emp last name

OPEN "IND.DAT" FOR INPUT AS FILE #2% &
ORGANIZATION INDEXED, &
MAP Indmap, &
CONNECT 1

13-36 File Input and Output

13.8.4

13.8.5

The channel on which you open the file for the first time is called the parent.
The CONNECT clause specifies another channel on which you access the same
file; connected channels are called children. More than one OPEN statement
can connect to the parent channel; however, you cannot connect to a channel
that has already been connected to another channel.

Do not use the CONNECT clause when accessing files on remote DECnet
nodes.

CONTIGUOUS Clause

A contiguous file with physically adjoining blocks minimizes disk searching
and decreases file access time. Once the system knows where a contiguous file
starts on the disk, it does not need to use as many retrieval pointers to locate
the pieces of that file. Rather, it can access data by calculating the distance
from the beginning of the file to the desired data. If there is not enough
contiguous disk space, BASIC allocates as much contiguous space as possible.
(For truly contiguous records, you must use the USEROPEN clause and set the
CTG bit in the FAB FOP field—see the OpenVMS Record Management Services
Reference Manual.)

Opening a file with both the FILESIZE and CONTIGUOUS clauses pre-extends
the file contiguously or in as few disk extents as possible.

DEFAULTNAME Clause

The DEFAULTNAME clause in the OPEN statement lets you specify a default
file specification for the file to be opened. It is valid with all file organizations.
BASIC uses the DEFAULTNAME clause for any part of the file specification
that is not explicitly supplied.

LINPUT "Next data file";Fil$

OPEN Fil$ FOR INPUT AS FILE #5%, &
ORGANIZATION SEQUENTIAL, &
DEFAULTNAME "USERSDEVICE:.DAT"

The DEFAULTNAME clause supplies default values for the device, directory,
and file type portions of the file specification. Typing ABC in response to the
Next data file? prompt causes BASIC to try to open USER$DEVICE:ABC.DAT.

BASIC uses the DEFAULTNAME values only if you do not supply those parts
of the file specification appearing in the DEFAULTNAME clause. For example,
if you type SYS$DEVICE:ABC in response to the prompt, BASIC tries to open
SYS$DEVICE:ABC.DAT. In this case, SYS$DEVICE: overrides the device
default in the DEFAULTNAME clause. Any part of the file specification

still missing is filled in from the current default device and directory of the
process.

File Input and Output 13-37

13.8.6

13.8.7

EXTENDSIZE Clause

The EXTENDSIZE attribute determines how many disk blocks RMS adds to
the file when the current allocation is exhausted. The EXTENDSIZE clause
only has an effect when creating a file. You specify EXTENDSIZE as a number
of blocks. For example:

OPEN "TSK.ORN" FOR OUTPUT AS FILE #2%, &
ORGANIZATION RELATIVE, EXTENDSIZE 128%

The EXTENDSIZE clause causes RMS to add 128 disk blocks whenever the
current space allocation is exhausted and the file must be extended.

The value you specify must conform to the following requirements:

e It must be specified when you create the file

e It cannot exceed 65,535 disk blocks

If you specify zero, the extension size equals the RMS default value. The
EXTENDSIZE value can be overridden for single OPEN operations.
FILESIZE Clause

With the FILESIZE attribute, you can allocate disk space for a file when you
create it. The following statement allocates 50 blocks of disk space for the file
VALUES.DAT:

OPEN "VALUES.DAT" FOR OUTPUT AS FILE #3%, FILESIZE 50%
Pre-extending a file has several advantages:

e The system can create a complete directory structure for the file, instead of
allocating and mapping additional disk blocks when needed.

* You reserve the needed disk space for your application. This ensures that
you do not run out of space when the program is running.

e Pre-extension can make some of the file’s disk blocks contiguous, especially
when used with the CONTIGUOUS keyword.

Note that pre-extension can be a disadvantage if it allocates disk space needed
by other users. The FILESIZE clause is ignored when HP BASIC opens an
existing file.

13-38 File Input and Output

13.8.8

13.8.9

NOSPAN Clause

By default, sequential files allow records to cross or span block boundaries.
If records cross block boundaries, RMS packs records into the file end-to-end
throughout the file, leaving space for control information and padding.

The NOSPAN clause overrides this default, forcing records to fit into individual
blocks (with space provided for control information and padding). When block
boundaries restrict records, fixed-length records must be less than 512 bytes,
and variable-length records less than 510 bytes. This can waste extra bytes

at the end of each block. However, when records span block boundaries, RMS
writes records end-to-end without regard for block boundaries. For example,

if you specify NOSPAN, only four 120-byte records fit into a disk block. If you
do not specify NOSPAN, BASIC begins writing the fifth record in the block,
and continues writing that record in the next block. This minimizes wasted
disk space and improves the file’s capacity, at the minimal expense of increased
processing overhead.

RECORDTYPE Clause

The RECORDTYPE clause lets you specify record formats that are compatible
with files created by other language processors. You can choose one of four
qualifiers: LIST, FORTRAN, ANY, and NONE. The default for BASIC is LIST,
which specifies carriage return format. This is standard for ASCII text files
and means that carriage control is performed by RMS when writing the file to
a unit-record device.

If your program accesses a file created with a Fortran language processor, use
the FORTRAN qualifier. In the following example, the FORTRAN qualifier
sets the FORTRAN carriage control attribute in the RAT field in the FAB. For
more information about the FAB control structure, see Section 13.8.11. The
first byte of the record is assumed to be the carriage control information. For
example:

OPEN "FIL.DAT" FOR INPUT AS FILE #1%, &
ORGANIZATION SEQUENTIAL, RECORDTYPE FORTRAN

If your program accesses a file created by an unknown language processor
or by DCL, use the ANY qualifier; this qualifier causes BASIC to handle any
record attribute type. If you create a file with the ANY qualifier, BASIC uses
the default of LIST. For example:

OPEN "FIL.DAT" FOR INPUT AS FILE #1%, &
ORGANIZATION INDEXED, RECORDTYPE ANY

File Input and Output 13-39

13.8.10 TEMPORARY Clause

If you specify the TEMPORARY clause in the OPEN statement, BASIC deletes
that file in any one of the following cases:

e When you close the file
e When the program aborts or exits
e When your process terminates

No entry for this file is made in any directory.

13.8.11 USEROPEN Clause

The USEROPEN clause specifies an external long function that BASIC
executes when you open or create a file. (You do not need to declare the
USEROPEN routine with an EXTERNAL FUNCTION statement.) This
procedure can then specify additional OPEN parameters for the file. For
example:

OPEN "FILE.DAT" FOR INPUT AS FILE #2%, &
ORGANIZATION INDEXED, USEROPEN Myopen, MAP ABC

The code in Myopen determines how the file FILE.DAT is opened. The Run-
Time Library sets up six RMS control structures before calling the USEROPEN
procedure. Table 13-4 defines these structures and their meanings.

Table 13-4 RMS Control Structures Set for the USEROPEN Clause

Structure Definition

FAB File Access Block

RAB Record Access Block

NAM Name Block

XAB FHC Extended Attributes Block
ESA Expanded Name String

RSA Resultant Name String

A USEROPEN procedure should not alter the allocation of these structures,
although it can modify the contents of many of the fields. You should not
modify fields set by other OPEN statement keywords. For example, you should
use the RECORDSIZE clause, not a USEROPEN routine, to set the record
length.

13-40 File Input and Output

The allocation of the RMS control structures (except for the RAB) lasts only for
the duration of the OPEN statement. Therefore, your USEROPEN can retain
only the RAB address for use after the OPEN operation is complete. Note that
any additional structures that you allocate and link into the RMS structures
must be unlinked before exiting the USEROPEN.

Note

Future releases of the OpenVMS Run-Time Library might alter the
use of some RMS fields. Therefore, you might have to alter your
USEROPEN procedures accordingly.

The following steps describe the execution of the USEROPEN routine:

1. BASIC performs normal OPEN statement processing up to the point where
it would call the RMS OPEN/CREATE and CONNECT routines. BASIC
then passes control to the USEROPEN routine.

2. BASIC passes the address of the FAB as the first parameter, the address
of the RAB as the second parameter, and the address of the user-specified
channel number as the third parameter to the routine.

3. The USEROPEN routine can modify the contents of the RMS control
structures, and it must call the RMS OPEN or RMS CREATE routine and
the RMS CONNECT routine and return the status in RO.

Example 13—-1 shows how to create a USEROPEN routine to obtain a RAB
address.

File Input and Output 13-41

Example 13—1 Creating a USEROPEN Routine

$TITLE "Example USEROPEN"
$SBTTL "Useropen Routine to obtain RAB address"
$IDENT "Version 1.1"

FUNCTION LONG Get rab address (Fabdef User fab, Rabdef User rab,

L+

LONG Channel)

! FUNCTIONAL DESCRIPTION:

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
-

Save the address of the RMS Record Access Block allocated by the caller
in a global symbol. Open the file and return the status from RMS.

FORMAL PARAMETERS (Standard for all BASIC USEROPEN procedures)

User fab Address of RMS File Access Block
User rab Address of RMS Record Access Block

Channel Logical Unit assigned to file by caller.

RETURN VALUE: RMS Status value

GLOBAL COMMON USAGE

RAB ptr Single longword PSECT used to pass RAB address to caller.
OPTION INACTIVE = SETUP, &

CONSTANT TYPE = INTEGER, &

TYPE = EXPLICIT
$NOLIST

%$INCLUDE "S$FABDEF" %FROM $LIBRARY "SYSSLIBRARY:BASICSSTARLET"
$INCLUDE "SRABDEF" $FROM %LIBRARY "SYSSLIBRARY:BASICSSTARLET"
%$INCLUDE "S$RMSDEF" %FROM $LIBRARY "SYSSLIBRARY:BASICSSTARLET"
$INCLUDE "STARLET" $%FROM %LIBRARY "SYSSLIBRARY:BASICSSTARLET"
%LIST

I+

! Common area used to pass RAB address to caller.

| -

COMMON (RAB_ptr) LONG rab_address

DECLARE LONG Rms_status
L+
! Save RAB address in global symbol known to caller.

! Perform standard RMS open sequence
| -

éab_address = LOC(User_rab::rab$b bid)

Rms_status = SysSopen(User fab)

(continued on next page)

13-42 File Input and Output

Example 13-1 (Cont.) Creating a USEROPEN Routine

IF Rms_status = Rms$ normal
THEN

Rms_status = Sys$connect(User rab)
END IF

END FUNCTION Rms_status

Note

You cannot use a USEROPEN routine to fill the RBF, UBF, BKS, or
CTX fields in the RAB. These fields are filled in after the USEROPEN
routine returns; any values placed there by the USEROPEN routine
are overwritten. Also, you must not set RMS Locate mode when using
a USEROPEN routine on sequential files.

13.8.12 WINDOWSIZE Clause

The WINDOWSIZE clause specifies the number of block retrieval pointers in
memory for the file. WINDOWSIZE is not a file attribute, and therefore can be
changed any time you open a file.

Retrieval pointers are associated with the file header and point to contiguous
blocks on disk. By keeping retrieval pointers in memory, you can reduce
the I/O associated with locating a record because the operating system does
not have to access the file header for pointers as frequently. The number of
retrieval pointers in memory at any one time is determined by the system
default or by the value you supply in the WINDOWSIZE clause. The usual
default number of retrieval pointers is 7.

A value of zero specifies the default number of retrieval pointers. A value of
-1 specifies mapping the entire file, if possible. Values from —-128 to -2 are
reserved.

File Input and Output 13-43

14

Formatting Output with the PRINT USING
Statement

The PRINT USING statement controls the appearance and location of data on
a line of output. With it, you can create formatted lists, tables, reports, and
forms. This chapter describes how to format data with the PRINT USING
statement.

14.1 Overview of the PRINT USING Statement

The ability to format data with the PRINT USING statement is useful because
the way in which HP BASIC displays data with the PRINT statement is often
limited. For example, a program might use floating-point numbers to represent
dollars and cents. The PRINT statement displays floating-point numbers

with up to six digits of accuracy, and places the decimal point anywhere in
that 6-digit field. In contrast, PRINT USING lets you display floating-point
numbers in the following ways:

e Rounded to a number of specified decimal places

e Vertically aligned on the decimal point

e Preceded by a dollar sign

e With commas every third digit to the left of the decimal point

Formatting monetary values in this way provides a more readable report.
Another use for formatted numeric values might be to print checks on a
printer. PRINT USING lets you print numbers with a dollar sign and an
asterisk-filled field preceding the first digit.

PRINT USING also formats string data. With it you can left- and right-justify
string expressions, or center a string expression over a specified column
position. Further, the PRINT USING statement can contain string literals.
These are strings that do not control the format of a print item, but instead are
printed exactly as they appear in the format string.

Formatting Output with the PRINT USING Statement 14-1

It is recommended that you declare all format expressions as string constants.
When you do this the HP BASIC compiler instructs the Run-Time Library to
compile the string at compile time rather than at run time, thus improving the
performance of your code.

14.2 Using Format Strings

Format strings determine the way in which items are to be printed in the
output file. Format strings can be any of the following:

e String variables

e String literals

e Named string constants

e A combination of the previous strings

The PRINT USING statement must contain one or more format strings. Each
format string is made up of one format field. Each format field controls the
output of one print item and can contain only certain characters, as described
throughout the chapter.

The PRINT USING statement must also contain a list of items you want
printed. To format print items, you must separate them with commas or
semicolons. Separators between print items do not affect output format as
they do with the PRINT statement. However, if a comma or semicolon follows
the last print item, HP BASIC does not return the cursor or print head to the
beginning of the next line after it prints the last item in the list.

When HP BASIC encounters an invalid character within the current format
field, it automatically ends the format field; therefore, you do not need to
delimit format fields. The character that terminates the previous field can be
either a new format field or a string literal.

In the following example, the first three characters in the format string (###)

make up a valid numeric format field. The fourth character (A) is invalid in a
numeric format field; therefore, HP BASIC ends the first format field after the
third character. HP BASIC continues to scan the format string, searching for

a character that begins a format field. The first such character is the number

sign at character position 7. Therefore, the characters at positions 4, 5, and 6

are treated as a string literal. The characters at positions 7, 8, and 9 make up
a second valid numeric format field.

PRINT USING "###ABCH###", 123, 345

14-2 Formatting Output with the PRINT USING Statement

Output
123ABC345

When the statement executes, HP BASIC prints the first number in the list
using the first format field, then prints the string literal ABC, and finally
prints the second number in the list using the second format field. If you were
to supply a third number in the list, HP BASIC would reuse the first format
string. This is called reversion.

PRINT USING "###ABCH##", 123, 345,
564

Output

123ABC345
564ABC

Because any character not part of a format field is printed just as it appears
in the format field, you can use a space or multiple spaces to separate format
fields in the format string as shown in the following example:

DECLARE STRING CONSTANT format string = "###.## ###. #4"
DECLARE SINGLE A,B

A = 2.565

B = 100.350

PRINT USING format_string, A, B, A, B

Output
2.57 100.35
2.57 100.35

When the HP BASIC compiler encounters the PRINT USING statement, HP
BASIC prints the value of A (rounded according to PRINT USING rules), three
spaces, then the value of B. HP BASIC prints the three spaces because they are
treated as a string literal in the format string. Notice that when HP BASIC
reuses a format string, it begins on a new line.

14.3 Printing Numbers
With the PRINT USING statement, you can specify:

¢ The number of digits to print, thus rounding the number to a given place

e The decimal point location, thus vertically aligning numbers at the decimal
point

e Special symbols, including trailing minus signs (-), asterisk-filled number
fields, floating currency symbols, embedded commas, and E notation

e Debits and credits

Formatting Output with the PRINT USING Statement 14-3

14.3.1

e Leading zeros or leading spaces
¢ Blank-if-zero fields
e A special character that is to be printed as a literal

Unlike the PRINT statement, PRINT USING does not automatically print a
space before and after a number. Unless you reserve enough digit positions
to contain the integer portion of the number (and a minus sign, if necessary),
HP BASIC prints a percent sign (%) to signal this condition and displays the
number in PRINT format.

Specifying the Number of Digits

You reserve places for digits by including a number sign (#) for each digit
position. If you print negative numbers, you must also reserve a place for the
minus sign.

PRINT USING "###", 6123 IThree places reserved
PRINT USING "#####",12345 |Five places reserved
PRINT USING "####",-678 IFour places reserved
END

Output
123
12345
-678

If there are not enough digits to fill the field, HP BASIC prints spaces before
the first digit.

format string$ = "#####"

PRINT USING format string$, 1
PRINT USING format string$, 10
PRINT USING format string$, -1709
PRINT USING format string$, 12345
END

Output
1
10
-1709
12345

If you have not reserved enough digits to print the fractional part of a number,
HP BASIC rounds the number to fit the field.

PRINT USING "###",126.7
PRINT USING "#",5.9
PRINT USING "#",5.4

END

14-4 Formatting Output with the PRINT USING Statement

14.3.2

Output
127

6

5

If you have not reserved enough places to print a number’s integer portion, HP
BASIC prints a percent sign as a warning followed by the number in PRINT
statement format. After HP BASIC prints the number, it completes the rest of
the list in PRINT USING format.

In the following example, PRINT USING displays the first number. Because
there are not enough places to the left of the decimal point to display a 3-digit
number, BASIC prints the second number in PRINT statement format, with a
space before and after, but includes a percent sign warning.

PRINT USING "###", 256
PRINT USING "##", 256
END

Output

256
% 256

Specifying Decimal Point Location

The decimal point’s position in the format string determines the number of
reserved places on either side of it. If the print item’s fractional part does not
use all of the reserved places to the right of the decimal point, BASIC fills the
remaining spaces with zeros.

DECLARE STRING CONSTANT FM = "##.###"
PRINT USING FM, 15.72

PRINT USING FM, 39.3758

PRINT USING FM, 26

Output

15.720
39.376
26.000

If there are more fractional digits than reserved places to the right of the
decimal point, BASIC rounds the number to fit the reserved places. Note that
there must be enough places reserved to the left of the decimal point for the
integer portion of the number. Otherwise, BASIC prints the number in PRINT
format preceded by a percent sign. The following example shows how PRINT
USING rounds numbers when you specify decimal point location:

Formatting Output with the PRINT USING Statement 14-5

14.3.3

PRINT USING "##.##", 25.789
PRINT USING "##.###", 100.2
PRINT USING "#.##",.999

END

Output

25.79
% 100.2
1.00

BASIC fills all reserved spaces to the left of the decimal point with specified
digits, spaces, or the minus sign.

PRINT USING "##.##", 5.25
PRINT USING "##.##", -5.25
PRINT USING "###.4##,-5.25
END

Output

5.25
-5.25
-5.25

Printing Numbers with Special Symbols

Special symbols let you print numbers with trailing minus signs, asterisk-
fill fields, floating currency symbols, commas, or E notation. You can also
specify debits, credits, leading zeros, leading blanks, and blank-if-zero fields.
Table 14-1 summarizes these special characters.

Table 14-1 Format Characters for Numeric Fields

Character Effect on Format
Number sign (#) Reserves a place for one digit.
Decimal point (period)(.) Determines decimal point location and

reserves a place for the radix point.

Comma (,) Prints a comma before every third digit to
the left of the decimal point and reserves a
place for one digit or digit separator.

Two asterisks (%) Print leading asterisks before the first digit
and reserve places for two digits.

(continued on next page)

14-6 Formatting Output with the PRINT USING Statement

14.3.3.1

Table 14-1 (Cont.) Format Characters for Numeric Fields

Character

Effect on Format

Two dollar signs ($$)

Four carets (A" "")

Minus sign (-)

Zero in angle brackets (<0>)

Percent sign in angle brackets (<%>)

CD in angle brackets (<CD>)

Underscore (_)

Print a currency symbol before the first
digit. They also reserve places for the
currency symbol and one digit. By
default, the currency symbol is a dollar
sign. To change the currency symbol, see
Section 14.3.3.3

Print a number in E (exponential) format
and reserve four places for E notation.

Prints a trailing minus sign for negative
numbers. Printing a negative number in an
asterisk-fill or a currency field requires that
the field also have a trailing minus sign or
credit/debit character.

Prints leading zeros instead of leading
spaces.

Prints all spaces in the field if the value
of the print item, when rounded to fit the
numeric field, is zero.

Prints credit and debit characters
immediately following the number. BASIC
prints CR for negative numbers and zero,
and DR for positive numbers.

Specifies that the next character is a literal,
not a formatting character.

Commas

You can place a comma anywhere in a number field to the left of the decimal
point or to the right of the field’s first character. A comma cannot start a
format field. BASIC prints a comma to the left of every third digit from the
decimal point. If there are fewer than four digits to the left of the decimal

point, BASIC omits the comma.

PRINT USING "##, ###",10000

PRINT USING "##, ###",759

PRINT USING "SS#,#iH#.##",25694.3
PRINT USING "**#, ###",67259

PRINT USING "####, #.##",625239
END

Formatting Output with the PRINT USING Statement 14-7

14.3.3.2

Output
10,000
759
$25,694.30
*%7,259
25,239.00

Asterisk-Fill Fields

To print an asterisk (*) before the first digit of a number, you must start the
field with two asterisks.

DECLARE STRING CONSTANT FM = "**f 4"
PRINT USING FM, 1.2

PRINT USING FM, 27.95

PRINT USING FM, 107

PRINT USING FM, 1007.5

END

Output

*%%1.20
*%27.95
*107.00
1007.50

Note that the asterisks reserve two places as well as cause asterisk fill.

To specify a negative number in an asterisk-fill field, you must place a trailing
minus sign in the field. The trailing minus sign must be the last character in
the format string.

DECLARE STRING CONSTANT FM = "**## ##-"
PRINT USING FM, 27.95

PRINT USING FM, -107

PRINT USING FM, -1007.5

END

Output

*%27.95
*107.00-
1007.50-

If you try to print a negative number in an asterisk-fill field that does not
include a trailing minus sign, BASIC signals “PRINT USING format error”
(ERR=116).

You cannot specify both asterisk-fill and zero-fill for the same numeric field.

14-8 Formatting Output with the PRINT USING Statement

14.3.3.3

14.3.3.4

Currency Symbols

To print a currency symbol before the first digit of a number, you must start
the field with two dollar signs. If the data contains both positive and negative
numbers, you must include a trailing minus sign.

DECLARE STRING CONSTANT FM = "SS##.##-"
PRINT USING FM, 77.44

PRINT USING FM, 304.55

PRINT USING FM, 2211.42

PRINT USING FM, -125.6

PRINT USING FM, 127.82

END

Output

$77.44
$304.55
$ 2211.42
$125.60-
$127.82

Note that the dollar signs reserve places for the currency symbol and only
one digit; the dollar sign is always printed. (Hence the warning indicator (%)
when the third PRINT USING statement executes.) Contrast this with the
asterisk-fill field, where BASIC prints asterisks only when there are leading
spaces.

By default, the currency symbol is a dollar sign. On OpenVMS systems, you
can change the currency symbol, radix point, and digit separator by assigning
the characters you want to the logical names SYS$CURRENCY, SYS$RADIX
POINT, and SYS$DIGIT_SEP, respectively.

If you try to print a negative number in a dollar sign field that does not include
either a trailing minus sign or the CR and DR formatting character, BASIC
signals “PRINT USING Format error” (ERR=116).

Negative Fields

To allow for a field containing negative values, you must place a trailing minus
sign in the format field. A negative format field causes the value to be printed
with a trailing minus sign. You can also denote negative fields with CR and
DR. See Section 14.3.3.8 for more information.

You must use a trailing minus or the CR/DR formatting character to indicate a
negative number in an asterisk-fill or floating dollar sign field.

For fields with trailing minus signs, BASIC prints a minus sign after negative
numbers as shown in Example 1, and a space after positive numbers as shown
in Example 2.

Formatting Output with the PRINT USING Statement 14-9

Example 1

|Standard field

PRINT USING "###.##",6-10.54
PRINT USING "###.##",610.54
END

Output 1

-10.54
10.54

Example 2

IFields with Trailing Minus Signs
PRINT USING "##.##-",6-10.54

PRINT USING "##.##-",10.54

END

Output 2

10.54-
10.54

14.3.3.5 E (Exponential) Format

To print a number in E format, you must place four carets (***") at the end
of the field. The carets reserve space for:

e The capital letter E
¢ A plus or minus sign (which indicates a positive or negative exponent)

e An exponent (the exponent is 2 digits for single, double, and s_floating,
3 digits for g_floating and t_floating, and 4 digits for h_floating and x_
floating)

In exponential format, BASIC does not pad the digits to the left of the decimal
point. Instead, the most significant digit shifts to the leftmost place of the
format field, and the exponent compensates for this adjustment.

PRINT USING "###. ##°"""n, 5
PRINT USING "###. ##*"""", 1000
PRINT USING ".##***"v, 5

END

Output

500.00E-02
100.00E+01
.50E+01

14-10 Formatting Output with the PRINT USING Statement

14.3.3.6

14.3.3.7

If you use fewer than four carets, the number does not print in E format; the
carets print as literal characters. If you use more than four carets, BASIC
prints the number in E format and includes the extra carets as a string literal.

PRINT USING "###.##"""",5
PRINT USING "###.##"""*"n 5
END

Output

5.00%""
500.00E-02"

You must reserve a place for a minus sign to the left of the decimal point to
display negative numbers in exponential format. If you do not, BASIC prints a
percent sign (%) as a warning.

You cannot use exponential format with asterisk-fill, floating-dollar sign, or
trailing minus formats.

Leading Zeros

To print leading zeros in a numeric field, you must start the format field with a
zero enclosed in angle brackets (<0>). These characters also reserve one place
for a digit.

DECLARE STRING CONSTANT FM = "<O>#f##.##"
PRINT USING FM, 1.23, 12.34, 123.45, 1234.56, 12345.67

Output

00001.23
00012.34
00123.45
01234.56
12345.67

When you specify zero-fill, you cannot specify asterisk-fill or floating-dollar sign
format for the same field.

Blank-If-Zero Fields
To print a blank field for values which round to zero, you must start the
numeric field with a percent sign enclosed in angle brackets (<%>).

In the following example, PRINT USING displays spaces in each reserved
position for the second and third items in the list. The value of the second item
is zero, while the value of the third item becomes zero when rounded to fit the
numeric field.

DECLARE STRING CONSTANT FM = "<%>####. ##"
PRINT USING FM, 1000, 0, .001, -5000

Formatting Output with the PRINT USING Statement 14-11

Output
1000.00

-5000.00

14.3.3.8 Debits and Credits

You can have BASIC use credit and debit notation to differentiate positive and
negative numbers. To do this, you place the characters <CD> (Credit/Debit) at
the end of the numeric format string. This causes BASIC to print CR (Credit
Record) after negative numbers, and DR (Debit Record) after positive numbers
and zero.

DECLARE STRING CONSTANT FM = "SS$####.##<cd>"
PRINT USING FM, -552.35, 200, -5

Output

$552.35CR
$200.00DR
$5.00CR

You cannot use a trailing minus sign and Credit/Debit formatting in the same
numeric field. Using the Credit/Debit formatting character causes the value to
be printed with a leading space.

14.4 Printing Strings

With the PRINT USING statement, you can specify the following aspects of
string format:

¢ The number of characters
e Leftjustified format

¢ Right-justified format

e Centered format

e Extended field format

Table 14-2 summarizes the format characters and their effects.

14-12 Formatting Output with the PRINT USING Statement

Table 14-2 Format Characters for String Fields

Character Effect on Format

Single quotation mark () Starts the string field and reserves a place for one
character.

L (upper- or lowercase) Left-justifies the string and reserves a place for one
character.

R (upper- or lowercase) Right-justifies the string and reserves a place for one
character.

C (upper- or lowercase) Centers the string in the field and reserves a place for
one character.

E (upper- or lowercase) Left-justifies the string; expands the field, as necessary,
to print the entire string; and reserves a place for one
character.

Two backslashes (\ \) Reserves n+2 character positions, where n is the

number of spaces between the two backslashes. PRINT
USING left-justifies the string in this field. This
formatting character is included for compatibility with
BASIC-PLUS. It is recommended that you not use this
type of field for new program development.

Exclamation point (!) Creates a 1-character field. The exclamation point both
starts and ends the field. This formatting character
is included for compatibility with BASIC-PLUS. It is
recommended that you not use this type of field for new
program development. Instead, use a single quotation
mark to create a 1-character field.

You must start string format fields with a single quotation mark (’) that
reserves a space in the print field, followed by:

e A contiguous series of upper- or lowercase Ls for left-justified output

e A contiguous series of upper- or lowercase Rs for right-justified output
e A contiguous series of upper- or lowercase Cs for centered output

e A contiguous series of upper- or lowercase Es for extended field output

BASIC ignores the overflow of strings larger than the string format field except
for extended fields. For extended fields, BASIC extends the field to print the
entire string. If a string to be printed is shorter than the format field, BASIC
pads the string field with spaces. For more information about extended fields,
see Section 14.4.4.

Formatting Output with the PRINT USING Statement 14-13

A string field containing only a single quotation mark is a 1-character string
field. BASIC prints the first character of the string expression corresponding
to a 1-character string field and ignores all following characters.

PRINT USING "'","ABCDE"
END

Output
A

See Section 14.4.4 for an example of different types of fields used together.

14.4.1 Left-Justified Format

BASIC prints strings in a left-justified field starting with the leftmost
character. BASIC pads shorter strings with spaces and truncates longer
strings on the right to fit the field.

A left-justified field contains a single quotation mark followed by a series of Ls.

PRINT USING "'LLLLLL","ABCDE"
PRINT USING "'LLLL","ABC"

PRINT USING "'LLLLL","12345678"
END

Output

ABCDE
ABC
123456

14.4.2 Right-Justified Format

BASIC prints strings in a right-justified field starting with the rightmost
character. BASIC pads the left side of shorter strings with spaces. If a string
is longer than the field, BASIC left-justifies and truncates the right side of the

string.

A right-justified field contains a single quotation mark (') followed by a series
of Rs.

DECLARE STRING CONSTANT right_justify = "/RRRRR"

PRINT USING right justify,"ABCD"
PRINT USING right justify,"A"

PRINT USING right justify, "STUVWXYZ"
END

Output

ABCD
A
STUVWX

14-14 Formatting Output with the PRINT USING Statement

14.4.3 Centered Fields

BASIC prints strings in a centered field by aligning the center of the string

with the center of the field. If BASIC cannot exactly center the string—as is
the case for a 2-character string in a 5-character field, for example—BASIC

prints the string one character off center to the left.

A centered field contains a single quotation mark followed by a series of Cs.

DECLARE STRING CONSTANT center = "'CCCC"
PRINT USING center, "A"

PRINT USING center, "AB"

PRINT USING center, "ABC"

PRINT USING center, "ABCD"

PRINT USING center, "ABCDE"

END

Output

A
AB
ABC

ABCD
ABCDE

If there are more characters than places in the field, BASIC left-justifies and
truncates the string on the right.

14.4.4 Extended Fields

An extended field contains a single quotation mark followed by one or more Es.
The extended field is the only field that automatically prints the entire string.
In addition:

e If the string is smaller than the format field, BASIC left-justifies the string
as in a left-justified field.

e If the string is longer than the format field, BASIC extends the field and
prints the entire string.

PRINT USING "'E", "THE QUICK BROWN"
PRINT USING "'EEEEEEE’', "FOX"
END

Output

THE QUICK BROWN
FOX

Formatting Output with the PRINT USING Statement 14-15

The following example uses left-justified, right-justified, centered, and extended

fields:

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
END

USING
USING
USING
USING
USING
USING
USING
USING
USING
USING
USING
USING
USING
USING

Output

THIS T

SHOULD PRINT

EXT

"'LLLLLLLLL", "THIS TEXT"
"'LLLLLLLLLLLLLL", "SHOULD PRINT"
"'LLLLLLLLLLLLLL", AT LEFT MARGIN'
"lRRRR","l’2’3’4"

"'RRRR",’1,2,3’
IIIRRRRI , nl’2ll
IIIRRRRII , Illll

"rceeeeeeeen, "an

"rCceceeeeeen, "ABC!

"’ Ccceeeeecn, "ABCDE"

" CCCcceeeen, "ABCDEFG!

"’ Ccceeeceecn, "ABCDEFGHI!

"'LLLLLLLLLLLLLLLLL' , "YOU ONLY SEE PART OF THIS"
"/E","YOU CAN SEE ALL OF THE LINE WHEN IT IS EXTENDED"

AT LEFT MARGIN

ABCD
ABCDE
ABCDEF

E
FG
GHI

YOU ONLY SEE PART
YOU CAN SEE ALL OF THE LINE WHEN IT IS EXTENDED

14.5 PRINT USING Statement Error Conditions

There are two types of PRINT USING error conditions: fatal and warning.
BASIC signals a fatal error if:

e The format string is not a valid string expression

e There are no valid fields in the format string

* You specify a string for a numeric field

* You specify a number for a string field

* You separate the items to be printed with characters other than commas or
semicolons

14-16 Formatting Output with the PRINT USING Statement

e A format field contains an invalid combination of characters

¢ You print a negative number in a floating-dollar sign or asterisk-fill field
without a trailing minus sign

BASIC issues a warning if a number does not fit in the field. If a number is
larger than the field allows, BASIC prints a percent sign (%) followed by the
number in the standard PRINT format and continues execution.

If a string is larger than any field other than an extended field, BASIC
truncates the string and does not print the excess characters.

If a field contains an invalid combination of characters, BASIC does not
recognize the first invalid character or any character to its right as part of the
field. These characters might form another valid field or be considered text.
If the invalid characters form a new valid field, a fatal error condition might
arise if the item to be printed does not match the field.

The following examples demonstrate invalid character combinations in numeric
fields:

Example 1
PRINT USING "§S**## ##",5.41,16.30

The dollar signs form a complete field and the rest forms a second valid field.
The first number (5.41) is formatted by the first valid field ($$). It prints as
“$5”. The second number (16.30) is formatted by the second field (**##.##) and
prints as “¥*16.30”.

Output 1
$5%%16.30

Example 2
PRINT USING "##.#"**", 5.43E09

Because the field has only three carets instead of four, BASIC prints a percent
sign and the number, followed by three carets.

Output 2
% .543E+10

AAA

Example 3
PRINT USING "'LLEEE", "VWXYZ"

You cannot combine two letters in one field. BASIC interprets EEE as a string
literal.

Output 3
VWXEEE

Formatting Output with the PRINT USING Statement 14-17

15

Handling Run-Time Errors

The process of detecting and correcting errors that occur when your program
is running is called error handling. This chapter describes default error
handling and how to handle HP BASIC run-time errors with your own error
handlers.

Throughout this chapter, the term “error” is used to imply any OpenVMS
exception, not only an exception of ERROR severity.

15.1 Default Error Handling

HP BASIC provides default run-time error handling for all programs. If you
do not provide your own error handlers, the default error handling procedures
remain in effect throughout program execution time.

When an error occurs in your program, HP BASIC diagnoses the error and
displays a message telling you the nature and severity of the error. There
are four severity levels of HP BASIC errors: SEVERE, ERROR, WARNING,
and INFORMATIONAL. The severity of an error determines whether or

not the program aborts if the error occurs when default error handling is in
effect. When default error handling is in effect, ERROR and SEVERE errors
always terminate program execution, but program execution continues when
WARNING and INFORMATIONAL errors occur.

To override the default error handling procedures, you can provide your own
error handlers, as described in the following sections. (Note that you should
not call LIBSESTABLISH from a HP BASIC program as this RTL routine
overrides the default error handling procedures and might adversely affect
program behavior.)

Only one error can be handled at a time. If an error has occurred but has not
yet been handled completely, that error is said to be pending. When an error
is pending and a second error occurs, program execution always terminates
immediately. Therefore, one of the most important functions of an error
handler is to clear the error so that subsequent errors can also be handled.

Handling Run-Time Errors 15-1

If you do not supply your own error handler, program control passes to the HP
BASIC error handler when an error occurs. For example, when HP BASIC
default error handling is in effect, a program will abort when division by zero
is attempted because division by zero is an error of SEVERE severity. With
an error handler, you can include an alternative set of instructions for the
program to follow; if the zero was input at a terminal, a user-written error
handler could display a “Try again” message and execute the program lines
again requesting input.

15.2 User-Supplied Error Handlers

It is good programming practice to anticipate certain errors and provide your
own error handlers for them. User-written error handlers allow you to handle
errors for a specified block of program statements as well as complete program
units. Any program module can contain one or more error handlers. These
error handlers test the error condition and include statements to be executed if
an error occurs.

To provide your own error handlers, you use WHEN ERROR constructs. A
WHEN ERROR construct consists of two blocks of code: a protected region
and a handler. A protected region is a block of code that is monitored by
the compiler for the occurrence of an error. A handler is the block of code
that receives program control when an error occurs during the execution of the
statements in the protected region.

There are two forms of WHEN ERROR constructs; in both cases the protected
region begins immediately after a WHEN ERROR statement. The following
partial programs illustrate each form. In Example 1, the handler is attached
to the protected region, while in Example 2, the handler catch_handler is
detached and must be provided elsewhere in the program unit.

Example 1

WHEN ERROR IN
protected statement 1
protected_statement 2

USE
handler statement 1
handler statement 2

END WHEN

15-2 Handling Run-Time Errors

15.2.1

Example 2

WHEN ERROR USE catch handler
protected statement 1
protected statement 2

END WHEN

HANDLER catch handler
handler statement 1
handler statement 2

END HANDLER

The following sections further explain the concepts of protected regions and
handlers.

Protected Regions

A protected region is a block of code that is monitored by the compiler for the
occurrence of an error. The bounds of this region are determined by the actual
ordering of the source code. Statements that are lexically between a WHEN
ERROR statement and a USE or END WHEN statement are in the protected
region.

If an error occurs inside the protected region, control passes to the error
handler associated with the WHEN ERROR statement. When an error occurs
beyond the limits of a protected region, default error handling is in effect
unless other error handlers are provided. For more details about handler
priorities, see Section 15.2.3 and Section 15.3.

The WHEN ERROR statement signals the start of a block of protected
statements. The WHEN ERROR statement also specifies the handler to be
used for any errors that occur inside the protected region. The keyword USE
either explicitly names the associated handler for the protected region, or
marks the start of the actual handler statements. The statements in the actual
error handler receive control only if an error occurs in the protected region.

The following example prompts the user for two integer values and displays
their sum. The WHEN ERROR block traps any invalid input values, displays
a message telling the user that the input was invalid, and reprompts the user
for input.

Handling Run-Time Errors 15-3

DECLARE INTEGER value_l, value_2

WHEN ERROR IN
INPUT "PLEASE INPUT 2 INTEGERS"; value 1, value 2 !protected statement

USE
PRINT "INVALID INPUT - PLEASE TRY AGAIN" !handler statement
RETRY lhandler statement
END WHEN

PRINT "THEIR SUM IS"; value 1 + value 2

Protected regions can be nested; a protected region can be within the bounds of
another protected region. However, WHEN ERROR statements cannot appear
inside an error handler, and protected regions cannot cross over into other
block structures. If you are using a WHEN ERROR block with a detached
handler, that handler cannot exist within a protected region.

15.2.2 Handlers

A handler is the block of code containing instructions to be executed only when
an error occurs during the execution of statements in the protected region.
When an error occurs during the execution of a protected region, HP BASIC
branches to the handler you have supplied. In turn, the handler processes the
error. An error handler typically performs the following functions:

e Determines which error occurred
e Takes appropriate action based on the nature of the error

e C(Clears the error condition with a RETRY, CONTINUE, END WHEN, or
END HANDLER statement

e (Continues program execution when possible
e Possibly identifies which program unit or statement caused the error

e Resignals errors with EXIT HANDLER (when an error cannot be handled
for some reason)

Handlers can be attached to, or detached from, the statements in the
WHEN ERROR protected region.

An attached handler is delimited by a USE and an END WHEN statement.
The attached handler immediately follows the protected region of a WHEN
ERROR IN block. The following example shows an attached handler that traps
errors on I/O statements, division by zero, and illegal numbers:

15-4 Handling Run-Time Errors

PROGRAM accident prone
DECLARE REAL age, accidents, rating
WHEN ERROR IN
Get age:
INPUT "Enter your age";age
INPUT "How many serious accidents have you had";accidents
rating = accidents/age
PRINT "That’s ";rating;" serious accidents per year!"

USE
SELECT ERR
ITrap division by zero
CASE = 61
PRINT "Please enter an age greater than 0"
CONTINUE Get age
ITrap illegal number
CASE = 52
PRINT "Please enter a positive number"
RETRY
CASE ELSE
IRevert to default error handling
EXIT HANDLER
END SELECT
END WHEN
END PROGRAM

A detached handler is defined separately in your program unit. It requires
an identifier and must be delimited by a HANDLER and an END HANDLER
statement. Handler names must be valid HP BASIC identifiers and cannot

be the same as the identifier for any label, PROGRAM name, DEF or DEF*
function, SUB, FUNCTION, or PICTURE subprogram. The main advantage of
using a detached handler is that it can be referenced by more than one WHEN
ERROR USE statement. The following example shows a simple detached
handler:

WHEN ERROR USE catcher
KILL "INPUT.DAT"

END WHEN

HANDLER catcher
ICatch if file does not exist
IF ERR = 5
THEN CONTINUE
END IF
END HANDLER

The statements within a handler are never executed if an error does not occur
or if no protected region exists for the statement that caused the exception.

Handling Run-Time Errors 15-5

When your program generates an error, control transfers to the specified
handler. If the code in an error handler generates a second error, control
returns to the default HP BASIC error handler and program execution ends,
usually with the first error only partly processed. To avoid the possibility of
your error handler causing a second error, you should keep handlers as simple
as possible and keep operations that might cause errors outside the handler.

Your handler can include conditional expressions to test the error and branch
accordingly, as shown in the following example:

PROGRAM Check records
WHEN ERROR USE Global handler

END WHEN
HANDLER Global handler
SELECT ERR
ITrap buffer overflow
CASE = 161
PRINT "Record too long"
CONTINUE
ITrap end of file on device
CASE = 11
PRINT "End of file"
CONTINUE
CASE ELSE
EXIT HANDLER
END SELECT
END HANDLER
CLOSE #1%
END PROGRAM

Note that ON ERROR statements are not allowed within protected regions
or handlers. For compatibility issues related to ON ERROR statements, see
Section 15.3.

15.2.3 Exiting from Handlers

After processing an error, a handler typically clears the error so that program
execution can continue. HP BASIC provides the following statements that
clear the error condition and exit from the handler:

RETRY
CONTINUE
END HANDLER
END WHEN

15-6 Handling Run-Time Errors

These statements differ from each other in that they revert control of program
execution to different points in the program. Examples of these statements are
included in the following sections.

An additional statement, EXIT HANDLER, is provided to allow you to exit
from a handler with the error still pending.

The END HANDLER statement identifies the end of the block of statements
in the handler. The END WHEN statement marks the end of the protected
region when a detached handler is used; it marks the end of the handler when
an attached handler is used. If the handler does not process an error with an
EXIT HANDLER, RETRY, or CONTINUE statement, the error is cleared by
the END HANDLER or END WHEN statement; however, processing continues
with the statement immediately after the protected region (and the attached
handler, if one exists) where the error occurred. These statements do not
return control to the protected region. This is known as “falling out of the
bottom of a handler.” Be careful not to fall out of the bottom of a handler
unintentionally.

Note that you cannot exit from a handler with the following statements:
e EXIT PROGRAM

e EXIT FUNCTION

e EXIT SUB

e EXIT DEF

e GOSUB (with a target outside the handler)

e GOTO (with a target outside the handler)

Also, you cannot exit from a handler with a RESUME statement. The
RESUME statement is valid only in blocks of code referred to by ON ERROR
statements. Section 15.3 describes the ON ERROR statements.

Handling Run-Time Errors 15-7

15.2.3.1

15.2.3.2

RETRY Statement

You use the RETRY statement to clear the error and to execute the statement
again that caused the error again. Be sure to take corrective action before
trying the protected statement again. For example:

DECLARE REAL radius

WHEN ERROR USE fix it

INPUT "Please supply the radius of the circle"; radius
END WHEN
HANDLER fix it

ltrap overflow error

IF ERR = 48
PRINT "Please supply a smaller radius"
RETRY
END HANDLER
PRINT "The circumference of the circle is "; 2*PI*radius

In FOR...NEXT loops, if the error occurs while HP BASIC is evaluating the
limit or increment values, RETRY reexecutes the FOR statement; if the error
occurs while HP BASIC is evaluating the index variable, RETRY reexecutes
the NEXT statement. In UNTIL.. NEXT and WHILE.. NEXT loops, if the
error occurs while HP BASIC is evaluating the relational expression, RETRY
reexecutes the NEXT statement.

CONTINUE Statement

You can use the CONTINUE statement to clear the error and cause execution
to continue at the statement immediately following the propagated error.

When the CONTINUE statement is within an attached handler, you can
specify a target. The target can be a line number or label within the bounds
of the associated protected region, in a surrounding protected region, or within
an unprotected region; however, you must specify a target within the current
program module. You cannot specify a target for the CONTINUE statement
when it is in a detached handler. For example:

15-8 Handling Run-Time Errors

DIM LONG her attributes(10),his attributes(10)
DECLARE INTEGER counter
WHEN ERROR USE fix it

DATA 12,2,35,21,25.5,32,32,30,15,4

FOR counter = 0 TO 12

READ her attributes(counter)

NEXT counter

MAT his attributes = her attributes
END WHEN

HANDLER fix it
!Trap out of data
IF ERR = 57
THEN RESTORE
CONTINUE
ELSE EXIT HANDLER
END IF
END HANDLER

When a DEF function is invoked from a protected region and an error occurs
that has not been handled, a CONTINUE statement with no target causes
execution to resume at the statement following the one that invoked the
function.

Note that if an error occurs in a loop control statement or SELECT or CASE
statement, the CONTINUE statement causes HP BASIC to resume execution
at the statement following the end of the loop structure (the NEXT, END
CASE, or END SELECT statements).

Note

When you use the RETRY or the CONTINUE statement without a
target, the compiler builds read only tables in the generated object file
with information about statements in the associated protected regions.
Therefore, when space is extremely critical, do not protect large regions
with handlers containing RETRY or CONTINUE without a specified
target.

Handling Run-Time Errors 15-9

15.2.3.3 EXIT HANDLER Statement

Unlike RETRY and CONTINUE, the EXIT HANDLER statement does not
clear the error; rather, it allows you to exit from the handler with the error
pending. This allows you to pass an error to the handler associated with the
next outer protected region, or back to HP BASIC default error handling, or to
the calling procedure.

When an error occurs within a nested protected region, control passes to the
handler associated with the innermost protected region in which the error
occurred. If the innermost handler does not handle the error, the error is
passed to the next outer handler with the EXIT HANDLER statement. All
handlers for any outer WHEN ERROR blocks are processed before reverting to
default error handling or resignaling the calling procedure.

The following example shows two nested protected regions. Neither handler
traps division by zero. If division by zero occurs, the handler associated

with the innermost protected region, inner_handler, does not clear the error;
therefore, the error is passed to the handler associated with the next outer
protected region. Outer_handler does not clear this error either, and so the
error is passed to the default error handler. This error is fatal and the program
ends abnormally. Output is specific to VAX BASIC.

PROGRAM nesting

OPTION TYPE = EXPLICIT

DECLARE LONG divisor

DECLARE REAL dividend, quotient

WHEN ERROR USE outer handler
INPUT "Enter divisor";Divisor
INPUT "Enter dividend";Dividend

WHEN ERROR USE inner handler

Quotient = Dividend/Divisor

PRINT "The quotient is ";Quotient
END WHEN

END WHEN
HANDLER outer handler
ITrap data format error

IF ERR = 50
THEN
PRINT "Illegal input...try again"
RETRY

ELSE PRINT "In outer handler"
PRINT "Reverting to default handling now"
EXIT HANDLER
END IF
END HANDLER

15-10 Handling Run-Time Errors

HANDLER inner handler
ITrap overflow/decimal error
IF ERR = 181
THEN CONTINUE
ELSE PRINT "Inside inner handler"
PRINT "Reverting to outer handler now"
EXIT HANDLER
END IF
END HANDLER
END PROGRAM

For more information about exiting program units while an error is pending,
see Section 15.2.6.

15.2.4 Selecting the Severity of Errors to Handle

The OPTION HANDLE statement lets you specify the severity level of errors
that are to be handled by an error handler in addition to the BASIC errors
that can normally be handled or trapped. You can specify any one of the
following error severity levels: BASIC, SEVERE, ERROR, WARNING, or
INFORMATIONAL.

OPTION HANDLE = BASIC is the default, which is in effect if you do not
specify an alternative in the OPTION HANDLE statement. Only HP BASIC
errors that can be trapped transfer control to the current error handler when
this option is in effect. Refer to Appendix B to determine which BASIC errors
cannot be trapped.

When you specify an error severity level other than BASIC in the OPTION
HANDLE statement, the following errors will transfer control to the error
handler:

e All BASIC errors that can be trapped of this or lesser severity
e All non-BASIC errors of this or lesser severity

e BASIC errors of this or lesser severity that normally cannot be trapped

For example, if you specify OPTION HANDLE = ERROR, you can handle all
BASIC and non-BASIC errors of ERROR severity (both those that can and
those that cannot be trapped), and all WARNING and INFORMATIONAL
errors, but no SEVERE errors.

Handling Run-Time Errors 15-11

15.2.5

15.2.5.1

Identifying Errors

HP BASIC provides several built-in functions that return information about
an error. You can use these functions inside your error handlers to determine
details about the error and conditionally handle these errors. These functions
include:

ERR

ERL

ERN$

ERT$
VMSSTATUS
RMSSTATUS

Note that if an error occurs in your program that is not a HP BASIC error
or does not map onto a HP BASIC error, it is signaled as NOTBASIC (“Not
a BASIC error” (ERR=194). In this case, you can use the built-in function

VMSSTATUS to determine what caused the error.

Determining the Error Number (ERR)

You use the ERR function to return the number of the last error that occurred.
Appendix B lists the number of each HP BASIC run-time error—for example,
ERR 153 is “RECALREXI, Record already exists.”

OPTION HANDLE = ERROR
WHEN ERROR USE find error

END WHEN

HANDLER find error
SELECT ERR
IRecord already exists
CASE = 153
PRINT "Choose new record"
CONTINUE
CASE ELSE
EXIT HANDLER
END SELECT
END HANDLER

The results of ERR remain undefined until an error occurs. Although ERR
remains defined as the number of the last error after control leaves the error
handler, it is poor programming practice to refer to this variable outside the
scope of an error handler.

15-12 Handling Run-Time Errors

15.2.5.2 Determining the Error Line Number (ERL)

After your program generates an error, the ERL function returns the BASIC
line number of the signaled error. This function is valid only in line-numbered
programs. The ERL function, like ERR, lets you set up branching to one of
several paths in the code.

In the following example, the handler continues execution at different points in
the program, depending on the value of ERL:

10 DECLARE INTEGER CONSTANT TRUE = -1
20 WHEN ERROR USE err handler

900 END WHEN
1000 HANDLER err handler
SELECT TRUE
CASE (ERR = 11) AND (ERL = 790)
!Is error end of file at line 7907?
PRINT "Completed"
CONTINUE
CASE (ERR = 149) AND (ERL = 80)
!Is error not at end of file on line 807
PRINT "CHECK ACCESS MODE"
CONTINUE
CASE ELSE
!Let BASIC handle any other errors
EXIT HANDLER
1500 END SELECT
2000 END HANDLER
32000 CLOSE #5
32767 END

The results of ERL are undefined until an error occurs, or if the error occurs
in a subprogram not written in HP BASIC. Although ERL remains defined as
the line number of the last error even after control leaves the error handler, it
is poor programming practice to refer to this variable outside the scope of an
error handler.

If you reference ERL in a compilation unit with line numbers, code and data
are included in your program to allow HP BASIC to determine ERL when an
exception occurs. If you do not need to reference ERL, you can save program
size and reduce execution time by compiling your program with the /NOLINE
qualifier. Alpha BASIC uses the /NOLINE qualifier by default to compile
programs. Even if you do not use any line numbers, you can reduce execution
time by compiling with the /NOLINE qualifier.

Handling Run-Time Errors 15-13

15.2.5.3

15.2.5.4

If an error occurs in a subprogram containing line numbers, HP BASIC sets
the ERL variable to the subprogram line number where the error was detected.
If the subprogram also executes an EXIT HANDLER statement, control passes
back to the outer procedure’s handler. The error is assumed to occur on the
statement where the call or invocation occurs.

Determining Where the Error Occurred (ERNS$)

You use the ERN$ function to return the name of the program unit in which
the error was detected. ERN$ returns the name of a main program, SUB,
FUNCTION, or PICTURE subprogram, or DEF function. If the PROGRAM
statement is used with a user-supplied identifier, the ERN$ value is the
specified identifier for the main program. The results of ERN$ are undefined
until the program generates an error.

In the following example, control passes to the main program for error handling
if the error occurs in the module SUBARC:

HANDLER locat_ern
IF ERNS = "SUBARC"
THEN PRINT "ERROR IS ";ERR
PRINT "RETURNING TO MAIN PROGRAM FOR ERROR HANDLING"
EXIT HANDLER
ELSE PRINT "PROGRAM MODULE GENERATING ERROR IS ";ERNS
END IF
END HANDLER

Note that ERN$ is invalid when an error occurs in a subprogram compiled
with the /INOSETUP qualifier.

Determining the Error Message Text (ERTS$)

You use the ERT$ function to access the message text associated with a
specified error number. Use of the ERT$ function is not limited to the scope of
the error handler; you can access ERT$ at any time. The following detached
handler tests whether the error occurred in a DEF module named TSLFE, and,
if so, prints the text of the signaled error and resumes execution:

HANDLER catch it
IF ERNS = "TSLFE"
THEN PRINT ERTS (ERR)
CONTINUE
ELSE EXIT HANDLER
END IF
END HANDLER

15-14 Handling Run-Time Errors

15.2.5.5 Determining OpenVMS Error Information

HP BASIC provides a built-in function, VMSSTATUS, that returns the
originally signaled error before it is translated to a BASIC error. For example,
for the BASIC error “End of file on device” (ERR=11), the VMSSTATUS
function returns “RMS$ _EOF” (RMS end of file). This function is useful when
the error is NOTBASIC (ERR=194).

When there is no error pending, VMSSTATUS is undefined. The value
returned by this function is the actual signaled error value. If non-BASIC
errors are being handled, the VMSSTATUS function might be the only way to
find out which error caused the exception.

The following example shows a program that performs file I/O. The first WHEN
ERROR block traps any errors that occur while the program is opening the file
or requesting user input. The detached handler for this block checks the
value of VMSSTATUS to determine the exception that occurred. The inner
error handler handles two special errors, BAS$K_RECNOTFOU and BAS$K_
RECBUCLOC, separately. If the error signaled does not correspond to one of
these, the inner error handler passes control to the outer handler with the
EXIT HANDLER statement. The outer handler sets the program status to
VMSSTATUS. When the program exits, the operating system displays any
status that is of warning severity or greater.

PROGRAM Tester

OPTION HANDLE = ERROR
EXTERNAL LONG CONSTANT BAS$K RECNOTFOU, BASSK RECBUCLOC
DECLARE LONG Final status

MAP (Rec_buffer) &
STRING Rec key =5, &
STRING Rest_of record = 20

Final status =1
WHEN ERROR USE Global handler
OPEN "My database" FOR INPUT AS FILE #1
, INDEXED FIXED
,ACCESS READ
,MAP Rec_buffer
,PRIMARY Rec key
Get key:
INPUT "Record to retrieve"; Rec key
WHEN ERROR IN
GET #1%, KEY #0 EQ Rec_key
PRINT Rest of record

R R R 2

USE
SELECT ERR
CASE = BAS$K_RECNOTFOU
PRINT "Record not found"
CONTINUE Get key

Handling Run-Time Errors 15-15

15.2.5.6

CASE = BAS$K RECBUCLOC
SLEEP 2%
RETRY
CASE ELSE
EXIT HANDLER
END SELECT
END WHEN
END WHEN
HANDLER Global handler
Final status = VMSSTATUS
END HANDLER

END PROGRAM Final status

Determining RMS Error Information

The RMSSTATUS function lets you determine which RMS error caused a
resulting HP BASIC error. You must specify an open channel as the first
parameter to RMSSTATUS. If this channel is not open, the error “I/O channel
not open” (ERR=9) is signaled. The second parameter to the function lets you
specify either STATUS or VALUE; this parameter is optional. If you do not
specify the second parameter, RMSSTATUS returns the STATUS value by
default. STATUS represents the RMS STS field and VALUE corresponds to the
RMS STV field.

The following example shows an error handler that prints both the status and
the value of any RMS error:

WHEN ERROR IN
OPEN "file.txt" FOR OUTPUT AS FILE 1%
PRINT #1%, TIMES(0%)

USE
|Error 12 is fatal system I/0 failure
IF ERR = 12
THEN
PRINT "An unexpected RMS error has occurred:"
PRINT "Status = "; RMSSTATUS (1%)
PRINT "Value = "; RMSSTATUS (1%, VALUE)
EXIT HANDLER
END IF
END WHEN
CLOSE #1%
GOTO done
done:
END

If you want to find an RMS status without knowing which particular channel
to check, you can use VMSSTATUS to get the STATUS value (STS) if an error
has occurred.

15-16 Handling Run-Time Errors

15.2.6 Ctrl/C Trapping

Error handling procedures are commonly used to trap user Ctrl/C responses.
With Ctrl/C trapping enabled, control is transferred to an error handler if a

user presses Ctrl/C during program execution. You enable Ctrl/C trapping in
your program by invoking the built-in CTRLC function. For example:

Y% = CTRLC

After you invoke the CTRLC function, a Ctrl/C entered at the terminal
transfers control to the error handler. Once the Ctrl/C is trapped, you can
include routines to interact with the program, as shown in the following

example:

WHEN ERROR IN
Y% = CTRLC

OPEN 'FIL DAT’ FOR INPUT AS FILE #1%
INPUT "HOW MANY RECORDS"; Rec_read$

FOR I% = 1% TO Rec_read%
GET #1%

PRINT Name$, Address$, Emp _code%

PRINT
NEXT I%

USE
ITrap “C
IF (ERR = 28%)

THEN PRINT "CURRENT RECORD IS ";

ELSE EXIT HANDLER
END IF
CONTINUE Clean up
END WHEN

Clean up:

CLOSE #1%

PRINT "END OF PROCESSING"
END

Output
SMITH, DEXTER 231 COLUMBUS ST

TRAVIS, JOHN PO BOX 80
e

THE CURRENT RECORD IS 3
END PROCESSING

09341
64119

Handling Run-Time Errors 15-17

15.2.7

Note that the error condition is still pending until the error handler executes
the CONTINUE statement. Therefore, if you press Ctrl/C a second time while
the error handler is executing, control returns to the HP BASIC error handler,
which terminates the program.

To disable Ctrl/C trapping, use the RCTRLC function. The RCTRLC function
disables only Ctrl/C trapping, not the Ctrl/C interrupts themselves.

Handling Errors in Multiple-Unit Programs

You can use WHEN ERROR constructs anywhere in your main program or
program modules. Procedure and function invocations, such as invocations of
DEF and DEF* functions and SUB, FUNCTION, and PICTURE subroutines,
as well as non-BASIC programs, are valid within protected regions. GOTO
and GOSUB statements are valid within handlers provided that the target is
within the handler, an outer handler, or an unprotected region. Note, however,
that a detached handler cannot appear within DEF or DEF* functions without
the associated protected region.

When an error occurs within nested protected regions, HP BASIC maintains
the same priorities for handler use; control always passes to the handler
associated with the innermost protected region in which the error occurred.
When an exception occurs, all handlers for any outer WHEN ERROR blocks
are processed before the program reverts to default error handling. Outer
handlers are invoked when an inner handler executes an EXIT HANDLER
statement. When there are no more outer handlers, and the outermost handler
executes an EXIT HANDLER statement, program control reverts to the
handler associated with the calling routine. For example:

SUB LIST(AS)
WHEN ERROR USE sub_handler

OPEN A$ FOR INPUT AS FILE #12%
Get data:
LINPUT #12%, BS
PRINT BS
GOTO Get data
END WHEN
HANDLER sub_handler
ITrap end of file
IF ERR <> 11%
THEN EXIT HANDLER
END IF
END HANDLER
CLose_up:
CLOSE #12%
END SUB

15-18 Handling Run-Time Errors

You can call a subprogram while an error is pending; however, if you do,
the subprogram cannot resignal an error back to the calling program. If the
subprogram tries to resignal an error, HP BASIC signals “Improper error

handling” and program execution terminates.

The following rules apply to error handling in function definitions:

For example:

WHEN ERROR IN

invoke def:

A% =_FNIN_PUT%(”PROMPT”)
USE

PRINT "ERROR"; ERTS (ERR%);
IF ERNS = "FNIN PUT"
THEN PRINT "IN FUNCTION"
CONTINUE
ELSE PRINT "IN MAIN"
CONTINUE Invoke def
END IF
END WHEN

Main code:
DEF FNIN PUT% (PS$)
WHEN ERROR IN
PRINT P$
INPUT LINE_INS
FNIN PUT% = INTEGER (LINE IN$)
USE
IF ERR = 50
THEN RETRY
ELSE EXIT HANDLER
END IF
END WHEN
END DEF

DEF and DEF* function definitions cannot appear within a protected
region. However, protected regions can be contained within the function
definitions.

To trap errors while a DEF function is active, include protected regions
inside the DEF function. If you do this, the associated handler remains in
effect until your program leaves the protected region, or the DEF function.

Handling Run-Time Errors 15-19

Note

If you invoke a GOSUB statement or a DEF* function from within a
protected region and the invoked procedure is outside of any protected
region, all pending errors are handled by the WHEN ERROR handler
unless a previously executed ON ERROR statement specifies otherwise.

15.2.8 Forcing Errors

The CAUSE ERROR statement allows a program to artificially generate an
error when the program would not otherwise do so. You can force any HP
BASIC run-time error. You must specify the number of the error the compiler
should force; the error numbers are listed in Appendix B. The following
statement forces an end-of-file error (ERR=11) to occur:

CAUSE ERROR 11%

You can use this feature to debug an error handler during program
development, as shown in the following example:

WHEN ERROR IN
CAUSE ERROR 11%

USE
SELECT ERR
CASE = 11%
PRINT "Trapped an end of file on device"
CONTINUE
CASE ELSE
EXIT HANDLER
END WHEN

15.3 Using the ON ERROR Statements

15-20

HP BASIC supports ON ERROR statements as an alternative to WHEN blocks
primarily for compatibility with existing programs. WHEN ERROR blocks

are similar to declarative statements in that they do not depend on run-time
flow of control. The ON ERROR statements, however, affect error handling
only if the statements execute at run time. For example, if a GOTO statement
precedes an ON ERROR statement, the ON ERROR statement will not have
any effect because it does not execute.

Handling Run-Time Errors

WHEN ERROR blocks let you handle errors that occur in a specific range of
statements. ON ERROR statements let you specify a general error handler
that is in effect until you specify another ON ERROR statement or until you
pass control to the HP BASIC error handler.

Note

For all current program development, it is recommended that you use
WHEN ERROR constructs for user-written error handlers. Mixing
WHEN ERROR constructs and ON ERROR statements within the
same program is not recommended. The ON ERROR statements are
supported for compatibility with other versions of BASIC available
from HP. It is important to note that all of these statements are illegal
within a protected region, or an attached or detached handler.

The ON ERROR statements are documented in the HP BASIC for OpenVMS
Reference Manual. This section briefly describes the main features of the ON
ERROR statements.

The ON ERROR statements can be used to transfer control to a labeled block
of error handling code. If you have executed an ON ERROR statement and an
error occurs, the ON ERROR statement immediately transfers control to the
label or line number that starts the error handling code. Otherwise, the ON
ERROR statement specifies the branch to be taken in the event of an error.

There are three forms of the ON ERROR statement:

e ON ERROR GOTO 0

The ON ERROR GOTO 0 statement reverts control to HP BASIC default
error handling in one of two ways:

— If an error is pending, execution of the ON ERROR GOTO 0 statement
returns control to the HP BASIC error handler immediately.

— If no error is pending, an ON ERROR GOTO 0 statement disables
your current error handler. The HP BASIC error handler handles all
subsequent errors until another ON ERROR statement is executed,
unless an error occurs in a WHEN ERROR protected region.

e ON ERROR GOTO target

The ON ERROR GOTO target statement reverts control to the target when
subsequent errors occur that are not handled by WHEN block handlers.

Handling Run-Time Errors 15-21

e ON ERROR GO BACK

The ON ERROR GO BACK statement transfers control to the calling
program’s error handler if an error occurs in the subprogram or DEF
function. If you use ON ERROR GO BACK in a PROGRAM unit (outside of
a DEF function) and no other outer protected region exists, it is equivalent
to ON ERROR GOTO 0 and HP BASIC default error handling is in effect.
With ON ERROR GO BACK, if an error occurs in the execution of a
function or subprogram, the error is passed to either the error handler of
the surrounding program module (in the case of a DEF function definition)
or to the error handler of the calling program (in the case of a separately
compiled subprogram).

An error handler in the DEF function does not permanently override an
error handler in the main program. HP BASIC saves the error handler in
the main program when you transfer into a DEF, and restores it when you
return.

The ON ERROR GOTO statement is usually placed before any other executable
statements. The following example clears end-of-file errors and passes all other
errors back to the HP BASIC default error handling procedures:

5 ON ERROR GOTO Error handler

Error handler:
ITrap end of file on device
IF ERR = 11
THEN
RESUME 1000
ELSE
ON ERROR GO BACK
END IF

The ON ERROR GOTO statement remains in effect after your program
successfully handles an error. When the system signals another error, control
once again transfers to the specified error handler.

Every ON ERROR error handler must end with one of the following
statements:

e RESUME [target]
e ON ERROR GOTO 0
e ON ERROR GO BACK

15-22 Handling Run-Time Errors

If none of these statements is present, the HP BASIC error handler aborts
your program with the fatal error “Error trap needs RESUME” as soon as

an END, END SUB, END DEF, END FUNCTION, END PROGRAM, or END
PICTURE statement is encountered. The RESUME statement, like the RETRY
and CONTINUE statements, clears the error condition.

You can resume execution at any line number or label that is in the same
module as the RESUME statement, unless that line or target is inside a
DEF function, a WHEN ERROR protected region, or a handler. In general,
RESUME without a target transfers control to the beginning of the program
block where the error occurred.

e If you resume execution at a multistatement line, execution begins at
the first statement after the line number or label—not necessarily at the
statement that generated the error.

e If an entire loop block is associated with a single line number or label and
an error occurs within the loop, RESUME with no target transfers control
to the statement immediately after the FOR, WHILE, or UNTIL statement,
not to the line number or label.

For more information about the RESUME statement, see the HP BASIC for
OpenVMS Reference Manual.

Using both ON ERROR statements and WHEN ERROR constructs in the same
program is not recommended. However, when this is the case, the order of
handler priorities is as follows:

1. Control passes to the handler associated with the innermost WHEN
ERROR block.

2. If protected regions are nested, the pending error is handled by the handler
associated with the next outer WHEN ERROR block.

3. When no outer protected regions can handle the error, and if an ON
ERROR statement is in effect, control transfers to the target of the next
outer ON ERROR statement (if one is present).

4. If no outer handler is available or can handle the error, the error is passed
to HP BASIC default error handling. Default error handling is equivalent
to ON ERROR GOTO 0 for main procedures, and ON ERROR GO BACK
for SUBs, FUNCTIONSs, and DEF's.

For information about specific run-time errors, see Appendix B.

Handling Run-Time Errors 15-23

16

Compiler Directives

Compiler directives are instructions that tell HP BASIC to perform certain
operations as it translates a source program. This chapter describes how to
control program compilation using compiler directives.

16.1 Overview of Compiler Directives

With compiler directives, you can do the following:

Place program titles and subtitles in the header that appears on each page
of the listing file.

Place a program version identification string in both the listing file and the
object module.

Start or stop the inclusion of listing information for selected parts of a
program.

Start or stop the inclusion of cross-reference information for selected parts
of a program.

Include HP BASIC code from another source file or a text library.
Include CDD/Repository record definitions in a HP BASIC program.
Record dependency relationships in CDD/Repository.

Display a message at compile time.

Conditionally compile parts of a program.

Terminate compilation.

When using compiler directives, follow these rules:

Directives must begin with a percent sign (%).
Directives can be preceded by an optional line number.

Directives must be the only text on the line (except for %IF-%THEN-
%ELSE-%END %]IF).

Compiler Directives 16-1

e Directives cannot appear within a quoted string.

e Directives cannot follow an END, END SUB, or END FUNCTION
statement.

16.2 Controlling the Compilation Listing

The following compiler listing directives let you control the content and
appearance of the compilation listing:

e %TITLE places a title string on the first line of the listing header.
e %SBTTL places a subtitle string on the second line of the listing header.

e 9%IDENT places an identification string on the second line of the listing
header and within the object module.

e 9%PAGE causes BASIC to skip to top-of-form in the output listing.

e 9%NOLIST causes BASIC to stop accumulating information for the output
listing.

e 9%LIST causes BASIC to resume accumulating information for the output
listing.

e %NOCROSS causes BASIC to stop accumulating cross-reference

information for the output listing.

e 9%CROSS causes BASIC to resume accumulating cross-reference
information for the output listing.

These directives are described in the following sections.

The listing control directives have no effect if no source program listing is
being produced. Similarly, the %CROSS and %#NOCROSS directives have no
effect if no cross-reference listing is being produced. However, the %IDENT
directive places the specified text in the object module whether or not a listing
is produced.

16.2.1 %TITLE and %SBTTL Directives

The %TITLE directive lets you specify a line of text that appears on the first
line of every page in the compilation listing. This text line is a quoted string of
up to 31 characters and normally contains the source program title and other
information.

16—2 Compiler Directives

If the %TITLE directive is the first source text in a module, then the quoted
string appears in the first line of every page of the compilation listing;
otherwise, the quoted string appears in the first line of every subsequent
page in the compilation listing. That is, if BASIC encounters a %TITLE
directive after it has begun creating a page in the output listing, the title
information will not appear on that page. Rather, it appears on all of the
following pages until it encounters another %TITLE directive.

%TITLE must appear on its own line. For example:

$TITLE "File OPEN Subprogram -- Author Hugh Ristics"
SUB FILSUB (STRING F_NAME)

The %SBTTL directive lets you specify a line of text that appears on the second
line of every page in the compilation listing (beneath the title). If BASIC
encounters a %SBTTL directive after it has begun creating a page in the
output listing, the subtitle information will not appear on that page. Rather, it
appears on all following pages until it encounters another %SBTTL or %TITLE
directive. If you want the subtitle to appear on the first page, the %SBTTL
directive must appear directly after the %TITLE directive.

Any number of %SBTTL directives can appear in a source file; thus, you can
use subtitle text to identify parts of the source program. As in %TITLE, the
text you use in %SBTTL must be a quoted string not exceeding 31 characters.
Note, however, that subtitle information appears on listing pages that contain
the actual source code.

The following example shows the use of both %TITLE and %SBTTL directives.
The first line of the listing’s first page contains “Payroll Program” and the
second line contains “Constant Declarations.” When BASIC encounters

the %SBTTL directive, the second line on each subsequent page becomes
“Subroutines.” When BASIC encounters the %SBTTL directive, the second line
on each subsequent page becomes “Error Handler.”

$TITLE "Payroll Program"
%SBTTL "Constant Declarations"

%$SBTTL "Subroutines"

%SBTTL "Error Handler"

Compiler Directives 16-3

You can use multiple %TITLE directives in a single source file; however,
whenever BASIC encounters a %#TITLE directive, the %SBTTL information is
set to the null string. Therefore, if you want to display subtitle information,
each new %TITLE directive should be accompanied by a new %SBTTL
directive.

16.2.2 %IDENT Directive

The %IDENT directive identifies the version of a program module. The
identification text must be a quoted string of up to 31 characters. The
information contained within the identification text appears in the listing

file and the object module. Thus, the map file created by the OpenVMS Linker
also contains this information.

The identification text appears in the first 31 character positions of the second
line on each subsequent listing page. In the following example, the %IDENT
information appears as the first entry on the second line of the listing. The
information is also included in the object module if the compilation produces
one. If the linker generates a map listing, this information also appears there.

$IDENT "V5.3"
SUB PAY

If your source module contains multiple %IDENT directives, BASIC signals a
warning and uses the version specified in the first %IDENT directive.

16.2.3 %PAGE Directive

The %PAGE directive causes BASIC to begin a new page in the listing file. In
the following example, the #PAGE directives cause BASIC to skip to a new
page in the listing file just before each new subtitle. Note that, to have title
and subtitle information appear in the heading of each page, you cannot place
a line number between the %PAGE, %TITLE, and %SBTTL directives.

16—4 Compiler Directives

$TITLE "Payroll Program"
%SBTTL "Constant Declarations"

$PAGE
%$SBTTL "Subroutines"

%$PAGE
%SBTTL "Error Handler"

16.2.4 %LIST and %NOLIST Directives

%LIST and %NOLIST are complementary directives. The %LIST directive
causes BASIC to resume adding information to the listing file, while the
%NOLIST directive causes BASIC to stop adding information to the listing file.
Therefore, you can control which parts of the source program are to be listed.

In the following example, when BASIC encounters the %LIST directive, it
resumes adding new information to the listing file:

$TITLE "Payroll Program"
%SBTTL "Constant Declarations"

$NOLIST
$LIST

%$PAGE
%$SBTTL "Subroutines"

%$PAGE
%$SBTTL "Error Handler"

Compiler Directives 16-5

If you have not requested the creation of a compilation listing, the %LIST and
9%NOLIST directives have no effect.

If a program line contains a syntax error, BASIC overrides the %NOLIST
directive for that line and produces the normal error diagnostics in the listing
file.

16.2.5 %CROSS and %NOCROSS Directives

The %CROSS and %NOCROSS directives are complementary. The %CROSS
directive causes BASIC to resume adding cross-reference information, while the
%NOCROSS directive causes BASIC to stop adding cross-reference information
to the listing file. Therefore, you can specify that only certain parts of the
source program are to be cross-referenced.

In the following example, as soon as BASIC encounters the %CROSS directive,
it resumes adding new cross-reference information to the listing file:

$TITLE "Payroll Program"
%SBTTL "Constant Declarations"

$NOCROSS
%$CROSS

$PAGE
%SBTTL "Subroutines"

%$PAGE
%SBTTL "Error Handler"

If you have not requested the creation of a cross-reference listing, the %CROSS
and %NOCROSS directives have no effect.

16—6 Compiler Directives

16.3 Accessing External Source Files

The %INCLUDE directive lets you access BASIC source text from a file into
the source program. The %INCLUDE directive also lets you access record
definitions in CDD/Repository as well as access source text from a text library.
The line on which a %INCLUDE directive resides can be continued, but cannot
contain any other directives or statements.

If you are including a source text file, you must supply a file specification. If
you do not provide a file type, BASIC uses the default type .BAS. For example:

%$INCLUDE "KEN.BAS"

If you are including a CDD/Repository definition, you must supply a
valid CDD/Plus path specification to extract a RECORD definition from
CDD/Repository. For example:

%$INCLUDE %FROM %CDD "CDDSTOP.EMPLOYEE"

See the CDD/Repository CDO Reference Manual for more information about
CDD/Repository.

If you are including source text from a text library, you must supply the
name of the text module you wish to include as well as the name of the
library where the module resides. If you do not specify a library name,
BASIC uses the default library, BASIC$LIBRARY. Moreover, if you do

not specify a directory name or file type, BASIC uses the default device

and the file type .TLB. If the BASIC$LIBRARY logical name is undefined,
SYS$LIBRARY:BASIC$STARLET.TLB is used. The default file specification is
BASIC.TLB.

In the following example, when BASIC encounters the %INCLUDE directive,
the compiler searches through the library SYS$LIBRARY:BASIC_LIB.TLB for
the specified module DMB_TEST and compiles the text as if it were placed in
the position of the #INCLUDE directive:

%INCLUDE "DMB TEST" %FROM $LIBRARY "SYS$LIBRARY:BASIC LIB.TLB"

BASIC supplies the text library BASIC$STARLET located in SYS$LIBRARY.
This text library contains condition codes and other symbols defined in

the system object and shareable image libraries. Using the definitions

from BASIC$STARLET allows you to reference condition codes and other
system-defined symbols as local, rather than global symbols.

To create your own text libraries using the OpenVMS Librarian utility, see the
VMS Librarian Utility Manual.

All file specifications, CDD/Repository path specifications, text modules, and
library specifications must be string literals enclosed in quotation marks.

Compiler Directives 16-7

The source files accessed with ZINCLUDE cannot contain line numbers. This
requirement means that all statements in the accessed file are associated with
the BASIC line containing the %INCLUDE directive if line numbers are being
used. Therefore, if you are using line numbers, a %INCLUDE directive cannot
appear before the first line number in a source program. A file accessed by
%INCLUDE can itself contain a %INCLUDE directive.

When a program is compiled, BASIC inserts the included text at the point

at which it encounters the #INCLUDE directive. The compilation listing
identifies any text obtained from an included file by placing a mnemonic in
the first character position of the line in which the text appears. “In” specifies
text that was either accessed from a source file or from a text library, and “Cn”
specifies a record definition that was accessed from CDD/Repository. Both the
I and the C tell you that the text was accessed with the 2INCLUDE directive,
and n tells you the nesting level of the included text.

The %INCLUDE directive is useful when you want to share code among
multiple program modules. To do this, you must first create a file that contains
the shareable code, then include that file in all the modules that require it.
Thus, you reduce the chance of a typographical error.

You can prevent the INCLUDE file code from appearing in the compilation
listing by using the BASIC command qualifier SHOW=NOINCLUDE or
/SHOW=NOCDD_DEFINITIONS. For text files and text library modules, use
the qualifier SHOW=NOINCLUDE. For CDD/Repository definitions, use the
qualifier /SHOW=NOCDD_DEFINITIONS.

16.4 Controlling Compilation

BASIC lets you control the compilation of a program by creating and testing
lexical constants. You create and assign values to lexical constants with the
%LET directive. These constants are always LONG integers.

You control the compilation by using the %IF-%THEN-%ELSE-%2END %IF
directive to test these lexical constants. Thus, you can conditionally:

e Supply different values for program variables and constants.
e Skip over part of a program.

e Abort a compilation.

¢ Include BASIC source code from another file.

¢ Display informational messages during the compilation.

BASIC also supplies the lexical built-in function %VARIANT that can be used
to conditionally control compilation.

16-8 Compiler Directives

16.4.1

%1F-%THEN-%ELSE-%END %IF uses lexical expressions to determine
whether to execute directives in the %THEN clause or the %ELSE clause. The
following sections describe the use of:

e Lexical constants and expressions (%LET directive)
e %VARIANT

e %ABORT

e %PRINT

e %IF-%THEN-%ELSE-%END %IF

%LET Directive

The %LET directive creates and assigns values to lexical constants. Lexical
constants are always LONG integers. These constants control the execution of
the %IF-%THEN-%ELSE-%END %IF directive.

All lexical constants must be created with %LET before they can be used in

a %IF-%THEN-%ELSE-%2END %IF directive, and each lexical constant must
be created with a separate %#LET directive. All lexical constant names must
also be preceded by a percent sign and cannot end with a dollar sign or percent

sign.

A lexical expression can be any of the following:
e A lexical constant

¢ An integer literal

e A lexical built-in function (%VARIANT)

e Any combination of these, separated by logical, relational, or arithmetic
operators

The %LET directive lets you create constants that control conditional
compilation. For example:

%LET %debug on = 0%
See Section 16.4.5 for an example of using %LET with %IF-%THEN-%ELSE.

Compiler Directives 16-9

16.4.2 %VARIANT Directive

The %VARIANT directive is a built-in lexical function that returns an integer.
The value of this returned integer is determined by:

e The SET VARIANT command when a program is compiled in the VAX
BASIC Environment

e The /VARIANT qualifier when a program is compiled from the system
command level or from within the VAX BASIC Environment

The %VARIANT function returns the variant value set with either of these
methods.

The default value for the %VARIANT function is zero. See Section 16.4.5 for
an example of controlling compilation with %VARIANT.

16.4.3 %ABORT Directive

The %ABORT directive terminates the compilation and displays a message you
provide.

The text must be a quoted string literal. This information is displayed to
SYS$ERROR and in the compilation listing if one is being created. BASIC
stops the compilation and terminates the listing file as soon as it encounters
a %ABORT directive, and so BASIC does not perform syntax checking on
the remainder of the program. See Section 16.4.5 for an example of using
%ABORT.

16.4.4 %PRINT Directive

The %PRINT directive allows you to insert a message into your source code
that the BASIC compiler displays at compile time.

The text must be a quoted string literal. This information is displayed to
SYS$ERROR and in the compilation listing if one is being created. BASIC
prints the message specified as soon as it encounters a %PRINT directive. See
Section 16.4.5 for an example of using %PRINT.

16.4.5 %IF-%THEN-%ELSE-%END %IF Directive

The %IF-%THEN-%ELSE-%2END %IF directive lets you do the following things
conditionally:

e Compile source text
e Execute another compiler directive

This directive differs from all others in that it can appear anywhere in a
program where a space is allowed, except within a quoted string.

16-10 Compiler Directives

You must include %END %IF. Otherwise, the rest of the source program
becomes part of the %#THEN or %ELSE clause. You must also include a lexical
expression and some BASIC source code.

The truth or falsity of the lexical expression determines whether BASIC
compiles the source code in the %#THEN clause or the %#ELSE clause. If the
lexical expression is true, BASIC does not compile the source code in the
%ELSE clause. If the lexical expression is false, BASIC does not compile the
source code in the %THEN clause. However, HP BASIC does check for lexical
errors (such as illegally formed numeric constants) in the uncompiled block of
code. If an uncompiled block of code contains a lexical error, HP BASIC signals
an error.

Even though HP BASIC compiles only one block of code in an %IF-%THEN-
%ELSE-%END-%IF directive, you cannot use the same line number in both a
%THEN block and an %ELSE block. If you specify the same line number, the
first occurrence of the line number is replaced by the second when the program
is compiled.

The following example uses the %#VARIANT directive, which returns the value
set by the SET VARIANT command or /VARIANT qualifier:

%$IF (%VARIANT = 2%)

$THEN DECLARE LONG int array(100)
%ELSE DECLARE WORD int array(100)
$END %IF

This directive allows for two possibilities. If you compile this program with
a /VARIANT=2 qualifier, then BASIC creates an array of longword integers.
If you compile this program with any other variant value, BASIC creates an
array of word integers.

Because %IF can appear within a program line, you can express the same
directive this way:

DECLARE %IF (%VARIANT=2%) $%THEN LONG %ELSE WORD %END $IF int array(100)

A %THEN or %ELSE clause can also contain other compiler directives. For
example, the following program creates the lexical constant %my_constant and
assigns it a value of 8. The %IF directive evaluates the conditional expression
((%my_constant + %VARIANT) >= 10%). If this expression is true, BASIC
executes the %THEN clause, aborting the compilation and issuing an error
message. If the expression is false, BASIC prints the specified message and
continues to compile your program without aborting the compilation.

Compiler Directives 16-11

%LET %my_ constant = 8%

$IF ((%my _constant + $VARIANT) »>= 10%)%THEN
$ABORT "Cannot compile with VARIANT >= 2"
$ELSE
$PRINT "Successful Compilation"

$END %IF

The compilation listing shows you which clause was actually compiled.

16.4.6 %DEFINE and %UNDEFINE Directives

The %DEFINE directive allows you to assign a value to an identifier. The
%UNDEFINE directive will remove the value.

The representation of this value stays in force until a corresponding
%UNDEFINE directive or the end of the source module is encountered.

16.5 Record Dependency Relationships in CDD/Repository

By using the %INCLUDE %FROM %CDD or the %2REPORT %DEPENDENCY
directives in conjunction with the /DEPENDENCY_DATA qualifier in the
BASIC command, you can record dependency relationships in a CDO dictionary
between a compiled module entity and included records or other referenced
dictionary entities.

See Chapter 21 for more information about record dependency relationships.

16-12 Compiler Directives

17

Data Representation

This chapter describes how HP BASIC represents data stored in memory.

The following sections discuss four types of data representation: integer, float,
decimal, and string.

17.1 Integer Format

17.1.1

There are four ways in which integer data can be represented, depending

on the size of the data to be stored: byte, word, longword, and quadword.
Negative integer values are stored in two’s complement format. The following
sections describe each of these formats.

Byte-Length Integer Format

Byte-length integers are in the range -128 to 127 and are stored as 1 byte (8
bits), starting on an arbitrary byte boundary. Bits are labeled from the right, 0
to 7, as in Figure 17-1.

Figure 17-1 Byte-Length Integer Format

~
o

word: BINARY NUMBER

ZO0O—-—Wwm

ZK-5173-GE

Data Representation 17-1

17.1.2 Word-Length Integer Format

Word-length integers are in the range -32768 to 32767 and are stored as two
contiguous bytes, starting on an arbitrary byte boundary. Bits are labeled from
the right, 0 to 15, as in Figure 17-2.

Figure 17-2 Word-Length Integer Format

—

ZO—» |o

0

BINARY NUMBER

ZK-5174-GE

17.1.3 Longword Integer Format

Longword integers are stored as four contiguous bytes, starting on an arbitrary
byte boundary. Values are in the range -2147483648 to 2147483647. See
Figure 17-3.

Figure 17-3 Longword Integer Format

31 0

BINARY NUMBER

Z0O—-Ww

ZK-5175-GE

17.1.4 Quadword Integer Format

Quadword integers are stored as eight contiguous bytes, starting on an
arbitrary byte boundary. Values are in the range -9223372036854775808 to
9223372036854775807. See Figure 17-4.

17-2 Data Representation

Figure 17-4 Quadword Integer Format

BINARY NUMBER

ZO—-—Ww

VM-0520A-Al

The compiler incorrectly gives an integer overflow message when the most
negative integer constants are used, as follows:

BYTE -128%

WORD -32768%

LONG -2147483648%

QUAD -9223372036854775808%

The workaround is to use the appropriate expression from the following:

BYTE -127% - 1%

WORD -32767% - 1%

LONG -2147483647% - 1%

QUAD -9223372036854775807% - 1%

17.2 Real Number Format

17.2.1

Real numbers, like integers, can be represented in varying formats, depending
on the size of the data to be stored. These formats include SINGLE floating-
point, DOUBLE floating-point, GFLOAT floating-point, SFLOAT floating-point,
TFLOAT floating-point, XFLOAT floating-point, and packed DECIMAL format.
The following sections describe each of these formats.

SINGLE Floating-Point Number Format (F_floating)

F_floating (single-precision) floating-point numbers are stored as four
contiguous bytes, starting on an arbitrary byte boundary. Bits are labeled
from the right, 0 to 31.

The format for single-precision is sign magnitude, with bit 15 the sign bit,
bits 14 to 7 an excess-128 binary exponent, and bits 6 to 0 and 31 to 16 a
normalized 24-bit fraction with the redundant, most significant fraction bit not
represented. See Figure 17-5 for the format. The 8-bit exponent field encodes
the values from 0 to 255, inclusively.

Data Representation 17-3

An exponent value of 0 together with a sign bit of 0 indicates that the
F_floating number has a value of 0. Exponent values from 1 to 255 indicate
true binary exponents of -127 to 127. An exponent value of 0, together with
a sign bit of 1, is taken as reserved. (Floating-point instructions processing
a reserved operand take a reserved operand fault.) The magnitude of an
F_floating number is in the approximate range .29 * 10738 to 1.7 * 1038,
The precision of an F_floating number is approximately one part in 223
(approximately 7 decimal digits).

Figure 17-5 Single-Precision Real Number Format

15 14 76 0
S
(Ii BINARY NUMBER FRACTION
N
FRACTION
31 16
ZK-5176-GE

17.2.2 DOUBLE Floating-Point Number Format (D_floating)

Double-precision real number format consists of eight contiguous bytes,
starting on an arbitrary byte boundary. Bits are labeled from the right, 0 to
63, as in Figure 17-6. The form of a D_floating number is identical to the
F_floating form, except for an additional 32 low-significance fraction bits.
Within the fraction, bits increase in significance from 48 to 63, 32 to 47, 16

to 31, and 0 to 6. The exponent conventions and approximate range of values
are the same for both D_floating and F_floating numbers. The precision of a
D_floating number is approximately one part in 2°° (approximately 16 decimal
digits).

17-4 Data Representation

Figure 177-6 Double-Precision Real Number Format

15 14 76 0
S
GI EXPONENT FRACTION
N
FRACTION
FRACTION
FRACTION
63 48
ZK-5177-GE

In Alpha BASIC, it is possible to lose three binary digits of precision in
arithmetic operations when performing operations on D_floating double-
precision floating-point data. For each arithmetic operation, the data is
converted to G_floating first, the operation is performed in G_floating, and the
result is converted back to D_floating when the operation is complete.

Note

Because most floating-point values cannot be represented exactly

in binary, they are susceptible to rounding. 164 BASIC and the
Itanium hardware use T_floating representation in place of D_floating
representation. Alpha BASIC and the Alpha system hardware use
G_floating representation in place of the D_floating representation.
Thus, the behavior of floating-point computations and comparisons can
be different from what you expect.

Data Representation 17-5

17.2.3

17.2.4

GFLOAT Floating-Point Number Format (G_floating)

The G_floating floating-point number format consists of eight contiguous
bytes, starting on an arbitrary byte boundary, as shown in Figure 17-7. Bits
are labeled from the right, 0 to 63. The form of a G_floating number is sign
magnitude with bit 15 the sign bit, bits 14 to 4 an excess-1024 binary exponent,
and bits 3 to 0 and 63 to 16 a normalized 53-bit fraction with the redundant
most significant fraction bit not represented.

Within the fraction, bits increase in significance from 48 to 63, 32 to 47, 16 to
31, and 0 to 3. The 11-bit exponent field encodes the values 0 to 2047.

An exponent value of 0 together with a sign bit of 0 indicates that the
G_floating number value is 0. Exponent values from 1 to 2047 indicate true
binary exponents from -1023 to 1023. The value of a G_floating number is in
the approximate range .56 * 107398 to .9 * 10398; the precision is approximately
one part in 2°2 (approximately 15 decimal digits). Note that both double and
G_floating formats require 8 bytes. The G_floating format provides a greater
range, but less precision than double-precision format.

Figure 17-7 GFLOAT Floating-Point Number Format

63 15 14 3 0
S
| FRAC- |
FRACTION G EXPONENT Ton | A
ZK-5302A-GE

SFLOAT Floating-Point Number Format (S_floating)

The S_floating floating-point number format consists of four contiguous
bytes, starting on an arbitrary byte boundary, as shown in Figure 17-8. Bits
are labeled from the right, 0 to 31. The form of an S_floating number is
sign magnitude with bit 31 the sign bit, bits 30 to 23 an excess-127 binary
exponent, and bits 22 to 0 a normalized 24-bit fraction with the redundant
most significant fraction bit not represented unless the exponent is 0. If the
exponent is 0, a nonzero fraction represents an unnormalized 23-bit fraction.

An exponent value of 0 together with a fraction value of 0 and a sign bit of 0
indicates that the S_floating number value is 0. Exponent values from 1 to 254
indicate true binary exponents from -127 to 127. The value of an S_floating
number is in the approximate range 1.175 * 10738 to 3.402 * 1038; the precision
is approximately one part in 223 (approximately 7 decimal digits). Note that
S_floating format provides approximately the same range and precision as
F_floating format.

17-6 Data Representation

17.2.5

17.2.6

Figure 17-8 SFLOAT Floating-Point Number Format

31 30 23 22 0

EXPONENT FRACTION A

ZO—W0)|

ZK-9815-GE

TFLOAT Floating-Point Number Format (T_floating)

The T_floating floating-point number format consists of eight contiguous
bytes, starting on an arbitrary byte boundary, as shown in Figure 17-9.
Bits are labeled from the right, O to 63. The form of a T_floating number is
sign magnitude with bit 63 the sign bit, bits 62 to 52 an excess-1023 binary
exponent, and bits 51 to 0 a normalized 53-bit fraction with the redundant
most significant fraction bit not represented unless the exponent is 0. If the
exponent is 0, a nonzero fraction represents an unnormalized 52-bit fraction.

An exponent value of 0 together with a fraction value of 0 and a sign bit of

0 indicates that the T floating number value is 0. Exponent values from 1

to 2046 indicate true binary exponents from -1023 to 1023. The value of a
T_floating number is in the approximate range 2.225 * 107398 to 1.797 * 10398,
the precision is approximately one part in 252 (approximately 15 decimal
digits). Note that T_floating format provides approximately the same range
and precision as G_floating format.

Figure 17-9 TFLOAT Floating-Point Number Format

63 62 52 51 0
S
(la EXPONENT FRACTION A
N
ZK-9816-GE

XFLOAT Floating-Point Number Format (X_floating)

The X _floating floating-point number format consists of sixteen contiguous
bytes, starting on an arbitrary byte boundary, as shown in Figure 17-10. Bits
are labeled from the right, 0 to 127. The form of an X_floating number is sign
magnitude with bit 127 the sign bit, bits 126 to 112 an excess-16383 binary
exponent, and bits 111 to 0 a normalized 113-bit fraction with the redundant
most significant fraction bit not represented unless the exponent is 0. If the
exponent is 0, a nonzero fraction represents an unnormalized 112-bit fraction.

Data Representation 17-7

An exponent value of 0 together with a fraction value of 0 and a sign bit of
0 indicates that the X_floating number value is 0. Exponent values from 1
to 32766 indicate true binary exponents from -16383 to 16383. The value of
an X_floating number is in the approximate range 3.362 * 10-4932 to0 1.189

* 10%932; the precision is approximately one part in 2112 (approximately 33
decimal digits). Note that X_floating format provides approximately the same
range and precision as H_floating format.

Figure 17-10 XFLOAT Floating-Point Number Format

127 126 112 111 0
S
& EXPONENT FRACTION A
N
ZK-7420A-GE

17.3 Packed Decimal Number Format

The DECIMAL data type is useful for storing numbers with a fixed decimal
point. DECIMAL numbers are stored as a precise representation of the value
stored within the constraints of the specified number of fractional digits.

A packed decimal string is a contiguous sequence of bytes in memory. The
address A and length L are sufficient to specify a packed decimal string, but
note that L is the number of digits, not bytes, in the string. Each byte of a
packed decimal string is divided into two 4-bit fields (nibbles), each of which
must contain decimal digits, except the low nibble of the last byte, which
must contain a sign. The representation for the digits or signs is shown in the
following table:

17-8 Data Representation

Digit or Sign Decimal Hexadecimal

© 0 I O Ut B~ W N = O
0 3 & O B~ W N = O

9
10,12,14, or 15 ACE,or F
11 or 13 BorD

+ © 0 9O U W N R O

Despite the options, the preferred sign representation is 12 for positive and 13
for negative. The length L is the number of digits in the packed decimal string
(not counting the sign) and must be in the range 1 to 31. If the number of
digits is odd, the digits and the sign fit into ((L/2) + 1) bytes; when the number
of digits is even, an extra 0 digit must appear in the high nibble (bits 7 to 4) of
the first byte.

The address A of the string specifies the byte of the string containing the
most significant digit in its high nibble. Digits of decreasing significance are
assigned to increasing byte addresses and from high nibble to low nibble within
a byte.

Note that the decimal point is specified by the descriptor for the packed
decimal string. See Section 17.6 for more information about packed decimal
string descriptions.

17.4 String and Array Descriptor Format

A descriptor is an OpenVMS data structure that describes how to access data
in memory. A descriptor can also pass information about a paramater with
that parameter. The following sections describe the formats for fixed-length
and dynamic string descriptors.

Data Representation 17-9

17.4.1 Fixed-Length String Descriptor Format
A fixed-length string descriptor consists of two longwords.
The first word of the first longword contains a value equal to the string’s

length. The third byte contains 14 (OE hexadecimal—the OpenVMS code
describing an ASCII character string). The fourth byte contains 1.

The second longword is a pointer containing the address of the string’s first
byte. See Figure 17-11. For more information, see the OpenVMS Calling
Standard.

Figure 17-11 Fixed-Length String Descriptor Format

1 OE LENGTH

POINTER

ZK-5178-GE

17.4.2 Dynamic String Descriptor Format
A dynamic string descriptor consists of two longwords.
The first word of the first longword contains a value equal to the string’s

length. The third byte contains 14 (OE hexadecimal—the OpenVMS code
describing an ASCII character string). The fourth byte contains 2.

The second longword is a pointer containing the address of the string’s first
character. See Figure 17-12. For more information, see the OpenVMS Calling
Standard.

17-10 Data Representation

Figure 17-12 Dynamic String Descriptor Format

2 OE LENGTH

POINTER

ZK-5179-GE

17.5 Array Descriptors

HP BASIC creates DSC$